Science.gov

Sample records for active microwave sensing

  1. Active microwave remote sensing of oceans, chapter 3

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A rationale is developed for the use of active microwave sensing in future aerospace applications programs for the remote sensing of the world's oceans, lakes, and polar regions. Summaries pertaining to applications, local phenomena, and large-scale phenomena are given along with a discussion of orbital errors.

  2. Active microwave remote sensing of earth/land, chapter 2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Geoscience applications of active microwave remote sensing systems are examined. Major application areas for the system include: (1) exploration of petroleum, mineral, and ground water resources, (2) mapping surface and structural features, (3) terrain analysis, both morphometric and genetic, (4) application in civil works, and (5) application in the areas of earthquake prediction and crustal movements. Although the success of radar surveys has not been widely publicized, they have been used as a prime reconnaissance data base for mineral exploration and land-use evaluation in areas where photography cannot be obtained.

  3. Analytical and Numerical Studies of Active and Passive Microwave Ocean Remote Sensing

    DTIC Science & Technology

    2001-09-30

    of both analytical and efficient numerical methods for electromagnetics and hydrodynamics. New insights regarding these phenomena can then be applied to improve microwave active and passive remote sensing of the ocean surface.

  4. Active-Passive Microwave Remote Sensing of Martian Permafrost and Subsurface Water

    NASA Technical Reports Server (NTRS)

    Raizer, V.; Linkin, V. M.; Ozorovich, Y. R.; Smythe, W. D.; Zoubkov, B.; Babkin, F.

    2000-01-01

    The investigation of permafrost formation global distribution and their appearance in h less than or equal 1 m thick subsurface layer would be investigated successfully by employment of active-passive microwave remote sensing techniques.

  5. Microwave remote sensing: Active and passive. Volume 3 - From theory to applications

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Moore, R. K.; Fung, A. K.

    1986-01-01

    Aspects of volume scattering and emission theory are discussed, taking into account a weakly scattering medium, the Born approximation, first-order renormalization, the radiative transfer method, and the matrix-doubling method. Other topics explored are related to scatterometers and probing systems, the passive microwave sensing of the atmosphere, the passive microwave sensing of the ocean, the passive microwave sensing of land, the active microwave sensing of land, and radar remote sensing applications. Attention is given to inversion techniques, atmospheric attenuation and emission, a temperature profile retrieval from ground-based observations, mapping rainfall rates, the apparent temperature of the sea, the emission behavior of bare soil surfaces, the emission behavior of vegetation canopies, the emission behavior of snow, wind-vector radar scatterometry, radar measurements of sea ice, and the back-scattering behavior of cultural vegetation canopies.

  6. Active/Passive Remote Sensing of the Ocean Surface at Microwave Frequencies

    DTIC Science & Technology

    1999-09-30

    This report summarizes research activities and results obtained under grant N000l4-99-1-0627 "Active/Passive Remote Sensing of the Ocean Surface at...Measurements were completed during April 1999 by the Microwave Remote Sensing Laboratory at the University of Massachusetts.

  7. Active microwaves

    NASA Technical Reports Server (NTRS)

    Evans, D.; Vidal-Madjar, D.

    1994-01-01

    Research on the use of active microwaves in remote sensing, presented during plenary and poster sessions, is summarized. The main highlights are: calibration techniques are well understood; innovative modeling approaches have been developed which increase active microwave applications (segmentation prior to model inversion, use of ERS-1 scatterometer, simulations); polarization angle and frequency diversity improves characterization of ice sheets, vegetation, and determination of soil moisture (X band sensor study); SAR (Synthetic Aperture Radar) interferometry potential is emerging; use of multiple sensors/extended spectral signatures is important (increase emphasis).

  8. Active Microwave Remote Sensing Observations of Weddell Sea Ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1997-01-01

    Since July 1991, the European Space Agency's ERS-1 and ERS-2 satellites have acquired radar data of the Weddell Sea, Antarctica. The Active Microwave Instrument on board ERS has two modes; SAR and Scatterometer. Two receiving stations enable direct downlink and recording of high bit-rate, high resolution SAR image data of this region. When not in an imaging mode, when direct SAR downlink is not possible, or when a receiving station is inoperable, the latter mode allows normalized radar cross-section data to be acquired. These low bit-rate ERS scatterometer data are tape recorded, downlinked and processed off-line. Recent advances in image generation from Scatterometer backscatter measurements enable complementary medium-scale resolution images to be made during periods when SAR images cannot be acquired. Together, these combined C-band microwave image data have for the first time enabled uninterrupted night and day coverage of the Weddell Sea region at both high (25 m) and medium-scale (-20 km) resolutions. C-band ERS-1 radar data are analyzed in conjunction with field data from two simultaneous field experiments in 1992. Satellite radar signature data are compared with shipborne radar data to extract a regional and seasonal signature database for recognition of ice types in the images. Performance of automated sea-ice tracking algorithms is tested on Antarctic data to evaluate their success. Examples demonstrate that both winter and summer ice can be effectively tracked. The kinematics of the main ice zones within the Weddell Sea are illustrated, together with the complementary time-dependencies in their radar signatures. Time-series of satellite images are used to illustrate the development of the Weddell Sea ice cover from its austral summer minimum (February) to its winter maximum (September). The combination of time-dependent microwave signatures and ice dynamics tracking enable various drift regimes to be defined which relate closely to the circulation of the

  9. Enhancement of remote sensing through microwave technology

    NASA Technical Reports Server (NTRS)

    Cehelsky, M.; Kiebler, J.

    1980-01-01

    This overview begins with a brief look at remote sensing to date, focusing on the state of the art and the benefits that have been derived from it. Current and future microwave sensing developments are discussed pointing out special advantages and capabilities and noting the anticipated benefits. The frequency requirements of microwave sensing are outlined and the particular need to both allocate, and when necessary, protect active and passive operational sensing frequencies is emphasized.

  10. ESA activities in the use of microwaves for the remote sensing of the Earth

    NASA Technical Reports Server (NTRS)

    Maccoll, D.

    1984-01-01

    The program of activities under way in the European Space Agency (ESA) directed towards Remote Sensing of the oceans and troposphere is discussed. The initial project is the launch of a satellite named ERS-1 with a primary payload of microwave values in theee C- and Ku-bands. This payload is discussed in depth. The secondary payload includes precision location experiments and an instrument to measure sea surface temperature, which are described. The important topic of calibration is extensively discussed, and a review of activities directed towards improvements to the instruments for future satellites is presented. Some discussion of the impact of the instrument payload on the spacecraft design follows and the commitment of ESA to the provision of a service of value to the ultimate user is emphasized.

  11. Wave Correlation Effects in Active Microwave Remote Sensing of the Environment.

    NASA Astrophysics Data System (ADS)

    Khadr, Nagi Mahmoud

    This study examines the wave correlation effects that arise in active microwave remote sensing of the environment. These correlation effects, or coherent interference effects, are not accounted for by the regular phenomenological transport and radar equations, in which intensities, as a rule, are added incoherently. In particular, two types of correlation effects are examined: those associated with the medium and those associated with the source. The study method is the analytical wave approach to propagation and scattering from random media. This entails using Maxwell's equations to arrive at expressions for the first and second moments of the field. Unlike previous studies, however, in which plane wave incidence is assumed, here the radar is directly incorporated into the analytical wave formulation, and the antenna fields replaced via their plane wave representations. In this way, analysis of both the medium and source correlation effects on a per plane wave basis becomes a straightforward matter. The medium correlation effects are responsible for backscatter enhancement. Although the enhancement effect has been studied before on numerous occasions, careful characterization of the enhancement for microwave scattering from environmental scenes, such as vegetation canopies, has been lacking. The study at hand therefore fills this void and, in addition, quantifies the influence of this enhancement on phase difference statistics, a new and potentially important environmental remote sensing tool. The source correlation effects arise as a result of both the nature of the source and the geometry of the particular problem. By including these effects, a more general expression than the radar equation is obtained analytically. Quantitative examples show that, under certain circumstances, the results of this general expression deviate substantially from the results provided by the radar equation. This finding verifies the importance of considering source correlation

  12. Microwave remote sensing laboratory design

    NASA Technical Reports Server (NTRS)

    Friedman, E.

    1979-01-01

    Application of active and passive microwave remote sensing to the study of ocean pollution is discussed. Previous research efforts, both in the field and in the laboratory were surveyed to derive guidance for the design of a laboratory program of research. The essential issues include: choice of radar or radiometry as the observational technique; choice of laboratory or field as the research site; choice of operating frequency; tank sizes and material; techniques for wave generation and appropriate wavelength spectrum; methods for controlling and disposing of pollutants used in the research; and pollutants other than oil which could or should be studied.

  13. Microwave remote sensing of hydrologic parameters

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.

    1977-01-01

    A perspective on the implementation of microwave sensors in future airborne and spaceborne observations of hydrologic parameters is presented. The rationale is based on a review of the status and future trends of active (radar) and passive (radiometer) microwave research as applied to the remote sensing of soil moisture content, snowpack water equivalent, freeze/thaw boundaries, lake ice thickness, surface water area, and the specification of watershed runoff coefficients. Analyses and observations based on data acquired from ground based, airborne and spaceborne platforms, and an evaluation of advantages and limitations of microwave sensors are included.

  14. Passive and Active Microwave Remote Sensing of Precipitation and Latent Heating Distributions in the Tropics from TRMM

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Haddad, Ziad S.; Tao, Wei-Kuo; Wang, Yansen; Lang, Stephen E.; Braun, Scott A.; Chiu, Christine; Wang, Jian-Jian

    2002-01-01

    Passive and active microwave remote sensing data are analyzed to identify signatures of precipitation and vertical motion in tropical convection. A database of cloud/radiative model simulations is used to quantify surface rain rates and latent heating profiles that are consistent with these signatures. At satellite footprint-scale (approximately 10 km), rain rate and latent heating estimates are subject to significant random errors, but by averaging the estimates in space and time, random errors are substantially reduced, Bias errors have been minimized by improving the microphysics in the supporting cloud/radiative model simulations, and by imposing a consistent definition of remotely-sensed and model-simulated convective/stratiform rain coverage. Remotely-sensed precipitation and latent heating distributions in the tropics are derived from Tropical Rainfall Measuring Mission (TRMM) and Special Sensor Microwave/ Imager (SSM/ I) sensor data. The prototype Version 6 TRMM passive microwave algorithm typically yields average heating profiles with maxima between 6 and 7 km altitude for organized mesoscale convective systems. Retrieved heating profiles for individual convective systems are compared to coincident estimates based upon a combination of dual-Doppler radar and rawinsonde data. Also, large-scale latent heating distributions are compared to estimates derived from a simpler technique that utilizes observations of surface rain rate and stratiform rain proportion to infer vertical heating structure. Results of these tests will be presented at the conference.

  15. Microwave backscattering theory and active remote sensing of the ocean surface

    NASA Technical Reports Server (NTRS)

    Brown, G. S.; Miller, L. S.

    1977-01-01

    The status is reviewed of electromagnetic scattering theory relative to the interpretation of microwave remote sensing data acquired from spaceborne platforms over the ocean surface. Particular emphasis is given to the assumptions which are either implicit or explicit in the theory. The multiple scale scattering theory developed during this investigation is extended to non-Gaussian surface statistics. It is shown that the important statistic for the case is the probability density function of the small scale heights conditioned on the large scale slopes; this dependence may explain the anisotropic scattering measurements recently obtained with the AAFE Radscat. It is noted that present surface measurements are inadequate to verify or reject the existing scattering theories. Surface measurements are recommended for qualifying sensor data from radar altimeters and scatterometers. Additional scattering investigations are suggested for imaging type radars employing synthetically generated apertures.

  16. Active and passvie microwave remote sensing of springtime near-surface soil that at mid-latitudes

    NASA Astrophysics Data System (ADS)

    Han, L.; Tsunekawa, A.; Tsubo, M.

    2010-12-01

    Springtime near-surface soil thaw event is important for understanding the near-surface earth system. Previous researches based on both active and passive microwave remote sensing technologies have paid scant attention, especially at mid-latitudes where the near-surface earth system has been changed substantially by climate change and human activities, and are characterized by more complex climate and land surface conditions than the permafrost areas. SSM/I brightness temperature and QuikSCAT Ku-band backscatter were applied in this study at a case study area of northern China and Mongolia in springtime. The soil freeze-thaw algorithm was employed for SSM/I data, and a random sampling technique was applied to determine the brightness temperature threshold for 37 GHz vertically polarized radiation: 258.2 and 260.1 K for the morning and evening satellite passes, respectively. A multi-step method was proposed for QuikSCAT Ku-band backscatter based on both field observed soil thaw events and the typical signature of radar backscatter time series when soil thaw event occurred. The method is mainly focuses on the estimated boundary of thaw events and detection of primary thaw date. Finally, based on those results, a theoretical method by applying both active and passive microwave remote sensing was proposed for understanding different types of frozen grounds and their specific characters (e.g. initial and end date of springtime soil freeze-thaw transition period) in mid-latitudes.

  17. Microwave remote sensing from space for earth resource surveys

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The concepts of radar remote sensing and microwave radiometry are discussed and their utility in earth resource sensing is examined. The direct relationship between the character of the remotely sensed data and the level of decision making for which the data are appropriate is considered. Applications of active and a passive microwave sensing covered include hydrology, land use, mapping, vegetation classification, environmental monitoring, coastal features and processes, geology, and ice and snow. Approved and proposed microwave sensors are described and the use of space shuttle as a development platform is evaluated.

  18. Simulation of Melting Ice-Phase Precipitation Hydrometeors for Use in Passive and Active Microwave Remote-Sensing Algorithms

    NASA Astrophysics Data System (ADS)

    Johnson, B. T.

    2014-12-01

    The Global Precipitation Measurement (GPM) mission, with active and passive microwave remote-sensing instruments, was designed to be sensitive to precipitation-sized particles. The shape of these particles naturally influences the distribution of scattered microwaves. Therefore, we seek to simulate ice-phase precipitation using accurate models of the physical properties of individual snowflakes and aggregate ice crystals, similar to those observed in precipitating clouds. A number of researchers have examined the single-scattering properties of individual ice crystals and aggregates, but only a few have started to look at the properties of melting these particles. One of the key difficulties, from a simulation perspective, is characterizing the distribution of melt-water on a melting particle. Previous studies by the author and others have shown that even for spherical particles, the relative distribution of liquid water on an ice-particle can have significant effects on the computed scattering and absorption properties in the microwave regime. This, in turn, strongly influences forward model simulations of passive microwave TBs, radar reflectivities, and path-integrated attenuation. The present study examines the sensitivity of the single scattering properties of melting ice-crystals and aggregates to variations in the volume fraction of melt water, and the distribution of meltwater. We make some simple simulations 1-D vertical profiles having melting layers, and compute the radar reflectivities consistent with the GPM DPR at Ku- and Ka-band. We also compute the top-of-the-atmosphere brightness temperatures at GPM GMI channels for the same vertical profiles, and discuss the sensitivities to variances in the aforementioned physical properties.

  19. Microwave remote sensing of snowpack properties

    NASA Technical Reports Server (NTRS)

    Rango, A. (Editor)

    1980-01-01

    Topic concerning remote sensing capabilities for providing reliable snow cover data and measurement of snow water equivalents are discussed. Specific remote sensing technqiues discussed include those in the microwave region of the electromagnetic spectrum.

  20. Soil Moisture Retrieval Through Changing Corn Using Active/Passive Microwave Remote Sensing

    NASA Technical Reports Server (NTRS)

    ONeill, P. E.; Joseph, A.; DeLannoy, G.; Lang, R.; Utku, C.; Kim, E.; Houser, P.; Gish, T.

    2003-01-01

    An extensive field experiment was conducted from May-early October, 2002 at the heavily instrumented USDA-ARS (U.S. Dept. of Agriculture-Agricultural Research Service) OPE3 (Optimizing Production Inputs for Economic and Environmental Enhancement) test site in Beltsville, MD to acquire data needed to address active/passive microwave algorithm, modeling, and ground validation issues for accurate soil moisture retrieval. During the experiment, a tower-mounted 1.4 GHz radiometer (Lrad) and a truck-mounted dual-frequency (1.6 and 4.75 GHz) radar system were deployed on the northern edge of the site. The soil in this portion of the field is a sandy loam (silt 23.5%, sand 60.3%, clay 16.1%) with a measured bulk density of 1.253 g/cu cm. Vegetation cover in the experiment consisted of a corn crop which was measured from just after planting on April 17, 2002 through senescence and harvesting on October 2. Although drought conditions prevailed during the summer, the corn yield was near average, with peak biomass reached in late July.

  1. Microwave remote sensing of snowpacks

    NASA Technical Reports Server (NTRS)

    Stiles, W. H.; Ulaby, F. T.

    1980-01-01

    The interaction mechanisms responsible for the microwave backscattering and emission behavior of snow were investigated, and models were developed relating the backscattering coefficient (sigma) and apparent temperature (T) to the physical parameters of the snowpack. The microwave responses to snow wetness, snow water equivalent, snow surface roughness, and to diurnal variations were investigated. Snow wetness was shown to have an increasing effect with increasing frequency and angle of incidence for both active and passive cases. Increasing snow wetness was observed to decrease the magnitude sigma and increase T. Snow water equivalent was also observed to exhibit a significant influence sigma and T. Snow surface configuration (roughness) was observed to be significant only for wet snow surface conditions. Diurnal variations were as large as 15 dB for sigma at 35 GHz and 120 K for T at 37 GHz. Simple models for sigma and T of a snowpack scene were developed in terms of the most significant ground-truth parameters. The coefficients for these models were then evaluated; the fits to the sigma and T measurements were generally good. Finally, areas of needed additional observations were outlined and experiments were specified to further the understanding of the microwave-snowpack interaction mechanisms.

  2. Microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Shiue, J. C.; Wang, J. R.

    1988-01-01

    Knowledge of soil moisture is important to many disciplines, such as agriculture, hydrology, and meteorology. Soil moisture distribution of vast regions can be measured efficiently only with remote sensing techniques from airborne or satellite platforms. At low microwave frequencies, water has a much larger dielectric constant than dry soil. This difference manifests itself in surface emissivity (or reflectivity) change between dry and wet soils, and can be measured by a microwave radiometer or radar. The Microwave Sensors and Data Communications Branch is developing microwave remote sensing techniques using both radar and radiometry, but primarily with microwave radiometry. The efforts in these areas range from developing algorithms for data interpretation to conducting feasibility studies for space systems, with a primary goal of developing a microwave radiometer for soil moisture measurement from satellites, such as EOS or the Space Station. These efforts are listed.

  3. Active microwave water equivalence

    NASA Technical Reports Server (NTRS)

    Boyne, H. S.; Ellerbruch, D. A.

    1980-01-01

    Measurements of water equivalence using an active FM-CW microwave system were conducted over the past three years at various sites in Colorado, Wyoming, and California. The measurement method is described. Measurements of water equivalence and stratigraphy are compared with ground truth. A comparison of microwave, federal sampler, and snow pillow measurements at three sites in Colorado is described.

  4. Microwave photonic distributed sensing in harsh environment

    NASA Astrophysics Data System (ADS)

    Cheng, Baokai; Hua, Liwei; Zhu, Wenge; Song, Yang; Yuan, Lei; Li, Yanjun; Xiao, Hai

    2016-05-01

    We report a new distributed fiber optic sensing technique using optical carrier based microwave interferometry. The concept has been demonstrated using different types of optical fibers including singlemode fiber, multimode fiber, single crystal sapphire fiber and polymer fiber. Using the microwave-photonic technique, many fiber interferometers with the same or different optical path differences were interrogated and their locations could be unambiguously determined. The distributed sensing capability was demonstrated using cascaded low-finesse Fabry-Perot interferometers fabricated by fs laser micromachining. Spatially continuous, fully distributed temperature and strain measurements were used as examples to demonstrate the capability of the proposed concept.

  5. Microwave remote sensing of soil water content

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Ulaby, F. T.

    1975-01-01

    Microwave remote sensing of soils to determine water content was considered. A layered water balance model was developed for determining soil water content in the upper zone (top 30 cm), while soil moisture at greater depths and near the surface during the diurnal cycle was studied using experimental measurements. Soil temperature was investigated by means of a simulation model. Based on both models, moisture and temperature profiles of a hypothetical soil were generated and used to compute microwave soil parameters for a clear summer day. The results suggest that, (1) soil moisture in the upper zone can be predicted on a daily basis for 1 cm depth increments, (2) soil temperature presents no problem if surface temperature can be measured with infrared radiometers, and (3) the microwave response of a bare soil is determined primarily by the moisture at and near the surface. An algorithm is proposed for monitoring large areas which combines the water balance and microwave methods.

  6. Passive Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Njoku, Eni G.; Entekhabi, Dara

    1996-01-01

    Microwave remote sensing provides a unique capability for direct observation of soil moisture. Remote measurements from space afford the possibility of obtaining frequent, global sampling of soil moisture over a large fraction of the Earth's land surface. Microwave measurements have the benefit of being largely unaffected by cloud cover and variable surface solar illumination, but accurate soil moisture estimates are limited to regions that have either bare soil or low to moderate amounts of vegetation cover. A particular advantage of passive microwave sensors is that in the absence of significant vegetation cover soil moisture is the dominant effect on the received signal. The spatial resolutions of passive Microwave soil moisture sensors currently considered for space operation are in the range 10-20 km. The most useful frequency range for soil moisture sensing is 1-5 GHz. System design considerations include optimum choice of frequencies, polarizations, and scanning configurations, based on trade-offs between requirements for high vegetation penetration capability, freedom from electromagnetic interference, manageable antenna size and complexity, and the requirement that a sufficient number of information channels be available to correct for perturbing geophysical effects. This paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods. Particularly promising are methods for optimally assimilating passive microwave data into hydrologic models. Further studies are needed to investigate the effects on microwave observations of within-footprint spatial heterogeneity of vegetation cover and subsurface soil characteristics, and to assess the limitations imposed by heterogeneity on the retrievability of large-scale soil moisture information from remote observations.

  7. Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1985-01-01

    Because of the large contrast between the dielectric constant of liquid water and that of dry soil at microwave wavelength, there is a strong dependence of the thermal emission and radar backscatter from the soil on its moisture content. This dependence provides a means for the remote sensing of the moisture content in a surface layer approximately 5 cm thick. The feasibility of these techniques is demonstrated from field, aircraft and spacecraft platforms. The soil texture, surface roughness, and vegetative cover affect the sensitivity of the microwave response to moisture variations with vegetation being the most important. It serves as an attenuating layer which can totally obscure the surface. Research indicates that it is possible to obtain five or more levels of moisture discrimination and that a mature corn crop is the limiting vegetation situation.

  8. Recent Progresses of Microwave Marine Remote Sensing

    NASA Astrophysics Data System (ADS)

    Yang, Jingsong; Ren, Lin; Zheng, Gang; Wang, He; He, Shuangyan; Wang, Juan; Li, Xiaohui

    2016-08-01

    It is presented in this paper the recent progresses of Dragon 3 Program (ID. 10412) in the field of microwave marine remote sensing including (1) ocean surface wind fields from full polarization synthetic aperture radars (SAR), (2) joint retrieval of directional ocean wave spectra from SAR and wave spectrometer, (3) error analysis on ENVISAT ASAR wave mode significant wave height (SWH) retrievals using triple collocation model, (4) typhoon observation from SAR and optical sensors, (5) ocean internal wave observation from SAR and optical sensors, (6) ocean eddy observation from SAR and optical sensors, (7) retrieval models of water vapor and wet tropospheric path delay for the HY-2A calibration microwave radiometer, (8) calibration of SWH from HY-2A satellite altimeter.

  9. Microwave sensing of tree trunks

    NASA Astrophysics Data System (ADS)

    Jezova, Jana; Mertens, Laurence; Lambot, Sebastien

    2015-04-01

    was divided into three sections to separate parts with different moisture (heartwood and sapwood) or empty space (decays). For easier manipulation with the antenna we developed a special ruler for measuring the distance along the scans. Instead of the surveying wheel we read the distance with a camera, which was fixed on the antenna and focused on the ruler with a binary pattern. Hence, during whole measurement and the data processing we were able to identify an accurate position on the tree in view of the scan. Some preliminary measurements on the trees were also conducted. They were performed using a GSSI 900 MHz antenna. Several tree species (beech, horse-chestnut, birch, ...) in Louvain-la-Neuve and Brussels, Belgium, have been investigated to see the internal structure of the tree decays. The measurements were carried out mainly by circumferential measurement around the trunk and also by vertical measurement along the trunk for approximate detection of the cavity. The comparison between the numerical simulations, simplified tree trunk model and real data from trees is presented. This research is funded by the Fonds de la Recherche Scientifique (FNRS, Belgium) and benefits from networking activities carried out within the EU COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar".

  10. Microwave remote sensing of flood inundation

    NASA Astrophysics Data System (ADS)

    Schumann, Guy J.-P.; Moller, Delwyn K.

    Flooding is one of the most costly natural disasters and thus mapping, modeling and forecasting flood events at various temporal and spatial scales is important for any flood risk mitigation plan, disaster relief services and the global (re-)insurance markets. Both computer models and observations (ground-based, airborne and Earth-orbiting) of flood processes and variables are of great value but the amount and quality of information available varies greatly with location, spatial scales and time. It is very well known that remote sensing of flooding, especially in the microwave region of the electromagnetic spectrum, can complement ground-based observations and be integrated with flood models to augment the amount of information available to end-users, decision-makers and scientists. This paper aims to provide a concise review of both the science and applications of microwave remote sensing of flood inundation, focusing mainly on synthetic aperture radar (SAR), in a variety of natural and man-made environments. Strengths and limitations are discussed and the paper will conclude with a brief account on perspectives and emerging technologies.

  11. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  12. Microwave Remote Sensing of Falling Snow

    NASA Technical Reports Server (NTRS)

    Kim, Min-Jeong; Wang, J. R.; Meneghini, R.; Johnson, B.; Tanelli, S.; Roman-Nieves, J. I.; Sekelsky, S. M.; Skofronick-Jackson, G.

    2005-01-01

    This study analyzes passive and active microwave measurements during the 2003 Wakasa Bay field experiment for understanding of the electromagnetic characteristics of frozen hydrometeors at millimeter-wave frequencies. Based on these understandings, parameterizations of the electromagnetic scattering properties of snow at millimeter-wave frequencies are developed and applied to the hydrometeor profiles obtained by airborne radar measurements. Calculated brightness temperatures and radar reflectivity are compared with the millimeter-wave measurements.

  13. Active and Passive Remote Sensing of Ice.

    DTIC Science & Technology

    1985-01-01

    This is a report on the progress that has been made in the study of active and passive remote sensing of ice during the period of August 1, 1984...active and passive microwave remote sensing , (2) used the strong fluctuation theory and the fluctuation-dissipation theorem to calculate the brightness

  14. Active microwave users working group program planning

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Bare, J.; Brown, W. E., Jr.; Childs, L. F.; Dellwig, L. F.; Heighway, J. E.; Joosten, R.; Lewis, A. J.; Linlor, W.; Lundien, J. R.

    1978-01-01

    A detailed programmatic and technical development plan for active microwave technology was examined in each of four user activities: (1) vegetation; (2) water resources and geologic applications, and (4) oceanographic applications. Major application areas were identified, and the impact of each application area in terms of social and economic gains were evaluated. The present state of knowledge of the applicability of active microwave remote sensing to each application area was summarized and its role relative to other remote sensing devices was examined. The analysis and data acquisition techniques needed to resolve the effects of interference factors were reviewed to establish an operational capability in each application area. Flow charts of accomplished and required activities in each application area that lead to operational capability were structured.

  15. Active and Passive Remote Sensing of Ice.

    DTIC Science & Technology

    1984-09-01

    This is a report on the progress that has been made in the study of active and passive remote sensing of ice during the period of February 1, 1984...the emissivities as functions of viewing angles and polarizations. They are used to interpret the passive microwave remote sensing data from

  16. A Melting Layer Model for Passive/Active Microwave Remote Sensing Applications. Part 1; Model Formulation and Comparison with Observations

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Bauer, Peter; Viltard, Nicolas F.; Johnson, Daniel E.; Tao, Wei-Kuo

    2000-01-01

    In this study, a 1-D steady-state microphysical model which describes the vertical distribution of melting precipitation particles is developed. The model is driven by the ice-phase precipitation distributions just above the freezing level at applicable gridpoints of "parent" 3-D cloud-resolving model (CRM) simulations. It extends these simulations by providing the number density and meltwater fraction of each particle in finely separated size categories through the melting layer. The depth of the modeled melting layer is primarily determined by the initial material density of the ice-phase precipitation. The radiative properties of melting precipitation at microwave frequencies are calculated based upon different methods for describing the dielectric properties of mixed phase particles. Particle absorption and scattering efficiencies at the Tropical Rainfall Measuring Mission Microwave Imager frequencies (10.65 to 85.5 GHz) are enhanced greatly for relatively small (approx. 0.1) meltwater fractions. The relatively large number of partially-melted particles just below the freezing level in stratiform regions leads to significant microwave absorption, well-exceeding the absorption by rain at the base of the melting layer. Calculated precipitation backscatter efficiencies at the Precipitation Radar frequency (13.8 GHz) increase in proportion to the particle meltwater fraction, leading to a "bright-band" of enhanced radar reflectivities in agreement with previous studies. The radiative properties of the melting layer are determined by the choice of dielectric models and the initial water contents and material densities of the "seeding" ice-phase precipitation particles. Simulated melting layer profiles based upon snow described by the Fabry-Szyrmer core-shell dielectric model and graupel described by the Maxwell-Garnett water matrix dielectric model lead to reasonable agreement with radar-derived melting layer optical depth distributions. Moreover, control profiles

  17. High Angular Resolution Microwave Sensing with Large, Sparse, Random Arrays.

    DTIC Science & Technology

    1982-12-01

    b.cnuainas saldaatv an quired at microwaves to achieve the rec0n(pwro cam’ forming or seti -colternng or phas. synchronzing. After the moo optical...AD A126 866 HIGH ANGULAR RESOLUTICN MICROWAVE SENSING WITH LARGE 1/ SPARSE RANDOM ARRAYS..U) MOORE SCHOOL OF ELECTRICAL ENGINEERING PHILADELPHIAPA...RESOLUTION TEST CHART N4ATIONAL BUREAU Of SrANDARDS 1963 A iOSR-TR- 83-0225 HIGH ANGULAR RESOLUTION MICROWAVE SENSING WITH LARGE, SPARSE, RANDOM ARRAYS Annual

  18. Remote sensing of snowpack with microwave radiometers for hydrologic applications

    NASA Technical Reports Server (NTRS)

    Shiue, J. C.; Chang, A. T. C.; Boyne, H.; Ellerbruch, D.

    1978-01-01

    A microwave remote sensing of snowpack experiment is described and some preliminary data presented. A mobile field laboratory consisting of a four-frequency (5, 10.7, 18 and 37 GHz), all with dual linear (vertical and horizontal) polarizations, microwave radiometer system attached to a truck-mounted aerial lift was used to study the microwave emission characteristics of snowpacks in the Colorado Rocky Mountains during the winter of 1977-78. The influence of snowpack physical parameters such as water equivalent, grain size, and melt-freeze cycle on its microwave brightness temperature and its implications to the application of microwave radiometric technique to remote sensing of snowpack for runoff prediction are discussed.

  19. A Melting Layer Model for Passive/Active Microwave Remote Sensing Applications. Part 2; Simulation of TRMM Observations

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Bauer, Peter; Kummerow, Christian D.; Tao, Wei-Kuo

    2000-01-01

    The one-dimensional, steady-state melting layer model developed in Part I of this study is used to calculate both the microphysical and radiative properties of melting precipitation, based upon the computed concentrations of snow and graupel just above the freezing level at applicable horizontal gridpoints of 3-dimensional cloud resolving model simulations. The modified 3-dimensional distributions of precipitation properties serve as input to radiative transfer calculations of upwelling radiances and radar extinction/reflectivities at the TRMM Microwave Imager (TMI) and Precipitation Radar (PR) frequencies, respectively. At the resolution of the cloud resolving model grids (approx. 1 km), upwelling radiances generally increase if mixed-phase precipitation is included in the model atmosphere. The magnitude of the increase depends upon the optical thickness of the cloud and precipitation, as well as the scattering characteristics of ice-phase precipitation aloft. Over the set of cloud resolving model simulations utilized in this study, maximum radiance increases of 43, 28, 18, and 10 K are simulated at 10.65, 19.35 GHz, 37.0, and 85.5 GHz, respectively. The impact of melting on TMI-measured radiances is determined not only by the physics of the melting particles but also by the horizontal extent of the melting precipitation, since the lower-frequency channels have footprints that extend over 10''s of kilometers. At TMI resolution, the maximum radiance increases are 16, 15, 12, and 9 K at the same frequencies. Simulated PR extinction and reflectivities in the melting layer can increase dramatically if mixed-phase precipitation is included, a result consistent with previous studies. Maximum increases of 0.46 (-2 dB) in extinction optical depth and 5 dBZ in reflectivity are simulated based upon the set of cloud resolving model simulations.

  20. TCR backscattering characterization for microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Riccio, Giovanni; Gennarelli, Claudio

    2014-05-01

    A Trihedral Corner Reflector (TCR) is formed by three mutually orthogonal metal plates of various shapes and is a very important scattering structure since it exhibits a high monostatic Radar Cross Section (RCS) over a wide angular range. Moreover it is a handy passive device with low manufacturing costs and robust geometric construction, the maintenance of its efficiency is not difficult and expensive, and it can be used in all weather conditions (i.e., fog, rain, smoke, and dusty environment). These characteristics make it suitable as reference target and radar enhancement device for satellite- and ground-based microwave remote sensing techniques. For instance, TCRs have been recently employed to improve the signal-to-noise ratio of the backscattered signal in the case of urban ground deformation monitoring [1] and dynamic survey of civil infrastructures without natural corners as the Musmeci bridge in Basilicata, Italy [2]. The region of interest for the calculation of TCR's monostatic RCS is here confined to the first quadrant containing the boresight direction. The backscattering term is presented in closed form by evaluating the far-field scattering integral involving the contributions related to the direct illumination and the internal bouncing mechanisms. The Geometrical Optics (GO) laws allow one to determine the field incident on each TCR plate and the patch (integration domain) illuminated by it, thus enabling the use of a Physical Optics (PO) approximation for the corresponding surface current densities to consider for integration on each patch. Accordingly, five contributions are associated to each TCR plate: one contribution is due to the direct illumination of the whole internal surface; two contributions originate by the impinging rays that are simply reflected by the other two internal surfaces; and two contributions are related to the impinging rays that undergo two internal reflections. It is useful to note that the six contributions due to the

  1. Combined active and passive microwave remote sensing of soil moisture for vegetated surfaces at L-band

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The distorted Born approximation (DBA) combined with the numerical solutions of Maxwell equations (NMM3D) has been used for the radar backscattering model for the SMAP mission. The models for vegetated surfaces such as wheat, grass, soybean and corn have been validated with the Soil Moisture Active ...

  2. Technology transfer of NASA microwave remote sensing system

    NASA Technical Reports Server (NTRS)

    Akey, N. D.

    1981-01-01

    Viable techniques for effecting the transfer from NASA to a user agency of state-of-the-art airborne microwave remote sensing technology for oceanographic applications were studied. A detailed analysis of potential users, their needs and priorities; platform options; airborne microwave instrument candidates; ancillary instrumentation; and other, less obvious factors that must be considered were studied. Conclusions and recommendations for the development of an orderly and effective technology transfer of an airborne microwave system that could meet the specific needs of the selected user agencies are reported.

  3. Applications of active microwave imagery

    NASA Technical Reports Server (NTRS)

    Weber, F. P.; Childs, L. F.; Gilbert, R.; Harlan, J. C.; Hoffer, R. M.; Miller, J. M.; Parsons, J.; Polcyn, F.; Schardt, B. B.; Smith, J. L.

    1978-01-01

    The following topics were discussed in reference to active microwave applications: (1) Use of imaging radar to improve the data collection/analysis process; (2) Data collection tasks for radar that other systems will not perform; (3) Data reduction concepts; and (4) System and vehicle parameters: aircraft and spacecraft.

  4. Earth resources programs at the Langley Research Center. Part 1: Advanced Applications Flight Experiments (AAFE) and microwave remote sensing program

    NASA Technical Reports Server (NTRS)

    Parker, R. N.

    1972-01-01

    The earth resources activity is comprised of two basic programs as follows: advanced applications flight experiments, and microwave remote sensing. The two programs are in various stages of implementation, extending from experimental investigations within both the AAFE program and the microwave remote sensing program, to multidisciplinary studies and planning. The purpose of this paper is simply to identify the main thrust of the Langley Research Center activity in earth resources.

  5. Passive microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Kondratyev, K. Y.; Melentyev, V. V.; Rabinovich, Y. I.; Shulgina, E. M.

    1977-01-01

    The theory and calculations of microwave emission from the medium with the depth-dependent physical properties are discussed; the possibility of determining the vertical profiles of temperature and humidity is considered. Laboratory and aircraft measurements of the soil moisture are described; the technique for determining the productive-moisture content in soil, and the results of aircraft measurements are given.

  6. Passive Microwave Remote Sensing for Land Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land applications, in particular soil moisture retrieval, have been hampered by the lack of low frequency passive microwave observations and the coarse spatial resolution of existing sensors. The next decade could see several improved operational and exploratory missions using new technologies as w...

  7. Microwave electric field sensing with Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Stack, Daniel T.; Kunz, Paul D.; Meyer, David H.; Solmeyer, Neal

    2016-05-01

    Atoms form the basis of precise measurement for many quantities (time, acceleration, rotation, magnetic field, etc.). Measurements of microwave frequency electric fields by traditional methods (i.e. engineered antennas) have limited sensitivity and can be difficult to calibrate properly. Highly-excited (Rydberg) neutral atoms have very large electric-dipole moments and many dipole allowed transitions in the range of 1 - 500 GHz. It is possible to sensitively probe the electric field in this range using the combination of two quantum interference phenomena: electromagnetically induced transparency and the Autler-Townes effect. This technique allows for very sensitive field amplitude, polarization, and sub-wavelength imaging measurements. These quantities can be extracted by measuring properties of a probe laser beam as it passes through a warm rubidium vapor cell. Thus far, Rydberg microwave electrometry has relied upon the absorption of the probe laser. We report on our use of polarization rotation, which corresponds to the real part of the susceptibility, for measuring the properties of microwave frequency electric fields. Our simulations show that when a magnetic field is present and directed along the optical propagation direction a polarization rotation signal exists and can be used for microwave electrometry. One central advantage in using the polarization rotation signal rather than the absorption signal is that common mode laser noise is naturally eliminated leading to a potentially dramatic increase in signal-to-noise ratio.

  8. Microwave remote sensing of the snow and ice cover: The Russian experience

    NASA Astrophysics Data System (ADS)

    Kondratyev, K. Ya.; Melentyev, V. V.

    Microwave remote sensing techniques are useful for deriving properties of snow and ice. There has been substantial Russian research in developing such techniques, as well as their scientific application. The main centers of such activities are described, and results of fundamental research are summarized. Results from selected case studies are presented and compared with those from western research. Included are results on retrieving ice concentration, ice type, ice thickness, and ice state during the melt period. These airborne microwave remote sensing investigations provide information on the ice cover in several regions in the eastern Arctic.

  9. Optical carrier-based microwave interferometers for sensing application

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Lan, Xinwei; Wang, Hanzheng; Yuan, Lei; Xiao, Hai

    2014-06-01

    Optical fiber interferometers (OFIs) have been extensively utilized for precise measurements of various physical/chemical quantities (e.g., temperature, strain, pressure, rotation, refractive index, etc.). However, the random change of polarization states along the optical fibers and the strong dependence on the materials and geometries of the optical waveguides are problematic for acquiring high quality interference signal. Meanwhile, difficulty in multiplexing has always been a bottleneck on the application scopes of OFIs. Here, we present a sensing concept of optical carrier based microwave interferometry (OCMI) by reading optical interferometric sensors in microwave domain. It combines the advantages from both optics and microwave. The low oscillation frequency of the microwave can hardly distinguish the optical differences from both modal and polarization dispersion making it insensitive to the optical waveguides/materials. The phase information of the microwave can be unambiguitly resolved so that it has potential in fully distributed sensing. The OCMI concept has been implemented in different types of interferometers (i.e., Michelson, Mach-Zehnder, Fabry-Perot) among different optical waveguides (i.e., singlemode, multimode, and sapphire fibers) with excellent signal-to-noise ratio (SNR) and low polarization dependence. A spatially continuous distributed strain sensing has been demonstrated.

  10. Microwave remote sensing of sea ice in the AIDJEX Main Experiment

    USGS Publications Warehouse

    Campbell, W.J.; Wayenberg, J.; Ramseyer, J.B.; Ramseier, R.O.; Vant, M.R.; Weaver, R.; Redmond, A.; Arsenaul, L.; Gloersen, P.; Zwally, H.J.; Wilheit, T.T.; Chang, T.C.; Hall, D.; Gray, L.; Meeks, D.C.; Bryan, M.L.; Barath, F.T.; Elachi, C.; Leberl, F.; Farr, Tom

    1978-01-01

    During the AIDJEX Main Experiment, April 1975 through May 1976, a comprehensive microwave sensing program was performed on the sea ice of the Beaufort Sea. Surface and aircraft measurements were obtained during all seasons using a wide variety of active and passive microwave sensors. The surface program obtained passive microwave measurements of various ice types using four antennas mounted on a tracked vehicle. In three test regions, each with an area of approximately 1.5 ?? 104 m2, detailed ice crystallographic, dielectric properties, and brightness temperatures of first-year, multiyear, and first-year/multiyear mixtures were measured. A NASA aircraft obtained passive microwave measurements of the entire area of the AIDJEX manned station array (triangle) during each of 18 flights. This verified the earlier reported ability to distinguish first-year and multiyear ice types and concentration and gave new information on ways to observe ice mixtures and thin ice types. The active microwave measurements from aircraft included those from an X- and L-band radar and from a scatterometer. The former is used to study a wide variety of ice features and to estimate deformations, while both are equally usable to observe ice types. With the present data, only the scatterometer can be used to distinguish positively multiyear from first-year and various types of thin ice. This is best done using coupled active and passive microwave sensing. ?? 1978 D. Reidel Publishing Company.

  11. Microwave remote sensing of sea ice

    NASA Technical Reports Server (NTRS)

    Comiso, J. C.

    1988-01-01

    The long term objectives are: (1) to understand the physics of the multispectral microwave radiative characteristics of sea ice as it goes through different phases; (2) to improve characterization of sea ice cover using satellite microwave sensors; and (3) to study ice/ocean physical and biological processes associated with polynya formations and variability of the marginal sea ice region. Two field experiments were conducted to pursue these objectives. One involved measurements of radiative and physical characteristics of sea ice from a ship during a 3-month long cruise through the Weddell Sea ice pack during the Austral winter of 1986. The other involved similar measurements from two aircrafts and a submarine over the Central Arctic and Greenland Sea region. Preliminary results have already led to an enhanced understanding of the microwave signatures of pancake ice, nilas, first year ice, multiyear ice and effects of snow cover. Coastal and deep ocean polynyas and their role in bottom water formation and ocean circulation were studied using a time series of ice images from SMMR. An unsupervised cluster analysis of Arctic sea ice using SMMR and THIR emissivity and brightness temperature data was implemented. The analysis indicates the existence of several unique and persistent clusters in the Central Arctic region during winter and that the sum of the area of these clusters excluding those of first year ice is about 20 percent less than minimum ice cover area inferred from a previous summer data. This result is consistent with saline surface for some multiyear ice floes as observed during MIZEZ and suggests that a significant fraction of multiyear ice floes in the Arctic have first year ice signatures.

  12. Microwave Remote Sensing and the Cold Land Processes Field Experiment

    NASA Technical Reports Server (NTRS)

    Kim, Edward J.; Cline, Don; Davis, Bert; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Cold Land Processes Field Experiment (CLPX) has been designed to advance our understanding of the terrestrial cryosphere. Developing a more complete understanding of fluxes, storage, and transformations of water and energy in cold land areas is a critical focus of the NASA Earth Science Enterprise Research Strategy, the NASA Global Water and Energy Cycle (GWEC) Initiative, the Global Energy and Water Cycle Experiment (GEWEX), and the GEWEX Americas Prediction Project (GAPP). The movement of water and energy through cold regions in turn plays a large role in ecological activity and biogeochemical cycles. Quantitative understanding of cold land processes over large areas will require synergistic advancements in 1) understanding how cold land processes, most comprehensively understood at local or hillslope scales, extend to larger scales, 2) improved representation of cold land processes in coupled and uncoupled land-surface models, and 3) a breakthrough in large-scale observation of hydrologic properties, including snow characteristics, soil moisture, the extent of frozen soils, and the transition between frozen and thawed soil conditions. The CLPX Plan has been developed through the efforts of over 60 interested scientists that have participated in the NASA Cold Land Processes Working Group (CLPWG). This group is charged with the task of assessing, planning and implementing the required background science, technology, and application infrastructure to support successful land surface hydrology remote sensing space missions. A major product of the experiment will be a comprehensive, legacy data set that will energize many aspects of cold land processes research. The CLPX will focus on developing the quantitative understanding, models, and measurements necessary to extend our local-scale understanding of water fluxes, storage, and transformations to regional and global scales. The experiment will particularly emphasize developing a strong synergism between process

  13. Passive microwave remote sensing of salinity in coastal zones

    NASA Technical Reports Server (NTRS)

    Swift, Calvin T.; Blume, Hans-Juergen C.; Kendall, Bruce M.

    1987-01-01

    The theory of measuring coastal-zone salinity from airborne microwave radiometers is developed. The theory, as presented, shows that precision measurements of salinity favor the lower microwave frequencies. To this end, L- and S-Band systems were built, and the flight results have shown that accuracies of at least one part per thousand were achieved.The aircraft results focus on flights conducted over the Chesapeake Bay and the mouth of the Savanna River off the Georgia Coast. This paper presents no new work, but rather summarizes the capabilities of the remote sensing technique.

  14. Microwave Moisture Sensing of Seedcotton: Part 1: Seedcotton Microwave Material Properties

    PubMed Central

    Pelletier, Mathew G.; Wanjura, John D.; Holt, Greg A.

