Science.gov

Sample records for active metal sites

  1. Tuned by metals: the TET peptidase activity is controlled by 3 metal binding sites.

    PubMed

    Colombo, Matteo; Girard, Eric; Franzetti, Bruno

    2016-02-08

    TET aminopeptidases are dodecameric particles shared in the three life domains involved in various biological processes, from carbon source provider in archaea to eye-pressure regulation in humans. Each subunit contains a dinuclear metal site (M1 and M2) responsible for the enzyme catalytic activity. However, the role of each metal ion is still uncharacterized. Noteworthy, while mesophilic TETs are activated by Mn(2+), hyperthermophilic TETs prefers Co(2+). Here, by means of anomalous x-ray crystallography and enzyme kinetics measurements of the TET3 aminopeptidase from the hyperthermophilic organism Pyrococcus furiosus (PfTET3), we show that M2 hosts the catalytic activity of the enzyme, while M1 stabilizes the TET3 quaternary structure and controls the active site flexibility in a temperature dependent manner. A new third metal site (M3) was found in the substrate binding pocket, modulating the PfTET3 substrate preferences. These data show that TET activity is tuned by the molecular interplay among three metal sites.

  2. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts

    PubMed Central

    Sahraie, Nastaran Ranjbar; Kramm, Ulrike I.; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter

    2015-01-01

    Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and 57Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity. PMID:26486465

  3. Predictive Modeling of Metal-Organic Chains with Active Metal Site

    NASA Astrophysics Data System (ADS)

    Ud Din, Naseem; Le, Duy; Rahman, Talat

    Creation, stabilization, characterization and control of single atom transition metal (TM) sites may lead to significant advancement of the next-generation catalyst. Motivated by the experimental results of Skomski et al., we have performed density functional theory based calculations of TM-dipyridyltetrazine (DT) chains in which TM atoms are stabilized and separated by the DT molecules. Our calculations show that the formation energies of the chains are high, suggesting that these chains can easily be synthesized and stabilized. Moreover, by calculating the adsorption energies of CO, O2 and O atom on the metal atom sites of the chains we found that these molecules/atoms strongly bond to TM atoms Mo, Cr, Fe and Co occupying these sites, suggesting that these TM-DT chains are potential candidates for CO oxidation catalyst. Details of reaction pathway (energetic and kinetic) of CO oxidation on the chains will be also presented and discussed.

  4. Formation of nanostructured Group IIA metal activated sensors: The transformation of Group IIA metal compound sites

    NASA Astrophysics Data System (ADS)

    Tune, Travis C.; Baker, Caitlin; Hardy, Neil; Lin, Arthur; Widing, Timothy J.; Gole, James L.

    2015-05-01

    Trends in the Group IIA metal oxides and hydroxides of magnesium, calcium, and barium are unique in the periodic table. In this study we find that they display novel trends as decorating nanostructures for extrinsic semiconductor interfaces. The Group IIA metal ions are strong Lewis acids. We form these M2+ ions in aqueous solution and bring these solutions in contact with a porous silicon interface to form interfaces for conductometric measurements. Observed responses are consistent with the formation of MgO whereas the heavier elements display behaviors which suggest the effect of their more basic nature. Mg(OH)2, when formed, represents a weak base whereas the heavier metal hydroxides of Ca, Sr, and Ba are strong bases. However, the hydroxides tend to give up hydrogen and act as Brönsted acids. For the latter elements, the reversible interaction response of nanostructures deposited to the porous silicon (PS) interface is modified, as the formation of more basic sites appears to compete with M2+ Lewis acidity and hydroxide Brönsted acidity. Mg2+ forms an interface whose response to the analytes NH3 and NO is consistent with MgO and well explained by the recently developing Inverse Hard/Soft Acid/Base model. The behavior of the Ca2+ and Ba2+ decorated interfaces as they interact with the hard base NH3 follows a reversal of the model, indicating a decrease in acidic character as the observed conductometric response suggests the interaction with hydroxyl groups. A change from oxide-like to hydroxide-like constituents is supported by XPS studies. The changes in conductometric response is easily monitored in contrast to changes associated with the Group IIA oxides and hydroxides observed in XPS, EDAX, IR, and NMR measurements.

  5. A Frontier Molecular Orbital determination of the active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.

    1992-11-01

    An angular overlap calculation has been used to determine the s, p and d orbital energy levels of the different types of surface sites present on a dispersed metal catalysts. The basis for these calculations is the reported finding that a large number of catalyzed reactions take place on single atom active sites on the metal surface. Thus, these sites can be considered as surface complexes made up of the central active atom surrounded by near-neighbor metal atom ``ligands`` with localized surface orbitals perturbed only by these ``ligands``. These ``complexes`` are based on a twelve coordinate species with the ``ligands`` attached to the t{sub 2g} orbitals and the coordinate axes coincident with the direction of the e{sub g} orbitals on the central atom. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  6. A Frontier Molecular Orbital determination of the active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.

    1992-01-01

    An angular overlap calculation has been used to determine the s, p and d orbital energy levels of the different types of surface sites present on a dispersed metal catalysts. The basis for these calculations is the reported finding that a large number of catalyzed reactions take place on single atom active sites on the metal surface. Thus, these sites can be considered as surface complexes made up of the central active atom surrounded by near-neighbor metal atom ligands'' with localized surface orbitals perturbed only by these ligands''. These complexes'' are based on a twelve coordinate species with the ligands'' attached to the t{sub 2g} orbitals and the coordinate axes coincident with the direction of the e{sub g} orbitals on the central atom. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  7. Similarities in the HIV-1 and ASV Integrease Active Site Upon Metal Binding

    SciTech Connect

    Lins, Roberto D.; Straatsma, TP; Briggs, J. M.

    2000-04-05

    The HIV-1 integrase, which is essential for viral replication, catalyzes the insertion of viral DNA into the host chromosome thereby recruiting host cell machinery into making viral proteins. It represents the third main HIV enzyme target for inhibitor design, the first two being the reverse transcriptase and the protease. We report here a fully hydrated 2 ns molecular dynamics simulation performed using parallel NWChem3.2.1 with the AMBER95 force field. The HIV-1 integrase catalytic domain previously determined by crystallography (1B9D) and modeling including two Mg2+ ions placed into the active site based on an alignment against an ASV integrase structure containing two divalent metals (1VSH), was used as the starting structure. The simulation reveals a high degree of flexibility in the region of residues 140-149 even in the presence of a second divalent metal ion and a dramatic conformational change of the side chain of E152 when the second metal ion is present. This study shows similarities in the behavior of the catalytic residues in the HIV-1 and ASV integrases upon metal binding. The present simulation also provides support to the hypothesis that the second metal ion is likely to be carried into the HIV-1 integrase active site by the substrate, a strand of DNA.

  8. Structural role of the active-site metal in the conformation of Trypanosoma brucei phosphoglycerate mutase.

    PubMed

    Mercaldi, Gustavo F; Pereira, Humberto M; Cordeiro, Artur T; Michels, Paul A M; Thiemann, Otavio H

    2012-06-01

    Phosphoglycerate mutases (PGAMs) participate in both the glycolytic and the gluconeogenic pathways in reversible isomerization of 3-phosphoglycerate and 2-phosphoglycerate. PGAMs are members of two distinct protein families: enzymes that are dependent on or independent of the 2,3-bisphosphoglycerate cofactor. We determined the X-ray structure of the monomeric Trypanosoma brucei independent PGAM (TbiPGAM) in its apoenzyme form, and confirmed this observation by small angle X-ray scattering data. Comparing the TbiPGAM structure with the Leishmania mexicana independent PGAM structure, previously reported with a phosphoglycerate molecule bound to the active site, revealed the domain movement resulting from active site occupation. The structure reported here shows the interaction between Asp319 and the metal bound to the active site, and its contribution to the domain movement. Substitution of the metal-binding residue Asp319 by Ala resulted in complete loss of independent PGAM activity, and showed for the first time its involvement in the enzyme's function. As TbiPGAM is an attractive molecular target for drug development, the apoenzyme conformation described here provides opportunities for its use in structure-based drug design approaches. Database Structural data for the Trypanosoma brucei 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (iPGAM) has been deposited with the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank under code 3NVL.

  9. Elucidating Oxygen Reduction Active Sites in Pyrolyzed Metal-Nitrogen Coordinated Non-Precious-Metal Electrocatalyst Systems.

    PubMed

    Tylus, Urszula; Jia, Qingying; Strickland, Kara; Ramaswamy, Nagappan; Serov, Alexey; Atanassov, Plamen; Mukerjee, Sanjeev

    2014-05-01

    Detailed understanding of the nature of the active centers in non-precious-metal-based electrocatalyst, and their role in oxygen reduction reaction (ORR) mechanistic pathways will have a profound effect on successful commercialization of emission-free energy devices such as fuel cells. Recently, using pyrolyzed model structures of iron porphyrins, we have demonstrated that a covalent integration of the Fe-N x sites into π-conjugated carbon basal plane modifies electron donating/withdrawing capability of the carbonaceous ligand, consequently improving ORR activity. Here, we employ a combination of in situ X-ray spectroscopy and electrochemical methods to identify the various structural and functional forms of the active centers in non-heme Fe/N/C catalysts. Both methods corroboratively confirm the single site 2e(-) × 2e(-) mechanism in alkaline media on the primary Fe(2+)-N4 centers and the dual-site 2e(-) × 2e(-) mechanism in acid media with the significant role of the surface bound coexisting Fe/Fe x O y nanoparticles (NPs) as the secondary active sites.

  10. Metal active site elasticity linked to activation of homocysteine in methionine synthases

    SciTech Connect

    Koutmos, Markos; Pejchal, Robert; Bomer, Theresa M.; Matthews, Rowena G.; Smith, Janet L.; Ludwig, Martha L.

    2008-04-02

    Enzymes possessing catalytic zinc centers perform a variety of fundamental processes in nature, including methyl transfer to thiols. Cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthases are two such enzyme families. Although they perform the same net reaction, transfer of a methyl group from methyltetrahydrofolate to homocysteine (Hcy) to form methionine, they display markedly different catalytic strategies, modular organization, and active site zinc centers. Here we report crystal structures of zinc-replete MetE and MetH, both in the presence and absence of Hcy. Structural investigation of the catalytic zinc sites of these two methyltransferases reveals an unexpected inversion of zinc geometry upon binding of Hcy and displacement of an endogenous ligand in both enzymes. In both cases a significant movement of the zinc relative to the protein scaffold accompanies inversion. These structures provide new information on the activation of thiols by zinc-containing enzymes and have led us to propose a paradigm for the mechanism of action of the catalytic zinc sites in these and related methyltransferases. Specifically, zinc is mobile in the active sites of MetE and MetH, and its dynamic nature helps facilitate the active site conformational changes necessary for thiol activation and methyl transfer.

  11. Crystallographic snapshots of active site metal shift in E. coli fructose 1,6-bisphosphate aldolase

    PubMed Central

    Tran, Huyen-Thi; Lee, Seon-Hwa; Ho, Thien-Hoang; Hong, Seung-Hye; Huynh, Kim-Hung; Ahn, Yeh-Jin; Oh, Deok-Kun; Kang, Lin-Woo

    2016-01-01

    Fructose 1,6-bisphosphate aldolase (FBA) is important for both glycolysis and gluconeogenesis in life. Class II (zinc dependent) FBA is an attractive target for the development of antibiotics against protozoa, bacteria, and fungi, and is also widely used to produce various high-value stereoisomers in the chemical and pharmaceutical industry. In this study, the crystal structures of class II Escherichia coli FBA (EcFBA) were determined from four different crystals, with resolutions between 1.8 Å and 2.0 Å. Native EcFBA structures showed two separate sites of Zn1 (interior position) and Zn2 (active site surface position) for Zn2+ ion. Citrate and TRIS bound EcFBA structures showed Zn2+ position exclusively at Zn2. Crystallographic snapshots of EcFBA structures with and without ligand binding proposed the rationale of metal shift at the active site, which might be a hidden mechanism to keep the trace metal cofactor Zn2+ within EcFBA without losing it. PMID:27733232

  12. Characterization of the interactions between the active site of a protein tyrosine kinase and a divalent metal activator

    PubMed Central

    Lin, Xiaofeng; Ayrapetov, Marina K; Sun, Gongqin

    2005-01-01

    Background Protein tyrosine kinases are important enzymes for cell signalling and key targets for anticancer drug discovery. The catalytic mechanisms of protein tyrosine kinase-catalysed phosphorylation are not fully understood. Protein tyrosine kinase Csk requires two Mg2+ cations for activity: one (M1) binds to ATP, and the other (M2) acts as an essential activator. Results Experiments in this communication characterize the interaction between M2 and Csk. Csk activity is sensitive to pH in the range of 6 to 7. Kinetic characterization indicates that the sensitivity is not due to altered substrate binding, but caused by the sensitivity of M2 binding to pH. Several residues in the active site with potential of binding M2 are mutated and the effect on metal activation studied. An active mutant of Asn319 is generated, and this mutation does not alter the metal binding characteristics. Mutations of Glu236 or Asp332 abolish the kinase activity, precluding a positive or negative conclusion on their role in M2 coordination. Finally, the ability of divalent metal cations to activate Csk correlates to a combination of ionic radius and the coordination number. Conclusion These studies demonstrate that M2 binding to Csk is sensitive to pH, which is mainly responsible for Csk activity change in the acidic arm of the pH response curve. They also demonstrate critical differences in the metal activator coordination sphere in protein tyrosine kinase Csk and a protein Ser/Thr kinase, the cAMP-dependent protein kinase. They shed light on the physical interactions between a protein tyrosine kinase and a divalent metal activator. PMID:16305747

  13. Simultaneous presence of both open metal sites and free functional organic sites in a noncentrosymmetric dynamic metal-organic framework with bimodal catalytic and sensing activities.

    PubMed

    Saha, Rajat; Joarder, Biplab; Roy, Anupam Singha; Manirul Islam, Sk; Kumar, Sanjay

    2013-12-02

    Assimilation of open metal sites (OMSs) and free functional organic sites (FOSs) with a framework strut has opened up a new route for the fabrication of novel metal-organic materials, thereby providing a unique opportunity to explore their multiple functionalities. A new metal-organic framework (MOF), {[Cu(ina)2(H2O)][Cu(ina)2(bipy)]·2H2O}n (1) (ina=isonicotinate, bipy=4,4'-bipyridine), has been synthesized and characterized. Complex 1 is crystallized in the orthorhombic noncentrosymmetric space group Aba2 and consists of two different 2D coordination polymers, [Cu(ina)2(H2O)]n and [Cu(ina)2(bipy)]n, with entrapped solvent water molecules. Hydrogen-bonding interactions assemble these two different 2D coordination layers in a single-crystal structure with interdigitation of pendant 4,4'-bipy from one layer into the groove of another. Upon removal of guest molecules, 1 undergoes a structural transformation in single-crystal-to-single-crystal fashion with expansion of the effective void space. Each metal center is five-coordinated and thus can potentially behave as an OMS, and the free pyridyl groups of pendant 4,4'-bipy moieties and free -C=O groups can act as free FOSs. Thus, owing to presence of both OMSs and free FOSs, the framework exhibits multifunctional properties. Owing to the presence of OMSs, the framework can act as a Lewis acid catalyst as well as a small-molecule sensor material, and in a similar way, owing to the presence of free FOSs, it performs as a Lewis base catalyst and a cation sensor material. Furthermore, owing to noncentrosymmetry with large polarity along a particular direction, it shows strong second-harmonic generation/nonlinear optical (SHG-NLO) activity.

  14. Linking structure to function: The search for active sites in non-platinum group metal oxygen reduction reaction catalysts

    SciTech Connect

    Holby, Edward F.; Zelenay, Piotr

    2016-05-17

    Atomic-scale structures of oxygen reduction reaction (ORR) active sites in non-platinum group metal (non-PGM) catalysts, made from pyrolysis of carbon, nitrogen, and transition-metal (TM) precursors have been the subject of continuing discussion in the fuel cell electrocatalysis research community. We found that quantum chemical modeling is a path forward for understanding of these materials and how they catalyze the ORR. Here, we demonstrate through literature examples of how such modeling can be used to better understand non-PGM ORR active site relative stability and activity and how such efforts can also aid in the interpretation of experimental signatures produced by these materials.

  15. The homing endonuclease I-CreI uses three metals, one of which is shared between the two active sites.

    PubMed

    Chevalier, B S; Monnat, R J; Stoddard, B L

    2001-04-01

    Homing endonucleases, like restriction enzymes, cleave double-stranded DNA at specific target sites. The cleavage mechanism(s) utilized by LAGLIDADG endonucleases have been difficult to elucidate; their active sites are divergent, and only one low resolution cocrystal structure has been determined. Here we report two high resolution structures of the dimeric I-CreI homing endonuclease bound to DNA: a substrate complex with calcium and a product complex with magnesium. The bound metals in both complexes are verified by manganese anomalous difference maps. The active sites are positioned close together to facilitate cleavage across the DNA minor groove; each contains one metal ion bound between a conserved aspartate (Asp 20) and a single scissile phosphate. A third metal ion bridges the two active sites. This divalent cation is bound between aspartate residues from the active site of each subunit and is in simultaneous contact with the scissile phosphates of both DNA strands. A metal-bound water molecule acts as the nucleophile and is part of an extensive network of ordered water molecules that are positioned by enzyme side chains. These structures illustrate a unique variant of a two-metal endonuclease mechanism is employed by the highly divergent LAGLIDADG enzyme family.

  16. Dimerisation induced formation of the active site and the identification of three metal sites in EAL-phosphodiesterases

    PubMed Central

    Bellini, Dom; Horrell, Sam; Hutchin, Andrew; Phippen, Curtis W.; Strange, Richard W.; Cai, Yuming; Wagner, Armin; Webb, Jeremy S.; Tews, Ivo; Walsh, Martin A.

    2017-01-01

    The bacterial second messenger cyclic di-3′,5′-guanosine monophosphate (c-di-GMP) is a key regulator of bacterial motility and virulence. As high levels of c-di-GMP are associated with the biofilm lifestyle, c-di-GMP hydrolysing phosphodiesterases (PDEs) have been identified as key targets to aid development of novel strategies to treat chronic infection by exploiting biofilm dispersal. We have studied the EAL signature motif-containing phosphodiesterase domains from the Pseudomonas aeruginosa proteins PA3825 (PA3825EAL) and PA1727 (MucREAL). Different dimerisation interfaces allow us to identify interface independent principles of enzyme regulation. Unlike previously characterised two-metal binding EAL-phosphodiesterases, PA3825EAL in complex with pGpG provides a model for a third metal site. The third metal is positioned to stabilise the negative charge of the 5′-phosphate, and thus three metals could be required for catalysis in analogy to other nucleases. This newly uncovered variation in metal coordination may provide a further level of bacterial PDE regulation. PMID:28186120

  17. Dimerisation induced formation of the active site and the identification of three metal sites in EAL-phosphodiesterases.

    PubMed

    Bellini, Dom; Horrell, Sam; Hutchin, Andrew; Phippen, Curtis W; Strange, Richard W; Cai, Yuming; Wagner, Armin; Webb, Jeremy S; Tews, Ivo; Walsh, Martin A

    2017-02-10

    The bacterial second messenger cyclic di-3',5'-guanosine monophosphate (c-di-GMP) is a key regulator of bacterial motility and virulence. As high levels of c-di-GMP are associated with the biofilm lifestyle, c-di-GMP hydrolysing phosphodiesterases (PDEs) have been identified as key targets to aid development of novel strategies to treat chronic infection by exploiting biofilm dispersal. We have studied the EAL signature motif-containing phosphodiesterase domains from the Pseudomonas aeruginosa proteins PA3825 (PA3825(EAL)) and PA1727 (MucR(EAL)). Different dimerisation interfaces allow us to identify interface independent principles of enzyme regulation. Unlike previously characterised two-metal binding EAL-phosphodiesterases, PA3825(EAL) in complex with pGpG provides a model for a third metal site. The third metal is positioned to stabilise the negative charge of the 5'-phosphate, and thus three metals could be required for catalysis in analogy to other nucleases. This newly uncovered variation in metal coordination may provide a further level of bacterial PDE regulation.

  18. Stable isolated metal atoms as active sites for photocatalytic hydrogen evolution.

    PubMed

    Xing, Jun; Chen, Jian Fu; Li, Yu Hang; Yuan, Wen Tao; Zhou, Ying; Zheng, Li Rong; Wang, Hai Feng; Hu, P; Wang, Yun; Zhao, Hui Jun; Wang, Yong; Yang, Hua Gui

    2014-02-17

    The process of using solar energy to split water to produce hydrogen assisted by an inorganic semiconductor is crucial for solving our energy crisis and environmental problems in the future. However, most semiconductor photocatalysts would not exhibit excellent photocatalytic activity without loading suitable co-catalysts. Generally, the noble metals have been widely applied as co-catalysts, but always agglomerate during the loading process or photocatalytic reaction. Therefore, the utilization efficiency of the noble co-catalysts is still very low on a per metal atom basis if no obvious size effect exists, because heterogeneous catalytic reactions occur on the surface active atoms. Here, for the first time, we have synthesized isolated metal atoms (Pt, Pd, Rh, or Ru) stably by anchoring on TiO2 , a model photocatalystic system, by a facile one-step method. The isolated metal atom based photocatalysts show excellent stability for H2 evolution and can lead to a 6-13-fold increase in photocatalytic activity over the metal clusters loaded on TiO2 by the traditional method. Furthermore, the configurations of isolated atoms as well as the originality of their unusual stability were analyzed by a collaborative work from both experiments and theoretical calculations.

  19. Linking structure to function: The search for active sites in non-platinum group metal oxygen reduction reaction catalysts

    DOE PAGES

    Holby, Edward F.; Zelenay, Piotr

    2016-05-17

    Atomic-scale structures of oxygen reduction reaction (ORR) active sites in non-platinum group metal (non-PGM) catalysts, made from pyrolysis of carbon, nitrogen, and transition-metal (TM) precursors have been the subject of continuing discussion in the fuel cell electrocatalysis research community. We found that quantum chemical modeling is a path forward for understanding of these materials and how they catalyze the ORR. Here, we demonstrate through literature examples of how such modeling can be used to better understand non-PGM ORR active site relative stability and activity and how such efforts can also aid in the interpretation of experimental signatures produced by thesemore » materials.« less

  20. Structure of the endonuclease IV homologue from Thermotoga maritima in the presence of active-site divalent metal ions

    SciTech Connect

    Tomanicek, Stephen J.; Hughes, Ronny C.; Ng, Joseph D.; Coates, Leighton

    2010-10-05

    The most frequent lesion in DNA is at apurinic/apyrimidinic (AP) sites resulting from DNA-base losses. These AP-site lesions can stall DNA replication and lead to genome instability if left unrepaired. The AP endonucleases are an important class of enzymes that are involved in the repair of AP-site intermediates during damage-general DNA base-excision repair pathways. These enzymes hydrolytically cleave the 5{prime}-phosphodiester bond at an AP site to generate a free 3{prime}-hydroxyl group and a 5{prime}-terminal sugar phosphate using their AP nuclease activity. Specifically, Thermotoga maritima endonuclease IV is a member of the second conserved AP endonuclease family that includes Escherichia coli endonuclease IV, which is the archetype of the AP endonuclease superfamily. In order to more fully characterize the AP endonuclease family of enzymes, two X-ray crystal structures of the T. maritima endonuclease IV homologue were determined in the presence of divalent metal ions bound in the active-site region. These structures of the T. maritima endonuclease IV homologue further revealed the use of the TIM-barrel fold and the trinuclear metal binding site as important highly conserved structural elements that are involved in DNA-binding and AP-site repair processes in the AP endonuclease superfamily.

  1. A Dynamic Zn Site in Helicobacter pylori HypA: A Potential Mechanism for Metal-Specific Protein Activity

    SciTech Connect

    Kennedy,D.; Herbst, R.; Iwig, J.; Chivers, P.; Maroney, M.

    2007-01-01

    HypA is an accessory protein and putative metallochaperone that is critical for supplying nickel to the active site of NiFe hydrogenases. In addition to binding Ni(II), HypA is known to contain a Zn site that has been suggested to play a structural role. X-ray absorption spectroscopy has been used to show that the Zn site changes structure upon binding nickel, from a S{sub 3}(O/N)-donor ligand environment to an S{sub 4}-donor ligand environment. This provides a potential mechanism for discriminating Ni(II) from other divalent metal ions. The Ni(II) site is shown to be a six-coordinate complex composed of O/N-donors including two histidines. As such, it resembles the nickel site in UreE, a nickel metallochaperone involved in nickel incorporation into urease.

  2. ROLE OF C AND P SITES ON THE CHEMICAL ACTIVITY OF METAL CARBIDE AND PHOSPHIDES: FROM CLUSTERS TO SINGLE-CRYSTAL SURFACES

    SciTech Connect

    RODRIGUEZ,J.A.; VINES, F.; LIU, P.; ILLAS, F.

    2007-07-01

    Transition metal carbides and phosphides have shown tremendous potential as highly active catalysts. At a microscopic level, it is not well understood how these new catalysts work. Their high activity is usually attributed to ligand or/and ensemble effects. Here, we review recent studies that examine the chemical activity of metal carbide and phosphides as a function of size, from clusters to extended surfaces, and metal/carbon or metal/phosphorous ratio. These studies reveal that the C and P sites in these compounds cannot be considered as simple spectators. They moderate the reactivity of the metal centers and provide bonding sites for adsorbates.

  3. In situ electrochemical quantification of active sites in Fe–N/C non-precious metal catalysts

    PubMed Central

    Malko, Daniel; Kucernak, Anthony; Lopes, Thiago

    2016-01-01

    The economic viability of low temperature fuel cells as clean energy devices is enhanced by the development of inexpensive oxygen reduction reaction catalysts. Heat treated iron and nitrogen containing carbon based materials (Fe–N/C) have shown potential to replace expensive precious metals. Although significant improvements have recently been made, their activity and durability is still unsatisfactory. The further development and a rational design of these materials has stalled due to the lack of an in situ methodology to easily probe and quantify the active site. Here we demonstrate a protocol that allows the quantification of active centres, which operate under acidic conditions, by means of nitrite adsorption followed by reductive stripping, and show direct correlation to the catalytic activity. The method is demonstrated for two differently prepared materials. This approach may allow researchers to easily assess the active site density and turnover frequency of Fe–N/C catalysts. PMID:27796287

  4. In situ electrochemical quantification of active sites in Fe-N/C non-precious metal catalysts

    NASA Astrophysics Data System (ADS)

    Malko, Daniel; Kucernak, Anthony; Lopes, Thiago

    2016-10-01

    The economic viability of low temperature fuel cells as clean energy devices is enhanced by the development of inexpensive oxygen reduction reaction catalysts. Heat treated iron and nitrogen containing carbon based materials (Fe-N/C) have shown potential to replace expensive precious metals. Although significant improvements have recently been made, their activity and durability is still unsatisfactory. The further development and a rational design of these materials has stalled due to the lack of an in situ methodology to easily probe and quantify the active site. Here we demonstrate a protocol that allows the quantification of active centres, which operate under acidic conditions, by means of nitrite adsorption followed by reductive stripping, and show direct correlation to the catalytic activity. The method is demonstrated for two differently prepared materials. This approach may allow researchers to easily assess the active site density and turnover frequency of Fe-N/C catalysts.

  5. The M17 leucine aminopeptidase of the malaria parasite Plasmodium falciparum: importance of active site metal ions in the binding of substrates and inhibitors.

    PubMed

    Maric, Selma; Donnelly, Sheila M; Robinson, Mark W; Skinner-Adams, Tina; Trenholme, Katharine R; Gardiner, Donald L; Dalton, John P; Stack, Colin M; Lowther, Jonathan

    2009-06-16

    The M17 leucine aminopeptidase of the intraerythrocytic stages of the malaria parasite Plasmodium falciparum (PfLAP) plays a role in releasing amino acids from host hemoglobin that are used for parasite protein synthesis, growth, and development. This enzyme represents a target at which new antimalarials could be designed since metalloaminopeptidase inhibitors prevent the growth of the parasites in vitro and in vivo. A study on the metal ion binding characteristics of recombinant P. falciparum M17 leucine aminopeptidase (rPfLAP) shows that the active site of this exopeptidase contains two metal-binding sites, a readily exchangeable site (site 1) and a tight binding site (site 2). The enzyme retains activity when the metal ion is removed from site 1, while removal of metal ions from both sites results in an inactive apoenzyme that cannot be reactivated by the addition of divalent metal cations. The metal ion at site 1 is readily exchangeable with several divalent metal ions and displays a preference in the order of preference Zn(2+) > Mn(2+) > Co(2+) > Mg(2+). While it is likely that native PfLAP contains a Zn(2+) in site 2, the metal ion located in site 1 may be dependent on the type and concentration of metal ions in the cytosolic compartment of the parasite. Importantly, the type of metal ion present at site 1 influences not only the catalytic efficiency of the enzyme for peptide substrates but also the mode of binding by bestatin, a metal-chelating inhibitor of M17 aminopeptidases with antimalarial activity.

  6. Metal Ion Interactions in the DNA Cleavage/Ligation Active Site of Human Topoisomerase IIα†

    PubMed Central

    Deweese, Joseph E.; Guengerich, F. Peter; Burgin, Alex B.; Osheroff, Neil

    2009-01-01

    Human topoisomerase IIα utilizes a two-metal-ion mechanism for DNA cleavage. One of the metal ions (M12+) is believed to make a critical interaction with the 3′-bridging atom of the scissile phosphate, while the other (M22+) is believed to interact with a non-bridging oxygen of the scissile phosphate. Based on structural and mutagenesis studies of prokaryotic nucleic acid enzymes, it has been proposed that the active site divalent metal ions interact with type II topoisomerases through a series of conserved acidic amino acid residues. The homologous residues in human topoisomerase IIα are E461, D541, D543, and D545. To address the validity of these assignments and to delineate interactions between individual amino acids and M12+ and M22+, we individually mutated each of these acidic amino acid residues in topoisomerase IIα to either cysteine or alanine. Mutant enzymes displayed a marked loss of catalytic and DNA cleavage activity as well as a reduced affinity for divalent metal ions. Additional experiments determined the ability of wild-type and mutant topoisomerase IIα enzymes to cleave an oligonucleotide substrate that contained a sulfur atom in place of the 3′-bridging oxygen of the scissile phosphate in the presence of Mg2+, Mn2+, or Ca2+. Based on the results of these studies, we conclude that the four acidic amino acid residues interact with metal ions in the DNA cleavage/ligation active site of topoisomerase IIα. Furthermore, we propose that M12+ interacts with E461, D543, and D545 and M22+ interacts with E461 and D541. PMID:19697956

  7. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands

    PubMed Central

    Holby, Edward F.; Taylor, Christopher D.

    2015-01-01

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O2 bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H2O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH bound structures have the highest calculated activity to date. PMID:25788358

  8. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands

    DOE PAGES

    Holby, Edward F.; Taylor, Christopher D.

    2015-03-19

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O₂ bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H₂O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH boundmore » structures have the highest calculated activity to date.« less

  9. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands

    SciTech Connect

    Holby, Edward F.; Taylor, Christopher D.

    2015-03-19

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O₂ bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H₂O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH bound structures have the highest calculated activity to date.

  10. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands

    NASA Astrophysics Data System (ADS)

    Holby, Edward F.; Taylor, Christopher D.

    2015-03-01

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O2 bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H2O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH bound structures have the highest calculated activity to date.

  11. Elucidating Oxygen Reduction Active Sites in Pyrolyzed Metal–Nitrogen Coordinated Non-Precious-Metal Electrocatalyst Systems

    PubMed Central

    2015-01-01

    Detailed understanding of the nature of the active centers in non-precious-metal-based electrocatalyst, and their role in oxygen reduction reaction (ORR) mechanistic pathways will have a profound effect on successful commercialization of emission-free energy devices such as fuel cells. Recently, using pyrolyzed model structures of iron porphyrins, we have demonstrated that a covalent integration of the Fe–Nx sites into π-conjugated carbon basal plane modifies electron donating/withdrawing capability of the carbonaceous ligand, consequently improving ORR activity. Here, we employ a combination of in situ X-ray spectroscopy and electrochemical methods to identify the various structural and functional forms of the active centers in non-heme Fe/N/C catalysts. Both methods corroboratively confirm the single site 2e– × 2e– mechanism in alkaline media on the primary Fe2+–N4 centers and the dual-site 2e– × 2e– mechanism in acid media with the significant role of the surface bound coexisting Fe/FexOy nanoparticles (NPs) as the secondary active sites. PMID:24817921

  12. Methane activation by platinum: critical role of edge and corner sites of metal nanoparticles.

    PubMed

    Viñes, Francesc; Lykhach, Yaroslava; Staudt, Thorsten; Lorenz, Michael P A; Papp, Christian; Steinrück, Hans-Peter; Libuda, Jörg; Neyman, Konstantin M; Görling, Andreas

    2010-06-11

    Complete dehydrogenation of methane is studied on model Pt catalysts by means of state-of-the-art DFT methods and by a combination of supersonic molecular beams with high-resolution photoelectron spectroscopy. The DFT results predict that intermediate species like CH(3) and CH(2) are specially stabilized at sites located at particles edges and corners by an amount of 50-80 kJ mol(-1). This stabilization is caused by an enhanced activity of low-coordinated sites accompanied by their special flexibility to accommodate adsorbates. The kinetics of the complete dehydrogenation of methane is substantially modified according to the reaction energy profiles when switching from Pt(111) extended surfaces to Pt nanoparticles. The CH(3) and CH(2) formation steps are endothermic on Pt(111) but markedly exothermic on Pt(79). An important decrease of the reaction barriers is observed in the latter case with values of approximately 60 kJ mol(-1) for first C-H bond scission and 40 kJ mol(-1) for methyl decomposition. DFT predictions are experimentally confirmed by methane decomposition on Pt nanoparticles supported on an ordered CeO(2) film on Cu(111). It is shown that CH(3) generated on the Pt nanoparticles undergoes spontaneous dehydrogenation at 100 K. This is in sharp contrast to previous results on Pt single-crystal surfaces in which CH(3) was stable up to much higher temperatures. This result underlines the critical role of particle edge sites in methane activation and dehydrogenation.

  13. Examination of metals from aerospace-related activity in surface water samples from sites surrounding the Kennedy Space Center (KSC), Florida.

    PubMed

    Bowden, John A; Cantu, Theresa M; Scheidt, Douglas M; Lowers, Russell H; Nocito, Brian A; Young, Vaneica Y; Guillette, Louis J

    2014-05-06

    Metal contamination from Space Shuttle launch activity was examined using inductively coupled plasma-atomic emission spectroscopy in a two-tier study sampling surface water collected from several sites at the Kennedy Space Center (KSC) and associated Merritt Island National Wildlife Refuge in east central Florida. The primary study examined both temporal changes in baseline metal concentrations (19 metals) in surface water (1996 to 2009, 11 sites) samples collected at specific long-term monitoring sites and metal deposition directly associated with Space Shuttle launch activity at two Launch Complexes (LC39A and LC39B). A secondary study examined metal concentrations at additional sites and increased the amount of elements measured to 48 elements. Our examination places a heavy focus on those metals commonly associated with launch operations (e.g., Al, Fe, Mn, and Zn), but a brief discussion of other metals (As, Cu, Mo, Ni, and Pb) is also included. While no observable accumulation of metals occurred during the time period of the study, the data obtained postlaunch demonstrated a dramatic increase for Al, Fe, Mn, and Zn. Comparing overall trends between the primary and secondary baseline surface water concentrations, elevated concentrations were generally observed at sampling stations located near the launch complexes and from sites isolated from major water systems. While there could be several natural and anthropogenic sources for metal deposition at KSC, the data in this report indicate that shuttle launch events are a significant source.

  14. Designing a Highly Active Metal-Free Oxygen Reduction Catalyst in Membrane Electrode Assemblies for Alkaline Fuel Cells: Effects of Pore Size and Doping-Site Position.

    PubMed

    Lee, Seonggyu; Choun, Myounghoon; Ye, Youngjin; Lee, Jaeyoung; Mun, Yeongdong; Kang, Eunae; Hwang, Jongkook; Lee, Young-Ho; Shin, Chae-Ho; Moon, Seung-Hyeon; Kim, Soo-Kil; Lee, Eunsung; Lee, Jinwoo

    2015-08-03

    To promote the oxygen reduction reaction of metal-free catalysts, the introduction of porous structure is considered as a desirable approach because the structure can enhance mass transport and host many catalytic active sites. However, most of the previous studies reported only half-cell characterization; therefore, studies on membrane electrode assembly (MEA) are still insufficient. Furthermore, the effect of doping-site position in the structure has not been investigated. Here, we report the synthesis of highly active metal-free catalysts in MEAs by controlling pore size and doping-site position. Both influence the accessibility of reactants to doping sites, which affects utilization of doping sites and mass-transport properties. Finally, an N,P-codoped ordered mesoporous carbon with a large pore size and precisely controlled doping-site position showed a remarkable on-set potential and produced 70% of the maximum power density obtained using Pt/C.

  15. The crystal structure of a homodimeric Pseudomonas glyoxalase I enzyme reveals asymmetric metallation commensurate with half-of-sites activity.

    PubMed

    Bythell-Douglas, Rohan; Suttisansanee, Uthaiwan; Flematti, Gavin R; Challenor, Michael; Lee, Mihwa; Panjikar, Santosh; Honek, John F; Bond, Charles S

    2015-01-07

    The Zn inactive class of glyoxalase I (Glo1) metalloenzymes are typically homodimeric with two metal-dependent active sites. While the two active sites share identical amino acid composition, this class of enzyme is optimally active with only one metal per homodimer. We have determined the X-ray crystal structure of GloA2, a Zn inactive Glo1 enzyme from Pseudomonas aeruginosa. The presented structures exhibit an unprecedented metal-binding arrangement consistent with half-of-sites activity: one active site contains a single activating Ni(2+) ion, whereas the other contains two inactivating Zn(2+) ions. Enzymological experiments prompted by the binuclear Zn(2+) site identified a novel catalytic property of GloA2. The enzyme can function as a Zn(2+) /Co(2+) -dependent hydrolase, in addition to its previously determined glyoxalase I activity. The presented findings demonstrate that GloA2 can accommodate two distinct metal-binding arrangements simultaneously, each of which catalyzes a different reaction.

  16. The Crystal Structure of a Quercetin 2,3-Dioxygenase from Bacillus subtilis Suggests Modulation of Enzyme Activity by a Change in the Metal Ion at the Active Site(s)

    SciTech Connect

    Gopal, B.; Madan, Lalima L.; Betz, Stephen F.; Kossiakoff, Anthony A.

    2010-11-10

    Common structural motifs, such as the cupin domains, are found in enzymes performing different biochemical functions while retaining a similar active site configuration and structural scaffold. The soil bacterium Bacillus subtilis has 20 cupin genes (0.5% of the total genome) with up to 14% of its genes in the form of doublets, thus making it an attractive system for studying the effects of gene duplication. There are four bicupins in B. subtilis encoded by the genes yvrK, yoaN, yxaG, and ywfC. The gene products of yvrK and yoaN function as oxalate decarboxylases with a manganese ion at the active site(s), whereas YwfC is a bacitracin synthetase. Here we present the crystal structure of YxaG, a novel iron-containing quercetin 2,3-dioxygenase with one active site in each cupin domain. Yxag is a dimer, both in solution and in the crystal. The crystal structure shows that the coordination geometry of the Fe ion is different in the two active sites of YxaG. Replacement of the iron at the active site with other metal ions suggests modulation of enzymatic activity in accordance with the Irving-Williams observation on the stability of metal ion complexes. This observation, along with a comparison with the crystal structure of YvrK determined recently, has allowed for a detailed structure-function analysis of the active site, providing clues to the diversification of function in the bicupin family of proteins.

  17. A microporous Cu-MOF with optimized open metal sites and pore spaces for high gas storage and active chemical fixation of CO2.

    PubMed

    Gao, Chao-Ying; Tian, Hong-Rui; Ai, Jing; Li, Lei-Jiao; Dang, Song; Lan, Ya-Qian; Sun, Zhong-Ming

    2016-09-25

    A microporous Cu-MOF with optimized open metal sites and pore space was constructed based on a designed bent ligand; it exhibits high-capacity multiple gas storage under atmospheric pressure and efficient catalytic activity for chemical fixation of CO2 under mild conditions.

  18. Redox-active on-surface polymerization of single-site divalent cations from pure metals by a ketone-functionalized phenanthroline

    SciTech Connect

    Skomski, Daniel; Tempas, Christopher D.; Bukowski, Gregory S.; Smith, Kevin A.; Tait, Steven L.

    2015-03-14

    Metallic iron, chromium, or platinum mixing with a ketone-functionalized phenanthroline ligand on a single crystal gold surface demonstrates redox activity to a well-defined oxidation state and assembly into thermally stable, one dimensional, polymeric chains. The diverging ligand geometry incorporates redox-active sub-units and bi-dentate binding sites. The gold surface provides a stable adsorption environment and directs growth of the polymeric chains, but is inert with regard to the redox chemistry. These systems are characterized by scanning tunnelling microscopy, non-contact atomic force microscopy, and X-ray photoelectron spectroscopy under ultra-high vacuum conditions. The relative propensity of the metals to interact with the ketone group is examined, and it is found that Fe and Cr more readily complex the ligand than Pt. The formation and stabilization of well-defined transition metal single-sites at surfaces may open new routes to achieve higher selectivity in heterogeneous catalysts.

  19. Redox-active on-surface polymerization of single-site divalent cations from pure metals by a ketone-functionalized phenanthroline

    NASA Astrophysics Data System (ADS)

    Skomski, Daniel; Tempas, Christopher D.; Bukowski, Gregory S.; Smith, Kevin A.; Tait, Steven L.

    2015-03-01

    Metallic iron, chromium, or platinum mixing with a ketone-functionalized phenanthroline ligand on a single crystal gold surface demonstrates redox activity to a well-defined oxidation state and assembly into thermally stable, one dimensional, polymeric chains. The diverging ligand geometry incorporates redox-active sub-units and bi-dentate binding sites. The gold surface provides a stable adsorption environment and directs growth of the polymeric chains, but is inert with regard to the redox chemistry. These systems are characterized by scanning tunnelling microscopy, non-contact atomic force microscopy, and X-ray photoelectron spectroscopy under ultra-high vacuum conditions. The relative propensity of the metals to interact with the ketone group is examined, and it is found that Fe and Cr more readily complex the ligand than Pt. The formation and stabilization of well-defined transition metal single-sites at surfaces may open new routes to achieve higher selectivity in heterogeneous catalysts.

  20. NMR Localization of Divalent Cations at the Active Site of the Neurospora VS Ribozyme Provides Insights into RNA–Metal-Ion Interactions

    PubMed Central

    2013-01-01

    Metal cations represent key elements of RNA structure and function. In the Neurospora VS ribozyme, metal cations play diverse roles; they are important for substrate recognition, formation of the active site, and shifting the pKa’s of two key nucleobases that contribute to the general acid–base mechanism. Recently, we determined the NMR structure of the A730 loop of the VS ribozyme active site (SLVI) that contributes the general acid (A756) in the enzymatic mechanism of the cleavage reaction. Our studies showed that magnesium (Mg2+) ions are essential to stabilize the formation of the S-turn motif within the A730 loop that exposes the A756 nucleobase for catalysis. In this article, we extend these NMR investigations by precisely mapping the Mg2+-ion binding sites using manganese-induced paramagnetic relaxation enhancement and cadmium-induced chemical-shift perturbation of phosphorothioate RNAs. These experiments identify five Mg2+-ion binding sites within SLVI. Four Mg2+ ions in SLVI are associated with known RNA structural motifs, including the G–U wobble pair and the GNRA tetraloop, and our studies reveal novel insights about Mg2+ ion binding to these RNA motifs. Interestingly, one Mg2+ ion is specifically associated with the S-turn motif, confirming its structural role in the folding of the A730 loop. This Mg2+ ion is likely important for formation of the active site and may play an indirect role in catalysis. PMID:24364590

  1. Structures of E. coli peptide deformylase bound to formate: insight into the preference for Fe2+ over Zn2+ as the active site metal.

    PubMed

    Jain, Rinku; Hao, Bing; Liu, Ren-Peng; Chan, Michael K

    2005-04-06

    E. coli peptide deformylase (PDF) catalyzes the deformylation of nascent polypeptides generated during protein synthesis. While PDF was originally thought to be a zinc enzyme, subsequent studies revealed that the active site metal is iron. In an attempt to understand this unusual metal preference, high-resolution structures of Fe-, Co-, and Zn-PDF were determined in complex with its deformylation product, formate. In all three structures, the formate ion binds the metal and forms hydrogen-bonding interactions with the backbone nitrogen of Leu91, the amide side chain of Gln50, and the carboxylate side chain of Glu133. One key difference, however, is how the formate binds the metal. In Fe-PDF and Co-PDF, formate binds in a bidentate fashion, while in Zn-PDF, it binds in a monodentate fashion. Importantly, these structural results provide the first clues into the origins of PDF's metal-dependent activity differences. On the basis of these structures, we propose that the basis for the higher activity of Fe-PDF stems from the better ability of iron to bind and activate the tetrahedral transition state required for cleavage of the N-terminal formyl group.

  2. Capture of heavy hydrogen isotopes in a metal-organic framework with active Cu(I) sites

    NASA Astrophysics Data System (ADS)

    Weinrauch, I.; Savchenko, I.; Denysenko, D.; Souliou, S. M.; Kim, H.-H.; Le Tacon, M.; Daemen, L. L.; Cheng, Y.; Mavrandonakis, A.; Ramirez-Cuesta, A. J.; Volkmer, D.; Schütz, G.; Hirscher, M.; Heine, T.

    2017-03-01

    The production of pure deuterium and the removal of tritium from nuclear waste are the key challenges in separation of light isotopes. Presently, the technological methods are extremely energy- and cost-intensive. Here we report the capture of heavy hydrogen isotopes from hydrogen gas by selective adsorption at Cu(I) sites in a metal-organic framework. At the strongly binding Cu(I) sites (32 kJ mol-1) nuclear quantum effects result in higher adsorption enthalpies of heavier isotopes. The capture mechanism takes place most efficiently at temperatures above 80 K, when an isotope exchange allows the preferential adsorption of heavy isotopologues from the gas phase. Large difference in adsorption enthalpy of 2.5 kJ mol-1 between D2 and H2 results in D2-over-H2 selectivity of 11 at 100 K, to the best of our knowledge the largest value known to date. Combination of thermal desorption spectroscopy, Raman measurements, inelastic neutron scattering and first principles calculations for H2/D2 mixtures allows the prediction of selectivities for tritium-containing isotopologues.

  3. Capture of heavy hydrogen isotopes in a metal-organic framework with active Cu(I) sites

    PubMed Central

    Weinrauch, I.; Savchenko, I.; Denysenko, D.; Souliou, S. M.; Kim, H-H; Le Tacon, M.; Daemen, L. L.; Cheng, Y.; Mavrandonakis, A.; Ramirez-Cuesta, A. J.; Volkmer, D.; Schütz, G.; Hirscher, M.; Heine, T.

    2017-01-01

    The production of pure deuterium and the removal of tritium from nuclear waste are the key challenges in separation of light isotopes. Presently, the technological methods are extremely energy- and cost-intensive. Here we report the capture of heavy hydrogen isotopes from hydrogen gas by selective adsorption at Cu(I) sites in a metal-organic framework. At the strongly binding Cu(I) sites (32 kJ mol−1) nuclear quantum effects result in higher adsorption enthalpies of heavier isotopes. The capture mechanism takes place most efficiently at temperatures above 80 K, when an isotope exchange allows the preferential adsorption of heavy isotopologues from the gas phase. Large difference in adsorption enthalpy of 2.5 kJ mol−1 between D2 and H2 results in D2-over-H2 selectivity of 11 at 100 K, to the best of our knowledge the largest value known to date. Combination of thermal desorption spectroscopy, Raman measurements, inelastic neutron scattering and first principles calculations for H2/D2 mixtures allows the prediction of selectivities for tritium-containing isotopologues. PMID:28262794

  4. List 9 - Active CERCLIS Sites:

    EPA Pesticide Factsheets

    The List 9 displays the sequence of activities undertaken at active CERCLIS sites. An active site is one at which site assessment, removal, remedial, enforcement, cost recovery, or oversight activities are being planned or conducted.

  5. Predicted metal binding sites for phytoremediation.

    PubMed

    Sharma, Ashok; Roy, Sudeep; Tripathi, Kumar Parijat; Roy, Pratibha; Mishra, Manoj; Khan, Feroz; Meena, Abha

    2009-09-05

    Metal ion binding domains are found in proteins that mediate transport, buffering or detoxification of metal ions. The objective of the study is to design and analyze metal binding motifs against the genes involved in phytoremediation. This is being done on the basis of certain pre-requisite amino-acid residues known to bind metal ions/metal complexes in medicinal and aromatic plants (MAP's). Earlier work on MAP's have shown that heavy metals accumulated by aromatic and medicinal plants do not appear in the essential oil and that some of these species are able to grow in metal contaminated sites. A pattern search against the UniProtKB/Swiss-Prot and UniProtKB/TrEMBL databases yielded true positives in each case showing the high specificity of the motifs designed for the ions of nickel, lead, molybdenum, manganese, cadmium, zinc, iron, cobalt and xenobiotic compounds. Motifs were also studied against PDB structures. Results of the study suggested the presence of binding sites on the surface of protein molecules involved. PDB structures of proteins were finally predicted for the binding sites functionality in their respective phytoremediation usage. This was further validated through CASTp server to study its physico-chemical properties. Bioinformatics implications would help in designing strategy for developing transgenic plants with increased metal binding capacity. These metal binding factors can be used to restrict metal update by plants. This helps in reducing the possibility of metal movement into the food chain.

  6. Fluoroquinolones stimulate the DNA cleavage activity of topoisomerase IV by promoting the binding of Mg2+ to the second metal binding site

    PubMed Central

    Oppegard, Lisa M.; Schwanz, Heidi A.; Towle, Tyrell R.; Kerns, Robert J.; Hiasa, Hiroshi

    2016-01-01

    Background Fluoroquinolones target bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV (Topo IV). Fluoroquinolones trap a topoisomerase-DNA covalent complex as a topoisomerase-fluoroquinolone-DNA ternary complex and ternary complex formation is critical for their cytotoxicity. A divalent metal ion is required for type IIA topoisomerase-catalyzed strand breakage and religation reactions. Recent studies have suggested that type IIA topoisomerases use two metal ions, one structural and one catalytic, to carry out the strand breakage reaction. Methods We conducted a series of DNA cleavage assays to examine the effects of fluoroquinolones and quinazolinediones on Mg2+-, Mn2+-, or Ca2+-supported DNA cleavage activity of Esherichia coli Topo IV. Results In the absence of any drug, 20–30 mM Mg2+ was required for the maximum levels of the DNA cleavage activity of Topo IV, whereas approximately 1 mM of either Mn2+ or Ca2+ was sufficient to support the maximum levels of the DNA cleavage activity of Topo IV. Fluoroquinolones promoted the Topo IV-catalyzed strand breakage reaction at low Mg2+ concentrations where Topo IV alone could not efficiently cleave DNA. Conclusions and General Significance At low Mg2+ concentrations, fluoroquinolones may stimulate the Topo IV-catalyzed strand breakage reaction by promoting Mg2+ binding to metal binding site B through the structural distortion in DNA. As Mg2+ concentration increases, fluoroquinolones may inhibit the religation reaction by either stabilizing Mg2+ at site B or inhibition the binding of Mg2+ to site A. This study provides a molecular basis of how fluoroquinolones stimulate the Topo IV-catalyzed strand breakage reaction by modulating Mg2+ binding. PMID:26723176

  7. The influence of the scale of mining activity and mine site remediation on the contamination legacy of historical metal mining activity.

    PubMed

    Bird, Graham

    2016-12-01

    Globally, thousands of kilometres of rivers are degraded due to the presence of elevated concentrations of potentially harmful elements (PHEs) sourced from historical metal mining activity. In many countries, the presence of contaminated water and river sediment creates a legal requirement to address such problems. Remediation of mining-associated point sources has often been focused upon improving river water quality; however, this study evaluates the contaminant legacy present within river sediments and attempts to assess the influence of the scale of mining activity and post-mining remediation upon the magnitude of PHE contamination found within contemporary river sediments. Data collected from four exemplar catchments indicates a strong relationship between the scale of historical mining, as measured by ore output, and maximum PHE enrichment factors, calculated versus environmental quality guidelines. The use of channel slope as a proxy measure for the degree of channel-floodplain coupling indicates that enrichment factors for PHEs in contemporary river sediments may also be the highest where channel-floodplain coupling is the greatest. Calculation of a metric score for mine remediation activity indicates no clear influence of the scale of remediation activity and PHE enrichment factors for river sediments. It is suggested that whilst exemplars of significant successes at improving post-remediation river water quality can be identified; river sediment quality is a much more long-lasting environmental problem. In addition, it is suggested that improvements to river sediment quality do not occur quickly or easily as a result of remediation actions focused a specific mining point sources. Data indicate that PHEs continue to be episodically dispersed through river catchments hundreds of years after the cessation of mining activity, especially during flood flows. The high PHE loads of flood sediments in mining-affected river catchments and the predicted changes to

  8. Effect of impregnation protocol in the metallic sites of Pt-Ag/activated carbon catalysts for water denitration

    NASA Astrophysics Data System (ADS)

    Aristizábal, A.; Contreras, S.; Divins, N. J.; Llorca, J.; Medina, F.

    2014-04-01

    The influence of the Pt precursor and the impregnation protocol in the catalytic behavior of 3%Pt-1.5%Ag supported on activated carbon for water denitration in a continuous reactor was studied. Pt(NH3)4(NO3)2 and H2PtCl6 were selected as Pt precursors. Five protocols were investigated: sequential impregnations (both sequences), co-impregnation, physical mixture of monometallic catalysts, and physical mixture of a bimetallic catalyst with a Pt monometallic catalyst. The samples were characterized by XRD, XPS, TPR, HRTEM and physisorption. It was found that the catalytic activity strongly depends on the synthesis protocol and the Pt precursor, which modify the particle size. Higher nitrate rates are achieved using H2PtCl6 than Pt(NH3)4(NO3)2; this is mainly related to the smaller metal particle size of the former, evidenced by HRTEM. Nitrate consumption rate is directly related with the mean particle size. The physical mixture of monometallic catalysts resulted in the highest nitrogen rate.

  9. Chemoselective single-site Earth-abundant metal catalysts at metal-organic framework nodes

    NASA Astrophysics Data System (ADS)

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin

    2016-08-01

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal-organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C-H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  10. Chemoselective single-site Earth-abundant metal catalysts at metal-organic framework nodes.

    PubMed

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X; Urban, Ania; Thacker, Nathan C; Lin, Wenbin

    2016-08-30

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal-organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C-H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  11. Crystal structures of human 3-hydroxyanthranilate 3,4-dioxygenase with native and non-native metals bound in the active site.

    PubMed

    Pidugu, Lakshmi Swarna Mukhi; Neu, Heather; Wong, Tin Lok; Pozharski, Edwin; Molloy, John L; Michel, Sarah L J; Toth, Eric A

    2017-04-01

    3-Hydroxyanthranilate 3,4-dioxygenase (3HAO) is an enzyme in the microglial branch of the kynurenine pathway of tryptophan degradation. 3HAO is a non-heme iron-containing, ring-cleaving extradiol dioxygenase that catalyzes the addition of both atoms of O2 to the kynurenine pathway metabolite 3-hydroxyanthranilic acid (3-HANA) to form quinolinic acid (QUIN). QUIN is a highly potent excitotoxin that has been implicated in a number of neurodegenerative conditions, making 3HAO a target for pharmacological downregulation. Here, the first crystal structure of human 3HAO with the native iron bound in its active site is presented, together with an additional structure with zinc (a known inhibitor of human 3HAO) bound in the active site. The metal-binding environment is examined both structurally and via inductively coupled plasma mass spectrometry (ICP-MS), X-ray fluorescence spectroscopy (XRF) and electron paramagnetic resonance spectroscopy (EPR). The studies identified Met35 as the source of potential new interactions with substrates and inhibitors, which may prove useful in future therapeutic efforts.

  12. Structures and energetics of models for the active site of acetyl-coenzyme a synthase: role of distal and proximal metals in catalysis.

    PubMed

    Webster, Charles Edwin; Darensbourg, Marcetta Y; Lindahl, Paul A; Hall, Michael B

    2004-03-24

    Acetyl-coenzyme A (CoA) synthase/carbon monoxide dehydrogenase (ACS/CODH) is a bifunctional enzyme that generates CO from carbon dioxide in the C-cluster of the beta subunit and synthesizes acetyl-CoA from carbon monoxide (CO), CoA, and CH3+ at the active site of the A-cluster in the alpha subunit. On the basis of density functional calculations, we predict that methylation of Nip occurs first, and CO then adds to the NipII-CH3 species to form the intermediate, NipII(CO)(CH3), in which Nip deligates one of its SNid bonds. The CO-insertion/CH3-migration occurs on one metal, the proximal Ni, forming the trigonal planar NipII-acetyl intermediate. The thiolate can bind to NipII and reductively eliminate the thioester. Our calculations disfavor the unprecedented bimetallic CO-insertion/CH3-migration. Ni in the proximal site produces a better catalyst than does Cu.

  13. Metal-catalyzed oxidation of phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli: inactivation and destabilization by oxidation of active-site cysteines.

    PubMed

    Park, O K; Bauerle, R

    1999-03-01

    The in vitro instability of the phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase [DAHPS(Phe)] from Escherichia coli has been found to be due to a metal-catalyzed oxidation mechanism. DAHPS(Phe) is one of three differentially feedback-regulated isoforms of the enzyme which catalyzes the first step of aromatic biosynthesis, the formation of DAHP from phosphoenolpyruvate and D-erythrose-4-phosphate. The activity of the apoenzyme decayed exponentially, with a half-life of about 1 day at room temperature, and the heterotetramer slowly dissociated to the monomeric state. The enzyme was stabilized by the presence of phosphoenolpyruvate or EDTA, indicating that in the absence of substrate, a trace metal(s) was the inactivating agent. Cu2+ and Fe2+, but none of the other divalent metals that activate the enzyme, greatly accelerated the rate of inactivation and subunit dissociation. Both anaerobiosis and the addition of catalase significantly reduced Cu2+-catalyzed inactivation. In the spontaneously inactivated enzyme, there was a net loss of two of the seven thiols per subunit; this value increased with increasing concentrations of added Cu2+. Dithiothreitol completely restored the enzymatic activity and the two lost thiols in the spontaneously inactivated enzyme but was only partially effective in reactivation of the Cu2+-inactivated enzyme. Mutant enzymes with conservative replacements at either of the two active-site cysteines, Cys61 or Cys328, were insensitive to the metal attack. Peptide mapping of the Cu2+-inactivated enzyme revealed a disulfide linkage between these two cysteine residues. All results indicate that DAHPS(Phe) is a metal-catalyzed oxidation system wherein bound substrate protects active-site residues from oxidative attack catalyzed by bound redox metal cofactor. A mechanism of inactivation of DAHPS is proposed that features a metal redox cycle that requires the sequential oxidation of its two active-site cysteines.

  14. Optimization Review, Peck Iron and Metal Superfund Site, Portsmouth, Virginia

    EPA Pesticide Factsheets

    The Peck Iron and Metal Superfund Site is a 33-acre property located in Norfolk County, Portsmouth, Virginia. PIM (Figure 1) is the site of a former scrap metal storage and recycling facility that began operation in the 1940s.

  15. Lanthanide Metal-Organic Frameworks with Six-Coordinated Ln(III) Ions and Free Functional Organic Sites for Adsorptions and Extensive Catalytic Activities

    PubMed Central

    Zhu, Yu; Zhu, Min; Xia, Li; Wu, Yunlong; Hua, Hui; Xie, Jimin

    2016-01-01

    Three chelating-amino-functionalized lanthanide metal-organic frameworks, Y-DDQ, Dy-DDQ and Eu-DDQ, were synthesized with a flexible dicarboxylate ligand based on quinoxaline (H2DDQ = N, N′-dibenzoic acid-2,3-diaminoquinoxaline). The three-dimensional framework is constructed by the H2DDQ linkers connecting the zigzag ladders, showing a net of sra topology. In the structures, one kind of Ln(III) ions metal centers are six-coordinated and thus can potentially behave as open metal sites (OMSs), while the free chelating amino groups can act as free functional organic sites (FOSs). The N2 and Ar adsorption behaviors indicate that these Ln-DDQ exhibits stable microporous frameworks with high surface area after remove of the solvents. Owing to presence of OMSs and FOSs, these MOFs show good ability of CO2, dyes captures and Lewis acid catalyst for cyanosilylation reaction. In view of the existing FOSs in the framework, Pd NPs were immobilized onto the MOFs through graft interactions between free chelating amino groups and metal ions precursor using postsynthetic modification. The well dispersed Pd@Ln-DDQs exhibit efficient and recyclable catalytic reduction of 4-nitrophenol to 4-aminophenol, and they can also act as an excellent catalyst for Suzuki-Miyaura cross-coupling reactions with the exposed Pd NPs. PMID:27431731

  16. Lanthanide Metal-Organic Frameworks with Six-Coordinated Ln(III) Ions and Free Functional Organic Sites for Adsorptions and Extensive Catalytic Activities

    NASA Astrophysics Data System (ADS)

    Zhu, Yu; Zhu, Min; Xia, Li; Wu, Yunlong; Hua, Hui; Xie, Jimin

    2016-07-01

    Three chelating-amino-functionalized lanthanide metal-organic frameworks, Y-DDQ, Dy-DDQ and Eu-DDQ, were synthesized with a flexible dicarboxylate ligand based on quinoxaline (H2DDQ = N, N‧-dibenzoic acid-2,3-diaminoquinoxaline). The three-dimensional framework is constructed by the H2DDQ linkers connecting the zigzag ladders, showing a net of sra topology. In the structures, one kind of Ln(III) ions metal centers are six-coordinated and thus can potentially behave as open metal sites (OMSs), while the free chelating amino groups can act as free functional organic sites (FOSs). The N2 and Ar adsorption behaviors indicate that these Ln-DDQ exhibits stable microporous frameworks with high surface area after remove of the solvents. Owing to presence of OMSs and FOSs, these MOFs show good ability of CO2, dyes captures and Lewis acid catalyst for cyanosilylation reaction. In view of the existing FOSs in the framework, Pd NPs were immobilized onto the MOFs through graft interactions between free chelating amino groups and metal ions precursor using postsynthetic modification. The well dispersed Pd@Ln-DDQs exhibit efficient and recyclable catalytic reduction of 4-nitrophenol to 4-aminophenol, and they can also act as an excellent catalyst for Suzuki-Miyaura cross-coupling reactions with the exposed Pd NPs.

  17. Contaminated scrap-metal inventories at ORO-managed sites

    SciTech Connect

    Mack, J.E.

    1981-01-01

    Radioactively contaminated scrap metal inventories were surveyed at facilities operating under contract with the US Department of Energy and managed through the Oak Ridge Operations Office. Nearly 90,000 tons of nickel, aluminum, copper, and ferrous metals (steels) contaminated with low-enriched uranium have accumulated, primarily at the uranium enrichment facilities. The potential value of this metal on the scrap market is over $100 million. However, existing regulations do not permit sale for unlicensed use of materials contaminated with low-enriched uranium. Therefore, current handling practices include burial and above-ground storage. Smelting is also used for shape declassification, with subsequent storage of ingots. This survey of existing inventories, generation rates, and handling capabilities is part of an overall metal waste management program to coordinate related activities among the ORO-managed sites.

  18. Influence of sulfhydryl sites on metal binding by bacteria

    NASA Astrophysics Data System (ADS)

    Nell, Ryan M.; Fein, Jeremy B.

    2017-02-01

    The role of sulfhydryl sites within bacterial cell envelopes is still unknown, but the sites may control the fate and bioavailability of metals. Organic sulfhydryl compounds are important complexing ligands in aqueous systems and they can influence metal speciation in natural waters. Though representing only approximately 5-10% of the total available binding sites on bacterial surfaces, sulfhydryl sites exhibit high binding affinities for some metals. Due to the potential importance of bacterial sulfhydryl sites in natural systems, metal-bacterial sulfhydryl site binding constants must be determined in order to construct accurate models of the fate and distribution of metals in these systems. To date, only Cd-sulfhydryl binding has been quantified. In this study, the thermodynamic stabilities of Mn-, Co-, Ni-, Zn-, Sr- and Pb-sulfhydryl bacterial cell envelope complexes were determined for the bacterial species Shewanella oneidensis MR-1. Metal adsorption experiments were conducted as a function of both pH, ranging from 5.0 to 7.0, and metal loading, from 0.5 to 40.0 μmol/g (wet weight) bacteria, in batch experiments in order to determine if metal-sulfhydryl binding occurs. Initially, the data were used to calculate the value of the stability constants for the important metal-sulfhydryl bacterial complexes for each metal-loading condition studied, assuming a single binding reaction for the dominant metal-binding site type under the pH conditions of the experiments. For most of the metals that we studied, these calculated stability constant values increased significantly with decreasing metal loading, strongly suggesting that our initial assumption was not valid and that more than one type of binding occurs at the assumed binding site. We then modeled each dataset with two distinct site types with identical acidity constants: one site with a high metal-site stability constant value, which we take to represent metal-sulfhydryl binding and which dominates under low

  19. The Zn2 Position in Metallo-beta-Lactamases is Critical for Activity: A Study on Chimeric Metal Sites on a Conserved Protein Scaffold

    SciTech Connect

    Gonzalez,J.; Medrano Martin, F.; Costello, A.; Tierney, D.; Vila, A.

    2007-01-01

    Metallo-?-lactamases (M?Ls) are bacterial Zn(II)-dependent hydrolases that confer broad-spectrum resistance to ?-lactam antibiotics. These enzymes can be subdivided into three subclasses (B1, B2 and B3) that differ in their metal binding sites and their characteristic tertiary structure. To date there are no clinically useful pan-M?L inhibitors available, mainly due to the unawareness of key catalytic features common to all M?L brands. Here we have designed, expressed and characterized two double mutants of BcII, a di-Zn(II) B1-M?L from Bacillus cereus, namely BcII-R121H/C221D (BcII-HD) and BcII-R121H/C221S (BcII-HS). These mutants display modified environments at the so-called Zn2 site or DCH site, reproducing the metal coordination environments of structurally related metallohydrolases. Through a combination of structural and functional studies, we found that BcII-HD is an impaired ?-lactamase even as a di-Zn(II) enzyme, whereas BcII-HS exhibits the ability to exist as mono or di-Zn(II) species in solution, with different catalytic performances. We show that these effects result from an altered position of Zn2, which is incapable of providing a productive interaction with the substrate ?-lactam ring. These results indicate that the position of Zn2 is essential for a productive substrate binding and hydrolysis.

