Science.gov

Sample records for active micro-vibration control

  1. Optimal design and experimental analyses of a new micro-vibration control payload-platform

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqing; Yang, Bintang; Zhao, Long; Sun, Xiaofen

    2016-07-01

    This paper presents a new payload-platform, for precision devices, which possesses the capability of isolating the complex space micro-vibration in low frequency range below 5 Hz. The novel payload-platform equipped with smart material actuators is investigated and designed through optimization strategy based on the minimum energy loss rate, for the aim of achieving high drive efficiency and reducing the effect of the magnetic circuit nonlinearity. Then, the dynamic model of the driving element is established by using the Lagrange method and the performance of the designed payload-platform is further discussed through the combination of the controlled auto regressive moving average (CARMA) model with modified generalized prediction control (MGPC) algorithm. Finally, an experimental prototype is developed and tested. The experimental results demonstrate that the payload-platform has an impressive potential of micro-vibration isolation.

  2. Motorized Force-Sensing Micro-Forceps with Tremor Cancelling and Controlled Micro-Vibrations for Easier Membrane Peeling*

    PubMed Central

    Gonenc, Berk; Gehlbach, Peter; Handa, James; Taylor, Russell H.; Iordachita, Iulian

    2014-01-01

    Retinal microsurgery requires the manipulation of extremely delicate tissues by various micron scale maneuvers and the application of very small forces. Among vitreoretinal procedures, membrane peeling is a standard procedure requiring the delamination of a very thin fibrous membrane on the retina surface. This study presents the development and evaluation of an integrated assistive system for membrane peeling. This system combines a force-sensing motorized micro-forceps with an active tremor-canceling handheld micromanipulator, Micron. The proposed system (1) attenuates hand-tremor when accurate positioning is needed, (2) provides auditory force feedback to keep the exerted forces at a safe level, and (3) pulsates the tool tip at high frequency to provide ease in delaminating membranes. Experiments on bandages and raw chicken eggs have revealed that controlled micro-vibrations provide significant ease in delaminating membranes. Applying similar amount of forces, much faster delamination was observed when the frequency of these vibrations were increased (up to 50 Hz). PMID:25544965

  3. Micro-Vibration Measurements on Thermally Loaded Multi-Layer Insulation Samples in Vacuum

    NASA Technical Reports Server (NTRS)

    Deutsch, Georg; Grillenbeck, Anton

    2008-01-01

    Some scientific missions require to an extreme extent the absence of any on-board microvibration. Recent projects dedicated to measuring the Earth's gravity field and modeling the geoid with extremely high accuracy are examples. Their missions demand for extremely low micro-vibration environment on orbit for: (1) Not disturbing the measurement of earth gravity effects with the installed gradiometer or (2) Even not damaging the very high sensitive instruments. Based on evidence from ongoing missions multi-layer insulation (MLI) type thermal control blankets have been identified as a structural element of spacecrafts which might deform under temperature variations being caused by varying solar irradiation in orbit. Any such deformation exerts tiny forces which may cause small reactions resulting in micro-vibrations, in particular by exciting the spacecraft eigenmodes. The principle of the test set-up for the micro-vibration test was as follows. A real side wall panel of the spacecraft (size about 0.25 m2) was low-frequency suspended in a thermal vacuum chamber. On the one side of this panel, the MLI samples were fixed by using the standard methods. In front of the MLI, an IR-rig was installed which provided actively controlled IR-radiation power of about 6 kW/m2 in order to heat the MLI surface. The cooling was passive using the shroud temperature at a chamber pressure <1E-5mbar. The resulting micro-vibrations due to MLI motion in the heating and the cooling phase were measured via seismic accelerometers which were rigidly mounted to the panel. Video recording was used to correlate micro-vibration events to any visual MLI motion. Different MLI sample types were subjected to various thermal cycles in a temperature range between -60 C to +80 C. In this paper, the experience on these micro-vibration measurements will be presented and the conclusions for future applications will be discussed

  4. Virtual Sea Method For Analyzing Micro-Vibrations Of Spacecrafts

    NASA Astrophysics Data System (ADS)

    Borello, Gerard; Ozenne, Guillaume; Soula, Laurent; Laduree, Gregory; Maussang, Irwin

    2012-07-01

    For better control of micro-vibration environment into orbit, it is necessary to extend the frequency range of interest to mid and high frequencies, typically up to 5 kHz as they contribute significantly to overall level. Thus, there is a need for improved vibroacoustic technique to predict broadband frequency response of payloads submitted to micro-vibration sources. Due to structural complexity of payloads, classical Statistical Energy Analysis (SEA) method based on analytical description of dynamical subsystems is not very suitable for this analysis. Instead, an alternate energy-based method called Virtual SEA (VSEA) is used here (VSEA was previously validated for separation shock response prediction and implemented in SEAVirt and SEA+ software). VSEA model parameters are similar to SEA but are derived from a FEM model of the payload by inverse method based on Experimental SEA (ESEA) with the advantage of automatically providing the SEA subsystems decomposition insuring weak coupling between VSEA subsystems. To adapt VSEA methodology to micro-vibrations, a VSEA model of a space structure, built by ASTRIUM and used for analyzing micro-vibrations (MICADO), was first proven to be accurate with broadband under- controlled excitations by comparing predictions with series of tests. Then the specific narrow band aspect of micro- vibrations sources has been investigated with adaptation of VSEA method to this specificity. For this, VSEA predictions with actual sources such as wheel and cryo-cooler were performed and compared with tests in steady or unsteady states. VSEA models are delivering accurate results as soon as calculation of injected power from the source in the system is adapted to narrow band signature. VSEA method is presently leveraged to provide not only band- integrated results but also narrow band Power Spectral Density (PSD) estimates as well as local rotations on receiver subsystems.

  5. Design Methodology of Micro Vibration Energy Harvesters

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji

    Recently, micro vibration energy harvesters are attracting much attention for wireless sensor applications. To answer the power requirement of practical applications, the design methodology is important. This paper first reviews the fundamental theory of vibration energy harvesting, and then discusses how to design a micro vibration energy harvester at a concept level. For the micro vibration energy harvesters, independent design parameters at the top level are only the mass and stroke of a seismic mass and quality factor, while the frequency and acceleration of vibration input are given parameters determined by the application. The key design point is simply to make the mass and stroke of the seismic mass as large as possible within the available device size. Some case studies based on the theory are also presented. This paper provides a guideline for the development of the micro vibration energy harvesters.

  6. Micro-Vibration-Based Slip Detection in Tactile Force Sensors

    PubMed Central

    Fernandez, Raul; Payo, Ismael; Vazquez, Andres S.; Becedas, Jonathan

    2014-01-01

    Tactile sensing provides critical information, such as force, texture, shape or temperature, in manipulation tasks. In particular, tactile sensors traditionally used in robotics are emphasized in contact force determination for grasping control and object recognition. Nevertheless, slip detection is also crucial to successfully manipulate an object. Several approaches have appeared to detect slipping, the majority being a combination of complex sensors with complex algorithms. In this paper, we deal with simplicity, analyzing how a novel, but simple, algorithm, based on micro-vibration detection, can be used in a simple, but low-cost and durable, force sensor. We also analyze the results of using the same principle to detect slipping in other force sensors based on flexible parts. In particular, we show and compare the slip detection with: (i) a flexible finger, designed by the authors, acting as a force sensor; (ii) the finger torque sensor of a commercial robotic hand; (iii) a commercial six-axis force sensor mounted on the wrist of a robot; and (iv) a fingertip piezoresistive matrix sensor. PMID:24394598

  7. Micro-vibration-based slip detection in tactile force sensors.

    PubMed

    Fernandez, Raul; Payo, Ismael; Vazquez, Andres S; Becedas, Jonathan

    2014-01-01

    Tactile sensing provides critical information, such as force, texture, shape or temperature, in manipulation tasks. In particular, tactile sensors traditionally used in robotics are emphasized in contact force determination for grasping control and object recognition. Nevertheless, slip detection is also crucial to successfully manipulate an object. Several approaches have appeared to detect slipping, the majority being a combination of complex sensors with complex algorithms. In this paper, we deal with simplicity, analyzing how a novel, but simple, algorithm, based on micro-vibration detection, can be used in a simple, but low-cost and durable, force sensor. We also analyze the results of using the same principle to detect slipping in other force sensors based on flexible parts. In particular, we show and compare the slip detection with: (i) a flexible finger, designed by the authors, acting as a force sensor; (ii) the finger torque sensor of a commercial robotic hand; (iii) a commercial six-axis force sensor mounted on the wrist of a robot; and (iv) a fingertip piezoresistive matrix sensor. PMID:24394598

  8. The interior working mechanism and temperature characteristics of a fluid based micro-vibration isolator

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Zhao, Shougen; Wu, Dafang; Jing, Xingjian

    2016-01-01

    Micro-vibration isolation is a hot topic in spacecraft vibration control, and fluid based vibration isolators alternatively provide a good and reliable solution to this challenging issue. In this paper, a novel fluid based micro-vibration isolator (FBMVI) is investigated. According to its inherent working principle and deformation pattern, the generation mechanisms of the damping and stiffness characteristics are derived, which are nonlinear functions of the environmental temperature. Then a lumped parameter model which is expressed by the physical design parameters (PDPs) is constructed, and the corresponding performance objective indices (POIs) are also obtained by applying the equivalence of mechanical impedance. Based on the finite element analysis of the internal damping component, a single variable method is further adopted to carry out the parametric study, and the influences of each PDP on the POIs are analyzed in details. Finally, experiments are conducted to identify the variation of fluid bulk modulus with the outside environmental temperature, and to validate the performance of the isolator under different temperature environments. The tested results show great consistence compared with the predicted tendencies of the parametric study. The results of this study can provide a very useful insight into and/or an important guidance for the design and application of this type of FBMVIs in engineering practice.

  9. Measurement of Micro Vibration of Car by Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Kurihara, Yosuke; Masuyama, Kosuke; Nakamura, Testuo; Bamba, Takeshi; Watanabe, Kajiro

    Recently, there are various accidents and crimes related to the car. In some cases, the accidents and the crimes can be prevented if it is possible to detect a human who is in the car. For example, we can prevent a baby who is left in a car under the hot weather from dehydration or death occurred by heat inside disease. In another case, it is estimated that the United States currently has as many as 12 million illegal immigrants. In order to prevent further influx of illegal immigrants, the police are physically searching incoming vehicles at national boundaries aiming at finding those who are hiding inside. However, the physical inspections require much manpower cost and time. An inspection method to see inside the vehicles through X-ray images has also been used for this end. But the cost and the installation places are the problems of the large-scale X-ray system. Proposed in this paper is a piezoelectric ceramic system to handily measure the micro vibrations of motor vehicles. And applying the algorithm of Support Vector Machine (SVM), the existence of human body inside vehicles can be detected. The experiment was carried out using four types of vehicles: a mini car; an auto mobile; a van; and a truck weighing 1.5 tons. As the results, the correct determination ratio was 91.2% for the experiment with the piezoelectric ceramic under the front wheels and 97.0% under the rear wheels, when the vehicle used for the examination had also been used together with other three types of vehicles to obtain SVM training data. When the vehicle used for the examination had not been used together with the other three to obtain SVM training data, on the other hand, the correct determination ratio was 93.7% for the experiment with the piezoelectric ceramic under the front wheels and 95.7% under the rear wheels.

  10. A Fiber Bragg Grating Sensing-Based Micro-Vibration Sensor and Its Application.

    PubMed

    Li, Tianliang; Tan, Yuegang; Zhou, Zude

    2016-01-01

    This paper proposes a fiber Bragg grating sensing-based micro-vibration sensor. The optical fiber has been directly treated as an elastomer to design the micro-vibration sensor, which possesses two FBGs. The mass is fixed on the middle of the fiber, and the vertical vibration of the mass has been converted into the axial tension/compression of the fiber. The principle of the sensor has been introduced, and the experiment conclusions show that the sensor sensitivity is 2362 pm/g within the range of 200-1200 mm/s², which is consistent with theoretical analysis sensitivity of 2532.6 pm/g, and it shows an excellent linearity of 1.376%, while the resonant frequency of the sensor is 34 Hz, and the flat frequency range resides in the 0-22 Hz range. When used to measure micro-vibrations, its measured frequency relative error is less than 1.69% compared with the values acquired with a MEMS accelerometer, and the amplitude values of its measured vibration signal are consistent with the MEMS accelerometer under different excitation conditions too, so it can effectively realize the micro-vibration measurements. PMID:27092507

  11. A Fiber Bragg Grating Sensing-Based Micro-Vibration Sensor and Its Application

    PubMed Central

    Li, Tianliang; Tan, Yuegang; Zhou, Zude

    2016-01-01

    This paper proposes a fiber Bragg grating sensing-based micro-vibration sensor. The optical fiber has been directly treated as an elastomer to design the micro-vibration sensor, which possesses two FBGs. The mass is fixed on the middle of the fiber, and the vertical vibration of the mass has been converted into the axial tension/compression of the fiber. The principle of the sensor has been introduced, and the experiment conclusions show that the sensor sensitivity is 2362 pm/g within the range of 200–1200 mm/s2, which is consistent with theoretical analysis sensitivity of 2532.6 pm/g, and it shows an excellent linearity of 1.376%, while the resonant frequency of the sensor is 34 Hz, and the flat frequency range resides in the 0–22 Hz range. When used to measure micro-vibrations, its measured frequency relative error is less than 1.69% compared with the values acquired with a MEMS accelerometer, and the amplitude values of its measured vibration signal are consistent with the MEMS accelerometer under different excitation conditions too, so it can effectively realize the micro-vibration measurements. PMID:27092507

  12. Modeling and active vibration control of six-DOF manipulator through μ-synthesis with parameter uncertainties

    NASA Astrophysics Data System (ADS)

    Yu, Kaiping; Wu, Ying

    2015-02-01

    A new linear dynamic model of a six-spherical-prismatic-spherical (SPS) Stewart platform with the base excitation was formulated via Kane's method. In order to satisfy the practical situation, the uncertainties of mass center location, stiffness and damping were concerned. Then a robust μ-synthesis controller was developed by applying D-K iteration to attenuate the base excitation. Comparisons were conducted by analyzing the responses of the open and closed loops in the frequency and time domain. Simulation results indicated that the proposed robust controller is of fine properties and good robustness, which laid a sound foundation of active micro-vibration control of a satellite.

  13. Effects of rubber shock absorber on the flywheel micro vibration in the satellite imaging system

    NASA Astrophysics Data System (ADS)

    Deng, Changcheng; Mu, Deqiang; Jia, Xuezhi; Li, Zongxuan

    2016-07-01

    When a satellite is in orbit, its flywheel will generate micro vibration and affect the imaging quality of the camera. In order to reduce this effect, a rubber shock absorber is used, and a numerical model and an experimental set up are developed to investigate its effect on the micro vibration in the study. An integrated model is developed for the system, and a ray tracing method is used in the modeling. The spot coordinates and displacements of the image plane are obtained, and the modulate transfer function (MTF) of the system is calculated. A satellite including a rubber shock absorber is designed, and the experiments are carried out. Both simulation and experiments results show that the MTF increases almost 10 %, suggesting the rubber shock absorber is useful to decrease the flywheel vibration.

  14. Detection And Diagnosis Of Ball Bearing Imperfections In Reaction Wheels By Micro-Vibration Test

    NASA Astrophysics Data System (ADS)

    Le, M. P.; van der Heide, E.; Seiler, R.; Cottaar, E. J. E.

    2012-07-01

    The results of micro-vibration test contain information on unbalance level, torque ripples, and most importantly the bearing health status. In this paper, the envelop analysis technique is proposed for localizing imperfections in the bearing. The envelop analysis, which is a powerful method used in ball bearing fault diagnosis, is adapted to the micro-vibration data. This method analyzes the data around the structural resonance: through the amplification of the vibration smaller faults can be detected. The procedure of envelope analysis, its practical issues and robustness are validated with simulated signals. Finally, the envelope analysis is applied to diagnose and evaluate the change in bearing status throughout two environmental tests: sine vibration and full ECSS shock. The result of envelope analysis shows its high sensitivity in revealing the development of small imperfections, makes an initial step in reaction wheel condition monitoring (on-ground and in-flight) and provides insights in design improvement to further lower micro vibration levels of reaction wheels.

  15. Hybrid isolation of micro vibrations induced by reaction wheels

    NASA Astrophysics Data System (ADS)

    Lee, Dae-Oen; Park, Geeyong; Han, Jae-Hung

    2016-02-01

    As the technology for precision satellite payloads continues to advance, the requirements for the pointing stability of the satellites are becoming extremely high. In many situations, even small amplitude disturbances generated by the onboard components may cause serious degradation in the performance of high precision payloads. In such situations, vibration isolators can be installed to reduce the vibration transmission. In this work, a hybrid vibration isolator comprising passive and active components is proposed to provide an effective solution to the vibration problems caused by the reaction wheel disturbances. Firstly, mathematical modeling and experimental study of a single axis vibration isolator having high damping and high roll-off rate for the high frequency region and active components that enhance isolation performance for narrow frequency bands are presented. This concept is then extended to multi-axis by forming Stewart platform and the performance is experimentally verified. The tests on a flexible testbed show effective vibration isolation by the proposed vibration isolator.

  16. Cryo Cooler Induced Micro-Vibration Disturbances to the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Jedrich, Nick; Zimbelman, Darrell; Turczyn, Mark; Sills, Joel; Voorhees, Carl; Clapp, Brian; Brumfield, Mark (Technical Monitor)

    2002-01-01

    This paper presents an overview of the Hubble Space Telescope (HST) Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cryo Cooler (MCC) system, a description of the micro-vibration characterization testing performed, and a discussion of the simulated performance. The NCC is a reverse Brayton cycle system that employs micro turbo-machinery to provide cooling to the NICMOS instrument. Extensive testing was conducted to quantify the expected on-orbit disturbances caused by the micro turbo-machinery and provide input to a flexible-body dynamic simulation to demonstrate compliance with the HST 7 milli-arcsecond root mean square jitter requirement.

  17. Semiconductor laser self-mixing micro-vibration measuring technology based on Hilbert transform

    NASA Astrophysics Data System (ADS)

    Tao, Yufeng; Wang, Ming; Xia, Wei

    2016-06-01

    A signal-processing synthesizing Wavelet transform and Hilbert transform is employed to measurement of uniform or non-uniform vibrations in self-mixing interferometer on semiconductor laser diode with quantum well. Background noise and fringe inclination are solved by decomposing effect, fringe counting is adopted to automatic determine decomposing level, a couple of exact quadrature signals are produced by Hilbert transform to extract vibration. The tempting potential of real-time measuring micro vibration with high accuracy and wide dynamic response bandwidth using proposed method is proven by both simulation and experiment. Advantages and error sources are presented as well. Main features of proposed semiconductor laser self-mixing interferometer are constant current supply, high resolution, simplest optical path and much higher tolerance to feedback level than existing self-mixing interferometers, which is competitive for non-contact vibration measurement.

  18. Active control of convection

    SciTech Connect

    Bau, H.H.

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  19. Active weld control

    NASA Technical Reports Server (NTRS)

    Powell, Bradley W.; Burroughs, Ivan A.

    1994-01-01

    Through the two phases of this contract, sensors for welding applications and parameter extraction algorithms have been developed. These sensors form the foundation of a weld control system which can provide action weld control through the monitoring of the weld pool and keyhole in a VPPA welding process. Systems of this type offer the potential of quality enhancement and cost reduction (minimization of rework on faulty welds) for high-integrity welding applications. Sensors for preweld and postweld inspection, weld pool monitoring, keyhole/weld wire entry monitoring, and seam tracking were developed. Algorithms for signal extraction were also developed and analyzed to determine their application to an adaptive weld control system. The following sections discuss findings for each of the three sensors developed under this contract: (1) weld profiling sensor; (2) weld pool sensor; and (3) stereo seam tracker/keyhole imaging sensor. Hardened versions of these sensors were designed and built under this contract. A control system, described later, was developed on a multiprocessing/multitasking operating system for maximum power and flexibility. Documentation for sensor mechanical and electrical design is also included as appendices in this report.

  20. Active Control of Engine Dynamics

    NASA Astrophysics Data System (ADS)

    2002-11-01

    Active control can alleviate design constraints and improve the response to operational requirements in gas turbines. The Course presented the state-of-the-art including experimental, theoretical knowledge and practical information. Topics treated: stability characteristics; active control approaches; robustness and fundamental limits; combustion systems processes; combustor dynamics; compression system dynamics models; diagnostics and control of compression instabilities; sensor and actuator architectures; R&D needs of future prospects. The course has shown that for combustion systems, as well as in actuator and sensor technologies the active control approach is a viable option even at full scale with potential for aero engines and air breathing missiles.

  1. Controls Considerations for Turbine Active Clearance Control

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    2004-01-01

    This presentation discusses active control of turbine tip clearance from a control systems perspective. It is a subset of charts that were presented at the 2003 meeting of the International Society of Air Breathing Engines which was held August 31 through September 5 in Cleveland, Ohio. The associated reference paper is cited at the end of the presentation. The presentation describes active tip clearance control research being conducted by NASA to improve turbine engine systems. The target application for this effort is commercial aircraft engines. However, it is believed that the technologies developed as part of this research will benefit a broad spectrum of current and future turbomachinery. The first part of the presentation discusses the concept of tip clearance, problems associated with it, and the benefits of controlling it. It lays out a framework for implementing tip clearance controls that enables the implementation to progress from purely analytical to hardware-in-the-loop to fully experimental. And it briefly discusses how the technologies developed will be married to the previously described ACC Test Rig for hardware-in-the-loop demonstrations. The final portion of the presentation, describes one of the key technologies in some detail by presenting equations and results for a functional dynamic model of the tip clearance phenomena. As shown, the model exhibits many of the clearance dynamics found in commercial gas turbine engines. However, initial attempts to validate the model identified limitations that are being addressed to make the model more realistic.

  2. Optical control of antibacterial activity

    NASA Astrophysics Data System (ADS)

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-11-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  3. Demonstration of Active Combustion Control

    NASA Technical Reports Server (NTRS)

    Lovett, Jeffrey A.; Teerlinck, Karen A.; Cohen, Jeffrey M.

    2008-01-01

    The primary objective of this effort was to demonstrate active control of combustion instabilities in a direct-injection gas turbine combustor that accurately simulates engine operating conditions and reproduces an engine-type instability. This report documents the second phase of a two-phase effort. The first phase involved the analysis of an instability observed in a developmental aeroengine and the design of a single-nozzle test rig to replicate that phenomenon. This was successfully completed in 2001 and is documented in the Phase I report. This second phase was directed toward demonstration of active control strategies to mitigate this instability and thereby demonstrate the viability of active control for aircraft engine combustors. This involved development of high-speed actuator technology, testing and analysis of how the actuation system was integrated with the combustion system, control algorithm development, and demonstration testing in the single-nozzle test rig. A 30 percent reduction in the amplitude of the high-frequency (570 Hz) instability was achieved using actuation systems and control algorithms developed within this effort. Even larger reductions were shown with a low-frequency (270 Hz) instability. This represents a unique achievement in the development and practical demonstration of active combustion control systems for gas turbine applications.

  4. Active Flow Control Activities at NASA Langley

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Sellers, William L., III; Washburn, Anthony E.

    2004-01-01

    NASA Langley continues to aggressively investigate the potential advantages of active flow control over more traditional aerodynamic techniques. This paper provides an update to a previous paper and describes both the progress in the various research areas and the significant changes in the NASA research programs. The goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids as well as to address engineering challenges. An organizational view of current research activities at NASA Langley in active flow control as supported by several projects is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research are to be demonstrated either in bench-top experiments, wind-tunnel investigations, or in flight as part of the fundamental NASA R&D program and then transferred to more applied research programs within NASA, DOD, and U.S. industry.

  5. Fractional active disturbance rejection control.

    PubMed

    Li, Dazi; Ding, Pan; Gao, Zhiqiang

    2016-05-01

    A fractional active disturbance rejection control (FADRC) scheme is proposed to improve the performance of commensurate linear fractional order systems (FOS) and the robust analysis shows that the controller is also applicable to incommensurate linear FOS control. In FADRC, the traditional extended states observer (ESO) is generalized to a fractional order extended states observer (FESO) by using the fractional calculus, and the tracking differentiator plus nonlinear state error feedback are replaced by a fractional proportional-derivative controller. To simplify controller tuning, the linear bandwidth-parameterization method has been adopted. The impacts of the observer bandwidth ωo and controller bandwidth ωc on system performance are then analyzed. Finally, the FADRC stability and frequency-domain characteristics for linear single-input single-output FOS are analyzed. Simulation results by FADRC and ADRC on typical FOS are compared to demonstrate the superiority and effectiveness of the proposed scheme. PMID:26928516

  6. Extended Active Disturbance Rejection Controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2016-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  7. Extended Active Disturbance Rejection Controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2014-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  8. Extended active disturbance rejection controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2012-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  9. Dual control active superconductive devices

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1993-07-20

    A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.

  10. Active Interior Noise Control Studies

    NASA Technical Reports Server (NTRS)

    Park, J.; Veeramani, S.; Sampath, A.; Balachandran, B.; Wereley, N.

    1996-01-01

    Analytical and experimental investigations into the control of noise in the interior of a three-dimensional enclosure with a flexible boundary are presented. The rigid boundaries are constructed from acrylic material, and in the different cases considered the flexible boundary is constructed from either aluminum or composite material. Noise generated by an external speaker is transmitted into the enclosure through the flexible boundary and active control is realized by using Lead Zirconate Titanate (PZT) piezoelectric actuators bonded to the flexible boundary. Condenser microphones are used for noise measurements inside and outside the enclosure. Minimization schemes for global and local noise control in the presence of a harmonic disturbance are developed and discussed. In the experiments, analog feedforward control is implemented by using the harmonic disturbance as a reference signal.

  11. Adaptive feedback active noise control

    NASA Astrophysics Data System (ADS)

    Kuo, Sen M.; Vijayan, Dipa

    Feedforward active noise control (ANC) systems use a reference sensor that senses a reference input to the controller. This signal is assumed to be unaffected by the secondary source and is a good measure of the undesired noise to be cancelled by the system. The reference sensor may be acoustic (e.g., microphone) or non-acoustic (e.g., tachometer, optical transducer). An obvious problem when using acoustic sensors is that the reference signal may be corrupted by the canceling signal generated by the secondary source. This problem is known as acoustic feedback. One way of avoiding this is by using a feedback active noise control (FANC) system which dispenses with the reference sensor. The FANC technique originally proposed by Olson and May employs a high gain negative feedback amplifier. This system suffered from the drawback that the error microphone had to be placed very close to the loudspeaker. The operation of the system was restricted to low frequency range and suffered from instability due to the possibility of positive feedback. Feedback systems employing adaptive filtering techniques for active noise control were developed. This paper presents the FANC system modeled as an adaptive prediction scheme.

  12. Novel Active Combustion Control Valve

    NASA Technical Reports Server (NTRS)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  13. Neuronal activity controls transsynaptic geometry.

    PubMed

    Glebov, Oleg O; Cox, Susan; Humphreys, Lawrence; Burrone, Juan

    2016-01-01

    The neuronal synapse is comprised of several distinct zones, including presynaptic vesicle zone (SVZ), active zone (AZ) and postsynaptic density (PSD). While correct relative positioning of these zones is believed to be essential for synaptic function, the mechanisms controlling their mutual localization remain unexplored. Here, we employ high-throughput quantitative confocal imaging, super-resolution and electron microscopy to visualize organization of synaptic subdomains in hippocampal neurons. Silencing of neuronal activity leads to reversible reorganization of the synaptic geometry, resulting in a increased overlap between immunostained AZ and PSD markers; in contrast, the SVZ-AZ spatial coupling is decreased. Bayesian blinking and bleaching (3B) reconstruction reveals that the distance between the AZ-PSD distance is decreased by 30 nm, while electron microscopy shows that the width of the synaptic cleft is decreased by 1.1 nm. Our findings show that multiple aspects of synaptic geometry are dynamically controlled by neuronal activity and suggest mutual repositioning of synaptic components as a potential novel mechanism contributing to the homeostatic forms of synaptic plasticity. PMID:26951792

  14. Neuronal activity controls transsynaptic geometry

    PubMed Central

    Glebov, Oleg O.; Cox, Susan; Humphreys, Lawrence; Burrone, Juan

    2016-01-01

    The neuronal synapse is comprised of several distinct zones, including presynaptic vesicle zone (SVZ), active zone (AZ) and postsynaptic density (PSD). While correct relative positioning of these zones is believed to be essential for synaptic function, the mechanisms controlling their mutual localization remain unexplored. Here, we employ high-throughput quantitative confocal imaging, super-resolution and electron microscopy to visualize organization of synaptic subdomains in hippocampal neurons. Silencing of neuronal activity leads to reversible reorganization of the synaptic geometry, resulting in a increased overlap between immunostained AZ and PSD markers; in contrast, the SVZ-AZ spatial coupling is decreased. Bayesian blinking and bleaching (3B) reconstruction reveals that the distance between the AZ-PSD distance is decreased by 30 nm, while electron microscopy shows that the width of the synaptic cleft is decreased by 1.1 nm. Our findings show that multiple aspects of synaptic geometry are dynamically controlled by neuronal activity and suggest mutual repositioning of synaptic components as a potential novel mechanism contributing to the homeostatic forms of synaptic plasticity. PMID:26951792

  15. Active control technology and the use of multiple control surfaces

    NASA Technical Reports Server (NTRS)

    Hart, J. E.

    1976-01-01

    Needed criteria for active control technology applications in commercial transports are lacking. Criteria for redundancy requirements, believed to be consistent with certification philosophy, are postulated to afford a discussion of the relative value of multiple control surfaces. The control power and frequency bandpass requirements of various active control technology applications are shown to be such that multiple control surfaces offer advantages in minimizing the hydraulic or auxiliary power for the control surface actuators.

  16. Active Spacecraft Potential Control Investigation

    NASA Astrophysics Data System (ADS)

    Torkar, K.; Nakamura, R.; Tajmar, M.; Scharlemann, C.; Jeszenszky, H.; Laky, G.; Fremuth, G.; Escoubet, C. P.; Svenes, K.

    2016-03-01

    In tenuous plasma the floating potential of sunlit spacecraft reaches tens of volts, positive. The corresponding field disturbs measurements of the ambient plasma by electron and ion sensors and can reduce micro-channel plate lifetime in electron detectors owing to large fluxes of attracted photoelectrons. Also the accuracy of electric field measurements may suffer from a high spacecraft potential. The Active Spacecraft Potential Control (ASPOC) neutralizes the spacecraft potential by releasing positive charge produced by indium ion emitters. The method has been successfully applied on other spacecraft such as Cluster and Double Star. Two ASPOC units are present on each spacecraft. Each unit contains four ion emitters, whereby one emitter per instrument is operated at a time. ASPOC for the Magnetospheric Multiscale (MMS) mission includes new developments in the design of the emitters and the electronics. New features include the use of capillaries instead of needles, new materials for the emitters and their internal thermal insulators, an extended voltage and current range of the electronics, both for ion emission and heating purposes, and a more capable control software. This enables lower spacecraft potentials, higher reliability, and a more uniform potential structure in the spacecraft's sheath compared to previous missions. Results from on-ground testing demonstrate compliance with requirements. Model calculations confirm the findings from previous applications that the plasma measurements will not be affected by the beam's space charge. Finally, the various operating modes to adapt to changing boundary conditions are described along with the main data products.

  17. Active thermal control system evolution

    NASA Technical Reports Server (NTRS)

    Petete, Patricia A.; Ames, Brian E.

    1991-01-01

    The 'restructured' baseline of the Space Station Freedom (SSF) has eliminated many of the growth options for the Active Thermal Control System (ATCS). Modular addition of baseline technology to increase heat rejection will be extremely difficult. The system design and the available real estate no longer accommodate this type of growth. As the station matures during its thirty years of operation, a demand of up to 165 kW of heat rejection can be expected. The baseline configuration will be able to provide 82.5 kW at Eight Manned Crew Capability (EMCC). The growth paths necessary to reach 165 kW have been identified. Doubling the heat rejection capability of SSF will require either the modification of existing radiator wings or the attachment of growth structure to the baseline truss for growth radiator wing placement. Radiator performance can be improved by enlarging the surface area or by boosting the operating temperature with a heat pump. The optimal solution will require both modifications. The addition of growth structure would permit the addition of a parallel ATCS using baseline technology. This growth system would simplify integration. The feasibility of incorporating these growth options to improve the heat rejection capacity of SSF is under evaluation.

  18. Active control of combustion instability

    SciTech Connect

    Lang, W.; Poinsot, T.; Candel, S.

    1987-12-01

    The principle of 'antisound' is used to construct a method for the suppression of combustion instabilities. This active instability control (AIC) method uses external acoustic excitation by a loudspeaker to suppress the oscillations of a flame. The excitation signal is provided by a microphone located upstream of the flame. This signal is filtered, processed, amplified, and sent to the loudspeaker. The AIC method is validated on a laboratory combustor. It allows the suppression of all unstable modes of the burner for any operating ratio. The influence of the microphone and loudspeaker locations on the performance of the AIC system is described. For a given configuration, domains of stability, i.e., domains where the AIC system parameters provide suppression of the oscillation, are investigated. Measurements of the electric input of the loudspeaker show that the energy consumption of the AIC system is almost negligible and suggest that this method could be used for industrial combustor stabilization. Finally, a simple model describing the effects of the AIC system is developed and its results compared to the experiment.

  19. Status and trends in active control technology

    NASA Technical Reports Server (NTRS)

    Rediess, H. A.; Szalai, K. J.

    1975-01-01

    The emergence of highly reliable fly-by-wire flight control systems makes it possible to consider a strong reliance on automatic control systems in the design optimization of future aircraft. This design philosophy has been referred to as the control configured vehicle approach or the application of active control technology. Several studies and flight tests sponsored by the Air Force and NASA have demonstrated the potential benefits of control configured vehicles and active control technology. The present status and trends of active control technology are reviewed and the impact it will have on aircraft designs, design techniques, and the designer is predicted.

  20. Overview of Langley activities in active controls research

    NASA Technical Reports Server (NTRS)

    Abel, I.; Newsom, J. R.

    1981-01-01

    The application of active controls technology to reduce aeroelastic response of aircraft structures offers a potential for significant payoffs in terms of aerodynamic efficiency and weight savings. The activities of the Langley Research Center (laRC) in advancing active controls technology. Activities are categorized into the development of appropriate analysis tools, control law synthesis methodology, and experimental investigations aimed at verifying both analysis and synthesis methodology.

  1. MIT Middeck Active Control Experiment (MACE): noncollocated payload pointing control

    NASA Astrophysics Data System (ADS)

    MacMartin, Douglas G.; Miller, David W.

    1993-09-01

    The Middeck Active Control Experiment is a space shuttle flight experiment intended to demonstrate high authority active structural control in zero gravity conditions. The prediction of on-orbit closed-loop dynamics is based on analysis and ground testing. The MACE test article is representative of multiple payload platforms, and includes two 2-axis gimballing payloads connected by a flexible bus. The goal of active control is to maintain pointing accuracy of one payload, while the remaining payload is moving independently. Current control results on the ground test article are presented. Multiple input, multiple output controllers are designed based on high order measurement based models. Linear Quadratic Gaussian controllers yield reasonable performance. At high authority, however, these controllers destabilize the actual structure, due to parametric errors in the control design model. A robust control design procedure is required to yield high performance in the presence of these errors.

  2. Orbiter active thermal control system description

    NASA Technical Reports Server (NTRS)

    Laubach, G. E.

    1975-01-01

    A brief description of the Orbiter Active Thermal Control System (ATCS) including (1) major functional requirements of heat load, temperature control and heat sink utilization, (2) the overall system arrangement, and (3) detailed description of the elements of the ATCS.

  3. Developing Internal Controls through Activities

    ERIC Educational Resources Information Center

    Barnes, F. Herbert

    2009-01-01

    Life events can include the Tuesday afternoon cooking class with the group worker or the Saturday afternoon football game, but in the sense that Fritz Redl thought of them, these activities are only threads in a fabric of living that includes all the elements of daily life: playing, working, school-based learning, learning through activities,…

  4. Active Compliance And Damping In Telemanipulator Control

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Bejczy, Antal K.; Hannaford, Blake

    1991-01-01

    Experimental telemanipulator system of force-reflecting-hand-controller type provides for active compliance and damping in remote, robotic manipulator hand. Distributed-computing and -control system for research in various combinations of force-reflecting and active-compliance control regimes. Shared compliance control implemented by low-pass-filtered force/torque feedback. Variable simulated springs and shock absorbers soften collisions and increase dexterity.

  5. The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.

    1992-01-01

    Viewgraphs on the Middeck Active Control Experiment (MACE) are presented. Topics covered include: program objectives; program features; flight experiment features; current activities; MACE development model lab testing; MACE test article deployed on STS middeck; and development model testing.

  6. The Middeck Active Control Experiment (MACE)

    NASA Astrophysics Data System (ADS)

    Miller, David W.

    Viewgraphs on the Middeck Active Control Experiment (MACE) are presented. Topics covered include: program objectives; program features; flight experiment features; current activities; MACE development model lab testing; MACE test article deployed on STS middeck; and development model testing.

  7. The Middeck Active Control Experiment (MACE): Identification for robust control

    NASA Astrophysics Data System (ADS)

    Karlov, Valery I.

    Viewgraphs on identification for robust control for the Middeck Active Control Experiment (MACE) are presented. Topics covered include: identification for robust control; three levels of identification; basic elements of the approach; advantages of 'post-ID' model of uncertainty; advantages of optimization; and practical realization.

  8. The Middeck Active Control Experiment (MACE): Identification for robust control

    NASA Technical Reports Server (NTRS)

    Karlov, Valery I.

    1992-01-01

    Viewgraphs on identification for robust control for the Middeck Active Control Experiment (MACE) are presented. Topics covered include: identification for robust control; three levels of identification; basic elements of the approach; advantages of 'post-ID' model of uncertainty; advantages of optimization; and practical realization.

  9. Student Activity Funds: Procedures & Controls.

    ERIC Educational Resources Information Center

    Cuzzetto, Charles E.

    Student activity funds may create educational opportunities for students, but they frequently create problems for business administrators. The first part of this work reviews the types of organizational issues and transactions an organized student group is likely to encounter, including establishing a constitution, participant roles,…

  10. Active-member control of precision structures

    NASA Technical Reports Server (NTRS)

    Fanson, J. L.; Blackwood, G. H.; Chu, C. C.

    1989-01-01

    This paper presents the results of closed loop experiments that use piezoelectric active-members to control the flexible motion of a precision truss structure. These experiments are directed toward the development of high performance structural systems as part of the Control/Structure Interaction program at JPL. Order of magnitude reductions in dynamic response are achieved with relatively simple control techniques. The practical implementation of high stiffness, high bandwidth active-members in a precision structure highlights specific issues of importance relating to the modelling and implementation of active-member control.

  11. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1991-01-01

    Actively controlled mechanical seals have recently been developed for industrial use. This study investigates the feasibility of using such seals for aerospace applications. In a noncontacting mechanical seal, the film thickness depends on the geometry of the seal interface. The amount of coning, which is a measure of the radial convergence or divergence of the seal interface, has a primary effect on the film thickness. Active control of the film thickness is established by controlling the coning with a piezoelectric material. A mathematical model has been formulated to predict the performance of an actively controlled mechanical seal.

  12. Active Control Of Structure-Borne Noise

    NASA Astrophysics Data System (ADS)

    Elliott, S. J.

    1994-11-01

    The successful practical application of active noise control requires an understanding of both its acoustic limitations and the limitations of the electrical control strategy used. This paper is concerned with the active control of sound in enclosures. First, a review is presented of the fundamental physical limitations of using loudspeakers to achieve either global or local control. Both approaches are seen to have a high frequency limit, due to either the acoustic modal overlap, or the spatial correlation function of the pressure field. These physical performance limits could, in principle, be achieved with either a feedback or a feedforward control strategy. These strategies are reviewed and the use of adaptive digital filters is discussed for both approaches. The application of adaptive feedforward control in the control of engine and road noise in cars is described. Finally, an indirect approach to the active control of sound is discussed, in which the vibration is suppressed in the structural paths connecting the source of vibration to the enclosure. Two specific examples of this strategy are described, using an active automotive engine mount and the incorporation of actuators into helicopter struts to control gear-meshing tones. In both cases good passive design can minimize the complexity of the active controller.

  13. Active vibration control of lightweight floor systems

    NASA Astrophysics Data System (ADS)

    Baader, J.; Fontana, M.

    2016-04-01

    Wide-span and lightweight floors are often prone to structural vibrations due to their low resonance frequency and poor material damping. Their dynamic behaviour can be improved using passive, semi-active or active vibration control devices. The following article proposes a novel method for the controller synthesis for active vibration control. An existing passive TMD (tuned mass damper) is modelled and equipped with an actuator in order to provide more efficient damping. Using an iterative optimization approach under constraints, an optimal controller is found which minimizes a quadratic cost function in frequency domain. A simulation of an existing test bench shows that the active vibration control device is able to provide increased damping compared to the passive TMD.

  14. Reliable and Affordable Control Systems Active Combustor Pattern Factor Control

    NASA Technical Reports Server (NTRS)

    McCarty, Bob; Tomondi, Chris; McGinley, Ray

    2004-01-01

    Active, closed-loop control of combustor pattern factor is a cooperative effort between Honeywell (formerly AlliedSignal) Engines and Systems and the NASA Glenn Research Center to reduce emissions and turbine-stator vane temperature variations, thereby enhancing engine performance and life, and reducing direct operating costs. Total fuel flow supplied to the engine is established by the speed/power control, but the distribution to individual atomizers will be controlled by the Active Combustor Pattern Factor Control (ACPFC). This system consist of three major components: multiple, thin-film sensors located on the turbine-stator vanes; fuel-flow modulators for individual atomizers; and control logic and algorithms within the electronic control.

  15. Active Control by Conservation of Energy Concept

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    2000-01-01

    Three unrelated experiments are discussed; each was extremely sensitive to initial conditions. The initial conditions are the beginnings of the origins of the information that nonlinearity displays. Initial conditions make the phenomenon unstable and unpredictable. With the knowledge of the initial conditions, active control requires far less power than that present in the system response. The first experiment is on the control of shocks from an axisymmetric supersonic jet; the second, control of a nonlinear panel response forced by turbulent boundary layer and sound; the third, control of subharmonic and harmonics of a panel forced by sound. In all three experiments, control is achieved by redistribution of periodic energy response such that the energy is nearly preserved from a previous uncontrolled state. This type of active control improves the performance of the system being controlled.

  16. Active control of buildings during earthquakes

    NASA Technical Reports Server (NTRS)

    Vance, Vicki L.

    1993-01-01

    The objective of this report is to provide an overview of the different types of control systems used in buildings, to discuss the problems associated with current active control mechanisms, and to show the cost-effectiveness of applying active control to buildings. In addition, a small case study investigates the feasibility and benefits of using embedded actuators in buildings. Use of embedded actuators could solve many of the current problems associated with active control by providing a wider bandwidth of control, quicker speed of response, increased reliability and reduced power requirement. Though embedded actuators have not been developed for buildings, they have previously been used in space structures. Many similarities exist between large civil and aerospace structures indicating that direct transfer of concepts between the two disciplines may be possible. In particular, much of the Controls-Structures Interaction (CSI) technology currently being developed could be beneficially applied to civil structures. While several buildings with active control systems have been constructed in Japan, additional research and experimental verification are necessary before active control systems become widely accepted and implemented.

  17. Manually controlled neutron-activation system

    NASA Astrophysics Data System (ADS)

    Johns, R. A.; Carothers, G. A.

    1982-01-01

    A manually controlled neutron activation system, the Manual Reactor Activation System, was designed and built and has been operating at one of the Savannah River Plant's production reactors. With this system, samples can be irradiated for up to 24 hours and pneumatically transferred to a shielded repository for decay until their activity is low enough for them to be handled at a radiobench. The Manual Reactor Activation System was built to provide neutron activation of solid waste forms for the Alternative Waste Forms Leach Testing Program. Neutron activation of the bulk sample prior to leaching permits sensitive multielement radiometric analyses of the leachates.

  18. Controls on fire activity over the Holocene

    NASA Astrophysics Data System (ADS)

    Kloster, S.; Brucher, T.; Brovkin, V.; Wilkenskjeld, S.

    2015-05-01

    Changes in fire activity over the last 8000 years are simulated with a global fire model driven by changes in climate and vegetation cover. The changes were separated into those caused through variations in fuel availability, fuel moisture or wind speed, which react differently to changes in climate. Disentangling these controlling factors helps in understanding the overall climate control on fire activity over the Holocene. Globally the burned area is simulated to increase by 2.5% between 8000 and 200 cal yr BP, with larger regional changes compensating nearly evening out on a global scale. Despite the absence of anthropogenic fire ignitions, the simulated trends in fire activity agree reasonably well with continental-scale reconstructions from charcoal records, with the exception of Europe. For some regions the change in fire activity is predominantly controlled through changes in fuel availability (Australia monsoon, Central America tropics/subtropics). For other regions changes in fuel moisture are more important for the overall trend in fire activity (North America, Sub-Saharan Africa, Europe, Asia monsoon). In Sub-Saharan Africa, for example, changes in fuel moisture alone lead to an increase in fire activity between 8000 and 200 cal yr BP, while changes in fuel availability lead to a decrease. Overall, the fuel moisture control is dominating the simulated fire activity for Sub-Saharan Africa. The simulations clearly demonstrate that both changes in fuel availability and changes in fuel moisture are important drivers for the fire activity over the Holocene. Fuel availability and fuel moisture do, however, have different climate controls. As such, observed changes in fire activity cannot be related to single climate parameters such as precipitation or temperature alone. Fire models, as applied in this study, in combination with observational records can help in understanding the climate control on fire activity, which is essential to project future fire

  19. ACTIVELY CONTROLLED AFTERBURNER FOR COMPACT WASTE INCINERATION

    EPA Science Inventory

    In a continuing research program directed at developing technology for compact shipboard incinerators, active control of fluid dynamics has been used to enhance mixing in incinerator afterburner (AB) experiments and increase the DRE for a waste surrogate. Experiments were conduc...

  20. The Middeck Active Control Experiment (MACE)

    NASA Astrophysics Data System (ADS)

    Miller, David W.

    1991-07-01

    Viewgraphs on the Middeck Active Control Experiment (MACE) are presented. Topics covered include: science program objectives and rationale; science requirements; capturing the essential physics; science development approach; development model hardware; development model test plan; and flight hardware and operations.

  1. The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.

    1991-01-01

    Viewgraphs on the Middeck Active Control Experiment (MACE) are presented. Topics covered include: science program objectives and rationale; science requirements; capturing the essential physics; science development approach; development model hardware; development model test plan; and flight hardware and operations.

  2. Active control of turbomachine discrete tones

    NASA Astrophysics Data System (ADS)

    Fleeter, Sanford

    This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.

  3. Active Polymer Microfiber with Controlled Polarization Sensitivity

    PubMed Central

    Xia, Hongyan; Wang, Ruxue; Liu, Yingying; Cheng, Junjie; Zou, Gang; Zhang, Qijin; Zhang, Douguo; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.

    2016-01-01

    Controlled Polarization Sensitivity of an active polymer microfiber has been proposed and realized with the electrospun method. The fluorescence intensity guiding through this active polymer microfiber shows high sensitivity to the polarization state of the excitation light. What is more, the fluorescence out-coupled from tip of the microfiber can be of designed polarization state. Principle of these phenomena lies on the ordered and controlled orientation of the polydiacetylene (PDA) main chains inside polymer microfiber. PMID:27099828

  4. Active control of helicopter transmission noise

    NASA Astrophysics Data System (ADS)

    Spencer, R. H.; Burke, M. J.; Tye, G. W.

    An account is given of an effort to reduce helicopter transmission noise by 10 dB, using active methods, as part of the NASA-Lewis/U.S. Army Propulsion Directorate Advanced Rotorcraft Transmission technology integration and demonstration program. The transmission used as a test stand is that of the CH-47C forward rotor. Attention is presently given to the active control system's actuators, sensors, and control algorithms.

  5. Active control of helicopter transmission noise

    NASA Technical Reports Server (NTRS)

    Spencer, R. H.; Burke, M. J.; Tye, G. W.

    1991-01-01

    An account is given of an effort to reduce helicopter transmission noise by 10 dB, using active methods, as part of the NASA-Lewis/U.S. Army Propulsion Directorate Advanced Rotorcraft Transmission technology integration and demonstration program. The transmission used as a test stand is that of the CH-47C forward rotor. Attention is presently given to the active control system's actuators, sensors, and control algorithms.

  6. Vector control activities, fiscal year 1983

    SciTech Connect

    Pickard, E.; Cooney, J.C.; McDuff, B.R.

    1984-07-01

    The goal of the Vector Control Program is to safeguard public health and well-being in the Tennessee Valley region by controlling arthropod pests of medical importance that are propagated on TVA lands or waters or that are produced as a result of TVA activities. To achieve this goal the program is divided into two major categories consisting of operations and support studies. The latter is geared to improving the operational effectiveness and efficiency of the control program and to identify additional vector control problems requiring TVA attention and study. Nonchemical methods of control are emphasized and are supplemented with chemical measures as needed.

  7. Transitioning Active Flow Control to Applications

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Horta, Lucas G.; Chen, Fang-Jenq

    1999-01-01

    Active Flow Control Programs at NASA, the U.S. Air Force, and DARPA have been initiated with the goals of obtaining revolutionary advances in aerodynamic performance and maneuvering compared to conventional approaches. These programs envision the use of actuators, sensors, and controllers on applications such as aircraft wings/tails, engine nacelles, internal ducts, nozzles, projectiles, weapons bays, and hydrodynamic vehicles. Anticipated benefits of flow control include reduced weight, part count, and operating cost and reduced fuel burn (and emissions), noise and enhanced safety if the sensors serve a dual role of flow control and health monitoring. To get from the bench-top or laboratory test to adaptive distributed control systems on realistic applications, reliable validated design tools are needed in addition to sub- and large-scale wind-tunnel and flight experiments. This paper will focus on the development of tools for active flow control applications.

  8. Active load control techniques for wind turbines.

    SciTech Connect

    van Dam, C.P.; Berg, Dale E.; Johnson, Scott J.

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  9. Student Activity Funds: Procedures and Controls.

    ERIC Educational Resources Information Center

    Cuzzetto, Charles E.

    2000-01-01

    An effective internal-control system can help school business administrators meet the challenges of accounting for student activity funds. Such a system should include appropriate policies and procedures, identification of key control points, self-assessments, audit trails, and internal and external audits. (MLH)

  10. Optimal active control for Burgers equations

    NASA Technical Reports Server (NTRS)

    Ikeda, Yutaka

    1994-01-01

    A method for active fluid flow control based on control theory is discussed. Dynamic programming and fixed point successive approximations are used to accommodate the nonlinear control problem. The long-term goal of this project is to establish an effective method applicable to complex flows such as turbulence and jets. However, in this report, the method is applied to stochastic Burgers equation as an intermediate step towards this goal. Numerical results are compared with those obtained by gradient search methods.

  11. Active vibration control of civil structures

    SciTech Connect

    Farrar, C.; Baker, W.; Fales, J.; Shevitz, D.

    1996-11-01

    This is a final report of a one year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Active vibration control (AVC) of structural and mechanical systems is one of the rapidly advancing areas of engineering research. The multifaceted nature of AVC covers many disciplines, such as sensors and instrumentation, numerical modeling, experimental mechanics, and advanced power systems. This work encompassed a review of the literature on active control of structures focusing both on active control hardware and on control algorithms, a design of an isolation systems using magneto-rheological fluid-filled (MRF) dampers and numerical simulations to study the enhanced vibration mitigation effects of this technology.

  12. Vector control activities: Fiscal Year, 1986

    SciTech Connect

    Not Available

    1987-04-01

    The program is divided into two major components - operations and support studies. The support studies are designed to improve the operational effectiveness and efficiency of the control program and to identify other vector control problems requiring TVA attention and study. Nonchemical methods of control are emphasized and are supplemented with chemical measures as needed. TVA also cooperates with various concerned municipalities in identifying blood-sucking arthropod pest problems and demonstrating control techniques useful in establishing abatement programs, and provides technical assistance to other TVA programs and organizations. The program also helps Land Between The Lakes (LBL) plan and conduct vector control operations and tick control research. Specific program control activities and support studies are discussed.

  13. CFD Modeling for Active Flow Control

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.

    2001-01-01

    This presentation describes current work under UEET Active Flow Control CFD Research Tool Development. The goal of this work is to develop computational tools for inlet active flow control design. This year s objectives were to perform CFD simulations of fully gridded vane vortex generators, micro-vortex genera- tors, and synthetic jets, and to compare flowfield results with wind tunnel tests of simple geometries with flow control devices. Comparisons are shown for a single micro-vortex generator on a flat plate, and for flow over an expansion ramp with sidewall effects. Vortex core location, pressure gradient and oil flow patterns are compared between experiment and computation. This work lays the groundwork for evaluating simplified modeling of arrays of devices, and provides the opportunity to test simple flow control device/sensor/ control loop interaction.

  14. Active control of robot manipulator compliance

    NASA Technical Reports Server (NTRS)

    Nguyen, C. C.; Pooran, F. J.

    1986-01-01

    Work performed at Catholic University on the research grant entitled Active Control of Robot Manipulator Compliance, supported by NASA/Goddard space Flight Center during the period of May 15th, 1986 to November 15th, 1986 is described. The modelling of the two-degree-of-freedom robot is first presented. Then the complete system including the robot and the hybrid controller is simulated on an IBM-XT Personal Computer. Simulation results showed that proper adjustments of controller gains enable the robot to perform successful operations. Further research should focus on developing a guideline for the controller gain design to achieve system stability.

  15. Optimal control techniques for active noise suppression

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Keeling, S. L.; Silcox, R. J.

    1988-01-01

    Active suppression of noise in a bounded enclosure is considered within the framework of optimal control theory. A sinusoidal pressure field due to exterior offending noise sources is assumed to be known in a neighborhood of interior sensors. The pressure field due to interior controlling sources is assumed to be governed by a nonhomogeneous wave equation within the enclosure and by a special boundary condition designed to accommodate frequency-dependent reflection properties of the enclosure boundary. The form of the controlling sources is determined by considering the steady-state behavior of the system, and it is established that the control strategy proposed is stable and asymptotically optimal.

  16. Active control of buckling of flexible beams

    NASA Technical Reports Server (NTRS)

    Baz, A.; Tampe, L.

    1989-01-01

    The feasibility of using the rapidly growing technology of the shape memory alloys actuators in actively controlling the buckling of large flexible structures is investigated. The need for such buckling control systems is becoming inevitable as the design trends of large space structures have resulted in the use of structural members that are long, slender, and very flexible. In addition, as these truss members are subjected mainly to longitudinal loading they become susceptible to structural instabilities due to buckling. Proper control of such instabilities is essential to the effective performance of the structures as stable platforms for communication and observation. Mathematical models are presented that simulate the dynamic characteristics of the shape memory actuator, the compressive structural members, and the associated active control system. A closed-loop computer-controlled system is designed, based on the developed mathematical models, and implemented to control the buckling of simple beams. The performance of the computer-controlled system is evaluated experimentally and compared with the theoretical predictions to validate the developed models. The obtained results emphasize the importance of buckling control and suggest the potential of the shape memory actuators as attractive means for controlling structural deformation in a simple and reliable way.

  17. Rotor Flapping Response to Active Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Khanh; Johnson, Wayne

    2004-01-01

    Rotor active control using higher harmonic blade pitch has been proposed as a means to reduce both rotor radiated noise and airframe vibration and to enhance rotor performance. The higher harmonic input, however, can affect rotor thrust and cyclic flapping - the basic trim characteristics of the rotor. Some of the trim changes can negate the active control benefits. For example, wind tunnel test results of a full scale BO-105 rotor with individual-blade control indicate some rotor performance improvements, accompanied with changes in rotor trim, using two-per-rev blade pitch input. The observed performance benefits could therefore be a simple manifestation of the trim change rather than an efficient redistribution of the rotor airloads. More recently, the flight test of the BO-105 helicopter equip,ped with individual-blade-control actuators also reported trim changes whenever the two-per-rev blade pitch for noise reduction was activated. The pilot had to adjust the trim control to maintain the aircraft under a constant flight path. These two cases highlight the, importance of trim considerations in the application of active control to rotorcraft.

  18. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1994-01-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100 C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changed suddenly.

  19. Vector control activities. Fiscal year, 1982

    SciTech Connect

    Pickard, E.; Cooney, J.C.; McDuff, B.R.

    1983-06-01

    The goal of the TVA Vector Control Program is to protect the public from potential vectors of disease by controlling medically-important arthropod pests that are propagated on TVA lands or waters. In addition, freedom from annoying mosquitoes and other blood-sucking pests permits the development, use, and full enjoyment of the vast recreational opportunities offered by the many miles of freshwater lakes. To attain this goal the program is divided into operations and support studies. The support studies are designed to improve the operational effectiveness and efficiency of the control program and to identify other vector control problems that require TVA attention and study. Specifically, activities concerning water level management of TVA lakes, dewatering projects, plant growth control, drainage and insect control programs are detailed. Further, report is made of post-impoundment surveys, soil sampling studies of Mosquite larvae and ecological mosquito management studies.

  20. Actively Controlling Buffet-Induced Excitations

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Pototzky, Anthony S.; Henderson, Douglas A.; Galea, Stephen C.; Manokaran, Donald S.; Zimcik, David G.; Wickramasinghe, Viresh; Pitt, Dale M.; Gamble, Michael A.