    2016-01-01

    Moisture content at harvest is a key parameter that impacts quality and how well the cotton crop can be stored without degrading before processing. It is also a key parameter of interest for harvest time field trials as it can directly influence the quality of the harvested crop as well as skew the results of in-field yield and quality assessments. Microwave sensing of moisture has several unique advantages over lower frequency sensing approaches. The first is that microwaves are insensitive to variations in conductivity, due to presence of salts or minerals. The second advantage is that microwaves can peer deep inside large bulk packaging to assess the internal moisture content without performing a destructive tear down of the package. To help facilitate the development of a microwave moisture sensor for seedcotton; research was performed to determine the basic microwave properties of seedcotton. The research was performed on 110 kg micro-modules, which are of direct interest to research teams for use in ongoing field-based research projects. It should also prove useful for the enhancement of existing and future yield monitor designs. Experimental data was gathered on the basic relations between microwave material properties and seedcotton over the range from 1.0 GHz to 2.5 GHz and is reported on herein. This research is part one of a two-part series that reports on the fundamental microwave properties of seedcotton as moisture and density vary naturally during the course of typical harvesting operations; part two will utilize this data to formulate a prediction algorithm to form the basis for a prototype microwave moisture sensor. PMID:27827857

  15. Microwave Moisture Sensing of Seedcotton: Part 1: Seedcotton Microwave Material Properties.

    PubMed

    Pelletier, Mathew G; Wanjura, John D; Holt, Greg A

    2016-11-02

    Moisture content at harvest is a key parameter that impacts quality and how well the cotton crop can be stored without degrading before processing. It is also a key parameter of interest for harvest time field trials as it can directly influence the quality of the harvested crop as well as skew the results of in-field yield and quality assessments. Microwave sensing of moisture has several unique advantages over lower frequency sensing approaches. The first is that microwaves are insensitive to variations in conductivity, due to presence of salts or minerals. The second advantage is that microwaves can peer deep inside large bulk packaging to assess the internal moisture content without performing a destructive tear down of the package. To help facilitate the development of a microwave moisture sensor for seedcotton; research was performed to determine the basic microwave properties of seedcotton. The research was performed on 110 kg micro-modules, which are of direct interest to research teams for use in ongoing field-based research projects. It should also prove useful for the enhancement of existing and future yield monitor designs. Experimental data was gathered on the basic relations between microwave material properties and seedcotton over the range from 1.0 GHz to 2.5 GHz and is reported on herein. This research is part one of a two-part series that reports on the fundamental microwave properties of seedcotton as moisture and density vary naturally during the course of typical harvesting operations; part two will utilize this data to formulate a prediction algorithm to form the basis for a prototype microwave moisture sensor.

  16. Microwave remote sensing of natural stratification

    NASA Astrophysics Data System (ADS)

    Imperatore, Pasquale; Iodice, Antonio; Riccio, Daniele

    2011-11-01

    The response of natural stratification to electromagnetic wave has received much attention in last decades, due to its crucial role played in the remote sensing arena. In this context, when the superficial structure of the Earth, whose formation is inherently layered, is concerned, the most general scheme that can be adopted includes the characterization of layered random media. Moreover, a key issue in remote sensing of Earth and other Planets is to reveal the content under the surface illuminated by the sensors. For such a purpose, a quantitative mathematical analysis of wave propagation in three-dimensional layered rough media is fundamental in understanding intriguing scattering phenomena in such structures, especially in the perspective of remote sensing applications. Recently, a systematic formulation has been introduced to deal with the analysis of a layered structure with an arbitrary number of rough interfaces. Specifically, the results of the Boundary Perturbation Theory (BPT) lead to polarimetric, formally symmetric and physical revealing closed form analytical solutions. The comprehensive scattering model based on the BPT methodologically permits to analyze the bi-static scattering patterns of 3D multilayered rough media. The aim of this paper is to systematically show how polarimetric models obtainable in powerful BPT framework can be successfully applied to several situations of interest, emphasizing its wide relevance in the remote sensing applications scenario. In particular, a proper characterization of the relevant interfacial roughness is adopted resorting to the fractal geometry; numerical examples are then presented with reference to representative of several situations of interest.

  17. Microwave remote sensing of short-term droughts during crop growing seasons

    NASA Astrophysics Data System (ADS)

    Yuan, Xing; Ma, Zhuguo; Pan, Ming; Shi, Chunxiang

    2015-06-01

    Severe short-term (monthly to seasonal) droughts frequently occurred over China in recent years, with devastating impacts on crop production. This study assesses the capability of microwave remote sensing in detecting soil moisture (agricultural) droughts over China and in providing early warnings. The 22 year (1992-2013) European Space Agency satellite soil moisture retrievals are compared against the in situ observations at 312 stations in China, the global soil moisture reanalysis, and the observed rainfall deficit. Both the reanalysis and remote sensing products can only detect less than 60% of drought months at in situ station scale, but they capture the interannual variations of short-term drought area at river basin scales quite well. As compared with reanalysis, the passive and merged microwave products have better drought detection over sparsely vegetated regions in northwestern China and the active microwave product with better vegetation penetration works the best in eastern China.

  18. Microwave remote sensing of snow experiment description and preliminary results

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Stiles, W. H.; Hanson, B. C.

    1977-01-01

    The active and passive microwave responses to snow were investigated at a site near Steamboat Springs, Colorado during the February and March winter months. The microwave equipment was mounted atop truck-mounted booms. Data were acquired at numerous frequencies, polarizations, and angles of incidence for a variety of snow conditions. The experiment description, the characteristics of the microwave and ground truth instruments, and the results of a preliminary analysis of a small portion of the total data volume acquired in Colorado are documented.

  19. Remote sensing of soil moisture with microwave radiometers

    NASA Technical Reports Server (NTRS)

    Schmugge, T.; Wilheit, T.; Webster, W., Jr.; Gloerson, P.

    1976-01-01

    Results are presented that were derived from measurements made by microwave radiometers during the March 1972 and February 1973 flights of National Aeronautics and Space Administration (NASA) Convair-9900 aircraft over agricultural test sites in the southwestern part of United States. The purpose of the missions was to study the use of microwave radiometers for the remote sensing of soil moisture. The microwave radiometers covered the 0.8- to 21-cm wavelength range. The results show a good linear correlation between the observed microwave brightness temperature and moisture content of the 0- to 1-cm layer of the soil. The results at the largest wavelength (21 cm) show the greatest sensitivity to soil moisture variations and indicate the possibility of sensing these variations through a vegetative canopy. The effect of soil texture on the emission from the soil was also studied and it was found that this effect can be compensated for by expressing soil moisture as a percent of field capacity for the soil. The results were compared with calculations based on a radiative transfer model for layered dielectrics and the agreement is very good at the longer wavelengths. At the shorter wavelengths, surface roughness effects are larger and the agreement becomes poorer.

  20. High Angular Resolution Microwave Sensing with Large, Sparse, Random Arrays

    DTIC Science & Technology

    1983-11-01

    MICROWAVE SENSING WITH LARGE, SPARSE, RANDOM ARRAYS Final Scientific Report AIR FORCE OFFICE OF SCIENTIFIC RESEARCH AFOSR 82-0012 Valley Forge Research ...CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Air Force Office of Scientific Research /NE Nov 1983 - . Bildin 41073. NUMBER Or PAG ES BOllinZ AFB, DIC...Air Force Office of Scientific Research , under Grant No. AFOSR-78-3688. March, 1981 QPR No. 37 VFRC QPR No. 37 A-1 S

  1. Aperture synthesis concepts in microwave remote sensing of the earth

    NASA Technical Reports Server (NTRS)

    Swift, Calvin T.; Le Vine, David M.; Ruf, Christopher S.

    1991-01-01

    The application of aperture synthesis concepts, used for many years in radio astronomy to achieve high image resolution at a reasonable cost, to remote sensing technology is discussed. The electronically scanned thinned array radiometer (ESTAR) is put forward as a viable alternative to improve spatial resolution by an order of magnitude over what is presently achieved by microwave imaging systems that are collecting data from earth orbit. Future developments in airborne sensor technology and potential spacecraft application are described.

  2. Applications of Microwaves to Remote Sensing of Terrain

    NASA Technical Reports Server (NTRS)

    Porter, R. A.

    1975-01-01

    A survey and study was conducted to define the role that microwaves may play in the measurement of a variety of terrain-related parameters. The survey consisted of discussions with many users and researchers in the field of remote sensing. In addition, a survey questionnaire was prepared and replies were solicited from these and other users and researchers. The results of the survey, and associated bibliography, were studied and conclusions were drawn as to the usefulness of radiometric systems for remote sensing of terrain.

  3. Microwave and THz sensing using slab-pair-based metamaterials

    SciTech Connect

    Kenanakis, G.; Shen, Nianhai; Mavidis, Ch.; Katsarakis, N.; Kafesaki, M.; Soukoulis, Costas M.; Economou, E.N.

    2012-10-15

    In this work the sensing capability of an artificial magnetic metamaterial based on pairs of metal slabs is demonstrated, both theoretically and experimentally, in the microwave regime. The demonstration is based on transmission measurements and simulations monitoring the shift of the magnetic resonance frequency as one changes a thin dielectric layer placed between the slabs of the pairs. Strong dependence of the magnetic resonance frequency on both the permittivity and the thickness of the dielectric layer under detection was observed. The sensitivity to the dielectrics′ permittivity (ε) is larger for dielectrics of low ε values, which makes the approach suitable for sensing organic materials also in the THz regime. The capability of our approach for THz sensing is also demonstrated through simulations.

  4. Microwave sensing and heating of individual droplets in microfluidic devices.

    PubMed

    Boybay, Muhammed S; Jiao, Austin; Glawdel, Tomasz; Ren, Carolyn L

    2013-10-07

    Droplet-based microfluidics is an emerging high-throughput screening technology finding applications in a variety of areas such as life science research, drug discovery and material synthesis. In this paper we present a cost-effective, scalable microwave system that can be integrated with microfluidic devices enabling remote, simultaneous sensing and heating of individual nanoliter-sized droplets generated in microchannels. The key component of this microwave system is an electrically small resonator that is able to distinguish between materials with different electrical properties (i.e. permittivity, conductivity). The change in these properties causes a shift in the operating frequency of the resonator, which can be used for sensing purposes. Alternatively, if microwave power is delivered to the sensing region at the frequency associated with a particular material (i.e. droplet), then only this material receives the power while passing the resonator leaving the surrounding materials (i.e. carrier fluid and chip material) unaffected. Therefore this method allows sensing and heating of individual droplets to be inherently synchronized, eliminating the need for external triggers. We confirmed the performance of the sensor by applying it to differentiate between various dairy fluids, identify salt solutions and detect water droplets with different glycerol concentrations. We experimentally verified that this system can increase the droplet temperature from room temperature by 42 °C within 5.62 ms with an input power of 27 dBm. Finally we employed this system to thermally initiate the formation of hydrogel particles out of the droplets that are being heated by this system.

  5. Assimilation of Passive and Active Microwave Soil Moisture Retrievals

    NASA Technical Reports Server (NTRS)

    Draper, C. S.; Reichle, R. H.; DeLannoy, G. J. M.; Liu, Q.

    2012-01-01

    Root-zone soil moisture is an important control over the partition of land surface energy and moisture, and the assimilation of remotely sensed near-surface soil moisture has been shown to improve model profile soil moisture [1]. To date, efforts to assimilate remotely sensed near-surface soil moisture at large scales have focused on soil moisture derived from the passive microwave Advanced Microwave Scanning Radiometer (AMSR-E) and the active Advanced Scatterometer (ASCAT; together with its predecessor on the European Remote Sensing satellites (ERS. The assimilation of passive and active microwave soil moisture observations has not yet been directly compared, and so this study compares the impact of assimilating ASCAT and AMSR-E soil moisture data, both separately and together. Since the soil moisture retrieval skill from active and passive microwave data is thought to differ according to surface characteristics [2], the impact of each assimilation on the model soil moisture skill is assessed according to land cover type, by comparison to in situ soil moisture observations.

  6. Summary of the Active Microwave Workshop, chapter 1. [utilization in applications and aerospace programs

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An overview is given of the utility, feasibility, and advantages of active microwave sensors for a broad range of applications, including aerospace. In many instances, the material provides an in-depth examination of the applicability and/or the technology of microwave remote sensing, and considerable documentation is presented in support of these techniques. An assessment of the relative strengths and weaknesses of active microwave sensor data indicates that satisfactory data are obtainable for several significant applications.

  7. Study of blood flow sensing with microwave radiometry

    NASA Technical Reports Server (NTRS)

    Porter, R. A.; Wentz, F. J., III

    1973-01-01

    A study and experimental investigation has been performed to determine the feasibility of measuring regional blood flow and volume in man by means of microwave radiometry. An indication was expected of regional blood flow from measurement of surface and subsurface temperatures with a sensitive radiometer. Following theoretical modeling of biological tissue, to determine the optimum operating frequency for adequate sensing depth, a sensitive microwave radiometer was designed for operation at 793 MHz. A temperature sensitivity of of 0.06 K rms was realized in this equipment. Measurements performed on phantom tissue models, consisting of beef fat and lean beefsteak showed that the radiometer was capable of sensing temperatures from a depth between 3.8 and 5.1 cm. Radiometric and thermodynamic temperature measurements were also performed on the hind thighs of large dogs. These showed that the radiometer could sense subsurface temperatures from a depth of, at least, 1.3 cm. Delays caused by externally-generated RF interference, coupled with the lack of reliable blood flow measurement equipment, prevented correlation of radiometer readings with reginal blood flow. For the same reasons, it was not possible to extend the radiometric observations to human subjects.

  8. Unified microwave moisture sensing technique for grain and seed

    NASA Astrophysics Data System (ADS)

    Trabelsi, Samir; Nelson, Stuart O.

    2007-04-01

    A unified method for moisture sensing in cereal grain and oilseed from a single calibration equation, which is obtained from measurement of dielectric properties at a single microwave frequency, is presented. The method is based on a complex permittivity calibration function that is independent of both bulk density and kind of material. Performance of the method was tested for soybeans, corn, wheat, sorghum, barley and oats at 7 GHz and about 23 °C. The standard error of calibration for moisture prediction from complex permittivity measurements was 0.8%.

  9. Multifrequency Bayesian compressive sensing methods for microwave imaging.

    PubMed

    Poli, Lorenzo; Oliveri, Giacomo; Ding, Ping Ping; Moriyama, Toshifumi; Massa, Andrea

    2014-11-01

    The Bayesian retrieval of sparse scatterers under multifrequency transverse magnetic illuminations is addressed. Two innovative imaging strategies are formulated to process the spectral content of microwave scattering data according to either a frequency-hopping multistep scheme or a multifrequency one-shot scheme. To solve the associated inverse problems, customized implementations of single-task and multitask Bayesian compressive sensing are introduced. A set of representative numerical results is discussed to assess the effectiveness and the robustness against the noise of the proposed techniques also in comparison with some state-of-the-art deterministic strategies.

  10. Radiometer system requirements for microwave remote sensing from satellites

    NASA Technical Reports Server (NTRS)

    Juang, Jeng-Nan

    1990-01-01

    An area of increasing interest is the establishment of a significant research program in microwave remote sensing from satellites, particularly geosynchronous satellites. Due to the relatively small resolution cell sizes, a severe requirement is placed on beam efficiency specifications for the radiometer antenna. Geostationary satellite microwave radiometers could continuously monitor several important geophysical parameters over the world's oceans. These parameters include the columnar content of atmospheric liquid water (both cloud and rain) and water vapor, air temperature profiles, and possibly sea surface temperature. Two principle features of performance are of concern. The first is the ability of the radiometer system to resolve absolute temperatures with a very small absolute error, a capability that depends on radiometer system stability, on frequency bandwidth, and on footprint dwell time. The second is the ability of the radiometer to resolve changes in temperature from one resolution cell to the next when these temperatures are subject to wide variation over the overall field-of-view of the instrument. Both of these features are involved in the use of the radiometer data to construct high-resolution temperature maps with high absolute accuracy.

  11. Soil surface roughness characterization for microwave remote sensing applications

    NASA Astrophysics Data System (ADS)

    Marzahn, P.; Rieke-Zapp, D.; Ludwig, R.

    2012-04-01

    With this poster we present a simple and efficient method to measure soil surface roughness in an agricultural environment. Micro scale soil surface roughness is a crucial parameter in many environmental applications. In recent studies it is strongly recognized that soil surface roughness significantly influences the backscatter of agricultural surface, especially on bare fields. Indeed, while different roughness indices depend on their measurement length, no satisfying roughness parametrization and measurement technique has been found yet, introducing large uncertainty in the interpretation of the radar backscattering. In this study, we introduce a photogrammetric system which consists of a customized consumer grade Canon EOS 5d camera and a reference frame providing ground control points. With the system one can generate digital surface models (DSM) with a minimum size of 1 x 2.5 m2, extendable to any desired size, with a ground x,y- resolution of 2 mm. Using this approach, we generated a set of DSM with sizes ranging from 2.5 m2 to 22 m2, acquired over different roughness conditions representing ploughed, harrowed as well as crusted fields on different test sites. For roughness characterization we calculated in microwave remote sensing common roughness indices such as the RMS- height s and the autocorrelation length l. In an extensive statistical investigation we show the behavior of the roughness indices for different acquisition sizes of the proposed method. Results indicate, compared to results from profiles generated out of the dataset, that using a three dimensional measuring device, the calculated roughness indices are more robust in their estimation. In addition, a strong directional dependency of the proposed roughness indices was observed which could be related to the orientation of the seedbed rows to the acqusition direction. In a geostatistical analysis, we decomposed the acquired roughness indices into different scales, yielding a roughness quantity

  12. Microwave remote sensing in atmospheric research and meteorology (invited)

    NASA Astrophysics Data System (ADS)

    Kunzi, K.

    Remote sensing techniques to investigate the atmosphere are widely used. Sensors operating in the microwave range (wavelength from 10 to 0.1 cm) of the electromagnetic spectrum were among the first instruments used on the ground and on air- and space borne platforms for this purpose. These instruments measure the thermal emission from molecular resonances or use the absorption and scattering properties of water droplets or particles to obtain information on atmospheric parameters and composition. In the seventies the sensors NEMS and SCAMS on the Nimbus-5 and 6 satellites have demonstrated the big advantage of these instruments to obtain temperature profiles, amounts of water vapor and liquid water nearly unaffected by cloud coverage. The frequency bands and observing geometries selected for these early instruments are still used to day very successfully for the operational sensors on the polar orbiting satellites of the DMSP and NOAA series. In the eighties and nineties the very much improved sensor technology allowed to extend the spectral range to wavelength near 0.01 cm. It is now possible to observe key constituents of importance in atmospheric chemistry, and in particular related to stratospheric ozone. Such sensors have been flown on UARS (MLS), several space shuttle missions (MAS) and on stratospheric balloons using limb sounding geometry, and also on research aircraft (NASA DC-9, the DLR Falcon and others), furthermore microwave radiometers are considered key sensors for the ground based, global Network for the Detection of Stratospheric Change (NDSC). The next generation of sensors on future satellites such as AURA (MLS) and the international space station (SMILES) are making use of higher frequencies and superconducting receiver technology. This will allow to measure more minor constituents with higher accuracy and better temporal resolution. Today the receiver technology is very mature down to wavelength of 0.03 cm. Planned future applications include a

  13. Microwave spectroscopy of chemical warfare agents: prospects for remote sensing

    NASA Astrophysics Data System (ADS)

    Samuels, Alan C.; Jensen, James O.; Suenram, Richard D.; Hight Walker, Angela R.; Woolard, Dwight L.

    1999-07-01

    The high level of interest in the sensor development community in millimeter wave technology development demonstrates the potential for several multipurpose applications of millimeter wave sensors. The potential for remote sensing of hazardous chemical materials based on their millimeter wave rotational signatures is yet another possible applications, offering certain distinct advantages over FTIR remote sensing. The high specificity of the rotational spectra to the molecular structures affords the capability of detecting chemical warfare (CW) agents and degradation products in complex mixtures including water vapor and smoke, an important consideration in military applications. Furthermore, the rotational modes are not complicated by electronic or vibrational transitions, reducing the potential for false alarms. We have conducted microwave spectroscopic measurements on two CW nerve agents (sarin and soman) and one blister agent (H-mustard). The assignment of the observed band furnishes us with an extremely accurate tool for predicting the rotational spectrum of these agents at any arbitrary frequency. By factoring in the effects of pressure (Lorentzian broadening and intensity reduction), we present the predicted spectral signatures of the CW agents in the 80 - 300 GHz region. This frequency regime is important for atmospheric monitoring as it exploits the wide bandwidth capability of millimeter wave sensors as well as the atmospheric windows that occur in this region.

  14. Microwave and millimeter-wave Doppler radar heart sensing

    NASA Astrophysics Data System (ADS)

    Boric-Lubecke, Olga; Lin, Jenshan; Lubecke, Victor M.; Host-Madsen, Anders; Sizer, Tod

    2007-04-01

    Technology that can be used to unobtrusively detect and monitor the presence of human subjects from a distance and through barriers can be a powerful tool for meeting new security challenges, including asymmetric battlefield threats abroad and defense infrastructure needs back home. Our team is developing mobile remote sensing technology for battle-space awareness and warfighter protection, based on microwave and millimeter-wave Doppler radar motion sensing devices that detect human presence. This technology will help overcome a shortfall of current see-through-thewall (STTW) systems, which is, the poor detection of stationary personnel. By detecting the minute Doppler shifts induced by a subject's cardiopulmonary related chest motion, the technology will allow users to detect personnel that are completely stationary more effectively. This personnel detection technique can also have an extremely low probability of intercept since the signals used can be those from everyday communications. The software and hardware developments and challenges for personnel detection and count at a distance will be discussed, including a 2.4 GHz quadrature radar single-chip silicon CMOS implementation, a low-power double side-band Ka-band transmission radar, and phase demodulation and heart rate extraction algorithms. In addition, the application of MIMO techniques for determining the number of subjects will be discussed.

  15. Microwave remote sensing and radar polarization signatures of natural fields

    NASA Technical Reports Server (NTRS)

    Mo, Tsan

    1989-01-01

    Theoretical models developed for simulation of microwave remote sensing of the Earth surface from airborne/spaceborne sensors are described. Theoretical model calculations were performed and the results were compared with data of field measurements. Data studied included polarimetric images at the frequencies of P band, L band, and C band, acquired with airborne polarimeters over a agricultural field test site. Radar polarization signatures from bare soil surfaces and from tree covered fields were obtained from the data. The models developed in this report include: (1) Small perturbation model of wave scatterings from randomly rough surfaces, (2) Physical optics model, (3) Geometrical optics model, and (4) Electromagnetic wave scattering from dielectric cylinders of finite lengths, which replace the trees and branches in the modeling of tree covered field. Additionally, a three-layer emissivity model for passive sensing of a vegetation covered soil surface is also developed. The effects of surface roughness, soil moisture contents, and tree parameters on the polarization signatures were investigated.

  16. Passive microwave remote sensing of forests: A model investigation

    SciTech Connect

    Ferrazzoli, P.; Guerriero, L.

    1996-03-01

    In the recent years, several studies have been carried out to investigate the potential of microwave sensors in forest parameter monitoring. A stimulus has been given by the increasing impact of some environmental problems, like desertification, climatic change, and carbon dioxide concentration. These problems have some connections with forests extension and health; on the other hand, optical systems, which proved their effectiveness in sensing leaf parameters, are not able to sense the woody biomass. A model, based on the radiative transfer theory and the matrix doubling algorithm, is described and used to compute the emissivity e of forests. According to model simulations, the L-band emissivity trend versus forest biomass is more gradual than that of the backscatter coefficient. This gradual behavior is observed, in absence of leaves, also at C and X bands, while leaves anticipate saturation and make e higher in coniferous forests and lower in deciduous forests. Model results are successfully validated by some available experimental data. Operational aspects, concerning the potential of airborne and spaceborne radiometers in identifying forest type and estimating biomass, are discussed.

  17. A Melting-Layer Model for Passive/Active Microwave Remote Sensing Applications. Part I: Model Formulation and Comparison with Observations.

    NASA Astrophysics Data System (ADS)

    Olson, William S.; Bauer, Peter; Viltard, Nicolas F.; Johnson, Daniel E.; Tao, Wei-Kuo; Meneghini, Robert; Liao, Liang

    2001-07-01

    In this study, a 1D steady-state microphysical model that describes the vertical distribution of melting precipitation particles is developed. The model is driven by the ice-phase precipitation distributions just above the freezing level at applicable grid points of `parent' 3D cloud-resolving model (CRM) simulations. It extends these simulations by providing the number density and meltwater fraction of each particle in finely separated size categories through the melting layer. The depth of the modeled melting layer is primarily determined by the initial material density of the ice-phase precipitation. The radiative properties of melting precipitation at microwave frequencies are calculated based upon different methods for describing the dielectric properties of mixed-phase particles. Particle absorption and scattering efficiencies at the Tropical Rainfall Measuring Mission Microwave Imager frequencies (10.65-85.5 GHz) are enhanced greatly for relatively small (0.1) meltwater fractions. The relatively large number of partially melted particles just below the freezing level in stratiform regions leads to significant microwave absorption, well exceeding the absorption by rain at the base of the melting layer. Calculated precipitation backscatter efficiencies at the precipitation radar frequency (13.8 GHz) increase with particle meltwater fraction, leading to a `bright band' of enhanced radar reflectivities in agreement with previous studies. The radiative properties of the melting layer are determined by the choice of dielectric models and the initial water contents and material densities of the `seeding' ice-phase precipitation particles. Simulated melting-layer profiles based upon snow described by the Fabry-Szyrmer core-shell dielectric model and graupel described by the Maxwell-Garnett water matrix dielectric model lead to reasonable agreement with radar-derived melting-layer optical depth distributions. Moreover, control profiles that do not contain mixed

  18. Microwave dielectric sensing of bulk density of granular materials

    NASA Astrophysics Data System (ADS)

    Trabelsi, Samir; Kraszewski, Andrzej W.; Nelson, Stuart O.

    2001-12-01

    A nondestructive dielectric method for sensing bulk density of granular materials is presented. The bulk density is determined from measurement of the dielectric properties of these materials at a single microwave frequency without knowledge of their moisture content and temperature. Bulk density calibration equations are generated from a complex-plane representation of the dielectric properties normalized with respect to bulk density. The effectiveness of the method is shown through measurement of the dielectric properties at 7 GHz for materials with significant compositional and structural differences, i.e. wheat, oats, corn and soybeans, over wide ranges of moisture content and temperature. The standard error of calibration and the relative error calculated for each material indicate that the method is as accurate as or better than commonly used methods for on-line density determination. Because the density is expressed in terms of the relative complex permittivity, the method can be applied regardless of the measurement technique (using transmission lines, a resonant cavity, admittance or impedance).

  19. The science benefits of and the antenna requirements for microwave remote sensing from geostationary orbit

    NASA Technical Reports Server (NTRS)

    Stutzman, Warren L. (Editor); Brown, Gary S. (Editor)

    1991-01-01

    The primary objective of the Large Space Antenna (LSA) Science Panel was to evaluate the science benefits that can be realized with a 25-meter class antenna in a microwave/millimeter wave remote sensing system in geostationary orbit. The panel concluded that a 25-meter or larger antenna in geostationary orbit can serve significant passive remote sensing needs in the 10 to 60 GHz frequency range, including measurements of precipitation, water vapor, atmospheric temperature profile, ocean surface wind speed, oceanic cloud liquid water content, and snow cover. In addition, cloud base height, atmospheric wind profile, and ocean currents can potentially be measured using active sensors with the 25-meter antenna. Other environmental parameters, particularly those that do not require high temporal resolution, are better served by low Earth orbit based sensors.

  20. Procedures for the description of agricultural crops and soils in optical and microwave remote sensing studies

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Dobson, M. C.; Schmugge, T.; Hoogeboom, P.; Janse, A. R. P.

    1987-01-01

    This paper describes procedures for characterizing agricultural crops and soils in remote sensing studies. The procedures are based on the accumulated experience of a number of researchers active in this field. Therefore, they represent a compromise between the theoretically desirable and the practically feasible, and should thus be an effective aid in further studies of this type. Although the guidelines were prepared specifically for microwave studies, adjustments were made to render the procedures applicable to optical studies as well. Given the increasing number of research teams involved in remote sensing applied to agriculture, there is an opportunity to acquire a broad data base on soils and crops in various geographic regions. To allow intercomparisons of such data, they must be obtained in a consistent manner. By following the proposed procedures and reporting results using the parameters described here, such intercomparisons should be possible on a continental or a global scale.

  1. Microwave sensing of quality attributes of agricultural and food products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microwave sensors for real-time characterization of agricultural and food products have become viable solutions with recent advances in the development of calibration methods and the availability of inexpensive microwave components. The examples shown here for grain, seed, and in-shell peanuts indic...

  2. Evaluation of Soil Moisture Derived from Passive Microwave Remote Sensing Over Agricultural Sites in Canada

    NASA Astrophysics Data System (ADS)

    Champagne, C.; McNairn, H.; Berg, A.

    2008-12-01

    Spatial information on soil moisture conditions is a critical agri-environmental variable and can be used alone as a decision support tool for a number of land management decisions, including soil trafficability, seeding options and pesticide applications. Large-area estimations of soil moisture derived from passive microwave sensors are available over Canada from AMSR-E and SSM/I sensors, and in some instances are being used as decision-support tools (AAFC, 2008). These coarse spatial estimates can be used to assess overall conditions on a daily or weekly basis, and potentially be used as a monitoring tool to trigger assessment using higher spatial resolution active microwave sensors. Retrieval algorithms to derive soil moisture from passive microwave brightness temperature produce variable results depending on input frequency and the reliance on ancillary data to estimate vegetation water content and land surface temperature. There is a need to characterize regional errors in these data sets to contextualize their operational use and facilitate integration of these data sets into land surface models. Several soil moisture information products derived from passive microwave remote sensing were evaluated for their potential use in assessing moisture conditions over agricultural regions in Canada. Soil wetness maps derived from SSM/I (Basist et al., 2001), AMSR-E NASA soil moisture products (Njoku, 2008) and two AMSR-E soil moisture products derived using C and X band frequencies using an alternative retrieval algorithm (Owe et al., 2008) were evaluated over agricultural regions in Canada. Evaluations were based on in-situ measurements from sites in Saskatchewan, Manitoba and Ontario for spring and fall periods in 2007 and 2008. Differences in the satellite climatology relative to surface soil moisture observations in Canada will be discussed.

  3. Comparing land surface phenology derived from satellite and GPS network microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Jones, Matthew O.; Kimball, John S.; Small, Eric E.; Larson, Kristine M.

    2014-08-01

    The land surface phenology (LSP) start of season (SOS) metric signals the seasonal onset of vegetation activity, including canopy growth and associated increases in land-atmosphere water, energy and carbon (CO2) exchanges influencing weather and climate variability. The vegetation optical depth (VOD) parameter determined from satellite passive microwave remote sensing provides for global LSP monitoring that is sensitive to changes in vegetation canopy water content and biomass, and insensitive to atmosphere and solar illumination constraints. Direct field measures of canopy water content and biomass changes desired for LSP validation are generally lacking due to the prohibitive costs of maintaining regional monitoring networks. Alternatively, a normalized microwave reflectance index (NMRI) derived from GPS base station measurements is sensitive to daily vegetation water content changes and may provide for effective microwave LSP validation. We compared multiyear (2007-2011) NMRI and satellite VOD records at over 300 GPS sites in North America, and their derived SOS metrics for a subset of 24 homogenous land cover sites to investigate VOD and NMRI correspondence, and potential NMRI utility for LSP validation. Significant correlations ( P < 0.05) were found at 276 of 305 sites (90.5 %), with generally favorable correspondence in the resulting SOS metrics ( r 2 = 0.73, P < 0.001, RMSE = 36.8 days). This study is the first attempt to compare satellite microwave LSP metrics to a GPS network derived reflectance index and highlights both the utility and limitations of the NMRI data for LSP validation, including spatial scale discrepancies between local NMRI measurements and relatively coarse satellite VOD retrievals.

  4. Comparing land surface phenology derived from satellite and GPS network microwave remote sensing.

    PubMed

    Jones, Matthew O; Kimball, John S; Small, Eric E; Larson, Kristine M

    2014-08-01

    The land surface phenology (LSP) start of season (SOS) metric signals the seasonal onset of vegetation activity, including canopy growth and associated increases in land-atmosphere water, energy and carbon (CO2) exchanges influencing weather and climate variability. The vegetation optical depth (VOD) parameter determined from satellite passive microwave remote sensing provides for global LSP monitoring that is sensitive to changes in vegetation canopy water content and biomass, and insensitive to atmosphere and solar illumination constraints. Direct field measures of canopy water content and biomass changes desired for LSP validation are generally lacking due to the prohibitive costs of maintaining regional monitoring networks. Alternatively, a normalized microwave reflectance index (NMRI) derived from GPS base station measurements is sensitive to daily vegetation water content changes and may provide for effective microwave LSP validation. We compared multiyear (2007-2011) NMRI and satellite VOD records at over 300 GPS sites in North America, and their derived SOS metrics for a subset of 24 homogenous land cover sites to investigate VOD and NMRI correspondence, and potential NMRI utility for LSP validation. Significant correlations (P<0.05) were found at 276 of 305 sites (90.5 %), with generally favorable correspondence in the resulting SOS metrics (r (2)=0.73, P<0.001, RMSE=36.8 days). This study is the first attempt to compare satellite microwave LSP metrics to a GPS network derived reflectance index and highlights both the utility and limitations of the NMRI data for LSP validation, including spatial scale discrepancies between local NMRI measurements and relatively coarse satellite VOD retrievals.

  5. Is the Wilkins Ice Shelf a Firn Aquifer? Spaceborne Observation of Subsurface Winter Season Liquid Meltwater Storage on the Antarctic Peninsula using Multi-Frequency Active and Passive Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Miller, J.; Scambos, T.; Forster, R. R.; Long, D. G.; Ligtenberg, S.; van den Broeke, M.; Vaughan, D. G.

    2015-12-01

    Near-surface liquid meltwater on ice shelves has been inferred to influence ice shelf stability if it induces hydrofracture and is linked to disintegration events on the Larsen B and the Wilkins ice shelves on the Antarctic Peninsula during the summer months. While the initial Wilkins disintegration event occurred in March of 2009, two smaller disintegration events followed in May and in July of that year. It has long been assumed meltwater refreezes soon after surface melt processes cease. Given this assumption, an earlier hypothesis for the two winter season disintegration events was hydrofracture via a brine infiltration layer. Two lines of evidence supported this hypothesis 1) early airborne radar surveys did not record a reflection from the bottom of the ice shelf, and 2) a shallow core drilled in 1972 on the Wilkins encountered liquid water at a depth of ~7 m. The salinity of the water and the temperature at the base of the core, however, were not described. The recent discovery of winter season liquid meltwater storage on the Greenland ice sheet has changed perceptions on meltwater longevity at depth in firn. Evidence of Greenland's firn aquifer includes liquid meltwater encountered in shallow firn cores at 5 m depth and a lack of reflections from the base of the ice sheet in airborne surveys. Thus, previous lines of evidence suggesting brine infiltration may alternatively suggest the presence of a perennial firn aquifer. We recently demonstrated the capability for observation of Greenland's firn aquifer from space using multi-frequency active and passive microwave remote sensing. This research exploits the retrieval technique developed for Greenland to provide the first spaceborne mappings of winter season liquid meltwater storage on the Wilkins. We combine L-band brightness temperature and backscatter data from the MIRAS instrument (1.4 GHz) aboard ESA's Soil Moisture and Ocean Salinity mission and the radar (1.3 GHZ) and radiometer(1.4 GHz) aboard NASA

  6. An optical fiber sensing technique for temperature distribution measurements in microwave heating

    NASA Astrophysics Data System (ADS)

    Wada, Daichi; Sugiyama, Jun-ichi; Zushi, Hiroaki; Murayama, Hideaki

    2015-08-01

    We introduce an optical fiber sensing technique that can measure the temperature distributions along a fiber during microwave heating. We used a long-length fiber Bragg grating (FBG) as an electromagnetic-immune sensor and interrogated temperature distributions along the FBG by an optical frequency domain reflectometry. Water in a glass tube with a length of 820 mm was heated in a microwave oven, and its temperature distribution along the glass tube was measured using the sensing system. The temperature distribution was obtained in 5 mm intervals. Infrared radiometry was also used to compare the temperature measurement results. Time and spatial variations of the temperature distribution profiles were monitored for several microwave input powers. The results clearly depict inhomogeneous temperature profiles. The applicability and effectiveness of the optical fiber distributed measurement technique in microwave heating are demonstrated.

  7. Peformance evaluation of a passive microwave imaging system. [for remote sensing

    NASA Technical Reports Server (NTRS)

    Mcallum, W. E.

    1973-01-01

    A test program was conducted to evaluate the passive microwave imaging system for possible application in the NASA Earth Resources Program. In addition to test data analysis, the report gives a brief description of the radiometer, its software, and the ground support equipment. The microwave image quality is adequate for remote sensing applications studies. Instrument problems are described, and suggestions are given for possible improvements and potential applications.

  8. Foreword to the Special Issue on the 11th Specialist Meeting on Microwave Radiometry and Remote Sensing Applications (MicroRad 2010)

    NASA Technical Reports Server (NTRS)

    Le Vine, David M; Jackson, Thomas J.; Kim, Edward J.; Lang, Roger H.

    2011-01-01

    The Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad 2010) was held in Washington, DC from March 1 to 4, 2010. The objective of MicroRad 2010 was to provide an open forum to report and discuss recent advances in the field of microwave radiometry, particularly with application to remote sensing of the environment. The meeting was highly successful, with more than 200 registrations representing 48 countries. There were 80 oral presentations and more than 100 posters. MicroRad has become a venue for the microwave radiometry community to present new research results, instrument designs, and applications to an audience that is conversant in these issues. The meeting was divided into 16 sessions (listed in order of presentation): 1) SMOS Mission; 2) Future Passive Microwave Remote Sensing Missions; 3) Theory and Physical Principles of Electromagnetic Models; 4) Field Experiment Results; 5) Soil Moisture and Vegetation; 6) Snow and Cryosphere; 7) Passive/Active Microwave Remote Sensing Synergy; 8) Oceans; 9) Atmospheric Sounding and Assimilation; 10) Clouds and Precipitation; 11) Instruments and Advanced Techniques I; 12) Instruments and Advanced Techniques II; 13) Cross Calibration of Satellite Radiometers; 14) Calibration Theory and Methodology; 15) New Technologies for Microwave Radiometry; 16) Radio Frequency Interference.

  9. Effects of the Ionosphere on Passive Microwave Remote Sensing of Ocean Salinity from Space

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Abaham, Saji; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    Among the remote sensing applications currently being considered from space is the measurement of sea surface salinity. The salinity of the open ocean is important for understanding ocean circulation and for modeling energy exchange with the atmosphere. Passive microwave remote sensors operating near 1.4 GHz (L-band) could provide data needed to fill the gap in current coverage and to complement in situ arrays being planned to provide subsurface profiles in the future. However, the dynamic range of the salinity signal in the open ocean is relatively small and propagation effects along the path from surface to sensor must be taken into account. In particular, Faraday rotation and even attenuation/emission in the ionosphere can be important sources of error. The purpose or this work is to estimate the magnitude of these effects in the context of a future remote sensing system in space to measure salinity in L-band. Data will be presented as a function of time location and solar activity using IRI-95 to model the ionosphere. The ionosphere presents two potential sources of error for the measurement of salinity: Rotation of the polarization vector (Faraday rotation) and attenuation/emission. Estimates of the effect of these two phenomena on passive remote sensing over the oceans at L-band (1.4 GHz) are presented.

  10. Investigating Land Surface Phenology Derived from Satellite and GPS Network Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Jones, M. O.; Kimball, J. S.; Small, E. E.; Larson, K. M.

    2013-12-01

    The land surface phenology (LSP) start of season (SOS) metric signals the seasonal onset of vegetation activity, including canopy growth and associated increases in land-atmosphere water, energy and carbon (CO2) exchanges influencing weather and climate variability. The Vegetation Optical Depth (VOD) parameter determined from satellite passive microwave remote sensing provides for global LSP monitoring that is sensitive to changes in vegetation canopy water content and biomass, and insensitive to atmosphere and solar illumination constraints. Direct field measures of canopy water content and biomass changes desired for LSP validation are generally lacking due to prohibitive costs of maintaining regional monitoring networks. Alternatively, a Normalized Microwave Reflectance Index (NMRI) derived from GPS base station measurements is sensitive to daily vegetation water content changes and may provide for effective microwave LSP validation as a relatively high spatial (1000m2) and temporal resolution vegetation phenology measure. We compared NMRI (1.2 and 1.5 GHz) and satellite microwave (AMSR-E sensor) 18.7 GHz frequency VOD records (2007 to 2011) at over 300 GPS sites in North America and their derived SOS metrics for a subset of 24 homogenous land cover sites. Significant correlations were found at 276 of 305 sites, with generally favorable correspondence in the resulting SOS metrics. We also investigated the temporal dynamics of nine NMRI sites within a single 25km resolution VOD pixel and with corresponding 250m MODIS NDVI measures of the three dominant land covers within the pixel to assess the spatial scale discrepancies between these high, moderate, and coarse resolution retrievals. This study is the first attempt to compare satellite microwave LSP metrics to a GPS network derived reflectance index and highlights both the utility and limitations of the NMRI data for LSP validation. Integration of GPS base stations and the NMRI into current phenology observation

  11. Cloud-to-Ground Lightning Estimates Derived from SSMI Microwave Remote Sensing and NLDN

    NASA Technical Reports Server (NTRS)

    Winesett, Thomas; Magi, Brian; Cecil, Daniel

    2015-01-01

    Lightning observations are collected using ground-based and satellite-based sensors. The National Lightning Detection Network (NLDN) in the United States uses multiple ground sensors to triangulate the electromagnetic signals created when lightning strikes the Earth's surface. Satellite-based lightning observations have been made from 1998 to present using the Lightning Imaging Sensor (LIS) on the NASA Tropical Rainfall Measuring Mission (TRMM) satellite, and from 1995 to 2000 using the Optical Transient Detector (OTD) on the Microlab-1 satellite. Both LIS and OTD are staring imagers that detect lightning as momentary changes in an optical scene. Passive microwave remote sensing (85 and 37 GHz brightness temperatures) from the TRMM Microwave Imager (TMI) has also been used to quantify characteristics of thunderstorms related to lightning. Each lightning detection system has fundamental limitations. TRMM satellite coverage is limited to the tropics and subtropics between 38 deg N and 38 deg S, so lightning at the higher latitudes of the northern and southern hemispheres is not observed. The detection efficiency of NLDN sensors exceeds 95%, but the sensors are only located in the USA. Even if data from other ground-based lightning sensors (World Wide Lightning Location Network, the European Cooperation for Lightning Detection, and Canadian Lightning Detection Network) were combined with TRMM and NLDN, there would be enormous spatial gaps in present-day coverage of lightning. In addition, a globally-complete time history of observed lightning activity is currently not available either, with network coverage and detection efficiencies varying through the years. Previous research using the TRMM LIS and Microwave Imager (TMI) showed that there is a statistically significant correlation between lightning flash rates and passive microwave brightness temperatures. The physical basis for this correlation emerges because lightning in a thunderstorm occurs where ice is first

  12. Satellite Remote Sensing: Passive-Microwave Measurements of Sea Ice

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Satellite passive-microwave measurements of sea ice have provided global or near-global sea ice data for most of the period since the launch of the Nimbus 5 satellite in December 1972, and have done so with horizontal resolutions on the order of 25-50 km and a frequency of every few days. These data have been used to calculate sea ice concentrations (percent areal coverages), sea ice extents, the length of the sea ice season, sea ice temperatures, and sea ice velocities, and to determine the timing of the seasonal onset of melt as well as aspects of the ice-type composition of the sea ice cover. In each case, the calculations are based on the microwave emission characteristics of sea ice and the important contrasts between the microwave emissions of sea ice and those of the surrounding liquid-water medium.

  13. Sensing feeble microwave signals via an optomechanical transducer

    NASA Astrophysics Data System (ADS)

    Zhang, Keye; Bariani, Francesco; Dong, Ying; Zhang, Weiping; Meystre, Pierre

    2015-05-01

    Due to their low energy content microwave signals at the single-photon level are extremely challenging to measure. Guided by recent progress in single-photon optomechanics and hybrid optomechanical systems, we propose a multimode optomechanical transducer that can detect intensities significantly below the single-photon level via off-resonant adiabatic transfer of the microwave signal to the optical frequency domain where the measurement is then performed. The influence of intrinsic quantum and thermal fluctuations on the performance of this detector are considered in detail. We acknowledge financial support from National Basic Research Program of China, NSF, ARO and the DARPA QuaSAR and ORCHID programs.

  14. Linking changes in dynamic cotton canopy to passive microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Tien, Kai-Jen Calvin

    Soil moisture is one of the most important variables in land-atmosphere processes. It determines how precipitation partitions into infiltration, surface runoff, and groundwater recharge. Additionally, soil moisture is important in partitioning the available energy into the latent and sensible heat fluxes at the land surface. The control of soil moisture is the key mechanism for the feedback mechanisms between land and atmospheric fluxes. Accurate estimates of these land surface fluxes are essential for understanding and quantifying the global, regional, and local hydrological cycles. Even though the biophysics of moisture and energy transport is captured in most current Soil-Vegetation-Atmosphere-Transfer (SVAT) models that provide estimates of soil moisture, the computational errors accumulate over time and the model estimates diverge from reality. One promising way to significantly improve model estimates of soil moisture is by assimilating remotely sensed data that are sensitive to soil moisture, for example, microwave brightness temperatures, and updating the model state variables. The microwave brightness at low frequencies is very sensitive to soil moisture in the top few centimeters in most vegetated surfaces. Most of the passive microwave brightness experiments for soil moisture retrieval conducted in agricultural terrains have been short-term experiments that captured only parts of the growing season. Knowledge for the interactions between microwave brightness signatures and changes in soil moisture and temperatures for a dynamic agricultural canopy, such as cotton, is very important during the whole growing season. Microwave brightness (MB) models simulating the terrain emission provide the opportunity to relate microwave signatures to soil moisture information. An integrated SVAT and MB model provides the opportunity to direct assimilate microwave remote sensing observations. The goal of this dissertation is to develop a MB model that can be used to

  15. NASA's Future Active Remote Sensing Missing for Earth Science

    NASA Technical Reports Server (NTRS)

    Hartley, Jonathan B.