  20. MetalS(3), a database-mining tool for the identification of structurally similar metal sites.

    PubMed

    Valasatava, Yana; Rosato, Antonio; Cavallaro, Gabriele; Andreini, Claudia

    2014-08-01

    We have developed a database search tool to identify metal sites having structural similarity to a query metal site structure within the MetalPDB database of minimal functional sites (MFSs) contained in metal-binding biological macromolecules. MFSs describe the local environment around the metal(s) independently of the larger context of the macromolecular structure. Such a local environment has a determinant role in tuning the chemical reactivity of the metal, ultimately contributing to the functional properties of the whole system. The database search tool, which we called MetalS(3) (Metal Sites Similarity Search), can be accessed through a Web interface at http://metalweb.cerm.unifi.it/tools/metals3/ . MetalS(3) uses a suitably adapted version of an algorithm that we previously developed to systematically compare the structure of the query metal site with each MFS in MetalPDB. For each MFS, the best superposition is kept. All these superpositions are then ranked according to the MetalS(3) scoring function and are presented to the user in tabular form. The user can interact with the output Web page to visualize the structural alignment or the sequence alignment derived from it. Options to filter the results are available. Test calculations show that the MetalS(3) output correlates well with expectations from protein homology considerations. Furthermore, we describe some usage scenarios that highlight the usefulness of MetalS(3) to obtain mechanistic and functional hints regardless of homology.

  1. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity.

    PubMed

    Wahba, Haytham M; Lecoq, Lauriane; Stevenson, Michael; Mansour, Ahmed; Cappadocia, Laurent; Lafrance-Vanasse, Julien; Wilkinson, Kevin J; Sygusch, Jurgen; Wilcox, Dean E; Omichinski, James G

    2016-02-23

    In bacterial resistance to mercury, the organomercurial lyase (MerB) plays a key role in the detoxification pathway through its ability to cleave Hg-carbon bonds. Two cysteines (C96 and C159; Escherichia coli MerB numbering) and an aspartic acid (D99) have been identified as the key catalytic residues, and these three residues are conserved in all but four known MerB variants, where the aspartic acid is replaced with a serine. To understand the role of the active site serine, we characterized the structure and metal binding properties of an E. coli MerB mutant with a serine substituted for D99 (MerB D99S) as well as one of the native MerB variants containing a serine residue in the active site (Bacillus megaterium MerB2). Surprisingly, the MerB D99S protein copurified with a bound metal that was determined to be Cu(II) from UV-vis absorption, inductively coupled plasma mass spectrometry, nuclear magnetic resonance, and electron paramagnetic resonance studies. X-ray structural studies revealed that the Cu(II) is bound to the active site cysteine residues of MerB D99S, but that it is displaced following the addition of either an organomercurial substrate or an ionic mercury product. In contrast, the B. megaterium MerB2 protein does not copurify with copper, but the structure of the B. megaterium MerB2-Hg complex is highly similar to the structure of the MerB D99S-Hg complexes. These results demonstrate that the active site aspartic acid is crucial for both the enzymatic activity and metal binding specificity of MerB proteins and suggest a possible functional relationship between MerB and its only known structural homologue, the copper-binding protein NosL.

  2. Crystal structure of D-psicose 3-epimerase from Agrobacterium tumefaciens and its complex with true substrate D-fructose: a pivotal role of metal in catalysis, an active site for the non-phosphorylated substrate, and its conformational changes.

    PubMed

    Kim, Kwangsoo; Kim, Hye-Jung; Oh, Deok-Kun; Cha, Sun-Shin; Rhee, Sangkee

    2006-09-01

    D-psicose, a rare sugar produced by the enzymatic reaction of D-tagatose 3-epimerase (DTEase), has been used extensively for the bioproduction of various rare carbohydrates. Recently characterized D-psicose 3-epimerase (DPEase) from Agrobacterium tumefaciens was found to belong to the DTEase family and to catalyze the interconversion of D-fructose and D-psicose by epimerizing the C-3 position, with marked efficiency for D-psicose. The crystal structures of DPEase and its complex with the true substrate D-fructose were determined; DPEase is a tetramer and each monomer belongs to a TIM-barrel fold. The active site in each subunit is distinct from that of other TIM-barrel enzymes, which use phosphorylated ligands as the substrate. It contains a metal ion with octahedral coordination to two water molecules and four residues that are absolutely conserved across the DTEase family. Upon binding of D-fructose, the substrate displaces water molecules in the active site, with a conformation mimicking the intermediate cis-enediolate. Subsequently, Trp112 and Pro113 in the beta4-alpha4 loop undergo significant structural changes, sealing off the active site. Structural evidence and site-directed mutagenesis of the putative catalytic residues suggest that the metal ion plays a pivotal role in catalysis by anchoring the bound D-fructose, and Glu150 and Glu244 carry out an epimerization reaction at the C-3 position.

  3. Salt site performance assessment activities

    SciTech Connect

    Kircher, J.F.; Gupta, S.K.

    1983-01-01

    During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables.

  4. Tuning reactivity and site selectivity of simple arenes in C-H activation: ortho-arylation of anisoles via arene-metal π-complexation.

    PubMed

    Ricci, Paolo; Krämer, Katrina; Larrosa, Igor

    2014-12-31

    Current approaches to achieve site selectivity in the C-H activation of arenes involve the use of directing groups or highly electron-poor arenes. In contrast, simple arenes, such as anisole, are characterized by poor reactivity and selectivity. We report that π-complexation to a Cr(CO)3 unit enhances the reactivity of anisoles providing an unprecedented ortho-selective arylation. This mild methodology can be used for the late stage functionalization of bioactive compounds containing the anisole motif, allowing the construction of novel organic scaffolds with few synthetic steps.

  5. Tuning Reactivity and Site Selectivity of Simple Arenes in C–H Activation: Ortho-Arylation of Anisoles via Arene–Metal π-Complexation

    PubMed Central

    2014-01-01

    Current approaches to achieve site selectivity in the C–H activation of arenes involve the use of directing groups or highly electron-poor arenes. In contrast, simple arenes, such as anisole, are characterized by poor reactivity and selectivity. We report that π-complexation to a Cr(CO)3 unit enhances the reactivity of anisoles providing an unprecedented ortho-selective arylation. This mild methodology can be used for the late stage functionalization of bioactive compounds containing the anisole motif, allowing the construction of novel organic scaffolds with few synthetic steps. PMID:25510851

  6. Validating metal binding sites in macromolecule structures using the CheckMyMetal web server

    PubMed Central

    Zheng, Heping; Chordia, Mahendra D.; Cooper, David R.; Chruszcz, Maksymilian; Müller, Peter; Sheldrick, George M.

    2015-01-01

    Metals play vital roles in both the mechanism and architecture of biological macromolecules. Yet structures of metal-containing macromolecules where metals are misidentified and/or suboptimally modeled are abundant in the Protein Data Bank (PDB). This shows the need for a diagnostic tool to identify and correct such modeling problems with metal binding environments. The "CheckMyMetal" (CMM) web server (http://csgid.org/csgid/metal_sites/) is a sophisticated, user-friendly web-based method to evaluate metal binding sites in macromolecular structures in respect to 7350 metal binding sites observed in a benchmark dataset of 2304 high resolution crystal structures. The protocol outlines how the CMM server can be used to detect geometric and other irregularities in the structures of metal binding sites and alert researchers to potential errors in metal assignment. The protocol also gives practical guidelines for correcting problematic sites by modifying the metal binding environment and/or redefining metal identity in the PDB file. Several examples where this has led to meaningful results are described in the anticipated results section. CMM was designed for a broad audience—biomedical researchers studying metal-containing proteins and nucleic acids—but is equally well suited for structural biologists to validate new structures during modeling or refinement. The CMM server takes the coordinates of a metal-containing macromolecule structure in the PDB format as input and responds within a few seconds for a typical protein structure modeled with a few hundred amino acids. PMID:24356774

  7. Actively convected liquid metal divertor

    NASA Astrophysics Data System (ADS)

    Shimada, Michiya; Hirooka, Yoshi

    2014-12-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.

  8. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    SciTech Connect

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin

    2016-08-30

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  9. Studying Activity Series of Metals.

    ERIC Educational Resources Information Center

    Hoon, Tien-Ghun; And Others

    1995-01-01

    Presents teaching strategies that illustrate the linking together of numerous chemical concepts involving the activity of metals (quantitative analysis, corrosion, and electrolysis) through the use of deep-level processing strategies. Concludes that making explicit links in the process of teaching chemistry can lead effectively to meaningful…

  10. Earliest evidence of pollution by heavy metals in archaeological sites

    NASA Astrophysics Data System (ADS)

    Monge, Guadalupe; Jimenez-Espejo, Francisco J.; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-09-01

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called “Anthropocene”. According to its heavy metal concentration, these sediments meet the present-day standards of “contaminated soil”. Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence.

  11. Earliest evidence of pollution by heavy metals in archaeological sites

    PubMed Central

    Monge, Guadalupe; Jimenez-Espejo, Francisco J.; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-01-01

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called “Anthropocene”. According to its heavy metal concentration, these sediments meet the present-day standards of “contaminated soil”. Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence. PMID:26388184

  12. Earliest evidence of pollution by heavy metals in archaeological sites.

    PubMed

    Monge, Guadalupe; Jimenez-Espejo, Francisco J; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-09-21

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called "Anthropocene". According to its heavy metal concentration, these sediments meet the present-day standards of "contaminated soil". Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence.

  13. Metal-ion rescue revisited: biochemical detection of site-bound metal ions important for RNA folding.

    PubMed

    Frederiksen, John K; Li, Nan-Sheng; Das, Rhiju; Herschlag, Daniel; Piccirilli, Joseph A

    2012-06-01

    Within the three-dimensional architectures of RNA molecules, divalent metal ions populate specific locations, shedding their water molecules to form chelates. These interactions help the RNA adopt and maintain specific conformations and frequently make essential contributions to function. Defining the locations of these site-bound metal ions remains challenging despite the growing database of RNA structures. Metal-ion rescue experiments have provided a powerful approach to identify and distinguish catalytic metal ions within RNA active sites, but the ability of such experiments to identify metal ions that contribute to tertiary structure acquisition and structural stability is less developed and has been challenged. Herein, we use the well-defined P4-P6 RNA domain of the Tetrahymena group I intron to reevaluate prior evidence against the discriminatory power of metal-ion rescue experiments and to advance thermodynamic descriptions necessary for interpreting these experiments. The approach successfully identifies ligands within the RNA that occupy the inner coordination sphere of divalent metal ions and distinguishes them from ligands that occupy the outer coordination sphere. Our results underscore the importance of obtaining complete folding isotherms and establishing and evaluating thermodynamic models in order to draw conclusions from metal-ion rescue experiments. These results establish metal-ion rescue as a rigorous tool for identifying and dissecting energetically important metal-ion interactions in RNAs that are noncatalytic but critical for RNA tertiary structure.

  14. The Use of Molecular and Genomic Techniques Applied to Microbial Diversity, Community Structure, and Activities at DNAPL and Metal Contaminated Sites

    EPA Science Inventory

    A wide variety of in situ subsurface remediation strategies have been developed to mitigate contamination by chlorinated solvent dense non-aqueous phase liquids (DNAPLS) and metals. Geochemical methods include: zerovalent iron emplacement, various electrolytic applications, elec...

  15. METAL ATTENUATION PROCESSES AT MINING SITES

    EPA Science Inventory

    The purpose of this Issue Paper is to provide scientists and engineers responsible for assessing remediation technologies with background information on MNA processes at mining-impacted sites. The global magnitude of the acid drainage problem is clear evidence that in most cases...

  16. Metalloprotein-inhibitor binding: Human carbonic anhydrase II as a model for probing metal-ligand interactions in a metalloprotein active site

    PubMed Central

    Martin, David P.; Hann, Zachary S.; Cohen, Seth M.

    2013-01-01

    An ever increasing number of metalloproteins are being discovered that play essential roles in physiological processes. Inhibitors of these proteins have significant potential for the treatment of human disease, but clinical success of these compounds has been limited. Herein, Zn(II)-dependent metalloprotein inhibitors in clinical use are reviewed, and the potential for using novel metal-binding groups (MBGs) in the design of these inhibitors is discussed. By using human carbonic anhydrase II (hCAII) as a model system, the nuances of MBG-metal interactions in the context of a protein environment can be probed. Understanding how metal coordination influences inhibitor binding may help in the design new therapeutics targeting metalloproteins. PMID:23706138

  17. Normal Modes Expose Active Sites in Enzymes

    PubMed Central

    Glantz-Gashai, Yitav; Samson, Abraham O.

    2016-01-01

    Accurate prediction of active sites is an important tool in bioinformatics. Here we present an improved structure based technique to expose active sites that is based on large changes of solvent accessibility accompanying normal mode dynamics. The technique which detects EXPOsure of active SITes through normal modEs is named EXPOSITE. The technique is trained using a small 133 enzyme dataset and tested using a large 845 enzyme dataset, both with known active site residues. EXPOSITE is also tested in a benchmark protein ligand dataset (PLD) comprising 48 proteins with and without bound ligands. EXPOSITE is shown to successfully locate the active site in most instances, and is found to be more accurate than other structure-based techniques. Interestingly, in several instances, the active site does not correspond to the largest pocket. EXPOSITE is advantageous due to its high precision and paves the way for structure based prediction of active site in enzymes. PMID:28002427

  18. Crystal structure of plant ferritin reveals a novel metal binding site that functions as a transit site for metal transfer in ferritin.

    PubMed

    Masuda, Taro; Goto, Fumiyuki; Yoshihara, Toshihiro; Mikami, Bunzo

    2010-02-05

    Ferritins are important iron storage and detoxification proteins that are widely distributed in living kingdoms. Because plant ferritin possesses both a ferroxidase site and a ferrihydrite nucleation site, it is a suitable model for studying the mechanism of iron storage in ferritin. This article presents for the first time the crystal structure of a plant ferritin from soybean at 1.8-A resolution. The soybean ferritin 4 (SFER4) had a high structural similarity to vertebrate ferritin, except for the N-terminal extension region, the C-terminal short helix E, and the end of the BC-loop. Similar to the crystal structures of other ferritins, metal binding sites were observed in the iron entry channel, ferroxidase center, and nucleation site of SFER4. In addition to these conventional sites, a novel metal binding site was discovered intermediate between the iron entry channel and the ferroxidase site. This site was coordinated by the acidic side chain of Glu(173) and carbonyl oxygen of Thr(168), which correspond, respectively, to Glu(140) and Thr(135) of human H chain ferritin according to their sequences. A comparison of the ferroxidase activities of the native and the E173A mutant of SFER4 clearly showed a delay in the iron oxidation rate of the mutant. This indicated that the glutamate residue functions as a transit site of iron from the 3-fold entry channel to the ferroxidase site, which may be universal among ferritins.

  19. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  20. Perspective: On the active site model in computational catalyst screening

    NASA Astrophysics Data System (ADS)

    Reuter, Karsten; Plaisance, Craig P.; Oberhofer, Harald; Andersen, Mie

    2017-01-01

    First-principles screening approaches exploiting energy trends in surface adsorption represent an unparalleled success story in recent computational catalysis research. Here we argue that our still limited understanding of the structure of active sites is one of the major bottlenecks towards an ever extended and reliable use of such computational screening for catalyst discovery. For low-index transition metal surfaces, the prevalently chosen high-symmetry (terrace and step) sites offered by the nominal bulk-truncated crystal lattice might be justified. For more complex surfaces and composite catalyst materials, computational screening studies will need to actively embrace a considerable uncertainty with respect to what truly are the active sites. By systematically exploring the space of possible active site motifs, such studies might eventually contribute towards a targeted design of optimized sites in future catalysts.

  1. Determination of heavy metal content and lipid profiles in mussel extracts from two sites on the moroccan atlantic coast and evaluation of their biological activities on MIN6 pancreatic cells.

    PubMed

    Boumhras, M; Ouafik, S; Nury, T; Gresti, J; Athias, A; Ragot, K; Nasser, B; Cherkaoui-Malki, M; Lizard, G

    2014-11-01

    Mussels may concentrate pollutants, with possibly significant side effects on human health. Therefore, mussels (Mytilus galloprovincialis) from two sites of the Moroccan Atlantic coast (Jorf Lasfar [JL], an industrial site, and Oualidia [OL], a vegetable-growing area), were subjected to biochemical analyses to quantify the presence of heavy metals (Cd, Cr, and Pb) and to establish the lipid profile: fatty acid, cholesterol, oxysterol, phytosterol and phospholipid content. In addition, mussel lipid extracts known to accumulate numerous toxic components were tested on murine pancreatic β-cells (MIN6), and their biological activities were measured with various flow cytometric and biochemical methods to determine their impacts on cell death induction, organelle dysfunctions (mitochondria, lysosomes, and peroxisomes), oxidative stress and insulin secretion. The characteristics of JL and OL lipid extracts were compared with those of commercially available mussels from Spain (SP) used for human consumption. OL and JL contained heavy metals, high amounts of phospholipids, and high levels of oxysterols; the [(unsaturated fatty acids)/(saturated fatty acids)] ratio, which can be considered a sign of environmental stress leading to lipid peroxidation, was low. On MIN6 cells, JL and OL lipid extracts were able to trigger cell death. This event was associated with overproduction of H2 O2 , increased catalase activity, a decreased GSH level, lipid peroxidation and stimulation of insulin secretion. These effects were not observed with SP lipid extracts. These data suggest that some components from OL and JL lipid extracts might predispose to pancreatic dysfunctions. Epidemiological studies would be needed to assess the global risk on human health and the metabolic disease incidence in a context of regular seafood consumption from the OL and JL areas.

  2. Laboratory Study of Polychlorinated Biphenyl (PCB) Contamination and Mitigation in Buildings -- Part 4. Evaluation of the Activated Metal Treatment System (AMTS) for On-site Destruction of PCBs

    EPA Science Inventory

    This is the fourth, also the last, report of the report series entitled “Laboratory Study of Polychlorinated Biphenyl (PCB) Contamination and Mitigation in Buildings.” This report evaluates the performance of an on-site PCB destruction method, known as the AMTS method, developed ...

  3. Laboratory Study of Polychlorinated Biphenyl Contamination and Mitigation in Buildings -- Part 4. Evaluation of the Activated Metal Treatment System (AMTS) for On-site Destruction of PCBs

    EPA Science Inventory

    This is the fourth, also the last, report of the report series entitled “Laboratory Study of Polychlorinated Biphenyl (PCB) Contamination and Mitigation in Buildings.” This report evaluates the performance of an on-site PCB destruction method, known as the AMTS method...

  4. Toward "metalloMOFzymes": Metal-Organic Frameworks with Single-Site Metal Catalysts for Small-Molecule Transformations.

    PubMed

    Cohen, Seth M; Zhang, Zhenjie; Boissonnault, Jake A

    2016-08-01

    Metal-organic frameworks (MOFs) are being increasingly studied as scaffolds and supports for catalysis. The solid-state structures of MOFs, combined with their high porosity, suggest that MOFs may possess advantages shared by both heterogeneous and homogeneous catalysts, with few of the shortcomings of either. Herein, efforts to create single-site catalytic metal centers appended to the organic ligand struts of MOFs will be discussed. Reactions important for advanced energy applications, such as H2 production and CO2 reduction, will be highlighted. Examining how these active sites can be introduced, their performance, and their existing limitations should provide direction for design of the next generation of MOF-based catalysts for energy-relevant, small-molecule transformations. Finally, the introduction of second-sphere interactions (e.g., hydrogen bonding via squaramide groups) as a possible route to enhancing the activity of these metal centers is reported.

  5. The structure of the Helicobacter pylori ferric uptake regulator Fur reveals three functional metal binding sites.

    PubMed

    Dian, Cyril; Vitale, Sylvia; Leonard, Gordon A; Bahlawane, Christelle; Fauquant, Caroline; Leduc, Damien; Muller, Cécile; de Reuse, Hilde; Michaud-Soret, Isabelle; Terradot, Laurent

    2011-03-01

    Fur, the ferric uptake regulator, is a transcription factor that controls iron metabolism in bacteria. Binding of ferrous iron to Fur triggers a conformational change that activates the protein for binding to specific DNA sequences named Fur boxes. In Helicobacter pylori, HpFur is involved in acid response and is important for gastric colonization in model animals. Here we present the crystal structure of a functionally active HpFur mutant (HpFur2M; C78S-C150S) bound to zinc. Although its fold is similar to that of other Fur and Fur-like proteins, the crystal structure of HpFur reveals a unique structured N-terminal extension and an unusual C-terminal helix. The structure also shows three metal binding sites: S1 the structural ZnS₄ site previously characterized biochemically in HpFur and the two zinc sites identified in other Fur proteins. Site-directed mutagenesis and spectroscopy analyses of purified wild-type HpFur and various mutants show that the two metal binding sites common to other Fur proteins can be also metallated by cobalt. DNA protection and circular dichroism experiments demonstrate that, while these two sites influence the affinity of HpFur for DNA, only one is absolutely required for DNA binding and could be responsible for the conformational changes of Fur upon metal binding while the other is a secondary site.

  6. High metal reactivity and environmental risks at a site contaminated by glass waste.

    PubMed

    Augustsson, A; Åström, M; Bergbäck, B; Elert, M; Höglund, L O; Kleja, D B

    2016-07-01

    This study addresses the reactivity and risks of metals (Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn, As and Sb) at a Swedish site with large glass waste deposits. Old glassworks sites typically have high total metal concentrations, but as the metals are mainly bound within the glass waste and considered relatively inert, environmental investigations at these kinds of sites are limited. In this study, soil and landfill samples were subjected to a sequential chemical extraction procedure. Data from batch leaching tests and groundwater upstream and downstream of the waste deposits were also interpreted. The sequential extraction revealed that metals in <2 mm soil/waste samples were largely associated with geochemically active fractions, indicating that metals are released from pristine glass and subsequently largely retained in the surrounding soil and/or on secondary mineral coatings on fine glass particles. From the approximately 12,000 m(3) of coarse glass waste at the site, almost 4000 kg of Pb is estimated to have been lost through corrosion, which, however, corresponds to only a small portion of the total amount of Pb in the waste. Metal sorption within the waste deposits or in underlying soil layers is supported by fairly low metal concentrations in groundwater. However, elevated concentrations in downstream groundwater and in leachates of batch leaching tests were observed for several metals, indicating on-going leaching. Taken together, the high metal concentrations in geochemically active forms and the high amounts of as yet uncorroded metal-rich glass, indicate considerable risks to human health and the environment.

  7. Small mammal-heavy metal concentrations from mined and control sites

    USGS Publications Warehouse

    Smith, G.J.; Rongstad, O.J.

    1982-01-01

    Total body concentrations of zinc, copper, cadmium, lead, nickel, mercury and arsenic were determined for Peromyscus maniculatus and Microtus pennsylvanicus from an active zinc-copper mine near Timmins, Ontario, Canada, and a proposed zinc-copper mine near Crandon, Wisconsin, USA. Metal concentrations were evaluated with respect to area, species, sex and age groups. Metal concentrations in Peromyscus from the proposed mine site were not different from those collected in a third area where no mine or deposit exists. This is probably due to the 30 m of glacial material over the proposed mine site deposit. A statistical interaction between area, species, sex and age was observed for zinc and copper concentrations in small mammals we examined. Peromyscus from the mine site had consistently higher metal concentrations than Peromyscus from the control site. Greater total body cadmium and lead concentrations in adult?compared with juvenile?Peromyscus collected at the mine site suggests age-dependent accumulation of these toxic metals. Microtus did not exhibit this age-related response, and responded to other environmental metals more erratically and to a lesser degree. Differences in the response of these two species to environmental metal exposure may be due to differences in food habits. Nickel, mercury and arsenic concentrations in small mammals from the mine site were not different from controls. Heavy metal concentrations are also presented for Sorex cinereus, Blarina brevicauda and Zapus hudsonicus without respect to age and sex cohorts. Peromyscus may be a potentially important species for the monitoring of heavy metal pollution.

  8. Antimicrobial activity of the metals and metal oxide nanoparticles.

    PubMed

    Dizaj, Solmaz Maleki; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad Hossein; Adibkia, Khosro

    2014-11-01

    The ever increasing resistance of pathogens towards antibiotics has caused serious health problems in the recent years. It has been shown that by combining modern technologies such as nanotechnology and material science with intrinsic antimicrobial activity of the metals, novel applications for these substances could be identified. According to the reports, metal and metal oxide nanoparticles represent a group of materials which were investigated in respect to their antimicrobial effects. In the present review, we focused on the recent research works concerning antimicrobial activity of metal and metal oxide nanoparticles together with their mechanism of action. Reviewed literature indicated that the particle size was the essential parameter which determined the antimicrobial effectiveness of the metal nanoparticles. Combination therapy with the metal nanoparticles might be one of the possible strategies to overcome the current bacterial resistance to the antibacterial agents. However, further studies should be performed to minimize the toxicity of metal and metal oxide nanoparticles to apply as proper alternatives for antibiotics and disinfectants especially in biomedical applications.

  9. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals.

    PubMed

    Wu, Qihang; Leung, Jonathan Y S; Geng, Xinhua; Chen, Shejun; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Zhu, Libin; Chen, Jiahao; Lu, Yayin

    2015-02-15

    Illegal e-waste recycling activity has caused heavy metal pollution in many developing countries, including China. In recent years, the Chinese government has strengthened enforcement to impede such activity; however, the heavy metals remaining in the abandoned e-waste recycling site can still pose ecological risk. The present study aimed to investigate the concentrations of heavy metals in soil and water in the vicinity of an abandoned e-waste recycling site in Longtang, South China. Results showed that the surface soil of the former burning and acid-leaching sites was still heavily contaminated with Cd (>0.39 mg kg(-1)) and Cu (>1981 mg kg(-1)), which exceeded their respective guideline levels. The concentration of heavy metals generally decreased with depth in both burning site and paddy field, which is related to the elevated pH and reduced TOM along the depth gradient. The pond water was seriously acidified and contaminated with heavy metals, while the well water was slightly contaminated since heavy metals were mostly retained in the surface soil. The use of pond water for irrigation resulted in considerable heavy metal contamination in the paddy soil. Compared with previous studies, the reduced heavy metal concentrations in the surface soil imply that heavy metals were transported to the other areas, such as pond. Therefore, immediate remediation of the contaminated soil and water is necessary to prevent dissemination of heavy metals and potential ecological disaster.

  10. MeRNA: a Database of Metal Ion Binding Sites in RNAStructures

    SciTech Connect

    Stefan, Liliana R.; Zhang, Rui; Levitan, Aaron G.; Hendrix, DonnaF.; Brenner, Steven E.; Holbrook, Stephen R.

    2005-10-05

    Metal ions are essential for the folding of RNA into stable tertiary structures and for the catalytic activity of some RNA enzymes. To aid in the study of the roles of metal ions in RNA structural biology, we have created MeRNA (Metals in RNA), a comprehensive compilation of all metal binding sites identified in RNA three-dimensional structures available from the Protein Data Bank (PDB) and Nucleic Acid Database (NDB). Currently, our database contains information relating to binding of 9764 metal ions corresponding to 23 distinct elements; in 256 RNA structures. The metal ion locations were confirmed and ligands characterized using original literature references. MeRNA includes eight manually identified metal-ion binding motifs, which are described in the literature. MeRNA is searchable by PDB identifier, metal ion, method of structure determination, resolution and R-values for X-ray structure, and distance from metal to any RNA atom or to water. New structures with their respective binding motifs will be added to the database as they become available. The MeRNA database will further our understanding of the roles of metal ions in RNA folding and catalysis and have applications in structural and functional analysis, RNA design and engineering.

  11. How absorbed hydrogen affects the catalytic activity of transition metals.

    PubMed

    Aleksandrov, Hristiyan A; Kozlov, Sergey M; Schauermann, Swetlana; Vayssilov, Georgi N; Neyman, Konstantin M

    2014-12-01

    Heterogeneous catalysis is commonly governed by surface active sites. Yet, areas just below the surface can also influence catalytic activity, for instance, when fragmentation products of catalytic feeds penetrate into catalysts. In particular, H absorbed below the surface is required for certain hydrogenation reactions on metals. Herein, we show that a sufficient concentration of subsurface hydrogen, H(sub) , may either significantly increase or decrease the bond energy and the reactivity of the adsorbed hydrogen, H(ad) , depending on the metal. We predict a representative reaction, ethyl hydrogenation, to speed up on Pd and Pt, but to slow down on Ni and Rh in the presence of H(sub) , especially on metal nanoparticles. The identified effects of subsurface H on surface reactivity are indispensable for an atomistic understanding of hydrogenation processes on transition metals and interactions of hydrogen with metals in general.

  12. Metals distributions in activated sludge systems

    SciTech Connect

    Patterson, J.W.; Kodukula, P.S.

    1984-05-01

    Despite extensive laboratory and field studies over the past 25 years, little advance has been made in prediction of metals distribution and removal in activated sludge treatment systems. This paper reports the results of carefully controlled pilot studies, from which empirical metals distribution models were developed. The models accurately predict the distribution of process stream metals at each point in the activated sludge process between the soluble and solids phases. The distribution models together with data on primary and secondary clarifier suspended solids removal efficiencies, are easily applied to predict the removals of influent metals in activated sludge systems. 36 references, 2 figures.

  13. Lung cancer mortality in a site producing hard metals

    PubMed Central

    Wild, P.; Perdrix, A.; Romazini, S.; Moulin, J.; Pellet, F.

    2000-01-01

    OBJECTIVES—To study the mortality from lung cancer from exposures to hard metal dust at an industrial site producing hard metals—pseudoalloys of cobalt and tungsten carbide—and other metallurgical products many of which contain cobalt.
METHODS—A historical cohort was set up of all subjects who had worked for at least 3 months on the site since its opening date in the late 1940s. A full job history could be obtained for 95% of the subjects. The cohort was followed up from January 1968 to December 1992. The exposure was assessed by an industry specific job exposure matrix (JEM) characterising exposure to hard metal dust from 1 to 9 and other possibly carcinogenic exposures as present or absent. Smoking information was obtained by interview of former workers. Standard lifetable methods and Poisson regression were used for the statistical analysis of the data.
RESULTS—Mortality from all causes was close to the expected (standardised mortality ratio (SMR) 1.02, 399 deaths) whereas mortality from lung cancer was significantly increased among men (SMR 1.70; 46 deaths, 95% confidence interval (95% CI) 1.24 to 2.26). By workshop, lung cancer mortality was significantly higher than expected in hard metal production before sintering (SMR 2.42; nine deaths; 95%CI 1.10 to 4.59) and among maintenance workers (SMR 2.56; 11 deaths; 95%CI 1.28 to 4.59), whereas after sintering the SMR was lower (SMR 1.28; five deaths; 95%CI 0.41 to 2.98). The SMR for all exposures to hard metal dust at a level >1 in the JEM was in significant excess (SMR 2.02; 26 deaths; 95%CI 1.32 to 2.96). The risks increased with exposure scores, duration of exposure, and cumulative dose reaching significance for duration of exposure to hard metal dust before sintering, after adjustment for smoking and known or suspected carcinogens.
CONCLUSION—Excess mortality from lung cancer was found among hard metal production workers which cannot be attributed to smoking alone. This excess

  14. Metal interactions with voltage- and receptor-activated ion channels.

    PubMed Central

    Vijverberg, H P; Oortgiesen, M; Leinders, T; van Kleef, R G

    1994-01-01

    Effects of Pb and several other metal ions on various distinct types of voltage-, receptor- and Ca-activated ion channels have been investigated in cultured N1E-115 mouse neuroblastoma cells. Experiments were performed using the whole-cell voltage clamp and single-channel patch clamp techniques. External superfusion of nanomolar to submillimolar concentrations of Pb causes multiple effects on ion channels. Barium current through voltage-activated Ca channels is blocked by micromolar concentrations of Pb, whereas voltage-activated Na current appears insensitive. Neuronal type nicotinic acetylcholine receptor-activated ion current is blocked by nanomolar concentrations of Pb and this block is reversed at micromolar concentrations. Serotonin 5-HT3 receptor-activated ion current is much less sensitive to Pb. In addition, external superfusion with micromolar concentrations of Pb as well as of Cd and aluminum induces inward current, associated with the direct activation of nonselective cation channels by these metal ions. In excised inside-out membrane patches of neuroblastoma cells, micromolar concentrations of Ca activate small (SK) and big (BK) Ca-activated K channels. Internally applied Pb activates SK and BK channels more potently than Ca, whereas Cd is approximately equipotent to Pb with respect to SK channel activation, but fails to activate BK channels. The results show that metal ions cause distinct, selective effects on the various types of ion channels and that metal ion interaction sites of ion channels may be highly selective for particular metal ions. PMID:7531139

  15. Structure of the first representative of Pfam family PF04016 (DUF364) reveals enolase and Rossmann-like folds that combine to form a unique active site with a possible role in heavy-metal chelation

    PubMed Central

    Miller, Mitchell D.; Aravind, L.; Bakolitsa, Constantina; Rife, Christopher L.; Carlton, Dennis; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Feuerhelm, Julie; Grant, Joanna C.; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; McMullan, Daniel; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Reyes, Ron; van den Bedem, Henry; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structure of Dhaf4260 from Desulfitobacterium hafniense DCB-2 was determined by single-wavelength anomalous diffraction (SAD) to a resolution of 2.01 Å using the semi-automated high-throughput pipeline of the Joint Center for Structural Genomics (JCSG) as part of the NIGMS Protein Structure Initiative (PSI). This protein structure is the first representative of the PF04016 (DUF364) Pfam family and reveals a novel combination of two well known domains (an enolase N-terminal-like fold followed by a Rossmann-like domain). Structural and bioinformatic analyses reveal partial similarities to Rossmann-like methyltransferases, with residues from the enolase-like fold combining to form a unique active site that is likely to be involved in the condensation or hydrolysis of molecules implicated in the synthesis of flavins, pterins or other siderophores. The genome context of Dhaf4260 and homologs additionally supports a role in heavy-metal chelation. PMID:20944207

  16. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    PubMed Central

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin

    2016-01-01

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals. PMID:27574182

  17. Validated ligand mapping of ACE active site

    NASA Astrophysics Data System (ADS)

    Kuster, Daniel J.; Marshall, Garland R.

    2005-08-01

    Crystal structures of angiotensin-converting enzyme (ACE) complexed with three inhibitors (lisinopril, captopril, enalapril) provided experimental data for testing the validity of a prior active site model predicting the bound conformation of the inhibitors. The ACE active site model - predicted over 18 years ago using a series of potent ACE inhibitors of diverse chemical structure - was recreated using published data and commercial software. Comparison between the predicted structures of the three inhibitors bound to the active site of ACE and those determined experimentally yielded root mean square deviation (RMSD) values of 0.43-0.81 Å, among the distances defining the active site map. The bound conformations of the chemically relevant atoms were accurately deduced from the geometry of ligands, applying the assumption that the geometry of the active site groups responsible for binding and catalysis of amide hydrolysis was constrained. The mapping of bound inhibitors at the ACE active site was validated for known experimental compounds, so that the constrained conformational search methodology may be applied with confidence when no experimentally determined structure of the enzyme yet exists, but potent, diverse inhibitors are available.

  18. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination.

    PubMed

    Strickland, Kara; Miner, Elise; Jia, Qingying; Tylus, Urszula; Ramaswamy, Nagappan; Liang, Wentao; Sougrati, Moulay-Tahar; Jaouen, Frédéric; Mukerjee, Sanjeev

    2015-06-10

    Replacement of noble metals in catalysts for cathodic oxygen reduction reaction with transition metals mostly create active sites based on a composite of nitrogen-coordinated transition metal in close concert with non-nitrogen-coordinated carbon-embedded metal atom clusters. Here we report a non-platinum group metal electrocatalyst with an active site devoid of any direct nitrogen coordination to iron that outperforms the benchmark platinum-based catalyst in alkaline media and is comparable to its best contemporaries in acidic media. In situ X-ray absorption spectroscopy in conjunction with ex situ microscopy clearly shows nitrided carbon fibres with embedded iron particles that are not directly involved in the oxygen reduction pathway. Instead, the reaction occurs primarily on the carbon-nitrogen structure in the outer skin of the nitrided carbon fibres. Implications include the potential of creating greater active site density and the potential elimination of any Fenton-type process involving exposed iron ions culminating in peroxide initiated free-radical formation.

  19. Public health consequences of heavy metals in dump sites.

    PubMed Central

    Clarkson, T W; Weiss, B; Cox, C

    1983-01-01

    Metals differ from most synthetic organic chemicals in that their clinical manifestations are well known and methods for their measurement in the body are generally well established. Since metals are ubiquitous, special care should be taken to identify the source, whether dump site or not. Isotopic ratios may be used for lead. Time of exposure may be highly variable so estimates will be necessary of integrated "dose-commitment." Transmission to man will follow many pathways. The contamination of children's hands and clothing by dust may be an important route. Because effects are so different, the chemical species (e.g., organic versus inorganic forms) of each metal must be identified. Exposure assessment requires identification of suitable indicator media, usually blood in the case of lead, urine with cadmium and inorganic mercury, and blood or hair with regard to methylmercury. Human head hair may have considerable potential, as it may provide a recapitulation of past exposures. The first health complaints associated with most metals are usually nonspecific. The complex social, political, and legal issues strongly indicate the need for objective tests for health effects. Most important is the identification and measurement of the critical effect, i.e., an effect that alerts the public health authorities that further exposure should cease. For example, in the case of lead, the critical effect is hematologic; with cadmium it is the presence in urine of abnormally high concentration of small molecular weight protein; and with mercury no early objective test has yet been devised. PMID:6825626

  20. Comparison of Methods to Obtain Force-Field Parameters for Metal Sites.

    PubMed

    Hu, LiHong; Ryde, Ulf

    2011-08-09

    We have critically examined and compared various ways to obtain standard harmonic molecular mechanics (MM) force-field parameters for metal sites in proteins, using the 12 most common Zn(2+) sites as test cases. We show that the parametrization of metal sites is hard to treat with automatic methods. The choice of method is a compromise between speed and accuracy and therefore depends on the intended use of the parameters. If the metal site is not of central interest in the investigation, for example, a structural metal far from the active site, a simple and fast parametrization is normally enough, using either a nonbonded model with restraints or a bonded parametrization based on the method of Seminario. On the other hand, if the metal site is of central interest in the investigation, a more accurate method is needed to give quantitative results, for example, the method by Norrby and Liljefors. The former methods are semiautomatic and can be performed in seconds, once a quantum mechanical (QM) geometry optimization and frequency calculation has been performed, whereas the latter method typically takes several days and requires significant human intervention. All approaches require a careful selection of the atom types used. For a nonbonded model, standard atom types can be used, whereas for a bonded model, it is normally wise to use special atom types for each metal ligand. For accurate results, new atom types for all atoms in the metal site can be used. Atomic charges should also be considered. Typically, QM restrained electrostatic potential charges are accurate and easy to obtain once the QM calculation is performed, and they allow for charge transfer within the complex. For negatively charged complexes, it should be checked that hydrogen atoms of the ligands get proper charges. Finally, water ligands pose severe problems for bonded models in force fields that ignore nonbonded interactions for atoms separated by two bonds. Complexes with a single water ligand

  1. Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transition-Metal Spinels.

    PubMed

    Wei, Chao; Feng, Zhenxing; Scherer, Günther G; Barber, James; Shao-Horn, Yang; Xu, Zhichuan J

    2017-04-10

    Exploring efficient and low-cost electrocatalysts for the oxygen-reduction reaction (ORR) and oxygen-evolution reaction (OER) is critical for developing renewable energy technologies such as fuel cells, metal-air batteries, and water electrolyzers. A rational design of a catalyst can be guided by identifying descriptors that determine its activity. Here, a descriptor study on the ORR/OER of spinel oxides is presented. With a series of MnCo2 O4 , the Mn in octahedral sites is identified as an active site. This finding is then applied to successfully explain the ORR/OER activities of other transition-metal spinels, including Mnx Co3-x O4 (x = 2, 2.5, 3), Lix Mn2 O4 (x = 0.7, 1), XCo2 O4 (X = Co, Ni, Zn), and XFe2 O4 (X = Mn, Co, Ni). A general principle is concluded that the eg occupancy of the active cation in the octahedral site is the activity descriptor for the ORR/OER of spinels, consolidating the role of electron orbital filling in metal oxide catalysis.

  2. The active site structure and mechanism of phosphoenolpyruvate utilizing enzymes

    SciTech Connect

    Cheng, K.C.

    1989-01-01

    Arginine specific reagents showed irreversible inhibition of avian liver mitochondrial phosphoenolpyruvate carboxykinase. Potent protection against modification was elicited by CO{sub 2} or CO{sub 2} in the presence of other substrates. Labeling of enzyme with (7-{sup 14}C) phenylglyoxal showed that 1 or 2 arginines are involved in CO{sub 2} binding and activation. Peptide map studies showed this active site arginine residues is located at position 289. Histidine specific reagents showed pseudo first order inhibition of avian mitochondrial phosphoenolpyruvate carboxykinase activity. The best protection against modification was elicited by IDP or IDP and Mn{sup +2}. One histidine residue is at or near the phosphoenolpyruvate binding site as demonstrated in the increased absorbance at 240 nm and proton relaxation rate studies. Circular dichroism studies reveal that enzyme structure was perturbed by diethylpyrocarbonate modification. Metal binding studies suggest that this enzyme has only one metal binding site. The putative binding sites from several GTP and phosphoenolpyruvate utilizing enzymes are observed in P-enolpyruvate carboxykinase from different species.

  3. Site-selective electronic correlation in α-plutonium metal.

    PubMed

    Zhu, Jian-Xin; Albers, R C; Haule, K; Kotliar, G; Wills, J M

    2013-01-01

    An understanding of the phase diagram of elemental plutonium (Pu) must include both, the effects of the strong directional bonding and the high density of states of the Pu 5f electrons, as well as how that bonding weakens under the influence of strong electronic correlations. Here we present electronic-structure calculations of the full 16-atom per unit cell α-phase structure within the framework of density functional theory together with dynamical mean-field theory. Our calculations demonstrate that Pu atoms sitting on different sites within the α-Pu crystal structure have a strongly varying site dependence of the localization-delocalization correlation effects of their 5f electrons and a corresponding effect on the bonding and electronic properties of this complicated metal. In short, α-Pu has the capacity to simultaneously have multiple degrees of electron localization/delocalization of Pu 5f electrons within a pure single-element material.

  4. The Design, Synthesis, and Characterization of Open Sites on Metal Clusters

    NASA Astrophysics Data System (ADS)

    Nigra, Michael Mark

    Coordinatively unsaturated corner and edge atoms have been hypothesized to have the highest activity of sites responsible for many catalytic reactions on a metal surface. Recent studies have validated this hypothesis in varied reaction systems. However, quantification of different types of coordinatively unsaturated sites, and elucidation of their individual catalytic rates has remained a largely unresolved challenge when understanding catalysis on metal surfaces. Yet such structure-function knowledge would be invaluable to the design of more active and selective metal-surface catalysts in the future. I investigated the catalytic contributions of undercoordinated sites such as corner and edge atoms are investigated in a model reaction system using organic ligands bound to the gold nanoparticle surface. The catalyst consisted of 4 nm gold nanoparticles on a metal oxide support, using resazurin to resorufin as a model reaction system. My results demonstrate that in this system, corner atom sites are the most undercoordinated sites, and are over an order of magnitude more active when compared to undercoordinated edge atom sites, while terrace sites remain catalytically inactive for the reduction reaction of resazurin to resorufin. Catalytic activity has been also demonstrated for calixarene-bound gold nanoparticles using the reduction of 4-nitrophenol. With the 4-nitrophenol reduction reaction, a comparative study was undertaken to compare calixarene phosphine and calixarene thiol bound 4 nm gold particles. The results of the study suggested that a leached site was responsible for catalysis and not sites on the original gold nanoparticles. Future experiments with calixarene bound gold clusters could investigate ligand effects in reactions where the active site is not a leached or aggregated gold species, possibly in oxidation reactions, where electron-rich gold is hypothesized to be a good catalyst. The results that emphasize the enhanced catalytic activity of

  5. Rapid evolution of metal resistance in a benthic oligochaete inhabiting a metal-polluted site

    SciTech Connect

    Klerks, P.L.; Levinton, J.S. )

    1989-04-01

    A case of very rapid evolution of resistance in a common freshwater benthic invertebrate to sediment with extremely high levels of cadmium and nickel was identified. Limnodrilus hoffmeisteri from metal-polluted sites in Foundry cove, New York was significantly more resistant than conspecifics from a nearby control site, to both metal-rich natural sediment and metal-spiked water. Resistance differences were also found among sites within Foundry Cove. Elevated resistance in Foundry Cove worms was genetically determined, as it was still present after two generations in clean sediment. Resistance evolved rapidly, within 30 years. A laboratory selection experiment and estimates of the heritability of this resistance in L hoffmeisteri from the control site indicated that the resistance could have evolved in 1 to 4 generations. Laboratory selection resulted in a large increase in resistance after two generations of selection, while they demonstrated that most of the phenotypic variation was additive genetic; heritability estimates range from 0.59 to 1.08. 28 refs., 4 figs.

  6. Highly effective hydrogen isotope separation in nanoporous metal-organic frameworks with open metal sites: direct measurement and theoretical analysis.

    PubMed

    Oh, Hyunchul; Savchenko, Ievgeniia; Mavrandonakis, Andreas; Heine, Thomas; Hirscher, Michael

    2014-01-28

    Separating gaseous mixtures that consist of very similar size is one of the critical issues in modern separation technology. Especially, the separation of the isotopes hydrogen and deuterium requires special efforts, even though these isotopes show a very large mass ratio. Conventionally, H/D separation can be realized through cryogenic distillation of the molecular species or the Girdler-sulfide process, which are among the most energy-intensive separation techniques in the chemical industry. However, costs can be significantly reduced by using highly mass-selective nanoporous sorbents. Here, we describe a hydrogen isotope separation strategy exploiting the strongly attractive open metal sites present in nanoporous metal-organic frameworks of the CPO-27 family (also referred to as MOF-74). A theoretical analysis predicts an outstanding hydrogen isotopologue separation at open metal sites due to isotopal effects, which has been directly observed through cryogenic thermal desorption spectroscopy. For H2/D2 separation of an equimolar mixture at 60 K, the selectivity of 12 is the highest value ever measured, and this methodology shows extremely high separation efficiencies even above 77 K. Our theoretical results imply also a high selectivity for HD/H2 separation at similar temperatures, and together with catalytically active sites, we propose a mechanism to produce D2 from HD/H2 mixtures with natural or enriched deuterium content.

  7. Heavy Metals in the Vegetables Collected from Production Sites

    PubMed Central

    Taghipour, Hassan; Mosaferi, Mohammad

    2013-01-01

    Background: Contamination of vegetable crops (as an important part of people's diet) with heavy metals is a health concern. Therefore, monitoring levels of heavy metals in vegetables can provide useful information for promoting food safety. The present study was carried out in north-west of Iran (Tabriz) on the content of heavy metals in vegetable crops. Methods: Samples of vegetables including kurrat (n=20) (Allium ampeloprasumssp. Persicum), onion (n=20) (Allium cepa) and tomato (n=18) (Lycopersiconesculentum var. esculentum), were collected from production sites in west of Tabriz and analyzed for presence of Cd, Cr, Cu, Ni, Pb and Zn by atomic absorption spectroscopy (AAS) after extraction by aqua regia method (drying, grounding and acid diges­tion). Results: Mean ± SD (mg/kg DW) concentrations of Cd, Cu, Cr, Ni and Zn were 0.32 ± 0.58, 28.86 ± 28.79, 1.75 ± 2.05, 6.37± 5.61 and 58.01 ± 27.45, respec­tively. Cr, Cu and Zn were present in all the samples and the highest concentra­tions were observed in kurrat (leek). Levels of Cd, Cr and Cu were higher than the acceptable limits. There was significant difference in levels of Cr (P<0.05) and Zn (P<0.001) among the studied vegetables. Positive correlation was observed be­tween Cd:Cu (R=0.659, P<0.001) Cr:Ni (R=0.326, P<0.05) and Cr:Zn (R=0.308, P<0.05).   Conclusion: Level of heavy metals in some of the analyzed vegetables, especially kurrat samples, was higher than the standard levels. Considering the possi­ble health outcomes due to the consumption of contaminated vegetables, it is re­quired to take proper actions for avoiding people's chronic exposure. PMID:24688968

  8. Entrapment of Metal Clusters in MOF Channels by Extended Hooks Anchored at Open Metal Sites

    PubMed Central

    Zheng, Shou-Tian; Zhao, Xiang; Lau, Samuel; Fuhr, Addis; Feng, Pingyun; Bu, Xianhui

    2015-01-01

    Reported here is a new concept and its practical implementation that involves the novel utilization of open metal sites (OMS) for architectural pore design. Specifically, it is shown here that OMS can be used to run extended hooks (isonicotinate in this work) from the framework wall to channel centers to effect the capture of single metal ions or clusters, with the concurrent partition of the large channel space into multiple domains, alteration of host-guest charge relationship and associated guest-exchange properties, as well as the transfer of OMS from the wall to the channel centers. The concept of the extended hook, demonstrated here in the multi-component dual-metal and dual-ligand system, should be generally applicable to a range of framework types. PMID:23826752

  9. Twelve Year Study of Underground Corrosion of Activated Metals

    SciTech Connect

    M. Kay Adler Flitton; Timothy S. Yoder

    2012-03-01

    The subsurface radioactive disposal facility located at the U.S. Department of Energy’s Idaho site contains neutron-activated metals from non-fuel nuclear-reactor-core components. A long-term corrosion study is being conducted to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements in an arid vadose zone environment. The study uses non-radioactive metal coupons representing the prominent neutron-activated material buried at the disposal location, namely, two types of stainless steels, welded stainless steel, welded nickel-chromium steel alloy, zirconium alloy, beryllium, and aluminum. Additionally, carbon steel (the material used in cask disposal liners and other disposal containers) and duplex stainless steel (high-integrity containers) are also included in the study. This paper briefly describes the test program and presents the corrosion rate results through twelve years of underground exposure.

  10. The application of Diffusive Gradients in Thin Films (DGT) for improved understanding of metal behaviour at marine disposal sites.

    PubMed

    Parker, Ruth; Bolam, Thi; Barry, Jon; Mason, Claire; Kröger, Silke; Warford, Lee; Silburn, Briony; Sivyer, Dave; Birchenough, Silvana; Mayes, Andrew; Fones, Gary R

    2017-01-01

    Assessment of the effects of sediment metal contamination on biological assemblages and function remains a key question in marine management, especially in relation to disposal activities. However, the appropriate description of bioavailable metal concentrations within pore-waters has rarely been reported. Here, metal behaviour and availability at contaminated dredged material disposal sites within UK waters were investigated using Diffusive Gradient in Thin films (DGT). Three stations, representing contrasting history and presence of dredge disposal were studied. Depth profiles of five metals were derived using DGT probes as well as discrete analysis of total metal concentrations from sliced cores. The metals analysed were: iron and manganese, both relevant to sediment biogeochemistry; cadmium, nickel and lead, classified as priority pollutants. DGT time-integrated labile flux profiles of the metals display behaviour consistent with increasingly reduced conditions at depth and availability to DGT (iron and manganese), subsurface peaks and a potential sedimentary source to the water column related to the disposal activity (lead and nickel) and release to pore-water linked to decomposition of enriched phytodetritus (cadmium). DGT data has the potential to improve our current understanding of metal behaviour at impacted sites and is suitable as a monitoring tool. DGT data can provide information on metal availability and fluxes within the sediment at high depth-resolution (5mm steps). Differences observed in the resulting profiles between DGT and conventional total metal analysis illustrates the significance of considering both total metals and a potentially labile fraction. The study outcomes can help to inform and improve future disposal site impact assessment, and could be complemented with techniques such as Sediment Profile Imagery for improved biologically relevance, spatial coverage and cost-effective monitoring and sampling of dredge material disposal sites

  11. First Principles Computational Study of the Active Site of Arginase

    SciTech Connect

    Ivanov, Ivaylo; Klien, Micheal

    2004-01-14

    Ab initio density functional theory (DFT) methods were used to investigate the structural features of the active site of the binuclear enzyme rat liver arginase. Special emphasis was placed on the crucial role of the second shell ligand interactions. These interactions were systematically studied by performing calculations on models of varying size. It was determined that a water molecule, and not hydroxide, is the bridging exogenous ligand. The carboxylate ligands facilitate the close approach of the Mn (II) ions by attenuating the metal-metal electrostatic repulsion. Of the two metals, MnA was shown to carry a larger positive charge. Analysis of the electronic properties of the active site revealed that orbitals involving the terminal Asp234 residue, as well as the flexible -1,1 bridging Asp232, lie at high energies, suggesting weaker coordination. This is reflected in certain structural variability present in our models and is also consistent with recent experimental findings. Finally, implications of our findings for the biological function of the enzyme are delineated.

  12. Release of Radioactive Scrap Metal/Scrap Metal (RSM/SM) at Nevada Test Site (NTS)

    SciTech Connect

    Not Available

    1993-07-01

    Reynolds Electrical and Engineering Company, Inc. (REECo) is the prime contractor to the US Department of Energy (DOE) in providing service and support for NTS operations. Mercury Base Camp is the main control point for the many forward areas at NTS, which covers 1,350 square miles. The forward areas are where above-ground and underground nuclear tests have been performed over the last 41 years. No metal (or other material) is returned to Mercury without first being tested for radioactivity. No radioactive metals are allowed to reenter Mercury from the forward areas, other than testing equipment. RAMATROL is the monitor check point. They check material in various ways, including swipe tests, and have a large assortment of equipment for testing. Scrap metal is also checked to address Resource Conservation and Recovery Act concerns. After addressing these issues, the scrap metals are categorized. Federal Property Management Regulations (FPMR) are followed by REECo. The nonradioactive scrap material is sold through the GSA on a scheduled basis. Radioactive scrap metal are presently held in forward areas where they were used. REECo has gained approval of their Nevada Test Site Defense Waste Acceptance Criteria, Certification, and Transfer Requirements, NVO-325 application, which will allow disposal on site, when RSM is declared a waste. The guideline that REECo uses for release limits is DOE Order 5480.11, Radiation Protection for Occupational Works, Attachment 2, Surface Radioactivity Guides, of this order, give release limits for radioactive materials. However, the removal of radioactive materials from NTS require approval by DOE Nevada Operations Office (DOE/NV) on a case-by-case basis. Requirements to consider before removal are found in DOE Order 5820.2A, Radioactive Waste Management.

  13. Heavy metals and adsorbents effects on activated sludge microorganisms.

    PubMed

    Ong, S A; Lim, P E; Seng, C E

    2004-01-01

    The sorption of Cu(II) and Cd(II) from synthetic solution by powdered activated carbon (PAC), biomass, rice husk (RH) and activated rice husk (ARH) were investigate under batch conditions. After activated by concentrated nitric acid for 15 hours at 60-65 degrees C, the adsorption capacity for RH was increased. The adsorbents arranged in the increasing order of adsorption capacities to the Langmuir Q degree parameter were biomass > PAC > ARH > RH. The addition of adsorbents in base mix solution had increased the specific oxygen uptake rate (SOUR) activated sludge microorganisms with and without the presence of metals. The increased of SOUR were due to the ability of PAC and RH in reducing the inhibitory effect of metals on microorganisms and provide a reaction site between activated sludge microorganisms and substrates.

  14. Face the Edges: Catalytic Active Sites of Nanomaterials

    PubMed Central

    Ni, Bing

    2015-01-01

    Edges are special sites in nanomaterials. The atoms residing on the edges have different environments compared to those in other parts of a nanomaterial and, therefore, they may have different properties. Here, recent progress in nanomaterial fields is summarized from the viewpoint of the edges. Typically, edge sites in MoS2 or metals, other than surface atoms, can perform as active centers for catalytic reactions, so the method to enhance performance lies in the optimization of the edge structures. The edges of multicomponent interfaces present even more possibilities to enhance the activities of nanomaterials. Nanoframes and ultrathin nanowires have similarities to conventional edges of nanoparticles, the application of which as catalysts can help to reduce the use of costly materials. Looking beyond this, the edge structures of graphene are also essential for their properties. In short, the edge structure can influence many properties of materials. PMID:27980960

  15. Thermal Stabilization of Metal-Organic Framework-Derived Single-Site Catalytic Clusters through Nanocasting.

    PubMed

    Malonzo, Camille D; Shaker, Sammy M; Ren, Limin; Prinslow, Steven D; Platero-Prats, Ana E; Gallington, Leighanne C; Borycz, Joshua; Thompson, Anthony B; Wang, Timothy C; Farha, Omar K; Hupp, Joseph T; Lu, Connie C; Chapman, Karena W; Myers, Jason C; Penn, R Lee; Gagliardi, Laura; Tsapatsis, Michael; Stein, Andreas

    2016-03-02

    Metal-organic frameworks (MOFs) provide convenient systems for organizing high concentrations of single catalytic sites derived from metallic or oxo-metallic nodes. However, high-temperature processes cause agglomeration of these nodes, so that the single-site character and catalytic activity are lost. In this work, we present a simple nanocasting approach to provide a thermally stable secondary scaffold for MOF-based catalytic single sites, preventing their aggregation even after exposure to air at 600 °C. We describe the nanocasting of NU-1000, a MOF with 3 nm channels and Lewis-acidic oxozirconium clusters, with silica. By condensing tetramethylorthosilicate within the NU-1000 pores via a vapor-phase HCl treatment, a silica layer is created on the inner walls of NU-1000. This silica layer provides anchoring sites for the oxozirconium clusters in NU-1000 after the organic linkers are removed at high temperatures. Differential pair distribution functions obtained from synchrotron X-ray scattering confirmed that isolated oxozirconium clusters are maintained in the heated nanocast materials. Pyridine adsorption experiments and a glucose isomerization reaction demonstrate that the clusters remain accessible to reagents and maintain their acidic character and catalytic activity even after the nanocast materials have been heated to 500-600 °C in air. Density functional theory calculations show a correlation between the Lewis acidity of the oxozirconium clusters and their catalytic activity. The ability to produce MOF-derived materials that retain their catalytic properties after exposure to high temperatures makes nanocasting a useful technique for obtaining single-site catalysts suitable for high-temperature reactions.

  16. Use of amendments to restore ecosystem function to metal mining impacted sites; Tools to evaluate efficacy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a long history of using residuals based soil amendments for restoration of disturbed sites. More recently, this approach has been tested for use on metal contaminated mining sites. For these sites, amendment mixtures are targeted to reduce metal availability in situ as well as restore eco...

  17. Identification and characterization of a novel high affinity metal-binding site in the hammerhead ribozyme.

    PubMed Central

    Hansen, M R; Simorre, J P; Hanson, P; Mokler, V; Bellon, L; Beigelman, L; Pardi, A

    1999-01-01

    A novel metal-binding site has been identified in the hammerhead ribozyme by 31P NMR. The metal-binding site is associated with the A13 phosphate in the catalytic core of the hammerhead ribozyme and is distinct from any previously identified metal-binding sites. 31P NMR spectroscopy was used to measure the metal-binding affinity for this site and leads to an apparent dissociation constant of 250-570 microM at 25 degrees C for binding of a single Mg2+ ion. The NMR data also show evidence of a structural change at this site upon metal binding and these results are compared with previous data on metal-induced structural changes in the core of the hammerhead ribozyme. These NMR data were combined with the X-ray structure of the hammerhead ribozyme (Pley HW, Flaherty KM, McKay DB. 1994. Nature 372:68-74) to model RNA ligands involved in binding the metal at this A13 site. In this model, the A13 metal-binding site is structurally similar to the previously identified A(g) metal-binding site and illustrates the symmetrical nature of the tandem G x A base pairs in domain 2 of the hammerhead ribozyme. These results demonstrate that 31P NMR represents an important method for both identification and characterization of metal-binding sites in nucleic acids. PMID:10445883

  18. A sensitive rapid on-site immunoassay for heavy metal contamination

    SciTech Connect

    Blake, R.; Blake, D.; Flowers, G.

    1996-05-02

    This project concerns the development of immunoassays for heavy metals that will permit the rapid on-site analysis of specific heavy metals, including lead and chromium in water and soil samples. 2 refs.

  19. Corrosion Research And Web Site Activities

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2001-01-01

    This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.

  20. Corrosion Research and Web Site Activities

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2002-01-01

    This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.

  1. Metal-ion mutagenesis: conversion of a purple acid phosphatase from sweet potato to a neutral phosphatase with the formation of an unprecedented catalytically competent Mn(II)Mn(II) active site.

    PubMed

    Mitić, Natasa; Noble, Christopher J; Gahan, Lawrence R; Hanson, Graeme R; Schenk, Gerhard

    2009-06-17

    The currently accepted paradigm is that the purple acid phosphatases (PAPs) require a heterovalent, dinuclear metal-ion center for catalysis. It is believed that this is an essential feature for these enzymes in order for them to operate under acidic conditions. A PAP from sweet potato is unusual in that it appears to have a specific requirement for manganese, forming a unique Fe(III)-mu-(O)-Mn(II) center under catalytically optimal conditions (Schenk et al. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 273). Herein, we demonstrate, with detailed electron paramagnetic resonance (EPR) spectroscopic and kinetic studies, that in this enzyme the chromophoric Fe(III) can be replaced by Mn(II), forming a catalytically active, unprecedented antiferromagnetically coupled homodivalent Mn(II)-mu-(H)OH-mu-carboxylato-Mn(II) center in a PAP. However, although the enzyme is still active, it no longer functions as an acid phosphatase, having optimal activity at neutral pH. Thus, PAPs may have evolved from distantly related divalent dinuclear metallohydrolases that operate under pH neutral conditions by stabilization of a trivalent-divalent metal-ion core. The present Mn(II)-Mn(II) system models these distant relatives, and the results herein make a significant contribution to our understanding of the role of the chromophoric metal ion as an activator of the nucleophile. In addition, the detailed analysis of strain broadened EPR spectra from exchange-coupled dinuclear Mn(II)-Mn(II) centers described herein provides the basis for the full interpretation of the EPR spectra from other dinuclear Mn metalloenzymes.

  2. On the origin of high activity of hcp metals for ammonia synthesis.

    PubMed

    Ahmadi, Shideh; Kaghazchi, Payam

    2016-02-21

    Structure and activity of nanoparticles of hexagonal close-packed (hcp) metals are studied using first-principles calculations. Results show that, in contact with a nitrogen environment, high-index {134[combining macron]2} facets are formed on hcp metal nanoparticles. Nitrogen molecules dissociate easily at kink sites on these high-index facets (activation barriers of <0.2 eV). Analysis of the site blocking effect and adsorption energies on {134[combining macron]2} facets explains the order of activity of hcp metals for ammonia synthesis: Re < Os < Ru. Our results indicate that the high activity of hcp metals for ammonia synthesis is due to the N-induced formation of {134[combining macron]2} facets with high activity for the dissociation of nitrogen molecules. However, quite different behavior for adsorption of dissociated N atoms leads to distinctive activity of hcp metals.

  3. Characterizing the Environmental Availability of Trace Metals in Savannah River Site Soils

    SciTech Connect

    Serkiz, S.M.

    1999-03-18

    An eight step sequential extraction technique was used to characterize the environmental availability of trace metals from background and waste site soil samples collected from the US Department of Energy's Savannah River Site (SRS).

  4. EPA Finalizes Cleanup Plan for the Nuclear Metals Site in Concord, Mass.

    EPA Pesticide Factsheets

    EPA has completed the Record of Decision (ROD) for the Nuclear Metals, Inc. Superfund Site, located in Concord, Mass. The ROD outlines a detailed plan for cleaning up contaminated soil, sediment and groundwater at the Site.

  5. Metal binding sites of the estradiol receptor from calf uterus and their possible role in the regulation of receptor function

    SciTech Connect

    Medici, N.; Minucci, S.; Nigro, V.; Abbondanza, C.; Armetta, I.; Molinari, A.M.; Puca, G.A. )

    1989-01-10

    The existence of putative metal binding sites on the estradiol receptor (ER) molecule from calf uterus was evaluated by immobilizing various divalent metals to iminodiacetate-Sepharose. ER from both crude and highly purified preparations binds to metal-containing adsorbents complexed with Zn(II), Ni(II), Co(II), and Cu(II), but not to those complexed with Fe(II) and Cd(II). Analysis of affinity-labeled ER by ({sup 3}H)tamoxifen aziridine after elution from a column of Zn(II)-charged iminodiacetate-Sepharose showed that ER fragments obtained by extensive trypsinization were also bound. Zn(II) and the same other metals able to bind ER, when immobilized on resins, inhibit the binding of estradiol to the receptor at micromolar concentration. This inhibition is noncompetitive and can be reversed by EDTA. The inhibition of the hormone binding was still present after trypsin treatment of the cytosol, and it was abolished by preincubation with the hormone. Micromolar concentrations of these metals were able to block those chemical-physical changes occurring during the process of ER transformation in vitro. The presence of metal binding sites that modulate the ER activity in the hormone binding domain of ER is speculated. Since progesterone receptor showed the same pattern of binding and elution from metal-containing adsorbents, the presence of metal binding regulatory sites could be a property of all steroid receptors.

  6. Transition Metal Impurities on the Bond-Centered Site in Germanium

    SciTech Connect

    Decoster, S.; Vries, B. de; Vantomme, A.; Cottenier, S.; Emmerich, H.; Wahl, U.; Correia, J. G.

    2009-02-13

    We report on the lattice location of ion implanted Fe, Cu, and Ag impurities in germanium from a combined approach of emission channeling experiments and ab initio total energy calculations. Following common expectation, a fraction of these transition metals (TMs) was found on the substitutional Ge position. Less expected is the observation of a second fraction on the sixfold coordinated bond-centered site. Ab initio calculated heats of formation suggest this is the result of the trapping of a vacancy by a substitutional TM impurity, spontaneously forming an impurity-vacancy complex in the split-vacancy configuration. We also present an approach to displace the TM impurities from the electrically active substitutional site to the bond-centered site.

  7. Moving metal ions through ferritin-protein nanocages from three-fold pores to catalytic sites.

    PubMed

    Tosha, Takehiko; Ng, Ho-Leung; Bhattasali, Onita; Alber, Tom; Theil, Elizabeth C

    2010-10-20

    Ferritin nanocages synthesize ferric oxide minerals, containing hundreds to thousands of Fe(III) diferric oxo/hydroxo complexes, by reactions of Fe(II) ions with O(2) at multiple di-iron catalytic centers. Ferric-oxy multimers, tetramers, and/or larger mineral nuclei form during postcatalytic transit through the protein cage, and mineral accretion occurs in the central cavity. We determined how Fe(II) substrates can access catalytic sites using frog M ferritins, active and inactivated by ligand substitution, crystallized with 2.0 M Mg(II) ± 0.1 M Co(II) for Co(II)-selective sites. Co(II) inhibited Fe(II) oxidation. High-resolution (<1.5 Å) crystal structures show (1) a line of metal ions, 15 Å long, which penetrates the cage and defines ion channels and internal pores to the nanocavity that link external pores to the cage interior, (2) metal ions near negatively charged residues at the channel exits and along the inner cavity surface that model Fe(II) transit to active sites, and (3) alternate side-chain conformations, absent in ferritins with catalysis eliminated by amino acid substitution, which support current models of protein dynamics and explain changes in Fe-Fe distances observed during catalysis. The new structural data identify a ∼27-Å path Fe(II) ions can follow through ferritin entry channels between external pores and the central cavity and along the cavity surface to the active sites where mineral synthesis begins. This "bucket brigade" for Fe(II) ion access to the ferritin catalytic sites not only increases understanding of biological nanomineral synthesis but also reveals unexpected design principles for protein cage-based catalysts and nanomaterials.