    2005-01-01

    High performance aircraft, especially those with twin vertical tails, encounter unsteady buffet loads when flying at high angles of attack. These loads result in significant random stresses, which may cause fatigue damage leading to restricted capabilities and availability of the aircraft. An international collaborative research activity among Australia, Canada and the United States, conducted under the auspices of The Technical Cooperation Program (TTCP) contributed resources toward a program that coalesced a broad range of technical knowledge and expertise into a single investigation to demonstrate the enhanced performance and capability of the advanced active BLA control system in preparation for a flight test demonstration. The research team investigated the use of active structural control to alleviate the damaging structural response to these loads by applying advanced directional piezoelectric actuators, the aircraft rudder, switch mode amplifiers, and advanced control strategies on an F/A-18 aircraft empennage. Some results of the full-scale investigation are presented herein.

  1. Rolling Maneuver Load Alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Pototzky, Anthony S.

    1992-01-01

    Rolling Maneuver Load Alleviation (RMLA) has been demonstrated on the Active Flexible Wing (AFW) wind tunnel model in the NASA Langley Transonic Dynamics Tunnel. The design objective was to develop a systematic approach for developing active control laws to alleviate wing incremental loads during roll maneuvers. Using linear load models for the AFW wind-tunnel model which were based on experimental measurements, two RMLA control laws were developed based on a single-degree-of-freedom roll model. The RMLA control laws utilized actuation of outboard control surface pairs to counteract incremental loads generated during rolling maneuvers and actuation of the trailing edge inboard control surface pairs to maintain roll performance. To evaluate the RMLA control laws, roll maneuvers were performed in the wind tunnel at dynamic pressures of 150, 200, and 250 psf and Mach numbers of 0.33, .38 and .44, respectively. Loads obtained during these maneuvers were compared to baseline maneuver loads. For both RMLA controllers, the incremental torsion moments were reduced by up to 60 percent at all dynamic pressures and performance times. Results for bending moment load reductions during roll maneuvers varied. In addition, in a multiple function test, RMLA and flutter suppression system control laws were operated simultaneously during roll maneuvers at dynamic pressures 11 percent above the open-loop flutter dynamic pressure.

  2. Feedback controllers for broadband active noise reduction

    NASA Astrophysics Data System (ADS)

    Petitjean, Benoit; Legrain, Isabelle

    1994-09-01

    The aim of the present paper is to demonstrate the efficiency of an LQG-based controller for the active control of the acoustic field radiated by a rectangular panel. This topic has been of interest for numerous researchers in the past 10 or 15 years, but very little attention has been paid to broadband disturbances occurring in a relatively high frequency range. These are unfortunately common features of noise perturbations in realistic structures such as airplanes or helicopters. The few articles that deal with this problem provide very scarce experimental results and are related to frequency bands where the structure dynamics is rather poor. From the outset, the problem at hand involves numerous difficulties, such as the modeling of the active structure itself and the possible large size of the controller. In the following, the experimental setup is described, then the controller design procedure is developed and finally some experimental results are shown that prove the efficiency of the method.

  3. Active Flow Control Stator With Coanda Surface

    NASA Technical Reports Server (NTRS)

    Guendogdu; Vorreiter; Seume

    2010-01-01

    Active Flow Control increases the permissible aerodynamic loading. Curved surface near the trailing edge ("Coanda surface"): a) increases turning -> higher pressure ratio. b) controls boundary layer separation -> increased surge margin. Objective: Reduce the number of vanes or compressor stages. Constraints: 1. In a real compressor, the vane must still function entirely without blowing. 2. Maintain the flow exit angle of the reference stator despite the resulting increase in stator loading.

  4. Active Vibration Control For Lasers And Spacecraft

    NASA Astrophysics Data System (ADS)

    Pearson, Jerome

    1983-12-01

    The Active Control of Space Structures (ACOSS) program of the Defense Advanced Research Projects Agency has identified problems in active vibration control of structural modes in extremely flexible space structures and in precisely pointed optics. The Air Force Wright Aeronautical Laboratories programs are an outgrowth of the ACOSS program. They are aimed at the problems of sensors, actuators, and their dynamic interactions with the structure to be controlled, and at the problem of system identification by one-g laboratory experiments. The VCOSS-1 and VCOSS-2 programs (Vibration Control of Space Structures) address the dynamic interactions of the sensor-actuator-structure; the Benchless Laser program and the Airborne Laser Mirror-Control program address the active control of HEL mirrors; the Experimental Modal Analysis and Component Synthesis and the Large Space Structure Dynamics programs address the problems of system identification and testing. Closer coordination with NASA and DARPA is being sought in support of on-orbit dynamic testing using the Space Shuttle and in the development of a national facility for one-g dynamics testing of large space structures.

  5. Active disturbance rejection controller for chemical reactor

    SciTech Connect

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I.

    2015-03-10

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method.

  6. Active Control of Cryogenic Propellants in Space

    NASA Technical Reports Server (NTRS)

    Notardonato, William

    2011-01-01

    A new era of space exploration is being planned. Exploration architectures under consideration require the long term storage of cryogenic propellants in space. This requires development of active control systems to mitigate the effect of heat leak. This work summarizes current state of the art, proposes operational design strategies and presents options for future architectures. Scaling and integration of active systems will be estimated. Ideal long range spacecraft systems will be proposed with Exploration architecture benefits considered.

  7. Seismic active control by neural networks.

    SciTech Connect

    Tang, Y.

    1998-01-01

    A study on the application of artificial neural networks (ANNs) to activate structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feed-forward neural network architecture and an adaptive back-propagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the back-propagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator's capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  8. Seismic active control by neutral networks

    SciTech Connect

    Tang, Yu

    1995-12-31

    A study on the application of artificial neural networks (ANNs) to active structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feedforward neural network architecture and an adaptive backpropagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the backpropagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator`s capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  9. Rolling maneuver load alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Pototzky, Anthony S.

    1992-01-01

    Rolling Maneuver Load Alleviation (RMLA) was demonstrated on the Active Flexible Wing (AFW) wind tunnel model in the LaRC Transonic Dynamics Tunnel. The design objective was to develop a systematic approach for developing active control laws to alleviate wing incremental loads during roll maneuvers. Using linear load models for the AFW wind-tunnel model which were based on experimental measurements, two RMLA control laws were developed based on a single-degree-of-freedom roll model. The RMLA control laws utilized actuation of outboard control surface pairs to counteract incremental loads generated during rolling maneuvers and roll performance. To evaluate the RMLA control laws, roll maneuvers were performed in the wind tunnel at dynamic pressures of 150, 200, and 250 psf and Mach numbers of .33, .38, and .44, respectively. Loads obtained during these maneuvers were compared to baseline maneuver loads. For both RMLA controllers, the incremental torsion moments were reduced by up to 60 percent at all dynamic pressures and performance times. Results for bending moment load reductions during roll maneuvers varied. In addition, in a multiple function test, RMLA and flutter suppression system control laws were operated simultaneously during roll maneuvers at dynamic pressures 11 percent above the open-loop flutter dynamic pressure.

  10. Dielectric elastomers for active vibration control applications

    NASA Astrophysics Data System (ADS)

    Herold, S.; Kaal, W.; Melz, T.

    2011-04-01

    Dielectric elastomers (DE) have proved to have high potential for smart actuator applications in many laboratory setups and also in first commercially available components. Because of their large deformation capability and the inherent fast response to external stimulation they proffer themselves to applications in the field of active vibration control, especially for lightweight structures. These structures typically tend to vibrate with large amplitudes even at low excitation forces. Here, DE actuators seem to be ideal components for setting up control loops to suppress unwanted vibrations. Due to the underlying physical effect DE actuators are generally non-linear elements with an approximately quadratic relationship between in- and output. Consequently, they automatically produce higher-order frequencies. This can cause harmful effects for vibration control on structures with high modal density. Therefore, a linearization technique is required to minimize parasitic effects. This paper shows and quantifies the nonlinearity of a commercial DE actuator and demonstrates the negative effects it can have in technical applications. For this purpose, two linearization methods are developed. Subsequently, the actuator is used to implement active vibration control for two different mechanical systems. In the first case a concentrated mass is driven with the controlled actuator resulting in a tunable oscillator. In the second case a more complex mechanical structure with multiple resonances is used. Different control approaches are applied likewise and their impact on the whole system is demonstrated. Thus, the potential of DE actuators for vibration control applications is highlighted.

  11. Piezoelectric Power Requirements for Active Vibration Control

    NASA Technical Reports Server (NTRS)

    Brennan, Matthew C.; McGowan, Anna-Maria Rivas

    1997-01-01

    This paper presents a method for predicting the power consumption of piezoelectric actuators utilized for active vibration control. Analytical developments and experimental tests show that the maximum power required to control a structure using surface-bonded piezoelectric actuators is independent of the dynamics between the piezoelectric actuator and the host structure. The results demonstrate that for a perfectly-controlled system, the power consumption is a function of the quantity and type of piezoelectric actuators and the voltage and frequency of the control law output signal. Furthermore, as control effectiveness decreases, the power consumption of the piezoelectric actuators decreases. In addition, experimental results revealed a non-linear behavior in the material properties of piezoelectric actuators. The material non- linearity displayed a significant increase in capacitance with an increase in excitation voltage. Tests show that if the non-linearity of the capacitance was accounted for, a conservative estimate of the power can easily be determined.

  12. A Dynamic Absorber With Active Vibration Control

    NASA Astrophysics Data System (ADS)

    Huang, S.-J.; Lian, R.-J.

    1994-12-01

    The design and construction of a dynamic absorber incorporating active vibration control is described. The absorber is a two-degrees-of-freedom spring — lumped mass system sliding on a guide pillar, with two internal vibration disturbance sources. Both the main mass and the secondary absorber mass are acted on by DC servo motors, respectively, to suppress the vibration amplitude. The state variable technique is used to model this dynamic system and a decoupling PID control method is used. First, the discrete time state space model is identified by using the commercial software MATLAB. Then the decoupling controller of this multi-input/multi-output system is derived from the identified model. Finally the results of some experiments are presented. The experimental results show that the system is effective in suppressing vibration. Also, the performance of this control strategy for position tracking control is evaluated based on experimental data.

  13. Neural predictive control for active buffet alleviation

    NASA Astrophysics Data System (ADS)

    Pado, Lawrence E.; Lichtenwalner, Peter F.; Liguore, Salvatore L.; Drouin, Donald

    1998-06-01

    The adaptive neural control of aeroelastic response (ANCAR) and the affordable loads and dynamics independent research and development (IRAD) programs at the Boeing Company jointly examined using neural network based active control technology for alleviating undesirable vibration and aeroelastic response in a scale model aircraft vertical tail. The potential benefits of adaptive control includes reducing aeroelastic response associated with buffet and atmospheric turbulence, increasing flutter margins, and reducing response associated with nonlinear phenomenon like limit cycle oscillations. By reducing vibration levels and thus loads, aircraft structures can have lower acquisition cost, reduced maintenance, and extended lifetimes. Wind tunnel tests were undertaken on a rigid 15% scale aircraft in Boeing's mini-speed wind tunnel, which is used for testing at very low air speeds up to 80 mph. The model included a dynamically scaled flexible fail consisting of an aluminum spar with balsa wood cross sections with a hydraulically powered rudder. Neural predictive control was used to actuate the vertical tail rudder in response to strain gauge feedback to alleviate buffeting effects. First mode RMS strain reduction of 50% was achieved. The neural predictive control system was developed and implemented by the Boeing Company to provide an intelligent, adaptive control architecture for smart structures applications with automated synthesis, self-optimization, real-time adaptation, nonlinear control, and fault tolerance capabilities. It is designed to solve complex control problems though a process of automated synthesis, eliminating costly control design and surpassing it in many instances by accounting for real world non-linearities.

  14. Actively Controlled Shaft Seals for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.; Wolff, Paul

    1995-01-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with a piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changes suddenly. the experimental results were compared to the predictions from the mathematical model. The model was successful in predicting the trends in leakage rate that occurred as the balance ratio and sealed pressure changed

  15. Dielectric elastomer actuators for active microfluidic control

    NASA Astrophysics Data System (ADS)

    McCoul, David; Murray, Coleman; Di Carlo, Dino; Pei, Qibing

    2013-04-01

    Dielectric elastomers with low modulus and large actuation strain have been investigated for applications in which they serve as "active" microfluidic channel walls. Anisotropically prestrained acrylic elastomer membranes are bonded to cover open trenches formed on a silicone elastomer substrate. Actuation of the elastomer membranes increases the cross-sectional area of the resulting channels, in turn controlling hydraulic flow rate and pressure. Bias voltage increases the active area of the membranes, allowing intrachannel pressure to alter channel geometry. The channels have also demonstrated the ability to actively clear a blockage. Applications may include adaptive microfilters, micro-peristaltic pumps, and reduced-complexity lab-on-a-chip devices.

  16. Cellular Mechanisms Controlling Caspase Activation and Function

    PubMed Central

    Parrish, Amanda B.; Freel, Christopher D.; Kornbluth, Sally

    2013-01-01

    Caspases are the primary drivers of apoptotic cell death, cleaving cellular proteins that are critical for dismantling the dying cell. Initially translated as inactive zymogenic precursors, caspases are activated in response to a variety of cell death stimuli. In addition to factors required for their direct activation (e.g., dimerizing adaptor proteins in the case of initiator caspases that lie at the apex of apoptotic signaling cascades), caspases are regulated by a variety of cellular factors in a myriad of physiological and pathological settings. For example, caspases may be modified posttranslationally (e.g., by phosphorylation or ubiquitylation) or through interaction of modulatory factors with either the zymogenic or active form of a caspase, altering its activation and/or activity. These regulatory events may inhibit or enhance enzymatic activity or may affect activity toward particular cellular substrates. Finally, there is emerging literature to suggest that caspases can participate in a variety of cellular processes unrelated to apoptotic cell death. In these settings, it is particularly important that caspases are maintained under stringent control to avoid inadvertent cell death. It is likely that continued examination of these processes will reveal new mechanisms of caspase regulation with implications well beyond control of apoptotic cell death. PMID:23732469

  17. MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON

    EPA Science Inventory

    The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...

  18. Active controls technology to maximize structural efficiency

    NASA Technical Reports Server (NTRS)

    Hoy, J. M.; Arnold, J. M.

    1978-01-01

    The implication of the dependence on active controls technology during the design phase of transport structures is considered. Critical loading conditions are discussed along with probable ways of alleviating these loads. Why fatigue requirements may be critical and can only be partially alleviated is explained. The significance of certain flutter suppression system criteria is examined.

  19. Spacecraft active thermal control technology status

    NASA Technical Reports Server (NTRS)

    Ellis, W. E.

    1978-01-01

    Four advanced space radiator concepts that were pursued in an integrated effort to develop multi-mission-use and low cost heat rejection systems which can overcome the limitations of current radiator systems are briefly discussed and described. Also, in order to establish a firm background to compare the advanced space radiator concepts, the Orbiter active thermal control system is also briefly described.

  20. DNA-based control of protein activity

    PubMed Central

    Engelen, W.; Janssen, B. M. G.

    2016-01-01

    DNA has emerged as a highly versatile construction material for nanometer-sized structures and sophisticated molecular machines and circuits. The successful application of nucleic acid based systems greatly relies on their ability to autonomously sense and act on their environment. In this feature article, the development of DNA-based strategies to dynamically control protein activity via oligonucleotide triggers is discussed. Depending on the desired application, protein activity can be controlled by directly conjugating them to an oligonucleotide handle, or expressing them as a fusion protein with DNA binding motifs. To control proteins without modifying them chemically or genetically, multivalent ligands and aptamers that reversibly inhibit their function provide valuable tools to regulate proteins in a noncovalent manner. The goal of this feature article is to give an overview of strategies developed to control protein activity via oligonucleotide-based triggers, as well as hurdles yet to be taken to obtain fully autonomous systems that interrogate, process and act on their environments by means of DNA-based protein control. PMID:26812623

  1. DNA-based control of protein activity.

    PubMed

    Engelen, W; Janssen, B M G; Merkx, M

    2016-03-01

    DNA has emerged as a highly versatile construction material for nanometer-sized structures and sophisticated molecular machines and circuits. The successful application of nucleic acid based systems greatly relies on their ability to autonomously sense and act on their environment. In this feature article, the development of DNA-based strategies to dynamically control protein activity via oligonucleotide triggers is discussed. Depending on the desired application, protein activity can be controlled by directly conjugating them to an oligonucleotide handle, or expressing them as a fusion protein with DNA binding motifs. To control proteins without modifying them chemically or genetically, multivalent ligands and aptamers that reversibly inhibit their function provide valuable tools to regulate proteins in a noncovalent manner. The goal of this feature article is to give an overview of strategies developed to control protein activity via oligonucleotide-based triggers, as well as hurdles yet to be taken to obtain fully autonomous systems that interrogate, process and act on their environments by means of DNA-based protein control. PMID:26812623

  2. Active control of vibration transmission through struts

    NASA Astrophysics Data System (ADS)

    Pelinescu, Ion; Balachandran, Balakumar

    1998-07-01

    In this work, analytical investigations into active control of longitudinal and flexural vibrations transmitted through a cylindrical strut are conducted. A mechanics based model for a strut fitted with a piezoelectric actuator is developed. For harmonic disturbances, a linear dynamic formulation describing the motion of the actuator is integrated with the formulation describing wave transmission through the strut, and the resulting system is studied in the frequency domain. Open-loop studies are conducted with the aid of numerical simulations, and the potential of active control schemes to attenuate the transmitted vibrations over the frequency range of 10 Hz to 6000 Hz is examined. The relevance of the current work to control of helicopter cabin interior noise is also discussed.

  3. Active control of transmitted sound in buildings

    NASA Astrophysics Data System (ADS)

    Thompsett, Russell Harvey George

    The problem of noise from neighbours has increased dramatically over the last few years. Many of the noise complaints are due to the high level, low frequency noise from modern stereo equipment, and are often described in terms of the low frequency characteristics of the music; the repetitive, booming, bass beat. The objective of this research was to establish the feasibility of applying active noise control to alleviate this problem. The initial approach was to evaluate the possibility of exploiting the dominance of individual modes in the response of rooms at low frequency to effect global control. However, initial investigations using a modal model of the sound field revealed that this would be difficult due to the contribution of many acoustic modes excited off resonance. This conclusion was supported by measurements of acoustic room responses in typical buildings, illustrating a non-resonant characteristic. Consequently, attention was turned to the feasibility of using local active control systems to create zones of quiet by concentrating control at a specific location near the observers ears, for example in a seat headrest, or near the pillows of a bed. The lack of a reference signal in either approach requires the use of a feedback control strategy. With a typically non-resonant system, the predictability in the disturbance necessary for successful feedback control must be contained in the primary excitation, namely the music. Examples of different music styles were investigated and of those with the potential to be a nuisance surprisingly few were significantly more predictable than a random disturbance. As expected the most encouraging control performance simulations were found for modern dance music, with a strong repetitive beat. A real-time, local controller was demonstrated in the laboratory with such a disturbance signal and the properties of the quiet zone were measured. The subjective response when hearing the controller in operation was found to be

  4. Controlling Contagion Processes in Activity Driven Networks

    NASA Astrophysics Data System (ADS)

    Liu, Suyu; Perra, Nicola; Karsai, Márton; Vespignani, Alessandro

    2014-03-01

    The vast majority of strategies aimed at controlling contagion processes on networks consider the connectivity pattern of the system either quenched or annealed. However, in the real world, many networks are highly dynamical and evolve, in time, concurrently with the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for a class of time-varying networks, namely activity-driven networks. We develop a block variable mean-field approach that allows the derivation of the equations describing the coevolution of the contagion process and the network dynamic. We derive the critical immunization threshold and assess the effectiveness of three different control strategies. Finally, we validate the theoretical picture by simulating numerically the spreading process and control strategies in both synthetic networks and a large-scale, real-world, mobile telephone call data set.

  5. Control Systems Cyber Security Standards Support Activities

    SciTech Connect

    Robert Evans

    2009-01-01

    The Department of Homeland Security’s Control Systems Security Program (CSSP) is working with industry to secure critical infrastructure sectors from cyber intrusions that could compromise control systems. This document describes CSSP’s current activities with industry organizations in developing cyber security standards for control systems. In addition, it summarizes the standards work being conducted by organizations within the sector and provides a brief listing of sector meetings and conferences that might be of interest for each sector. Control systems cyber security standards are part of a rapidly changing environment. The participation of CSSP in the development effort for these standards has provided consistency in the technical content of the standards while ensuring that information developed by CSSP is included.

  6. Actively controlled vibration welding system and method

    SciTech Connect

    Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An

    2013-04-02

    A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.

  7. Optogenetic feedback control of neural activity

    PubMed Central

    Newman, Jonathan P; Fong, Ming-fai; Millard, Daniel C; Whitmire, Clarissa J; Stanley, Garrett B; Potter, Steve M

    2015-01-01

    Optogenetic techniques enable precise excitation and inhibition of firing in specified neuronal populations and artifact-free recording of firing activity. Several studies have suggested that optical stimulation provides the precision and dynamic range requisite for closed-loop neuronal control, but no approach yet permits feedback control of neuronal firing. Here we present the ‘optoclamp’, a feedback control technology that provides continuous, real-time adjustments of bidirectional optical stimulation in order to lock spiking activity at specified targets over timescales ranging from seconds to days. We demonstrate how this system can be used to decouple neuronal firing levels from ongoing changes in network excitability due to multi-hour periods of glutamatergic or GABAergic neurotransmission blockade in vitro as well as impinging vibrissal sensory drive in vivo. This technology enables continuous, precise optical control of firing in neuronal populations in order to disentangle causally related variables of circuit activation in a physiologically and ethologically relevant manner. DOI: http://dx.doi.org/10.7554/eLife.07192.001 PMID:26140329

  8. Vibrating surface actuators for active flow control

    NASA Astrophysics Data System (ADS)

    Calkins, Frederick T.; Clingman, Dan J.

    2002-07-01

    Current research has shown that aircraft can gain significant aerodynamic performance benefits from active flow control (AFC). AFC seeks to control large scale flows by exploiting natural response triggered by small energy inputs. The principal target application is download alleviation of the V-22 Osprey under the DARPA sponsored Boeing Active Flow Control System program. One method of injecting energy into the flow over the V22 wings is to use an active vibrating surface on the passive seal between the wing and flapperon. The active surface is an oscillating cantilevered beam which injects fluid into the flow, similar to a synthetic jet, and interacts with the flow field. Two types of actuators, or flipperons, are explored. The first is a multilayer piezoelectric polyvinylidene fluoride cantilevered bender. The second is a single crystal piezoelectric (SCP)d31 poled wafer mounted on a cantilevered spring steel substrate. This paper details the development effort including fabrication, mechanical and electrical testing, and modeling for both types of actuators. Both flipperons were mounted on the passive seal between a 1/10th scale V22 wing and flapperon and the aerodynamic performance evaluated in low speed wind tunnel. The SCP flipperon demonstrated significant cruise benefits, with increase of 10 percent lift and 20 percent angle of attack capability. The PVDF flipperon provided a 16 percent drag reduction in the hover mode.

  9. Market-based control of active surfaces

    NASA Astrophysics Data System (ADS)

    Berlin, Andrew A.; Hogg, Tad; Jackson, Warren B.

    1998-12-01

    This paper describes a market-based approach to controlling a smart matter-based object transport system, in which an array of distributed air jets applies forces to levitate and control the motion of a planar object. In the smart matter regime, the effects of spatial and temporal variation of operating parameters among a multiplicity of sensor, actuators, and controllers make it desirable for a control strategy to exhibit a minimal dependence on system models, and to be able to arbitrate among conflicting goals. A market-based strategy is introduced that aggregates the control requirements of multiple relatively simple local controllers, each of which seeks to optimize the performance of the system within a limited spatial and temporal range. These local controllers act as the market's consumers, and two sets of distributed air jets act as the producers. Experiments are performed comparing the performance of the market-based strategy to a near-optimal model-derived benchmark, as well as to a hand-tuned PD controller. Results indicate that even though the local controllers in the market are not based on a detailed model of the system dynamics, the market is able to effectively approximate the performance of the model-based benchmark. In certain specialized cases, such as tracking a step trajectory, the performance of the market surpasses the performance of the model-based benchmark by balancing the needs of conflicting control goals. A brief overview of the active surface smart matter prototype being developed at Xerox PARC that is the motivation behind this work is also presented.

  10. Hybrid dampers for active vibration control

    SciTech Connect

    Gordaninejad, F.; Ray, A.

    1994-12-31

    In the present investigation feasibility of using hybrid electrorheological (ER) fluid dampers for active vibration control is examined. Small-scale, three-electrode hybrid dampers were designed and built such that they have two separate compartments to contain a viscous oil and an ER fluid. The results were compared to those obtained using a three-electrode ER fluid damper. It was shown that the use of hybrid ER fluid damper can enhance the damping. It was also found that the bang-bang and linear proportional control algorithms have similar effects on the amplitude-time response obtained from hybrid and ER fluid dampers.

  11. Distributed Energy Communications & Controls, Lab Activities - Summary

    SciTech Connect

    Rizy, D Tom

    2010-01-01

    The purpose is to develop controls for inverter-based renewable and non-renewable distributed energy systems to provide local voltage, power and power quality support for loads and the power grid. The objectives are to (1) develop adaptive controls for inverter-based distributed energy (DE) systems when there are multiple inverters on the same feeder and (2) determine the impact of high penetration high seasonal energy efficiency ratio (SEER) air conditioning (A/C) units on power systems during sub-transmission faults which can result in an A/C compressor motor stall and assess how inverter-based DE can help to mitigate the stall event. The Distributed Energy Communications & Controls Laboratory (DECC) is a unique facility for studying dynamic voltage, active power (P), non-active power (Q) and power factor control from inverter-based renewable distributed energy (DE) resources. Conventionally, inverter-based DE systems have been designed to provide constant, close to unity power factor and thus not provide any voltage support. The DECC Lab interfaces with the ORNL campus distribution system to provide actual power system testing of the controls approach. Using mathematical software tools and the DECC Lab environment, we are developing and testing local, autonomous and adaptive controls for local voltage control and P & Q control for inverter-based DE. We successfully tested our active and non-active power (P,Q) controls at the DECC laboratory along with voltage regulation controls. The new PQ control along with current limiter controls has been tested on our existing inverter test system. We have tested both non-adaptive and adaptive control modes for the PQ control. We have completed several technical papers on the approaches and results. Electric power distribution systems are experiencing outages due to a phenomenon known as fault induced delayed voltage recovery (FIDVR) due to air conditioning (A/C) compressor motor stall. Local voltage collapse from FIDVR is

  12. Unsteady aerodynamic modeling and active aeroelastic control

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1977-01-01

    Unsteady aerodynamic modeling techniques are developed and applied to the study of active control of elastic vehicles. The problem of active control of a supercritical flutter mode poses a definite design goal stability, and is treated in detail. The transfer functions relating the arbitrary airfoil motions to the airloads are derived from the Laplace transforms of the linearized airload expressions for incompressible two dimensional flow. The transfer function relating the motions to the circulatory part of these loads is recognized as the Theodorsen function extended to complex values of reduced frequency, and is termed the generalized Theodorsen function. Inversion of the Laplace transforms yields exact transient airloads and airfoil motions. Exact root loci of aeroelastic modes are calculated, providing quantitative information regarding subcritical and supercritical flutter conditions.

  13. Advanced Active Thermal Control Systems Architecture Study

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.; Ewert, Michael K.

    1996-01-01

    The Johnson Space Center (JSC) initiated a dynamic study to determine possible improvements available through advanced technologies (not used on previous or current human vehicles), identify promising development initiatives for advanced active thermal control systems (ATCS's), and help prioritize funding and personnel distribution among many research projects by providing a common basis to compare several diverse technologies. Some technologies included were two-phase thermal control systems, light-weight radiators, phase-change thermal storage, rotary fluid coupler, and heat pumps. JSC designed the study to estimate potential benefits from these various proposed and under-development thermal control technologies for five possible human missions early in the next century. The study compared all the technologies to a baseline mission using mass as a basis. Each baseline mission assumed an internal thermal control system; an external thermal control system; and aluminum, flow-through radiators. Solar vapor compression heat pumps and light-weight radiators showed the greatest promise as general advanced thermal technologies which can be applied across a range of missions. This initial study identified several other promising ATCS technologies which offer mass savings and other savings compared to traditional thermal control systems. Because the study format compares various architectures with a commonly defined baseline, it is versatile and expandable, and is expected to be updated as needed.

  14. Active Thermal Control System Development for Exploration

    NASA Technical Reports Server (NTRS)

    Westheimer, David

    2007-01-01

    All space vehicles or habitats require thermal management to maintain a safe and operational environment for both crew and hardware. Active Thermal Control Systems (ATCS) perform the functions of acquiring heat from both crew and hardware within a vehicle, transporting that heat throughout the vehicle, and finally rejecting that energy into space. Almost all of the energy used in a space vehicle eventually turns into heat, which must be rejected in order to maintain an energy balance and temperature control of the vehicle. For crewed vehicles, Active Thermal Control Systems are pumped fluid loops that are made up of components designed to perform these functions. NASA has been actively developing technologies that will enable future missions or will provide significant improvements over the state of the art technologies. These technologies have are targeted for application on the Crew Exploration Vehicle (CEV), or Orion, and a Lunar Surface Access Module (LSAM). The technologies that have been selected and are currently under development include: fluids that enable single loop ATCS architectures, a gravity insensitive vapor compression cycle heat pump, a sublimator with reduced sensitivity to feedwater contamination, an evaporative heat sink that can operate in multiple ambient pressure environments, a compact spray evaporator, and lightweight radiators that take advantage of carbon composites and advanced optical coatings.

  15. Active control of electric potential of spacecraft

    NASA Technical Reports Server (NTRS)

    Goldstein, R.

    1977-01-01

    Techniques are discussed for controlling the potential of a spacecraft by means of devices which release appropriate charged particles from the spacecraft to the environment. Attention is given to electron emitters, ion emitters, a basic electron emitter arrangement, techniques for sensing electric field or potential, and flight experiments on active potential control. It is recommended to avoid differential charging on spacecraft surfaces because it can severely affect the efficacy of emitters. Discharging the frame of a spacecraft with dielectric surfaces involves the risk of stressing the dielectric material excessively. The spacecraft should, therefore, be provided with grounded conductive surfaces. It is pointed out that particles released by control systems can return to the spacecraft.

  16. Active control of combustion for optimal performance

    SciTech Connect

    Jackson, M.D.; Agrawal, A.K.

    1999-07-01

    Combustion-zone stoichiometry and fuel-air premixing were actively controlled to optimize the combustor performance over a range of operating conditions. The objective was to maximize the combustion temperature, while maintaining NO{sub x} within a specified limit. The combustion system consisted of a premixer located coaxially near the inlet of a water-cooled shroud. The equivalence ratio was controlled by a variable-speed suction fan located downstream. The split between the premixing air and diffusion air was governed by the distance between the premixer and shroud. The combustor performance was characterized by a cost function evaluated from time-averaged measurements of NO{sub x} and oxygen concentrations in products. The cost function was minimized by downhill simplex algorithm employing closed-loop feedback. Experiments were conducted at different fuel flow rates to demonstrate that the controller optimized the performance without prior knowledge of the combustor behavior.

  17. Distributed control system for active mirrors

    NASA Astrophysics Data System (ADS)

    Rodriguez-Ramos, Luis F.; Williams, Mark R.; Castro, Javier; Cruz, A.; Gonzalez, Juan C.; Mack, Brian; Martin, Carlos; Pescador, German; Sanchez, Vicente; Sosa, Nicolas A.

    1994-06-01

    This paper presents the IAC (Instituto de Astrofisica de Canaries, Spain) proposal of a distributed control system intended for the active support of a 8 m mirror. The system incorporates a large number of compact `smart' force actuators, six force definers, and a mirror support computer (MSC) for interfacing with the telescope control system and for general housekeeping. We propose the use of a network for the interconnection of the actuators, definers and the MSC, which will minimize the physical complexity of the interface between the mirror support system and the MSC. The force actuator control electronics are described in detail, as is the system software architecture of the actuator and the MSC. As the network is a key point for the system, we also detail the evaluation of three candidates, before electing the CAN bus.

  18. The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.; Sepe, Raymond B.; Rey, Daniel; Saarmaa, Erik; Crawley, Edward F.

    1993-01-01

    The Middeck Active Control Experiment (MACE) is a NASA In-Step and Control Structure Interaction (CSI) Office funded Shuttle middeck experiment. The objective is to investigate the extent to which closed-loop behavior of flexible spacecraft in zero-gravity (0-g) can be predicted. This prediction becomes particularly difficult when dynamic behavior during ground testing exhibits extensive suspension and direct gravity coupling. On-orbit system identification and control reconfiguration is investigated to improve performance which would otherwise be limited due to errors in prediction. The program is presently in its preliminary design phase with launch expected in the summer of 1994. The MACE test article consists of three attitude control torque wheels, a two axis gimballing payload, inertial sensors and a flexible support structure. With the acquisition of a second payload, this will represent a multiple payload platform with significant structural flexibility. This paper presents on-going work in the areas of modelling and control of the MACE test article in the zero and one-gravity environments. Finite element models, which include suspension and gravity effects, and measurement models, derived from experimental data, are used as the basis for Linear Quadratic Gaussian controller designs. Finite element based controllers are analytically used to study the differences in closed-loop performance as the test article transitions between the 0-g and 1-g environments. Measurement based controllers are experimentally applied to the MACE test article in the 1-g environment and achieve over an order of magnitude improvement in payload pointing accuracy when disturbed by a broadband torque disturbance. The various aspects of the flight portion of the experiment are also discussed.

  19. The Middeck Active Control Experiment (MACE)

    NASA Astrophysics Data System (ADS)

    Miller, David W.; Sepe, Raymond B.; Rey, Daniel; Saarmaa, Erik; Crawley, Edward F.

    1993-02-01

    The Middeck Active Control Experiment (MACE) is a NASA In-Step and Control Structure Interaction (CSI) Office funded Shuttle middeck experiment. The objective is to investigate the extent to which closed-loop behavior of flexible spacecraft in zero-gravity (0-g) can be predicted. This prediction becomes particularly difficult when dynamic behavior during ground testing exhibits extensive suspension and direct gravity coupling. On-orbit system identification and control reconfiguration is investigated to improve performance which would otherwise be limited due to errors in prediction. The program is presently in its preliminary design phase with launch expected in the summer of 1994. The MACE test article consists of three attitude control torque wheels, a two axis gimballing payload, inertial sensors and a flexible support structure. With the acquisition of a second payload, this will represent a multiple payload platform with significant structural flexibility. This paper presents on-going work in the areas of modelling and control of the MACE test article in the zero and one-gravity environments. Finite element models, which include suspension and gravity effects, and measurement models, derived from experimental data, are used as the basis for Linear Quadratic Gaussian controller designs. Finite element based controllers are analytically used to study the differences in closed-loop performance as the test article transitions between the 0-g and 1-g environments. Measurement based controllers are experimentally applied to the MACE test article in the 1-g environment and achieve over an order of magnitude improvement in payload pointing accuracy when disturbed by a broadband torque disturbance. The various aspects of the flight portion of the experiment are also discussed.

  20. Application of active controls to civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, L. W., Jr.

    1975-01-01

    The impact of active controls on civil transport aircraft and some of the complex problems involved are described. The approach taken by NASA as part of the Active Control Technology Program is discussed to integrate active controls in the conceptual design phase. It is shown that when handled correctly, active controls improve aircraft performance.

  1. Local flow control for active building facades

    NASA Astrophysics Data System (ADS)

    Kaligotla, Srikar; Chen, Wayne; Glauser, Mark

    2010-11-01

    Existing building facade designs are for a passive and an impermeable shell to prevent migration of outdoor air into the building and to control heat transfers between the exterior environment and the building interior. An active facade that can respond in real time to changing environmental conditions like wind speed and direction, pollutant load, temperature, humidity and light can lower energy use and maximize occupant comfort. With an increased awareness of cost and environmental effects of energy use, cross or natural ventilation has become an attractive method to lower energy use. Separated flow regions around such buildings are undesirable due to high concentration of pollutants, especially if the vents or dynamic windows for cross ventilation are situated in these regions. Outside pollutant load redistribution through vents can be regulated via flow separation control to minimize transport of pollutants into the building. Flow separation has been substantially reduced with the application of intelligent flow control tools developed at Syracuse University for flow around "silo" (turret) like structures. Similar flow control models can be introduced into buildings with cross ventilation for local external flow separation control. Initial experiments will be performed for turbulent flow over a rectangular block (scaled to be a mid-rise building) that has been configured with dynamic vents and unsteady suction actuators in a wind tunnel at various wind speeds.

  2. Middeck Active Control Experiment (MACE), phase A

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Deluis, Javier; Miller, David W.

    1989-01-01

    A rationale to determine which structural experiments are sufficient to verify the design of structures employing Controlled Structures Technology was derived. A survey of proposed NASA missions was undertaken to identify candidate test articles for use in the Middeck Active Control Experiment (MACE). The survey revealed that potential test articles could be classified into one of three roles: development, demonstration, and qualification, depending on the maturity of the technology and the mission the structure must fulfill. A set of criteria was derived that allowed determination of which role a potential test article must fulfill. A review of the capabilities and limitations of the STS middeck was conducted. A reference design for the MACE test article was presented. Computing requirements for running typical closed-loop controllers was determined, and various computer configurations were studied. The various components required to manufacture the structure were identified. A management plan was established for the remainder of the program experiment development, flight and ground systems development, and integration to the carrier. Procedures for configuration control, fiscal control, and safety, reliabilty, and quality assurance were developed.

  3. Nanoparticle Mediated Remote Control of Enzymatic Activity

    PubMed Central

    Knecht, Leslie D.; Ali, Nur; Wei, Yinan; Hilt, J. Zach; Daunert, Sylvia

    2012-01-01

    Nanomaterials have found numerous applications as tunable, remotely controlled platforms for drug delivery, hyperthermia cancer treatment, and various other biomedical applications. The basis for the interest lies in their unique properties achieved at the nanoscale that can be accessed via remote stimuli. These properties could then be exploited to simultaneously activate secondary systems that are not remotely actuatable. In this work, iron oxide nanoparticles are encapsulated in a bisacrylamide-crosslinked polyacrylamide hydrogel network along with a model dehalogenase enzyme, L-2-HADST. This thermophilic enzyme is activated at elevated temperatures and has been shown to have optimal activity at 70 °C. By exposing the Fe3O4 nanoparticles to a remote stimulus, an alternating magnetic field (AMF), enhanced system heating can be achieved, thus remotely activating the enzyme. The internal heating of the nanocomposite hydrogel network in the AMF results in a 2-fold increase in enzymatic activity as compared to the same hydrogel heated externally in a water bath, suggesting that the internal heating of the nanoparticles is more efficient than the diffusion limited heating of the water bath. This system may prove useful for remote actuation of biomedical and environmentally relevant enzymes and find applications in a variety of fields. PMID:22989219

  4. Active Displacement Control of Active Magnetic Bearing System

    NASA Astrophysics Data System (ADS)

    Kertész, Milan; Kozakovič, Radko; Magdolen, Luboš; Masaryk, Michal

    2014-12-01

    The worldwide energy production nowadays is over 3400 GW while storage systems have a capacity of only 90 GW [1]. There is a good solution for additional storage capacity in flywheel energy storage systems (FES). The main advantage of FES is its relatively high efficiency especially with using the active magnetic bearing system. Therefore there exist good reasons for appropriate simulations and for creating a suitable magneto-structural control system. The magnetic bearing, including actuation, is simulated in the ANSYS parametric design language (APDL). APDL is used to create the loops of transient simulations where boundary conditions (BC) are updated based upon a "gap sensor" which controls the nodal position values of the centroid of the shaft and the current density inputs onto the copper windings.

  5. Understanding the brain by controlling neural activity

    PubMed Central

    Krug, Kristine; Salzman, C. Daniel; Waddell, Scott

    2015-01-01

    Causal methods to interrogate brain function have been employed since the advent of modern neuroscience in the nineteenth century. Initially, randomly placed electrodes and stimulation of parts of the living brain were used to localize specific functions to these areas. Recent technical developments have rejuvenated this approach by providing more precise tools to dissect the neural circuits underlying behaviour, perception and cognition. Carefully controlled behavioural experiments have been combined with electrical devices, targeted genetically encoded tools and neurochemical approaches to manipulate information processing in the brain. The ability to control brain activity in these ways not only deepens our understanding of brain function but also provides new avenues for clinical intervention, particularly in conditions where brain processing has gone awry. PMID:26240417

  6. Control concepts for active magnetic bearings

    NASA Technical Reports Server (NTRS)

    Siegwart, Roland; Vischer, D.; Larsonneur, R.; Herzog, R.; Traxler, Alfons; Bleuler, H.; Schweitzer, G.

    1992-01-01

    Active Magnetic Bearings (AMB) are becoming increasingly significant for various industrial applications. Examples are turbo-compressors, centrifuges, high speed milling and grinding spindles, vibration isolation, linear guides, magnetically levitated trains, vacuum and space applications. Thanks to the rapid progress and drastic cost reduction in power- and micro-electronics, the number of AMB applications is growing very rapidly. Industrial uses of AMBs leads to new requirements for AMB-actuators, sensor systems, and rotor dynamics. Especially desirable are new and better control concepts to meet demand such as low cost AMB, high stiffness, high performance, high robustness, high damping up to several kHz, vibration isolation, force-free rotation, and unbalance cancellation. This paper surveys various control concepts for AMBs and discusses their advantages and disadvantages. Theoretical and experimental results are presented.

  7. Gas turbine engine active clearance control

    NASA Technical Reports Server (NTRS)

    Deveau, Paul J. (Inventor); Greenberg, Paul B. (Inventor); Paolillo, Roger E. (Inventor)

    1985-01-01

    Method for controlling the clearance between rotating and stationary components of a gas turbine engine are disclosed. Techniques for achieving close correspondence between the radial position of rotor blade tips and the circumscribing outer air seals are disclosed. In one embodiment turbine case temperature modifying air is provided in flow rate, pressure and temperature varied as a function of engine operating condition. The modifying air is scheduled from a modulating and mixing valve supplied with dual source compressor air. One source supplies relatively low pressure, low temperature air and the other source supplies relatively high pressure, high temperature air. After the air has been used for the active clearance control (cooling the high pressure turbine case) it is then used for cooling the structure that supports the outer air seal and other high pressure turbine component parts.

  8. Active Aircraft Pylon Noise Control System

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J (Inventor); Elmiligui, Alaa A. (Inventor)

    2015-01-01

    An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.

  9. Missile flight control using active flexspar actuators

    NASA Astrophysics Data System (ADS)

    Barrett, Ronald M.; Gross, R. Steven; Brozoski, Fred

    1995-05-01

    A new type of subsonic missile flight control surface using piezoelectric flexspar actuators is presented. The flexspar design uses an aerodynamic shell which is pivoted at the quarter-chord about a graphite main spar. The shell is pitched up and down by a piezoelectric bender element which is rigidly attached to a base mount and allowed to rotate freely at the tip. The element curvature, shell pitch deflection and torsional stiffness are modeled using laminated plate theory. A one-third scale TOW 2B missile model was used as a demonstration platform. A static wing of the missile was replaced with an active flexspar wing. The 1' X 2.7' active flight control surface was powered by a bi-morph bender with 5-mil PZT-5H sheets. Bench and wind tunnel testing showed good correlation between theory and experiment and static pitch deflections in excess of +/- 14 degree(s). A natural frequency of 78.5 rad/s with a break frequency of 157 rad/s was measured. Wind tunnel tests revealed no flutter or divergence tendencies. Maximum changes in lift coefficient were measured at (Delta) CL equals +/- .73 which indicates that terminal and initial missile load factors may be increased by approximately 3.1 and 12.6 g's respectively, leading to a greatly reduced turn radius of only 2,400 ft.

  10. Model-free fuzzy control of a magnetorheological elastomer vibration isolation system: analysis and experimental evaluation

    NASA Astrophysics Data System (ADS)

    Fu, Jie; Li, Peidong; Wang, Yuan; Liao, Guanyao; Yu, Miao

    2016-03-01

    This paper addresses the problem of micro-vibration control of a precision vibration isolation system with a magnetorheological elastomer (MRE) isolator and fuzzy control strategy. Firstly, a polyurethane matrix MRE isolator working in the shear-compression mixed mode is introduced. The dynamic characteristic is experimentally tested, and the range of the frequency shift and the model parameters of the MRE isolator are obtained from experimental results. Secondly, a new semi-active control law is proposed, which uses isolation structure displacement and relative displacement between the isolation structure and base as the inputs. Considering the nonlinearity of the MRE isolator and the excitation uncertainty of an isolation system, the designed semi-active fuzzy logic controller (FLC) is independent of a system model and is robust. Finally, the numerical simulations and experiments are conducted to evaluate the performance of the FLC with single-frequency and multiple-frequency excitation, respectively, and the experimental results show that the acceleration transmissibility is reduced by 54.04% at most, which verifies the effectiveness of the designed semi-active FLC. Moreover, the advantages of the approach are demonstrated in comparison to the passive control and ON-OFF control.

  11. Amplitude Scaling of Active Separation Control

    NASA Technical Reports Server (NTRS)

    Stalnov, Oksana; Seifert, Avraham

    2010-01-01

    Three existing and two new excitation magnitude scaling options for active separation control at Reynolds numbers below one Million. The physical background for the scaling options was discussed and their relevance was evaluated using two different sets of experimental data. For F+ approx. 1, 2D excitation: a) The traditional VR and C(mu) - do not scale the data. b) Only the Re*C(mu) is valid. This conclusion is also limited for positive lift increment.. For F+ > 10, 3D excitation, the Re corrected C(mu), the St corrected velocity ratio and the vorticity flux coefficient, all scale the amplitudes equally well. Therefore, the Reynolds weighted C(mu) is the preferred choice, relevant to both excitation modes. Incidence also considered, using Ue from local Cp.

  12. Ribosome-dependent activation of stringent control.

    PubMed

    Brown, Alan; Fernández, Israel S; Gordiyenko, Yuliya; Ramakrishnan, V

    2016-06-01

    In order to survive, bacteria continually sense, and respond to, environmental fluctuations. Stringent control represents a key bacterial stress response to nutrient starvation that leads to rapid and comprehensive reprogramming of metabolic and transcriptional patterns. In general, transcription of genes for growth and proliferation is downregulated, while those important for survival and virulence are upregulated. Amino acid starvation is sensed by depletion of the aminoacylated tRNA pools, and this results in accumulation of ribosomes stalled with non-aminoacylated (uncharged) tRNA in the ribosomal A site. RelA is recruited to stalled ribosomes and activated to synthesize a hyperphosphorylated guanosine analogue, (p)ppGpp, which acts as a pleiotropic secondary messenger. However, structural information about how RelA recognizes stalled ribosomes and discriminates against aminoacylated tRNAs is missing. Here we present the cryo-electron microscopy structure of RelA bound to the bacterial ribosome stalled with uncharged tRNA. The structure reveals that RelA utilizes a distinct binding site compared to the translational factors, with a multi-domain architecture that wraps around a highly distorted A-site tRNA. The TGS (ThrRS, GTPase and SpoT) domain of RelA binds the CCA tail to orient the free 3' hydroxyl group of the terminal adenosine towards a β-strand, such that an aminoacylated tRNA at this position would be sterically precluded. The structure supports a model in which association of RelA with the ribosome suppresses auto-inhibition to activate synthesis of (p)ppGpp and initiate the stringent response. Since stringent control is responsible for the survival of pathogenic bacteria under stress conditions, and contributes to chronic infections and antibiotic tolerance, RelA represents a good target for the development of novel antibacterial therapeutics. PMID:27279228

  13. Active Control of Wind Tunnel Noise

    NASA Technical Reports Server (NTRS)

    Hollis, Patrick (Principal Investigator)

    1991-01-01

    The need for an adaptive active control system was realized, since a wind tunnel is subjected to variations in air velocity, temperature, air turbulence, and some other factors such as nonlinearity. Among many adaptive algorithms, the Least Mean Squares (LMS) algorithm, which is the simplest one, has been used in an Active Noise Control (ANC) system by some researchers. However, Eriksson's results, Eriksson (1985), showed instability in the ANC system with an ER filter for random noise input. The Restricted Least Squares (RLS) algorithm, although computationally more complex than the LMS algorithm, has better convergence and stability properties. The ANC system in the present work was simulated by using an FIR filter with an RLS algorithm for different inputs and for a number of plant models. Simulation results for the ANC system with acoustic feedback showed better robustness when used with the RLS algorithm than with the LMS algorithm for all types of inputs. Overall attenuation in the frequency domain was better in the case of the RLS adaptive algorithm. Simulation results with a more realistic plant model and an RLS adaptive algorithm showed a slower convergence rate than the case with an acoustic plant as a delay plant. However, the attenuation properties were satisfactory for the simulated system with the modified plant. The effect of filter length on the rate of convergence and attenuation was studied. It was found that the rate of convergence decreases with increase in filter length, whereas the attenuation increases with increase in filter length. The final design of the ANC system was simulated and found to have a reasonable convergence rate and good attenuation properties for an input containing discrete frequencies and random noise.

  14. Missile flight control using active flexspar actuators

    NASA Astrophysics Data System (ADS)

    Barrett, Ron; Gross, R. Steven; Brozoski, Fred

    1996-04-01

    A new type of subsonic missile flight control surface using piezoelectric flexspar actuators is presented. The flexspar design uses an aerodynamic shell which is pivoted at the quarter-chord about a graphite main spar. The shell is pitched up and down by a piezoelectric bender element which is rigidly attached to a base mount and allowed to rotate freely at the tip. The element curvature, shell pitch deflection and torsional stiffness are modeled using laminated plate theory. A one-third scale TOW 2B missile model was used as a demonstration platform. A static wing of the missile was replaced with an active flexspar wing. The 1 in 0964-1726/5/2/002/img1 2.7 in active flight control surface was powered by a bimorph bender with 5 mil PZT-5H sheets. Bench and wind tunnel testing showed good correlation between theory and experiment and static pitch deflections in excess of 0964-1726/5/2/002/img2. A natural frequency of 78.5 rad 0964-1726/5/2/002/img3 with a break frequency of 157 rad 0964-1726/5/2/002/img3 was measured. Wind tunnel tests revealed no flutter or divergence tendencies. Maximum changes in lift coefficient were measured at 0964-1726/5/2/002/img5 which indicates that terminal and initial missile load factors may be increased by approximately 3.1 and 12.6 g respectively, leading to a greatly reduced turn radius of only 2400 ft.

  15. Active Shielding and Control of Environmental Noise

    NASA Technical Reports Server (NTRS)

    Tsynkov, S. V.

    2001-01-01

    In the framework of the research project supported by NASA under grant # NAG-1-01064, we have studied the mathematical aspects of the problem of active control of sound, i.e., time-harmonic acoustic disturbances. The foundations of the methodology are described in our paper [1]. Unlike. many other existing techniques, the approach of [1] provides for the exact volumetric cancellation of the unwanted noise on a given predetermined region airspace, while leaving unaltered those components of the total acoustic field that are deemed as friendly. The key finding of the work is that for eliminating the unwanted component of the acoustic field in a given area, one needs to know relatively little; in particular, neither the locations nor structure nor strength of the exterior noise sources need to be known. Likewise, there is no need to know the volumetric properties of the supporting medium across which the acoustic signals propagate, except, maybe, in a narrow area of space near the perimeter of the protected region. The controls are built based solely on the measurements performed on the perimeter of the domain to be shielded; moreover, the controls themselves (i.e., additional sources) are concentrated also only on or near this perimeter. Perhaps as important, the measured quantities can refer to the total acoustic field rather than to its unwanted component only, and the methodology can automatically distinguish between the two. In [1], we have constructed the general solution for controls. The apparatus used for deriving this general solution is closely connected to the concepts of generalized potentials and boundary projections of Calderon's type. For a given total wave field, the application of a Calderon's projection allows one to definitively tell between its incoming and outgoing components with respect to a particular domain of interest, which may have arbitrary shape. Then, the controls are designed so that they suppress the incoming component for the domain

  16. Actively controlled thin-shell space optics

    NASA Astrophysics Data System (ADS)

    Denoyer, Keith K.; Flint, Eric M.; Main, John A.; Lindler, Jason E.

    2003-08-01

    Increasingly, scientific and military missions require the use of space-based optical systems. For example, new capabilities are required for imaging terrestrial like planets, for surveillance, and for directed energy applications. Given the difficulties in producing and launching large optics, it is doubtful that refinements of conventional technology will meet future needs, particularly in a cost-effective manner. To meet this need, recent research has been investigating the feasibility of a new class of ultra-lightweight think-skin optical elements that combine recent advances in lightweight thermally formed materials, active materials, and novel sensing and control architectures. If successful, the approach may lead to an order of magnitude reduction in space optics areal density, improved large scale manufacturing capability, and dramatic reductions in manufacturing and launch costs. In a recent effort, a one meter thin-film mirror like structure was fabricated. This paper provides an overview of tools used to model and simulate this structure as well as results from structural dynamic testing. In addition, progress in the area of non-contact global shape control using smart materials is presented.

  17. High performance composites with active stiffness control.

    PubMed

    Tridech, Charnwit; Maples, Henry A; Robinson, Paul; Bismarck, Alexander

    2013-09-25

    High performance carbon fiber reinforced composites with controllable stiffness could revolutionize the use of composite materials in structural applications. Here we describe a structural material, which has a stiffness that can be actively controlled on demand. Such a material could have applications in morphing wings or deployable structures. A carbon fiber reinforced-epoxy composite is described that can undergo an 88% reduction in flexural stiffness at elevated temperatures and fully recover when cooled, with no discernible damage or loss in properties. Once the stiffness has been reduced, the required deformations can be achieved at much lower actuation forces. For this proof-of-concept study a thin polyacrylamide (PAAm) layer was electrocoated onto carbon fibers that were then embedded into an epoxy matrix via resin infusion. Heating the PAAm coating above its glass transition temperature caused it to soften and allowed the fibers to slide within the matrix. To produce the stiffness change the carbon fibers were used as resistance heating elements by passing a current through them. When the PAAm coating had softened, the ability of the interphase to transfer load to the fibers was significantly reduced, greatly lowering the flexural stiffness of the composite. By changing the moisture content in PAAm fiber coating, the temperature at which the PAAm softens and the composites undergo a reduction in stiffness can be tuned. PMID:23978266

  18. Robust controllers for the Middeck Active Control Experiment using Popov controller synthesis

    NASA Technical Reports Server (NTRS)

    How, Jonathan P.; Hall, Steven R.

    1993-01-01

    Recent work in robust control with real parameter uncertainties has focused on absolute stability and its connections to real mu theory. In particular, the research has investigated the Popov stability criterion and its associated Lur'e-Postnikov Liapunov functions. State space representations of this Popov stability analysis tests are included in an H2 design formulation to provide a powerful technique for robust controller synthesis. This synthesis approach uses a state space optimization procedure to design controllers that minimize an overbound of an H2 cost functional and satisfy stability analysis tests based on the Popov multiplier. The controller and stability multiplier coefficients are optimized simultaneously, which avoids the iteration and curve-fitting procedures required by the D-K algorithm of mu synthesis. While previous work has demonstrated this synthesis approach on benchmark control problems, the purpose of this paper is to use Popov controller synthesis to design robust compensators for the Middeck Active Control Experiment (MACE).

  19. Open architecture controller activities in Technology Enabling Agile Manufacturing (TEAM)

    NASA Astrophysics Data System (ADS)

    McCue, Howard K.

    1997-01-01

    As part of its manufacturing initiative, TEAM is actively involved in open architecture controller activities. WIthin the TEAM community of members, TEAM is developing an open architecture controller requirements document and an open architecture controller application programming interface document. In addition, TEAM is also evaluating early open architecture controllers in a shop floor environment.

  20. Aerodynamic Control using Distributed Active Bleed

    NASA Astrophysics Data System (ADS)

    Kearney, John; Glezer, Ari

    2015-11-01

    The global aerodynamic loads on a stationary and pitching airfoil at angles of attack beyond the static and dynamic stall margins, respectively are controlled in wind tunnel experiments using regulated distributed bleed driven by surface pressure differences. High-speed PIV and proper orthogonal decomposition of the vorticity flux on the static airfoil show that the bleed engenders trains of discrete vortices that advect along the surface and are associated with a local instability that is manifested by a time-averaged bifurcation of the vorticity layer near the bleed outlets and alters the vorticity flux over the airfoil and thereby the aerodynamic loads. Active bleed is used on a dynamically pitching airfoil (at reduced frequencies up to k = 0.42) to modulate the evolution of vorticity concentrations during dynamic stall. Time-periodic bleed improved the pitch stability by reducing adverse pitching moment (``negative damping'') that can precipitate structural instabilities. At the same time, the maintains the cycle-average loads to within 5% of the base flow levels by segmenting the vorticity layer during upstroke and promoting early flow attachment during downstroke segments of the pitch cycle. Supported by Georgia Tech VLRCOE.

  1. Active control of buckling of flexible beams

    NASA Technical Reports Server (NTRS)

    Baz, A.; Tampe, L.

    1989-01-01

    Mathematical models are presented that simulate the dynamic characteristics of shape memory alloy actuators made of nickel-titanium alloy (Nitinol) controlling the buckling of compressive structural members. A closed-loop computer-controlled system has been designed, based on the proposed mathematical models, and has been implemented to control the buckling of simple beams. The performance of the computer-controlled system is evaluated experimentally and compared with the theoretical predictions to validate the developed models. The results emphasized the importance of buckling control and suggest the potential of shape memory alloy actuators as attractive means for controlling structural deformation in a simple and reliable way.