    2000-01-01

    Since the beginning of space remote sensing of the earth, there has been a natural progression widening the range of electromagnetic radiation used to sense the earth, and slowly, steadily increasing the spatial, spectral, and radiometric resolution of the measurements. There has also been a somewhat slower trend toward active measurements across the electromagnetic spectrum, motivated in part by increased resolution, but also by the ability to make new measurements. Active microwave instruments have been used to measure ocean topography, to study the land surface. and to study rainfall from space. Future NASA active microwave missions may add detail to the topographical studies, sense soil moisture, and better characterize the cryosphere. Only recently have active optical instruments been flown in space by NASA; however, there are currently several missions in development which will sense the earth with lasers and many more conceptual active optical missions which address the priorities of NASA's earth science program. Missions are under development to investigate the structure of the terrestrial vegetation canopy, to characterize the earth's ice caps, and to study clouds and aerosols. Future NASA missions may measure tropospheric vector winds and make vastly improved measurements of the chemical components of the earth's atmosphere.

  16. Multispectral microwave imaging radar for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Larson, R. W.; Rawson, R.; Ausherman, D.; Bryan, L.; Porcello, L.

    1974-01-01

    A multispectral airborne microwave radar imaging system, capable of obtaining four images simultaneously is described. The system has been successfully demonstrated in several experiments and one example of results obtained, fresh water ice, is given. Consideration of the digitization of the imagery is given and an image digitizing system described briefly. Preliminary results of digitization experiments are included.

  17. Satellite remote sensing of global rainfall using passive microwave radiometry

    SciTech Connect

    Ferriday, J.G.

    1994-12-31

    Global rainfall over land and ocean is estimated using measurements of upwelling microwaves by a satellite passive microwave radiometer. Radiative transfer calculations through a cloud model are used to parameterize an inversion technique for retrieving rain rates from brightness temperatures measured by the Special Sensor Microwave Imager (SSM/I). The rainfall retrieval technique is based on the interaction between multi-spectral microwave radiances and millimeter sized liquid and frozen hydrometeors distributed in the satellite`s field of view. The rain rate algorithm is sensitive to both hydrometeor emission and scattering while being relatively insensitive to extraneous atmospheric and surface effects. Separate formulations are used over ocean and land to account for different background microwave characteristics and the algorithm corrects for inhomogeneous distributions of rain rates within the satellite`s field of view. Estimates of instantaneous and climate scale rainfall are validated through comparisons with modeled clouds, surface radars, rain gauges and alternative satellite estimates. The accuracy of the rainfall estimates is determined from a combination of validation comparisons, theoretical sampling error calculations, and modeled sensitivity to variations in atmospheric and surface radiative properties. An error budget is constructed for both instantaneous rain rates and climate scale global estimates. At a one degree resolution, the root mean square errors in instantaneous rain rate estimates are 13% over ocean and 20% over land. The root mean square errors in global rainfall totals over a four month period are found to be 46% over ocean and 63% over land. Global rainfall totals are computed on a monthly scale for a three year period from 1987 to 1990. The time series is analyzed for climate scale rainfall distribution and variability.

  18. Hydrazine sensing properties of microwave synthesized graphene/ZnO composites

    NASA Astrophysics Data System (ADS)

    Sreejesh, M.; Nagaraja, H. S.; Udaya Bhat, K.

    2016-05-01

    This paper reports the synthesis of graphene/ ZnO nanocomposite using microwave method and its application in sensing of hydrazine. The morphological characteristics of the samples are studied using Scanning Electron Microscope (SEM). The formation of the composite is further confirmed by the X-ray Diffraction (XRD). Energy Dispersive X-ray Analysis (EDAX) shows the presence of carbon indicating the presence of graphene. The hydrazine sensing property of the electrode is studied using cyclic voltammometry (CV) and Chronoamperometry (CA) studeis.

  19. Effects of corn stalk orientation and water content on passive microwave sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Oneill, P. E.; Blanchard, B. J.; Wang, J. R.; Gould, W. I.; Jackson, T. J.

    1984-01-01

    A field experiment was conducted utilizing artificial arrangements of plant components during the summer of 1982 to examine the effects of corn canopy structure and plant water content on microwave emission. Truck-mounted microwave radiometers at C (5 GHz) and L (1.4 GHz) band sensed vertically and horizontally polarized radiation concurrent with ground observations of soil moisture and vegetation parameters. Results indicate that the orientation of cut stalks and the distribution of their dielectric properties through the canopy layer can influence the microwave emission measured from a vegetation/soil scene. The magnitude of this effect varies with polarization and frequency and with the amount of water in the plant, disappearing at low levels of vegetation water content. Although many of the canopy structures and orientations studied in this experiment are somewhat artificial, they serve to improve understanding of microwave energy interactions within a vegetation canopy and to aid in the development of appropriate physically based vegetation models.

  20. Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing.

    PubMed

    Huang, Jie; Hua, Lei; Lan, Xinwei; Wei, Tao; Xiao, Hai

    2013-07-29

    This paper reports a distributed fiber optic sensing technique through microwave assisted separation and reconstruction of optical interferograms in spectrum domain. The approach involves sending a microwave-modulated optical signal through cascaded fiber optic interferometers. The microwave signal was used to resolve the position and reflectivity of each sensor along the optical fiber. By sweeping the optical wavelength and detecting the modulation signal, the optical spectrum of each sensor can be reconstructed. Three cascaded fiber optic extrinsic Fabry-Perot interferometric sensors were used to prove the concept. Their microwave-reconstructed interferogram matched well with those recorded individually using an optical spectrum analyzer. The application in distributed strain measurement has also been demonstrated.

  1. Modeling the use of microwave energy in sensing of moisture content in vidalia onions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microwave moisture sensing provides a means to nondestructively determine the amount of water in materials. This is accomplished through the correlation of dielectric constant and loss factor with moisture content in the material. In this study, linear relationships between a density-independent fun...

  2. IRIS - A concept for microwave sensing of soil moisture and ocean salinity

    NASA Technical Reports Server (NTRS)

    Moghaddam, M.; Njoku, E.

    1997-01-01

    A concept is described for passive microwave sensing of soil moisture and ocean salinity from space. The Inflatable Radiometric Imaging System (IRIS) makes use of a large-diameter, offset-fed, parabolic-torus antenna with multiple feeds, in a conical pushbroom configuration.

  3. Microwave remote sensing measurements of oil pollution on the ocean

    NASA Technical Reports Server (NTRS)

    Croswell, W. F.; Blume, H.-J. C.; Johnson, J. W.

    1981-01-01

    Microwave and optical remote sensors were flown over fresh and weathered crude oil released from a surface research vessel and also over a slick formed on the sea by frozen oleyl alcohol cubes released from a helicopter. For the crude oil experiments, microwave radiometric measurements at 1.43, 2.65, 22, and 31 GHz are reported, along with the variable incidence angle scattering measurements at 13.9 GHz. For these experiments, unusual depressions in the L-band brightness temperature were observed, possibly related to dispersants applied to the crude oil. Similar depressions, but with much larger values, were observed over the oleyl alcohol monomolecular slicks. Images obtained at 31 and 22 GHz were used to infer oil volume, yielding values which bound the known amounts spilled. Ku band measurements obtained in repeated passes over crude oil slicks are also discussed.

  4. Passive microwave remote sensing for sea ice research

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Techniques for gathering data by remote sensors on satellites utilized for sea ice research are summarized. Measurement of brightness temperatures by a passive microwave imager converted to maps of total sea ice concentration and to the areal fractions covered by first year and multiyear ice are described. Several ancillary observations, especially by means of automatic data buoys and submarines equipped with upward looking sonars, are needed to improve the validation and interpretation of satellite data. The design and performance characteristics of the Navy's Special Sensor Microwave Imager, expected to be in orbit in late 1985, are described. It is recommended that data from that instrument be processed to a form suitable for research applications and archived in a readily accessible form. The sea ice data products required for research purposes are described and recommendations for their archival and distribution to the scientific community are presented.

  5. Remote Strain Sensing of CFRP Using Microwave Frequency Domain Reflectometry

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote measurement of strain occurring at the first ply of a composite fiber reinforced polymer (CFRP) structure using Radio Frequency (RF) Electro-Magnetic (EM) radiation. While microwave reflectometry has been used to detect disbonds in CFRP structures, its use in detecting strain has been limited. This work will present data demonstrating the measurement of the reactance changes due to loading conditions that are indicative of strain in a CFRP structure. In addition, the basic EM signature will be presented along with an analysis of temperature and humidity effects.

  6. An intercomparison of available soil moisture estimates from thermal-infrared and passive microwave remote sensing and land-surface modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remotely-sensed soil moisture studies have mainly focused on retrievals using active and passive microwave (MW) sensors whose measurements provided a direct relationship to soil moisture (SM). MW sensors present obvious advantages such as the ability to retrieve through non-precipitating cloud cover...

  7. Development and Evaluation of Global Wetlands Mappings from Coarse-Resolution Satellite Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Schroeder, R.; McDonald, K. C.; Podest, E.; Willacy, K.; Jones, L. A.; Kimball, J. S.; Zimmermann, R.

    2010-12-01

    Wetlands exert major impacts on global biogeochemistry, hydrology, and biological diversity. The extent and seasonal, interannual, and decadal variation of inundated wetland area play key roles in ecosystem dynamics. Wetlands contribute approximately one fourth of the total methane annually emitted to the atmosphere and are identified as the primary contributor to interannual variations in the growth rate of atmospheric methane concentrations. Despite the importance of these environments in the global cycling of carbon and water and to current and future climate, the extent and dynamics of global wetlands remain poorly characterized and modeled, primarily because of the scarcity of suitable regional-to-global remote-sensing data for characterizing their distribution and dynamics. We present a satellite-based approach for mapping wetlands globally at coarse-resolution (25km). The approach employs a mixture model applied to ~8 years (2002-2009) of daily 18.7 GHz, V and H polarization brightness temperature (Tb) data from the Advanced Microwave Scanning Radiometer on EOS (AMSR-E) and daily Ku-band (13.4 GHz) radar backscatter data from SeaWinds-on-QuikSCAT. The combined passive-active microwave mixture model approach utilizes site-specific MODIS IGBP land cover information to account for the effect of vegetation structure on the microwave remote sensing-based retrieval of surface inundation dynamics. A comparison with coarse-resolution global maps of fractional open water cover (Fw) derived from radiometric inversion of daily AMSR-E 18.7 GHz, V and H polarized Tb observations demonstrates agreement in terms of both spatial distribution and temporal variability of the major global wetland complexes, but differences in the magnitudes of the Fw retrievals. Wetlands products obtained from both satellite-based methods are compared with the high-resolution (250m) land water mask developed from MODIS and SRTM L3 (MOD44W) as well as the global lake and wetland database (GLWD

  8. Proposed Definitions of Some Technical Terms Frequently Used in Microwave Radiometry for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Shiue, James C.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    The use of microwave radiometry for remote sensing is a relatively young field. As a result, there are no standard definitions of many frequently used technical terms; a lot of which are conventional usages carried-over from optical remote sensing, and a lot more are shared with electrical or microwave engineering. Sometimes the divergent notions and assumptions originating from a different field may cause ambiguity or confusions. It is proposed that we establish a list of frequently used terms, together with their 'standard' definitions and hope that they will gradually gain general acceptance by the remote sensing community. It would be even more useful if the IEEE community can set up a standard committee of sort to develop and maintain the standards. To minimize the effort, the existing terms should be kept or reinterpreted as much as possible. For example, the term 'Instantaneous Field of View' (IFOV), originally coming from the optical remote sensing field, is now appearing in microwave remote sensing literature frequently. The IFOV refers to the 'beam width' or the 'diameter' of the beam's geometrical projection on earth surface. Since the definition of 'beam width' is different for an optical system versus a microwave antenna, the use of IFOV in microwave radiometry needed to be clarified. Also, the meaning of the IFOV will be different depending upon whether the beam is scanning or not, and how the scanning takes place, e.g. 'continuous scanning' vs 'stare-and-step scan.' From this one term alone, it is clear that more subtle meanings must be spell out in detail and a 'standard' definition would help in understanding and comparing systems and data in the literature. A selected list of terms with their suggested definitions will be discussed in this presentation.

  9. Monolithic microwave integrated circuit devices for active array antennas

    NASA Technical Reports Server (NTRS)

    Mittra, R.

    1984-01-01

    Two different aspects of active antenna array design were investigated. The transition between monolithic microwave integrated circuits and rectangular waveguides was studied along with crosstalk in multiconductor transmission lines. The boundary value problem associated with a discontinuity in a microstrip line is formulated. This entailed, as a first step, the derivation of the propagating as well as evanescent modes of a microstrip line. The solution is derived to a simple discontinuity problem: change in width of the center strip. As for the multiconductor transmission line problem. A computer algorithm was developed for computing the crosstalk noise from the signal to the sense lines. The computation is based on the assumption that these lines are terminated in passive loads.

  10. New Small Satellite Capabilities for Microwave Atmospheric Remote Sensing: The Earth Observing Nanosatellite-Microwave (EON-MW)

    NASA Astrophysics Data System (ADS)

    Blackwell, W. J.

    2015-12-01

    Four nanosatellite advanced technology missions flying microwave radiometers for high-resolution atmospheric sensing are in varying stages of development. Microwave instrumentation is particularly well suited for implementation on a very small satellite, as the sensor requirements for power, pointing, and spatial resolution (aperture size) can be accommodated by a nanosatellite platform. The first mission, the Microsized Microwave Atmospheric Satellite (MicroMAS), was developed to demonstrate temperature sounding in nine channels near 118 GHz on a 3U CubeSat (10x10x34 cm; 4.25 kg). MicroMAS was recently released from the International Space Station (ISS) for a 100-day mission, and while an eventual transmitter failure prevented demonstration of the radiometer payload, all key spacecraft subsystems provided on-orbit data to validate performance. Two 3U CubeSat follow-on missions, MicroMAS-2 (12 channels near 90, 118, 183, and 206 GHz; cross-track scanning) and MiRaTA (12 channels near 60, 183, and 206 GHz; no scanning; GPSRO onboard), will launch in 2016 for further demonstration. Building upon this work, the Earth Observing Nanosatellite-Microwave mission is being formulated by MIT Lincoln Laboratory for the NOAA National Environmental Satellite, Data, and Information Service as part of the Polar Follow-On (PFO) budget request to extend JPSS for two more missions, and provides a means to mitigate the risk of a gap in continuity of weather observations. The PFO request aims to achieve robustness in the polar satellite system to ensure continuity of NOAA's polar weather observations. The baseline EON-MW design accommodates a scanning 22-channel high-resolution microwave spectrometer on a 12U (22x22x34 cm, 20 kg) CubeSat platform to provide data continuity with the existing AMSU and ATMS microwave sounding systems. EON-MW will nominally be launched into a sun-synchronous orbit for a two to three year mitigation mission in 2019 that will also extend technology

  11. Active microwave responses - An aid in improved crop classification

    NASA Technical Reports Server (NTRS)

    Rosenthal, W. D.; Blanchard, B. J.

    1984-01-01

    A study determined the feasibility of using visible, infrared, and active microwave data to classify agricultural crops such as corn, sorghum, alfalfa, wheat stubble, millet, shortgrass pasture and bare soil. Visible through microwave data were collected by instruments on board the NASA C-130 aircraft over 40 agricultural fields near Guymon, OK in 1978 and Dalhart, TX in 1980. Results from stepwise and discriminant analysis techniques indicated 4.75 GHz, 1.6 GHz, and 0.4 GHz cross-polarized microwave frequencies were the microwave frequencies most sensitive to crop type differences. Inclusion of microwave data in visible and infrared classification models improved classification accuracy from 73 percent to 92 percent. Despite the results, further studies are needed during different growth stages to validate the visible, infrared, and active microwave responses to vegetation.

  12. Spectroscopy underlying microwave remote sensing of atmospheric water vapor

    NASA Astrophysics Data System (ADS)

    Tretyakov, M. Yu.

    2016-10-01

    The paper presents a spectroscopist's view on the problem of recovery of the atmosphere humidity profile using modern microwave radiometers. Fundamental equations, including the description of their limitations, related to modeling of atmospheric water vapor absorption are given. A review of all reported to date experimental studies aimed at obtaining corresponding numerical parameters is presented. Best estimates of these parameters related to the Voigt (Lorentz, Gross, Van Vleck - Weisskopf and other equivalent) profile based modeling of the 22- and 183-GHz water vapor diagnostic lines and to non-resonance absorption as well as corresponding uncertainties are made on the basis of their comparative analysis.

  13. Stereological characterization of dry alpine snow for microwave remote sensing

    NASA Technical Reports Server (NTRS)

    Davis, Robert E.; Dozier, Jeff

    1989-01-01

    A persistent problem in investigations of electromagnetic properties of snow, from reflectance at visible wavelengths to emission and backscattering in the microwave, has been the proper characterization of the snow's physical properties. It is suggested that the granular and laminar structure of snow can be measured in its aggregated state by stereology performed on sections prepared from snow specimens, and that these kinds of measurements can be incorporated into models of the electromagnetic properties. With careful sampling, anisotropy in the snow microstructure at various scales can be quantified. It is shown how stereological parameters can be averaged over orientation and optical depth for radiative transfer modeling.

  14. Observations of Land Surface Variability Using Passive Microwave Sensing

    NASA Technical Reports Server (NTRS)

    Njoku, Eni G.

    1999-01-01

    Understanding the global variability of land surface wetness (soil moisture), skin temperature, and related surface fluxes of heat and moisture is key to assessing the importance of the land surface in influencing climate. The feasibility of producing model estimates of these quantities is being studied as part of the International Satellite Land Surface Climatology Project (ISLSCP) Global Soil Wetness Project (GSWP). In the GSWP approach, meteorological observations and analyses are used to drive global circulation models. Satellite measurements can provide independent estimates of key land surface parameters that are needed for initializing and validating the climate models and for monitoring long-term change. Satellite observations of the land surface can also be assimilated into soil models to estimate moisture in the root zone. In our research, passive microwave satellite data recorded during 1978-1987 from the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) are being used to examine spatial and temporal trends in surface soil moisture, vegetation, and temperature. These data include observations at C and X bands (6.6 and 10.7 GHz), which are not available on the current Special Sensor Microwave/Imager (SSM/I) and are precursors to data that will become available from the Advanced Microwave Scanning Radiometer (AMSR) on Advanced Earth Observing Satellite (ADEOS-II) and Earth Observing System (EOS) PM1 in the year 2000. A chart shows a time-series of SMMR-derived surface temperature, T-e and surface soil moisture M, retrieved on a 0.5 deg x 0.5 deg grid and further averaged over a 4 deg x 10 deg study region in the African Sahel. Also shown are National Center for Environmental Prediction (NCEP) model outputs of surface temperature, T-sfc, and soil wetness, Soil-w. The variables have been scaled to have similar dynamic ranges on the plots. The NCEP data from the NCEP Reanalysis Project are monthly averages on a 2.5 deg x 2.5 deg grid averaged over

  15. Microwave and optical remote sensing of forest vegetation

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M.; Bauer, M. E.; Biehl, L. L.; Mroczynski, R. P.

    1984-01-01

    The objectives and anticipated results of a study to define the strengths and limitations of microwave (SIR-B) and optical (thematic Mapper) data, singly and in combination, for the purpose of characterizing forest cover types and condition classes are described. Other specific objectives include: (1) the assessment of the effectiveness of a contextual classification algorithm (SECHO); (2) evaluation of the utility of different look angles of SAR data in determining differences in stand density of commercial forests; and (3) the determination of the effectiveness of the L-band HH polarized SIR-B data in differentiating forest-stand densities.

  16. A Global Record of Daily Landscape Freeze-Thaw Status from Satellite Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Kimball, J. S.; Kim, Y.; Colliander, A.; McDonald, K. C.

    2011-12-01

    The freeze-thaw (FT) parameter from satellite microwave remote sensing quantifies the predominant landscape frozen or thawed state and is closely linked to surface energy budget and hydrologic activity, seasonal vegetation growth dynamics and terrestrial carbon budgets. A global Earth System Data Record (ESDR) of daily landscape FT status (FT-ESDR) was developed using a temporal change classification of 37 GHz brightness temperature (Tb) series from the Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave Imager (SSM/I), and encompassing land areas where seasonal frozen temperatures influence ecosystem processes. A consistent, long-term (>30 yr) FT record was created by ensuring cross-sensor consistency through pixel-wise adjustment of the SMMR Tb record based on empirical analyses of overlapping SMMR and SSM/I measurements. The product is designed to determine the FT status of the composite landscape vegetation-snow-soil medium with sufficient accuracy to characterize frozen temperature constraints to surface water mobility, vegetation productivity and land-atmosphere CO2 fluxes. A multi-tier product validation is applied using in situ temperature and tower carbon flux measurements, and other satellite FT retrievals. The FT-ESDR record shows mean annual spatial classification accuracies of 91 (+/-8.6) and 84 (+/-9.3) percent for PM and AM overpass retrievals relative to surface air temperature measurements from global weather stations. Other comparisons against spatially dense temperature observations from an Alaska ecological transect reveal satellite sensor frequency dependence and variable FT sensitivity to surface air, vegetation, soil and snow properties. Other satellite sensor retrievals, including AMSR-E and SMOS show similar FT classification accuracies, but variable sensitivity to different landscape elements. Sensor FT classification differences reflect differences in microwave frequency, footprint resolution and satellite

  17. Microwave remote sensing and its application to soil moisture detection

    NASA Technical Reports Server (NTRS)

    Newton, R. W. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. Experimental measurements were utilized to demonstrate a procedure for estimating soil moisture, using a passive microwave sensor. The investigation showed that 1.4 GHz and 10.6 GHz can be used to estimate the average soil moisture within two depths; however, it appeared that a frequency less than 10.6 GHz would be preferable for the surface measurement. Average soil moisture within two depths would provide information on the slope of the soil moisture gradient near the surface. Measurements showed that a uniform surface roughness similar to flat tilled fields reduced the sensitivity of the microwave emission to soil moisture changes. Assuming that the surface roughness was known, the approximate soil moisture estimation accuracy at 1.4 GHz calculated for a 25% average soil moisture and an 80% degree of confidence, was +3% and -6% for a smooth bare surface, +4% and -5% for a medium rough surface, and +5.5% and -6% for a rough surface.

  18. Active microwave remote sensing research program plan. Recommendations of the Earth Resources Synthetic Aperture Radar Task Force. [application areas: vegetation canopies, surface water, surface morphology, rocks and soils, and man-made structures

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A research program plan developed by the Office of Space and Terrestrial Applications to provide guidelines for a concentrated effort to improve the understanding of the measurement capabilities of active microwave imaging sensors, and to define the role of such sensors in future Earth observations programs is outlined. The focus of the planned activities is on renewable and non-renewable resources. Five general application areas are addressed: (1) vegetation canopies, (2) surface water, (3) surface morphology, (4) rocks and soils, and (5) man-made structures. Research tasks are described which, when accomplished, will clearly establish the measurement capabilities in each area, and provide the theoretical and empirical results needed to specify and justify satellite systems using imaging radar sensors for global observations.

  19. Validating a Satellite Microwave Remote Sensing Based Global Record of Daily Landscape Freeze-Thaw Dynamics

    NASA Astrophysics Data System (ADS)

    Kimball, J. S.; Kim, Y.; McDonald, K. C.

    2012-12-01

    The freeze-thaw (FT) parameter from satellite microwave remote sensing quantifies the predominant landscape frozen or thawed state and is closely linked to surface energy budget and hydrologic activity, vegetation growth, terrestrial carbon budgets and land-atmosphere trace gas exchange. A global Earth System Data Record of daily landscape FT status (FT-ESDR) was developed using a temporal change classification of overlapping 37 GHz brightness temperature (Tb) series from the Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave Imager (SSM/I), and encompassing land areas where seasonal frozen temperatures influence ecosystem processes. A temporally consistent, long-term (>30 yr) FT record was created by ensuring cross-sensor consistency through pixel-wise adjustment of the SMMR Tb record based on empirical analyses of overlapping SMMR and SSM/I measurements. The FT-ESDR is designed to determine the FT status of the composite landscape vegetation-snow-soil medium with sufficient accuracy to characterize frozen temperature constraints to surface water mobility, vegetation productivity and land-atmosphere CO2 fluxes. A multi-tier validation scheme was applied using in situ temperature measurements, other satellite FT retrievals and synergistic biophysical data. These results are incorporated into the product metadata structure, including mean daily spatial classification accuracies and annual quality assessment (QA) maps accounting for landscape heterogeneity, algorithm limitations and sensor retrieval gaps. The resulting FT-ESDR shows mean annual spatial classification accuracies of 91 (+/-8.6) and 84 (+/-9.3) percent for PM and AM overpass retrievals. Accuracy is reduced during seasonal transition periods when FT heterogeneity is maximized within the relatively coarse (~25-km) satellite footprint. The QA rankings range from low (estimated accuracy <70%) to best (>90%) categories; mean annual QA results for the 1979-2011 period show relative

  20. Estimation of Snow Parameters Based on Passive Microwave Remote Sensing and Meteorological Information

    NASA Technical Reports Server (NTRS)

    Tsang, Leung; Hwang, Jenq-Neng

    1996-01-01

    A method to incorporate passive microwave remote sensing measurements within a spatially distributed snow hydrology model to provide estimates of the spatial distribution of Snow Water Equivalent (SWE) as a function of time is implemented. The passive microwave remote sensing measurements are at 25 km resolution. However, in mountain regions the spatial variability of SWE over a 25 km footprint is large due to topographic influences. On the other hand, the snow hydrology model has built-in topographic information and the capability to estimate SWE at a 1 km resolution. In our work, the snow hydrology SWE estimates are updated and corrected using SSM/I passive microwave remote sensing measurements. The method is applied to the Upper Rio Grande River Basin in the mountains of Colorado. The change in prediction of SWE from hydrology modeling with and without updating is compared with measurements from two SNOTEL sites in and near the basin. The results indicate that the method incorporating the remote sensing measurements into the hydrology model is able to more closely estimate the temporal evolution of the measured values of SWE as a function of time.

  1. [The progress in retrieving land surface temperature based on thermal infrared and microwave remote sensing technologies].

    PubMed

    Zhang, Jia-Hua; Li, Xin; Yao, Feng-Mei; Li, Xian-Hua

    2009-08-01

    Land surface temperature (LST) is an important parameter in the study on the exchange of substance and energy between land surface and air for the land surface physics process at regional and global scales. Many applications of satellites remotely sensed data must provide exact and quantificational LST, such as drought, high temperature, forest fire, earthquake, hydrology and the vegetation monitor, and the models of global circulation and regional climate also need LST as input parameter. Therefore, the retrieval of LST using remote sensing technology becomes one of the key tasks in quantificational remote sensing study. Normally, in the spectrum bands, the thermal infrared (TIR, 3-15 microm) and microwave bands (1 mm-1 m) are important for retrieval of the LST. In the present paper, firstly, several methods for estimating the LST on the basis of thermal infrared (TIR) remote sensing were synthetically reviewed, i. e., the LST measured with an ground-base infrared thermometer, the LST retrieval from mono-window algorithm (MWA), single-channel algorithm (SCA), split-window techniques (SWT) and multi-channels algorithm(MCA), single-channel & multi-angle algorithm and multi-channels algorithm & multi-angle algorithm, and retrieval method of land surface component temperature using thermal infrared remotely sensed satellite observation. Secondly, the study status of land surface emissivity (epsilon) was presented. Thirdly, in order to retrieve LST for all weather conditions, microwave remotely sensed data, instead of thermal infrared data, have been developed recently, and the LST retrieval method from passive microwave remotely sensed data was also introduced. Finally, the main merits and shortcomings of different kinds of LST retrieval methods were discussed, respectively.

  2. Microwave sensing for meat and fish structure evaluation

    NASA Astrophysics Data System (ADS)

    Clerjon, S.; Damez, J. L.

    2007-04-01

    Monitoring changes in muscle structure during the ageing of bovine meat and quality loss due to fish freezing are major industrial challenges. During ageing, bovine muscle becomes tender through muscle fibre deterioration, and full control of this process is essential. Conversely, degradation of fish muscle, often due to long storage or a freezing cycle, lowers quality. To improve competitiveness, and to respond to consumer quality demand, muscle structure needs to be evaluated in-line. We present here a polarimetric microwave method (10-24 GHz) consisting in free space and contact reflection coefficient measurements using a horn antenna and rectangular probes, respectively. This method is based on the measurement of dielectric properties of tissues parallel and perpendicular to muscle fibre directions. The dielectric properties of structured tissues such as muscles are anisotropic, but during processing structural disorganization reduces this anisotropy. The method is illustrated by the discrimination of fresh and frozen-thawed fish fillets and by monitoring of meat ageing.

  3. Development of Si(1-x)Ge(x) technology for microwave sensing applications

    NASA Technical Reports Server (NTRS)

    Mena, Rafael A.; Taub, Susan R.; Alterovitz, Samuel A.; Young, Paul E.; Simons, Rainee N.; Rosenfeld, David

    1993-01-01

    The progress for the first year of the work done under the Director's Discretionary Fund (DDF) research project entitled, 'Development of Si(1-x)Ge(x) Technology for Microwave Sensing Applications.' This project includes basic material characterization studies of silicon-germanium (SiGe), device processing on both silicon (Si) and SiGe substrates, and microwave characterization of transmission lines on silicon substrates. The material characterization studies consisted of ellipsometric and magneto-transport measurements and theoretical calculations of the SiGe band-structure. The device fabrication efforts consisted of establishing SiGe device processing capabilities in the Lewis cleanroom. The characterization of microwave transmission lines included studying the losses of various coplanar transmission lines and the development of transitions on silicon. Each part of the project is discussed individually and the findings for each part are presented. Future directions are also discussed.

  4. Microwave spectroscopy of the active sun

    NASA Technical Reports Server (NTRS)

    Hurford, Gordon

    1992-01-01

    In studies of solar active regions and bursts, the ability to obtain spatially resolved radio spectra (brightness temperature spectra) opens a whole new range of possibilities for study of the solar corona. For active regions, two-dimensional maps of brightness temperature over a wide range of frequencies allows one to determine temperature, column density, and magnetic field strength over the entire region in a straightforward, unambiguous way. For flares, the time-dependent electron energy distribution, number of accelerated electrons, and magnetic field strength and direction can be found. In practice, obtaining complete radio images at a large number of frequencies is a significant technical challenge, especially while keeping costs down. Our instrument at Owens Valley Radio Observatory provided the starting point for a modest attempt at meeting this goal. We proposed to build three additional, very low-cost 2-m antennas which, when combined with our existing two 27-m dishes, expands the array to 5 elements. This modest increase in number of solar dedicated antennas, from 2 to 5, increases our maximum number of physical baselines from 1 to 10 and allows the instrument to do true imaging of solar microwave sources, both bursts and active regions. Combined with the technique of frequency synthesis, the new array has up to 450 effective baselines, giving imaging capability that approaches that of a sub-arrayed VLA. The prototype antenna design was finalized and the antenna was put into operation in Nov. 1989.

  5. Characterizing Open Water Bodies and Wetland Ecosystems Using Optical and Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Podest, E.; McDonald, K. C.; Jensen, K.; Schroeder, R.

    2015-12-01

    Inundated vegetation and open water bodies are common features across the landscape and exert major impacts on hydrologic processes and surface-atmosphere carbon exchange. Their carbon emissions can have a large impact on global climate. It is therefore of great importance to assess their spatial extent and temporal variations in order to improve upon carbon balance estimates. Despite their importance in the global cycling of carbon and water and climate forecasting, they remain poorly characterized and modeled, primarily because of the scarcity of suitable regional-to-global remote sensing data for characterizing wetlands distribution and dynamics. Spaceborne microwave sensors are an effective tool for characterizing these ecosystems since they are sensitive to surface water and vegetation structure, and they can monitor large areas on a temporal basis regardless of atmospheric conditions or solar illumination. Optical sensors however provide much higher spatial resolution as well as information on water color. We developed a methodology using data from the Advanced Land Observing Satellite (ALOS) Phased Array L-Band Synthetic Aperture Radar (PALSAR) to map wetland ecosystems at 100 meter resolution for target regions as well as SMAP radar data at 1 km resolution. We also used optical data from Landsat to map open water bodies and their color properties at 15 meter resolution. Inundation dynamics of these ecosystems was assessed using a coarser resolution, 25 km microwave product on surface water fraction, which was derived using combined active and passive microwave data from QuikSCAT and AMSR-E on a weekly basis. We compare information content and accuracy of the coarse resolution products to the PALSAR, SMAP and Landsat based datasets to ensure information harmonization. The combination of high and low resolution datasets will allow for characterization of wetlands and open water bodies and assessment of their flooding status. This work has been undertaken

  6. Microwave interrogated large core fused silica fiber Michelson interferometer for strain sensing.

    PubMed

    Hua, Liwei; Song, Yang; Huang, Jie; Lan, Xinwei; Li, Yanjun; Xiao, Hai

    2015-08-20

    A Michelson-type large core optical fiber sensor has been developed, which is designed based on the optical carrier-based microwave interferometry technique, and fabricated by using two pieces of 200-μm diameter fused silica core fiber as two arms of the Michelson interferometer. The interference fringe pattern caused by the optical path difference of the two arms is interrogated in the microwave domain, where the fringe visibility of 40 dB has easily been obtained. The strain sensing at both room temperature and high temperatures has been demonstrated by using such a sensor. Experimental results show that this sensor has a linear response to the applied strain, and also has relatively low temperature-strain cross talk. The dopant-free quality of the fused silica fiber provides high possibility for the sensor to have promising strain sensing performance in a high temperature environment.

  7. Whisking mechanics and active sensing.

    PubMed

    Bush, Nicholas E; Solla, Sara A; Hartmann, Mitra Jz

    2016-10-01

    We describe recent advances in quantifying the three-dimensional (3D) geometry and mechanics of whisking. Careful delineation of relevant 3D reference frames reveals important geometric and mechanical distinctions between the localization problem ('where' is an object) and the feature extraction problem ('what' is an object). Head-centered and resting-whisker reference frames lend themselves to quantifying temporal and kinematic cues used for object localization. The whisking-centered reference frame lends itself to quantifying the contact mechanics likely associated with feature extraction. We offer the 'windowed sampling' hypothesis for active sensing: that rats can estimate an object's spatial features by integrating mechanical information across whiskers during brief (25-60ms) windows of 'haptic enclosure' with the whiskers, a motion that resembles a hand grasp.

  8. Characterization of vegetation by microwave and optical remote sensing

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T. (Principal Investigator); Ranson, K. J.; Biehl, L. L.

    1986-01-01

    Two series of carefully controlled experiments were conducted. First, plots of important crops (corn, soybeans, and sorghum), prairie grasses (big bluestem, switchgrass, tal fescue, orchardgrass, bromegrass), and forage legumes (alfalfa, red clover, and crown vetch) were manipulated to produce wide ranges of phytomass, leaf area index, and canopy architecture. Second, coniferous forest canopies were simulated using small balsam fir trees grown in large pots of soil and arranged systematically on a large (5 m) platform. Rotating the platform produced many new canopies for frequency and spatial averaging of the backscatter signal. In both series of experiments, backscatter of 5.0 GHz (C-Band) was measured as a function of view angle and polarization. Biophysical measurements included leaf area index, fresh and dry phytomass, water content of canopy elements, canopy height, and soil roughness and moisture content. For a subset of the above plots, additional measurements were acquired to exercise microwave backscatter models. These measurements included size and shape of leaves, stems, and fruit and the probability density function of leaf and stem angles. The relationships of the backscattering coefficients and the biophysical properties of the canopies were evaluated using statistical correlations, analysis of variance, and regression analysis. Results from the corn density and balsam fir experiments are discussed and analyses of data from the other experiments are summarized.

  9. Theoretical models for microwave remote sensing of snow-covered sea ice

    NASA Technical Reports Server (NTRS)

    Lin, F. C.; Kong, J. A.; Shin, R. T.

    1987-01-01

    The volume scattering effects of snow-covered sea ice are studied with a three-layer random medium model for microwave remote sensing. Theoretical results are illustrated by matching experimental data for dry snow-covered thick first-year sea ice at Point Barrow. The radar backscattering cross sections are seen to increase with snow cover for snow-covered sea ice, due to the increased scattering effects in the snow layer. The results derived can also be applied to passive remote sensing.

  10. Modeling the Effect of Vegetation on Passive Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Liu, Y. P.; Inguva, R.; Crosson, W. L.; Coleman, T. L.; Laymon, C.; Fahsi, A.

    1998-01-01

    The effect of vegetation on passive microwave remote sensing of soil moisture is studied. The radiative transfer modeling work of Njoku and Kong is applied to a stratified medium of which the upper layer is treated as a layer of vegetation. An effective dielectric constant for this vegetation layer is computed using estimates of the dielectric constant of individual components of the vegetation layer. The horizontally-polarized brightness temperature is then computed as a function of the incidence angle. Model predictions are used to compare with the data obtained in the Huntsville '96, remote sensing of soil moisture experiment, and with predictions obtained using a correction procedure of Jackson and Schmugge.

  11. Future Challenges for Microwave Remote Sensing in Support of Earth Sciences

    NASA Technical Reports Server (NTRS)

    Hildebrand, Peter H.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    The presentation will include an overview of leading Earth Science scientific problems that can be addressed using microwave remote sensing, including soil moisture, precipitation, sea salinity, sea surface winds, atmospheric profiling, etc. Using this basis of scientific measurement, the presentation will outline current technological impediments to implementing new measurement system, concentrating on a few example approaches to new technology, such as the conceptual design tradeoffs and capability improvements represented by a fleet of inexpensive nano-satellites, versus geostationary large aperture sensing systems. The outlook for measurement capabilities will be traded against the expected technological hurdles.

  12. Discrimination of soil hydraulic properties by combined thermal infrared and microwave remote sensing

    NASA Technical Reports Server (NTRS)

    Vandegriend, A. A.; Oneill, P. E.

    1986-01-01

    Using the De Vries models for thermal conductivity and heat capacity, thermal inertia was determined as a function of soil moisture for 12 classes of soil types ranging from sand to clay. A coupled heat and moisture balance model was used to describe the thermal behavior of the top soil, while microwave remote sensing was used to estimate the soil moisture content of the same top soil. Soil hydraulic parameters are found to be very highly correlated with the combination of soil moisture content and thermal inertia at the same moisture content. Therefore, a remotely sensed estimate of the thermal behavior of the soil from diurnal soil temperature observations and an independent remotely sensed estimate of soil moisture content gives the possibility of estimating soil hydraulic properties by remote sensing.

  13. On the Opportunities and Challenges in Microwave Medical Sensing and Imaging.

    PubMed

    Chandra, Rohit; Zhou, Huiyuan; Balasingham, Ilangko; Narayanan, Ram M

    2015-07-01

    Widely used medical imaging systems in clinics currently rely on X-rays, magnetic resonance imaging, ultrasound, computed tomography, and positron emission tomography. The aforementioned technologies provide clinical data with a variety of resolution, implementation cost, and use complexity, where some of them rely on ionizing radiation. Microwave sensing and imaging (MSI) is an alternative method based on nonionizing electromagnetic (EM) signals operating over the frequency range covering hundreds of megahertz to tens of gigahertz. The advantages of using EM signals are low health risk, low cost implementation, low operational cost, ease of use, and user friendliness. Advancements made in microelectronics, material science, and embedded systems make it possible for miniaturization and integration into portable, handheld, mobile devices with networking capability. MSI has been used for tumor detection, blood clot/stroke detection, heart imaging, bone imaging, cancer detection, and localization of in-body RF sources. The fundamental notion of MSI is that it exploits the tissue-dependent dielectric contrast to reconstruct signals and images using radar-based or tomographic imaging techniques. This paper presents a comprehensive overview of the active MSI for various medical applications, for which the motivation, challenges, possible solutions, and future directions are discussed.

  14. A summary of microwave remote sensing investigations planned for BOREAS

    NASA Technical Reports Server (NTRS)

    Mcdonald, Kyle C.

    1993-01-01

    The Boreal Ecosystem - Atmosphere Study (BOREAS) is a multidisciplinary field and remote sensing study that will be implemented jointly by the United States and Canada. The goal of BOREAS is to obtain an improved understanding of the interactions between the boreal forest biome and the atmosphere in order to clarify their roles in global change. Specific objectives are to improve the understanding of the processes that govern the exchanges of water, energy, heat, carbon, and trace gases between boreal ecosystems and the atmosphere, and to develop and validate remote sensing algorithms for transferring the understanding of these processes from local to regional scales. Two principal field sites, both within Canada, were selected. The northern site is located near Thompson, Manitoba, and the southern site encompasses Prince Albert National Park in Saskatchewan. The growing season in the northern site tends to be limited by growing-degree days while the southern site is limited by soil moisture and fire frequency. Most of the field work will occur at these two sites during 1993 and 1994 as part of six field campaigns. The first of these campaigns is scheduled for August 1993 and will involve instrument installation and an operational shakedown. Three large scale Intensive Field Campaigns (IFC's) are scheduled for 1994, along with two smaller scale Focused Field Campaigns (FFC's). The first 1994 campaign will be an FFC designed to capture the biome under completely frozen conditions during the winter. The second FFC and the first IFC are scheduled to capture the spring thaw period. Another IFC will take place in the summer during a period of maximum water stress. Finally, the third FFC will be scheduled to capture the collapse into senescence during the fall.

  15. Solar Activity Studies using Microwave Imaging Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    We report on the status of solar cycle 24 based on polar prominence eruptions (PEs) and microwave brightness enhancement (MBE) information obtained by the Nobeyama radioheliograph. The north polar region of the Sun had near-zero field strength for more than three years (2012-2015) and ended only in September 2015 as indicated by the presence of polar PEs and the lack of MBE. The zero-polar-field condition in the south started only around 2013, but it ended by June 2014. Thus the asymmetry in the times of polarity reversal switched between cycle 23 and 24. The polar MBE is a good proxy for the polar magnetic field strength as indicated by the high degree of correlation between the two. The cross-correlation between the high- and low-latitude MBEs is significant for a lag of approximately 5.5 to 7.3 years, suggesting that the polar field of one cycle indicates the sunspot number of the next cycle in agreement with the Babcock-Leighton mechanism of solar cycles. The extended period of near-zero field in the north-polar region should result in a weak and delayed sunspot activity in the northern hemisphere in cycle 25.

  16. Optical and microwave remote sensing of wheat and canola

    NASA Astrophysics Data System (ADS)

    Hochheim, Klaus

    biomass variation for wheat at the booting and heading stage, and later in the year as the crop senesces. Backscatter is inversely related to biomass (as defined by the normalized difference vegetation index (NDVI)) at the booting to heading stage, and positively correlated at the hard dough stage. The NDVI data and ground confirmation data support the premise that many of the parameters determining the optical reflectance are also directly and indirectly related to factors driving microwave backscatter.

  17. Microwave-induced thermogenetic activation of single cells

    SciTech Connect

    Safronov, N. A.; Fedotov, I. V.; Ermakova, Yu. G.; Matlashov, M. E.; Belousov, V. V.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Zheltikov, A. M.

    2015-04-20

    Exposure to a microwave field is shown to enable thermogenetic activation of individual cells in a culture of cell expressing thermosensitive ion channels. Integration of a microwave transmission line with an optical fiber and a diamond quantum thermometer has been shown to allow thermogenetic single-cell activation to be combined with accurate local online temperature measurements based on an optical detection of electron spin resonance in nitrogen–vacancy centers in diamond.

  18. Brazil's remote sensing activities in the Eighties

    NASA Technical Reports Server (NTRS)

    Raupp, M. A.; Pereiradacunha, R.; Novaes, R. A.

    1985-01-01

    Most of the remote sensing activities in Brazil have been conducted by the Institute for Space Research (INPE). This report describes briefly INPE's activities in remote sensing in the last years. INPE has been engaged in research (e.g., radiance studies), development (e.g., CCD-scanners, image processing devices) and applications (e.g., crop survey, land use, mineral resources, etc.) of remote sensing. INPE is also responsible for the operation (data reception and processing) of the LANDSATs and meteorological satellites. Data acquisition activities include the development of CCD-Camera to be deployed on board the space shuttle and the construction of a remote sensing satellite.

  19. Estimation of Soil Moisture Profile using a Simple Hydrology Model and Passive Microwave Remote Sensing

    NASA Technical Reports Server (NTRS)

    Soman, Vishwas V.; Crosson, William L.; Laymon, Charles; Tsegaye, Teferi

    1998-01-01

    Soil moisture is an important component of analysis in many Earth science disciplines. Soil moisture information can be obtained either by using microwave remote sensing or by using a hydrologic model. In this study, we combined these two approaches to increase the accuracy of profile soil moisture estimation. A hydrologic model was used to analyze the errors in the estimation of soil moisture using the data collected during Huntsville '96 microwave remote sensing experiment in Huntsville, Alabama. Root mean square errors (RMSE) in soil moisture estimation increase by 22% with increase in the model input interval from 6 hr to 12 hr for the grass-covered plot. RMSEs were reduced for given model time step by 20-50% when model soil moisture estimates were updated using remotely-sensed data. This methodology has a potential to be employed in soil moisture estimation using rainfall data collected by a space-borne sensor, such as the Tropical Rainfall Measuring Mission (TRMM) satellite, if remotely-sensed data are available to update the model estimates.

  20. Microwave interferometric radiometry in remote sensing: An invited historical review

    NASA Astrophysics Data System (ADS)

    Martín-Neira, M.; LeVine, D. M.; Kerr, Y.; Skou, N.; Peichl, M.; Camps, A.; Corbella, I.; Hallikainen, M.; Font, J.; Wu, J.; Mecklenburg, S.; Drusch, M.

    2014-06-01

    The launch of the Soil Moisture and Ocean Salinity (SMOS) mission on 2 November 2009 marked a milestone in remote sensing for it was the first time a radiometer capable of acquiring wide field of view images at every single snapshot, a unique feature of the synthetic aperture technique, made it to space. The technology behind such an achievement was developed, thanks to the effort of a community of researchers and engineers in different groups around the world. It was only because of their joint work that SMOS finally became a reality. The fact that the European Space Agency, together with CNES (Centre National d'Etudes Spatiales) and CDTI (Centro para el Desarrollo Tecnológico e Industrial), managed to get the project through should be considered a merit and a reward for that entire community. This paper is an invited historical review that, within a very limited number of pages, tries to provide insight into some of the developments which, one way or another, are imprinted in the name of SMOS.

  1. Microwave Interferometric Radiometry in Remote Sensing: an Invited Historical Review

    NASA Technical Reports Server (NTRS)

    Martin-Neira, M.; LeVine, D. M.; Kerr, Y.; Skou, N.; Peichl, M.; Camps, A.; Corbella, I.; Hallikainen, M.; Font, J.; Wu, J.; Mecklenburg, S.; Drusch, M.