  8. Selective Metallization Induced by Laser Activation: Fabricating Metallized Patterns on Polymer via Metal Oxide Composite.

    PubMed

    Zhang, Jihai; Zhou, Tao; Wen, Liang

    2017-02-28

    Recently, metallization on polymer substrates has been given more attention due to its outstanding properties of both plastics and metals. In this study, the metal oxide composite of copper-chromium oxide (CuO·Cr2O3) was incorporated into the polymer matrix to design a good laser direct structuring (LDS) material, and the well-defined copper pattern (thickness =10 μm) was successfully fabricated through selective metallization based on 1064 nm near-infrared pulsed laser activation and electroless copper plating. We also prepared polymer composites incorporated with CuO and Cr2O3; however, these two polymer composites both had very poor capacity of selective metallization, which has no practical value for LDS technology. In our work, the key reasons causing the above results were systematically studied and elucidated using XPS, UV-vis-IR, optical microscopy, SEM, contact angle, ATR FTIR, and so on. The results showed that 54.0% Cu(2+) in the polymer composite of CuO·Cr2O3 (the amount =5 wt %) is reduced to Cu(0) (elemental copper) after laser activation (irradiation); however, this value is only 26.8% for the polymer composite of CuO (the amount =5 wt %). It was confirmed that to achieve a successful selective metallization after laser activation, not only was the new formed Cu(0) (the catalytic seeds) the crucial factor, but the number of generated Cu(0) catalytic seeds was also important. These two factors codetermined the final results of the selective metallization. The CuO·Cr2O3 is very suitable for applications of fabricating metallic patterns (e.g., metal decoration, circuit) on the inherent pure black or bright black polymer materials via LDS technology, which has a prospect of large-scale industrial applications.

  9. C-H Activation on Co,O Sites: Isolated Surface Sites versus Molecular Analogs.

    PubMed

    Estes, Deven P; Siddiqi, Georges; Allouche, Florian; Kovtunov, Kirill V; Safonova, Olga V; Trigub, Alexander L; Koptyug, Igor V; Copéret, Christophe

    2016-11-16

    The activation and conversion of hydrocarbons is one of the most important challenges in chemistry. Transition-metal ions (V, Cr, Fe, Co, etc.) isolated on silica surfaces are known to catalyze such processes. The mechanisms of these processes are currently unknown but are thought to involve C-H activation as the rate-determining step. Here, we synthesize well-defined Co(II) ions on a silica surface using a metal siloxide precursor followed by thermal treatment under vacuum at 500 °C. We show that these isolated Co(II) sites are catalysts for a number of hydrocarbon conversion reactions, such as the dehydrogenation of propane, the hydrogenation of propene, and the trimerization of terminal alkynes. We then investigate the mechanisms of these processes using kinetics, kinetic isotope effects, isotopic labeling experiments, parahydrogen induced polarization (PHIP) NMR, and comparison with a molecular analog. The data are consistent with all of these reactions occurring by a common mechanism, involving heterolytic C-H or H-H activation via a 1,2 addition across a Co-O bond.

  10. Site-selective hydrolysis of tRNA by lanthanide metal complexes

    SciTech Connect

    Hayashi, Nobuhiro ); Takeda, Naoya; Yashiro, Morio; Watanabe, Kimitsuna; Komiyama, Makoto ); Shiiba, Tetsuro )

    1993-12-22

    tRNA[sup Phe] is site-selectively hydrolyzed by lanthanide metal complexes (Ce(III), Eu(III), La(III)) of hexaimine macrocyclic ligands. The selectivities of the complexes are much higher than those of the metal ions and are strongly dependent on the ligand structure. The tertiary structure of tRNA is essential for the site-selective scission.

  11. Adsorption of two gas molecules at a single metal site in a metal–organic framework

    SciTech Connect

    Runčevski, Tomče; Kapelewski, Matthew T.; Torres-Gavosto, Rodolfo M.; Tarver, Jacob D.; Brown, Craig M.; Long, Jeffrey R.

    2016-01-01

    One strategy to markedly increase the gas storage capacity of metal-organic frameworks is to introduce coordinatively-unsaturated metal centers capable of binding multiple gas molecules. Herein, we provide an initial demonstration that a single metal site within a framework can support the terminal coordination of two gas molecules--specifically hydrogen, methane, or carbon dioxide.

  12. Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants.

    PubMed

    Boularbah, Ali; Schwartz, Christophe; Bitton, Gabriel; Aboudrar, Wafae; Ouhammou, Ahmed; Morel, Jean Louis

    2006-05-01

    Metalliferous soils cover a relatively large surface area in Morocco, and up to now no hyperaccumulating plants have been identified on these mining or these industrial sites. The aim of this work was to assess the extent of metal accumulation by plants found in three mining areas in southern Morocco with the ultimate goal of finding metal hyperaccumulating species by using the MetPAD biotest. The biotest helps to obtain information on the selective metal toxicity of aqueous extracts from the plants. A strong metal toxicity, as revealed by the biotest is an indication of a hyperaccumulating plant. Toxicity tests were run concurrently with chemicals analyses of metals in plants and their water extracts. The chemical analyses allow the determination of the hyperaccumulated metal(s). Specimens of the plant species mainly growing on and in the vicinity of the three mines were sampled with their corresponding soils. The results show that all plants analyzed had lower heavy metal content and toxicity despite the relatively very high soil concentrations. A comparison of our results with the criterion used to classify the hyperaccumulator plants indicates that plants we collected from mining sites were hypertolerant but not hyperaccumulators. This was confirmed by transfer factors generally lower than 1. Nevertheless, these tolerant plants species can be used as tools for revegetation for erosion control in metals-contaminated sites (phytostabilization).

  13. SEQUESTERING AGENTS FOR ACTIVE CAPS - REMEDIATION OF METALS AND ORGANICS

    SciTech Connect

    Knox, A; Michael Paller, M; Danny D. Reible, D; Xingmao Ma, X; Ioana G. Petrisor, I

    2007-05-10

    This research evaluated organoclays, zeolites, phosphates, and a biopolymer as sequestering agents for inorganic and organic contaminants. Batch experiments were conducted to identify amendments and mixtures of amendments for metal and organic contaminants removal and retention. Contaminant removal was evaluated by calculating partitioning coefficients. Metal retention was evaluated by desorption studies in which residue from the removal studies was extracted with 1 M MgCl{sub 2} solution. The results indicated that phosphate amendments, some organoclays, and the biopolymer, chitosan, were very effective sequestering agents for metals in fresh and salt water. Organoclays were very effective sorbents for phenanthrene, pyrene, and benzo(a)pyrene. Partitioning coefficients for the organoclays were 3000-3500 ml g{sup -1} for benzo(a)pyrene, 400-450 ml g{sup -1} for pyrene, and 50-70 ml g{sup -1} for phenanthrene. Remediation of sites with a mixture of contaminants is more difficult than sites with a single contaminant because metals and organic contaminants have different fate and transport mechanisms in sediment and water. Mixtures of amendments (e.g., organoclay and rock phosphate) have high potential for remediating both organic and inorganic contaminants under a broad range of environmental conditions, and have promise as components in active caps for sediment remediation.

  14. Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal-Organic Framework.

    PubMed

    Li, Zhanyong; Schweitzer, Neil M; League, Aaron B; Bernales, Varinia; Peters, Aaron W; Getsoian, Andrew Bean; Wang, Timothy C; Miller, Jeffrey T; Vjunov, Aleksei; Fulton, John L; Lercher, Johannes A; Cramer, Christopher J; Gagliardi, Laura; Hupp, Joseph T; Farha, Omar K

    2016-02-17

    Developing supported single-site catalysts is an important goal in heterogeneous catalysis since the well-defined active sites afford opportunities for detailed mechanistic studies, thereby facilitating the design of improved catalysts. We present herein a method for installing Ni ions uniformly and precisely on the node of a Zr-based metal-organic framework (MOF), NU-1000, in high density and large quantity (denoted as Ni-AIM) using atomic layer deposition (ALD) in a MOF (AIM). Ni-AIM is demonstrated to be an efficient gas-phase hydrogenation catalyst upon activation. The structure of the active sites in Ni-AIM is proposed, revealing its single-site nature. More importantly, due to the organic linker used to construct the MOF support, the Ni ions stay isolated throughout the hydrogenation catalysis, in accord with its long-term stability. A quantum chemical characterization of the catalyst and the catalytic process complements the experimental results. With validation of computational modeling protocols, we further targeted ethylene oligomerization catalysis by Ni-AIM guided by theoretical prediction. Given the generality of the AIM methodology, this emerging class of materials should prove ripe for the discovery of new catalysts for the transformation of volatile substrates.

  15. Assessment of selected metals in the ambient air PM10 in urban sites of Bangkok (Thailand).

    PubMed

    Pongpiachan, Siwatt; Iijima, Akihiro

    2016-02-01

    Estimating the atmospheric concentrations of PM10-bounded selected metals in urban air is crucial for evaluating adverse health impacts. In the current study, a combination of measurements and multivariate statistical tools was used to investigate the influence of anthropogenic activities on variations in the contents of 18 metals (i.e., Al, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Ba, La, Ce and Pb) in ambient air. The concentrations of PM10-bounded metals were measured simultaneously at eight air quality observatory sites during a half-year period at heavily trafficked roads and in urban residential zones in Bangkok, Thailand. Although the daily average concentrations of Al, V, Cr, Mn and Fe were almost equivalent to those of other urban cities around the world, the contents of the majority of the selected metals were much lower than the existing ambient air quality guidelines and standard limit values. The sequence of average values of selected metals followed the order of Al > Fe > Zn > Cu > Pb > Mn > Ba > V > Sb > Ni > As > Cr > Cd > Se > Ce > La > Co > Sc. The probability distribution function (PDF) plots showed sharp symmetrical bell-shaped curves in V and Cr, indicating that crustal emissions are the predominant sources of these two elements in PM10. The comparatively low coefficients of divergence (COD) that were found in the majority of samples highlight that site-specific effects are of minor importance. A principal component analysis (PCA) revealed that 37.74, 13.51 and 11.32 % of the total variances represent crustal emissions, vehicular exhausts and the wear and tear of brakes and tires, respectively.

  16. [Structural regularities in activated cleavage sites of thrombin receptors].

    PubMed

    Mikhaĭlik, I V; Verevka, S V

    1999-01-01

    Comparison of thrombin receptors activation splitting sites sequences testifies to their similarity both in activation splitting sites of protein precursors and protein proteinase inhibitors reactive sites. In all these sites corresponded to effectory sites P2'-positions are placed by hydrophobic amino-acids only. The regularity defined conforms with previous thesis about the role of effectory S2'-site in regulation of the processes mediated by serine proteinases.

  17. Removal and recovery of toxic metal ions from aqueous waste sites using polymer pendant ligands

    SciTech Connect

    Fish, D.

    1996-10-01

    The purpose of this project is to investigate the use of polymer pendant ligand technology to remove and recover toxic metal ions from DOE aqueous waste sites. Polymer pendant lgiands are organic ligands, anchored to crosslinked, modified divinylbenzene-polystyrene beads, that can selectively complex metal ions. The metal ion removal step usually occurs through a complexation or ion exchange phenomena, thus recovery of the metal ions and reuse of the beads is readily accomplished.

  18. Current Understanding of the Binding Sites, Capacity, Affinity, and Biological Significance of Metals in Melanin

    PubMed Central

    Hong, Lian; Simon, John D.

    2008-01-01

    Metal chelation is often invoked as one of the main biological functions of melanin. In order to understand the interaction between metals and melanin, extensive studies have been carried out to determine the nature of the metal binding sites, binding capacity and affinity. These data are central to efforts aimed at elucidating the role metal binding plays in determining the physical, structural, biological, and photochemical properties of melanin. This article examines the current state of understanding of this field. PMID:17580858

  19. Antitumor Activities of Metal Oxide Nanoparticles

    PubMed Central

    Vinardell, Maria Pilar; Mitjans, Montserrat

    2015-01-01

    Nanoparticles have received much attention recently due to their use in cancer therapy. Studies have shown that different metal oxide nanoparticles induce cytotoxicity in cancer cells, but not in normal cells. In some cases, such anticancer activity has been demonstrated to hold for the nanoparticle alone or in combination with different therapies, such as photocatalytic therapy or some anticancer drugs. Zinc oxide nanoparticles have been shown to have this activity alone or when loaded with an anticancer drug, such as doxorubicin. Other nanoparticles that show cytotoxic effects on cancer cells include cobalt oxide, iron oxide and copper oxide. The antitumor mechanism could work through the generation of reactive oxygen species or apoptosis and necrosis, among other possibilities. Here, we review the most significant antitumor results obtained with different metal oxide nanoparticles.

  20. Forest floor leachate fluxes under six different tree species on a metal contaminated site.

    PubMed

    Van Nevel, Lotte; Mertens, Jan; De Schrijver, An; Baeten, Lander; De Neve, Stefaan; Tack, Filip M G; Meers, Erik; Verheyen, Kris

    2013-03-01

    Trees play an important role in the biogeochemical cycling of metals, although the influence of different tree species on the mobilization of metals is not yet clear. This study examined effects of six tree species on fluxes of Cd, Zn, DOC, H(+) and base cations in forest floor leachates on a metal polluted site in Belgium. Forest floor leachates were sampled with zero-tension lysimeters in a 12-year-old post-agricultural forest on a sandy soil. The tree species included were silver birch (Betula pendula), oak (Quercus robur and Q. petraea), black locust (Robinia pseudoacacia), aspen (Populus tremula), Scots pine (Pinus sylvestris) and Douglas fir (Pseudotsuga menziesii). We show that total Cd fluxes in forest floor leachate under aspen were slightly higher than those in the other species' leachates, yet the relative differences between the species were considerably smaller when looking at dissolved Cd fluxes. The latter was probably caused by extremely low H(+) amounts leaching from aspen's forest floor. No tree species effect was found for Zn leachate fluxes. We expected higher metal leachate fluxes under aspen as its leaf litter was significantly contaminated with Cd and Zn. We propose that the low amounts of Cd and Zn leaching under aspen's forest floor were possibly caused by high activity of soil biota, for example burrowing earthworms. Furthermore, our results reveal that Scots pine and oak were characterized by high H(+) and DOC fluxes as well as low base cation fluxes in their forest floor leachates, implying that those species might enhance metal mobilization in the soil profile and thus bear a potential risk for belowground metal dispersion.

  1. Breast milk metal ion levels in a young and active patient with a metal-on-metal hip prosthesis.

    PubMed

    Nelis, Raymond; de Waal Malefijt, Jan; Gosens, Taco

    2013-01-01

    Metal-on-metal resurfacing arthroplasty of the hip has been used increasingly over the last 10 years in younger active patients. The dissolution of the metal wear particles results in measurable increases in cobalt and chromium ions in the serum and urine of patients with a metal-on-metal bearing. We measured the cobalt, chromium, and molybdenum ion levels in urine; serum; and breast milk in a young and active patient with a metal-on-metal hip prosthesis after a pathologic fracture of the femoral neck. Metal-on-metal hip prosthesis leads to increasing levels of molybdenum in breast milk in the short-term follow-up. There are no increasing levels of chromium and cobalt ions in breast milk. Besides the already known elevated concentrations in serum of chromium and cobalt after implantation of a metal-on-metal hip prosthesis, we found no increasing levels of chromium and cobalt in urine.

  2. Biomonitoring for metal contamination near two Superfund sites in Woburn, Massachusetts, using phytochelatins.

    PubMed

    Gawel, James E; Hemond, Harold F

    2004-09-01

    Characterizing the spatial extent of groundwater metal contamination traditionally requires installing sampling wells, an expensive and time-consuming process in urban areas. Moreover, extrapolating biotic effects from metal concentrations alone is problematic, making ecological risk assessment difficult. Our study is the first to examine the use of phytochelatin measurements in tree leaves for delimiting biological metal stress in shallow, metal-contaminated groundwater systems. Three tree species (Rhamnus frangula, Acer platanoides, and Betula populifolia) growing above the shallow groundwater aquifer of the Aberjona River watershed in Woburn, Massachusetts, display a pattern of phytochelatin production consistent with known sources of metal contamination and groundwater flow direction near the Industri-Plex Superfund site. Results also suggest the existence of a second area of contaminated groundwater and elevated metal stress near the Wells G&H Superfund site downstream, in agreement with a recent EPA ecological risk assessment. Possible contamination pathways at this site are discussed.

  3. Spatial distribution of heavy metal contamination in soils near a primitive e-waste recycling site.

    PubMed

    Quan, Sheng-Xiang; Yan, Bo; Yang, Fan; Li, Ning; Xiao, Xian-Ming; Fu, Jia-Mo

    2015-01-01

    The total concentrations of 12 heavy metals in surface soils (SS, 0-20 cm), middle soils (MS, 30-50 cm) and deep soils (DS, 60-80 cm) from an acid-leaching area, a deserted paddy field and a deserted area of Guiyu were measured. The results showed that the acid-leaching area was heavily contaminated with heavy metals, especially in SS. The mean concentrations of Ni, Cu, Zn, Cd, Sn, Sb and Pb in SS from the acid-leaching area were 278.4, 684.1, 572.8, 1.36, 3,472, 1,706 and 222.8 mg/kg, respectively. Heavy metal pollution in the deserted paddy field was mainly concentrated in SS and MS. The average values of Sb in SS and MS from the deserted paddy field were 16.3 and 20.2 mg/kg, respectively. However, heavy metal contamination of the deserted area was principally found in the DS. Extremely high concentrations of heavy metals were also observed at some special research sites, further confirming that the level of heavy metal pollution was very serious. The geoaccumulation index (Igeo) values revealed that the acid-leaching area was severely polluted with heavy metals in the order of Sb > Sn > Cu > Cd > Ni > Zn > Pb, while deserted paddy field was contaminated predominately by metals in the order of Sb > Sn > Cu. It was obvious that the concentrations of some uncommon contaminants, such as Sb and Sn, were higher than principal contaminants, such as Ni, Cu, Zn and Pb, suggesting that particular attention should be directed to Sn and Sb contamination in the future research of heavy metals in soils from e-waste-processing areas. Correlation analysis suggested that Li and Be in soils from the acid-leaching area and its surrounding environment might have originated from other industrial activities and from batteries, whereas Ni, Cu, Zn, Cd, Pb, Sn and Sb contamination was most likely caused by uncontrolled electronic waste (e-waste) processing. These results indicate the significant need for optimisation of e-waste-dismantling technologies and remediation of polluted soil

  4. Lithodiversity and its spatial association with metallic mineral sites, Great Basin of Nevada

    USGS Publications Warehouse

    Mihalasky, M.J.; Bonham-Carter, G. F.

    2001-01-01

    Geographical information system (GIS) techniques were used to investigate the spatial association between metallic mineral sites and lithodiversity in Nevada. Mineral site data sets include various size and type subsets of about 5,500 metal-bearing occurrences and deposits. Lithodiversity was calculated by counting the number of unique geological map units within four sizes of square-shaped sample neighborhoods (2.5-by-2.5, 5-by-5, 10-by-10, and 20-by-20 km) on three different scales of geological maps (national, 1:2,500,000; state, 1:500,000; county, 1:250,000). The spatial association between mineral sites and lithodiversity was observed to increase with increasing lithodiversity. This relationship is consistent for (1) both basin-range and range-only regions, (2) four sizes of sample neighborhoods, (3) various mineral site subsets, (4) the three scales of geological maps, and (5) areas not covered by large-scale maps. A map scale of 1:500,000 and lithodiversity sampling neighborhood of 5-by-5 km was determined to best describe the association. Positive associations occurred for areas having >3 geological map units per neighborhood, with the strongest observed at approximately >7 units. Areas in Nevada with more than three geological map units per 5-by-5 km neighborhood contain more mineral sites than would be expected resulting from chance. High lithodiversity likely reflects the occurrence of complex structural, stratigraphic, and intrusive relationships that are thought to control, focus, localize, or expose mineralization. The application of lithodiversity measurements to areas that are not well explored may help delineate regional-scale exploration targets and provide GIS-supported mineral resource assessment and exploration activity another method that makes use of widely available geological map data. ?? 2001 International Association for Mathematical Geology.

  5. Remediation of heavy metal contaminated sites in the Venice lagoon and conterminous areas (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Wahsha, Mohammad; Fontana, Silvia; Maleci, Laura

    2013-04-01

    The lagoon of Venice and the conterminous land are affected by heavy contamination of anthropogenic origin, and for this reason the whole area has been classified as site of national interest, and must be restored. Heavy metals (As, Cd, Cr, Cu, Hg, Mn, Pb, Sb, Se, Zn) and organic compounds (IPA, PCB, Dioxine) have been identified as the main contaminants at various sites, owing to agriculture and industrial wastes discharged on soils and convoyed to the lagoon. Five case studies of soil remediation are here reported. S. Giuliano is a former palustrine area reclaimed since the 60's with various human transported materials (HTM). In this area, hot spots overpassing the reference limits for residential and green areas have been recorded for Cd, Cu, Pb, Zn and IPA. Campalto is a site bordering the Venice lagoon and subjected to oscillating water level, that enhances metal mobility; diffuse contamination by heavy metals, particularly Pb, has been recorded at this site, utilized since 30 years for military and sport (skate) activities. Marghera is dramatically famous for its numerous factories and for oil refineries that affected the lagoon sediments since the 50's. Sediments proved heavily contaminated by As (up to 137 mgkg-1), Cd (57 mgkg-1), Hg (30mgkg-1), Ni, Pb (700 mgkg-1), Zn (5818 mgkg-1). Murano is a small island where many glass factories (the most famous all over the world) are running since XIII century. Glass is stained with several metals and, moreover, some substances are used to regulate fusion temperature, purity, etc., and therefore the surrounding environment is heavily contaminated by these substances. Mean concentrations of As (429 mgkg-1), Cd (1452 mgkg-1), Pb (749 mgkg-1), Zn (1624 mgkg-1), Se (341 mgkg-1), Sb (74 mgkg-1) widely overpass the reference values for both residential and industrial areas in national guidelines. Molo Serbatoi is a former oil container currently under restoration in the port of Venice. Soil contamination by As, Hg, Zn and

  6. Direct Observation of Nanosecond Water Exchange Dynamics at a Protein Metal Site

    PubMed Central

    Stachura, Monika; Chakraborty, Saumen; Gottberg, Alexander; Ruckthong, Leela; Pecoraro, Vincent L.; Hemmingsen, Lars

    2017-01-01

    Nanosecond ligand exchange dynamics at metal sites within proteins is essential in catalysis, metal ion transport, and regulatory metallobiochemistry. Herein we present direct observation of the exchange dynamics of water at a Cd2+ binding site within two de novo designed metalloprotein constructs using 111mCd perturbed angular correlation (PAC) of γ-rays and 113Cd NMR spectroscopy. The residence time of the Cd2+-bound water molecule is tens of nanoseconds at 20 °C in both proteins. This constitutes the first direct experimental observation of the residence time of Cd2+ coordinated water in any system, including the simple aqua ion. A Leu to Ala amino acid substitution ~10 Å from the Cd2+ site affects both the equilibrium constant and the residence time of water, while, surprisingly, the metal site structure, as probed by PAC spectroscopy, remains essentially unaltered. This implies that remote mutations may affect metal site dynamics, even when structure is conserved. PMID:27973778

  7. Interaction of metallic clusters with biologically active curcumin molecules

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjeev K.; He, Haiying; Liu, Chunhui; Dutta, Ranu; Pandey, Ravindra

    2015-09-01

    We have investigated the interaction of subnano metallic Gd and Au clusters with curcumin, an important biomolecule having pharmacological activity. Gd clusters show different site preference to curcumin and much stronger interaction strength, in support of the successful synthesis of highly stable curcumin-coated Gd nanoparticles as reported recently. It can be attributed to significant charge transfer from the Gd cluster to curcumin together with a relatively strong hybridization of the Gd df-orbitals with curcumin p-orbitals. These results suggest that Gd nanoparticles can effectively be used as delivery carriers for curcumin at the cellular level for therapy and medical imaging applications.

  8. The Identity of the Nucleophile Substitution may Influence Metal Interactions with the Cleavage Site of the Minimal Hammerhead Ribozyme

    PubMed Central

    Osborne, Edith M.; Ward, W. Luke; Ruehle, Max Z.; DeRose, Victoria J.

    2010-01-01

    Potential metal interactions with the cleavage site of a minimal hammerhead ribozyme (mHHRz) were probed using 31P NMR-detected Cd2+ titration studies of HHRz constructs containing a phosphorothioate (PS) modification at the cleavage site. The mHHRz nucleophile position was replaced by either a 2′-F or a 2′-NH2 in order to block cleavage activity during the study. The 2′-F/PS cleavage site mHHRz construct, in which the 2′-F should closely imitate the atom size and electronegativity of a 2′OH, demonstrates low levels of metal ion association (<1 ppm 31P chemical shift changes). This observation indicates that having an atom size and electrostatic properties that are similar to the 2′-OH are not the governing factors in allowing metal interactions with the scissile phosphate of the mHHRz. With a 2′-NH2 substitution, a large upfield change in 31P NMR chemical shift of the phosphorothioate peak (Δ~3 ppm with 6 equivalents added Cd2+) indicates observable Cd2+ interactions with the substituted site. Since a 2′-NH2, but not a 2′-F, can serve as a metal ligand, these data suggest that a metal ion interaction with the HHRz cleavage site may include both the scissile phosphate and the 2′ nucleophile. Control samples in which the 2′-NH2/PS unit is placed either next to the mHHRz cleavage site (at U16.1), in a duplex, or in a amUPSU dinucleotide, show much weaker interactions with Cd2+. Results with these control samples indicate that simply the presence of a 2′-NH2/PS unit does not create a strong metal binding site, reinforcing the possibility that the 2′-NH2-moderated Cd-PS interaction is specific to the mHHRz cleavage site. Upfield chemical shifts of both 31P and H2′ 1H resonances in amUPSU are observed with addition of Cd2+, consistent with the predicted metal coordination to both 2′-NH2 and phosphorothioate ligands. These data suggest that metal ion association with the HHRz cleavage site may include an interaction with the 2

  9. Heavy metal contamination of surface soil in electronic waste dismantling area: site investigation and source-apportionment analysis.

    PubMed

    Jinhui Li; Huabo Duan; Pixing Shi

    2011-07-01

    The dismantling and disposal of electronic waste (e-waste) in developing countries is causing increasing concern because of its impacts on the environment and risks to human health. Heavy-metal concentrations in the surface soils of Guiyu (Guangdong Province, China) were monitored to determine the status of heavy-metal contamination on e-waste dismantling area with a more than 20 years history. Two metalloids and nine metals were selected for investigation. This paper also attempts to compare the data among a variety of e-waste dismantling areas, after reviewing a number of heavy-metal contamination-related studies in such areas in China over the past decade. In addition, source apportionment of heavy metal in the surface soil of these areas has been analysed. Both the MSW open-burning sites probably contained invaluable e-waste and abandoned sites formerly involved in informal recycling activities are the new sources of soil-based environmental pollution in Guiyu. Although printed circuit board waste is thought to be the main source of heavy-metal emissions during e-waste processing, requirement is necessary to soundly manage the plastic separated from e-waste, which mostly contains heavy metals and other toxic substances.

  10. Hidden relationships between metalloproteins unveiled by structural comparison of their metal sites

    NASA Astrophysics Data System (ADS)

    Valasatava, Yana; Andreini, Claudia; Rosato, Antonio

    2015-03-01

    Metalloproteins account for a substantial fraction of all proteins. They incorporate metal atoms, which are required for their structure and/or function. Here we describe a new computational protocol to systematically compare and classify metal-binding sites on the basis of their structural similarity. These sites are extracted from the MetalPDB database of minimal functional sites (MFSs) in metal-binding biological macromolecules. Structural similarity is measured by the scoring function of the available MetalS2 program. Hierarchical clustering was used to organize MFSs into clusters, for each of which a representative MFS was identified. The comparison of all representative MFSs provided a thorough structure-based classification of the sites analyzed. As examples, the application of the proposed computational protocol to all heme-binding proteins and zinc-binding proteins of known structure highlighted the existence of structural subtypes, validated known evolutionary links and shed new light on the occurrence of similar sites in systems at different evolutionary distances. The present approach thus makes available an innovative viewpoint on metalloproteins, where the functionally crucial metal sites effectively lead the discovery of structural and functional relationships in a largely protein-independent manner.

  11. Methane activation on supported transition metal catalysts

    NASA Astrophysics Data System (ADS)

    Carstens, Jason Ned

    At present, there is considerable interest in utilizing methane more efficiently as both a fuel source and as a starting material for the production of other, more valuable products. However, methane is a very stable molecule with strong C-H bonds that are difficult to break. This makes methane combustion or the formation of carbon-carbon bonds quite difficult. The present work focuses on the use of supported transition metal catalysts as a means of activating methane (i.e. breaking C-H bonds) at low temperatures to produce valuable products or energy. The conversion of methane into higher hydrocarbons. A low temperature (<750 K), direct process to effectively convert methane into higher hydrocarbons would be quite desirable. Such a process is thermodynamically feasible if the reaction is broken up into two separate steps. The first step is the adsorption of methane onto a transition metal catalyst at temperatures above about 600 K to produce a surface carbon species. The second step is a low temperature (<373 K) hydrogenation to convert the carbon species into higher hydrocarbons. T. Koerts et al. have pursued this approach by dissociatively absorbing methane onto silica supported transition metal catalysts at temperatures ranging between 573 K and 773 K. The result was a surface carbonaceous species and hydrogen. In the second step, the carbonaceous intermediates produced small alkanes upon hydrogenation around 373 K. A maximum yield to higher hydrocarbons of 13% was obtained on a ruthenium catalyst. The present study was conducted to further investigate the nature of the carbonaceous species reported by Koerts. Methane combustion. This investigation was conducted in an effort to better understand the mechanism of methane combustion on Pd catalysts. In the first part of this study, temperature programmed reduction (TPR) was used to investigate the oxidation and reduction dynamics of a 10 wt% Pd/ZrOsb2 catalyst used for methane combustion. TPR experiments indicate

  12. Reference site selection report for the advanced liquid metal reactor at the Idaho National Engineering Laboratory

    SciTech Connect

    Sivill, R.L.

    1990-03-01

    This Reference Site Selection Report was prepared by EG G, Idaho Inc., for General Electric (GE) to provide information for use by the Department of Energy (DOE) in selecting a Safety Test Site for an Advanced Liquid Metal Reactor. Similar Evaluation studies are planned to be conducted at other potential DOE sites. The Power Reactor Innovative Small Module (PRISM) Concept was developed for ALMR by GE. A ALMR Safety Test is planned to be performed on a DOE site to demonstrate features and meet Nuclear Regulatory Commission Requirements. This study considered possible locations at the Idaho National Engineering Laboratory that met the ALMR Prototype Site Selection Methodology and Criteria. Four sites were identified, after further evaluation one site was eliminated. Each of the remaining three sites satisfied the criteria and was graded. The results were relatively close. Thus concluding that the Idaho National Engineering Laboratory is a suitable location for an Advanced Liquid Metal Reactor Safety Test. 23 refs., 13 figs., 9 tabs.

  13. XAS on Rh and Ir metal sites in post synthetically functionalized UiO-67 Zirconium MOFs

    NASA Astrophysics Data System (ADS)

    Braglia, L.; Borfecchia, E.; Lomachenko, K. A.; Øien, S.; Lillerud, K. P.; Lamberti, C.

    2016-05-01

    We synthesized UiO-67 metal-organic-frameworks (MOFs) functionalized with different transition metals (Rh, Ir). Using EXAFS we verified that the synthesis has been successful. Furthermore, we observed the change of local environment while varying of metal site. XAS spectroscopy is the most informative technique to characterize these kind of materials and to study the local environment around the metal site.

  14. Merging open metal sites and Lewis basic sites in a NbO-type metal-organic framework for improved C2H2/CH4 and CO2/CH4 separation.

    PubMed

    Song, Chengling; Hu, Jiayi; Ling, Yajing; Feng, Yunlong; Chen, De-Li; He, Yabing

    2015-09-07

    A new three-dimensional NbO-type porous metal-organic framework ZJNU-47 was synthesized via a solvothermal reaction of Cu(NO3)2·3H2O and a Lewis basic nitrogen donor site-rich tetracarboxylate, namely, 5,5'-(pyridazine-3,6-diyl)-diisophthalate, and the structure was characterized by single-crystal X-ray diffraction to be isostructural with NOTT-101. With the synergistic effect of open metal sites, Lewis basic sites and a suitable pore space, the MOF material ZJNU-47a after activation can take up a large amount of C2H2 and CO2. The gravimetric C2H2 uptake of 214 cm(3) (STP) g(-1) at room temperature and 1 atm is the highest among all reported MOFs to date, and the gravimetric CO2 uptake of 108 cm(3) (STP) g(-1) is also among the highest reported for MOFs. Compared to the isostructural MOF NOTT-101a, ZJNU-47a exhibits a significant increase in C2H2 and CO2 uptake and thus improved C2H2/CH4 and CO2/CH4 separations. Significantly, comprehensive DFT studies of C2H2 and CO2 adsorption have revealed that the open nitrogen donor sites are comparable and even superior to open metal sites regarding the adsorption sites. This work demonstrated that the simultaneous introduction of Lewis basic nitrogen donor sites and Lewis acidic metal sites into the framework is a promising approach to improve the gas sorption toward CO2 and C2H2 and thus to produce materials possessing enhanced C2H2/CH4 and CO2/CH4 separation performance.

  15. Metal-silicate catalysts: Single site, mesoporous systems without templates

    SciTech Connect

    Barnes, Craig E.; Sharp, Katherine; Albert, Austin A; Abbott, Joshua; Peretich, Michael E; Fulvio, Pasquale; Ciesielski, Peter N.; Donohoe, Bryon S.

    2015-06-01

    The textural properties of a family of silicate and mixed metal-silicate materials prepared by a nonaqueous sol-gel reaction involving the cubic silicate Si8O20(SnMe3)8 and metal chlorides MCl4 (M = Si, Ti, Zr) cross-linking reagents are described. Nitrogen adsorption isotherm data is presented and surface area and pore size distribution analyses for several examples of these materials are developed and correlated with the ratio of cross-linking reagent and the cubic silicate building block at the time of synthesis. Significant surface area and pore size distributions that shift to higher pore diameters are observed as the ratio of cross-linking reagent-to-cubic building block increases. A simple strategy for simultaneously controlling the porosity of these matrices while homogeneously dispersing identical metal centers on their surfaces for next generation catalysts is described.

  16. Tailorable chiroptical activity of metallic nanospiral arrays

    NASA Astrophysics Data System (ADS)

    Deng, Junhong; Fu, Junxue; Ng, Jack; Huang, Zhifeng

    2016-02-01

    The engineering of the chiroptical activity of the emerging chiral metamaterial, metallic nanospirals, is in its infancy. We utilize glancing angle deposition (GLAD) to facilely sculpture the helical structure of silver nanospirals (AgNSs), so that the scope of chiroptical engineering factors is broadened to include the spiral growth of homochiral AgNSs, the combination of left- and right-handed helical chirality to create heterochiral AgNSs, and the coil-axis alignment of the heterochiral AgNSs. It leads to flexible control over the chiroptical activity of AgNS arrays with respect to the sign, resonance wavelength and amplitude of circular dichroism (CD) in the UV and visible regime. The UV chiroptical mode has a distinct response from the visible mode. Finite element simulation together with LC circuit theory illustrates that the UV irradiation is mainly adsorbed in the metal and the visible is preferentially scattered by the AgNSs, accounting for the wavelength-related chiroptical distinction. This work contributes to broadening the horizons in understanding and engineering chiroptical responses, primarily desired for developing a wide range of potential chiroplasmonic applications.The engineering of the chiroptical activity of the emerging chiral metamaterial, metallic nanospirals, is in its infancy. We utilize glancing angle deposition (GLAD) to facilely sculpture the helical structure of silver nanospirals (AgNSs), so that the scope of chiroptical engineering factors is broadened to include the spiral growth of homochiral AgNSs, the combination of left- and right-handed helical chirality to create heterochiral AgNSs, and the coil-axis alignment of the heterochiral AgNSs. It leads to flexible control over the chiroptical activity of AgNS arrays with respect to the sign, resonance wavelength and amplitude of circular dichroism (CD) in the UV and visible regime. The UV chiroptical mode has a distinct response from the visible mode. Finite element simulation

  17. MYST protein acetyltransferase activity requires active site lysine autoacetylation.

    PubMed

    Yuan, Hua; Rossetto, Dorine; Mellert, Hestia; Dang, Weiwei; Srinivasan, Madhusudan; Johnson, Jamel; Hodawadekar, Santosh; Ding, Emily C; Speicher, Kaye; Abshiru, Nebiyu; Perry, Rocco; Wu, Jiang; Yang, Chao; Zheng, Y George; Speicher, David W; Thibault, Pierre; Verreault, Alain; Johnson, F Bradley; Berger, Shelley L; Sternglanz, Rolf; McMahon, Steven B; Côté, Jacques; Marmorstein, Ronen

    2012-01-04

    The MYST protein lysine acetyltransferases are evolutionarily conserved throughout eukaryotes and acetylate proteins to regulate diverse biological processes including gene regulation, DNA repair, cell-cycle regulation, stem cell homeostasis and development. Here, we demonstrate that MYST protein acetyltransferase activity requires active site lysine autoacetylation. The X-ray crystal structures of yeast Esa1 (yEsa1/KAT5) bound to a bisubstrate H4K16CoA inhibitor and human MOF (hMOF/KAT8/MYST1) reveal that they are autoacetylated at a strictly conserved lysine residue in MYST proteins (yEsa1-K262 and hMOF-K274) in the enzyme active site. The structure of hMOF also shows partial occupancy of K274 in the unacetylated form, revealing that the side chain reorients to a position that engages the catalytic glutamate residue and would block cognate protein substrate binding. Consistent with the structural findings, we present mass spectrometry data and biochemical experiments to demonstrate that this lysine autoacetylation on yEsa1, hMOF and its yeast orthologue, ySas2 (KAT8) occurs in solution and is required for acetylation and protein substrate binding in vitro. We also show that this autoacetylation occurs in vivo and is required for the cellular functions of these MYST proteins. These findings provide an avenue for the autoposttranslational regulation of MYST proteins that is distinct from other acetyltransferases but draws similarities to the phosphoregulation of protein kinases.

  18. MYST protein acetyltransferase activity requires active site lysine autoacetylation

    PubMed Central

    Yuan, Hua; Rossetto, Dorine; Mellert, Hestia; Dang, Weiwei; Srinivasan, Madhusudan; Johnson, Jamel; Hodawadekar, Santosh; Ding, Emily C; Speicher, Kaye; Abshiru, Nebiyu; Perry, Rocco; Wu, Jiang; Yang, Chao; Zheng, Y George; Speicher, David W; Thibault, Pierre; Verreault, Alain; Johnson, F Bradley; Berger, Shelley L; Sternglanz, Rolf; McMahon, Steven B; Côté, Jacques; Marmorstein, Ronen

    2012-01-01

    The MYST protein lysine acetyltransferases are evolutionarily conserved throughout eukaryotes and acetylate proteins to regulate diverse biological processes including gene regulation, DNA repair, cell-cycle regulation, stem cell homeostasis and development. Here, we demonstrate that MYST protein acetyltransferase activity requires active site lysine autoacetylation. The X-ray crystal structures of yeast Esa1 (yEsa1/KAT5) bound to a bisubstrate H4K16CoA inhibitor and human MOF (hMOF/KAT8/MYST1) reveal that they are autoacetylated at a strictly conserved lysine residue in MYST proteins (yEsa1-K262 and hMOF-K274) in the enzyme active site. The structure of hMOF also shows partial occupancy of K274 in the unacetylated form, revealing that the side chain reorients to a position that engages the catalytic glutamate residue and would block cognate protein substrate binding. Consistent with the structural findings, we present mass spectrometry data and biochemical experiments to demonstrate that this lysine autoacetylation on yEsa1, hMOF and its yeast orthologue, ySas2 (KAT8) occurs in solution and is required for acetylation and protein substrate binding in vitro. We also show that this autoacetylation occurs in vivo and is required for the cellular functions of these MYST proteins. These findings provide an avenue for the autoposttranslational regulation of MYST proteins that is distinct from other acetyltransferases but draws similarities to the phosphoregulation of protein kinases. PMID:22020126

  19. Screening of active metals for reactive adsorption desulfurization adsorbent using density functional theory

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Zhao, Liang; Xu, Chunming; Wang, Yuxian; Gao, Jinsen

    2017-03-01

    To explore characteristics of active metals for reactive adsorption desulfurization (RADS) technology, the adsorption of thiophene on M (100) (M = Cr, Mo, Co, Ni, Cu, Au, and Ag) surfaces was systematically studied by density functional theory with vdW correction (DFT + D3). We found that, in all case, the most stable molecular adsorption site was the hollow site and adsorptive capabilities of thiophene followed the order: Cr > Mo > Co ≈ Ni > Cu > Au ≈ Ag. By analyzing the nature of binding between thiophene and corresponding metals and the electronic structure of metals, the excessive activities of Cr and Mo were found to have a negative regeneration, the passive activities of Au and Ag were found to have an inactive adsorption for RADS adsorbent alone, while Ni and Co have appropriate characteristics as the active metals for RADS, followed by Cu.

  20. Active Sites Environmental Monitoring Program: Program plan. Revision 1

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  1. Discovering the electronic circuit diagram of life: structural relationships among transition metal binding sites in oxidoreductases

    PubMed Central

    Kim, J. Dongun; Senn, Stefan; Harel, Arye; Jelen, Benjamin I.; Falkowski, Paul G.

    2013-01-01

    Oxidoreductases play a central role in catalysing enzymatic electron-transfer reactions across the tree of life. To first order, the equilibrium thermodynamic properties of these proteins are governed by protein folds associated with specific transition metals and ligands at the active site. A global analysis of holoenzyme structures and functions suggests that there are fewer than approximately 500 fundamental oxidoreductases, which can be further clustered into 35 unique groups. These catalysts evolved in prokaryotes early in the Earth's history and are largely responsible for the emergence of non-equilibrium biogeochemical cycles on the planet's surface. Although the evolutionary history of the amino acid sequences in the oxidoreductases is very difficult to reconstruct due to gene duplication and horizontal gene transfer, the evolution of the folds in the catalytic sites can potentially be used to infer the history of these enzymes. Using a novel, yet simple analysis of the secondary structures associated with the ligands in oxidoreductases, we developed a structural phylogeny of these enzymes. The results of this ‘composome’ analysis suggest an early split from a basal set of a small group of proteins dominated by loop structures into two families of oxidoreductases, one dominated by α-helices and the second by β-sheets. The structural evolutionary patterns in both clades trace redox gradients and increased hydrogen bond energy in the active sites. The overall pattern suggests that the evolution of the oxidoreductases led to decreased entropy in the transition metal folds over approximately 2.5 billion years, allowing the enzymes to use increasingly oxidized substrates with high specificity. PMID:23754810

  2. MetalDetector: a web server for predicting metal-binding sites and disulfide bridges in proteins from sequence

    PubMed Central

    Lippi, Marco; Passerini, Andrea; Punta, Marco; Rost, Burkhard; Frasconi, Paolo

    2008-01-01

    Summary: The web server MetalDetector classifies histidine residues in proteins into one of two states (free or metal bound) and cysteines into one of three states (free, metal bound or disulfide bridged). A decision tree integrates predictions from two previously developed methods (DISULFIND and Metal Ligand Predictor). Cross-validated performance assessment indicates that our server predicts disulfide bonding state at 88.6% precision and 85.1% recall, while it identifies cysteines and histidines in transition metal-binding sites at 79.9% precision and 76.8% recall, and at 60.8% precision and 40.7% recall, respectively. Availability: Freely available at http://metaldetector.dsi.unifi.it Contact: metaldetector@dsi.unifi.it Supplementary Information: Details and data can be found at http://metaldetector.dsi.unifi.it/help.php PMID:18635571

  3. High-resolution crystal structures reveal plasticity in the metal binding site of apurinic/apyrimidinic endonuclease I.

    PubMed

    He, Hongzhen; Chen, Qiujia; Georgiadis, Millie M

    2014-10-21

    Apurinic/apyrimidinic endonuclease I (APE1) is an essential base excision repair enzyme that catalyzes a Mg²⁺-dependent reaction in which the phosphodiester backbone is cleaved 5' of an abasic site in duplex DNA. This reaction has been proposed to involve either one or two metal ions bound to the active site. In the present study, we report crystal structures of Mg²⁺, Mn²⁺, and apo-APE1 determined at 1.4, 2.2, and 1.65 Å, respectively, representing two of the highest resolution structures yet reported for APE1. In our structures, a single well-ordered Mn²⁺ ion was observed coordinated by D70 and E96; the Mg²⁺ site exhibited disorder modeled as two closely positioned sites coordinated by D70 and E96 or E96 alone. Direct metal binding analysis of wild-type, D70A, and E96A APE1, as assessed by differential scanning fluorimetry, indicated a role for D70 and E96 in binding of Mg²⁺ or Mn²⁺ to APE1. Consistent with the disorder exhibited by Mg²⁺ bound to the active site, two different conformations of E96 were observed coordinated to Mg²⁺. A third conformation for E96 in the apo structure is similar to that observed in the APE1-DNA-Mg²⁺ complex structure. Thus, binding of Mg²⁺ in three different positions within the active site of APE1 in these crystal structures corresponds directly with three different conformations of E96. Taken together, our results are consistent with the initial capture of metal by D70 and E96 and repositioning of Mg²⁺ facilitated by the structural plasticity of E96 in the active site.

  4. Waste site reclamation with recovery of radionuclides and metals

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland J.

    1994-01-01

    A method for decontaminating radionuclides and other toxic metal-contaminate The U.S. government has certain rights in this invention pursuant to Contract Number DE-AC02-76CH00016 between the U.S. Department of Energy and Associated Universities, Inc.

  5. Waste site reclamation with recovery of radionuclides and metals

    DOEpatents

    Francis, A.J.; Dodge, C.J.

    1994-03-08

    A method for decontaminating radionuclides and other toxic metal-contaminate The U.S. government has certain rights in this invention pursuant to Contract Number DE-AC02-76CH00016 between the U.S. Department of Energy and Associated Universities, Inc.

  6. Target-classification approach applied to active UXO sites

    NASA Astrophysics Data System (ADS)

    Shubitidze, F.; Fernández, J. P.; Shamatava, Irma; Barrowes, B. E.; O'Neill, K.

    2013-06-01

    This study is designed to illustrate the discrimination performance at two UXO active sites (Oklahoma's Fort Sill and the Massachusetts Military Reservation) of a set of advanced electromagnetic induction (EMI) inversion/discrimination models which include the orthonormalized volume magnetic source (ONVMS), joint diagonalization (JD), and differential evolution (DE) approaches and whose power and flexibility greatly exceed those of the simple dipole model. The Fort Sill site is highly contaminated by a mix of the following types of munitions: 37-mm target practice tracers, 60-mm illumination mortars, 75-mm and 4.5'' projectiles, 3.5'', 2.36'', and LAAW rockets, antitank mine fuzes with and without hex nuts, practice MK2 and M67 grenades, 2.5'' ballistic windshields, M2A1-mines with/without bases, M19-14 time fuzes, and 40-mm practice grenades with/without cartridges. The site at the MMR site contains targets of yet different sizes. In this work we apply our models to EMI data collected using the MetalMapper (MM) and 2 × 2 TEMTADS sensors. The data for each anomaly are inverted to extract estimates of the extrinsic and intrinsic parameters associated with each buried target. (The latter include the total volume magnetic source or NVMS, which relates to size, shape, and material properties; the former includes location, depth, and orientation). The estimated intrinsic parameters are then used for classification performed via library matching and the use of statistical classification algorithms; this process yielded prioritized dig-lists that were submitted to the Institute for Defense Analyses (IDA) for independent scoring. The models' classification performance is illustrated and assessed based on these independent evaluations.

  7. Site dependent hardening of the lanthanum metal lattice by hydrogen absorption

    NASA Astrophysics Data System (ADS)

    Machida, A.; Watanuki, T.; Ohmura, A.; Ikeda, T.; Aoki, K.; Nakano, S.; Takemura, K.

    2011-03-01

    The compressibility of lanthanum (La) metal and its hydrides were measured at room temperature by high pressure synchrotron X-ray diffraction. La metal pressurized in a hydrogen medium forms a hydride with an fcc metal lattice, which likely contains hydrogen at a concentration close to 3.0 and persists over the measured pressure span up to 21 GPa. Equations of state have been determined by helium compression experiments for LaH 2 with tetrahedral interstitial sites fully occupied with hydrogen atoms and for LaH 2.46 with octahedral interstitial sites partially occupied with hydrogen atoms and tetrahedral sites fully occupied. Both hydrides possess fcc metal lattices. The bulk modulus values B0 are 66.7 ± 1.2 GPa for LaH 2 and 68.4±1.0 GPa for LaH 2.46. These values are three times larger than that of La metal and are very close to each other despite the difference in hydrogen occupation states. The hardening of the metal lattice by hydrogenation is attributed predominantly to hydrogen-metal interactions at the tetrahedral sites and is most pronounced for La, which has the largest ionic radius among rare-earth metals.

  8. Adsorption of two gas molecules at a single metal site in a metal–organic framework

    SciTech Connect

    Runčevski, Tomče; Kapelewski, Matthew T.; Torres-Gavosto, Rodolfo M.; Tarver, Jacob D.; Brown, Craig M.; Long, Jeffrey R.

    2016-11-21

    One strategy to markedly increase the gas storage capacity of metal–organic frameworks is to introduce coordinatively-unsaturated metal centers capable of binding multiple gas molecules. Herein, we provide an initial demonstration that a single metal site within a framework can support the terminal coordination of two gas molecules—specifically hydrogen, methane, or carbon dioxide.

  9. Underground Corrosion of Activated Metals, 6-Year Exposure Analysis

    SciTech Connect

    M. K. Adler Flitton; T. S. Yoder

    2006-03-01

    The subsurface radioactive disposal site located at the Idaho National Laboratory contains neutronactivated metals from non-fuel nuclear-reactor-core components. A long-term underground corrosion test is being conducted to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements in the surrounding arid vadose zone environment. The test uses nonradioactive metal coupons representing the prominent neutron-activated materials buried at the disposal location, namely, Type 304L stainless steel (UNS S30403), Type 316L stainless steel (S31603), nickel-chromium alloy (UNS NO7718), beryllium, aluminum 6061-T6 (A96061), and a zirconium alloy (UNS R60804). In addition, carbon steel (the material presently used in the cask disposal liners and other disposal containers) and a duplex stainless steel (UNS S32550) are also included in the test. This paper briefly describes the ongoing test and presents the results of corrosion analysis from coupons exposed underground for 1, 3, and 6 years.

  10. Heavy metals testing in active pharmaceutical ingredients: an alternate approach.

    PubMed

    Raghuram, P; Soma Raju, I V; Sriramulu, J

    2010-01-01

    The principle of the pharmacopoeial heavy metals test is detection and estimation of the metallic impurities colored by sulfide ion by comparison against lead standard. The test suffers from a loss of analytes upon ashing and from having varied responses for various metals. An inductively coupled plasma-optical emission spectroscopy (ICP-OES) for estimating 23 metals in active pharmaceutical ingredients is being proposed. The method covers the metals listed in USP, Ph. Eur and EMEA guidance on "Residues of Metal Catalysts or Metal Reagents".

  11. Threshold occupancy and specific cation binding modes in the hammerhead ribozyme active site are required for active conformation

    PubMed Central

    Lee, Tai-Sung; Giambaşu, George M.; Sosa, Carlos P.; Martick, Monika; Scott, William G.; York, Darrin M.

    2009-01-01

    The relationship between formation of active in-line attack conformations and monovalent (Na+) and divalent (Mg2+) metal ion binding in the hammerhead ribozyme has been explored with molecular dynamics simulations. To stabilize repulsions between negatively charged groups, different requirements of threshold occupancy of metal ions were observed in the reactant and activated precursor states both in the presence or absence of a Mg2+ in the active site. Specific bridging coordination patterns of the ions are correlated with the formation of active in-line attack conformations and can be accommodated in both cases. Furthermore, simulation results suggest that the hammerhead ribozyme folds to form an electronegative recruiting pocket that attracts high local concentrations of positive charge. The present simulations help to reconcile experiments that probe the metal ion sensitivity of hammerhead ribozyme catalysis and support the supposition that Mg2+, in addition to stabilizing active conformations, plays a specific chemical role in catalysis. PMID:19265710

  12. Site Characterization and Analysis Penetrometer System (SCAPS) Heavy Metal Sensors

    DTIC Science & Technology

    2003-04-01

    bleaches, hydrochloric acid, sulfuric acid, nitric acid, explosive compounds (e.g., lead azide and lead styphnate ), phosphate cleaners, petroleum and...products of these chemicals. Previous investigations have indicated that heavy metals, including arsenic (As), barium (Ba), beryllium (Be), cadmium (Cd...Lake City. It was used by the LCAAP fire department from 1951 to 1967 to burn wooden boxes. Antimony, barium , cadmium, copper, lead, mercury, silver

  13. Selectivity of externally facing ion-binding sites in the Na/K pump to alkali metals and organic cations.

    PubMed

    Ratheal, Ian M; Virgin, Gail K; Yu, Haibo; Roux, Benoît; Gatto, Craig; Artigas, Pablo

    2010-10-26

    The Na/K pump is a P-type ATPase that exchanges three intracellular Na(+) ions for two extracellular K(+) ions through the plasmalemma of nearly all animal cells. The mechanisms involved in cation selection by the pump's ion-binding sites (site I and site II bind either Na(+) or K(+); site III binds only Na(+)) are poorly understood. We studied cation selectivity by outward-facing sites (high K(+) affinity) of Na/K pumps expressed in Xenopus oocytes, under voltage clamp. Guanidinium(+), methylguanidinium(+), and aminoguanidinium(+) produced two phenomena possibly reflecting actions at site III: (i) voltage-dependent inhibition (VDI) of outwardly directed pump current at saturating K(+), and (ii) induction of pump-mediated, guanidinium-derivative-carried inward current at negative potentials without Na(+) and K(+). In contrast, formamidinium(+) and acetamidinium(+) induced K(+)-like outward currents. Measurement of ouabain-sensitive ATPase activity and radiolabeled cation uptake confirmed that these cations are external K(+) congeners. Molecular dynamics simulations indicate that bound organic cations induce minor distortion of the binding sites. Among tested metals, only Li(+) induced Na(+)-like VDI, whereas all metals tested except Na(+) induced K(+)-like outward currents. Pump-mediated K(+)-like organic cation transport challenges the concept of rigid structural models in which ion specificity at site I and site II arises from a precise and unique arrangement of coordinating ligands. Furthermore, actions by guanidinium(+) derivatives suggest that Na(+) binds to site III in a hydrated form and that the inward current observed without external Na(+) and K(+) represents cation transport when normal occlusion at sites I and II is impaired. These results provide insights on external ion selectivity at the three binding sites.

  14. A 29Si MAS-NMR study of transition metal site occupancy in forsterite

    NASA Astrophysics Data System (ADS)

    Mccarty, R. J.; Palke, A.; Stebbins, J. F.; Hartman, S.

    2012-12-01

    In this study, we address the problem of transition metal site occupancy in Mg-rich olivine using solid-state magic-angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy. Transition metal substitution in olivine can occur in either of the two crystallographically unique octahedral sites: the smaller, more symmetric M1 site or the larger, more distorted M2 site. Site occupancy of the transition metal is expected to correlate with ionic radius and d-orbital structure. In NMR spectroscopy the presence of paramagnetic ions, such as transition metal ions, can produce accessory peaks referred to as "contact shifts," due to the interaction between unpaired electrons on the paramagnetic ion locally associated with the resonating nucleus. The position and intensity of the contact shifts are dependent on the geometrical association such as bond distances and bond angles between the paramagnetic ion and the resonating nucleus. 29Si MAS-NMR spectra collected on synthetic forsterite (Mg2SiO4) doped with minor amounts (0.2-5%) of individual, divalent, paramagnetic, transition metal cations (Mn, Co, Ni, or Cu) substituting for Mg in the octahedral sites, reveals multiple contact shifts. An interpretation of the number of such contact shifts and their relative intensities correlated with structural information of possible 29Si-M1 and 29Si-M2 configurations, potentially allows for the assignment of specific transition metals to individual M1 or M2 sites. An analysis of the MAS-NMR data will potentially bring a new level of confidence to transition metal site occupancy in forsterite.

  15. Metal-binding sites are designed to achieve optimal mechanical and signaling properties

    PubMed Central

    Dutta, Anindita; Bahar, Ivet

    2010-01-01

    Many proteins require bound metals to achieve their function. We take advantage of increasing structural data on metal-binding proteins to elucidate three properties: the involvement of metal-binding sites in the global dynamics of the protein, predicted by elastic network models, their exposure/burial to solvent, and their signal-processing properties indicated by Markovian stochastics analysis. Systematic analysis of a dataset of 145 structures reveals that the residues that coordinate metal ions enjoy remarkably efficient and precise signal transduction properties. These properties are rationalized in terms of their physical properties: participation in hinge sites that control the softest modes collectively accessible to the protein and occupancy of central positions minimally exposed to solvent. Our observations suggest that metal-binding sites may have been evolutionary selected to achieve optimum allosteric communication. They also provide insights into basic principles for designing metal-binding sites, which are verified to be met by recently designed de novo metal-binding proteins. PMID:20826340

  16. X-ray crystal structure of divalent metal-activated ß-xyloisdase, RS223BX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report the first X-ray structure of a glycoside hydrolase family 43 ß-xylosidase, RS223BX, which is strongly activated by the addition of divalent metal cations. The 2.69 Å structure reveals that the Ca2+ cation is located at the back of the active site pocket. The Ca2+ coordinates to H274 to sta...

  17. A Relaxed Active Site After Exon Ligation by the Group I Intron

    SciTech Connect

    Lipchock,S.; Strobel, S.

    2008-01-01

    During RNA maturation, the group I intron promotes two sequential phosphorotransfer reactions resulting in exon ligation and intron release. Here, we report the crystal structure of the intron in complex with spliced exons and two additional structures that examine the role of active-site metal ions during the second step of RNA splicing. These structures reveal a relaxed active site, in which direct metal coordination by the exons is lost after ligation, while other tertiary interactions are retained between the exon and the intron. Consistent with these structural observations, kinetic and thermodynamic measurements show that the scissile phosphate makes direct contact with metals in the ground state before exon ligation and in the transition state, but not after exon ligation. Despite no direct exonic interactions and even in the absence of the scissile phosphate, two metal ions remain bound within the active site. Together, these data suggest that release of the ligated exons from the intron is preceded by a change in substrate-metal coordination before tertiary hydrogen bonding contacts to the exons are broken.

  18. Synthesis of supported bimetallic nanoparticles with controlled size and composition distributions for active site elucidation

    SciTech Connect

    Hakim, Sikander H.; Sener, Canan; Alba Rubio, Ana C.; Gostanian, Thomas M.; O'neill, Brandon J; Ribeiro, Fabio H.; Miller, Jeffrey T.; Dumesic, James A

    2015-08-01

    Elucidation of active sites in supported bimetallic catalysts is complicated by the high level of dispersity in the nanoparticle size and composition that is inherent in conventional methods of catalyst preparation. We present a synthesis strategy that leads to highly dispersed, bimetallic nanoparticles with uniform particle size and composition by means of controlled surface reactions. We demonstrate the synthesis of three systems, RhMo, PtMo, and RhRe, consisting of a highly reducible metal with an oxophilic promoter. These catalysts are characterized by FTIR, CO chemisorption, STEM/EDS, TPR, and XAS analysis. The catalytic properties of these bimetallic nanoparticles were probed for the selective CO hydrogenolysis of (hydroxymethyl)tetrahydropyran to produce 1,6 hexanediol. Based on the characterization results and reactivity trends, the active sites in the hydrogenolysis reaction are identified to be small ensembles of the more noble metal (Rh, Pt) adjacent to highly reduced moieties of the more oxophilic metal (Mo, Re).

  19. Structural mechanism of RuBisCO activation by carbamylation of the active site lysine.

    PubMed

    Stec, Boguslaw

    2012-11-13

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a crucial enzyme in carbon fixation and the most abundant protein on earth. It has been studied extensively by biochemical and structural methods; however, the most essential activation step has not yet been described. Here, we describe the mechanistic details of Lys carbamylation that leads to RuBisCO activation by atmospheric CO(2). We report two crystal structures of nitrosylated RuBisCO from the red algae Galdieria sulphuraria with O(2) and CO(2) bound at the active site. G. sulphuraria RuBisCO is inhibited by cysteine nitrosylation that results in trapping of these gaseous ligands. The structure with CO(2) defines an elusive, preactivation complex that contains a metal cation Mg(2+) surrounded by three H(2)O/OH molecules. Both structures suggest the mechanism for discriminating gaseous ligands by their quadrupole electric moments. We describe conformational changes that allow for intermittent binding of the metal ion required for activation. On the basis of these structures we propose the individual steps of the activation mechanism. Knowledge of all these elements is indispensable for engineering RuBisCO into a more efficient enzyme for crop enhancement or as a remedy to global warming.

  20. Seasonal changes in antioxidant enzyme activities of freshwater biofilms in a metal polluted Mediterranean stream.

    PubMed

    Bonet, Berta; Corcoll, Natàlia; Acuňa, Vicenç; Sigg, Laura; Behra, Renata; Guasch, Helena

    2013-02-01

    While seasonal variations in fluvial communities have been extensively investigated, effects of seasonality on community responses to environmental and/or chemical stress are poorly documented. The aim of this study was to describe antioxidant enzyme activity (AEA) variability in fluvial biofilms over an annual cycle, under multi-stress scenarios due to environmental variability (e.g., light intensity, water flow, and temperature) and metal pollution (Zn, Mn and Fe). The annual monitoring study was performed at three sites according to their water and biofilm metal concentrations. Metal concentration was affected by water flow due to dilution. Low flow led to higher dissolved Zn concentrations, and thus to higher Zn accumulation in the biofilm. Water temperature, light intensity and phosphate concentration were the environmental factors which determined the seasonality of biofilm responses, whereas dissolved Zn and Zn accumulation in biofilms were the parameters linked to sites and periods of highest metal pollution. Community algal succession, from diatoms in cold conditions to green algae in warm conditions, was clearer in the non metal-polluted site than in those metal-polluted, presumably due to the selection pressure exerted by metals. Most AEA were related with seasonal environmental variability at the sites with low or no-metal pollution, except glutathione-S-transferase (GST) which was related with Zn (dissolved and accumulated in biofilm) pollution occurring at the most polluted site. We can conclude that seasonal variations of community composition and function are masked by metal pollution. From this study we suggest the use of a multi-biomarker approach, including AEA and a set of biological and physicochemical parameters as an effect-based field tool to assess metal pollution.

  1. Role of Metal Ions on the Activity of Mycobacterium tuberculosis Pyrazinamidase

    PubMed Central

    Sheen, Patricia; Ferrer, Patricia; Gilman, Robert H.; Christiansen, Gina; Moreno-Román, Paola; Gutiérrez, Andrés H.; Sotelo, Jun; Evangelista, Wilfredo; Fuentes, Patricia; Rueda, Daniel; Flores, Myra; Olivera, Paula; Solis, José; Pesaresi, Alessandro; Lamba, Doriano; Zimic, Mirko

    2012-01-01

    Pyrazinamidase of Mycobacterium tuberculosis catalyzes the conversion of pyrazinamide to the active molecule pyrazinoic acid. Reduction of pyrazinamidase activity results in a level of pyrazinamide resistance. Previous studies have suggested that pyrazinamidase has a metal-binding site and that a divalent metal cofactor is required for activity. To determine the effect of divalent metals on the pyrazinamidase, the recombinant wild-type pyrazinamidase corresponding to the H37Rv pyrazinamide-susceptible reference strain was expressed in Escherichia coli with and without a carboxy terminal. His-tagged pyrazinamidase was inactivated by metal depletion and reactivated by titration with divalent metals. Although Co2+, Mn2+, and Zn2+ restored pyrazinamidase activity, only Co2+ enhanced the enzymatic activity to levels higher than the wild-type pyrazinamidase. Cu2+, Fe2+, Fe3+, and Mg2+ did not restore the activity under the conditions tested. Various recombinant mutated pyrazinamidases with appropriate folding but different enzymatic activities showed a differential pattern of recovered activity. X-ray fluorescence and atomic absorbance spectroscopy showed that recombinant wild-type pyrazinamidase expressed in E. coli most likely contained Zn. In conclusion, this study suggests that M. tuberculosis pyrazinamidase is a metalloenzyme that is able to coordinate several ions, but in vivo, it is more likely to coordinate Zn2+. However, in vitro, the metal-depleted enzyme could be reactivated by several divalent metals with higher efficiency than Zn. PMID:22764307

  2. Single-Site Cobalt Catalysts at New Zr 82 -O) 82 -OH) 4 Metal-Organic Framework Nodes for Highly Active Hydrogenation of Alkenes, Imines, Carbonyls, and Heterocycles

    SciTech Connect

    Ji, Pengfei; Manna, Kuntal; Lin, Zekai; Urban, Ania; Greene, Francis X.; Lan, Guangxu; Lin, Wenbin

    2016-09-21

    We report here the synthesis of robust and porous metal–organic frameworks (MOFs), M-MTBC (M = Zr or Hf), constructed from the tetrahedral linker methane-tetrakis(p-biphenylcarboxylate) (MTBC) and two types of secondary building units (SBUs): cubic M82-O)82-OH)4 and octahedral M6(μ3-O)43-OH)4. While the M6-SBU is isostructural with the 12-connected octahedral SBUs of UiO-type MOFs, the M8-SBU is composed of eight MIV ions in a cubic fashion linked by eight μ2-oxo and four μ2-OH groups. The metalation of Zr-MTBC SBUs with CoCl2, followed by treatment with NaBEt3H, afforded highly active and reusable solid Zr-MTBC-CoH catalysts for the hydrogenation of alkenes, imines, carbonyls, and heterocycles. Zr-MTBC-CoH was impressively tolerant of a range of functional groups and displayed high activity in the hydrogenation of tri- and tetra-substituted alkenes with TON > 8000 for the hydrogenation of 2,3-dimethyl-2-butene. Our structural and spectroscopic studies show that site isolation of and open environments around the cobalt-hydride catalytic species at Zr8-SBUs are responsible for high catalytic activity in the hydrogenation of a wide range of challenging substrates. MOFs thus provide a novel platform for discovering and studying new single-site base-metal solid catalysts with enormous potential for sustainable chemical synthesis.

  3. Metal ion as both a cofactor and a probe of metal-binding sites in a uranyl-specific DNAzyme: a uranyl photocleavage study.