  2. Active controllers and the time duration to learn a task

    NASA Technical Reports Server (NTRS)

    Repperger, D. W.; Goodyear, C.

    1986-01-01

    An active controller was used to help train naive subjects involved in a compensatory tracking task. The controller is called active in this context because it moves the subject's hand in a direction to improve tracking. It is of interest here to question whether the active controller helps the subject to learn a task more rapidly than the passive controller. Six subjects, inexperienced to compensatory tracking, were run to asymptote root mean square error tracking levels with an active controller or a passive controller. The time required to learn the task was defined several different ways. The results of the different measures of learning were examined across pools of subjects and across controllers using statistical tests. The comparison between the active controller and the passive controller as to their ability to accelerate the learning process as well as reduce levels of asymptotic tracking error is reported here.

  3. Quasi-modal vibration control by means of active control bearings

    NASA Technical Reports Server (NTRS)

    Nonami, K.; Fleming, D. P.

    1986-01-01

    This paper investigates a design method of an active control bearing system with only velocity feedback. The study provides a new quasi-modal control method for a control system design of an active control bearing system in which feedback coefficients are determined on the basis of a modal analysis. Although the number of sensors and actuators is small, this quasi-modal control method produces a control effect close to an ideal modal control.

  4. Low Activity Waste Feed Process Control Strategy

    SciTech Connect

    STAEHR, T.W.

    2000-06-14

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system.

  5. Active flutter control for flexible vehicles, volume 1

    NASA Technical Reports Server (NTRS)

    Mahesh, J. K.; Garrard, W. L.; Stones, C. R.; Hausman, P. D.

    1979-01-01

    An active flutter control methodology based on linear quadratic gaussian theory and its application to the control of a super critical wing is presented. Results of control surface and sensor position optimization are discussed. Both frequency response matching and residualization used to obtain practical flutter controllers are examined. The development of algorithms and computer programs for flutter modeling and active control design procedures is reported.

  6. Active parallel redundancy for electronic integrator-type control circuits

    NASA Technical Reports Server (NTRS)

    Peterson, R. A.

    1971-01-01

    Circuit extends concept of redundant feedback control from type-0 to type-1 control systems. Inactive channels are slaves to the active channel, if latter fails, it is rejected and slave channel is activated. High reliability and elimination of single-component catastrophic failure are important in closed-loop control systems.

  7. Student Activity Funds: Creating a System of Controls That Work.

    ERIC Educational Resources Information Center

    Cuzzetto, Charles

    1995-01-01

    Although student-activity funds usually represent a small portion of school-system monies, their very nature makes them a high risk. Outlines three steps for maintaining an efficient and effective system of controls over student-activity funds: (1) identifying control issues; (2) designing a control system; and (3) using checks and balances.…

  8. Attitude control with active actuator saturation prevention

    NASA Astrophysics Data System (ADS)

    Forbes, James Richard

    2015-02-01

    Spacecraft attitude control in the presence of actuator saturation is considered. The attitude controller developed has two components: a proportional component and an angular velocity component. The proportional control has a special form that depends on the attitude parameterization. The angular velocity control is realized by a strictly positive real system with its own input nonlinearity. The strictly positive real system can filter noise in the angular velocity measurement. With this control architecture the torques applied to the body are guaranteed to be below a predetermined value, thus preventing saturation of the actuators. The closed-loop equilibrium point corresponding to the desired attitude is shown to be asymptotically stable. Additionally, the control law does not require specific knowledge of the body's inertia properties, and is therefore robust to such modelling errors.

  9. Coherent control of birefringence and optical activity

    NASA Astrophysics Data System (ADS)

    Mousavi, Seyedmohammad A.; Plum, Eric; Shi, Jinhui; Zheludev, Nikolay I.

    2014-07-01

    We show that polarization effects due to anisotropy and chirality affecting a wave propagating through a thin slab of material can be controlled by another electromagnetic wave. No nonlinearity of the metamaterial slab is required and the control can be exercised at arbitrarily low intensities. In proof-of-principle experiments with anisotropic and chiral microwave metamaterials, we show that manifestations of linear and circular birefringence and dichroism can be modulated by the control wave from their maximum value to zero.

  10. Modeling the Benchmark Active Control Technology Wind-Tunnel Model for Active Control Design Applications

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.

    1998-01-01

    This report describes the formulation of a model of the dynamic behavior of the Benchmark Active Controls Technology (BACT) wind tunnel model for active control design and analysis applications. The model is formed by combining the equations of motion for the BACT wind tunnel model with actuator models and a model of wind tunnel turbulence. The primary focus of this report is the development of the equations of motion from first principles by using Lagrange's equations and the principle of virtual work. A numerical form of the model is generated by making use of parameters obtained from both experiment and analysis. Comparisons between experimental and analytical data obtained from the numerical model show excellent agreement and suggest that simple coefficient-based aerodynamics are sufficient to accurately characterize the aeroelastic response of the BACT wind tunnel model. The equations of motion developed herein have been used to aid in the design and analysis of a number of flutter suppression controllers that have been successfully implemented.

  11. Tuning of active vibration controllers for ACTEX by genetic algorithm

    NASA Astrophysics Data System (ADS)

    Kwak, Moon K.; Denoyer, Keith K.

    1999-06-01

    This paper is concerned with the optimal tuning of digitally programmable analog controllers on the ACTEX-1 smart structures flight experiment. The programmable controllers for each channel include a third order Strain Rate Feedback (SRF) controller, a fifth order SRF controller, a second order Positive Position Feedback (PPF) controller, and a fourth order PPF controller. Optimal manual tuning of several control parameters can be a difficult task even though the closed-loop control characteristics of each controller are well known. Hence, the automatic tuning of individual control parameters using Genetic Algorithms is proposed in this paper. The optimal control parameters of each control law are obtained by imposing a constraint on the closed-loop frequency response functions using the ACTEX mathematical model. The tuned control parameters are then uploaded to the ACTEX electronic control electronics and experiments on the active vibration control are carried out in space. The experimental results on ACTEX will be presented.

  12. Position dependent rate dampening in any active hand controller

    NASA Technical Reports Server (NTRS)

    Gregory, William W. (Inventor); Kauffman, James W. (Inventor)

    1994-01-01

    A control system for an active hand controller, for example, uses a control stick connected to and controlled by a motor. Electronics are provided to control the motor to eliminate oscillations due to motor torque and high gain due to breakout at the control stick when the control stick is at about its null position. Both hardware as well as software implementations can provide position dependent dampening to the control sticks such that when the control stick is located about a null position, a higher rate of dampening is provided than when the control stick is located outside the null position, when a lower rate of dampening is provided. The system provides a stable active hand controller control stick without degraded force and feel characteristics of the system.

  13. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Garg, S.; Schmidt, D. K.

    1986-01-01

    The utility of augmenting displays to aid the human operator in controlling high order complex systems is well known. Analytical evaluation of various display designs for a simple k/s sup 2 plant in a compensatory tracking task using an optimal Control Model (OCM) of human behavior is carried out. This analysis reveals that significant improvement in performance should be obtained by skillful integration of key information into the display dynamics. The cooperative control synthesis technique previously developed to design pilot-optimal control augmentation is extended to incorporate the simultaneous design of performance enhancing augmented displays. The application of the cooperative control synthesis technique to the design of augmented displays is discussed for the simple k/s sup 2 plant. This technique is intended to provide a systematic approach to design optimally augmented displays tailored for specific tasks.

  14. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Garg, S.; Schmidt, D. K.

    1985-01-01

    A technique is developed that is intended to provide a systematic approach to synthesizing display augmentation for optimal manual control in complex, closed-loop tasks. A cooperative control synthesis technique, previously developed to design pilot-optimal control augmentation for the plant, is extended to incorporate the simultaneous design of performance enhancing displays. The technique utilizes an optimal control model of the man in the loop. It is applied to the design of a quickening control law for a display and a simple K/s(2) plant, and then to an F-15 type aircraft in a multi-channel task. Utilizing the closed loop modeling and analysis procedures, the results from the display design algorithm are evaluated and an analytical validation is performed. Experimental validation is recommended for future efforts.

  15. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Gary, Sanjay; Schmidt, David K.

    1987-01-01

    A technique is developed that is intended to provide a systematic approach to synthesizing display augmentation for optimal manual control in complex, closed-loop tasks. A cooperative control synthesis technique, previously developed to design pilot-optimal control augmentation for the plant, is extended to incorporate the simultaneous design of performance enhancing displays. The technique utilizes an optimal control model of the man in the loop. It is applied to the design of a quickening control law for a display and a simple K/(s squared) plant, and then to an F-15 type aircraft in a multichannel task. Utilizing the closed-loop modeling and analysis procedures, the results from the display design algorithm are evaluated and an analytical validation is performed. Experimental validation is recommended for future efforts.

  16. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Garg, S.; Schmidt, D. K.

    1985-01-01

    The utility of augmenting displays to aid the human operator in controlling high order complex systems is well known. Analytical evaluations of various display designs for a simple k/s-squared plant in a compensatory tracking task using an Optimal Control Model (OCM) of human behavior is carried out. This analysis reveals that significant improvement in performance should be obtained by skillful integration of key information into the display dynamics. The cooperative control synthesis technique previously developed to design pilot-optimal control augmentation is extended to incorporate the simultaneous design of performance enhancing augmented displays. The application of the cooperative control synthesis technique to the design of augmented displays is discussed for the simple k/s-squared plant. This technique is intended to provide a systematic approach to design optimally augmented displays tailored for specific tasks.

  17. Active Combustion Control for Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.

    2000-01-01

    Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.

  18. Acceleration-Augmented LQG Control of an Active Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Feeley, Joseph J.

    1993-01-01

    A linear-quadratic-gaussian (LQG) regulator controller design for an acceleration-augmented active magnetic bearing (AMB) is outlined. Acceleration augmentation is a key feature in providing improved dynamic performance of the controller. The optimal control formulation provides a convenient method of trading-off fast transient response and force attenuation as control objectives.

  19. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1991-01-01

    The main objective is to determine the feasibility of utilizing controllable mechanical seals for aerospace applications. A potential application was selected as a demonstration case: the buffer gas seal in a LOX (liquid oxygen) turbopump. Currently, floating ring seals are used in this application. Their replacement with controllable mechanical seals would result in substantially reduced leakage rates. This would reduce the required amount of stored buffer gas, and therefore increase the vehicle payload. For such an application, a suitable controllable mechanical seal was designed and analyzed.

  20. PARTICULATE EMISSION MEASUREMENTS FROM CONTROLLED CONSTRUCTION ACTIVITIES

    EPA Science Inventory

    The report summarized the results of field testing of the effectiveness of control measures for sources of fugitive particulate emissions found at construction sites. The effectiveness of watering temporary, unpaved travel surfaces on emissions of particulate matter with aerodyna...

  1. Active control of flexural vibrations in beams

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.

    1987-01-01

    The feasibility of using piezoelectric actuators to control the flexural oscillations of large structures in space is investigated. Flexural oscillations are excited by impulsive loads. The vibratory response can degrade the pointing accuracy of cameras and antennae, and can cause high stresses at structural node points. Piezoelectric actuators have the advantage of exerting localized bending moments. In this way, vibration is controlled without exciting rigid body modes. The actuators are used in collocated sensor/driver pairs to form a feedback control system. The sensor produces a voltage that is proportional to the dynamic stress at the sensor location, and the driver produces a force that is proportional to the voltage applied to it. The analog control system amplifies and phase shifts the sensor signal to produce the voltage signal that is applied to the driver. The feedback control is demonstrated to increase the first mode damping in a cantilever beam by up to 100 percent, depending on the amplifier gain. The damping efficiency of the control system when the piezoelectrics are not optimally positioned at points of high stress in the beam is evaluated.

  2. Active chatter control in a milling machine

    SciTech Connect

    Dohner, J.L.; Hinnerichs, T.D.; Lauffer, J.P.

    1997-08-01

    The use of active feedback compensation to mitigate cutting instabilities in an advanced milling machine is discussed in this paper. A linear structural model delineating dynamics significant to the onset of cutting instabilities was combined with a nonlinear cutting model to form a dynamic depiction of an existing milling machine. The model was validated with experimental data. Modifications made to an existing machine model were used to predict alterations in dynamics due to the integration of active feedback compensation. From simulations, subcomponent requirements were evaluated and cutting enhancements were predicted. Active compensation was shown to enable more than double the metal removal rate over conventional milling machines. 25 refs., 10 figs., 1 tab.

  3. Experimental investigation of active machine tool vibration control

    NASA Astrophysics Data System (ADS)

    Rojas, J.; Liang, Chen; Geng, Zheng J.

    1996-05-01

    The successful vibration reduction of machine tools during machining process can improve productivity, increase quality, and reduce tool wear. This paper will present our initial investigation in the application of smart material technologies in machine tool vibration control using magnetostrictive actuators and electrorheological elastomer dampers on an industrial Sheldon horizontal lathe. The dynamics of the machining process are first studied, which reveals the complexity in the machine tool vibration response and the challenge to the active control techniques. The active control experiment shows encouraging results. The use of electrorheological elastomer damping device for active/passive vibration control provides significant vibration reduction in the high frequency range and great improvement in the workpiece surface finishing. The research presented in this paper demonstrates that the combination of active and active/passive vibration control techniques is very promising for successful machine tool vibration control.

  4. Formal Verification of Effectiveness of Control Activities in Business Processes

    NASA Astrophysics Data System (ADS)

    Arimoto, Yasuhito; Iida, Shusaku; Futatsugi, Kokichi

    It has been an important issue to deal with risks in business processes for achieving companies' goals. This paper introduces a method for applying a formal method to analysis of risks and control activities in business processes in order to evaluate control activities consistently, exhaustively, and to give us potential to have scientific discussion on the result of the evaluation. We focus on document flows in business activities and control activities and risks related to documents because documents play important roles in business. In our method, document flows including control activities are modeled and it is verified by OTS/CafeOBJ Method that risks about falsification of documents are avoided by control activities in the model. The verification is done by interaction between humans and CafeOBJ system with theorem proving, and it raises potential to discuss the result scientifically because the interaction gives us rigorous reasons why the result is derived from the verification.

  5. Active Control of Magnetically Levitated Bearings

    SciTech Connect

    BARNEY, PATRICK S.; LAUFFER, JAMES P.; REDMOND, JAMES M.; SULLIVAN, WILLIAM N.

    2001-03-01

    This report summarizes experimental and test results from a two year LDRD project entitled Real Time Error Correction Using Electromagnetic Bearing Spindles. This project was designed to explore various control schemes for levitating magnetic bearings with the goal of obtaining high precision location of the spindle and exceptionally high rotational speeds. As part of this work, several adaptive control schemes were devised, analyzed, and implemented on an experimental magnetic bearing system. Measured results, which indicated precision positional control of the spindle was possible, agreed reasonably well with simulations. Testing also indicated that the magnetic bearing systems were capable of very high rotational speeds but were still not immune to traditional structural dynamic limitations caused by spindle flexibility effects.

  6. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1993-01-01

    An electronically controlled mechanical seal for use as the purge gas seal in a liquid oxygen turbo pump has been fabricated and tested under transient operating conditions. The thickness of the lubricating film is controlled by adjusting the coning of the carbon face. This is accomplished by applying a voltage to a piezoelectric actuator to which the carbon face is bonded. The seal has been operated with a closed-loop control system that utilizes either the leakage rate or the seal face temperature as the feedback. Both speed and pressure transients have been imposed on the seal. The transient tests have demonstrated that the seal is capable of maintaining low leakage rates while limiting the face temperatures.

  7. Numerical Investigation of Plasma Active Flow Control

    NASA Astrophysics Data System (ADS)

    Sun, Baigang; Li, Feng; Zhang, Shanshan; Wang, Jingyu; Zhang, Lijuan; Zhao, Erlei

    2010-12-01

    Based on the theory of EHD (electronhydrodynamic), a simplified volume force model is applied to simulation to analyze the traits of plasma flow control in flow field, in which the cold plasma is generated by a DBD (dielectric-barrier-discharge) actuator. With the para-electric action of volume force in electric field, acceleration characteristics of the plasma flow are investigated for different excitation intensities of RF (radio frequency) power for the actuator. Furthermore, the plasma acceleration leads to an asymmetric distribution of flow field, and hence induces the deflection of jet plume, then results in a significant deflection angle of 6.26° thrust-vectoring effect. It appears that the plasma flow control technology is a new tentative method for the thrust-vectoring control of a space vehicle.

  8. Active Flap Control of the SMART Rotor for Vibration Reduction

    NASA Technical Reports Server (NTRS)

    Hall, Steven R.; Anand, R. Vaidyanathan; Straub, Friedrich K.; Lau, Benton H.

    2009-01-01

    Active control methodologies were applied to a full-scale active flap rotor obtained during a joint Boeing/ DARPA/NASA/Army test in the Air Force National Full-Scale Aerodynamic Complex 40- by 80-foot anechoic wind tunnel. The active flap rotor is a full-scale MD 900 helicopter main rotor with each of its five blades modified to include an on-blade piezoelectric actuator-driven flap with a span of 18% of radius, 25% of chord, and located at 83% radius. Vibration control demonstrated the potential of active flaps for effective control of vibratory loads, especially normal force loads. Active control of normal force vibratory loads using active flaps and a continuous-time higher harmonic control algorithm was very effective, reducing harmonic (1-5P) normal force vibratory loads by 95% in both cruise and approach conditions. Control of vibratory roll and pitch moments was also demonstrated, although moment control was less effective than normal force control. Finally, active control was used to precisely control blade flap position for correlation with pretest predictions of rotor aeroacoustics. Flap displacements were commanded to follow specific harmonic profiles of 2 deg or more in amplitude, and the flap deflection errors obtained were less than 0.2 deg r.m.s.

  9. Recent advances in active control of aircraft cabin noise

    NASA Astrophysics Data System (ADS)

    Mathur, Gopal; Fuller, Christopher

    2002-11-01

    Active noise control techniques can provide significant reductions in aircraft interior noise levels without the structural modifications or weight penalties usually associated with passive techniques, particularly for low frequency noise. Our main objective in this presentation is to give a review of active control methods and their applications to aircraft cabin noise reduction with an emphasis on recent advances and challenges facing the noise control engineer in the practical application of these techniques. The active noise control method using secondary acoustic sources, e.g., loudspeakers, as control sources for tonal noise reduction is first discussed with results from an active noise control flight test demonstration. An innovative approach of applying control forces directly to the fuselage structure using piezoelectric actuators, known as active structural acoustic control (ASAC), to control cabin noise is then presented. Experimental results from laboratory ASAC tests conducted on a full-scale fuselage and from flight tests on a helicopter will be discussed. Finally, a hybrid active/passive noise control approach for achieving significant broadband noise reduction will be discussed. Experimental results of control of broadband noise transmission through an aircraft structure will be presented.

  10. Pulley With Active Antifriction Actuator And Control

    NASA Technical Reports Server (NTRS)

    Ih, Che-Hang C.; Vivian, Howard C.

    1994-01-01

    Torque actuator and associated control system minimizes effective friction of rotary bearing. Motor exerts compensating torque in response to feedback from external optical sensor. Compensation torque nearly cancels frictional torque of shaft bearings. Also useful in reducing bearing friction in gyro-scopes, galvanometers, torquemeters, accelerometers, earth-motion detectors, and balances.

  11. Selective Activation and Disengagement of Moral Control.

    ERIC Educational Resources Information Center

    Bandura, Albert

    1990-01-01

    Analyzes psychological mechanisms by which moral control is selectively disengaged from inhumane conduct in ordinary and unusual circumstances. Explores the symptoms of moral exclusion as described in the literature. Presents categories that unify theory on moral exclusion and contribute practical classifications for use in empirical studies. (JS)

  12. Active control of cantilever-beam vibration

    NASA Astrophysics Data System (ADS)

    Serbyn, M. Roman

    2002-11-01

    A bang-bang control system previously developed for the stabilization of a rigid platform [ISA Trans. 21, 55-59 (1982)] has been adapted to the problem of reducing flexural vibrations of a beam. The electromechanical system develops an appropriate control signal for the actuator from samples of the disturbance by analog and digital signal processing using integrated circuits. The effectiveness of this approach is predicated upon the sampling rate being much higher than the maximum vibration frequency to be silenced. It is also robust with respect to the waveform of the disturbance. Noise reductions of 10-20 dB have been achieved, depending on the bandwidth of the noise. The cantilever, chosen because of its mechanical and theoretical simplicity, provides a good foundation for the study of more complex structures, like airfoils and nonrigid platforms. In both experimental and analytical investigations the emphasis has been on the optimization of control parameters, particularly with regard to the application of the cancellation signal. Reduction in size and cost of the control unit is possible by incorporating the latest technological advances in electronic and electromechanical devices, such as FPGA boards and MEMS components.

  13. Advanced Study for Active Noise Control in Aircraft (ASANCA)

    NASA Technical Reports Server (NTRS)

    Borchers, Ingo U.; Emborg, Urban; Sollo, Antonio; Waterman, Elly H.; Paillard, Jacques; Larsen, Peter N.; Venet, Gerard; Goeransson, Peter; Martin, Vincent

    1992-01-01

    Aircraft interior noise and vibration measurements are included in this paper from ground and flight tests. In addition, related initial noise calculations with and without active noise control are conducted. The results obtained to date indicate that active noise control may be an effective means for reducing the critical low frequency aircraft noise.

  14. An electronic control for an electrohydraulic active control landing gear for the F-4 aircraft

    NASA Technical Reports Server (NTRS)

    Ross, I.

    1982-01-01

    A controller for an electrohydraulic active control landing gear was developed for the F-4 aircraft. A controller was modified for this application. Simulation results indicate that during landing and rollout over repaired bomb craters the active gear effects a force reduction, relative to the passive gear, or approximately 70%.

  15. Hybrid Architecture Active Wavefront Sensing and Control

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Dean, Bruce; Hyde, Tupper

    2010-01-01

    A method was developed for performing relatively high-speed wavefront sensing and control to overcome thermal instabilities in a segmented primary mirror telescope [e.g., James Webb Space Telescope (JWST) at L2], by using the onboard fine guidance sensor (FGS) to minimize expense and complexity. This FGS performs centroiding on a bright star to feed the information to the pointing and control system. The proposed concept is to beam split the image of the guide star (or use a single defocused guide star image) to perform wavefront sensing using phase retrieval techniques. Using the fine guidance sensor star image for guiding and fine phasing eliminates the need for other, more complex ways of achieving very accurate sensing and control that is needed for UV-optical applications. The phase retrieval occurs nearly constantly, so passive thermal stability over fourteen days is not required. Using the FGS as the sensor, one can feed segment update information to actuators on the primary mirror that can update the primary mirror segment fine phasing with this frequency. Because the thermal time constants of the primary mirror are very slow compared to this duration, the mirror will appear extremely stable during observations (to the level of accuracy of the sensing and control). The sensing can use the same phase retrieval techniques as the JWST by employing an additional beam splitter, and having each channel go through a weak lens (one positive and one negative). The channels can use common or separate detectors. Phase retrieval can be performed onboard. The actuation scheme would include a coarse stage able to achieve initial alignment of several millimeters of range (similar to JWST and can use a JWST heritage sensing approach in the science camera) and a fine stage capable of continual updates.

  16. Active control for turbulent premixed flame simulations

    SciTech Connect

    Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Lijewski, Michael J.

    2004-03-26

    Many turbulent premixed flames of practical interest are statistically stationary. They occur in combustors that have anchoring mechanisms to prevent blow-off and flashback. The stabilization devices often introduce a level of geometric complexity that is prohibitive for detailed computational studies of turbulent flame dynamics. As a result, typical detailed simulations are performed in simplified model configurations such as decaying isotropic turbulence or inflowing turbulence. In these configurations, the turbulence seen by the flame either decays or, in the latter case, increases as the flame accelerates toward the turbulent inflow. This limits the duration of the eddy evolutions experienced by the flame at a given level of turbulent intensity, so that statistically valid observations cannot be made. In this paper, we apply a feedback control to computationally stabilize an otherwise unstable turbulent premixed flame in two dimensions. For the simulations, we specify turbulent in flow conditions and dynamically adjust the integrated fueling rate to control the mean location of the flame in the domain. We outline the numerical procedure, and illustrate the behavior of the control algorithm. We use the simulations to study the propagation and the local chemical variability of turbulent flame chemistry.

  17. Elements of active vibration control for rotating machinery

    NASA Technical Reports Server (NTRS)

    Ulbrich, Heinz

    1990-01-01

    The success or failure of active vibration control is determined by the availability of suitable actuators, modeling of the entire system including all active elements, positioning of the actuators and sensors, and implementation of problem-adapted control concepts. All of these topics are outlined and their special problems are discussed in detail. Special attention is given to efficient modeling of systems, especially for considering the active elements. Finally, design methods for and the application of active vibration control on rotating machinery are demonstrated by several real applications.

  18. A Hybrid Nonlinear Control Scheme for Active Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Xia, F.; Albritton, N. G.; Hung, J. Y.; Nelms, R. M.

    1996-01-01

    A nonlinear control scheme for active magnetic bearings is presented in this work. Magnet winding currents are chosen as control inputs for the electromechanical dynamics, which are linearized using feedback linearization. Then, the desired magnet currents are enforced by sliding mode control design of the electromagnetic dynamics. The overall control scheme is described by a multiple loop block diagram; the approach also falls in the class of nonlinear controls that are collectively known as the 'integrator backstepping' method. Control system hardware and new switching power electronics for implementing the controller are described. Various experiments and simulation results are presented to demonstrate the concepts' potentials.

  19. An active control synchronization for two modified Chua circuits

    NASA Astrophysics Data System (ADS)

    Li, Guo-Hui

    2005-03-01

    From modern control theory, an active control method to synchronize two modified Chua circuits with each other, which exhibit chaos, is presented. Some sufficient conditions of linear stability of the chaotic synchronization are obtained from rigorous mathematic justification. On the basis of the state-observer, the controller is analytically deduced using the active control. It is shown that this technique can be applied to achieve synchronization of the two systems with each other, whether they are identical or not. Finally, numerical simulations show the effectiveness of the proposed control scheme.

  20. Active control of compressible flows on a curved surface

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Parikh, P.; Bayliss, A.; Turkel, E.

    1985-01-01

    The effect of localized, time periodic surface heating and cooling over a curved surface is studied. This is a mechanism for the active control of unstable disturbances by phase cancellation and reinforcement. It is shown that the pressure gradient induced by the curvature significantly enhances the effectiveness of this form of active control. In particular, by appropriate choice of phase, active surface heating can completely stabilize and unstable wave.

  1. Generalized internal model robust control for active front steering intervention

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Zhao, Youqun; Ji, Xuewu; Liu, Yahui; Zhang, Lipeng

    2015-03-01

    Because of the tire nonlinearity and vehicle's parameters' uncertainties, robust control methods based on the worst cases, such as H ∞, µ synthesis, have been widely used in active front steering control, however, in order to guarantee the stability of active front steering system (AFS) controller, the robust control is at the cost of performance so that the robust controller is a little conservative and has low performance for AFS control. In this paper, a generalized internal model robust control (GIMC) that can overcome the contradiction between performance and stability is used in the AFS control. In GIMC, the Youla parameterization is used in an improved way. And GIMC controller includes two sections: a high performance controller designed for the nominal vehicle model and a robust controller compensating the vehicle parameters' uncertainties and some external disturbances. Simulations of double lane change (DLC) maneuver and that of braking on split- µ road are conducted to compare the performance and stability of the GIMC control, the nominal performance PID controller and the H ∞ controller. Simulation results show that the high nominal performance PID controller will be unstable under some extreme situations because of large vehicle's parameters variations, H ∞ controller is conservative so that the performance is a little low, and only the GIMC controller overcomes the contradiction between performance and robustness, which can both ensure the stability of the AFS controller and guarantee the high performance of the AFS controller. Therefore, the GIMC method proposed for AFS can overcome some disadvantages of control methods used by current AFS system, that is, can solve the instability of PID or LQP control methods and the low performance of the standard H ∞ controller.

  2. Controlling interneuron activity in Caenorhabditis elegans to evoke chemotactic behaviour.

    PubMed

    Kocabas, Askin; Shen, Ching-Han; Guo, Zengcai V; Ramanathan, Sharad

    2012-10-11

    Animals locate and track chemoattractive gradients in the environment to find food. With its small nervous system, Caenorhabditis elegans is a good model system in which to understand how the dynamics of neural activity control this search behaviour. Extensive work on the nematode has identified the neurons that are necessary for the different locomotory behaviours underlying chemotaxis through the use of laser ablation, activity recording in immobilized animals and the study of mutants. However, we do not know the neural activity patterns in C. elegans that are sufficient to control its complex chemotactic behaviour. To understand how the activity in its interneurons coordinate different motor programs to lead the animal to food, here we used optogenetics and new optical tools to manipulate neural activity directly in freely moving animals to evoke chemotactic behaviour. By deducing the classes of activity patterns triggered during chemotaxis and exciting individual neurons with these patterns, we identified interneurons that control the essential locomotory programs for this behaviour. Notably, we discovered that controlling the dynamics of activity in just one interneuron pair (AIY) was sufficient to force the animal to locate, turn towards and track virtual light gradients. Two distinct activity patterns triggered in AIY as the animal moved through the gradient controlled reversals and gradual turns to drive chemotactic behaviour. Because AIY neurons are post-synaptic to most chemosensory and thermosensory neurons, it is probable that these activity patterns in AIY have an important role in controlling and coordinating different taxis behaviours of the animal. PMID:23000898

  3. Active laser system for sea ice control

    NASA Astrophysics Data System (ADS)

    Evtikhiev, Nickolay N.; Gaponov, Alexandr E.; Kuluba, Yury N.; Matous, Vladislav I.; Radominov, Oleg E.; Tuzikov, Vladimir Z.; Vargaftic, Vasiliy N.

    1997-01-01

    The airborne systems are used for complex investigations of coastline very successfully, for example it can be used to measure the depth of the sea, to discover the reefs and so on. Such information may be used in navigation too. The specific conditions of navigation in the North and Pole seas defines the necessity of exact knowledge about the ice cracks in order to find the possible direction of the ship movement. The active optical system, working in the near IR region, has many advantages before the passive one, especially if it is necessary to work during the polar night and at bad weather conditions. In this article we discuss the demands to the laser active airborne systems, that given the accurate picture of the ice with high resolution in the daytime and nighttime conditions. Such system based on the laser, mechanical scanner and avalanche photodiode is very compact, reliable and informative. The picture of the ice surface can be shown on the TV monitor, can be written to the memory and can be delivered to the processing center by the radiochannel. The experimental results are shown together with results of this system probing in the conditions of the North Pole Ocean.

  4. Study of tethered satellite active attitude control

    NASA Technical Reports Server (NTRS)

    Colombo, G.

    1982-01-01

    Existing software was adapted for the study of tethered subsatellite rotational dynamics, an analytic solution for a stable configuration of a tethered subsatellite was developed, the analytic and numerical integrator (computer) solutions for this "test case' was compared in a two mass tether model program (DUMBEL), the existing multiple mass tether model (SKYHOOK) was modified to include subsatellite rotational dynamics, the analytic "test case,' was verified, and the use of the SKYHOOK rotational dynamics capability with a computer run showing the effect of a single off axis thruster on the behavior of the subsatellite was demonstrated. Subroutines for specific attitude control systems are developed and applied to the study of the behavior of the tethered subsatellite under realistic on orbit conditions. The effect of all tether "inputs,' including pendular oscillations, air drag, and electrodynamic interactions, on the dynamic behavior of the tether are included.

  5. Combustion diagnostic for active engine feedback control

    DOEpatents

    Green, Jr., Johney Boyd; Daw, Charles Stuart; Wagner, Robert Milton

    2007-10-02

    This invention detects the crank angle location where combustion switches from premixed to diffusion, referred to as the transition index, and uses that location to define integration limits that measure the portions of heat released during the combustion process that occur during the premixed and diffusion phases. Those integrated premixed and diffusion values are used to develop a metric referred to as the combustion index. The combustion index is defined as the integrated diffusion contribution divided by the integrated premixed contribution. As the EGR rate is increased enough to enter the low temperature combustion regime, PM emissions decrease because more of the combustion process is occurring over the premixed portion of the heat release rate profile and the diffusion portion has been significantly reduced. This information is used to detect when the engine is or is not operating in a low temperature combustion mode and provides that feedback to an engine control algorithm.

  6. Active control system for high speed windmills

    DOEpatents

    Avery, D.E.

    1988-01-12

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed. 4 figs.

  7. Active control system for high speed windmills

    DOEpatents

    Avery, Don E.

    1988-01-01

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed.

  8. Control of sound radiation with active/adaptive structures

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.; Rogers, C. A.; Robertshaw, H. H.

    1992-01-01

    Recent research is discussed in the area of active structural acoustic control with active/adaptive structures. Progress in the areas of structural acoustics, actuators, sensors, and control approaches is presented. Considerable effort has been given to the interaction of these areas with each other due to the coupled nature of the problem. A discussion is presented on actuators bonded to or embedded in the structure itself. The actuators discussed are piezoceramic actuators and shape memory alloy actuators. The sensors discussed are optical fiber sensors, Nitinol fiber sensors, piezoceramics, and polyvinylidene fluoride sensors. The active control techniques considered are state feedback control techniques and least mean square adaptive algorithms. Results presented show that significant progress has been made towards controlling structurally radiated noise by active/adaptive means applied directly to the structure.

  9. Numerical evaluation of the performance of active noise control systems

    NASA Technical Reports Server (NTRS)

    Mollo, C. G.; Bernhard, R. J.

    1990-01-01

    This paper presents a generalized numerical technique for evaluating the optimal performance of active noise controllers. In this technique, the indirect BEM numerical procedures are used to derive the active noise controllers for optimal control of enclosed harmonic sound fields where the strength of the noise sources or the description of the enclosure boundary may not be known. The performance prediction for a single-input single-output system is presented, together with the analysis of the stability and observability of an active noise-control system employing detectors. The numerical procedures presented can be used for the design of both the physical configuration and the electronic components of the optimal active noise controller.

  10. Wireless sensor networks for active vibration control in automobile structures

    NASA Astrophysics Data System (ADS)

    Mieyeville, Fabien; Ichchou, Mohamed; Scorletti, Gérard; Navarro, David; Du, Wan

    2012-07-01

    Wireless sensor networks (WSNs) are nowadays widely used in monitoring and tracking applications. This paper presents the feasibility of using WSNs in active vibration control strategies. The method employed here involves active-structural acoustic control using piezoelectric sensors distributed on a car structure. This system aims at being merged with a WSN whose head node collects data and processes control laws so as to command piezoelectric actuators wisely placed on the structure. We will study the feasibility of implementing WSNs in active vibration control and introduce a complete design methodology to optimize hardware/software and control law synergy in mechatronic systems. A design space exploration will be conducted so as to identify the best WSN platform and the resulting impact on control.

  11. Imprinted control of gene activity in Drosophila.

    PubMed

    Golic, K G; Golic, M M; Pimpinelli, S

    1998-11-19

    Genetic imprinting is defined as a reversible, differential marking of genes or chromosomes that is determined by the sex of the parent from whom the genetic material is inherited [1]. Imprinting was first observed in insects where, in some species, most notably among the coccoids (scale insects and allies), the differential marking of paternally and maternally transmitted chromosome sets leads to inactivation or elimination of paternal chromosomes [2]. Imprinting is also widespread in plants and mammals [3,4], in which paternally and maternally inherited alleles may be differentially expressed. Despite imprinting having been discovered in insects, clear examples of parental imprinting are scarce in the model insect species Drosophila melanogaster. We describe a case of imprint-mediated control of gene expression in Drosophila. The imprinted gene - the white+ eye-color gene - is expressed at a low level when transmitted by males, and at a high level when transmitted by females. Thus, in common with coccoids, Drosophila is capable of generating an imprint, and can respond to that imprint by silencing the paternal allele. PMID:9822579

  12. Various applications of Active Field Control (AFC)

    NASA Astrophysics Data System (ADS)

    Watanabe, Takayuki; Miyazaki, Hideo; Kishinaga, Shinji; Kawakami, Fukushi

    2003-10-01

    AFC is an electro-acoustic enhancement system, which has been under development at Yamaha Corporation. In this paper, several types of various AFC applications are discussed, while referring to representative projects for each application in Japan. (1) Realization of acoustics in a huge hall to classical music program, e.g., Tokyo International Forum. This venue is a multipurpose hall with approximately 5000 seats. AFC achieves loudness and reverberance equivalent to those of a hall with 2500 seats or fewer. (2) Optimization of acoustics for a variety of programs, e.g., Arkas Sasebo. AFC is used to create the optimum acoustics for each program, such as reverberance for classical concerts, acoustical support for opera singers, uniformity throughout the hall from the stage to under-balcony area, etc. (3) Control of room shape acoustical effect, e.g., Osaka Central Public Hall: In this renovation project, preservation of historically important architecture in the original form is required. AFC is installed to vary only the acoustical environment without architectural changes. (4) Assistance with crowd enthusiasm for sports entertainment, e.g., Tokyo Metropolitan Gymnasium. In this venue, which is designed as a very absorptive space for speech intelligibility, AFC is installed to enhance the atmosphere of live sports entertainment.

  13. On-line Monitoring and Active Control for Transformer Noise

    NASA Astrophysics Data System (ADS)

    Liang, Jiabi; Zhao, Tong; Tian, Chun; Wang, Xia; He, Zhenhua; Duan, Lunfeng

    This paper introduces the system for on-line monitoring and active noise control towards the transformer noise based on LabVIEW and the hardware equipment including the hardware and software. For the hardware part, it is mainly focused on the composition and the role of hardware devices, as well as the mounting location in the active noise control experiment. And the software part introduces the software flow chats, the measurement and analysis module for the sound pressure level including A, B, C weighting methods, the 1/n octave spectrum and the power spectrum, active noise control module and noise data access module.

  14. [Actuator placement for active sound and vibration control

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Two refereed journal publications and ten talks given at conferences, seminars, and colloquia resulted from research supported by NASA. They are itemized in this report. The two publications were entitled "Reactive Tabu and Search Sensor Selection in Active Structural Acoustic Control Problems" and "Quelling Cabin Noise in Turboprop Aircraft via Active Control." The conference presentations covered various aspects of actuator placement, including location problems, for active sound and vibration control of cylinders, of commuter jets, of propeller driven or turboprop aircraft, and for quelling aircraft cabin or interior noise.

  15. Active airborne contamination control using electrophoresis

    SciTech Connect

    Veatch, B.D.

    1994-06-01

    In spite of our best efforts, radioactive airborne contamination continues to be a formidable problem at many of the Department of Energy (DOE) weapons complex sites. For workers that must enter areas with high levels of airborne contamination, personnel protective equipment (PPE) can become highly restrictive, greatly diminishing productivity. Rather than require even more restrictive PPE for personnel in some situations, the Rocky Flats Plant (RFP) is actively researching and developing methods to aggressively combat airborne contamination hazards using electrophoretic technology. With appropriate equipment, airborne particulates can be effectively removed and collected for disposal in one simple process. The equipment needed to implement electrophoresis is relatively inexpensive, highly reliable, and very compact. Once airborne contamination levels are reduced, less PPE is required and a significant cost savings may be realized through decreased waste and maximized productivity. Preliminary ``cold,`` or non-radioactive, testing results at the RFP have shown the technology to be effective on a reasonable scale, with several potential benefits and an abundance of applications.

  16. The aircraft energy efficiency active controls technology program

    NASA Technical Reports Server (NTRS)

    Hood, R. V., Jr.

    1977-01-01

    Broad outlines of the NASA Aircraft Energy Efficiency Program for expediting the application of active controls technology to civil transport aircraft are presented. Advances in propulsion and airframe technology to cut down on fuel consumption and fuel costs, a program for an energy-efficient transport, and integrated analysis and design technology in aerodynamics, structures, and active controls are envisaged. Fault-tolerant computer systems and fault-tolerant flight control system architectures are under study. Contracts with leading manufacturers for research and development work on wing-tip extensions and winglets for the B-747, a wing load alleviation system, elastic mode suppression, maneuver-load control, and gust alleviation are mentioned.

  17. Active controls: A look at analytical methods and associated tools

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Adams, W. M., Jr.; Mukhopadhyay, V.; Tiffany, S. H.; Abel, I.

    1984-01-01

    A review of analytical methods and associated tools for active controls analysis and design problems is presented. Approaches employed to develop mathematical models suitable for control system analysis and/or design are discussed. Significant efforts have been expended to develop tools to generate the models from the standpoint of control system designers' needs and develop the tools necessary to analyze and design active control systems. Representative examples of these tools are discussed. Examples where results from the methods and tools have been compared with experimental data are also presented. Finally, a perspective on future trends in analysis and design methods is presented.

  18. Some experiences with active control of aeroelastic response

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Abel, I.

    1981-01-01

    Flight and wind tunnel tests were conducted and multidiscipline computer programs were developed as part of investigations of active control technology conducted at the NASA Langley Research Center. Unsteady aerodynamics approximation, optimal control theory, optimal controller design, and the Delta wing and DC-10 models are described. The drones for aerodynamics and structural testing (DAST program) for evaluating procedures for aerodynamic loads prediction and the design of active control systems on wings with significant aeroelastic effects is described as well as the DAST model used in the wind tunnel tests.

  19. ACTIVELY CONTROLLED VORTEX DISPOSAL SYSTEM FOR SLUDGE WASTES

    EPA Science Inventory

    The development of an advanced sludge treatment concept is under way for applications to sludge wastes. The concept integrates primary treatment of sludge in an advanced vortex containment combustor (VCC) with subsequent post treatment in an actively controlled acoustic afterburn...

  20. ACTIVELY CONTROLLED VORTEX DISPOSAL SYSTEM FOR SLUDGE WASTES

    EPA Science Inventory

    The development of an advanced sludge treatment concept is underway for applications to sludge wastes. The concept integrates primary treatment of sludge in an advanced vortex containment combustor (VCC) with subsequent post treatment in an actively controlled acoustic afterburne...

  1. Application of smart materials to helicopter rotor active control

    NASA Astrophysics Data System (ADS)

    Straub, Friedrich K.; Ealey, Mark A.; Schetky, Lawrence M.

    1997-05-01

    Helicopter design is limited by the compromise inherent in meeting hover and forward flight requirements, and the unsteady environment encountered in forward flight. Active control of helicopter rotors using smart material, in-blade actuation can overcome these barriers and provide substantial reductions in noise and vibrations and improved performance. The present study covers the blade/actuator integration and actuator development for a full scale system to demonstrate active control of noise and vibrations as well as inflight blade tracking on the MD Explorer helicopter. A piezoelectric multilayer stack actuator, driving a trailing edge flap, is used for active control. A shape memory alloy torsion actuator, driving a trailing edge trim tab, is used for inflight tracking. Overall, this DARPA sponsored program entails the design, development, and fabrication of the full scale active control rotor system. If successful, an entry in the NASA Ames 40 X 80 foot wind tunnel and flight tests are planned for a follow on program.

  2. SLUDGE COMBUSTOR USING SWIRL AND ACTIVE COMBUSTION CONTROL

    EPA Science Inventory

    A research program directed at developing technology for compact shipboard incinerators for sludges is described. The concept utilizes previously developed Vortex Containment Combustor (VCC) as a primary unit with an active combustion control afterburner (AB). The overall power s...

  3. Recent results on structural control of an active precision structure

    NASA Technical Reports Server (NTRS)

    Chu, C. C.; Fanson, J. L.; Smith, R. S.

    1991-01-01

    This paper describes recent results in structural control of an active precision truss structure at JPL. The goal is to develop practical control methodology and to apply to active truss structures intended for high precision space-based optics applications. The active structure considered incorporates piezoelectric active members which apply control forces internal to the structure and thereby improve the structure's dimensional stability. Two approaches to structural control system design were investigated. The first approach uses only noncollocated measurements of acceleration at the location of a simulated optical component to achieve structural stabilization. The second approach is essentially the same as the first one except that a viscous damper was used in place of a truss member on the structure to improve the dampings of selected flexible modes. The corresponding experimental closed-loop results are presented in this paper.

  4. DESIGN PROCEDURES FOR DISSOLVED OXYGEN CONTROL OF ACTIVATED SLUDGE PROCESSES

    EPA Science Inventory

    This report presents design procedures and guidelines for the selection of aeration equipment and dissolved (DO) control systems for activated sludge treatment plants. Aeration methods, equipment and application techniques are examined and selection procedures offered. Various DO...

  5. Control of ankle extensor muscle activity in walking cats.

    PubMed

    Hatz, Kathrin; Mombaur, Katja; Donelan, J Maxwell

    2012-11-01

    Our objective was to gain insight into the relative importance of feedforward control and different proprioceptive feedback pathways to ongoing ankle extensor activity during walking in the conscious cat. We asked whether the modulation of stance phase muscle activity is due primarily to proprioceptive feedback and whether the same proprioceptive gains and feedforward commands can automatically generate the muscle activity required for changes in walking slope. To test these hypotheses, we analyzed previously collected muscle activity and mechanics data from cats with an isolated medial gastrocnemius muscle walking along a sloped pegway. Models of proprioceptor dynamics predicted afferent activity from the measured muscle mechanics. We modeled muscle activity as the weighted sum of the activity predicted from the different proprioceptive pathways and a simple model of central drive. We determined the unknown model parameters using optimization procedures that minimized the error between the predicted and measured muscle activity. We found that the modulation of muscle activity within the stance phase and across walking slopes is indeed well described by neural control that employs constant central drive and constant proprioceptive feedback gains. Furthermore, it is force feedback from Ib afferents that is primarily responsible for modulating muscle activity; group II afferent feedback makes a small contribution to tonic activity, and Ia afferent feedback makes no contribution. Force feedback combined with tonic central drive appears to provide a simple control mechanism for automatically compensating for changes in terrain without requiring different commands from the brain or even modification of central nervous system gains. PMID:22933727

  6. Piezoelectric pushers for active vibration control of rotating machinery

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan B.; Kascak, Albert F.

    1988-01-01

    The active control of rotordynamic vibrations and stability by magnetic bearings and electromagnetic shakers have been discussed extensively in the literature. These devices, though effective, are usually large in volume and add significant weight to the stator. The use of piezoelectric pushers may provide similar degrees of effectiveness in light, compact packages. Tests are currently being conducted with piezoelectric pusher-based active vibration control. Results from tests performed on NASA test rigs as preliminary verification of the related theory are presented.

  7. Robust control design techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Ozbay, Hitay; Bachmann, Glen R.

    1994-01-01

    In this paper, an active flutter suppression problem is studied for a thin airfoil in unsteady aerodynamics. The mathematical model of this system is infinite dimensional because of Theodorsen's function which is irrational. Several second order approximations of Theodorsen's function are compared. A finite dimensional model is obtained from such an approximation. We use H infinity control techniques to find a robustly stabilizing controller for active flutter suppression.

  8. Active vibration control using mechanical and electrical analogies

    NASA Astrophysics Data System (ADS)

    Torres-Perez, A.; Hassan, A.; Kaczmarczyk, S.; Picton, P.

    2016-05-01

    Mechanical-electrical analogous circuit models are widely used in electromechanical system design as they represent the function of a coupled electrical and mechanical system using an equivalent electrical system. This research uses electrical circuits to establish a discussion of simple active vibration control principles using two scenarios: an active vibration isolation system and an active dynamic vibration absorber (DVA) using a voice coil motor (VCM) actuator. Active control laws such as gain scheduling are intuitively explained using circuit analysis techniques. Active vibration control approaches are typically constraint by electrical power requirements. The electrical analogous is a fast approach for specifying power requirements on the experimental test platform which is based on a vibration shaker that provides the based excitation required for the single Degree- of-Freedom (1DoF) vibration model under study.

  9. Active elastic metamaterials for subwavelength wave propagation control

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Huang, G. L.

    2015-06-01

    Recent research activities in elastic metamaterials demonstrate a significant potential for subwavelength wave propagation control owing to their interior locally resonant mechanism. The growing technological developments in electro/magnetomechanical couplings of smart materials have introduced a controlling degree of freedom for passive elastic metamaterials. Active elastic metamaterials could allow for a fine control of material physical behavior and thereby induce new functional properties that cannot be produced by passive approaches. In this paper, two types of active elastic metamaterials with shunted piezoelectric materials and electrorheological elastomers are proposed. Theoretical analyses and numerical validations of the active elastic metamaterials with detailed microstructures are presented for designing adaptive applications in band gap structures and extraordinary waveguides. The active elastic metamaterial could provide a new design methodology for adaptive wave filters, high signal-to-noise sensors, and structural health monitoring applications.

  10. Acoustic Aspects of Active-Twist Rotor Control

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Wilbur, Matthew L.

    2002-01-01

    The use of an Active Twist Rotor system to provide both vibration reduction and performance enhancement has been explored in recent analytical and experimental studies. Effects of active-twist control on rotor noise, however, had not been determined. During a recent wind tunnel test of an active-twist rotor system, a set of acoustic measurements were obtained to assess the effects of active-twist control on noise produced by the rotor, especially blade-vortex interaction (BVI) noise. It was found that for rotor operating conditions where BVI noise is dominant, active-twist control provided a reduction in BVI noise level. This BVI noise reduction was almost, but not quite, as large as that obtained in a similar test using HHC. However, vibration levels were usually adversely affected at operating conditions favoring minimum BVI noise. Conversely, operating conditions favoring minimum vibration levels affected BVI noise levels, but not always adversely.

  11. Practical engineering: control of active systems using the stagnation temperature

    SciTech Connect

    Lunde, P.J.

    1982-04-01

    Solar active systems with flat plate collectors are discussed with reference to the temperature at which the system should be activated. It is concluded that the system should be activated when the stagnation temperature (temperature under the absorber plate when no fluid is circulating) equals the temperature of the fluid in storage. A thermistor Wheatstone bridge control system is described which will eliminate pump relay chatter and the permissible control differential is calculated from the collector efficiency curve. To avoid dedication of an entire collector to house the control system, a method is described for determining the stagnation temperature using a portion of an active collector. For an active solar hot water system, a calculation is carried out to show that a 2/sup 0/F temperature differential (stagnation temperature-storage temperature) is satisfactory. (MJJ)

  12. Controlling neural activity in Caenorhabditis elegans to evoke chemotactic behavior

    NASA Astrophysics Data System (ADS)

    Kocabas, Askin; Shen, Ching-Han; Guo, Zengcai V.; Ramanathan, Sharad

    2013-03-01

    Animals locate and track chemoattractive gradients in the environment to find food. With its simple nervous system, Caenorhabditis elegans is a good model system in which to understand how the dynamics of neural activity control this search behavior. To understand how the activity in its interneurons coordinate different motor programs to lead the animal to food, here we used optogenetics and new optical tools to manipulate neural activity directly in freely moving animals to evoke chemotactic behavior. By deducing the classes of activity patterns triggered during chemotaxis and exciting individual neurons with these patterns, we identified interneurons that control the essential locomotory programs for this behavior. Notably, we discovered that controlling the dynamics of activity in just one interneuron pair was sufficient to force the animal to locate, turn towards and track virtual light gradients.

  13. Active control of the resistive wall mode with power saturation

    SciTech Connect

    Li Li; Liu Yue; Liu Yueqiang

    2012-01-15

    An analytic model of non-linear feedback stabilization of the resistive wall mode is presented. The non-linearity comes from either the current or the voltage saturation of the control coil power supply. For the so-called flux-to-current control, the current saturation of active coils always results in the loss of control. On the contrary, the flux-to-voltage control scheme tolerates certain degree of the voltage saturation. The minimal voltage limit is calculated, below which the control will be lost.

  14. Semi-active control of seat suspension with MR damper

    NASA Astrophysics Data System (ADS)

    Yao, H. J.; Fu, J.; Yu, M.; Peng, Y. X.

    2013-02-01

    The vibration control of a seat suspension system with magnetorheological (MR) damper is investigated in this study. Firstly, a dynamical model of the seat suspension system with parameter uncertainties (such as mass, stiffness, damping) and actuator saturation is established. Secondly, based on Lyapunov functional theory and considering constraint conditions for damping force, the semi-active controller is designed, and the controller parameters are derived in terms of linear matrix inequalities (LMIs), which guarantees performance index. Finally, compared control strategy and the passive, skyhook control strategy, the simulation results in time and frequency domains demonstrate the proposed approach can achieve better vertical acceleration attenuation for the seat suspension system and improve ride comfort.

  15. New design deforming controlling system of the active stressed lap

    NASA Astrophysics Data System (ADS)

    Ying, Li; Wang, Daxing

    2008-07-01

    A 450mm diameter active stressed lap has been developed in NIAOT by 2003. We design a new lap in 2007. This paper puts on emphases on introducing the new deforming control system of the lap. Aiming at the control characteristic of the lap, a new kind of digital deforming controller is designed. The controller consists of 3 parts: computer signal disposing, motor driving and force sensor signal disposing. Intelligent numeral PID method is applied in the controller instead of traditional PID. In the end, the result of new deformation are given.

  16. Applications of active adaptive noise control to jet engines

    NASA Technical Reports Server (NTRS)

    Shoureshi, Rahmat; Brackney, Larry

    1993-01-01

    During phase 2 research on the application of active noise control to jet engines, the development of multiple-input/multiple-output (MIMO) active adaptive noise control algorithms and acoustic/controls models for turbofan engines were considered. Specific goals for this research phase included: (1) implementation of a MIMO adaptive minimum variance active noise controller; and (2) turbofan engine model development. A minimum variance control law for adaptive active noise control has been developed, simulated, and implemented for single-input/single-output (SISO) systems. Since acoustic systems tend to be distributed, multiple sensors, and actuators are more appropriate. As such, the SISO minimum variance controller was extended to the MIMO case. Simulation and experimental results are presented. A state-space model of a simplified gas turbine engine is developed using the bond graph technique. The model retains important system behavior, yet is of low enough order to be useful for controller design. Expansion of the model to include multiple stages and spools is also discussed.

  17. Electromechanical Simulation of Actively Controlled Rotordynamic Systems with Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Lin, Reng Rong; Palazzolo, A. B.; Kascak, A. F.; Montague, G.

    1991-01-01

    Theories and tests for incorporating piezoelectric pushers as actuator devices for active vibration control are discussed. It started from a simple model with the assumption of ideal pusher characteristics and progressed to electromechanical models with nonideal pushers. Effects on system stability due to the nonideal characteristics of piezoelectric pushers and other elements in the control loop were investigated.

  18. Advanced aerodynamics and active controls. Selected NASA research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Aerodynamic and active control concepts for application to commercial transport aircraft are discussed. Selected topics include in flight direct strike lightning research, triply redundant digital fly by wire control systems, tail configurations, winglets, and the drones for aerodynamic and structural testing (DAST) program.

  19. Active Flow Control Strategies Using Surface Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Kumar, Vikas; Alvi, Farrukh S.

    2010-01-01

    Evaluate the efficacy of Microjets Can we eliminate/minimize flow separation? Is the flow unsteadiness reduced? Guidelines for an active control Search for an appropriate sensor. Examine for means to develop a flow model for identifying the state of flow over the surface Guidelines toward future development of a Simple and Robust control methodology

  20. Operational Control Procedures for the Activated Sludge Process: Appendix.

    ERIC Educational Resources Information Center

    West, Alfred W.

    This document is the appendix for a series of documents developed by the National Training and Operational Technology Center describing operational control procedures for the activated sludge process used in wastewater treatment. Categories discussed include: control test data, trend charts, moving averages, semi-logarithmic plots, probability…

  1. Dynamic-Loads Analysis of Flexible Aircraft With Active Controls

    NASA Technical Reports Server (NTRS)

    Perry, B. I.; Durling, B. J.

    1982-01-01

    Integrated system of stand-along computer programs, DYLOFLEX, analyzes dynamic loads on flexible aircraft with active controls. DYLOFLEX capabilities include calculating dynamic loads due to continuous atmospheric turbulence, discrete gusts, and discrete control inputs. Each of the eight individual DYLOFLEX programs may be used alone or in conjunction with other DYLOFLEX programs.

  2. An electric control for an electrohydraulic active control aircraft landing gear

    NASA Technical Reports Server (NTRS)

    Ross, I.; Edson, R.

    1979-01-01

    An electronic controller for an electrohydraulic active control aircraft landing gear was developed. Drop tests of a modified gear from a 2722 Kg (6000 lbm) class of airplane were conducted to illustrate controller performance. The results indicate that the active gear effects a force reduction, relative to that of the passive gear, from 9 to 31 percent depending on the aircraft sink speed and the static gear pressure.

  3. Active following fuzzy output feedback sliding mode control of real-vehicle semi-active suspensions

    NASA Astrophysics Data System (ADS)

    Liu, H.; Nonami, K.; Hagiwara, T.

    2008-07-01

    Many semi-active suspension systems have been investigated in various literatures in order to achieve lower energy consumption and as good performance as full-active suspension systems. Full-active suspension systems can achieve a good ride quality by actuators; however, their implementation equipments are expensive. The full-active suspensions are perfect from the point of view of control; hence, semi-active control laws with performance similar to full-active controls have attracted the engineering community for their ease and lower cost of implementation. This paper presents a new active following fuzzy output feedback sliding mode control for a real-vehicle semi-active suspension system. The performance of the proposed controller has been verified by comparing it with passive control and also with the full-active target semi-active approximation control method. In the experiment, it was shown that the proposed method has the effectiveness in stabilizing heave, roll and pitch movement of the car body.