    2014-01-01

    The launch of the Soil Moisture and Ocean Salinity (SMOS) mission on 2 November 2009 marked a milestone in remote sensing for it was the first time a radiometer capable of acquiring wide field of view images at every single snapshot, a unique feature of the synthetic aperture technique, made it to space. The technology behind such an achievement was developed, thanks to the effort of a community of researchers and engineers in different groups around the world. It was only because of their joint work that SMOS finally became a reality. The fact that the European Space Agency, together with CNES (Centre National d'Etudes Spatiales) and CDTI (Centro para el Desarrollo Tecnológico e Industrial), managed to get the project through should be considered a merit and a reward for that entire community. This paper is an invited historical review that, within a very limited number of pages, tries to provide insight into some of the developments which, one way or another, are imprinted in the name of SMOS.

  2. Soil moisture sensing via swept frequency based microwave sensors.

    PubMed

    Pelletier, Mathew G; Karthikeyan, Sundar; Green, Timothy R; Schwartz, Robert C; Wanjura, John D; Holt, Greg A

    2012-01-01

    There is a need for low-cost, high-accuracy measurement of water content in various materials. This study assesses the performance of a new microwave swept frequency domain instrument (SFI) that has promise to provide a low-cost, high-accuracy alternative to the traditional and more expensive time domain reflectometry (TDR). The technique obtains permittivity measurements of soils in the frequency domain utilizing a through transmission configuration, transmissometry, which provides a frequency domain transmissometry measurement (FDT). The measurement is comparable to time domain transmissometry (TDT) with the added advantage of also being able to separately quantify the real and imaginary portions of the complex permittivity so that the measured bulk permittivity is more accurate that the measurement TDR provides where the apparent permittivity is impacted by the signal loss, which can be significant in heavier soils. The experimental SFI was compared with a high-end 12 GHz TDR/TDT system across a range of soils at varying soil water contents and densities. As propagation delay is the fundamental measurement of interest to the well-established TDR or TDT technique; the first set of tests utilized precision propagation delay lines to test the accuracy of the SFI instrument's ability to resolve propagation delays across the expected range of delays that a soil probe would present when subjected to the expected range of soil types and soil moisture typical to an agronomic cropping system. The results of the precision-delay line testing suggests the instrument is capable of predicting propagation delays with a RMSE of +/-105 ps across the range of delays ranging from 0 to 12,000 ps with a coefficient of determination of r(2) = 0.998. The second phase of tests noted the rich history of TDR for prediction of soil moisture and leveraged this history by utilizing TDT measured with a high-end Hewlett Packard TDR/TDT instrument to directly benchmark the SFI instrument over

  3. Earth Science Microwave Remote Sensing at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center (GSFC) was established as NASA's first space flight center in 1959. Its 12,000 personnel are active in the Earth and space sciences, astronomy, space physics, tracking and communications. GSFC's mission is to expand our knowledge of the Earth and its environment, the solar system, and the universe through observations from space. The main Goddard campus is located in Greenbelt, Maryland, USA, just north of Washington, D.C. The Wallops Flight Facility (operational since 1945), located on the Atlantic coast of Virginia was consolidated with the Goddard Space Flight Center in 1982. Wallops is now NASA's principal facility for management and implementation of suborbital research programs, and supports a wide variety of airborne science missions as well. As the lead Center for NASA's Earth Science Enterprise (ESE)--a long-term, coordinated research effort to study the Earth as a global environmental system--GSFC scientists and engineers are involved in a wide range of Earth Science remote sensing activities. Their activities range from basic geoscience research to the development of instruments and technology for space missions, as well as the associated Calibration/Validation (Cal/Val) work. The shear breadth of work in these areas precludes an exhaustive description here. Rather, this article presents selected brief overviews of microwave-related Earth Science applications and the ground-based, airborne, and space instruments that are in service, under development, or otherwise significantly involving GSFC. Likewise, contributing authors are acknowledged for each section, but the results and projects they describe represent the cumulative efforts of many persons at GSFC as well as at collaborating institutions. For further information, readers are encouraged to consult the listed websites and references.

  4. Inversion algorithms for the microwave remote sensing of soil moisture. Experiments with swept frequency microwaves

    NASA Technical Reports Server (NTRS)

    Hancock, G. D.; Waite, W. P.

    1984-01-01

    Two experiments were performed employing swept frequency microwaves for the purpose of investigating the reflectivity from soil volumes containing both discontinuous and continuous changes in subsurface soil moisture content. Discontinuous moisture profiles were artificially created in the laboratory while continuous moisture profiles were induced into the soil of test plots by the environment of an agricultural field. The reflectivity for both the laboratory and field experiments was measured using bi-static reflectometers operated over the frequency ranges of 1.0 to 2.0 GHz and 4.0 to 8.0 GHz. Reflectivity models that considered the discontinuous and continuous moisture profiles within the soil volume were developed and compared with the results of the experiments. This comparison shows good agreement between the smooth surface models and the measurements. In particular the comparison of the smooth surface multi-layer model for continuous moisture profiles and the yield experiment measurements points out the sensitivity of the specular component of the scattered electromagnetic energy to the movement of moisture in the soil.

  5. Activities of the Division of Microwave Technology

    NASA Astrophysics Data System (ADS)

    Lewerentz, Birgitta

    1989-11-01

    Multistatic radar technology requirements are very high for antennas, where a maximum of flexibility is desired. Multilobes are often used, or groups of antennas which are electrically operated. Electronics and other electrical equipment were studied for supporting ionizing radiation and several forms of electromagnetic radiation. Ferrite components were studied. For microwave and optical technology, applications are reported. High effect Pulse Microwave radiation (HPM) emitting from an antenna and creating trouble in the electronic equipment, or destruction of this equipment is discussed. The defense against HPM is studied.

  6. Microwave-to-terahertz dielectric resonators for liquid sensing in microfluidic systems

    NASA Astrophysics Data System (ADS)

    Klein, N.; Watts, C.; Hanham, S. M.; Otter, W. J.; Ahmad, M. M.; Lucyszyn, S.

    2016-09-01

    The microwave-to-terahertz frequency range offers unique opportunities for the sensing of liquids based on the degree of molecular orientational and electronic polarization, Debye relaxation due to intermolecular forces between (semi-)polar molecules and collective vibrational modes within complex molecules. Methods for the fast dielectric characterization of (sub-)nanolitre volumes of mostly aqueous liquids and biological cell suspensions are discussed, with emphasis on labon- chip approaches aimed towards single-cell detection and label-free flow cytometry at microwave-to-terahertz frequencies. Among the most promising approaches, photonic crystal defect cavities made from high-resistivity silicon are compared with metallic split-ring resonant systems and high quality factor (Q-factor) whispering gallery-type resonances in dielectric resonators. Applications range from accurate haemoglobin measurements on nanolitre samples to label-free detection of circulating tumor cells.

  7. Palm Swamp Wetland Ecosystems of the Upper Amazon: Characterizing their Distribution and Inundation State Using Multiple Resolution Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Podest, E.; McDonald, K. C.; Schröder, R.; Pinto, N.; Zimmermann, R.; Horna, V.

    2011-12-01

    Palm swamp wetlands are prevalent in the Amazon basin, including extensive regions in northern Peru. These ecosystems are characterized by constant surface inundation and moderate seasonal water level variation. The combination of constantly saturated soils, giving rise to low oxygen conditions, and warm temperatures year-round can lead to considerable methane release to the atmosphere. Because of the widespread occurrence and expected sensitivity of these ecosystems to climate change, knowledge of their spatial extent and inundation state is crucial for assessing the associated land-atmosphere carbon exchange. Precise spatio-temporal information on palm swamps is difficult to gather because of their remoteness and difficult accessibility. Spaceborne microwave remote sensing is an effective tool for characterizing these ecosystems since it is sensitive to surface water and vegetation structure and allows monitoring large inaccessible areas on a temporal basis regardless of atmospheric conditions or solar illumination. We are developing a remote sensing methodology using multiple resolution microwave remote sensing data to determine palm swamp distribution and inundation state over focus regions in the Amazon basin in northern Peru. For this purpose, two types of multi-temporal microwave data are used: 1) high-resolution (100 m) data from the Advanced Land Observing Satellite (ALOS) Phased Array L-Band Synthetic Aperture Radar (PALSAR) to derive maps of palm swamp extent and inundation from dual-polarization fine-beam and multi-temporal HH-polarized ScanSAR, and 2) coarse resolution (25 km) combined active and passive microwave data from QuikSCAT and AMSR-E to derive inundated area fraction on a weekly basis. We compare information content and accuracy of the coarse resolution products to the PALSAR-based datasets to ensure information harmonization. The synergistic combination of high and low resolution datasets will allow for characterization of palm swamps and

  8. Passive Microwave Remote Sensing of Falling Snow and Associated GPM Field Campaigns

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail

    2011-01-01

    Retrievals of falling snow from space represent one of the next important challenges for the atmospheric, hydrological, and energy budget scientific communities. Historically, retrievals of falling snow have been difficult due to the relative insensitivity of satellite rain-based channels as used in the past. We emphasize the use of high frequency passive microwave channels (85-200 GHz) since these are more sensitive to the ice in clouds and have been used to estimate falling snow from space. While satellite-based remote sensing provides global coverage of falling snow events and the science is relatively new, retrievals are still undergoing development with challenges remaining. There are several current satellite sensors, though not specifically designed for estimating falling snow, are capable of measuring snow from space. These include NOAA's AMSU-B, the MHS sensors, and CloudSat radar. They use high frequency (greater than 85 GHz) passive and active microwave and millimeter-wave channels that are sensitive to the scattering from ice and snow particles in the atmosphere. Sensors with water vapor channels near 183 GHz center line provide opaqueness to the Earth's surface features that can contaminate the falling snow signatures, especially over snow covered surface. In addition, the Global Precipitation Measurement (GPM) mission scheduled for launch in 2013 is specifically designed to measure both liquid rain and frozen snow precipitation. Since falling snow from space is the next precipitation measurement challenge from space, information must be determined in order to guide retrieval algorithm development for these current and future missions. This information includes thresholds of detection for various sensor channel configurations, snow event system characteristics, and surface types. For example, can a lake effect snow system with low cloud tops having an ice water content (IWC) at the surface of 1.0 gram per cubic meter be detected? If this information is

  9. Annual Snow Assessments Using Multi-spectral and Passive Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Daly, S. F.; Vuyovich, C. M.; Deeb, E. J.; Newman, S. D.; Baldwin, T. B.

    2010-12-01

    Since the winter season of 2004-2005, annual snow assessments have been conducted for regions across the Middle East (including Eastern Turkey, Afghanistan, and Pakistan) using multispectral (AVHRR and MODIS) and passive microwave (SSM/I and AMSR-E) remote sensing technologies. Due to limited ground-based observations of precipitation and snow pack conditions, remote sensing provides a unique opportunity to assess these conditions at different scales and offer an appraisal of the current conditions in an historical context. During each winter season, bi-weekly snow products and assessments are produced including: current Snow Covered Area (SCA) at regional and watershed scales; estimation of SCA by elevation band; current snowpack total Snow Water Equivalent (SWE) for each watershed with an historical perspective (1987-present); snow condition outlook by watershed; general summary of snow conditions based on remote sensing products and limited ground-based observations; and if warranted, a snow melt flooding advisory. Most recently, the winter 2009-2010 season provided interesting aspects that are further investigated: comparison of reported drought conditions, SCA extents, and passive microwave SWE estimates in Afghanistan; flooding event in Northeastern Afghanistan perhaps due to late season snow fall and subsequent snow melt; lower SCA in Eastern Turkey throughout winter despite heavy precipitation perhaps explained by warmer regional temperatures.

  10. Allometric Relationships in Soybean to Estimate the Effect of Vegetation on Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Spencer, A. J.; Hornbuckle, B. K.; Patton, J.

    2011-12-01

    Microwave remote sensing is capable of developing soil moisture maps through satellite data. The resulting maps are useful indicators of hydrologic conditions. Water concentrations are deterministic of flooding events and potential agricultural resources. The emitted microwave radiation of soil is influenced by its moisture content. Models have been developed to incorporate parameters besides soil moisture that affect the emitted microwave radiation. We are interested in one of these parameters known as the optical depth. Optical depth is the effect of the canopy on the observed emission of microwaves. The vegetation directly competes with soil moisture as a contributor to the emitted microwave radiation and the optical depth appears within every term in the present satellite retrieval algorithm. Optical depth has been shown to be directly proportional to the amount of water contained within vegetation tissue. Allometry is a way to effectively and efficiently measure vegetation water content through the way the parts of the organism change in proportion to each other in response to growth. Vegetation water content is difficult to measure without taking destructive measurements, in addition to involving too much time and manual labor. Therefore, another component of vegetation can be measured in relation to vegetation water content which can then be related to optical depth. In our study we worked in soybean, a major crop in many areas of the world. We compared soybean vegetation water content to an estimate of the volume of an individual plant expressed as the product of canopy height and stem diameter squared (Zc*Sd2), both of which can be measured easily and nondestructively. We also wished to determine whether vegetation water content remained constant as a percentage to total biomass over the length of the growing season. Agricultural yield is most likely a function of the total dry mass of vegetation. Establishing the relationship between vegetation water

  11. Active and Passive Remote Sensing of Ice

    DTIC Science & Technology

    1993-01-26

    92 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Active and Passive Remote Sensing of Ice NO0014-89-J-l 107 6. AUTHOR(S) 425f023-08 Prof. J.A. Kong 7... REMOTE SENSING OF ICE Sponsored by: Department of the Navy Office of Naval Research Contract number: N00014-89-J-1107 Research Organization: Center for...J. A. Kong Period covered: October 1, 1988 - November 30, 1992 St ACTIVE AND PASSIVE REMOTE SENSING OF ICE FINAL REPORT This annual report covers

  12. Low-cost microwave radiometry for remote sensing of soil moisture

    NASA Astrophysics Data System (ADS)

    Chikando, Eric Ndjoukwe

    2007-12-01

    Remote sensing is now widely regarded as a dominant means of studying the Earth and its surrounding atmosphere. This science is based on blackbody theory, which states that all objects emit broadband electromagnetic radiation proportional to their temperature. This thermal emission is detectable by radiometers---highly sensitive receivers capable of measuring extremely low power radiation across a continuum of frequencies. In the particular case of a soil surface, one important parameter affecting the emitted radiation is the amount of water content or, soil moisture. A high degree of precision is required when estimating soil moisture in order to yield accurate forecasting of precipitations and short-term climate variability such as storms and hurricanes. Rapid progress within the remote sensing community in tackling current limitations necessitates an awareness of the general public towards the benefits of the science. Information about remote sensing instrumentation and techniques remain inaccessible to many higher-education institutions due to the high cost of instrumentation and the current general inaccessibility of the science. In an effort to draw more talent within the field, more affordable and reliable scientific instrumentation are needed. This dissertation introduces the first low-cost handheld microwave instrumentation fully capable of surface soil moisture studies. The framework of this research is two-fold. First, the development of a low-cost handheld microwave radiometer using the well-known Dicke configuration is examined. The instrument features a super-heterodyne architecture and is designed following a microwave integrated circuit (MIC) system approach. Validation of the instrument is performed by applying it to various soil targets and comparing measurement results to gravimetric technique measured data; a proven scientific method for determining volumetric soil moisture content. Second, the development of a fully functional receiver RF front

  13. Active and passive microwave measurements in Hurricane Allen

    NASA Technical Reports Server (NTRS)

    Delnore, V. E.; Bahn, G. S.; Grantham, W. L.; Harrington, R. F.; Jones, W. L.

    1985-01-01

    The NASA Langley Research Center analysis of the airborne microwave remote sensing measurements of Hurricane Allen obtained on August 5 and 8, 1980 is summarized. The instruments were the C-band stepped frequency microwave radiometer and the Ku-band airborne microwave scatterometer. They were carried aboard a NOAA aircraft making storm penetrations at an altitude of 3000 m and are sensitive to rain rate, surface wind speed, and surface wind vector. The wind speed is calculated from the increase in antenna brightness temperature above the estimated calm sea value. The rain rate is obtained from the difference between antenna temperature increases measured at two frequencies, and wind vector is determined from the sea surface normalized radar cross section measured at several azimuths. Comparison wind data were provided from the inertial navigation systems aboard both the C-130 aircraft at 3000 m and a second NOAA aircraft (a P-3) operating between 500 and 1500 m. Comparison rain rate data were obtained with a rain radar aboard the P-3. Evaluation of the surface winds obtained with the two microwave instruments was limited to comparisons with each other and with the flight level winds. Two important conclusions are drawn from these comparisons: (1) the radiometer is accurate when predicting flight level wind speeds and rain; and (2) the scatterometer produces well behaved and consistent wind vectors for the rain free periods.

  14. Research on Estimation Crop Planting Area by Integrating the Optical and Microwave Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Yu, F.

    2013-07-01

    Considering the problem in monitoring agricultural condition in the semi-arid areas of Northwest of China, we propose a new method for estimation of crop planting area, using the single phase optical and microwave remote sensing data collaboratively, which have demonstrated their respective advantages in the extraction of surface features. In the model, the ASAR backscatter coefficient is normalized by the incident angle at first, then the classifier based on Bayesian network is developed, and the VV, VH polarization of ASAR and all the 7 TM bands are taken as the input of the classifier to get the class labels of each pixel of the images. Moreover the crop planting areas can be extracted by the classification results. At last, the model is validated for the necessities of normalization by the incident angle and integration of TM and ASAR respectively. It results that the estimation accuracy of crop planting area of corn and other crops garden are 98.47% and 78.25% respectively using the proposed method, with an improvement of estimation accuracy of about 3.28% and 4.18% relative to single TM classification. These illustrate that synthesis of optical and microwave remote sensing data is efficient and potential in estimation crop planting area.

  15. Research on estimation crop planting area by integrating the optical and microwave remote sensing data

    NASA Astrophysics Data System (ADS)

    Liu, Jiang; Yu, Fan; Liu, Dandan; Tian, Jing; Zhang, Weicheng; Wang, Qiang; Yang, Jinling; Zhang, Lei

    2015-12-01

    Considering the problem in monitoring agricultural condition in the semi-arid areas of Northwest of China, we propose a new method for estimation of crop planting area, using the single phase optical and microwave remote sensing data collaboratively, which have demonstrated their respective advantages in the extraction of surface features. In the model, the ASAR backscatter coefficient is normalized by the incident angle at first, then the classifier based on Bayesian network is developed, and the VV, VH polarization of ASAR and all the 7 TM bands are taken as the input of the classifier to get the class labels of each pixel of the images. Moreover the crop planting areas can be extracted by the classification results. At last, the model is validated for the necessities of normalization by the incident angle and integration of TM and ASAR respectively. It results that the estimation accuracy of crop planting area of corn and other crops garden are 98.47% and 78.25% respectively using the proposed method, with an improvement of estimation accuracy of about 3.28% and 4.18% relative to single TM classification. These illustrate that synthesis of optical and microwave remote sensing data is efficient and potential in estimation crop planting area.

  16. Microwave Radiometer Technology Acceleration Mission (MiRaTA): Advancing Weather Remote Sensing with Nanosatellites

    NASA Astrophysics Data System (ADS)

    Cahoy, K.; Blackwell, W. J.; Bishop, R. L.; Erickson, N.; Fish, C. S.; Neilsen, T. L.; Stromberg, E. M.; Bardeen, J.; Dave, P.; Marinan, A.; Marlow, W.; Kingsbury, R.; Kennedy, A.; Byrne, J. M.; Peters, E.; Allen, G.; Burianek, D.; Busse, F.; Elliott, D.; Galbraith, C.; Leslie, V. V.; Osaretin, I.; Shields, M.; Thompson, E.; Toher, D.; DiLiberto, M.

    2014-12-01

    The Microwave Radiometer Technology Acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office (ESTO). Microwave radiometer measurements and GPS radio occultation (GPSRO) measurements of all-weather temperature and humidity provide key contributions toward improved weather forecasting. The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPS radio occultation: (1) new ultra-compact and low-power technology for multi-channel and multi-band passive microwave radiometers, and (2) new GPS receiver and patch antenna array technology for GPS radio occultation retrieval of both temperature-pressure profiles in the atmosphere and electron density profiles in the ionosphere. In addition, MiRaTA will test (3) a new approach to spaceborne microwave radiometer calibration using adjacent GPSRO measurements. The radiometer measurement quality can be substantially improved relative to present systems through the use of proximal GPSRO measurements as a calibration standard for radiometric observations, reducing and perhaps eliminating the need for costly and complex internal calibration targets. MiRaTA will execute occasional pitch-up maneuvers so that the radiometer and GPSRO observations sound overlapping volumes of atmosphere through the Earth's limb. To validate system performance, observations from both microwave radiometer (MWR) and GPSRO instruments will be compared to radiosondes, global high-resolution analysis fields, other satellite observations, and to each other using radiative transfer models. Both the radiometer and GPSRO payloads, currently at TRL5 but to be advanced to TRL7 at mission conclusion, can be accommodated in a single 3U CubeSat. The current plan is to launch from an International Space Station (ISS) orbit at ~400 km altitude and 52° inclination for low-cost validation over a ~90-day mission to fly in 2016. MiRaTA will demonstrate high fidelity, well-calibrated radiometric

  17. Annual South American Forest Loss Estimates (1989-2011) Based on Passive Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    van Marle, M.; van der Werf, G.; de Jeu, R.; Liu, Y.

    2014-12-01

    Vegetation dynamics, such as forest loss, are an important factor in global climate, but long-term and consistent information on these dynamics on continental scales is lacking. We have quantified large-scale forest loss over the 90s and 00s in the tropical biomes of South America using a passive-microwave satellite-based vegetation product. Our forest loss estimates are based on remotely sensed vegetation optical depth (VOD), which is an indicator of vegetation water content simultaneously retrieved with soil moisture. The advantage of low-frequency microwave remote sensing is that aerosols and clouds do not affect the observations. Furthermore, the longer wavelengths of passive microwaves penetrate deeper into vegetation than other products derived from optical and thermal sensors. This has the consequence that both woody parts of vegetation and leaves can be observed. The merged VOD product of AMSR-E and SSM/I observations, which covers over 23 years of daily observations, is used. We used this data stream and an outlier detection algorithm to quantify spatial and temporal variations in forest loss dynamics. Qualitatively, our results compared favorably to the newly developed Global Forest Change (GFC) maps based on Landsat data (r2=0.96), and this allowed us to convert the VOD outlier count to forest loss. Our results are spatially explicit with a 0.25-degree resolution and annual time step and we will present our estimates on country level. The added benefit of our results compared to GFC is the longer time period. The results indicate a relatively steady increase in forest loss in Brazil from 1989 until 2003, followed by two high forest loss years and a declining trend afterwards. This contrasts with other South American countries such as Bolivia and Peru, where forest losses increased in almost the whole 00s in comparison with the 90s.

  18. High-Resolution Daily Flood Extent Depiction from Microwave Remote Sensing: Global Results

    NASA Astrophysics Data System (ADS)

    Galantowicz, J. F.

    2015-12-01

    The need for frequent, accurate, high-resolution characterization of the temporal and spatial progression of flood hazards is evident, but has been beyond the capabilities of remote sensing methods. The surface is too often obscured by cloud cover for visual and infrared sensors and observations from radar sensors are too infrequent to create consistent historical databases or for monitoring current conditions. Passive microwave sensors, such as SSM/I, AMSR-E, and AMSR-2, acquire useful data during clear and cloudy conditions, have revisit periods of up to twice daily, and provide a continuous record of data from 1987 to the present. In this presentation, we will describe results from a flood mapping system capable of producing high-resolution (100-m) flood extent depictions from lower resolution (10-40-km) microwave data. The system uses the strong sensitivity of microwave data to surface water extent combined with land surface and atmospheric data to derive daily flooded fraction estimates globally on a sensor footprint basis. The system downscales flooded fraction to make a high-resolution Boolean flood extent depiction that is both spatially continuous and consistent with the lower resolution data (see Figure). The downscaling step is based on a relative floodability index derived from higher resolution topographic and hydrological data and processed to represent the minimum total water fraction threshold above which each grid point is expected to be flooded given microwave-derived water fraction inputs. We have completed daily, 100-m resolution flood maps for Africa for the 9.3-year AMSR-E period and will soon complete global flood maps fo the same period. We will present animations of daily flood extents during major events and discuss: validation of the flood maps against imagery derived from MODIS and Landsat data; analyses of minimum detectable flood size; statistical analyses of flooding over time; applications for this novel historical dataset; and

  19. Remote Sensing of the Arctic Seas.

    ERIC Educational Resources Information Center

    Weeks, W. F.; And Others

    1986-01-01

    Examines remote sensing of the arctic seas by discussing: (1) passive microwave sensors; (2) active microwave sensors; (3) other types of sensors; (4) the future deployment of sensors; (5) data buoys; and (6) future endeavors. (JN)

  20. Synergy between optical and microwave remote sensing to derive soil and vegetation parameters from MAC Europe 1991 Experiment

    NASA Technical Reports Server (NTRS)

    Taconet, O.; Benallegue, M.; Vidal, A.; Vidal-Madjar, D.; Prevot, L.; Normand, M.

    1993-01-01

    The ability of remote sensing for monitoring vegetation density and soil moisture for agricultural applications is extensively studied. In optical bands, vegetation indices (NDVI, WDVI) in visible and near infrared reflectances are related to biophysical quantities as the leaf area index, the biomass. In active microwave bands, the quantitative assessment of crop parameters and soil moisture over agricultural areas by radar multiconfiguration algorithms remains prospective. Furthermore the main results are mostly validated on small test sites, but have still to be demonstrated in an operational way at a regional scale. In this study, a large data set of radar backscattering has been achieved at a regional scale on a French pilot watershed, the Orgeval, along two growing seasons in 1988 and 1989 (mainly wheat and corn). The radar backscattering was provided by the airborne scatterometer ERASME, designed at CRPE, (C and X bands and HH and VV polarizations). Empirical relationships to estimate water crop and soil moisture over wheat in CHH band under actual field conditions and at a watershed scale are investigated. Therefore, the algorithms developed in CHH band are applied for mapping the surface conditions over wheat fields using the AIRSAR and TMS images collected during the MAC EUROPE 1991 experiment. The synergy between optical and microwave bands is analyzed.

  1. Snowpack Microstructure Characterization and Partial Coherent and Fully Coherent Forward Scattering Models in Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Tan, S.; Tsang, L.; Xu, X.; Ding, K. H.

    2015-12-01

    In this paper we describe partial coherent model and fully coherent snowpack scattering model based on numerical simulation of Maxwell's equation. In medium characterization, we derive the correlation functions from the pair distribution functions of sticky spheres and multiple-size spheres used in QCA. We show that both the Percus-Yevick pair functions and the bicontinuous model have tails in the correlation functions that are distinctly different from the traditional exponential correlation functions. The methodologies of using ground measurements of grain size distributions and correlation functions to obtain model parameters are addressed. The DMRT theory has been extended to model the backscattering enhancement. We developed the methodology of cyclical corrections beyond first order to all orders of multiple scattering. This enables the physical modeling of combined active and passive microwave remote sensing of snow over the same scene. The bicontinuous /DMRT is applied to compare with data acquired in the NoSREx campaign, and the model results are validated against coincidental active and passive measurements using the same set of physical parameters of snow in all frequency and polarization channels. The DMRT is a partially coherent approach that one accounts for the coherent wave interaction only within few wavelengths as represented by phase matrix. However, the phase information of field is lost in propagating the specific intensity via RT and this hinders the use of DMRT in coherent synthetic aperture radar (SAR) analysis, including InSAR, PolInSAR and Tomo-SAR. One can alternatively calculate the scattering matrix of the terrestrial snowpack above ground by solving the volume integral equations directly with half space Green's function. The scattering matrix of the snowpack is computed for each realization giving rise to the speckle statistics. The resulting bistatic scattering automatically includes the backscattering enhancement effects. Tomograms of

  2. Indicators of international remote sensing activities

    NASA Technical Reports Server (NTRS)

    Spann, G. W.

    1977-01-01

    The extent of worldwide remote sensing activities, including the use of satellite and high/medium altitude aircraft data was studied. Data were obtained from numerous individuals and organizations with international remote sensing responsibilities. Indicators were selected to evaluate the nature and scope of remote sensing activities in each country. These indicators ranged from attendance at remote sensing workshops and training courses to the establishment of earth resources satellite ground stations and plans for the launch of earth resources satellites. Results indicate that this technology constitutes a rapidly increasing component of environmental, land use, and natural resources investigations in many countries, and most of these countries rely on the LANDSAT satellites for a major portion of their data.

  3. Backscattering characteristics Analyses of winter wheat covered area and Drought Monitoring Based on active microwave

    NASA Astrophysics Data System (ADS)

    Zhang, C., Sr.; Li, L.

    2015-12-01

    The advantage of active microwave remote sensing on the sensitivity of polarization characteristic, backscatter intensity and phase characteristics to soil moisture demonstrates its potential to map and monitor relative soil moisture changes and drought information with high spatial resolution. However, the existence of soil surface condition and vegetation effects confounds the retrieval of soil moisture from active microwave, and therefore limits its applications on soil moisture retrieval and drought monitoring. To research how to reduce the effect of soil roughness and wheat cover with multi- incident angles and multi polarization active microwave remote sensing data, MIMICS and AIEM models were used to simulate the backscattering coefficient of winter wheat covered field. The interaction between winter wheat at main growth stages and microwave was analyzed. The effects of surface roughness and physical parameters of wheat on the backscattering characteristics and the variation of different incident angles and different polarization conditions are simulated and analyzed emphatically. Then scattering coefficient information of winter wheat covered area at different wheat growth stage was measured with a C band ground-based scattering meter. At the same time, biomass, leaf area index and soil rough degree, soil water content and other related parameters are collected. After comparing and analyzing the measured data and the simulated data at different incident angles and different polarization modes, we propose an approach of using multi polarization and multi angle data to eliminate the soil roughness and wheat vegetation effects and performing the inversion of soil moisture. Using the Radarsat2 satellite SAR data and ground-based scatter data gotten at the same period in 2012, soil moisture information of greater area is obtained, and then the drought information is obtained, which is consistent with the measured results.

  4. Microwave Dielectric Sensing of Moisture Content in Shelled Peanuts Independent of Bulk Density and with Temperature Compensation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A dielectric method for rapid and nondestructive sensing of moisture content in shelled peanuts from free space measurement of attenuation, phase shift, and their corresponding dielectric properties at microwave frequencies is presented. Results of moisture prediction with three density-independent...

  5. Evaluating melt onset date in the United States using remotely sensed passive microwave derived brightness temperature

    NASA Astrophysics Data System (ADS)

    Osborne, Douglas J.

    The timing and magnitude of spring snowmelt events impact riverine flooding and inform reservoir operations. This study evaluates the ability of the Diurnal Amplitude Variation (DAV), Frequency Difference (FD) and Polarization Ratio (PR) melt onset detection algorithms to determine melt onset dates (MOD) in the mid-latitudes of the United States. The methods are evaluated using satellite remotely sensed passive microwave observations from the Advanced Microwave Scanning Radiometer - EOS (AMSR-E) sensor and compare against in situ snow measurements from 763 Snow Telemetry (SNOTEL) and Soil Climate Analysis Network (SCAN) stations. The DAV method performs best in Alaska, predicting the MOD with a mean absolute error of 9.4 days, while the Frequency Difference and Polarization Ratio methods produce mean absolute errors of 12.5 and 11.9 days, respectively. The DAV method also clearly produced the best results in Vermont, the FD method worked best in South Dakota and the PR method performed best in Arizona. None of the study's methods are recommended for California, Minnesota, Oregon and Washington. The remaining states did not have an algorithm that worked notably better than the others and it was discovered that the methods do not work for a shallow snowpack. Tree cover was also found to have little effect on the performance of the melt onset detection methods for pixels having less than 50% tree cover.

  6. Remote sensing of precipitable water over the oceans from Nimbus-7 microwave measurements

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Change, H. D.; Chang, A. T. C.

    1981-01-01

    Global maps of precipitable water over derived from scanning multichannel microwave radiometer (SMMR) data reveal salient features associated with ocean currents and the large scale general circulation in the atmosphere. Nimbus-7 SMMR brightness temperature measurements in the 21 and 18 GHz channels are used to sense the precipitable water in the atmospheric over oceans. The difference in the brightness temperature (T sub 21 -T sub 18), both in the horizontal and vertical polarization, is found to be essentially a function of the precipitable water in the atmosphere. An equation, based on the physical consideration of the radiative transfer in the microwave region, is developed to relate the precipitable water to (T sub 21 - T sub 18). It shows that the signal (T sub 21- T sub 18) does not suffer severely from the noise introduced by variations in the sea surface temperature, surface winds, and liquid water content in non rain clouds. The rms deviation between the estimated precipitable water from SMMR data and that given by the closely coincident ship radiosondes is about 0.25 g/ sq cm

  7. Microwave assisted synthesis of copper oxide and its application in electrochemical sensing

    NASA Astrophysics Data System (ADS)

    Felix, S.; Bala Praveen Chakkravarthy, R.; Nirmala Grace, A.

    2015-02-01

    Copper oxide nanopowders were prepared using copper acetate as the precursor and polyethylene glycol (PEG) as stabilizer in ethanol medium. The mixture containing copper acetate, sodium hydroxide and PEG was irradiated with microwave and nanometric copper oxide particles were formed within 8 min. The prepared nanoparticles were characterized using x-ray diffraction, UV-vis spectroscopy and scanning electron microscopy. The average particle size was found to be ~ 4 nm. This was used to modify glassy carbon electrode with PVDF & DMF as binder and used for sensing of carbohydrates (glucose and sucrose) and H2O2. The copper oxide nanoparticles showed excellent sensitivity in the range of 0.1 mM to 1 mM when choronoamperometry was carried out at 0.6 V Vs. Ag/AgCl. The observed sensitivity is much higher when compared with conventional micron sized copper oxide particles.

  8. DNA sensing using split-ring resonator alone at microwave regime

    NASA Astrophysics Data System (ADS)

    Lee, Hee-Jo; Lee, Hyun-Seok; Yoo, Kyung-Hwa; Yook, Jong-Gwan

    2010-07-01

    In this paper, the feasibility of utilization of a single element double split-ring resonator as a biosensing device has been demonstrated. The compact resonator has been excited by time-varying magnetic fields generated from the 50 Ω microstrip transmission line. In this work, DNA hybridization is recognized with shift in S21 resonant frequency. When thiol-linked single stranded-DNA is immobilized onto a gold (Au) surface and is then coupled with complementary-DNA, the frequency changes by Δfss-DNA=20 MHz and Δfhybridization=60 MHz, respectively. Thus, it is clear that the resonator can be utilized as a DNA sensing element in the microwave regime.

  9. Spatial and temporal variability of snow depth derived from passive microwave remote sensing data in Kazakhstan

    NASA Astrophysics Data System (ADS)

    Mashtayeva, Shamshagul; Dai, Liyun; Che, Tao; Sagintayev, Zhanay; Sadvakasova, Saltanat; Kussainova, Marzhan; Alimbayeva, Danara; Akynbekkyzy, Meerzhan

    2016-12-01

    Snow cover plays an important role in the hydrological cycle and water management in Kazakhstan. However, traditional observations do not meet current needs. In this study, a snow depth retrieval equation was developed based on passive microwave remote sensing data. The average snow depth in winter (ASDW), snow cover duration (SCD), monthly maximum snow depth (MMSD), and annual average snow depth (AASD) were derived for each year to monitor the spatial and temporal snow distributions. The SCD exhibited significant spatial variations from 30 to 250 days. The longest SCD was found in the mountainous area in eastern Kazakhstan, reaching values between 200 and 250 days in 2005. The AASD increased from the south to the north and maintained latitudinal zonality. The MMSD in most areas ranged from 20 to 30 cm. The ASDW values ranged from 15 to 20 cm in the eastern region and were characterized by spatial regularity of latitudinal zonality. The ASDW in the mountainous area often exceeded 20 cm.

  10. Photonic compressive sensing with a micro-ring-resonator-based microwave photonic filter

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Ding, Yunhong; Zhu, Zhijing; Chi, Hao; Zheng, Shilie; Zhang, Xianmin; Jin, Xiaofeng; Galili, Michael; Yu, Xianbin

    2016-08-01

    A novel approach to realize photonic compressive sensing (CS) with a multi-tap microwave photonic filter is proposed and demonstrated. The system takes both advantages of CS and photonics to capture wideband sparse signals with sub-Nyquist sampling rate. The low-pass filtering function required in the CS is realized in a photonic way by using a frequency comb and a dispersive element. The frequency comb is realized by shaping an amplified spontaneous emission (ASE) source with an on-chip micro-ring resonator, which is beneficial to the integration of photonic CS. A proof-of-concept experiment for a two-tone signal acquisition with frequencies of 350 MHz and 1.25 GHz is experimentally demonstrated with a compression factor up to 16.

  11. Spatiotemporal analysis of soil moisture in using active and passive remotely sensed data and ground observations

    NASA Astrophysics Data System (ADS)

    Li, H.; Fang, B.; Lakshmi, V.

    2015-12-01

    Abstract: Soil moisture plays a vital role in ecosystem, biological processes, climate, weather and agriculture. The Soil Moisture Active Passive (SMAP) improves data by combining the advantages and avoiding the limitation of passive microwave remote sensing (low resolution), and active microwave (challenge of soil moisture retrieval). This study will advance the knowledge of the application of soil moisture by using the Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) data as well as data collected at Walnut Gulch Arizona in August 2015 during SMAPVEX15. Specifically, we will analyze the 5m radar data from Unmanned Airborne Vehicle Synthetic Aperture Radar (UAVSAR) to study spatial variability within the PALS radiometer pixel. SMAPVEX12/15 and SMAP data will also be analyzed to evaluate disaggregation algorithms. The analytical findings will provide valuable information for policy-makers to initiate and adjust protocols and regulations for protecting land resources and improving environmental conditions. Keywords: soil moisture, Remote Sensing (RS), spatial statistic

  12. River gauging at global scale using optical and passive microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Van Dijk, Albert I. J. M.; Brakenridge, G. Robert; Kettner, Albert J.; Beck, Hylke E.; De Groeve, Tom; Schellekens, Jaap

    2016-08-01

    Recent discharge observations are lacking for most rivers globally. Discharge can be estimated from remotely sensed floodplain and channel inundation area, but there is currently no method that can be automatically extended to many rivers. We examined whether automated monitoring is feasible by statistically relating inundation estimates from moderate to coarse (>0.05°) resolution remote sensing to monthly station discharge records. Inundation extents were derived from optical MODIS data and passive microwave sensors, and compared to monthly discharge records from over 8000 gauging stations and satellite altimetry observations for 442 reaches of large rivers. An automated statistical method selected grid cells to construct "satellite gauging reaches" (SGRs). MODIS SGRs were generally more accurate than passive microwave SGRs, but there were complementary strengths. The rivers widely varied in size, regime, and morphology. As expected performance was low (R < 0.7) for many (86%), often small or regulated, rivers, but 1263 successful SGRs remained. High monthly discharge variability enhanced performance: a standard deviation of 100-1000 m3 s-1 yielded ca. 50% chance of R > 0.6. The best results (R > 0.9) were obtained for large unregulated lowland rivers, particularly in tropical and boreal regions. Relatively poor results were obtained in arid regions, where flow pulses are few and recede rapidly, and in temperate regions, where many rivers are modified and contained. Provided discharge variations produce clear changes in inundated area and gauge records are available for part of the satellite record, SGRs can retrieve monthly river discharge values back to around 1998 and up to present.

  13. Sensing Human Activity: GPS Tracking

    PubMed Central

    van der Spek, Stefan; van Schaick, Jeroen; de Bois, Peter; de Haan, Remco

    2009-01-01

    The enhancement of GPS technology enables the use of GPS devices not only as navigation and orientation tools, but also as instruments used to capture travelled routes: as sensors that measure activity on a city scale or the regional scale. TU Delft developed a process and database architecture for collecting data on pedestrian movement in three European city centres, Norwich, Rouen and Koblenz, and in another experiment for collecting activity data of 13 families in Almere (The Netherlands) for one week. The question posed in this paper is: what is the value of GPS as ‘sensor technology’ measuring activities of people? The conclusion is that GPS offers a widely useable instrument to collect invaluable spatial-temporal data on different scales and in different settings adding new layers of knowledge to urban studies, but the use of GPS-technology and deployment of GPS-devices still offers significant challenges for future research. PMID:22574061

  14. Sensitivity of Bistatic Microwave Scattering for Soil Texture at X-Band for Remote Sensing

    NASA Astrophysics Data System (ADS)

    Singh, Dharmendra

    Soil texture is a fundamental soil physical property which is important for agriculture, soil characterization, soil moisture assessment, soil runoff etc. Major research works in field of microwave remote sensing to retrieve soil physical property are reported in backscattering (monostatic system) case. But, still the achieved results are not satisfactory. So, there is a need to concentrate on any other aspect of microwave remote sensing to improve the obtained results. Bistatic systems to check the scattering in specular direction are the need of present scenario. This type of study is also important for future cartwheel satellite system where one transmitter satellite and several other independent receiver satellites will work. In this paper bistatic microwave scattering sensitivity for four type of different soil texture is studied. According to United States Department of Agriculture (USDA) soil texture is a term commonly used to designate the proportionate distribution of the different sizes of mineral particles (based on there diameter in millimeters) in a soil and characterizes it into sand, silt and clay seperats. Experiments were carried out to analyze the coherent and non-coherent scattering behavior of different type of soil texture in specular direction. For experimental purposes an X-band bistatic scatterometer was indigenously developed in the lab. Experiments were carried out at 10 GHz frequency and observation were taken at different incidence angles varying from 25 degree to 70 degree in steps of 5 degree, and both vertical-vertical (VV) polarization and horizontal-horizontal polarization were taken into account. The measurements were taken for smooth surface with kl less than 0.2 (where k is wave number and l is rms surface height) and two rough surfaces with k i is 1.88 and k l is 2.93 for all the four fields that are having different proportion of sand, silt and clay. After calibration scattering coefficient for soil were calculated and then

  15. The NASA Airborne Earth Science Microwave Imaging Radiometer (AESMIR): A New Sensor for Earth Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2003-01-01

    The Airborne Earth Science Microwave Imaging Radiometer (AESMIR) is a versatile new airborne imaging radiometer recently developed by NASA. The AESMIR design is unique in that it performs dual-polarized imaging at all standard passive microwave frequency bands (6-89 GHz) using only one sensor headscanner package, providing an efficient solution for Earth remote sensing applications (snow, soil moisture/land parameters, precipitation, ocean winds, sea surface temperature, water vapor, sea ice, etc.). The microwave radiometers themselves will incorporate state-of-the-art receivers, with particular attention given to instrument calibration for the best possible accuracy and sensitivity. The single-package design of AESMIR makes it compatible with high-altitude aircraft platforms such as the NASA ER-2s. The arbitrary 2-axis gimbal can perform conical and cross-track scanning, as well as fixed-beam staring. This compatibility with high-altitude platforms coupled with the flexible scanning configuration, opens up previously unavailable science opportunities for convection/precip/cloud science and co-flying with complementary instruments, as well as providing wider swath coverage for all science applications. By designing AESMIR to be compatible with these high-altitude platforms, we are also compatible with the NASA P-3, the NASA DC-8, C-130s and ground-based deployments. Thus AESMIR can provide low-, mid-, and high- altitude microwave imaging. Parallel filter banks allow AESMIR to simultaneously simulate the exact passbands of multiple satellite radiometers: SSM/I, TMI, AMSR, Windsat, SSMI/S, and the upcoming GPM/GMI and NPOESS/CMIS instruments --a unique capability among aircraft radiometers. An L-band option is also under development, again using the same scanner. With this option, simultaneous imaging from 1.4 to 89 GHz will be feasible. And, all receivers except the sounding channels will be configured for 4-Stokes polarimetric operation using high-speed digital

  16. Relationships between evaprorative fraction and remotely sensed vegetation index and microwave brightness temperature for semiarid rangelands

    NASA Technical Reports Server (NTRS)

    Kustas, W. P.; Schimugge, T. J.; Humes, K. S.; Jackson, T. J.; Parry, R.; Weltz, M. A.; Moran, M. S.

    1993-01-01

    Measurements of the microwave brightness temperature (TB) with the Pushbroom Microwave Radiometer (PBMR) over the Walnut Gulch Experiment Watershed were made on selected days during the MONSOON 90 field campaign. The PBMR is an L-band instrument (21-cm wavelength) that can provide estimates of near-surface soil moisture over a variety of surfaces. Aircraft observations in the visible and near-infrared wavelengths collected on selected days also were used to compute a vegetation index. Continuous micrometeorological measurements and daily soil moisture samples were obtained at eight locations during experimental period. Two sites were instrumented with time domain reflectometry probes to monitor the soil moisture profile. The fraction of available energy used for evapotranspiration was computed by taking the ratio of latent heat flux (LE) to the sum of net radiation (Rn) and soil heat flux (G). This ratio is commonly called the evaporative fraction (EF) and normally varies between 0 and 1 under daytime convective conditions with minimal advection. A wide range of environmental conditions existed during the field campaign, resulting in average EF values for the study area varying from 0.4 to 0.8 and values of TB ranging from 220 to 280 K. Comparison between measured TB and EF for the eight locations showed an inverse relationship. Other days were included in the analysis by estimating TB with the soil moisture data. Because transpiration from the vegetation is more strongly coupled to root zone soil moisture, significant scatter in this relationship existed at high values of TB or dry near-surface soil moisture conditions. The variation in EF under dry near-surface soil moisture conditions was correlated to the amount of vegetation cover estimated with a remotely sensed vegetation index. These findings indicate that information obtained from optical and microwave data can be used for quantifying the energy balance of semiarid areas. The microwave data can indicate

  17. Relationships between Evaporative Fraction and Remotely Sensed Vegetation Index and Microwave Brightness Temperature for Semiarid Rangelands.

    NASA Astrophysics Data System (ADS)

    Kustas, W. P.; Schmugge, T. J.; Humes, K. S.; Jackson, T. J.; Parry, R.; Weltz, M. A.; Moran, M. S.