    PubMed

    Cepeda-Plaza, Marjorie; Null, Eric L; Lu, Yi

    2013-11-01

    DNAzymes are known to bind metal ions specifically to carry out catalytic functions. Despite many studies since DNAzymes were discovered nearly two decades ago, the metal-binding sites in DNAzymes are not fully understood. Herein, we adopt uranyl photocleavage to probe specific uranyl-binding sites in the 39E DNAzyme with catalytically relevant concentrations of uranyl. The results indicate that uranyl binds between T23 and C25 in the bulge loop, G11 and T12 in the stem loop of the enzyme strand, as well as between T2.4 and G3 close to the cleavage site in the substrate strand. Control experiments using two 39E DNAzyme mutants revealed a different cleavage pattern of the mutated region. Another DNAzyme, the 8-17 DNAzyme, which has a similar secondary structure but shows no activity in the presence of uranyl, indicated a different uranyl-dependent photocleavage as well. In addition, a close correlation between the concentration-dependent photocleavage and enzymatic activities is also demonstrated. Together, these experiments suggest that uranyl photocleavage has been successfully used to probe catalytically relevant uranyl-binding sites in the 39E DNAzyme. As uranyl is the cofactor of the 39E DNAzyme as well as the probe, specific uranyl binding has now been identified without disruption of the structure.

  4. Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement sites.

    PubMed

    Berthelot, Charlotte; Leyval, Corinne; Foulon, Julie; Chalot, Michel; Blaudez, Damien

    2016-10-01

    Numerous studies address the distribution and the diversity of dark septate endophytes (DSEs) in the literature, but little is known about their ecological role and their effect on host plants, especially in metal-polluted soils. Seven DSE strains belonging to Cadophora, Leptodontidium, Phialophora and Phialocephala were isolated from roots of poplar trees from metal-polluted sites. All strains developed on a wide range of carbohydrates, including cell-wall-related compounds. The strains evenly colonized birch, eucalyptus and ryegrass roots in re-synthesis experiments. Root and shoot growth promotion was observed and was both plant and strain dependent. Two Phialophora and Leptodontidium strains particularly improved plant growth. However, there was no correlation between the level of root colonization by DSEs and the intensity of growth promotion. All strains produced auxin and six also stimulated plant growth through the release of volatile organic compounds (VOCs). SPME-GC/MS analyses revealed four major VOCs emitted by Cadophora and Leptodontidium The strains exhibited growth at high concentrations of several metals. The ability of metal-resistant DSE strains to produce both soluble and volatile compounds for plant growth promotion indicates interesting microbial resources with high potential to support sustainable production of bioenergy crops within the context of the phytomanagement of metal-contaminated sites.

  5. Trace metal content of sediments close to mine sites in the Andean region.

    PubMed

    Yacoub, Cristina; Pérez-Foguet, Agustí; Miralles, Nuria

    2012-01-01

    This study is a preliminary examination of heavy metal pollution in sediments close to two mine sites in the upper part of the Jequetepeque River Basin, Peru. Sediment concentrations of Al, As, Cd, Cu, Cr, Fe, Hg, Ni, Pb, Sb, Sn, and Zn were analyzed. A comparative study of the trace metal content of sediments shows that the highest concentrations are found at the closest points to the mine sites in both cases. The sediment quality analysis was performed using the threshold effect level of the Canadian guidelines (TEL). The sediment samples analyzed show that potential ecological risk is caused frequently at both sites by As, Cd, Cu, Hg, Pb, and Zn. The long-term influence of sediment metals in the environment is also assessed by sequential extraction scheme analysis (SES). The availability of metals in sediments is assessed, and it is considered a significant threat to the environment for As, Cd, and Sb close to one mine site and Cr and Hg close to the other mine site. Statistical analysis of sediment samples provides a characterization of both subbasins, showing low concentrations of a specific set of metals and identifies the main characteristics of the different pollution sources. A tentative relationship between pollution sources and possible ecological risk is established.

  6. Trace Metal Content of Sediments Close to Mine Sites in the Andean Region

    PubMed Central

    Yacoub, Cristina; Pérez-Foguet, Agustí; Miralles, Nuria

    2012-01-01

    This study is a preliminary examination of heavy metal pollution in sediments close to two mine sites in the upper part of the Jequetepeque River Basin, Peru. Sediment concentrations of Al, As, Cd, Cu, Cr, Fe, Hg, Ni, Pb, Sb, Sn, and Zn were analyzed. A comparative study of the trace metal content of sediments shows that the highest concentrations are found at the closest points to the mine sites in both cases. The sediment quality analysis was performed using the threshold effect level of the Canadian guidelines (TEL). The sediment samples analyzed show that potential ecological risk is caused frequently at both sites by As, Cd, Cu, Hg, Pb, and Zn. The long-term influence of sediment metals in the environment is also assessed by sequential extraction scheme analysis (SES). The availability of metals in sediments is assessed, and it is considered a significant threat to the environment for As, Cd, and Sb close to one mine site and Cr and Hg close to the other mine site. Statistical analysis of sediment samples provides a characterization of both subbasins, showing low concentrations of a specific set of metals and identifies the main characteristics of the different pollution sources. A tentative relationship between pollution sources and possible ecological risk is established. PMID:22606058

  7. The Distribution and Health Risk Assessment of Metals in Soils in the Vicinity of Industrial Sites in Dongguan, China

    PubMed Central

    Liu, Chao; Lu, Liwen; Huang, Ting; Huang, Yalin; Ding, Lei; Zhao, Weituo

    2016-01-01

    Exponential industrialization and rapid urbanization have resulted in contamination of soil by metals from anthropogenic sources in Dongguan, China. The aims of this research were to determine the concentration and distribution of various metals (arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn)) in soils and identify their potential health risks for local residents. A total of 106 soil samples were collected from the vicinity of industrial sites in Dongguan. Two types of samples were collected from each site: topsoil (0–20 cm, TS) and shallow soil (20–50 cm, SS). Results showed that the soils were contaminated by metals and pollution was mainly focused on TS. The geoaccumulation index (Igeo) and pollution indexes (PI) implied that there was a slight increase in the concentrations of Cd, Cu, Hg, Ni, and Pb, but the metal pollution caused by industrial activities was less severe, and elements of As and Cr exhibited non-pollution level. The risk assessment results suggested that there was a potential health risk associated with As and Cr exposure for residents because the carcinogenic risks of As and Cr via corresponding exposure pathways exceeded the safety limit of 10−6 (the acceptable level of carcinogenic risk for humans). Furthermore, oral ingestion and inhalation of soil particles are the main exposure pathways for As and Cr to enter the human body. This study may provide basic information of metal pollution control and human health protection in the vicinity of industrial regions. PMID:27548198

  8. Multivariate analysis of mixed contaminants (PAHs and heavy metals) at manufactured gas plant site soils.

    PubMed

    Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi

    2012-06-01

    Principal component analysis (PCA) was used to provide an overview of the distribution pattern of polycyclic aromatic hydrocarbons (PAHs) and heavy metals in former manufactured gas plant (MGP) site soils. PCA is the powerful multivariate method to identify the patterns in data and expressing their similarities and differences. Ten PAHs (naphthalene, acenapthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benzo[a]pyrene) and four toxic heavy metals - lead (Pb), cadmium (Cd), chromium (Cr) and zinc (Zn) - were detected in the site soils. PAH contamination was contributed equally by both low and high molecular weight PAHs. PCA was performed using the varimax rotation method in SPSS, 17.0. Two principal components accounting for 91.7% of the total variance was retained using scree test. Principle component 1 (PC1) substantially explained the dominance of PAH contamination in the MGP site soils. All PAHs, except anthracene, were positively correlated in PC1. There was a common thread in high molecular weight PAHs loadings, where the loadings were inversely proportional to the hydrophobicity and molecular weight of individual PAHs. Anthracene, which was less correlated with other individual PAHs, deviated well from the origin which can be ascribed to its lower toxicity and different origin than its isomer phenanthrene. Among the four major heavy metals studied in MGP sites, Pb, Cd and Cr were negatively correlated in PC1 but showed strong positive correlation in principle component 2 (PC2). Although metals may not have originated directly from gaswork processes, the correlation between PAHs and metals suggests that the materials used in these sites may have contributed to high concentrations of Pb, Cd, Cr and Zn. Thus, multivariate analysis helped to identify the sources of PAHs, heavy metals and their association in MGP site, and thereby better characterise the site risk, which would not be possible if one uses chemical analysis

  9. The active site of ribulose-bisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.

    1991-01-01

    The active site of ribulose-bisphosphate carboxylase/oxygenase requires interacting domains of adjacent, identical subunits. Most active-site residues are located within the loop regions of an eight-stranded {beta}/{alpha}-barrel which constitutes the larger C-terminal domain; additional key residues are located within a segment of the smaller N-terminal domain which partially covers the mouth of the barrel. Site-directed mutagenesis of the gene encoding the enzyme from Rhodospirillum rubrum has been used to delineate functions of active-site residues. 6 refs., 2 figs.

  10. DOE site performance assessment activities. Radioactive Waste Technical Support Program

    SciTech Connect

    Not Available

    1990-07-01

    Information on performance assessment capabilities and activities was collected from eight DOE sites. All eight sites either currently dispose of low-level radioactive waste (LLW) or plan to dispose of LLW in the near future. A survey questionnaire was developed and sent to key individuals involved in DOE Order 5820.2A performance assessment activities at each site. The sites surveyed included: Hanford Site (Hanford), Idaho National Engineering Laboratory (INEL), Los Alamos National Laboratory (LANL), Nevada Test Site (NTS), Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant (Paducah), Portsmouth Gaseous Diffusion Plant (Portsmouth), and Savannah River Site (SRS). The questionnaire addressed all aspects of the performance assessment process; from waste source term to dose conversion factors. This report presents the information developed from the site questionnaire and provides a comparison of site-specific performance assessment approaches, data needs, and ongoing and planned activities. All sites are engaged in completing the radioactive waste disposal facility performance assessment required by DOE Order 5820.2A. Each site has achieved various degrees of progress and have identified a set of critical needs. Within several areas, however, the sites identified common needs and questions.

  11. Effect of Siloxane Ring Strain and Cation Charge Density on the Formation of Coordinately Unsaturated Metal Sites on Silica: Insights from DFT Studies

    SciTech Connect

    Das, Ujjal; Zhang, Guanghui; Hu, Bo; Hock, Adam S.; Redfern, Paul C.; Miller, Jeffrey T.; Curtiss, Larry A.

    2015-12-01

    Amorphous silica (SiO2) is commonly used as a support in heterogeneous catalysis. However, due to the structural disorder and temperature induced change of surface morphology, the structures of silica supported metal catalysts are difficult to determine. Most studies are primarily focused on understanding the interactions of different types of surface hydroxyl groups with metal ions. In comparison, the effect of siloxane ring size on the structure of silica supported metal catalysts and how it affects catalytic activity is poorly understood. Here, we have used density functional theory calculations to understand the effect of siloxane ring strain on structure and activity of different monomeric Lewis acid metal sites on silica. In particular, we have found that large siloxane rings favor strong dative bonding interaction between metal ion and surface hydroxyls, leading to the formation of high-coordinate metal sites. In comparison, metal-silanol interaction is weak in small siloxane rings, resulting in low-coordinate metal sites. The physical origin of this size dependence is associated with siloxane ring strain, and, a correlation between metal-silanol interaction energy and ring strain energy has been observed. In addition to ring strain, the strength of the metal-silanol interaction also depends on the positive charge density of the cations. In fact, a correlation also exists between metal-silanol interaction energy and charge density of several first-row transition and post-transition metals. The theoretical results are compared with the EXAFS data of monomeric Zn(II) and Ga(III) ions grafted on silica. The molecular level insights of how metal ion coordination on silica depends on siloxane ring strain and cation charge density will be useful in the synthesis of new catalysts.

  12. Savannah River Site prioritization of transition activities

    SciTech Connect

    Finley, R.H.

    1993-11-01

    Effective management of SRS conversion from primarily a production facility to other missions (or Decontamination and Decommissioning (D&D)) requires a systematic and consistent method of prioritizing the transition activities. This report discusses the design of a prioritizing method developed to achieve systematic and consistent methods of prioritizing these activities.

  13. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  14. Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site

    SciTech Connect

    Grossman, Moran; Born, Benjamin; Heyden, Matthias; Tworowski, Dmitry; Fields, Gregg B.; Sagi, Irit; Havenith, Martina

    2011-09-18

    Solvent dynamics can play a major role in enzyme activity, but obtaining an accurate, quantitative picture of solvent activity during catalysis is quite challenging. Here, we combine terahertz spectroscopy and X-ray absorption analyses to measure changes in the coupled water-protein motions during peptide hydrolysis by a zinc-dependent human metalloprotease. These changes were tightly correlated with rearrangements at the active site during the formation of productive enzyme-substrate intermediates and were different from those in an enzyme–inhibitor complex. Molecular dynamics simulations showed a steep gradient of fast-to-slow coupled protein-water motions around the protein, active site and substrate. Our results show that water retardation occurs before formation of the functional Michaelis complex. We propose that the observed gradient of coupled protein-water motions may assist enzyme-substrate interactions through water-polarizing mechanisms that are remotely mediated by the catalytic metal ion and the enzyme active site.

  15. The effects of hydrogen bonds on metal-mediated O2 activation and related processes

    PubMed Central

    Shook, Ryan L.; Borovik, A. S.

    2009-01-01

    Hydrogen bonds stabilize and direct chemistry performed by metalloenzymes. With inspiration from enzymes, we will utilize an approach that incorporates intramolecular hydrogen bond donors to determine their effects on the stability and reactivity of metal complexes. Our premise is that control of secondary coordination sphere interactions will promote new function in synthetic metal complexes. Multidentate ligands have been developed that create rigid organic structures around metal ions. These ligands place hydrogen bond (H-bond) donors proximal to the metal centers, forming specific microenvironments. One distinguishing attribute of these systems is that site-specific modulations in structure can be readily accomplished, in order to evaluate correlations with reactivity. A focus of this research is consideration of dioxygen binding and activation by metal complexes, including developing structure–function relationships in metal-assisted oxidative catalysis. PMID:19082087

  16. Four-electron deoxygenative reductive coupling of carbon monoxide at a single metal site

    NASA Astrophysics Data System (ADS)

    Buss, Joshua A.; Agapie, Theodor

    2016-01-01

    Carbon dioxide is the ultimate source of the fossil fuels that are both central to modern life and problematic: their use increases atmospheric levels of greenhouse gases, and their availability is geopolitically constrained. Using carbon dioxide as a feedstock to produce synthetic fuels might, in principle, alleviate these concerns. Although many homogeneous and heterogeneous catalysts convert carbon dioxide to carbon monoxide, further deoxygenative coupling of carbon monoxide to generate useful multicarbon products is challenging. Molybdenum and vanadium nitrogenases are capable of converting carbon monoxide into hydrocarbons under mild conditions, using discrete electron and proton sources. Electrocatalytic reduction of carbon monoxide on copper catalysts also uses a combination of electrons and protons, while the industrial Fischer-Tropsch process uses dihydrogen as a combined source of electrons and electrophiles for carbon monoxide coupling at high temperatures and pressures. However, these enzymatic and heterogeneous systems are difficult to probe mechanistically. Molecular catalysts have been studied extensively to investigate the elementary steps by which carbon monoxide is deoxygenated and coupled, but a single metal site that can efficiently induce the required scission of carbon-oxygen bonds and generate carbon-carbon bonds has not yet been documented. Here we describe a molybdenum compound, supported by a terphenyl-diphosphine ligand, that activates and cleaves the strong carbon-oxygen bond of carbon monoxide, enacts carbon-carbon coupling, and spontaneously dissociates the resulting fragment. This complex four-electron transformation is enabled by the terphenyl-diphosphine ligand, which acts as an electron reservoir and exhibits the coordinative flexibility needed to stabilize the different intermediates involved in the overall reaction sequence. We anticipate that these design elements might help in the development of efficient catalysts for

  17. Active-site zinc ligands and activated H2O of zinc enzymes.

    PubMed Central

    Vallee, B L; Auld, D S

    1990-01-01

    The x-ray crystallographic structures of 12 zinc enzymes have been chosen as standards of reference to identify the ligands to the catalytic and structural zinc atoms of other members of their respective enzyme families. Universally, H2O is a ligand and critical component of the catalytically active zinc sites. In addition, three protein side chains bind to the catalytic zinc atom, whereas four protein ligands bind to the structural zinc atom. The geometry and coordination number of zinc can vary greatly to accommodate particular ligands. Zinc forms complexes with nitrogen and oxygen just as readily as with sulfur, and this is reflected in catalytic zinc sites having a binding frequency of His much greater than Glu greater than Asp = Cys, three of which bind to the metal atom. The systematic spacing between the ligands is striking. For all catalytic zinc sites except the coenzyme-dependent alcohol dehydrogenase, the first two ligands are separated by a "short-spacer" consisting of 1 to 3 amino acids. These ligands are separated from the third ligand by a "long spacer" of approximately 20 to approximately 120 amino acids. The spacer enables formation of a primary bidentate zinc complex, whereas the long spacer contributes flexibility to the coordination sphere, which can poise the zinc for catalysis as well as bring other catalytic and substrate binding groups into apposition with the active site. The H2O is activated by ionization, polarization, or poised for displacement. Collectively, the data imply that the preferred mechanistic pathway for activating the water--e.g., zinc hydroxide or Lewis acid catalysis--will be determined by the identity of the other three ligands and their spacing. Images PMID:2104979

  18. Controlled Orientation of Active Sites in a Nanostructured Multienzyme Complex

    PubMed Central

    Lim, Sung In; Yang, Byungseop; Jung, Younghan; Cha, Jaehyun; Cho, Jinhwan; Choi, Eun-Sil; Kim, Yong Hwan; Kwon, Inchan

    2016-01-01

    Multistep cascade reactions in nature maximize reaction efficiency by co-assembling related enzymes. Such organization facilitates the processing of intermediates by downstream enzymes. Previously, the studies on multienzyme nanocomplexes assembled on DNA scaffolds demonstrated that closer interenzyme distance enhances the overall reaction efficiency. However, it remains unknown how the active site orientation controlled at nanoscale can have an effect on multienzyme reaction. Here, we show that controlled alignment of active sites promotes the multienzyme reaction efficiency. By genetic incorporation of a non-natural amino acid and two compatible bioorthogonal chemistries, we conjugated mannitol dehydrogenase to formate dehydrogenase with the defined active site arrangement with the residue-level accuracy. The study revealed that the multienzyme complex with the active sites directed towards each other exhibits four-fold higher relative efficiency enhancement in the cascade reaction and produces 60% more D-mannitol than the other complex with active sites directed away from each other. PMID:28004799

  19. Distinct Metal Isoforms Underlie Promiscuous Activity Profiles of Metalloenzymes.

    PubMed

    Baier, Florian; Chen, John; Solomonson, Matthew; Strynadka, Natalie C J; Tokuriki, Nobuhiko

    2015-07-17

    Within a superfamily, functionally diverged metalloenzymes often favor different metals as cofactors for catalysis. One hypothesis is that incorporation of alternative metals expands the catalytic repertoire of metalloenzymes and provides evolutionary springboards toward new catalytic functions. However, there is little experimental evidence that incorporation of alternative metals changes the activity profile of metalloenzymes. Here, we systematically investigate how metals alter the activity profiles of five functionally diverged enzymes of the metallo-β-lactamase (MBL) superfamily. Each enzyme was reconstituted in vitro with six different metals, Cd(2+), Co(2+), Fe(2+), Mn(2+), Ni(2+), and Zn(2+), and assayed against eight catalytically distinct hydrolytic reactions (representing native functions of MBL enzymes). We reveal that each enzyme metal isoform has a significantly different activity level for native and promiscuous reactions. Moreover, metal preferences for native versus promiscuous activities are not correlated and, in some cases, are mutually exclusive; only particular metal isoforms disclose cryptic promiscuous activities but often at the expense of the native activity. For example, the L1 B3 β-lactamase displays a 1000-fold catalytic preference for Zn(2+) over Ni(2+) for its native activity but exhibits promiscuous thioester, phosphodiester, phosphotriester, and lactonase activity only with Ni(2+). Furthermore, we find that the five MBL enzymes exist as an ensemble of various metal isoforms in vivo, and this heterogeneity results in an expanded activity profile compared to a single metal isoform. Our study suggests that promiscuous activities of metalloenzymes can stem from an ensemble of metal isoforms in the cell, which could facilitate the functional divergence of metalloenzymes.

  20. Distribution of trace metals at Hopewell Furnace National Historic Site, Berks and Chester Counties, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.; Reif, Andrew G.

    2011-01-01

    Hopewell Furnace, located approximately 50 miles northwest of Philadelphia, was a cold-blast, charcoal iron furnace that operated for 113 years (1771 to 1883). The purpose of this study by the U.S. Geological Survey, in cooperation with the National Park Service, was to determine the distribution of trace metals released to the environment from an historical iron smelter at Hopewell Furnace National Historic Site (NHS). Hopewell Furnace used iron ore from local mines that contained abundant magnetite and accessory sulfide minerals enriched in arsenic, cobalt, copper, and other metals. Ore, slag, cast iron furnace products, soil, groundwater, stream base flow, streambed sediment, and benthic macroinvertebrates were sampled for this study. Soil samples analyzed in the laboratory had concentrations of trace metals low enough to meet Pennsylvania Department of Environmental Protection standards for non-residential use. Groundwater samples from the supply well met U.S. Environmental Protection Agency drinking-water regulations. Concentrations of metals in surface-water base flow at the five stream sampling sites were below continuous concentration criteria for protection of aquatic organisms. Concentrations of metals in sediment at the five stream sites were below probable effects level guidelines for protection of aquatic organisms except for copper at site HF-3. Arsenic, copper, lead, zinc, and possibly cobalt were incorporated into the cast iron produced by Hopewell Furnace. Manganese was concentrated in slag along with iron, nickel, and zinc. The soil near the furnace has elevated concentrations of chromium, copper, iron, lead, and zinc compared to background soil concentrations. Concentrations of toxic elements were not present at concentrations of concern in water, soil, or stream sediments, despite being elevated in ore, slag, and cast iron furnace products. The base-flow surface-water samples indicated good overall quality. The five sampled sites generally had

  1. A minimalist chemical model of matrix metalloproteinases--can small peptides mimic the more rigid metal binding sites of proteins?

    PubMed

    Árus, Dávid; Nagy, Nóra Veronika; Dancs, Ágnes; Jancsó, Attila; Berkecz, Róbert; Gajda, Tamás

    2013-09-01

    In order to mimic the active center of matrix metalloproteinases (MMPs), we synthesized a pentadecapeptide (Ac-KAHEFGHSLGLDHSK-NH2) corresponding to the catalytic zinc(II) binding site of human MMP-13. The multi-domain structural organization of MMPs fundamentally determines their metal binding affinity, catalytic activity and selectivity. Our potentiometric, UV-visible, CD, EPR, NMR, mass spectrometric and kinetic studies are aimed to explore the usefulness of such flexible peptides to mimic the more rigid metal binding sites of proteins, to examine the intrinsic metal binding properties of this naked sequence, as well as to contribute to the development of a minimalist, peptide-based chemical model of MMPs, including the catalytic properties. Since the multiimidazole environment is also characteristic for copper(II), and recently copper(II) containing variants of MMPs have been identified, we also studied the copper(II) complexes of the above peptide. Around pH 6-7 the peptide, similarly to MMPs, offers a {3Nim} coordination binding site for both zinc(II) and copper(II). In the case of copper(II), the formation of amide coordinated species at higher pH abolished the analogy with the copper(II) containing MMP variant. On the other hand, the zinc(II)-peptide system mimics some basic features of the MMP active sites: the main species around pH7 (ZnH2L) possesses a {3Nim,H2O} coordination environment, the deprotonation of the zinc-bound water takes place near the physiological pH, it forms relatively stable ternary complexes with hydroxamic acids, and the species ZnH2L(OH) and ZnH2L(OH)2 have notable hydrolytic activity between pH7 and 9.

  2. Processing capabilties for the elimination of contaminated metal scrapyards at DOE/ORO-managed sites. [Metal smelting facility

    SciTech Connect

    Mack, J.E.; Williams, L.C.

    1982-01-01

    Capabilities exist for reducing all the contaminated nickel, aluminum, and copper scrap to ingot form by smelting. Processing these metals at existing facilities could be completed in about 5 or 6 years. However, these metals represent only about 20% of the total metal inventories currently on hand at the DOE/ORO-managed sites. No provisions have been made for the ferrous scrap. Most of the ferrous scrap is unclassified and does not require secured storage. Also, the potential resale value of the ferrous scrap at about $100 per ton is very low in comparison. Consequently, this scrap has been allowed to accumulate. With several modifications and equipment additions, the induction melter at PGDP could begin processing ferrous scrap after its commitment to nickel and aluminum. The PGDP smelter is a retrofit installation, and annual throughput capabilities are limited. Processing of the existing ferrous scrap inventories would not be completed until the FY 1995-2000 time frame. An alternative proposal has been the installation of induction melters at the other two enrichment facilities. Conceptual design of a generic metal smelting facility is under way. The design study includes capital and operating costs for scrap preparation through ingot storage at an annual throughput of 10,000 tons per year. Facility design includes an induction melter with the capability of melting both ferrous and nonferrous metals. After three years of operation with scrapyard feed, the smelter would have excess capacity to support on-site decontamination and decomissioning projects or upgrading programs. The metal smelting facility has been proposed for FY 1984 line item funding with start-up operations in FY 1986.

  3. Pharmacological activity of metal binding agents that alter copper bioavailability

    PubMed Central

    Helsel, Marian E.

    2015-01-01

    Iron, copper and zinc are required nutrients for many organisms but also potent toxins if misappropriated. An overload of any of these metals can be cytotoxic and ultimately lead to organ failure, whereas deficiencies can result in anemia, weakened immune system function, and other medical conditions. Cellular metal imbalances have been implicated in neurodegenerative diseases, cancer and infection. It is therefore critical for living organisms to maintain careful control of both the total levels and subcellular distributions of these metals to maintain healthy function. This perspective explores several strategies envisioned to alter the bioavailability of metal ions by using synthetic metal-binding agents targeted for diseases where misappropriated metal ions are suspected of exacerbating cellular damage. Specifically, we discuss chemical properties that influence the pharmacological outcome of a subset of metal-binding agents known as ionophores, and review several examples that have shown multiple pharmacological activities in metal-related diseases, with a specific focus on copper. PMID:25797044

  4. Diffusional correlations among multiple active sites in a single enzyme.

    PubMed

    Echeverria, Carlos; Kapral, Raymond

    2014-04-07

    Simulations of the enzymatic dynamics of a model enzyme containing multiple substrate binding sites indicate the existence of diffusional correlations in the chemical reactivity of the active sites. A coarse-grain, particle-based, mesoscopic description of the system, comprising the enzyme, the substrate, the product and solvent, is constructed to study these effects. The reactive and non-reactive dynamics is followed using a hybrid scheme that combines molecular dynamics for the enzyme, substrate and product molecules with multiparticle collision dynamics for the solvent. It is found that the reactivity of an individual active site in the multiple-active-site enzyme is reduced substantially, and this effect is analyzed and attributed to diffusive competition for the substrate among the different active sites in the enzyme.

  5. Metal levels in southern leopard frogs from the Savannah River Site: location and body compartment effects.

    PubMed

    Burger, J; Snodgrass, J

    2001-06-01

    Tadpoles have been proposed as useful bioindicators of environmental contamination; yet, recently it has been shown that metal levels vary in different body compartments of tadpoles. Metals levels are higher in the digestive tract of bullfrog (Rana catesbeiana) tadpoles, which is usually not removed during such analysis. In this paper we examine the heavy metal levels in southern leopard frog (R. utricularia) tadpoles from several wetlands at the Savannah River Site and test the null hypotheses that (1) there are no differences in metal levels in different body compartments of the tadpoles, including the digestive tract; (2) there are no differences in heavy metal levels among different wetlands; and (3) there are no differences in the ratio of metals in the tail/body and in the digestive tract/body as a function of metal or developmental stage as indicated by body weight. Variations in heavy metal levels were explained by wetland and body compartment for all metals and by tadpole weight for selenium and manganese. In all cases, levels of metals were higher in the digestive tract than in the body or tail of tadpoles. Metal levels were highest in a wetland that had been remediated and lowest in a wetland that was never a pasture or remediated (i.e., was truly undisturbed). Although tadpoles are sometimes eaten by fish and other aquatic predators, leopard frogs usually avoid laying their eggs in ponds with such predators. However, avian predators will eat them. These data suggest that tadpoles can be used as bioindicators of differences in metal levels among wetlands and as indicators of potential exposure for higher-trophic-level organisms, but that to assess effects on the tadpoles themselves, digestive tracts should be removed before analysis.

  6. Active Site Structures in Nitrogen-Doped Carbon-Supported Cobalt Catalysts for the Oxygen Reduction Reaction.

    PubMed

    Qian, Yingdan; Liu, Zheng; Zhang, Hui; Wu, Ping; Cai, Chenxin

    2016-12-07

    The catalytic mechanism and the nature of active sites are revealed for the oxygen reduction reaction (ORR) with new non-noble-metal nitrogen-doped carbon-supported transition-metal catalysts (metal-N-C catalyst). Specifically, new nitrogen-doped carbon-supported cobalt catalysts (Co-N-C catalysts) are made by pyrolyzing various ratios of the nitrogen-atom rich heterocycle compound, 1-ethyl-3-methyl imidazolium dicyanamide (EMIM-dca) and cobalt salt (Co(NO3)2). The ORR activity (JK at 0.8 V vs RHE, in 0.1 M KOH solution) of a typical catalyst in this family, Co15-N-C800, is 8.25 mA/mg, which is much higher than the ORR activity values of N-C catalysts (0.41 mA/mg). The active site in the catalyst is found to be the Co-N species, which is most likely in the form of Co2N. Metallic cobalt (Co) particles, Co3C species, and N-C species are not catalytically active sites, nor do these moieties interact with the Co-N active sites during the catalysis of the ORR. Increasing the Co salt content during the synthesis favors the formation of Co-N active sites in the final catalyst. Higher pyrolysis temperatures (e.g., a temperature higher than 800 °C) do not favor the formation of the Co-N active sites, but cause the formed Co-N active sites to decompose, which, therefore, leads to a lower catalytic activity. This reveals that the control of the parameters that affect the final structure is critical to catalyst performance and, therefore, the effective development of high-performance heteroatom-doped non-noble-metal ORR catalysts.

  7. Robotics at Savannah River site: activity report

    SciTech Connect

    Byrd, J.S.

    1984-09-01

    The objectives of the Robotics Technology Group at the Savannah River Laboratory are to employ modern industrial robots and to develop unique automation and robotic systems to enhance process operations at the Savannah River site (SRP and SRL). The incentives are to improve safety, reduce personnel radiation exposure, improve product quality and productivity, and to reduce operating costs. During the past year robotic systems have been installed to fill chemical dilution vials in a SRP laboratory at 772-F and remove radioactive waste materials in the SRL Californium Production Facility at 773-A. A robotic system to lubricate an extrusion press has been developed and demonstrated in the SRL robotics laboratory and is scheduled for installation at the 321-M fuel fabrication area. A mobile robot was employed by SRP for a radiation monitoring task at a waste tank top in H-Area. Several other robots are installed in the SRL robotics laboratories and application development programs are underway. The status of these applications is presented in this report.

  8. Encapsulating Metal Clusters and Acid Sites within Small Voids: Synthetic Strategies and Catalytic Consequences

    NASA Astrophysics Data System (ADS)

    Goel, Sarika

    The selective encapsulation of metal clusters within zeolites can be used to prepare clusters that are uniform in diameter and to protect them against sintering and contact with feed impurities, while concurrently allowing active sites to select reactants based on their molecular size, thus conferring enzyme-like specificity to chemical catalysis. The apertures in small and medium-pore zeolites preclude the use of post-synthetic protocols to encapsulate the relevant metal precursors because cationic or anionic precursors with their charge-balancing double layer and gaseous complexes cannot diffuse through their windows or channels. We have developed general strategies to encapsulate metal clusters within small-pore zeolites by using metal precursors stabilized by ammonia or organic amine ligands, which stabilize metal precursors against their premature precipitation at the high temperature and pH conditions required for the hydrothermal synthesis of the target zeolite structures and favor interactions between metal precursors and incipient aluminosilicate nuclei during the self-assembly of microporous frameworks. When synthesis temperatures were higher than 400 K, available ligands were unable to prevent the premature precipitation of the metal precursors. In such cases, encapsulation was achieved instead via interzeolite transformations after successfully encapsulating metal precursors or clusters via post-synthesis exchange or ligand protection into parent zeolites and subsequently converting them into the target structures while retaining the encapsulated clusters or precursors. Such strategies led to the successful selective encapsulation of a wide range of metal clusters (Pt, Pd, Ru, Rh, Ir, Re, and Ag) within small-pore (SOD (sodalite), LTA (Linde type A (zeolite A)), GIS (gismondine), and ANA (analcime)) and medium-pore (MFI (ZSM-5)) zeolites. These protocols provide novel and diverse mechanism-based strategies for the design of catalysts with protected

  9. Cellular Active N-Hydroxyurea FEN1 Inhibitors Block Substrate Entry to the Active Site

    PubMed Central

    Exell, Jack C.; Thompson, Mark J.; Finger, L. David; Shaw, Steven J.; Debreczeni, Judit; Ward, Thomas A.; McWhirter, Claire; Siöberg, Catrine L. B.; Martinez Molina, Daniel; Mark Abbott, W.; Jones, Clifford D.; Nissink, J. Willem M.; Durant, Stephen T.; Grasby, Jane A.

    2016-01-01

    The structure-specific nuclease human flap endonuclease-1 (hFEN1) plays a key role in DNA replication and repair and may be of interest as an oncology target. We present the first crystal structure of inhibitor-bound hFEN1 and show a cyclic N-hydroxyurea bound in the active site coordinated to two magnesium ions. Three such compounds had similar IC50 values but differed subtly in mode of action. One had comparable affinity for protein and protein–substrate complex and prevented reaction by binding to active site catalytic metal ions, blocking the unpairing of substrate DNA necessary for reaction. Other compounds were more competitive with substrate. Cellular thermal shift data showed engagement of both inhibitor types with hFEN1 in cells with activation of the DNA damage response evident upon treatment. However, cellular EC50s were significantly higher than in vitro inhibition constants and the implications of this for exploitation of hFEN1 as a drug target are discussed. PMID:27526030

  10. Biostimulation of Metal-Reducing Microbes at a Former Uranium Mill Tailings Site

    NASA Astrophysics Data System (ADS)

    Peacock, A. D.; Anderson, R. T.; Chang, J.; Long, P. E.; White, D. C.

    2002-12-01

    In situ biological treatment strategies are currently being used or considered to address groundwater contamination at hundreds and perhaps thousands of sites in the United States. A key to demonstrating the effectiveness of biological treatment strategies at a site is establishing cause and effect relationships, which provide evidence that the desired bioprocesses are occurring, or are likely to occur. These methods involve directly measuring various biochemical constituents of the bacteria themselves (i.e. "biomarkers"), which are indicative of their metabolic processes, and therefore provide direct, relevant information regarding the environment in which they are growing. These biomarkers include the presence and viability of biomass, the ability of the organisms to degrade or transform target contaminant(s), the presence of nutrients to promote bacterial growth and activity, and the oxidation/reduction (redox) status of the system. Using these tools we monitored an in situ biostimulation test at the field scale at the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project site, a former uranium ore processing facility located approximately 0.3 mile east of the city of Rifle in Garfield County, Colorado. The purpose of the study was to investigate if the addition of low concentrations of acetate (approx. 1 millimolar) as an electron donor into the subsurface would create anaerobic conditions that would stimulate growth of metal reducing bacteria capable of reducing soluble U(VI) to insoluble U(IV). Phospholipid fatty acid (PLFA), respiratory quinone, and DNA data showed that addition of acetate into the subsurface increased the microbial biomass and altered the microbial community structure to one that contained more anaerobic microorganisms (i.e. Geobacter sp.) capable of the reduction of U(VI).

  11. Characterization and activity of cephalosporin metal complexes.

    PubMed

    Auda, S H; Mrestani, Y; Fetouh, M I; Neubert, R H H

    2008-08-01

    Semi-synthetic cephalosporin antibiotics have structures similar to that of penicillins, and both groups of compounds are characterized by similar properties and determined by the same methods. Most antibiotics, including cephalosporins and their decomposition products, contain electron donor groups that can bind naturally occurring metal ions in vivo. Cephalosporin antibiotics exhibit a change in their toxicological properties and biological performance when they were tested as metal complexes. The proposed reason for such a behavior is the capability of chelate binding of the cephalosporins to the metals. In an attempt to understand the coordination mode of metals with cephalosporins, different spectroscopic techniques such as IR, UV-visible, NMR spectroscopy and voltammetric measurements were carried out to elucidate the structure of the metal-cephalosporin complexes. Synthesis, characterization and biological screening of the cephalosporins and of the cephalosporin-metal complexes are discussed in this review. However, little information is available on the influence of the metal ions on the pharmacokinetics of the cephalosporin derivatives.

  12. Electronically Active Cyclocarborane-Metal-Arene Assemblies

    DTIC Science & Technology

    1992-07-31

    Boron," Organometallics, 1990, 9, 1177. J. H. Davis, Jr., M. A. Benvenuto , and R. N. Grimes, "Organotransition-Metal Metalla- carboranes. 18. rY6, nl...3061. M. A. Benvenuto and R. N. Grimes, "Organotransition-Metal Metallacarboranes. 20. Bu 4N*F Fluoride-Catalyzed C-Si Bond Cleavage in Cp*Co(MeSi...Organometallic Synthesis", Chem. Rev. 1992, 92 251. M. A. Benvenuto and R. N. Grimes, "Organotransition-Metal Metallacarboranes. 28. Controlled Substitution at

  13. Active sites of thioredoxin reductases: why selenoproteins?

    PubMed

    Gromer, Stephan; Johansson, Linda; Bauer, Holger; Arscott, L David; Rauch, Susanne; Ballou, David P; Williams, Charles H; Schirmer, R Heiner; Arnér, Elias S J

    2003-10-28

    Selenium, an essential trace element for mammals, is incorporated into a selected class of selenoproteins as selenocysteine. All known isoenzymes of mammalian thioredoxin (Trx) reductases (TrxRs) employ selenium in the C-terminal redox center -Gly-Cys-Sec-Gly-COOH for reduction of Trx and other substrates, whereas the corresponding sequence in Drosophila melanogaster TrxR is -Ser-Cys-Cys-Ser-COOH. Surprisingly, the catalytic competence of these orthologous enzymes is similar, whereas direct Sec-to-Cys substitution of mammalian TrxR, or other selenoenzymes, yields almost inactive enzyme. TrxRs are therefore ideal for studying the biology of selenocysteine by comparative enzymology. Here we show that the serine residues flanking the C-terminal Cys residues of Drosophila TrxRs are responsible for activating the cysteines to match the catalytic efficiency of a selenocysteine-cysteine pair as in mammalian TrxR, obviating the need for selenium. This finding suggests that the occurrence of selenoenzymes, which implies that the organism is selenium-dependent, is not necessarily associated with improved enzyme efficiency. Our data suggest that the selective advantage of selenoenzymes is a broader range of substrates and a broader range of microenvironmental conditions in which enzyme activity is possible.

  14. Kv3 channel assembly, trafficking and activity are regulated by zinc through different binding sites.

    PubMed

    Gu, Yuanzheng; Barry, Joshua; Gu, Chen

    2013-05-15

    Zinc, a divalent heavy metal ion and an essential mineral for life, regulates synaptic transmission and neuronal excitability via ion channels. However, its binding sites and regulatory mechanisms are poorly understood. Here, we report that Kv3 channel assembly, localization and activity are regulated by zinc through different binding sites. Local perfusion of zinc reversibly reduced spiking frequency of cultured neurons most likely by suppressing Kv3 channels. Indeed, zinc inhibited Kv3.1 channel activity and slowed activation kinetics, independent of its site in the N-terminal T1 domain. Biochemical assays surprisingly identified a novel zinc-binding site in the Kv3.1 C-terminus, critical for channel activity and axonal targeting, but not for the zinc inhibition. Finally, mutagenesis revealed an important role of the junction between the first transmembrane (TM) segment and the first extracellular loop in sensing zinc. Its mutant enabled fast spiking with relative resistance to the zinc inhibition. Therefore, our studies provide novel mechanistic insights into the multifaceted regulation of Kv3 channel activity and localization by divalent heavy metal ions.

  15. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries

    NASA Astrophysics Data System (ADS)

    Suntivich, Jin; Gasteiger, Hubert A.; Yabuuchi, Naoaki; Nakanishi, Haruyuki; Goodenough, John B.; Shao-Horn, Yang

    2011-07-01

    The prohibitive cost and scarcity of the noble-metal catalysts needed for catalysing the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries limit the commercialization of these clean-energy technologies. Identifying a catalyst design principle that links material properties to the catalytic activity can accelerate the search for highly active and abundant transition-metal-oxide catalysts to replace platinum. Here, we demonstrate that the ORR activity for oxide catalysts primarily correlates to σ*-orbital (eg) occupation and the extent of B-site transition-metal-oxygen covalency, which serves as a secondary activity descriptor. Our findings reflect the critical influences of the σ* orbital and metal-oxygen covalency on the competition between O22-/OH- displacement and OH- regeneration on surface transition-metal ions as the rate-limiting steps of the ORR, and thus highlight the importance of electronic structure in controlling oxide catalytic activity.

  16. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries.

    PubMed

    Suntivich, Jin; Gasteiger, Hubert A; Yabuuchi, Naoaki; Nakanishi, Haruyuki; Goodenough, John B; Shao-Horn, Yang

    2011-06-12

    The prohibitive cost and scarcity of the noble-metal catalysts needed for catalysing the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries limit the commercialization of these clean-energy technologies. Identifying a catalyst design principle that links material properties to the catalytic activity can accelerate the search for highly active and abundant transition-metal-oxide catalysts to replace platinum. Here, we demonstrate that the ORR activity for oxide catalysts primarily correlates to σ-orbital (e(g)) occupation and the extent of B-site transition-metal-oxygen covalency, which serves as a secondary activity descriptor. Our findings reflect the critical influences of the σ orbital and metal-oxygen covalency on the competition between O(2)(2-)/OH(-) displacement and OH(-) regeneration on surface transition-metal ions as the rate-limiting steps of the ORR, and thus highlight the importance of electronic structure in controlling oxide catalytic activity.

  17. Public Notice: U.S. Environmental Protection Agency Reviews Cleanup at Reynolds Metals Superfund Site

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) is conducting its third five-year review of the Reynolds Metals Superfund Site, located in the town of Massena, St. Lawrence County, New York. This review seeks to confirm that the implemented cleanup continue

  18. Computational approaches for de novo design and redesign of metal-binding sites on proteins.

    PubMed

    Akcapinar, Gunseli Bayram; Sezerman, Osman Ugur

    2017-04-28

    Metal ions play pivotal roles in protein structure, function and stability. The functional and structural diversity of proteins in nature expanded with the incorporation of metal ions or clusters in proteins. Approximately one-third of these proteins in the databases contain metal ions. Many biological and chemical processes in nature involve metal ion-binding proteins, aka metalloproteins. Many cellular reactions that underpin life require metalloproteins. Most of the remarkable, complex chemical transformations are catalysed by metalloenzymes. Realization of the importance of metal-binding sites in a variety of cellular events led to the advancement of various computational methods for their prediction and characterization. Furthermore, as structural and functional knowledgebase about metalloproteins is expanding with advances in computational and experimental fields, the focus of the research is now shifting towards de novo design and redesign of metalloproteins to extend nature's own diversity beyond its limits. In this review, we will focus on the computational toolbox for prediction of metal ion-binding sites, de novo metalloprotein design and redesign. We will also give examples of tailor-made artificial metalloproteins designed with the computational toolbox.

  19. X-ray structures of a designed binding site in trypsin show metal-dependent geometry.

    PubMed

    Brinen, L S; Willett, W S; Craik, C S; Fletterick, R J

    1996-05-14

    The three-dimensional structures of complexes of trypsin N143H, E151H bound to ecotin A86H are determined at 2.0 A resolution via X-ray crystallography in the absence and presence of the transition metals Zn2+, Ni2+, and Cu2+. The binding site for these transition metals was constructed by substitution of key amino acids with histidine at the trypsin-ecotin interface in the S2'/P2' pocket. Three histidine side chains, two on trypsin at positions 143 and 151 and one on ecotin at position 86, anchor the metals and provide extended catalytic recognition for substrates with His in the P2' pocket. Comparisons of the three-dimensional structures show the different geometries that result upon the binding of metal in the engineered tridentate site and suggest a structural basis for the kinetics of the metal-regulated catalysis. Of the three metals, the binding of zinc results in the most favorable binding geometry, not dissimilar to those observed in naturally occurring zinc binding proteins.

  20. Heavy metal accumulation and ecosystem engineering by two common mine site-nesting ant species: implications for pollution-level assessment and bioremediation of coal mine soil.

    PubMed

    Khan, Shbbir R; Singh, Satish K; Rastogi, Neelkamal

    2017-04-01

    The present study focuses on the abundance, heavy metal content, and the impact of ecosystem engineering activities of two coal mine site-inhabiting ant species, Cataglyphis longipedem and Camponotus compressus. The abundance of Ct. longipedem increased while that of C. compressus decreased, with increasing soil pollution. Correspondence analysis reveals a close association between soil heavy metal concentrations and Ct. longipedem abundance, but this association is lacking in the case of C. compressus. Cataglyphis ants which occupy stress-characterized niches appear to be pre-adapted to tolerate heavy metal pollution. Higher concentrations of Zn and Mn in Ct. longipedem may contribute to the strengthening of the cuticular structures, necessary for nest excavation in the hard, arid soil and for single load carrying. C. compressus ants appear to be pollution sensitive. Their higher Fe content may be related to metal uptake via plant-derived liquids and species-specific regulatory mechanisms. The metal pollution index and biota-to-soil accumulation factors, calculated by using the ant body metal content of the two species, indicate an overall decrease of soil heavy metal concentrations with increase of the site age, which reflects the degree of pollution related to the mine site age. The concentrations of total and available heavy metals (Fe, Zn, Mn, Pb, and Cu) were significantly lower in the ant nest debris soil as compared to the reference soil. The results of the present study highlight the role of ants as bioindicators and in bioremediation of contaminated soil.

  1. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal–nitrogen coordination

    PubMed Central

    Strickland, Kara; Miner, Elise; Jia, Qingying; Tylus, Urszula; Ramaswamy, Nagappan; Liang, Wentao; Sougrati, Moulay-Tahar; Jaouen, Frédéric; Mukerjee, Sanjeev

    2015-01-01

    Replacement of noble metals in catalysts for cathodic oxygen reduction reaction with transition metals mostly create active sites based on a composite of nitrogen-coordinated transition metal in close concert with non-nitrogen-coordinated carbon-embedded metal atom clusters. Here we report a non-platinum group metal electrocatalyst with an active site devoid of any direct nitrogen coordination to iron that outperforms the benchmark platinum-based catalyst in alkaline media and is comparable to its best contemporaries in acidic media. In situ X-ray absorption spectroscopy in conjunction with ex situ microscopy clearly shows nitrided carbon fibres with embedded iron particles that are not directly involved in the oxygen reduction pathway. Instead, the reaction occurs primarily on the carbon–nitrogen structure in the outer skin of the nitrided carbon fibres. Implications include the potential of creating greater active site density and the potential elimination of any Fenton-type process involving exposed iron ions culminating in peroxide initiated free-radical formation. PMID:26059552

  2. Community Update on Site Activities, July 19, 2013

    EPA Pesticide Factsheets

    In an effort to engage and inform community members interested in the New Bedford Harbor Superfund Site cleanup, EPA will be issuing periodic topic-based fact sheets that will provide background information and updates about ongoing activities.

  3. [Biological activity of selenorganic compounds at heavy metal salts intoxication].

    PubMed

    Rusetskaya, N Y; Borodulin, V B

    2015-01-01

    Possible mechanisms of the antitoxic action of organoselenium compounds in heavy metal poisoning have been considered. Heavy metal toxicity associated with intensification of free radical oxidation, suppression of the antioxidant system, damage to macromolecules, mitochondria and the genetic material can cause apoptotic cell death or the development of carcinogenesis. Organic selenium compounds are effective antioxidants during heavy metal poisoning; they exhibit higher bioavailability in mammals than inorganic ones and they are able to activate antioxidant defense, bind heavy metal ions and reactive oxygen species formed during metal-induced oxidative stress. One of promising organoselenium compounds is diacetophenonyl selenide (DAPS-25), which is characterized by antioxidant and antitoxic activity, under conditions including heavy metal intoxication.

  4. Tuning Metal-Organic Frameworks with Open-Metal Sites and Its Origin for Enhancing CO2 Affinity by Metal Substitution.

    PubMed

    Park, Joonho; Kim, Heejin; Han, Sang Soo; Jung, Yousung

    2012-04-05

    Reducing anthropogenic carbon emission is a problem that requires immediate attention. Metal-organic frameworks (MOFs) have emerged as a promising new materials platform for carbon capture, of which Mg-MOF-74 offers chemospecific affinity toward CO2 because of the open Mg sites. Here we tune the binding affinity of CO2 for M-MOF-74 by metal substitution (M = Mg, Ca, and the first transition metal elements) and show that Ti- and V-MOF-74 can have an enhanced affinity compared to Mg-MOF-74 by 6-9 kJ/mol. Electronic structure calculations suggest that the origin of the major affinity trend is the local electric field effect of the open metal site that stabilizes CO2, but forward donation from the lone-pair electrons of CO2 to the empty d-levels of transition metals as in a weak coordination bond makes Ti and V have an even higher binding strength than Mg, Ca, and Sc.

  5. Effect of Transport and Aging Processes on Metal Speciation in Iron Oxyhydroxide Aggregates, Tar Creek Superfund Site, Oklahoma

    NASA Astrophysics Data System (ADS)

    Estes, E. R.; Schaider, L. A.; Shine, J. P.; Brabander, D. J.

    2010-12-01

    Following the cessation of mining activity in the late 20th century, Tar Creek Superfund Site was left highly contaminated by Pb, Zn, and Cd. Tar Creek, which flows through the site and into the Neosho River, has been studied extensively because of its potential to transport metals from the mining site to downstream communities. Previous research identified aggregated iron oxyhydroxide material, which forms when mine seepage mixes with Tar Creek surface water, as a major transport vector of metals. Frequent flooding in Tar Creek deposits aggregates on downstream floodplains, where wetting and drying processes alter the speciation of iron and other metals. This study seeks to better quantify those changes and to determine how transport and aging affects the human and ecological health risk. Sequential extractions of aggregate samples collected from the creek demonstrate that Fe is present in both amorphous (10-35% of Fe extracted) and more crystalline (8-23% of Fe extracted) phases. Substantial portions of heavy metals sorb to amorphous iron oxyhydroxide phases (accounting for 10-30% of Pb and Zn extracted) but are not associated with more crystalline iron oxide phases (representing only 1% or less of the Pb and Zn extracted). Samples have a high organic matter content (18-25% mass loss on ignition), but only Fe was significantly extracted by the oxidizing step targeting organic matter (1-2% of Pb and Zn extracted, but 10-26% of Fe extracted). The majority of metals were extracted by the soluble or residual steps. If metals and organic matter inhibit transformation of amorphous iron oxyhydroxide material to nano and crystalline iron oxides, then a steady-state volume of amorphous iron oxyhydroxide material with a high total sorption capacity may exist within Tar Creek, enhancing the metal flux accommodated by this transport mechanism. Once transported downstream and deposited on floodplains, however, it is hypothesized that repeated changes in soil matrix

  6. Background concentrations of metals in wetland soils on and near the Savannah River site

    SciTech Connect

    Dixon, K.L.

    1997-09-01

    A study was conducted to determine the naturally occurring concentrations of metals in unimpacted wetland soils at the Savannah River Site located near Aiken, SC. Soil samples were collected from three broad categories of wetlands: (1) large stream floodplain wetlands, (2) small stream floodplain wetlands, and (3) upland bays and depressions. Samples were collected from 75 locations to a depth of 3.1 m. All samples were analyzed for selected metals using EPA protocol and standard methods. Additionally, the pH, exchange capacity, and total organic carbon content of each sample was determined. Standard summary statistics were calculated and results are presented for each constituent. Box plots were also created relating metals concentrations to grain size distribution. Metals concentrations were found to increase with increasing silt and clay content. This increase in concentration was attributed to increasing cation exchange capacity and increasing organic matter content.

  7. Site-selective electroless nickel plating on patterned thin films of macromolecular metal complexes.

    PubMed

    Kimura, Mutsumi; Yamagiwa, Hiroki; Asakawa, Daisuke; Noguchi, Makoto; Kurashina, Tadashi; Fukawa, Tadashi; Shirai, Hirofusa

    2010-12-01

    We demonstrate a simple route to depositing nickel layer patterns using photocross-linked polymer thin films containing palladium catalysts, which can be used as adhesive interlayers for fabrication of nickel patterns on glass and plastic substrates. Electroless nickel patterns can be obtained in three steps: (i) the pattern formation of partially quaterized poly(vinyl pyridine) by UV irradiation, (ii) the formation of macromolecular metal complex with palladium, and (iii) the nickel metallization using electroless plating bath. Metallization is site-selective and allows for a high resolution. And the resulting nickel layered structure shows good adhesion with glass and plastic substrates. The direct patterning of metallic layers onto insulating substrates indicates a great potential for fabricating micro/nano devices.

  8. Mathematical modeling of heavy metals contamination from MSW landfill site in Khon Kaen, Thailand.

    PubMed

    Tantemsapya, N; Naksakul, Y; Wirojanagud, W

    2011-01-01

    Kham Bon landfill site is one of many municipality waste disposal sites in Thailand which are in an unsanitary condition. The site has been receiving municipality wastes without separating hazardous waste since 1968. Heavy metals including, Pb, Cr and Cd are found in soil and groundwater around the site, posing a health risk to people living nearby. In this research, contamination transport modelling of Pb, Cr and Cd was simulated using MODFLOW for two periods, at the present (2010) and 20 years prediction (2030). Model results showed that heavy metals, especially Pb and Cr migrated toward the north-eastern and south-eastern direction. The 20 years prediction showed that, heavy metals tend to move from the top soil to the deeper aquifer. The migration would not exceed 500 m radius from the landfill centre in the next 20 years, which is considered to be a slow process. From the simulation model, it is recommended that a mitigation measure should be performed to reduce the risk from landfill contamination. Hazardous waste should be separated for proper management. Groundwater contamination in the aquifer should be closely monitored. Consumption of groundwater in a 500 m radius must be avoided. In addition, rehabilitation of the landfill site should be undertaken to prevent further mobilization of pollutants.

  9. Promoting the Adsorption of Metal Ions on Kaolinite by Defect Sites: A Molecular Dynamics Study

    PubMed Central

    Li, Xiong; Li, Hang; Yang, Gang

    2015-01-01

    Defect sites exist abundantly in minerals and play a crucial role for a variety of important processes. Here molecular dynamics simulations are used to comprehensively investigate the adsorption behaviors, stabilities and mechanisms of metal ions on defective minerals, considering different ionic concentrations, defect sizes and contents. Outer-sphere adsorbed Pb2+ ions predominate for all models (regular and defective), while inner-sphere Na+ ions, which exist sporadically only at concentrated solutions for regular models, govern the adsorption for all defective models. Adsorption quantities and stabilities of metal ions on kaolinite are fundamentally promoted by defect sites, thus explaining the experimental observations. Defect sites improve the stabilities of both inner- and outer-sphere adsorption, and (quasi) inner-sphere Pb2+ ions emerge only at defect sites that reinforce the interactions. Adsorption configurations are greatly altered by defect sites but respond weakly by changing defect sizes or contents. Both adsorption quantities and stabilities are enhanced by increasing defect sizes or contents, while ionic concentrations mainly affect adsorption quantities. We also find that adsorption of metal ions and anions can be promoted by each other and proceeds in a collaborative mechanism. Results thus obtained are beneficial to comprehend related processes for all types of minerals. PMID:26403873

  10. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase

    SciTech Connect

    Fenwick, Michael K.; Mehta, Angad P.; Zhang, Yang; Abdelwahed, Sameh H.; Begley, Tadhg P.; Ealick, Steven E.

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.

  11. Using thermal evolution profiles to infer tritium speciation in nuclear site metals: an aid to decommissioning.

    PubMed

    Croudace, Ian W; Warwick, Phil E; Kim, Daeji

    2014-09-16

    Understanding the association and retention of tritium in metals has significance in nuclear decommissioning programs and can lead to cost benefits through waste reduction and recycling of materials. To develop insights, a range of metals from two nuclear sites and one non-nuclear site were investigated which had different exposure histories. Tritium speciation in metals was inferred through incremental heating experiments over the range of 20-900 °C using a Raddec Pyrolyser instrument. Systematic differences in thermal desorption profiles were found for nonirradiated and irradiated metals. In nonirradiated metals (e.g., stainless steel and copper), it was found that significant tritium had become incorporated following prolonged exposure to tritiated water vapor (HTO) or tritium/hydrogen gas (HT) in nuclear facilities. This externally derived tritium enters metals by diffusion with a rate controlled by the metal composition and whether the surface of the metal had been sealed or coated prior to exposure. The tritium is normally trapped in hydrated oxides lying along grain boundaries. In irradiated metals, an additional type of tritium can form internally through neutron capture reactions. The amount formed depends on the concentration and distribution of trace lithium and boron in the metal as well as the integrated neutron flux. Liberating this kind of tritium typically requires temperatures above 800 °C. The pattern of tritium evolution derived from simple thermal desorption experiments allows reliable inferences to be drawn on the likely origin, location, and phases that trap tritium. Any weakly bound tritium liberated at temperatures of ~100 °C is indicative of mostly HTO interactions in the metal. Any strongly bound tritium liberated over the range of 600-900 °C is indicative of neutrogenic tritium formed via neutron capture by trace Li and B. Neutron capture by lithium is likely to be more significant than for boron based on lithium's higher trace

  12. NMR and XAS reveal an inner-sphere metal binding site in the P4 helix of the metallo-ribozyme ribonuclease P

    PubMed Central

    Koutmou, Kristin S.; Casiano-Negroni, Anette; Getz, Melissa M.; Pazicni, Samuel; Andrews, Andrew J.; Penner-Hahn, James E.; Al-Hashimi, Hashim M.; Fierke, Carol A.

    2010-01-01

    Functionally critical metals interact with RNA through complex coordination schemes that are currently difficult to visualize at the atomic level under solution conditions. Here, we report a new approach that combines NMR and XAS to resolve and characterize metal binding in the most highly conserved P4 helix of ribonuclease P (RNase P), the ribonucleoprotein that catalyzes the divalent metal ion-dependent maturation of the 5′ end of precursor tRNA. Extended X-ray absorption fine structure (EXAFS) spectroscopy reveals that the Zn2+ bound to a P4 helix mimic is six-coordinate, with an average Zn-O/N bond distance of 2.08 Å. The EXAFS data also show intense outer-shell scattering indicating that the zinc ion has inner-shell interactions with one or more RNA ligands. NMR Mn2+ paramagnetic line broadening experiments reveal strong metal localization at residues corresponding to G378 and G379 in B. subtilis RNase P. A new “metal cocktail” chemical shift perturbation strategy involving titrations with , Zn2+, and confirm an inner-sphere metal interaction with residues G378 and G379. These studies present a unique picture of how metals coordinate to the putative RNase P active site in solution, and shed light on the environment of an essential metal ion in RNase P. Our experimental approach presents a general method for identifying and characterizing inner-sphere metal ion binding sites in RNA in solution. PMID:20133747

  13. Metal-Induced Stabilization and Activation of Plasmid Replication Initiator RepB

    PubMed Central

    Ruiz-Masó, José A.; Bordanaba-Ruiseco, Lorena; Sanz, Marta; Menéndez, Margarita; del Solar, Gloria

    2016-01-01

    Initiation of plasmid rolling circle replication (RCR) is catalyzed by a plasmid-encoded Rep protein that performs a Tyr- and metal-dependent site-specific cleavage of one DNA strand within the double-strand origin (dso) of replication. The crystal structure of RepB, the initiator protein of the streptococcal plasmid pMV158, constitutes the first example of a Rep protein structure from RCR plasmids. It forms a toroidal homohexameric ring where each RepB protomer consists of two domains: the C-terminal domain involved in oligomerization and the N-terminal domain containing the DNA-binding and endonuclease activities. Binding of Mn2+ to the active site is essential for the catalytic activity of RepB. In this work, we have studied the effects of metal binding on the structure and thermostability of full-length hexameric RepB and each of its separate domains by using different biophysical approaches. The analysis of the temperature-induced changes in RepB shows that the first thermal transition, which occurs at a range of temperatures physiologically relevant for the pMV158 pneumococcal host, represents an irreversible conformational change that affects the secondary and tertiary structure of the protein, which becomes prone to self-associate. This transition, which is also shown to result in loss of DNA binding capacity and catalytic activity of RepB, is confined to its N-terminal domain. Mn2+ protects the protein from undergoing this detrimental conformational change and the observed protection correlates well with the high-affinity binding of the cation to the active site, as substituting one of the metal-ligands at this site impairs both the protein affinity for Mn2+and the Mn2+-driven thermostabilization effect. The level of catalytic activity of the protein, especially in the case of full-length RepB, cannot be explained based only on the high-affinity binding of Mn2+ at the active site and suggests the existence of additional, lower-affinity metal binding site(s

  14. Electronically Active Cyclocarborane-Metal-Arene Assemblies

    DTIC Science & Technology

    1992-07-31

    Benvenuto , and R. N. Grimes, "Organotransition-Metal Metalla- carboranes. 18. Y16, _q5-Benzyltetramethylcyclopentadieneide(1-) as a Bridging Ligand in...Polyhedral Expansion of (Arene)Fe(Et 2CB 4 H4) Clusters", J. Am. Chem. Soc., 1991, 113 3061. M. A. Benvenuto and R. N. Grimes, "Organotransition-Metal...34, Organometallics 1992, 11, 2404. R. N. Grimes, "Boron-Carbon Ring Ligands in Organometallic Synthesis", Chem. Rev. 1992, 92. 251. M. A. Benvenuto and R

  15. The Origin of the Catalytic Activity of a Metal Hydride in CO2 Reduction.

    PubMed

    Kato, Shunsuke; Matam, Santhosh Kumar; Kerger, Philipp; Bernard, Laetitia; Battaglia, Corsin; Vogel, Dirk; Rohwerder, Michael; Züttel, Andreas

    2016-05-10

    Atomic hydrogen on the surface of a metal with high hydrogen solubility is of particular interest for the hydrogenation of carbon dioxide. In a mixture of hydrogen and carbon dioxide, methane was markedly formed on the metal hydride ZrCoHx in the course of the hydrogen desorption and not on the pristine intermetallic. The surface analysis was performed by means of time-of-flight secondary ion mass spectroscopy and near-ambient pressure X-ray photoelectron spectroscopy, for the in situ analysis. The aim was to elucidate the origin of the catalytic activity of the metal hydride. Since at the initial stage the dissociation of impinging hydrogen molecules is hindered by a high activation barrier of the oxidised surface, the atomic hydrogen flux from the metal hydride is crucial for the reduction of carbon dioxide and surface oxides at interfacial sites.

  16. SITE demonstration of the Dynaphore/Forager Sponge technology to remove dissolved metals from contaminated groundwater

    SciTech Connect

    Esposito, C.R.; Vaccaro, G.

    1995-10-01

    A Superfund Innovative Technology Evaluation (SITE) demonstration was conducted of the Dynaphore/Forager Sponge technology during the week of April 3, 1994 at the N.L. Industries Superfund Site in Pedricktown, New Jersey. The Forager Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that selectively absorbs dissolved heavy metals in both cationic and anionic states. This technology is a volume reduction technology in which heavy metal contaminants from an aqueous medium are concentrated into a smaller volume for facilitated disposal. The developer states that the technology can be used to remove heavy metals from a wide variety of aqueous media, such as groundwater, surface waters and process waters. The sponge matrix can be directly disposed, or regenerated with chemical solutions. For this demonstration the sponge was set up as a mobile pump-and-treat system which treated groundwater contaminated with heavy metals. The demonstration focused on the system`s ability to remove lead, cadmium, chromium and copper from the contaminated groundwater over a continuous 72-hour test. The removal of heavy metals proceeded in the presence of significantly higher concentrations of innocuous cations such as calcium, magnesium, sodium, potassium and aluminum.

  17. PROGENITOR DIAGNOSTICS FOR STRIPPED CORE-COLLAPSE SUPERNOVAE: MEASURED METALLICITIES AT EXPLOSION SITES

    SciTech Connect

    Modjaz, M.; Bloom, J. S.; Filippenko, A. V.; Perley, D.; Silverman, J. M.; Kewley, L.

    2011-04-10

    Metallicity is expected to influence not only the lives of massive stars but also the outcome of their deaths as supernovae (SNe) and gamma-ray bursts (GRBs). However, there are surprisingly few direct measurements of the local metallicities of different flavors of core-collapse SNe (CCSNe). Here, we present the largest existing set of host-galaxy spectra with H II region emission lines at the sites of 35 stripped-envelope CCSNe. We derive local oxygen abundances in a robust manner in order to constrain the SN Ib/c progenitor population. We obtain spectra at the SN sites, include SNe from targeted and untargeted surveys, and perform the abundance determinations using three different oxygen-abundance calibrations. The sites of SNe Ic (the demise of the most heavily stripped stars, having lost both H and He layers) are systematically more metal rich than those of SNe Ib (arising from stars that retained their He layer) in all calibrations. A Kolmogorov-Smirnov test yields the very low probability of 1% that SN Ib and SN Ic environment abundances, which are different on average by {approx}0.2 dex (in the Pettini and Pagel scale), are drawn from the same parent population. Broad-lined SNe Ic (without GRBs) occur at metallicities between those of SNe Ib and SNe Ic. Lastly, we find that the host-galaxy central oxygen abundance is not a good indicator of the local SN metallicity; hence, large-scale SN surveys need to obtain local abundance measurements in order to quantify the impact of metallicity on stellar death.

  18. Tolerance to Cadmium of Agave lechuguilla (Agavaceae) Seeds and Seedlings from Sites Contaminated with Heavy Metals

    PubMed Central

    Méndez-Hurtado, Alejandra; Rangel-Méndez, René; Flores, Joel

    2013-01-01

    We investigated if seeds of Agave lechuguilla from contaminated sites with heavy metals were more tolerant to Cd ions than seeds from noncontaminated sites. Seeds from a highly contaminated site (Villa de la Paz) and from a noncontaminated site (Villa de Zaragoza) were evaluated. We tested the effect of Cd concentrations on several ecophysiological, morphological, genetical, and anatomical responses. Seed viability, seed germination, seedling biomass, and radicle length were higher for the non-polluted site than for the contaminated one. The leaves of seedlings from the contaminated place had more cadmium and showed peaks attributed to chemical functional groups such as amines, amides, carboxyl, and alkenes that tended to disappear due to increasing the concentration of cadmium than those from Villa de Zaragoza. Malformed cells in the parenchyma surrounding the vascular bundles were found in seedlings grown with Cd from both sites. The leaves from the contaminated place showed a higher metallothioneins expression in seedlings from the control group than that of seedlings at different Cd concentrations. Most of our results fitted into the hypothesis that plants from metal-contaminated places do not tolerate more pollution, because of the accumulative effect that cadmium might have on them. PMID:24453802

  19. Tolerance to cadmium of Agave lechuguilla (Agavaceae) seeds and seedlings from sites contaminated with heavy metals.

    PubMed

    Méndez-Hurtado, Alejandra; Rangel-Méndez, René; Yáñez-Espinosa, Laura; Flores, Joel

    2013-01-01

    We investigated if seeds of Agave lechuguilla from contaminated sites with heavy metals were more tolerant to Cd ions than seeds from noncontaminated sites. Seeds from a highly contaminated site (Villa de la Paz) and from a noncontaminated site (Villa de Zaragoza) were evaluated. We tested the effect of Cd concentrations on several ecophysiological, morphological, genetical, and anatomical responses. Seed viability, seed germination, seedling biomass, and radicle length were higher for the non-polluted site than for the contaminated one. The leaves of seedlings from the contaminated place had more cadmium and showed peaks attributed to chemical functional groups such as amines, amides, carboxyl, and alkenes that tended to disappear due to increasing the concentration of cadmium than those from Villa de Zaragoza. Malformed cells in the parenchyma surrounding the vascular bundles were found in seedlings grown with Cd from both sites. The leaves from the contaminated place showed a higher metallothioneins expression in seedlings from the control group than that of seedlings at different Cd concentrations. Most of our results fitted into the hypothesis that plants from metal-contaminated places do not tolerate more pollution, because of the accumulative effect that cadmium might have on them.