  4. Active vibration control techniques for flexible space structures

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Jayasuriya, Suhada

    1990-01-01

    Two proposed control system design techniques for active vibration control in flexible space structures are detailed. Control issues relevant only to flexible-body dynamics are addressed, whereas no attempt was made to integrate the flexible and rigid-body spacecraft dynamics. Both of the proposed approaches revealed encouraging results; however, further investigation of the interaction of the flexible and rigid-body dynamics is warranted.

  5. Remote Control of T Cell Activation Using Magnetic Janus Particles.

    PubMed

    Lee, Kwahun; Yi, Yi; Yu, Yan

    2016-06-20

    We report a strategy for using magnetic Janus microparticles to control the stimulation of T cell signaling with single-cell precision. To achieve this, we designed Janus particles that are magnetically responsive on one hemisphere and stimulatory to T cells on the other side. By manipulating the rotation and locomotion of Janus particles under an external magnetic field, we could control the orientation of the particle-cell recognition and thereby the initiation of T cell activation. This study demonstrates a step towards employing anisotropic material properties of Janus particles to control single-cell activities without the need of complex magnetic manipulation devices. PMID:27144475

  6. Impact of active controls technology on structural integrity

    NASA Technical Reports Server (NTRS)

    Noll, Thomas; Austin, Edward; Donley, Shawn; Graham, George; Harris, Terry

    1991-01-01

    This paper summarizes the findings of The Technical Cooperation Program to assess the impact of active controls technology on the structural integrity of aeronautical vehicles and to evaluate the present state-of-the-art for predicting the loads caused by a flight-control system modification and the resulting change in the fatigue life of the flight vehicle. The potential for active controls to adversely affect structural integrity is described, and load predictions obtained using two state-of-the-art analytical methods are given.

  7. Active Noise Control Experiments using Sound Energy Flu

    NASA Astrophysics Data System (ADS)

    Krause, Uli

    2015-03-01

    This paper reports on the latest results concerning the active noise control approach using net flow of acoustic energy. The test set-up consists of two loudspeakers simulating the engine noise and two smaller loudspeakers which belong to the active noise system. The system is completed by two acceleration sensors and one microphone per loudspeaker. The microphones are located in the near sound field of the loudspeakers. The control algorithm including the update equation of the feed-forward controller is introduced. Numerical simulations are performed with a comparison to a state of the art method minimising the radiated sound power. The proposed approach is experimentally validated.

  8. Selected advanced aerodynamic and active control concepts development

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A summary is presented of results obtained during analysis, design and test activities on six selected technical tasks directed at exploratory improvement of fuel efficiency for new and derivative transports. The work included investigations into the potential offered by natural laminar flow, improved surface coatings and advanced high lift concepts. Similar investigations covering optimum low-energy flight path control, integrated application of active controls and evaluation of primary flight control systems reliability and maintenance are also summarized. Recommendations are included for future work needed to exploit potential advancements.

  9. Control surface spanwise placement in active flutter suppression systems

    NASA Technical Reports Server (NTRS)

    Nissim, E.; Burken, John J.

    1988-01-01

    A method is developed that determines the placement of an active control surface for maximum effectiveness in suppressing flutter. No specific control law is required by this method which is based on the aerodynamic energy concept. It is argued that the spanwise placement of the active controls should coincide with the locations where maximum energy per unit span is fed into the system. The method enables one to determine the distribution, over the different surfaces of the aircraft, of the energy input into the system as a result of the unstable fluttering mode. The method is illustrated using three numerical examples.

  10. Fuel conservation through active control of rotor clearances

    NASA Technical Reports Server (NTRS)

    Beitler, R. S.; Saunders, A. A.; Wanger, R. P.

    1980-01-01

    Under the NASA-sponsored Energy Efficient Engine (EEE) Project, technology is being developed which will significantly reduce the fuel consumption of turbofan engines for subsonic transport aircraft. One technology concept being pursued is active control of rotor tip clearances. Attention is given to rotor tip clearance considerations and an overview of preliminary study results as well as the General Electric EEE clearance control approach is presented. Finally, potential fuel savings with active control of rotor clearances for a typical EEE mission are predicted.

  11. Flutter prediction for a wing with active aileron control

    NASA Technical Reports Server (NTRS)

    Penning, K.; Sandlin, D. R.

    1983-01-01

    A method for predicting the vibrational stability of an aircraft with an analog active aileron flutter suppression system (FSS) is expained. Active aileron refers to the use of an active control system connected to the aileron to damp vibrations. Wing vibrations are sensed by accelerometers and the information is used to deflect the aileron. Aerodynamic force caused by the aileron deflection oppose wing vibrations and effectively add additional damping to the system.

  12. Active-Twist Rotor Control Applications for UAVs

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.; Wilkie, W. Keats

    2004-01-01

    The current state-of-the-art in active-twist rotor control is discussed using representative examples from analytical and experimental studies, and the application to rotary-wing UAVs is considered. Topics include vibration and noise reduction, rotor performance improvement, active blade tracking, stability augmentation, and rotor blade de-icing. A review of the current status of piezoelectric fiber composite actuator technology, the class of piezoelectric actuators implemented in active-twist rotor systems, is included.

  13. Active structural control by fuzzy logic rules: An introduction

    SciTech Connect

    Tang, Yu; Wu, Kung C.

    1996-12-31

    A zeroth level introduction to fuzzy logic control applied to the active structural control to reduce the dynamic response of structures subjected to earthquake excitations is presented. It is hoped that this presentation will increase the attractiveness of the methodology to structural engineers in research as well as in practice. The basic concept of the fuzzy logic control are explained by examples and by diagrams with a minimum of mathematics. The effectiveness and simplicity of the fuzzy logic control is demonstrated by a numerical example in which the response of a single- degree-of-freedom system subjected to earthquake excitations is controlled by making use of the fuzzy logic controller. In the example, the fuzzy rules are first learned from the results obtained from linear control theory; then they are fine tuned to improve their performance. It is shown that the performance of fuzzy logic control surpasses that of the linear control theory. The paper shows that linear control theory provides experience for fuzzy logic control, and fuzzy logic control can provide better performance; therefore, two controllers complement each other.

  14. Active structural control by fuzzy logic rules: An introduction

    SciTech Connect

    Tang, Y.

    1995-07-01

    An introduction to fuzzy logic control applied to the active structural control to reduce the dynamic response of structures subjected to earthquake excitations is presented. It is hoped that this presentation will increase the attractiveness of the methodology to structural engineers in research as well as in practice. The basic concept of the fuzzy logic control are explained by examples and by diagrams with a minimum of mathematics. The effectiveness and simplicity of the fuzzy logic control is demonstrated by a numerical example in which the response of a single-degree-of-freedom system subjected to earthquake excitations is controlled by making use of the fuzzy logic controller. In the example, the fuzzy rules are first learned from the results obtained from linear control theory; then they are fine tuned to improve their performance. It is shown that the performance of fuzzy logic control surpasses that of the linear control theory. The paper shows that linear control theory provides experience for fuzzy logic control, and fuzzy logic control can provide better performance; therefore, two controllers complement each other.

  15. Shape control and compartmentalization in active colloidal cells.

    PubMed

    Spellings, Matthew; Engel, Michael; Klotsa, Daphne; Sabrina, Syeda; Drews, Aaron M; Nguyen, Nguyen H P; Bishop, Kyle J M; Glotzer, Sharon C

    2015-08-25

    Small autonomous machines like biological cells or soft robots can convert energy input into control of function and form. It is desired that this behavior emerges spontaneously and can be easily switched over time. For this purpose we introduce an active matter system that is loosely inspired by biology and which we term an active colloidal cell. The active colloidal cell consists of a boundary and a fluid interior, both of which are built from identical rotating spinners whose activity creates convective flows. Similarly to biological cell motility, which is driven by cytoskeletal components spread throughout the entire volume of the cell, active colloidal cells are characterized by highly distributed energy conversion. We demonstrate that we can control the shape of the active colloidal cell and drive compartmentalization by varying the details of the boundary (hard vs. flexible) and the character of the spinners (passive vs. active). We report buckling of the boundary controlled by the pattern of boundary activity, as well as formation of core-shell and inverted Janus phase-separated configurations within the active cell interior. As the cell size is increased, the inverted Janus configuration spontaneously breaks its mirror symmetry. The result is a bubble-crescent configuration, which alternates between two degenerate states over time and exhibits collective migration of the fluid along the boundary. Our results are obtained using microscopic, non-momentum-conserving Langevin dynamics simulations and verified via a phase-field continuum model coupled to a Navier-Stokes equation. PMID:26253763

  16. Shape control and compartmentalization in active colloidal cells

    PubMed Central

    Spellings, Matthew; Engel, Michael; Klotsa, Daphne; Sabrina, Syeda; Drews, Aaron M.; Nguyen, Nguyen H. P.; Bishop, Kyle J. M.; Glotzer, Sharon C.

    2015-01-01

    Small autonomous machines like biological cells or soft robots can convert energy input into control of function and form. It is desired that this behavior emerges spontaneously and can be easily switched over time. For this purpose we introduce an active matter system that is loosely inspired by biology and which we term an active colloidal cell. The active colloidal cell consists of a boundary and a fluid interior, both of which are built from identical rotating spinners whose activity creates convective flows. Similarly to biological cell motility, which is driven by cytoskeletal components spread throughout the entire volume of the cell, active colloidal cells are characterized by highly distributed energy conversion. We demonstrate that we can control the shape of the active colloidal cell and drive compartmentalization by varying the details of the boundary (hard vs. flexible) and the character of the spinners (passive vs. active). We report buckling of the boundary controlled by the pattern of boundary activity, as well as formation of core–shell and inverted Janus phase-separated configurations within the active cell interior. As the cell size is increased, the inverted Janus configuration spontaneously breaks its mirror symmetry. The result is a bubble–crescent configuration, which alternates between two degenerate states over time and exhibits collective migration of the fluid along the boundary. Our results are obtained using microscopic, non–momentum-conserving Langevin dynamics simulations and verified via a phase-field continuum model coupled to a Navier–Stokes equation. PMID:26253763

  17. Mitigation of chatter instabilities in milling by active structural control

    NASA Astrophysics Data System (ADS)

    Dohner, Jeffrey L.; Lauffer, James P.; Hinnerichs, Terry D.; Shankar, Natarajan; Regelbrugge, Mark; Kwan, Chi-Man; Xu, Roger; Winterbauer, Bill; Bridger, Keith

    2004-01-01

    This paper documents the experimental validation of an active control approach for mitigating chatter in milling. To the authors knowledge, this is the first successful hardware demonstration of this approach. This approach is very different from many existing approaches that avoid instabilities by varying process parameters to seek regions of stability or by altering the regenerative process. In this approach, the stability lobes of the machine and tool are actively raised. This allows for machining at spindle speeds that are more representative of those used in existing machine tools. An active control system was implemented using actuators and sensors surrounding a spindle and tool. Due to the complexity of controlling from a stationary co-ordinate system and sensing from a rotating system, a telemetry system was used to transfer structural vibration data from the tool to a control processor. Closed-loop experiments produced up to an order of magnitude improvement in metal removal rate.

  18. Experimental evaluation of active-member control of precision structures

    NASA Technical Reports Server (NTRS)

    Fanson, James; Blackwood, Gary; Chu, Cheng-Chih

    1989-01-01

    The results of closed loop experiments that use piezoelectric active-members to control the flexible motion of a precision truss structure are described. These experiments are directed toward the development of high-performance structural systems as part of the Control/Structure Interaction (CSI) program at JPL. The focus of CSI activity at JPL is to develop the technology necessary to accurately control both the shape and vibration levels in the precision structures from which proposed large space-based observatories will be built. Structural error budgets for these types of structures will likely be in the sub-micron regime; optical tolerances will be even tighter. In order to achieve system level stability and local positioning at this level, it is generally expected that some form of active control will be required.

  19. Mechanisms of active control in cylindrical fuselage structures

    NASA Technical Reports Server (NTRS)

    Silcox, R. J.; Lester, H. C.; Fuller, C. R.

    1987-01-01

    This paper summarizes ongoing efforts to understand and exploit active control techniques for low frequency noise suppression in aerospace applications. Analytical models are utilized in an effort to understand the mechanisms that govern noise transmission into acoustic spaces enclosed by lightweight structures and to examine the results of experimental implementations of active control schemes. Emphasis is placed on attaining global noise reductions using a minimum number of actuators rather than localized control over many subregions. This program has demonstrated the effect of synchrophasing and interface modal filtering, in limiting the modal density within the acoustic space, and how strong reactive effects may occur in two dimensional geometries. Finally, the performance of active control systems utilizing acoustic and vibration actuators is evaluated. Suppressions of 10 to 30 dB are demonstrated in practice, and performance is discussed in relation to the physical mechanisms and parameters of the system.

  20. Active Inference, homeostatic regulation and adaptive behavioural control

    PubMed Central

    Pezzulo, Giovanni; Rigoli, Francesco; Friston, Karl

    2015-01-01

    We review a theory of homeostatic regulation and adaptive behavioural control within the Active Inference framework. Our aim is to connect two research streams that are usually considered independently; namely, Active Inference and associative learning theories of animal behaviour. The former uses a probabilistic (Bayesian) formulation of perception and action, while the latter calls on multiple (Pavlovian, habitual, goal-directed) processes for homeostatic and behavioural control. We offer a synthesis these classical processes and cast them as successive hierarchical contextualisations of sensorimotor constructs, using the generative models that underpin Active Inference. This dissolves any apparent mechanistic distinction between the optimization processes that mediate classical control or learning. Furthermore, we generalize the scope of Active Inference by emphasizing interoceptive inference and homeostatic regulation. The ensuing homeostatic (or allostatic) perspective provides an intuitive explanation for how priors act as drives or goals to enslave action, and emphasises the embodied nature of inference. PMID:26365173

  1. Active Inference, homeostatic regulation and adaptive behavioural control.

    PubMed

    Pezzulo, Giovanni; Rigoli, Francesco; Friston, Karl

    2015-11-01

    We review a theory of homeostatic regulation and adaptive behavioural control within the Active Inference framework. Our aim is to connect two research streams that are usually considered independently; namely, Active Inference and associative learning theories of animal behaviour. The former uses a probabilistic (Bayesian) formulation of perception and action, while the latter calls on multiple (Pavlovian, habitual, goal-directed) processes for homeostatic and behavioural control. We offer a synthesis these classical processes and cast them as successive hierarchical contextualisations of sensorimotor constructs, using the generative models that underpin Active Inference. This dissolves any apparent mechanistic distinction between the optimization processes that mediate classical control or learning. Furthermore, we generalize the scope of Active Inference by emphasizing interoceptive inference and homeostatic regulation. The ensuing homeostatic (or allostatic) perspective provides an intuitive explanation for how priors act as drives or goals to enslave action, and emphasises the embodied nature of inference. PMID:26365173

  2. Active flutter suppression - Control system design and experimental validation

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Srinathkumar, S.

    1991-01-01

    The synthesis and experimental validation of an active flutter suppression controller for the Active Flexible Wing wind-tunnel model is presented. The design is accomplished with traditional root locus and Nyquist methods using interactive computer graphics tools and with extensive use of simulation-based analysis. The design approach uses a fundamental understanding of the flutter mechanism to formulate a simple controller structure to meet stringent design specifications. Experimentally, the flutter suppression controller succeeded in simultaneous suppression of two flutter modes, significantly increasing the flutter dynamic pressure despite errors in flutter dynamic pressure and flutter frequency in the mathematical model. The flutter suppression controller was also successfully operated in combination with a roll maneuver controller to perform flutter suppression during rapid rolling maneuvers.

  3. Active Suppression of the Transonic Flutter Using Sliding Mode Control

    NASA Astrophysics Data System (ADS)

    Degaki, Takanori; Suzuki, Shinji

    This paper describes two-dimensional active flutter suppression to cope with the transonic dip using the sliding mode control. The airfoil model has plunge and pitch degrees of freedom with leading and trailing edge control surfaces. The aerodynamic forces acting on the airfoil, lift and pitching moment, are calculated by solving Euler's equations using computational fluid dynamics. At a specific altitude, flutter occurs between Mach number of 0.7 and 0.88, which corresponds to the transonic dip. The sliding mode control makes the airfoil to be stable all through the Mach number including the transonic dip. The sliding mode controller gives wider flutter margin than a linear quadratic regulator. These characteristics indicate that the sliding mode control is useful for active flutter suppression in the transonic flight.

  4. Simple control-theoretic models of human steering activity in visually guided vehicle control

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1991-01-01

    A simple control theoretic model of human steering or control activity in the lateral-directional control of vehicles such as automobiles and rotorcraft is discussed. The term 'control theoretic' is used to emphasize the fact that the model is derived from a consideration of well-known control system design principles as opposed to psychological theories regarding egomotion, etc. The model is employed to emphasize the 'closed-loop' nature of tasks involving the visually guided control of vehicles upon, or in close proximity to, the earth and to hypothesize how changes in vehicle dynamics can significantly alter the nature of the visual cues which a human might use in such tasks.

  5. Experimental studies on active vibration control of a smart composite beam using a PID controller

    NASA Astrophysics Data System (ADS)

    Jovanović, Miroslav M.; Simonović, Aleksandar M.; Zorić, Nemanja D.; Lukić, Nebojša S.; Stupar, Slobodan N.; Ilić, Slobodan S.

    2013-11-01

    This paper presents experimental verification of the active vibration control of a smart cantilever composite beam using a PID controller. In order to prevent negative occurrences in the derivative and integral terms in a PID controller, first-order low-pass filters are implemented in the derivative action and in the feedback of the integral action. The proposed application setup consists of a composite cantilever beam with a fiber-reinforced piezoelectric actuator and strain gage sensors. The beam is modeled using a finite element method based on third-order shear deformation theory. The experiment considers vibration control under periodic excitation and an initial static deflection. A control algorithm was implemented on a PIC32MX440F256H microcontroller. Experimental results corresponding to the proposed PID controller are compared with corresponding results using proportional (P) control, proportional-integral (PI) control and proportional-derivative (PD) control. Experimental results indicate that the proposed PID controller provides 8.93% more damping compared to a PD controller, 14.41% more damping compared to a PI controller and 19.04% more damping compared to a P controller in the case of vibration under periodic excitation. In the case of free vibration control, the proposed PID controller shows better performance (settling time 1.2 s) compared to the PD controller (settling time 1.5 s) and PI controller (settling time 2.5 s).

  6. Active control of fan noise from a turbofan engine

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burdisso, Ricardo A.; Fuller, Christopher R.; O'Brien, Walter F.

    1994-01-01

    A three-channel active control system is applied to an operational turbofan engine to reduce tonal noise produced by both the fan and the high-pressure compressor. The control approach is the feedforward filtered-x least-mean-square algorithm implemented on a digital signal processing board. Reference transducers mounted on the engine case provide blade passing and harmonics frequency information to the controller. Error information is provided by large area microphones placed in the acoustic far field. To minimize the error signal, the controller actuates loudspeakers mounted on the inlet to produce destructive interference. The sound pressure level of the fundamental tone of the fan was reduced using the three-channel controller by up to 16 dB over a +/- 30-deg angle about the engine axis. A single-channel controller could produce reduction over a +/- 15-deg angle. The experimental results show the control to be robust. Outside of the areas contolled, the levels of the tone actually increased due to the generation of radial modes by the control sources. Simultaneous control of two tones is achieved with parallel controllers. The fundamental and the first harmonic tones of the fan were controlled simultaneously with reductions of 12 and 5 dBA, respectively, measured on the engine axis. Simultaneous control was also demonstrated for the fan fundamental and the high-pressure compressor fundamental tones.

  7. Active control of excessive sound emission on a mobile device.

    PubMed

    Jeon, Se-Woon; Youn, Dae Hee; Park, Young-cheol; Lee, Gun-Woo

    2015-04-01

    During a phone conversation, loud vocal emission from the far-end to the near-end space can disturb nearby people. In this paper, the possibility of actively controlling such unwanted sound emission using a control source placed on the mobile device is investigated. Two different approaches are tested: Global control, minimizing the potential energy measured along a volumetric space surface, and local control, minimizing the squared sound pressure at a discrete point on the phone. From the test results, both approaches can reduce the unwanted sound emission by more than 6 dB in the frequency range up to 2 kHz. PMID:25920885

  8. Three-axis active magnetic attitude control asymptotical study

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, M. Yu.; Roldugin, D. S.; Penkov, V. I.

    2015-05-01

    Active magnetic attitude control system providing given inertial attitude is considered. Control algorithm is constructed on the basis of a planar motion model. It decreases attitude discrepancy. Alternative approach is based on the PD-controller design. System behavior is analyzed for specific motion cases and sometimes for specific inertia tensor (axisymmetrical satellite) using averaging technique. Overall satellite angular motion is covered. Necessary attitude is found to be accessible for some control parameters. Stability is proven and optimal algorithm parameters are obtained. Floquet-based analysis is performed to verify and broaden analytical results.

  9. The effects of physical activity on functional MRI activation associated with cognitive control in children: a randomized controlled intervention

    PubMed Central

    Chaddock-Heyman, Laura; Erickson, Kirk I.; Voss, Michelle W.; Knecht, Anya M.; Pontifex, Matthew B.; Castelli, Darla M.; Hillman, Charles H.; Kramer, Arthur F.

    2013-01-01

    This study used functional magnetic resonance imaging (fMRI) to examine the influence of a 9-month physical activity program on task-evoked brain activation during childhood. The results demonstrated that 8- to 9-year-old children who participated in 60+ min of physical activity, 5 days per week, for 9 months, showed decreases in fMRI brain activation in the right anterior prefrontal cortex coupled with within-group improvements in performance on a task of attentional and interference control. Children assigned to a wait-list control group did not show changes in brain function. Furthermore, at post-test, children in the physical activity group showed similar anterior frontal brain patterns and incongruent accuracy rates to a group of college-aged young adults. Children in the wait-list control group still differed from the young adults in terms of anterior prefrontal activation and performance at post-test. There were no significant changes in fMRI activation in the anterior cingulate cortex (ACC) for either group. These results suggest that physical activity during childhood may enhance specific elements of prefrontal cortex function involved in cognitive control. PMID:23487583

  10. Modeling and vibration control of an active membrane mirror

    NASA Astrophysics Data System (ADS)

    Ruggiero, Eric J.; Inman, Daniel J.

    2009-09-01

    The future of space satellite technology lies in ultra-large mirrors and radar apertures for significant improvements in imaging and communication bandwidths. The availability of optical-quality membranes drives a parallel effort for structural models that can capture the dominant dynamics of large, ultra-flexible satellite payloads. Unfortunately, the inherent flexibility of membrane mirrors wreaks havoc with the payload's on-orbit stability and maneuverability. One possible means of controlling these undesirable dynamics is by embedding active piezoelectric ceramics near the boundary of the membrane mirror. In doing so, active feedback control can be used to eliminate detrimental vibration, perform static shape control, and evaluate the health of the structure. The overall motivation of the present work is to design a control system using distributed bimorph actuators to eliminate any detrimental vibration of the membrane mirror. As a basis for this study, a piezoceramic wafer was attached in a bimorph configuration near the boundary of a tensioned rectangular membrane sample. A finite element model of the system was developed to capture the relevant system dynamics from 0 to 300 Hz. The finite element model was compared against experimental results, and fair agreement found. Using the validated finite element models, structural control using linear quadratic regulator control techniques was then used to numerically demonstrate effective vibration control. Typical results show that less than 12 V of actuation voltage is required to eliminate detrimental vibration of the membrane samples in less than 15 ms. The functional gains of the active system are also derived and presented. These spatially descriptive control terms dictate favorable regions within the membrane domain for placing sensors and can be used as a design guideline for structural control applications. The results of the present work demonstrate that thin plate theory is an appropriate modeling

  11. Development of magnetostrictive active members for control of space structures

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce G.; Avakian, Kevin M.; Fenn, Ralph C.; Gaffney, Monique S.; Gerver, Michael J.; Hawkey, Timothy J.; Boudreau, Donald J.

    1992-01-01

    The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed.

  12. Optimal control for the active above-knee prosthesis.

    PubMed

    Popović, D; Oğuztöreli, M N; Stein, R B

    1991-01-01

    Control of an active above-knee prosthesis has been simulated for a selected gait activity using a hierarchical closed-loop method. An extension of finite-state control, referred to as artificial reflex control, was adopted at the strategic level of control. At the actuator level of control an optimal tracking method, based on dynamic programming, is applied. This deals mainly with the actuator level of control, but considers the interaction of the leg dynamics and the switching effects of artificial reflex control. Optimal tracking at the actuator level of the above-knee prosthesis reduces the on-off effects of finite-state methods, such as artificial reflex control. The proposed method can also be used for the design of prosthetic elements. Specific attention is paid to the limited torque and power in the prosthetic joint actuator, which are imposed by the principle of self-containment in the artificial leg. The hierarchical structure, integrating artificial reflex control and optimal tracking, can be used in real time, as estimated from the number of computer operations required for the suggested method. PMID:2048773

  13. Active vibration control of basic structures using macro fiber composites

    NASA Astrophysics Data System (ADS)

    Yi, Guo; Wang, Jinming; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2011-03-01

    In the modern naval battle, as the anti-detection technique developing fleetly, enhancing submarine's hidden ability is becoming more and more important. However, in view of the worse control effect at low-frequency and weak adjustability to external influence, conventional passive vibration control can't satisfy the modern naval rigorous demands. Fortunately, active vibration control technology not only monitors the structure's real-time vibration, but also has more remarkable control effects and superior suitability. At the present time, it has a primary application in the vibration damping of ship engineering. In addition, due to functional materials rapidly developing, with the coming of piezoelectric composite materials, the advanced active control techniques have more applicability, lager damp amplitude and wider applied field, which basing on the piezoelectric-effect and inverse- piezoelectric-effect of piezoelectric materials. Especially, in the end of nineties, NASA had successfully manufactured the excellent macro fiber composite (MFC), which assembles actuating and sensing abilities. Comparing with the conventional piezoelectric ceramic materials, it provides the required durability, excellent flexibility, higher electromechanical coupling factors and stronger longitudinal actuating force by using interdigital electrodes. On the basis of the application of cantilever beam' active vibration control by using MFC actuators, this paper started with the mechanical characteristics of its actuating and sensing equations, and then investigated its piezoelectric feedback scale factor when equipped on the honeycomb aluminous panel. Finally, in order to validate the theoretical analysis method, the vibration control experiment of cantilever beam and honeycomb aluminous panel are built and tested with different activating force. The experimental results verify that MFC used in submarine structures' active vibration control are feasible and effective.

  14. Active Blade Vibration Control Being Developed and Tested

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter

    2003-01-01

    Gas turbine engines are currently being designed to have increased performance, lower weight and manufacturing costs, and higher reliability. Consequently, turbomachinery components, such as turbine and compressor blades, have designs that are susceptible to new vibration problems and eventual in-service failure due to high-cycle fatigue. To address this problem, researchers at the NASA Glenn Research Center are developing and testing innovative active blade vibration control concepts. Preliminary results of using an active blade vibration control system, involving a rotor supported by an active magnetic bearing in Glenn's Dynamic Spin Rig, indicate promising results (see the photograph). Active blade vibration control was achieved using feedback of blade strain gauge signals within the magnetic bearing control loop. The vibration amplitude was reduced substantially (see the graphs). Also, vibration amplitude amplification was demonstrated; this could be used to enhance structural mode identification, if desired. These results were for a nonrotating two-bladed disk. Tests for rotating blades are planned. Current and future active blade vibration control research is planned to use a fully magnetically suspended rotor and smart materials. For the fully magnetically suspended rotor work, three magnetic bearings (two radial and one axial) will be used as actuators instead of one magnetic bearing. This will allow additional degrees of freedom to be used for control. For the smart materials work, control effectors located on and off the blade will be considered. Piezoelectric materials will be considered for on-the-blade actuation, and actuator placement on a stator vane, or other nearby structure, will be investigated for off-the-blade actuation. Initial work will focus on determining the feasibility of these methods by performing basic analysis and simple experiments involving feedback control.

  15. Active vibration and noise control of vibro-acoustic system by using PID controller

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Wang, Xiaojun; Huang, Ren; Qiu, Zhiping

    2015-07-01

    Active control simulation of the acoustic and vibration response of a vibro-acoustic cavity of an airplane based on a PID controller is presented. A full numerical vibro-acoustic model is developed by using an Eulerian model, which is a coupled model based on the finite element formulation. The reduced order model, which is used to design the closed-loop control system, is obtained by the combination of modal expansion and variable substitution. Some physical experiments are made to validate and update the full-order and the reduced-order numerical models. Optimization of the actuator placement is employed in order to get an effective closed-loop control system. For the controller design, an iterative method is used to determine the optimal parameters of the PID controller. The process is illustrated by the design of an active noise and vibration control system for a cavity structure. The numerical and experimental results show that a PID-based active control system can effectively suppress the noise inside the cavity using a sound pressure signal as the controller input. It is also possible to control the noise by suppressing the vibration of the structure using the structural displacement signal as the controller input. For an airplane cavity structure, considering the issue of space-saving, the latter is more suitable.

  16. Active control of train bogies with MR dampers

    NASA Astrophysics Data System (ADS)

    Fotoohi, Abbas; Yousefi-Koma, Aghil; Yasrebi, Naser

    2006-03-01

    This research is conducted to demonstrate the advantages of skyhook semi-active dampers in railway vehicle suspension systems. This semi- active suspension system consists of four actuators on each bogie that locate in the secondary suspension position instead of passive dampers. Employing equations of skyhook control scheme, the semi- active damping force (actuator force) is determined by absolute velocity of car body instead of relative velocity. An integration of a control design tool, i.e. MATLAB, together with a tool for railway vehicle simulation, i.e. ADAMS/Rail is utilized for modeling and control analysis simultaneously. Analysis has been performed on a traditional bogie model with passive secondary suspension and on a new bogie model with semi-active suspension. The effects of suspension system on displacement and acceleration in passenger seats have been investigated in various points of car body. Results show that the semi-active suspension improves the ride comfort by reducing accelerations, in comparison with passive model. Finally, according to the damper force obtained from Sky-hook controller, a Magnetorheological (MR) damper has been designed for the semi-active suspension system.

  17. Paradoxical control properties of enzymes within pathways: can activation cause an enzyme to have increased control?

    PubMed Central

    Kholodenko, B N; Brown, G C

    1996-01-01

    It is widely assumed that within a metabolic pathway inhibition of an enzyme causes the control exerted by that enzyme over the flux through its own reaction to increase, whereas activation causes its control to decrease. This assumption forms the basis of a number of experimental methods. For a pathway conceptually divided into two enzyme groups connected via a single metabolite we have derived a general condition under which this assumption is false, and thus the pathway shows paradoxical control behaviour, i.e. increased control with activation and decreased control with inhibition of an enzyme or group of enzymes. Paradoxical control behaviour occurs widely when enzyme activity is altered by changing Km (if an enzyme is already close to saturation by its substrate), but may also occur with changes in Vmax. when the elasticity to the linking metabolite increases with its concentration (as in some cases of sigmoidal and exponential kinetics or for reactions catalysed by isoenzymes). These findings suggest that enzymes with sigmoidal kinetics may have low control in the absence of activation, but may gain control with activation, and thus have beneficial regulatory properties. PMID:8615766

  18. Active Fault Tolerant Control for Ultrasonic Piezoelectric Motor

    NASA Astrophysics Data System (ADS)

    Boukhnifer, Moussa

    2012-07-01

    Ultrasonic piezoelectric motor technology is an important system component in integrated mechatronics devices working on extreme operating conditions. Due to these constraints, robustness and performance of the control interfaces should be taken into account in the motor design. In this paper, we apply a new architecture for a fault tolerant control using Youla parameterization for an ultrasonic piezoelectric motor. The distinguished feature of proposed controller architecture is that it shows structurally how the controller design for performance and robustness may be done separately which has the potential to overcome the conflict between performance and robustness in the traditional feedback framework. A fault tolerant control architecture includes two parts: one part for performance and the other part for robustness. The controller design works in such a way that the feedback control system will be solely controlled by the proportional plus double-integral PI2 performance controller for a nominal model without disturbances and H∞ robustification controller will only be activated in the presence of the uncertainties or an external disturbances. The simulation results demonstrate the effectiveness of the proposed fault tolerant control architecture.

  19. Active control of fan noise from a turbofan engine

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burdisso, Ricardo A.; Fuller, Christopher R.; O'Brien, Walter F.

    1993-01-01

    A three channel active control system is applied to an operational turbofan engine in order to reduce tonal noise produced by both the fan and high pressure compressor. The control approach is the feedforward filtered-x least-mean-square algorithm implemented on a digital signal processing board. Reference transducers mounted on the engine case provides blade passing and harmonics frequency information to the controller. Error information is provided by large area microphones placed in the acoustic far field. In order to minimize the error signal, the controller actuates loudspeakers mounted on the inlet to produce destructive interference. The sound pressure level of the fundamental tone of the fan was reduced using the three channel controller by up to 16 dB over a 60 deg angle about the engine axis. A single channel controller could produce reduction over a 30 deg angle. The experimental results show the control to be robust. Simultaneous control of two tones is done with parallel controllers. The fundamental and the first harmonic tones of the fan were controlled simultaneously with reductions of 12 dBA and 5 dBA, respectively, measured on the engine axis. Simultaneous control was also demonstrated for the fan fundamental and the high pressure compressor fundamental tones.

  20. Active Power Controls from Wind Power: Bridging the Gaps

    SciTech Connect

    Ela, E.; Gevorgian, V.; Fleming, P.; Zhang, Y. C.; Singh, M.; Muljadi, E.; Scholbrook, A.; Aho, J.; Buckspan, A.; Pao, L.; Singhvi, V.; Tuohy, A.; Pourbeik, P.; Brooks, D.; Bhatt, N.

    2014-01-01

    This paper details a comprehensive study undertaken by the National Renewable Energy Laboratory, Electric Power Research Institute, and the University of Colorado to understand how the contribution of wind power providing active power control (APC) can benefit the total power system economics, increase revenue streams, improve the reliability and security of the power system, and provide superior and efficient response while reducing any structural and loading impacts that may reduce the life of the wind turbine or its components. The study includes power system simulations, control simulations, and actual field tests using turbines at NREL's National Wind Technology Center (NWTC). The study focuses on synthetic inertial control, primary frequency control, and automatic generation control, and analyzes timeframes ranging from milliseconds to minutes to the lifetime of wind turbines, locational scope ranging from components of turbines to large wind plants to entire synchronous interconnections, and additional topics ranging from economics to power system engineering to control design.

  1. Dynamics and Control of a Quadrotor with Active Geometric Morphing

    NASA Astrophysics Data System (ADS)

    Wallace, Dustin A.

    Quadrotors are manufactured in a wide variety of shapes, sizes, and performance levels to fulfill a multitude of roles. Robodub Inc. has patented a morphing quadrotor which will allow active reconfiguration between various shapes for performance optimization across a wider spectrum of roles. The dynamics of the system are studied and modeled using Newtonian Mechanics. Controls are developed and simulated using both Linear Quadratic and Numerical Nonlinear Optimal control for a symmetric simplificiation of the system dynamics. Various unique vehicle capabilities are investigated, including novel single-throttle flight control using symmetric geometric morphing, as well as recovery from motor loss by reconfiguring into a trirotor configuration. The system dynamics were found to be complex and highly nonlinear. All attempted control strategies resulted in controllability, suggesting further research into each may lead to multiple viable control strategies for a physical prototype.

  2. Compressor Performance Enhanced by Active Flow Control Over Stator Vanes

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.

    2003-01-01

    The application of active flow control technology to enhance turbomachinery system performance is being investigated at the NASA Glenn Research Center through experimental studies. Active flow control involves the use of sensors and actuators embedded within engine components to dynamically alter the internal flow path during off nominal operation in order to optimize engine performance and maintain stable operation. Modern compressors are already highly optimized components that must be designed to accommodate a broad range of operating conditions in a safe and efficient manner. Since overall engine performance is driven by compressor performance, advances in compressor technology that reduce weight and parts count, reduce fuel consumption, and lower maintenance costs will have a significant impact on the cost of aircraft ownership. Active flow control holds the promise of delivering such technology advances.

  3. Passive and Active Flow Control by Swimming Fishes and Mammals

    NASA Astrophysics Data System (ADS)

    Fish, F. E.; Lauder, G. V.

    2006-01-01

    What mechanisms of flow control do animals use to enhance hydrodynamic performance? Animals are capable of manipulating flow around the body and appendages both passively and actively. Passive mechanisms rely on structural and morphological components of the body (i.e., humpback whale tubercles, riblets). Active flow control mechanisms use appendage or body musculature to directly generate wake flow structures or stiffen fins against external hydrodynamic loads. Fish can actively control fin curvature, displacement, and area. The vortex wake shed by the tail differs between eel-like fishes and fishes with a discrete narrowing of the body in front of the tail, and three-dimensional effects may play a major role in determining wake structure in most fishes.

  4. Fault detection and isolation for an active wheelset control system

    NASA Astrophysics Data System (ADS)

    Mirzapour, Mohammad; Mei, T. X.; Xuesong, Jin

    2014-05-01

    Active control for railway wheelsets in the primary suspension has been shown to offer a number of performance gains, and especially it can be used to stabilise the wheelsets without compromising the vehicle's performance on curves. However, the use of actuators, sensors and data processors to replace the traditional passive suspension raises the issue of system safety in the event of a failure of the active control, which could result in the loss of stability (i.e. wheelset hunting), and in more severe cases, derailment. This paper studies the key issue of condition monitoring for an actively controlled railway system, with a focus on actuator failures to detect and isolate failure modes in such a system. It seeks to establish the necessary basis for fault detection to ensure system reliability in the event of malfunction in one of the two actuators. Computer simulations are used to demonstrate the effectiveness of the method.

  5. HBT-EP Program: Active MHD Mode Dynamics and Control

    NASA Astrophysics Data System (ADS)

    Navratil, G. A.; Bialek, J.; Boozer, A. H.; Byrne, P. J.; Donald, G. V.; Hughes, P. E.; Levesque, J. P.; Mauel, M. E.; Peng, Q.; Rhodes, D. J.; Stoafer, C. C.; Hansen, C. J.

    2015-11-01

    The HBT-EP active mode control research program aims to: (i) quantify external kink dynamics and multimode response to magnetic perturbations, (ii) understand the relationship between control coil configuration, conducting and ferritic wall effects, and active feedback control, and (iii) explore advanced feedback algorithms. Biorthogonal decomposition is used to observe multiple simultaneous resistive wall modes (RWM). A 512 core GPU-based low latency (14 μs) MIMO control system uses 96 inputs and 64 outputs for Adaptive Control of RWMs. An in-vessel adjustable ferritic wall is used to study ferritic RWMs with increased growth rates, RMP response, and disruptivity. A biased electrode in the plasma is used to control the rotation of external kinks and evaluate error fields. A Thomson scattering diagnostic measures Te and ne at 3 spatial points, soon to be extended to 10 points. A quasi-linear sharp-boundary model of the plasma's multimode response to error fields is developed to determine harmful error field structures and associated NTV and resonant torques. Upcoming machine upgrades will allow measurements and control of scrape-off-layer currents, and control of kink modes using optical diagnostics. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  6. Design and test of three active flutter suppression controllers

    NASA Technical Reports Server (NTRS)

    Christhilf, David M.; Waszak, Martin R.; Adams, William M.; Srinathkumar, S.; Mukhopadhyay, Vivek

    1991-01-01

    Three flutter suppression control law design techniques are presented. Each uses multiple control surfaces and/or sensors. The first uses linear combinations of several accelerometer signals together with dynamic compensation to synthesize the modal rate of the critical mode for feedback to distributed control surfaces. The second uses traditional tools (pole/zero loci and Nyquist diagrams) to develop a good understanding of the flutter mechanism and produce a controller with minimal complexity and good robustness to plant uncertainty. The third starts with a minimum energy Linear Quadratic Gaussian controller, applies controller order reduction, and then modifies weight and noise covariance matrices to improve multi-variable robustness. The resulting designs were implemented digitally and tested subsonically on the Active Flexible Wing (AFW) wind tunnel model. Test results presented here include plant characteristics, maximum attained closed-loop dynamic pressure, and Root Mean Square control surface activity. A key result is that simultaneous symmetric and antisymmetric flutter suppression was achieved by the second control law, with a 24 percent increase in attainable dynamic pressure.

  7. Active Control of Noise Using Actuator/Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Lindner, Douglas K.; Winder, Patrice; Kirby, George

    1996-01-01

    Current research in smart structures is directed toward the integration of many actuators and sensors into a material. In this paper we investigate the possibility of using this instrumentation for active noise control from a vibrating structures. Current technology for reducing radiated sound is limited by the instrumentation for the control system. These control systems employ relatively small numbers of sensors and actuators. Hence, these control systems must rely on a model of the structure to estimate and control the global vibrations that contribute to the far field pressure. For complex, realistic structures the development of such a model is a formidable task. The model is a limiting factor in the continuing development of structural acoustics. In this paper we propose to increase the number of actuators and sensors of a smart material to offset the complexity of the model used for control design. The sensor arrays will be used to directly sense the shape of the structure rather than using a model of the structures to indirectly sense the shape of the structure. The actuator array is used to apply distributed forces to the structure, rather than using the structure itself as a load path. A control system for the active cancellation of sound is derived from standard control system methodologies.

  8. Application of neural networks to seismic active control

    SciTech Connect

    Tang, Yu

    1995-07-01

    An exploratory study on seismic active control using an artificial neural network (ANN) is presented in which a singledegree-of-freedom (SDF) structural system is controlled by a trained neural network. A feed-forward neural network and the backpropagation training method are used in the study. In backpropagation training, the learning rate is determined by ensuring the decrease of the error function at each training cycle. The training patterns for the neural net are generated randomly. Then, the trained ANN is used to compute the control force according to the control algorithm. The control strategy proposed herein is to apply the control force at every time step to destroy the build-up of the system response. The ground motions considered in the simulations are the N21E and N69W components of the Lake Hughes No. 12 record that occurred in the San Fernando Valley in California on February 9, 1971. Significant reduction of the structural response by one order of magnitude is observed. Also, it is shown that the proposed control strategy has the ability to reduce the peak that occurs during the first few cycles of the time history. These promising results assert the potential of applying ANNs to active structural control under seismic loads.

  9. Actively Controlled Landing Gear for Aircraft Vibration Reduction

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Daugherty, Robert H.; Martinson, Veloria J.

    1999-01-01

    Concepts for long-range air travel are characterized by airframe designs with long, slender, relatively flexible fuselages. One aspect often overlooked is ground induced vibration of these aircraft. This paper presents an analytical and experimental study of reducing ground-induced aircraft vibration loads using actively controlled landing gears. A facility has been developed to test various active landing gear control concepts and their performance. The facility uses a NAVY A6-intruder landing gear fitted with an auxiliary hydraulic supply electronically controlled by servo valves. An analytical model of the gear is presented including modifications to actuate the gear externally and test data is used to validate the model. The control design is described and closed-loop test and analysis comparisons are presented.

  10. Active vibration control for flexible rotor by optimal direct-output feedback control

    NASA Technical Reports Server (NTRS)

    Nonami, K.; Dirusso, E.; Fleming, D. P.

    1989-01-01

    Experimental research tests were performed to actively control the rotor vibrations of a flexible rotor mounted on flexible bearing supports. The active control method used in the tests is called optimal direct-output feedback control. This method uses four electrodynamic actuators to apply control forces directly to the bearing housings in order to achieve effective vibration control of the rotor. The force actuators are controlled by an analog controller that accepts rotor displacement as input. The controller is programmed with experimentally determined feedback coefficients; the output is a control signal to the force actuators. The tests showed that this active control method reduced the rotor resonance peaks due to unbalance from approximately 250 microns down to approximately 25 microns (essentially runout level). The tests were conducted over a speed range from 0 to 10,000 rpm; the rotor system had nine critical speeds within this speed range. The method was effective in significantly reducing the rotor vibration for all of the vibration modes and critical speeds.

  11. Active vibration control for flexible rotor by optimal direct-output feedback control

    NASA Technical Reports Server (NTRS)

    Nonami, Kenzou; Dirusso, Eliseo; Fleming, David P.

    1989-01-01

    Experimental research tests were performed to actively control the rotor vibrations of a flexible rotor mounted on flexible bearing supports. The active control method used in the tests is called optimal direct-output feedback control. This method uses four electrodynamic actuators to apply control forces directly to the bearing housings in order to achieve effective vibration control of the rotor. The force actuators are controlled by an analog controller that accepts rotor displacement as input. The controller is programmed with experimentally determined feedback coefficients; the output is a control signal to the force actuators. The tests showed that this active control method reduced the rotor resonance peaks due to unbalance from approximately 250 micrometers down to approximately 25 micrometers (essentially runout level). The tests were conducted over a speed range from 0 to 10,000 rpm; the rotor system had nine critical speeds within this speed range. The method was effective in significantly reducing the rotor vibration for all of the vibration modes and critical speeds.

  12. Actively controlled vehicle suspension with energy regeneration capabilities

    NASA Astrophysics Data System (ADS)

    Bar David, Sagiv; Zion Bobrovsky, Ben

    2011-06-01

    The paper presents an innovative dual purpose automotive suspension topology, combining for the first time the active damping qualities with mechanical vibrations power regeneration capabilities. The new configuration consists of a linear generator as an actuator, a power processing stage based on a gyrator operating under sliding mode control and dynamics controllers. The researched design is simple and energetically efficient, enables an accurate force-velocity suspension characteristic control as well as energy regeneration control, with no practical implementation constraints imposed over the theoretical design. Active damping is based on Skyhook suspension control scheme, which enables overcoming the passive damping tradeoff between high- and low-frequency performance, improving both body isolation and the tire's road grip. The system-level design includes configuration of three system operation modes: passive, semi-active or fully active damping, all using the same electro-mechanical infrastructure, and each focusing on different objective: dynamics improvement or power regeneration. Conclusively, the innovative hybrid suspension is theoretically researched, practically designed and analysed, and proven to be feasible as well as profitable in the aspects of power regeneration, vehicle dynamics improvement and human health risks reduction.

  13. Automatic motor activation in the executive control of action

    PubMed Central

    McBride, Jennifer; Boy, Frédéric; Husain, Masud; Sumner, Petroc

    2012-01-01

    Although executive control and automatic behavior have often been considered separate and distinct processes, there is strong emerging and convergent evidence that they may in fact be intricately interlinked. In this review, we draw together evidence showing that visual stimuli cause automatic and unconscious motor activation, and how this in turn has implications for executive control. We discuss object affordances, alien limb syndrome, the visual grasp reflex, subliminal priming, and subliminal triggering of attentional orienting. Consideration of these findings suggests automatic motor activation might form an intrinsic part of all behavior, rather than being categorically different from voluntary actions. PMID:22536177

  14. Active RF Pulse Compression Using An Electrically Controlled Semiconductor Switch

    SciTech Connect

    Guo, Jiquan; Tantawi, Sami; /SLAC

    2007-01-10

    First we review the theory of active pulse compression systems using resonant delay lines. Then we describe the design of an electrically controlled semiconductor active switch. The switch comprises an active window and an overmoded waveguide three-port network. The active window is based on a four-inch silicon wafer which has 960 PIN diodes. These are spatially combined in an overmoded waveguide. We describe the philosophy and design methodology for the three-port network and the active window. We then present the results of using this device to compress 11.4 GHz RF signals with high compression ratios. We show how the system can be used with amplifier like sources, in which one can change the phase of the source by manipulating the input to the source. We also show how the active switch can be used to compress a pulse from an oscillator like sources, which is not possible with passive pulse compression systems.

  15. Enhancing Sensorimotor Activity by Controlling Virtual Objects with Gaze

    PubMed Central

    Modroño, Cristián; Plata-Bello, Julio; Zelaya, Fernando; García, Sofía; Galván, Iván; Marcano, Francisco; Navarrete, Gorka; Casanova, Óscar; Mas, Manuel; González-Mora, José Luis

    2015-01-01

    This fMRI work studies brain activity of healthy volunteers who manipulated a virtual object in the context of a digital game by applying two different control methods: using their right hand or using their gaze. The results show extended activations in sensorimotor areas, not only when participants played in the traditional way (using their hand) but also when they used their gaze to control the virtual object. Furthermore, with the exception of the primary motor cortex, regional motor activity was similar regardless of what the effector was: the arm or the eye. These results have a potential application in the field of the neurorehabilitation as a new approach to generate activation of the sensorimotor system to support the recovery of the motor functions. PMID:25799431

  16. Curve Squeal of Train Wheels, Part 3: Active Control

    NASA Astrophysics Data System (ADS)

    HECKL, MARIA A.; HUANG, X. Y.

    2000-01-01

    This paper presents a new method to annul the squeal noise that is produced by trains traversing a curve. The method is a special form of active control, applied to suppress the bending oscillations of a squealing wheel. It is essentially a feedback system with the following components: sensor, narrowband filter, phase-shifter, amplifier and actuator. The control signal driving the actuator has only a single frequency (set at the filter), and that frequency typically corresponds to one of the bending modes of the wheel. Two versions of the feedback system are considered. In the first version, the actuator exerts a control force on the wheel, and in the second version, the actuator imposes a velocity on the rail. A mathematical model is presented and predictions are made for the performance of both versions. The coupling of the different wheel modes by the control system is discussed. A model rig is described which was used for a practical demonstration of this form of active control. Differences from more conventional forms of active control are pointed out.

  17. Active smart material control system for buffet alleviation

    NASA Astrophysics Data System (ADS)

    Sheta, Essam F.; Moses, Robert W.; Huttsell, Lawrence J.

    2006-05-01

    Vertical tail buffeting is a serious multidisciplinary problem that limits the performance and maneuverability of twin-tail fighter aircraft. The buffet problem occurs at high angles of attack when the vortical flow breaks down ahead of the vertical tails resulting in unsteady and unbalanced loads on the tails leading to their premature fatigue failure. An active smart material control system, using distributed piezoelectric (PZT) actuators, is developed for buffet alleviation and is presented. The surfaces of the vertical tail are equipped with PZT actuators to control the buffet responses in the first bending and torsion modes. The electrodynamics of the PZT actuators are modeled using a finite-element model. A single-input/single-output controller is designed to drive the active PZT actuators. High-fidelity analysis modules for the fluid dynamics, structural dynamics, electrodynamics of the PZT actuators, control law, fluid-structure interfacing, and grid motion are integrated into a multidisciplinary computing environment that controls the temporal synchronization of the analysis modules. The results of this study indicate that the actively controlled PZT actuators are an effective tool for buffet alleviation over wide range of angels of attack. Peak values of power spectral density of tail-tip acceleration are reduced by as much as 22% in the first bending mode and by as much as 82% in the first torsion mode. The root mean square values of tail-tip acceleration are reduced by as much as 12%.

  18. Characteristics of self-sensing actuation for active control

    SciTech Connect

    Barney, P.; Redmond, J.; Smith, D.

    1996-12-31

    The benefits of a collocated sensor actuator pair are well known within the controls community. Generally speaking, collocation offers the use of simple control algorithms with reduced instabilities due to spillover. One method for achieving collocation is the implementation of a ``sentuator`` in which a piezoelectric element functions simultaneously as both a sensor and an actuator. Past work in utilizing a sentuator has primarily been limited to piezoelectric films and patches mounted to flexible structures. Additional papers have provided information and methodology for dealing with the non-linear aspects of a piezoceramic sentuator. The need arises for methods of self-sensing when performing active vibration control of very stiff structures. A method for understanding and using self-sensing lead zirconate titanate stacks for active vibration control is presented. This paper specifically provides a basic understanding of self-sensing methods as applied to stiff structures for the purposes of control. The discussion of the methodology is followed by a simple example in which active vibration control is applied to a model of a boring bar with embedded PZT stacks.

  19. The Benchmark Active Controls Technology Model Aerodynamic Data

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Hoadley, Sherwood T.; Wieseman, Carol D.; Durham, Michael H.

    1997-01-01

    The Benchmark Active Controls Technology (BACT) model is a part of the Benchmark Models Program (BMP). The BMP is a NASA Langley Research Center program that includes a series of models which were used to study different aeroelastic phenomena and to validate computational fluid dynamics codes. The primary objective of BACT testing was to obtain steady and unsteady loads, accelerations, and aerodynamic pressures due to control surface activity in order to calibrate unsteady CFD codes and active control design tools. Three wind-tunnel tests in the Transonic Dynamics Tunnel (TDT) have been completed. The first and parts of the second and third tests focused on collecting open-loop data to define the model's aeroservoelastic characteristics, including the flutter boundary across the Mach range. It is this data that is being presented in this paper. An extensive database of over 3000 data sets was obtained. This database includes steady and unsteady control surface effectiveness data, including pressure distributions, control surface hinge moments, and overall model loads due to deflections of a trailing edge control surface and upper and lower surface

  20. Low-Speed Active Flow Control Laboratory Developed

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Bright, Michelle M.

    2005-01-01

    The future of aviation propulsion systems is increasingly focused on the application of control technologies to significantly enhance the performance of a new generation of air vehicles. Active flow control refers to a set of technologies that manipulate the flow of air and combustion gases deep within the confines of an engine to dynamically alter its performance during flight. By employing active flow control, designers can create engines that are significantly lighter, are more fuel efficient, and produce lower emissions. In addition, the operating range of an engine can be extended, yielding safer transportation systems. The realization of these future propulsion systems requires the collaborative development of many base technologies to achieve intelligent, embedded control at the engine locations where it will be most effective. NASA Glenn Research Center s Controls and Dynamics Technology Branch has developed a state-of-the-art low-speed Active Flow Control Laboratory in which emerging technologies can be integrated and explored in a flexible, low-cost environment. The facility allows the most promising developments to be prescreened and optimized before being tested on higher fidelity platforms, thereby reducing the cost of experimentation and improving research effectiveness.

  1. Satellite Dynamic Damping via Active Force Control Augmentation

    NASA Astrophysics Data System (ADS)

    Varatharajoo, Renuganth

    2012-07-01

    An approach that incorporates the Active Force Control (AFC) technique into a conventional Proportional-Derivative (PD) controller is proposed for a satellite active dynamic damping towards a full attitude control. The AFC method has been established to facilitate a robust motion control of dynamical systems in the presence of disturbances, parametric uncertainties and changes that are commonly prevalent in the real-world environment. The usefulness of the method can be extended by introducing intelligent mechanisms to approximate the mass or inertia matrix of the dynamic system to trigger the compensation effect of the controller. AFC is a technique that relies on the appropriate estimation of the inertial or mass parameters of the dynamic system and the measurements of the acceleration and force signals induced by the system if practical implementation is ever considered. In AFC, it is shown that the system subjected to a number of disturbances remains stable and robust via the compensating action of the control strategy. We demonstrate that it is possible to design a spacecraft attitude feedback controller that will ensure the system dynamics set point remains unchanged even in the presence of the disturbances provided that the actual disturbances can be modeled effectively. In order to further facilitate this analysis, a combined energy and attitude control system (CEACS) is proposed as a model satellite attitude control actuator. All the governing equations are established and the proposed satellite attitude control architecture is made amenable to numerical treatments. The results show that the PD-AFC attitude damping performances are superiorly better than that of the solely PD type. It is also shown that the tunings of the AFC system gains are crucial to ensure a better attitude damping performance and this process is mandatory for AFC systems. Finally, the results demonstrate an important satellite dynamic damping enhancement capability using the AFC

  2. Pro-active optimal control for semi-active vehicle suspension based on sensitivity updates

    NASA Astrophysics Data System (ADS)

    Michael, Johannes; Gerdts, Matthias

    2015-12-01

    This article suggests a strategy to control semi-active suspensions of vehicles in a pro-active way to adapt to future road profiles. The control strategy aims to maximise comfort while maintaining good handling properties. It employs suitably defined optimal control problems in combination with a parametric sensitivity analysis. The optimal control techniques are used to optimise the time-dependent damper coefficients in an electro-rheological damper for given nominal road profiles. The parametric sensitivity analysis is used to adapt the computed nominal optimal controls to perturbed road profiles in real time. The method is particularly useful for events with a low excitation frequency such as ramps, bumps, or potholes. For high-frequency excitations standard controllers are preferable; so we propose a switched open-closed-loop controller design. Various examples demonstrate the performance of the approach.

  3. Human ECG signal parameters estimation during controlled physical activity

    NASA Astrophysics Data System (ADS)

    Maciejewski, Marcin; Surtel, Wojciech; Dzida, Grzegorz

    2015-09-01

    ECG signal parameters are commonly used indicators of human health condition. In most cases the patient should remain stationary during the examination to decrease the influence of muscle artifacts. During physical activity, the noise level increases significantly. The ECG signals were acquired during controlled physical activity on a stationary bicycle and during rest. Afterwards, the signals were processed using a method based on Pan-Tompkins algorithms to estimate their parameters and to test the method.