    1993-12-01

    Measurements of the microwave brightness temperature (TB) with the Pushbroom Microwave Radiometer (PBMR) over the Walnut Gulch Experimental Watershed were made on selected days during the MONSOON 90 field campaign. The PBMR is an L-band instrument (21-cm wavelength) that can provide estimates of near-surface soil moisture over a variety of surfaces. Aircraft observations in the visible and near-infrared wavelengths collected on selected days also were used to compute a vegetation index. Continuous micrometeorological measurements and daily soil moisture samples were obtained at eight locations during the experimental period. Two sites were instrumented with time domain reflectometry probes to monitor the soil moisture profile. The fraction of available energy used for evapotranspiration was computed by taking the ratio of latent heat flux (LE) to the sum of net radiation (Rn) and soil heat flux (G). This ratio is commonly called the evaporative fraction (EF) and normally varies between 0 and 1 under daytime convective conditions with minimal advection. A wide range of environmental conditions existed during the field campaign, resulting in average EF values for the study area varying from 0.4 to 0.8 and values of TB ranging from 220 to 280 K. Comparison between measured TB and EF for the eight locations showed an inverse relationship with a significant correlation (r2 = 0.69). Other days were included in the analysis by estimating TB with the soil moisture data. Because transpiration from the vegetation is more strongly coupled to root zone soil moisture, significant scatter in this relationship existed at high values of TB or dry near-surface soil moisture conditions. It caused a substantial reduction in the correlation with r2 = 0.40 or only 40% of the variation in EF being explained by TB. The variation in EF under dry near-surface soil moisture conditions was correlated to the amount of vegetation cover estimated with a remotely sensed vegetation index. These

  18. Connecting forest ecosystem and microwave backscatter models

    NASA Technical Reports Server (NTRS)

    Kasischke, Eric S.; Christensen, Norman L., Jr.

    1990-01-01

    A procedure is outlined to connect data obtained from active microwave remote sensing systems with forest ecosystem models. The hierarchy of forest ecosystem models is discussed, and the levels at which microwave remote sensing data can be used as inputs are identified. In addition, techniques to utilize forest ecosystem models to assist in the validation of theoretical microwave backscatter models are identified. Several examples to illustrate these connecting processes are presented.

  19. Single-scattering properties of ice particles in the microwave regime: Temperature effect on the ice refractive index with implications in remote sensing

    NASA Astrophysics Data System (ADS)

    Ding, Jiachen; Bi, Lei; Yang, Ping; Kattawar, George W.; Weng, Fuzhong; Liu, Quanhua; Greenwald, Thomas

    2017-03-01

    An ice crystal single-scattering property database is developed in the microwave spectral region (1 to 874 GHz) to provide the scattering, absorption, and polarization properties of 12 ice crystal habits (10-plate aggregate, 5-plate aggregate, 8-column aggregate, solid hexagonal column, hollow hexagonal column, hexagonal plate, solid bullet rosette, hollow bullet rosette, droxtal, oblate spheroid, prolate spheroid, and sphere) with particle maximum dimensions from 2 μm to 10 mm. For each habit, four temperatures (160, 200, 230, and 270 K) are selected to account for temperature dependence of the ice refractive index. The microphysical and scattering properties include projected area, volume, extinction efficiency, single-scattering albedo, asymmetry factor, and six independent nonzero phase matrix elements (i.e. P11, P12, P22, P33, P43 and P44). The scattering properties are computed by the Invariant Imbedding T-Matrix (II-TM) method and the Improved Geometric Optics Method (IGOM). The computation results show that the temperature dependence of the ice single-scattering properties in the microwave region is significant, particularly at high frequencies. Potential active and passive remote sensing applications of the database are illustrated through radar reflectivity and radiative transfer calculations. For cloud radar applications, ignoring temperature dependence has little effect on ice water content measurements. For passive microwave remote sensing, ignoring temperature dependence may lead to brightness temperature biases up to 5 K in the case of a large ice water path.

  20. Symbol Sense Behavior in Digital Activities

    ERIC Educational Resources Information Center

    Bokhove, Christian; Drijvers, Paul

    2010-01-01

    The algebraic expertise that mathematics education is aiming for includes both procedural skills and conceptual understanding. To capture the latter, notions such as symbol sense, gestalt view and visual salience have been developed. We wonder if digital activities can be designed that not only require procedural algebraic skills, but also invite…

  1. Remote Sensing Simulation Activities for Earthlings

    ERIC Educational Resources Information Center

    Krockover, Gerald H.; Odden, Thomas D.

    1977-01-01

    Suggested are activities using a Polaroid camera to illustrate the capabilities of remote sensing. Reading materials from the National Aeronautics and Space Administration (NASA) are suggested. Methods for (1) finding a camera's focal length, (2) calculating ground dimension photograph simulation, and (3) limiting size using film resolution are…

  2. Self-sensing active magnetic levitation

    SciTech Connect

    Vischer, D.; Bleuler, H. )

    1993-03-01

    Magnetic bearing technology is now rapidly being introduced to industrial applications. The most popular configuration applied is the classical' one of gap sensor, current control, current-amplifier and magnetic coil. Here the authors present a magnetic levitation method which combines all the known advantages of active magnetic bearing in a self-sensing configuration. The novel method realizes stable and well damped levitation without any sensor hardware at the rotor. This is achieved by using the coil voltage of the magnetic bearing as system input (voltage instead of current amplifiers) and the current as system output. It is demonstrated that the resulting system is observable and controllable in the sense of control theory, allowing a magnetic bearing to be stabilized with a simple linear controller using current measurements alone. Several self-sensing bearings have been constructed. Their performance is comparable to systems with sensors, but hardware requirements and costs are substantially reduced. Experimental results are included.

  3. AMISS - Active and passive MIcrowaves for Security and Subsurface imaging

    NASA Astrophysics Data System (ADS)

    Soldovieri, Francesco; Slob, Evert; Turk, Ahmet Serdar; Crocco, Lorenzo; Catapano, Ilaria; Di Matteo, Francesca

    2013-04-01

    The FP7-IRSES project AMISS - Active and passive MIcrowaves for Security and Subsurface imaging is based on a well-combined network among research institutions of EU, Associate and Third Countries (National Research Council of Italy - Italy, Technische Universiteit Delft - The Netherlands, Yildiz Technical University - Turkey, Bauman Moscow State Technical University - Russia, Usikov Institute for Radio-physics and Electronics and State Research Centre of Superconductive Radioelectronics "Iceberg" - Ukraine and University of Sao Paulo - Brazil) with the aims of achieving scientific advances in the framework of microwave and millimeter imaging systems and techniques for security and safety social issues. In particular, the involved partners are leaders in the scientific areas of passive and active imaging and are sharing their complementary knowledge to address two main research lines. The first one regards the design, characterization and performance evaluation of new passive and active microwave devices, sensors and measurement set-ups able to mitigate clutter and increase information content. The second line faces the requirements to make State-of-the-Art processing tools compliant with the instrumentations developed in the first line, suitable to work in electromagnetically complex scenarios and able to exploit the unexplored possibilities offered by new instrumentations. The main goals of the project are: 1) Development/improvement and characterization of new sensors and systems for active and passive microwave imaging; 2) Set up, analysis and validation of state of art/novel data processing approach for GPR in critical infrastructure and subsurface imaging; 3) Integration of state of art and novel imaging hardware and characterization approaches to tackle realistic situations in security, safety and subsurface prospecting applications; 4) Development and feasibility study of bio-radar technology (system and data processing) for vital signs detection and

  4. Annual South American forest loss estimates based on passive microwave remote sensing (1990-2010)

    NASA Astrophysics Data System (ADS)

    van Marle, M. J. E.; van der Werf, G. R.; de Jeu, R. A. M.; Liu, Y. Y.

    2016-02-01

    Consistent forest loss estimates are important to understand the role of forest loss and deforestation in the global carbon cycle, for biodiversity studies, and to estimate the mitigation potential of reducing deforestation. To date, most studies have relied on optical satellite data and new efforts have greatly improved our quantitative knowledge on forest dynamics. However, most of these studies yield results for only a relatively short time period or are limited to certain countries. We have quantified large-scale forest loss over a 21-year period (1990-2010) in the tropical biomes of South America using remotely sensed vegetation optical depth (VOD). This passive microwave satellite-based indicator of vegetation water content and vegetation density has a much coarser spatial resolution than optical data but its temporal resolution is higher and VOD is not impacted by aerosols and cloud cover. We used the merged VOD product of the Advanced Microwave Scanning Radiometer (AMSR-E) and Special Sensor Microwave Imager (SSM/I) observations, and developed a change detection algorithm to quantify spatial and temporal variations in forest loss dynamics. Our results compared reasonably well with the newly developed Landsat-based Global Forest Change (GFC) maps, available for the 2001 onwards period (r2 = 0.90 when comparing annual country-level estimates). This allowed us to convert our identified changes in VOD to forest loss area and compute these from 1990 onwards. We also compared these calibrated results to PRODES (r2 = 0.60 when comparing annual state-level estimates). We found that South American forest exhibited substantial interannual variability without a clear trend during the 1990s, but increased from 2000 until 2004. After 2004, forest loss decreased again, except for two smaller peaks in 2007 and 2010. For a large part, these trends were driven by changes in Brazil, which was responsible for 56 % of the total South American forest loss area over our study

  5. Annual South American forest loss estimates based on passive microwave remote sensing (1990-2010)

    NASA Astrophysics Data System (ADS)

    van Marle, M. J. E.; van der Werf, G. R.; de Jeu, R. A. M.; Liu, Y. Y.

    2015-07-01

    Consistent forest loss estimates are important to understand the role of forest loss and deforestation in the global carbon cycle, for biodiversity studies, and to estimate the mitigation potential of reducing deforestation. To date, most studies have relied on optical satellite data and new efforts have greatly improved our quantitative knowledge on forest dynamics. However, most of these studies yield results for only a relatively short time period or are limited to certain countries. We have quantified large-scale forest losses over a 21 year period (1990-2010) in the tropical biomes of South America using remotely sensed vegetation optical depth (VOD). This passive microwave satellite-based indicator of vegetation water content and vegetation density has a much coarser spatial resolution than optical but its temporal resolution is higher and VOD is not impacted by aerosols and cloud cover. We used the merged VOD product of the Advanced Microwave Scanning Radiometer (AMSR-E) and Special Sensor Microwave Imager (SSM/I) observations, and developed a change detection algorithm to quantify spatial and temporal variations in forest loss dynamics. Our results compared favorably to the newly developed Global Forest Change (GFC) maps based on Landsat data and available for the 2001 onwards period (r2 = 0.90 when comparing annual country-level estimates), which allowed us to convert our results to forest loss area and compute these from 1990 onwards. We found that South American forest exhibited substantial interannual variability without a clear trend during the 1990s, but increased from 2000 until 2004. After 2004, forest loss decreased again, except for two smaller peaks in 2007 and 2010. For a large part, these trends were driven by changes in Brazil, which was responsible for 56 % of the total South American forest loss over our study period according to our results. One of the key findings of our study is that while forest losses decreased in Brazil after 2005

  6. Measuring and Simulating Passive C-band Microwave Relief Effects over Qinghai-Tibet Plateau in Remote Sensing

    NASA Astrophysics Data System (ADS)

    Li, X.; Zhang, L.; Jiang, L.; Zhao, S.

    2010-12-01

    Spaceborne microwave radiometers have established the superiority of global climate change and hydrographic monitoring in global coverage, day and night, all weather, and strong transmission. For passive microwave remote sensing, topography serves as one of perturbing effects in respect that it represents surface roughness larger than microwave wavelength. The lower frequencies used by C band perform more strongly in comparison with both higher microwave frequencies (>10GHz) under adverse weather, and L band (1to2GHz) at an advantage of relatively elaborate spatial resolution. A numerical simulation of satellite microwave radiometric observations of topographic scenes has been developed. Nerveless, the scarcity of field experiments on relief effects constitutes a major impediment to the further progress in the investigation of rough terrain correction at microwave frequencies. In the interest of simulating brightness temperatures exactly in mountainous area well combined with topographic experiments, Tibetan Plateau in China regarded as our study area, the research carried into execution as the following: (1) Analyzing relief effects for passive C band, and extracting topographic features quantificationally in order to satisfy microwave radiative transfer model in mountainous areas; (2) Referring to the configuration in AMSR-E, by the method of spatial convolution statistic analysis, in accordance with the estimation of the sensitivity for topographic features, selecting efficiency relief factors at C-band ; (3)Building various shapes of artifactitious hills to measure relief effects in the ground experiment based on the observation of Truck-mounted Multi-frequency Microwave Radiometer (TMMR); (4) According to the observation of relief effects validated in the field measurement, reworking the microwave radiative transfer model in rough terrain, and then simulating brightness temperatures in the configuration of AMSR-E. From the result of the comparison between our

  7. A Compressive Sensing Approach for 3D Breast Cancer Microwave Imaging With Magnetic Nanoparticles as Contrast Agent.

    PubMed

    Bevacqua, Martina T; Scapaticci, Rosa

    2016-02-01

    In microwave breast cancer imaging magnetic nanoparticles have been recently proposed as contrast agent. Due to the non-magnetic nature of human tissues, magnetic nanoparticles make possible the overcoming of some limitations of conventional microwave imaging techniques, thus providing reliable and specific diagnosis of breast cancer. In this paper, a Compressive Sensing inspired inversion technique is introduced for the reconstruction of the magnetic contrast induced within the tumor. The applicability of Compressive Sensing theory is guaranteed by the fact that the underlying inverse scattering problem is linear and the searched magnetic perturbation is sparse. From the numerical analysis, performed in realistic conditions in 3D geometry, it has been pointed out that the adoption of this new tool allows improving resolution and accuracy of the reconstructions, as well as reducing the number of required measurements.

  8. A mathematical characterization of vegetation effect on microwave remote sensing from the Earth

    NASA Technical Reports Server (NTRS)

    Choe, Y.; Tsang, L.

    1983-01-01

    In passive microwave remote sensing of the earth, a theoretical model that utilizes the radiative transfer equations was developed to account for the volume scattering effects of the vegetation canopy. Vegetation canopies such as alfalfa, sorghum, and corn are simulated by a layer of ellipsoidal scatterers and cylindrical structures. The ellipsoidal scatterers represent the leaves of vegetation and are randomly positioned and oriented. The orientation of ellipsoids is characterized by a probability density function of Eulerian angles of rotation. The cylindrical structures represent the stalks of vegetation and their radii are assumed to be much smaller than their lengths. The underlying soil is represented by a half-space medium with a homogeneous permittivity and uniform temperature profile. The radiative transfer quations are solved by a numerical method using a Gaussian quadrature formula to compute both the vertical and horizontal polarized brightness temperature as a function of observation angle. The theory was applied to the interpretation of experimental data obtained from sorghum covered fields near College Station, Texas.

  9. Measurement of heart rate variability and stress evaluation by using microwave reflectometric vital signal sensing.

    PubMed

    Nagae, Daisuke; Mase, Atsushi

    2010-09-01

    In this paper, we present two robust signal processing techniques for stress evaluation using a microwave reflectometric cardiopulmonary sensing instrument. These techniques enable the heart rate variability (HRV) to be recovered from measurements of body-surface dynamic motion, which is subsequently used for the stress evaluation. Specifically, two novel elements are introduced: one is a reconfiguration of the HRV from the cross-correlation function between a measurement signal and a template signal which is constructed by averaging periodic component over a measurement time. The other is a reconstruction of the HRV from the time variation of the heartbeat frequency; this is evaluated by a repetition of the maximum entropy method. These two signal processing techniques accomplish the reconstruction of the HRV, though they are completely different algorithms. For validations of our model, an experimental setup is presented and several sets of experimental data are analyzed using the two proposed signal processing techniques, which are subsequently used for the stress evaluation. The results presented herein are consistent with electrocardiogram data.

  10. Measurement of heart rate variability and stress evaluation by using microwave reflectometric vital signal sensing

    NASA Astrophysics Data System (ADS)

    Nagae, Daisuke; Mase, Atsushi

    2010-09-01

    In this paper, we present two robust signal processing techniques for stress evaluation using a microwave reflectometric cardiopulmonary sensing instrument. These techniques enable the heart rate variability (HRV) to be recovered from measurements of body-surface dynamic motion, which is subsequently used for the stress evaluation. Specifically, two novel elements are introduced: one is a reconfiguration of the HRV from the cross-correlation function between a measurement signal and a template signal which is constructed by averaging periodic component over a measurement time. The other is a reconstruction of the HRV from the time variation of the heartbeat frequency; this is evaluated by a repetition of the maximum entropy method. These two signal processing techniques accomplish the reconstruction of the HRV, though they are completely different algorithms. For validations of our model, an experimental setup is presented and several sets of experimental data are analyzed using the two proposed signal processing techniques, which are subsequently used for the stress evaluation. The results presented herein are consistent with electrocardiogram data.

  11. Characterization of Eurasian Wetlands Using Microwave Remote Sensing for Ecosystem Carbon Flux Models

    NASA Astrophysics Data System (ADS)

    Podest, E.; McDonald, K. C.; Schroeder, R.; Bohn, T. J.; Azarderakhsh, M.; Chen, X.; Lettenmaier, D. P.

    2013-12-01

    Wetland ecosystems are a dominant landscape feature of the northern high latitudes. Because of their effect on land-atmosphere carbon (CO2 and CH4) exchange, wetlands have a crucial role in the global carbon cycle and in the global climate system. Characterizing wetland biomes in terms of their extent and dynamics is extremely important to understanding the role of these ecosystems in the global climate. Microwave remote sensing is an effective geophysical tool for these purposes because it enables monitoring of large inaccessible areas on a temporally consistent basis regardless of atmospheric conditions or solar illumination. Here we employ multi-temporal high resolution (~100m) synthetic aperture radar (SAR) data from ALOS-PALSAR (L-band) to map wetland type and extent within sub-regions in Eurasia. We combine this information with time series inundated area estimates derived from AMSR-E, SSM/I, QuikScat and ASCAT to assess surface inundation patterns. We present details on the decision tree based classification approach used to generate the high resolution SAR based wetland maps as well as details of cross-product harmonization between fine and coarse resolution wetland/surface inundation products. Finally, we show the applicability of the wetland maps in an ecosystem carbon flux model. Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  12. Microwave-assisted synthesis of SnO₂ nanorods for oxygen gas sensing at room temperature.

    PubMed

    Azam, Ameer; Habib, Sami S; Salah, Numan A; Ahmed, Faheem

    2013-01-01

    High-quality single-crystalline SnO₂ nanorods were synthesized using a microwave-assisted solution method. The nanorods were characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), ultraviolet-visible and Raman spectroscopy, Brunauer-Emmett-Teller (BET), and electrical resistance measurements. The XRD pattern indicated the formation of single-phase SnO₂ nanorods with rutile structure. FE-SEM and TEM images revealed tetragonal nanorods of about 450-500 nm in length and 60-80 nm in diameter. The nanorods showed a higher BET surface area of 288 m²/g, much higher than that of previously reported work. The Raman scattering spectra indicated a typical rutile phase of the SnO₂. The absorption spectrum showed an absorption peak centered at 340 nm, and the band-gap value was found to be 3.64 eV. The gas-sensing properties of the SnO₂ nanorods for oxygen gas with different concentrations were measured at room temperature. It was found that the value of resistance increased with the increase in oxygen gas concentration in the test chamber. The SnO₂ nanorods exhibited high sensitivity and rapid response-recovery characteristics to oxygen gas, and could detect oxygen concentration as low as 1, 3, 5, and 10 ppm.

  13. Microwave Remote Sensing of Soil Moisture for Estimation of Soil Properties

    NASA Technical Reports Server (NTRS)

    Mattikalli, Nandish M.; Engman, Edwin T.; Jackson, Thomas J.

    1997-01-01

    Surface soil moisture dynamics was derived using microwave remote sensing, and employed to estimate soil physical and hydraulic properties. The L-band ESTAR radiometer was employed in an airborne campaign over the Little Washita watershed, Oklahoma during June 10-18, 1992. Brightness temperature (TB) data were employed in a soil moisture inversion algorithm which corrected for vegetation and soil effects. Analyses of spatial TB and soil moisture dynamics during the dry-down period revealed a direct relationship between changes in TB, soil moisture and soil texture. Extensive regression analyses were carried out which yielded statistically significant quantitative relationships between ratio of percent sand to percent clay (RSC, a term derived to quantify soil texture) and saturated hydraulic conductivity (Ksat) in terms of change components of TB and surface soil moisture. Validation of results indicated that both RSC and Ksat can be estimated with reasonable accuracy. These findings have potential applications for deriving spatial distributions of RSC and Ksat over large areas.

  14. Light Assisted IN-VIVO Microwave Sensing for Electrical Characterization of Prokaryotes

    NASA Astrophysics Data System (ADS)

    Sharma, Rajveer; Daya, K. S.; Tirumalai, Prem Saran

    2012-11-01

    This paper reports an in vivo characterization technique to characterize dielectric properties of living tissues and bio-molecules at microwave frequency using cavity perturbation technique, where a slot ring resonant sensor has been used, that works at 8 GHz and has been designed to enumerate the effective dielectric constant of Spirulina platensis and chlorophyll molecule. Observed value of the dielectric constant of Spirulina platensis was 8 ± 0.04 in the absence of light and 14.575 ± 0.145 in the presence of light. Molecular polarizability of chl a molecule was 5.07 ± 0.05 × 104 Å3. Experimentally calculated local electric field actually experienced by chl a molecule was 14.197 ± 0.003 V/m for applied field of 9.79 V/m across the slot ring, dipole moment of chl a molecule was 2.175 ± 0.005 × 105 Debye and total polarisation produced due to these molecules was 1.545 ± 0.005 C/m2. Observed relaxation time of chl a molecule was 8.09 ± 0.18 × 10-9s. The proposed sensing method can be an alternate to spectral characterisation technique, generally used to characterize light sensitive bio-molecules and can also be extended to characterize light sensitive bio-molecules in plant cells.

  15. Low temperature regeneration of activated carbons using microwaves: revising conventional wisdom.

    PubMed

    Calışkan, E; Bermúdez, J M; Parra, J B; Menéndez, J A; Mahramanlıoğlu, M; Ania, C O

    2012-07-15

    The purpose of this work was to explore the application of microwaves for the low temperature regeneration of activated carbons saturated with a pharmaceutical compound (promethazine). Contrary to expectations, microwave-assisted regeneration did not lead to better results than those obtained under conventional electric heating. At low temperatures the regeneration was incomplete either under microwave and conventional heating, being this attributed to the insufficient input energy. At mild temperatures, a fall in the adsorption capacity upon cycling was obtained in both devices, although this was much more pronounced for the microwave. These results contrast with previous studies on the benefits of microwaves for the regeneration of carbon materials. The fall in the adsorption capacity after regeneration was due to the thermal cracking of the adsorbed molecules inside the carbon porous network, although this effect applies to both devices. When microwaves are used, along with the thermal heating of the carbon bed, a fraction of the microwave energy seemed to be directly used in the decomposition of promethazine through the excitation of the molecular bonds by microwaves (microwave-lysis). These results point out that the nature of the adsorbate and its ability to interact with microwave are key factors that control the application of microwaves for regeneration of exhausted activated carbons.

  16. Satellite Remote Sensing of Global Vegetation Phenology: Comparison of Optical-Infrared and Microwave Sensors

    NASA Astrophysics Data System (ADS)

    Jones, M. O.; Kimball, J. S.; Jones, L. A.; McDonald, K. C.

    2009-12-01

    Satellite optical-infrared remote sensing has long been used to monitor vegetation phenology at continental to global scales. Models incorporating the optical-infrared vegetation indices (VI), EVI and NDVI, have been applied to measure phenological events including growing season start, peak, end and duration. These indices are sensitive to signal degradation from reduced solar illumination, clouds, smoke and other atmospheric effects reducing temporal fidelity and accuracy of observations. However, satellite microwave remote sensing at lower frequencies (≤ 10 GHz) is largely insensitive to solar illumination and atmospheric effects. The AMSR-E radiometer offers multifrequency microwave observations at moderate (~25-60 km) spatial scales with near-daily global sampling. We recently developed an algorithm for global retrieval of vegetation optical depth (VOD), which is sensitive to phenological changes in canopy biomass and water content. We examined phenology signals using three approaches. First, linear correlations between six years (2003-2008) of MODIS VI, AMSR-E VOD, and a bioclimatic phenology model were derived globally. Second, correlations were summarized by land cover type and spatially contiguous regions to assess regional patterns in the results. Finally, we compared MODIS VI and AMSR-E VOD series with the bioclimatic phenology model and tower eddy covariance CO2 flux measurements across a network of Ameriflux sites representing the major global biomes. Our results show reduced VI-VOD correspondence over cloudy regions, including tropical forests, due to VI related signal degradation. VOD phenology sensitivity coincided with seasonal changes in meteorological conditions, vegetation greenness, ecosystem respiration and net ecosystem CO2 exchange. Correlation means by land cover (pixels≥80% homogeneous) ranged from 0.66 (NDVI; Savannas; 97% of pixels p<0.01) to -0.07 (EVI; Evergreen Broadleaf; 70% of pixels p>0.10). The majority of insignificant

  17. Femtosecond laser fabricated multimode fiber sensors interrogated by optical-carrier-based microwave interferometry technique for distributed strain sensing

    NASA Astrophysics Data System (ADS)

    Hua, Liwei; Song, Yang; Huang, Jie; Cheng, Baokai; Zhu, Wenge; Xiao, Hai

    2016-03-01

    A multimode fiber (MMF) based cascaded intrinsic Fabry-Perot interferometers (IFPIs) system is presented and the distributed strain sensing has been experimentally demonstrated by using such system. The proposed 13 cascaded IFPIs have been formed by 14 cascaded reflectors that have been fabricated on a grade index MMF. Each reflector has been made by drawing a line on the center of the cross-section of the MMF through a femtosecond laser. The distance between any two adjacent reflectors is around 100 cm. The optical carrier based microwave interferometry (OCMI) technique has been used to interrogate the MMF based cascaded FPIs system by reading the optical interference information in the microwave domain. The location along with the shift of the interference fringe pattern for each FPI can be resolved though signal processing based on the microwave domain information. The multimode interference showed very little influence to the microwave domain signals. By using such system the strain of 10-4 for each FPI sensor and the spatial resolution of less than 5 cm for the system can be easily achieved.

  18. Ground-based microwave remote sensing of temperature inversions in the Bergen valley, Norway

    NASA Astrophysics Data System (ADS)

    Wolf, Tobias; Esau, Igor; Reuder, Joachim

    2014-05-01

    The temperature profiles in the urbanized Bergen valley, Norway, are characterized by wintertime temperature inversions, which have a strong impact on the surface layer air quality in the city. We present the results from two years of vertical temperature profile measurements obtained with the ground-based microwave temperature profiler MTP-5HE and show the advantages of ground-based remote sensing with this instrument for the monitoring of atmospheric temperature inversions. From a subset of the final, filtered dataset we found that the mean difference between temperatures measured with the MTP-5HE and an automatic meteorological station (AMS) on a nearby mountain was as low as -0.03 ± 0.78 K during inversion free conditions and -0.06 ± 0.71 K during ground-based temperature inversions. The only selection criterion for this subset was a wind speed of more than 5 m/s and to ensure comparability between the location of the AMS and the central valley atmosphere. We found two regimes of ground-based inversions: Non-persistent inversions lasting shorter than 2 hours that are mostly thinner than 100 m and more persistent inversions often reaching 270 m above sea level. The height of the shorter inversions was consistent with the maximum height of inversions found in a previous study based on tethersonde measurements. Ground-based inversions mostly occurred during situations characterized by weak winds in the ERA-Interim reanalysis, to a large degree independent from wind direction. A distinct south-easterly tail in the ERA-Interim wind distribution with wind speeds as high as 16 m/s might have been connected to a wake effect from a nearby mountain. The strong channeling effect within the valley that was also found in previous studies was evident. The ground-based remote sensing was particularly useful for the monitoring of elevated temperature inversions between 170 m and 720 m above sea level. This kind of inversions has not been observed in this valley before. They

  19. Degradation and dechlorination of pentachlorophenol by microwave-activated persulfate.

    PubMed

    Qi, Chengdu; Liu, Xitao; Zhao, Wei; Lin, Chunye; Ma, Jun; Shi, Wenxiao; Sun, Qu; Xiao, Hao

    2015-03-01

    The degradation performance of pentachlorophenol (PCP) by the microwave-activated persulfate (MW/PS) process was investigated in this study. The results indicated that degradation efficiency of PCP in the MW/PS process followed pseudo-first-order kinetics, and compared with conventional heating, microwave heating has a special effect of increasing the reaction rate and reducing the process time. A higher persulfate concentration and reaction temperature accelerated the PCP degradation rate. Meanwhile, increasing the pH value and ionic strength of the phosphate buffer slowed down the degradation rate. The addition of ethanol and tert-butyl alcohol as hydroxyl radical and sulfate radical scavengers proved that the sulfate radicals were the dominant active species in the MW/PS process. Gas chromatography-mass spectrometry (GC-MS) was employed to identify the intermediate products, and then a plausible degradation pathway involving dechlorination, hydrolysis, and mineralization was proposed. The acute toxicity of PCP, as tested with Photobacterium phosphoreum, Vibrio fischeri, and Vibrio qinghaiensis, was negated quickly during the MW/PS process, which was in agreement with the nearly complete mineralization of PCP. These results showed that the MW/PS process could achieve a high mineralization level in a short time, which provided an efficient way for PCP elimination from wastewater.

  20. Microwave sensing of moisture content and bulk density in flowing grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Moisture content and bulk density were determined from measurement of the dielectric properties of flowing wheat kernels at a single microwave frequency (5.8 GHz). The measuring system consisted of two high-gain microwave patch antennas mounted on opposite sides of rectangular chute and connected to...

  1. Microwave-assisted rapid synthesis of luminescent gold nanoclusters for sensing Hg2+ in living cells using fluorescence imaging.

    PubMed

    Shang, Li; Yang, Linxiao; Stockmar, Florian; Popescu, Radian; Trouillet, Vanessa; Bruns, Michael; Gerthsen, Dagmar; Nienhaus, G Ulrich

    2012-07-21

    A microwave-assisted strategy for synthesizing dihydrolipoic acid (DHLA) capped fluorescent gold nanoclusters (AuNCs) has been developed. Irradiation with microwaves during synthesis enhanced the fluorescence quantum yield (QY) of AuNCs by about five-fold and shortened the reaction time from hours to several minutes. The as-synthesized DHLA-AuNCs possessed bright near-infrared fluorescence (QY: 2.9%), ultrasmall hydrodynamic diameter (3.3 nm), good colloidal stability over the physiologically relevant pH range of 5-10 as well as low cytotoxicity toward HeLa cells. Moreover, these DHLA-AuNCs were capable of sensing Hg(2+) through the specific interaction between Hg(2+) and Au(+) on the surface of AuNCs; the limit of detection (LOD) was 0.5 nM. A potential application in imaging intracellular Hg(2+) in HeLa cells was demonstrated by using spinning disc confocal microscopy.

  2. NASA's Potential Contributions to Avalanche Forecasting Using Active and Passive Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir

    2007-01-01

    This Candidate Solution is based on using active and passive microwave measurements acquired from NASA satellites to improve USDA (U.S. Department of Agriculture) Forest Service forecasting of avalanche danger. Regional Avalanche Centers prepare avalanche forecasts using ground measurements of snowpack and mountain weather conditions. In this Solution, range of the in situ observations is extended by adding remote sensing measurements of snow depth, snow water equivalent, and snowfall rate acquired by satellite missions that include Aqua, CloudSat, future GPM (Global Precipitation Measurement), and the proposed SCLP (Snow and Cold Land Processes). Measurements of snowpack conditions and time evolution are improved by combining the in situ and satellite observations with a snow model. Recurring snow observations from NASA satellites increase accuracy of avalanche forecasting, which helps the public and the managers of public facilities make better avalanche safety decisions.

  3. Spaceborne Microwave Instrument for High Resolution Remote Sensing of the Earth's Surface Using a Large-Aperture Mesh Antenna

    NASA Technical Reports Server (NTRS)

    Njoku, E.; Wilson, W.; Yueh, S.; Freeland, R.; Helms, R.; Edelstein, W.; Sadowy, G.; Farra, D.; West, R.; Oxnevad, K.

    2001-01-01

    This report describes a two-year study of a large-aperture, lightweight, deployable mesh antenna system for radiometer and radar remote sensing of the Earth from space. The study focused specifically on an instrument to measure ocean salinity and Soil moisture. Measurements of ocean salinity and soil moisture are of critical . importance in improving knowledge and prediction of key ocean and land surface processes, but are not currently obtainable from space. A mission using this instrument would be the first demonstration of deployable mesh antenna technology for remote sensing and could lead to potential applications in other remote sensing disciplines that require high spatial resolution measurements. The study concept features a rotating 6-m-diameter deployable mesh antenna, with radiometer and radar sensors, to measure microwave emission and backscatter from the Earth's surface. The sensors operate at L and S bands, with multiple polarizations and a constant look angle, scanning across a wide swath. The study included detailed analyses of science requirements, reflector and feedhorn design and performance, microwave emissivity measurements of mesh samples, design and test of lightweight radar electronic., launch vehicle accommodations, rotational dynamics simulations, and an analysis of attitude control issues associated with the antenna and spacecraft, The goal of the study was to advance the technology readiness of the overall concept to a level appropriate for an Earth science emission.

  4. Microwave pyrolysis of oily sludge with activated carbon.

    PubMed

    Chen, Yi-Rong

    2016-12-01

    The aim of this study is to explore catalytic microwave pyrolysis of crude oil storage tank sludge for fuels using granular activated carbon (GAC) as a catalyst. The effect of GAC loading on the yield of pyrolysis products was also investigated. Heating rate of oily sludge and yield of microwave pyrolysis products such as oil and fuel gas was found to depend on the ratio of GAC to oily sludge. The optimal GAC loading was found to be 10%, while much smaller and larger feed sizes adversely influenced production. During oily sludge pyrolysis, a maximum oil yield of 77.5% was achieved. Pyrolytic oils with high concentrations of diesel oil and gasoline (about 70 wt% in the pyrolytic oil) were obtained. The leaching of heavy metals, such as Cr, As and Pb, was also suppressed in the solid residue after pyrolysis. This technique provides advantages such as harmless treatment of oily sludge and substantial reduction in the consumption of energy, time and cost.

  5. The microwave opacity of ammonia and water vapor: Application to remote sensing of the atmosphere of Jupiter

    NASA Astrophysics Data System (ADS)

    Hanley, Thomas Ryan

    2008-06-01

    The object of this research program has been to provide a baseline for microwave remote sensing of ammonia and water vapor in the atmosphere of Jupiter through laboratory measurements of their microwave absorption properties. Jupiter is not only the largest planet in our solar system, but one of the most interesting and complex. Despite a handful of spacecraft missions and many astronomical measurements, much of Jupiter's atmospheric dynamics and composition remain a mystery. Although constraints have been formed on the amount of certain gases present, the global abundances and distributions of water vapor (H 2 O) and ammonia (NH 3 ) are relatively unknown. Measurements of H 2 O and NH 3 in the Jovian atmosphere to hundreds of bars of pressure are best accomplished via passive microwave emission measurements. For these measurements to be accurately interpreted, however, the hydrogen and helium pressure-broadened microwave opacities of H 2 O and NH 3 must be well characterized, a task that is very difficult if based solely on theory and limited laboratory measurements. Therefore, accurate laboratory measurements have been taken under a broad range of conditions that mimic those of the Jovian atmosphere. These measurements, performed using a newly redesigned high- accuracy system, and the corresponding models of microwave opacity that have been developed from them comprise the majority of this work. The models allow more accurate retrievals of H 2 O and NH 3 abundances from previous as well as future missions to Jupiter and the outer planets, such as the NASA New Frontiers class Juno mission scheduled for launch in 2011. This information will enable a greater understanding of the concentration and distribution of H 2 O and NH 3 in the Jovian atmosphere, which will reveal much about how Jupiter and our solar system formed and how similar planets could form in other solar systems, even planets that may be hospitable to life.

  6. An intercomparison of available soil moisture estimates from thermal infrared and passive microwave remote sensing and land surface modeling

    NASA Astrophysics Data System (ADS)

    Hain, Christopher R.; Crow, Wade T.; Mecikalski, John R.; Anderson, Martha C.; Holmes, Thomas

    2011-08-01

    Remotely sensed soil moisture studies have mainly focused on retrievals using active and passive microwave (MW) sensors, which provide measurements that are directly related to soil moisture (SM). MW sensors have obvious advantages such as the ability to retrieve through nonprecipitating cloud cover which provides shorter repeat cycles. However, MW sensors offer coarse spatial resolution and suffer from reduced retrieval skill over moderate to dense vegetation. A unique avenue for filling these information gaps is to exploit the retrieval of SM from thermal infrared (TIR) observations, which can provide SM information under vegetation cover and at significantly higher resolutions than MW. Previously, an intercomparison of TIR-based and MW-based SM has not been investigated in the literature. Here a series of analyses are proposed to study relationships between SM products during a multiyear period (2003-2008) from a passive MW retrieval (AMSR-E), a TIR based model (ALEXI), and a land surface model (Noah) over the continental United States. The three analyses used in this study include (1) a spatial anomaly correlation analysis, (2) a temporal correlation analysis, and (3) a triple collocation error estimation technique. In general, the intercomparison shows that the TIR and MW methods provide complementary information about the current SM state. TIR can provide SM information over moderate to dense vegetation, a large information gap in current MW methods, while serving as an additional independent source of SM information over low to moderate vegetation. The complementary nature of SM information from MW and TIR sensors implies a potential for integration within an advanced SM data assimilation system.

  7. Cross-Product Comparison of Multiple Resolution Microwave Remote Sensing Data Sets Supporting Global Mapping of Inundated Wetlands

    NASA Astrophysics Data System (ADS)

    Podest, E.; Schroeder, R.; McDonald, K. C.; Pinto, N.; Willacy, K.; Whitcomb, J.; Moghaddam, M.; Hess, L. L.; Zimmermann, R.

    2010-12-01

    Inundated vegetation and open water bodies are common features across the landscape and exert major impacts on hydrologic processes and surface-atmosphere carbon exchange. Their carbon dioxide and methane emissions can have a large impact on global climate. It is therefore of great importance to assess their spatial extent and temporal variations in order to improve upon carbon balance estimates. Despite their importance in the global cycling of carbon and water and climate forecasting, they remain poorly characterized and modeled, primarily because of the scarcity of suitable regional-to-global remote sensing data for characterizing wetlands distribution and dynamics. Spaceborne synthetic aperture radar (SAR) offers an effective tool for characterizing these ecosystems since it is particularly sensitive to surface water and to vegetation structure, and it allows monitoring large inaccessible areas on a temporal basis regardless of atmospheric conditions or solar illumination. We are assembling a multi-year Earth System Data Record (ESDR) of global inundated wetlands to facilitate investigations on their role in climate, biogeochemistry, hydrology, and biodiversity. The ESDR is comprised of (1) fine-resolution (100m) maps of wetland extent, vegetation type, and seasonal inundation extent, derived from L-band SAR data from the Advanced Land Observing Satellite (ALOS) Phased Array L-Band SAR (PALSAR) and the Japanese Earth Resources Satellite (JERS) SAR, for continental-scale areas covering crucial wetland regions, and (2) global multi-temporal mappings of inundation extent at 25 km resolution derived from data sets from combined passive and active microwave remote sensing instruments (AMSR-E, QuikSCAT). We present a comparative analysis of the high-resolution SAR-based data sets and the coarse resolution inundation data sets for wetland ecosystems in the Amazonian tropics and the northern high latitudes of Alaska, Canada, and Eurasia. We compare information content

  8. Photonic compressive sensing for analog-to-information conversion with a delay-line based microwave photonic filter

    NASA Astrophysics Data System (ADS)

    Zhu, Zhijing; Chi, Hao; Jin, Tao; Zheng, Shilie; Jin, Xiaofeng; Zhang, Xianmin

    2016-07-01

    Compressive sensing (CS) in the photonic domain is highly promising for analog-to-information conversion of sparse signals due to its potential capability of high input bandwidth and digitization with sub-Nyquist sampling. In this paper, we suggest that the concept of delay-line based microwave photonic filter be used in photonic CS to realize the low-pass filtering (LPF) function which is required in CS. A microwave photonic filter (MPF) with a dispersive element and fiber delay lines is applied in photonic CS to achieve better performance and flexibility. In the approach, the input radio-frequency signal and the pseudorandom bit sequence (PRBS) are modulated on a multi-wavelength optical carrier and propagate through a dispersive element. The modulated optical signal is split into multiple channels with tunable delay lines. The multiple wavelengths, dispersive element and multiple channels constitute a reconfigurable low-pass microwave filter. Experiment and simulations are presented to demonstrate the feasibility and potentials of this approach.

  9. Observations of cloud liquid water path over oceans: Optical and microwave remote sensing methods

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Rossow, William B.

    1994-01-01

    Published estimates of cloud liquid water path (LWP) from satellite-measured microwave radiation show little agreement, even about the relative magnitudes of LWP in the tropics and midlatitudes. To understand these differences and to obtain more reliable estimate, optical and microwave LWP retrieval methods are compared using the International Satellite Cloud Climatology Project (ISCCP) and special sensor microwave/imager (SSM/I) data. Errors in microwave LWP retrieval associated with uncertainties in surface, atmosphere, and cloud properties are assessed. Sea surface temperature may not produce great LWP errors, if accurate contemporaneous measurements are used in the retrieval. An uncertainty of estimated near-surface wind speed as high as 2 m/s produces uncertainty in LWP of about 5 mg/sq cm. Cloud liquid water temperature has only a small effect on LWP retrievals (rms errors less than 2 mg/sq cm), if errors in the temperature are less than 5 C; however, such errors can produce spurious variations of LWP with latitude and season. Errors in atmospheric column water vapor (CWV) are strongly coupled with errors in LWP (for some retrieval methods) causing errors as large as 30 mg/sq cm. Because microwave radiation is much less sensitive to clouds with small LWP (less than 7 mg/sq cm) than visible wavelength radiation, the microwave results are very sensitive to the process used to separate clear and cloudy conditions. Different cloud detection sensitivities in different microwave retrieval methods bias estimated LWP values. Comparing ISCCP and SSM/I LWPs, we find that the two estimated values are consistent in global, zonal, and regional means for warm, nonprecipitating clouds, which have average LWP values of about 5 mg/sq cm and occur much more frequently than precipitating clouds. Ice water path (IWP) can be roughly estimated from the differences between ISCCP total water path and SSM/I LWP for cold, nonprecipitating clouds. IWP in the winter hemisphere is about

  10. Recent Improvements in Retrieving Near-Surface Air Temperature and Humidity Using Microwave Remote Sensing

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent

    2010-01-01

    Detailed studies of the energy and water cycles require accurate estimation of the turbulent fluxes of moisture and heat across the atmosphere-ocean interface at regional to basin scale. Providing estimates of these latent and sensible heat fluxes over the global ocean necessitates the use of satellite or reanalysis-based estimates of near surface variables. Recent studies have shown that errors in the surface (10 meter)estimates of humidity and temperature are currently the largest sources of uncertainty in the production of turbulent fluxes from satellite observations. Therefore, emphasis has been placed on reducing the systematic errors in the retrieval of these parameters from microwave radiometers. This study discusses recent improvements in the retrieval of air temperature and humidity through improvements in the choice of algorithms (linear vs. nonlinear) and the choice of microwave sensors. Particular focus is placed on improvements using a neural network approach with a single sensor (Special Sensor Microwave/Imager) and the use of combined sensors from the NASA AQUA satellite platform. The latter algorithm utilizes the unique sampling available on AQUA from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A). Current estimates of uncertainty in the near-surface humidity and temperature from single and multi-sensor approaches are discussed and used to estimate errors in the turbulent fluxes.

  11. National activities in remote sensing: a Canadian perspective

    NASA Astrophysics Data System (ADS)

    Howe, Bruce

    A brief review of the federal government's role in developing remote sensing activities in Canada over the years is given. The struggle to map a large country, together with an interest in space, brought about the Canadian remote sensing program. In particular, the paper focuses on the role of Energy, Mines and Resources Canada in coordinating research activities by all levels of government in remote sensing, thus fostering the growth of the remote sensing industry in Canada. An overview is given of the expanding remote sensing market. In addition, the paper looks at the present applications of remote sensing to agriculture, forestry and the study of ice caps and fresh water, for example, as well as its use in assessing and preventing environmental disasters. The paper concludes by stressing the importance of remote sensing in meeting the "Challenge of the 90's"—making sustainable development a way of life.

  12. Microwave radiometer experiment of soil moisture sensing at BARC test site during summer 1981

    NASA Technical Reports Server (NTRS)

    Wang, J.; Jackson, T.; Engman, E. T.; Gould, W.; Fuchs, J.; Glazer, W.; Oneill, P.; Schmugge, T. J.; Mcmurtrey, J., III

    1984-01-01

    Soil moisture was measured by truck mounted microwave radiometers at the frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz. The soil textures in the two test sites were different so that the soil type effect of microwave radiometric response could be studied. Several fields in each test site were prepared with different surface roughnesses and vegetation covers. Ground truth on the soil moisture, temperature, and the biomass of the vegetation was acquired in support of the microwave radiometric measurements. Soil bulk density for each of the fields in both test sites was sampled. The soils in both sites were measured mechanically and chemically. A tabulation of the measured data is presented and the sensors and operational problems associated with the measurements are discussed.

  13. Spaceborne Microwave Remote Sensing of Seasonal Freeze-Thaw Processes in the Terrestrial High Latitudes: Relationships with Land-Atmosphere CO2 exchange

    NASA Technical Reports Server (NTRS)

    McDonald, Kyle C.; Kimball, John S.; Zhao, Maosheng; Njoku, Eni; Zimmermann, Reiner; Running, Steven W.

    2004-01-01

    Landscape transitions between seasonally frozen and thawed conditions occur each year over roughly 50 million square kilometers of Earth's Northern Hemisphere. These relatively abrupt transitions represent the closest analog to a biospheric and hydrologic on/off switch existing in nature, affecting surface meteorological conditions, ecological trace gas dynamics, energy exchange and hydrologic activity profoundly. We utilize time series satellite-borne microwave remote sensing measurements from the Special Sensor Microwave Imager (SSM/I) to examine spatial and temporal variability in seasonal freeze/thaw cycles for the pan-Arctic basin and Alaska. Regional measurements of spring thaw timing are derived using daily brightness temperature measurements from the 19 GHz, horizontally polarized channel, separately for overpasses with 6 AM and 6 PM equatorial crossing times. Spatial and temporal patterns in regional freeze/thaw dynamics show distinct differences between North America and Eurasia, and boreal forest and Arctic tundra biomes. Annual anomalies in the timing of thawing in spring also correspond closely to seasonal atmospheric CO2 concentration anomalies derived from NOAA CMDL arctic and subarctic monitoring stations. Classification differences between AM and PM overpass data average approximately 5 days for the region, though both appear to be effective surrogates for monitoring annual growing seasons at high latitudes.