  20. Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bioaccessible heavy metals in soil near a waste-incinerator site, South China.

    PubMed

    Li, Ning; Kang, Yuan; Pan, Weijian; Zeng, Lixuan; Zhang, Qiuyun; Luo, Jiwen

    2015-07-15

    There is limited study focusing on the bioaccumulation of heavy metals in vegetables and human exposure to bioaccessible heavy metals in soil. In the present study, heavy metal concentrations (Cr, Ni, Cu, Pb and Cd) were measured in five types of vegetables, soil, root, and settled air particle samples from two sites (at a domestic waste incinerator and at 20km away from the incinerator) in Guangzhou, South China. Heavy metal concentrations in soil were greater than those in aerial parts of vegetables and roots, which indicated that vegetables bioaccumulated low amount of heavy metals from soil. The similar pattern of heavy metal (Cr, Cd) was found in the settled air particle samples and aerial parts of vegetables from two sites, which may suggest that foliar uptake may be an important pathway of heavy metal from the environment to vegetables. The highest levels of heavy metals were found in leaf lettuce (125.52μg/g, dry weight) and bitter lettuce (71.2μg/g) for sites A and B, respectively, followed by bitter lettuce and leaf lettuce for sites A and B, respectively. Swamp morning glory accumulated the lowest amount of heavy metals (81.02μg/g for site A and 53.2μg/g for site B) at both sites. The bioaccessibility of heavy metals in soil ranged from Cr (2%) to Cu (71.78%). Risk assessment showed that Cd and Pb in soil samples resulted in the highest non-cancer risk and Cd would result in unacceptable cancer risk for children and risk. The non-dietary intake of soil was the most important exposure pathway, when the bioaccessibility of heavy metals was taken into account.

  1. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter.

    PubMed

    Wang, YuanPeng; Shi, JiYan; Wang, Hui; Lin, Qi; Chen, XinCai; Chen, YingXu

    2007-05-01

    The environmental risk of heavy metal pollution is pronounced in soils adjacent to large industrial complexes. It is important to investigate the functioning of soil microorganisms in ecosystems exposed to long-term contamination by heavy metals. We studied the potential effects of heavy metals on microbial biomass, activity, and community composition in soil near a copper smelter in China. The results showed that microbial biomass C was negatively affected by the elevated metal levels and was closely correlated with heavy metal stress. Enzyme activity was greatly depressed by conditions in the heavy metal-contaminated sites. Good correlation was observed between enzyme activity and the distance from the smelter. Elevated metal loadings resulted in changes in the activity of the soil microbe, as indicated by changes in their metabolic profiles from correlation analysis. Significant decrease of soil phosphatase activities was found in the soils 200 m away from the smelter. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis demonstrated that heavy metals pollution had a significant impact on bacterial and actinomycetic community structure. There were negative correlations between soil microbial biomass, phosphatase activity, and NH(4)NO(3) extractable heavy metals. The soil microorganism activity and community composition could be predicted significantly using the availability of Cu and Zn. By combining different monitoring approaches from different viewpoints, the set of methods applied in this study were sensitive to site differences and contributed to a better understanding of heavy metals effects on the structure, size and activity of microbial communities in soils. The data presented demonstrate the role of heavy metals pollution in understanding the heavy metal toxicity to soil microorganism near a copper smelter in China.

  2. Activation of carbon dioxide on metal and metal oxide surfaces

    SciTech Connect

    Tan, C.D.; Chuang, S.S.C.

    1995-12-31

    The environmental concern about the impact of CO{sub 2} has grown recently due to its rapidly increasing concentration. Deforestation strongly affects the natural reduction of CO{sub 2} by water into carbohydrates by photosynthesis. Industrial utilization of CO{sub 2} by heterogeneous catalytic reactions can be one of the effective ways to cut the CO{sub 2} level. The first step in catalytic reaction of CO{sub 2} is the adsorption. The objective of this study is to investigate the adsorption of CO{sub 2} on the Rh/Al{sub 2}O{sub 3} surfaces. Rh is selected for this study because of its unique activity to catalyze a number of CO{sub 2} related reactions. In situ infrared results show that CO{sub 2} adsorbed on the alumina oxide support as bidentate carbonate and non-coordinated carbon which are the dominant species during the CO{sub 2} adsorption.

  3. Magnetic Measurements and Heavy Metal Concentrations at Formosa Mine Superfund Site, Douglas County, OR

    NASA Astrophysics Data System (ADS)

    Upton, T. L.

    2015-12-01

    Advances in the field of environmental magnetism have led to exciting new applications for this field. Magnetic minerals are ubiquitous in the environment and tend to have an affinity for heavy metals. It has been demonstrated that magnetic properties are often significantly related to concentrations of heavy metals and/or pollution loading index (PLI). As a result, magnetic techniques have been used as proxy for determining hot spots of several types of pollution produced from a diversity of anthropogenic sources. Magnetic measurements are non-destructive and relatively inexpensive compared to geochemical analyses. The utility of environmental magnetic methods varies widely depending on biological, chemical and physical processes that create and transform soils and sediments. Applications in the direction of mapping heavy metals have been studied and shown to be quite useful in countries such as China and India but to date, little research has been done in the US. As such, there is need to expand the scope of research to a wider range of soil types and land uses, especially within the US. This study investigates the application of environmental magnetic techniques to mapping of heavy metal concentrations and PLI at the Formosa Mine Superfund Site, an abandoned mine about 25 miles southwest of Roseburg, OR. Using hotspot analysis, correlation and cluster analyses, interactions between metals and magnetic parameters are examined in relation to environmental factors such as proximity to seeps and adits. Preliminary results suggest significant correlation of magnetic susceptibility with certain heavy metals, signifying that magnetic methods may be useful in mapping heavy metal hotspots at this site.

  4. Crystal Structure of Phosphatidylglycerophosphatase (PGPase), a Putative Membrane-Bound Lipid Phosphatase, Reveals a Novel Binuclear Metal Binding Site and Two Proton Wires

    SciTech Connect

    Kumaran,D.; Bonnano, J.; Burley, S.; Swaminathan, S.

    2006-01-01

    Phosphatidylglycerophosphatase (PGPase), an enzyme involved in lipid metabolism, catalyzes formation of phosphatidylglycerol from phosphatidylglycerophosphate. Phosphatidylglycerol is a multifunctional phospholipid, found in the biological membranes of many organisms. Here, we report the crystal structure of Listeria monocytogenes PGPase at 1.8 Angstroms resolution. PGPase, an all-helical molecule, forms a homotetramer. Each protomer contains an independent active site with two metal ions, Ca{sup 2+} and Mg{sup 2+}, forming a hetero-binuclear center located in a hydrophilic cavity near the surface of the molecule. The binuclear center, conserved ligands, metal-bound water molecules, and an Asp-His dyad form the active site. The catalytic mechanism of this enzyme is likely to proceed via binuclear metal activated nucleophilic water. The binuclear metal-binding active-site environment of this structure should provide insights into substrate binding and metal-dependent catalysis. A long channel with inter-linked linear water chains, termed 'proton wires', is observed at the tetramer interface. Comparison of similar water chain structures in photosynthetic reaction centers (RCs), Cytochrome f, gramicidin, and bacteriorhodopsin, suggests that PGPase may conduct protons via proton wires.

  5. Identification of putative active site residues of ACAT enzymes.

    PubMed

    Das, Akash; Davis, Matthew A; Rudel, Lawrence L

    2008-08-01

    In this report, we sought to determine the putative active site residues of ACAT enzymes. For experimental purposes, a particular region of the C-terminal end of the ACAT protein was selected as the putative active site domain due to its high degree of sequence conservation from yeast to humans. Because ACAT enzymes have an intrinsic thioesterase activity, we hypothesized that by analogy with the thioesterase domain of fatty acid synthase, the active site of ACAT enzymes may comprise a catalytic triad of ser-his-asp (S-H-D) amino acid residues. Mutagenesis studies revealed that in ACAT1, S456, H460, and D400 were essential for activity. In ACAT2, H438 was required for enzymatic activity. However, mutation of D378 destabilized the enzyme. Surprisingly, we were unable to identify any S mutations of ACAT2 that abolished catalytic activity. Moreover, ACAT2 was insensitive to serine-modifying reagents, whereas ACAT1 was not. Further studies indicated that tyrosine residues may be important for ACAT activity. Mutational analysis showed that the tyrosine residue of the highly conserved FYXDWWN motif was important for ACAT activity. Furthermore, Y518 was necessary for ACAT1 activity, whereas the analogous residue in ACAT2, Y496, was not. The available data suggest that the amino acid requirement for ACAT activity may be different for the two ACAT isozymes.

  6. Structural basis for the metal-selective activation of the manganese transport regulator of Bacillus subtilis.

    PubMed

    Kliegman, Joseph I; Griner, Sarah L; Helmann, John D; Brennan, Richard G; Glasfeld, Arthur

    2006-03-21

    The manganese transport regulator (MntR) of Bacillus subtilis is activated by Mn(2+) to repress transcription of genes encoding transporters involved in the uptake of manganese. MntR is also strongly activated by cadmium, both in vivo and in vitro, but it is poorly activated by other metal cations, including calcium and zinc. The previously published MntR.Mn(2+) structure revealed a binuclear complex of manganese ions with a metal-metal separation of 3.3 A (herein designated the AB conformer). Analysis of four additional crystal forms of MntR.Mn(2+) reveals that the AB conformer is only observed in monoclinic crystals at 100 K, suggesting that this conformation may be stabilized by crystal packing forces. In contrast, monoclinic crystals analyzed at room temperature (at either pH 6.5 or pH 8.5), and a second hexagonal crystal form (analyzed at 100 K), all reveal the shift of one manganese ion by 2.5 A, thereby leading to a newly identified conformation (the AC conformer) with an internuclear distance of 4.4 A. Significantly, the cadmium and calcium complexes of MntR also contain binuclear complexes with a 4.4 A internuclear separation. In contrast, the zinc complex of MntR contains only one metal ion per subunit, in the A site. Isothermal titration calorimetry confirms the stoichiometry of Mn(2+), Cd(2+), and Zn(2+) binding to MntR. We propose that the specificity of MntR activation is tied to productive binding of metal ions at two sites; the A site appears to act as a selectivity filter, determining whether the B or C site will be occupied and thereby fully activate MntR.

  7. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site

    PubMed Central

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-01-01

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  8. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site.

    PubMed

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-04-20

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide.

  9. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    DOEpatents

    Sharp, David W.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  10. Site-specific cleavage by metal ion cofactors and inhibitors of M1 RNA, the catalytic subunit of RNase P from Escherichia coli.

    PubMed Central

    Kazakov, S; Altman, S

    1991-01-01

    The location of phosphate residues involved in specific centers for binding of metal ions in M1 RNA, the catalytic RNA subunit of RNase P from Escherichia coli, was determined by analysis of induction of cleavage of RNA by metal ions. At pH 9.5, Mg2+ catalyzes cleavage of M1 RNA at five principal sites. Under certain conditions, Mn2+ and Ca2+ can each replace Mg2+ as the cofactor in the processing of precursor tRNAs by M1 RNA and P RNA, the RNA subunit of RNase P from Bacillus subtilis. These cations, as well as various metal ion inhibitors of the catalytic activity of M1 RNA, also promote cleavage of M1 RNA in a specific manner. Certain conditions that affect the catalytic activity of M1 RNA also alter the rate of metal ion-induced cleavage at the various sites. From these results and a comparison of cleavage of M1 RNA with that of a deletion mutant of M1 RNA and of P RNA, we have identified two different centers for binding of metal ions in M1 RNA that are important for the processing of the precursor to tRNA(Tyr) from E. coli. There is also a center for the binding of metal ions in the substrate, close to the site of cleavage by M1 RNA. Images PMID:1718000

  11. Crystal Structure of the Metallo-β-Lactamase GOB in the Periplasmic Dizinc Form Reveals an Unusual Metal Site

    PubMed Central

    Morán-Barrio, Jorgelina; Lisa, María-Natalia; Larrieux, Nicole; Drusin, Salvador I.; Viale, Alejandro M.; Moreno, Diego M.

    2016-01-01

    Metallo-beta-lactamases (MBLs) are broad-spectrum, Zn(II)-dependent lactamases able to confer resistance to virtually every β-lactam antibiotic currently available. The large diversity of active-site structures and metal content among MBLs from different sources has limited the design of a pan-MBL inhibitor. GOB-18 is a divergent MBL from subclass B3 that is expressed by the opportunistic Gram-negative pathogen Elizabethkingia meningoseptica. This MBL is atypical, since several residues conserved in B3 enzymes (such as a metal ligand His) are substituted in GOB enzymes. Here, we report the crystal structure of the periplasmic di-Zn(II) form of GOB-18. This enzyme displays a unique active-site structure, with residue Gln116 coordinating the Zn1 ion through its terminal amide moiety, replacing a ubiquitous His residue. This situation contrasts with that of B2 MBLs, where an equivalent His116Asn substitution leads to a di-Zn(II) inactive species. Instead, both the mono- and di-Zn(II) forms of GOB-18 are active against penicillins, cephalosporins, and carbapenems. In silico docking and molecular dynamics simulations indicate that residue Met221 is not involved in substrate binding, in contrast to Ser221, which otherwise is conserved in most B3 enzymes. These distinctive features are conserved in recently reported GOB orthologues in environmental bacteria. These findings provide valuable information for inhibitor design and also posit that GOB enzymes have alternative functions. PMID:27458232

  12. Crystal Structure of the Metallo-β-Lactamase GOB in the Periplasmic Dizinc Form Reveals an Unusual Metal Site.

    PubMed

    Morán-Barrio, Jorgelina; Lisa, María-Natalia; Larrieux, Nicole; Drusin, Salvador I; Viale, Alejandro M; Moreno, Diego M; Buschiazzo, Alejandro; Vila, Alejandro J

    2016-10-01

    Metallo-beta-lactamases (MBLs) are broad-spectrum, Zn(II)-dependent lactamases able to confer resistance to virtually every β-lactam antibiotic currently available. The large diversity of active-site structures and metal content among MBLs from different sources has limited the design of a pan-MBL inhibitor. GOB-18 is a divergent MBL from subclass B3 that is expressed by the opportunistic Gram-negative pathogen Elizabethkingia meningoseptica This MBL is atypical, since several residues conserved in B3 enzymes (such as a metal ligand His) are substituted in GOB enzymes. Here, we report the crystal structure of the periplasmic di-Zn(II) form of GOB-18. This enzyme displays a unique active-site structure, with residue Gln116 coordinating the Zn1 ion through its terminal amide moiety, replacing a ubiquitous His residue. This situation contrasts with that of B2 MBLs, where an equivalent His116Asn substitution leads to a di-Zn(II) inactive species. Instead, both the mono- and di-Zn(II) forms of GOB-18 are active against penicillins, cephalosporins, and carbapenems. In silico docking and molecular dynamics simulations indicate that residue Met221 is not involved in substrate binding, in contrast to Ser221, which otherwise is conserved in most B3 enzymes. These distinctive features are conserved in recently reported GOB orthologues in environmental bacteria. These findings provide valuable information for inhibitor design and also posit that GOB enzymes have alternative functions.

  13. Health Risk-Based Assessment and Management of Heavy Metals-Contaminated Soil Sites in Taiwan

    PubMed Central

    Lai, Hung-Yu; Hseu, Zeng-Yei; Chen, Ting-Chien; Chen, Bo-Ching; Guo, Horng-Yuh; Chen, Zueng-Sang

    2010-01-01

    Risk-based assessment is a way to evaluate the potential hazards of contaminated sites and is based on considering linkages between pollution sources, pathways, and receptors. These linkages can be broken by source reduction, pathway management, and modifying exposure of the receptors. In Taiwan, the Soil and Groundwater Pollution Remediation Act (SGWPR Act) uses one target regulation to evaluate the contamination status of soil and groundwater pollution. More than 600 sites contaminated with heavy metals (HMs) have been remediated and the costs of this process are always high. Besides using soil remediation techniques to remove contaminants from these sites, the selection of possible remediation methods to obtain rapid risk reduction is permissible and of increasing interest. This paper discusses previous soil remediation techniques applied to different sites in Taiwan and also clarified the differences of risk assessment before and after soil remediation obtained by applying different risk assessment models. This paper also includes many case studies on: (1) food safety risk assessment for brown rice growing in a HMs-contaminated site; (2) a tiered approach to health risk assessment for a contaminated site; (3) risk assessment for phytoremediation techniques applied in HMs-contaminated sites; and (4) soil remediation cost analysis for contaminated sites in Taiwan. PMID:21139851

  14. Efficiency of metal activators of accelerated sulfur vulcanization

    SciTech Connect

    Duchacek, V.; Kuta, A.; Pribyl, P. )

    1993-01-20

    The effects of copper, mercury, nickel, zinc, cadmium, indium, magnesium, and calcium stearates on the course of N-cyclohexyl-2-benzthiazylsulphenamide-accelerated sulfur vulcanization of natural rubber have been investigated on the basis of curemeter measurements at 145 C. The differences in the efficiencies of these metal activators of accelerated sulfur vulcanization have been discussed from the points of view of the electron configurations of the metals and their affinities to sulfur. The authors attempted to determine why zinc oxide is generally accepted as the best metal vulcanization activator.

  15. Elevated temperature creep properties for selected active metal braze alloys

    SciTech Connect

    Stephens, J.J.

    1997-02-01

    Active metal braze alloys reduce the number of processes required for the joining of metal to ceramic components by eliminating the need for metallization and/or Ni plating of the ceramic surfaces. Titanium (Ti), V, and Zr are examples of active element additions which have been used successfully in such braze alloys. Since the braze alloy is expected to accommodate thermal expansion mismatch strains between the metal and ceramic materials, a knowledge of its elevated temperature mechanical properties is important. In particular, the issue of whether or not the creep strength of an active metal braze alloy is increased or decreased relative to its non-activated counterpart is important when designing new brazing processes and alloy systems. This paper presents a survey of high temperature mechanical properties for two pairs of conventional braze alloys and their active metal counterparts: (a) the conventional 72Ag-28Cu (Cusil) alloy, and the active braze alloy 62.2Ag- 36.2Cu-1.6Ti (Cusil ABA), and (b) the 82Au-18Ni (Nioro) alloy and the active braze alloy Mu-15.5M-0.75Mo-1.75V (Nioro ABA). For the case of the Cusil/Cusil ABA pair, the active metal addition contributes to solid solution strengthening of the braze alloy, resulting in a higher creep strength as compared to the non-active alloy. In the case of the Nioro/Nioro ABA pair, the Mo and V additions cause the active braze alloy to have a two-phase microstructure, which results in a reduced creep strength than the conventional braze alloy. The Garofalo sinh equation has been used to quantitatively describe the stress and temperature dependence of the deformation behavior. It will be observed that the effective stress exponent in the Garofalo sinh equation is a function of the instantaneous value of the stress argument.

  16. Improved ethanol electrooxidation performance by shortening Pd–Ni active site distance in Pd–Ni–P nanocatalysts

    PubMed Central

    Chen, Lin; Lu, Lilin; Zhu, Hengli; Chen, Yueguang; Huang, Yu; Li, Yadong; Wang, Leyu

    2017-01-01

    Incorporating oxophilic metals into noble metal-based catalysts represents an emerging strategy to improve the catalytic performance of electrocatalysts in fuel cells. However, effects of the distance between the noble metal and oxophilic metal active sites on the catalytic performance have rarely been investigated. Herein, we report on ultrasmall (∼5 nm) Pd–Ni–P ternary nanoparticles for ethanol electrooxidation. The activity is improved up to 4.95 A per mgPd, which is 6.88 times higher than commercial Pd/C (0.72 A per mgPd), by shortening the distance between Pd and Ni active sites, achieved through shape transformation from Pd/Ni–P heterodimers into Pd–Ni–P nanoparticles and tuning the Ni/Pd atomic ratio to 1:1. Density functional theory calculations reveal that the improved activity and stability stems from the promoted production of free OH radicals (on Ni active sites) which facilitate the oxidative removal of carbonaceous poison and combination with CH3CO radicals on adjacent Pd active sites. PMID:28071650

  17. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts.

    PubMed

    Chen, Lin; Lu, Lilin; Zhu, Hengli; Chen, Yueguang; Huang, Yu; Li, Yadong; Wang, Leyu

    2017-01-10

    Incorporating oxophilic metals into noble metal-based catalysts represents an emerging strategy to improve the catalytic performance of electrocatalysts in fuel cells. However, effects of the distance between the noble metal and oxophilic metal active sites on the catalytic performance have rarely been investigated. Herein, we report on ultrasmall (∼5 nm) Pd-Ni-P ternary nanoparticles for ethanol electrooxidation. The activity is improved up to 4.95 A per mgPd, which is 6.88 times higher than commercial Pd/C (0.72 A per mgPd), by shortening the distance between Pd and Ni active sites, achieved through shape transformation from Pd/Ni-P heterodimers into Pd-Ni-P nanoparticles and tuning the Ni/Pd atomic ratio to 1:1. Density functional theory calculations reveal that the improved activity and stability stems from the promoted production of free OH radicals (on Ni active sites) which facilitate the oxidative removal of carbonaceous poison and combination with CH3CO radicals on adjacent Pd active sites.

  18. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Lu, Lilin; Zhu, Hengli; Chen, Yueguang; Huang, Yu; Li, Yadong; Wang, Leyu

    2017-01-01

    Incorporating oxophilic metals into noble metal-based catalysts represents an emerging strategy to improve the catalytic performance of electrocatalysts in fuel cells. However, effects of the distance between the noble metal and oxophilic metal active sites on the catalytic performance have rarely been investigated. Herein, we report on ultrasmall (~5 nm) Pd-Ni-P ternary nanoparticles for ethanol electrooxidation. The activity is improved up to 4.95 A per mgPd, which is 6.88 times higher than commercial Pd/C (0.72 A per mgPd), by shortening the distance between Pd and Ni active sites, achieved through shape transformation from Pd/Ni-P heterodimers into Pd-Ni-P nanoparticles and tuning the Ni/Pd atomic ratio to 1:1. Density functional theory calculations reveal that the improved activity and stability stems from the promoted production of free OH radicals (on Ni active sites) which facilitate the oxidative removal of carbonaceous poison and combination with CH3CO radicals on adjacent Pd active sites.

  19. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites

    PubMed Central

    Britt, David; Furukawa, Hiroyasu; Wang, Bo; Glover, T. Grant; Yaghi, Omar M.

    2009-01-01

    Selective capture of CO2, which is essential for natural gas purification and CO2 sequestration, has been reported in zeolites, porous membranes, and amine solutions. However, all such systems require substantial energy input for release of captured CO2, leading to low energy efficiency and high cost. A new class of materials named metal-organic frameworks (MOFs) has also been demonstrated to take up voluminous amounts of CO2. However, these studies have been largely limited to equilibrium uptake measurements, which are a poor predictor of separation ability, rather than the more industrially relevant kinetic (dynamic) capacity. Here, we report that a known MOF, Mg-MOF-74, with open magnesium sites, rivals competitive materials in CO2 capture, with 8.9 wt. % dynamic capacity, and undergoes facile CO2 release at significantly lower temperature, 80 °C. Mg-MOF-74 offers an excellent balance between dynamic capacity and regeneration. These results demonstrate the potential of MOFs with open metal sites as efficient CO2 capture media. PMID:19948967

  20. Coordination Environment of a Site-Bound Metal Ion in the Hammerhead Ribozyme Determined by 15N and 2H ESEEM Spectroscopy

    PubMed Central

    Vogt, Matthew; Lahiri, Simanti; Hoogstraten, Charles G.; Britt, R. David; DeRose, Victoria J.

    2010-01-01

    Although site-bound Mg2+ ions have been proposed to influence RNA structure and function, establishing the molecular properties of such sites has been challenging due largely to the unique electrostatic properties of the RNA biopolymer. We have previously determined that, in solution, the hammerhead ribozyme (a self-cleaving RNA) has a high-affinity metal ion binding site characterized by a Kd,app < 10 µM for Mn2+ in 1 M NaCl and speculated that this site has functional importance in the ribozyme cleavage reaction. Here we determine both the precise location and the hydration level of Mn2+ in this site using ESEEM (electron spin–echo envelope modulation) spectroscopy. Definitive assignment of the high-affinity site to the activity-sensitive A9/G10.1 region is achieved by site-specific labeling of G10.1 with 15N guanine. The coordinated metal ion retains four water ligands as measured by 2H ESEEM spectroscopy. The results presented here show that a functionally important, specific metal binding site is uniquely populated in the hammerhead ribozyme even in a background of high ionic strength. Although it has a relatively high thermodynamic affinity, this ion remains partially hydrated and is chelated to the RNA by just two ligands. PMID:17177426

  1. Innovative use of activated carbon for the removal of heavy metals from ground water sources

    SciTech Connect

    Lewis, T. III

    1996-12-31

    This report discusses the evaluation of the ENVIRO-CLEAN PROCESS, a technology developed by Lewis Environmental Services, Inc. for the recovery of metals such as chromium, mercury, copper, cadmium, lead, and zinc from surface and groundwater streams. This new heavy metal removal process (patent-pending) utilizes granular activated carbon with a proprietary conditioning pretreatment to enhance heavy metal adsorption combined with electrolytic metal recovery to produce a saleable metallic product. The process generates no sludge or hazardous waste and the effluent meets EPA limits. A 50 gpm system was installed for recovering hexavalent chromium from a ground water stream at a site located in Fresno, California. The effluent from the activated carbon system was reinjected into the ground water table with the hexavalent chromium concentration < 10 ppb. The system simultaneously removed trichloroethylene (TCE) to concentrations levels < 05 ppb. The activated carbon is regenerated off-site and the chromium electrolytically recovered. The full scale system has treated over 5 million gallons of ground water since installation. 5 refs., 1 fig., 3 tabs.

  2. Siting of a metals industry landfill on abandoned soda ash waste beds

    SciTech Connect

    Rinaldo-Lee, M.B.; Diffendorf, A.F.; Hagarman, J.A.

    1983-03-01

    A recent application by a steel-manufacturing plant to obtain a permit for an industrial landfill on abandoned soda ash waste beds near the city of Syracuse, New York, resulted in an extensive hydrogeologic and geochemical investigation. This investigation was initiated because of (1) previous disposal of waste by the metal manufacturer at this site and (2) the unique location of the landfill on top of preexisting waste beds on the shores of Onondaga Lake. The results of groundwater monitoring over a one-year period indicate no detectable chromium from the metal-waste leachate escaping through the soda ash wastes. Retention ofhexavalent chromium within the underlying highly alkaline soda ash wastes by adsorption, reduction, and precipitation suggests a viable means for in situ treatment of several metals-manufacturing waste products.

  3. Ultra-low contact resistance at an epitaxial metal/oxide heterojunction through interstitial site doping

    SciTech Connect

    Chambers, Scott A.; Gu, Meng; Sushko, Petr V.; Yang, Hao; Wang, Chong M.; Browning, Nigel D.

    2013-08-07

    The ability to form reliable, low-resistance Ohmic contacts is of critical importance to the ongoing development of oxide electronics. Most metals form Schottky barriers when deposited on oxide surfaces. Ohmic contacts rarely occur, and the associated contact resistances are not particularly low. Little is known at an atomistic level about what leads to a good Ohmic contact on a wide-gap oxide. Here we describe the structure of a simple, yet exceptionally low-contact resistance Ohmic metal on an important oxide semiconductor -- epitaxial Cr on Nb-doped SrTiO3(001). Heteroepitaxial growth is accompanied by Cr diffusion into the STO and occupation of interstitial sites within the first few atomic planes. Interstitial Cr is ionized and the resulting electrons occupy the STO conduction band, resulting in effective metallization near the interface.

  4. Agricultural land contamination by heavy metals around the former mining site of Bechateur (northern Tunisia)

    NASA Astrophysics Data System (ADS)

    Daldoul, G.; Soussi, R.; Soussi, F.; Boularbah, A.

    2012-04-01

    The activity of the former Pb-Zn mine of Jebel Ghozlen (Béchateur. extreme northern Tunisia) generated during the last century large quantities of tailings (extraction, flotation, gravimetry) deposited as three heap between the mine site and the shoreline located 700 m away. Areas surrounding the mine site are agricultural and are crossed by two rivers, one of which crosses the main heap. The minerals that make up these wastes are calcite, dolomite, quartz, gypsum, pyrite, barite, smithsonite, cerussite and galena. The amounts of Zn, Cd and Pb in the wastes vary between 1.3 and 9.3%, 1.1% and 5.7 and 185 and 410 mg kg-1, respectively. Soils in the study area are carbonated and are characterized by a silt-sand texture. The clay fraction is dominated by kaolinite. The chemical analysis of thirty samples collected over an area of 3 km2 shows that the amounts of total organic carbon (TOC) and total sulfur vary from 0.7 % to 2.5 % and 0.08 % to 0.96 %, respectively, while those of Zn, Pb and Cd range from 300 to 22 000 mg kg-1, 85 to 3000 mg kg-1 and 2 to 47 mg kg-1, respectively. The highest concentrations of metals were found in flood plains at 500 m downstream of the mine site. Extraction tests using deionized water and a 0.1 M CaCl2 solution were performed to assess the mobility of Zn, Pb and Cd in contaminated and reference soil samples collected within the study area. The results of extraction with deionized water showed that the leached amounts of Zn and Cd range between 0.2 and 4 mg kg-1 and 0.02 and 0.2 mg kg-1, respectively; while that of Pb is quite near the detection limit. During the extraction with CaCl2 the leached amounts of Zn, Pb and Cd range from 0.3 to 86 mg kg-1, 2 to 6 mg kg-1 and 0.05 to 0.9 mg kg-1, respectively. Thus, the mobility of Cd, Zn and Pb in CaCl2 solution (0.8 %, 0.4 % and 0.3 %, respectively) is higher compared with the extraction with deionized water (0.2%, 0.1% and 0.02 %, respectively). Toxicity tests were conducted on these soils

  5. Response of spontaneous plants from an ex-mining site of Elba island (Tuscany, Italy) to metal(loid) contamination.

    PubMed

    Pistelli, Laura; D'Angiolillo, Francesca; Morelli, Elisabetta; Basso, Barbara; Rosellini, Irene; Posarelli, Mauro; Barbafieri, Meri

    2017-01-27

    The release of large amounts of toxic metals in the neighboring sites of abandoned mine areas represents an important environmental risk for the ecosystem, because it adversely affects soil, water, and plant growth. The aim of the present study was to investigate the metal(loid) (As, Cr, Cu, Ni, Pb, and Zn) contents of native Mediterranean plants grown on the ex-mining area of Elba island (Italy), with the prospective of its recovery by further phytoremediation technology. Soil samples were collected and characterized for metal(loid) content in total and potentially available (EDTA-extractable) fractions. Arsenic was particularly high, being 338 and 2.1 mg kg(-1) as total and available fractions, respectively. Predominant native species, namely Dittrichia viscosa L. Greuter, Cistus salviifolius L., Lavandula stoechas L., and Bituminaria bituminosa L., were analyzed for metal content in the different plant organs. D. viscosa exhibited the highest metal(loid) content in the leaves and the singular behavior of translocating arsenic to the leaves (transfer factor about 2.06 and mean bioconcentration factor about 12.48). To assess the healthy status of D. viscosa plants, the leaves were investigated further. The activities of the main antioxidant enzymes and the levels of secondary metabolites linked to oxidative stress in plants from the ex-mining area were not significantly different from those of control plants, except for a lower content of carotenoids, indicating that native plants were adapted to grow in these polluted soils. These results indicate that D. viscosa can be suitable for the revegetation of highly metal-contaminated areas.

  6. Trace metal residues in soil as markers of ancient site occupance in Greece

    SciTech Connect

    Davies, B.E.; Bintliff, J.L.; Gaffney, C.F.; Waters, A.T.

    1988-01-01

    Modern evidence shows that wherever people work or live the concentrations of heavy metals rise in nearby soils and these residues persist for many years. This paper reports similar accumulations of Cu and Pb in soils at sites of ancient occupation in Greece. It is proposed that such accumulations can act as markers of such occupation and complement evidence derived from other archaeological survey methods.

  7. Metals other than uranium affected microbial community composition in a historical uranium-mining site.

    PubMed

    Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten

    2015-12-01

    To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.

  8. 75 FR 76037 - General Motors Corporation Grand Rapids Metal Center Metal Fabricating Division Including On-Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... Employment and Training Administration General Motors Corporation Grand Rapids Metal Center Metal Fabricating..., applicable to workers of General Motors Corporation, Grand Rapids Metal Center, Metal Fabricating Division... related to the production of metal stampings and sub- assembled metal sheet components. The...

  9. Promoter-proximal polyadenylation sites reduce transcription activity

    PubMed Central

    Andersen, Pia K.; Lykke-Andersen, Søren; Jensen, Torben Heick

    2012-01-01

    Gene expression relies on the functional communication between mRNA processing and transcription. We previously described the negative impact of a point-mutated splice donor (SD) site on transcription. Here we demonstrate that this mutation activates an upstream cryptic polyadenylation (CpA) site, which in turn causes reduced transcription. Functional depletion of U1 snRNP in the context of the wild-type SD triggers the same CpA event accompanied by decreased RNA levels. Thus, in accordance with recent findings, U1 snRNP can shield premature pA sites. The negative impact of unshielded pA sites on transcription requires promoter proximity, as demonstrated using artificial constructs and supported by a genome-wide data set. Importantly, transcription down-regulation can be recapitulated in a gene context devoid of splice sites by placing a functional bona fide pA site/transcription terminator within ∼500 base pairs of the promoter. In contrast, promoter-proximal positioning of a pA site-independent histone gene terminator supports high transcription levels. We propose that optimal communication between a pA site-dependent gene terminator and its promoter critically depends on gene length and that short RNA polymerase II-transcribed genes use specialized termination mechanisms to maintain high transcription levels. PMID:23028143

  10. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.

  11. Mining the potential interrelationships between human health and ecological risk assessments of metal-contaminated sites

    SciTech Connect

    Appling, J.W.

    1994-12-31

    Conservative approaches to human health or ecological risk assessment often result in evaluations that indicate a risk at metal concentrations near or below background levels. This presents a complex dilemma to regulators, responsible parties, and the public: How can risk be more realistically estimated so that the public is not unnecessarily alarmed into thinking normal exposures pose abnormal risk, and site remediation can be responsible yet cost-effective? One answer is using-ecological and human health studies together to improve the quality of both types of assessments. Mammalian herbivores and roving children are good spatial and temporal integrators of exposure; biomarkers or Monte Carlo-based models of exposure to herbivores can support realistic estimates of exposure to children. Reduced bioavailability of metals in soils at mining sites is well recognized for many metals and is amenable to study in ecological species; such studies reduce the overestimate of risk to humans through direct contact or exposure via the food chain. Recent and current human health studies of lead and arsenic bioavailability also support ecological assessments. Mixtures of metals pose special challenges because of the potential for antagonistic, additive, or synergistic effects with respect to bioavailability, absorption, distribution, excretion, toxic effects and nutritional or physiological essentiality. Combining results from pharmacokinetic, mechanistic, and environmental studies of mixtures enhances the predictive abilities of risk assessments.

  12. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site.

    PubMed

    Adama, M; Esena, R; Fosu-Mensah, B; Yirenya-Tawiah, D

    2016-01-01

    Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (I geo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites.

  13. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site

    PubMed Central

    Adama, M.; Esena, R.; Fosu-Mensah, B.; Yirenya-Tawiah, D.

    2016-01-01

    Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (Igeo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites. PMID:27034685

  14. Effects of mycorrhizal colonisation on Thymus polytrichus from heavy-metal-contaminated sites in northern England.

    PubMed

    Whitfield, L; Richards, A J; Rimmer, D L

    2004-02-01

    A study was performed to establish whether colonisation with arbuscular mycorrhizal (AM) fungi is beneficial to wild thyme [ Thymus polytrichus A. Kerner ex Borbás ssp. britannicus (Ronn.) Kerguelen (Lamiaceae)] growing in the heavy-metal-contaminated soils along the River South Tyne, United Kingdom. T. polytrichus plants of the same genotype were grown under controlled conditions with and without Zn contamination, and differences between AM-colonised and -uncolonised plants in mean shoot and root growth (dry weight) and Zn concentration were assessed. When grown in the heavy-metal-contaminated, low-P soil from one of the South Tyne sites, AM-colonised plants grew significantly larger than uncolonised plants; however, there was no significant difference in growth between AM and non-AM plants grown in an artificial substrate with a larger available P concentration, with or without Zn contamination. Mycorrhizal colonisation increased tissue Zn concentrations during the experiments. It is concluded that AM fungi are beneficial, if not essential, to T. polytrichus growing in the low-nutrient soils along the River South Tyne, because of their role in enhancing plant uptake of P (and possibly other nutrients). There was no evidence from this study that the fungi reduce plant uptake of heavy metals at these sites, but rather increase Zn uptake. However, the resulting tissue metal concentrations do not appear to be large enough to be detrimental to plant growth.

  15. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.

  16. Temporal trends and risk assessment of polychlorinated biphenyls and heavy metals in a solid waste site in Taizhou, China.

    PubMed

    Zhang, Quan; Zhu, Jianqiang; Ye, Jingjia; Qian, Yi; Chen, Fang; Wang, Jinghua; Zhao, Meirong

    2016-01-01

    The solid wastes generated during the production of chemicals are important sources of polychlorinated biphenyls (PCBs) and heavy metals. However, few studies have been conducted regarding long-term monitoring of the risks and states of PCBs and heavy metal pollution from these sources. Herein, we reported the concentrations and risks posed by these pollutants at a chemical solid waste storage site in Taizhou, China, based on data collected before (in 2006) and after clearing the solid waste (in 2013). We examined the concentrations of 24 PCBs, including ten dioxin-like-PCB (DL-PCB) congeners (PCB77, 105, 114, 118, 123, 126, 156, 167, 169, and 189). Our data showed that the mean ∑24PCB concentrations in the soil, water, and plant samples were 6902.90 ng/g, 1637.58 ng/L, and 33.95 ng/g, respectively, in 2013. Furthermore, Cr was the most prevalent contaminant. The hazard quotient (HQ) values showed that Pb posed the highest risk in the soil samples, followed by Hg. The results of the reporter gene assay showed that soil extracts from S1, S2, S3, S4, S5, S6, and S9 exhibited potential estrogenic activities. A comparison of the data showed that the PCB pollution in some sites of this area was still serious. The data provided here are fundamentally useful for policy makers to regulate this type of storage site.

  17. Active and regulatory sites of cytosolic 5'-nucleotidase.

    PubMed

    Pesi, Rossana; Allegrini, Simone; Careddu, Maria Giovanna; Filoni, Daniela Nicole; Camici, Marcella; Tozzi, Maria Grazia

    2010-12-01

    Cytosolic 5'-nucleotidase (cN-II), which acts preferentially on 6-hydroxypurine nucleotides, is essential for the survival of several cell types. cN-II catalyses both the hydrolysis of nucleotides and transfer of their phosphate moiety to a nucleoside acceptor through formation of a covalent phospho-intermediate. Both activities are regulated by a number of phosphorylated compounds, such as diadenosine tetraphosphate (Ap₄A), ADP, ATP, 2,3-bisphosphoglycerate (BPG) and phosphate. On the basis of a partial crystal structure of cN-II, we mutated two residues located in the active site, Y55 and T56. We ascertained that the ability to catalyse the transfer of phosphate depends on the presence of a bulky residue in the active site very close to the aspartate residue that forms the covalent phospho-intermediate. The molecular model indicates two possible sites at which adenylic compounds may interact. We mutated three residues that mediate interaction in the first activation site (R144, N154, I152) and three in the second (F127, M436 and H428), and found that Ap₄A and ADP interact with the same site, but the sites for ATP and BPG remain uncertain. The structural model indicates that cN-II is a homotetrameric protein that results from interaction through a specific interface B of two identical dimers that have arisen from interaction of two identical subunits through interface A. Point mutations in the two interfaces and gel-filtration experiments indicated that the dimer is the smallest active oligomerization state. Finally, gel-filtration and light-scattering experiments demonstrated that the native enzyme exists as a tetramer, and no further oligomerization is required for enzyme activation.

  18. Health risk assessments of heavy metal exposure via consumption of marine mussels collected from anthropogenic sites.

    PubMed

    Yap, Chee Kong; Cheng, Wan Hee; Karami, Ali; Ismail, Ahmad

    2016-05-15

    A total of 40 marine mussel Perna viridis populations collected (2002-2009) from 20 geographical sites located in two busy shipping lanes namely the Straits of Malacca (10 sites; 16 populations) and the Straits of Johore (8 sites; 21 populations) and three populations (2 sites) on the east coast of Peninsular Malaysia, was determined for Cd, Cu, Fe, Ni, Pb and Zn concentrations. In comparison with the maximum permissible limits (MPLs) set by existing food safety guidelines, all metal concentrations found in all the mussel populations were lower than the prescribed MPLs. In terms of the provisional tolerable weekly intake prescribed by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) and oral reference doses (ORDs) by the USEPA, all the studied metals (except for Pb) were unlikely to become the limiting factors or unlikely to pose a risk for the consumption of the mussel populations. The estimated daily intake (EDI) for average level mussel (ALM) and high level mussel (HLM) consumers of mussels was found to be lower than the ORD guidelines for Cd, Cu, Fe, Ni and Zn. Furthermore, the target hazard quotient (THQ) was found to be less than 1 for ALM consumers but higher than 1 for HLM consumers in some sites. Therefore, there were no potential human health risks to the ALM consumers of the mussels. However, for Pb THQ values, the Pb levels in some mussel populations could create a health risk problem. Present results indicate that the consumption amounts of mussels should be limited for minimizing potential health risks of heavy metals to the HLM consumers.

  19. Communication between the Zinc and Nickel Sites in Dimeric HypA: Metal Recognition and pH Sensing

    SciTech Connect

    Herbst, R.; Perovic, I; Martin-Diaconescu, V; O’Brien, K; Chivers, P; Sondej Pochapsky, S; Pochapsky, T; Maroney, M

    2010-01-01

    Helicobacter pylori, a pathogen that colonizes the human stomach, requires the nickel-containing metalloenzymes urease and NiFe-hydrogenase to survive this low pH environment. The maturation of both enzymes depends on the metallochaperone, HypA. HypA contains two metal sites, an intrinsic zinc site and a low-affinity nickel binding site. X-ray absorption spectroscopy (XAS) shows that the structure of the intrinsic zinc site of HypA is dynamic and able to sense both nickel loading and pH changes. At pH 6.3, an internal pH that occurs during acid shock, the zinc site undergoes unprecedented ligand substitutions to convert from a Zn(Cys){sub 4} site to a Zn(His){sub 2}(Cys){sub 2} site. NMR spectroscopy shows that binding of Ni(II) to HypA results in paramagnetic broadening of resonances near the N-terminus. NOEs between the {beta}-CH{sub 2} protons of Zn cysteinyl ligands are consistent with a strand-swapped HypA dimer. Addition of nickel causes resonances from the zinc binding motif and other regions to double, indicating more than one conformation can exist in solution. Although the structure of the high-spin, 5-6 coordinate Ni(II) site is relatively unaffected by pH, the nickel binding stoichiometry is decreased from one per monomer to one per dimer at pH = 6.3. Mutation of any cysteine residue in the zinc binding motif results in a zinc site structure similar to that found for holo-WT-HypA at low pH and is unperturbed by the addition of nickel. Mutation of the histidines that flank the CXXC motifs results in a zinc site structure that is similar to holo-WT-HypA at neutral pH (Zn(Cys){sub 4}) and is no longer responsive to nickel binding or pH changes. Using an in vitro urease activity assay, it is shown that the recombinant protein is sufficient for recovery of urease activity in cell lysate from a HypA deletion mutant, and that mutations in the zinc-binding motif result in a decrease in recovered urease activity. The results are interpreted in terms of a model

  20. UTSA-74: A MOF-74 Isomer with Two Accessible Binding Sites per Metal Center for Highly Selective Gas Separation.

    PubMed

    Luo, Feng; Yan, Changsheng; Dang, Lilong; Krishna, Rajamani; Zhou, Wei; Wu, Hui; Dong, Xinglong; Han, Yu; Hu, Tong-Liang; O'Keeffe, Michael; Wang, Lingling; Luo, Mingbiao; Lin, Rui-Biao; Chen, Banglin

    2016-05-04

    A new metal-organic framework Zn2(H2O)(dobdc)·0.5(H2O) (UTSA-74, H4dobdc = 2,5-dioxido-1,4-benzenedicarboxylic acid), Zn-MOF-74/CPO-27-Zn isomer, has been synthesized and structurally characterized. It has a novel four coordinated fgl topology with one-dimensional channels of about 8.0 Å. Unlike metal sites in the well-established MOF-74 with a rod-packing structure in which each of them is in a five coordinate square pyramidal coordination geometry, there are two different Zn(2+) sites within the binuclear secondary building units in UTSA-74 in which one of them (Zn1) is in a tetrahedral while another (Zn2) in an octahedral coordination geometry. After activation, the two axial water molecules on Zn2 sites can be removed, generating UTSA-74a with two accessible gas binding sites per Zn2 ion. Accordingly, UTSA-74a takes up a moderately high and comparable amount of acetylene (145 cm(3)/cm(3)) to Zn-MOF-74. Interestingly, the accessible Zn(2+) sites in UTSA-74a are bridged by carbon dioxide molecules instead of being terminally bound in Zn-MOF-74, so UTSA-74a adsorbs a much smaller amount of carbon dioxide (90 cm(3)/cm(3)) than Zn-MOF-74 (146 cm(3)/cm(3)) at room temperature and 1 bar, leading to a superior MOF material for highly selective C2H2/CO2 separation. X-ray crystal structures, gas sorption isotherms, molecular modeling, and simulated and experimental breakthroughs comprehensively support this result.

  1. BAX Activation is Initiated at a Novel Interaction Site

    PubMed Central

    Gavathiotis, Evripidis; Suzuki, Motoshi; Davis, Marguerite L.; Pitter, Kenneth; Bird, Gregory H.; Katz, Samuel G.; Tu, Ho-Chou; Kim, Hyungjin; Cheng, Emily H.-Y.; Tjandra, Nico; Walensky, Loren D.

    2008-01-01

    BAX is a pro-apoptotic protein of the BCL-2 family stationed in the cytosol until activated by a diversity of stress stimuli to induce cell death. Anti-apoptotic proteins such as BCL-2 counteract BAX-mediated cell death. Although an interaction site that confers survival functionality has been defined for anti-apoptotic proteins, an activation site has not been identified for BAX, rendering its explicit trigger mechanism unknown. We previously developed Stabilized Alpha-Helix of BCL-2 domains (SAHBs) that directly initiate BAX-mediated mitochondrial apoptosis. Here we demonstrate by NMR analysis that BIM SAHB binds BAX at an interaction site that is distinct from the canonical binding groove characterized for anti-apoptotic proteins. The specificity of the BIM SAHB-BAX interaction is highlighted by point mutagenesis that abrogates functional activity, confirming that BAX activation is initiated at this novel structural location. Thus, we have now defined a BAX interaction site for direct activation, establishing a new target for therapeutic modulation of apoptosis. PMID:18948948

  2. European bee-eater (Merops apiaster) populations under arsenic and metal stress: evaluation of exposure at a mining site.

    PubMed

    Lopes, I; Sedlmayr, A; Moreira-Santos, M; Moreno-Garrido, I; Blasco, J; Ribeiro, R

    2010-02-01

    Two populations of the European bee-eater were studied, one living at a reference site and the other at a metal mining site. The concentration of arsenic and 11 metals (Al, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) was measured in feathers and regurgitated pellets collected at both sites. Cadmium, chromium, mercury, nickel, and lead were at least twofold higher in feathers of birds from the contaminated site than in the reference site, suggesting that this population was exposed to higher metal levels. Similarly, levels of aluminum, arsenic, cadmium, cobalt, chromium, iron, and lead were also at least twofold higher in pellets from the contaminated area. The obtained results suggested that the impacted population of Merops apiaster is at risk due to the exposure to some metals.

  3. Involvement of novel autophosphorylation sites in ATM activation.

    PubMed

    Kozlov, Sergei V; Graham, Mark E; Peng, Cheng; Chen, Philip; Robinson, Phillip J; Lavin, Martin F

    2006-08-09

    ATM kinase plays a central role in signaling DNA double-strand breaks to cell cycle checkpoints and to the DNA repair machinery. Although the exact mechanism of ATM activation remains unknown, efficient activation requires the Mre11 complex, autophosphorylation on S1981 and the involvement of protein phosphatases and acetylases. We report here the identification of several additional phosphorylation sites on ATM in response to DNA damage, including autophosphorylation on pS367 and pS1893. ATM autophosphorylates all these sites in vitro in response to DNA damage. Antibodies against phosphoserine 1893 revealed rapid and persistent phosphorylation at this site after in vivo activation of ATM kinase by ionizing radiation, paralleling that observed for S1981 phosphorylation. Phosphorylation was dependent on functional ATM and on the Mre11 complex. All three autophosphorylation sites are physiologically important parts of the DNA damage response, as phosphorylation site mutants (S367A, S1893A and S1981A) were each defective in ATM signaling in vivo and each failed to correct radiosensitivity, genome instability and cell cycle checkpoint defects in ataxia-telangiectasia cells. We conclude that there are at least three functionally important radiation-induced autophosphorylation events in ATM.

  4. Resonant active sites in catalytic ammonia synthesis: A structural model

    NASA Astrophysics Data System (ADS)

    Cholach, Alexander R.; Bryliakova, Anna A.; Matveev, Andrey V.; Bulgakov, Nikolai N.

    2016-03-01

    Adsorption sites Mn consisted of n adjacent atoms M, each bound to the adsorbed species, are considered within a realistic model. The sum of bonds Σ lost by atoms in a site in comparison with the bulk atoms was used for evaluation of the local surface imperfection, while the reaction enthalpy at that site was used as a measure of activity. The comparative study of Mn sites (n = 1-5) at basal planes of Pt, Rh, Ir, Fe, Re and Ru with respect to heat of N2 dissociative adsorption QN and heat of Nad + Had → NHad reaction QNH was performed using semi-empirical calculations. Linear QN(Σ) increase and QNH(Σ) decrease allowed to specify the resonant Σ for each surface in catalytic ammonia synthesis at equilibrium Nad coverage. Optimal Σ are realizable for Ru2, Re2 and Ir4 only, whereas other centers meet steric inhibition or unreal crystal structure. Relative activity of the most active sites in proportion 5.0 × 10- 5: 4.5 × 10- 3: 1: 2.5: 3.0: 1080: 2270 for a sequence of Pt4, Rh4, Fe4(fcc), Ir4, Fe2-5(bcc), Ru2, Re2, respectively, is in agreement with relevant experimental data. Similar approach can be applied to other adsorption or catalytic processes exhibiting structure sensitivity.

  5. Adsorption of Carbon Dioxide on Unsaturated Metal Sites in M2 (dobpdc) Frameworks with Exceptional Structural Stability and Relation between Lewis Acidity and Adsorption Enthalpy.

    PubMed

    Yoo, Ga Young; Lee, Woo Ram; Jo, Hyuna; Park, Joonho; Song, Jeong Hwa; Lim, Kwang Soo; Moon, Dohyun; Jung, Hyun; Lim, Juhyung; Han, Sang Soo; Jung, Yousung; Hong, Chang Seop

    2016-05-23

    A series of metal-organic frameworks (MOFs) M2 (dobpdc) (M=Mn, Co, Ni, Zn; H4 dobpdc=4,4'-dihydroxy-1,1'-biphenyl-3,3'-dicarboxylic acid), with a highly dense arrangement of open metal sites along hexagonal channels were prepared by microwave-assisted or simple solvothermal reactions. The activated materials were structurally expanded when guest molecules including CO2 were introduced into the pores. The Lewis acidity of the open metal sites varied in the order MnZn, as confirmed by C=O stretching bands in the IR spectra, which are related to the CO2 adsorption enthalpy. DFT calculations revealed that the high CO2 binding affinity of transition-metal-based M2 (dobpdc) is primarily attributable to the favorable charge transfer from CO2 (oxygen lone pair acting as a Lewis base) to the open metal sites (Lewis acid), while electrostatic effects, the underlying factor responsible for the particular order of binding strength observed across different transition metals, also play a role. The framework stability against water coincides with the order of Lewis acidity. In this series of MOFs, the structural stability of Ni2 (dobpdc) is exceptional; it endured in water vapor, liquid water, and in refluxing water for one month, and the solid remained intact on exposure to solutions of pH 2-13. The DFT calculations also support the experimental finding that Ni2 (dobpdc) has higher chemical stability than the other frameworks.

  6. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles

    PubMed Central

    2015-01-01

    Mineral dusts originating from Earth’s crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts. Here we investigated in closer detail the reasons for its activity and the difference in the activity of the different feldspars. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. K-feldspar showed by far the highest ice nucleation activity. Finally, we give a potential explanation of this effect, finding alkali-metal ions having different hydration shells and thus an influence on the ice nucleation activity of feldspar surfaces. PMID:25584435

  7. Differential Assembly of Catalytic Interactions within the Conserved Active Sites of Two Ribozymes

    PubMed Central

    Herschlag, Daniel

    2016-01-01

    Molecular recognition is central to biology and a critical aspect of RNA function. Yet structured RNAs typically lack the preorganization needed for strong binding and precise positioning. A striking example is the group I ribozyme from Tetrahymena, which binds its guanosine substrate (G) orders of magnitude slower than diffusion. Binding of G is also thermodynamically coupled to binding of the oligonucleotide substrate (S) and further work has shown that the transition from E•G to E•S•G accompanies a conformational change that allows G to make the active site interactions required for catalysis. The group I ribozyme from Azoarcus has a similarly slow association rate but lacks the coupled binding observed for the Tetrahymena ribozyme. Here we test, using G analogs and metal ion rescue experiments, whether this absence of coupling arises from a higher degree of preorganization within the Azoarcus active site. Our results suggest that the Azoarcus ribozyme forms cognate catalytic metal ion interactions with G in the E•G complex, interactions that are absent in the Tetrahymena E•G complex. Thus, RNAs that share highly similar active site architectures and catalyze the same reactions can differ in the assembly of transition state interactions. More generally, an ability to readily access distinct local conformational states may have facilitated the evolutionary exploration needed to attain RNA machines that carry out complex, multi-step processes. PMID:27501145

  8. Metal chlorides loaded on activated carbon to capture elemental mercury.

    PubMed

    Shen, Zhemin; Ma, Jing; Mei, Zhijian; Zhang, Jianda

    2010-01-01

    Activated carbon (AC) was considered to be an effective sorbent to control mercury in combustion systems. However, its capture capacity was low and it required a high carbon-to-mercury mass ratio. AC loaded with catalyst showed a high elemental mercury (Hg0) capture capacity due to large surface area of AC and high oxidization ability of catalyst. In this study, several metal chlorides and metal oxides were used to promote the sorption capacity of AC. As a result, metal chlorides were better than metal oxides loaded on AC to remove gaseous mercury. X-ray diffractometer (XRD), thermogravimetric analyzer (TGA) and specific surface area by Brunauer-Emmett-Teller method (BET) analysis showed the main mechanisms: first, AC had an enormous surface area for loading enough MClx; second, Cl and MxOy were generated during pyrogenation of MClx; finally, there were lots of active elements such as Cl and MxOy which could react with elemental mercury and convert it to mercury oxide and mercury chloride. The HgO and HgCl2 might be released from AC's porous structure by thermo regeneration. A catalytic chemisorption mechanism predominates the sorption process of elemental mercury. As Co and Mn were valence variable metal elements, their catalytic effect on Hg0 oxidization may accelerate both oxidation and halogenation of Hg0. The sorbents loaded with metal chlorides possessed a synergistic function of catalytic effect of valence variable metal and chlorine oxidation.

  9. Synthesis of Highly Porous Coordination Polymers with Open Metal Sites for Enhanced Gas Uptake and Separation.

    PubMed

    Song, Kyung Seob; Kim, Daeok; Polychronopoulou, Kyriaki; Coskun, Ali

    2016-10-12

    Metal-containing amorphous microporous polymers are an emerging class of functional porous materials in which the surface properties and functions of polymers are dictated by the nature of the metal ions incorporated into the framework. In an effort to introduce coordinatively unsaturated metal sites into the porous polymers, we demonstrate herein an aqueous-phase synthesis of porous coordination polymers (PCPs) incorporating bis(o-diiminobenzosemiquinonato)-Cu(II) or -Ni(II) bridges by simply reacting hexaminotriptycene with CuSO4·5H2O [Cu(II)-PCP] or NiCl2·6H2O [Ni(II)-PCP] in H2O. The resulting polymers showed surface areas of up to 489 m(2) g(-1) along with a narrow pore size distribution. The presence of open metal sites significantly improved the gas affinity of these frameworks, leading to an exceptional isosteric heat of adsorption of 10.3 kJ·mol(-1) for H2 at zero coverage. The high affinities of Cu(II)- and Ni(II)-PCPs toward CO2 prompted us to investigate the removal of CO2 from natural and landfill gas conditions. We found that the higher affinity of Cu(II)-PCP compared to that of Ni(II)-PCP not only allowed for the tuning of the affinity of CO2 molecules toward the sorbent, but also led to an exceptional CO2/CH4 selectivity of 35.1 for landfill gas and 20.7 for natural gas at 298 K. These high selectivities were further verified by breakthrough measurements under the simulated natural and landfill gas conditions, in which both Cu(II)- and Ni(II)-PCPs showed complete removal of CO2. These results clearly demonstrate the promising attributes of metal-containing porous polymers for gas storage and separation applications.

  10. Spectroscopic Evidence for Room Temperature Interaction of Molecular Oxygen with Cobalt Porphyrin Linker Sites within a Metal-Organic Framework.

    PubMed

    Lahanas, Nicole; Kucheryavy, Pavel; Lockard, Jenny V

    2016-10-17

    Metalloporphyrin-based metal-organic frameworks offer a promising platform for developing solid-state porous materials with accessible, coordinatively unsaturated metal sites. Probing small-molecule interactions at the metalloporphyrin sites within these materials on a molecular level under ambient conditions is crucial for both understanding and ultimately harnessing this functionality for potential catalytic purposes. Co-PCN-222, a metal-organic framework based on cobalt(II) porphyrin linkers. is investigated using in situ UV-vis diffuse-reflectance and X-ray absorption spectroscopy. Spectroscopic evidence for the axial interaction of diatomic oxygen with the framework's open metalloporphyrin sites at room temperature is presented and discussed.

  11. Chemical Modification of Papain and Subtilisin: An Active Site Comparison

    ERIC Educational Resources Information Center

    St-Vincent, Mireille; Dickman, Michael

    2004-01-01

    An experiment using methyle methanethiosulfonate (MMTS) and phenylmethylsulfonyl flouride (PMSF) to specifically modify the cysteine and serine residues in the active sites of papain and subtilism respectively is demonstrated. The covalent modification of these enzymes and subsequent rescue of papain shows the beginning biochemist that proteins…

  12. Spectroscopic studies of the active site of galactose oxidase

    SciTech Connect

    Knowles, P.F.; Brown, R.D. III; Koenig, S.H.

    1995-07-19

    X-ray absorption and EPR spectroscopy have been used to probe the copper site structure in galactose oxidase at pH 4.5 and 7.0. the results suggest that there are no major differences in the structure of the tetragonal Cu(II) site at these pH values. Analysis of the extended X-ray absorption fine structure (EXAFS) indicates that four N,O scatterers are present at approximately 2 {Angstrom}; these are presumably the equatorial ligands. In addition, the EXAFS data establish that oxidative activation to produce the active-site tyrosine radical does not cause major changes in the copper coordination environment. Therefore results obtained on the one-electron reduced enzyme, containing Cu(II) but not the tyrosine radical, probably also apply to the catalytically active Cu(II)/tyrosine radical state. Solvent water exchange, inhibitor binding, and substrate binding have been probed via nuclear magnetic relaxation dispersion (NMRD) measurements. The NMRD profile of galactose oxidase is quantitatively consistent with the rapid exchange of a single, equatorial water ligand with a Cu(II)-O separation of about 2.4 {Angstrom}. Azide and cyanide displace this coordinated water. The binding of azide and the substrate dihydroxyacetone produce very similar effects on the NMRD profile of galactose oxidase, indicating that substrates also bind to the active site Cu(II) in an equatorial position.

  13. Energy transfer at the active sites of heme proteins

    SciTech Connect

    Dlott, D.D.; Hill, J.R.

    1995-12-31

    Experiments using a picosecond pump-probe apparatus at the Picosecond Free-electron Laser Center at Stanford University, were performed to investigate the relaxation of carbon monoxide bound to the active sites of heme proteins. The significance of these experiments is two-fold: (1) they provide detailed information about molecular dynamics occurring at the active sites of proteins; and (2) they provide insight into the nature of vibrational relaxation processes in condensed matter. Molecular engineering is used to construct various molecular systems which are studied with the FEL. We have studied native proteins, mainly myoglobin obtained from different species, mutant proteins produced by genetic engineering using recombinant DNA techniques, and a variety of model systems which mimic the structures of the active sites of native proteins, which are produced using molecular synthesis. Use of these different systems permits us to investigate how specific molecular structural changes affect dynamical processes occurring at the active sites. This research provides insight into the problems of how different species needs are fulfilled by heme proteins which have greatly different functionality, which is induced by rather small structural changes.

  14. Fluorescence energy transfer between points in G-actin: the nucleotide-binding site, the metal-binding site and Cys-373 residue.

    PubMed

    Miki, M; Wahl, P

    1985-04-05

    Fluorescence energy transfers were studied in order to investigate the spatial relationships between the nucleotide-binding site, the metal-binding site and the Cys-373 residue in the G-actin molecule. When 1-N6-ethenoadenosine-5'-triphosphate (epsilon-ATP) in the nucleotide-binding site and Co2+ or Ni2+ in the metal-binding site were used as fluorescence donor and acceptor, respectively, the fluorescence intensity of epsilon-ATP was perfectly quenched by Ni2+ or Co2+. This indicated that the nucleotide-binding site is very close to the metal-binding site; the distance should be less than 10 A. When N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (IAEDANS) bound to Cys-373 residue and Co2+ in the metal-binding site were used as a fluorescence donor and an acceptor, respectively, the transfer efficiency was equal to 5 +/- 1%. The corresponding distance was calculated to be 23-32 A, assuming a random orientation factor K2 = 2/3.

  15. The active site of low-temperature methane hydroxylation in iron-containing zeolites

    NASA Astrophysics Data System (ADS)

    Snyder, Benjamin E. R.; Vanelderen, Pieter; Bols, Max L.; Hallaert, Simon D.; Böttger, Lars H.; Ungur, Liviu; Pierloot, Kristine; Schoonheydt, Robert A.; Sels, Bert F.; Solomon, Edward I.

    2016-08-01

    An efficient catalytic process for converting methane into methanol could have far-reaching economic implications. Iron-containing zeolites (microporous aluminosilicate minerals) are noteworthy in this regard, having an outstanding ability to hydroxylate methane rapidly at room temperature to form methanol. Reactivity occurs at an extra-lattice active site called α-Fe(II), which is activated by nitrous oxide to form the reactive intermediate α-O; however, despite nearly three decades of research, the nature of the active site and the factors determining its exceptional reactivity are unclear. The main difficulty is that the reactive species—α-Fe(II) and α-O—are challenging to probe spectroscopically: data from bulk techniques such as X-ray absorption spectroscopy and magnetic susceptibility are complicated by contributions from inactive ‘spectator’ iron. Here we show that a site-selective spectroscopic method regularly used in bioinorganic chemistry can overcome this problem. Magnetic circular dichroism reveals α-Fe(II) to be a mononuclear, high-spin, square planar Fe(II) site, while the reactive intermediate, α-O, is a mononuclear, high-spin Fe(IV)=O species, whose exceptional reactivity derives from a constrained coordination geometry enforced by the zeolite lattice. These findings illustrate the value of our approach to exploring active sites in heterogeneous systems. The results also suggest that using matrix constraints to activate metal sites for function—producing what is known in the context of metalloenzymes as an ‘entatic’ state—might be a useful way to tune the activity of heterogeneous catalysts.

  16. Heavy metals in bivalve mussels and their habitats from different sites along the Chilean Coast

    SciTech Connect

    De Gregori, I.; Pinochet, H.; Delgado, D. ); Gras, N.; Munoz, L. )

    1994-02-01

    It is well known that heavy metals have a great ecological significance due to their toxicity and accumulative behaviour playing a prominent role in marine ecosystems. They occur in all compartments in the marine environment with a tendency to accumulate in organism from different trophic levels of the marine webs. Along this pathway, toxic trace metals become a potential hazard for man and mammals. Coastal and estuarine zones are more vulnerable to anthropogenic pollution with toxic metals and it must be kept in mind that these zones have high seafood production. Chile is in a favourable position to develop fishing activities since it has approximately 4.500 km. of coastline bordering the South Pacific Ocean. The seawater is rich in nutrients and new aquaculture projects have been developed during the last year. However, these seafoods, like other marine organisms, are susceptible to being contaminated by trace metals, produced especially by the mining and industrial processing of ores and metals (i.e., Cu, Mo). This activity is well known as an important source of heavy metals, due to the enormous quantities of waste products, some of which were formerly released directly to the marine environment. Actually there are many aspects demanding better and more detailed knowledge on the occurrence, inventory, of the Chilean marine ecosystem. For these reasons we are developing a programme for monitoring some heavy metals in marine samples. The development of analytical quality control procedures and the analysis of toxic trace elements in fresh and canned mussels were recently published. In this paper, we present the results obtained for the Cadmium, Copper and Zinc contents in water, sediment and mollusc samples collected from different geographical areas located along the coast of Chile. 11 refs., 1 fig., 1 tab.