  4. Semi-active control of helicopter vibration using controllable stiffness and damping devices

    NASA Astrophysics Data System (ADS)

    Anusonti-Inthra, Phuriwat

    Semi-active concepts for helicopter vibration reduction are developed and evaluated in this dissertation. Semi-active devices, controllable stiffness devices or controllable orifice dampers, are introduced; (i) in the blade root region (rotor-based concept) and (ii) between the rotor and the fuselage as semi-active isolators (in the non-rotating frame). Corresponding semi-active controllers for helicopter vibration reduction are also developed. The effectiveness of the rotor-based semi-active vibration reduction concept (using stiffness and damping variation) is demonstrated for a 4-bladed hingeless rotor helicopter in moderate- to high-speed forward flight. A sensitivity study shows that the stiffness variation of root element can reduce hub vibrations when proper amplitude and phase are used. Furthermore, the optimal semi-active control scheme can determine the combination of stiffness variations that produce significant vibration reduction in all components of vibratory hub loads simultaneously. It is demonstrated that desired cyclic variations in properties of the blade root region can be practically achieved using discrete controllable stiffness devices and controllable dampers, especially in the flap and lag directions. These discrete controllable devices can produce 35--50% reduction in a composite vibration index representing all components of vibratory hub loads. No detrimental increases are observed in the lower harmonics of blade loads and blade response (which contribute to the dynamic stresses) and controllable device internal loads, when the optimal stiffness and damping variations are introduced. The effectiveness of optimal stiffness and damping variations in reducing hub vibration is retained over a range of cruise speeds and for variations in fundamental rotor properties. The effectiveness of the semi-active isolator is demonstrated for a simplified single degree of freedom system representing the semi-active isolation system. The rotor

  5. Operational Control Procedures for the Activated Sludge Process, Part I - Observations, Part II - Control Tests.

    ERIC Educational Resources Information Center

    West, Alfred W.

    This is the first in a series of documents developed by the National Training and Operational Technology Center describing operational control procedures for the activated sludge process used in wastewater treatment. Part I of this document deals with physical observations which should be performed during each routine control test. Part II…

  6. Pivoting output unit control systems activated by jacks. [for controlling aircraft flaps

    NASA Technical Reports Server (NTRS)

    Belliere, P.

    1978-01-01

    An invention to be used for controlling aircraft flaps is described. It is applicable to control systems with two coaxial output units which pivot simultaneously with respect to two fixed units and which are activated by two opposed, straight coaxial jacks.

  7. Light-Activated Ion Channels for Remote Control of Neural Activity

    PubMed Central

    Chambers, James J.; Kramer, Richard H.

    2009-01-01

    Light-activated ion channels provide a new opportunity to precisely and remotely control neuronal activity for experimental applications in neurobiology. In the past few years, several strategies have arisen that allow light to control ion channels and therefore neuronal function. Light-based triggers for ion channel control include caged compounds, which release active neurotransmitters when photolyzed with light, and natural photoreceptive proteins, which can be expressed exogenously in neurons. More recently, a third type of light trigger has been introduced: a photoisomerizable tethered ligand that directly controls ion channel activity in a light-dependent manner. Beyond the experimental applications for light-gated ion channels, there may be clinical applications in which these light-sensitive ion channels could prove advantageous over traditional methods. Electrodes for neural stimulation to control disease symptoms are invasive and often difficult to reposition between cells in tissue. Stimulation by chemical agents is difficult to constrain to individual cells and has limited temporal accuracy in tissue due to diffusional limitations. In contrast, ion channels that can be directly activated with light allow control with unparalleled spatial and temporal precision. The goal of this chapter is to describe light-regulated ion channels and how they have been tailored to control different aspects of neural activity, and how to use these channels to manipulate and better understand development, function, and plasticity of neurons and neural circuits. PMID:19195553

  8. Control law design to meet constraints using SYNPAC-synthesis package for active controls

    NASA Technical Reports Server (NTRS)

    Adams, W. M., Jr.; Tiffany, S. H.

    1982-01-01

    Major features of SYNPAC (Synthesis Package for Active Controls) are described. SYNPAC employs constrained optimization techniques which allow explicit inclusion of design criteria (constraints) in the control law design process. Interrelationships are indicated between this constrained optimization approach, classical and linear quadratic Gaussian design techniques. Results are presented that were obtained by applying SYNPAC to the design of a combined stability augmentation/gust load alleviation control law for the DAST ARW-2.

  9. Active control rotor model testing at Princeton's Rotorcraft Dynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Mckillip, Robert M., Jr.

    1988-01-01

    A description of the model helicopter rotor tests currently in progress at Princeton's Rotorcraft Dynamics Laboratory is presented. The tests are designed to provide data for rotor dynamic modeling for use with active control system design. The model rotor to be used incoporates the capability for Individual Blade Control (IBC) or Higher Harmonic Control through the use of a standard swashplate on a three bladed hub. Sample results from the first series of tests are presented, along with the methodology used for state and parameter identification. Finally, pending experiments and possible research directions using this model and test facility are outlined.

  10. Experiments on the active control of transitional boundary layers

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.; Rioual, J.-L.; Fisher, M. J.

    Experimental results are presented which demonstrate that the streamwise position of the transition region of a flat plate boundary layer can be actively controlled. The means of control is through the application of suction through the surface of the plate, a progressive increase in suction rate being capable of producing transition at progressively larger distances downstream from the plate leading edge. A simple digital feedback regulator based on an integral control law is shown to be most effective in regulating the position of transition, an error signal being derived from measurements of pressure fluctuations on the surface of the plate.

  11. Vehicle active steering control research based on two-DOF robust internal model control

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Liu, Yahui; Wang, Fengbo; Bao, Chunjiang; Sun, Qun; Zhao, Youqun

    2016-03-01

    Because of vehicle's external disturbances and model uncertainties, robust control algorithms have obtained popularity in vehicle stability control. The robust control usually gives up performance in order to guarantee the robustness of the control algorithm, therefore an improved robust internal model control(IMC) algorithm blending model tracking and internal model control is put forward for active steering system in order to reach high performance of yaw rate tracking with certain robustness. The proposed algorithm inherits the good model tracking ability of the IMC control and guarantees robustness to model uncertainties. In order to separate the design process of model tracking from the robustness design process, the improved 2 degree of freedom(DOF) robust internal model controller structure is given from the standard Youla parameterization. Simulations of double lane change maneuver and those of crosswind disturbances are conducted for evaluating the robust control algorithm, on the basis of a nonlinear vehicle simulation model with a magic tyre model. Results show that the established 2-DOF robust IMC method has better model tracking ability and a guaranteed level of robustness and robust performance, which can enhance the vehicle stability and handling, regardless of variations of the vehicle model parameters and the external crosswind interferences. Contradiction between performance and robustness of active steering control algorithm is solved and higher control performance with certain robustness to model uncertainties is obtained.

  12. Active control of fan-generated plane wave noise

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Nuckolls, William E.; Santamaria, Odillyn L.; Martinson, Scott D.

    1993-01-01

    Subsonic propulsion systems for future aircraft may incorporate ultra-high bypass ratio ducted fan engines whose dominant noise source is the fan with blade passage frequency less than 1000 Hz. This low frequency combines with the requirement of a short nacelle to diminish the effectiveness of passive duct liners. Active noise control is seen as a viable method to augment the conventional passive treatments. An experiment to control ducted fan noise using a time domain active adaptive system is reported. The control sound source consists of loudspeakers arrayed around the fan duct. The error sensor location is in the fan duct. The purpose of this experiment is to demonstrate that the in-duct error sensor reduces the mode spillover in the far field, thereby increasing the efficiency of the control system. In this first series of tests, the fan is configured so that predominantly zero order circumferential waves are generated. The control system is found to reduce the blade passage frequency tone significantly in the acoustic far field when the mode orders of the noise source and of the control source are the same. The noise reduction is not as great when the mode orders are not the same even though the noise source modes are evanescent, but the control system converges stably and global noise reduction is demonstrated in the far field. Further experimentation is planned in which the performance of the system will be evaluated when higher order radial and spinning modes are generated.

  13. Control of high frequency microactuators using active structures

    NASA Astrophysics Data System (ADS)

    Kreth, P. A.; Alvi, F. S.; Reese, B. M.; Oates, W. S.

    2015-02-01

    A fluidically driven microactuator that generates supersonic, pulsed microjets has been implemented with smart materials to actively and precisely control the frequency of the microjets in a closed-loop manner. Since this actuator relies on a number of microscale flow and acoustic phenomena to produce the pulsed microjets, its resonant frequency is determined by its geometry and other flow parameters. The design discussed in this paper integrates piezoelectric stacks by connecting them to movable sidewalls within the actuator such that the microactuator's internal geometry can be controlled by varying the voltage across the piezo-stacks. An open-loop control scheme demonstrates the frequency modulation capabilities that are enabled with this design: very large frequency deviations (up to +/- 500 Hz) around the actuator design frequency are attained at very high rates (up to 1 kHz). Closed-loop control of the microactuator's frequency was also demonstrated, and the results indicate that (combined with appropriate sensors) this actuator could be used effectively for active, feedback control in high-speed, resonance-dominated flowfields. This proof of concept study clearly illustrates the ability of this robust and compact actuator to produce perturbations that can be modulated and controlled based on the desired control objective.

  14. Mitigation of Chatter Instabilities in Milling by Active Structural Control

    SciTech Connect

    DOHNER, JEFFREY L.; LAUFFER, JAMES P.; HINNERICHS, TERRY D.; KWAN, CHI-MAN; XU, ROGER; SHANKAR, NATARAJAN; WINTERBAUER, BILL; REGELBRUGGE, MARK; BRIDGER, KEITH

    2001-09-01

    This report documents how active structural control was used to significantly enhance the metal removal rate of a milling machine. An active structural control system integrates actuators, sensors, a control law and a processor into a structure for the purpose of improving the dynamic characteristics of the structure. Sensors measure motion, and the control law, implemented in the processor, relates this motion to actuator forces. Closed-loop dynamics can be enhanced by proper control law design. Actuators and sensors were imbedded within a milling machine for the purpose of modifying dynamics in such a way that mechanical energy, produced during cutting, was absorbed. This limited the on-set of instabilities and allowed for greater depths of cut. Up to an order of magnitude improvement in metal removal rate was achieved using this system. Although demonstrations were very successful, the development of an industrial prototype awaits improvements in the technology. In particular, simpler system designs that assure controllability and observability and control algorithms that allow for adaptability need to be developed.

  15. Overview of Active Flow Control at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Pack, L. G.; Joslin, R. D.

    1998-01-01

    The paper summarizes Active Flow Control projects currently underway at the NASA Langley Research Center. Technology development is being pursued within a multidisciplinary, cooperative approach, involving the classical disciplines of fluid mechanics, structural mechanics, material science, acoustics, and stability and control theory. Complementing the companion papers in this session, the present paper will focus on projects that have the goal of extending the state-of-the-art in the measurement, prediction, and control of unsteady, nonlinear aerodynamics. Toward this goal, innovative actuators, micro and macro sensors, and control strategies are considered for high payoff flow control applications. The target payoffs are outlined within each section below. Validation of the approaches range from bench-top experiments to wind-tunnel experiments to flight tests. Obtaining correlations for future actuator and sensor designs are implicit in the discussion. The products of the demonstration projects and design tool development from the fundamental NASA R&D level technology will then be transferred to the Applied Research components within NASA, DOD, and US Industry. Keywords: active flow control, separation control, MEMS, review

  16. Active control of a flexible structure using a modal positive position feedback controller

    NASA Technical Reports Server (NTRS)

    Poh, S.; Baz, A.

    1990-01-01

    The feasibility of a new Modal Positive Position Feedback (MPPF) strategy in controlling the vibration of a complex flexible structure using a single piezo-electric active structural member is demonstrated. The control strategy generates its control forces by manipulating only the modal position signals of the structure to provide a damping action to undamped modes. This is in contrast to conventional modal controllers that rely in their operation on negative feedback of both the modal position and velocity. The proposed strategy is very simple to design and implement as it designs the controller at the uncoupled modal level and utilizes simple first order filters to achieve the Positive Position Feedback effect. The performance of the new strategy is enhanced by augmenting it with a time sharing strategy to share a small number of actuators between larger number of modes. The effectiveness of the new strategy is validated experimentally on a flexible box-type structure that has four bays and its first two bending modes are 2.015 and 6.535 Hz respectively. A single piezo-electric actuator is utilized as an active structural member to control several transverse bending modes of the structure. The performance of the active control system is determined in the time and the frequency domains. The results are compared with those obtained when using the Independent Modal Space Control (IMSC) of Meirovitch. The experimental results suggest the potential of the proposed strategy as a viable means for controlling the vibration of large flexible structures in real time.

  17. Active control of a flexible structure using a modal positive position feedback controller

    NASA Technical Reports Server (NTRS)

    Poh, S.; Baz, A.

    1990-01-01

    The feasibility of a new Modal Positive Position Feedback (MPPF) strategy in controlling the vibration of a complex flexible structure using a single piezo-electric active structural member is demonstrated. The control strategy generates its control forces by manipulating only the modal position signals of the structure to provide a damping action to undamped modes. This is in contrast to conventional modal controllers that rely in their operation on negative feedback of both the modal position and velocity. The proposed strategy is very simple to design and implement as it designs the controller at the uncoupled modal level and utilizes simple first order filters to achieve the Positive Position Feedback effect. The performance of the new strategy is enhanced by augmenting it with a time sharing strategy to share a small number of actuators between larger number of modes. The effectiveness of the new strategy is validated experimentally on a flexible box-type structure that has four bays and its first two bending modes are 2.015 and 6.535 Hz, respectively. A single piezo-electric actuator is utilized as an active structural member to control several transverse bending modes of the structure. The performance of the active control system is determined in the time and the frequency domains. The results are compared with those obtained when using the Independent Modal Space Control (IMSC) of Meirovitch. The experimental results suggest the potential of the proposed strategy as a viable means for controlling the vibration of large flexible structures in real time.

  18. Genesis and Control of bursting activity in a neuronal model

    NASA Astrophysics Data System (ADS)

    Cymbalyuk, Gennady

    2005-11-01

    Neurons are observed in one of four fundamental activity modes: silence, sub-threshold oscillations, tonic spiking, and bursting. Neurons exhibit various activity regimes and regime transitions that reflect their complement of ionic channels and modulatory state. The leech presents unique opportunities for experimental and theoretical studies on the dynamics of neuronal activity. The central pattern generator controlling the leech's heartbeat contains identified pairs of mutually inhibitory neurons. Bursting activity of neurons is an oscillatory activity consisting of intervals of repetitive spiking separated by intervals of quiescence. It has been observed in neurons under normal and pathological conditions. Neurons which are capable of generating bursting activity endogenously play an important role in motor control and other brain functions. Burst duration, interburst interval and spike frequency are crucial temporal characteristics of bursting activity and thus have to be regulated. Application of the bifurcation theory of dynamical systems suggests new mechanism of how bursting activity can be generated by neurons and how burst duration can be regulated. Here we describe two mechanisms for the transition between tonic spiking and bursting. First mechanism describes a smooth, continuous and reversible transition from tonic spiking into bursting in a model neuron. The burst duration increases with no bound as 1/(a-a0)^1/2, where a0 is a parameter determining the transition. The characteristic features of this mechanism are that (a) the burst duration can be made arbitrarily long while (b) inter-burst interval does not depend on the parameter. The second mechanism is concerned with bi-stability where simultaneous tonic spiking and bursting activities co-exist in a neuron. The mechanism is based on a saddle-node periodic orbit bifurcation with non-central homoclinic orbits. This bifurcation describes a transition between three qualitatively different types of

  19. Active Control Analysis for Aeroelastic Instabilities in Turbomachines

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2002-01-01

    Turbomachines onboard aircraft operate in a highly complex and harsh environment. The unsteady flowfield inherent to turbomachines leads to several problems associated with safety, stability, performance and noise. In-flight surge or flutter incidents could be catastrophic and impact the safety and reliability of the aircraft. High-Cycle-Fatigue (HCF), on the other hand, can significantly impact safety, readiness and maintenance costs. To avoid or minimize these problems generally a more conservative design method must be initiated which results in thicker blades and a loss of performance. Actively controlled turbomachines have the potential to reduce or even eliminate the instabilities by impacting the unsteady aerodynamic characteristics. By modifying the unsteady aerodynamics, active control may significantly improve the safety and performance especially at off-design conditions, reduce noise, and increase the range of operation of the turbomachine. Active control can also help improve reliability for mission critical applications such as the Mars Flyer. In recent years, HCF has become one of the major issues concerning the cost of operation for current turbomachines. HCF alone accounts for roughly 30% of maintenance cost for the United States Air-Force. Other instabilities (flutter, surge, rotating-stall, etc.) are generally identified during the design and testing phase. Usually a redesign overcomes these problems, often reducing performance and range of operation, and resulting in an increase in the development cost and time. Despite a redesign, the engines do not have the capabilities or means to cope with in-flight unforeseen vibration, stall, flutter or surge related instabilities. This could require the entire fleet worldwide to be stood down for expensive modifications. These problems can be largely overcome by incorporating active control within the turbomachine and its design. Active control can help in maintaining the integrity of the system in

  20. Controlling the enzymatic activity of a restriction enzyme by light

    PubMed Central

    Schierling, Benno; Noël, Ann-Josée; Wende, Wolfgang; Hien, Le Thi; Volkov, Eugeny; Kubareva, Elena; Oretskaya, Tatiana; Kokkinidis, Michael; Römpp, Andreas; Spengler, Bernhard; Pingoud, Alfred

    2010-01-01

    For many applications it would be desirable to be able to control the activity of proteins by using an external signal. In the present study, we have explored the possibility of modulating the activity of a restriction enzyme with light. By cross-linking two suitably located cysteine residues with a bifunctional azobenzene derivative, which can adopt a cis- or trans-configuration when illuminated by UV or blue light, respectively, enzymatic activity can be controlled in a reversible manner. To determine which residues when cross-linked show the largest “photoswitch effect,” i.e., difference in activity when illuminated with UV vs. blue light, > 30 variants of a single-chain version of the restriction endonuclease PvuII were produced, modified with azobenzene, and tested for DNA cleavage activity. In general, introducing single cross-links in the enzyme leads to only small effects, whereas with multiple cross-links and additional mutations larger effects are observed. Some of the modified variants, which carry the cross-links close to the catalytic center, can be modulated in their DNA cleavage activity by a factor of up to 16 by illumination with UV (azobenzene in cis) and blue light (azobenzene in trans), respectively. The change in activity is achieved in seconds, is fully reversible, and, in the case analyzed, is due to a change in V max rather than K m. PMID:20080559

  1. Benefits of Improved HP Turbine Active Clearance Control

    NASA Technical Reports Server (NTRS)

    Ruiz, Rafael; Albers, Bob; Sak, Wojciech; Seitzer, Ken; Steinetz, Bruce M.

    2007-01-01

    As part of the NASA Propulsion 21 program, GE Aircraft Engines was contracted to develop an improved high pressure turbine(HPT) active clearance control (ACC) system. The system is envisioned to minimize blade tip clearances to improve HPT efficiency throughout the engine operation range simultaneously reducing fuel consumption and emissions.

  2. Children's and Adults' Judgments of the Controllability of Cognitive Activities

    ERIC Educational Resources Information Center

    Pillow, Bradford H.; Pearson, RaeAnne M.

    2015-01-01

    Two experiments investigated 1st-, 3rd-, and 5th-grade children's and adults' judgments related to the controllability of cognitive activities, including object recognition, inferential reasoning, counting, and pretending. In Experiment 1, fifth-grade children and adults rated transitive inference and interpretation of ambiguous pictures as more…

  3. JAPANESE ACTIVITIES IN SO2 AND NOX CONTROL

    EPA Science Inventory

    The paper reviews Japanese activities in SO2 and NOx control. From 1970 to 1985, energy use in Japan increased by 25%, and annual coal consumption rose from virtually nothing to 20 million tons, yet emissions of SO2 declined by 75% and NOx by 40%. While increases in hydroelectric...

  4. Distributed active control of large flexible space structures

    NASA Technical Reports Server (NTRS)

    Nguyen, C. C.; Baz, A.

    1986-01-01

    This progress report summarizes the research work performed at the Catholic University of America on the research grant entitled Distributed Active Control of Large Flexible Space Structures, funded by NASA/Goddard Space Flight Center, under grant number NAG5-749, during the period of March 15, 1986 to September 15, 1986.

  5. The application of active side arm controllers in helicopters

    NASA Technical Reports Server (NTRS)

    Knorr, R.; Melz, C.; Faulkner, A.; Obermayer, M.

    1993-01-01

    Eurocopter Deutschland (ECD) started simulation trials to investigate the particular problems of Side Arm Controllers (SAC) applied to helicopters. Two simulation trials have been performed. In the first trial, the handling characteristics of a 'passive' SAC and the basic requirements for the application of an 'active' SAC were evaluated in pilot-in-the-loop simulations, performing the tasks in a realistic scenario representing typical phases of a transport mission. The second simulation trial investigated the general control characteristics of the 'active' in comparison to the 'passive' control principle. A description of the SACs developed by ECD and the principle of the 'passive' and 'active' control concept is given, as well as specific ratings for the investigated dynamic and ergonomic parameters effecting SAC characteristics. The experimental arrangements, as well as the trials procedures of both simulation phases, are described and the results achieved are discussed emphasizing the advantages of the 'active' as opposed to the 'passive' SAC concept. This also includes the presentation of some critical aspects still to be improved and proposals to solve them.

  6. Parallel language activation and inhibitory control in bimodal bilinguals.

    PubMed

    Giezen, Marcel R; Blumenfeld, Henrike K; Shook, Anthony; Marian, Viorica; Emmorey, Karen

    2015-08-01

    Findings from recent studies suggest that spoken-language bilinguals engage nonlinguistic inhibitory control mechanisms to resolve cross-linguistic competition during auditory word recognition. Bilingual advantages in inhibitory control might stem from the need to resolve perceptual competition between similar-sounding words both within and between their two languages. If so, these advantages should be lessened or eliminated when there is no perceptual competition between two languages. The present study investigated the extent of inhibitory control recruitment during bilingual language comprehension by examining associations between language co-activation and nonlinguistic inhibitory control abilities in bimodal bilinguals, whose two languages do not perceptually compete. Cross-linguistic distractor activation was identified in the visual world paradigm, and correlated significantly with performance on a nonlinguistic spatial Stroop task within a group of 27 hearing ASL-English bilinguals. Smaller Stroop effects (indexing more efficient inhibition) were associated with reduced co-activation of ASL signs during the early stages of auditory word recognition. These results suggest that inhibitory control in auditory word recognition is not limited to resolving perceptual linguistic competition in phonological input, but is also used to moderate competition that originates at the lexico-semantic level. PMID:25912892

  7. Parallel language activation and inhibitory control in bimodal bilinguals

    PubMed Central

    Giezen, Marcel R.; Blumenfeld, Henrike K.; Shook, Anthony; Marian, Viorica; Emmorey, Karen

    2015-01-01

    Findings from recent studies suggest that spoken-language bilinguals engage nonlinguistic inhibitory control mechanisms to resolve cross-linguistic competition during auditory word recognition. Bilingual advantages in inhibitory control might stem from the need to resolve perceptual competition between similar-sounding words both within and between their two languages. If so, these advantages should be lessened or eliminated when there is no perceptual competition between two languages. The present study investigated the extent of inhibitory control recruitment during bilingual language comprehension by examining associations between language co-activation and nonlinguistic inhibitory control abilities in bimodal bilinguals, whose two languages do not perceptually compete. Cross-linguistic distractor activation was identified in the visual world paradigm, and correlated significantly with performance on a nonlinguistic spatial Stroop task within a group of 27 hearing ASL-English bilinguals. Smaller Stroop effects (indexing more efficient inhibition) were associated with reduced co-activation of ASL signs during the early stages of auditory word recognition. These results suggest that the role of inhibitory control in auditory word recognition is not limited to resolving perceptual linguistic competition in phonological input, but is also used to moderate competition that originates at the lexico-semantic level. PMID:25912892

  8. Study to eliminate ground resonance using active controls

    NASA Technical Reports Server (NTRS)

    Straub, F. K.

    1984-01-01

    The effectiveness of active control blade feathering in increasing rotor body damping and the possibility to eliminate ground resonance instabilities were investigated. An analytical model representing rotor flapping and lead-lag degrees of freedom and body pitch, roll, longitudinal and lateral motion is developed. Active control blade feathering is implemented as state variable feedback through a conventional swashplate. The influence of various feedback states, feedback gain, and weighting between the cyclic controls is studied through stability and response analyses. It is shown that blade cyclic inplane motion, roll rate and roll acceleration feedback can add considerable damping to the system and eliminate ground resonance instabilities, which the feedback phase is also a powerful parameter, if chosen properly, it maximizes augmentation of the inherent regressing lag mode damping. It is shown that rotor configuration parameters, like blade root hinge offset, flapping stiffness, and precone considerably influence the control effectiveness. It is found that active control is particularly powerful for hingeless and bearingless rotor systems.

  9. Adaptive control model of an active automobile suspension system

    NASA Astrophysics Data System (ADS)

    Fritz, Matthew; Wunsch, Donald C., II; Mitra, Sunanda

    1993-12-01

    The suspension system of a passenger car provides isolation between the occupants in the car and the road surface. The three goals of the suspension system are to provide ride isolation from vibration, limit suspension travel, and maintain road holding characteristics. Each of these three goals conflicts with the others. Thus, the controller must be designed to attain each goal to some extent. This paper proposes the use of a linear quadratic regulator and a fuzzy controller to maintain the ride isolation of a loosely sprung, lightly damped passive suspension while improving the handling characteristics of the vehicle. The suspension performance as pertains to ride isolation can be studied using a simple quarter car model of a suspension system. However, the handling characteristics and the coupling between each quarter of the suspension system must be studied using a full car model. Thus, this paper uses both a quarter car and a full car model to study the performance of suspension systems. The performance of the suspension systems is evaluated by running simulations of the systems subjected to both discrete and random road inputs. This paper shows that an active suspension using a linear full state feedback controller performs better than a passively suspended vehicle. The optimally controlled active suspension system is also compared to a fuzzy controlled active suspension system and the results are discussed.

  10. Evaluation of an Active Clearance Control System Concept

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Lattime, Scott B.; Taylor, Shawn; DeCastro, Jonathan A.; Oswald, Jay; Melcher, Kevin J.

    2005-01-01

    Reducing blade tip clearances through active tip clearance control in the high pressure turbine can lead to significant reductions in emissions and specific fuel consumption as well as dramatic improvements in operating efficiency and increased service life. Current engines employ scheduled cooling of the outer case flanges to reduce high pressure turbine tip clearances during cruise conditions. These systems have relatively slow response and do not use clearance measurement, thereby forcing cold build clearances to set the minimum clearances at extreme operating conditions (e.g., takeoff, reburst) and not allowing cruise clearances to be minimized due to the possibility of throttle transients (e.g., step change in altitude). In an effort to improve upon current thermal methods, a first generation mechanically-actuated active clearance control (ACC) system has been designed and fabricated. The system utilizes independent actuators, a segmented shroud structure, and clearance measurement feedback to provide fast and precise active clearance control throughout engine operation. Ambient temperature performance tests of this first generation ACC system assessed individual seal component leakage rates and both static and dynamic overall system leakage rates. The ability of the nine electric stepper motors to control the position of the seal carriers in both open- and closed-loop control modes for single and multiple cycles was investigated. The ability of the system to follow simulated engine clearance transients in closed-loop mode showed the system was able to track clearances to within a tight tolerance ( 0.001 in. error).

  11. Evaluation of an Active Clearance Control System Concept

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Lattime, Scott B.; DeCastro, Jonathan A.; Oswald, Jay; Melcher, Kevin J.

    2005-01-01

    Reducing blade tip clearances through active tip clearance control in the high pressure turbine can lead to significant reductions in emissions and specific fuel consumption as well as dramatic improvements in operating efficiency and increased service life. Current engines employ scheduled cooling of the outer case flanges to reduce high pressure turbine tip clearances during cruise conditions. These systems have relatively slow response and do not use clearance measurement, thereby forcing cold build clearances to set the minimum clearances at extreme operating conditions (e.g., takeoff, reburst) and not allowing cruise clearances to be minimized due to the possibility of throttle transients (e.g., step change in altitude). In an effort to improve upon current thermal methods, a first generation mechanically-actuated active clearance control (ACC) system has been designed and fabricated. The system utilizes independent actuators, a segmented shroud structure, and clearance measurement feedback to provide fast and precise active clearance control throughout engine operation. Ambient temperature performance tests of this first generation ACC system assessed individual seal component leakage rates and both static and dynamic overall system leakage rates. The ability of the nine electric stepper motors to control the position of the seal carriers in both open- and closed-loop control modes for single and multiple cycles was investigated. The ability of the system to follow simulated engine clearance transients in closed-loop mode showed the system was able to track clearances to within a tight tolerance (0.001 in. error).

  12. Active control of sound fields in elastic cylinders by multi-control forces

    NASA Technical Reports Server (NTRS)

    Jones, J. D.; Fuller, C. R.

    1987-01-01

    An unstiffened cylindrical model was used to study the control of sound transmission into aircraft cabins by the use of multi-control forces applied directly to the cylinder wall. External acoustic monopoles were located on each side of the cylinder to approximate the propeller noise source. This allowed the study of a dual control system utilizing multi-control forces in conjunction with synchrophasing of the twin acoustic monopole sources. For acoustic resonant conditions within the cavity, a spatially averaged noise reduction of approximately 30 dB was achieved using the active control system for both in-phase and out-of-phase monopoles; however, effective reduction of the sound field was dependent upon judiciously positioning the control forces for optimal control of the sound field.

  13. Vehicle yaw stability control using active limited-slip differential via model predictive control methods

    NASA Astrophysics Data System (ADS)

    Rubin, Daniel; Arogeti, Shai A.

    2015-09-01

    In this paper, the problem of vehicle yaw control using an active limited-slip differential (ALSD) applied on the rear axle is addressed. The controller objective is to minimise yaw-rate and body slip-angle errors, with respect to target values. A novel model predictive controller is designed, using a linear parameter-varying (LPV) vehicle model, which takes into account the ALSD dynamics and its constraints. The controller is simulated using a 10DOF Matlab/Simulink simulation model and a CarSim model. These simulations exemplify the controller yaw-rate and slip-angle tracking performances, under challenging manoeuvres and road conditions. The model predictive controller performances surpass those of a reference sliding mode controller, and can narrow the loss of performances due to the ALSD's inability to transfer torque regardless of driving conditions.

  14. Active tendon control of cable-stayed bridges

    NASA Astrophysics Data System (ADS)

    Preumont, Andre J.; Bossens, Frederic

    2000-04-01

    This paper presents a strategy for active damping of cable structures, using active tendons. The first part of the paper summarizes the theoretical background: the control law is briefly presented together with the main results of an approximate linear theory which allows to predict the closed- loop poles with a root locus technique. The second part of the paper reports on experimental results obtained with two test structures: the first one is a small size mock-up representative of a cable-stayed bridge during the construction phase. The control of the parametric vibration of passive cables due to deck vibration is demonstrated. The second one is a 30 m long mock-up built on the reaction wall of the ELSA test facility at the JRC Ispra, Italy); this test structure is used to demonstrate the practical implementation of the control strategy with hydraulic actuators.

  15. Active noise and vibration control for vehicular applications

    SciTech Connect

    Lewis, P.S.; Ellis, S.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project investigated semi-active suspension systems based on real time nonlinear control of magneto-rheological (MR) shock absorbers. This effort was motivated by Laboratory interactions with the automobile industry and with the Defense Department. Background research and a literature search on semi-active suspensions was carried out. Numerical simulations of alternative nonlinear control algorithms were developed and adapted for use with an MR shock absorber. A benchtop demonstration system was designed, including control electronics and a mechanical demonstration fixture to hold the damper/spring assembly. A custom-made MR shock was specified and procured. Measurements were carried out at Los Alamos to characterize the performance of the device.

  16. Piezoelectric pushers for active vibration control of rotating machinery

    NASA Technical Reports Server (NTRS)

    Palazzolo, A. B.; Kascak, A. F.; Lin, R. R.; Montague, J.; Alexander, R. M.

    1989-01-01

    The active control of rotordynamic vibrations and stability by magnetic bearings and electromagnetic shakers was discussed extensively in the literature. These devices, though effective, are usually large in volume and add significant weight to the stator. The use of piezoelectric pushers may provide similar degrees of effectiveness in light, compact packages. Analyses are contained which extend quadratic regulator, pole placement and derivative feedback control methods to the prescribed displacement character of piezoelectric pushers. The structural stiffness of the pusher is also included in the theory. Tests are currently being conducted at NASA Lewis Research Center with piezoelectric pusher-based active vibration control. Results performed on the NASA test rig as preliminary verification of the related theory are presented.

  17. Cost and performance of activated carbon injection for mercury control

    SciTech Connect

    2006-08-15

    Activated carbon injection (ACI) is one technology being developed to absorb mercury from mercury emitted from coal-fired power plants. In 2003/04, the USDOE and NETL selected 14 projects to test and evaluate mercury control technologies. While field testing is still ongoing, DOE/NETL recently completed an economic analysis of mercury control for six test sites spanning three ACI variations - conventional powdered activated carbon (PAC), brominated PAC and conventional PAC combined with a sorbent enhancement additive (SEA) applied to the coal. To evaluate the progress of the field testing program and discern the performance of ACI, a data adjustment methodology was developed to account for baseline methane capture. This data were used to perform economic analyses to achieve low, mid and high levels of mercury control. The costs are given in the article. Full details are available on the DOE/NETL website, www.netl.doe.gov. 2 figs., 1 photo.

  18. Active constraint control for image-guided robotic surgery.

    PubMed

    Yen, P-L; Davies, B L

    2010-01-01

    The concept of active constraint control for image-guided robotic surgery is introduced, together with its benefits and a short outline of its history. The clinical use of active constraint control in orthopaedic surgery is discussed, together with the outcomes of a clinical trial for unicondylar knee replacement surgery. The evolution of the robotic design from large costly structures towards simpler, more cost-effective systems is also presented, leading to the design of the Acrobot 'Sculptor' system. A new approach to the achievement of robotic total knee replacement is also presented, in which a high-speed rotary cutter is used to slice through the bone to achieve a speedy resection. The control concept is presented, together with the results of trials on animal bones and a cadaver, showing that it is possible to remove large quantities of bone both quickly and accurately. PMID:20718267

  19. Diagnostics and Active Control of Aircraft Interior Noise

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1998-01-01

    This project deals with developing advanced methods for investigating and controlling interior noise in aircraft. The work concentrates on developing and applying the techniques of Near Field Acoustic Holography (NAH) and Principal Component Analysis (PCA) to the aircraft interior noise dynamic problem. This involves investigating the current state of the art, developing new techniques and then applying them to the particular problem being studied. The knowledge gained under the first part of the project was then used to develop and apply new, advanced noise control techniques for reducing interior noise. A new fully active control approach based on the PCA was developed and implemented on a test cylinder. Finally an active-passive approach based on tunable vibration absorbers was to be developed and analytically applied to a range of test structures from simple plates to aircraft fuselages.

  20. Vehicle dynamics control using an active third-axle system

    NASA Astrophysics Data System (ADS)

    Soltani, Amir; Goodarzi, Avesta; Hassan Shojaeefard, Mohammad; Khajepour, Amir

    2014-11-01

    This paper introduces the active third-axle system as an innovative vehicle dynamic control method. This method can be applicable for different kinds of three-axle vehicles such as buses, trucks, or even three-axle passenger cars. In this system, an actuator on the middle axle actively applies an independent force on the suspension to improve the handling characteristics, and hence, its technology is similar to slow-active suspension systems. This system can change the inherent vehicle dynamic characteristics, such as under/over steering behaviour, in the linear handling region, as well as vehicle stability in the nonlinear, limit handling region. In this paper, our main focus is to show the potential capabilities of this method in enhancing vehicle dynamic performance. For this purpose, as the first step, the proposed method in both linear and nonlinear vehicle handling regions is studied mathematically. Next, a comprehensive, nonlinear, 10 degrees of freedom vehicle model with a fuzzy control strategy is used to evaluate the effectiveness of this system. The dynamic behaviour of a vehicle, when either uncontrolled or equipped with the active third axle is then compared. Simulation results show that this active system can be considered as an innovative method for vehicle dynamic control.

  1. Modified independent modal space control method for active control of flexible systems

    NASA Technical Reports Server (NTRS)

    Baz, A.; Poh, S.

    1987-01-01

    A modified independent modal space control (MIMSC) method is developed for designing active vibration control systems for large flexible structures. The method accounts for the interaction between the controlled and residual modes. It incorporates also optimal placement procedures for selecting the optimal locations of the actuators in the structure in order to minimize the structural vibrations as well as the actuation energy. The MIMSC method relies on an important feature which is based on time sharing of a small number of actuators, in the modal space, to control effectively a large number of modes. Numerical examples are presented to illustrate the application of the method to generic flexible systems. The results obtained suggest the potential of the devised method in designing efficient active control systems for large flexible structures.

  2. Low-Frequency Sound Field Control in a Reverberant Room with a Single Active Controller Source.

    NASA Astrophysics Data System (ADS)

    Bullock, John Drayton, Jr.

    The operation of a single active controller source in a reverberant room has been investigated. The system consists of a controlled transducer source and a near-source microphone, with electronics arranged as a closed feedback loop. The controller system responds to a single source placed arbitrarily in the room. A theoretical analysis is presented based on the two port model of the controller transducer interfaced to an equivalent description of the reverberant room. The room acoustic transfer impedances between the active controller, room exciter source, near controller pressure sensor, and an arbitrary point in the reverberant sound field are described by a Green's function model. To minimize resonant effects of the controller piston diaphragm, a second control feedback loop using a diaphragm mounted accelerometer was added to the pressure control loop. Examples of the controller system operation were drawn from a computer model. Experimental data were gathered in a test reverberation room at the Applied Research Laboratory of The Pennsylvania State University. This investigation has brought forth three factors which define the limits on wide band control loop gain. They are (i) the position of an accelerometer on the controller diaphragm, (ii) the spacing between the controller and pressure sensor microphone, and (iii) the first mode frequency and the Q of the controller diaphragm. These system and transducer constraints can introduce instability in the control system. The controller system operation in the room has been modeled as a lumped element ideal piston using a flow graph representation. Additional loops on the graph are used to represent non-ideal transducer aberrations, and to define the pressure at various points in the room. Four cases for controller operation have been defined based on the proximity of the room source, the pressure sensor, and the controller. Two of these are important for practical applications: (i) the sensor microphone and

  3. Disorder-mediated crowd control in an active matter system

    PubMed Central

    Pinçe, Erçağ; Velu, Sabareesh K. P.; Callegari, Agnese; Elahi, Parviz; Gigan, Sylvain; Volpe, Giovanni; Volpe, Giorgio

    2016-01-01

    Living active matter systems such as bacterial colonies, schools of fish and human crowds, display a wealth of emerging collective and dynamic behaviours as a result of far-from-equilibrium interactions. The dynamics of these systems are better understood and controlled considering their interaction with the environment, which for realistic systems is often highly heterogeneous and disordered. Here, we demonstrate that the presence of spatial disorder can alter the long-term dynamics in a colloidal active matter system, making it switch between gathering and dispersal of individuals. At equilibrium, colloidal particles always gather at the bottom of any attractive potential; however, under non-equilibrium driving forces in a bacterial bath, the colloids disperse if disorder is added to the potential. The depth of the local roughness in the environment regulates the transition between gathering and dispersal of individuals in the active matter system, thus inspiring novel routes for controlling emerging behaviours far from equilibrium. PMID:26956085

  4. Disorder-mediated crowd control in an active matter system

    NASA Astrophysics Data System (ADS)

    Pinçe, Erçağ; Velu, Sabareesh K. P.; Callegari, Agnese; Elahi, Parviz; Gigan, Sylvain; Volpe, Giovanni; Volpe, Giorgio

    2016-03-01

    Living active matter systems such as bacterial colonies, schools of fish and human crowds, display a wealth of emerging collective and dynamic behaviours as a result of far-from-equilibrium interactions. The dynamics of these systems are better understood and controlled considering their interaction with the environment, which for realistic systems is often highly heterogeneous and disordered. Here, we demonstrate that the presence of spatial disorder can alter the long-term dynamics in a colloidal active matter system, making it switch between gathering and dispersal of individuals. At equilibrium, colloidal particles always gather at the bottom of any attractive potential; however, under non-equilibrium driving forces in a bacterial bath, the colloids disperse if disorder is added to the potential. The depth of the local roughness in the environment regulates the transition between gathering and dispersal of individuals in the active matter system, thus inspiring novel routes for controlling emerging behaviours far from equilibrium.

  5. Active Noise Control of Radiated Noise from Jets Originating NASA

    NASA Technical Reports Server (NTRS)

    Doty, Michael J.; Fuller, Christopher R.; Schiller, Noah H.; Turner, Travis L.

    2013-01-01

    The reduction of jet noise using a closed-loop active noise control system with highbandwidth active chevrons was investigated. The high frequency energy introduced by piezoelectrically-driven chevrons was demonstrated to achieve a broadband reduction of jet noise, presumably due to the suppression of large-scale turbulence. For a nozzle with one active chevron, benefits of up to 0.8 dB overall sound pressure level (OASPL) were observed compared to a static chevron nozzle near the maximum noise emission angle, and benefits of up to 1.9 dB OASPL were observed compared to a baseline nozzle with no chevrons. The closed-loop actuation system was able to effectively reduce noise at select frequencies by 1-3 dB. However, integrated OASPL did not indicate further reduction beyond the open-loop benefits, most likely due to the preliminary controller design, which was focused on narrowband performance.

  6. A Possible Mechanism for Redox Control of Human Neuroglobin Activity

    PubMed Central

    2015-01-01

    Neuroglobin (Ngb) promotes neuron survival under hypoxic/ischemic conditions. In vivo and in vitro assays provide evidence for redox-regulated functioning of Ngb. On the basis of X-ray crystal structures and our MD simulations, a mechanism for redox control of human Ngb (hNgb) activity via the influence of the CD loop on the active site is proposed. We provide evidence that the CD loop undergoes a strand-to-helix transition when the external environment becomes sufficiently oxidizing, and that this CD loop conformational transition causes critical restructuring of the active site. We postulate that the strand-to-helix mechanics of the CD loop allows hNgb to utilize the lability of Cys46/Cys55 disulfide bonding and of the Tyr44/His64/heme propionate interaction network for redox-controlled functioning of hNgb. PMID:24855999

  7. UML activity diagrams in requirements specification of logic controllers

    NASA Astrophysics Data System (ADS)

    Grobelna, Iwona; Grobelny, Michał

    2015-12-01

    Logic controller specification can be prepared using various techniques. One of them is the wide understandable and user-friendly UML language and its activity diagrams. Using formal methods during the design phase increases the assurance that implemented system meets the project requirements. In the approach we use the model checking technique to formally verify a specification against user-defined behavioral requirements. The properties are usually defined as temporal logic formulas. In the paper we propose to use UML activity diagrams in requirements definition and then to formalize them as temporal logic formulas. As a result, UML activity diagrams can be used both for logic controller specification and for requirements definition, what simplifies the specification and verification process.

  8. Active Motion Control of Tetrahymena pyriformis by Galvanotaxis and Geotaxis

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Byun, Doyoung; Kim, Min Jun

    2013-11-01

    Recently, there has been increasing interest in the swimming behavior of microorganisms and biologically inspired micro-robots. These microorganisms naturally accompanied by complex motions. Therefore it is important to understand the flow characteristics as well as control mechanisms. One of eukaryotic cells, the protozoa are a diverse group of unicellular organisms, many of which are motile cilia. Motile cilia are cover on the surface of cell in large numbers and beat in oriented waves. Sequential beating motions of a single cilium form metachronal strokes, producing a propagation wave, and therefore the body is achieved propulsion force. So preliminary studies are achieved to understand the flow induced by swimming microorganisms. Based on hydrodynamic results, the follow study of a few micro-scale protozoa cell, such as the Tetrahymena pyriformis, has provided active or passive control into several external stimuli. In typical control methods, the galvanotaxis and geotaxis were adopted active and passive control, respectively. The validation of galvanotaxis is used DC and AC voltage. In terms of geotaxis, corrugated microstructures were used to control in the microchannel. This research was supported by the Ministry of Education, Science and Technology (MEST, 2011-0016461), National Science Foundation (NSF) CMMI Control Systems Program (#1000255) and Army Research Office (W911NF-11-1-0490).

  9. Enhancing Hebbian Learning to Control Brain Oscillatory Activity.

    PubMed

    Soekadar, Surjo R; Witkowski, Matthias; Birbaumer, Niels; Cohen, Leonardo G

    2015-09-01

    Sensorimotor rhythms (SMR, 8-15 Hz) are brain oscillations associated with successful motor performance, imagery, and imitation. Voluntary modulation of SMR can be used to control brain-machine interfaces (BMI) in the absence of any physical movements. The mechanisms underlying acquisition of such skill are unknown. Here, we provide evidence for a causal link between function of the primary motor cortex (M1), active during motor skill learning and retention, and successful acquisition of abstract skills such as control over SMR. Thirty healthy participants were trained on 5 consecutive days to control SMR oscillations. Each participant was randomly assigned to one of 3 groups that received either 20 min of anodal, cathodal, or sham transcranial direct current stimulation (tDCS) over M1. Learning SMR control across training days was superior in the anodal tDCS group relative to the other 2. Cathodal tDCS blocked the beneficial effects of training, as evidenced with sham tDCS. One month later, the newly acquired skill remained superior in the anodal tDCS group. Thus, application of weak electric currents of opposite polarities over M1 differentially modulates learning SMR control, pointing to this primary cortical region as a common substrate for acquisition of physical motor skills and learning to control brain oscillatory activity. PMID:24626608

  10. Structural control by the use of piezoelectric active members

    NASA Technical Reports Server (NTRS)

    Fanson, J. L.; Chen, J.-C.

    1987-01-01

    Large Space Structures (LSS) exhibit characteristics which make the LSS control problem different form other control problems. LSS will most likely exhibit low frequency, densely spaced and lightly damped modes. In theory, the number of these modes is infinite. Because these structures are flexible, Vibration Suppression (VS) is an important aspect of LSS operation. In terms of VS, the control actuators should be as low mass as possible, have infinite bandwidth, and be electrically powered. It is proposed that actuators be built into the structure as dual purpose structural elements. A piezoelectric active member is proposed for the control of LSS. Such a device would consist of a piezoelectric actuator and sensor for measuring strain, and screwjack actuator in series for use in quasi-static shape control. An experiment simulates an active member using piezoelectric ceramic thin sheet material on a thin, uniform cantilever beam. The feasibility of using the piezoelectric materials for VS on LSS was demonstrated. Positive positive feedback as a VS control strategy was implemented. Multi-mode VS was achieved with dramatic reduction in dynamic response.

  11. Active and passive control of zinc phthalocyanine photodynamics.

    PubMed

    Sharma, Divya; Huijser, Annemarie; Savolainen, Janne; Steen, Gerwin; Herek, Jennifer L

    2013-01-01

    In this work we report on the ultrafast photodynamics of the photosensitizer zinc phthalocyanine (ZnPc) and manipulation thereof. Two approaches are followed: active control via pulse shaping and passive control via strategic manipulation in the periphery of the molecular structure. The objective of both of these control experiments is the same: to enhance the yield of the functional pathway and to minimize loss channels. The aim of the active control experiments is to increase the intersystem crossing yield in ZnPc, which is important for application in photodynamic therapy (PDT). Pulse shaping allowed an improvement in triplet to singlet ratio of 15% as compared to a transform-limited pulse. This effect is ascribed to a control mechanism that utilizes multiphoton pathways to higher-lying states from where intersystem crossing is more likely to occur. The passive control experiments are performed on ZnPc derivatives deposited onto TiO2, serving as a model system of a dye-sensitized solar cell (DSSC). Modification of the anchoring ligand of the molecular structure resulted in an increased rate for electron injection into TiO2 and slower back electron transfer, improving the DSSC efficiency. PMID:24020214

  12. Active sound quality control of engine induced cavity noise

    NASA Astrophysics Data System (ADS)

    de Oliveira, Leopoldo P. R.; Janssens, Karl; Gajdatsy, Peter; Van der Auweraer, Herman; Varoto, Paulo S.; Sas, Paul; Desmet, Wim

    2009-02-01

    Active control solutions appear to be a feasible approach to cope with the steadily increasing requirements for noise reduction in the transportation industry. Active controllers tend to be designed with a target on the sound pressure level reduction. However, the perceived control efficiency for the occupants can be more accurately assessed if psychoacoustic metrics can be taken into account. Therefore, this paper aims to evaluate, numerically and experimentally, the effect of a feedback controller on the sound quality of a vehicle mockup excited with engine noise. The proposed simulation scheme is described and experimentally validated. The engine excitation is provided by a sound quality equivalent engine simulator, running on a real-time platform that delivers harmonic excitation in function of the driving condition. The controller performance is evaluated in terms of specific loudness and roughness. It is shown that the use of a quite simple control strategy, such as a velocity feedback, can result in satisfactory loudness reduction with slightly spread roughness, improving the overall perception of the engine sound.

  13. Active Control of Fan-Generated Tone Noise

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.

    1995-01-01

    This paper reports on an experiment to control the noise radiated from the inlet of a ducted fan using a time domain active adaptive system. The control ,sound source consists of loudspeakers arranged in a ring around the fan duct. The error sensor location is in the fan duct. The purpose of this experiment is to demonstrate that the in-duct error sensor reduces the mode spillover in the far field, thereby increasing the efficiency of the control system. The control system is found to reduce the blade passage frequency tone significantly in the acoustic far field when the mode orders of the noise source and of the control source are the same, when the dominant wave in the duct is a plane wave. The presence of higher order modes in the duct reduces the noise reduction efficiency, particularly near the mode cut-on where the standing wave component is strong, but the control system converges stably. The control system is stable and converges when the first circumferential mode is generated in the duct. The control system is found to reduce the fan noise in the far field on an arc around the fan inlet by as much as 20 dB with none of the sound amplification associated with mode spillover.

  14. Adaptive flight control surfaces, wings, rotors, and active aerodynamics

    NASA Astrophysics Data System (ADS)

    Barrett, Ronald M.; Brozoski, Fred

    1996-05-01

    This study outlines active flight control materials, structural arrangements, and several new active flight control methods for rotorcraft, airplanes and missiles. A system-level comparison shows that flight control actuator systems using materials like piezoceramics have approximately double the mass-specific energy and 4 to 6 times the volume specific energy of conventional actuators. New fabrication techniques centered on the principal of directional attachment allow wings and rotor blades to become twist active. Using these new methods, directionally attached piezoelectric (DAP) actuator elements were built into graphite-epoxy sandwich structures. When compared to conventionally attached piezoelectric (CAP) elements, twist deflections (important for flight control) of DAP plates were an order of magnitude greater. By using such twist-active elements in a torque-plate configuration, an active helicopter rotor was built. This Froude-scaled solid state rotor was whirl-stand tested and showed steady blade pitch deflections in excess of plus or minus 8 degrees with good correlation between theory and experiment rates up to 42 Hz (which corresponded to 2.5/rev) and no degradation in deflection as RPM was increased. DAP elements were also used in high aspect ratio subsonic and supersonic wings, demonstrating static twist deflections of plus or minus 2 degrees and plus or minus 6 degrees respectively, with good correlation between experiment and finite element results. The final section compares all-moving active stabilator structural arrangements and pitch deflections, which range up to plus or minus 12 degrees, generating lift coefficient changes in excess of plus or minus 0.8.

  15. Active Flow Effectors for Noise and Separation Control

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2011-01-01

    New flow effector technology for separation control and enhanced mixing is based upon shape memory alloy hybrid composite (SMAHC) technology. The technology allows for variable shape control of aircraft structures through actively deformable surfaces. The flow effectors are made by embedding shape memory alloy actuator material in a composite structure. When thermally actuated, the flow effector def1ects into or out of the flow in a prescribed manner to enhance mixing or induce separation for a variety of applications, including aeroacoustic noise reduction, drag reduction, and f1ight control. The active flow effectors were developed for noise reduction as an alternative to fixed-configuration effectors, such as static chevrons, that cannot be optimized for airframe installation effects or variable operating conditions and cannot be retracted for off-design or fail-safe conditions. Benefits include: Increased vehicle control, overall efficiency, and reduced noise throughout all f1ight regimes, Reduced flow noise, Reduced drag, Simplicity of design and fabrication, Simplicity of control through direct current stimulation, autonomous re sponse to environmental heating, fast re sponse, and a high degree of geometric stability. The concept involves embedding prestrained SMA actuators on one side of the chevron neutral axis in order to generate a thermal moment and def1ect the structure out of plane when heated. The force developed in the host structure during def1ection and the aerodynamic load is used for returning the structure to the retracted position. The chevron design is highly scalable and versatile, and easily affords active and/or autonomous (environmental) control. The technology offers wide-ranging market applications, including aerospace, automotive, and any application that requires flow separation or noise control.

  16. Energy management and control of active distribution systems

    NASA Astrophysics Data System (ADS)

    Shariatzadeh, Farshid

    Advancements in the communication, control, computation and information technologies have driven the transition to the next generation active power distribution systems. Novel control techniques and management strategies are required to achieve the efficient, economic and reliable grid. The focus of this work is energy management and control of active distribution systems (ADS) with integrated renewable energy sources (RESs) and demand response (DR). Here, ADS mean automated distribution system with remotely operated controllers and distributed energy resources (DERs). DER as active part of the next generation future distribution system includes: distributed generations (DGs), RESs, energy storage system (ESS), plug-in hybrid electric vehicles (PHEV) and DR. Integration of DR and RESs into ADS is critical to realize the vision of sustainability. The objective of this dissertation is the development of management architecture to control and operate ADS in the presence of DR and RES. One of the most challenging issues for operating ADS is the inherent uncertainty of DR and RES as well as conflicting objective of DER and electric utilities. ADS can consist of different layers such as system layer and building layer and coordination between these layers is essential. In order to address these challenges, multi-layer energy management and control architecture is proposed with robust algorithms in this work. First layer of proposed multi-layer architecture have been implemented at the system layer. Developed AC optimal power flow (AC-OPF) generates fair price for all DR and non-DR loads which is used as a control signal for second layer. Second layer controls DR load at buildings using a developed look-ahead robust controller. Load aggregator collects information from all buildings and send aggregated load to the system optimizer. Due to the different time scale at these two management layers, time coordination scheme is developed. Robust and deterministic controllers

  17. System ID modern control algorithms for active aerodynamic load control and impact on gearbox loading.

    SciTech Connect

    Berg, Jonathan Charles; Halse, Chris; Crowther, Ashley; Barlas, Thanasis; Wilson, David Gerald; Berg, Dale E.; Resor, Brian Ray

    2010-06-01

    Prior work on active aerodynamic load control (AALC) of wind turbine blades has demonstrated that appropriate use of this technology has the potential to yield significant reductions in blade loads, leading to a decrease in wind cost of energy. While the general concept of AALC is usually discussed in the context of multiple sensors and active control devices (such as flaps) distributed over the length of the blade, most work to date has been limited to consideration of a single control device per blade with very basic Proportional Derivative controllers, due to limitations in the aeroservoelastic codes used to perform turbine simulations. This work utilizes a new aeroservoelastic code developed at Delft University of Technology to model the NREL/Upwind 5 MW wind turbine to investigate the relative advantage of utilizing multiple-device AALC. System identification techniques are used to identify the frequencies and shapes of turbine vibration modes, and these are used with modern control techniques to develop both Single-Input Single-Output (SISO) and Multiple-Input Multiple-Output (MIMO) LQR flap controllers. Comparison of simulation results with these controllers shows that the MIMO controller does yield some improvement over the SISO controller in fatigue load reduction, but additional improvement is possible with further refinement. In addition, a preliminary investigation shows that AALC has the potential to reduce off-axis gearbox loads, leading to reduced gearbox bearing fatigue damage and improved lifetimes.

  18. Active noise control: A tutorial for HVAC designers

    SciTech Connect

    Gelin, L.J.

    1997-08-01

    This article will identify the capabilities and limitations of ANC in its application to HVAC noise control. ANC can be used in ducted HVAC systems to cancel ductborne, low-frequency fan noise by injecting sound waves of equal amplitude and opposite phase into an air duct, as close as possible to the source of the unwanted noise. Destructive interference of the fan noise and injected noise results in sound cancellation. The noise problems that it solves are typically described as rumble, roar or throb, all of which are difficult to address using traditional noise control methods. This article will also contrast the use of active against passive noise control techniques. The main differences between the two noise control measures are acoustic performance, energy consumption, and design flexibility. The article will first present the fundamentals and basic physics of ANC. The application to real HVAC systems will follow.

  19. Orexin-A controls sympathetic activity and eating behavior

    PubMed Central

    Messina, Giovanni; Dalia, Carmine; Tafuri, Domenico; Monda, Vincenzo; Palmieri, Filomena; Dato, Amelia; Russo, Angelo; De Blasio, Saverio; Messina, Antonietta; De Luca, Vincenzo; Chieffi, Sergio; Monda, Marcellino

    2014-01-01

    It is extremely important for the health to understand the regulatory mechanisms of energy expenditure. These regulatory mechanisms play a central role in the pathogenesis of body weight alteration. The hypothalamus integrates nutritional information derived from all peripheral organs. This region of the brain controls hormonal secretions and neural pathways of the brainstem. Orexin-A is a hypothalamic neuropeptide involved in the regulation of feeding behavior, sleep-wakefulness rhythm, and neuroendocrine homeostasis. This neuropeptide is involved in the control of the sympathetic activation, blood pressure, metabolic status, and blood glucose level. This minireview focuses on relationship between the sympathetic nervous system and orexin-A in the control of eating behavior and energy expenditure. The “thermoregulatory hypothesis” of food intake is analyzed, underlining the role played by orexin-A in the control of food intake related to body temperature. Furthermore, the paradoxical eating behavior induced orexin-A is illustrated in this minireview. PMID:25250003

  20. Hypersonic Vehicle Propulsion System Control Model Development Roadmap and Activities

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Le, Dzu K.; Vrnak, Daniel R.