  14. Microwave-assisted preparation of the quorum-sensing molecule 2-heptyl-3-hydroxy-4(1H)-quinolone and structurally related analogs.

    PubMed

    Hodgkinson, James T; Galloway, Warren R J D; Welch, Martin; Spring, David R

    2012-05-24

    An optimized procedure for the efficient preparation of 2-heptyl-3-hydroxy-4(1H)-quinolone (Pseudomonas quinolone signal or PQS) and a diverse range of structurally related 2-alkyl-4-quinolones with biological activity is presented. The two-step synthesis begins with the formation of α-chloro ketones by the coupling of a Weinreb amide (2-chloro-N-methoxy-N-methylacetamide) and an appropriate Grignard reagent. The resulting α-chloro ketones can be reacted with commercially available anthranilic acids under microwave irradiation conditions to furnish the desired 2-alkyl-4-quinolone products. As a typical example, the synthesis of PQS, a molecule involved in quorum sensing in the pathogenic bacterium Pseudomonas aeruginosa, is described in detail. The first step of this process (α-chloro ketone formation) takes ∼10 h in total to complete from commercially available bromoheptane and 2-chloro-N-methoxy-N-methylacetamide. The second step (microwave-assisted reaction with anthranilic acid) takes ∼14 h in total to complete (the reaction typically proceeds in ∼30 min, with work-up and purification requiring ∼13 h).

  15. Spaceborne microwave remote sensing of seasonal freeze-thaw processes in theterrestrial high l atitudes : relationships with land-atmosphere CO2 exchange

    NASA Technical Reports Server (NTRS)

    McDonald, Kyle C.; Kimball, John S.; Zhao, Maosheng; Njoku, Eni; Zimmermann, Reiner; Running, Steven W.

    2004-01-01

    Landscape transitions between seasonally frozen and thawed conditions occur each year over roughly 50 million square kilometers of Earth's Northern Hemisphere. These relatively abrupt transitions represent the closest analog to a biospheric and hydrologic on/off switch existing in nature, affecting surface meteorological conditions, ecological trace gas dynamics, energy exchange and hydrologic activity profoundly. We utilize time series satellite-borne microwave remote sensing measurements from the Special Sensor Microwave Imager (SSM/I) to examine spatial and temporal variability in seasonal freeze/thaw cycles for the pan-Arctic basin and Alaska. Regional measurements of spring thaw timing are derived using daily brightness temperature measurements from the 19 GHz, horizontally polarized channel, separately for overpasses with 6 AM and 6 PM equatorial crossing times. Spatial and temporal patterns in regional freeze/thaw dynamics show distinct differences between North America and Eurasia, and boreal forest and Arctic tundra biomes. Annual anomalies in the timing of thawing in spring also correspond closely to seasonal atmospheric CO2 concentration anomalies derived from NOAA CMDL arctic and subarctic monitoring stations. Classification differences between AM and PM overpass data average approximately 5 days for the region, though both appear to be effective surrogates for monitoring annual growing seasons at high latitudes.

  16. Application of NASA's modern era retrospective-analysis in Global Wetlands Mappings Derived from Coarse-Resolution Satellite Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Schröder, R.; McDonald, K. C.; Podest, E.; Jones, L. A.; Kimball, J. S.; Pinto, N.; Zimmermann, R.; Küppers, M.

    2011-12-01

    The sensitivity of Earth's wetlands to observed shifts in global precipitation and temperature patterns and their ability to produce large quantities of methane gas are key global change questions. Global methane emissions are typically estimated via process-based models calibrated to individual wetland sites. Regardless of the complexity of these process-based models, accurate geographical distribution and seasonality of recent global wetland extent are typically not accounted for in such an approach, which may explain the large variations in estimated global methane emissions as well as the significant interannual variations in the observed atmospheric growth rate of methane. Spatially comprehensive ground observation networks of large-scale inundation patterns are very sparse because they require large fiscal, technological and human resources. Satellite remote sensing of global inundation dynamics thus can support the ability for a complete synoptic view of past and current inundation dynamics over large areas that otherwise could not be assessed. Coarse-resolution (~25km) satellite data from passive and active microwave instruments are well suited for the global observation of large-scale inundation patterns because they are primarily sensitive to the associated dielectric properties of the landscape and cover large areas within a relatively short amount of time (up to daily repeat in high latitudes). This study summarizes a new remote sensing technique for quantifying global daily surface water fractions based on combined passive-active microwave remote sensing data sets from the AMSR-E and QuikSCAT instruments over a 7 year period (July 2002 - July 2009). We apply these data with ancillary land cover maps from MODIS to: 1) define the potential global domain of surface water impacted land; 2) establish land cover driven predictive equations for implementing a dynamic mixture model adjusted to total column water vapor obtained from NASA's modern era

  17. Type-Independent Calibration Method for Microwave Moisture Sensing in Unshelled and Shelled Peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A microwave dielectric method was used for nondestructive and instantaneous determination of moisture content in shelled and unshelled peanuts from measurement of their relative complex permittivities in free space at 6.0 GHz and 23°C. Moisture content was determined independent of bulk density with...

  18. Microwave-accelerated metal-enhanced fluorescence: an ultra-fast and sensitive DNA sensing platform.

    PubMed

    Aslan, Kadir; Malyn, Stuart N; Bector, Geetika; Geddes, Chris D

    2007-11-01

    In this paper, we investigated the effects of low-power microwave heating on the components of the recently described new approach to surface DNA hybridization assays, based on the Microwave-Accelerated Metal-Enhanced Fluorescence (MAMEF) platform technology. Thiolated oligonucleotides have been linked to surface-bound silver nanostructures which partially coat a glass slide. The addition of a complementary fluorescein-labeled oligonucleotide results in metal-enhanced fluorescein emission as the probe is brought into close proximity to the silver upon hybridization. In addition, the combined use with low-power microwave heating, which is thought to locally heat around the silvered surface, affords for both the assay kinetics and optical amplification to also be localized to the surface. In our model DNA target assay reported here, we can detect 23-mer targets in less than 20 s, up to a 600-fold decrease in the assay run time as compared to control samples hybridized to completion at room temperature. Importantly, the use of MAMEF also reduces the extent of unwanted non-specific DNA absorption, further increasing specific DNA target detection limits. It was also found that low-power microwave heating did not denature DNA and the bulk temperature increase near to silver nanoparticles was only ca. 1 degrees C.

  19. Microwave remote sensing of rain-on-snow events in the subarctic with AMSR2 and GPM observations

    NASA Astrophysics Data System (ADS)

    Brucker, L.; Munchak, S. J.

    2014-12-01

    Climate change in high northern latitudes is predicted to be greater in winter than in summer, and to have increasing, widespread impacts in northern ecosystems. Some of the resulting unknowns are the effects of an increasing frequency of sudden, short-lasting winter warming events, which can lead to rain on snow (ROS). Very little is known about ROS in northern regions, and even less about its cumulative impact on surface energy balance, permafrost, snow melt, and hydrological processes. Since, wintertime warming events have become more frequent in sub-Arctic regions, ROS event characteristics (frequency, extent, and duration) may represent new and relevant climate indicators. However, ROS event detection is challenging.In this presentation, we propose new approaches to monitor the occurrence of ROS events using satellite passive and active microwave sensors. Specifically, we utilize observations from Advanced Microwave Scanning Radiometer 2 (AMSR2), Global Precipitation Measurements (GPM) Microwave Imager (GMI), and GPM Dual-frequency Precipitation Radar (DPR). GPM was launched in February, 2014. It operates multiple radiometers (in the frequency range 10 - 183 GHz), and two radars (Ku and Ka bands). GPM observations are used to quantify rainfall or snowfall rates and are thus appropriate to monitor ROS events up to 66° North.Our satellite monitoring of the ROS event is based on both temporal and spectral variations in the satellite observations. We discuss the observed ROS radiometric signatures using a Multi-Layer microwave emission model based on the Dense Media Radiative Transfer theory (DMRT-ML). In addition, our monitoring is evaluated against atmospheric reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim, and NASA Modern-Era Retrospective analysis for Research and Applications (MERRA). This initial evaluation in winter months shows that the proposed ROS detection using microwave sensors occur in areas that are shown

  20. Implementation of Microwave Active Nulling and Interrogation of Boundary Impedance

    DTIC Science & Technology

    2006-05-01

    Sep. 2004. Electromagnetic Interrogation over Electric Boundary -H. How and C. Vittoria, "Microwave Impedance Control Over a Ferrite Boundary Layer...Utilizing Nonreciprocal Wave Propagation," IEEE Trans. Microwave Theory Tech., MTT-52(8), 2004. Electromagnetic Interrogation involving Hexagonal Ferrite ...H. How, X. Zuo, and C. Vittoria, "Wave Propagation in Ferrite Involving Planar Anisotropy - Theory and Experiment" IEEE Trans. Magnetics, Mag-41(8

  1. Microwave and Beam Activation of Nanostructured Catalysts for Environmentally Friendly, Energy Efficient Heavy Crude Oil Processing

    SciTech Connect

    2009-03-01

    This factsheet describes a study whose goal is initial evaluation and development of energy efficient processes which take advantage of the benefits offered by nanostructured catalysts which can be activated by microwave, RF, or radiation beams.

  2. Effects of microwave heating on porous structure of regenerated powdered activated carbon used in xylose.

    PubMed

    Li, Wei; Wang, Xinying; Peng, Jinhui

    2014-01-01

    The regeneration of spent powdered activated carbons used in xylose decolourization by microwave heating was investigated. Effects of microwave power and microwave heating time on the adsorption capacity of regenerated activated carbons were evaluated. The optimum conditions obtained are as follows: microwave power 800W; microwave heating time 30min. Regenerated activated carbon in this work has high adsorption capacities for the amount of methylene blue of 16 cm3/0.1 g and the iodine number of 1000.06mg/g. The specific surface areas of fresh commercial activated carbon, spent carbon and regenerated activated carbon were calculated according to the Brunauer, Emmett and Teller method, and the pore-size distributions of these carbons were characterized by non-local density functional theory (NLDFT). The results show that the specific surface area and the total pore volume of regenerated activated carbon are 1064 m2/g and 1.181 mL/g, respectively, indicating the feasibility of regeneration of spent powdered activated carbon used in xylose decolourization by microwave heating. The results of surface fractal dimensions also confirm the results of isotherms and NLDFT.

  3. Imaging of Active Microwave Devices at Cryogenic Temperatures using Scanning Near-Field Microwave Microscopy

    NASA Astrophysics Data System (ADS)

    Thanawalla, Ashfaq S.; Dutta, S. K.; Vlahacos, C. P.; Steinhauer, D. E.; Feenstra, B. J.; Anlage, Steven M.; Wellstood, F. C.

    1998-03-01

    The ability to image electric fields in operating microwave devices is interesting both from the fundamental point of view and for diagnostic purposes. To that end we have constructed a scanning near-field microwave microscope which uses an open-ended coaxial probe and operates at cryogenic temperatures.(For related publications see: C. P. Vlahacos, R. C. Black, S. M. Anlage, A. Amar and F. C. Wellstood, Appl. Phys. Lett. 69), 3274 (1996) and S. M. Anlage, C. P. Vlahacos, Sudeep Dutta and F. C. Wellstood, IEEE Trans. Appl. Supercond. 7, 3686 (1997). Using this system we have imaged electric fields generated by both normal metal and superconducting microstrip resonators at temperatures ranging from 77 K to 300 K. We will present images and discuss our results including observations of clear standing wave patterns at the fundamental resonant frequency and an increased quality factor of the resonators at low temperatures.

  4. Microwave activated electrochemical degradation of 2,4-dichlorophenoxyacetic acid at boron-doped diamond electrode.

    PubMed

    Gao, Junxia; Zhao, Guohua; Shi, Wei; Li, Dongming

    2009-04-01

    A method for improving the oxidation ability of the electrode is proposed by using microwave activation in electrochemical oxidation. The electrochemical degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) with microwave radiation (MW-EC) was carried out in a continuous flow system under atmospheric pressure. In 3 h the removal of COD, ACE (average current efficiency) and Cl(-) concentration was 1.63, 2.25 and 1.67 times as that without microwave radiation, respectively. The high degradation ability was resulted from the more active centers at the electrode surface due to the microwave radiation. The decay kinetics of 2,4-D followed a pseudo first-order reaction. The rate constant was increased to 2.16x10(-4) s(-1) with the microwave radiation, while it was 8.52x10(-5) s(-1) with electrochemical treatment only (EC). Under both conditions, the main intermediates were identified and quantified by High Performance Liquid Chromatography (HPLC). The formation rate of intermediate products and further degradation rate were increased by about 50-120% with the microwave radiation. The activation of electrochemical oxidation by microwave was discussed from the diffusion process, adsorption and the temperature at boron-doped diamond (BDD) electrode.

  5. Microwave remote sensing of soil moisture, volume 1. [Guymon, Oklahoma and Dalhart, Texas

    NASA Technical Reports Server (NTRS)

    Mcfarland, M. J. (Principal Investigator); Theis, S. W.; Rosenthal, W. D.; Jones, C. L.

    1982-01-01

    Multifrequency sensor data from NASA's C-130 aircraft were used to determine which of the all weather microwave sensors demonstrated the highest correlation to surface soil moisture over optimal bare soil conditions, and to develop and test techniques which use visible/infrared sensors to compensate for the vegetation effect in this sensor's response to soil moisture. The L-band passive microwave radiometer was found to be the most suitable single sensor system to estimate soil moisture over bare fields. The perpendicular vegetation index (PVI) as determined from the visible/infrared sensors was useful as a measure of the vegetation effect on the L-band radiometer response to soil moisture. A linear equation was developed to estimate percent field capacity as a function of L-band emissivity and the vegetation index. The prediction algorithm improves the estimation of moisture significantly over predictions from L-band emissivity alone.

  6. High altitude airborne remote sensing mission using the advanced microwave precipitation radiometer (AMPR)

    NASA Technical Reports Server (NTRS)

    Galliano, J.; Platt, R. H.; Spencer, Roy; Hood, Robbie

    1991-01-01

    The advanced microwave precipitation radiometer (AMPR) is an airborne multichannel imaging radiometer used to better understand how the earth's climate structure works. Airborne data results from the October 1990 Florida thunderstorm mission in Jacksonville, FL, are described. AMPR data on atmospheric precipitation in mesoscale storms were retrieved at 10.7, 19.35, 37.1, and 85.5 GHz onboard the ER-2 aircraft at an altitude of 20 km. AMPR's three higher-frequency data channels were selected to operate at the same frequencies as the spaceborne special sensor microwave/imager (SSM/I) presently in orbit. AMPR uses two antennas to receive the four frequencies: the lowest frequency channel uses a 9.7-in aperture lens antennas, while the three higher-frequency channels share a separate 5.3-in aperture lens antenna. The radiometer's temperature resolution performance is summarized.

  7. On the use of passive microwaves at 37 GHz in remote sensing of vegetation

    NASA Technical Reports Server (NTRS)

    Kerr, Y. H.; Njoku, E. G.

    1993-01-01

    Recently, a number of studies have investigated the use of the 37 GHz channels of the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) for vegetation monitoring and for studying synergisms between the SMMR and the NOAA Advanced Very High Resolution Radiometer (AVHRR). The approaches are promising but raise a number of issues concerning interpretation of the results, specifically on the relative effects of vegetation and other surface and atmospheric characteristics on the observed signal. This article analyzes the 37 GHz Microwave Polarization Difference Temperature (MPDT) in terms of its sensitivity to surface and atmospheric parameters. For this, a radiative transfer model is used which indicates some limitations of the MPDT index and suggests the importance of accounting for atmospheric effects in the data analysis. An alternative approach to the MPDT, including lower SMMR frequencies than 37 GHz, is discussed.

  8. Use of a cloud-sensing radar and a microwave radiometer as a stratus cloud profiler

    SciTech Connect

    Frisch, A.S.; Fairall, C.W.; Snider, J.B.

    1994-12-31

    Remote sensors such as radar offer an alternate approach to the study of could and drizzle properties. Combining stratus cloud measurements from a K{sub {alpha}}-band radar and microwave radiometer can give profiles of liquid water and droplet distribution. In addition, in drizzle, the radar measurements can be used to estimate drizzle parameters such as number concentration, liquid water, and droplet distribution.

  9. The development of a stepped frequency microwave radiometer and its application to remote sensing of the Earth

    NASA Technical Reports Server (NTRS)

    Harrington, R. F.

    1980-01-01

    The design, development, application, and capabilities of a variable frequency microwave radiometer are described. This radiometer demonstrated the versatility, accuracy, and stability required to provide contributions to the geophysical understanding of ocean and ice processes. A closed-loop feedback method was used, whereby noise pulses were added to the received electromagnetic radiation to achieve a null balance in a Dicke switched radiometer. Stability was achieved through the use of a constant temperature enclosure around the low loss microwave front end. The Dicke reference temperature was maintained to an absolute accuracy of 0.1 K using a closed-loop proportional temperature controller. A microprocessor based digital controller operates the radiometer and records the data on computer compatible tapes. This radiometer exhibits an absolute accuracy of better than 0.5 K when the sensitivity is 0.1 K. The sensitivity varies between 0.0125 K and 1.25 K depending upon the bandwidth and integration time selected by the digital controller. Remote sensing experiments were conducted from an aircraft platform and the first radiometeric mapping of an ocean polar front; exploratory experiments to measure the thickness of lake ice; first discrimination between first year and multiyear ice below 10 GHz; and the first known measurements of frequency sensitive characteristics of sea ice.

  10. Hybrid Architecture Active Wavefront Sensing and Control

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Dean, Bruce; Hyde, Tupper

    2010-01-01

    A method was developed for performing relatively high-speed wavefront sensing and control to overcome thermal instabilities in a segmented primary mirror telescope [e.g., James Webb Space Telescope (JWST) at L2], by using the onboard fine guidance sensor (FGS) to minimize expense and complexity. This FGS performs centroiding on a bright star to feed the information to the pointing and control system. The proposed concept is to beam split the image of the guide star (or use a single defocused guide star image) to perform wavefront sensing using phase retrieval techniques. Using the fine guidance sensor star image for guiding and fine phasing eliminates the need for other, more complex ways of achieving very accurate sensing and control that is needed for UV-optical applications. The phase retrieval occurs nearly constantly, so passive thermal stability over fourteen days is not required. Using the FGS as the sensor, one can feed segment update information to actuators on the primary mirror that can update the primary mirror segment fine phasing with this frequency. Because the thermal time constants of the primary mirror are very slow compared to this duration, the mirror will appear extremely stable during observations (to the level of accuracy of the sensing and control). The sensing can use the same phase retrieval techniques as the JWST by employing an additional beam splitter, and having each channel go through a weak lens (one positive and one negative). The channels can use common or separate detectors. Phase retrieval can be performed onboard. The actuation scheme would include a coarse stage able to achieve initial alignment of several millimeters of range (similar to JWST and can use a JWST heritage sensing approach in the science camera) and a fine stage capable of continual updates.

  11. Microwave assisted combustion synthesis of nanocrystalline CoFe{sub 2}O{sub 4} for LPG sensing

    SciTech Connect

    Chaudhari, Prashant; Acharya, S. A. Darunkar, S. S.; Gaikwad, V. M.

    2015-08-28

    A microwave-assisted citrate precursor method has been utilized for synthesis of nanocrystalline powders of CoFe{sub 2}O{sub 4}. The process takes only a few minutes to obtain as-synthesized CoFe{sub 2}O{sub 4}. Structural properties of the synthesized material were investigated by X-ray diffraction; scanning electron microscopy, Thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy. The gas sensing properties of thick film of CoFe{sub 2}O{sub 4} prepared by screen printing towards Liquid Petroleum Gas (LPG) revealed that CoFe{sub 2}O{sub 4} thick films are sensitive and shows maximum sensitivity at 350°C for 2500 ppm of LPG.

  12. Optical and ammonia-sensing properties of SnO2 nanoparticles synthesized using a 900 W microwave

    NASA Astrophysics Data System (ADS)

    Klinbumrung, Arrak; Thongtem, Titipun; Phuruangrat, Anukorn; Thongtem, Somchai

    2016-08-01

    SnO2 nanoparticles were successfully synthesized using a 900 W microwave for 10, 20, and 30 min. Tetragonal SnO2 nanoparticles composed of Sn and O were detected by X-ray diffraction (XRD), selected area electron diffraction (SEAD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, and transmission electron microscopy (TEM). The SnO2 nanoparticles processed for 30 min were the best crystals. The 3.5 eV energy gap and 395 nm emission wavelength were determined by UV-visible absorption and photoluminescence (PL) spectroscopy. The gas-sensing performance of SnO2 nanoparticles during exposure to an NH3-air mixture was studied at different working temperatures and NH3 concentrations. At 1055 ppm NH3 and 350 °C, the SnO2 nanoparticles showed a sensitivity of 9.2 with the response and recovery times of 9 and 37 s, respectively.

  13. Effect of Microwave Heating Conditions on the Preparation of High Surface Area Activated Carbon from Waste Bamboo

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Hongying Xia; Zhang, Libo; Xia, Yi; Peng, Jinhui; Wang, Shixing; Zheng, Zhaoqiang; Zhang, Shengzhou

    2015-11-01

    The present study reports the effect of microwave power and microwave heating time on activated carbon adsorption ability. The waste bamboo was used to preparing high surface area activated carbon via microwave heating. The bamboo was carbonized for 2 h at 600°C to be used as the raw material. According to the results, microwave power and microwave heating time had a significant impact on the activating effect. The optimal KOH/C ratio of 4 was identified when microwave power and microwave heating time were 700 W and 15 min, respectively. Under the optimal conditions, surface area was estimated to be 3441 m2/g with pore volume of 2.093 ml/g and the significant proportion of activated carbon was microporous (62.3%). The results of Fourier transform infrared spectroscopy (FTIR) were illustrated that activated carbon surface had abundant functional groups. Additionally the pore structure is characterized using Scanning Electron Microscope (SEM).

  14. Needs, Feedback, and the Future: Need Sensing Activities in 2001.

    ERIC Educational Resources Information Center

    Lewis, Morgan V.

    A needs sensing project was conducted to identify the general needs of the field of career and technical education (CTE), dissemination activities, and major forces in the environment judged likely to influence education in the foreseeable future. The need sensing took place with networks developed in regions assigned to the five primary partner…

  15. Investigating Baseline, Alternative and Copula-based Algorithm for combining Airborne Active and Passive Microwave Observations in the SMAP Context

    NASA Astrophysics Data System (ADS)

    Montzka, C.; Lorenz, C.; Jagdhuber, T.; Laux, P.; Hajnsek, I.; Kunstmann, H.; Entekhabi, D.; Vereecken, H.

    2015-12-01

    The objective of the NASA Soil Moisture Active & Passive (SMAP) mission is to provide global measurements of soil moisture and freeze/thaw states. SMAP integrates L-band radar and radiometer instruments as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. Airborne instruments will be a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment, Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer (PLMR2) and the active L-band system F-SAR of DLR were flown simultaneously on the same platform on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e. all types of land cover and experimental monitoring sites with in situ sensors. Here, we used the obtained data sets as a test-bed for the analysis of three active-passive fusion techniques: A) The SMAP baseline algorithm: Disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture, B), the SMAP alternative algorithm: Estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter and C) Copula-based combination of active and passive microwave data. For method C empirical Copulas were generated and theoretical Copulas fitted both on the level of the raw products brightness temperature and backscatter as well as two soil moisture products. Results indicate that the regression parameters for method A and B are dependent on the radar vegetation index (RVI). Similarly, for method C the best performance was gained by generating separate Copulas for individual land use classes. For more in-depth analyses longer time series are necessary as can obtained by airborne campaigns, therefore, the methods will be applied to SMAP data.

  16. Microwave sensors for earth resource observations in the 1980's

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr.; Harnage, M. J., Jr.

    1980-01-01

    Future trends in microwave sensing are identified with reference to the workshops organized by the Active Microwave Remote Sensing Research Program. The workshops demonstrated that (1) microwave techniques have great potential for earth observations of renewable and nonrenewable resources and (2) existing research does not adequately assess microwave sensor measurement capabilities. The need for synoptic information includes such areas as cloud-free, surface-roughness and electrical-properties data. Attention is given to applications including all-weather imaging, sensitivity to vegetation and soil-moisture conditions. Research tasks to be accomplished during the next five years are discussed.

  17. Assessment of soil surface roughness characteristics at field-scale for soil erosion studies using microwave remote sensing data

    NASA Astrophysics Data System (ADS)

    Marzahn, Philip; Ludwig, Ralf

    2013-04-01

    Soil surface roughness (SSR) is a crucial parameter in the assessment and modelling of soil erosion in agricultural landscapes. Still, in recent modelling efforts, roughness is usually treated as a static parameter, leading to strong simplification and data uncertainty in the description of these physical processes and the derivation of hydrological quantities. However, this simplification is not only due to the lack of theoretical process knowledge, but rather refers to the lack of appropriate roughness input data, as it is very complex to measure roughness under natural conditions. To overcome the current limitations, the performance of microwave remote sensing acquisitions is investigated to derive SSR dynamics for a whole vegetation period over several agricultural fields. As the backscattered signal of an incident microwave shows an inherent dependency from the geometric properties, e.g. the roughness conditions, of an illuminated scene, microwave remote sensing imagery shows a good potential to derive SSR for soil erosion studies sufficiently. The proposed approach utilizes airborne PolSAR data, acquired at C- and L-Band (e.g. 5.6 GHz and 1.3 GHz) for the derivation of four potential roughness estimators. In addition an extensive ground truth database of photogrammetrically measured roughness samples is used to validate the results. To characterize the in-field measurements the RMS-height s - which is the standard deviation of the heights to a reference height - was chosen. Using the best fit approach, a highly accurate assessment of SSR at field-scale could be achieved by deriving s using a linear model from the real part of the circular coherence (Re[ρRRLL]). In this presentation, we show the database of the proposed approach acquired in the framework of the AgriSAR 2006 campaign funded by the European Space Agency, ESA, as well as methods and results of the proposed approach. In addition we will discuss the results in context of soil erosion research and

  18. A study of surface and surface-volume scattering for discrete random medium in microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Syahali, Syabeela Bt

    In the study of microwave remote sensing and wave propagation in a medium, it is interesting and important to model and calculate the interaction of the electromagnetic wave with the medium, as the backscattering returns from the medium will be recorded and processed to produce satellite radar images and the wave attenuation while propagating in the medium will affect the microwave and mobile communications. Traditionally, theoretical modelling of this problem assumes that the scatterers are interacting with the wave independently. However, in real nature, the coherence effect of these interactions due to the close-spacing of the scatterers cannot be ignored, especially in the case of an electrically dense medium. Traditional theoretical modelling also assumes that wave-interface effects are only due to single scattering on the surface. This is also less accurate since multiple scattering can also contribute to the effect, especially for rough surfaces. It is also assumed that the surface-volume interaction is only due to first order surface-volume scattering. However, second order surface-volume scattering is also important and should not be ignored. Therefore, a good and reliable theoretical model for wave scattering in the natural earth terrain should be developed for the use in microwave remote sensing, communications and satellite-based natural resource monitoring. In this research, the backscattering model for an electrically dense medium is developed. This model incorporates the coherent effects due to the close-spacing of the scatterers. Improvement is done by considering the multiple surface scattering effect, together with the single surface scattering effect on the surface scattering formulation based on the existing integral equation model (IEM) for both the top and the bottom surfaces of the layer of the model. The backscattering model is also improved by considering up to second order surface-volume scattering. Its effect on surface, surface

  19. Advances on simultaneous desulfurization and denitrification using activated carbon irradiated by microwaves.

    PubMed

    Ma, Shuang-Chen; Gao, Li; Ma, Jing-Xiang; Jin, Xin; Yao, Juan-Juan; Zhao, Yi

    2012-06-01

    This paper describes the research background and chemistry of desulfurization and denitrification technology using microwave irradiation. Microwave-induced catalysis combined with activated carbon adsorption and reduction can reduce nitric oxide to nitrogen and sulfur dioxide to sulfur from flue gas effectively. This paper also highlights the main drawbacks of this technology and discusses future development trends. It is reported that the removal of sulfur dioxide and nitric oxide using microwave irradiation has broad prospects for development in the field of air pollution control.

  20. Error Characterisation and Merging of Active and Passive Microwave Soil Moisture Data Sets

    NASA Astrophysics Data System (ADS)

    Wagner, Wolfgang; Gruber, Alexander; de Jeu, Richard; Parinussa, Robert; Chung, Daniel; Dorigo, Wouter; Reimer, Christoph; Kidd, Richard

    2015-04-01

    the products is available, the estimate of the respective product is used, while on days where both active and passive sensors provide an estimate, their observations are averaged. REFERENCES Dorigo, W.A., A. Gruber, R. de Jeu, W. Wagner, T. Stacke, A. Löw, C. Albergel, L. Brocca, D. Chung, R. Parinussa, R. Kidd (2015) Evaluation of the ESA CCI soil moisture product using ground-based observations, Remote Sensing of Environment, in press. Wagner, W., W. Dorigo, R. de Jeu, D. Fernandez, J. Benveniste, E. Haas, M. Ertl (2012) Fusion of active and passive microwave observations to create an Essential Climate Variable data record on soil moisture, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Annals), Volume I-7, XXII ISPRS Congress, Melbourne, Australia, 25 August-1 September 2012, 315-321. Zwieback, S., K. Scipal, W. Dorigo, W. Wagner (2012) Structural and statistical properties of the collocation technique for error characterization, Nonlinear Processes in Geophysics, 19, 69-80.

  1. Volcanic eruption source parameters from active and passive microwave sensors

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario; Marzano, Frank S.; Cimini, Domenico; Mereu, Luigi

    2016-04-01

    It is well known, in the volcanology community, that precise information of the source parameters characterising an eruption are of predominant interest for the initialization of the Volcanic Transport and Dispersion Models (VTDM). Source parameters of main interest would be the top altitude of the volcanic plume, the flux of the mass ejected at the emission source, which is strictly related to the cloud top altitude, the distribution of volcanic mass concentration along the vertical column as well as the duration of the eruption and the erupted volume. Usually, the combination of a-posteriori field and numerical studies allow constraining the eruption source parameters for a given volcanic event thus making possible the forecast of ash dispersion and deposition from future volcanic eruptions. So far, remote sensors working at visible and infrared channels (cameras and radiometers) have been mainly used to detect, track and provide estimates of the concentration content and the prevailing size of the particles propagating within the ash clouds up to several thousand of kilometres far from the source as well as track back, a-posteriori, the accuracy of the VATDM outputs thus testing the initial choice made for the source parameters. Acoustic wave (infrasound) and microwave fixed scan radar (voldorad) were also used to infer source parameters. In this work we want to put our attention on the role of sensors operating at microwave wavelengths as complementary tools for the real time estimations of source parameters. Microwaves can benefit of the operability during night and day and a relatively negligible sensitivity to the presence of clouds (non precipitating weather clouds) at the cost of a limited coverage and larger spatial resolution when compared with infrared sensors. Thanks to the aforementioned advantages, the products from microwaves sensors are expected to be sensible mostly to the whole path traversed along the tephra cloud making microwaves particularly

  2. Active Sensing System with In Situ Adjustable Sensor Morphology

    PubMed Central

    Nurzaman, Surya G.; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Background Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. Methodology This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. Conclusions/Significance The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed. PMID:24416094

  3. A statistical method to sense sea surface temperature from the Nimbus-7 scanning multichannel microwave radiometer

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Wang, I.

    1983-01-01

    Among the five channels in the Scanning Multichannel Microwave Radiometer (SMMR), the brightness temperature measured at 6.6 GHz vertical polarization is least affected by the atmospheric water vapor and liquid water in clouds or rain. Furthermore, as the undisturbed sea surface emissivity at 6.6 GHz is nearly constant over the temperature range 275 to 300 K, this channel has the best sensitivity to sea surface temperature (SST). The 6.6 GHz channel on SMMR is specifically chosen for these reasons to measure SST.

  4. A multifrequency evaluation of active and passive microwave sensors for oil spill detection and assessment

    NASA Technical Reports Server (NTRS)

    Fenner, R. G.; Reid, S. C.; Solie, C. H.

    1980-01-01

    An evaluation is given of how active and passive microwave sensors can best be used in oil spill detection and assessment. Radar backscatter curves taken over oil spills are presented and their effect on synthetic aperture radar (SAR) imagery are discussed. Plots of microwave radiometric brightness variations over oil spills are presented and discussed. Recommendations as to how to select the best combination of frequency, viewing angle, and sensor type for evaluation of various aspects of oil spills are also discussed.

  5. Passive microwave sensing of soil moisture content: Soil bulk density and surface roughness

    NASA Technical Reports Server (NTRS)

    Wang, J. R.

    1982-01-01

    Microwave radiometric measurements over bare fields of different surface roughnesses were made at the frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence as well as the possible time variation of surface roughness. The presence of surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time series observation over a given field indicated that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. This time variation of surface roughness served to enhance the uncertainty in remote soil moisture estimate by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which turned out to be an important factor in the interpretation of radiometric data.

  6. Galactic Noise and Passive Microwave Remote Sensing from Space At L-Band

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Abraham, Saji; Hildebrand Peter H. (Technical Monitor)

    2002-01-01

    The spectral window at L-band (1.4 GHz) is important for passive remote sensing of soil moisture and ocean salinity from space, parameters that are needed to understand the hydrologic cycle and ocean circulation. At this frequency, radiation from extraterrestrial (mostly galactic) sources is strong and, unlike the constant cosmic background, this radiation is spatially variable. This paper presents a modern radiometric map of the celestial sky at L-band and a solution for the problem of determining what portion of the sky is seen by a radiometer in orbit. The data for the radiometric map is derived from recent radio astronomy surveys and is presented as equivalent brightness temperature suitable for remote sensing applications. Examples using orbits and antennas representative of those contemplated for remote sensing of soil moisture and sea surface salinity from space are presented to illustrate the signal levels to be expected. Near the galactic plane, the contribution can exceed several Kelvin.

  7. Characterization of Aroma-Active Compounds in Microwave Blanced Peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microwave blanching of peanuts has been explored as an alternative to conventional oven methods based on its speed of operation, energy savings, and efficiency of process control. Although processing times can be greatly reduced,the occurrence of stale/floral and ashy off-flavors has been reported a...

  8. Microwave Nondestructive Sensing of Moisture Content in Shelled Peanuts Independent of Bulk Density with Temperature Compensation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectric methods for rapid and nondestructive sensing of moisture content in shelled peanuts from free-space measurement of attenuation and phase shift, and their corresponding dielectric properties at 10 GHz, are presented. These methods provide moisture content independent of bulk density and c...

  9. The Passive Microwave Remote Sensing of Soil Moisture: the Effect of Tilled Row Structure

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Newton, R. W.; Rouse, J. W.

    1979-01-01

    The tilled rowstructure is known to be one of the important factors affecting the observations of the microwave emission from a natural surface. Measurements of this effect were carried out with both I and X band radiometers mounted on a mobile truck on a bare 40 m x 45 m row tilled field. The soil moisture content during the measurements ranged from approximately 10 percent to approximately 30 percent by dry weight. The results of these measurements showed that the variations of the antenna temperatures with incident angle theta changed with the azimuthal angle a measured from the row direction. A numerical calculation based on a composite surface roughness was made and found to predict the observed features within the model's limit of accuracy. It was concluded that the difference between the horizontally and vertically polarized temperatures was due to the change in the local angle of field emission within the antenna field of view caused by the large scale row structure.

  10. Passive microwave remote sensing of soil moisture - The effect of tilled row structure

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Newton, R. W.; Rouse, J. W., Jr.

    1980-01-01

    The tilled row structure in agricultural fields is one of the important factors affecting observations of microwave emission from such fields. Measurements of this effect were performed with L-band and X-band radiometers mounted on a mobile truck on a bare 40 m x 45 m row tilled field; the soil moisture content during measurements ranged from 10 to 30% by dry weight. Results showed that the variations of the antenna temperatures with incident angle changed with the azimuth angle measured from the row direction. It is found that the observed difference between horizontally and vertically polarized antenna temperatures is due to the change in the local angle of field emission within the antenna field of view caused by the large-scale row structure.

  11. Templates for engineered nano-objects for use in microwave, electronic devices and biomedical sensing application

    NASA Astrophysics Data System (ADS)

    Ferain, E.; Legras, R.

    2009-03-01

    Nanoporous templates have been developed and fabricated employing technology based on heavy ion bombardment and track etching of polymer films or polymer layers deposited on substrates; an alternative and unique tool based on the adaptation of an atomic force microscopy has been also developed to elaborate nanotemplates with pores of ultra-small dimensions down to a few nanometers. Different types of nano-objects elaborated using these templates have been further characterized regarding their specific properties: spin dependent phenomena in magnetic nano-objects (GMR, TMR, spin filtering, magneto-Coulomb effect, spin transfer torque phenomena), microwave properties of ferromagnetic nanowires arrays, optical properties of confined emitting polymer and biomedical applications of magnetic (Ni) and Ni/Au composite nanowires. Potential application of magnetic nanowire arrays has been also considered in sensor for automotive contact-less positioning system.

  12. Relationships between evaprorative fraction and remotely sensed vegetation index and microwave brightness temperature for semiarid rangelands

    SciTech Connect

    Kustas, W.P.; Schimugge, T.J.; Humes, K.S.; Jackson, T.J.; Parry, R.; Weltz, M.A.; Moran, M.S. ||

    1993-12-01

    Measurements of the microwave brightness temperature (TB) with the Pushbroom Microwave Radiometer (PBMR) over the Walnut Gulch Experiment Watershed were made on selected days during the MONSOON 90 field campaign. The PBMR is an L-band instrument (21-cm wavelength) that can provide estimates of near-surface soil moisture over a variety of surfaces. Aircraft observations in the visible and near-infrared wavelengths collected on selected days also were used to compute a vegetation index. Continuous micrometeorological measurements and daily soil moisture samples were obtained at eight locations during experimental period. Two sites were instrumented with time domain reflectometry probes to monitor the soil moisture profile. The fraction of available energy used for evapotranspiration was computed by taking the ratio of latent heat flux (LE) to the sum of net radiation (Rn) and soil heat flux (G). This ratio is commonly called the evaporative fraction (EF) and normally varies between 0 and 1 under daytime convective conditions with minimal advection. A wide range of environmental conditions existed during the field campaign, resulting in average EF values for the study area varying from 0.4 to 0.8 and values of TB ranging from 220 to 280 K. Comparison between measured TB and EF for the eight locations showed an inverse relationship. Other days were included in the analysis by estimating TB with the soil moisture data. Because transpiration from the vegetation is more strongly coupled to root zone soil moisture, significant scatter in this relationship existed at high values of TB or dry near-surface soil moisture conditions.

  13. Preparation of high surface area activated carbon from coconut shells using microwave heating.

    PubMed

    Yang, Kunbin; Peng, Jinhui; Srinivasakannan, C; Zhang, Libo; Xia, Hongying; Duan, Xinhui

    2010-08-01

    The present study attempts to utilize coconut shell to prepare activated carbon using agents such as steam, CO(2) and a mixture of steam-CO(2) with microwave heating. Experimental results show that the BET surface area of activated carbons irrespective of the activation agent resulted in surface area in excess of 2000 m(2)/g. The activation time using microwave heating is very much shorter, while the yield of the activated carbon compares well with the conventional heating methods. The activated carbon prepared using CO(2) activation has the largest BET surface area, however the activation time is approximately 2.5 times higher than the activation using steam or mixture of steam-CO(2). The chemical structure of activated carbons examined using Fourier transformed infra-red spectra (FTIR) did not show any variation in the surface functional groups of the activated carbon prepared using different activation agents.

  14. Preparation of activated carbon by microwave heating of langsat (Lansium domesticum) empty fruit bunch waste.

    PubMed

    Foo, K Y; Hameed, B H

    2012-07-01

    The feasibility of langsat empty fruit bunch waste for preparation of activated carbon (EFBLAC) by microwave-induced activation was explored. Activation with NaOH at the IR ratio of 1.25, microwave power of 600 W for 6 min produced EFBLAC with a carbon yield of 81.31% and adsorption uptake for MB of 302.48 mg/g. Pore structural analysis, scanning electron microscopy and Fourier transform infrared spectroscopy demonstrated the physical and chemical characteristics of EFBLAC. Equilibrium data were best described by the Langmuir isotherm, with a monolayer adsorption capacity of 402.06 mg/g, and the adsorption kinetics was well fitted to the pseudo-second-order equation. The findings revealed the potential to prepare high quality activated carbon from langsat empty fruit bunch waste by microwave irradiation.

  15. Remote sensing application to regional activities

    NASA Technical Reports Server (NTRS)

    Shahrokhi, F.; Jones, N. L.; Sharber, L. A.

    1976-01-01

    Two agencies within the State of Tennessee were identified whereby the transfer of aerospace technology, namely remote sensing, could be applied to their stated problem areas. Their stated problem areas are wetland and land classification and strip mining studies. In both studies, LANDSAT data was analyzed with the UTSI video-input analog/digital automatic analysis and classification facility. In the West Tennessee area three land-use classifications could be distinguished; cropland, wetland, and forest. In the East Tennessee study area, measurements were submitted to statistical tests which verified the significant differences due to natural terrain, stripped areas, various stages of reclamation, water, etc. Classifications for both studies were output in the form of maps of symbols and varying shades of gray.

  16. Synergism of active and passive microwave data for estimating bare surface soil moisture

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.; Njoku, Eni G.; Wegmueller, Urs

    1993-01-01

    Active and passive microwave sensors were applied effectively to the problem of estimating the surface soil moisture in a variety of environmental conditions. Research to date has shown that both types of sensors are also sensitive to the surface roughness and the vegetation cover. In estimating the soil moisture, the effect of the vegetation and roughness are often corrected either by acquiring multi-configuration (frequency and polarization) data or by adjusting the surface parameters in order to match the model predictions to the measured data. Due to the limitations on multi-configuration spaceborne data and the lack of a priori knowledge of the surface characteristics for parameter adjustments, it was suggested that the synergistic use of the sensors may improve the estimation of the soil moisture over the extreme range of naturally occurring soil and vegetation conditions. To investigate this problem, the backscattering and emission from a bare soil surface using the classical rough surface scattering theory were modeled. The model combines the small perturbation and the Kirchhoff approximations in conjunction with the Peak formulation to cover a wide range of surface roughness parameters with respect to frequency for both active and passive measurements. In this approach, the same analytical method was used to calculate the backscattering and emissivity. Therefore, the active and passive simulations can be combined at various polarizations and frequencies in order to estimate the soil moisture more actively. As a result, it is shown that (1) the emissivity is less dependent on the surface correlation length, (2) the ratio of the backscattering coefficient (HH) over the surface reflectivity (H) is almost independent of the soil moisture for a wide range of surface roughness, and (3) this ratio can be approximated as a linear function of the surface rms height. The results were compared with the data obtained by a multi-frequency radiometer

  17. Effects of Faraday Rotation on Microwave Remote Sensing From Space at L-Band

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Kao, M.

    1997-01-01

    The effect of Faraday rotation on the remote sensing of soil moisture from space is investigated using the International Reference Ionosphere (IRI) to obtain electron density profiles and the International Geomagnetic Reference Field (IGRF) to model the magnetic field. With a judicious choice of satellite orbit (6 am, sunsynchronous) the errors caused by ignoring Faraday rotation are less than 1 K at incidence angles less than 40 degrees.

  18. Educational activities of remote sensing archaeology (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hadjimitsis, Diofantos G.; Agapiou, Athos; Lysandrou, Vasilki; Themistocleous, Kyriacos; Cuca, Branka; Nisantzi, Argyro; Lasaponara, Rosa; Masini, Nicola; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter

    2016-10-01

    Remote sensing science is increasingly being used to support archaeological and cultural heritage research in various ways. Satellite sensors either passive or active are currently used in a systematic basis to detect buried archaeological remains and to systematic monitor tangible heritage. In addition, airborne and low altitude systems are being used for documentation purposes. Ground surveys using remote sensing tools such as spectroradiometers and ground penetrating radars can detect variations of vegetation and soil respectively, which are linked to the presence of underground archaeological features. Education activities and training of remote sensing archaeology to young people is characterized of highly importance. Specific remote sensing tools relevant for archaeological research can be developed including web tools, small libraries, interactive learning games etc. These tools can be then combined and aligned with archaeology and cultural heritage. This can be achieved by presenting historical and pre-historical records, excavated sites or even artifacts under a "remote sensing" approach. Using such non-form educational approach, the students can be involved, ask, read, and seek to learn more about remote sensing and of course to learn about history. The paper aims to present a modern didactical concept and some examples of practical implementation of remote sensing archaeology in secondary schools in Cyprus. The idea was built upon an ongoing project (ATHENA) focused on the sue of remote sensing for archaeological research in Cyprus. Through H2020 ATHENA project, the Remote Sensing Science and Geo-Environment Research Laboratory at the Cyprus University of Technology (CUT), with the support of the National Research Council of Italy (CNR) and the German Aerospace Centre (DLR) aims to enhance its performance in all these new technologies.

  19. Immunotropic influence of 900 MHz microwave GSM signal on human blood immune cells activated in vitro.

    PubMed

    Stankiewicz, Wanda; Dabrowski, Marek P; Kubacki, Roman; Sobiczewska, Elzbieta; Szmigielski, Stanisław

    2006-01-01

    In an earlier study we reported that G(o) phase peripheral blood mononulclear cells (PBMC) exposed to low-level (SAR = 0.18 W/kg) pulse-modulated 1300 MHz microwaves and subsequently cultured, demonstrate changed immune activity (Dabrowski et al., 2003). We investigated whether cultured immune cells induced into the active phases of cell cycle (G(1), S) and then exposed to microwaves will also be sensitive to electromagnetic field. An anechoic chamber of our design containing a microplate with cultured cells and an antenna emitting microwaves (900 MHz simulated GSM signal, 27 V/m, SAR 0.024 W/kg) was placed inside the ASSAB incubator. The microcultures of PBMC exposed to microwaves demonstrated significantly higher response to mitogens and higher immunogenic activity of monocytes (LM index) than control cultures. LM index, described in detail elsewhere (Dabrowski et al., 2001), represents the monokine influence on lymphocyte mitogenic response. The results suggest that immune activity of responding lymphocytes and monocytes can be additionally intensified by 900 MHz microwaves.