  17. Bimetallic Metal-Organic Frameworks: Probing the Lewis Acid Site for CO2 Conversion.

    PubMed

    Zou, Ruyi; Li, Pei-Zhou; Zeng, Yong-Fei; Liu, Jia; Zhao, Ruo; Duan, Hui; Luo, Zhong; Wang, Jin-Gui; Zou, Ruqiang; Zhao, Yanli

    2016-05-01

    A highly porous metal-organic framework (MOF) incorporating two kinds of second building units (SBUs), i.e., dimeric paddlewheel (Zn2 (COO)4 ) and tetrameric (Zn4 (O)(CO2 )6 ), is successfully assembled by the reaction of a tricarboxylate ligand with Zn(II) ion. Subsequently, single-crystal-to-single-crystal metal cation exchange using the constructed MOF is investigated, and the results show that Cu(II) and Co(II) ions can selectively be introduced into the MOF without compromising the crystallinity of the pristine framework. This metal cation-exchangeable MOF provides a useful platform for studying the metal effect on both gas adsorption and catalytic activity of the resulted MOFs. While the gas adsorption experiments reveal that Cu(II) and Co(II) exchanged samples exhibit comparable CO2 adsorption capability to the pristine Zn(II) -based MOF under the same conditions, catalytic investigations for the cycloaddition reaction of CO2 with epoxides into related carbonates demonstrate that Zn(II) -based MOF affords the highest catalytic activity as compared with Cu(II) and Co(II) exchanged ones. Molecular dynamic simulations are carried out to further confirm the catalytic performance of these constructed MOFs on chemical fixation of CO2 to carbonates. This research sheds light on how metal exchange can influence intrinsic properties of MOFs.

  18. Activation of phenylalanine hydroxylase by phenylalanine does not require binding in the active site.

    PubMed

    Roberts, Kenneth M; Khan, Crystal A; Hinck, Cynthia S; Fitzpatrick, Paul F

    2014-12-16

    Phenylalanine hydroxylase (PheH), a liver enzyme that catalyzes the hydroxylation of excess phenylalanine in the diet to tyrosine, is activated by phenylalanine. The lack of activity at low levels of phenylalanine has been attributed to the N-terminus of the protein's regulatory domain acting as an inhibitory peptide by blocking substrate access to the active site. The location of the site at which phenylalanine binds to activate the enzyme is unknown, and both the active site in the catalytic domain and a separate site in the N-terminal regulatory domain have been proposed. Binding of catecholamines to the active-site iron was used to probe the accessibility of the active site. Removal of the regulatory domain increases the rate constants for association of several catecholamines with the wild-type enzyme by ∼2-fold. Binding of phenylalanine in the active site is effectively abolished by mutating the active-site residue Arg270 to lysine. The k(cat)/K(phe) value is down 10⁴ for the mutant enzyme, and the K(m) value for phenylalanine for the mutant enzyme is >0.5 M. Incubation of the R270K enzyme with phenylalanine also results in a 2-fold increase in the rate constants for catecholamine binding. The change in the tryptophan fluorescence emission spectrum seen in the wild-type enzyme upon activation by phenylalanine is also seen with the R270K mutant enzyme in the presence of phenylalanine. Both results establish that activation of PheH by phenylalanine does not require binding of the amino acid in the active site. This is consistent with a separate allosteric site, likely in the regulatory domain.

  19. Nanoseeding via dual surface modification of alkyl monolayer for site-controlled electroless metallization.

    PubMed

    Chen, Sung-Te; Chen, Giin-Shan

    2011-10-04

    In this work, an attempt to fabricate nanostructured metallization patterns on SiO(2) dielectric layers is made by using plasma-patterned self-assembled monolayers (SAMs), in conjunction with a novel aqueous seeding and electroless process. Taking octadecyltrichlorosilane (OTS) as a test material, the authors demonstrate that optimizing the N(2)-H(2) plasma conditions leads to the successive conversion of the topmost aliphatic chains of alkyl SAMs to carboxyl (COOH) and hydroxyl (C-OH) functional groups, which was previously found in alkyl SAMs only by exposure to "oxygen-based" plasma. Further modifying the plasma-exposed (either COOH or C-OH terminated) regions with an aqueous solution (SC-1) creates surface functionalities that are viable for site-controlled metallic seeding (e.g., Co or Ni) with an adsorption selectivity of greater than 1000:1. Neither the combination of costly PdCl(2) and complex additives nor the demerits of the associated aqueous chemistry (e.g., seed agglomeration and seed sparseness) are involved. Therefore, the seed particles are only 3 nm in size. Simultaneously, there are sufficient particle densities previously unattainable for electroless deposition to trigger highly resolved Cu metallization patterns with a film thickness of less than 10 nm. The formation of the seed-adsorbing sites is discussed, based on a plasma-dissociated, water-mediated chemical oxidation route.

  20. Heavy metals in oysters, mussels and clams collected from coastal sites along the Pearl River Delta, South China.

    PubMed

    Fang, Zhan-Qiang; Cheung, R Y H; Wong, M H

    2003-01-01

    Concentrations of 8 heavy metals: cadmium (Cd), copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), chromium (Cr), antimony (Sb) and tin (Sn) were examined in 3 species of bivalves ( Perna viridis, Crassostrea rivularis and Ruditapes philippinarum) collected from 25 sites along the Pearl River Delta coastal waters in the South China Sea from July to August 1996. In general, Cd, Cu, Zn and Sn concentrations in the three bivalve species collected from the Estuarine Zone were significantly higher than those collected from the Western and Eastern Zones of the Pearl River Delta, which are related to the existence of various anthropogenic activities in the catchment of the Pearl River Delta. The Western Estuarine Zone is mainly impacted hy Cr, Ni and Cu contamination. In Victoria Harbor, heavy metal contamination is mainly due to Cu and Pb, Cd, Cu and Zn concentrations in oysters were significantly higher than those in mussels and clams. This could be explained by the fact that oysters live mainly in the Estuarine Zone of the Pearl River Delta which receives most of the polluting discharges from the catchment of the Delta. During turbid condition, heavy metals( soluble or adsorbed on suspended particulates) discharged from the Delta are filtered from the water column and subsequently accumulated into the soft body tissues of oysters. Heavy metal concentrations in the three bivalve species were compared with the maximum permissible levels of heavy metals in seafood regulated by the Public Health and Municipal Services Ordinance, Laws of Hong Kong, and it was revealed that Cd and Cr concentrations in the three bivalve species exceeded the upper limits. At certain hotspots in the Delta, the maximum acceptable daily load for Cd was also exceeded.

  1. Activation and inhibition of rubber transferases by metal cofactors and pyrophosphate substrates.

    PubMed

    Scott, Deborah J; da Costa, Bernardo M T; Espy, Stephanie C; Keasling, Jay D; Cornish, Katrina

    2003-09-01

    Metal cofactors are necessary for the activity of alkylation by prenyl transfer in enzyme-catalyzed reactions. Rubber transferase (RuT, a cis-prenyl transferase) associated with purified rubber particles from Hevea brasiliensis, Parthenium argentatum and Ficus elastica can use magnesium and manganese interchangably to achieve maximum velocity. We define the concentration of activator required for maximum velocity as [A](max). The [A](max)(Mg2+) in F. elastica (100 mM) is 10 times the [A](max)(Mg2+) for either H. brasiliensis (10 mM) or P. argentatum (8 mM). The [A](max)(Mn2+) in F. elastica (11 mM), H. brasiliensis (3.8 mM) and P. argentatum (6.8 mM) and the [A](max)(Mg2+) in H. brasiliensis (10 mM) and P. argentatum (8 mM) are similar. The differences in [A](max)(Mg2+) correlate with the actual endogenous Mg(2+) concentrations in the latex of living plants. Extremely low Mn(2+) levels in vivo indicate that Mg(2+) is the RuT cofactor in living H. brasiliensis and F. elastica trees. Kinetic analyses demonstrate that FPP-Mg(2+) and FPP-Mn(2+) are active substrates for rubber molecule initiation, although free FPP and metal cations, Mg(2+) and Mn(2+), can interact independently at the active site with the following relative dissociation constants K(d)(FPP) Metal) Metal). Similarly, IPP-Mg(2+) and IPP-Mn(2+) are active substrates for rubber molecule polymerization. Although metal cations can interact independently at the active site with the relative dissociation constant K(d)(IPP-Metal) Metal), unlike FPP, IPP alone does not interact independently. All three RuTs have similar characteristics-indeterminate sized products, high K(m)(IPP), high metal [A](max), metal cofactor requirements, and are membrane-bound enzymes.

  2. Changes in active site histidine hydrogen bonding trigger cryptochrome activation.

    PubMed

    Ganguly, Abir; Manahan, Craig C; Top, Deniz; Yee, Estella F; Lin, Changfan; Young, Michael W; Thiel, Walter; Crane, Brian R

    2016-09-06

    Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions.

  3. Changes in active site histidine hydrogen bonding trigger cryptochrome activation

    PubMed Central

    Ganguly, Abir; Manahan, Craig C.; Top, Deniz; Yee, Estella F.; Lin, Changfan; Young, Michael W.; Thiel, Walter; Crane, Brian R.

    2016-01-01

    Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa. Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions. PMID:27551082

  4. Mobilization and attenuation of metals downstream from a base-metal mining site in the Matra Mountains, northeastern Hungary

    USGS Publications Warehouse

    Odor, L.; Wanty, R.B.; Horvath, I.; Fugedi, U.; ,

    1999-01-01

    Regional geochemical baseline values have been established for Hungary by the use of low-density stream-sediment surveys of flood-plain deposits of large drainage basins and of the fine fraction of stream sediments. The baseline values and anomaly thresholds thus produced helped to evaluate the importance of high toxic element concentrations found in soils in a valley downstream of a polymetallic vein-type base-metal mine. Erosion of the mine dumps and flotation dump, losses of metals during filtering, storage and transportation, human neglects, and operational breakdowns, have all contributed to the contamination of a small catchment basin in a procession of releases of solid waste. The sulfide-rich waste material weathers to a yellow color; this layer of 'yellow sand' blankets a narrow strip of the floodplain of Toka Creek in the valley near the town of Gyongyosoroszi. Contamination was spread out in the valley by floods. Metals present in the yellow sand include Pb, As, Cd, Cu, Zn, and Sb. Exposure of the local population to these metals may occur through inhalation of airborne particulates or by ingestion of these metals that are taken up by crops grown in the valley. To evaluate the areal extent and depth of the contamination, active stream sediment, flood-plain deposits, lake or reservoir sediments, soils, and surface water were sampled along the erosion pathways downstream of the mine and dumps. The flood-plain profile was sampled in detail to see the vertical distribution of elements and to relate the metal concentrations to the sedimentation and contamination histories of the flood plain. Downward migration of mobile Zn and Cd from the contaminated upper layers under supergene conditions is observed, while vertical migration of Pb, As, Hg and Sb appears to be insignificant. Soil profiles of 137Cs which originated from above-ground atomic bomb tests and the Chernobyl accident, provide good evidence that the upper 30-40 cm of the flood-plain sections, which

  5. Metal dispersion resulting from mining activities in coastal environments: a pathways approach

    USGS Publications Warehouse

    Koski, Randolph A.

    2012-01-01

    Acid rock drainage (ARD) and disposal of tailings that result from mining activities impact coastal areas in many countries. The dispersion of metals from mine sites that are both proximal and distal to the shoreline can be examined using a pathways approach in which physical and chemical processes guide metal transport in the continuum from sources (sulfide minerals) to bioreceptors (marine biota). Large amounts of metals can be physically transported to the coastal environment by intentional or accidental release of sulfide-bearing mine tailings. Oxidation of sulfide minerals results in elevated dissolved metal concentrations in surface waters on land (producing ARD) and in pore waters of submarine tailings. Changes in pH, adsorption by insoluble secondary minerals (e.g., Fe oxyhydroxides), and precipitation of soluble salts (e.g., sulfates) affect dissolved metal fluxes. Evidence for bioaccumulation includes anomalous metal concentrations in bivalves and reef corals, and overlapping Pb isotope ratios for sulfides, shellfish, and seaweed in contaminated environments. Although bioavailability and potential toxicity are, to a large extent, functions of metal speciation, specific uptake pathways, such as adsorption from solution and ingestion of particles, also play important roles. Recent emphasis on broader ecological impacts has led to complementary methodologies involving laboratory toxicity tests and field studies of species richness and diversity.

  6. Probing the promiscuous active site of myo-inositol dehydrogenase using synthetic substrates, homology modeling, and active site modification.

    PubMed

    Daniellou, Richard; Zheng, Hongyan; Langill, David M; Sanders, David A R; Palmer, David R J

    2007-06-26

    The active site of myo-inositol dehydrogenase (IDH, EC 1.1.1.18) from Bacillus subtilis recognizes a variety of mono- and disaccharides, as well as 1l-4-O-substituted inositol derivatives. It catalyzes the NAD+-dependent oxidation of the axial alcohol of these substrates with comparable kinetic constants. We have found that 4-O-p-toluenesulfonyl-myo-inositol does not act as a substrate for IDH, in contrast to structurally similar compounds such as those bearing substituted benzyl substituents in the same position. X-ray crystallographic analysis of 4-O-p-toluenesulfonyl-myo-inositol and 4-O-(2-naphthyl)methyl-myo-inositol, which is a substrate for IDH, shows a distinct difference in the preferred conformation of the aryl substituent. Conformational analysis of known substrates of IDH suggests that this conformational difference may account for the difference in reactivity of 4-O-p-toluenesulfonyl-myo-inositol in the presence of IDH. A sequence alignment of IDH with the homologous glucose-fructose oxidoreductase allowed the construction of an homology model of inositol dehydrogenase, to which NADH and 4-O-benzyl-scyllo-inosose were docked and the active site energy minimized. The active site model is consistent with all experimental results and suggests that a conserved tyrosine-glycine-tyrosine motif forms the hydrophobic pocket adjoining the site of inositol recognition. Y233F and Y235F retain activity, while Y233R and Y235R do not. A histidine-aspartate pair, H176 and D172, are proposed to act as a dyad in which H176 is the active site acid/base. The enzyme is inactivated by diethyl pyrocarbonate, and the mutants H176A and D172N show a marked loss of activity. Kinetic isotope effect experiments with D172N indicate that chemistry is rate-determining for this mutant.

  7. Phytoaccumulation of Heavy Metals in Natural Vegetation at the Municipal Wastewater Site in Abbottabad, Pakistan.

    PubMed

    Irshad, Muhammad; Ruqia, Bibi; Hussain, Zahid

    2015-01-01

    Heavy metal accumulation in crops and soils from wastewater irrigation poses a significant threat to the human health. A study was carried out to investigate the removal potential of heavy metals (HM) by native plant species, namely Cannabis sativa L., Chenopodium album L., Datura stramonium L., Sonchus asper L., Amaranthus viridus L., Oenothera rosea (LHer), Xanthium stramonium L., Polygonum macalosa L., Nasturtium officinale L. and Conyza canadensis L. growing at the municipal wastewater site in Abbottabad city, Pakistan. The HM concentrations varied among plants depending on the species. Metal concentrations across species varied in the order iron (Fe) > zinc (Zn) > chromium (Cr) > nickel (Ni) > cadmium (Cd). Majority of the species accumulated more HM in roots than shoots. Among species, the concentrations (both in roots and shoots) were in the order C. sativa > C. album > X. stramonium > C. canadensis > A. viridus > N. officinale > P. macalosa > D. stramonium > S. asper > O. rosea. No species was identified as a hyperaccumulator. All species exhibited a translocation factor (TF) less than 1. Species like C. sativa, C. album and X. stramonium gave higher (> 1) biological concentration factor (BCF) and biological accumulation coefficient (BAC) especially for Fe, Cr and Cd than other species. Higher accumulation of heavy metals in these plant species signifies the general application of these species for phytostabilization and phytoextraction of HM from polluted soils.

  8. Spectroscopic analysis of soil metal contamination around a derelict mine site in the Blue Mountains, Australia

    NASA Astrophysics Data System (ADS)

    Shamsoddini, A.; Raval, S.; Taplin, R.

    2014-09-01

    Abandoned mine sites pose the potential threat of the heavy metal pollution spread through streams and via runoff leading to contamination of soil and water in their surrounding areas. Regular monitoring of these areas is critical to minimise impacts on water resources, flora and fauna. Conventional ground based monitoring is expensive and sometimes impractical; spectroscopic methods have been emerged as a reliable alternative for this purpose. In this study, the capabilities of the spectroscopy method were examined for modelling soil contamination from around the abandoned silver-zinc mine located at Yerranderie, NSW Australia. The diagnostic characteristics of the original reflectance data were compared with models derived from first and second derivatives of the reflectance data. The results indicate that the models derived from the first derivative of the reflectance data estimate heavy metals significantly more accurately than model derived from the original reflectance. It was also found in this study that there is no need to use second derivative for modelling heavy metal soil contamination. Finally, the results indicate that estimates were of greater accuracy for arsenic and lead compared to other heavy metals, while the estimation for silver was found to be the most erroneous.

  9. Metallic conduction induced by direct anion site doping in layered SnSe2

    PubMed Central

    Kim, Sang Il; Hwang, Sungwoo; Kim, Se Yun; Lee, Woo-Jin; Jung, Doh Won; Moon, Kyoung-Seok; Park, Hee Jung; Cho, Young-Jin; Cho, Yong-Hee; Kim, Jung-Hwa; Yun, Dong-Jin; Lee, Kyu Hyoung; Han, In-taek; Lee, Kimoon; Sohn, Yoonchul

    2016-01-01

    The emergence of metallic conduction in layered dichalcogenide semiconductor materials by chemical doping is one of key issues for two-dimensional (2D) materials engineering. At present, doping methods for layered dichalcogenide materials have been limited to an ion intercalation between layer units or electrostatic carrier doping by electrical bias owing to the absence of appropriate substitutional dopant for increasing the carrier concentration. Here, we report the occurrence of metallic conduction in the layered dichalcogenide of SnSe2 by the direct Se-site doping with Cl as a shallow electron donor. The total carrier concentration up to ~1020 cm−3 is achieved by Cl substitutional doping, resulting in the improved conductivity value of ~170 S·cm−1 from ~1.7 S·cm−1 for non-doped SnSe2. When the carrier concentration exceeds ~1019 cm−3, the conduction mechanism is changed from hopping to degenerate conduction, exhibiting metal-insulator transition behavior. Detailed band structure calculation reveals that the hybridized s-p orbital from Sn 5s and Se 4p states is responsible for the degenerate metallic conduction in electron-doped SnSe2. PMID:26792630

  10. Selective sulfur dioxide adsorption on crystal defect sites on an isoreticular metal organic framework series.

    PubMed

    Rodríguez-Albelo, L Marleny; López-Maya, Elena; Hamad, Said; Ruiz-Salvador, A Rabdel; Calero, Sofia; Navarro, Jorge A R

    2017-02-15

    The widespread emissions of toxic gases from fossil fuel combustion represent major welfare risks. Here we report the improvement of the selective sulfur dioxide capture from flue gas emissions of isoreticular nickel pyrazolate metal organic frameworks through the sequential introduction of missing-linker defects and extra-framework barium cations. The results and feasibility of the defect pore engineering carried out are quantified through a combination of dynamic adsorption experiments, X-ray diffraction, electron microscopy and density functional theory calculations. The increased sulfur dioxide adsorption capacities and energies as well as the sulfur dioxide/carbon dioxide partition coefficients values of defective materials compared to original non-defective ones are related to the missing linkers enhanced pore accessibility and to the specificity of sulfur dioxide interactions with crystal defect sites. The selective sulfur dioxide adsorption on defects indicates the potential of fine-tuning the functional properties of metal organic frameworks through the deliberate creation of defects.

  11. Vertical Transport of Heavy Metals in the Soil at a Field Test Site

    NASA Astrophysics Data System (ADS)

    Oswald, S.; Wenger, K.; Wettstein, B.; Fruth, D.

    2003-04-01

    The transport of zinc and copper in soil during a long-term phytoremediation test site was assessed by sampling, analysis and numerical modelling. Initially heavy metal contamination had been applied at different concentration levels using three replicates, and soil properties and vertical heavy metal concentration distribution were measured after 4 years. The results of this study show the change in the vertical distribution of zinc and copper after the following period of ten years. The vertical transport was interpreted considering recharge, evapotranspiration, sorption, plant uptake and outflux. Numerical modelling with Hydrus-1D was applied especially for the zinc movement. It illustrated the vertical movement downwards and the relative importance of the processes involved and the impact of the planned remediation strategy.

  12. Heavy metal contents of epiphytic acrocarpous mosses within inhabited sites in southwest Nigeria

    SciTech Connect

    Onianwa, P.C.; Ajayi, S.O.

    1987-01-01

    The levels of the metals Pb, Zn, Cu, Cd, Ni, Mn, and Fe accumulated in acrocarpous mosses within inhabited parts of villages and towns in the southwest region of Nigeria were determined, and then used for a classification of the area into relative pollution zones. Ibadan City was found to be the most polluted in the study area. Other zones of low and medium polluted villages and towns were identified. The zonations based on metal levels in these mosses were to some extent similar to that already obtained in a separate study of the same area with epiphytic forest mosses. The enrichment factors show that the gradients between zones of different pollution levels were higher in mosses within the inhabited sites.

  13. Selective sulfur dioxide adsorption on crystal defect sites on an isoreticular metal organic framework series

    NASA Astrophysics Data System (ADS)

    Rodríguez-Albelo, L. Marleny; López-Maya, Elena; Hamad, Said; Ruiz-Salvador, A. Rabdel; Calero, Sofia; Navarro, Jorge A. R.

    2017-02-01

    The widespread emissions of toxic gases from fossil fuel combustion represent major welfare risks. Here we report the improvement of the selective sulfur dioxide capture from flue gas emissions of isoreticular nickel pyrazolate metal organic frameworks through the sequential introduction of missing-linker defects and extra-framework barium cations. The results and feasibility of the defect pore engineering carried out are quantified through a combination of dynamic adsorption experiments, X-ray diffraction, electron microscopy and density functional theory calculations. The increased sulfur dioxide adsorption capacities and energies as well as the sulfur dioxide/carbon dioxide partition coefficients values of defective materials compared to original non-defective ones are related to the missing linkers enhanced pore accessibility and to the specificity of sulfur dioxide interactions with crystal defect sites. The selective sulfur dioxide adsorption on defects indicates the potential of fine-tuning the functional properties of metal organic frameworks through the deliberate creation of defects.

  14. Selective sulfur dioxide adsorption on crystal defect sites on an isoreticular metal organic framework series

    PubMed Central

    Rodríguez-Albelo, L. Marleny; López-Maya, Elena; Hamad, Said; Ruiz-Salvador, A. Rabdel; Calero, Sofia; Navarro, Jorge A.R.

    2017-01-01

    The widespread emissions of toxic gases from fossil fuel combustion represent major welfare risks. Here we report the improvement of the selective sulfur dioxide capture from flue gas emissions of isoreticular nickel pyrazolate metal organic frameworks through the sequential introduction of missing-linker defects and extra-framework barium cations. The results and feasibility of the defect pore engineering carried out are quantified through a combination of dynamic adsorption experiments, X-ray diffraction, electron microscopy and density functional theory calculations. The increased sulfur dioxide adsorption capacities and energies as well as the sulfur dioxide/carbon dioxide partition coefficients values of defective materials compared to original non-defective ones are related to the missing linkers enhanced pore accessibility and to the specificity of sulfur dioxide interactions with crystal defect sites. The selective sulfur dioxide adsorption on defects indicates the potential of fine-tuning the functional properties of metal organic frameworks through the deliberate creation of defects. PMID:28198376

  15. Passive and active metasurface based on metal-insulator-metal structures

    NASA Astrophysics Data System (ADS)

    Takahara, Junichi; Liu, Tianji; Hatada, Hideaki; Nagasaki, Yusuke; Miyata, Masashi; Kaijima, Akira

    2016-11-01

    A metal-insulator-metal (MIM) structure is a fundamental plasmonic structure that has been studied widely since the early stage of plasmonics. It enables us to confine surface plasmon polariton (SPP) and concentrate light into nano-space beyond the diffraction limit. A finite-length MIM structure is considered to be a Fabry-Perot resonator of SPP as a nanocavity. Here, we review our recent studies about active metasurface based on a reconfigurable metal-air-metal (MAM) nanocavity which modify reflection or absorption spectra in scattering by changing a gap distance. Such reconfigurable MAM nanocavity becomes promising candidate for various applications such as plasmonic color or sky radiator from visible to infrared range.

  16. The Active Site of Oligogalacturonate Lyase Provides Unique Insights into Cytoplasmic Oligogalacturonate β-Elimination*

    PubMed Central

    Abbott, D. Wade; Gilbert, Harry J.; Boraston, Alisdair B.

    2010-01-01

    Oligogalacturonate lyases (OGLs; now also classified as pectate lyase family 22) are cytoplasmic enzymes found in pectinolytic members of Enterobacteriaceae, such as the enteropathogen Yersinia enterocolitica. OGLs utilize a β-elimination mechanism to preferentially catalyze the conversion of saturated and unsaturated digalacturonate into monogalacturonate and the 4,5-unsaturated monogalacturonate-like molecule, 5-keto-4-deoxyuronate. To provide mechanistic insights into the specificity of this enzyme activity, we have characterized the OGL from Y. enterocolitica, YeOGL, on oligogalacturonides and determined its three-dimensional x-ray structure to 1.65 Å. The model contains a Mn2+ atom in the active site, which is coordinated by three histidines, one glutamine, and an acetate ion. The acetate mimics the binding of the uronate group of galactourono-configured substrates. These findings, in combination with enzyme kinetics and metal supplementation assays, provide a framework for modeling the active site architecture of OGL. This enzyme appears to contain a histidine for the abstraction of the α-proton in the −1 subsite, a residue that is highly conserved throughout the OGL family and represents a unique catalytic base among pectic active lyases. In addition, we present a hypothesis for an emerging relationship observed between the cellular distribution of pectate lyase folding and the distinct metal coordination chemistries of pectate lyases. PMID:20851883

  17. Analyzing relationships between surface perturbations and local chemical reactivity of metal sites: Alkali promotion of O2 dissociation on Ag(111)

    NASA Astrophysics Data System (ADS)

    Xin, Hongliang; Linic, Suljo

    2016-06-01

    Many commercial heterogeneous catalysts are complex structures that contain metal active sites promoted by multiple additives. Developing fundamental understanding about the impact of these perturbations on the local surface reactivity is crucial for catalyst development and optimization. In this contribution, we develop a general framework for identifying underlying mechanisms that control the changes in the surface reactivity of a metal site (more specifically the adsorbate-surface interactions) upon a perturbation in the local environment. This framework allows us to interpret fairly complex interactions on metal surfaces in terms of specific, physically transparent contributions that can be evaluated independently of each other. We use Cs-promoted dissociation of O2 as an example to illustrate our approach. We concluded that the Cs adsorbate affects the outcome of the chemical reaction through a strong alkali-induced electric field interacting with the static dipole moment of the O2/Ag(111) system.

  18. Analyzing relationships between surface perturbations and local chemical reactivity of metal sites: Alkali promotion of O2 dissociation on Ag(111).

    PubMed

    Xin, Hongliang; Linic, Suljo

    2016-06-21

    Many commercial heterogeneous catalysts are complex structures that contain metal active sites promoted by multiple additives. Developing fundamental understanding about the impact of these perturbations on the local surface reactivity is crucial for catalyst development and optimization. In this contribution, we develop a general framework for identifying underlying mechanisms that control the changes in the surface reactivity of a metal site (more specifically the adsorbate-surface interactions) upon a perturbation in the local environment. This framework allows us to interpret fairly complex interactions on metal surfaces in terms of specific, physically transparent contributions that can be evaluated independently of each other. We use Cs-promoted dissociation of O2 as an example to illustrate our approach. We concluded that the Cs adsorbate affects the outcome of the chemical reaction through a strong alkali-induced electric field interacting with the static dipole moment of the O2/Ag(111) system.

  19. Metal(loid)s in sediment, lobster and mussel tissues near historical gold mine sites.

    PubMed

    Walker, Tony R; Grant, Jon

    2015-12-15

    Previous studies near historical gold mining districts in Nova Scotia have identified significant enrichment of metal(loid)s in coastal marine sediments. Most of this inventory is buried below biologically active zones, although in some areas arsenic has bioaccumulated in marine biota resulting in localised bivalve shellfish closures. Isaacs Harbour is poised for future industrial development, but before potential impacts are predicted, current marine baseline conditions must be determined. To address this gap, this study established a baseline using surface sediments and biota (mussel and lobster tissues), to provide a broader picture of metal(loid)s in the marine environment. Results confirmed previous studies showing that most sediment metal(loid) concentrations still exceeded Canadian Marine Sediment Quality Guidelines, and also provided evidence of Canadian Food Inspection Agency fish tissue exceedances of arsenic in lobster and lead in mussel tissues indicating that some bioaccumulation of legacy contaminants in marine biota continues to the present day.

  20. Copper(I)-α-synuclein interaction: structural description of two independent and competing metal binding sites.

    PubMed

    Camponeschi, Francesca; Valensin, Daniela; Tessari, Isabella; Bubacco, Luigi; Dell'Acqua, Simone; Casella, Luigi; Monzani, Enrico; Gaggelli, Elena; Valensin, Gianni

    2013-02-04

    The aggregation of α-synuclein (αS) is a critical step in the etiology of Parkinson's disease. Metal ions such as copper and iron have been shown to bind αS, enhancing its fibrillation rate in vitro. αS is also susceptible to copper-catalyzed oxidation that involves the reduction of Cu(II) to Cu(I) and the conversion of O(2) into reactive oxygen species. The mechanism of the reaction is highly selective and site-specific and involves interactions of the protein with both oxidation states of the copper ion. The reaction can induce oxidative modification of the protein, which generally leads to extensive protein oligomerization and precipitation. Cu(II) binding to αS has been extensively characterized, indicating the N terminus and His-50 as binding donor residues. In this study, we have investigated αS-Cu(I) interaction by means of NMR and circular dichroism analysis on the full-length protein (αS(1-140)) and on two, designed ad hoc, model peptides: αS(1-15) and αS(113-130). In order to identify and characterize the metal binding environment in full-length αS, in addition to Cu(I), we have also used Ag(I) as a probe for Cu(I) binding. Two distinct Cu(I)/Ag(I) binding domains with comparable affinities have been identified. The structural rearrangements induced by the metal ions and the metal coordination spheres of both sites have been extensively characterized.

  1. Structural Basis for the Inhibition of RNase H Activity of HIV-1 Reverse Transcriptase by RNase H Active Site-Directed Inhibitors

    SciTech Connect

    Su, Hua-Poo; Yan, Youwei; Prasad, G. Sridhar; Smith, Robert F.; Daniels, Christopher L.; Abeywickrema, Pravien D.; Reid, John C.; Loughran, H. Marie; Kornienko, Maria; Sharma, Sujata; Grobler, Jay A.; Xu, Bei; Sardana, Vinod; Allison, Timothy J.; Williams, Peter D.; Darke, Paul L.; Hazuda, Daria J.; Munshi, Sanjeev

    2010-09-02

    HIV/AIDS continues to be a menace to public health. Several drugs currently on the market have successfully improved the ability to manage the viral burden in infected patients. However, new drugs are needed to combat the rapid emergence of mutated forms of the virus that are resistant to existing therapies. Currently, approved drugs target three of the four major enzyme activities encoded by the virus that are critical to the HIV life cycle. Although a number of inhibitors of HIV RNase H activity have been reported, few inhibit by directly engaging the RNase H active site. Here, we describe structures of naphthyridinone-containing inhibitors bound to the RNase H active site. This class of compounds binds to the active site via two metal ions that are coordinated by catalytic site residues, D443, E478, D498, and D549. The directionality of the naphthyridinone pharmacophore is restricted by the ordering of D549 and H539 in the RNase H domain. In addition, one of the naphthyridinone-based compounds was found to bind at a second site close to the polymerase active site and non-nucleoside/nucleotide inhibitor sites in a metal-independent manner. Further characterization, using fluorescence-based thermal denaturation and a crystal structure of the isolated RNase H domain reveals that this compound can also bind the RNase H site and retains the metal-dependent binding mode of this class of molecules. These structures provide a means for structurally guided design of novel RNase H inhibitors.

  2. Novel bis-(−)-nor-meptazinol derivatives act as dual binding site AChE inhibitors with metal-complexing property

    SciTech Connect

    Zheng, Wei; Li, Juan; Qiu, Zhuibai; Xia, Zheng; Li, Wei; Yu, Lining; Chen, Hailin; Chen, Jianxing; Chen, Yan; Hu, Zhuqin; Zhou, Wei; Shao, Biyun; Cui, Yongyao; Xie, Qiong; Chen, Hongzhuan

    2012-10-01

    The strategy of dual binding site acetylcholinesterase (AChE) inhibition along with metal chelation may represent a promising direction for multi-targeted interventions in the pathophysiological processes of Alzheimer's disease (AD). In the present study, two derivatives (ZLA and ZLB) of a potent dual binding site AChE inhibitor bis-(−)-nor-meptazinol (bis-MEP) were designed and synthesized by introducing metal chelating pharmacophores into the middle chain of bis-MEP. They could inhibit human AChE activity with IC{sub 50} values of 9.63 μM (for ZLA) and 8.64 μM (for ZLB), and prevent AChE-induced amyloid-β (Aβ) aggregation with IC{sub 50} values of 49.1 μM (for ZLA) and 55.3 μM (for ZLB). In parallel, molecular docking analysis showed that they are capable of interacting with both the catalytic and peripheral anionic sites of AChE. Furthermore, they exhibited abilities to complex metal ions such as Cu(II) and Zn(II), and inhibit Aβ aggregation triggered by these metals. Collectively, these results suggest that ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency, and may be potential leads of value for further study on disease-modifying treatment of AD. -- Highlights: ► Two novel bis-(−)-nor-meptazinol derivatives are designed and synthesized. ► ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency. ► They are potential leads for disease-modifying treatment of Alzheimer's disease.

  3. Occupancy of the Zinc-binding Site by Transition Metals Decreases the Substrate Affinity of the Human Dopamine Transporter by an Allosteric Mechanism*

    PubMed Central

    Li, Yang; Mayer, Felix P.; Hasenhuetl, Peter S.; Burtscher, Verena; Schicker, Klaus; Sitte, Harald H.; Freissmuth, Michael; Sandtner, Walter

    2017-01-01

    The human dopamine transporter (DAT) has a tetrahedral Zn2+-binding site. Zn2+-binding sites are also recognized by other first-row transition metals. Excessive accumulation of manganese or of copper can lead to parkinsonism because of dopamine deficiency. Accordingly, we examined the effect of Mn2+, Co2+, Ni2+, and Cu2+ on transport-associated currents through DAT and DAT-H193K, a mutant with a disrupted Zn2+-binding site. All transition metals except Mn2+ modulated the transport cycle of wild-type DAT with affinities in the low micromolar range. In this concentration range, they were devoid of any action on DAT-H193K. The active transition metals reduced the affinity of DAT for dopamine. The affinity shift was most pronounced for Cu2+, followed by Ni2+ and Zn2+ (= Co2+). The extent of the affinity shift and the reciprocal effect of substrate on metal affinity accounted for the different modes of action: Ni2+ and Cu2+ uniformly stimulated and inhibited, respectively, the substrate-induced steady-state currents through DAT. In contrast, Zn2+ elicited biphasic effects on transport, i.e. stimulation at 1 μm and inhibition at 10 μm. A kinetic model that posited preferential binding of transition metal ions to the outward-facing apo state of DAT and a reciprocal interaction of dopamine and transition metals recapitulated all experimental findings. Allosteric activation of DAT via the Zn2+-binding site may be of interest to restore transport in loss-of-function mutants. PMID:28096460

  4. Metal contamination in environmental media in residential areas around Romanian mining sites.

    PubMed

    Neamtiu, Iulia A; Al-Abed, Souhail R; McKernan, John L; Baciu, Calin L; Gurzau, Eugen S; Pogacean, Anca O; Bessler, Scott M

    2017-03-01

    Hard-rock mining for metals, such as gold, silver, copper, zinc, iron and others, is recognized to have a significant impact on the environmental media, soil and water, in particular. Toxic contaminants released from mine waste to surface water and groundwater is the primary concern, but human exposure to soil contaminants either directly, via inhalation of airborne dust particles, or indirectly, via food chain (ingestion of animal products and/or vegetables grown in contaminated areas), is also, significant. In this research, we analyzed data collected in 2007, as part of a larger environmental study performed in the Rosia Montana area in Transylvania, to provide the Romanian governmental authorities with data on the levels of metal contamination in environmental media from this historical mining area. The data were also considered in policy decision to address mining-related environmental concerns in the area. We examined soil and water data collected from residential areas near the mining sites to determine relationships among metals analyzed in these different environmental media, using the correlation procedure in the SAS statistical software. Results for residential soil and water analysis indicate that the average values for arsenic (As) (85 mg/kg), cadmium (Cd) (3.2 mg/kg), mercury (Hg) (2.3 mg/kg) and lead (Pb) (92 mg/kg) exceeded the Romanian regulatory exposure levels [the intervention thresholds for residential soil in case of As (25 mg/kg) and Hg (2 mg/kg), and the alert thresholds in case of Pb (50 mg/kg) and Cd (3 mg/kg)]. Average metal concentrations in drinking water did not exceed the maximum contaminant level (MCL) imposed by the Romanian legislation, but high metal concentrations were found in surface water from Rosia creek, downstream from the former mining area.

  5. Identification of Ice Nucleation Active Sites on Silicate Dust Particles

    NASA Astrophysics Data System (ADS)

    Zolles, Tobias; Burkart, Julia; Häusler, Thomas; Pummer, Bernhard; Hitzenberger, Regina; Grothe, Hinrich

    2015-04-01

    Mineral dusts originating from Earth's crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts [1-3]. Nevertheless, among those structures K-feldspar showed by far the highest ice nucleation activity. In this study, the reasons for its activity and the difference in the activity of the different feldspars were investigated in closer details. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. We give a potential explanation of the increased ice nucleation activity of K-feldspar. The ice nucleating sites are very much dependent on the alkali ion present by altering the water structure and the feldspar surface. The higher activity of K-feldspar can be attributed to the presence of potassium ions on the surface and surface bilayer. The alkali-ions have different hydration shells and thus an influence on the ice nucleation activity of feldspar. Chaotropic behavior of Calcium and Sodium ions are lowering the ice nucleation potential of the other feldspars, while kosmotropic Potassium has a neutral or even positive effect. Furthermore we investigated the influence of milling onto the ice nucleation of quartz particles. The ice nucleation activity can be increased by mechanical milling, by introducing more molecular, nucleation active defects to the particle surface. This effect is larger than expected by plane surface increase. [1] Atkinson et al. The Importance of Feldspar for Ice Nucleation by Mineral Dust in Mixed-Phase Clouds. Nature 2013, 498, 355-358. [2] Yakobi-Hancock et al.. Feldspar Minerals as Efficient Deposition Ice Nuclei. Atmos. Chem. Phys. 2013, 13, 11175-11185. [3] Zolles et al. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles. J. Phys. Chem. A 2015 accepted.

  6. Microalloying of transition metal silicides by mechanical activation and field-activated reaction

    DOEpatents

    Munir, Zuhair A.; Woolman, Joseph N.; Petrovic, John J.

    2003-09-02

    Alloys of transition metal suicides that contain one or more alloying elements are fabricated by a two-stage process involving mechanical activation as the first stage and densification and field-activated reaction as the second stage. Mechanical activation, preferably performed by high-energy planetary milling, results in the incorporation of atoms of the alloying element(s) into the crystal lattice of the transition metal, while the densification and field-activated reaction, preferably performed by spark plasma sintering, result in the formation of the alloyed transition metal silicide. Among the many advantages of the process are its ability to accommodate materials that are incompatible in other alloying methods.

  7. Site-selective synthesis of Janus-type metal-organic framework composites.

    PubMed

    Yadnum, Sudarat; Roche, Jérome; Lebraud, Eric; Négrier, Philippe; Garrigue, Patrick; Bradshaw, Darren; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2014-04-07

    Herein, bipolar electrochemistry is applied in a straightforward way to the site-selective in situ synthesis of metal-organic framework (MOF) structures, which have attracted tremendous interest in recent years because of their significant application potential, ranging from sensing to gas storage and catalysis. The novelty of the presented work is that the deposit can be intentionally confined to a defined area of a substrate without using masks or templates. The intrinsic site-selectivity of bipolar electrochemistry makes it a method of choice to generate, in a highly controlled way, hybrid particles that may have different functionalities combined on the same particle. The wireless nature of electrodeposition allows the potential for mass production of such Janus-type objects.

  8. Selective targeting of the conserved active site cysteine of Mycobacterium tuberculosis methionine aminopeptidase with electrophilic reagents.

    PubMed

    Reddi, Ravikumar; Arya, Tarun; Kishor, Chandan; Gumpena, Rajesh; Ganji, Roopa J; Bhukya, Supriya; Addlagatta, Anthony

    2014-09-01

    Methionine aminopeptidases (MetAPs) cleave initiator methionine from ~ 70% of the newly synthesized proteins in every living cell, and specific inhibition or knockdown of this function is detrimental. MetAPs are metalloenzymes, and are broadly classified into two subtypes, type I and type II. Bacteria contain only type I MetAPs, and the active site of these enzymes contains a conserved cysteine. By contrast, in type II enzymes the analogous position is occupied by a conserved glycine. Here, we report the reactivity of the active site cysteine in a type I MetAP, MetAP1c, of Mycobacterium tuberculosis (MtMetAP1c) towards highly selective cysteine-specific reagents. The authenticity of selective modification of Cys105 of MtMetAP1c was established by using site-directed mutagenesis and crystal structure determination of covalent and noncovalent complexes. On the basis of these observations, we propose that metal ions in the active site assist in the covalent modification of Cys105 by orienting the reagents appropriately for a successful reaction. These studies establish, for the first time, that the conserved cysteine of type I MetAPs can be targeted for selective inhibition, and we believe that this chemistry can be exploited for further drug discovery efforts regarding microbial MetAPs.

  9. Cd-substituted horse liver alcohol dehydrogenase: catalytic site metal coordination geometry and protein conformation.

    PubMed

    Hemmingsen, L; Bauer, R; Bjerrum, M J; Zeppezauer, M; Adolph, H W; Formicka, G; Cedergren-Zeppezauer, E

    1995-05-30

    The coordination geometry of the catalytic site in Cd-substituted horse liver alcohol dehydrogenase (LADH) has been investigated as a function of pH using the method of perturbed angular correlation of gamma-rays (PAC). LADH in solution fully loaded with cadmium, including radioactive 111mCd in the catalytic site [Cd2(111mCd)Cd2LADH], was studied over the pH range 7.9-11.5. Analysis of the PAC spectra showed the ionization of a group with pKa of 11. This pKa value is about 2 pH units higher than that of native zinc-containing LADH. A pKa of 9.6 was found for the binary complex of Cd2(111mCd)Cd2LADH with NAD+. This value is also about 2 pH units higher than that of the binary complex of native zinc-containing enzyme and NAD+. No pH dependency was detected for the binary complex of Cd2(111mCd)Cd2LADH with NADH within the pH range measured (pH 8.3-11.5). Assuming that metal-coordinated water is the ionizing group [Kvassman, J., & Pettersson, G. (1979) Eur. J. Biochem. 100, 115-123], we conclude that the larger ionic radius of Cd(II) relative to Zn(II) in the catalytic site causes the elevated pKa values of metal-bound water. Interpretation of nuclear quadrupole interaction (NQI) parameters derived from PAC spectra is based on the use of the angular overlap model, using the coordinates for the catalytic zinc site from the 1.8 A resolution crystal structure of the ternary complex between LADH, NADH, and dimethyl sulfoxide as a model.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Active sites in char gasification: Final technical report

    SciTech Connect

    Wojtowicz, M.; Lilly, W.D.; Perkins, M.T.; Hradil, G.; Calo, J.M.; Suuberg, E.M.

    1987-09-01

    Among the key variables in the design of gasifiers and combustors is the reactivity of the chars which must be gasified or combusted. Significant loss of unburned char is unacceptable in virtually any process; the provision of sufficient residence time for complete conversion is essential. A very wide range of reactivities are observed, depending upon the nature of the char in a process. The current work focuses on furthering the understanding of gasification reactivities of chars. It has been well established that the reactivity of char to gasification generally depends upon three principal factors: (1) the concentration of ''active sites'' in the char; (2) mass transfer within the char; and (3) the type and concentration of catalytic impurities in the char. The present study primarily addresses the first factor. The subject of this research is the origin, nature, and fate of active sites in chars derived from parent hydrocarbons with coal-like structure. The nature and number of the active sites and their reactivity towards oxygen are examined in ''model'' chars derived from phenol-formaldehyde type resins. How the active sites are lost by the process of thermal annealing during heat treatment of chars are studied, and actual rate for the annealing process is derived. Since intrinsic char reactivities are of primary interest in the present study, a fair amount of attention was given to the model char synthesis and handling so that the effect of catalytic impurities and oxygen-containing functional groups in the chemical structure of the material were minimized, if not completely eliminated. The project would not be considered complete without comparing characteristic features of synthetic chars with kinetic behavior exhibited by natural chars, including coal chars.

  11. Spatial variability of metal bioaccumulation in estuarine killifish (Fundulus heteroclitus) at the Callahan mine superfund site, Brooksville, ME.

    PubMed

    Broadley, Hannah J; Buckman, Kate L; Bugge, Deenie M; Chen, Celia Y

    2013-11-01

    The former Callahan Mine Site in Brooksville, ME, is an open-pit, hardrock mine site in an intertidal system, thus providing a unique opportunity to evaluate how metal-enriched sediments and overlying water impact estuarine food webs. Copper, zinc, cadmium, and lead concentrations in sediment, whole water, and Atlantic killifish (Fundulus heteroclitus) were evaluated at sites in Goose Pond (GP; Callahan Mine Site) and at reference sites. The metal concentrations of sediment, water, and fish were spatially distinct and significantly greater at the mine site than in the reference estuary. Sediment concentrations were particularly elevated and were above probable effects levels for all four metals adjacent to the tailings pile. Even in this well-mixed system, water metal concentrations were significantly elevated adjacent to the tailings pile, and concentrations of Cu and Zn were above ambient water-quality criteria for chronic marine exposure. Neither organic matter in the sediment nor salinity or pH of the water explained the metal concentrations. Adjacent to the tailings pile, killifish metal body burdens were elevated and were significantly related to both sediment and aqueous concentrations. In conclusion, (1) the contaminated sediment and seepage from the tailings impoundment and waste rock pile no. 3 create a continual flux of metals into the water column, (2) the metals are bioavailable and bioconcentrating as evident in the killifish tissue concentrations, and (3) Callahan Mine is directly affecting metal bioaccumulation in fauna residing in the GP estuary and, potentially, in Penobscot Bay by the way of “trophic nekton relay.”

  12. Do heavy metals existing in abandoned mining sites represent a real health risk? A study case in the SE Spain.

    NASA Astrophysics Data System (ADS)

    Martinez-Sanchez, Maria Jose; Perez-Sirvent, Carmen; García-Lorenzo, Mari Luz; Martínez-López, Salvadora; Perez-Espinosa, Victor; Hernández-Cordoba, Manuel; Bech, Jaime

    2013-04-01

    Mining activities have been carried out for centuries in Sierra Minera (SE Spain) giving rise to a large number of sites distributed throughout the zone in which residues are accumulated. This communication reports studies as regards metal mobilization and analysis of the health risk that could be posed by inhalation, dermic contact or occasional ingestion of this type of sediments. Lead was used as the metal for the studies due to its particular abundance in the zone. A large number of samples were taken and general analytical determinations (pH, particle size, organic matter, equivalent calcium carbonate content and mineralogical composition) were carried out in order its characterization. An in vitro method for obtaining formation on Pb bioaccessibility in these mine waste materials was also carried out. Our results prove that mineral associations, different alteration states and sorption/desorption processes play an important role in the bioavailability of lead. In addition, it is noteworthy that the metal fraction dissolved by the proposed in vitro methodology is lower than 100%, both in the stomach and intestinal phases. Finally an assessment of the risk posed by lead is achieved. To this respect it should be noted that the IRIS database provide cancer slope factor and reference dose, as a way to assess the risk caused by arsenic, cadmium and copper but no for lead, probably due to the wide variety of real situations, and the discrepancy of the sources. The way here suggested is a novelty in this sense, and the results could be extrapolated to other similar zones and be incorporated to the general protocol of risk assessment applied to contaminated sites.

  13. Molybdenum and tungsten oxygen transferases--and functional diversity within a common active site motif.

    PubMed

    Pushie, M Jake; Cotelesage, Julien J; George, Graham N

    2014-01-01

    Molybdenum and tungsten are the only second and third-row transition elements with a known function in living organisms. The molybdenum and tungsten enzymes show common structural features, with the metal being bound by a pyranopterin-dithiolene cofactor called molybdopterin. They catalyze a variety of oxygen transferase reactions coupled with two-electron redox chemistry in which the metal cycles between the +6 and +4 oxidation states usually with water, either product or substrate, providing the oxygen. The functional roles filled by the molybdenum and tungsten enzymes are diverse; for example, they play essential roles in microbial respiration, in the uptake of nitrogen in green plants, and in human health. Together, the enzymes form a superfamily which is among the most prevalent known, being found in all kingdoms of life. This review discusses what is known of the active site structures and the mechanisms, together with some recent insights into the evolution of these important enzyme systems.

  14. Metabolic responses to metal pollution in shrimp Crangon affinis from the sites along the Laizhou Bay in the Bohai Sea.

    PubMed

    Xu, Lanlan; Ji, Chenglong; Zhao, Jianmin; Wu, Huifeng

    2016-12-15

    Marine environment in the Laizhou Bay is potentially contaminated by metals from industrial discharges. In this study, metal concentrations in shrimps Crangon affinis indicated that two typical sites (S6283 and S5283) close to Longkou and Zhaoyuan cities along the Laizhou Bay have been contaminated by metals, including Cd, As, Cu, Ni, Co, and Mn. In particular, Cd and As were the main metal contaminants in S6283. In S5283, however, Cu was the most important metal contaminant. The metabolic responses in the shrimps indicated that the metal pollution in S6283 and S5283 induced disturbances in osmotic regulation and energy metabolism and reduced anaerobiosis, lipid metabolism, and muscle movement. However, alteration in the levels of dimethylglycine, dimethylamine, arginine, betaine, and glutamine indicated that the metal pollution in S5283 induced osmotic stress through different pathways compared to that in S6283. In addition, dimethylamine might be the biomarker of Cu in shrimp C. affinis.

  15. Binding of Mn-deoxyribonucleoside Triphosphates to the Active Site of the DNA Polymerase of Bacteriophage T7

    SciTech Connect

    B Akabayov; C Richardson

    2011-12-31

    Divalent metal ions are crucial as cofactors for a variety of intracellular enzymatic activities. Mg{sup 2+}, as an example, mediates binding of deoxyribonucleoside 5'-triphosphates followed by their hydrolysis in the active site of DNA polymerase. It is difficult to study the binding of Mg{sup 2+} to an active site because Mg{sup 2+} is spectroscopically silent and Mg{sup 2+} binds with low affinity to the active site of an enzyme. Therefore, we substituted Mg{sup 2+} with Mn{sup 2+}:Mn{sup 2+} that is not only visible spectroscopically but also provides full activity of the DNA polymerase of bacteriophage T7. In order to demonstrate that the majority of Mn{sup 2+} is bound to the enzyme, we have applied site-directed titration analysis of T7 DNA polymerase using X-ray near edge spectroscopy. Here we show how X-ray near edge spectroscopy can be used to distinguish between signal originating from Mn{sup 2+} that is free in solution and Mn{sup 2+} bound to the active site of T7 DNA polymerase. This method can be applied to other enzymes that use divalent metal ions as a cofactor.

  16. Nest predation increases with parental activity: Separating nest site and parental activity effects

    USGS Publications Warehouse

    Martin, T.E.; Scott, J.; Menge, C.

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection.

  17. Nest predation increases with parental activity: separating nest site and parental activity effects.

    PubMed Central

    Martin, T E; Scott, J; Menge, C

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection. PMID:11413645

  18. Active site amino acid sequence of human factor D.

    PubMed

    Davis, A E

    1980-08-01

    Factor D was isolated from human plasma by chromatography on CM-Sephadex C50, Sephadex G-75, and hydroxylapatite. Digestion of reduced, S-carboxymethylated factor D with cyanogen bromide resulted in three peptides which were isolated by chromatography on Sephadex G-75 (superfine) equilibrated in 20% formic acid. NH2-Terminal sequences were determined by automated Edman degradation with a Beckman 890C sequencer using a 0.1 M Quadrol program. The smallest peptide (CNBr III) consisted of the NH2-terminal 14 amino acids. The other two peptides had molecular weights of 17,000 (CNBr I) and 7000 (CNBr II). Overlap of the NH2-terminal sequence of factor D with the NH2-terminal sequence of CNBr I established the order of the peptides. The NH2-terminal 53 residues of factor D are somewhat more homologous with the group-specific protease of rat intestine than with other serine proteases. The NH2-terminal sequence of CNBr II revealed the active site serine of factor D. The typical serine protease active site sequence (Gly-Asp-Ser-Gly-Gly-Pro was found at residues 12-17. The region surrounding the active site serine does not appear to be more highly homologous with any one of the other serine proteases. The structural data obtained point out the similarities between factor D and the other proteases. However, complete definition of the degree of relationship between factor D and other proteases will require determination of the remainder of the primary structure.

  19. Brownian aggregation rate of colloid particles with several active sites

    SciTech Connect

    Nekrasov, Vyacheslav M.; Yurkin, Maxim A.; Chernyshev, Andrei V.; Polshchitsin, Alexey A.; Yakovleva, Galina E.; Maltsev, Valeri P.

    2014-08-14

    We theoretically analyze the aggregation kinetics of colloid particles with several active sites. Such particles (so-called “patchy particles”) are well known as chemically anisotropic reactants, but the corresponding rate constant of their aggregation has not yet been established in a convenient analytical form. Using kinematic approximation for the diffusion problem, we derived an analytical formula for the diffusion-controlled reaction rate constant between two colloid particles (or clusters) with several small active sites under the following assumptions: the relative translational motion is Brownian diffusion, and the isotropic stochastic reorientation of each particle is Markovian and arbitrarily correlated. This formula was shown to produce accurate results in comparison with more sophisticated approaches. Also, to account for the case of a low number of active sites per particle we used Monte Carlo stochastic algorithm based on Gillespie method. Simulations showed that such discrete model is required when this number is less than 10. Finally, we applied the developed approach to the simulation of immunoagglutination, assuming that the formed clusters have fractal structure.

  20. [Mechanism of arginine deiminase activity by site-directed mutagenesis].

    PubMed

    Li, Lifeng; Ni, Ye; Sun, Zhihao

    2012-04-01

    Arginine deiminase (ADI) has been studied as a potential anti-cancer agent for inhibiting arginine-auxotrophic tumors (such as melanomas and hepatocellular carcinomas) in phase III clinical trials. In this work, we studied the molecular mechanism of arginine deiminase activity by site-directed mutagenesis. Three mutation sites, A128, H404 and 1410, were introduced into wild-type ADI gene by QuikChange site-directed mutagenesis method, and four ADI mutants M1 (A128T), M2 (H404R), M3 (I410L), and M4 (A128T, H404R) were obtained. The ADI mutants were individually expressed in Escherichia coli BL21 (DE3), and the enzymatic properties of the purified mutant proteins were determined. The results show that both A128T and H404R had enhanced optimum pH, higher activity and stability of ADI under physiological condition (pH 7.4), as well as reduced K(m) value. This study provides an insight into the molecular mechanism of the ADI activity, and also the experimental evidence for the rational protein evolution in the future.

  1. Potential sites of CFTR activation by tyrosine kinases

    PubMed Central

    Billet, Arnaud; Jia, Yanlin; Jensen, Timothy J.; Hou, Yue-Xian; Chang, Xiu-Bao; Riordan, John R.; Hanrahan, John W.

    2016-01-01

    ABSTRACT The CFTR chloride channel is tightly regulated by phosphorylation at multiple serine residues. Recently it has been proposed that its activity is also regulated by tyrosine kinases, however the tyrosine phosphorylation sites remain to be identified. In this study we examined 2 candidate tyrosine residues near the boundary between the first nucleotide binding domain and the R domain, a region which is important for channel function but devoid of PKA consensus sequences. Mutating tyrosines at positions 625 and 627 dramatically reduced responses to Src or Pyk2 without altering the activation by PKA, suggesting they may contribute to CFTR regulation. PMID:26645934

  2. Collaborative Triple Framework Interpenetration and Immobilization of Open Metal Sites within a Microporous Mixed Metal-Organic Framework for Highly Selective Gas Adsorption

    SciTech Connect

    Zhang, Zhangjing; Xiang, Sheng-Chang; Hong, Kunlun; Das, Madhab; Arman, Hadi; Garcia, Maya; Mondal, Jalal; Chen, Banglin

    2012-01-01

    A three-dimensional triply interpenetrated mixed metal-organic framework, Zn{sub 2}(BBA){sub 2}(CuPyen) {center_dot} G{sub x} (M'MOF-20; BBA = biphenyl-4,4'-dicarboxylate; G = guest solvent molecules), of primitive cubic net was obtained through the solvothermal reaction of Zn(NO{sub 3}){sub 2}, biphenyl-4,4'-dicarboxylic acid, and the salen precursor Cu(PyenH{sub 2})(NO{sub 3}){sub 2} by a metallo-ligand approach. The triple framework interpenetration has stabilized the framework in which the activated M'MOF-20a displays type-I N{sub 2} gas sorption behavior with a Langmuir surface area of 62 m{sup 2} g{sup -1}. The narrow pores of about 3.9 {angstrom} and the open metal sites on the pore surfaces within M'MOF-20a collaboratively induce its highly selective C{sub 2}H{sub 2}/CH{sub 4} and CO{sub 2}/CH{sub 4} gas separation at ambient temperature.

  3. Efficiency of stepwise magnetic-chemical site assessment for fly ash derived heavy metal pollution

    NASA Astrophysics Data System (ADS)

    Cao, Liwan; Appel, Erwin; Rösler, Wolfgang; Magiera, Tadeusz

    2015-11-01

    Previous works revealed a close relationship between magnetic susceptibility (MS) and heavy metal (HM) contents originating from industrial sources. However, despite general statements on the usefulness of magnetic mapping, the benefit of this procedure for geochemistry was not quantified yet. We present a study on fly ash pollution in soil around a coal-burning power plant complex and simulate a stepwise approach of magnetic pre-screening and subsequent targeted sampling for chemical analysis. The aim of this study is not to discuss correlations between MS and HM, but to show that a combined stepwise magnetic-chemical approach is the most efficient way for outlining HM contamination. In order to provide quantitative evidence, we explored map similarities of spatial HM distributions based on magnetochemical data and chemical data only. We determined 3-D triangular planes defined by categorized HM values at the sampling coordinates and calculated the average dihedral angle of the normal vectors as a similarity result. The study shows that the `Targeted' HM map (selection of 30 sites based magnetic pre-screening) has a higher similarity with the `True' Pollution HM map (85 sites) than HM maps resulting from site selections (30 sites) without using magnetic pre-screening information.

  4. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    PubMed Central

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  5. Activated Carbon Textile via Chemistry of Metal Extraction for Supercapacitors.

    PubMed

    Lam, Do Van; Jo, Kyungmin; Kim, Chang-Hyun; Kim, Jae-Hyun; Lee, Hak-Joo; Lee, Seung-Mo

    2016-12-27

    Carbothermic reduction in the chemistry of metal extraction (MO(s) + C(s) → M(s) + CO(g)) using carbon as a sacrificial agent has been used to smelt metals from diverse oxide ores since ancient times. Here, we paid attention to another aspect of the carbothermic reduction to prepare an activated carbon textile for high-rate-performance supercapacitors. On the basis of thermodynamic reducibility of metal oxides reported by Ellingham, we employed not carbon, but metal oxide as a sacrificial agent in order to prepare an activated carbon textile. We conformally coated ZnO on a bare cotton textile using atomic layer deposition, followed by pyrolysis at high temperature (C(s) + ZnO(s) → C'(s) + Zn(g) + CO(g)). We figured out that it leads to concurrent carbonization and activation in a chemical as well as mechanical way. Particularly, the combined effects of mechanical buckling and fracture that occurred between ZnO and cotton turned out to play an important role in carbonizing and activating the cotton textile, thereby significantly increasing surface area (nearly 10 times) compared with the cotton textile prepared without ZnO. The carbon textiles prepared by carbothermic reduction showed impressive combination properties of high power and energy densities (over 20-fold increase) together with high cyclic stability.

  6. Tunable catalytic activity of solid solution metal-organic frameworks in one-pot multicomponent reactions.

    PubMed

    Aguirre-Díaz, Lina María; Gándara, Felipe; Iglesias, Marta; Snejko, Natalia; Gutiérrez-Puebla, Enrique; Monge, M Ángeles

    2015-05-20

    The aim of this research is to establish how metal-organic frameworks (MOFs) composed of more than one metal in equivalent crystallographic sites (solid solution MOFs) exhibit catalytic activity, which is tunable by virtue of the metal ions ratio. New MOFs with general formula [InxGa1-x(O2C2H4)0.5(hfipbb)] were prepared by the combination of Ga and In. They are isostructural with their monometal counterparts, synthesized with Al, Ga, and In. Differences in their behavior as heterogeneous catalysts in the three-component, one pot Strecker reaction illustrate the potential of solid solution MOFs to provide the ability to address the various stages involved in the reaction mechanism.

  7. An active metallic nanomatryushka with two similar super-resonances

    NASA Astrophysics Data System (ADS)

    Wu, D. J.; Cheng, Y.; Wu, X. W.; Liu, X. J.

    2014-07-01

    The optical properties of a simple metallic nanomatryushka (nanosphere-in-a-nanoshell) with gain have been investigated theoretically. The spaser (surface plasmon amplification by stimulated emission of radiation) phenomena can be observed at two critical wavelengths in the active metallic nanomatryushkas. With increasing the gain coefficient of the middle layer, a similar super surface plasmon (SP) resonance is first found at the ω-+|1 mode of the active nanoparticles and then breaks down. With further increasing the gain coefficient, another similar super-resonance occurs at the ω--|1 mode. The near-field enhancements in the active nanomatryushkas also have been greatly amplified at the critical wavelengths for ω-+|1 and ω--|1 modes. It is further found that the amplifications of SPs in the active Ag-SiO2-Au nanoshell are strongest in four kinds of nanoshells and hence the largest near fields. The giant near-field enhancement can greatly enhance the Raman excitation and emission.

  8. Sub-cellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas

    PubMed Central

    Hong-Hermesdorf, Anne; Miethke, Marcus; Gallaher, Sean D; Kropat, Janette; Dodani, Sheel C; Chan, Jefferson; Barupala, Dulmini; Domaille, Dylan W; Shirasaki, Dyna I; Loo, Joseph A; Weber, Peter K; Pett-Ridge, Jennifer; Stemmler, Timothy L; Chang, Christopher J; Merchant, Sabeeha S

    2014-01-01

    We identified a Cu accumulating structure with a dynamic role in intracellular Cu homeostasis. During Zn limitation, Chlamydomonas reinhardtii hyperaccumulated Cu, dependent on the nutritional Cu sensor CRR1, but was functionally Cu-deficient. Visualization of intracellular Cu revealed major Cu accumulation sites coincident with electron-dense structures that stained positive for low pH and polyphosphate, suggesting that they are lysosome-related organelles. NanoSIMS showed colocalization of Ca and Cu, and X-ray absorption spectroscopy (XAS) was consistent with Cu+ accumulation in an ordered structure. Zn resupply restored Cu homeostasis concomitant with reduced abundance of these structures. Cu isotope labeling demonstrated that sequestered Cu+ became bio-available for the synthesis of plastocyanin, and transcriptome profiling indicated that mobilized Cu became visible to CRR1. Cu trafficking to intracellular accumulation sites may be a strategy for preventing protein mis-metallation during Zn deficiency and enabling efficient cuproprotein (re)-metallation upon Zn resupply. PMID:25344811

  9. Morphology, structure, and metal binding mechanisms of biogenic manganese oxides in a superfund site treatment system.

    PubMed

    Duckworth, O W; Rivera, N A; Gardner, T G; Andrews, M Y; Santelli, C M; Polizzotto, M L

    2017-01-25

    Manganese oxides, which may be biogenically produced in both pristine and contaminated environments, have a large affinity for many trace metals. In this study, water and Mn oxide-bearing biofilm samples were collected from the components of a pump and treat remediation system at a superfund site. To better understand the factors leading to their formation and their effects on potentially toxic metal fate, we conducted a chemical, microscopic, and spectroscopic characterization of these biofilm samples. Scanning electron microscopy revealed the presence of Mn oxides in close association with biological structures with morphologies consistent with fungi. X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) revealed the oxides to be a mixture of layer and tunnel structure Mn(iv) oxides. In addition, XAS suggested that Ba, Co, and Zn all primarily bind to oxides in the biofilm in a manner that is analogous to synthetic or laboratory grown bacteriogenic Mn oxides. The results indicate that Mn oxides produced by organisms in the system may effectively scavenge metals, thus highlighting the potential utility of these organisms in designed remediation systems.

  10. Levels of asymmetry in Formica pratensis Retz. (Hymenoptera, Insecta) from a chronic metal-contaminated site

    SciTech Connect

    Rabitsch, W.B.

    1997-07-01

    Asymmetries of bilaterally symmetrical morphological traits in workers of the ant Formica pratensis Retzius were compared at sites with different levels of metal contamination and between mature and pre-mature colonies. Statistical analyses of the right-minus-left differences revealed that their distributions fit assumptions of fluctuating asymmetry (FA). No direct asymmetry or antisymmetry were present. Mean measurement error accounts for a third of the variation, but the maximum measurement error was 65%. Although significant differences of FA in ants were observed, the inconsistent results render uncovering a clear pattern difficult. Lead, cadmium, and zinc concentrations in the ants decreased with the distance from the contamination source, but no relation was found between FA and the heavy metal levels. Ants from the premature colonies were more asymmetrical than those from mature colonies but accumulated less metals. The use of asymmetry measures in ecotoxicology and biomonitoring is criticized, but should remain widely applicable if statistical assumptions are complemented by genetic and historical data.

  11. MSK1 activity is controlled by multiple phosphorylation sites

    PubMed Central

    McCOY, Claire E.; Campbell, David G.; Deak, Maria; Bloomberg, Graham B.; Arthur, J. Simon C.

    2004-01-01

    MSK1 (mitogen- and stress-activated protein kinase) is a kinase activated in cells downstream of both the ERK1/2 (extracellular-signal-regulated kinase) and p38 MAPK (mitogen-activated protein kinase) cascades. In the present study, we show that, in addition to being phosphorylated on Thr-581 and Ser-360 by ERK1/2 or p38, MSK1 can autophosphorylate on at least six sites: Ser-212, Ser-376, Ser-381, Ser-750, Ser-752 and Ser-758. Of these sites, the N-terminal T-loop residue Ser-212 and the ‘hydrophobic motif’ Ser-376 are phosphorylated by the C-terminal kinase domain of MSK1, and their phosphorylation is essential for the catalytic activity of the N-terminal kinase domain of MSK1 and therefore for the phosphorylation of MSK1 substrates in vitro. Ser-381 is also phosphorylated by the C-terminal kinase domain, and mutation of Ser-381 decreases MSK1 activity, probably through the inhibition of Ser-376 phosphorylation. Ser-750, Ser-752 and Ser-758 are phosphorylated by the N-terminal kinase domain; however, their function is not known. The activation of MSK1 in cells therefore requires the activation of the ERK1/2 or p38 MAPK cascades and does not appear to require additional signalling inputs. This is in contrast with the closely related RSK (p90 ribosomal S6 kinase) proteins, whose activity requires phosphorylation by PDK1 (3-phosphoinositide-dependent protein kinase 1) in addition to phosphorylation by ERK1/2. PMID:15568999

  12. Environmental impact assessment of radionuclide and metal contamination at the former U site at Kadji Sai, Kyrgyzstan.