    2009-01-01

    The NASA Fundamental Aeronautics Program Hypersonic project is directed towards fundamental research for two classes of hypersonic vehicles: highly reliable reusable launch systems (HRRLS) and high-mass Mars entry systems (HMMES). The objective of the hypersonic guidance, navigation, and control (GN&C) discipline team is to develop advanced guidance and control algorithms to enable efficient and effective operation of these challenging vehicles. The ongoing work at the NASA Glenn Research Center supports the hypersonic GN&C effort in developing tools to aid the design of advanced control algorithms that specifically address the propulsion system of the HRRLSclass vehicles. These tools are being developed in conjunction with complementary research and development activities in hypersonic propulsion at Glenn and elsewhere. This report is focused on obtaining control-relevant dynamic models of an HRRLS-type hypersonic vehicle propulsion system.

  1. Multivariable feedback active structural acoustic control using adaptive piezoelectric sensoriactuators.

    PubMed

    Vipperman, J S; Clark, R L

    1999-01-01

    An experimental implementation of a multivariable feedback active structural acoustic control system is demonstrated on a piezostructure plate with pinned boundary conditions. Four adaptive piezoelectric sensoriactuators provide an array of truly colocated actuator/sensor pairs to be used as control transducers. Radiation filters are developed based on the self- and mutual-radiation efficiencies of the structure and are included into the performance cost of an H2 control law which minimizes total radiated sound power. In the cost function, control effort is balanced with reductions in radiated sound power. A similarity transform which produces generalized velocity states that are required as inputs to the radiation filters is presented. Up to 15 dB of attenuation in radiated sound power was observed at the resonant frequencies of the piezostructure. PMID:9921654

  2. Coupled Torsional and Bending Vibrations of Actively Controlled Drillstrings

    NASA Astrophysics Data System (ADS)

    YIGIT, A. S.; CHRISTOFOROU, A. P.

    2000-06-01

    The dynamics of actively controlled drillstrings is studied. The equations of motion are derived using a lumped parameter model in which the coupling between torsional and bending vibrations is considered. The model also includes the dynamics of the rotary drive system which contains the rotary table, the gearbox and an armature controlled DC motor. The interactions between the drillstring and the borehole which are considered, include the impacts of collars with the borehole wall as well as bit rotation-dependent weight and torque on bit (WOB and TOB). Simulation results obtained by numerically solving the equations of motion are in close qualitative agreement with field and laboratory observations regarding stick-slip oscillations. A linear quadratic regulator (LQR) controller is designed based on a linearized model and is shown to be effective in eliminating this type of oscillations. It is also shown that for some operational parameters the control action may excite large bending vibrations due to coupling with the torsional motion.

  3. A Biomimetic Propulsor for Active Noise Control. Part 2: Theory

    NASA Astrophysics Data System (ADS)

    Annaswamy Krol, A., Jr.; Bandyopadhyay, P. R.

    2000-11-01

    The alteration of radiated noise in underwater propulsors using biomimetic active control is considered. Wake momentum filling is carried out by introducing artificial muscles at the trailing edge of a stator blade of an upstream stator propulsor, and articulating them like a fish tail (see companion abstract Part 1). Using a systems framework, we derive a methodology for the articulation of the muscles with active control. The unsteady force produced on the rotor because of velocity perturbations due to actuator displacements, wake deficits caused by stator boundary layers, and blade rotation is modeled. Linear and adaptive nonlinear control strategies are described for articulating the tail using unsteady force measurements. This active control procedure can be viewed as the realization of “virtual” blades with different sweep and noise characteristics and can affect the noise spectrum due to direct radiation significantly. The work provides an understanding of the effect of nonuniform wakes on radiated noise and can lead to a general approach by which wakes can be altered.

  4. Active control of the Chinese Giant Solar Telescope

    NASA Astrophysics Data System (ADS)

    Dai, Yichun; Yang, Dehua; Jin, Zhenyu; Liu, Zhong; Qin, Wei

    2014-07-01

    The Chinese Giant Solar Telescope (CGST) is the next generation solar telescope of China with diameter of 8 meter. The unique feature of CGST is that its primary is a ring, which facilitates the polarization detection and thermal control. In its present design and development phase, two primary mirror patterns are considered. For one thing, the primary mirror is expected to construct with mosaic mirror with 24 trapezoidal (or petal) segments, for another thing, a monolithic mirror is also a candidate for its primary mirror. Both of them depend on active control technique to maintain the optical quality of the ring mirror. As a solar telescope, the working conditions of the CGST are quite different from those of the stellar telescopes. To avoid the image deterioration due to the mirror seeing and dome seeing, especially in the case of the concentration of flux in a solar telescope, large aperture solar projects prefer to adopt open telescopes and open domes. In this circumstance, higher wind loads act on the primary mirror directly, which will cause position errors and figure errors of the primary with matters worse than those of the current 10-meter stellar telescopes with dome protect. Therefore, it gives new challenges to the active control capability, telescope structure design, and wind shielding design. In this paper, the study progress of active control of CGST for its mosaic and monolithic mirror are presented, and the wind effects on such two primary mirrors are also investigated.

  5. Quadratic Optimization in the Problems of Active Control of Sound

    NASA Technical Reports Server (NTRS)

    Loncaric, J.; Tsynkov, S. V.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    We analyze the problem of suppressing the unwanted component of a time-harmonic acoustic field (noise) on a predetermined region of interest. The suppression is rendered by active means, i.e., by introducing the additional acoustic sources called controls that generate the appropriate anti-sound. Previously, we have obtained general solutions for active controls in both continuous and discrete formulations of the problem. We have also obtained optimal solutions that minimize the overall absolute acoustic source strength of active control sources. These optimal solutions happen to be particular layers of monopoles on the perimeter of the protected region. Mathematically, minimization of acoustic source strength is equivalent to minimization in the sense of L(sub 1). By contrast. in the current paper we formulate and study optimization problems that involve quadratic functions of merit. Specifically, we minimize the L(sub 2) norm of the control sources, and we consider both the unconstrained and constrained minimization. The unconstrained L(sub 2) minimization is certainly the easiest problem to address numerically. On the other hand, the constrained approach allows one to analyze sophisticated geometries. In a special case, we call compare our finite-difference optimal solutions to the continuous optimal solutions obtained previously using a semi-analytic technique. We also show that the optima obtained in the sense of L(sub 2) differ drastically from those obtained in the sense of L(sub 1).

  6. Snapshot of Active Flow Control Research at NASA Langley

    NASA Technical Reports Server (NTRS)

    Washburn, A. E.; Gorton, S. Althoff; Anders, S. G.

    2002-01-01

    NASA Langley is aggressively investigating the potential advantages of active flow control as opposed to more traditional aerodynamic techniques. Many of these techniques will be blended with advanced materials and structures to further enhance payoff. Therefore a multi-disciplinary approach to technology development is being attempted that includes researchers from the more historical disciplines of fluid mechanics. acoustics, material science, structural mechanics, and control theory. The overall goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids rather than on specific engineering problems. An organizational view of current research activities at NASA Langley in active flow control as supported by several programs such as the Morphing Project under Breakthrough Vehicle Technologies Program (BVT). the Ultra-Efficient Engine Technology Program (UEET), and the 21st Century Aircraft Technology Program (TCAT) is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research, as part of the fundamental NASA R and D (research and development) program. will be demonstrated as either bench-top experiments, wind-tunnel investigations, or in flight tests. Later they will be transferred to more applied research programs within NASA, DOD (Department of Defense), and U.S. industry.

  7. Vector Disparity Sensor with Vergence Control for Active Vision Systems

    PubMed Central

    Barranco, Francisco; Diaz, Javier; Gibaldi, Agostino; Sabatini, Silvio P.; Ros, Eduardo

    2012-01-01

    This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based) and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system. PMID:22438737

  8. Posttranscriptional control of NLRP3 inflammasome activation in colonic macrophages.

    PubMed

    Filardy, A A; He, J; Bennink, J; Yewdell, J; Kelsall, B L

    2016-07-01

    Colonic macrophages (cMPs) are important for intestinal homeostasis as they kill microbes and yet produce regulatory cytokines. Activity of the NLRP3 (nucleotide-binding leucine-rich repeat-containing pyrin receptor 3) inflammasome, a major sensor of stress and microorganisms that results in pro-inflammatory cytokine production and cell death, must be tightly controlled in the intestine. We demonstrate that resident cMPs are hyporesponsive to NLRP3 inflammasome activation owing to a remarkable level of posttranscriptional control of NLRP3 and pro-interleukin-1β (proIL-1β) protein expression, which was also seen for tumor necrosis factor-α and IL-6, but lost during experimental colitis. Resident cMPs rapidly degraded NLRP3 and proIL-1β proteins by the ubiquitin/proteasome system. Finally, blocking IL-10R-signaling in vivo enhanced NLRP3 and proIL-1β protein but not mRNA levels in resident cMPs, implicating a role for IL-10 in environmental conditioning of cMPs. These data are the first to show dramatic posttranscriptional control of inflammatory cytokine production by a relevant tissue-derived macrophage population and proteasomal degradation of proIL-1β and NLRP3 as a mechanism to control inflammasome activation, findings which have broad implications for our understanding of intestinal and systemic inflammatory diseases. PMID:26627461

  9. Active control of payload fairing noise using distributed active vibration absorbers

    NASA Astrophysics Data System (ADS)

    Charpentier, Arnaud; Johnson, Marty E.; Fuller, Chris R.

    2003-04-01

    High sound pressure inside a launch vehicle fairing during lift-off can damage the payload. Interior levels of up to 140 dB between 60 and 250 Hz are mostly due to exhaust plume noise combined with the limited transmission loss of lightweight composite fairings and little acoustic damping in the fairing volume. Past work using passive and hybrid passive/reactive noise control devices has shown that their limitations are mostly due to packaging volume and weight penalty. The objective of this work is to design a lightweight, compact, and low electrical power active noise control system to reduce the fairing interior sound level. Hybrid active/passive actuators such as Smart Foam (Couche and Fuller, Proceedings of Active 1999, Ft. Lauderdale, FL, pp. 609-620) and Distributed Active Vibration Absorbers (Marcotte, Fuller, and Johnson, Proceedings of Active 2002, ISVR, Southampton, England, pp. 535-546) are optimized for fairing noise control. The latter have been used to increase the transmission loss of the fairing. Active noise control test results on a sub-scale, sandwich composite fairing are presented. The global interior acoustic response due to airborne exterior excitation is minimized using an adaptive multiple-input, multiple-output feedforward controller. [Work supported by the Air Force Research Laboratory, Space Vehicles Directorate (AFRL).

  10. Active sway control of a gantry crane using hybrid input shaping and PID control schemes

    NASA Astrophysics Data System (ADS)

    Mohd Tumari, M. Z.; Shabudin, L.; Zawawi, M. A.; Shah, L. H. Ahmad

    2013-12-01

    This project presents investigations into the development of hybrid input-shaping and PID control schemes for active sway control of a gantry crane system. The application of positive input shaping involves a technique that can reduce the sway by creating a common signal that cancels its own vibration and used as a feed-forward control which is for controlling the sway angle of the pendulum, while the proportional integral derivative (PID) controller is used as a feedback control which is for controlling the crane position. The PID controller was tuned using Ziegler-Nichols method to get the best performance of the system. The hybrid input-shaping and PID control schemes guarantee a fast input tracking capability, precise payload positioning and very minimal sway motion. The modeling of gantry crane is used to simulate the system using MATLAB/SIMULINK software. The results of the response with the controllers are presented in time domains and frequency domains. The performances of control schemes are examined in terms of level of input tracking capability, sway angle reduction and time response specification.

  11. Neural control of glutamine synthetase activity in rat skeletal muscles.

    PubMed

    Feng, B; Konagaya, M; Konagaya, Y; Thomas, J W; Banner, C; Mill, J; Max, S R

    1990-05-01

    The mechanism of glutamine synthetase induction in rat skeletal muscle after denervation or limb immobilization was investigated. Adult male rats were subjected to midthigh section of the sciatic nerve. At 1, 2, and 5 h and 1, 2, and 7 days after denervation, rats were killed and denervated, and contralateral control soleus and plantaris muscles were excised, weighted, homogenized, and assayed for glutamine synthetase. Glutamine synthetase activity increased approximately twofold 1 h after denervation in both muscles. By 7 days postdenervation enzyme activity had increased to three times the control level in plantaris muscle and to four times the control level in soleus muscle. Increased enzyme activity after nerve section was associated with increased maximum velocity with no change in apparent Michaelis constant. Immunotitration with an antiglutamine synthetase antibody suggested that denervation caused an increase in the number of glutamine synthetase molecules in muscle. However, Northern-blot analysis revealed no increase in the steady-state level of glutamine synthetase mRNA after denervation. A mixing experiment failed to yield evidence for the presence of a soluble factor involved in regulating the activity of glutamine synthetase in denervated muscle. A combination of denervation and dexamethasone injections resulted in additive increases in glutamine synthetase. Thus the mechanism underlying increased glutamine synthetase after denervation appears to be posttranscriptional and is distinct from that of the glucocorticoid-mediated glutamine synthetase induction previously described by us. PMID:1970709

  12. Temperature-gated thermal rectifier for active heat flow control.

    PubMed

    Zhu, Jia; Hippalgaonkar, Kedar; Shen, Sheng; Wang, Kevin; Abate, Yohannes; Lee, Sangwook; Wu, Junqiao; Yin, Xiaobo; Majumdar, Arun; Zhang, Xiang

    2014-08-13

    Active heat flow control is essential for broad applications of heating, cooling, and energy conversion. Like electronic devices developed for the control of electric power, it is very desirable to develop advanced all-thermal solid-state devices that actively control heat flow without consuming other forms of energy. Here we demonstrate temperature-gated thermal rectification using vanadium dioxide beams in which the environmental temperature actively modulates asymmetric heat flow. In this three terminal device, there are two switchable states, which can be regulated by global heating. In the "Rectifier" state, we observe up to 28% thermal rectification. In the "Resistor" state, the thermal rectification is significantly suppressed (<1%). To the best of our knowledge, this is the first demonstration of solid-state active-thermal devices with a large rectification in the Rectifier state. This temperature-gated rectifier can have substantial implications ranging from autonomous thermal management of heating and cooling systems to efficient thermal energy conversion and storage. PMID:25010206

  13. Development of a Practical Broadband Active Vibration Control System

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Perey, Daniel F.; Cabell, Randolph H.

    2011-01-01

    The goal of this work is to develop robust, lightweight, and low-power control units that can be used to suppress structural vibration in flexible aerospace structures. In particular, this paper focuses on active damping, which is implemented using compact decentralized control units distributed over the structure. Each control unit consists of a diamond-shaped piezoelectric patch actuator, three miniature accelerometers, and analog electronics. The responses from the accelerometers are added together and then integrated to give a signal proportional to velocity. The signal is then inverted, amplified, and applied to the actuator, which generates a control force that is out of phase with the measured velocity. This paper describes the development of the control system, including a detailed description of the control and power electronics. The paper also presents experimental results acquired on a Plexiglas window blank. Five identical control units installed around the perimeter of the window achieved 10 dB peak reductions and a 2.4 dB integrated reduction of the spatially averaged velocity of the window between 500 and 3000 Hz.

  14. Design, test, and evaluation of three active flutter suppression controllers

    NASA Technical Reports Server (NTRS)

    Adams, William M., Jr.; Christhilf, David M.; Waszak, Martin R.; Mukhopadhyay, Vivek; Srinathkumar, S.

    1992-01-01

    Three control law design techniques for flutter suppression are presented. Each technique uses multiple control surfaces and/or sensors. The first method uses traditional tools (such as pole/zero loci and Nyquist diagrams) for producing a controller that has minimal complexity and which is sufficiently robust to handle plant uncertainty. The second procedure uses linear combinations of several accelerometer signals and dynamic compensation to synthesize the model rate of the critical mode for feedback to the distributed control surfaces. The third technique starts with a minimum-energy linear quadratic Gaussian controller, iteratively modifies intensity matrices corresponding to input and output noise, and applies controller order reduction to achieve a low-order, robust controller. The resulting designs were implemented digitally and tested subsonically on the active flexible wing wind-tunnel model in the Langley Transonic Dynamics Tunnel. Only the traditional pole/zero loci design was sufficiently robust to errors in the nominal plant to successfully suppress flutter during the test. The traditional pole/zero loci design provided simultaneous suppression of symmetric and antisymmetric flutter with a 24-percent increase in attainable dynamic pressure. Posttest analyses are shown which illustrate the problems encountered with the other laws.

  15. Modern control techniques in active flutter suppression using a control moment gyro

    NASA Technical Reports Server (NTRS)

    Buchek, P. M.

    1974-01-01

    Development of organized synthesis techniques, using concepts of modern control theory was studied for the design of active flutter suppression systems for two and three-dimensional lifting surfaces, utilizing a control moment gyro (CMG) to generate the required control torques. Incompressible flow theory is assumed, with the unsteady aerodynamic forces and moments for arbitrary airfoil motion obtained by using the convolution integral based on Wagner's indicial lift function. Linear optimal control theory is applied to find particular optimal sets of gain values which minimize a quadratic performance function. The closed loop system's response to impulsive gust disturbances and the resulting control power requirements are investigated, and the system eigenvalues necessary to minimize the maximum value of control power are determined.

  16. Passive and Active Vibration Control With Piezoelectric Fiber Composites

    SciTech Connect

    Vigier, Yves; Agbossou, Amen; Richard, Claude

    2002-07-01

    The possibility of dissipating mechanical energy with piezoelectric fiber composites (PFC) is investigated. The techniques for manufacturing an active beam with integrated (PFC) are presented and applied to a cantilevered beam experiment. We evaluated experimentally the performances of the active beam in passive energy dissipation. Three vibration cases were analysed: electrodes of the PFCs are (i) in open circuit, (ii) short circuit and (iii) shunted with electrical impedance designed to dissipate the electrical energy, which has been converted from the beam mechanical energy by the PFCs. Then we presented numerical models to analyze the vibration of active beams connect to electrical impedance. The proposed models point out with an accurate order of magnitude the change in vibration amplitude of the analysed beam. Hence we validate experimentally and numerically the concept of vibration control with PFCs and point out some new contributions of PFCs in active or passive damping. (authors)

  17. Active control: an investigation method for combustion instabilities

    NASA Astrophysics Data System (ADS)

    Poinsot, T.; Yip, B.; Veynante, D.; Trouvé, A.; Samaniego, J. M.; Candel, S.

    1992-07-01

    Closed-loop active control methods and their application to combustion instabilities are discussed. In these methods the instability development is impeded with a feedback control loop: the signal provided by a sensor monitoring the flame or pressure oscillations is processed and sent back to actuators mounted on the combustor or on the feeding system. Different active control systems tested on a non-premixed multiple-flame turbulent combustor are described. These systems can suppress all unstable plane modes of oscillation (i.e. low frequency modes). The active instability control (AIC) also constitutes an original and powerful technique for studies of mechanisms leading to instability or resulting from the instability. Two basic applications of this kind are described. In the first case the flame is initially controlled with AIC, the feedback loop is then switched off and the growth of the instability is analysed through high speed Schlieren cinematography and simultaneous sound pressure and reaction rate measurements. Three phases are identified during th growth of the oscillations: (1) a linear phase where acoustic waves induce a flapping motion of the flame sheets without interaction between sheets, (2) a modulation phase, where flame sheets interact randomly and (3) a nonlinear phase where the flame sheets are broken and a limit cycle is reached. In the second case we investigate different types of flame extinctions associated with combustion instability. It is shown that pressure oscillations may lead to partial or total extinctions. Extinctions occur in various forms but usually follow a rapid growth of pressure oscillations. The flame is extinguished during the modulation phase observed in the initiation experiments. In these studies devoted to transient instability phenomena, the control system constitutes a unique investigation tool because it is difficult to obtain the same information by other means. Implications for modelling and prediction of

  18. Control of tissue growth by locally produced activator: Liver regeneration

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2015-03-01

    In general, the tissue development is controlled by growth factors and depends on the biomechanics of cells. The corresponding kinetic models are focused primarily on the early stages of the development. The attempts to construct such models for the later stages are still rare. One of the notable examples here is liver regeneration. Referring to this process, the author proposes and analyzes a generic kinetic model describing the regulation of tissue growth by locally produced activator. The model includes activator diffusion and control of the rate of cell proliferation which is described by using the Hill expression. Although this control may be moderately or strongly non-linear, the qualitative changes in the regeneration kinetics are predicted to be modest. For moderately non-linear control, the evolution of the tissue volume to the steady-state value exhibits an initial relatively short linear stage and then becomes slightly slower so that the whole kinetics is close to exponential. For strongly non-linear control, the linear stage dominates and/or the kinetics may exhibit a S-like shape feature which is, however, rather weak. The identification of such qualitative features in experimentally measured kinetics is shown to be difficult, because the error bars in the experiments are typically too large.

  19. Active Control of Fan Noise by Vane Actuators

    NASA Technical Reports Server (NTRS)

    Curtis, Alan R. D.

    1999-01-01

    An active noise control system for ducted fan noise was built that uses actuators located in stator vanes. The actuators were piezoelectric benders manufactured using the THUNDER technology and were custom designed for the application. The active noise control system was installed in the NASA ANCF rig. Four actuator array with a total of 168 actuators in 28 stator vanes were used. Simultaneous reductions of acoustic power in both the inlet and exhaust duct were demonstrated for a fan disturbance that contained two radial mode orders in both inlet and exhaust. Total power levels in the target modes were reduced by up to 9 dB in the inlet and total tone levels by over 6 dB while exhaust power levels were reduced by up to 3 dB. Far field sound pressure level reductions of up to 17 dB were observed. A simpler control system, matched to the location of the disturbance with two radial actuator arrays, was demonstrated to control total acoustic power in four disturbance modes simultaneously in inlet and exhaust. The vane actuator met the requirements given for the ANCF, although in practice the performance of the system was limited by the constraints of the power amplifiers and the presence of control spillover. The vane actuators were robust. None of the 168 vane actuators failed during the tests.

  20. Adaptive active control of periodic vibration using maglev actuators

    NASA Astrophysics Data System (ADS)

    An, Fengyan; Sun, Hongling; Li, Xiaodong

    2012-04-01

    In this paper, active control of periodic vibration is implemented using maglev actuators which exhibit inherent nonlinear behaviors. A multi-channel feedforward control algorithm is proposed to solve these nonlinear problems, in which maglev actuators are treated as single-input-single-output systems with unknown time-varying nonlinearities. A radial basis function network is used by the algorithm as its controller, whose parameters are adapted only with the model of the linear system in the secondary path. Compared with the strategies in the conventional magnetic-levitation system control as well as nonlinear active noise/vibration control, the proposed algorithm has the advantage that the nonlinear modeling procedure of maglev actuators and the usage of displacement sensors could be both avoided. Numerical simulations and real-time experiments are carried out based on a multiple-degree-of-freedom vibration isolation system. The results show that the proposed algorithm not only could efficiently compensate for the actuators' time-varying nonlinearities, but also has the ability to greatly attenuate the energy of periodic vibration.

  1. Active Wavelength Control of an External Cavity Quantum Cascade Laser

    PubMed Central

    Tsai, Tracy; Wysocki, Gerard

    2012-01-01

    We present an active wavelength control system for grating-based external cavity lasers that increases the accuracy of predicting the lasing wavelength based on the grating equation and significantly improves scan-to-scan wavelength/frequency repeatability. The ultimate 3σ precision of a frequency scan is determined by the scan-to-scan repeatability of 0.042 cm−1. Since this control method can be applied to any external cavity laser with little to no modification, such a precision provides an excellent opportunity for spectroscopic applications that target molecular absorption lines at standard atmospheric conditions. PMID:23483850

  2. Microscopy beyond the diffraction limit using actively controlled single molecules

    PubMed Central

    MOERNER, W.E.

    2013-01-01

    Summary In this short review, the general principles are described for obtaining microscopic images with resolution beyond the optical diffraction limit with single molecules. Although it has been known for several decades that single-molecule emitters can blink or turn on and off, in recent work the addition of on/off control of molecular emission to maintain concentrations at very low levels in each imaging frame combined with sequential imaging of sparse subsets has enabled the reconstruction of images with resolution far below the optical diffraction limit. Single-molecule active control microscopy provides a powerful window into information about nanoscale structures that was previously unavailable. PMID:22582796

  3. Active Flow Control on a Low Reynolds Number Wing

    NASA Astrophysics Data System (ADS)

    Munson, Matthew; Gharib, Morteza

    2010-11-01

    Control of vortex formation has been shown to be a critical mechanism in some forms of animal flight. Flapping motions create advantageous flow structures which play a role in enhancing lift and increasing maneuverability. Active flow control may be capable of providing similar influence over vortex formation processes in fixed wing flight at small Reynolds numbers. Steady and pulsed mass injection strategies through simple slot actuators are used to explore the open-loop response of the flow around a simple low-aspect ratio wing. Flow dynamics and vortex formation will be quantitatively visualized with DPIV and flow forces will be simultaneously measured with a six-component balance.

  4. Low-cost Active Structural Control Space Experiment (LASC)

    NASA Technical Reports Server (NTRS)

    Robinett, Rush; Bukley, Angelia P.

    1992-01-01

    The DOE Lab Director's Conference identified the need for the DOE National Laboratories to actively and aggressively pursue ways to apply DOE technology to problems of national need. Space structures are key elements of DOD and NASA space systems and a space technology area in which DOE can have a significant impact. LASC is a joint agency space technology experiment (DOD Phillips, NASA Marshall, and DOE Sandia). The topics are presented in viewgraph form and include the following: phase 4 investigator testbed; control of large flexible structures in orbit; INFLEX; Controls, Astrophysics; and structures experiments in space; SARSAT; and LASC mission objectives.

  5. Toward a Fast-Response Active Turbine Tip Clearance Control

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Kypuros, Javier A.

    2003-01-01

    This paper describes active tip clearance control research being conducted by NASA to improve turbine engine systems. The target application for this effort is commercial aircraft engines. However, technologies developed for clearance control can benefit a broad spectrum of current and future turbomachinery. The first portion of the paper addresses the research from a programmatic viewpoint. Recent studies that provide motivation for the work, identification of key technologies, and NASA's plan for addressing deficiencies in the technologies are discussed. The later portion of the paper drills down into one of the key technologies by presenting equations and results for a preliminary dynamic model of the tip clearance phenomena.

  6. Experimental results using active control of traveling wave power flow

    NASA Technical Reports Server (NTRS)

    Miller, David W.; Hall, Steven R.

    1991-01-01

    Active structural control experiments conducted on a 24-ft pinned-free beam derived feedback compensators on the basis of a traveling-wave approach. A compensator is thus obtained which eliminates resonant behavior by absorbing all impinging power. A causal solution is derived for this noncausal compensator which mimics its behavior in a given frequency range, using the Wiener-Hopf. This optimal Wiener-Hopf compensator's structure-damping performance is found to exceed any obtainable by means of rate feedback. Performance limitations encompassed the discovery of frequencies above which the sensor and actuator were no longer dual and an inadvertent coupling of the control hardware to unmodeled structure torsion modes.

  7. Optimal placement of active elements in control augmented structural synthesis

    NASA Technical Reports Server (NTRS)

    Sepulveda, A. E.; Jin, I. M.; Schmit, L. A., Jr.

    1992-01-01

    A methodology for structural/control synthesis is presented in which the optimal location of active members is treated in terms of (0,1) variables. Structural member sizes, control gains and (0,1) placement variables are treated simultaneously as design variables. Optimization is carried out by generating and solving a sequence of explicit approximate problems using a branch and bound strategy. Intermediate design variable and intermediate response quantity concepts are used to enhance the quality of the approximate design problems. Numerical results for example problems are presented to illustrate the efficacy of the design procedure set forth.

  8. Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T. (Inventor)

    2016-01-01

    An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.

  9. Active route learning in virtual environments: disentangling movement control from intention, instruction specificity, and navigation control.

    PubMed

    von Stülpnagel, Rul; Steffens, Melanie C

    2013-09-01

    Active navigation research examines how physiological and psychological involvement in navigation benefits spatial learning. However, existing conceptualizations of active navigation comprise separable, distinct factors. This research disentangles the contributions of movement control (i.e., self-contained vs. observed movement) as a central factor from learning intention (Experiment 1), instruction specificity and instruction control (Experiment 2), as well as navigation control (Experiment 3) to spatial learning in virtual environments. We tested the effects of these factors on landmark recognition (landmark knowledge), tour-integration and route navigation (route knowledge). Our findings suggest that movement control leads to robust advantages in landmark knowledge as compared to observed movement. Advantages in route knowledge do not depend on learning intention, but on the need to elaborate spatial information. Whenever the necessary level of elaboration is assured for observed movement, too, the development of route knowledge is not inferior to that for self-contained movement. PMID:22922991

  10. Dual-Actuator Active Vibration-Control System

    NASA Technical Reports Server (NTRS)

    Kascak, Albert F.; Kiraly, Louis J.; Montague, Gerald T.; Palazzolo, Alan B.; Manchala, Daniel

    1994-01-01

    Dual-actuator active vibration-control (DAAVC) system is developmental system of type described in "Active Vibration Dampers for Rotating Machinery" (LEW-15427). System features sensors and actuators positioned and oriented at bearings to measure and counteract vibrations of shaft along either of two axes perpendicular to axis of rotation. Effective in damping vibrations of helicopter-engine test stand, making it safer to operate engine at speeds near and above first resonance of engine/test-stand system. Opens new opportunities for engine designers to draw more power from engine, and concept applicable to other rotating machines.

  11. Active Control of Combustor Instability Shown to Help Lower Emissions

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Chang, Clarence T.

    2002-01-01

    In a quest to reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities, or high-pressure oscillations much like sound waves, that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Aerospace Propulsion and Power Base Research and Technology Program, the NASA Glenn Research Center, in partnership with Pratt & Whitney and United Technologies Research Center, is developing technologies for the active control of combustion instabilities. With active combustion control, the fuel is pulsed to put pressure oscillations into the system. This cancels out the pressure oscillations being produced by the instabilities. Thus, the engine can have lower pollutant emissions and long life.The use of active combustion instability control to reduce thermo-acoustic-driven combustor pressure oscillations was demonstrated on a single-nozzle combustor rig at United Technologies. This rig has many of the complexities of a real engine combustor (i.e., an actual fuel nozzle and swirler, dilution cooling, etc.). Control was demonstrated through modeling, developing, and testing a fuel-delivery system able to the 280-Hz instability frequency. The preceding figure shows the capability of this system to provide high-frequency fuel modulations. Because of the high-shear contrarotating airflow in the fuel injector, there was some concern that the fuel pulses would be attenuated to the point where they would

  12. Control of active liquid crystals with a magnetic field.

    PubMed

    Guillamat, Pau; Ignés-Mullol, Jordi; Sagués, Francesc

    2016-05-17

    Living cells sense the mechanical features of their environment and adapt to it by actively remodeling their peripheral network of filamentary proteins, known as cortical cytoskeleton. By mimicking this principle, we demonstrate an effective control strategy for a microtubule-based active nematic in contact with a hydrophobic thermotropic liquid crystal. By using well-established protocols for the orientation of liquid crystals with a uniform magnetic field, and through the mediation of anisotropic shear stresses, the active nematic reversibly self-assembles with aligned flows and textures that feature orientational order at the millimeter scale. The turbulent flow, characteristic of active nematics, is in this way regularized into a laminar flow with periodic velocity oscillations. Once patterned, the microtubule assembly reveals its intrinsic length and time scales, which we correlate with the activity of motor proteins, as predicted by existing theories of active nematics. The demonstrated commanding strategy should be compatible with other viable active biomaterials at interfaces, and we envision its use to probe the mechanics of the intracellular matrix. PMID:27140604

  13. Controlling Defects and Flow in Active Nematic Suspensions

    NASA Astrophysics Data System (ADS)

    Shankar, Suraj; Guillamat Bassedas, Pau; Ignés-Mullol, Jordi; Sagués, Francesc; Marchetti, M. Cristina

    Experiments on active nematics composed of cytoskeletal biopolymers activated by molecular motors have shown that in these systems topological defects drive self-sustained flows and the transition to spatio-temporal chaos. In active nematics, defects become dynamical entities and behave like self-propelled particles. In a freely suspended nematic layer the defect speed is controlled by the activity and the viscosity of the active fluid that is so far unknown. Experiments, however, are carried out on very thin nematic layers at an oil-water interface. Our collaborators in Barcelona have shown that increasing the viscosity of the oil can substantially slow down the defects and increase their number. Considering a model of an active nematic at an oil-water interface, we have calculated the defect speed as a function of oil viscosity and find that theory and experiments agree well when the oil viscosity is changed over four orders of magnitude. Importantly, by combining theory and experiments these results provide a parameter-free estimate for the interfacial viscosity of the active nematic layer, which has never been measured before. This research was supported by the Grants NSF-DMR-1305184 and MINECO FIS 2013-41144P.

  14. Control of Dual-Opposed Stirling Convertors with Active Power Factor Correction Controllers

    NASA Technical Reports Server (NTRS)

    Regan, Timothy F.; Lewandowski, Edward J.; Schreiber, Jeffrey G.

    2006-01-01

    When using recently-developed active power factor correction (APFC) controllers in power systems comprised of dual-opposed free-piston Stirling convertors, a variety of configurations of the convertors and controller(s) can be considered, with configuration ultimately selected based on benefits of efficiency, reliability, and robust operation. The configuration must not only achieve stable control of the two convertors, but also synchronize and regulate motion of the pistons to minimize net dynamic forces. The NASA Glenn Research Center (GRC) System Dynamic Model (SDM) was used to study ten configurations of dual-opposed convertor systems. These configurations considered one controller with the alternators connected in series or in parallel, and two controllers with the alternators not connected (isolated). For the configurations where the alternators were not connected, several different approaches were evaluated to synchronize the two convertors. In addition, two thermodynamic configurations were considered: two convertors with isolated working spaces and convertors with a shared expansion space. Of the ten configurations studied, stable operating modes were found for four. Three of those four had a common expansion space. One stable configuration was found for the dual-opposed convertors with separate working spaces. That configuration required isochronous control of both convertors, and two APFC controllers were used to accomplish this. A frequency/phase control loop was necessary to allow each APFC controller to synchronize its associated convertor with a common frequency.

  15. Control of Dual-Opposed Stirling Convertors with Active Power Factor Correction Controllers

    NASA Technical Reports Server (NTRS)

    Regan, Timothy F.; Lewandowski, Edward J.; Schreiber, Jeffrey G.

    2007-01-01

    When using recently-developed active power factor correction (APFC) controllers in power systems comprised of dual-opposed free-piston Stirling convertors, a variety of configurations of the convertors and controller(s) can be considered, with configuration ultimately selected based on benefits of efficiency, reliability, and robust operation. The configuration must not only achieve stable control of the two convertors, but also synchronize and regulate motion of the pistons to minimize net dynamic forces. The NASA Glenn Research Center (GRC) System Dynamic Model (SDM) was used to study ten configurations of dual-opposed convertor systems. These configurations considered one controller with the alternators connected in series or in parallel, and two controllers with the alternators not connected (isolated). For the configurations where the alternators were not connected, several different approaches were evaluated to synchronize the two convertors. In addition, two thermodynamic configurations were considered: two convertors with isolated working spaces and convertors with a shared expansion space. Of the ten configurations studied, stable operating modes were found for four. Three of those four had a common expansion space. One stable configuration was found for the dual-opposed convertors with separate working spaces. That configuration required isochronous control of both convertors, and two APFC controllers were used to accomplish this. A frequency/phase control loop was necessary to allow each APFC controller to synchronize its associated convertor with a common frequency.

  16. Active control strategy on a catenary-pantograph validated model

    NASA Astrophysics Data System (ADS)

    Sanchez-Rebollo, C.; Jimenez-Octavio, J. R.; Carnicero, A.

    2013-04-01

    Dynamic simulation methods have become essential in the design process and control of the catenary-pantograph system, overall since high-speed trains and interoperability criteria are getting very trendy. This paper presents an original hardware-in-the-loop (HIL) strategy aimed at integrating a multicriteria active control within the catenary-pantograph dynamic interaction. The relevance of HIL control systems applied in the frame of the pantograph is undoubtedly increasing due to the recent and more demanding requirements for high-speed railway systems. Since the loss of contact between the catenary and the pantograph leads to arcing and electrical wear, and too high contact forces cause mechanical wear of both the catenary wires and the strips of the pantograph, not only prescribed but also economic and performance criteria ratify such a relevance. Different configurations of the proportional-integral-derivative (PID) controller are proposed and applied to two different plant systems. Since this paper is mainly focused on the control strategy, both plant systems are simulation models though the methodology is suitable for a laboratory bench. The strategy of control involves a multicriteria optimisation of the contact force and the consumption of the energy supplied by the control force, a genetic algorithm has been applied for this purpose. Thus, the PID controller is fitted according to these conflicting objectives and tested within a nonlinear lumped model and a nonlinear finite element model, being the last one validated against the European Standard EN 50318. Finally, certain tests have been accomplished in order to analyse the robustness of the control strategy. Particularly, the relevance or the plant simulation, the running speed and the instrumentation time delay are studied in this paper.

  17. Closed-loop and activity-guided optogenetic control.

    PubMed

    Grosenick, Logan; Marshel, James H; Deisseroth, Karl

    2015-04-01

    Advances in optical manipulation and observation of neural activity have set the stage for widespread implementation of closed-loop and activity-guided optical control of neural circuit dynamics. Closing the loop optogenetically (i.e., basing optogenetic stimulation on simultaneously observed dynamics in a principled way) is a powerful strategy for causal investigation of neural circuitry. In particular, observing and feeding back the effects of circuit interventions on physiologically relevant timescales is valuable for directly testing whether inferred models of dynamics, connectivity, and causation are accurate in vivo. Here we highlight technical and theoretical foundations as well as recent advances and opportunities in this area, and we review in detail the known caveats and limitations of optogenetic experimentation in the context of addressing these challenges with closed-loop optogenetic control in behaving animals. PMID:25856490

  18. Carbon Nanotube Materials for Substrate Enhanced Control of Catalytic Activity

    SciTech Connect

    Heben, M.; Dillon, A. C.; Engtrakul, C.; Lee, S.-H.; Kelley, R. D.; Kini, A. M.

    2007-05-01

    Carbon SWNTs are attractive materials for supporting electrocatalysts. The properties of SWNTs are highly tunable and controlled by the nanotube's circumferential periodicity and their surface chemistry. These unique characteristics suggest that architectures constructed from these types of carbon support materials would exhibit interesting and useful properties. Here, we expect that the structure of the carbon nanotube support will play a major role in stabilizing metal electrocatalysts under extreme operating conditions and suppress both catalyst and support degradation. Furthermore, the chemical modification of the carbon nanotube surfaces can be expected to alter the interface between the catalyst and support, thus, enhancing the activity and utilization of the electrocatalysts. We plan to incorporate discrete reaction sites into the carbon nanotube lattice to create intimate electrical contacts with the catalyst particles to increase the metal catalyst activity and utilization. The work involves materials synthesis, design of electrode architectures on the nanoscale, control of the electronic, ionic, and mass fluxes, and use of advanced optical spectroscopy techniques.

  19. Closed-Loop and Activity-Guided Optogenetic Control

    PubMed Central

    Grosenick, Logan; Marshel, James H.; Deisseroth, Karl

    2016-01-01

    Advances in optical manipulation and observation of neural activity have set the stage for widespread implementation of closed-loop and activity-guided optical control of neural circuit dynamics. Closing the loop optogenetically (i.e., basing optogenetic stimulation on simultaneously observed dynamics in a principled way) is a powerful strategy for causal investigation of neural circuitry. In particular, observing and feeding back the effects of circuit interventions on physiologically relevant timescales is valuable for directly testing whether inferred models of dynamics, connectivity, and causation are accurate in vivo. Here we highlight technical and theoretical foundations as well as recent advances and opportunities in this area, and we review in detail the known caveats and limitations of optogenetic experimentation in the context of addressing these challenges with closed-loop optogenetic control in behaving animals. PMID:25856490

  20. An active control strategy for achieving weak radiator structures

    SciTech Connect

    Naghshineh, K. . Acoustics and Radar Technology Lab.); Koopmann, G.H. . Center for Acoustics and Vibration)

    1994-01-01

    A general control strategy is presented for active suppression of total radiated sound power from harmonically excited structures based on the measurement of their response. Using the measured response of the structure together with knowledge of its structural mobility, and equivalent primary excitation force is found at discrete points along the structure. Using this equivalent primary force and performing a quadratic optimization of the power radiated form the structure, a set of control forces is found at selected points on the structure that results in minimum radiated sound power. A numerical example of this strategy is presented for a simply supported beam in a rigid baffle excited by a harmonic plane wave incident at an oblique angle. A comparison of the response of the beam with and without control forces shows a large reduction in the controlled response displacement magnitude. In addition, as the result of the action of the control forces, the magnitude of the wave number spectrum of the beam's response in the supersonic region is decreased substantially. The effect of the number and location of the actuators on reductions in sound power level is also studied. The actuators located at the anti-nodes of structural modes within the supersonic region together with those located near boundaries are found to be the most effective in controlling the radiation of sound from a structure.

  1. Application of constrained optimization to active control of aeroelastic response

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Mukhopadhyay, V.

    1981-01-01

    Active control of aeroelastic response is a complex in which the designer usually tries to satisfy many criteria which are often conflicting. To further complicate the design problem, the state space equations describing this type of control problem are usually of high order, involving a large number of states to represent the flexible structure and unsteady aerodynamics. Control laws based on the standard Linear-Quadratic-Gaussian (LQG) method are of the same high order as the aeroelastic plant. To overcome this disadvantage of the LQG mode, an approach developed for designing low order optimal control laws which uses a nonlinear programming algorithm to search for the values of the control law variables that minimize a composite performance index, was extended to the constrained optimization problem. The method involves searching for the values of the control law variables that minimize a basic performance index while satisfying several inequality constraints that describe the design criteria. The method is applied to gust load alleviation of a drone aircraft.

  2. Active control landing gear for ground loads alleviation

    NASA Technical Reports Server (NTRS)

    Mcgehee, J. R.

    1985-01-01

    An active landing gear has been created by connecting the hydraulic piston in an oleo strut to a hydraulic supply. A controller modulates the pressure in the oleo to achieve the desired dynamic characteristics. Tests on ground rigs (documented by a film) have demonstrated the successful alleviation of induced structural ground loads and the next step will be a flight test using a fighter aircraft.

  3. Controlling epileptiform activity with organic electronic ion pumps.

    PubMed

    Williamson, Adam; Rivnay, Jonathan; Kergoat, Loïg; Jonsson, Amanda; Inal, Sahika; Uguz, Ilke; Ferro, Marc; Ivanov, Anton; Sjöström, Theresia Arbring; Simon, Daniel T; Berggren, Magnus; Malliaras, George G; Bernard, Christophe

    2015-05-27

    In treating epilepsy, the ideal solution is to act at a seizure's onset, but only in the affected regions of the brain. Here, an organic electronic ion pump is demonstrated, which directly delivers on-demand pure molecules to specific brain regions. State-of-the-art organic devices and classical pharmacology are combined to control pathological activity in vitro, and the results are verified with electrophysiological recordings. PMID:25866154

  4. Active spacecraft potential control: An ion emitter experiment. [Cluster mission

    NASA Technical Reports Server (NTRS)

    Riedler, W.; Goldstein, R.; Hamelin, M.; Maehlum, B. N.; Troim, J.; Olsen, R. C.; Pedersen, A.; Grard, R. J. L.; Schmidt, R.; Rudenauer, F.

    1988-01-01

    The cluster spacecraft are instrumented with ion emitters for charge neutralization. The emitters produce indium ions at 6 keV. The ion current is adjusted in a feedback loop with instruments measuring the spacecraft potential. The system is based on the evaporation of indium in the apex field of a needle. The design of the active spacecraft potential control instruments, and the ion emitters is presented.

  5. Active Piezoelectric Vibration Control of Subscale Composite Fan Blades

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Min, James B.; Kray, Nicholas

    2012-01-01

    As part of the Fundamental Aeronautics program, researchers at NASA Glenn Research Center (GRC) are investigating new technologies supporting the development of lighter, quieter, and more efficient fans for turbomachinery applications. High performance fan blades designed to achieve such goals will be subjected to higher levels of aerodynamic excitations which could lead to more serious and complex vibration problems. Piezoelectric materials have been proposed as a means of decreasing engine blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. To investigate this idea, spin testing was performed on two General Electric Aviation (GE) subscale composite fan blades in the NASA GRC Dynamic Spin Rig Facility. The first bending mode (1B) was targeted for vibration control. Because these subscale blades are very thin, the piezoelectric material was surface-mounted on the blades. Three thin piezoelectric patches were applied to each blade two actuator patches and one small sensor patch. These flexible macro-fiber-composite patches were placed in a location of high resonant strain for the 1B mode. The blades were tested up to 5000 rpm, with patches used as sensors, as excitation for the blade, and as part of open- and closed-loop vibration control. Results show that with a single actuator patch, active vibration control causes the damping ratio to increase from a baseline of 0.3% critical damping to about 1.0% damping at 0 RPM. As the rotor speed approaches 5000 RPM, the actively controlled blade damping ratio decreases to about 0.5% damping. This occurs primarily because of centrifugal blade stiffening, and can be observed by the decrease in the generalized electromechanical coupling with rotor speed.

  6. Active control of bearing preload using piezoelectric translators

    NASA Technical Reports Server (NTRS)

    Nye, Ted W.

    1990-01-01

    In many spacecraft applications, mechanisms are required to perform precision pointing operations or to sometimes dither about or track a moving object. These mechanisms perform in a predictable and repeatable manner in benign temperature environments. Severe thermal gradients experienced in actual space applications however, cause assemblies to expand and contract around their bearings. This results in unpredictable changes in bearing preload, and hence bearing friction. This becomes a limitation for servos controlling pointing accuracy. Likewise, uncontrollable vibrations may couple into fixed preload (hence, fixed stiffness) mechanisms and limit pointing accuracy. Consequently, a complex problem faced today is how to design mechanisms that remain insensitive to changing thermal and vibrational spacecraft environments. Research presented involves the simplified modeling and test results of an actuator module that used piezoelectrically preload controlled bearings. The feasibility of actively controlling bearing preload was demonstrated. Because bearing friction is related to preload, a thermally active system designed with aluminum components and a 440 C bearing, was friction tested at temperatures ranging from 0 to 70 C (32 to 158 F). Effectiveness of the translators were demonstrated by mapping a controllable friction range throughout tested temperatures. It was learned that constant preload for this system could be maintained over an approximate 44 C (79 F) temperature span. From testing, it was also discovered that at the more deviate temperatures, expansions were so large that radial clearances were taken up and the duplex bearing became radially preloaded. Thus, active control of bearing preload is feasible but may be limited by inherent geometry constraints and materials used in the system.

  7. Active Flow Control on a Boundary-Layer-Ingesting Inlet

    NASA Technical Reports Server (NTRS)

    Gorton, Susan Althoff; Owens, Lewis R.; Jenkins, Luther N.; Allan, Brian G.; Schuster, Ernest P.

    2004-01-01

    Boundary layer ingestion (BLI) is explored as means to improve overall system performance for Blended Wing Body configuration. The benefits of BLI for vehicle system performance benefit are assessed with a process derived from first principles suitable for highly-integrated propulsion systems. This performance evaluation process provides framework within which to assess the benefits of an integrated BLI inlet and lays the groundwork for higher-fidelity systems studies. The results of the system study show that BLI provides a significant improvement in vehicle performance if the inlet distortion can be controlled, thus encouraging the pursuit of active flow control (AFC) as a BLI enabling technology. The effectiveness of active flow control in reducing engine inlet distortion was assessed using a 6% scale model of a 30% BLI offset, diffusing inlet. The experiment was conducted in the NASA Langley Basic Aerodynamics Research Tunnel with a model inlet designed specifically for this type of testing. High mass flow pulsing actuators provided the active flow control. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion was determined by 120 total pressure measurements located at the aerodynamic interface plane. The test matrix was limited to a maximum freestream Mach number of 0.15 with scaled mass flows through the inlet for that condition. The data show that the pulsed actuation can reduce distortion from 29% to 4.6% as measured by the circumferential distortion descriptor DC60 using less than 1% of inlet mass flow. Closed loop control of the actuation was also demonstrated using a sidewall surface static pressure as the response sensor.

  8. Seal Investigations of an Active Clearance Control System Concept

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Taylor, Shawn; Oswald, Jay; DeCastro, Jonathan A.

    2006-01-01

    In an effort to improve upon current thermal active clearance control methods, a first generation, fast-acting mechanically actuated, active clearance control system has been designed and installed into a non-rotating test rig. In order to harvest the benefit of tighter blade tip clearances, low-leakage seals are required for the actuated carrier segments of the seal shroud to prevent excessive leakage of compressor discharge (P3) cooling air. The test rig was designed and fabricated to facilitate the evaluation of these types of seals, identify seal leakage sources, and test other active clearance control system concepts. The objective of this paper is to present both experimental and analytical investigations into the nature of the face-seal to seal-carrier interface. Finite element analyses were used to examine face seal contact pressures and edge-loading under multiple loading conditions, varied E-seal positions and two new face seal heights. The analyses indicated that moving the E-seal inward radially and reducing face seal height would lead to more uniform contact conditions between the face seal and the carriers. Lab testing confirmed that moving the balance diameter inward radially caused a decrease in overall system leakage.

  9. First Test of Fan Active Noise Control (ANC) Completed

    NASA Technical Reports Server (NTRS)

    2005-01-01

    With the advent of ultrahigh-bypass engines, the space available for passive acoustic treatment is becoming more limited, whereas noise regulations are becoming more stringent. Active noise control (ANC) holds promise as a solution to this problem. It uses secondary (added) noise sources to reduce or eliminate the offending noise radiation. The first active noise control test on the low-speed fan test bed was a General Electric Company system designed to control either the exhaust or inlet fan tone. This system consists of a "ring source," an induct array of error microphones, and a control computer. Fan tone noise propagates in a duct in the form of spinning waves. These waves are detected by the microphone array, and the computer identifies their spinning structure. The computer then controls the "ring source" to generate waves that have the same spinning structure and amplitude, but 180 out of phase with the fan noise. This computer generated tone cancels the fan tone before it radiates from the duct and is heard in the far field. The "ring source" used in these tests is a cylindrical array of 16 flat-plate acoustic radiators that are driven by thin piezoceramic sheets bonded to their back surfaces. The resulting source can produce spinning waves up to mode 7 at levels high enough to cancel the fan tone. The control software is flexible enough to work on spinning mode orders from -6 to 6. In this test, the fan was configured to produce a tone of order 6. The complete modal (spinning and radial) structure of the tones was measured with two builtin sets of rotating microphone rakes. These rakes provide a measurement of the system performance independent from the control system error microphones. In addition, the far-field noise was measured with a semicircular array of 28 microphones. This test represents the first in a series of tests that demonstrate different active noise control concepts, each on a progressively more complicated modal structure. The tests are

  10. Active-Adaptive Control of Inlet Separation Using Supersonic Microjets

    NASA Technical Reports Server (NTRS)

    Alvi, Farrukh S.

    2007-01-01

    Flow separation in internal and external flows generally results in a significant degradation in aircraft performance. For internal flows, such as inlets and transmission ducts in aircraft propulsion systems, separation is undesirable as it reduces the overall system performance. The aim of this research has been to understand the nature of separation and more importantly, to explore techniques to actively control it. In this research, we extended our investigation of active separation control (under a previous NASA grant) where we explored the use of microjets for the control of boundary layer separation. The geometry used for the initial study was a simple diverging Stratford ramp, equipped with arrays of microjets. These early results clearly show that the activation of microjets eliminated flow separation. Furthermore, the velocity-field measurements, using PIV, also demonstrate that the gain in momentum due to the elimination of separation is at least an order of magnitude larger (two orders of magnitude larger in most cases) than the momentum injected by the microjets and is accomplished with very little mass flow through the microjets. Based on our initial promising results this research was continued under the present grant, using a more flexible model. This model allows for the magnitude and extent of separation as well as the microjet parameters to be independently varied. The results, using this model were even more encouraging and demonstrated that microjet control completely eliminated significant regions of flow separation over a wide range of conditions with almost negligible mass flow. Detailed studies of the flowfield and its response to microjets were further examined using 3-component PIV and unsteady pressure measurements, among others. As the results presented this report will show, microjets were successfully used to control the separation of a much larger extent and magnitude than demonstrated in our earlier experiments. In fact, using the

  11. Active control of road booming noise in automotive interiors

    NASA Astrophysics Data System (ADS)

    Oh, Shi-Hwan; Kim, Hyoun-Suk; Park, Youngjin

    2002-01-01

    An active feedforward control system has been developed to reduce the road booming noise that has strong nonlinear characteristics. Four acceleration transducers were attached to the suspension system to detect reference vibration and two loudspeakers were used to attenuate the noise near the headrests of two front seats. A leaky constraint multiple filtered-X LMS algorithm with an IIR-based filter that has fast convergence speed and frequency selective controllability was proposed to increase the control efficiency in computing power and memory usage. During the test drive on the rough asphalt and turtle-back road at a constant speed of 60 km/h, we were able to achieve a reduction of around 6 dB of A-weighted sound pressure level in the road booming noise range with the proposed algorithm, which could not be obtained with the conventional multiple filtered-X LMS algorithm.

  12. Active control of road booming noise in automotive interiors.

    PubMed

    Oh, Shi-Hwan; Kim, Hyoun-suk; Park, Youngjin

    2002-01-01

    An active feedforward control system has been developed to reduce the road booming noise that has strong nonlinear characteristics. Four acceleration transducers were attached to the suspension system to detect reference vibration and two loudspeakers were used to attenuate the noise near the headrests of two front seats. A leaky constraint multiple filtered-X LMS algorithm with an IIR-based filter that has fast convergence speed and frequency selective controllability was proposed to increase the control efficiency in computing power and memory usage. During the test drive on the rough asphalt and turtle-back road at a constant speed of 60 km/h, we were able to achieve a reduction of around 6 dB of A-weighted sound pressure level in the road booming noise range with the proposed algorithm, which could not be obtained with the conventional multiple filtered-X LMS algorithm. PMID:11831793

  13. Actively controlling coolant-cooled cold plate configuration

    DOEpatents

    Chainer, Timothy J.; Parida, Pritish R.

    2016-04-26

    Cooling apparatuses are provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The cooling apparatus includes the cold plate and a controller. The cold plate couples to one or more electronic components to be cooled, and includes an adjustable physical configuration. The controller dynamically varies the adjustable physical configuration of the cold plate based on a monitored variable associated with the cold plate or the electronic component(s) being cooled by the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the electronic component(s), and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the cold plate, the positioning of which may be adjusted based on the monitored variable.

  14. Multidisciplinary analysis of actively controlled large flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Cooper, Paul A.; Young, John W.; Sutter, Thomas R.

    1986-01-01

    The control of Flexible Structures (COFS) program has supported the development of an analysis capability at the Langley Research Center called the Integrated Multidisciplinary Analysis Tool (IMAT) which provides an efficient data storage and transfer capability among commercial computer codes to aid in the dynamic analysis of actively controlled structures. IMAT is a system of computer programs which transfers Computer-Aided-Design (CAD) configurations, structural finite element models, material property and stress information, structural and rigid-body dynamic model information, and linear system matrices for control law formulation among various commercial applications programs through a common database. Although general in its formulation, IMAT was developed specifically to aid in the evaluation of the structures. A description of the IMAT system and results of an application of the system are given.

  15. Active Vibration Control for Suspension by Considering Its Stroke Limitation

    NASA Astrophysics Data System (ADS)

    Nishimura, Hidekazu; Takahashi, Nobuo

    When large external forces come from the road, a suspension stroke reaches its limitation and riding comfort may decrease. To overcome this problem, we propose a new control method for an active suspension that can avoid reaching the stroke limitation. A sliding mode controller is designed by considering the rigidity variation of a spring. Also, in order to estimate the internal state of the suspension, a variable structural system (VSS) observer is designed without the information of nonlinear force occurring in the rigidity variation when the suspension reaches the stroke limitation. By carrying out simulation and experiment of a quarter-car model, it is verified that the performance of the controller is superior to that of the method, which switches to a passive damper near the stroke limitation from a linear quadratic regulator (LQR) in a small stroke range.

  16. Apparatus and method for gas turbine active combustion control system

    NASA Technical Reports Server (NTRS)

    Umeh, Chukwueloka (Inventor); Kammer, Leonardo C. (Inventor); Shah, Minesh (Inventor); Fortin, Jeffrey B. (Inventor); Knobloch, Aaron (Inventor); Myers, William J. (Inventor); Mancini, Alfred Albert (Inventor)

    2011-01-01

    An Active Combustion Control System and method provides for monitoring combustor pressure and modulating fuel to a gas turbine combustor to prevent combustion dynamics and/or flame extinguishments. The system includes an actuator, wherein the actuator periodically injects pulsed fuel into the combustor. The apparatus also includes a sensor connected to the combustion chamber down stream from an inlet, where the sensor generates a signal detecting the pressure oscillations in the combustor. The apparatus controls the actuator in response to the sensor. The apparatus prompts the actuator to periodically inject pulsed fuel into the combustor at a predetermined sympathetic frequency and magnitude, thereby controlling the amplitude of the pressure oscillations in the combustor by modulating the natural oscillations.

  17. Active control of aerothermoelastic effects for a conceptual hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Gilbert, Michael G.; Pototzky, Anthony S.