  20. Microwave-assisted template-free synthesis of butterfly-like CuO through Cu2Cl(OH)3 precursor and the electrochemical sensing property

    NASA Astrophysics Data System (ADS)

    Xie, Hanjie; Zhu, Lianjie; Zheng, Wenjun; Zhang, Jing; Gao, Fubo; Wang, Yan

    2016-11-01

    An energy-efficient and environmentally friendly microwave-assisted method was adopted for synthesis of butterfly-like CuO assembled by nanosheets through a Cu2Cl(OH)3 precursor, using no template. Formation mechanism of the butterfly-like CuO was explored and discussed systematically for the first time on the basis of both experimental results and crystal structure transformations in atomic level. The electrochemical sensing properties of the butterfly-like CuO modified electrode to ascorbic acid (AA) were studied for the first time. The results reveal that Cu(OH)2 nanowires were formed once the Cu2+ ions, located in between two CuO4 parallelogram chains of a Cu2Cl(OH)3 precursor, dissolve into the solution as Cu(OH)42- complex ions after ion exchange reactions and simultaneous assemble along a axis. Upon microwave irradiation, the adjacent CuO4 parallelogram chains of the Cu(OH)2 nanowires dehydrate and assemble along c axis, forming CuO nanosheets with (002) as the main exposed facet, which were further assembled to butterfly-like CuO under the action of microwave field, suggesting that microwave field functions like a 'directing agent'. The butterfly-like CuO modified electrode shows good electrochemical sensing properties to AA with a low detecting limit, short response time and wide linear response range.

  1. Role of modulation on the effect of microwaves on ornithine decarboxylase activity in L929 cells.

    PubMed

    Penafiel, L M; Litovitz, T; Krause, D; Desta, A; Mullins, J M

    1997-01-01

    The effect of 835 MHz microwaves on the activity of ornithine decarboxylase (ODC) in L929 murine cell was investigated at an SAR of approximately 2.5 W/kg. The results depended upon the type of modulation employed. AM frequencies of 16 Hz and 60 Hz produced a transient increase in ODC activity that reached a peak at 8 h of exposure and returned to control levels after 24 h of exposure. In this case, ODC was increased by a maximum of 90% relative to control levels. A 40% increase in ODC activity was also observed after 8 h of exposure with a typical signal from a TDMA digital cellular telephone operating in the middle of its transmission frequency range (approximately 840 MHz). This signal was burst modulated at 50 Hz, with approximately 30% duty cycle. By contrast, 8 h exposure with 835 MHz microwaves amplitude modulated with speech produced no significant change in ODC activity. Further investigations, with 8 h of exposure to AM microwaves, as a function of modulation frequency, revealed that the response is frequency dependent, decreasing sharply at 6 Hz an 600 Hz. Exposure with 835 MHz microwaves, frequency modulated with a 60 Hz sinusoid, yielded no significant enhancement in ODC activity for exposure times ranging between 2 and 24 h. Similarly, exposure with a typical signal from an AMPS analog cellular telephone, which uses a form of frequency modulation, produced no significant enhancement in ODC activity. Exposure with 835 MHz continuous wave microwaves produced no effects for exposure times between 2 and 24 h, except for a small but statistically significant enhancement in ODC activity after 6 h of exposure. Comparison of these results suggests that effects are much more robust when the modulation causes low-frequency periodic changes in the amplitude of the microwave carrier.

  2. Modeling multi-layer effects in passive microwave remote sensing of dry snow using Dense Media Radiative Transfer Theory (DMRT) based on quasicrystalline approximation

    USGS Publications Warehouse

    Liang, D.; Xu, X.; Tsang, L.; Andreadis, K.M.; Josberger, E.G.

    2008-01-01

    The Dense Media Radiative Transfer theory (DMRT) of Quasicrystalline Approximation of Mie scattering by sticky particles is used to study the multiple scattering effects in layered snow in microwave remote sensing. Results are illustrated for various snow profile characteristics. Polarization differences and frequency dependences of multilayer snow model are significantly different from that of the single-layer snow model. Comparisons are also made with CLPX data using snow parameters as given by the VIC model. ?? 2007 IEEE.

  3. Ambient vibration monitoring of slender structures by microwave interferometer remote sensing

    NASA Astrophysics Data System (ADS)

    Gikas, Vassilis

    2012-11-01

    This paper examines the potential of microwave radar interferometry for monitoring the dynamic behaviour of large civil engineering works. It provides an overview of the method, its principles of operation with particular emphasis given on the IBIS-S system. Two areas of application are considered and the results of the analyses are presented and discussed. The first experimental study involves the monitoring of the dynamic response of a tall power plant chimney due to wind load. The second example examines the dynamic behaviour of a long cable-stayed bridge. In this case, the focus is placed on the effects that individual traffic events impose on the vibration response of the main span of the bridge deck and the bridge pylons. Analysis of the results provides detailed displacement time-histories and the dominant frequencies observed at the top of the chimney and along the bridge deck and the top of the towers. Also, cross-comparisons and discussions with the results obtained at the same structures using different sensor configurations are provided.

  4. Making Sense of Multiple Physical Activity Recommendations.

    ERIC Educational Resources Information Center

    Corbin, Charles B.; LeMasurier, Guy; Franks, B. Don

    2002-01-01

    This digest provides basic information designed to help people determine which of the many physical activity guidelines are most appropriate for use in specific situations. After an introduction, the digest focuses on: "Factors to Consider in Selecting Appropriate Physical Activity Guidelines" (group credibility and purpose, benefits to…

  5. Compact optical displacement sensing by detection of microwave signals generated from a monolithic passively mode-locked laser under feedback

    NASA Astrophysics Data System (ADS)

    Simos, Christos; Simos, Hercules; Nikas, Thomas; Syvridis, Dimitris

    2015-05-01

    A monolithic passively mode-locked laser is proposed as a compact optical sensor for displacements and vibrations of a reflecting object. The sensing principle relies on the change of the laser repetition frequency that is induced by optical feedback from the object under measurement. It has been previously observed that, when a semiconductor passively mode locked laser receives a sufficient level of optical feedback from an external reflecting surface it exhibits a repetition frequency that is no more determined by the mode-locking rule of the free-running operation but is imposed by the length of the external cavity. Therefore measurement of the resulting laser repetition frequency under self-injection permits the accurate and straightforward determination of the relative position of the reflecting object. The system has an inherent wireless capability since the repetition rate of the laser can be wirelessly detected by means of a simple antenna which captures the microwave signal generated by the saturable absorber and is emitted through the wiring of the laser. The sensor setup is very simple as it requires few optical components besides the laser itself. Furthermore, the deduction of the relative position of the reflecting object is straightforward and does not require any processing of the detected signal. The proposed sensor has a theoretical sub-wavelength resolution and its performance depends on the RF linewidth of the laser and the resolution of the repetition frequency measurement. Other physical parameters that induce phase changes of the external cavity could also be quantified.

  6. Fast Numerical Algorithms for 3-D Scattering from PEC and Dielectric Random Rough Surfaces in Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Lisha

    We present fast and robust numerical algorithms for 3-D scattering from perfectly electrical conducting (PEC) and dielectric random rough surfaces in microwave remote sensing. The Coifman wavelets or Coiflets are employed to implement Galerkin's procedure in the method of moments (MoM). Due to the high-precision one-point quadrature, the Coiflets yield fast evaluations of the most off-diagonal entries, reducing the matrix fill effort from O(N2) to O( N). The orthogonality and Riesz basis of the Coiflets generate well conditioned impedance matrix, with rapid convergence for the conjugate gradient solver. The resulting impedance matrix is further sparsified by the matrix-formed standard fast wavelet transform (SFWT). By properly selecting multiresolution levels of the total transformation matrix, the solution precision can be enhanced while matrix sparsity and memory consumption have not been noticeably sacrificed. The unified fast scattering algorithm for dielectric random rough surfaces can asymptotically reduce to the PEC case when the loss tangent grows extremely large. Numerical results demonstrate that the reduced PEC model does not suffer from ill-posed problems. Compared with previous publications and laboratory measurements, good agreement is observed.

  7. Model-estimated microwave emissions from rain systems for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Smirnov, Mikhail T.; Meischner, Peter F.

    1996-12-01

    A simple model for estimating the upward and downward microwave emission from rain layer types above ground is presented. The emission properties of the rain layers are estimated from physical quantities such as the optical depth, the single-scattering albedo, the physical temperature, and a given drop size distribution for Mie scattering calculations. The underlying surface is characterized by the emissivity and the physical temperature. The transparency coefficient q and the reflection coefficient r of the rain layer are expressed by these physical quantities. The brightness temperature then is given by the physical temperature T, q, and r. The radiation transfer is estimated by the method of layer addition, described by Sobolev [1956], which avoids the necessity of solving the equation of radiation transfer. The accuracy of this simple model was estimated by comparisons with three-dimensional Monte Carlo calculations. The error is estimated to be less than 3 K for common situations and less than 8 K for unrealistic high optical depths. It is shown that any one of the quantities rain rate, rain layer depth, and physical temperature can be estimated with sufficient accuracy if the others are known. The basic model has been extended for application to inhomogeneous cloud layers and to include differences in brightness temperatures for horizontal and vertical polarizations for oblate raindrops. The main intended application of this model is rain rate estimation from space with low data processing efforts, especially for the Priroda mission. The model was tested for the downwelling emission during the field experiment CLEOPATRA by measurements with a polarimetric weather radar and rain gauges. The results verify the principles, and promising agreement was found at least for stratiform rain. The polarimetric extension of the model too showed promising results under quite different measurement conditions in Russia and southern Germany.

  8. Passive microwave remote sensing of rainfall with SSM/I: Algorithm development and implementation

    NASA Technical Reports Server (NTRS)

    Ferriday, James G.; Avery, Susan K.

    1994-01-01

    A physically based algorithm sensitive to emission and scattering is used to estimate rainfall using the Special Sensor Microwave/Imager (SSM/I). The algorithm is derived from radiative transfer calculations through an atmospheric cloud model specifying vertical distributions of ice and liquid hydrometeors as a function of rain rate. The algorithm is structured in two parts: SSM/I brightness temperatures are screened to detect rainfall and are then used in rain-rate calculation. The screening process distinguishes between nonraining background conditions and emission and scattering associated with hydrometeors. Thermometric temperature and polarization thresholds determined from the radiative transfer calculations are used to detect rain, whereas the rain-rate calculation is based on a linear function fit to a linear combination of channels. Separate calculations for ocean and land account for different background conditions. The rain-rate calculation is constructed to respond to both emission and scattering, reduce extraneous atmospheric and surface effects, and to correct for beam filling. The resulting SSM/I rain-rate estimates are compared to three precipitation radars as well as to a dynamically simulated rainfall event. Global estimates from the SSM/I algorithm are also compared to continental and shipboard measurements over a 4-month period. The algorithm is found to accurately describe both localized instantaneous rainfall events and global monthly patterns over both land and ovean. Over land the 4-month mean difference between SSM/I and the Global Precipitation Climatology Center continental rain gauge database is less than 10%. Over the ocean, the mean difference between SSM/I and the Legates and Willmott global shipboard rain gauge climatology is less than 20%.

  9. Microwave open-ended coaxial dielectric probe: interpretation of the sensing volume re-visited

    PubMed Central

    2014-01-01

    Background Tissue dielectric properties are specific to physiological changes and consequently have been pursued as imaging biomarkers of cancer and other pathological disorders. However, a recent study (Phys Med Biol 52:2637–2656, 2007; Phys Med Biol 52:6093–6115, 2007), which utilized open-ended dielectric probing techniques and a previously established sensing volume, reported that the dielectric property contrast may only be 10% or less between breast cancer and normal fibroglandular tissue whereas earlier data suggested ratios of 4:1 and higher may exist. Questions about the sensing volume of this probe relative to the amount of tissue interrogated raise the distinct possibility that the conclusions drawn from that study may have been over interpreted. Methods We performed open-ended dielectric probe measurements in two-layer compositions consisting of a background liquid and a planar piece of Teflon that was translated to predetermined distances away from the probe tip to assess the degree to which the probe produced property estimates representative of the compositional averages of the dielectric properties of the two materials resident within a small sensing volume around the tip of the probe. Results When Teflon was in contact with the probe, the measured properties were essentially those of pure Teflon whereas the properties were nearly identical to those of the intervening liquid when the Teflon was located more than 2 mm from the probe tip. However, when the Teflon was moved closer to the probe tip, the dielectric property measurements were not linearly related to the compositional fraction of the two materials, but reflected nearly 50% of those of the intervening liquid at separation distances as small as 0.2 mm, and approximately 90% of the liquid when the Teflon was located 0.5 mm from the probe tip. Conclusion These results suggest that the measurement methods reported in the most recent breast tissue dielectric property study are not likely

  10. Investigation of the effects of summer melt on the calculation of sea ice concentration using active and passive microwave data

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.; Burns, Barbara A.; Onstott, Robert G.

    1990-01-01

    The effects of ice surface melt on microwave signatures and errors in the calculation of sea ice concentration are examined, using active and passive microwave data sets from the Marginal Ice Zone Experiment aircraft flights in the Fram Strait region. Consideration is given to the possibility of using SAR to supplement passive microwave data to unambiguously discriminate between open water areas and ponded floes. Coincident active multichannel microwave radiometer and SAR measurements of individual floes are used to describe the effects of surface melt on sea ice concentration calculations.

  11. Influence of Polarity and Activation Energy in Microwave-Assisted Organic Synthesis (MAOS).

    PubMed

    Rodríguez, Antonio M; Prieto, Pilar; de la Hoz, Antonio; Díaz-Ortiz, Ángel; Martín, D Raúl; García, José I

    2015-06-01

    The aim of this work was to determine the parameters that have decisive roles in microwave-assisted reactions and to develop a model, using computational chemistry, to predict a priori the type of reactions that can be improved under microwaves. For this purpose, a computational study was carried out on a variety of reactions, which have been reported to be improved under microwave irradiation. This comprises six types of reactions. The outcomes obtained in this study indicate that the most influential parameters are activation energy, enthalpy, and the polarity of all the species that participate. In addition to this, in most cases, slower reacting systems observe a much greater improvement under microwave irradiation. Furthermore, for these reactions, the presence of a polar component in the reaction (solvent, reagent, susceptor, etc.) is necessary for strong coupling with the electromagnetic radiation. We also quantified that an activation energy of 20-30 kcal mol(-1) and a polarity (μ) between 7-20 D of the species involved in the process is required to obtain significant improvements under microwave irradiation.

  12. Influence of microwave irradiation on boron concentrate activation with an emphasis on surface properties

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Zhang, Qiaoyi; Liu, Yajing; Xue, Xiangxin; Duan, Peining

    2016-11-01

    In this study, we employed microwave irradiation for activating boron concentrate, an abundant but low-grade boron mineral resource in China. The boron concentrate was pretreated by microwave irradiation based on TG-DTG-DSC analysis, and the influence of each parameter on processing efficiency was characterized using chemical analysis, XRD, SEM, FTIR and particle distribution analysis. Subsequently, the surface properties of boron concentrate and the mechanism of microwave irradiation was analyzed. Our results indicate that microwave irradiation decreased the processing temperature and shortened the roasting time by accelerating dehydroxylation and oxidation reactions in the boron concentrate, reducing the particle diameter and damaging the microstructure of the minerals, and it increased the B2O3 activity of boron from 64.68% to 86.73%, greater than the optimal conventional treatment. Compared with the simple thermal field, microwave roasting obviously increased ability of the boron concentrate to absorb OH- in the leachant and promoted boron leaching by expanding the contact area of the mineral exposed to leachant, boosting the amount of Mg2+ and Fe3+ on mineral surfaces, and increasing the hydrophilicity of the boron concentrate respectively. It enhanced the γSVLW and γSV- of boron concentrate from 29.15 mJ/m2 and 5.07 mJ/m2 to 37.07 mJ/m2 and 12.41 mJ/m2.

  13. Active vibrissal sensing in rodents and marsupials

    PubMed Central

    Mitchinson, Ben; Grant, Robyn A.; Arkley, Kendra; Rankov, Vladan; Perkon, Igor; Prescott, Tony J.

    2011-01-01

    In rats, the long facial whiskers (mystacial macrovibrissae) are repetitively and rapidly swept back and forth during exploration in a behaviour known as ‘whisking’. In this paper, we summarize previous evidence from rats, and present new data for rat, mouse and the marsupial grey short-tailed opossum (Monodelphis domestica) showing that whisking in all three species is actively controlled both with respect to movement of the animal's body and relative to environmental structure. Using automatic whisker tracking, and Fourier analysis, we first show that the whisking motion of the mystacial vibrissae, in the horizontal plane, can be approximated as a blend of two sinusoids at the fundamental frequency (mean 8.5, 11.3 and 7.3 Hz in rat, mouse and opossum, respectively) and its second harmonic. The oscillation at the second harmonic is particularly strong in mouse (around 22 Hz) consistent with previous reports of fast whisking in that species. In all three species, we found evidence of asymmetric whisking during head turning and following unilateral object contacts consistent with active control of whisker movement. We propose that the presence of active vibrissal touch in both rodents and marsupials suggests that this behavioural capacity emerged at an early stage in the evolution of therian mammals. PMID:21969685

  14. Millimeter Wave Active Sensing Technology For Self-Contained Munitions

    NASA Astrophysics Data System (ADS)

    Hunton, Andrew J.

    1983-10-01

    Active millimeter wave (MMW) sensing technology is playing an increasing role throughout the DoD research and development community in the area of Self Contained Munitions (SCM's), autonomous missiles and armament primarily intended for air and surface launched standoff antiarmor weapon systems. Each type of SCM, which requires fire-and-forget search, detection, discrimination and warhead aiming sensing functions, places varied operational, packaging and performance specifications on its MMW sensor subsystem. This paper attempts to portray the rationale for implementation of active MMW sensing devices into SCM's, along with a description of the spectrum of SCM sensor operational parameters. A treatise of active MMW sensor technologies required for ultimate successful weaponization will include discussions in the areas of signal processing and MMW RF hardware. Ultimately, as active MMW technology matures, the critical trade between complexity, cost and effectiveness must be analyzed for each SCM type. A qualitative discussion in this area will be covered as well, yielding insight into future MMW development areas which require increased heavy emphasis in order to meet the stringent requirements on SCM active MMW sensing subsystems.

  15. Role of modulation on the effect of microwaves on ornithine decarboxylase activity in L929 cells

    SciTech Connect

    Penafiel, L.M.; Litovitz, T.; Krause, D.; Desta, A.; Mullins, J.M.

    1997-05-01

    The effect of 835 MHz microwaves on the activity of ornithine decarboxylase (ODC) in L929 murine cells was investigated at an SAR of {approximately}2.5 W/kg. The results depended upon the type of modulation employed. AM frequencies of 16 Hz and 60 Hz produced a transient increase in ODC activity that reached a peak at 8 h of exposure and returned to control levels after 24 h of exposure. In this case, ODC was increased by a maximum of 90% relative to control levels. A 40% increase in ODC activity was also observed after 8 h of exposure with a typical signal from a TDMA digital cellular telephone operating in the middle of its transmission frequency range. This signal was burst modulated at 50 Hz, with approximately 30% duty cycle. By contrast, 8 h exposure with 835 MHz microwaves amplitude modulated with speech produced no significant change in ODC activity. Further investigations, with 8 h of exposure to AM microwaves, as a function of modulation frequency, revealed that the response is frequency dependent, decreasing sharply at 6 Hz and 600 Hz. Exposure with 835 MHz microwaves, frequency modulated with a 60 Hz sinusoid, yielded no significant enhancement in ODC activity for exposure times ranging between 2 and 24 h. Similarly, exposure with a typical signal from an AMPS analog cellular telephone, which uses a form of frequency modulation, produced no significant enhancement in ODC activity. Exposure with 835 MHz continuous wave microwaves produced no effects for exposure times between 2 and 24 h, except for a small but statistically significant enhancement in ODC activity after 6 h of exposure.

  16. Effects of microwave exposure on the hamster immune system. I. Natural killer cell activity

    SciTech Connect

    Yang, H.K.; Cain, C.A.; Lockwood, J.; Tompkins, W.A.

    1983-01-01

    Hamsters were exposed to repeated or single doses of microwave energy and monitored for changes in core body temperature, circulating leukocyte profiles, serum corticosteroid levels, and natural killer (NK) cell activity in various tissues. NK cytotoxicity was measured in a /sup 51/Cr-release assay employing baby hamster kidney (BHK) targets or BHK infected with herpes simplex virus. Repeated exposure of hamsters at 15 mW/cm2 for 60 min/day had no significant effect on natural levels of spleen-cell NK activity against BHK targets. Similarly, repeated exposure at 15 mW/cm2 over a 5-day period had no demonstrable effect on the induction of spleen NK activity by vaccinia virus immunization, that is, comparable levels of NK were induced in untreated and microwave-treated animals. In contrast, treatment of hamsters with a single 60-min microwave exposure at 25 mW/cm2 caused a significant suppression in induced spleen NK activity. A similar but less marked decrease in spleen NK activity was observed in sham-exposed animals. Moreover, the sham effects on NK activity were not predictable and appeared to represent large individual animal variations in the response to stress factors. Depressed spleen NK activity was evident as early as 4 h postmicrowave treatment and returned to normal levels by 8 h. Hamsters exposed at 25 mW/cm2 showed an elevated temperature of 3.0-3.5 degrees C that returned to normal within 60 min after termination of microwave exposure. These animals also showed a marked lymphopenia and neutrophilia by 1 h posttreatment that returned to normal by 8-10 h. Serum glucocorticosteroids were elevated between 1 aNd 8 h after microwave treatment. Sham-exposed animals did not demonstrate significant changes in core body temperature, peripheral blood leukocyte (PBL) profile, or glucocorticosteroid levels as compared to minimum-handling controls.

  17. Interferometric synthetic aperture microwave radiometry for the remote sensing of the earth

    NASA Technical Reports Server (NTRS)

    Ruf, Christopher S.; Swift, Calvin T.; Tanner, Alan B.; Le Vine, David M.

    1988-01-01

    Interferometric aperture synthesis is presented as an alternative to real aperture measurements of the earth's brightness temperature from low earth orbit. The signal-to-noise performance of a single interferometric measurement is considered, and the noise characteristics of the brightness temperature image produced from the interferometer measurements are discussed. The sampling requirements of the measurements and the resulting effects of the noise in the measurements on the image are described. The specific case of the electronically steered thinned array radiometer (ESTAR) currently under construction is examined. The ESTAR prototype is described in detail sufficient to permit a performance evaluation of its spatial and temperature resolution. Critical aspects of an extension of the ESTAR sensor to a larger spaceborne system are considered. Of particular importance are the number and placement of antenna elements in the imaging array. A comparison of the implementation methodologies of radio astronomy and earth remote sensing is presented along with the effects of the source brightness distribution, the antenna array configuration and the method used for array scanning.

  18. Chronic exposure to GSM 1800-MHz microwaves reduces excitatory synaptic activity in cultured hippocampal neurons.

    PubMed

    Xu, Shujun; Ning, Wei; Xu, Zhengping; Zhou, Suya; Chiang, Huai; Luo, Jianhong

    2006-05-08

    The world wide proliferation of mobile phones raises the concern about the health effects of 1800-MHz microwaves on the brain. The present study assesses the effects of microwave exposure on the function of cultured hippocampal neurons of rats using whole cell patch-clamp analysis combined with immunocytochemistry. We showed that chronic exposure (15 min per day for 8 days) to Global System for Mobile Communication (GSM) 1800-MHz microwaves at specific absorption rate (SAR) of 2.4 W/kg induced a selective decrease in the amplitude of alpha-amino-3-hydroxy-5-methyl-4-soxazole propionic acid (AMPA) miniature excitatory postsynaptic currents (mEPSCs), whereas the frequency of AMPA mEPSCs and the amplitude of N-methyl-D-aspartate (NMDA) mEPSCs did not change. Furthermore, the GSM microwave treatment decreased the expression of postsynaptic density 95 (PSD95) in cultured neurons. Our results indicated that 2.4 W/kg GSM 1800-MHz microwaves may reduce excitatory synaptic activity and the number of excitatory synapses in cultured rat hippocampal neurons.

  19. Continuous microwave pasteurization of a vegetable smoothie improves its physical quality and hinders detrimental enzyme activity.

    PubMed

    Arjmandi, Mitra; Otón, Mariano; Artés, Francisco; Artés-Hernández, Francisco; Gómez, Perla A; Aguayo, Encarna

    2017-01-01

    The effect of a pasteurization treatment at 90 ± 2 ℃ for 35 s provided by continuous microwave under different doses (low power/long time and high power/short time) or conventional pasteurization on the quality of orange-colored smoothies and their changes throughout 45 days of storage at 5 ℃ was investigated. A better color retention of the microwave pasteurization- treated smoothie using high power/short time than in conventionally processed sample was evidenced by the stability of the hue angle. The continuous microwave heating increased the viscosity of the smoothie more than the conventional pasteurization in comparison with non-treated samples. Lower residual enzyme activities from peroxidase, pectin methylesterase and polygalacturonase were obtained under microwave heating, specifically due to the use of higher power/shorter time. For this kind of smoothie, polygalacturonase was the more thermo-resistant enzyme and could be used as an indicator of pasteurization efficiency. The use of a continuous semi-industrial microwave using higher power and shorter time, such as 1600 W/206 s and 3600 W/93 s, resulted in better quality smoothies and greater enzyme reduction than conventional thermal treatment.

  20. Browsing Image Collections with Representations of Common-Sense Activities.

    ERIC Educational Resources Information Center

    Gordon, Andrew S.

    2001-01-01

    Describes a methodology for creating networks of subject terms by manually representing a large number of common-sense activities that are broadly related to image subject terms. Application of this methodology to the Library of Congress Thesaurus for Graphic Materials produced 768 representations that supported users of a prototype browsing-based…

  1. Method of maintaining activity of hydrogen-sensing platinum electrode

    NASA Technical Reports Server (NTRS)

    Harman, J. N., III

    1968-01-01

    Three-electrode hydrogen sensor containing a platinum electrode maintained in a highly catalytic state, operates with a minimal response time and maximal sensitivity to the hydrogen gas being sensed. Electronic control and readout circuitry reactivates the working electrode of the sensor to a state of maximal catalytic activity.

  2. Synergistic use of active and passive microwave in soil moisture estimation

    NASA Technical Reports Server (NTRS)

    O'Neill, P.; Chauhan, N.; Jackson, T.; Saatchi, S.

    1992-01-01

    Data gathered during the MACHYDRO experiment in central Pennsylvania in July 1990 have been utilized to study the synergistic use of active and passive microwave systems for estimating soil moisture. These data sets were obtained during an eleven-day period with NASA's Airborne Synthetic Aperture Radar (AIRSAR) and Push-Broom Microwave Radiometer (PBMR) over an instrumented watershed which included agricultural fields with a number of different crop covers. Simultaneous ground truth measurements were also made in order to characterize the state of vegetation and soil moisture under a variety of meteorological conditions. A combination algorithm is presented as applied to a representative corn field in the MACHYDRO watershed.

  3. Assimilation of active and passive microwave observations for improved estimates of soil moisture and crop growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Ensemble Kalman Filter-based data assimilation framework that links a crop growth model with active and passive (AP) microwave models was developed to improve estimates of soil moisture (SM) and vegetation biomass over a growing season of soybean. Complementarities in AP observations were incorpo...

  4. Inhibitory effect of microwaved thinned nectarine extracts on polyphenol oxidase activity.

    PubMed

    Redondo, Diego; Venturini, María E; Oria, Rosa; Arias, Esther

    2016-04-15

    By-products from agricultural practices or from the fruit processing industry are a source of bioactive compounds that could be used in the food industry. Such by-products include thinned fruits, which are expected to contain high quantities of interesting compounds. One possible application of this fruits is the prevention of the enzymatic browning suffered by fruits and vegetables after minimal processing. The aim of this study is to determine the in vitro and in vivo activity of microwaved extracts obtained from thinned nectarines. It has been observed that in vitro the extracts obtained after the application of high microwave power levels (500, 1000 and 1500 W) are mixed type inhibitors of polyphenoloxidase enzyme, showing an irreversible inactivation. This inhibition could be attributed to the Maillard reaction products formed during the microwave treatment. In vivo, a solution of 2% of the extract obtained at 1500 W inhibited the enzymatic browning in minimally processed peaches for 8 days of storage.

  5. Microwave-induced formation of platinum nanostructured networks with superior electrochemical activity and stability.

    PubMed

    Jia, Falong; Wang, Fangfang; Lin, Yun; Zhang, Lizhi

    2011-12-16

    Platinum nanostructured networks (PNNs) can be synthesized through the chemical reduction of H(2)PtCl(6) by benzyl alcohol under microwave irradiation without the introduction of any surfactants, templates, or seeds. The synthesis route utilizes benzyl alcohol as both the reductant and the structure-directing agent, and thus, the process is particularly simple and highly repeatable. The formation of the PNN structure was ascribed to the collision-induced fusion of Pt nanocrystals owing to the cooperative functions of microwave irradiation and benzyl alcohol. Compared with a commercial Pt/C catalyst, the as-prepared PNNs possessed superior electrochemical activity and stability on the oxidation of methanol because of the unique 3D nanostructured networks and abundant defects formed during the assembly process. This study may provide a facile microwave-induced approach for the synthesis of other 3D nanostructured noble metals or their alloys.

  6. Active microwave measurements of Arctic sea ice under summer conditions

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.; Gogineni, S. P.

    1985-01-01

    Radar provides a valuable tool in the study of sea-ice conditions and the solution of sea-ice operational problems. For this reason, the U.S. and Canada have conducted studies to define a bilateral synthetic aperture radar (SAR) satellite program. The present paper is concerned with work which has been performed to explore the needs associated with the study of sea-ice-covered waters. The design of a suitable research or operational spaceborne SAR or real aperture radar must be based on an adequate knowledge of the backscatter coefficients of the ice features which are of interest. In order to obtain the needed information, studies involving the use of a helicopter were conducted. In these studies L-C-X-Ku-band calibrated radar data were acquired over areas of Arctic first-year and multiyear ice during the first half of the summer of 1982. The results show that the microwave response in the case of sea ice is greatly influenced by summer melt, which produces significant changes in the properties of the snowpack and ice sheet.

  7. Passive microwave soil moisture research

    NASA Technical Reports Server (NTRS)

    Schmugge, T.; Oneill, P. E.; Wang, J. R.

    1986-01-01

    During the four years of the AgRISTARS Program, significant progress was made in quantifying the capabilities of microwave sensors for the remote sensing of soil moisture. In this paper, a discussion is provided of the results of numerous field and aircraft experiments, analysis of spacecraft data, and modeling activities which examined the various noise factors such as roughness and vegetation that affect the interpretability of microwave emission measurements. While determining that a 21-cm wavelength radiometer was the best single sensor for soil moisture research, these studies demonstrated that a multisensor approach will provide more accurate soil moisture information for a wider range of naturally occurring conditions.

  8. Synthesis of novel quinoxalinone derivatives by conventional and microwave methods and assessing their biological activity.

    PubMed

    Nasir, Waqar; Munawar, Munawar Ali; Ahmed, Ejaz; Sharif, Ahsan; Ahmed, Saeed; Ayub, Amjad; Khan, Misbahul Ain; Nasim, Faizul Hassan

    2011-10-01

    In this study, twenty-one arylaminoquinoxalinone derivatives were synthesized and their antibacterial activities against Staphylococci aureus, Pseudomonas aureus, Escherichia coli, Bacillus subtilis, Salmonella typhi, and Shigella pneumoniae were evaluated relative to known antibiotics; augmentin, ampicillin, and chloramphenicol. The insecticidal activities of the prepared compounds were also investigated against Tribolium castaneum using permethrin as a standard insecticide. The derivatives were synthesized using both conventional and microwave techniques. Their structures were confirmed using spectral techniques and elemental analysis.

  9. Estimating Sea Surface Salinity and Wind Using Combined Passive and Active L-Band Microwave Observations

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Chaubell, Mario J.

    2012-01-01

    Several L-band microwave radiometer and radar missions have been, or will be, operating in space for land and ocean observations. These include the NASA Aquarius mission and the Soil Moisture Active Passive (SMAP) mission, both of which use combined passive/ active L-band instruments. Aquarius s passive/active L-band microwave sensor has been designed to map the salinity field at the surface of the ocean from space. SMAP s primary objectives are for soil moisture and freeze/thaw detection, but it will operate continuously over the ocean, and hence will have significant potential for ocean surface research. In this innovation, an algorithm has been developed to retrieve simultaneously ocean surface salinity and wind from combined passive/active L-band microwave observations of sea surfaces. The algorithm takes advantage of the differing response of brightness temperatures and radar backscatter to salinity, wind speed, and direction, thus minimizing the least squares error (LSE) measure, which signifies the difference between measurements and model functions of brightness temperatures and radar backscatter. The algorithm uses the conjugate gradient method to search for the local minima of the LSE. Three LSE measures with different measurement combinations have been tested. The first LSE measure uses passive microwave data only with retrieval errors reaching 1 to 2 psu (practical salinity units) for salinity, and 1 to 2 m/s for wind speed. The second LSE measure uses both passive and active microwave data for vertical and horizontal polarizations. The addition of active microwave data significantly improves the retrieval accuracy by about a factor of five. To mitigate the impact of Faraday rotation on satellite observations, the third LSE measure uses measurement combinations invariant under the Faraday rotation. For Aquarius, the expected RMS SSS (sea surface salinity) error will be less than about 0.2 psu for low winds, and increases to 0.3 psu at 25 m/s wind speed

  10. Oxidative degradation of trichloroethylene adsorbed on active carbons: Use of microwave energy

    SciTech Connect

    Varma, R.; Nandi, S.P.

    1991-01-01

    Chlorinated hydrocarbon compounds (CHCl), such as chlorinated alkanes/alkenes, benzene and biphenyl etc, represent an important fraction of the industrial hazardous wastes produced. Trichloroethylene (TCE) can be removed from waste streams by adsorption on active carbons. The primary objective of the present work was to study the detoxification in air-stream of TCE adsorbed on different types of active carbons using in situ microwave heating. A secondary objective was to examine the regeneration of used carbons from the effects of repeated cyclic operations (adsorption- detoxification). The experimental study has shown that trichloroethylene adsorbed on active carbon can be oxidatively degradated in presence of microwave radiation. Energy can be transferred efficiently to the reaction sites without losing heat to the surrounding vessel. One of the decomposition product of trichloroethylene is free chlorine which is held very strongly on active carbon. Hydrochloric acid on the other hand seems to be less strongly held and appears in large concentration in the exit gas. Production of free chlorine can be avoided by using chlorohydrocarbon mixed with sufficient internal hydrogen. This is also expected to minimize the problem of carbon regeneration encountered in this study. The results obtained from studies on the oxidative degradation of TCE under microwave radiation are promising in a number of respects: (1) the detoxification of TCE adsorbed on active carbon can be conducted at moderate (<400{degree}C) temperatures, and (2) the used carbon bed can be regenerated. A patent on the process has been issued. 9 refs., 2 figs., 2 tabs.

  11. Active sensing without efference copy: referent control of perception.

    PubMed

    Feldman, Anatol G

    2016-09-01

    Although action and perception are different behaviors, they are likely to be interrelated, as implied by the notions of perception-action coupling and active sensing. Traditionally, it has been assumed that the nervous system directly preprograms motor commands required for actions and uses a copy of them called efference copy (EC) to also influence our senses. This review offers a critical analysis of the EC concept by identifying its limitations. An alternative to the EC concept is based on the experimentally confirmed notion that sensory signals from receptors are perceived relative to referent signals specified by the brain. These referents also underlie the control of motor actions by predetermining where, in the spatial domain, muscles can work without preprogramming how they should work in terms of motor commands or EC. This approach helps solve several problems of action and explain several sensory experiences, including position sense and the sense that the world remains stationary despite changes in its retinal image during eye or body motion (visual space constancy). The phantom limb phenomenon and other kinesthetic illusions are also explained within this framework.

  12. Rapid Synthesis and Antiviral Activity of (Quinazolin-4-Ylamino)Methyl-Phosphonates Through Microwave Irradiation

    PubMed Central

    Luo, Hui; Hu, Deyu; Wu, Jian; He, Ming; Jin, Linhong; Yang, Song; Song, Baoan

    2012-01-01

    This study describes the simple synthesis of new (quinazolin-4-ylamino) methylphosphonates via microwave irradiation. Substituted-2-aminobenzonitrile reacted with 1,1-dimethoxy-N,N-dimethylmethanamine at a reflux condition to obtain N′-(substituted-2-cyanophenyl)-N,N-dimethylformamidine (1). The subsequent reaction of this intermediate product with α-aminophosphonate (2) in a solution containing glacial acetic acid in 2-propanol through microwave irradiation resulted in the formation of (quinazolin-4-ylamino)methyl-phosphonate derivatives 3a to 3x, which were unequivocally characterized by the spectral data and elemental analysis. The influence of the reaction conditions on the yield of 3a was investigated to optimize the synthetic conditions. The relative optimal conditions for the synthesis of 3a include a 1:1 molar ratio of N′-(2-cyanophenyl)-N,N-dimethylformamidine to diethyl amino(phenyl)methylphosphonate and a 4:1 volume ratio of isopropanol to HOAc in the solvent mixture, at a reaction temperature of 150 °C, with a microwave power of 100 W and a corresponding pressure of 150 psi for 20 min in the microwave synthesizer. The yield of 3a was approximately 79%, whereas those of 3b to 3x were approximately 77% to 86%. Some of the synthesized compounds displayed weak to good anti-Tobacco mosaic virus (TMV) activity. PMID:22837660

  13. Nitrogen-Doped Carbon Fiber Paper by Active Screen Plasma Nitriding and Its Microwave Heating Properties.

    PubMed

    Zhu, Naishu; Ma, Shining; Sun, Xiaofeng

    2016-12-28

    In this paper, active screen plasma nitriding (ASPN) treatment was performed on polyacrylonitrile carbon fiber papers. Electric resistivity and microwave loss factor of carbon fiber were described to establish the relationship between processing parameters and fiber's ability to absorb microwaves. The surface processing effect of carbon fiber could be characterized by dynamic thermal mechanical analyzer testing on composites made of carbon fiber. When the process temperature was at 175 °C, it was conducive to obtaining good performance of dynamical mechanical properties. The treatment provided a way to change microwave heating properties of carbon fiber paper by performing different treatment conditions, such as temperature and time parameters. Atomic force microscope, scanning electron microscope, and X-ray photoelectron spectroscopy analysis showed that, during the course of ASPN treatment on carbon fiber paper, nitrogen group was introduced and silicon group was removed. The treatment of nitrogen-doped carbon fiber paper represented an alternative promising candidate for microwave curing materials used in repairing and heating technology, furthermore, an efficient dielectric layer material for radar-absorbing structure composite in metamaterial technology.

  14. Potential of jackfruit peel as precursor for activated carbon prepared by microwave induced NaOH activation.

    PubMed

    Foo, K Y; Hameed, B H

    2012-05-01

    The feasibility of preparing activated carbon (JPAC) from jackfruit peel, an industrial residue abundantly available from food manufacturing plants via microwave-assisted NaOH activation was explored. The influences of chemical impregnation ratio, microwave power and radiation time on the properties of activated carbon were investigated. JPAC was examined by pore structural analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption isotherm, elemental analysis, surface acidity/basicity and zeta potential measurements. The adsorptive behavior of JPAC was quantified using methylene blue as model dye compound. The best conditions resulted in JPAC with a monolayer adsorption capacity of 400.06 mg/g and carbon yield of 80.82%. The adsorption data was best fitted to the pseudo-second-order equation, while the adsorption mechanism was well described by the intraparticle diffusion model. The findings revealed the versatility of jackfruit peels as good precursor for preparation of high quality activated carbon.

  15. Preliminary microwave irradiation of water solutions changes their channel-modifying activity.

    PubMed

    Fesenko, E E; Geletyuk, V I; Kazachenko, V N; Chemeris, N K

    1995-06-05

    Earlier we have shown that millimetre microwaves (42.25 GHz) of non-thermal power, upon direct admittance into an experiment bath, greatly influence activation characteristics of single Ca(2+)-dependent K+ channels (in particular, the channel open state probability, Po). Here we present new data showing that similar changes in Po arise due to the substitution of a control bath solution for a preliminary microwave irradiated one of the same composition (100 mmol/l KCl with Ca2+ added), with irradiation time being 20-30 min. Therefore, due to the exposure to the field the solution acquires some new properties that are important for the channel activity. The irradiation terminated, the solution retains a new state for at least 10-20 min (solution memory). The data suggest that the effects of the field on the channels are mediated, at least partially, by changes in the solution properties.

  16. Renewable phenols production by catalytic microwave pyrolysis of Douglas fir sawdust pellets with activated carbon catalysts.

    PubMed

    Bu, Quan; Lei, Hanwu; Wang, Lu; Wei, Yi; Zhu, Lei; Liu, Yupeng; Liang, Jing; Tang, Juming

    2013-08-01

    The effects of different activated carbon (AC) catalysts based on various carbon sources on products yield and chemical compositions of upgraded pyrolysis oils were investigated using microwave pyrolysis of Douglas fir sawdust pellets. Results showed that high amounts of phenols were obtained (74.61% and 74.77% in the upgraded bio-oils by DARCO MRX (wood based) and DARCO 830 (lignite coal based) activated carbons, respectively). The catalysts recycling test of the selected catalysts indicated that the carbon catalysts can be reused for at least 3-4 times and produced high concentrations of phenol and phenolic compounds. The chemical reaction mechanism for phenolics production during microwave pyrolysis of biomass was analyzed.

  17. Measuring thermal budgets of active volcanoes by satellite remote sensing

    NASA Technical Reports Server (NTRS)

    Glaze, L.; Francis, P. W.; Rothery, D. A.

    1989-01-01

    Thematic Mapper measurements of the total radiant energy flux Q at Lascar volcano in north Chile for December 1984 are reported. The results are consistent with the earlier suggestion that a lava lake is the source of a reported thermal budget anomaly, and with values for 1985-1986 that are much lower, suggesting that fumarolic activity was then a more likely heat source. The results show that satellite remote sensing may be used to monitor the activity of a volcano quantitatively, in a way not possible by conventional ground studies, and may provide a method for predicting eruptions.

  18. Tribotronic Transistor Array as an Active Tactile Sensing System.

    PubMed

    Yang, Zhi Wei; Pang, Yaokun; Zhang, Limin; Lu, Cunxin; Chen, Jian; Zhou, Tao; Zhang, Chi; Wang, Zhong Lin

    2016-12-27

    Large-scale tactile sensor arrays are of great importance in flexible electronics, human-robot interaction, and medical monitoring. In this paper, a flexible 10 × 10 tribotronic transistor array (TTA) is developed as an active tactile sensing system by incorporating field-effect transistor units and triboelectric nanogenerators into a polyimide substrate. The drain-source current of each tribotronic transistor can be individually modulated by the corresponding external contact, which has induced a local electrostatic potential to act as the conventional gate voltage. By scaling down the pixel size from 5 × 5 to 0.5 × 0.5 mm(2), the sensitivities of single pixels are systematically investigated. The pixels of the TTA show excellent durability, independence, and synchronicity, which are suitable for applications in real-time tactile sensing, motion monitoring, and spatial mapping. The integrated tribotronics provides an unconventional route to realize an active tactile sensing system, with prospective applications in wearable electronics, human-machine interfaces, fingerprint identification, and so on.

  19. Dynorphin Activates Quorum Sensing Quinolone Signaling in Pseudomonas aeruginosa

    PubMed Central

    Zaborina, Olga; Lepine, Francois; Xiao, Gaoping; Valuckaite, Vesta; Chen, Yimei; Li, Terry; Ciancio, Mae; Zaborin, Alex; Petroff, Elaine; Turner, Jerrold R; Rahme, Laurence G; Chang, Eugene; Alverdy, John C

    2007-01-01

    There is now substantial evidence that compounds released during host stress directly activate the virulence of certain opportunistic pathogens. Here, we considered that endogenous opioids might function as such compounds, given that they are among the first signals to be released at multiple tissue sites during host stress. We tested the ability of various opioid compounds to enhance the virulence of Pseudomonas aeruginosa using pyocyanin production as a biological readout, and demonstrated enhanced virulence when P. aeruginosa was exposed to synthetic (U-50,488) and endogenous (dynorphin) κ-agonists. Using various mutants and reporter strains of P. aeruginosa, we identified involvement of key elements of the quorum sensing circuitry such as the global transcriptional regulator MvfR and the quorum sensing-related quinolone signaling molecules PQS, HHQ, and HQNO that respond to κ-opioids. The in vivo significance of κ-opioid signaling of P. aeruginosa was demonstrated in mice by showing that dynorphin is released from the intestinal mucosa following ischemia/reperfusion injury, activates quinolone signaling in P. aeruginosa, and enhances the virulence of P. aeruginosa against Lactobacillus spp. and Caenorhabditis elegans. Taken together, these data demonstrate that P. aeruginosa can intercept opioid compounds released during host stress and integrate them into core elements of quorum sensing circuitry leading to enhanced virulence. PMID:17367209

  20. Investigation of frequency response of microwave active ring resonator based on ferrite film

    NASA Astrophysics Data System (ADS)

    Martynov, M. I.; Nikitin, A. A.; Ustinov, A. B.; Kalinikos, B. A.

    2016-11-01

    The complex transmission coefficient of active ring resonators based on ferrite-film delay lines was investigated both theoretically and experimentally. Influence of the parameters of the delay line on the transmission coefficients was investigated. It was shown that the resonant frequencies of the ring depend on the ferrite film thickness and the distance between spin-wave antennae. These dependences give possibility to control the shape of the transmission coefficient that in combination with magnetic tuning provide flexibility for microwave applications.

  1. Active microwave investigation of snowpacks: Experimental documentation, Colorado 1979-1980

    NASA Technical Reports Server (NTRS)

    Stiles, W. H.; Ulaby, F. T.; Aslam, A.; Abdelrazik, M.

    1981-01-01

    During the winter of 1979-1980, the University of Kansas Microwave Active Spectrometer systems measured the backscattering properties of snowpacks under varying conditions at four test sites in Colorado. In addition to the radar data over 1-35 GHz, ground-truth measurements of the atmospheric, snow, and soil characteristics were obtained for each radar data set. The test sites, data acquisition procedures, and data that were acquired in this experiment are presented and described.