    PubMed

    Lind, O C; Stegnar, P; Tolongutov, B; Rosseland, B O; Strømman, G; Uralbekov, B; Usubalieva, A; Solomatina, A; Gwynn, J P; Lespukh, E; Salbu, B

    2013-09-01

    During 1949-1967, a U mine, a coal-fired thermal power plant and a processing plant for the extraction of U from the produced ash were operated at the Kadji Sai U mining site in Tonsk district, Issyk-Kul County, Kyrgyzstan. The Kadji Sai U legacy site represents a source of contamination of the local environment by naturally occurring radionuclides and associated trace elements. To assess the environmental impact of radionuclides and trace metals at the site, field expeditions were performed in 2007 and 2008 by the Joint collaboration between Norway, Kazakhstan, Kyrgyzstan, Tajikistan (JNKKT) project and the NATO SfP RESCA project. In addition to in situ gamma and Rn dose rate measurements, sampling included at site fractionation of water and sampling of water, fish, sediment, soils and vegetation. The concentrations of radionuclides and trace metals in water from Issyk-Kul Lake were in general low, but surprisingly high for As. Uptake of U and As was also observed in fish from the lake with maximum bioconcentration factors for liver of 1.6 and 75, respectively. The concentrations of U in water within the Kadji Sai area varied from 0.01 to 0.05 mg/L, except for downstream from the mining area where U reached a factor of 10 higher, 0.2 mg/L. Uranium concentrations in the drinking water of Kadji Sai village were about the level recommended by the WHO for drinking water. The (234)U/(238)U activity ratio reflected equilibrium conditions in the mining pond, but far from equilibrium outside this area (reaching 2.3 for an artesian well). Uranium, As and Ni were mainly present as low molecular mass (LMM, less than 10 kDa) species in all samples, indicating that these elemental species are mobile and potentially bioavailable. The soils from the mining sites were enriched in U, As and trace metals. Hot spots with elevated radioactivity levels were easily detected in Kadji Sai and radioactive particles were observed. The presence of particles carrying significant amount of

  13. Systematically biological prioritizing remediation sites based on datasets of biological investigations and heavy metals in soil

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Chih; Lin, Yu-Pin; Anthony, Johnathen

    2015-04-01

    Heavy metal pollution has adverse effects on not only the focal invertebrate species of this study, such as reduction in pupa weight and increased larval mortality, but also on the higher trophic level organisms which feed on them, either directly or indirectly, through the process of biomagnification. Despite this, few studies regarding remediation prioritization take species distribution or biological conservation priorities into consideration. This study develops a novel approach for delineating sites which are both contaminated by any of 5 readily bioaccumulated heavy metal soil contaminants and are of high ecological importance for the highly mobile, low trophic level focal species. The conservation priority of each site was based on the projected distributions of 6 moth species simulated via the presence-only maximum entropy species distribution model followed by the subsequent application of a systematic conservation tool. In order to increase the number of available samples, we also integrated crowd-sourced data with professionally-collected data via a novel optimization procedure based on a simulated annealing algorithm. This integration procedure was important since while crowd-sourced data can drastically increase the number of data samples available to ecologists, still the quality or reliability of crowd-sourced data can be called into question, adding yet another source of uncertainty in projecting species distributions. The optimization method screens crowd-sourced data in terms of the environmental variables which correspond to professionally-collected data. The sample distribution data was derived from two different sources, including the EnjoyMoths project in Taiwan (crowd-sourced data) and the Global Biodiversity Information Facility (GBIF) ?eld data (professional data). The distributions of heavy metal concentrations were generated via 1000 iterations of a geostatistical co-simulation approach. The uncertainties in distributions of the heavy

  14. Effect of heavy metals on soil enzyme activity at different field conditions in Middle Spis mining area (Slovakia).

    PubMed

    Angelovičová, Lenka; Lodenius, Martin; Tulisalo, Esa; Fazekašová, Danica

    2014-12-01

    Heavy metals concentrations were measured in the former mining area located in Hornad river valley (Slovakia). Soil samples were taken in 2012 from 20 sites at two field types (grasslands, heaps of waste material) and two different areas. Total content of heavy metals (Cu, Pb, Zn, Hg), urease (URE), acid phosphatase (ACP), alkaline phosphatase (ALP), soil reaction (pH) were changing depending on the field/area type. The tailing pond and processing plants have been found as the biggest sources of pollution. URE, ACP and ALP activities significantly decreased while the heavy metal contents increased. Significant differences were found among area types in the heavy metal contents and activity of URE. No statistical differences in the content of heavy metals but significant statistical differences for soil pH were found for field types (grassland and heaps). Significant negative correlation was found for URE-Pb, URE-Zn and also between soil reaction and ACP and ALP.

  15. Development of high catalytic activity disordered hydrogen-storage alloys for electrochemical application in nickel-metal hydride batterie

    NASA Astrophysics Data System (ADS)

    Ovshinsky, S. R.; Fetcenko, M. A.

    2001-04-01

    Multi-element, multiphase disordered metal hydride alloys have enabled the widespread commercialization of nickel-metal hydride (NiMH) batteries by allowing high capacity and good kinetics while overcoming the crucial barrier of unstable oxidation/corrosion behavior to obtain long cycle life. Alloy-formula optimization and advanced materials processing have been used to promote a high concentration of active hydrogen-storage sites vital for raising NiMH specific energy. New commercial applications demand fundamentally higher specific power and discharge-rate kinetics. Disorder at the metal/electrolyte interface has enabled a surface oxide with less than 70 Å metallic nickel alloy inclusions suspended within the oxide, which provide exceptional catalytic activity to the metal hydride electrode surface.

  16. Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste

    SciTech Connect

    Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

    1997-05-01

    A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance.

  17. Progress report on decommissioning activities at the Fernald Environmental Management Project (FEMP) site

    SciTech Connect

    1998-07-01

    The Fernald Environmental Management Project (FEMP), is located about 18 miles northwest of Cincinnati, Ohio. Between 1953 and 1989, the facility, then called the Feed Material Production Center or FMPC, produced uranium metal products used in the eventual production of weapons grade material for use by other US Department of Energy (DOE) sites. In 1989, FMPC`s production was suspended by the federal government in order to focus resources on environmental restoration versus defense production. In 1992, Fluor Daniel Fernald assumed responsibility for managing all cleanup activities at the FEMP under contract to the DOE. In 1990, as part of the remediation effort, the site was divided into five operable units based on physical proximity of contaminated areas, similar amounts of types of contamination, or the potential for a similar technology to be used in cleanup activities. This report continues the outline of the decontamination and decommissioning (D and D) activities at the FEMP site Operable Unit 3 (OU3) and provides an update on the status of the decommissioning activities. OU3, the Facilities Closure and Demolition Project, involves the remediation of more than 200 uranium processing facilities. The mission of the project is to remove nuclear materials stored in these buildings, then perform the clean out of the buildings and equipment, and decontaminate and dismantle the facilities.

  18. Supramolecular modeling of mono-copper enzyme active sites with calix[6]arene-based funnel complexes.

    PubMed

    Le Poul, Nicolas; Le Mest, Yves; Jabin, Ivan; Reinaud, Olivia

    2015-07-21

    Supramolecular bioinorganic chemistry is a natural evolution in biomimetic metallic systems since it constitutes a further degree of complexity in modeling. The traditional approach consisting of mimicking the first coordination sphere of metal sites proved to be very efficient, because valuable data are extracted from these examples to gain insight in natural systems mechanisms. But it does not reproduce several specific aspects of enzymes that can be mimicked by the implementation of a cavity embedding the labile active site and thus controlling the properties of the metal ion by noncovalent interactions. This Account reports on a strategy aimed at reproducing some supramolecular aspects encountered in the natural systems. The cavity complexes described herein display a coordination site constructed on a macrocycle. Thanks to a careful design of the cavity-based ligands, complexes orienting their labile site specifically toward the inside of the macrocycle were obtained. The supramolecular systems are based on the flexible calix[6]arene core that surrounds the metal ion labile site, thereby constraining exogenous molecules to pass through the conic funnel to reach the metal center. Such an architecture confers to the metal ion very unusual properties and behaviors, which in many aspects are biologically relevant. Three generations of calix[6]-based ligands are presented and discussed in the context of modeling the monocopper sites encountered in some enzymes. A wide range of phenomena are highlighted such as the impact that the size and shape of the access channel to the metal center have on the selectivity and rate of the binding process, the possible remote control of the electronics through small modifications operated on the cavity edges, induced-fit behavior associated with host-guest association (shoe-tree effect) that affects the redox properties of the metal ion and the electron exchange pathway, consequences of forbidden associative ligand exchange

  19. [The effect of heavy metal ions and peptide bioregulators on the expression of chromosome fragile sites in the individuals of different age groups and breast cancer patients].

    PubMed

    Dzhokhadze, T A; Ganozishvili, M N; Lezhava, T A

    2008-09-01

    Expression rates of chromosome fragile sites in peripheral blood lymphocytes have been studied in clinically healthy individuals of different age groups (20-38 yrs and 75-86 yrs) and breast cancer patients (8 cases). In individuals with a normal check-up of different age groups the heavy metal (nickel, zinc and cobalt) ions were also examined on their influence on the expression of the fragile sites and the peptide bioregulators (Livagen and Epithalon) were tested on their ability to correct the pattern of expression. Short-term lymphocyte cultures were used as tested material. The analysis showed that the chromosomes of people from young and old age groups differ from each other by the expression pattern of fragile sites - the chromosomes of young individuals were found to be more active by spontaneous formation of fragile sites. They were also sensitive to their induction by heavy metals. Both tested bioregulators lessen heavy metals effect that was statistically reliable only for the young people group. As for the patients with breast cancer general elevated fragility of chromosomes and specific distribution of the fragile sites along the chromosomes were revealed.

  20. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-01

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils.

  1. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils

    PubMed Central

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-01

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils. PMID:26739424

  2. Ion activity and distribution of heavy metals in acid mine drainage polluted subtropical soils.

    PubMed

    Li, Yong-Tao; Becquer, Thierry; Dai, Jun; Quantin, Cécile; Benedetti, Marc F

    2009-04-01

    The oxidative dissolution of mine wastes gives rise to acidic, metal-enriched mine drainage (AMD) and has typically posed an additional risk to the environment. The poly-metallic mine Dabaoshan in South China is an excellent test site to understand the processes affecting the surrounding polluted agricultural fields. Our objectives were firstly to investigate metal ion activity in soil solution, distribution in solid constituents, and spatial distribution in samples, secondly to determine dominant environment factors controlling metal activity in the long-term AMD-polluted subtropical soils. Soil Column Donnan Membrane Technology (SC-DMT) combined with sequential extraction shows that unusually large proportion of the metal ions are present as free ion in the soil solutions. The narrow range of low pH values prevents any pH effects during the binding onto oxides or organic matter. The differences in speciation of the soil solutions may explain the different soil degradation observed between paddy and non-paddy soils.

  3. Mycorrhizal fungi modulate phytochemical production and antioxidant activity of Cichorium intybus L. (Asteraceae) under metal toxicity.

    PubMed

    Rozpądek, P; Wężowicz, K; Stojakowska, A; Malarz, J; Surówka, E; Sobczyk, Ł; Anielska, T; Ważny, R; Miszalski, Z; Turnau, K

    2014-10-01

    Cichorium intybus (common chicory), a perennial plant, common in anthropogenic sites, has been the object of a multitude of studies in recent years due to its high content of antioxidants utilized in pharmacy and food industry. Here, the role of arbuscular mycorrhizal fungi (AMF) in the biosynthesis of plant secondary metabolites and the activity of enzymatic antioxidants under toxic metal stress was studied. Plants inoculated with Rhizophagus irregularis and non-inoculated were grown on non-polluted and toxic metal enriched substrata. The results presented here indicate that AMF improves chicory fitness. Fresh and dry weight was found to be severely affected by the fungi and heavy metals. The concentration of hydroxycinnamates was increased in the shoots of mycorrhizal plants cultivated on non-polluted substrata, but no differences were found in plants cultivated on metal enriched substrata. The activity of SOD and H2O2 removing enzymes CAT and POX was elevated in the shoots of mycorrhizal plants regardless of the cultivation environment. Photochemical efficiency of inoculated chicory was significantly improved. Our results indicate that R. irregularis inoculation had a beneficial role in sustaining the plants ability to cope with the deleterious effects of metal toxicity.

  4. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils.

    PubMed

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-07

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils.

  5. Spatial variability of metal bioaccumulation in estuarine killifish (Fundulus heteroclitus) at the Callahan Mine Superfund site, Brooksville, ME

    PubMed Central

    Buckman, Kate L.; Bugge, Deenie M.; Chen, Celia Y.

    2013-01-01

    The former Callahan Mine Site in Brooksville, ME is an open-pit, hardrock mine site in an intertidal system, providing a unique opportunity to evaluate how metal-enriched sediments and overlying water impact estuarine food webs. Cu, Zn, Cd, and Pb concentrations in sediment, whole water, and Atlantic killifish (Fundulus heteroclitus) were evaluated at sites in Goose Pond (the Callahan Mine Site) and at reference sites. The metal concentrations of sediment, water, and fish were spatially distinct and significantly higher at the Mine Site than in the reference estuary. Sediment concentrations were particularly elevated and were above probable effects levels (PEL) for all four metals adjacent to the tailings pile. Even in this well-mixed system, water metal concentrations were significantly elevated adjacent to the tailings pile and the concentrations of Cu and Zn were above ambient water quality criteria (AWQC) for chronic marine exposure. Neither organic matter in the sediment nor salinity or pH of the water explained the metal concentrations. Adjacent to the tailings pile, killifish body burdens were elevated and were significantly related to both sediment and aqueous concentrations. In conclusion, (1) the contaminated sediment and seepage from the tailings impoundment and waste rock pile 3 create a continual flux of metals into the water column, (2) the metals are bioavailable and are bioconcentrating as evident in the killifish tissue concentrations, and (3) Callahan Mine is directly affecting metal bioaccumulation in fauna residing in the Goose Pond estuary and, potentially, in Penobscot Bay via the ‘trophic nekton relay.’ PMID:24022459

  6. Transition Metal Ions in Zeolites: Coordination and activation of O2

    PubMed Central

    Smeets, Pieter J.; Woertink, Julia S.; Sels, Bert F.; Solomon, Edward I.; Schoonheydt, Robert A.

    2010-01-01

    Zeolites containing transition metal ions (TMI) often show promising activity as heterogeneous catalysts in pollution abatement and selective oxidation reactions. In this paper, two aspects of research on the TMI Cu, Co and Fe in zeolites are discussed: (i) coordination to the lattice and (ii) activated oxygen species. At low loading, TMI preferably occupy exchange sites in six-membered oxygen rings (6MR) where the TMI preferentially coordinate with the oxygen atoms of Al tetrahedra. High TMI loadings result in a variety of TMI species formed at the zeolite surface. Removal of the extra-lattice oxygens during high temperature pretreatments can result in auto-reduction. Oxidation of reduced TMI sites often results in the formation of highly reactive oxygen species. In Cu-ZSM-5, calcination with O2 results in the formation of a species, which was found to be a crucial intermediate in both the direct decomposition of NO and N2O and the selective oxidation of methane into methanol. An activated oxygen species, called α-oxygen, is formed in Fe-ZSM5 and reported to be the active site in the partial oxidation of methane and benzene into methanol and phenol, respectively. However, this reactive α-oxygen can only be formed with N2O, not with O2. O2 activated Co intermediates in Faujasite (FAU) zeolites can selectively oxidize α-pinene and epoxidize styrene. In Co-FAU, CoIII superoxo and peroxo complexes are suggested to be the active cores, whereas in Cu and Fe-ZSM-5 various monomeric and dimeric sites have been proposed, but no consensus has been obtained. Very recently, the active site in Cu-ZSM-5 was identified as a bent [Cu-O-Cu]2+ core (Proc. Natl. Acad. Sci. USA 2009, 106, 18908-18913). Overall, O2 activation depends on the interplay of structural factors such as type of zeolite, size of the channels and cages and chemical factors such as Si/Al ratio and the nature, charge and distribution of the charge balancing cations. The presence of several different TMI sites

  7. Vertical Extent of 100 Area Vadose Zone Contamination of Metals at the Hanford Site

    NASA Astrophysics Data System (ADS)

    Khaleel, R.; Mehta, S.

    2012-12-01

    The 100 Area is part of the U.S. Department of Energy Hanford Site in southeastern Washington and borders the Columbia River. The primary sources of contamination in the area are associated with the operation of nine former production reactors, the last one shutting down in 1988. The area is undergoing a CERCLA remedial investigation (RI) that will provide data to support final cleanup decisions. During reactor operations, cooling water contaminated with radioactive and hazardous chemicals was discharged to both the adjacent Columbia River and infiltration cribs and trenches. Contaminated solid wastes were disposed of in burial grounds; the estimated Lead-Cadmium used as "reactor poison" and disposed of in 100 Area burial grounds is 1103 metric tons, of which up to 1059 metric tons are Lead and 44 metric tons are Cadmium. We summarize vadose zone site characterization data for the recently drilled boreholes, including the vertical distribution of concentration profiles for metals (i.e., Lead, Arsenic and Mercury) under the near neutral pH and oxygenated conditions. The deep borehole measurements targeted in the RI work plan were identified with a bias towards locating contaminants throughout the vadose zone and targeted areas at or near the waste sites; i.e., the drilling as well as the sampling was biased towards capturing contamination within the "hot spots." Unlike non-reactive contaminants such as tritium, Arsenic, Mercury and Lead are known to have a higher distribution coefficient (Kd), expected to be relatively immobile, and have a long residence time within the vadose zone. However, a number of sediment samples located close to the water table exceed the background concentrations for Lead and Arsenic. Three conceptual models are postulated to explain the deeper than expected penetration for the metals.

  8. [Study on pollution evaluation of heavy metal in surface soil of the original site of Qingdao North Station].

    PubMed

    Zhu, Lei; Jia, Yong-gang; Pan, Yu-ying

    2013-09-01

    The determination of pollution extent and health risk assessment are the premise of heavy metal contaminated site remediation. The content of Cu, Cr, Pb, Cd, Zn, Ni in Qingdao North Station was detected, and the correlation of the 6 kinds of heavy metal content was analyzed. The pollution extent in excess of background values was characterized by anthropogenic influence multiple, and the pollution of heavy metal in soil was evaluated using geoaccumulation index and a new method which connects geoaccumulation index with Nemero index. Finally, human health risk assessment was carried out with health risk assessment model for heavy metal content. The results showed that Qingdao North Station soil were polluted by heavy metals. Six heavy metal pollution levels were: Cd > Cu > Ni > Pb > Cr > Zn, and Cd had reached the severity pollution level, Cu and Ni followed by, Cr, Pb and Zn were in minor pollution level. The order of coefficient variation in all heavy metals was: Cd > Ni > Cr > Zn > Pb > Cu. Within the study area soil heavy metal distribution was different, but overall discrepancy was small. The order of non-cancer hazards of heavy metals in soil was Cr > Pb > Cu > Ni > Cd > Zn, and the order of carcinogen risks of heavy metals was Ni > Cd. The non-cancer hazard and carcinogen risks values of metals were both lower than that their threshold values. They were not the direct threats to human health.

  9. Current activities handbook: formerly utilized sites remedial action program

    SciTech Connect

    1981-02-27

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the activities each of the thirteen state legislatures potentially affected by the Formerly Utilized Sites Remedial Action Program. It contains a description of the state legislative procedural rules and a schedule of each legislative session; a summary of pending relevant legislation; the name and telephone number of legislative and state agency contacts; and the full text of all bills identified.

  10. Vitamin K epoxide reductase: homology, active site and catalytic mechanism.

    PubMed

    Goodstadt, Leo; Ponting, Chris P

    2004-06-01

    Vitamin K epoxide reductase (VKOR) recycles reduced vitamin K, which is used subsequently as a co-factor in the gamma-carboxylation of glutamic acid residues in blood coagulation enzymes. VKORC1, a subunit of the VKOR complex, has recently been shown to possess this activity. Here, we show that VKORC1 is a member of a large family of predicted enzymes that are present in vertebrates, Drosophila, plants, bacteria and archaea. Four cysteine residues and one residue, which is either serine or threonine, are identified as likely active-site residues. In some plant and bacterial homologues the VKORC1 homologous domain is fused with domains of the thioredoxin family of oxidoreductases. These might reduce disulfide bonds of VKORC1-like enzymes as a prerequisite for their catalytic activities.

  11. A microporous metal-organic framework with both open metal and Lewis basic pyridyl sites for high C2H2 and CH4 storage at room temperature.

    PubMed

    Rao, Xingtang; Cai, Jianfeng; Yu, Jiancan; He, Yabing; Wu, Chuande; Zhou, Wei; Yildirim, Taner; Chen, Banglin; Qian, Guodong

    2013-08-04

    A new microporous metal-organic framework, Cu2(PDDI) (ZJU-5; H4PDDI = 5,5'-(pyridine-2,5-diyl)diisophthalic acid), was solvothermally synthesized and structurally characterized. With open metal sites, Lewis basic pyridyl sites and suitable pore space, the acetylene uptake in ZJU-5a reaches the highest value of 290 cm(3) g(-1) at 273 K and 1 bar. Furthermore, ZJU-5a exhibits high absolute methane storage of 190 cm(3) (STP) cm(-3) at 35 bar and 224 cm(3) (STP) cm(-3) at 60 bar at room temperature.

  12. Anticancer activity of Arkeshwara Rasa - A herbo-metallic preparation

    PubMed Central

    Nafiujjaman, Md; Nurunnabi, Md; Saha, Samir Kumar; Jahan, Rownak; Lee, Yong-kyu; Rahmatullah, Mohammed

    2015-01-01

    Introduction: Though metal based drugs have been prescribed in Ayurveda for centuries to treat various diseases, such as rheumatoid arthritis and cancer, toxicity of these drugs containing heavy metal is a great drawback for practical application. So, proper scientific validation of herbo-metallic drugs like Arkeshwara Rasa (AR) have become one of the focused research arena of new drugs against cancers. Aim: To investigate the in vitro anticancer effects of AR. Materials and Methods: Anticancer activity of AR was investigated on two human cancer cell lines, which represent two different tissues (pancreas and skin). Lactate dehydrogenase (LDH) assay for enzyme activity and trypan blue assay for cell morphology were performed for further confirmation. Results: AR showed potent activity against pancreatic cancer cells (MIA-PaCa-2). LDH activity confirmed that AR was active against pancreatic cancer cells. Finally, it was observed that AR exhibited significant effects on cancer cells due to synergistic effects of different compounds of AR. Conclusion: The study strongly suggests that AR has the potential to be an anticancer drug against pancreatic cancer. PMID:27313425

  13. Select metal adsorption by activated carbon made from peanut shells.

    PubMed

    Wilson, Kermit; Yang, Hong; Seo, Chung W; Marshall, Wayne E

    2006-12-01

    Agricultural by-products, such as peanut shells, contribute large quantities of lignocellulosic waste to the environment each growing season; but few, if any, value-added uses exist for their disposal. The objective of this study was to convert peanut shells to activated carbons for use in adsorption of select metal ions, namely, cadmium (Cd2+), copper (Cu2+), lead (Pb2+), nickel (Ni2+) and zinc (Zn2+). Milled peanut shells were pyrolyzed in an inert atmosphere of nitrogen gas, and then activated with steam at different activation times. Following pyrolysis and activation, the carbons underwent air oxidation. The prepared carbons were evaluated either for adsorption efficiency or adsorption capacity; and these parameters were compared to the same parameters obtained from three commercial carbons, namely, DARCO 12x20, NORIT C GRAN and MINOTAUR. One of the peanut shell-based carbons had metal ion adsorption efficiencies greater than two of the three commercial carbons but somewhat less than but close to Minotaur. This study demonstrates that peanut shells can serve as a source for activated carbons with metal ion-removing potential and may serve as a replacement for coal-based commercial carbons in applications that warrant their use.

  14. Engineering the metal sensitive sites in Macrolampis sp2 firefly luciferase and use as a novel bioluminescent ratiometric biosensor for heavy metals.

    PubMed

    Gabriel, Gabriele V M; Viviani, Vadim R

    2016-12-01

    Most luminescent biosensors for heavy metals are fluorescent and rely on intensity measurements, whereas a few are ratiometric and rely on spectral changes. Bioluminescent biosensors for heavy metals are less common. Firefly luciferases have been coupled to responsive promoters for mercury and arsenium, and used as light on biosensors. Firefly luciferase bioluminescence spectrum is naturally sensitive to heavy metal cations such as zinc and mercury and to pH. Although pH sensitivity of firefly luciferases was shown to be useful for ratiometric estimation of intracellular pH, its potential use for ratiometric estimation of heavy metals was never considered. Using the yellow-emitting Macrolampis sp2 firefly luciferase and site-directed mutagenesis, we show that the residues H310 and E354 constitute two critical sites for metal sensitivity that can be engineered to increase sensitivity to zinc, nickel, and mercury. A linear relationship between cation concentration and the ratio of bioluminescence intensities at 550 and 610 nm allowed, for the first time, the ratiometric estimation of heavy metals concentrations down to 0.10 mM, demonstrating the potential applicability of firefly luciferases as enzymatic and intracellular ratiometric metal biosensors.

  15. Transition Metal Ion Substitution into the Cu(1) Sites in the "123" High-Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Tang, I. M.; Leelaprute, S.

    The effects of substituting either non-magnetic or magnetic (trivalent) transition metal (TM) ions into the Cu(1) sites in the CuO chains occurring in the "123" YBa2Cu3O7-x superconductor are studied. It is assumed that pair condensation occurs in both the 2D CuO2 planes and the 1D CuO chains, that the exchange of the spin fluctuations (SF) is responsible for the pair formation and that the order parameters in the chains and planes are coupled together by pair tunneling. Just like the case for substitution into the Cu(2) sites, the depressions of Tc due to non-magnetic and magnetic TM ions substitution into the Cu(1) sites are caused by the different ways the two type of ions act on the Cooper pairs. The non-magnetic TM ions suppress the formation of the Cooper pairs through their suppression of the SF-induced pairing interaction while the magnetic TM ions break the Cooper pairs through their sping flipping of one of the carriers. For both types of ions, the suppression of superconductivity is enhanced by the normal scattering process.

  16. Stabilization of dissolved trace metals at hydrothermal vent sites: Impact on their marine biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Sander, Sylvia G.; Powell, Zach D.; Koschinsky, Andrea; Kuzmanovski, Stefan; Kleint, Charlotte

    2014-05-01

    Hydrothermal vents have long been neglected as a significant source of several bioactive trace metals as it was assumed that elements such as Fe, Mn, and Cu etc., precipitate in extensor forming poly-metallic sulfide and oxy-hydroxy sediments in the relative vicinity of the emanation site. However, recently this paradigm has been reviewed since the stabilization of dissolved Fe and Cu from hydrothermal vents was observed [1, 2] and increased concentrations of trace metals can be traced from their hydrothermal source thousands of kilometres through the ocean basins [3]. Furthermore several independent modelling attempts have shown that not only a stabilization of dissolved hydrothermal Fe and Cu is possible [4] but also that hydrothermalism must be a significant source of Fe to be able to balance the Fe-biogeochemical cycle [5]. Here we present new data that gives further evidence of the presence of copper stabilising organic and inorganic compounds in samples characterized by hydrothermal input. We can show that there are systematic differences in copper-complexing ligands at different vent sites such as 5°S on the Mid Atlantic Ridge, Brother Volcano on the Kermadec Arc, and some shallow hydrothermal CO2 seeps in the Bay of Plenty, New Zealand and the Mediterranean Sea. Quantitative and qualitative voltammetric data convincingly indicates that inorganic sulphur and organic thiols form the majority of the strong copper-complexing ligand pool in many of these hydrothermal samples. On average, the high temperature vents had a significantly higher copper binding capacity than the diffuse vents due to higher inorganic sulphur species concentrations. References: [1] Sander, S. G., et al. 2007. Organic complexation of copper in deep-sea hydrothermal vent systems. Environmental Chemistry 4: 81-89 [2] Bennett, S. A., et al. 2008. The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes. Earth and Planetary Science Letters 270: 157-167. [3] Wu J

  17. Adsorption of aqueous metal ions on oxygen and nitrogen functionalized nanoporous activated carbons.

    PubMed

    Xiao, B; Thomas, K M

    2005-04-26

    In this study, the adsorption characteristics of two series of oxygen and nitrogen functionalized activated carbons were investigated. These series were a low nitrogen content (approximately 1 wt % daf) carbon series derived from coconut shell and a high nitrogen content (approximately 8 wt % daf) carbon series derived from polyacrylonitrile. In both series, the oxygen contents were varied over the range approximately 2-22 wt % daf. The porous structures of the functionalized activated carbons were characterized using N(2) (77 K) and CO(2) (273 K) adsorption. Only minor changes in the porous structure were observed in both series. This allowed the effect of changes in functional group concentrations on metal ion adsorption to be studied without major influences due to differences in porous structure characteristics. The surface group characteristics were examined by Fourier transform infrared (FTIR) spectroscopy, acid/base titrations, and measurement of the point of zero charge (pH(PZC)). The adsorption of aqueous metal ion species, M(2+)(aq), on acidic oxygen functional group sites mainly involves an ion exchange mechanism. The ratios of protons displaced to the amount of M(2+)(aq) metal species adsorbed have a linear relationship for the carbons with pH(PZC) < or = 4.15. Hydrolysis of metal species in solution may affect the adsorption of metal ion species and displacement of protons. In the case of basic carbons, both protons and metal ions are adsorbed on the carbons. The complex nature of competitive adsorption between the proton and metal ion species and the amphoteric character of carbon surfaces are discussed in relation to the mechanism of adsorption.

  18. Individual and cumulative effects of agriculture, forestry and metal mining activities on the metal and phosphorus content of fluvial fine-grained sediment; Quesnel River Basin, British Columbia, Canada.

    PubMed

    Smith, Tyler B; Owens, Philip N

    2014-10-15

    The impact of agriculture, forestry and metal mining on the quality of fine-grained sediment (<63 μm) was investigated in the Quesnel River Basin (QRB) (~11,500 km(2)) in British Columbia, Canada. Samples of fine-grained sediment were collected monthly during the snow-free season in 2008 using time-integrated samplers at replicate sites representative of agriculture, forestry and mining activities in the basin (i.e. "impacted" sites). Samples were also collected from replicate reference sites and also from the main stem of the Quesnel River at the downstream confluence with the Fraser River. Generally, metal(loid) and phosphorus (P) concentrations for "impacted" sites were greater than for reference sites. Furthermore, concentrations of copper (forestry and mining sites), manganese (agriculture and forestry sites) and selenium (agriculture, forestry and mining sites) exceeded upper sediment quality guideline (SQG) thresholds. These results suggest that agriculture, forestry and metal mining activities are having an influence on the concentrations of sediment-associated metal(loid)s and P in the Quesnel basin. Metal(loid) and P concentrations of sediment collected from the downstream site were not significantly greater than values for the reference sites, and were typically lower than the values for the impacted sites. This suggests that the cumulative effects of agriculture, forestry and mining activities in the QRB are presently not having a measureable effect at the river basin-scale. The lack of a cumulative effect at the basin-scale is thought to reflect: (i) the relatively recent occurrence of land use disturbances in this basin; (ii) the dominance of sediment contributions from natural forest and agriculture; and (iii) the potential for storage of contaminants on floodplains and other storage elements between the locations of disturbance activities and the downstream sampling site, which may be attenuating the disturbance signal.

  19. Ligational behavior of Schiff bases towards transition metal ion and metalation effect on their antibacterial activity

    NASA Astrophysics Data System (ADS)

    Devi, Jai; Batra, Nisha; Malhotra, Rajesh

    2012-11-01

    New Schiff bases pyrazine-2-carboxylicacid (phenyl-pyridin-2-yl-methylene)-hydrazide (Hpch-bp) HL1 and pyrazine-2-carboxylicacid (pyridin-2-ylmethylene)-hydrazide (Hpch-pc) HL2 derived from condensation of pyrazine carboxylic hydrazide (Hpch) with 2-benzoyl pyridine (bp) or pyridine 2-carbaldehyde (pc) and their transition metal complexes of type ML(1-2)2 have been synthesized, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). Characterization of ligands and their metal complexes was carried out by elemental analysis, conductimetric studies, magnetic susceptibility, spectroscopic techniques (IR, UV-VIS, NMR, ESR, Mass) and thermogravimetric analysis. The physico-chemical studies revealed octahedral geometry or distorted octahedral geometry around metal ion. These azomethine Schiff base ligands acted as tridentate ? coordinating through carbonyl, azomethine and pyridine nitrogen present in the ligand. The thermodynamic and thermal properties of the complexes have been investigated and it was observed on the basis of these studies that thermal stability of complexes follows the order Mn < Zn < Cu < Co < Ni. The ligands and their complexes were tested for in vitro antibacterial activity at different concentrations against bacteria viz. Gram positive Bacillus subtilis, Micrococcus luteus and Gram negative Pseudomonas aeruginosa, Pseudomonas mendocina. A marked enhancement in biocidal activity of the ligands under similar experimental conditions was observed as a consequence of coordination with metal ions. The trend of growth inhibition in the complexes was found to be in the order: Cu > Mn > Ni > Co > Zn.

  20. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase

    NASA Astrophysics Data System (ADS)

    Fenwick, Michael K.; Mehta, Angad P.; Zhang, Yang; Abdelwahed, Sameh H.; Begley, Tadhg P.; Ealick, Steven E.

    2015-03-01

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5‧-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.

  1. Sintering-resistant Single-Site Nickel Catalyst Supported by Metal-Organic Framework

    SciTech Connect

    Li, Zhanyong; Schweitzer, Neil; League, Aaron; Bernales Candia, Sandra Varinia; Peters, Aaron; Getsoian, Andrew G.; Wang, Timothy; Miller, Jeffrey T.; Vjunov, Aleksei; Fulton, John L.; Lercher, Johannes A.; Cramer, Christopher J.; Gagliardi, Laura; Hupp, Joseph; Farha, Omar

    2016-02-17

    Developing supported single-site catalysts is an important goal in heterogeneous catalysis, since the well-defined active sites afford opportunities for detailed mechanistic studies, thereby facilitating the design of improved catalysts. We present herein a method for installing Ni ions uniformly and precisely on the node of a Zr-based MOF, NU-1000, in high density and large quantity (denoted as Ni-AIM) using atomic layer deposition (ALD) in a metal–organic framework (MOF) (AIM). Ni-AIM is demonstrated to be an efficient gas-phase hydrogenation catalyst upon activation. The structure of the active sites in Ni-AIM is proposed, revealing its single-site nature. More importantly, due to the organic linker used to construct the MOF support, the Ni ions stay isolated throughout the hydrogenation catalysis, in accord with its long-term stability. A quantum chemical characterization of the catalyst and the catalytic process complements the experimental results. With validation of computational modeling protocols, we further targeted ethylene oligomerization catalysis by Ni-AIM guided by theoretical prediction. Given the generality of the AIM methodology, this emerging class of materials should prove ripe for the discovery of new catalysts for the transformation of volatile substrates.

  2. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst

    PubMed Central

    Yang, Hong Bin; Miao, Jianwei; Hung, Sung-Fu; Chen, Jiazang; Tao, Hua Bing; Wang, Xizu; Zhang, Liping; Chen, Rong; Gao, Jiajian; Chen, Hao Ming; Dai, Liming; Liu, Bin

    2016-01-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are critical to renewable energy conversion and storage technologies. Heteroatom-doped carbon nanomaterials have been reported to be efficient metal-free electrocatalysts for ORR in fuel cells for energy conversion, as well as ORR and OER in metal-air batteries for energy storage. We reported that metal-free three-dimensional (3D) graphene nanoribbon networks (N-GRW) doped with nitrogen exhibited superb bifunctional electrocatalytic activities for both ORR and OER, with an excellent stability in alkaline electrolytes (for example, KOH). For the first time, it was experimentally demonstrated that the electron-donating quaternary N sites were responsible for ORR, whereas the electron-withdrawing pyridinic N moieties in N-GRW served as active sites for OER. The unique 3D nanoarchitecture provided a high density of the ORR and OER active sites and facilitated the electrolyte and electron transports. As a result, the as-prepared N-GRW holds great potential as a low-cost, highly efficient air cathode in rechargeable metal-air batteries. Rechargeable zinc-air batteries with the N-GRW air electrode in a two-electrode configuration exhibited an open-circuit voltage of 1.46 V, a specific capacity of 873 mAh g−1, and a peak power density of 65 mW cm−2, which could be continuously charged and discharged with an excellent cycling stability. Our work should open up new avenues for the development of various carbon-based metal-free bifunctional electrocatalysts of practical significance. PMID:27152333

  3. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst.

    PubMed

    Yang, Hong Bin; Miao, Jianwei; Hung, Sung-Fu; Chen, Jiazang; Tao, Hua Bing; Wang, Xizu; Zhang, Liping; Chen, Rong; Gao, Jiajian; Chen, Hao Ming; Dai, Liming; Liu, Bin

    2016-04-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are critical to renewable energy conversion and storage technologies. Heteroatom-doped carbon nanomaterials have been reported to be efficient metal-free electrocatalysts for ORR in fuel cells for energy conversion, as well as ORR and OER in metal-air batteries for energy storage. We reported that metal-free three-dimensional (3D) graphene nanoribbon networks (N-GRW) doped with nitrogen exhibited superb bifunctional electrocatalytic activities for both ORR and OER, with an excellent stability in alkaline electrolytes (for example, KOH). For the first time, it was experimentally demonstrated that the electron-donating quaternary N sites were responsible for ORR, whereas the electron-withdrawing pyridinic N moieties in N-GRW served as active sites for OER. The unique 3D nanoarchitecture provided a high density of the ORR and OER active sites and facilitated the electrolyte and electron transports. As a result, the as-prepared N-GRW holds great potential as a low-cost, highly efficient air cathode in rechargeable metal-air batteries. Rechargeable zinc-air batteries with the N-GRW air electrode in a two-electrode configuration exhibited an open-circuit voltage of 1.46 V, a specific capacity of 873 mAh g(-1), and a peak power density of 65 mW cm(-2), which could be continuously charged and discharged with an excellent cycling stability. Our work should open up new avenues for the development of various carbon-based metal-free bifunctional electrocatalysts of practical significance.

  4. Identification of covalent active site inhibitors of dengue virus protease

    PubMed Central

    Koh-Stenta, Xiaoying; Joy, Joma; Wang, Si Fang; Kwek, Perlyn Zekui; Wee, John Liang Kuan; Wan, Kah Fei; Gayen, Shovanlal; Chen, Angela Shuyi; Kang, CongBao; Lee, May Ann; Poulsen, Anders; Vasudevan, Subhash G; Hill, Jeffrey; Nacro, Kassoum

    2015-01-01

    Dengue virus (DENV) protease is an attractive target for drug development; however, no compounds have reached clinical development to date. In this study, we utilized a potent West Nile virus protease inhibitor of the pyrazole ester derivative class as a chemical starting point for DENV protease drug development. Compound potency and selectivity for DENV protease were improved through structure-guided small molecule optimization, and protease-inhibitor binding interactions were validated biophysically using nuclear magnetic resonance. Our work strongly suggests that this class of compounds inhibits flavivirus protease through targeted covalent modification of active site serine, contrary to an allosteric binding mechanism as previously described. PMID:26677315

  5. Stepwise magnetic-geochemical approach for efficient assessment of heavy metal polluted sites

    NASA Astrophysics Data System (ADS)

    Appel, E.; Rösler, W.; Ojha, G.

    2012-04-01

    Previous studies have shown that magnetometry can outline the distribution of fly ash deposition in the surroundings of coal-burning power plants and steel industries. Especially the easy-to-measure magnetic susceptibility (MS) is capable to act as a proxy for heavy metal (HM) pollution caused by such kind of point source pollution. Here we present a demonstration project around the coal-burning power plant complex "Schwarze Pumpe" in eastern Germany. Before reunification of West and East Germany huge amounts of HM pollutants were emitted from the "Schwarze Pumpe" into the environment by both fly ash emission and dumped clinker. The project has been conducted as part of the TASK Centre of Competence which aims at bringing new innovative techniques closer to the market. Our project combines in situ and laboratory MS measurements and HM analyses in order to demonstrate the efficiency of a stepwise approach for site assessment of HM pollution around point sources of fly-ash emission and deposition into soil. The following scenario is played through: We assume that the "true" spatial distribution of HM pollution (given by the pollution load index PLI comprising Fe, Zn, Pb, and Cu) is represented by our entire set of 85 measured samples (XRF analyses) from forest sites around the "Schwarze Pumpe". Surface MS data (collected with a Bartington MS2D) and in situ vertical MS sections (logged by an SM400 instrument) are used to determine a qualitative overview of potentially higher and lower polluted areas. A suite of spatial HM distribution maps obtained by random selections of 30 out of the 85 analysed sites is compared to the HM map obtained from a targeted 30-sites-selection based on pre-information from the MS results. The PLI distribution map obtained from the targeted 30-sites-selection shows all essential details of the "true" pollution map, while the different random 30-sites-selections miss important features. This

  6. Modulation of Active Site Electronic Structure by the Protein Matrix to Control [NiFe] Hydrogenase Reactivity

    SciTech Connect

    Smith, Dayle MA; Raugei, Simone; Squier, Thomas C.

    2014-09-30

    Control of the reactivity of the nickel center of the [NiFe] hydrogenase and other metalloproteins commonly involves outer coordination sphere ligands that act to modify the geometry and physical properties of the active site metal centers. We carried out a combined set of classical molecular dynamics and quantum/classical mechanics calculations to provide quantitative estimates of how dynamic fluctuations of the active site within the protein matrix modulate the electronic structure at the catalytic center. Specifically we focused on the dynamics of the inner and outer coordination spheres of the cysteinate-bound Ni–Fe cluster in the catalytically active Ni-C state. There are correlated movements of the cysteinate ligands and the surrounding hydrogen-bonding network, which modulate the electron affinity at the active site and the proton affinity of a terminal cysteinate. On the basis of these findings, we hypothesize a coupling between protein dynamics and electron and proton transfer reactions critical to dihydrogen production.

  7. Microbiological-enhanced mixing across scales during in-situ bioreduction of metals and radionuclides at Department of Energy Sites

    SciTech Connect

    Valocchi, Albert; Werth, Charles; Liu, Wen-Tso; Sanford, Robert; Nakshatrala, Kalyan

    2015-10-20

    Bioreduction is being actively investigated as an effective strategy for subsurface remediation and long-term management of DOE sites contaminated by metals and radionuclides (i.e. U(VI)). These strategies require manipulation of the subsurface, usually through injection of chemicals (e.g., electron donor) which mix at varying scales with the contaminant to stimulate metal reducing bacteria. There is evidence from DOE field experiments suggesting that mixing limitations of substrates at all scales may affect biological growth and activity for U(VI) reduction. Although current conceptual models hold that biomass growth and reduction activity is limited by physical mixing processes, a growing body of literature suggests that reaction could be enhanced by cell-to-cell interaction occurring over length scales extending tens to thousands of microns. Our project investigated two potential mechanisms of enhanced electron transfer. The first is the formation of single- or multiple-species biofilms that transport electrons via direct electrical connection such as conductive pili (i.e. ‘nanowires’) through biofilms to where the electron acceptor is available. The second is through diffusion of electron carriers from syntrophic bacteria to dissimilatory metal reducing bacteria (DMRB). The specific objectives of this work are (i) to quantify the extent and rate that electrons are transported between microorganisms in physical mixing zones between an electron donor and electron acceptor (e.g. U(IV)), (ii) to quantify the extent that biomass growth and reaction are enhanced by interspecies electron transport, and (iii) to integrate mixing across scales (e.g., microscopic scale of electron transfer and macroscopic scale of diffusion) in an integrated numerical model to quantify these mechanisms on overall U(VI) reduction rates. We tested these hypotheses with five tasks that integrate microbiological experiments, unique micro-fluidics experiments, flow cell experiments, and

  8. Identification and partial characterization of a low affinity metal-binding site in the light chain of tetanus toxin.

    PubMed

    Wright, J F; Pernollet, M; Reboul, A; Aude, C; Colomb, M G

    1992-05-05

    Tetanus toxin was shown to contain a metal-binding site for zinc and copper. Equilibrium dialysis binding experiments using 65Zn indicated an association constant of 9-15 microM, with one zinc-binding site/toxin molecule. The zinc-binding site was localized to the toxin light chain as determined by binding of 65Zn to the light chain but not to the heavy chain after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transfer to Immobilon membranes. Copper was an efficient inhibitor of 65Zn binding to tetanus toxin and caused two peptide bond cleavages in the toxin light chain in the presence of ascorbate. These metal-catalyzed oxidative cleavages were inhibited by the presence of zinc. Partial characterization of metal-catalyzed oxidative modifications of a peptide based on a putative metal-binding site (HELIH) in the toxin light chain was used to map the metal-binding site in the protein.

  9. Anaerobic bioleaching of metals from waste activated sludge.

    PubMed

    Meulepas, Roel J W; Gonzalez-Gil, Graciela; Teshager, Fitfety Melese; Witharana, Ayoma; Saikaly, Pascal E; Lens, Piet N L

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g(-1) of copper, 487 μg g(-1) of lead, 793 μg g(-1) of zinc, 27 μg g(-1) of nickel and 2.3 μg g(-1) of cadmium. During the anaerobic acidification of 3 gdry weight L(-1) waste activated sludge, 80-85% of the copper, 66-69% of the lead, 87% of the zinc, 94-99% of the nickel and 73-83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead.

  10. Histidine pairing at the metal transport site of mammalian ZnT transporters controls Zn2+ over Cd2+ selectivity.

    PubMed

    Hoch, Eitan; Lin, Wei; Chai, Jin; Hershfinkel, Michal; Fu, Dax; Sekler, Israel

    2012-05-08

    Zinc and cadmium are similar metal ions, but though Zn(2+) is an essential nutrient, Cd(2+) is a toxic and common pollutant linked to multiple disorders. Faster body turnover and ubiquitous distribution of Zn(2+) vs. Cd(2+) suggest that a mammalian metal transporter distinguishes between these metal ions. We show that the mammalian metal transporters, ZnTs, mediate cytosolic and vesicular Zn(2+) transport, but reject Cd(2+), thus constituting the first mammalian metal transporter with a refined selectivity against Cd(2+). Remarkably, the bacterial ZnT ortholog, YiiP, does not discriminate between Zn(2+) and Cd(2+). A phylogenetic comparison between the tetrahedral metal transport motif of YiiP and ZnTs identifies a histidine at the mammalian site that is critical for metal selectivity. Residue swapping at this position abolished metal selectivity of ZnTs, and fully reconstituted selective Zn(2+) transport of YiiP. Finally, we show that metal selectivity evolves through a reduction in binding but not the translocation of Cd(2+) by the transporter. Thus, our results identify a unique class of mammalian transporters and the structural motif required to discriminate between Zn(2+) and Cd(2+), and show that metal selectivity is tuned by a coordination-based mechanism that raises the thermodynamic barrier to Cd(2+) binding.

  11. Understanding the trends in transition metal sorption by vacancy sites in birnessite

    NASA Astrophysics Data System (ADS)

    Kwon, Kideok D.; Refson, Keith; Sposito, Garrison

    2013-01-01

    Hexagonal birnessite, a layer-type Mn(IV) oxide, ubiquitous in nature from the ocean floor to topsoil, functions as an important sorbent for transition metals. Spectroscopic experiments have shown that Co, Ni, Cu, and Zn bind to Mn(IV) vacancy sites in birnessite to form interlayer triple-corner-sharing inner-sphere surface complexes (TCS species), while they also may enter the vacancy site (INC species) to become part of the hexagonal sheet structure, effectively replacing the absent Mn4+ ion. Experimentally, the INC/(TCS + INC) ratio has been found to be both metal-specific: 90-100%, 10-45%, 0-20%, and 0%, respectively for Co [Co(III) when inside a vacancy site], Ni, Cu, and Zn. In the case of Ni and Cu, the ratio tends to increase with pH. To understand these two trends, we performed electronic structure calculations based on density functional theory (DFT) for both of the sorbed species of the four transition metals. Overall, the relative stability among Co-, Ni-, Cu-, and Zn-INC species was estimated by calculating the energy difference for the INC vs. the TCS species, yielding, -214, -23, +4, and +34 kJ/mol, respectively, for Co, Ni, Cu, and Zn, which agrees with the order of experimental INC/(TCS + INC) ratios. Comparisons between DFT's fully-relaxed and constrained geometry optimizations of the INC species demonstrate that, when a transition metal cation enters a vacancy, stresses are exerted on the surrounding ions which then can be relieved by structural distortions of the birnessite octahedra. Electronic structure analysis further indicates that stereoactive 3d states of a metal cation promote these structural distortions of the trigonally-compressed Mn(IV) octahedral sheet. This compensating effect varies in the same way as the INC/(TCS + INC) ratio. In particular, the fully-occupied 3d states of Zn2+ are non-stereoactive, such that Zn-INC cannot benefit from structural distortions and remains unstable. As the number of H bonded to a Mn vacancy

  12. Structural Insight into Guest Binding Sites in a Porous Homochiral Metal-Organic Material.

    PubMed

    Zhang, Shi-Yuan; Wojtas, Lukasz; Zaworotko, Michael J

    2015-09-23

    An enantiomeric pair of chiral metal-organic materials (CMOMs) based upon mandelate (man) and 4,4'-bipyridine (bpy) ligands, [Co2(S-man)2(bpy)3](NO3)2·guest (1S·guest) and [Co2(R-man)2(bpy)3](NO3)2·guest (1R·guest), have been prepared. The cationic frameworks exhibit one-dimensional chiral channels with dimensions of 8.0 Å × 8.0 Å. The pore chemistry is such that chiral surfaces lined with nitrate anions and phenyl groups create multiple binding sites for guest and/or solvent molecules. The performance of 1S and 1R with respect to resolution of racemic mixtures of 1-phenyl-1-propanol (PP) was studied by varying time, temperature, and the use of additives. Selectivity toward PP was determined by chiral HPLC with ee values of up to 60%. The binding sites and host-guest interactions were investigated through single-crystal X-ray structural analyses of guest-exchanged 1S and 1R. Crystallographically observed structural changes (e.g., the absolute configurations of the three PP binding sites switch from R, R, and S to R, R, and R/S) correlate with experimentally observed ee values of 33% and 60% for variants of 1S that contain PP and different solvent molecules, 1S·PPex and 1S·PPex', respectively. The fact that manipulation of guest solvent molecules, which in effect serve as cofactors, can modify chiral sites and increase enantioselectivity is likely to aid in the design of more effective CMOMs and processes for chiral separations.

  13. Trace metal biogeochemistry in mangrove ecosystems: a comparative assessment of acidified (by acid sulfate soils) and non-acidified sites.

    PubMed

    Nath, Bibhash; Birch, Gavin; Chaudhuri, Punarbasu

    2013-10-01

    The generation of acidity and subsequent mobilization of toxic metals induced by acid sulfate soils (ASSs) are known to cause severe environmental damage to many coastal wetlands and estuaries of Australia and worldwide. Mangrove ecosystems serve to protect coastal environments, but are increasingly threatened from such ASS-induced acidification due to variable hydrological conditions (i.e., inundation-desiccation cycles). However, the impact of such behaviors on trace metal distribution, bio-availability and accumulation in mangrove tissues, i.e., leaves and pneumatophores, are largely unknown. In this study, we examined how ASS-induced acidifications controlled trace metal distribution and bio-availability in gray mangrove (Avicennia marina) soils and in tissues in the Kooragang wetland, New South Wales, Australia. We collected mangrove soils, leaves and pneumatophores from a part of the wetland acidified from ASS (i.e., an affected site) for detailed biogeochemical studies. The results were compared with samples collected from a natural intertidal mangrove forest (i.e., a control site) located within the same wetland. Soil pH (mean: 5.90) indicated acidic conditions in the affected site, whereas pH was near-neutral (mean: 7.17) in the control site. The results did not show statistically significant differences in near-total and bio-available metal concentrations, except for Fe and Mn, between affected and control sites. Iron concentrations were significantly (p values≤0.001) greater in the affected site, whereas Mn concentrations were significantly (p values≤0.001) greater in the control site. However, large proportions of near-total metals were potentially bio-available in control sites. Concentrations of Fe and Ni were significantly (p values≤0.001) greater in leaves and pneumatophores of the affected sites, whereas Mn, Cu, Pb and Zn were greater in control sites. The degree of metal bio-accumulation in leaves and pneumatophores suggest contrasting

  14. Metal activation of synthetic and degradative activities of phi 29 DNA polymerase, a model enzyme for protein-primed DNA replication.

    PubMed

    Esteban, J A; Bernad, A; Salas, M; Blanco, L

    1992-01-21

    Analysis of metal activation on the synthetic and degradative activities of phi 29 DNA polymerase was carried out in comparison with T4 DNA polymerase and Escherichia coli DNA polymerase I (Klenow fragment). In the three DNA polymerases studied, both the polymerization and the 3'----5' exonuclease activity had clear differences in their metal ion requirements. The results obtained support the existence of independent metal binding sites for the synthetic and degradative activities of phi 29 DNA polymerase, according with the distant location of catalytic domains (N-terminal for the 3'----5' exonuclease and C-terminal for DNA polymerization) proposed for both Klenow fragment and phi 29 DNA polymerase. Furthermore, DNA competition experiments using phi 29 DNA polymerase suggested that the main differences observed in the metal usage to activate polymerization may be the consequence of metal-induced changes in the enzyme-DNA interactions, whose strength distinguishes processive and nonprocessive DNA polymerases. Interestingly, the initiation of DNA polymerization using a protein as a primer, a special synthetic activity carried out by phi 29 DNA polymerase, exhibited a strong preference for Mn2+ as metal activator. The molecular basis for this preference is mainly the result of a large increase in the affinity for dATP.

  15. ECOLOGICAL EFFECTS OF METALS IN STREAMS ON A DEFENSE MATERIALS PROCESSING SITE IN SOUTH CAROLINA, USA

    SciTech Connect

    Paller, M.; Dyer, S.

    2009-09-01

    The Savannah River Site (SRS) is a 780 km{sup 2} U.S. Department of Energy facility near Aiken SC established in 1950 to produce nuclear materials. SRS streams are 'integrators' that potentially receive water transportable contaminants from all sources within their watersheds necessitating a GIS-based watershed approach to organize contaminant distribution data and accurately characterize the effects of multiple contaminant sources on aquatic organisms. Concentrations of metals in sediments, fish, and water were elevated in streams affected by SRS operations, but contaminant exposure models for Lontra Canadensis and Ceryle alcyon indicated that toxicological reference values were exceeded only by Hg and Al. Macroinvertebrate community structure was unrelated to sediment metal concentrations. This study indicated that (1) modeling studies and field bioassessments provide a complementary basis for addressing the individual and cumulative effects of contaminants, (2) habitat effects must be controlled when assessing contaminant impacts, (3) sensitivity analyses of contaminant exposure models are helpful in apportioning sampling effort, and (4) contaminants released during fifty years of industrial operations have not resulted in demonstrable harm to aquatic organisms in SRS streams.

  16. Identification of Phosphorylation Sites Altering Pollen Soluble Inorganic Pyrophosphatase Activity.

    PubMed

    Eaves, Deborah J; Haque, Tamanna; Tudor, Richard L; Barron, Yoshimi; Zampronio, Cleidiane G; Cotton, Nicholas P J; de Graaf, Barend H J; White, Scott A; Cooper, Helen J; Franklin, F Christopher H; Harper, Jeffery F; Franklin-Tong, Vernonica E

    2017-03-01

    Protein phosphorylation regulates numerous cellular processes. Identifying the substrates and protein kinases involved is vital to understand how these important posttranslational modifications modulate biological function in eukaryotic cells. Pyrophosphatases catalyze the hydrolysis of inorganic phosphate (PPi) to inorganic phosphate Pi, driving biosynthetic reactions; they are essential for low cytosolic inorganic phosphate. It was suggested recently that posttranslational regulation of Family I soluble inorganic pyrophosphatases (sPPases) may affect their activity. We previously demonstrated that two pollen-expressed sPPases, Pr-p26.1a and Pr-p26.1b, from the flowering plant Papaver rhoeas were inhibited by phosphorylation. Despite the potential significance, there is a paucity of data on sPPase phosphorylation and regulation. Here, we used liquid chromatographic tandem mass spectrometry to map phosphorylation sites to the otherwise divergent amino-terminal extensions on these pollen sPPases. Despite the absence of reports in the literature on mapping phosphorylation sites on sPPases, a database survey of various proteomes identified a number of examples, suggesting that phosphorylation may be a more widely used mechanism to regulate these enzymes. Phosphomimetic mutants of Pr-p26.1a/b significantly and differentially reduced PPase activities by up to 2.5-fold at pH 6.8 and 52% in the presence of Ca(2+) and hydrogen peroxide over unmodified proteins. This indicates that phosphoregulation of key sites can inhibit the catalytic responsiveness of these proteins in concert with key intracellular events. As sPPases are essential for many metabolic pathways in eukaryotic cells, our findings identify the phosphorylation of sPPases as a potential master regulatory mechanism that could be used to attenuate metabolism.

  17. A Two-Metal-Ion-Mediated Conformational Switching Pathway for HDV Ribozyme Activation

    PubMed Central

    Lee, Tai-Sung; Radak, Brian K.; Harris, Michael E.; York, Darrin M.

    2016-01-01

    RNA enzymes serve as a potentially powerful platform from which to design catalysts and engineer new biotechnology. A fundamental understanding of these systems provides insight to guide design. The hepatitis delta virus ribozyme (HDVr) is a small, self-cleaving RNA motif widely distributed in nature, that has served as a paradigm for understanding basic principles of RNA catalysis. Nevertheless, questions remain regarding the precise roles of divalent metal ions and key nucleotides in catalysis. In an effort to establish a reaction mechanism model consistent with available experimental data, we utilize molecular dynamics simulations to explore different conformations and metal ion binding modes along the HDVr reaction path. Building upon recent crystallographic data, our results provide a dynamic model of the HDVr reaction mechanism involving a conformational switch between multiple non-canonical G25:U20 base pair conformations in the active site. These local nucleobase dynamics play an important role in catalysis by modulating the metal binding environments of two Mg2+ ions that support catalysis at different steps of the reaction pathway. The first ion plays a structural role by inducing a base pair flip necessary to obtain the catalytic fold in which C75 moves towards to the scissile phosphate in the active site. Ejection of this ion then permits a second ion to bind elsewhere in the active site and facilitate nucleophile activation. The simulations collectively describe a mechanistic scenario that is consistent with currently available experimental data from crystallography, phosphorothioate substitutions, and chemical probing studies. Avenues for further experimental verification are suggested. PMID:27774349

  18. Evidence for segmental mobility in the active site of pepsin

    SciTech Connect

    Pohl, J.; Strop, P.; Senn, H.; Foundling, S.; Kostka, V.

    1986-05-01

    The low hydrolytic activity (k/sub cat/ < 0.001 s/sup -1/) of chicken pepsin (CP) towards tri- and tetrapeptides is enhanced at least 100 times by modification of its single sulfhydryl group of Cys-115, with little effect on K/sub m/-values. Modification thus simulates the effect of secondary substrate binding on pepsin catalysis. The rate of Cys-115 modification is substantially decreased in the presence of some competitive inhibitors, suggesting its active site location. Experiments with CP alkylated at Cys-115 with Acrylodan as a fluorescent probe or with N-iodoacetyl-(4-fluoro)-aniline as a /sup 19/F-nmr probe suggest conformation change around Cys-115 to occur on substrate or substrate analog binding. The difference /sup 1/H-nmr spectra (500 MHz) of unmodified free and inhibitor-complexed CP reveal chemical shifts almost exclusively in the aromatic region. The effects of Cu/sup + +/ on /sup 19/F- and /sup 1/H-nmr spectra have been studied. Examination of a computer graphics model of CP based on E. parasitica pepsin-inhibitor complex X-ray coordinates suggests that Cys-115 is located near the S/sub 3//S/sub 5/ binding site. The results are interpreted in favor of segmental mobility of this region important for pepsin substrate binding and catalysis.

  19. Influence of Humic Acid Complexation with Metal Ions on Extracellular Electron Transfer Activity

    NASA Astrophysics Data System (ADS)

    Zhou, Shungui; Chen, Shanshan; Yuan, Yong; Lu, Qin

    2015-11-01

    Humic acids (HAs) can act as electron shuttles and mediate biogeochemical cycles, thereby influencing the transformation of nutrients and environmental pollutants. HAs commonly complex with metals in the environment, but few studies have focused on how these metals affect the roles of HAs in extracellular electron transfer (EET). In this study, HA-metal (HA-M) complexes (HA-Fe, HA-Cu, and HA-Al) were prepared and characterized. The electron shuttle capacities of HA-M complexes were experimentally evaluated through microbial Fe(III) reduction, biocurrent generation, and microbial azoreduction. The results show that the electron shuttle capacities of HAs were enhanced after complexation with Fe but were weakened when using Cu or Al. Density functional theory calculations were performed to explore the structural geometry of the HA-M complexes and revealed the best binding sites of the HAs to metals and the varied charge transfer rate constants (k). The EET activity of the HA-M complexes were in the order HA-Fe > HA-Cu > HA-Al. These findings have important implications for biogeochemical redox processes given the ubiquitous nature of both HAs and various metals in the environment.

  20. Pollution in the urban soils of Lianyungang, China, evaluated using a pollution index, mobility of heavy metals, and enzymatic activities.

    PubMed

    Li, Yu; Li, Hong-Guan; Liu, Fu-Cheng

    2017-01-01

    Soil samples from 16 urban sites in Lianyungang, China were collected and analyzed. A pollution index was used to assess the potential ecological risk of heavy metals and a sequential extraction procedure was used to evaluate the relative distribution of Cu, Zn, Pb, Cd, Cr, and As in exchangeable, carbonate, Fe/Mn oxide, organic/sulfide, and residual fractions. The mobility of heavy metals and urease (URE) activity, alkaline phosphatase (ALP) activity, and invertase (INV) activity of soils was determined. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Cr, and As in Lianyungang soils were much higher than those in the coastal city soil background values of Jiangsu and China. Among the five studied regions (utilities, commercial, industrial, tourism, and roadside), the industrial region had the highest metal concentrations demonstrating that land use had a significant impact on the accumulation of heavy metals in Lianyungang soils. Compared to the other metals, Cd showed the highest ecological risk. According to chemical partitioning, Cu was associated with the organic/sulfides and Pb and Zn were mainly in the carbonate and the Fe/Mn oxide phase. The greatest amounts of Cd were found in exchangeable and carbonate fractions, while Cr and As were mainly in the residual fraction. Cd had the highest mobility of all metals, and the order of mobility (highest to lowest) of heavy metals in Lianyungang soils was Cd > Zn > Pb > Cu > As > Cr. Soil urease activity, alkaline phosphatase activity, and invertase activity varied considerably in different pollution degree sites. Soil enzyme activities had the lowest levels in roadside and industrial regions. Across all the soil data in the five regions, the total Cu, Zn, Pb, Cd, Cr, and As level was negatively correlated with urease activity, alkaline phosphatase activity, and invertase activity, but the relationship was not significant. In the industrial region, alkaline phosphatase activity had

  1. Paleomagnetic Determination of Pre-Mining Metal Flux Rates at the Iron Mountain Superfund Site, Northern California

    NASA Astrophysics Data System (ADS)

    Alpers, C. N.; Nordstrom, D. K.; Verosub, K. L.; Helm-Clark, C.

    2007-05-01

    Iron Mountain, located near Redding in northern California, hosts a group of mines that were active from the late 1870s to the early 1960s. The mineral deposit is classified as a type-I volcanogenic massive sulfide, similar to the Noranda deposit of Ontario, Canada. Three large, isolated blocks of sulfide mineralization contain 90-95 percent pyrite and a few percent chalcopyrite (CuFeS2) and sphalerite (ZnS). Prior to mining, weathering converted parts of the massive sulfide to gossan consisting of hematite, goethite, and silica. Mining further exposed the pyritic masses to water and air, creating optimal conditions for sulfide oxidation and production of acid mine drainage. Because the acidic, metal-rich effluent reached the Sacramento River, the site has been one of the highest priorities on the US EPA's Superfund list since the early 1980s. A crucial area of scientific uncertainty that needed to be resolved was the magnitude of natural background metal flux. We collected 25 paleomagnetic samples from the gossan to determine the polarity of the Earth's magnetic field during pre-mining sulfide weathering. Nineteen samples exhibited stable magnetic endpoints during thermal demagnetization; of these, four were of reversed polarity and the remainder were of normal polarity. This result established that the gossan was already forming 780,000 years ago, and this information made it possible to estimate natural, pre- mining flux rates of copper and zinc. These rates were three orders of magnitude lower than post-mining (pre- remediation) rates. Resolution of the question of the background flux led to one of the largest legal settlements in U.S. history for remediation of an inactive mine site.

  2. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    PubMed Central

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-01-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work. PMID:27306204

  3. Interactions of the Metalloregulatory Protein SloR from Streptococcus mutans with Its Metal Ion Effectors and DNA Binding Site

    PubMed Central

    Corbett, John; Cornacchione, Louis; Daly, William; Galan, Diego; Wysota, Michael; Tivnan, Patrick; Collins, Justin; Nye, Dillon; Levitz, Talya; Breyer, Wendy A.; Glasfeld, Arthur

    2015-01-01

    ABSTRACT Streptococcus mutans is the causative agent of dental caries, a significant concern for human health, and therefore an attractive target for therapeutics development. Previous work in our laboratory has identified a homodimeric, manganese-dependent repressor protein, SloR, as an important regulator of cariogenesis and has used site-directed mutagenesis to map functions to specific regions of the protein. Here we extend those studies to better understand the structural interaction between SloR and its operator and its effector metal ions. The results of DNase I assays indicate that SloR protects a 42-bp region of DNA that overlaps the sloABC promoter on the S. mutans UA159 chromosome, while electrophoretic mobility shift and solution binding assays indicate that each of two SloR dimers binds to this region. Real-time semiquantitative reverse transcriptase PCR (real-time semi-qRT-PCR) experiments were used to determine the individual base pairs that contribute to SloR-DNA binding specificity. Solution studies indicate that Mn2+ is better than Zn2+ at specifically activating SloR to bind DNA, and yet the 2.8-Å resolved crystal structure of SloR bound to Zn2+ provides insight into the means by which selective activation by Mn2+ may be achieved and into how SloR may form specific interactions with its operator. Taken together, these experimental observations are significant because they can inform rational drug design aimed at alleviating and/or preventing S. mutans-induced caries formation. IMPORTANCE This report focuses on investigating the SloR protein as a regulator of essential metal ion transport and virulence gene expression in the oral pathogen Streptococcus mutans and on revealing the details of SloR binding to its metal ion effectors and binding to DNA that together facilitate this expression. We used molecular and biochemical approaches to characterize the interaction of SloR with Mn2+ and with its SloR recognition element to gain a clearer picture

  4. Metal Ions, Not Metal-Catalyzed Oxidative Stress, Cause Clay Leachate Antibacterial Activity

    PubMed Central

    Otto, Caitlin C.; Koehl, Jennifer L.; Solanky, Dipesh; Haydel, Shelley E.