    1990-01-01

    Procedures for and results of aeroservothermoelastic studies are described. The objectives of these studies were to develop the necessary procedures for performing an aeroelastic analysis of an aerodynamically heated vehicle and to analyze a configuration in the classical cold state and in a hot state. Major tasks include the development of the structural and aerodynamic models, open loop analyses, design of active control laws for improving dynamic responses and analyses of the closed loop vehicles. The analyses performed focused on flutter speed calculations, short period eigenvalue trends and statistical analyses of the vehicle response to controls and turbulence. Improving the ride quality of the vehicle and raising the flutter boundary of the aerodynamically-heated vehicle up to that of the cold vehicle were the objectives of the control law design investigations.

  18. O the Use of Modern Control Theory for Active Structural Acoustic Control.

    NASA Astrophysics Data System (ADS)

    Saunders, William Richard

    A modern control theory formulation of Active Structural Acoustic Control (ASAC) of simple structures radiating acoustic energy into light or heavy fluid mediums is discussed in this dissertation. ASAC of a baffled, simply-supported plate subject to mechanical disturbances is investigated. For the case of light fluid loading, a finite element modelling approach is used to extend previous ASAC design methods. Vibration and acoustic controllers are designed for the plate. Comparison of the controller performance shows distinct advantages of the ASAC method for minimizing radiated acoustic power. A novel approach to the modelling of the heavy fluid-loaded plate is developed here. Augmenting structural and acoustic dynamics using state vector formalism allows the design of both vibration and ASAC controllers for the fluid-loaded plate. This modern control approach to active structural acoustic control is unique in its ability to suppress both persistent and transient disturbances on a plate in a heavy fluid. Numerical simulations of the open-loop and closed-loop plate response are provided to support the theoretical developments.

  19. Active control of shocks and sonic boom ground signal

    NASA Astrophysics Data System (ADS)

    Yagiz, Bedri

    The manipulation of a flow field to obtain a desired change is a much heightened subject. Active flow control has been the subject of the major research areas in fluid mechanics for the past two decades. It offers new solutions for mitigation of shock strength, sonic boom alleviation, drag minimization, reducing blade-vortex interaction noise in helicopters, stall control and the performance maximization of existing designs to meet the increasing requirements of the aircraft industries. Despite the wide variety of the potential applications of active flow control, the majority of studies have been performed at subsonic speeds. The active flow control cases were investigated in transonic speed in this study. Although the active flow control provides significant improvements, the sensibility of aerodynamic performance to design parameters makes it a nontrivial and expensive problem, so the designer has to optimize a number of different parameters. For the purpose of gaining understanding of the active flow control concepts, an automated optimization cycle process was generated. Also, the optimization cycle reduces cost and turnaround time. The mass flow coefficient, location, width and angle were chosen as design parameters to maximize the aerodynamic performance of an aircraft. As the main contribution of this study, a detailed parametric study and optimization process were presented. The second step is to appraise the practicability of weakening the shock wave and thereby reducing the wave drag in transonic flight regime using flow control devices such as two dimensional contour bump, individual jet actuator, and also the hybrid control which includes both control devices together, thereby gaining the desired improvements in aerodynamic performance of the air-vehicle. After this study, to improve the aerodynamic performance, the flow control and shape parameters are optimized separately, combined, and in a serial combination. The remarkable part of all these

  20. Active Optical Control of Quasi-Static Aberrations for ATST

    NASA Astrophysics Data System (ADS)

    Johnson, L. C.; Upton, R.; Rimmele, T. R.; Hubbard, R.; Barden, S. C.

    2012-12-01

    The Advanced Technology Solar Telescope (ATST) requires active control of quasi-static telescope aberrations in order to achieve the image quality set by its science requirements. Four active mirrors will be used to compensate for optical misalignments induced by changing gravitational forces and thermal gradients. These misalignments manifest themselves primarily as low-order wavefront aberrations that will be measured by a Shack-Hartmann wavefront sensor. When operating in closed-loop with the wavefront sensor, the active optics control algorithm uses a linear least-squares reconstructor incorporating force constraints to limit force applied to the primary mirror while also incorporating a neutral-point constraint on the secondary mirror to limit pointing errors. The resulting system compensates for astigmatism and defocus with rigid-body motion of the secondary mirror and higher-order aberrations with primary mirror bending modes. We demonstrate this reconstruction method and present simulation results that apply the active optics correction to aberrations generated by finite-element modeling of thermal and gravitational effects over a typical day of ATST operation. Quasi-static wavefront errors are corrected to within limits set by wavefront sensor noise in all cases with very little force applied to the primary mirror surface and minimal pointing correction needed.

  1. Active prospective control is required for effective sensorimotor learning.

    PubMed

    Snapp-Childs, Winona; Casserly, Elizabeth; Mon-Williams, Mark; Bingham, Geoffrey P

    2013-01-01

    Passive modeling of movements is often used in movement therapy to overcome disabilities caused by stroke or other disorders (e.g. Developmental Coordination Disorder or Cerebral Palsy). Either a therapist or, recently, a specially designed robot moves or guides the limb passively through the movement to be trained. In contrast, action theory has long suggested that effective skill acquisition requires movements to be actively generated. Is this true? In view of the former, we explicitly tested the latter. Previously, a method was developed that allows children with Developmental Coordination Disorder to produce effective movements actively, so as to improve manual performance to match that of typically developing children. In the current study, we tested practice using such active movements as compared to practice using passive movement. The passive movement employed, namely haptic tracking, provided a strong test of the comparison, one that showed that the mere inaction of the muscles is not the problem. Instead, lack of prospective control was. The result was no effective learning with passive movement while active practice with prospective control yielded significant improvements in performance. PMID:24194891

  2. Active Prospective Control Is Required for Effective Sensorimotor Learning

    PubMed Central

    Snapp-Childs, Winona; Casserly, Elizabeth; Mon-Williams, Mark; Bingham, Geoffrey P.

    2013-01-01

    Passive modeling of movements is often used in movement therapy to overcome disabilities caused by stroke or other disorders (e.g. Developmental Coordination Disorder or Cerebral Palsy). Either a therapist or, recently, a specially designed robot moves or guides the limb passively through the movement to be trained. In contrast, action theory has long suggested that effective skill acquisition requires movements to be actively generated. Is this true? In view of the former, we explicitly tested the latter. Previously, a method was developed that allows children with Developmental Coordination Disorder to produce effective movements actively, so as to improve manual performance to match that of typically developing children. In the current study, we tested practice using such active movements as compared to practice using passive movement. The passive movement employed, namely haptic tracking, provided a strong test of the comparison, one that showed that the mere inaction of the muscles is not the problem. Instead, lack of prospective control was. The result was no effective learning with passive movement while active practice with prospective control yielded significant improvements in performance. PMID:24194891

  3. Active and passive noise control using electroactive polymer actuators (EAPAs)

    NASA Astrophysics Data System (ADS)

    Ramanathan, Kartik; Zhu, Bei; Chang, Woosuk; Varadan, Vasundara V.; Varadan, Vijay K.

    1999-06-01

    Electro-active polymer actuators (EAPA) have been a topic of research interest in the recent decades due to their ability to produce large strains under the influence of relatively low electric fields as compared to commercially available actuators. This paper investigates the feasibility of EAPA for active and passive cabin noise control. The passive damping characteristics of EAPA were determined, by measuring the transmission loss of four samples of various thickness and composition in an anechoic chamber in the 200 - 2000 Hz frequency range. This was then compared to that of Plexiglas and silicone rubber sheets of comparable thickness. The transmission loss of EAPA and Plexiglas were observed to be about the same. The transmission loss of EAPA was greater than that of silicone rubber, of the same thickness. The experimental and theoretical results computed using the mass law agree well. EAPA produces a strain of 0.006 for an applied field of 1 V/m. The ability of EAPA to potentially provide active as well as passive damping in the low to intermediate frequency range, along with being light- weight, pliable and transparent, makes it attractive for noise control applications as active/passive windows or wall papers.

  4. Controlled movement processing: superior colliculus activity associated with countermanded saccades.

    PubMed

    Paré, Martin; Hanes, Doug P

    2003-07-23

    We investigated whether the monkey superior colliculus (SC), an important midbrain structure for the regulation of saccadic eye movements, contains neurons with activity patterns sufficient to control both the cancellation and the production of saccades. We used a countermanding task to manipulate the probability that, after the presentation of a stop signal, the monkeys canceled a saccade that was planned in response to an eccentric visual stimulus. By modeling each animal's behavioral responses, with a race between GO and STOP processes leading up to either saccade initiation or cancellation, we estimated that saccade cancellation took on average 110 msec. Neurons recorded in the superior colliculus intermediate layers during this task exhibited the discharge properties expected from neurons closely involved in behavioral control. Both saccade- and fixation-related discharged differently when saccades were counter-manded instead of executed, and the time at which they changed their activity preceded the behavioral estimate of saccade cancellation obtained from the same trials by 10 and 13 msec, respectively. Furthermore, these intervals exceed the minimal amount of time needed for SC activity to influence eye movements. The additional observation that saccade-related neurons discharged significantly less when saccades were countermanded instead of executed suggests that saccades are triggered when these neurons reach a critical activation level. Altogether, these findings provide solid evidence that the superior colliculus contains the necessary neural signals to be directly involved in the decision process that regulates whether a saccade is to be produced. PMID:12878689

  5. Control of resonance phenomenon in flexible structures via active support

    NASA Astrophysics Data System (ADS)

    Tavakolpour Saleh, A. R.; Mailah, M.

    2012-07-01

    This paper introduces the concept of active support to cope with the resonance phenomenon in the flexible structures. A valid computational platform for the flexible structure was first presented via a finite difference (FD) approach. Then, the active support mechanism was applied to the simulation algorithm through which the performance of the proposed methodology in suppressing the resonance phenomenon was evaluated. The flexible structure was thus excited with the external disturbance and the system response with and without the effect of the active support was investigated through a simulation study. The simulation outcomes clearly demonstrated effective resonance suppression in the flexible structure. Finally, an experimental rig was developed to investigate the validity of the proposed technique. The experimental results revealed an acceptable agreement with the simulation outcomes through which the validity of the proposed control method was affirmed.

  6. Cost-sensitive Bayesian control policy in human active sensing

    PubMed Central

    Ahmad, Sheeraz; Huang, He; Yu, Angela J.

    2014-01-01

    An important but poorly understood aspect of sensory processing is the role of active sensing, the use of self-motion such as eye or head movements to focus sensing resources on the most rewarding or informative aspects of the sensory environment. Here, we present behavioral data from a visual search experiment, as well as a Bayesian model of within-trial dynamics of sensory processing and eye movements. Within this Bayes-optimal inference and control framework, which we call C-DAC (Context-Dependent Active Controller), various types of behavioral costs, such as temporal delay, response error, and sensor repositioning cost, are explicitly minimized. This contrasts with previously proposed algorithms that optimize abstract statistical objectives such as anticipated information gain (Infomax) (Butko and Movellan, 2010) and expected posterior maximum (greedy MAP) (Najemnik and Geisler, 2005). We find that C-DAC captures human visual search dynamics better than previous models, in particular a certain form of “confirmation bias” apparent in the way human subjects utilize prior knowledge about the spatial distribution of the search target to improve search speed and accuracy. We also examine several computationally efficient approximations to C-DAC that may present biologically more plausible accounts of the neural computations underlying active sensing, as well as practical tools for solving active sensing problems in engineering applications. To summarize, this paper makes the following key contributions: human visual search behavioral data, a context-sensitive Bayesian active sensing model, a comparative study between different models of human active sensing, and a family of efficient approximations to the optimal model. PMID:25520640

  7. Cost-sensitive Bayesian control policy in human active sensing.

    PubMed

    Ahmad, Sheeraz; Huang, He; Yu, Angela J

    2014-01-01

    An important but poorly understood aspect of sensory processing is the role of active sensing, the use of self-motion such as eye or head movements to focus sensing resources on the most rewarding or informative aspects of the sensory environment. Here, we present behavioral data from a visual search experiment, as well as a Bayesian model of within-trial dynamics of sensory processing and eye movements. Within this Bayes-optimal inference and control framework, which we call C-DAC (Context-Dependent Active Controller), various types of behavioral costs, such as temporal delay, response error, and sensor repositioning cost, are explicitly minimized. This contrasts with previously proposed algorithms that optimize abstract statistical objectives such as anticipated information gain (Infomax) (Butko and Movellan, 2010) and expected posterior maximum (greedy MAP) (Najemnik and Geisler, 2005). We find that C-DAC captures human visual search dynamics better than previous models, in particular a certain form of "confirmation bias" apparent in the way human subjects utilize prior knowledge about the spatial distribution of the search target to improve search speed and accuracy. We also examine several computationally efficient approximations to C-DAC that may present biologically more plausible accounts of the neural computations underlying active sensing, as well as practical tools for solving active sensing problems in engineering applications. To summarize, this paper makes the following key contributions: human visual search behavioral data, a context-sensitive Bayesian active sensing model, a comparative study between different models of human active sensing, and a family of efficient approximations to the optimal model. PMID:25520640

  8. Physical activity in youth with well-controlled versus poorly controlled type 2 diabetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Type 2 diabetes increases risk of chronic disease. The existing guidelines are for American youth to attain at least 60 minutes of daily physical activity (PA). Fewer than 20% achieve this goal. This study examines differences between blood glucose control and PA in youth with type 2 diabetes durin...

  9. State of the art survey: active and semi-active suspension control

    NASA Astrophysics Data System (ADS)

    Tseng, H. Eric; Hrovat, Davor

    2015-07-01

    This survey paper aims to provide some insight into the design of suspension control system within the context of existing literature and share observations on current hardware implementation of active and semi-active suspension systems. It reviews the performance envelop of active, semi-active, and passive suspensions with a focus on linear quadratic-based optimisation including a specific example. The paper further discusses various design aspects including other design techniques, the decoupling of load and road disturbances, the decoupling of pitch and heave modes, the use of an inerter as an additional design element, and the application of preview. Various production and near production suspension systems were examined and described according to the features they offer, including self-levelling, variable damping, variable geometry, and anti-roll damping and stiffness. The lessons learned from these analytical insights and related hardware implementations are valuable and can be applied towards future active or semi-active suspension design.

  10. Multiplexed model predictive control for active vehicle suspensions

    NASA Astrophysics Data System (ADS)

    Hu, Yinlong; Chen, Michael Z. Q.; Hou, Zhongsheng

    2015-02-01

    Multiplexed model predictive control (MMPC) is a recently proposed efficient model predictive control (MPC) algorithm, which can effectively reduce the computational burden of the online optimisation in MPC implementation by updating the control inputs in an asynchronous manner. This paper investigates the application of MMPC in active vehicle suspension design. An MMPC controller integrated with soft constraints and a Kalman filter is proposed based on a full-car model. Ride comfort, roadholding and suspension deflection are considered in this paper, where ride comfort and roadholding are formulated as a quadratic cost function in terms of sprung mass accelerations and tyre deflections, while suspension deflection performance is formulated as a hard constraint. The saturation of the actuator force is also considered and formulated as a hard constraint as well. Numerical simulation is performed with respect to different choices of weighting factors, vehicle speeds and control horizons. The results show that the overall performance of ride comfort and roadholding can be improved significantly by employing MMPC and the average time taken by MMPC to solve the individual quadratic programming problem is considerably smaller than that of the conventional MPC, which effectively demonstrate the effectiveness of the proposed method.

  11. Semi-active tuned mass dampers with phase control

    NASA Astrophysics Data System (ADS)

    Chung, Lap-Loi; Lai, Yong-An; Walter Yang, Chuang-Sheng; Lien, Kuan-Hua; Wu, Lai-Yun

    2013-07-01

    The present study aims at proposing an innovative phase control methodology for semi-active tuned mass dampers (SA-TMDs) that intend to minimize the off-tuned problems associated with passive tuned mass dampers (P-TMDs). The phase control algorithm is first developed, the essential of which is to apply the variable friction force to slow down the mass block at specific moments when the phase lag of the SA-TMD with respect to the structure is different from 90°, resulting in the SA-TMD back to the desired phase lag, i.e., -90° phase deviation, so that the SA-TMD has the maximum power flow to reduce the structural vibration. The feasibility of the application of the phase control in SA-TMDs is verified by performing numerical analyses of a simplified Taipei 101 structure model with a SA-TMD subjected to sinusoidal loads and design level wind loads. The numerical simulation results show that the SA-TMD implemented with phase control can enable the mass block to vibrate in a manner with a phase lag close to the -90° when the structure model is under sinusoidal excitations with frequencies different from the structural fundamental mode. The SA-TMD with phase control not only exhibits better performance than the optimal P-TMD in terms of suppressing the structural vibration, but also enhances its robustness, particularly when the SA-TMD is off-tuned to the structure.

  12. Overview of active flow control at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Pack, LaTunia G.; Joslin, Ronald D.

    1998-06-01

    The paper summarizes active flow control projects currently underway at the NASA Langley Research Center. Technology development is being pursued within a multidisciplinary, cooperative approach, involving the classical disciplines of fluid mechanics, structural mechanics, material science, acoustics, and stability and control theory. Complementing the companion papers in this session, the present paper will focus on projects that have the goal of extending the state- of-the-art in the measurement, prediction, and control of unsteady, nonlinear aerodynamics. Toward this goal, innovative actuators, micro and macro sensors, and control strategies are considered for high payoff flow control applications. The target payoffs are outlined within each section below. Validation of the approaches range from bench-top experiments to wind-tunnel experiments to flight tests. Obtaining correlations for future actuator and sensor designs are implicit in the discussion. The products of the demonstration projects and design tool development from the fundamental NASA R and D level technology will then be transferred to the Applied Research components within NASA, DOD, and US Industry.

  13. On-line, adaptive state estimator for active noise control

    NASA Technical Reports Server (NTRS)

    Lim, Tae W.

    1994-01-01

    Dynamic characteristics of airframe structures are expected to vary as aircraft flight conditions change. Accurate knowledge of the changing dynamic characteristics is crucial to enhancing the performance of the active noise control system using feedback control. This research investigates the development of an adaptive, on-line state estimator using a neural network concept to conduct active noise control. In this research, an algorithm has been developed that can be used to estimate displacement and velocity responses at any locations on the structure from a limited number of acceleration measurements and input force information. The algorithm employs band-pass filters to extract from the measurement signal the frequency contents corresponding to a desired mode. The filtered signal is then used to train a neural network which consists of a linear neuron with three weights. The structure of the neural network is designed as simple as possible to increase the sampling frequency as much as possible. The weights obtained through neural network training are then used to construct the transfer function of a mode in z-domain and to identify modal properties of each mode. By using the identified transfer function and interpolating the mode shape obtained at sensor locations, the displacement and velocity responses are estimated with reasonable accuracy at any locations on the structure. The accuracy of the response estimates depends on the number of modes incorporated in the estimates and the number of sensors employed to conduct mode shape interpolation. Computer simulation demonstrates that the algorithm is capable of adapting to the varying dynamic characteristics of structural properties. Experimental implementation of the algorithm on a DSP (digital signal processing) board for a plate structure is underway. The algorithm is expected to reach the sampling frequency range of about 10 kHz to 20 kHz which needs to be maintained for a typical active noise control

  14. Active chatter control system for long-overhang boring bars

    NASA Astrophysics Data System (ADS)

    Browning, Douglas R.; Golioto, Igor; Thompson, Norman B.

    1997-05-01

    Some machining processes, such as boring, have been historically limited by excessive bar vibration, often resulting in poor surface finish and reduced tool life. A unique boring bar system has been developed to suppress bar vibration, or chatter, during machining using active control technology. Metal cutting test programs have shown proven, repeatable performance on hard-to-cut, aircraft industry high-temperature nickel alloys as well as more easily cut carbon steels. Critical bar length-to-diameter (L/D) ratios, depths-of-cuts, feed rates and cutting speeds far exceed those attainable from the best available passively-damped boring bars. This industry-ready system consists of three principle subsystems: active clamp, instrumented bar, and control electronics. The active clamp is a lathe-mountable body capable of supporting bars of varying sizes and articulating them in orthogonal directions from the base of the bar shank. The instrumented bar consists of a steel shank, standard insert head and imbedded accelerometers. Wire harnesses from both the bar and clamp connect to control electronics comprised of highly-efficient switched- capacitor amplifiers that drive the piezoelectric actuators, sensor signal conditioning, a PC-based program manager and two 32-bit floating-point DSPs. The program manager code runs on the host PC and distributes system identification and control functions to the two DSPs. All real-time signal processing is based on the principles of adaptive filter minimization. For the described system, cutting performance has extended existing chatter thresholds (cutting parameter combinations) for nickel alloys by as much as 400% while maintaining precision surface finish on the machined part. Bar L/D ratios as high as 11 have enabled deep boring operations on nickel workpieces that otherwise could not be performed free of chatter.

  15. Controlled Release of Biologically Active Silver from Nanosilver Surfaces

    PubMed Central

    Liu, Jingyu; Sonshine, David A.; Shervani, Saira; Hurt, Robert H.

    2010-01-01

    Major pathways in the antibacterial activity and eukaryotic toxicity of nano-silver involve the silver cation and its soluble complexes, which are well established thiol toxicants. Through these pathways, nano-silver behaves in analogy to a drug delivery system, in which the particle contains a concentrated inventory of an active species, the ion, which is transported to and released near biological target sites. Although the importance of silver ion in the biological response to nano-silver is widely recognized, the drug delivery paradigm has not been well developed for this system, and there is significant potential to improve nano-silver technologies through controlled release formulations. This article applies elements of the drug delivery paradigm to nano-silver dissolution and presents a systematic study of chemical concepts for controlled release. After presenting thermodynamic calculations of silver species partitioning in biological media, the rates of oxidative silver dissolution are measured for nanoparticles and macroscopic foils and used to derive unified area-based release kinetics. A variety of competing chemical approaches are demonstrated for controlling the ion release rate over four orders of magnitude. Release can be systematically slowed by thiol and citrate ligand binding, formation of sulfidic coatings, or the scavenging of peroxy-intermediates. Release can be accelerated by pre-oxidation or particle size reduction, while polymer coatings with complexation sites alter the release profile by storing and release inventories of surface-bound silver. Finally, the ability to tune biological activity is demonstrated through bacterial inhibition zone assay carried out on selected formulations of controlled release nano-silver. PMID:20968290

  16. Active electrostatic control of liquid bridge dynamics and stability.

    PubMed

    Thiessen, David B; Wei, Wei; Marston, Philip L

    2004-11-01

    Stabilization of cylindrical liquid bridges beyond the Rayleigh-Plateau limit has been demonstrated in both Plateau-tank experiments and in short-duration low gravity on NASA KC-135 aircraft using an active electrostatic control method. The method controls the (2,0) capillary mode using an optical modal-amplitude detector and mode-coupled electrostatic feedback stress. The application of mode-coupled stresses to a liquid bridge is also a very useful way to study mode dynamics. A pure (2,0)-mode oscillation can be excited by periodic forcing and then the forcing can be turned off to allow for a free decay from which the frequency and damping of the mode is measured. This can be done in the presence or absence of feedback control. Mode-coupled feedback stress applied in proportion to modal amplitude with appropriate gain leads to stiffening of the mode allowing for stabilization beyond the Rayleigh-Plateau limit. If the opposite sign of gain is applied the mode frequency is reduced. It has also been demonstrated that, by applying feedback in proportion to the modal velocity, the damping of the mode can be increased or decreased depending on the velocity gain. Thus, both the mode frequency and damping can be independently controlled at the same time and this has been demonstrated in Plateau-tank experiments. The International Space Station (ISS) has its own modes of oscillation, some of which are in a low frequency range comparable to the (2,0)-mode frequency of typical liquid bridges. In the event that a vibration mode of the ISS were close to the frequency of a capillary mode it would be possible, with active electrostatic control, to shift the capillary-mode frequency away from that of the disturbance and simultaneously add artificial damping to further reduce the effect of the g-jitter. In principle, this method could be applied to any fluid configuration with a free surface. PMID:15644377

  17. Latency and activation in the control of TGF-beta

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    The biological activity of the transforming growth factor-beta's (TGF-beta)3 is tightly controlled by their persistence in the extracellular compartment as latent complexes. Each of the three mammalian isoform genes encodes a product that is cleaved intracellularly to form two polypeptides, each of which dimerizes. Mature TGF-beta, a 24 kD homodimer, is noncovalently associated with the 80 kD latency-associated peptide (LAP). LAP is a fundamental component of TGF-beta that is required for its efficient secretion, prevents it from binding to ubiquitous cell surface receptors, and maintains its availability in a large extracellular reservoir that is readily accessed by activation. This latent TGF-beta complex (LTGF-beta) is secreted by all cells and is abundant both in circulating forms and bound to the extracellular matrix. Activation describes the collective events leading to the release of TGF-beta. Despite the importance of TGF-beta regulation of growth and differentiation in physiological and malignant tissue processes, remarkably little is known about the mechanisms of activation in situ. Recent studies of irradiated mammary gland reveal certain features of TGF-beta 1 activation that may shed light on its regulation and potential roles in the normal and neoplastic mammary gland.

  18. Active Flow Control: Instrumentation Automation and Experimental Technique

    NASA Technical Reports Server (NTRS)

    Gimbert, N. Wes

    1995-01-01

    In investigating the potential of a new actuator for use in an active flow control system, several objectives had to be accomplished, the largest of which was the experimental setup. The work was conducted at the NASA Langley 20x28 Shear Flow Control Tunnel. The actuator named Thunder, is a high deflection piezo device recently developed at Langley Research Center. This research involved setting up the instrumentation, the lighting, the smoke, and the recording devices. The instrumentation was automated by means of a Power Macintosh running LabVIEW, a graphical instrumentation package developed by National Instruments. Routines were written to allow the tunnel conditions to be determined at a given instant at the push of a button. This included determination of tunnel pressures, speed, density, temperature, and viscosity. Other aspects of the experimental equipment included the set up of a CCD video camera with a video frame grabber, monitor, and VCR to capture the motion. A strobe light was used to highlight the smoke that was used to visualize the flow. Additional effort was put into creating a scale drawing of another tunnel on site and a limited literature search in the area of active flow control.

  19. Resistive wall mode active control physics design for KSTAR

    SciTech Connect

    Park, Y. S. Sabbagh, S. A.; Bialek, J. M.; Berkery, J. W.; Bak, J. G.; Lee, S. G.; Oh, Y. K.

    2014-01-15

    As KSTAR H-mode operation approaches the region where the resistive wall mode (RWM) can be unstable, an important issue for future long pulse, high beta plasma operation is to evaluate RWM active feedback control performance using a planned active/passive RWM stabilization system on the device. In particular, an optimal design of feedback sensors allows mode stabilization up to the highest achievable β{sub N} close to the ideal with-wall limit, β{sub N}{sup wall}, with reduced control power requirements. The computed ideal n = 1 mode structure from the DCON code has been input to the VALEN-3D code to calculate the projected performance of an active RWM control system in the KSTAR three-dimensional conducting structure device geometry. Control performance with the midplane locked mode detection sensors, off-midplane saddle loops, and magnetic pickup coils is examined. The midplane sensors measuring the radial component of the mode perturbation is found to be strongly affected by the wall eddy current. The off-axis saddle loops with proper compensation of the prompt applied field are computed to provide stabilization at β{sub N} up to 86% of β{sub N}{sup wall} but the low RWM amplitude computed in the off-axis regions near the sensors can produce a low signal-to-noise ratio. The required control power and bandwidth are also estimated with varied noise levels in the feedback sensors. Further improvements have been explored by examining a new RWM sensor design motivated by the off-midplane poloidal magnetic field sensors in NSTX. The new sensors mounted off of the copper passive stabilizer plates near the device midplane show a clear advantage in control performance corresponding to achieving 99% of β{sub N}{sup wall} without the need of compensation of the prompt field. The result shows a significant improvement of RWM feedback stabilization using the new sensor set which motivates a future feedback sensor upgrade.

  20. Adaptive control of an active seat for occupant vibration reduction

    NASA Astrophysics Data System (ADS)

    Gan, Zengkang; Hillis, Andrew J.; Darling, Jocelyn

    2015-08-01

    The harmful effects on human performance and health caused by unwanted vibration from vehicle seats are of increasing concern. This paper presents an active seat system to reduce the vibration level transmitted to the seat pan and the occupants' body under low frequency periodic excitation. Firstly, the detail of the mechanical structure is given and the active seat dynamics without external load are characterized by vibration transmissibility and frequency responses under different excitation forces. Owing the nonlinear and time-varying behaviour of the proposed system, a Filtered-x least-mean-square (FXLMS) adaptive control algorithm with on-line Fast-block LMS (FBLMS) identification process is employed to manage the system operation for high vibration cancellation performance. The effectiveness of the active seat system is assessed through real-time experimental tests using different excitation profiles. The system identification results show that an accurate estimation of the secondary path is achieved by using the FBLMS on-line technique. Substantial reduction is found for cancelling periodic vibration containing single and multiple frequencies. Additionally, the robustness and stability of the control system are validated through transient switching frequency tests.

  1. Test Cases for the Benchmark Active Controls: Spoiler and Control Surface Oscillations and Flutter

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Scott, Robert C.; Wieseman, Carol D.

    2000-01-01

    As a portion of the Benchmark Models Program at NASA Langley, a simple generic model was developed for active controls research and was called BACT for Benchmark Active Controls Technology model. This model was based on the previously-tested Benchmark Models rectangular wing with the NACA 0012 airfoil section that was mounted on the Pitch and Plunge Apparatus (PAPA) for flutter testing. The BACT model had an upper surface spoiler, a lower surface spoiler, and a trailing edge control surface for use in flutter suppression and dynamic response excitation. Previous experience with flutter suppression indicated a need for measured control surface aerodynamics for accurate control law design. Three different types of flutter instability boundaries had also been determined for the NACA 0012/PAPA model, a classical flutter boundary, a transonic stall flutter boundary at angle of attack, and a plunge instability near M = 0.9. Therefore an extensive set of steady and control surface oscillation data was generated spanning the range of the three types of instabilities. This information was subsequently used to design control laws to suppress each flutter instability. There have been three tests of the BACT model. The objective of the first test, TDT Test 485, was to generate a data set of steady and unsteady control surface effectiveness data, and to determine the open loop dynamic characteristics of the control systems including the actuators. Unsteady pressures, loads, and transfer functions were measured. The other two tests, TDT Test 502 and TDT Test 5 18, were primarily oriented towards active controls research, but some data supplementary to the first test were obtained. Dynamic response of the flexible system to control surface excitation and open loop flutter characteristics were determined during Test 502. Loads were not measured during the last two tests. During these tests, a database of over 3000 data sets was obtained. A reasonably extensive subset of the data

  2. An intelligent active force control algorithm to control an upper extremity exoskeleton for motor recovery

    NASA Astrophysics Data System (ADS)

    Hasbullah Mohd Isa, Wan; Taha, Zahari; Mohd Khairuddin, Ismail; Majeed, Anwar P. P. Abdul; Fikri Muhammad, Khairul; Abdo Hashem, Mohammed; Mahmud, Jamaluddin; Mohamed, Zulkifli

    2016-02-01

    This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton by means of an intelligent active force control (AFC) mechanism. The Newton-Euler formulation was used in deriving the dynamic modelling of both the anthropometry based human upper extremity as well as the exoskeleton that consists of the upper arm and the forearm. A proportional-derivative (PD) architecture is employed in this study to investigate its efficacy performing joint-space control objectives. An intelligent AFC algorithm is also incorporated into the PD to investigate the effectiveness of this hybrid system in compensating disturbances. The Mamdani Fuzzy based rule is employed to approximate the estimated inertial properties of the system to ensure the AFC loop responds efficiently. It is found that the IAFC-PD performed well against the disturbances introduced into the system as compared to the conventional PD control architecture in performing the desired trajectory tracking.

  3. Active control for stabilization of neoclassical tearing modes

    SciTech Connect

    Humphreys, D.A.; Ferron, J.R.; La Haye, R.J.; Luce, T.C.; Petty, C.C.; Prater, R.; Welander, A.S.

    2006-05-15

    This work describes active control algorithms used by DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] to stabilize and maintain suppression of 3/2 or 2/1 neoclassical tearing modes (NTMs) by application of electron cyclotron current drive (ECCD) at the rational q surface. The DIII-D NTM control system can determine the correct q-surface/ECCD alignment and stabilize existing modes within 100-500 ms of activation, or prevent mode growth with preemptive application of ECCD, in both cases enabling stable operation at normalized beta values above 3.5. Because NTMs can limit performance or cause plasma-terminating disruptions in tokamaks, their stabilization is essential to the high performance operation of ITER [R. Aymar et al., ITER Joint Central Team, ITER Home Teams, Nucl. Fusion 41, 1301 (2001)]. The DIII-D NTM control system has demonstrated many elements of an eventual ITER solution, including general algorithms for robust detection of q-surface/ECCD alignment and for real-time maintenance of alignment following the disappearance of the mode. This latter capability, unique to DIII-D, is based on real-time reconstruction of q-surface geometry by a Grad-Shafranov solver using external magnetics and internal motional Stark effect measurements. Alignment is achieved by varying either the plasma major radius (and the rational q surface) or the toroidal field (and the deposition location). The requirement to achieve and maintain q-surface/ECCD alignment with accuracy on the order of 1 cm is routinely met by the DIII-D Plasma Control System and these algorithms. We discuss the integrated plasma control design process used for developing these and other general control algorithms, which includes physics-based modeling and testing of the algorithm implementation against simulations of actuator and plasma responses. This systematic design/test method and modeling environment enabled successful mode suppression by the NTM control system upon first-time use in an

  4. Development of Active Control within Working Memory: Active Retrieval versus Monitoring in Children

    ERIC Educational Resources Information Center

    Blain-Brière, Bénédicte; Bouchard, Caroline; Bigras, Nathalie; Cadoret, Geneviève

    2014-01-01

    This study aimed to compare children's performance on two mnemonic functions that engage the lateral prefrontal cortex. Brain imaging studies in adults have shown that the mid-ventrolateral prefrontal cortex is specifically involved in active controlled retrieval, and the mid-dorsolateral prefrontal cortex is specifically involved in…

  5. Sensitivity method for integrated structure/active control law design

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    1987-01-01

    The development is described of an integrated structure/active control law design methodology for aeroelastic aircraft applications. A short motivating introduction to aeroservoelasticity is given along with the need for integrated structures/controls design algorithms. Three alternative approaches to development of an integrated design method are briefly discussed with regards to complexity, coordination and tradeoff strategies, and the nature of the resulting solutions. This leads to the formulation of the proposed approach which is based on the concepts of sensitivity of optimum solutions and multi-level decompositions. The concept of sensitivity of optimum is explained in more detail and compared with traditional sensitivity concepts of classical control theory. The analytical sensitivity expressions for the solution of the linear, quadratic cost, Gaussian (LQG) control problem are summarized in terms of the linear regulator solution and the Kalman Filter solution. Numerical results for a state space aeroelastic model of the DAST ARW-II vehicle are given, showing the changes in aircraft responses to variations of a structural parameter, in this case first wing bending natural frequency.

  6. Human factors in remote control engineering development activities

    SciTech Connect

    Clarke, M.M.; Hamel, W.R.; Draper, J.V.

    1983-01-01

    Human factors engineering, which is an integral part of the advanced remote control development activities at the Oak Ridge National Laboratory, is described. First, work at the Remote Systems Development Facility (RSDF) has shown that operators can perform a wide variety of tasks, some of which were not specifically designed for remote systems, with a dextrous electronic force-reflecting servomanipulator and good television remote viewing capabilities. Second, the data collected during mock-up remote maintenance experiments at the RSDF have been analyzed to provide guidelines for the design of human interfaces with an integrated advanced remote maintenance system currently under development. Guidelines have been provided for task allocation between operators, remote viewing systems, and operator controls. 6 references, 5 figures, 2 tables.

  7. Active vibration control based on piezoelectric smart composite

    NASA Astrophysics Data System (ADS)

    Gao, Le; Lu, Qingqing; Fei, Fan; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2013-12-01

    An aircraft’s vertical fin may experience dramatic buffet loads in high angle of attack flight conditions, and these buffet loads would cause huge vibration and dynamic stress on the vertical fin structure. To reduce the dynamic vibration of the vertical fin structure, macro fiber composite (MFC) actuators were used in this paper. The drive moment equations and sensing voltage equations of the MFC actuators were developed. Finite element analysis models based on three kinds of models of simplified vertical fin structures with surface-bonded MFC actuators were established in ABAQUS. The equivalent damping ratio of the structure was employed in finite element analysis, in order to measure the effectiveness of vibration control. Further, an open-loop test for the active vibration control system of the vertical fin with MFC actuators was designed and developed. The experimental results validated the effectiveness of the MFC actuators as well as the developed methodology.

  8. Active magneto-optical control of spontaneous emission in graphene

    DOE PAGESBeta

    Kort-Kamp, W. J. M.; Amorim, B.; Bastos, G.; Pinheiro, F. A.; Rosa, F. S. S.; Peres, N. M. R.; Farina, C.

    2015-11-13

    In this study, we investigate the spontaneous emission rate of a two-level quantum emitter near a graphene-coated substrate under the influence of an external magnetic field or strain induced pseudomagnetic field. We demonstrate that the application of the magnetic field can substantially increase or decrease the decay rate. We show that a suppression as large as 99% in the Purcell factor is achieved even for moderate magnetic fields. The emitter's lifetime is a discontinuous function of |B|, which is a direct consequence of the occurrence of discrete Landau levels in graphene. We demonstrate that, in the near-field regime, the magneticmore » field enables an unprecedented control of the decay pathways into which the photon/polariton can be emitted. Our findings strongly suggest that a magnetic field could act as an efficient agent for on-demand, active control of light-matter interactions in graphene at the quantum level.« less

  9. Active magneto-optical control of spontaneous emission in graphene

    SciTech Connect

    Kort-Kamp, W. J. M.; Amorim, B.; Bastos, G.; Pinheiro, F. A.; Rosa, F. S. S.; Peres, N. M. R.; Farina, C.

    2015-11-13

    In this study, we investigate the spontaneous emission rate of a two-level quantum emitter near a graphene-coated substrate under the influence of an external magnetic field or strain induced pseudomagnetic field. We demonstrate that the application of the magnetic field can substantially increase or decrease the decay rate. We show that a suppression as large as 99% in the Purcell factor is achieved even for moderate magnetic fields. The emitter's lifetime is a discontinuous function of |B|, which is a direct consequence of the occurrence of discrete Landau levels in graphene. We demonstrate that, in the near-field regime, the magnetic field enables an unprecedented control of the decay pathways into which the photon/polariton can be emitted. Our findings strongly suggest that a magnetic field could act as an efficient agent for on-demand, active control of light-matter interactions in graphene at the quantum level.

  10. Further Characterization of an Active Clearance Control Concept

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; Steinetz, Bruce M.; Oswald, Jay J.

    2007-01-01

    A new test chamber and precision hydraulic actuation system were incorporated into an active clearance control (ACC) test rig at NASA Glenn Research Center. Using the improved system, a fast-acting, mechanically-actuated, ACC concept was evaluated at engine simulated temperatures and pressure differentials up to 1140 F and 120 psig, on the basis of secondary seal leakage and kinematic controllability. During testing, the ACC concept tracked a simulated flight clearance transient profile at 1140 F, 120 psig, with a maximum error of only 0.0012 in. Comparison of average dynamic leakage of the system with average static leakage did not show significant differences between the two operating conditions. Calculated effective clearance values for the rig were approximately 0.0002 in. at 120 psig, well below the industry specified effective clearance threshold of 0.001 in.

  11. Development of a Voice Activity Controlled Noise Canceller

    PubMed Central

    Abid Noor, Ali O.; Samad, Salina Abdul; Hussain, Aini

    2012-01-01

    In this paper, a variable threshold voice activity detector (VAD) is developed to control the operation of a two-sensor adaptive noise canceller (ANC). The VAD prohibits the reference input of the ANC from containing some strength of actual speech signal during adaptation periods. The novelty of this approach resides in using the residual output from the noise canceller to control the decisions made by the VAD. Thresholds of full-band energy and zero-crossing features are adjusted according to the residual output of the adaptive filter. Performance evaluation of the proposed approach is quoted in terms of signal to noise ratio improvements as well mean square error (MSE) convergence of the ANC. The new approach showed an improved noise cancellation performance when tested under several types of environmental noise. Furthermore, the computational power of the adaptive process is reduced since the output of the adaptive filter is efficiently calculated only during non-speech periods. PMID:22778667

  12. Conjugated polymer based active electric-controlled terahertz device

    NASA Astrophysics Data System (ADS)

    Zhong, Liang; Zhang, Bo; He, Ting; Lv, Longfeng; Hou, Yanbing; Shen, Jingling

    2016-03-01

    A modulation of terahertz response in a highly efficient, electric-controlled conjugated polymer-silicon hybrid device with low photo-excitation was investigated. The polymer-silicon forms a hybrid structure, where the active depletion region modifies the semiconductor conductivity in real time by applying an external bias voltage. The THz transmission was efficiently modulated by effective controlling. In a THz-TDS system, the modulation depth reached nearly 100% when the applied voltage was 3.8 V at an external laser intensity of 0.3 W/cm2. The saturation voltage decreased with increasing photo-excited intensity. In a THz-CW system, a significant decline in THz transmission was also observed with increasing applied bias voltage. This reduction in THz transmission is induced by the enhancement of carrier density.

  13. High Temperature Evaluation of an Active Clearance Control System Concept

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; Steinetz, Bruce M.; Oswald, Jay J.

    2006-01-01

    A mechanically actuated blade tip clearance control concept was evaluated in a nonrotating test rig to quantify secondary seal leakage at elevated temperatures. These tests were conducted to further investigate the feasibility of actively controlling the clearance between the rotor blade tips and the surrounding shroud seal in the high pressure turbine (HPT) section of a turbine engine. The test environment simulates the state of the back side of the HPT shroud seal with pressure differentials as high as 120 psig and temperatures up to 1000 F. As expected, static secondary seal leakage decreased with increasing temperature. At 1000 F, the test rig's calculated effective clearance (at 120 psig test pressure) was 0.0003 in., well within the industry specified effective clearance goal.

  14. System design for active vibration control of aerospace structures

    NASA Astrophysics Data System (ADS)

    Shankar, V.; Nagaraja, B. V.; Balasubramaniam, R.; Shree S, Amrutha; Muthaiah, Skanda N.

    2003-10-01

    Instrumentation, electronics, digital signal processing and related software form the basic building blocks of a system for implementation of Active Vibration Control (AVC) for smart aerospace structures. This paper essentially deals with the design, development and implementation of a 4 channel analog input sub-system essentially consisting of charge amplifiers, filters, gain amplifiers & Analog to Digital Converters (ADC), the subsequent Digital Signal Processor (DSP) hardware for implementation of the controller and finally a 4 Channel analog output subsystem consisting of Digital to Analog Converters (DAC), reconstruction filters & high voltage amplifiers. This system essentially interfaces to a structure with piezo-ceramic sensors and actuators for implementation of real time AVC on a smart beam. The paper also highlights some of the new ideas that have been incorporated into the system design.

  15. ReflectoActive{trademark} Seals for Materials Control and Accountability

    SciTech Connect

    Richardson, G.D.; Younkin, J.R.; Bell, Z.W.

    2002-01-01

    The ReflectoActive{trademark} Seals system, a continuously monitored fiber optic, active seal technology, provides real-time tamper indication for large arrays of storage containers. The system includes a PC running the RFAS software, an Immediate Detection Unit (IDU), an Optical Time Domain Reflectometer (OTDR), links of fiber optic cable, and the methods and devices used to attach the fiber optic cable to the containers. When a breach on any of the attached fiber optic cable loops occurs, the IDU immediately signals the connected computer to control the operations of an OTDR to seek the breach location. The ReflectoActive{trademark} Seals System can be adapted for various types of container closure designs and implemented in almost any container configuration. This automatic protection of valued assets can significantly decrease the time and money required for surveillance. The RFAS software is the multi-threaded, client-server application that monitors and controls the components of the system. The software administers the security measures such as a two-person rule as well as continuous event logging. Additionally the software's architecture provides a secure method by which local or remote clients monitor the system and perform administrative tasks. These features provide the user with a robust system to meet today's material control and accountability needs. A brief overview of the hardware, and different hardware configurations will be given. The architecture of the system software, and its benefits will then be discussed. Finally, the features to be implemented in future versions of the system will be presented.

  16. Active Video Game Exercise Training Improves the Clinical Control of Asthma in Children: Randomized Controlled Trial

    PubMed Central

    Gomes, Evelim L. F. D.; Carvalho, Celso R. F.; Peixoto-Souza, Fabiana Sobral; Teixeira-Carvalho, Etiene Farah; Mendonça, Juliana Fernandes Barreto; Stirbulov, Roberto; Sampaio, Luciana Maria Malosá; Costa, Dirceu

    2015-01-01

    Objective The aim of the present study was to determine whether aerobic exercise involving an active video game system improved asthma control, airway inflammation and exercise capacity in children with moderate to severe asthma. Design A randomized, controlled, single-blinded clinical trial was carried out. Thirty-six children with moderate to severe asthma were randomly allocated to either a video game group (VGG; N = 20) or a treadmill group (TG; n = 16). Both groups completed an eight-week supervised program with two weekly 40-minute sessions. Pre-training and post-training evaluations involved the Asthma Control Questionnaire, exhaled nitric oxide levels (FeNO), maximum exercise testing (Bruce protocol) and lung function. Results No differences between the VGG and TG were found at the baseline. Improvements occurred in both groups with regard to asthma control and exercise capacity. Moreover, a significant reduction in FeNO was found in the VGG (p < 0.05). Although the mean energy expenditure at rest and during exercise training was similar for both groups, the maximum energy expenditure was higher in the VGG. Conclusion The present findings strongly suggest that aerobic training promoted by an active video game had a positive impact on children with asthma in terms of clinical control, improvementin their exercise capacity and a reductionin pulmonary inflammation. Trial Registration Clinicaltrials.gov NCT01438294 PMID:26301706

  17. Exploratory Studies in Generalized Predictive Control for Active Aeroelastic Control of Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.; Juang, Jer-Nan; Bennett, Richard L.

    2000-01-01

    The Aeroelasticity Branch at NASA Langley Research Center has a long and substantive history of tiltrotor aeroelastic research. That research has included a broad range of experimental investigations in the Langley Transonic Dynamics Tunnel (TDT) using a variety of scale models and the development of essential analyses. Since 1994, the tiltrotor research program has been using a 1/5-scale, semispan aeroelastic model of the V-22 designed and built by Bell Helicopter Textron Inc. (BHTI) in 1981. That model has been refurbished to form a tiltrotor research testbed called the Wing and Rotor Aeroelastic Test System (WRATS) for use in the TDT. In collaboration with BHTI, studies under the current tiltrotor research program are focused on aeroelastic technology areas having the potential for enhancing the commercial and military viability of tiltrotor aircraft. Among the areas being addressed, considerable emphasis is being directed to the evaluation of modern adaptive multi-input multi- output (MIMO) control techniques for active stability augmentation and vibration control of tiltrotor aircraft. As part of this investigation, a predictive control technique known as Generalized Predictive Control (GPC) is being studied to assess its potential for actively controlling the swashplate of tiltrotor aircraft to enhance aeroelastic stability in both helicopter and airplane modes of flight. This paper summarizes the exploratory numerical and experimental studies that were conducted as part of that investigation.

  18. Active control of spacecraft potentials at geosynchronous orbit

    NASA Technical Reports Server (NTRS)

    Goldstein, R.; Deforest, S. E.

    1976-01-01

    Tests have been conducted concerning the active control of the potentials of the geosynchronous satellites ATS-5 and ATS-6. The ATS-5 tests show that a simple electron emitter can be used to reduce the magnitude of the potential of a spacecraft which has been charged negatively by the environment. The ATS-6 ion thruster had also a pronounced effect on the potential barrier. In this case, the flux of high-energy primary ions and of low-charge exchange ions produces a space-charge neutralization effect which the electron gun alone cannot achieve.

  19. An active thermal control surfaces experiment. [spacecraft temperature determination

    NASA Technical Reports Server (NTRS)

    Wilkes, D. R.; Brown, M. J.

    1979-01-01

    An active flight experiment is described that has the objectives to determine the effects of the low earth natural environment and the Shuttle induced environment on selected thermal control and optical surfaces. The optical and thermal properties of test samples will be measured in-situ using an integrating sphere reflectrometer and using calorimetric methods. This experiment has been selected for the Long Duration Exposure Facility (LDEF) flight which will be carried to orbit by the NASA Space Shuttle. The LDEF will remain in orbit to be picked up by a later Shuttle mission and returned for postflight evaluation.

  20. Optimum mix of passive and active control of space structures

    NASA Technical Reports Server (NTRS)

    Rogers, Lynn; Richards, Ken

    1987-01-01

    The objective of this research was to test vibration suppression (settling time and jitter) of a large space structure (LSS) characterized by low frequency high global vibration modes. Five percent passive damping in a large truss was analyzed, tested and correlated. A representative system article re-target analysis shows that modest levels of passive damping dramatically reduce the control energy required. LSS must incorporate passive damping from the outset. The LSS system performance will not be met by either active or passive damping alone.

  1. Active optics control of VST telescope secondary mirror.

    PubMed

    Schipani, Pietro; D'Orsi, Sergio; Fierro, Davide; Marty, Laurent

    2010-06-01

    In telescopes based on active optics, defocus and coma are usually compensated for by secondary mirror movements. They are performed at the Very Large Telescope Survey Telescope (VST) with a hexapod--a parallel robot with six degrees of freedom positioning capability. We describe the application of the two-mirror telescope theory to the VST case and the solutions adopted for the hexapod control. We present the results of performance and reliability tests performed both in the laboratory and at the telescope. PMID:20517391

  2. Fungal Phytotoxins with Potential Herbicidal Activity to Control Chenopodium album.

    PubMed

    Cimmino, Alessio; Masi, Marco; Evidente, Marco; Evidente, Antonio

    2015-06-01

    This review deals with the isolation and chemical and biological characterization of phytotoxins produced by Ascochyta caulina and Phoma chenopodiicola proposed as mycoherbicides for the biological control of Chenopodium album, a worldwide spread weed which causes serious problems to some agrarian crops, including sugar beet and maize. Studies on the structure activity relationships and on the modes of actions of toxins isolated are also described, as well as the optimization of analytical methods focused on selection of the best fungal toxin producers. The attempts to scale up production of these phytotoxins aimed to obtain sufficient amounts for their application in greenhouse and field trials are also reported. PMID:26197562

  3. Controlled deposition of plasma activated coatings on zirconium substrates

    NASA Astrophysics Data System (ADS)

    Akhavan, Behnam; Bilek, Marcela

    2015-12-01

    Zirconium-based alloys are promising materials for orthopedic prostheses due to their low toxicity, superb corrosion resistivity, and favorable mechanical properties. The integration of such bio-implantable devices with local host tissues can strongly be improved by the development of a plasma polymerized acetylene and nitrogen (PPAN) that immobilizes bio-active molecules. The surface chemistry of PPAN is critically important as it plays a key role in affecting the surface free energy that alters the functionality of bio-active molecules at the surface. The cross-linking degree of PPAN is another key property that directly influences the water-permeability and thus also the stability of films in aqueous media. In this study we demonstrate that by simply tuning the zirconium bias voltage, control over the surface chemistry and cross-linking degree of PANN is achieved.

  4. Mission Operations Control Room Activities during STS-2 mission

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mission Operations Control Room (MOCR) activities during STS-2 mission. President Ronald Reagan is briefed by Dr. Christopher C. Kraft, Jr., JSC Director, who points toward the orbiter spotter on the projection plotter at the front of the MOCR (39499); President Reagan joking with STS-2 astronauts during space to ground conversation (39500); Mission Specialist/Astronaut Sally K. Ride communicates with the STS-2 crew from the spacecraft communicator console (39501); Charles R. Lewis, bronze team Flight Director, monitors activity from the STS-2 crew. He is seated at the flight director console in MOCR (39502); Eugene F. Kranz, Deputy Director of Flight Operations at JSC answers a question during a press conference on Nov. 13, 1981. He is flanked by Glynn S. Lunney, Manager, Space Shuttle Program Office, JSC; and Dr. Christopher C. Kraft, Jr., Director of JSC (39503).

  5. Local implementation of cancer control activities in rural Appalachia, 2006.

    PubMed

    Behringer, Bruce; Mabe, Karen Harrell; Dorgan, Kelly A; Hutson, Sadie P

    2009-01-01

    Underserved communities with high cancer rates often are not involved in implementing state cancer control activities locally. An East Tennessee State University research team formed 2 Appalachian Community Cancer Research Review Work Groups, 1 in northeast Tennessee and 1 in southwest Virginia. During 4 sessions, the research team presented regional cancer data to the work groups. Work group participants explored research from a lay perspective and identified possible reasons for cancer disparities in central Appalachia. The fifth session was a community dissemination activity in which work group participants engaged in cancer education and action by presenting the research to their local communities in unique ways. During a sixth session, both work groups discussed these interventions and further attempted to answer the question, "What makes the experience of cancer unique in Appalachia?" This article describes the key steps of this community-based participatory research process. PMID:19080040

  6. Active Load Control Using a Non-traditional MEMs Approach

    NASA Astrophysics Data System (ADS)

    Yen Nakafuji, Dora; van Dam, Cornelis

    2001-11-01

    An active load control concept using micro-electro-mechanical (MEM) translational tabs has been undergoing testing and development at the University of California at Davis. The concept utilizes microfabricated sliding components to retract and extend small tabs located near the trailing edge of a lifting surface. The tab assembly, referred to as a microtab, extends approximately normal to the surface and has a maximum deployment height on the order of the boundary-layer thickness. Deployment of these retractable devices on either the suction or pressure side of a lifting surface effectively modifies the camber distribution and changes the lift and moments generated. On the pressure side, the effect of the microtabs on lift is shown to be as powerful as conventional flap-like control surfaces resulting in positive DCl changes of 30conventional control surfaces which typically occupy 20of the lifting surface, these large-scale load changes are achieved using microtabs with heights of 1located 5suction side, these microtabs work by decreasing the lift resulting in negative DCl changes in the linear range of the lift curve. Numerical and experimental wind tunnel results are in good agreement, and both confirm that these micro-scale devices are capable of generating macro-scale changes in the aerodynamic loading. Application of this rather simple but innovative load control system based on microfabrication techniques will allow for miniaturization of conventional systems. With further development and integration with an activation and feedback network, these microtabs may result in significant reductions in typical control system weight, complexity and cost. Due to their minute size, the activation and response times are expected to be much faster than that of conventional trailing edge devices. Using a multi-disciplinary approach incorporating aspects of experimental and computational aerodynamics, mechanical design and microfabrication, the potentials of this concept

  7. Tight Chk1 Levels Control Replication Cluster Activation in Xenopus

    PubMed Central

    Wiggins, Jennifer M.; Barbosa, Pedro; Libeau, Pierre; Priam, Pierre; Narassimprakash, Hemalatha; Grodzenski, Xenia; Marheineke, Kathrin

    2015-01-01

    DNA replication in higher eukaryotes initiates at thousands of origins according to a spatio-temporal program. The ATR/Chk1 dependent replication checkpoint inhibits the activation of later firing origins. In the Xenopus in vitro system initiations are not sequence dependent and 2-5 origins are grouped in clusters that fire at different times despite a very short S phase. We have shown that the temporal program is stochastic at the level of single origins and replication clusters. It is unclear how the replication checkpoint inhibits late origins but permits origin activation in early clusters. Here, we analyze the role of Chk1 in the replication program in sperm nuclei replicating in Xenopus egg extracts by a combination of experimental and modelling approaches. After Chk1 inhibition or immunodepletion, we observed an increase of the replication extent and fork density in the presence or absence of external stress. However, overexpression of Chk1 in the absence of external replication stress inhibited DNA replication by decreasing fork densities due to lower Cdk2 kinase activity. Thus, Chk1 levels need to be tightly controlled in order to properly regulate the replication program even during normal S phase. DNA combing experiments showed that Chk1 inhibits origins outside, but not inside, already active clusters. Numerical simulations of initiation frequencies in the absence and presence of Chk1 activity are consistent with a global inhibition of origins by Chk1 at the level of clusters but need to be combined with a local repression of Chk1 action close to activated origins to fit our data. PMID:26046346

  8. A design procedure for active control of beam vibrations

    NASA Technical Reports Server (NTRS)

    Dickerson, S. L.; Jarocki, G.

    1983-01-01

    The transverse vibrations of beams is discussed and a methodology for the design of an active damping device is given. The Bernoulli-Euler equation is used to derive a transcendental transfer function, which relates a torque applied at one end of the beam to the rotational position and velocity at that point. The active damping device consists of a wire, a linear actuator and a short torque arm attached to one end of the beam. The action of the actuator varies a tension in the wire and creates a torque which opposes the rotation of the beam and thus damps vibration. A design procedure for such an active damper is given. This procedure shows the relationships and trade-offs between the actuator stroke, power required, stress levels in the wire and beam and the geometry of the beam and wire. It is shown that by consideration of the frequency response at the beam natural frequencies, the aforementioned relationships can be greatly simplified. Similarly, a simple way of estimating the effective damping ratios and eigenvalue locations of actively controlled beams is presented.

  9. Active control of waves in a cochlear model with subpartitions.

    PubMed Central

    Chadwick, R S; Dimitriadis, E K; Iwasa, K H

    1996-01-01

    Multiscale asymptotic methods developed previously to study macromechanical wave propagation in cochlear models are generalized here to include active control of a cochlear partition having three subpartitions, the basilar membrane, the reticular lamina, and the tectorial membrane. Activation of outer hair cells by stereocilia displacement and/or by lateral wall stretching result in a frequency-dependent force acting between the reticular lamina and basilar membrane. Wavelength-dependent fluid loads are estimated by using the unsteady Stokes' equations, except in the narrow gap between the tectorial membrane and reticular lamina, where lubrication theory is appropriate. The local wavenumber and subpartition amplitude ratios are determined from the zeroth order equations of motion. A solvability relation for the first order equations of motion determines the subpartition amplitudes. The main findings are as follows: The reticular lamina and tectorial membrane move in unison with essentially no squeezing of the gap; an active force level consistent with measurements on isolated outer hair cells can provide a 35-dB amplification and sharpening of subpartition waveforms by delaying dissipation and allowing a greater structural resonance to occur before the wave is cut off; however, previously postulated activity mechanisms for single partition models cannot achieve sharp enough tuning in subpartitioned models. Images Fig. 1 Fig. 2 PMID:8637914

  10. Dynamics and control of multipayload platforms - The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.; Crawley, Edward F.; De Luis, Javier

    1990-01-01

    A flight experiment entitled the Middeck Active Control Experiment (MACE) proposed by the Space Engineering Research Center (SERC) at the Massachusetts Institute of Technology is described. The objective of this program is to investigate and validate the modeling of the dynamics of an actively controlled flexible, articulating, multibody platform free floating in zero gravity. A rationale and experimental approach for the program are presented. The rationale shows that on-orbit testing, coupled with ground testing and a strong analytical program, is necessary in order to fully understand both how flexibility of the platform affects the pointing problem, as well as how gravity perturbs this structural flexibility causing deviations between 1-and 0-gravity behavior. The experimental approach captures the essential physics of multibody platforms, by identifying the appropriate attributes, tests, and performance metrics of the test article, and defines the tests required to successfully validate the analytical framework.

  11. Dynamics and control of multipayload platforms. The middeck active control experiment (MACE)

    NASA Astrophysics Data System (ADS)

    Miller, David W.; de Luis, Javier; Crawley, Edward F.

    A flight experiment entitled the Middeck Active Control Experiment (MACE) proposed by the Space Engineering Research Center (SERC) at the Massachusetts Institute of Technology is described. The objective of this program is to investigate and validate the modeling of the dynamics of an actively controlled flexible, articulating, multibody platform free floating in zero gravity. A rationale and experimental approach for the program are presented. The rationale shows that on-orbit testing, coupled with ground testing and a strong analytical program, is necessary in order to fully understand both how flexibility of the platform affects the pointing problem, as well as how gravity perturbs this structural flexibility causing deviations between 1-and 0-gravity behavior. The experimental approach captures the essential physics of multibody platforms, by identifying the appropriate attributes, tests, and performance metrics of the test article, and defines the tests required to successfully validate the analytical framework.

  12. Benchmark Active Controls Technology (BACT) Wing CFD Results

    NASA Technical Reports Server (NTRS)

    Schuster, David M.; Bartels, Robert E.

    2000-01-01

    The Benchmark Active Controls Technology (BACT) wing test (see chapter 8E) provides data for the validation of aerodynamic, aeroelastic, and active aeroelastic control simulation codes. These data provide a rich database for development and validation of computational aeroelastic and aeroservoelastic methods. In this vein, high-level viscous CFD analyses of the BACT wing have been performed for a subset of the test conditions available in the dataset. The computations presented in this section investigate the aerodynamic characteristics of the rigid clean wing configuration as well as simulations of the wing with a static and oscillating aileron and spoiler deflection. Two computational aeroelasticity codes extensively used at NASA Langley Research Center are implemented in this simulation. They are the ENS3DAE and CFL3DAE computational aeroelasticity programs. Both of these methods solve the three-dimensional compressible Navier-Stokes equations for both rigid and flexible vehicles, but they use significantly different approaches to the solution 6f the aerodynamic equations of motion. Detailed descriptions of both methods are presented in the following section.

  13. [Features of active control used in pharmacological studies].

    PubMed

    Nikol'skaia, K A; Kondashevskaia, M V

    2003-09-01

    The effects of 5 injections of salt solution and unfractionary heparin in dose 0.36 microgram/kg (Serva, Germany 10 kDa, activity 180 U/mg) have been studied in Wistar rats. It was found that two injections of salt solution were enough to form a stable defensive state in all rats which was manifested as an expectation of pain in tail-flick testing. The defensive motivation provoked by the injections negatively influenced the learning process as saline-induced rats refused to solve a food-getting task in a problem situation. Explorative and locomotor activities were depressed in these rats and were accompanied by numerous stressful and neurotic-like manifestations. Unlike saline-rats, practically all heparinized-rats instead of 45% of intact rats were able to solve a cognitive task despite the injections. Anxiety was decreased, but sensitivity to different external factors was increased in the heparin-induced rats. Formed habit in these rats was characterized by a high organization and stability. However, the majority heparin effects in tail-flick test were discovered when comparing the heparin-induced rats with intact ones and were not observed in comparison with the saline-rats. It is suggested that the saline-control should be considered as specific control having defensive features which are necessary to take into account in interpretation of effects of other pharmacological preparations. PMID:14758633

  14. Active control of underground stresses through rock pressurization

    SciTech Connect

    Vandergrift, T.L.

    1995-06-01

    To significantly increase the stability of underground excavations while exploiting the full advantages of confined rock strength, methods must be developed to actively control the distribution of stresses near the excavation. This US Bureau of Mines study examines theoretical and practical aspects of rock pressurization, an active stress control concept that induces compressive stress in the wall rock through repeated hydraulic fracturing with a settable fluid. Numerical analyses performed by incorporating the rock pressurization concept into a variety of boundary-element models indicate that rock pressurization has the potential to improve underground excavation stability in three ways: (1) by relocating stress concentrations away from the weak opening surface to stronger, confined wall rock; (2) by inducing additional stresses in a biaxial stress field to reduce the difference between the principal stress components near the surface of the opening, and (3) by counteracting the tensile stresses induced in the rock around internally loaded openings. Practical aspects of the rock pressurization concept were investigated through a series of hydraulic fracturing experiments. The use of sulfur as a settable fluid for hydraulic fracturing was demonstrated, although problems related to sulfur viscosity suggest that other molten materials, such as wax, may be better suited to practical field application of the rock pressurization concept.

  15. Performance of active vibration control technology: the ACTEX flight experiments

    NASA Astrophysics Data System (ADS)

    Nye, T. W.; Manning, R. A.; Qassim, K.

    1999-12-01

    This paper discusses the development and results of two intelligent structures space-flight experiments, each of which could affect architecture designs of future spacecraft. The first, the advanced controls technology experiment I (ACTEX I), is a variable stiffness tripod structure riding as a secondary payload on a classified spacecraft. It has been operating well past its expected life since becoming operational in 1996. Over 60 on-orbit experiments have been run on the ACTEX I flight experiment. These experiments form the basis for in-space controller design problems and for concluding lifetime/reliability data on the active control components. Transfer functions taken during the life of ACTEX I have shown consistent predictability and stability in structural behavior, including consistency with those measurements taken on the ground prior to a three year storage period and the launch event. ACTEX I can change its modal characteristics by employing its dynamic change mechanism that varies preloads in portions of its structure. Active control experiments have demonstrated maximum vibration reductions of 29 dB and 16 dB in the first two variable modes of the system, while operating over a remarkable on-orbit temperature range of -80 °C to 129 °C. The second experiment, ACTEX II, was successfully designed, ground-tested, and integrated on an experimental Department of Defense satellite prior to its loss during a launch vehicle failure in 1995. ACTEX II also had variable modal behavior by virtue of a two-axis gimbal and added challenges of structural flexibility by being a large deployable appendage. Although the loss of ACTEX II did not provide space environment experience, ground testing resulted in space qualifying the hardware and demonstrated 21 dB, 14 dB, and 8 dB reductions in amplitude of the first three primary structural modes. ACTEX II could use either active and/or passive techniques to affect vibration suppression. Both experiments trailblazed

  16. Dynamics of Active Separation Control at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Pack, LaTunia G.; Seifert, Avi

    2000-01-01

    A series of active flow control experiments were recently conducted at high Reynolds numbers on a generic separated configuration. The model simulates the upper surface of a 20% thick Glauert-Goldschmied type airfoil at zero angle of attack. The flow is fully turbulent since the tunnel sidewall boundary layer flows over the model. The main motivation for the experiments is to generate a comprehensive data base for validation of unsteady numerical simulation as a first step in the development of a CFD design tool, without which it would not be possible to effectively utilize the great potential of unsteady flow control. This paper focuses on the dynamics of several key features of the baseline as well as the controlled flow. It was found that the thickness of the upstream boundary layer has a negligible effect on the flow dynamics. It is speculated that separation is caused mainly by the highly convex surface while viscous effects are less important. The two-dimensional separated flow contains unsteady waves centered on a reduced frequency of 0.8, while in the three dimensional separated flow, frequencies around a reduced frequency of 0.3 and 1 are active. Several scenarios of resonant wave interaction take place at the separated shear-layer and in the pressure recovery region. The unstable reduced frequency bands for periodic excitation are centered on 1.5 and 5, but these reduced frequencies are based on the length of the baseline bubble that shortens due to the excitation. The conventional swept wing-scaling works well for the coherent wave features. Reproduction of these dynamic effects by a numerical simulation would provide benchmark validation.

  17. Active shape control of composite structures under thermal loading

    NASA Astrophysics Data System (ADS)

    Binette, P.; Dano, M.-L.; Gendron, G.

    2009-02-01

    Maintaining the shape of high-precision structures such as space antennas and optical mirrors is still a challenging issue for designers. These structures are subjected to varying temperature conditions which often introduce thermal distortions. The development of smart materials offers great potential to correct the shape and to minimize the surface error. In this study, shape control of a composite structure under thermal loading using piezocomposites is investigated. The composite structure is made of a foam core and two carbon-epoxy face sheets. Macro-fiber composite (MFC™) patches are bonded on one side of the structure. The structure is subjected to a through-the-thickness temperature gradient which induces thermal distortion, essentially in the form of bending. The objective is to apply electric potential to the MFC™ actuators such that the deflection can be minimized. Finite-element analyses are conducted using the commercial software ABAQUS. Experiments are performed to study thermally induced distortion, piezoelectric actuation, and compensation of thermal distortion using MFC™ actuators. Numerical and experimental results are compared. A control loop based on strain measurements is used to actively control the structure. The results show that MFC™ actuators can compensate thermal distortion at all times, and that this is an efficient methodology.

  18. Tubular dielectric elastomer actuator for active fluidic control

    NASA Astrophysics Data System (ADS)

    McCoul, David; Pei, Qibing

    2015-10-01

    We report a novel low-profile, biomimetic dielectric elastomer tubular actuator capable of actively controlling hydraulic flow. The tubular actuator has been established as a reliable tunable valve, pinching a secondary silicone tube completely shut in the absence of a fluidic pressure bias or voltage, offering a high degree of resistance against fluidic flow, and able to open and completely remove this resistance to flow with an applied low power actuation voltage. The system demonstrates a rise in pressure of ∼3.0 kPa when the dielectric elastomer valve is in the passive, unactuated state, and there is a quadratic fall in this pressure with increasing actuation voltage, until ∼0 kPa is reached at 2.4 kV. The device is reliable for at least 2000 actuation cycles for voltages at or below 2.2 kV. Furthermore, modeling of the actuator and fluidic system yields results consistent with the observed experimental dependence of intrasystem pressure on input flow rate, actuator prestretch, and actuation voltage. To our knowledge, this is the first actuator of its type that can control fluid flow by directly actuating the walls of a tube. Potential applications may include an implantable artificial sphincter, part of a peristaltic pump, or a computerized valve for fluidic or pneumatic control.

  19. Vibration control of cylindrical shells using active constrained layer damping

    NASA Astrophysics Data System (ADS)

    Ray, Manas C.; Chen, Tung-Huei; Baz, Amr M.

    1997-05-01

    The fundamentals of controlling the structural vibration of cylindrical shells treated with active constrained layer damping (ACLD) treatments are presented. The effectiveness of the ACLD treatments in enhancing the damping characteristics of thin cylindrical shells is demonstrated theoretically and experimentally. A finite element model (FEM) is developed to describe the dynamic interaction between the shells and the ACLD treatments. The FEM is used to predict the natural frequencies and the modal loss factors of shells which are partially treated with patches of the ACLD treatments. The predictions of the FEM are validated experimentally using stainless steel cylinders which are 20.32 cm in diameter, 30.4 cm in length and 0.05 cm in thickness. The cylinders are treated with ACLD patches of different configurations in order to target single or multi-modes of lobar vibrations. The ACLD patches used are made of DYAD 606 visco-elastic layer which is sandwiched between two layers of PVDF piezo-electric films. Vibration attenuations of 85% are obtained with maximum control voltage of 40 volts. Such attenuations are attributed to the effectiveness of the ACLD treatment in increasing the modal damping ratios by about a factor of four over those of conventional passive constrained layer damping (PCLD) treatments. The obtained results suggest the potential of the ACLD treatments in controlling the vibration of cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles.

  20. Orthonormal filters for identification in active control systems

    NASA Astrophysics Data System (ADS)

    Mayer, Dirk

    2015-12-01

    Many active noise and vibration control systems require models of the control paths. When the controlled system changes slightly over time, adaptive digital filters for the identification of the models are useful. This paper aims at the investigation of a special class of adaptive digital filters: orthonormal filter banks possess the robust and simple adaptation of the widely applied finite impulse response (FIR) filters, but at a lower model order, which is important when considering implementation on embedded systems. However, the filter banks require prior knowledge about the resonance frequencies and damping of the structure. This knowledge can be supposed to be of limited precision, since in many practical systems, uncertainties in the structural parameters exist. In this work, a procedure using a number of training systems to find the fixed parameters for the filter banks is applied. The effect of uncertainties in the prior knowledge on the model error is examined both with a basic example and in an experiment. Furthermore, the possibilities to compensate for the imprecise prior knowledge by a higher filter order are investigated. Also comparisons with FIR filters are implemented in order to assess the possible advantages of the orthonormal filter banks. Numerical and experimental investigations show that significantly lower computational effort can be reached by the filter banks under certain conditions.

  1. Quelling Cabin Noise in Turboprop Aircraft via Active Control

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.; Laba, Keith E.; Padula, Sharon L.

    1997-01-01

    Cabin noise in turboprop aircraft causes passenger discomfort, airframe fatigue, and employee scheduling constraints due to OSHA standards for exposure to high levels of noise. The noise levels in the cabins of turboprop aircraft are typically 10 to 30 decibels louder than commercial jet noise levels. However. unlike jet noise the turboprop noise spectrum is dominated by a few low frequency tones. Active structural acoustic control is a method in which the control inputs (used to reduce interior noise) are applied directly to a vibrating structural acoustic system. The control concept modeled in this work is the application of in-plane force inputs to piezoceramic patches bonded to the wall of a vibrating cylinder. The goal is to determine the force inputs and locations for the piezoceramic actuators so that: (1) the interior noise is effectively damped; (2) the level of vibration of the cylinder shell is not increased; and (3) the power requirements needed to drive the actuators are not excessive. Computational experiments for data taken from a computer generated model and from a laboratory test article at NASA Langley Research Center are provided.

  2. Model-Based, Multiscale Self-Tuning Controller Developed for Active Combustion Control

    NASA Technical Reports Server (NTRS)

    Le, Dzu K.

    2005-01-01

    New challenges concerning system health-monitoring and life-extending robust controls for the Ultra-Efficient Engine Technology Project, as well as other advanced engine and power system concepts at NASA and elsewhere, have renewed the control community s interest in smart, model-based methods. In particular, these challenges have further motivated efforts at the NASA Glenn Research Center to exploit the versatility and superiority of the dynamic features extraction of multiscale analysis for controls--such as with "wavelets" and "wavelet filter-banks.' The accomplishments reported herein pertain to the active suppression of combustion instabilities in liquid-fuel combustors via fuel modulation. The fundamentals and initial success of this innovation were reported for a unique demonstration of active combustion control (a research collaboration of NASA Glenn with Pratt & Whitney and the United Technologies Research Center, UTRC). This demonstration, conducted in 2002 at UTRC on the NASA single nozzle rig (SNR) combustor, was the first known suppression of high-frequency instability with a liquid-fueled combustor. The SNR is based on a high-powered military engine combustor that exhibited well-known instabilities.

  3. Pyrimidinergic Receptor Activation Controls Toxoplasma gondii Infection in Macrophages

    PubMed Central

    Moreira-Souza, Aline Cristina Abreu; Marinho, Ygor; Correa, Gladys; Santoro, Giani França; Coutinho, Claudia Mara Lara Melo; Vommaro, Rossiane Claudia; Coutinho-Silva, Robson

    2015-01-01

    Infection by the protozoan parasite Toxoplasma gondii is highly prevalent worldwide and may have serious clinical manifestations in immunocompromised patients. T. gondii is an obligate intracellular parasite that infects almost any cell type in mammalian hosts, including immune cells. The immune cells express purinergic P2 receptors in their membrane – subdivided into P2Y and P2X subfamilies - whose activation is important for infection control. Here, we examined the effect of treatment with UTP and UDP in mouse peritoneal macrophages infected with T. gondii tachyzoites. Treatment with these nucleotides reduced parasitic load by 90%, but did not increase the levels of the inflammatory mediators NO and ROS, nor did it modulate host cell death by apoptosis or necrosis. On the other hand, UTP and UDP treatments induced early egress of tachyzoites from infected macrophages, in a Ca2+-dependent manner, as shown by scanning electron microscopy analysis, and videomicroscopy. In subsequent infections, prematurely egressed parasites had reduced infectivity, and could neither replicate nor inhibit the fusion of lysosomes to the parasitophorous vacuole. The use of selective agonists and antagonists of the receptor subtypes P2Y2 and P2Y4 and P2Y6 showed that premature parasite egress may be mediated by the activation of these receptor subtypes. Our results suggest that the activity of P2Y host cell receptors controls T. gondii infection in macrophages, highlighting the importance of pyrimidinergic signaling for innate immune system response against infection. Finally the P2Y receptors should be considered as new target for the development of drugs against T. gondii infection. PMID:26192447

  4. Photo-active collagen systems with controlled triple helix architecture

    PubMed Central

    Tronci, Giuseppe; Russell, Stephen J.; Wood, David J.

    2016-01-01

    The design of photo-active collagen systems is presented as a basis for establishing biomimetic materials with varied network architecture and programmable macroscopic properties. Following in-house isolation of type I collagen, reaction with vinyl-bearing compounds of varied backbone rigidity, i.e. 4-vinylbenzyl chloride (4VBC) and glycidyl methacrylate (GMA), was carried out. TNBS colorimetric assay, 1H-NMR and ATR-FTIR confirmed covalent and tunable functionalization of collagen lysines. Depending on the type and extent of functionalization, controlled stability and thermal denaturation of triple helices were observed via circular dichroism (CD), whereby the hydrogen-bonding capability of introduced moieties was shown to play a major role. Full gel formation was observed following photo-activation of functionalized collagen solutions. The presence of a covalent network only slightly affected collagen triple helix conformation (as observed by WAXS and ATR-FTIR), confirming the structural organization of functionalized collagen precursors. Photo-activated hydrogels demonstrated an increased denaturation temperature (DSC) with respect to native collagen, suggesting that the formation of the covalent network successfully stabilized collagen triple helices. Moreover, biocompatibility and mechanical competence of obtained hydrogels were successfully demonstrated under physiologically-relevant conditions. These results demonstrate that this novel synthetic approach enabled the formation of biocompatible collagen systems with defined network architecture and programmable macroscopic properties, which can only partially be obtained with current synthetic methods.

  5. Internal models for interpreting neural population activity during sensorimotor control

    PubMed Central

    Golub, Matthew D; Yu, Byron M; Chase, Steven M

    2015-01-01

    To successfully guide limb movements, the brain takes in sensory information about the limb, internally tracks the state of the limb, and produces appropriate motor commands. It is widely believed that this process uses an internal model, which describes our prior beliefs about how the limb responds to motor commands. Here, we leveraged a brain-machine interface (BMI) paradigm in rhesus monkeys and novel statistical analyses of neural population activity to gain insight into moment-by-moment internal model computations. We discovered that a mismatch between subjects’ internal models and the actual BMI explains roughly 65% of movement errors, as well as long-standing deficiencies in BMI speed control. We then used the internal models to characterize how the neural population activity changes during BMI learning. More broadly, this work provides an approach for interpreting neural population activity in the context of how prior beliefs guide the transformation of sensory input to motor output. DOI: http://dx.doi.org/10.7554/eLife.10015.001 PMID:26646183

  6. Activated carbon adsorbents from waste tires for air quality control

    SciTech Connect

    Lehmann, C.M.B.; Rostam-Abadi, M.; Rood, M.J.; Hsi, H.C.

    1999-07-01

    This study evaluates methodologies for utilizing waste tire rubber to produce carbonaceous adsorbents for use in air quality control operations. Such an approach provides a two-fold environmental and economic benefit. A recycling path is developed for waste tire rubber and new adsorbents are produced from a low cost feedstock for use in environmentally-related operations. Bench-scale and pilot-scale quantities of tire-derived activated carbon (TDAC) were produced from waste tire rubber. Raw tire rubber samples and devolatilized tire char were obtained from several US vendors. The raw samples were analyzed using proximate, ultimate, and elemental analyses. Batches of activated carbon samples were prepared using a bench-scale fixed-tubular reactor to prepare {approximately}10 g samples and a fluidized-bed reactor to prepare {approximately}100 g quantities. About 25 kg of activated carbon was also produced at a pilot-scale commercial facility. The resulting TDACs were then characterized by nitrogen adsorption at 77K. The sample surface areas were determined by the BET method, and the pore size distribution (PSD) was evaluated using the BJH model, and a 3-D PSD model. Performance of the TDACs was evaluated in their ability to remove gaseous mercury species from simulated power-plant flue-gas streams, and for the removal of organic compounds (e.g., acetone and 1,1,1-trichloroethane) from flowing gas streams.

  7. Developing an active artificial hair cell using nonlinear feedback control

    NASA Astrophysics Data System (ADS)

    Joyce, Bryan S.; Tarazaga, Pablo A.

    2015-09-01

    The hair cells in the mammalian cochlea convert sound-induced vibrations into electrical signals. These cells have inspired a variety of artificial hair cells (AHCs) to serve as biologically inspired sound, fluid flow, and acceleration sensors and could one day replace damaged hair cells in humans. Most of these AHCs rely on passive transduction of stimulus while it is known that the biological cochlea employs active processes to amplify sound-induced vibrations and improve sound detection. In this work, an active AHC mimics the active, nonlinear behavior of the cochlea. The AHC consists of a piezoelectric bimorph beam subjected to a base excitation. A feedback control law is used to reduce the linear damping of the beam and introduce a cubic damping term which gives the AHC the desired nonlinear behavior. Model and experimental results show the AHC amplifies the response due to small base accelerations, has a higher frequency sensitivity than the passive system, and exhibits a compressive nonlinearity like that of the mammalian cochlea. This bio-inspired accelerometer could lead to new sensors with lower thresholds of detection, improved frequency sensitivities, and wider dynamic ranges.

  8. Active Thermal Control Experiments for LISA Ground Verification Testing

    NASA Astrophysics Data System (ADS)

    Higuchi, Sei; DeBra, Daniel B.

    2006-11-01

    The primary mission goal of LISA is detecting gravitational waves. LISA uses laser metrology to measure the distance between proof masses in three identical spacecrafts. The total acceleration disturbance to each proof mass is required to be below 3 × 10-15 m/s2√Hz . Optical path length variations on each optical bench must be kept below 40 pm/√Hz over 1 Hz to 0.1 mHz. Thermal variations due to, for example, solar radiation or temperature gradients across the proof mass housing will distort the spacecraft causing changes in the mass attraction and sensor location. We have developed a thermal control system developed for the LISA gravitational reference sensor (GRS) ground verification testing which provides thermal stability better than 1 mK/√Hz to f < 1 mHz and which by extension is suitable for in-flight thermal control for the LISA spacecraft to compensate solar irradiation. Thermally stable environment is very demanded for LISA performance verification. In a lab environment specifications can be met with considerable amount of insulation and thermal mass. For spacecraft, the very limited thermal mass calls for an active control system which can meet disturbance rejection and stability requirements simultaneously in the presence of long time delay. A simple proportional plus integral control law presently provides approximately 1 mK/√Hz of thermal stability for over 80 hours. Continuing development of a model predictive feed-forward algorithm will extend performance to below 1 mK/√Hz at f < 1 mHz and lower.

  9. Tutorial of Wind Turbine Control for Supporting Grid Frequency through Active Power Control: Preprint

    SciTech Connect

    Aho, J.; Buckspan, A.; Laks, J.; Fleming, P.; Jeong, Y.; Dunne, F.; Churchfield, M.; Pao, L.; Johnson, K.

    2012-03-01

    As wind energy becomes a larger portion of the world's energy portfolio and wind turbines become larger and more expensive, wind turbine control systems play an ever more prominent role in the design and deployment of wind turbines. The goals of traditional wind turbine control systems are maximizing energy production while protecting the wind turbine components. As more wind generation is installed there is an increasing interest in wind turbines actively controlling their power output in order to meet power setpoints and to participate in frequency regulation for the utility grid. This capability will be beneficial for grid operators, as it seems possible that wind turbines can be more effective at providing some of these services than traditional power plants. Furthermore, establishing an ancillary market for such regulation can be beneficial for wind plant owner/operators and manufacturers that provide such services. In this tutorial paper we provide an overview of basic wind turbine control systems and highlight recent industry trends and research in wind turbine control systems for grid integration and frequency stability.

  10. Oscillatory brain activity during multisensory attention reflects activation, disinhibition, and cognitive control

    PubMed Central

    Friese, Uwe; Daume, Jonathan; Göschl, Florian; König, Peter; Wang, Peng; Engel, Andreas K.

    2016-01-01

    In this study, we used a novel multisensory attention paradigm to investigate attention-modulated cortical oscillations over a wide range of frequencies using magnetencephalography in healthy human participants. By employing a task that required the evaluation of the congruence of audio-visual stimuli, we promoted the formation of widespread cortical networks including early sensory cortices as well as regions associated with cognitive control. We found that attention led to increased high-frequency gamma-band activity and decreased lower frequency theta-, alpha-, and beta-band activity in early sensory cortex areas. Moreover, alpha-band coherence decreased in visual cortex. Frontal cortex was found to exert attentional control through increased low-frequency phase synchronisation. Crossmodal congruence modulated beta-band coherence in mid-cingulate and superior temporal cortex. Together, these results offer an integrative view on the concurrence of oscillations at different frequencies during multisensory attention. PMID:27604647

  11. Oscillatory brain activity during multisensory attention reflects activation, disinhibition, and cognitive control.

    PubMed

    Friese, Uwe; Daume, Jonathan; Göschl, Florian; König, Peter; Wang, Peng; Engel, Andreas K

    2016-01-01

    In this study, we used a novel multisensory attention paradigm to investigate attention-modulated cortical oscillations over a wide range of frequencies using magnetencephalography in healthy human participants. By employing a task that required the evaluation of the congruence of audio-visual stimuli, we promoted the formation of widespread cortical networks including early sensory cortices as well as regions associated with cognitive control. We found that attention led to increased high-frequency gamma-band activity and decreased lower frequency theta-, alpha-, and beta-band activity in early sensory cortex areas. Moreover, alpha-band coherence decreased in visual cortex. Frontal cortex was found to exert attentional control through increased low-frequency phase synchronisation. Crossmodal congruence modulated beta-band coherence in mid-cingulate and superior temporal cortex. Together, these results offer an integrative view on the concurrence of oscillations at different frequencies during multisensory attention. PMID:27604647

  12. Optical Control of Living Cells Electrical Activity by Conjugated Polymers.

    PubMed

    Martino, Nicola; Bossio, Caterina; Vaquero Morata, Susana; Lanzani, Guglielmo; Antognazza, Maria Rosa

    2016-01-01

    Hybrid interfaces between organic semiconductors and living tissues represent a new tool for in-vitro and in-vivo applications. In particular, conjugated polymers display several optimal properties as substrates for biological systems, such as good biocompatibility, excellent mechanical properties, cheap and easy processing technology, and possibility of deposition on light, thin and flexible substrates. These materials have been employed for cellular interfaces like neural probes, transistors for excitation and recording of neural activity, biosensors and actuators for drug release. Recent experiments have also demonstrated the possibility to use conjugated polymers for all-optical modulation of the electrical activity of cells. Several in-vitro study cases have been reported, including primary neuronal networks, astrocytes and secondary line cells. Moreover, signal photo-transduction mediated by organic polymers has been shown to restore light sensitivity in degenerated retinas, suggesting that these devices may be used for artificial retinal prosthesis in the future. All in all, light sensitive conjugated polymers represent a new approach for optical modulation of cellular activity. In this work, all the steps required to fabricate a bio-polymer interface for optical excitation of living cells are described. The function of the active interface is to transduce the light stimulus into a modulation of the cell membrane potential. As a study case, useful for in-vitro studies, a polythiophene thin film is used as the functional, light absorbing layer, and Human Embryonic Kidney (HEK-293) cells are employed as the biological component of the interface. Practical examples of successful control of the cell membrane potential upon stimulation with light pulses of different duration are provided. In particular, it is shown that both depolarizing and hyperpolarizing effects on the cell membrane can be achieved depending on the duration of the light stimulus. The reported

  13. A multi-harmonic amplitude and relative-phase controller for active sound quality control

    NASA Astrophysics Data System (ADS)

    Mosquera-Sánchez, Jaime A.; de Oliveira, Leopoldo P. R.

    2014-04-01

    Current active sound quality control systems aim at dealing with the amplitude level of the primary disturbance, e.g. sound pressure, forces, velocities and/or accelerations, which implicitly leads to Loudness control, regardless of the spectral structure of the disturbance. As far as multi-harmonic disturbances are concerned, auditory Roughness, arguably the most related psychoacoustic metric with rumbling perception in passenger cars, can be tackled not merely by dealing with magnitudes but also with the relative-phase of the narrowband components. This paper presents an adaptive control scheme conceived for dealing with multi-harmonic disturbances, which features the independent amplitude and/or relative-phase control of the input periodic components and an improved robustness to impulsive events. The adaptive control scheme is based on a frequency-domain delayless implementation of the complex-domain, least mean squares algorithm, whereof its convergence process is improved by using a forgetting factor. The control capabilities are evaluated numerically for single- and multiple-harmonic disturbances, including realistic internal combustion engine sound contaminated with noise and by impulsive events. By using long transfer paths obtained from a real vehicle mock-up, sound pressure level reductions of 39 dBSPL and the ability to displacing the relative-phase of a number of narrowband components between [-π,π] are accomplished by the proposed control scheme. The assessment of the results by using Zwicker-Loudness and auditory Roughness models shows that the proposed adaptive algorithm is able to accomplish and stably preserve various sound quality targets, after completion of the robust convergence procedure, regardless of impulsive events that can occur during the system operation.

  14. Mission Operations Control Room Activities during STS-2 mission

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mission Operations Control Room (MOCR) activities during STS-2 mission. President Ronald Reagan and Dr. Christopher C. Kraft, Jr., look toward the orbiter spotter on the projection plotter at the front of the MOCR. Also present are Astronaut Daniel C. Brandenstein, seated left, and NASA Administrator James M. Beggs standing left of center. In the foreground, Dr. Hans Mark, Deputy NASA Administrator, briefs Michael Deaver, Special Assistant to President Reagan (39504); President Reagan speaks to the STS-2 crew during the second day of their mission. On hand in MOCR were NASA Administrator James M. Beggs and Deputy Administrator Hans Mark (standing behind the president but mostly out of frame) and Dr. Kraft on the right. Eugene F. Kranz, Deputy Director of Flight Operations can be seen in the background seated at the Flight Operations Directorate (FOD) console. Also present is Astronaut Daniel C. Brandenstein, seated left, who turned the communications over to Mr. Reagan (39505).

  15. Optical Sensor/Actuator Locations for Active Structural Acoustic Control

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Palumbo, Daniel L.; Kincaid, Rex K.

    1998-01-01

    Researchers at NASA Langley Research Center have extensive experience using active structural acoustic control (ASAC) for aircraft interior noise reduction. One aspect of ASAC involves the selection of optimum locations for microphone sensors and force actuators. This paper explains the importance of sensor/actuator selection, reviews optimization techniques, and summarizes experimental and numerical results. Three combinatorial optimization problems are described. Two involve the determination of the number and position of piezoelectric actuators, and the other involves the determination of the number and location of the sensors. For each case, a solution method is suggested, and typical results are examined. The first case, a simplified problem with simulated data, is used to illustrate the method. The second and third cases are more representative of the potential of the method and use measured data. The three case studies and laboratory test results establish the usefulness of the numerical methods.

  16. Active control technique of fractional-order chaotic complex systems

    NASA Astrophysics Data System (ADS)

    Mahmoud, Gamal M.; Ahmed, Mansour E.; Abed-Elhameed, Tarek M.

    2016-06-01

    Several kinds of synchronization of fractional-order chaotic complex systems are challenging research topics of current interest since they appear in many applications in applied sciences. Our main goal in this paper is to introduce the definition of modified projective combination-combination synchronization (MPCCS) of some fractional-order chaotic complex systems. We show that our systems are chaotic by calculating their Lyapunov exponents. The fractional Lyapunov dimension of the chaotic solutions of these systems is computed. A scheme is introduced to calculate MPCCS of four different (or identical) chaotic complex systems using the active control technique. Special cases of this type, which are projective and anti C-C synchronization, are discussed. Some figures are plotted to show that MPCCS is achieved and its errors approach zero.

  17. Actively controlling coolant-cooled cold plate configuration

    SciTech Connect

    Chainer, Timothy J.; Parida, Pritish R.

    2015-07-28

    A method is provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The method includes: monitoring a variable associated with at least one of the coolant-cooled cold plate or one or more electronic components being cooled by the cold plate; and dynamically varying, based on the monitored variable, a physical configuration of the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the one or more electronic components, and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the coolant-cooled cold plate, the positioning of which may be adjusted based on the monitored variable.

  18. Active vibration control of structures undergoing bending vibrations

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor)

    1995-01-01

    An active vibration control subassembly for a structure (such as a jet engine duct or a washing machine panel) undergoing bending vibrations caused by a source (such as the clothes agitator of the washing machine) independent of the subassembly. A piezoceramic actuator plate is vibratable by an applied electric AC signal. The plate is connected to the structure such that vibrations in the plate induced by the AC signal cause canceling bending vibrations in the structure and such that the plate is compressively pre-stressed along the structure when the structure is free of any bending vibrations. The compressive prestressing increases the amplitude of the canceling bending vibrations before the critical tensile stress level of the plate is reached. Preferably, a positive electric DC bias is also applied to the plate in its poling direction.

  19. Active terahertz device based on optically controlled organometal halide perovskite

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Lv, Longfeng; He, Ting; Chen, Tianji; Zang, Mengdi; Zhong, Liang; Wang, Xinke; Shen, Jingling; Hou, Yanbing

    2015-08-01

    An active all-optical high-efficiency broadband terahertz device based on an organometal halide perovskite (CH3NH3PbI3, MAPbI3)/inorganic (Si) structure is investigated. Spectrally broadband modulation of the THz transmission is obtained in the frequency range from 0.2 to 2.6 THz, and a modulation depth of nearly 100% can be achieved with a low-level photoexcitation power (˜0.4 W/cm2). Both THz transmission and reflection were suppressed in the MAPbI3/Si structure by an external continuous-wave (CW) laser. Enhancement of the charge carrier density at the MAPbI3/Si interface is crucial for photo-induced absorption. The results show that the proposed high-efficiency broadband optically controlled terahertz device based on the MAPbI3/Si structure has been realized.

  20. Hollow cathode plasma source for active spacecraft charge control

    NASA Technical Reports Server (NTRS)

    Deininger, William D.; Aston, Graeme; Pless, Lewis C.

    1987-01-01

    A prototype plasma source spacecraft discharge device has been developed to control overall and differential spacecraft surface charging. The plasma source is based on a unique hollow cathode discharge, where the plasma generation process is contained completely within the cathode. This device can be operated on argon, krypton, or xenon and has a rapid cold start time of less than 4 s. The discharge system design includes a spacecraft-discharge/net-charge sensing circuit which provides the ability to measure the polarity, magnitude, pulse shape, and time duration of a discharging event. Ion currents of up to 325 microA and electron currents ranging from 0.02 to 6.0 A have been extracted from the device. In addition, the spacecraft discharge device successfully discharged capacitively biased plates, from as high as + or - 2500 V, to ground potential, and discharged and clamped actively biased plates at +5 V with respect to ground potential during ground simulation testing.

  1. Active Control of High-Frequency Combustor Instability Demonstrated

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Chang, Clarence T.

    2003-01-01

    To reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities-high-pressure oscillations much like sound waves that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the combustor and turbine safe operating life. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Propulsion and Power Program, the NASA Glenn Research Center in partnership with Pratt & Whitney, United Technologies Research Center, and Georgia Institute of Technology is developing technologies for the active control of combustion instabilities.

  2. Modelling of piezoelectric actuator dynamics for active structural control

    NASA Technical Reports Server (NTRS)

    Hagood, Nesbitt W.; Chung, Walter H.; Von Flotow, Andreas

    1990-01-01

    The paper models the effects of dynamic coupling between a structure and an electrical network through the piezoelectric effect. The coupled equations of motion of an arbitrary elastic structure with piezoelectric elements and passive electronics are derived. State space models are developed for three important cases: direct voltage driven electrodes, direct charge driven electrodes, and an indirect drive case where the piezoelectric electrodes are connected to an arbitrary electrical circuit with embedded voltage and current sources. The equations are applied to the case of a cantilevered beam with surface mounted piezoceramics and indirect voltage and current drive. The theoretical derivations are validated experimentally on an actively controlled cantilevered beam test article with indirect voltage drive.

  3. Photoperiodic control of circadian activity rhythms in diurnal rodents

    NASA Astrophysics Data System (ADS)

    Kramm, K. R.; Kramm, Deborah A.

    1980-03-01

    The responses of red squirrels (Tamiasciurus hudsonicus) and eastern chipmunks (Tamias striatus) to complete and skeleton light-dark (LD) cycles were compared. The skeletons, comprised of two 1-h pulses of light per day, effectively simulated the complete photoperiods in the squirrels, but not the chipmunks. Skeleton photoperiods greater than 12-h caused the chipmunks to shift activity from the longer to the shorter of the two intervals between the pulses. To interpret the mechanism of phase control, squirrels and chipmunks were kept in continuous darkness and exposed to 1-h light pulses every 10 days. The time-course of entrainment was also quantified. Both techniques produced light-response curves. The data suggest that the parametric and non-parametric contributions to entrainment are different in these two rodent species.

  4. Notch1 regulated autophagy controls survival and suppressor activity of activated murine T-regulatory cells

    PubMed Central

    Marcel, Nimi; Sarin, Apurva

    2016-01-01

    Cell survival is one of several processes regulated by the Notch pathway in mammalian cells. Here we report functional outcomes of non-nuclear Notch signaling to activate autophagy, a conserved cellular response to nutrient stress, regulating survival in murine natural T-regulatory cells (Tregs), an immune subset controlling tolerance and inflammation. Induction of autophagy required ligand-dependent, Notch intracellular domain (NIC) activity, which controlled mitochondrial organization and survival of activated Tregs. Consistently, NIC immune-precipitated Beclin and Atg14, constituents of the autophagy initiation complex. Further, ectopic expression of an effector of autophagy (Atg3) or recombinant NIC tagged to a nuclear export signal (NIC-NES), restored autophagy and suppressor function in Notch1-/- Tregs. Furthermore, Notch1 deficiency in the Treg lineage resulted in immune hyperactivity, implicating Notch activity in Treg homeostasis. Notch1 integration with autophagy, revealed in these experiments, holds implications for Notch regulated cell-fate decisions governing differentiation. DOI: http://dx.doi.org/10.7554/eLife.14023.001 PMID:27267497

  5. Telemanipulation - a special activity in remotely controlled operations

    SciTech Connect

    Rose, K.W. ); Andre, Y. )

    1992-01-01

    Work to be done in areas hostile to humans needs special and careful preparation. If short-term entry is possible, groups of men can be trained to do the necessary work. If not, special devices have to be designed, built, and tested on mockups before the real work can be executed. Based on experience gained from maintenance in car production and test programs for a reprocessing facility, it was decided to train a special group of men to do remotely controlled work in hostile areas without endangering them and to use their personal experience as the basis for future work. This is the old-fashioned way of all professions. Some needs to be able to do that remotely controlled work with normally existing operational means and combinations of them like cranes, mechanical and electromechanical master slave manipulators (MMSMs and EMSMs), saws, files, hammer, tig-welding equipment, etc., in air as well as underwater. This paper discusses use of a remote operator manipulator (ROM), remote operator welder (ROW), a test of underwater work, and the repair of two activated jets pumps of a boiling water reactor BWR with a fueling machine, reactor crane, EMSM, and conventional tools.

  6. Predictive active disturbance rejection control for processes with time delay.

    PubMed

    Zheng, Qinling; Gao, Zhiqiang

    2014-07-01

    Active disturbance rejection control (ADRC) has been shown to be an effective tool in dealing with real world problems of dynamic uncertainties, disturbances, nonlinearities, etc. This paper addresses its existing limitations with plants that have a large transport delay. In particular, to overcome the delay, the extended state observer (ESO) in ADRC is modified to form a predictive ADRC, leading to significant improvements in the transient response and stability characteristics, as shown in extensive simulation studies and hardware-in-the-loop tests, as well as in the frequency response analysis. In this research, it is assumed that the amount of delay is approximately known, as is the approximated model of the plant. Even with such uncharacteristic assumptions for ADRC, the proposed method still exhibits significant improvements in both performance and robustness over the existing methods such as the dead-time compensator based on disturbance observer and the Filtered Smith Predictor, in the context of some well-known problems of chemical reactor and boiler control problems. PMID:24182516

  7. The virtual microphone technique in active sound field control systems

    NASA Astrophysics Data System (ADS)

    Lampropoulos, Iraklis E.; Shimizu, Yasushi

    2003-04-01

    Active Sound Field Control (AFC) has been proven very useful in reverberation enhancement applications in large rooms. However, feedback control is required in order to eliminate peaks in the frequency response of the system. The present research closely follows the studies of Shimizu in AFC, in which smoothing of the rooms transfer function is achieved by averaging the impulse responses of multiple microphones. ``The virtual or rotating microphone technique'' reduces the number of microphones in the aforementioned AFC technology, while still achieving the same acoustical effects in the room. After the impulse responses at previously specified pairs of microphone positions are measured, the ratio of transfer functions for every pair is calculated, thus yielding a constant K. Next, microphones are removed and their impulse responses are reproduced by processing the incoming signal of each pair through a convolver, where the computed K constants have been previously stored. Band limiting, windowing and time variance effects are critical factors, in order to reduce incoherence effects and yield reliable approximations of inverse filters and consequently calculations of K. The project is implemented in a church lacking low frequency reverberation for music and makes use of 2 physical and 2 virtual microphones.

  8. Cost of Dengue Vector Control Activities in Malaysia

    PubMed Central

    Packierisamy, P. Raviwharmman; Ng, Chiu-Wan; Dahlui, Maznah; Inbaraj, Jonathan; Balan, Venugopalan K.; Halasa, Yara A.; Shepard, Donald S.

    2015-01-01

    Dengue fever, an arbovirus disease transmitted by Aedes mosquitoes, has recently spread rapidly, especially in the tropical countries of the Americas and Asia-Pacific regions. It is endemic in Malaysia, with an annual average of 37,937 reported dengue cases from 2007 to 2012. This study measured the overall economic impact of dengue in Malaysia, and estimated the costs of dengue prevention. In 2010, Malaysia spent US$73.5 million or 0.03% of the country's GDP on its National Dengue Vector Control Program. This spending represented US$1,591 per reported dengue case and US$2.68 per capita population. Most (92.2%) of this spending occurred in districts, primarily for fogging. A previous paper estimated the annual cost of dengue illness in the country at US$102.2 million. Thus, the inclusion of preventive activities increases the substantial estimated cost of dengue to US$175.7 million, or 72% above illness costs alone. If innovative technologies for dengue vector control prove efficacious, and a dengue vaccine was introduced, substantial existing spending could be rechanneled to fund them. PMID:26416116

  9. Active vibration control for high speed train bogies

    NASA Astrophysics Data System (ADS)

    Peiffer, Alexander; Storm, Stefan; Röder, Arno; Maier, Rudolf; Frank, Paul-Gerhard

    2005-02-01

    This report deals with the design of an active vibration control (AVC) system integrated into the primary suspension of the bogie of a German high-speed train (ICE). As a design case a prototype bogie (WU92) for the ICE2 was taken. This paper comprises all parts and stages of the development of an AVC system. First, a transfer path analysis was performed in order to identify the main paths of propagation and to determine the boundary conditions at the actuator contact points. A detailed FE-analysis performed on the basis of an already existing FE-model serves as a support to investigate the actuator performance and evaluate several actuator concepts. However, the evaluation of a multifold of varying configurations of actuator, error sensor and monitor sensor positions is obviously not possible in the experiment, but is in the simulation. Based on the simulations and the experiments the control system is implemented on a digital signal processor (DSP) system. The structure borne noise level was determined during running tests at the ICE3 and measurements at the WU92 installed in the test rig. The design of the actuator system includes the layout of the specific system as well as the selection of the piezoelectric elements. A specifically developed amplifier drives the actuators. Finally the system is integrated into one axle of the WU92 and tested during roller-rig measurements.

  10. Active control of acoustic pressure fields using smart material technologies

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Smith, R. C.

    1993-01-01

    An overview describing the use of piezoceramic patches in reducing noise in a structural acoustics setting is presented. The passive and active contributions due to patches which are bonded to an Euler-Bernoulli beam or thin shell are briefly discussed and the results are incorporated into a 2-D structural acoustics model. In this model, an exterior noise source causes structural vibrations which in turn lead to interior noise as a result of nonlinear fluid/structure coupling mechanism. Interior sound pressure levels are reduced via patches bonded to the flexible boundary (a beam in this case) which generate pure bending moments when an out-of-phase voltage is applied. Well-posedness results for the infinite dimensional system are discussed and a Galerkin scheme for approximating the system dynamics is outlined. Control is implemented by using linear quadratic regulator (LQR) optimal control theory to calculate gains for the linearized system and then feeding these gains back into the nonlinear system of interest. The effectiveness of this strategy for this problem is illustrated in an example.

  11. Cooperative wireless network control based health and activity monitoring system.

    PubMed

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication. PMID:27562484

  12. Cost of Dengue Vector Control Activities in Malaysia.

    PubMed

    Packierisamy, P Raviwharmman; Ng, Chiu-Wan; Dahlui, Maznah; Inbaraj, Jonathan; Balan, Venugopalan K; Halasa, Yara A; Shepard, Donald S

    2015-11-01

    Dengue fever, an arbovirus disease transmitted by Aedes mosquitoes, has recently spread rapidly, especially in the tropical countries of the Americas and Asia-Pacific regions. It is endemic in Malaysia, with an annual average of 37,937 reported dengue cases from 2007 to 2012. This study measured the overall economic impact of dengue in Malaysia, and estimated the costs of dengue prevention. In 2010, Malaysia spent US$73.5 million or 0.03% of the country's GDP on its National Dengue Vector Control Program. This spending represented US$1,591 per reported dengue case and US$2.68 per capita population. Most (92.2%) of this spending occurred in districts, primarily for fogging. A previous paper estimated the annual cost of dengue illness in the country at US$102.2 million. Thus, the inclusion of preventive activities increases the substantial estimated cost of dengue to US$175.7 million, or 72% above illness costs alone. If innovative technologies for dengue vector control prove efficacious, and a dengue vaccine was introduced, substantial existing spending could be rechanneled to fund them. PMID:26416116

  13. Double-well dynamics of noise-driven control activation in human intermittent control: the case of stick balancing.

    PubMed

    Zgonnikov, Arkady; Lubashevsky, Ihor

    2015-11-01

    When facing a task of balancing a dynamic system near an unstable equilibrium, humans often adopt intermittent control strategy: Instead of continuously controlling the system, they repeatedly switch the control on and off. Paradigmatic example of such a task is stick balancing. Despite the simplicity of the task itself, the complexity of human intermittent control dynamics in stick balancing still puzzles researchers in motor control. Here we attempt to model one of the key mechanisms of human intermittent control, control activation, using as an example the task of overdamped stick balancing. In doing so, we focus on the concept of noise-driven activation, a more general alternative to the conventional threshold-driven activation. We describe control activation as a random walk in an energy potential, which changes in response to the state of the controlled system. By way of numerical simulations, we show that the developed model captures the core properties of human control activation observed previously in the experiments on overdamped stick balancing. Our results demonstrate that the double-well potential model provides tractable mathematical description of human control activation at least in the considered task and suggest that the adopted approach can potentially aid in understanding human intermittent control in more complex processes. PMID:25925132

  14. Polymeric surfaces exhibiting photocatalytic activity and controlled anisotropic wettability

    NASA Astrophysics Data System (ADS)

    Anastasiadis, Spiros H.; Frysali, Melani A.; Papoutsakis, Lampros; Kenanakis, George; Stratakis, Emmanuel; Vamvakaki, Maria; Mountrichas, Grigoris; Pispas, Stergios

    2015-03-01

    In this work we focus on surfaces, which exhibit controlled, switchable wettability in response to one or more external stimuli as well as photocatalytic activity. For this we are inspired from nature to produce surfaces with a dual-scale hierarchical roughness and combine them with the appropriate inorganic and/or polymer coating. The combination of the hierarchical surface with a ZnO coating and a pH- or temperature-responsive polymer results in efficient photo-active properties as well as reversible superhydrophobic / superhydrophilic surfaces. Furthermore, we fabricate surfaces with unidirectional wettability variation. Overall, such complex surfaces require advanced design, combining hierarchically structured surfaces with suitable polymeric materials. Acknowledgment: This research was partially supported by the European Union (European Social Fund, ESF) and Greek national funds through the ``ARISTEIA II'' Action (SMART-SURF) of the Operational Programme ``Education and Lifelong Learning,'' NSRF 2007-2013, via the General Secretariat for Research & Technology, Ministry of Education and Religious Affairs, Greece.

  15. Local modulation of steroid action: rapid control of enzymatic activity

    PubMed Central

    Charlier, Thierry D.; Cornil, Charlotte A.; Patte-Mensah, Christine; Meyer, Laurence; Mensah-Nyagan, A. Guy; Balthazart, Jacques

    2015-01-01

    Estrogens can induce rapid, short-lived physiological and behavioral responses, in addition to their slow, but long-term, effects at the transcriptional level. To be functionally relevant, these effects should be associated with rapid modulations of estrogens concentrations. 17β-estradiol is synthesized by the enzyme aromatase, using testosterone as a substrate, but can also be degraded into catechol-estrogens via hydroxylation by the same enzyme, leading to an increase or decrease in estrogens concentration, respectively. The first evidence that aromatase activity (AA) can be rapidly modulated came from experiments performed in Japanese quail hypothalamus homogenates. This rapid modulation is triggered by calcium-dependent phosphorylations and was confirmed in other tissues and species. The mechanisms controlling the phosphorylation status, the targeted amino acid residues and the reversibility seem to vary depending of the tissues and is discussed in this review. We currently do not know whether the phosphorylation of the same amino acid affects both aromatase and/or hydroxylase activities or whether these residues are different. These processes provide a new general mechanism by which local estrogen concentration can be rapidly altered in the brain and other tissues. PMID:25852459

  16. Robust Diffeomorphic Mapping via Geodesically Controlled Active Shapes

    PubMed Central

    Tward, Daniel J.; Ma, Jun; Miller, Michael I.; Younes, Laurent

    2013-01-01

    This paper presents recent advances in the use of diffeomorphic active shapes which incorporate the conservation laws of large deformation diffeomorphic metric mapping. The equations of evolution satisfying the conservation law are geodesics under the diffeomorphism metric and therefore termed geodesically controlled diffeomorphic active shapes (GDAS). Our principal application in this paper is on robust diffeomorphic mapping methods based on parameterized surface representations of subcortical template structures. Our parametrization of the GDAS evolution is via the initial momentum representation in the tangent space of the template surface. The dimension of this representation is constrained using principal component analysis generated from training samples. In this work, we seek to use template surfaces to generate segmentations of the hippocampus with three data attachment terms: surface matching, landmark matching, and inside-outside modeling from grayscale T1 MR imaging data. This is formulated as an energy minimization problem, where energy describes shape variability and data attachment accuracy, and we derive a variational solution. A gradient descent strategy is employed in the numerical optimization. For the landmark matching case, we demonstrate the robustness of this algorithm as applied to the workflow of a large neuroanatomical study by comparing to an existing diffeomorphic landmark matching algorithm. PMID:23690757

  17. Oceanic Control of Northeast Pacific Hurricane Activity at Interannual Timescales

    SciTech Connect

    Balaguru, Karthik; Leung, Lai-Yung R.; Yoon, Jin-Ho

    2013-10-16

    Despite the strong dependence of the Power Dissipation Index (PDI), which is a measure of the intensity of Tropical Cyclone (TC) activity, on tropical sea-surface temperatures (SSTs), the variations in PDI are not completely explained by SST. Here we show, using an analysis of a string of observational data sets, that the variability of the thermocline depth (TD) in the east Pacific exerts a significant degree of control on the variability of PDI in that region. On average, a deep thermocline with a larger reservoir of heat favors TC intensification by reducing SST cooling while a shallow thermocline with a smaller heat reservoir promotes enhanced SST cooling that contributes to TC decay. At interannual time scales, the variability of basin-mean TD accounts for nearly 30% of the variability in the PDI during the TC season. Also, about 20% of the interannual variability in the east Pacific basin-mean TD is due to the El Niño and the Southern Oscillation (ENSO), a dominant climate signal in this region. This study suggests that a better understanding of the factors governing the interannual variability of the TD conditions in the east Pacific and how they may change over time, may lead to an improved projection of future east Pacific TC activity.

  18. Evaluation of active thermal control options for Space Station

    NASA Technical Reports Server (NTRS)

    Schuster, J. R.; Gruszczynski, M. J.; Owen, J. W.

    1986-01-01

    An analysis of various Space Station (MSS) active thermal control systems options under consideration because of their potential low weight, efficiency and reliability is reported. The study addressed ordinary and diode-action body mounted radiators, thermal storage, the area and pumping power requirements for single-phase cooling of cold plates, and single-phase and two-phase active cooling loops. The base configuration considered was a core MSS formed by four habitable modules on which are mounted heat pipe radiators articulated to be always edge-on to the sun. A simulation was performed which accounted for the available heat sinks, several thermal loads and the heat rejection capability. No benefits were found with diode-action radiators if the solar absorption is 0.1 or less, although diode-action heat pipes will maintain a higher level of performance in the presence of coating degradation. Thermal storage becomes important only with radiator coating degradation. Water can be up to three times as efficient as Freon as a heat transfer medium. Finally, single-phase cooling offers a lower system mass than two-phase cooling if varying temperature heat loads can be accommodated.

  19. Optofluidics incorporating actively controlled micro- and nano-particles

    PubMed Central

    Kayani, Aminuddin A.; Khoshmanesh, Khashayar; Ward, Stephanie A.; Mitchell, Arnan; Kalantar-zadeh, Kourosh

    2012-01-01

    The advent of optofluidic systems incorporating suspended particles has resulted in the emergence of novel applications. Such systems operate based on the fact that suspended particles can be manipulated using well-appointed active forces, and their motions, locations and local concentrations can be controlled. These forces can be exerted on both individual and clusters of particles. Having the capability to manipulate suspended particles gives users the ability for tuning the physical and, to some extent, the chemical properties of the suspension media, which addresses the needs of various advanced optofluidic systems. Additionally, the incorporation of particles results in the realization of novel optofluidic solutions used for creating optical components and sensing platforms. In this review, we present different types of active forces that are used for particle manipulations and the resulting optofluidic systems incorporating them. These systems include optical components, optofluidic detection and analysis platforms, plasmonics and Raman systems, thermal and energy related systems, and platforms specifically incorporating biological particles. We conclude the review with a discussion of future perspectives, which are expected to further advance this rapidly growing field. PMID:23864925

  20. Combining Droop Curve Concepts with Control Systems for Wind Turbine Active Power Control: Preprint

    SciTech Connect

    Buckspan, A.; Aho, J.; Pao, L.; Fleming, P.; Jeong, Y.

    2012-06-01

    Wind energy is becoming a larger portion of the global energy portfolio and wind penetration has increased dramatically in certain regions of the world. This increasing wind penetration has driven the need for wind turbines to provide active power control (APC) services to the local utility grid, as wind turbines do not intrinsically provide frequency regulation services that are common with traditional generators. It is common for large scale wind turbines to be decoupled from the utility grid via power electronics, which allows the turbine to synthesize APC commands via control of the generator torque and blade pitch commands. Consequently, the APC services provided by a wind turbine can be more flexible than those provided by conventional generators. This paper focuses on the development and implementation of both static and dynamic droop curves to measure grid frequency and output delta power reference signals to a novel power set point tracking control system. The combined droop curve and power tracking controller is simulated and comparisons are made between simulations using various droop curve parameters and stochastic wind conditions. The tradeoffs involved with aggressive response to frequency events are analyzed. At the turbine level, simulations are performed to analyze induced structural loads. At the grid level, simulations test a wind plant's response to a dip in grid frequency.