    2014-01-01

    Aqueous leachates prepared from natural antibacterial clays, arbitrarily designated CB-L, release metal ions into suspension, have a low pH (3.4–5), generate reactive oxygen species (ROS) and H2O2, and have a high oxidation-reduction potential. To isolate the role of pH in the antibacterial activity of CB clay mixtures, we exposed three different strains of Escherichia coli O157:H7 to 10% clay suspensions. The clay suspension completely killed acid-sensitive and acid-tolerant E. coli O157:H7 strains, whereas incubation in a low-pH buffer resulted in a minimal decrease in viability, demonstrating that low pH alone does not mediate antibacterial activity. The prevailing hypothesis is that metal ions participate in redox cycling and produce ROS, leading to oxidative damage to macromolecules and resulting in cellular death. However, E. coli cells showed no increase in DNA or protein oxidative lesions and a slight increase in lipid peroxidation following exposure to the antibacterial leachate. Further, supplementation with numerous ROS scavengers eliminated lipid peroxidation, but did not rescue the cells from CB-L-mediated killing. In contrast, supplementing CB-L with EDTA, a broad-spectrum metal chelator, reduced killing. Finally, CB-L was equally lethal to cells in an anoxic environment as compared to the aerobic environment. Thus, ROS were not required for lethal activity and did not contribute to toxicity of CB-L. We conclude that clay-mediated killing was not due to oxidative damage, but rather, was due to toxicity associated directly with released metal ions. PMID:25502790

  5. Enhanced Organo-Metal Halide Perovskite Photoluminescence from Nanosized Defect-Free Crystallites and Emitting Sites.

    PubMed

    Tian, Yuxi; Merdasa, Aboma; Unger, Eva; Abdellah, Mohamed; Zheng, Kaibo; McKibbin, Sarah; Mikkelsen, Anders; Pullerits, Tõnu; Yartsev, Arkady; Sundström, Villy; Scheblykin, Ivan G

    2015-10-15

    Photoluminescence (PL) of organo-metal halide perovskite semiconductors can be enhanced by several orders of magnitude by exposure to visible light. We applied PL microscopy and super-resolution optical imaging to investigate this phenomenon with spatial resolution better than 10 nm using films of CH3NH3PbI3 prepared by the equimolar solution-deposition method, resulting in crystals of different sizes. We found that PL of ∼100 nm crystals enhances much faster than that of larger, micrometer-sized ones. This crystal-size dependence of the photochemical light passivation of charge traps responsible for PL quenching allowed us to conclude that traps are present in the entire crystal volume rather than at the surface only. Because of this effect, "dark" micrometer-sized perovskite crystals can be converted into highly luminescent smaller ones just by mechanical grinding. Super-resolution optical imaging shows spatial inhomogeneity of the PL intensity within perovskite crystals and the existence of <100 nm-sized localized emitting sites. The possible origin of these sites is discussed.

  6. Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas

    DOE PAGES

    Hong-Hermesdorf, Anne; Miethke, Marcus; Gallaher, Sean D.; ...

    2014-10-26

    Here we identified a Cu-accumulating structure with a dynamic role in intracellular Cu homeostasis. During Zn limitation, Chlamydomonas reinhardtii hyperaccumulates Cu, a process dependent on the nutritional Cu sensor CRR1, but it is functionally Cu deficient. Visualization of intracellular Cu revealed major Cu accumulation sites coincident with electron-dense structures that stained positive for low pH and polyphosphate, suggesting that they are lysosome-related organelles. Nano-secondary ion MS showed colocalization of Ca and Cu, and X-ray absorption spectroscopy was consistent with Cu+ accumulation in an ordered structure. Zn resupply restored Cu homeostasis concomitant with reduced abundance of these structures. Cu isotope labelingmore » demonstrated that sequestered Cu+ became bioavailable for the synthesis of plastocyanin, and transcriptome profiling indicated that mobilized Cu became visible to CRR1. Cu trafficking to intracellular accumulation sites may be a strategy for preventing protein mismetallation during Zn deficiency and enabling efficient cuproprotein metallation or remetallation upon Zn resupply.« less

  7. Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas

    SciTech Connect

    Hong-Hermesdorf, Anne; Miethke, Marcus; Gallaher, Sean D.; Kropat, Janette; Dodani, Sheel C.; Chan, Jefferson; Barupala, Dulmini; Domaille, Dylan W.; Shirasaki, Dyna I.; Loo, Joseph A.; Weber, Peter K.; Pett-Ridge, Jennifer; Stemmler, Timothy L.; Chang, Christopher J.; Merchant, Sabeeha S.

    2014-10-26

    Here we identified a Cu-accumulating structure with a dynamic role in intracellular Cu homeostasis. During Zn limitation, Chlamydomonas reinhardtii hyperaccumulates Cu, a process dependent on the nutritional Cu sensor CRR1, but it is functionally Cu deficient. Visualization of intracellular Cu revealed major Cu accumulation sites coincident with electron-dense structures that stained positive for low pH and polyphosphate, suggesting that they are lysosome-related organelles. Nano-secondary ion MS showed colocalization of Ca and Cu, and X-ray absorption spectroscopy was consistent with Cu+ accumulation in an ordered structure. Zn resupply restored Cu homeostasis concomitant with reduced abundance of these structures. Cu isotope labeling demonstrated that sequestered Cu+ became bioavailable for the synthesis of plastocyanin, and transcriptome profiling indicated that mobilized Cu became visible to CRR1. Cu trafficking to intracellular accumulation sites may be a strategy for preventing protein mismetallation during Zn deficiency and enabling efficient cuproprotein metallation or remetallation upon Zn resupply.

  8. Complexation of trace metals in size-segregated aerosol particles at nine sites in Germany

    NASA Astrophysics Data System (ADS)

    Scheinhardt, Sebastian; Müller, Konrad; Spindler, Gerald; Herrmann, Hartmut

    2013-08-01

    The complexation of trace metal ions (TMI) was studied in size-segregated ambient aerosol particles collected at nine sites in Germany (urban, rural and coastal). Samples were analysed in terms of TMI (Fe, Mn, Cu), potential inorganic and organic ligands and pH. Using a thermodynamic model (E-AIM III), the concentrations of these compounds in the particle liquid phase were estimated. The resulting liquid phase concentrations were then used as input parameters for a speciation model (Visual MINTEQ) and the equilibrium complexation was calculated under realistic conditions. The complexation was found to be controlled by the availability of strong organic ligands, especially oxalate, whose occurrence in turn was governed by the formation of insoluble Ca-oxalate. Likewise, the pH influenced oxalate availability because it alters the concentrations of the chelating mono- and dianions. As a qualitative result, Fe3+ was found to be mainly complexed by oxalate, while Fe2+ and Mn2+ were rather associated with nitrate. Cu2+ showed mixed organic and nitrate complexation. Complexation by HULIS was only significant for Fe3+ and Cu2+ and was generally less important than other ligands like oxalate and nitrate. Oxalate was found to exist mainly in the solid phase while higher dicarboxylic acids mostly did not form complexes due to protonation. Complexation was shown to be influenced by season, air mass origin, particle size and sampling site.

  9. Laboratory study on metal attenuation capacity of fine grained soil near ash pond site.

    PubMed

    Ghosh, Sudipta; Mukherjee, Somnath; Sarkar, Sujoy; Kumar, Sunil

    2008-10-01

    Waste settling tanks of earthen containment nature are common in India for disposal of solid waste in slurry form. For a large pond system, e.g. ash slurry disposal tank of coal base thermal power plant, leachate generation and its migration pose a serious problem. A natural attenuation of controlling the migratory leachate is to use locally available clay material as lining system due to the adsorption properties of soil for reducing some metallic ions. The present investigation was carried out to explore the Ni2+ and Cr6+ removal capacity of surrounding soil of the ash pond site of Super Thermal Power Plant in West Bengal, India through some laboratory scale and field studies. The soil and water samples collected from the site showed the existence of Ni2+ and Cr6+ in excess to permissible limit. A two-dimensional adsorption behaviour of these pollutants through soil was assessed. The results showed that more than 80% of nickel and 72% of chromium were found to be sorbed by the soil corresponding to initial concentrations of two ions, i.e. 1.366 mg/L and 0.76 mg/L respectively. The batch adsorption data are tested Langmuir and Freundlich isotherm models and found reasonably fit. Breakthrough adsorption study uptake also showed a good adsorption capacity of the soil. The experimental results found to fit well with the existing two dimensional (2D) mathematical models as proposed by Fetter (1999).

  10. [Numerical simulation and application of electrical resistivity survey in heavy metal contaminated sites].

    PubMed

    Wang, Yu-ling; Nai, Chang-xin; Wang, Yan-wen; Dong, Lu

    2013-05-01

    In order to analyze the effects of electrical resistivity in heavy metal contaminated sites, we established the resistivity model of typical contaminated sites and simulate the DC resistivity method with Wenner arrays using the finite element method. The simulation results showed that the electrical method was influenced by the contamination concentration and the location of pollution. The more serious the degree of pollution was, the more obvious the low resistivity anomaly, thus the easier the identification of the contaminated area; otherwise, if there was light pollution, Wenner array could not get obvious low resistivity anomalies, so it would be hard to judge the contaminated area. Our simulation results also showed that the closer the contaminated areas were to the surface, the more easily the pollution was detected and the low resistivity anomalies shown in the apparent resistivity diagram were influenced by the Layered medium. The actual field survey results using resistivity method also show that the resistivity method can correctly detect the area with serious pollution.

  11. Activation of Autophagy by Metals in Chlamydomonas reinhardtii.

    PubMed

    Pérez-Martín, Marta; Blaby-Haas, Crysten E; Pérez-Pérez, María Esther; Andrés-Garrido, Ascensión; Blaby, Ian K; Merchant, Sabeeha S; Crespo, José L

    2015-09-01

    Autophagy is an intracellular self-degradation pathway by which eukaryotic cells recycle their own material in response to specific stress conditions. Exposure to high concentrations of metals causes cell damage, although the effect of metal stress on autophagy has not been explored in photosynthetic organisms. In this study, we investigated the effect of metal excess on autophagy in the model unicellular green alga Chlamydomonas reinhardtii. We show in cells treated with nickel an upregulation of ATG8 that is independent of CRR1, a global regulator of copper signaling in Chlamydomonas. A similar effect on ATG8 was observed with copper and cobalt but not with cadmium or mercury ions. Transcriptome sequencing data revealed an increase in the abundance of the protein degradation machinery, including that responsible for autophagy, and a substantial overlap of that increased abundance with the hydrogen peroxide response in cells treated with nickel ions. Thus, our results indicate that metal stress triggers autophagy in Chlamydomonas and suggest that excess nickel may cause oxidative damage, which in turn activates degradative pathways, including autophagy, to clear impaired components and recover cellular homeostasis.

  12. A ferritin from Dendrorhynchus zhejiangensis with heavy metals detoxification activity.

    PubMed

    Li, Chenghua; Li, Zhen; Li, Ye; Zhou, Jun; Zhang, Chundan; Su, Xiurong; Li, Taiwu

    2012-01-01

    Ferritin, an iron homeostasis protein, has important functions in transition and storage of toxic metal ions. In this study, the full-length cDNA of ferritin was isolated from Dendrorhynchus zhejiangensis by cDNA library and RACE approaches. The higher similarity and conserved motifs for ferritin were also identified in worm counterparts, indicating that it belonged to a new member of ferritin family. The temporal expression of worm ferritin in haemocytes was analyzed by RT-PCR, and revealed the ferritin could be induced by Cd(2+), Pb(2+) and Fe(2+). The heavy metal binding activity of recombinant ferritin was further elucidated by atomic force microscopy (AFM). It was observed that the ferritin protein could form a chain of beads with different size against three metals exposure, and the largest one with 35~40 nm in height was identified in the Cd(2+) challenge group. Our results indicated that worm ferritin was a promising candidate for heavy metals detoxification.

  13. A Ferritin from Dendrorhynchus zhejiangensis with Heavy Metals Detoxification Activity

    PubMed Central

    Li, Chenghua; Li, Zhen; Li, Ye; Zhou, Jun; Zhang, Chundan; Su, Xiurong; Li, Taiwu

    2012-01-01

    Ferritin, an iron homeostasis protein, has important functions in transition and storage of toxic metal ions. In this study, the full-length cDNA of ferritin was isolated from Dendrorhynchus zhejiangensis by cDNA library and RACE approaches. The higher similarity and conserved motifs for ferritin were also identified in worm counterparts, indicating that it belonged to a new member of ferritin family. The temporal expression of worm ferritin in haemocytes was analyzed by RT-PCR, and revealed the ferritin could be induced by Cd2+, Pb2+ and Fe2+. The heavy metal binding activity of recombinant ferritin was further elucidated by atomic force microscopy (AFM). It was observed that the ferritin protein could form a chain of beads with different size against three metals exposure, and the largest one with 35∼40 nm in height was identified in the Cd2+ challenge group. Our results indicated that worm ferritin was a promising candidate for heavy metals detoxification. PMID:23284696

  14. Active Site and Laminarin Binding in Glycoside Hydrolase Family 55*

    PubMed Central

    Bianchetti, Christopher M.; Takasuka, Taichi E.; Deutsch, Sam; Udell, Hannah S.; Yik, Eric J.; Bergeman, Lai F.; Fox, Brian G.

    2015-01-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100–10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  15. Location of high-affinity metal binding sites in the profile structure of the Ca+2-ATPase in the sarcoplasmic reticulum by resonance x-ray diffraction.

    PubMed Central

    Asturias, F J; Blasie, J K

    1991-01-01

    Resonance x-ray diffraction measurements on the lamellar diffraction from oriented multilayers of isolated sarcoplasmic reticulum (SR) membranes containing a small concentration of lanthanide (III) ions (lanthanide/protein molar ratio approximately 4) have allowed us to calculate both the electron density profile of the SR membrane and the separate electron density profile of the resonant lanthanide atoms bound to the membrane to a relatively low spatial resolution of approximately 40 A. Analysis of the membrane electron density profile and modeling of the separate low resolution lanthanide atom profile, using step-function electron density models based on the assumption that metal binding sites in the membrane profile are discrete and localized, resulted in the identification of a minimum of three such binding sites in the membrane profile. Two of these sites are low-affinity, low-occupancy sites identified with the two phospholipid polar headgroup regions of the lipid bilayer within the membrane profile. Up to 20% of the total lanthanide (III) ions bind to these low-affinity sites. The third site has relatively high affinity for lanthanide ion binding; its Ka is roughly an order of magnitude larger than that for the lower affinity polar headgroup sites. Approximately 80% of the total lanthanide ions present in the sample are bound to this high-affinity site, which is located in the "stalk" portion of the "headpiece" within the profile structure of the Ca+2 ATPase protein, approximately 12 A outside of the phospholipid polar headgroups on the extravesicular side of the membrane profile. Based on the nature of our results and on previous reports in the literature concerning the ability of lanthanide (III) ions to function as Ca+2 analogues for the Ca+2 ATPase we suggest that we have located a high-affinity metal binding site in the membrane profile which is involved in the active transport of Ca+2 ions across the SR membrane by the Ca+2 ATPase. PMID:1826221

  16. Development of a novel catalytic amyloid displaying a metal-dependent ATPase-like activity.

    PubMed

    Monasterio, Octavio; Nova, Esteban; Diaz-Espinoza, Rodrigo

    2017-01-22

    Amyloids are protein aggregates of highly regular structure that are involved in diverse pathologies such as Alzheimer's and Parkinson's disease. Recent evidence has shown that under certain conditions, small peptides can self-assemble into amyloids that exhibit catalytic reactivity towards certain compounds. Here we report a novel peptide with a sequence derived from the active site of RNA polymerase that displays hydrolytic activity towards ATP. The catalytic reaction proceeds in the presence of the divalent metal manganese and the products are ADP and AMP. The kinetic data shows a substrate-dependent saturation of the activity with a maximum rate achieved at around 1 mM ATP. At higher ATP concentrations, we also observed substrate inhibition of the activity. The self-assembly of the peptide into amyloids is strictly metal-dependent and required for the catalysis. Our results show that aspartate-containing amyloids can also be catalysts under conditions that include interactions with metals. Moreover, we show for the first time an amyloid that exerts reactivity towards a biologically essential molecule.

  17. An Active Site Water Network in the Plasminogen Activator Pla from Yersinia pestis

    SciTech Connect

    Eren, Elif; Murphy, Megan; Goguen, Jon; van den Berg, Bert

    2010-08-13

    The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 {angstrom}. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changes of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.

  18. An active site water network in the plasminogen activator pla from Yersinia pestis.

    PubMed

    Eren, Elif; Murphy, Megan; Goguen, Jon; van den Berg, Bert

    2010-07-14

    The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 A. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changes of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.

  19. DNA nuclease activity of Rev-coupled transition metal chelates.

    PubMed

    Joyner, Jeff C; Keuper, Kevin D; Cowan, J A

    2012-06-07

    Artificial nucleases containing Rev-coupled metal chelates based on combinations of the transition metals Fe(2+), Co(2+), Ni(2+), and Cu(2+) and the chelators DOTA, DTPA, EDTA, NTA, tripeptide GGH, and tetrapeptide KGHK have been tested for DNA nuclease activity. Originally designed to target reactive transition metal chelates (M-chelates) to the HIV-1 Rev response element mRNA, attachment to the arginine-rich Rev peptide also increases DNA-binding affinity for the attached M-chelates. Apparent K(D) values ranging from 1.7 to 3.6 µM base pairs for binding of supercoiled pUC19 plasmid DNA by Ni-chelate-Rev complexes were observed, as a result of electrostatic attraction between the positively-charged Rev peptide and negatively-charged DNA. Attachment of M-chelates to the Rev peptide resulted in enhancements of DNA nuclease activity ranging from 1-fold (no enhancement) to at least 13-fold (for Cu-DTPA-Rev), for the rate of DNA nicking, with second order rate constants for conversion of DNA(supercoiled) to DNA(nicked) up to 6 × 10(6) M(-1) min(-1), and for conversion of DNA(nicked) to DNA(linear) up to 1 × 10(5) M(-1) min(-1). Freifelder-Trumbo analysis and the ratios of linearization and nicking rate constants (k(lin)/k(nick)) revealed concerted mechanisms for nicking and subsequent linearization of plasmid DNA for all of the Rev-coupled M-chelates, consistent with higher DNA residency times for the Rev-coupled M-chelates. Observed rates for Rev-coupled M-chelates were less skewed by differing DNA-binding affinities than for M-chelates lacking Rev, as a result of the narrow range of DNA-binding affinities observed, and therefore relationships between DNA nuclease activity and other catalyst properties, such as coordination unsaturation, the ability to consume ascorbic acid and generate diffusible radicals, and the identity of the metal center, are now clearly illustrated in light of the similar DNA-binding affinities of all M-chelate-Rev complexes. This work

  20. Remedial actions at the former Vitro Rare Metals plant site, Canonsburg, Washington County, Pennsylvania. Final Environmental Impact Statement. Volume I

    SciTech Connect

    Not Available

    1983-07-01

    The environmental impacts associated with remedial actions in connection with residual radioactive materials remaining at the inactive uranium processing site located in Canonsburg, Washington County, Pennsylvania are evaluated. The Canonsburg site is an 18.5-acre property that was formerly owned by the Vitro Rare Metals Company. The expanded Canonsburg site would be 30-acre property that would include the Canonsburg site (the former Vitro Rare Metals plant), seven adjacent private houses, and the former Georges Pottery property. During the period 1942 through 1957 the Vitro Manufacturing Company and its successor, the Vitro Corporation of America, processed onsite residues and ores, and government-owned ores, concentrates, and scraps to extract uranium and other rare metals. The Canonsburg site is now the Canon Industrial Park. In addition to storing the residual radioactive materials of this process at the Canonsburg site, about 12,000 tons of radioactively contaminated materials were transferred to a railroad landfill in Burrell Township, Indiana County, Pennsylvania. This Canonsburg FEIS evaluates five alternatives for removing the potential public health hazard associated with the radioactively contaminated materials. In addition to no action, these alternatives involve various combinations of stabilization of the radioactively contaminated materials in place or decontamination of the Canonsburg and Burrell sites by removing the radioactively contaminated materials to another location. In addition to the two sites mentioned, a third site located in Hanover Township, Washington County, Pennsylvania has been considered as a disposal site to which the radioactively contaminated materials presently located at either of the other two sites might be moved.

  1. Mercury-199 NMR of the Metal Receptor Site in MerR and Its Protein-DNA Complex

    NASA Astrophysics Data System (ADS)

    Utschig, Lisa M.; Bryson, James W.; O'Halloran, Thomas V.

    1995-04-01

    Structural insights have been provided by mercury-199 nuclear magnetic resonance (NMR) into the metal receptor site of the MerR metalloregulatory protein alone and in a complex with the regulatory target, DNA. The one- and two-dimensional NMR data are consistent with a trigonal planar Hg-thiolate coordination environment consisting only of Cys side chains and resolve structural aspects of both metal ion recognition and the allosteric mechanism. These studies establish 199Hg NMR techniques as useful probes of the metal coordination environment of regulatory proteins, copper enzymes, and zinc transcription factor complexes as large as 50 kilodaltons.

  2. Abundance, composition and activity of ammonia oxidizer and denitrifier communities in metal polluted rice paddies from South China.

    PubMed

    Liu, Yuan; Liu, Yongzhuo; Ding, Yuanjun; Zheng, Jinwei; Zhou, Tong; Pan, Genxing; Crowley, David; Li, Lianqing; Zheng, Jufeng; Zhang, Xuhui; Yu, Xinyan; Wang, Jiafang

    2014-01-01

    While microbial nitrogen transformations in soils had been known to be affected by heavy metal pollution, changes in abundance and community structure of the mediating microbial populations had been not yet well characterized in polluted rice soils. Here, by using the prevailing molecular fingerprinting and enzyme activity assays and comparisons to adjacent non-polluted soils, we examined changes in the abundance and activity of ammonia oxidizing and denitrifying communities of rice paddies in two sites with different metal accumulation situation under long-term pollution from metal mining and smelter activities. Potential nitrifying activity was significantly reduced in polluted paddies in both sites while potential denitrifying activity reduced only in the soils with high Cu accumulation up to 1300 mg kg-1. Copy numbers of amoA (AOA and AOB genes) were lower in both polluted paddies, following the trend with the enzyme assays, whereas that of nirK was not significantly affected. Analysis of the DGGE profiles revealed a shift in the community structure of AOA, and to a lesser extent, differences in the community structure of AOB and denitrifier between soils from the two sites with different pollution intensity and metal composition. All of the retrieved AOB sequences belonged to the genus Nitrosospira, among which species Cluster 4 appeared more sensitive to metal pollution. In contrast, nirK genes were widely distributed among different bacterial genera that were represented differentially between the polluted and unpolluted paddies. This could suggest either a possible non-specific target of the primers conventionally used in soil study or complex interactions between soil properties and metal contents on the observed community and activity changes, and thus on the N transformation in the polluted rice soils.

  3. Synergic Effect of Active Sites in Zinc-Modified ZSM-5 Zeolites as Revealed by High-Field Solid-State NMR Spectroscopy.

    PubMed

    Qi, Guodong; Wang, Qiang; Xu, Jun; Trébosc, Julien; Lafon, Olivier; Wang, Chao; Amoureux, Jean-Paul; Deng, Feng

    2016-12-19

    Understanding the nature of active sites in metal-supported catalysts is of great importance towards establishing their structure-property relationships. The outstanding catalytic performance of metal-supported catalysts is frequently ascribed to the synergic effect of different active sites, which is however not well spectroscopically characterized. Herein, we report the direct detection of surface Zn species and (1) H-(67) Zn internuclear interaction between Zn(2+) ions and Brønsted acid sites on Zn-modified ZSM-5 zeolites by high-field solid-state NMR spectroscopy. The observed promotion of C-H bond activation of methane is rationalized by the enhanced Brønsted acidity generated by synergic effects arising from the spatial proximity/interaction between Zn(2+) ions and Brønsted acidic protons. The concentration of synergic active sites is determined by (1) H-(67) Zn double-resonance solid-state NMR spectroscopy.

  4. Released polysaccharides (RPS) from Cyanothece sp. CCY 0110 as biosorbent for heavy metals bioremediation: interactions between metals and RPS binding sites.

    PubMed

    Mota, Rita; Rossi, Federico; Andrenelli, Luisa; Pereira, Sara Bernardes; De Philippis, Roberto; Tamagnini, Paula

    2016-09-01

    Bioremediation of heavy metals using microorganisms can be advantageous compared to conventional physicochemical methods due to the use of renewable resources and efficiencies of removal particularly cations at low concentrations. In this context, cyanobacteria/cyanobacterial extracellular polymeric substances (EPS) emerge as a valid alternative due to the anionic nature and particular composition of these polymers. In this work, various culture fractions of the unicellular cyanobacterium Cyanothece sp. CCY 0110 were employed in bioremoval assays using three of the most common heavy metal pollutants in water bodies-copper, cadmium, and lead-separately or in combined systems. Our study showed that the released polysaccharides (RPS) were the most efficient fraction, removing the metal(s) by biosorption. Therefore, this polymer was subsequently used to evaluate the interactions between the metals/RPS binding sites using SEM-EDX, ICP-OES, and FTIR. Acid and basic pretreatments applied to the polymer further improve the process efficiency, and the exposure to an alkaline solution seems to alter the RPS conformation. The differences observed in the specific metal bioremoval seem to be mainly due to the RPS organic functional groups available, mainly carboxyl and hydroxyl, than to an ion exchange mechanism. Considering that Cyanothece is a highly efficient RPS-producer and that RPS can be easily separated from the culture, immobilized or confined, this polymer can be advantageous for the establishment/improvement of heavy metal removal systems.

  5. The protein conformation of Cd-substituted horse liver alcohol dehydrogenase and its metal-site coordination geometry in binary and ternary inhibitor complexes.

    PubMed

    Hemmingsen, L; Bauer, R; Bjerrum, M J; Adolph, H W; Zeppezauer, M; Cedergren-Zeppezauer, E

    1996-10-15

    The coordination geometry of the metal at the active site in Cd-substituted horse liver alcohol dehydrogenase (LADH) has been investigated for the binary complexes of LADH with imidazole, isobutyramide, decanoic acid and Cl-, and for the ternary complexes of LADH with NADH and imidazole, NADH and isobutyramide, NAD+ and decanoic acid and NAD+ and Cl-, by using the method of perturbed angular correlation of gamma-rays (PAC). The spectral results are consistent with a flexible structure around the metal for the binary complexes with inhibitors. For ternary complexes, however, a rigid structure is observed. An exception is the ternary complex between LADH, NADH and imidazole, in which the metal site is still flexible. Comparing with available structures determined by X-ray crystallography, we found a correlation between open structures and flexible metal sites, and between closed structures and rigid metal sites. This indicates that the PAC technique can be applied to distinguish the two conformations in solution. The spectral parameters, omega(o) and eta, of the experiments, except for the complexes with imidazole, fall into two groups: one with low omega(o) and one with high omega(o) (eta is relatively constant in all experiments). In this work it is clarified that the low omega(o) values are connected with the presence of a negatively charged solvent ligand. Using an angular-overlap approach to interpret the results, the low omega(o) values are found to be compatible with a coordination geometry where the S-Cd-S (Cys174 and Cys46 coordinate to the metal) angle is about 110 degrees as suggested in [Hemmingsen, L., Bauer, R., Danielsen, E., Bjerrum. M. J., Zeppezauer, M., Adolph, H. W., Formicka, G. & Cedergren-Zeppezauer, E. (1995) Biochemistry 34, 7145-7153], whereas high omega(o) values are compatible with an S-Cd-S angle of 130 degrees. The presence of a negatively charged metal ligand, therefore, might trigger the movement of the sulfur of Cys174. As it is

  6. Transition Metal-Promoted V2CO2 (MXenes): A New and Highly Active Catalyst for Hydrogen Evolution Reaction.

    PubMed

    Ling, Chongyi; Shi, Li; Ouyang, Yixin; Chen, Qian; Wang, Jinlan

    2016-11-01

    Developing alternatives to precious Pt for hydrogen production from water splitting is central to the area of renewable energy. This work predicts extremely high catalytic activity of transition metal (Fe, Co, and Ni) promoted two-dimensional MXenes, fully oxidized vanadium carbides (V2CO2), for hydrogen evolution reaction (HER). The first-principle calculations show that the introduction of transition metal can greatly weaken the strong binding between hydrogen and oxygen and engineer the hydrogen adsorption free energy to the optimal value ≈0 eV by choosing the suitable type and coverage of the promoters as well as the active sites. Strain engineering on the performance of transition metal promoted V2CO2 further reveals that the excellent HER activities can maintain well while those poor ones can be modulated to be highly active. This study provides new possibilities for cost-effective alternatives to Pt in HER and for the application of 2D MXenes.

  7. Development of High Performance CFRP/Metal Active Laminates

    NASA Astrophysics Data System (ADS)

    Asanuma, Hiroshi; Haga, Osamu; Imori, Masataka

    This paper describes development of high performance CFRP/metal active laminates mainly by investigating the kind and thickness of the metal. Various types of the laminates were made by hot-pressing of an aluminum, aluminum alloys, a stainless steel and a titanium for the metal layer as a high CTE material, a unidirectional CFRP prepreg as a low CTE/electric resistance heating material, a unidirectional KFRP prepreg as a low CTE/insulating material. The aluminum and its alloy type laminates have almost the same and the highest room temperature curvatures and they linearly change with increasing temperature up to their fabrication temperature. The curvature of the stainless steel type jumps from one to another around its fabrication temperature, whereas the titanium type causes a double curvature and its change becomes complicated. The output force of the stainless steel type attains the highest of the three under the same thickness. The aluminum type successfully increased its output force by increasing its thickness and using its alloys. The electric resistance of the CFRP layer can be used to monitor the temperature, that is, the curvature of the active laminate because the curvature is a function of temperature.

  8. Active-Site Structure of Class IV Adenylyl Cyclase and Transphyletic Mechanism

    SciTech Connect

    Gallagher, D.T.; Robinson, H.; Kim, S.-K.; Reddy, P. T.

    2011-01-21

    Adenylyl cyclases (ACs) belonging to three nonhomologous classes (II, III, and IV) have been structurally characterized, enabling a comparison of the mechanisms of cyclic adenosine 3',5'-monophosphate biosynthesis. We report the crystal structures of three active-site complexes for Yersinia pestis class IV AC (AC-IV)-two with substrate analogs and one with product. Mn{sup 2+} binds to all three phosphates, and to Glu12 and Glu136. Electropositive residues Lys14, Arg63, Lys76, Lys111, and Arg113 also form hydrogen bonds to phosphates. The conformation of the analogs is suitable for in-line nucleophilic attack by the ribose O3' on {alpha}-phosphate (distance {approx} 4 {angstrom}). In the product complex, a second Mn ion is observed to be coordinated to both ribose 2' oxygen and ribose 3' oxygen. Observation of both metal sites, together with kinetic measurements, provides strong support for a two-cation mechanism. Eleven active-site mutants were also made and kinetically characterized. These findings and comparisons with class II and class III enzymes enable a detailed transphyletic analysis of the AC mechanism. Consistent with its lack of coordination to purine, Y. pestis AC-IV cyclizes both ATP and GTP. As in other classes of AC, the ribose is loosely bound, and as in class III, no base appears to ionize the O3' nucleophile. Different syn/anti conformations suggest that the mechanism involves a conformational transition, and further evidence suggests a role for ribosyl pseudorotation. With resolutions of 1.6-1.7 {angstrom}, these are the most detailed active-site ligand complexes for any class of this ubiquitous signaling enzyme.

  9. Active-Site Structure of Class IV Adenylyl Cyclase and Transphyletic Mechanism

    SciTech Connect

    D Gallagher; S Kim; H Robinson; P Reddy

    2011-12-31

    Adenylyl cyclases (ACs) belonging to three nonhomologous classes (II, III, and IV) have been structurally characterized, enabling a comparison of the mechanisms of cyclic adenosine 3',5'-monophosphate biosynthesis. We report the crystal structures of three active-site complexes for Yersinia pestis class IV AC (AC-IV) - two with substrate analogs and one with product. Mn{sup 2+} binds to all three phosphates, and to Glu12 and Glu136. Electropositive residues Lys14, Arg63, Lys76, Lys111, and Arg113 also form hydrogen bonds to phosphates. The conformation of the analogs is suitable for in-line nucleophilic attack by the ribose O3' on {alpha}-phosphate (distance {approx} 4 {angstrom}). In the product complex, a second Mn ion is observed to be coordinated to both ribose 2' oxygen and ribose 3' oxygen. Observation of both metal sites, together with kinetic measurements, provides strong support for a two-cation mechanism. Eleven active-site mutants were also made and kinetically characterized. These findings and comparisons with class II and class III enzymes enable a detailed transphyletic analysis of the AC mechanism. Consistent with its lack of coordination to purine, Y. pestis AC-IV cyclizes both ATP and GTP. As in other classes of AC, the ribose is loosely bound, and as in class III, no base appears to ionize the O3' nucleophile. Different syn/anti conformations suggest that the mechanism involves a conformational transition, and further evidence suggests a role for ribosyl pseudorotation. With resolutions of 1.6-1.7 {angstrom}, these are the most detailed active-site ligand complexes for any class of this ubiquitous signaling enzyme.

  10. Active Site Loop Conformation Regulates Promiscuous Activity in a Lactonase from Geobacillus kaustophilus HTA426

    PubMed Central

    Zhang, Yu; An, Jiao; Yang, Guang-Yu; Bai, Aixi; Zheng, Baisong; Lou, Zhiyong; Wu, Geng; Ye, Wei; Chen, Hai-Feng; Feng, Yan; Manco, Giuseppe

    2015-01-01

    Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a “hot spot” in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity. PMID:25706379

  11. Insights into Substrate Specificity and Metal Activation of Mammalian Tetrahedral Aspartyl Aminopeptidase

    SciTech Connect

    Chen, Yuanyuan; Farquhar, Erik R.; Chance, Mark R.; Palczewski, Krzysztof; Kiser, Philip D.

    2012-07-11

    Aminopeptidases are key enzymes involved in the regulation of signaling peptide activity. Here, we present a detailed biochemical and structural analysis of an evolutionary highly conserved aspartyl aminopeptidase called DNPEP. We show that this peptidase can cleave multiple physiologically relevant substrates, including angiotensins, and thus may play a key role in regulating neuron function. Using a combination of x-ray crystallography, x-ray absorption spectroscopy, and single particle electron microscopy analysis, we provide the first detailed structural analysis of DNPEP. We show that this enzyme possesses a binuclear zinc-active site in which one of the zinc ions is readily exchangeable with other divalent cations such as manganese, which strongly stimulates the enzymatic activity of the protein. The plasticity of this metal-binding site suggests a mechanism for regulation of DNPEP activity. We also demonstrate that DNPEP assembles into a functionally relevant tetrahedral complex that restricts access of peptide substrates to the active site. These structural data allow rationalization of the enzyme's preference for short peptide substrates with N-terminal acidic residues. This study provides a structural basis for understanding the physiology and bioinorganic chemistry of DNPEP and other M18 family aminopeptidases.

  12. Ligational behavior of Schiff bases towards transition metal ion and metalation effect on their antibacterial activity.

    PubMed

    Devi, Jai; Batra, Nisha; Malhotra, Rajesh

    2012-11-01

    New Schiff bases pyrazine-2-carboxylicacid (phenyl-pyridin-2-yl-methylene)-hydrazide (Hpch-bp) HL(1) and pyrazine-2-carboxylicacid (pyridin-2-ylmethylene)-hydrazide (Hpch-pc) HL(2) derived from condensation of pyrazine carboxylic hydrazide (Hpch) with 2-benzoyl pyridine (bp) or pyridine 2-carbaldehyde (pc) and their transition metal complexes of type ML((1-2)2) have been synthesized, where M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). Characterization of ligands and their metal complexes was carried out by elemental analysis, conductimetric studies, magnetic susceptibility, spectroscopic techniques (IR, UV-VIS, NMR, ESR, Mass) and thermogravimetric analysis. The physico-chemical studies revealed octahedral geometry or distorted octahedral geometry around metal ion. These azomethine Schiff base ligands acted as tridentate coordinating through carbonyl, azomethine and pyridine nitrogen present in the ligand. The thermodynamic and thermal properties of the complexes have been investigated and it was observed on the basis of these studies that thermal stability of complexes follows the order Mnactivity at different concentrations against bacteria viz. Gram positive Bacillus subtilis, Micrococcus luteus and Gram negative Pseudomonas aeruginosa, Pseudomonas mendocina. A marked enhancement in biocidal activity of the ligands under similar experimental conditions was observed as a consequence of coordination with metal ions. The trend of growth inhibition in the complexes was found to be in the order: Cu>Mn>Ni>Co>Zn.

  13. Characterization of the active site of ADP-ribosyl cyclase.

    PubMed

    Munshi, C; Thiel, D J; Mathews, I I; Aarhus, R; Walseth, T F; Lee, H C

    1999-10-22

    ADP-ribosyl cyclase synthesizes two Ca(2+) messengers by cyclizing NAD to produce cyclic ADP-ribose and exchanging nicotinic acid with the nicotinamide group of NADP to produce nicotinic acid adenine dinucleotide phosphate. Recombinant Aplysia cyclase was expressed in yeast and co-crystallized with a substrate, nicotinamide. x-ray crystallography showed that the nicotinamide was bound in a pocket formed in part by a conserved segment and was near the central cleft of the cyclase. Glu(98), Asn(107) and Trp(140) were within 3.5 A of the bound nicotinamide and appeared to coordinate it. Substituting Glu(98) with either Gln, Gly, Leu, or Asn reduced the cyclase activity by 16-222-fold, depending on the substitution. The mutant N107G exhibited only a 2-fold decrease in activity, while the activity of W140G was essentially eliminated. The base exchange activity of all mutants followed a similar pattern of reduction, suggesting that both reactions occur at the same active site. In addition to NAD, the wild-type cyclase also cyclizes nicotinamide guanine dinucleotide to cyclic GDP-ribose. All mutant enzymes had at least half of the GDP-ribosyl cyclase activity of the wild type, some even 2-3-fold higher, indicating that the three coordinating amino acids are responsible for positioning of the substrate but not absolutely critical for catalysis. To search for the catalytic residues, other amino acids in the binding pocket were mutagenized. E179G was totally devoid of GDP-ribosyl cyclase activity, and both its ADP-ribosyl cyclase and the base exchange activities were reduced by 10,000- and 18,000-fold, respectively. Substituting Glu(179) with either Asn, Leu, Asp, or Gln produced similar inactive enzymes, and so was the conversion of Trp(77) to Gly. However, both E179G and the double mutant E179G/W77G retained NAD-binding ability as shown by photoaffinity labeling with [(32)P]8-azido-NAD. These results indicate that both Glu(179) and Trp(77) are crucial for catalysis and

  14. Mutations inducing an active-site aperture in Rhizobium sp. sucrose isomerase confer hydrolytic activity.

    PubMed

    Lipski, Alexandra; Watzlawick, Hildegard; Ravaud, Stéphanie; Robert, Xavier; Rhimi, Moez; Haser, Richard; Mattes, Ralf; Aghajari, Nushin

    2013-02-01

    Sucrose isomerase is an enzyme that catalyzes the production of sucrose isomers of high biotechnological and pharmaceutical interest. Owing to the complexity of the chemical synthesis of these isomers, isomaltulose and trehalulose, enzymatic conversion remains the preferred method for obtaining these products. Depending on the microbial source, the ratio of the sucrose-isomer products varies significantly. In studies aimed at understanding and explaining the underlying molecular mechanisms of these reactions, mutations obtained using a random-mutagenesis approach displayed a major hydrolytic activity. Two of these variants, R284C and F164L, of sucrose isomerase from Rhizobium sp. were therefore crystallized and their crystal structures were determined. The three-dimensional structures of these mutants allowed the identification of the molecular determinants that favour hydrolytic activity compared with transferase activity. Substantial conformational changes resulting in an active-site opening were observed, as were changes in the pattern of water molecules bordering the active-site region.

  15. Chemosynthetic microbial activity at Mid-Atlantic Ridge hydrothermal vent sites

    NASA Astrophysics Data System (ADS)

    Wirsen, Carl O.; Jannasch, Holger W.; Molyneaux, Stephen J.

    1993-06-01

    Chemosynthetic production of microbial biomass, determined by 14CO2 fixation and enzymatic (RuBisCo) activity, at the Mid-Atlantic Ridge (MAR) 23° and 26°N vent sites was found in various niches: warm water emissions, loosely rock-attached flocculent material, dense morphologically diverse bacterial mats covering the surfaces of polymetal sulfide deposits, and filamentous microbes on the carapaces of shrimp (Rimicaris exoculata). The bacterial mats on polymetal sulfide surfaces contained unicellular and filamentous bacteria which appeared to use as their chemolithotrophic electron or energy source either dissolved reduced minerals from vent emissions, mainly sulfur compounds, or solid metal sulfide deposits, mainly pyrite. Moderately thermophilic Chemosynthetic activity was observed in carbon dioxide fixation experiments and in enrichments, but no thermophilic aerobic sulfur oxidizers could be isolated. Both obligate and facultative chemoautotrophs growing at mesophilic temperatures were isolated from all chemosynthetically active surface scrapings. The obligate autotrophs could oxidize sterilized MAR natural sulfide deposits as well as technical pyrite at near neutral pH, in addition to dissolved reduced sulfur compounds. While the grazing by shrimp on the surface mats of MAR metal sulfide deposits was observed and deemed important, the animals' primary occurrence in dense swarms near vent emissions suggests that they were feeding at these sites, where conditions for Chemosynthetic growth of their filamentous microbial epiflora were optimal. The data show that the transformation of geothermal energy at the massive polymetal sulfide deposits of the MAR is based on the lithoautotrophic oxidation of soluble sulfides and pyrites into microbial biomass.

  16. Metal concentration and antioxidant activity of edible mushrooms from Turkey.

    PubMed

    Sarikurkcu, Cengiz; Tepe, Bektas; Kocak, Mehmet Sefa; Uren, Mehmet Cemil

    2015-05-15

    This study presents information on the antioxidant activity and heavy metal concentrations of Polyporus sulphureus, Macrolepiota procera, Lycoperdon perlatum and Gomphus clavatus mushrooms collected from the province of Mugla in the South-Aegean Region of Turkey. Antioxidant activities of mushroom samples were evaluated by four complementary tests. All tests showed L. perlatum and G. clavatus to possess extremely high antioxidant potential. Antioxidant activity of the samples was strongly correlated with total phenolic-flavonoid content. In terms of heavy metal content, L. perlatum exceeded the legal limits for daily intake of Pb, Fe, Mn, Cr, Ni and Co contents (0.461, 738.00, 14.52, 1.27, 1.65, 0.417 mg/day, respectively) by a 60-kg consumer. Co contents of M. procera (0.026 mg/day) and P. sulphureus (0.030 mg/day) and Cd contents of G. clavatus (0.071 mg/day) were also above the legal limits. According to these results, L. perlatum should not be consumed, despite the potentially beneficial antioxidant activity. Additionally, M. procera and G. clavatus should not be consumed daily due to their high levels of Cd and Co.

  17. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase

    DOE PAGES

    Fenwick, Michael K.; Mehta, Angad P.; Zhang, Yang; ...

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active sitemore » metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.« less

  18. Active Interrogation Observables for Enrichment Determination of DU Shielded HEU Metal Assemblies with Limited Geometrical Information

    SciTech Connect

    Pena, Kirsten E; McConchie, Seth M; Crye, Jason Michael; Mihalczo, John T

    2011-01-01

    Determining the enrichment of highly enriched uranium (HEU) metal assemblies shielded by depleted uranium (DU) proves a unique challenge to currently employed measurement techniques. Efforts to match time-correlated neutron distributions obtained through active interrogation to Monte Carlo simulations of the assemblies have shown promising results, given that the exact geometries of both the HEU metal assemblies and DU shields are known from imaging and fission site mapping. In certain situations, however, it is desirable to obtain enrichment with limited or no geometrical information of the assemblies being measured. This paper explores the possibility that the utilization of observables in the interrogation of assemblies by time-tagged D-T neutrons, including time-correlated distribution of neutrons and gammas using liquid scintillators operating on the fission chain time scale, can lead to enrichment determination without a complete set of geometrical information.

  19. The Structural Basis for the Metal Selective Activation of the Manganese Transport Regulator of Bacillus subtilis†,§

    PubMed Central

    Kliegman, Joseph I.; Griner, Sarah L.; Helmann, John D.; Brennan, Richard G.; Glasfeld, Arthur

    2008-01-01

    The manganese transport regulator (MntR) of Bacillus subtilis is activated by Mn2+ to repress transcription of genes encoding transporters involved in the uptake of manganese. MntR is also strongly activated by cadmium, both in vivo and in vitro, but it is poorly activated by other metal cations, including calcium and zinc. The previously published MntR•Mn2+ structure revealed a binuclear complex of manganese ions with a metal-metal separation of 3.3 Å (herein designated the AB conformer). Analysis of four additional crystal forms of MntR•Mn2+ reveals that the AB conformer is only observed in monoclinic crystals at 100 K, suggesting that this conformation may be stabilized by crystal packing forces. In contrast, monoclinic crystals analyzed at room temperature (at either pH 6.5 or 8.5), and a second hexagonal crystal form (analyzed at 100 K), all reveal the shift of one manganese ion by 2.5 Å thereby leading to a newly identified conformation (the AC conformer) with an internuclear distance of 4.4 Å. Significantly, the cadmium and calcium complexes of MntR also contain binuclear complexes with a 4.4 Å internuclear separation. In contrast, the zinc complex of MntR contains only one metal ion per subunit, in the A site. Isothermal titration calorimetry confirms the stoichiometry of Mn2+, Cd2+ and Zn2+ binding to MntR. We propose that the specificity of MntR activation is tied to productive binding of metal ions at two sites; the A site appears to act as a selectivity filter, determining whether the B or C site will be occupied and thereby fully activate MntR. PMID:16533030

  20. Underground Corrosion of Activated Metals in an Arid Vadose Zone Environment

    SciTech Connect

    Adler Flitton, M.K; Mizia, R.E.; Bishop, C.W.

    2001-10-24

    The subsurface radioactive disposal site located at the Idaho National Engineering and Environmental Laboratory contains neutron-activated metals from nonfuel nuclear-reactor- core components. A long-term corrosion test is being conducted to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements in an arid vadose zone environment. The tests use nonradioactive metal coupons representing the prominent neutron-activated material buried at the disposal location, namely, Type 304L stainless steel, Type 315L stainless steel, nickel-chromium alloy (UNS NO7718), beryllium, aluminum 6061-T6, and a zirconium alloy, (UNS R60804). In addition, carbon steel (the material presently used in the cask disposal liners and other disposal containers) and a duplex stainless steel (UNS S32550) (the proposed material for the high- integrity disposal containers) are also included in the test program. This paper briefly describes the test program and presents the early corrosion rate results after 1 year and 3 years of underground exposure.

  1. Underground Corrosion of Activated Metals in an Arid Vadose Zone Environment

    SciTech Connect

    Adler Flitton, Mariana Kay; Mizia, Ronald Eugene; Bishop, Carolyn Wagoner

    2002-04-01

    The subsurface radioactive disposal site located at the Idaho National Engineering and Environmental Laboratory contains neutron-activated metals from nonfuel nuclear-reactor- core components. A long-term corrosion test is being conducted to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements in an arid vadose zone environment. The tests use nonradioactive metal coupons representing the prominent neutron-activated material buried at the disposal location, namely, Type 304L stainless steel, Type 315L stainless steel, nickel-chromium alloy (UNS NO7718), beryllium, aluminum 6061-T6, and a zirconium alloy, (UNS R60804). In addition, carbon steel (the material presently used in the cask disposal liners and other disposal containers) and a duplex stainless steel (UNS S32550) (the proposed material for the high- integrity disposal containers) are also included in the test program. This paper briefly describes the test program and presents the early corrosion rate results after 1 year and 3 years of underground exposure.

  2. Use of a novel Förster resonance energy transfer method to identify locations of site-bound metal ions in the U2-U6 snRNA complex.

    PubMed

    Yuan, Faqing; Griffin, Laura; Phelps, LauraJane; Buschmann, Volker; Weston, Kenneth; Greenbaum, Nancy L

    2007-01-01

    U2 and U6 snRNAs pair to form a phylogenetically conserved complex at the catalytic core of the spliceosome. Interactions with divalent metal ions, particularly Mg(II), at specific sites are essential for its folding and catalytic activity. We used a novel Förster resonance energy transfer (FRET) method between site-bound luminescent lanthanide ions and a covalently attached fluorescent dye, combined with supporting stoichiometric and mutational studies, to determine locations of site-bound Tb(III) within the human U2-U6 complex. At pH 7.2, we detected three metal-ion-binding sites in: (1) the consensus ACACAGA sequence, which forms the internal loop between helices I and III; (2) the four-way junction, which contains the conserved AGC triad; and (3) the internal loop of the U6 intra-molecular stem loop (ISL). Binding at each of these sites is supported by previous phosphorothioate substitution studies and, in the case of the ISL site, by NMR. Binding of Tb(III) at the four-way junction and the ISL sites was found to be pH-dependent, with no ion binding observed below pH 6 and 7, respectively. This pH dependence of metal ion binding suggests that the local environment may play a role in the binding of metal ions, which may impact on splicing activity.

  3. Accumulation and translocation of heavy metal by spontaneous plants growing on multi-metal-contaminated site in the Southeast of Rio Grande do Sul state, Brazil.

    PubMed

    Boechat, Cácio Luiz; Pistóia, Vítor Caçula; Gianelo, Clésio; Camargo, Flávio Anastácio de Oliveira

    2016-02-01

    In recent years, the number of cases of heavy metal contamination has increased worldwide, leading to reports on environmental pollution and human health problems. Phytoremediation can be potentially used to remove heavy metal from contaminated sites. This study determined heavy metal concentrations in the biomass of plant species growing on a multi-metal-contaminated site. Seven plant species and associated rhizospheric soil were collected and analyzed for heavy metal concentrations. While plant Cu, Zn, Cd, Ni, Pb, As, and Ba concentrations ranged from 8.8 to 21.1, 56.4 to 514.3, 0.24 to 2.14, 1.56 to 2.76, 67.8 to 188.2, 0.06 to 1.21, and 0.05 to 0.62 mg kg(-1), respectively, none of the plants was identified as hyperaccumulators. Those in the rhizospheric soil ranged from 10.5 to 49.1, 86.2 to 590.9, 0.32 to 2.0, 3.6 to 8.2, 19.1 to 232.5, 2.0 to 35.6, and 85.8 to 170.3 mg kg(-1), respectively. However, Zn, Cd, Pb, and As concentrations in the soil outside the rhizosphere zone were 499.0, 2.0, 631.0, and 48.0 mg kg(-1), respectively. Senecio brasiliensis was most effective in translocating Cu, Cd, and Ba. The most effective plant for translocating Zn and Pb was Baccharis trimera and, for element As, Dicranopteris nervosa and Hyptis brevipes. Heavy metal and metalloid levels in spontaneous plants greatly exceeded the upper limits for terrestrial plants growing in uncontaminated soil, demonstrating the higher uptake of heavy metal from soil by these plants. It is concluded that naturally occurring species have a potential for phytoremediation programs.

  4. Interaction of metal ions with acid sites of biosorbents peat moss and Vaucheria and model substances alginic and humic acids

    SciTech Connect

    Crist, R.H.; Martin, J.R.; Crist, D.R.

    1999-07-01

    The interaction between added metal ions and acid sites of two biosorbents, peat moss and the alga Vaucheria, was studied. Results were interpreted in terms of two model substances, alginic acid, a copolymer of guluronic and mannuronic acids present in marine algae, and humic acid in peat moss. For peat moss and Vaucheria at pH 4--6, two protons were displaced per Cd sorbed, after correction for sorbed metals also displaced by the heavy metal. The frequent neglect of exchange of heavy metals for metals either sorbed on the native material or added for pH adjustment leads to erroneous conclusions about proton displacement stoichiometry. Proton displacement constants K{sub ex}{sup H} decreased logarithmically with pH and had similar slopes for alginic acid and biosorbents. This pH effect was interpreted as an electrostatic effect of increasing anionic charge making proton removal less favorable. The maximum number of exchangeable acid sites (capacity C{sub H}) decreased with pH for alginic acid but increased with pH for biosorbents. Consistent with titration behavior, this difference was explained in terms of more weak acid sites in the biosorbents.

  5. Site-specific PEGylation of lidamycin and its antitumor activity

    PubMed Central

    Li, Liang; Shang, Boyang; Hu, Lei; Shao, Rongguang; Zhen, Yongsu

    2015-01-01

    In this study, N-terminal site-specific mono-PEGylation of the recombinant lidamycin apoprotein (rLDP) of lidamycin (LDM) was prepared using a polyethyleneglycol (PEG) derivative (Mw 20 kDa) through a reactive terminal aldehyde group under weak acidic conditions (pH 5.5). The biochemical properties of mPEG-rLDP-AE, an enediyne-integrated conjugate, were analyzed by SDS-PAGE, RP-HPLC, SEC-HPLC and MALDI-TOF. Meanwhile, in vitro and in vivo antitumor activity of mPEG-rLDP-AE was evaluated by MTT assays and in xenograft model. The results indicated that mPEG-rLDP-AE showed significant antitumor activity both in vitro and in vivo. After PEGylation, mPEG-rLDP still retained the binding capability to the enediyne AE and presented the physicochemical characteristics similar to that of native LDP. It is of interest that the PEGylation did not diminish the antitumor efficacy of LDM, implying the possibility that this derivative may function as a payload to deliver novel tumor-targeted drugs. PMID:26579455

  6. Biofilms Versus Activated Sludge: Considerations in Metal and Metal Oxide Nanoparticle Removal from Wastewater.

    PubMed

    Walden, Connie; Zhang, Wen

    2016-08-16

    The increasing application of metal and metal oxide nanoparticles [Me(O)NPs] in consumer products has led to a growth in concentration of these nanoparticles in wastewater as emerging contaminants. This may pose a threat to ecological communities (e.g., biological nutrient removal units) within treatment plants and those subject to wastewater effluents. Here, the toxicity, fate, and process implications of Me(O)NPs within wastewater treatment, specifically during activated sludge processing and biofilm systems are reviewed and compared. Research showed activated sludge achieves high removal rate of Me(O)NPs by the formation of aggregates through adsorption. However, recent literature reveals evidence that inhibition is likely for nutrient removal capabilities such as nitrification. Biofilm systems were much less studied, but show potential to resist Me(O)NP inhibition and achieve removal through possible retention by sorption. Implicating factors during bacteria-Me(O)NP interactions such as aggregation, surface functionalization, and the presence of organics are summarized. At current modeled levels, neither activated sludge nor biofilm systems can achieve complete removal of Me(O)NPs, thus allowing for long-term environmental exposure of diverse biological communities to Me(O)NPs in streams receiving wastewater effluents. Future research directions are identified throughout in order to minimize the impact of these nanoparticles released.

  7. Soil criteria to protect terrestrial wildlife and open-range livestock from metal toxicity at mining sites

    USGS Publications Warehouse

    Ford, Karl L; Beyer, W. Nelson

    2014-01-01

    Thousands of hard rock mines exist in the western USA and in other parts of the world as a result of historic and current gold, silver, lead, and mercury mining. Many of these sites in the USA are on public lands. Typical mine waste associated with these sites are tailings and waste rock dumps that may be used by wildlife and open-range livestock. This report provides wildlife screening criteria levels for metals in soil and mine waste to evaluate risk and to determine the need for site-specific risk assessment, remediation, or a change in management practices. The screening levels are calculated from toxicity reference values based on maximum tolerable levels of metals in feed, on soil and plant ingestion rates, and on soil to plant uptake factors for a variety of receptors. The metals chosen for this report are common toxic metals found at mining sites: arsenic, cadmium, copper, lead, mercury, and zinc. The resulting soil screening values are well above those developed by the US Environmental Protection Agency. The difference in values was mainly a result of using toxicity reference values that were more specific to the receptors addressed rather than the most sensitive receptor.

  8. On-site in-situ determination of heavy metals in groundwater using an electrochemically-based sensor

    SciTech Connect

    Herdan, J.; Feeney, R.; Kounaves, S.P.

    1997-12-31

    An electrochemically-based probe has been developed for rapid in-situ or on-site detection of heavy metals in contaminated groundwater. The transducer consists of a microlithographically fabricated iridium ultramicroelectrode array (UMEA) which is used in conjunction with the high speed electrochemical preconcentration technique of square wave anodic stripping voltammetry (SWASV). The UMEA is connected to an integrated potentiostat which is controlled by a laptop computer. The entire probe, measuring only two inches in diameter, can be inserted downhole to measure such metal ions as Cu, Cd, Ph, and Zn, at the parts-per-billion level. The utility of this probe for rapid on site screening of metals was shown by conducting a proof-of-concept field demonstration at a metals-contaminated site at Hanscom Air Force Base in Massachusetts. Sampling was performed both, directly in-situ, and on-site by bringing the sample to the surface. Acidified samples where also taken back to the laboratory where they were measured both electrochemically using a mercury film glassy carbon electrode with SWASV, and by ICP Spectroscopy using EPA method 200.7. Excellent correlation was obtained between all of the measurement techniques, and the data for total and ionic forms was also in good agreement.

  9. Integrated risk analysis of a heavy-metal-contaminated site in Taiwan

    SciTech Connect

    Ching-Tsan Tsai; Wang, J.H.C.

    1996-12-31

    The Love Canal episode began the long battle on hazardous wastes in the United States. Obviously, the potential danger of hazardous wastes is one of the hottest issues among environmental professionals as well as the public. The problems of hazardous wastes in economically booming Taiwan are also alarming. Several farmlands in northern Taiwan were contaminated heavily by industrial effluents containing heavy metals (cadmium and lead) in the early 1980s. Regardless of the many studies that have been conducted about these polluted farmlands, there has not been any remediation - just a passive abandonment of farming activities with minimal compensation. This paper addresses a heavy-metal-contaminated fanning area. A pollution profile across time is delineated using information from the abundance of reports, and the contamination is modeled mathematically. The past, the present, and future exposures are also modeled. The results are presented in terms of societal impacts and health effects. Reasonable soil guidelines for cleanup are estimated, and recommendations for rational mitigation solutions are presented. The current strategies for cleanup actions are also described. 23 refs., 4 figs., 5 tabs.

  10. Allosteric site-mediated active site inhibition of PBP2a using Quercetin 3-O-rutinoside and its combination.

    PubMed

    Rani, Nidhi; Vijayakumar, Saravanan; P T V, Lakshmi; Arunachalam, Annamalai

    2016-08-01

    Recent crystallographic study revealed the involvement of allosteric site in active site inhibition of penicillin binding protein (PBP2a), where one molecule of Ceftaroline (Cef) binds to the allosteric site of PBP2a and paved way for the other molecule (Cef) to bind at the active site. Though Cef has the potency to inhibit the PBP2a, its adverse side effects are of major concern. Previous studies have reported the antibacterial property of Quercetin derivatives, a group of natural compounds. Hence, the present study aims to evaluate the effect of Quercetin 3-o-rutinoside (Rut) in allosteric site-mediated active site inhibition of PBP2a. The molecular docking studies between allosteric site and ligands (Rut, Que, and Cef) revealed a better binding efficiency (G-score) of Rut (-7.790318) and Cef (-6.194946) with respect to Que (-5.079284). Molecular dynamic (MD) simulation studies showed significant changes at the active site in the presence of ligands (Rut and Cef) at allosteric site. Four different combinations of Rut and Cef were docked and their G-scores ranged between -6.320 and -8.623. MD studies revealed the stability of the key residue (Ser403) with Rut being at both sites, compared to other complexes. Morphological analysis through electron microscopy confirmed that combination of Rut and Cefixime was able to disturb the bacterial cell membrane in a similar fashion to that of Rut and Cefixime alone. The results of this study indicate that the affinity of Rut at both sites were equally good, with further validations Rut could be considered as an alternative for inhibiting MRSA growth.

  11. Weathering steel as a potential source for metal contamination: Metal dissolution during 3-year of field exposure in a urban coastal site.

    PubMed

    Raffo, Simona; Vassura, Ivano; Chiavari, Cristina; Martini, Carla; Bignozzi, Maria C; Passarini, Fabrizio; Bernardi, Elena

    2016-06-01

    Surface and building runoff can significantly contribute to the total metal loading in urban runoff waters, with potential adverse effects on the receiving ecosystems. The present paper analyses the corrosion-induced metal dissolution (Fe, Mn, Cr, Ni, Cu) from weathering steel (Cor-Ten A) with or without artificial patinas, exposed for 3 years in unsheltered conditions at a marine urban site (Rimini, Italy). The influence of environmental parameters, atmospheric pollutants and surface finish on the release of dissolved metals in rain was evaluated, also by means of multivariate analysis (two-way and three-way Principal Component Analysis). In addition, surface and cross-section investigations were performed so as to monitor the patina evolution. The contribution provided by weathering steel runoff to the dissolved Fe, Mn and Ni loading at local level is not negligible and pre-patination treatments seem to worsen the performance of weathering steel in term of metal release. Metal dissolution is strongly affected by extreme events and shows seasonal variations, with different influence of seasonal parameters on the behaviour of bare or artificially patinated steel, suggesting that climate changes could significantly influence metal release from this alloy. Therefore, it is essential to perform a long-term monitoring of the performance, the durability and the environmental impact of weathering steel.

  12. An active site rearrangement within the Tetrahymena group I ribozyme releases nonproductive interactions and allows formation of catalytic interactions

    PubMed Central

    Sengupta, Raghuvir N.; Van Schie, Sabine N.S.; Giambaşu, George; Dai, Qing; Yesselman, Joseph D.; York, Darrin; Piccirilli, Joseph A.; Herschlag, Daniel

    2016-01-01

    Biological catalysis hinges on the precise structural integrity of an active site that binds and transforms its substrates and meeting this requirement presents a unique challenge for RNA enzymes. Functional RNAs, including ribozymes, fold into their active conformations within rugged energy landscapes that often contain misfolded conformers. Here we uncover and characterize one such “off-pathway” species within an active site after overall folding of the ribozyme is complete. The Tetrahymena group I ribozyme (E) catalyzes cleavage of an oligonucleotide substrate (S) by an exogenous guanosine (G) cofactor. We tested whether specific catalytic interactions with G are present in the preceding E•S•G and E•G ground-state complexes. We monitored interactions with G via the effects of 2′- and 3′-deoxy (–H) and −amino (–NH2) substitutions on G binding. These and prior results reveal that G is bound in an inactive configuration within E•G, with the nucleophilic 3′-OH making a nonproductive interaction with an active site metal ion termed MA and with the adjacent 2′-OH making no interaction. Upon S binding, a rearrangement occurs that allows both –OH groups to contact a different active site metal ion, termed MC, to make what are likely to be their catalytic interactions. The reactive phosphoryl group on S promotes this change, presumably by repositioning the metal ions with respect to G. This conformational transition demonstrates local rearrangements within an otherwise folded RNA, underscoring RNA's difficulty in specifying a unique conformation and highlighting Nature's potential to use local transitions of RNA in complex function. PMID:26567314

  13. Metals in tissues of seabass and seabream reared in sites with oxic and anoxic substrata and risk assessment for consumers.

    PubMed

    Kalantzi, I; Pergantis, S A; Black, K D; Shimmield, T M; Papageorgiou, N; Tsapakis, M; Karakassis, I

    2016-03-01

    Twenty-eight metals and elements were measured in the muscle, liver, gills, bone and intestine of farmed seabass and gilthead seabream from four Mediterranean fish farms. The influence of fish species and the effect of environmental conditions on the metal accumulation in fish tissues was investigated. Most concentrations were lower in muscle and higher in liver and bone than in other body tissues. Seabass accumulates more elements in its tissues than seabream. Fish reared in coarse, oxic sites accumulate more elements with higher concentrations in muscle, bone and intestine and with lower concentrations in liver and gills than fish reared in silty, anoxic sites. This may be attributed to feed type and sediment properties. According to the metal pollution index, hazard quotient, selenium health benefit values, carcinogenic risk of arsenic, maximum safe consumption and the permitted limits, the consumption of both farmed species should be considered as safe for human health.

  14. INTEGRAL FIELD SPECTROSCOPY OF SUPERNOVA EXPLOSION SITES: CONSTRAINING THE MASS AND METALLICITY OF THE PROGENITORS. I. TYPE Ib AND Ic SUPERNOVAE

    SciTech Connect

    Kuncarayakti, Hanindyo; Maeda, Keiichi; Doi, Mamoru; Morokuma, Tomoki; Hashiba, Yasuhito; Aldering, Greg; Arimoto, Nobuo; Pereira, Rui

    2013-08-01

    Integral field spectroscopy of 11 Type Ib/Ic supernova (SN Ib/Ic) explosion sites in nearby galaxies has been obtained using UH88/SNIFS and Gemini-N/GMOS. The use of integral field spectroscopy enables us to obtain both spatial and spectral information about the explosion site, enabling the identification of the parent stellar population of the SN progenitor star. The spectrum of the parent population provides metallicity determination via strong-line method and age estimation obtained via comparison with simple stellar population models. We adopt this information as the metallicity and age of the SN progenitor, under the assumption that it was coeval with the parent stellar population. The age of the star corresponds to its lifetime, which in turn gives the estimate of its initial mass. With this method we were able to determine both the metallicity and initial (zero-age main sequence) mass of the progenitor stars of SNe Ib and Ic. We found that on average SN Ic explosion sites are more metal-rich and younger than SN Ib sites. The initial mass of the progenitors derived from parent stellar population age suggests that SN Ic has more massive progenitors than SN Ib. In addition, we also found indication that some of our SN progenitors are less massive than {approx}25 M{sub Sun }, indicating that they may have been stars in a close binary system that have lost their outer envelope via binary interactions to produce SNe Ib/Ic, instead of single Wolf-Rayet stars. These findings support the current suggestions that both binary and single progenitor channels are in effect in producing SNe Ib/Ic. This work also demonstrates the power of integral field spectroscopy in investigating SN environments and active star-forming regions.

  15. Large Area Active Brazing of Multi-tile Ceramic-Metal Structures

    DTIC Science & Technology

    2012-05-01

    metal brazing . The active brazing alloys wet most materials (including ceramics and corrosion- resistant metals such as titanium alloys and stainless...bonding in ceramic-metal systems is active metal brazing . The active brazing alloys wet most materials (including ceramics and corrosion-resistant...an idea from the ‘50s by putting an “active” component, such as titanium, directly into a brazing alloy , typically a silver-copper eutectic, to