  2. Microwave-assisted extraction of polysaccharides from Yupingfeng powder and their antioxidant activity

    PubMed Central

    Wang, Dan; Zhang, Bi-Bo; Qu, Xiao-Xia; Gao, Feng; Yuan, Min-Yong

    2015-01-01

    Background: Microwave-assisted reflux extraction of polysaccharides YPF-P from the famous Chinese traditional drug, Yupingfeng powder, optimization of extracting conditions and evaluation of their antioxidant activity were conducted in this study. Results: Single factor effect trends were achieved through yields and contends of YPF-P obtained from different extracting conditions. Then through a three-level, four-variable Box-Behnken design of response surface methodology adopting yield as response, the optimal conditions were determined as follows: Material/solvent ratio 1:23.37, microwave power 560 W, Extraction temperature 64°C, and extraction time 9.62 min. Under the optimal conditions, the YPF-P extraction yield was 3.23%, and its content was detected as 38.52%. In antioxidant assays, the YPF-P was tested to possess 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities with an IC50 value of 0.262 mg/ml. In addition, YPF-P was also proved to have relatively low ferric reducing antioxidant power (FRAP), compared to Vc, through FRAP assay. Conclusion: In the microwave assisted reflux extraction research, good YPF-P yield was achieved from materials with relatively low YPF-P content. And for the first time, both DPPH and FRAP assays were conducted on YPF-P, which proved that the antioxidant activity of YPF-P contributed to the functions of this medicine. PMID:26246730

  3. Active Microwave Delay Line Based on Dipole-Exchange Spin Waves

    NASA Astrophysics Data System (ADS)

    Slavin, Andrei; Kobljanskyj, Yuri; Melkov, Gennadiy; Tyberkevych, Vasil; Vasyuchka, Vitaliy

    2003-03-01

    An active microwave signal processor based on the interaction of relatively long (k 100 1/cm ) dipolar spin waves (or magnetostatic waves (MSW)) with localized electromagnetic pumping in an yttrium-iron garnet (YIG) film has been developed in [1]. The processor performs operations of controlled time delay, amplification, phase conjugation, compression, and convolution of pulsed microwave signals, but due to a relatively large group velocity of MSW pulses has a maximum delay time not exceeding 300 ns . In the current paper we develop theoretically and realize experimentally an active microwave delay line based on the excitation of relatively short-wavelength ( k 10000 1/cm ) dipole-exchange spin waves (DESW) that have considerably smaller dissipation parameter and much smaller group velocity than the MSW. The new DESW delay line has a single wire antenna (width of the order of several micrometers to allow the excitation of short-wavelength DESW) and a pumping dielectric resonator situated nearby. The input (signal) pulse excites in the YIG film both DESW and MSW. The pumping pulse, supplied to the resonator after a time interval t , performs a front reversal of all the excited waves and after a time interval T 2t a delayed output signal produced by both DESW and MSW is received at the antenna. With the increase of t due to the substantially smaller dissipation of DESW the larger and larger portion of the output signal is created by the DESW. As a result, a controlled time delay of an input microwave pulse of more than 1200 ns with insertion loss of 0.04 dB/ns was achieved . The developed microwave delay line is also capable of performing other signal processing operations like convolution and compression of delayed input pulses and might find applications in the modern radar technology [1]. G.A. Melkov, Yu.V. Kobljanskyj, A.A. Serga, V.S. Tiberkevich, and A.N. Slavin, Proceedings of the 8th International Symposium on Microwave and Optical Technology (ISMOT'01), p

  4. Compact Microwave Fourier Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  5. Wageningen UR Unmanned Aerial Remote Sensing Facility - Overview of activities

    NASA Astrophysics Data System (ADS)

    Bartholomeus, Harm; Keesstra, Saskia; Kooistra, Lammert; Suomalainen, Juha; Mucher, Sander; Kramer, Henk; Franke, Jappe

    2016-04-01

    To support environmental management there is an increasing need for timely, accurate and detailed information on our land. Unmanned Aerial Systems (UAS) are increasingly used to monitor agricultural crop development, habitat quality or urban heat efficiency. An important reason is that UAS technology is maturing quickly while the flexible capabilities of UAS fill a gap between satellite based and ground based geo-sensing systems. In 2012, different groups within Wageningen University and Research Centre have established an Unmanned Airborne Remote Sensing Facility. The objective of this facility is threefold: a) To develop innovation in the field of remote sensing science by providing a platform for dedicated and high-quality experiments; b) To support high quality UAS services by providing calibration facilities and disseminating processing procedures to the UAS user community; and c) To promote and test the use of UAS in a broad range of application fields like habitat monitoring, precision agriculture and land degradation assessment. The facility is hosted by the Laboratory of Geo-Information Science and Remote Sensing (GRS) and the Department of Soil Physics and Land Management (SLM) of Wageningen University together with the team Earth Informatics (EI) of Alterra. The added value of the Unmanned Aerial Remote Sensing Facility is that compared to for example satellite based remote sensing more dedicated science experiments can be prepared. This includes for example higher frequent observations in time (e.g., diurnal observations), observations of an object under different observation angles for characterization of BRDF and flexibility in use of camera's and sensors types. In this way, laboratory type of set ups can be tested in a field situation and effects of up-scaling can be tested. In the last years we developed and implemented different camera systems (e.g. a hyperspectral pushbroom system, and multispectral frame cameras) which we operated in projects all

  6. Comparison of active and passive microwave signatures of Arctic sea ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, M. R.; Crawford, J. P.; Cavalieri, D. J.; Holt, B.; Carsey, F. D.

    1990-01-01

    In March 1988, overlapping active and passive microwave instrument data were acquired over Arctic sea ice using the NASA DC-8 aircraft equipped with multifrequency, variable polarization SAR and radiometer. Flights were conducted as a series of coordinated underflights of the DMSP SSM/I satellite radiometer in order to validate ice products derived from the SSM/I radiances. Subsequent flights by an NRL P-3 aircraft enabled overlapping high-resolution, single frequency image data to be acquired over the same regions using a Ka-band scanning microwave radiometer. In this paper, techniques are discussed for the accurate coregistration of the three aircraft datasets. Precise coregistration to an accuracy of 100 m plus or minus 25 m has, for the first time, enabled the detailed comparison of temporally and spatially coincident active and passive airborne microwave datasets. Preliminary results from the intercomparisons indicate that the SAR has highly frequency- and polarization-dependent signatures, which at 5.3 GHz (C-band) show an extremely high correlation with the 37 GHz radiometric temperatures.

  7. NASA Activities as they Relate to Microwave Technology for Aerospace Communications Systems

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2011-01-01

    This presentation discusses current NASA activities and plans as they relate to microwave technology for aerospace communications. The presentations discusses some examples of the aforementioned technology within the context of the existing and future communications architectures and technology development roadmaps. Examples of the evolution of key technology from idea to deployment are provided as well as the challenges that lay ahead regarding advancing microwave technology to ensure that future NASA missions are not constrained by lack of communication or navigation capabilities. The presentation closes with some examples of emerging ongoing opportunities for establishing collaborative efforts between NASA, Industry, and Academia to encourage the development, demonstration and insertion of communications technology in pertinent aerospace systems.

  8. Antioxidant Activity and Phenolic Content of Microwave-Assisted Solanum melongena Extracts

    PubMed Central

    Modica, Maria N.; Pittalà, Valeria; Siracusa, Maria A.; Sorrenti, Valeria; Acquaviva, Rosaria

    2014-01-01

    Eggplant fruit is a very rich source of polyphenol compounds endowed with antioxidant properties. The aim of this study was to extract polyphenols from eggplant entire fruit, pulp, or skin, both fresh and dry, and compare results between conventional extraction and microwave-assisted extraction (MAE). The effects of time exposure (15, 30, 60, and 90 min) and solvent (water 100% or ethanol/water 50%) were also evaluated. The highest amount of polyphenols was found in the extract obtained from dry peeled skin treated with 50% aqueous ethanol, irradiated with microwave; this extract contained also high quantity of flavonoids and showed good antioxidant activity expressed by its capacity to scavenge superoxide anion and to inhibit lipid peroxidation. PMID:24683354

  9. Slow potentials and spike unit activity of the cerebral cortex of rabbits exposed to microwaves

    SciTech Connect

    Chizhenkova, R.A.

    1988-01-01

    Unanesthetized rabbits exposed to 12.5-cm microwaves at a field intensity of 40 mW/cm/sup 2/ in the region of the head showed an increase in the number of slow waves and spindle-shaped firings in the EEG and a change in the discharge frequency of neurons in the visual cortex in 41-52% of the cases. An enhancement of the evoked response of visual cortex neurons to light was observed in 61% of the cases and a facilitation of the driving response in 80% of all cases. It is concluded that the evoked response is a more sensitive indicator of the microwave effect than background activity. The effects of the fields were most distinctly observed with the driving response.

  10. Antioxidant activity and phenolic content of microwave-assisted Solanum melongena extracts.

    PubMed

    Salerno, Loredana; Modica, Maria N; Pittalà, Valeria; Romeo, Giuseppe; Siracusa, Maria A; Di Giacomo, Claudia; Sorrenti, Valeria; Acquaviva, Rosaria

    2014-01-01

    Eggplant fruit is a very rich source of polyphenol compounds endowed with antioxidant properties. The aim of this study was to extract polyphenols from eggplant entire fruit, pulp, or skin, both fresh and dry, and compare results between conventional extraction and microwave-assisted extraction (MAE). The effects of time exposure (15, 30, 60, and 90 min) and solvent (water 100% or ethanol/water 50%) were also evaluated. The highest amount of polyphenols was found in the extract obtained from dry peeled skin treated with 50% aqueous ethanol, irradiated with microwave; this extract contained also high quantity of flavonoids and showed good antioxidant activity expressed by its capacity to scavenge superoxide anion and to inhibit lipid peroxidation.

  11. Applications of airborne remote sensing in atmospheric sciences research

    NASA Technical Reports Server (NTRS)

    Serafin, R. J.; Szejwach, G.; Phillips, B. B.

    1984-01-01

    This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry.

  12. Remote sensing of environmental impact of land use activities

    NASA Technical Reports Server (NTRS)

    Paul, C. K.

    1977-01-01

    The capability to monitor land cover, associated in the past with aerial film cameras and radar systems, was discussed in regard to aircraft and spacecraft multispectral scanning sensors. A proposed thematic mapper with greater spectral and spatial resolutions for the fourth LANDSAT is expected to usher in new environmental monitoring capability. In addition, continuing improvements in image classification by supervised and unsupervised computer techniques are being operationally verified for discriminating environmental impacts of human activities on the land. The benefits of employing remote sensing for this discrimination was shown to far outweigh the incremental costs of converting to an aircraft-satellite multistage system.

  13. Quantifying Uncertainty in Estimation of Potential Recharge in Tropical and Temperate Catchments using a Crop Model and Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Krishnan Kutty, S.; Sekhar, M.; Ruiz, L.; Tomer, S. K.; Bandyopadhyay, S.; Buis, S.; Guerif, M.; Gascuel-odoux, C.

    2012-12-01

    Groundwater recharge in a semi-arid region is generally low, but could exhibit high spatial variability depending on the soil type and plant cover. The potential recharge (the drainage flux just beneath the root zone) is found to be sensitive to water holding capacity and rooting depth (Rushton, 2003). Simple water balance approaches for recharge estimation often fail to consider the effect of plant cover, growth phases and rooting depth. Hence a crop model based approach might be better suited to assess sensitivity of recharge for various crop-soil combinations in agricultural catchments. Martinez et al. (2009) using a root zone modelling approach to estimate groundwater recharge stressed that future studies should focus on quantifying the uncertainty in recharge estimates due to uncertainty in soil water parameters such as soil layers, field capacity, rooting depth etc. Uncertainty in the parameters may arise due to the uncertainties in retrieved variables (surface soil moisture and leaf area index) from satellite. Hence a good estimate of parameters as well as their uncertainty is essential for a reliable estimate of the potential recharge. In this study we focus on assessing the sensitivity of crop and soil types on the potential recharge by using a generic crop model STICS. The effect of uncertainty in the soil parameters on the estimates of recharge and its uncertainty is investigated. The multi-layer soil water parameters and their uncertainty is estimated by inversion of STICS model using the GLUE approach. Surface soil moisture and LAI either retrieved from microwave remote sensing data or measured in field plots (Sreelash et al., 2012) were found to provide good estimates of the soil water properties and therefore both these data sets were used in this study to estimate the parameters and the potential recharge for a combination of soil-crop systems. These investigations were made in two field experimental catchments. The first one is in the tropical semi

  14. Dual effects of microwaves on single Ca(2+)-activated K+ channels in cultured kidney cells Vero.

    PubMed

    Geletyuk, V I; Kazachenko, V N; Chemeris, N K; Fesenko, E E

    1995-02-06

    Using the patch voltage-clamp method, possible effects of millimetre microwaves (42.25 GHz) on single Ca(2+)-activated K+ channels in cultured kidney cells (Vero) were investigated. It was found that exposure to the field of non-thermal power (about 100 microW/cm2) for 20-30 min greatly modifies both the Hill coefficient and an apparent affinity of the channels for Ca2+(i). The data suggest that the field alters both cooperativity and binding characteristics of the channel activation by internal Ca2+. The effects depend on initial sensitivity of the channels to Ca2+ and the Ca2+ concentration applied.

  15. Microwave synthesis and photocatalytic activities of ZnO bipods with different aspect ratios

    SciTech Connect

    Sun, Fazhe; Zhao, Zengdian; Qiao, Xueliang; Tan, Fatang; Wang, Wei

    2016-02-15

    Highlights: • We synthesized linked ZnO nanorods by a facile microwave method. • The effect of reaction parameters on ZnO was investigated. • ZnO bipods with different aspect ratios were prepared. • The photocatalytic performance of ZnO bipods was evaluated. - Abstract: Linked ZnO nanorods have been successfully prepared via a facile microwave method without any post-synthesis treatment. The X-ray diffraction (XRD) patterns indicated the precursor had completely transformed into the pure ZnO crystal. The images of field emitting scanning electron microscope (FESEM) and transmission electron microscope (TEM) showed that linked ZnO nanorods consisted predominantly of ZnO bipods. The formation process of the ZnO bipods was clearly discussed. ZnO bipods with different aspect ratios have been obtained by tuning the concentrations of reagents and microwave power. Moreover, the photocatalytic performance of ZnO bipods with different aspect ratios for degradation of methylene blue was systematically evaluated. The results of photocatalytic experiments showed that the photocatalytic activity increased with the aspect ratios of ZnO bipods increased. The reason is that ZnO bipods with larger aspect ratio have higher surface area, which can absorb more MB molecules to react with ·OH radicals.

  16. Microwave-assisted preparation and adsorption performance of activated carbon from biodiesel industry solid reside: influence of operational parameters.

    PubMed

    Foo, K Y; Hameed, B H

    2012-01-01

    Preparation of activated carbon has been attempted using KOH as activating agent by microwave heating from biodiesel industry solid residue, oil palm empty fruit bunch (EFBAC). The significance of chemical impregnation ratio (IR), microwave power and activation time on the properties of activated carbon were investigated. The optimum condition has been identified at the IR of 1.0, microwave power of 600 W and activation time of 7 min. EFBAC was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement, determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue as dye model compound. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 395.30 mg/g and carbon yield of 73.78%, while the BET surface area and total pore volume were corresponding to 1372 m2/g and 0.76 cm3/g, respectively.

  17. Satellite passive microwave remote sensing for estimating diurnal variation of leaf water content, as a proxy of evapotranspiration, in the Dry Chaco Forest, Argentina

    NASA Astrophysics Data System (ADS)

    Barraza Bernadas, V.; Grings, F.; Ferrazzoli, P.; Carbajo, A.; Fernandez, R.; Karszenbaum, H.

    2012-12-01

    Evapotranspiration (ET) is a key component of water cycle, which is strongly linked with environmental condition and vegetation functioning. Since it is very difficult to robustly estimate it from remote sensing data at regional scale it is usually inferred from other proxies using water balance. This work describes a procedure to estimate ET in a dry forest by monitoring diurnal variation of leaf water content (LWC), using multitemporal passive microwave remote sensing observations. Hourly observations provide the opportunity to monitor repetitive diurnal variations of passive microwave observations, which can only be accounted by changes in LWC (which is itself related to water vapor that enters to the atmosphere from land surface). To this end, we calculated the vegetation frequency index (FI) as FI= 2*(TBKa-TBX)/ ((TBKa +TBX)), where TBKa and TBX indicate brightness temperatures at 37 and 10.6 GHz respectively. There is both theoretical and experimental evidence that link this index to microwave to LWC. The index was computed for vertical polarization, because it presents higher correlation with vegetation state. At diurnal temporal scale, changes in LWC are commonly very small. Nevertheless, it was previously shown that passive remote sensing data (FI computed using Ku and Ka bands) acquired at different hours can be used to estimate the seasonal changes in ET. In this work, we present a procedure based on the hourly changes of FI, which are interpreted as changes in LWC. In order to present a quantitative estimation, the discrete forest model described in (Ferrazzoli and Guerriero, 1996) has been used to simulate the variations of FI with LWC. To illustrate the procedure, AMSR-E and WINDSAT data from 2007-2009 at X and Ka bands were used, and up to four observations per day at four different local times (2.30 am, 7.00 am, 2.30 pm and 7.00 pm) were analyzed. The region addressed is the area of the Dry Chaco forest located in Bermejo River Basin in Argentina

  18. U.S. Geological Survey land remote sensing activities

    USGS Publications Warehouse

    Frederick, Doyle G.

    1983-01-01

    The U.S. Geological Survey (USGS) and the Department of the Interior (DOI) were among the earliest to recognize the potential applications of satellite land remote sensing for management of the country's land and water resources…not only as a user but also as a program participant responsible for final data processing, product generation, and data distribution. With guidance from Dr. William T. Pecora, who was the Survey's Director at that time and later Under Secretary of Interior, the Earth Resources Observation Systems (EROS) Program was established in 1966 as a focal point for these activities within the Department. Dr. Pecora was among the few who could envision a role for the Survey and the Department as active participants in programs yet to come--like the Landsat, Magsat, Seasat and, most recently, Shuttle Imaging Radar programs.

  19. Soft Active Materials for Actuation, Sensing, and Electronics

    NASA Astrophysics Data System (ADS)

    Kramer, Rebecca Krone

    Future generations of robots, electronics, and assistive medical devices will include systems that are soft and elastically deformable, allowing them to adapt their morphology in unstructured environments. This will require soft active materials for actuation, circuitry, and sensing of deformation and contact pressure. The emerging field of soft robotics utilizes these soft active materials to mimic the inherent compliance of natural soft-bodied systems. As the elasticity of robot components increases, the challenges for functionality revert to basic questions of fabrication, materials, and design - whereas such aspects are far more developed for traditional rigid-bodied systems. This thesis will highlight preliminary materials and designs that address the need for soft actuators and sensors, as well as emerging fabrication techniques for manufacturing stretchable circuits and devices based on liquid-embedded elastomers.

  20. Polarity-enhanced gas-sensing performance of Au-loaded ZnO nanospindles synthesized via precipitation and microwave irradiation

    NASA Astrophysics Data System (ADS)

    Li, Yan; Lv, Tan; Zhao, Fang-Xian; Lian, Xiao-Xue; Zou, Yun-Ling; Wang, Qiong

    2016-05-01

    Loading noble metal and exploring suitable morphology to achieve excellent gas-sensing performance is very crucial for the fabrication of gas sensors. We have successfully synthesized Au-loaded ZnO (Au/ZnO) nanospindles (NSs) through a really facile procedure involving a precipitation and subsequent microwave irradiation. The as-prepared products have been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM). The formation and gas-sensing mechanism of Au/ZnO NSs were discussed. The SEM micrographs revealed an interesting morphological evolution of the Au/ZnO NSs with Au-loading content ranging from 0 at. % to 7 at. %. The nanostructures were employed for gas-sensing measurement toward various gases. It indicated that the Au/ZnO NSs based sensor showed a highly enhanced response (226.81) to 400 ppm acetone gas at a relatively low working temperature (270°C), and exhibited a fast response (1 s) and recovery speed (10 s). The highly enhanced acetone gas sensitivity of Au/ZnO NSs based sensor could be attributed to its enhanced polarity owing to the peculiar morphology, Schottcky barriers, as well as catalytic effect of Au NPs. [Figure not available: see fulltext.

  1. Sensitivity of Active and Passive Microwave Observations to Soil Moisture during Growing Corn

    NASA Astrophysics Data System (ADS)

    Judge, J.; Monsivais-Huertero, A.; Liu, P.; De Roo, R. D.; England, A. W.; Nagarajan, K.

    2011-12-01

    Soil moisture (SM) in the root zone is a key factor governing water and energy fluxes at the land surface and its accurate knowledge is critical to predictions of weather and near-term climate, nutrient cycles, crop-yield, and ecosystem productivity. Microwave observations, such as those at L-band, are highly sensitive to soil moisture in the upper few centimeters (near-surface). The two satellite-based missions dedicated to soil moisture estimation include, the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission and the planned NASA Soil Moisture Active/Passive (SMAP) [4] mission. The SMAP mission will include active and passive sensors at L-band to provide global observations of SM, with a repeat coverage of every 2-3 days. These observations can significantly improve root zone soil moisture estimates through data assimilation into land surface models (LSMs). Both the active (radar) and passive (radiometer) microwave sensors measure radiation quantities that are functions of soil dielectric constant and exhibit similar sensitivities to SM. In addition to the SM sensitivity, radar backscatter is highly sensitive to roughness of soil surface and scattering within the vegetation. These effects may produce a much larger dynamic range in backscatter than that produced due to SM changes alone. In this study, we discuss the field observations of active and passive signatures of growing corn at L-band from several seasons during the tenth Microwave, Water and Energy Balance Experiment (MicroWEX-10) conducted in North Central Florida, and to understand the sensitivity of these signatures to soil moisture under dynamic vegetation conditions. The MicroWEXs are a series of season-long field experiments conducted during the growing seasons of sweet corn, cotton, and energy cane over the past six years (for example, [22]). The corn was planted on July 5 and harvested on September 23, 2011 during MicroWEX-10. The size of the field was 0.04 km2 and the soils

  2. Frequency Based Volcanic Activity Detection through Remotely Sensed Data

    NASA Astrophysics Data System (ADS)

    Worden, A. K.; Dehn, J.; Webley, P. W.

    2015-12-01

    Satellite remote sensing has proved to offer a useful and relatively inexpensive method for monitoring large areas where field work is logistically unrealistic, and potentially dangerous. Current sensors are able to detect the majority of explosive volcanic activity; those that tend to effect and represent larger scale changes in the volcanic systems, eventually relating to ash producing periods of extended eruptive activity, and effusive activity. As new spaceborne sensors are developed, the ability to detect activity improves so that a system to gauge the frequency of volcanic activity can be used as a useful monitoring tool. Four volcanoes were chosen for development and testing of a method to monitor explosive activity: Stromboli (Italy); Shishaldin and Cleveland (Alaska, USA); and Karymsky (Kamchatka, Russia). Each volcano studied had similar but unique signatures of pre-cursory and eruptive activity. This study has shown that this monitoring tool could be applied to a wide range of volcanoes and still produce useful and robust data. Our method deals specifically with the detection of small scale explosive activity. The method described here could be useful in an operational setting, especially at remote volcanoes that have the potential to impact populations, infrastructure, and the aviation community. A number of important factors will affect the validity of application of this method. They are: (1) the availability of a continuous and continually populated dataset; (2) appropriate and reasonable sensor resolutions; (3) a recorded history of the volcano's previous activity; and, if available, (4) some ground-based monitoring system. We aim to develop the method further to be able to capture and evaluate the frequency of other volcanic processes such as lava flows, phreatomagmatic eruptions and dome growth and collapse. The work shown here has served to illustrate the capability of this method and monitoring tool for use at remote, un-instrumented volcanoes.

  3. Remote Sensing Observatory Validation of Surface Soil Moisture Using Advanced Microwave Scanning Radiometer E, Common Land Model, and Ground Based Data: Case Study in SMEX03 Little River Region, Georgia, U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimal soil moisture estimation may be characterized by inter-comparisons among remotely sensed measurements, ground-based measurements, and land surface models. In this study, we compared soil moisture from Advanced Microwave Scanning Radiometer E (AMSR-E), ground-based measurements, and Soil-Vege...

  4. The use of near-infrared and microwave resonance sensing to monitor a continuous roller compaction process.

    PubMed

    Austin, John; Gupta, Anshu; McDonnell, Ryan; Reklaitis, Gintaras V; Harris, Michael T

    2013-06-01

    Roller compaction is commonly used in the pharmaceutical and nutraceutical industries to increase and narrow the size distribution of a particulate material, making it easier to process. Both the moisture content of the material and the density of the roller compacted ribbon affect the uniformity and physical properties of the resultant granules. Without process analytical technologies, these parameters cannot be determined on-line or in real time. In this study, the more commonly used near-infrared (NIR) spectroscopy was compared and contrasted with microwave resonance for the determination of roller-compacted ribbons' envelope density and moisture content. Results indicate that microwave resonance can offer improved accuracy, robustness, and ease-of-use compared with NIR spectroscopy for these property measurements.

  5. Microwave-assisted synthesis and antifungal activity of novel fused Osthole derivatives.

    PubMed

    Zhang, Ming-Zhi; Zhang, Rong-Rong; Wang, Jia-Qun; Yu, Xiang; Zhang, Ya-Ling; Wang, Qing-Qing; Zhang, Wei-Hua

    2016-11-29

    Based on the microwave-assisted synthetic protocol developed in our previous work, we have synthesized a series of novel furo[3,2-c]coumarins as fused Osthole derivatives, via the reaction of 4-hydroxycoumarins and β-ketoesters catalyzed by DMAP. All the target compounds were evaluated in vitro for their antifungal activity against six phytopathogenic fungi, some compounds exhibited potential activity in the primary assays. Especially compounds 6c, 7b, 8b and 8c (shown in Fig. 1) were the most active ones, EC50 values of these four compounds against Colletotrichum capsica, Botrytis cinerea and Rhizoctonia solani were further investigated. 6c was identified as the most promising candidate with the EC50 value at 0.110 μM against Botrytis cinerea and 0.040 μM against Colletotrichum capsica, respectively, representing better antifungal activity than that of the commonly used fungicide Azoxystrobin.

  6. Efficient active depth sensing by laser speckle projection system

    NASA Astrophysics Data System (ADS)

    Yin, Xuanwu; Wang, Guijin; Shi, Chenbo; Liao, Qingmin

    2014-01-01

    An active depth sensing approach by laser speckle projection system is proposed. After capturing the speckle pattern with an infrared digital camera, we extract the pure speckle pattern using a direct-global separation method. Then the pure speckles are represented by Census binary features. By evaluating the matching cost and uniqueness between the real-time image and the reference image, robust correspondences are selected as support points. After that, we build a disparity grid and propose a generative graphical model to compute disparities. An iterative approach is designed to propagate the messages between blocks and update the model. Finally, a dense depth map can be obtained by subpixel interpolation and transformation. The experimental evaluations demonstrate the effectiveness and efficiency of our approach.

  7. Non-Invasive UWB Sensing of Astronauts' Breathing Activity

    PubMed Central

    Baldi, Marco; Cerri, Graziano; Chiaraluce, Franco; Eusebi, Lorenzo; Russo, Paola

    2015-01-01

    The use of a UWB system for sensing breathing activity of astronauts must account for many critical issues specific to the space environment. The aim of this paper is twofold. The first concerns the definition of design constraints about the pulse amplitude and waveform to transmit, as well as the immunity requirements of the receiver. The second issue concerns the assessment of the procedures and the characteristics of the algorithms to use for signal processing to retrieve the breathing frequency and respiration waveform. The algorithm has to work correctly in the presence of surrounding electromagnetic noise due to other sources in the environment. The highly reflecting walls increase the difficulty of the problem and the hostile scenario has to be accurately characterized. Examples of signal processing techniques able to recover breathing frequency in significant and realistic situations are shown and discussed. PMID:25558995

  8. Non-invasive UWB sensing of astronauts' breathing activity.

    PubMed

    Baldi, Marco; Cerri, Graziano; Chiaraluce, Franco; Eusebi, Lorenzo; Russo, Paola

    2014-12-30

    The use of a UWB system for sensing breathing activity of astronauts must account for many critical issues specific to the space environment. The aim of this paper is twofold. The first concerns the definition of design constraints about the pulse amplitude and waveform to transmit, as well as the immunity requirements of the receiver. The second issue concerns the assessment of the procedures and the characteristics of the algorithms to use for signal processing to retrieve the breathing frequency and respiration waveform. The algorithm has to work correctly in the presence of surrounding electromagnetic noise due to other sources in the environment. The highly reflecting walls increase the difficulty of the problem and the hostile scenario has to be accurately characterized. Examples of signal processing techniques able to recover breathing frequency in significant and realistic situations are shown and discussed.

  9. Migration testing of plastics and microwave-active materials for high-temperature food-use applications.

    PubMed

    Castle, L; Jickells, S M; Gilbert, J; Harrison, N

    1990-01-01

    Temperatures have been measured using a fluoro-optic probe at the food/container or food/packaging interfaces as appropriate, for a range of foods heated in either a microwave or a conventional oven. Reheating ready-prepared foods packaged in plastics pouches, trays or dishes in the microwave oven, according to the manufacturers' instructions, resulted in temperatures in the range 61-121 degrees C. Microwave-active materials (susceptors) in contact with ready-prepared foods frequently reached local spot temperatures above 200 degrees C. For foods cooked in a microwave oven according to published recipes, temperatures from 91 degrees C to 200 degrees C were recorded, whilst similar temperatures (92-194 degrees C) were attained in a conventional oven, but over longer periods of time. These measurements form the basis for examining compliance with specific and overall migration limits for plastics materials. The testing conditions proposed depend on the intended use of the plastic - for microwave oven use for aqueous foods, for all lidding materials, and for reheating of foods, testing would only be required with aqueous simulants for 1 h at 100 degrees C; for unspecified microwave oven use, testing with olive oil would be required for 30 min at 150 degrees C; and for unspecified use in a conventional oven testing with olive oil would be required for 2 h at 175 degrees C. For microwave-active materials, it is proposed that testing is carried out in the microwave oven using a novel semi-solid simulant comprising olive oil and water absorbed onto an inert support of diatomaceous earth. The testing in this instance is carried out with the simulant instead of food in a package and heating in the microwave oven at 600 W for 4 min for every 100 g of simulant employed. There is an option in every case to test for migration using real foods rather than simulants if it can be demonstrated that results using simulants are unrepresentative of those for foods. The proposed

  10. Statistical Analysis of the Correlation between Microwave Emission Anomalies and Seismic Activity Based on AMSR-E Satellite Data

    NASA Astrophysics Data System (ADS)

    qin, kai; Wu, Lixin; De Santis, Angelo; Zhang, Bin

    2016-04-01

    Pre-seismic thermal IR anomalies and ionosphere disturbances have been widely reported by using the Earth observation system (EOS). To investigate the possible physical mechanisms, a series of detecting experiments on rock loaded to fracturing were conducted. Some experiments studies have demonstrated that microwave radiation energy will increase under the loaded rock in specific frequency and the feature of radiation property can reflect the deformation process of rock fracture. This experimental result indicates the possibility that microwaves are emitted before earthquakes. Such microwaves signals are recently found to be detectable before some earthquake cases from the brightness temperature data obtained by the microwave-radiometer Advanced Microwave-Scanning Radiometer for the EOS (AMSR-E) aboard the satellite Aqua. This suggested that AMSR-E with vertical- and horizontal-polarization capability for six frequency bands (6.925, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz) would be feasible to detect an earthquake which is associated with rock crash or plate slip. However, the statistical analysis of the correlation between satellite-observed microwave emission anomalies and seismic activity are firstly required. Here, we focus on the Kamchatka peninsula to carry out a statistical study, considering its high seismicity activity and the dense orbits covering of AMSR-E in high latitudes. 8-years (2003-2010) AMSR-E microwave brightness temperature data were used to reveal the spatio-temporal association between microwave emission anomalies and 17 earthquake events (M>5). Firstly, obvious spatial difference of microwave brightness temperatures between the seismic zone at the eastern side and the non-seismic zone the western side within the Kamchatka peninsula are found. Secondly, using both vertical- and horizontal-polarization to extract the temporal association, it is found that abnormal changes of microwave brightness temperatures appear generally 2 months before the

  11. Activation of VEGF/Flk-1-ERK Pathway Induced Blood-Brain Barrier Injury After Microwave Exposure.

    PubMed

    Wang, Li-Feng; Li, Xiang; Gao, Ya-Bing; Wang, Shui-Ming; Zhao, Li; Dong, Ji; Yao, Bin-Wei; Xu, Xin-Ping; Chang, Gong-Min; Zhou, Hong-Mei; Hu, Xiang-Jun; Peng, Rui-Yun

    2015-08-01

    Microwaves have been suggested to induce neuronal injury and increase permeability of the blood-brain barrier (BBB), but the mechanism remains unknown. The role of the vascular endothelial growth factor (VEGF)/Flk-1-Raf/MAPK kinase (MEK)/extracellular-regulated protein kinase (ERK) pathway in structural and functional injury of the blood-brain barrier (BBB) following microwave exposure was examined. An in vitro BBB model composed of the ECV304 cell line and primary rat cerebral astrocytes was exposed to microwave radiation (50 mW/cm(2), 5 min). The structure was observed by scanning electron microscopy (SEM) and the permeability was assessed by measuring transendothelial electrical resistance (TEER) and horseradish peroxidase (HRP) transmission. Activity and expression of VEGF/Flk-1-ERK pathway components and occludin also were examined. Our results showed that microwave radiation caused intercellular tight junctions to broaden and fracture with decreased TEER values and increased HRP permeability. After microwave exposure, activation of the VEGF/Flk-1-ERK pathway and Tyr phosphorylation of occludin were observed, along with down-regulated expression and interaction of occludin with zonula occludens-1 (ZO-1). After Flk-1 (SU5416) and MEK1/2 (U0126) inhibitors were used, the structure and function of the BBB were recovered. The increase in expression of ERK signal transduction molecules was muted, while the expression and the activity of occludin were accelerated, as well as the interactions of occludin with p-ERK and ZO-1 following microwave radiation. Thus, microwave radiation may induce BBB damage by activating the VEGF/Flk-1-ERK pathway, enhancing Tyr phosphorylation of occludin, while partially inhibiting expression and interaction of occludin with ZO-1.

  12. Diurnal variations of stratospheric ozone measured by ground-based microwave remote sensing at the Mauna Loa NDACC site: measurement validation and GEOSCCM model comparison

    NASA Astrophysics Data System (ADS)

    Parrish, A.; Boyd, I. S.; Nedoluha, G. E.; Bhartia, P. K.; Frith, S. M.; Kramarova, N. A.; Connor, B. J.; Bodeker, G. E.; Froidevaux, L.; Shiotani, M.; Sakazaki, T.

    2014-07-01

    There is presently renewed interest in diurnal variations of stratospheric and mesospheric ozone for the purpose of supporting homogenization of records of various ozone measurements that are limited by the technique employed to being made at certain times of day. We have made such measurements for 19 years using a passive microwave remote sensing technique at the Mauna Loa Observatory (MLO) in Hawaii, which is a primary station in the Network for Detection of Atmospheric Composition Change (NDACC). We have recently reprocessed these data with hourly time resolution to study diurnal variations. We inspected differences between pairs of the ozone spectra (e.g., day and night) from which the ozone profiles are derived to determine the extent to which they may be contaminated by diurnally varying systematic instrumental or measurement effects. These are small, and we have reduced them further by selecting data that meet certain criteria that we established. We have calculated differences between profiles measured at different times: morning-night, afternoon-night, and morning-afternoon and have intercompared these with like profiles derived from the Aura Microwave Limb Sounder (Aura-MLS), the Upper Atmosphere Research Satellite Microwave Limb Sounder (UARS-MLS), the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES), and Solar Backscatter Ultraviolet version 2 (SBUV/2) measurements. Differences between averages of coincident profiles are typically < 1.5% of typical nighttime values over most of the covered altitude range with some exceptions. We calculated averages of ozone values for each hour from the Mauna Loa microwave data, and normalized these to the average for the first hour after midnight for comparison with corresponding values calculated with the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM). We found that the measurements and model output mostly agree to better than 1.5% of the midnight value, with one noteworthy exception

  13. Active sensing in the categorization of visual patterns

    PubMed Central

    Yang, Scott Cheng-Hsin; Lengyel, Máté; Wolpert, Daniel M

    2016-01-01

    Interpreting visual scenes typically requires us to accumulate information from multiple locations in a scene. Using a novel gaze-contingent paradigm in a visual categorization task, we show that participants' scan paths follow an active sensing strategy that incorporates information already acquired about the scene and knowledge of the statistical structure of patterns. Intriguingly, categorization performance was markedly improved when locations were revealed to participants by an optimal Bayesian active sensor algorithm. By using a combination of a Bayesian ideal observer and the active sensor algorithm, we estimate that a major portion of this apparent suboptimality of fixation locations arises from prior biases, perceptual noise and inaccuracies in eye movements, and the central process of selecting fixation locations is around 70% efficient in our task. Our results suggest that participants select eye movements with the goal of maximizing information about abstract categories that require the integration of information from multiple locations. DOI: http://dx.doi.org/10.7554/eLife.12215.001 PMID:26880546

  14. Spanish activities (research and industrial applications) in the field of microwave material treatment

    SciTech Connect

    Catala Civera, J.M.; Reyes Davo, E.R. de los

    1996-12-31

    The GCM (Microwave Heating Group) within the Communications Department at the Technical University of Valencia is dedicated to the study of microwaves and their use in the current industrial processes in the Valencian Community and in Spain. To this end, a microwave heating laboratory has been developed and the benefits of incorporating microwave technologies into current industrial processes have been demonstrated. In this paper some of the industrial applications which are being investigated are presented.

  15. Spaceborne Radar Remote Sensing: Radar Interferometry, Scatterometry and Altimetry

    NASA Technical Reports Server (NTRS)

    Kwok, Ronald; Yueh, Simon H.; Fu, Lee-Lueng

    1997-01-01

    Spaceborne remote sensing instruments allow the acquisition of global and synoptic information for Earth Science investigations. In particular, active microwave remote sensing that have contributed geophysical measurements of a scale and accuracy which surpass what could be accomplished with ariborne or in-situ observations.

  16. Hydrological Application of Remote Sensing: Surface States -- Snow

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Kelly, Richard E. J.; Foster, James L.; Chang, Alfred T. C.

    2004-01-01

    Remote sensing research of snow cover has been accomplished for nearly 40 years. The use of visible, near-infrared, active and passive-microwave remote sensing for the analysis of snow cover is reviewed with an emphasis on the work on the last decade.

  17. Quorum Sensing Inhibiting Activity of Streptomyces coelicoflavus Isolated from Soil

    PubMed Central

    Hassan, Ramadan; Shaaban, Mona I.; Abdel Bar, Fatma M.; El-Mahdy, Areej M.; Shokralla, Shadi

    2016-01-01

    Quorum sensing (QS) systems communicate bacterial population and stimulate microbial pathogenesis through signaling molecules. Inhibition of QS signals potentially suppresses microbial infections. Antimicrobial properties of Streptomyces have been extensively studied, however, less is known about quorum sensing inhibitory (QSI) activities of Streptomyces. This study explored the QSI potential of Streptomyces isolated from soil. Sixty-five bacterial isolates were purified from soil samples with morphological characteristics of Streptomyces. The three isolates: S6, S12, and S17, exhibited QSI effect by screening with the reporter, Chromobacterium violaceum. Isolate S17 was identified as Streptomyces coelicoflavus by sequencing of the hypervariable regions (V1–V6) of 16S rRNA and was assigned gene bank number KJ855087. The QSI effect of the cell-free supernatant of isolate S17 was not abolished by proteinase K indicating the non-enzymatic activity of QSI components of S17. Three major compounds were isolated and identified, using spectroscopic techniques (1D, 2D NMR, and Mass spectrometry), as behenic acid (docosanoic acid), borrelidin, and 1H-pyrrole-2-carboxylic acid. 1H-pyrrole-2-carboxylic acid inhibited QS and related virulence factors of Pseudomonas aeruginosa PAO1 including; elastase, protease, and pyocyanin without affecting Pseudomonas viability. At the molecular level, 1H-pyrrole-2-carboxylic acid suppressed the expression of QS genes (lasI, lasR, lasA, lasB, rhlI, rhlR, pqsA, and pqsR). Moreover, QSI activity of S17 was assessed under different growth conditions and ISP2 medium supplemented with glucose 0.4% w/v and adjusted at pH 7, showed the highest QSI action. In conclusion, 1H-pyrrole-2-carboxylic acid, one of the major metabolites of Streptomyces isolate S17, inhibited QS and virulence determinants of P. aeruginosa PAO1. The findings of the study open the scope to exploit the in vivo efficacy of this active molecule as anti-pathogenic and anti

  18. Efficient Catalytic Activity BiFeO3 Nanoparticles Prepared by Novel Microwave-Assisted Synthesis.

    PubMed

    Zou, Jing; Gong, Wanyun; Ma, Jinai; Li, Lu; Jiang, Jizhou

    2015-02-01

    A novel microwave-assisted sol-gel method was applied to the synthesis of the single-phase perovskite bismuth ferrite nanoparticles (BFO NPs) with the mean diameter ca. 73.7 nm. The morphology was characterized by scanning electron microscope (SEM). The X-ray diffraction (XRD) revealed the rhombohedral phase with R3c space group. The weak ferromagnetic behavior at room temperature was affirmed by the vibrating sample magnetometer (VSM). According to the UV-vis diffuse reflectance spectrum (UV-DSR), the band gap energy of BFO NPs was determined to be 2.18 eV. The electrochemical activity was evaluated by BFO NPs-chitosan-glassy carbon electrode (BFO-CS-GCE) sensor for detection of p-nitrophenol contaminants. The material showed an efficient oxidation catalytic activity by degrading methylene blue (MB). It was found that the degradation efficiency of 10 mg L-1 MB at pH 6.0 was above 90.9% after ultrasound- and microwave-combined-assisted (US-MW) irradiation for 15 min with BFO NPs as catalyst and H202 as oxidant. A possible reaction mechanism of degradation of MB was also proposed.

  19. Microwave-assisted extraction of polysaccharides from Cyphomandra betacea and its biological activities.

    PubMed

    C, Senthil Kumar; M, Sivakumar; K, Ruckmani

    2016-11-01

    Response Surface Methodology (RSM) was used to optimize the parameters for microwave-assisted extraction of polysaccharides from Cyphomandra betacea. The results showed a good fit with a second-order polynomial equation that was statistically acceptable at P<0.05. Optimal conditions for the extraction of polysaccharides were: extraction time, 2h; microwave power, 400W; extraction temperature, 60°C; and ratio of raw material to water 1:40 (g/mL). Under the optimized conditions, the yield of polysaccharides was found to be relatively high (about 36.52%). The in vitro biological activities of antioxidant and antitumor were evaluated. The IC50 value of polysaccharides was found to be 3mg/mL. The percentage of Cell viability was determined by MTT assay. Our results showed that polysaccharides inhibited proliferation of MCF-7 (Breast carcinoma), A549 (Human lung carcinoma) and HepG2 (Liver carcinoma) with an IC50 of 0.23mg/mL, 0.17mg/mL and 0.62mg/mL respectively after 48h incubation. Polysaccharides were shown to promote apoptosis as seen in the nuclear morphological examination study using acridine orange (AO) and ethidium bromide (EB) staining. This is the first report on the effects of polysaccharides extracted from Cyphomandra betacea which exhibited stronger antioxidant and antitumor activities.

  20. Degradation of Active Brilliant Red X-3B by a microwave discharge electrodeless lamp in the presence of activated carbon.

    PubMed

    Fu, Jie; Wen, Teng; Wang, Qing; Zhang, Xue-Wei; Zeng, Qing-Fu; An, Shu-Qing; Zhu, Hai-Liang

    2010-06-01

    Degradation of Active Brilliant Red X-3B (X-3B) in aqueous solution by a microwave discharge electrodeless lamp (MDEL) in the presence of activated carbon was investigated. The preliminary results proved this method could effectively degrade X-3B in aqueous solution. The removal percentages of colour and chemical oxygen demand were up to approximately 99% and 66%, respectively, at the conditions of 0.8 g/L dye concentration, 20 g/L activated carbon, pH 7.0 and 8 min microwave irradiation time. The degradation basically belonged to first-order reaction kinetics and its rate constant was 0.42 min(-1). No aromatic organics were detected in the final treated solution, indicating that the mineralization was relatively complete. By studying the change in solution properties, it could be concluded that MDEL-assisted oxidation was the dominant reaction mechanism. In addition, the influence of operational parameters and reuse of activated carbon were also discussed.

  1. Investigation of temporal-spatial parameters of an urban heat island on the basis of passive microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Khaikine, M. N.; Kuznetsova, I. N.; Kadygrov, E. N.; Miller, E. A.

    2006-02-01

    Quantitative measurements of the impact of an urban environment on the thermal state of the atmospheric boundary layer are presented. Temperature profiles up to the height of 600 m were obtained in a continuous series of measurements by three microwave profilers MTP-5 located in different areas of Moscow. The influence of this large city on urban heat island (UHI) parameters was estimated on occasions with stationary atmospheric processes and during cases with frontal passage. Two types of UHI were identified: one with a dome of urban warmth at all levels, and another with a low warm dome in combination with a lens of cold air above.

  2. Validation of a microwave radar system for the monitoring of locomotor activity in mice

    PubMed Central

    Pasquali, Vittorio; Scannapieco, Eugenio; Renzi, Paolo

    2006-01-01

    Background The general or spontaneous motor activity of animals is a useful parameter in chronobiology. Modified motion detectors can be used to monitor locomotor activity rhythms. We modified a commercial microwave-based detection device and validated the device by recording circadian and ultradian rhythms. Methods Movements were detected by microwave radar based on the Doppler effect. The equipment was designed to detect and record simultaneously 12 animals in separate cages. Radars were positioned at the bottom of aluminium bulkheads. Animal cages were positioned above the bulkheads. The radars were connected to a computer through a digital I/O board. Results The apparatus was evaluated by several tests. The first test showed the ability of the apparatus to detect the exact frequency of the standard moving object. The second test demonstrated the stability over time of the sensitivity of the radars. The third was performed by simultaneous observations of video-recording of a mouse and radar signals. We found that the radars are particularly sensitive to activities that involve a displacement of the whole body, as compared to movement of only a part of the body. In the fourth test, we recorded the locomotor activity of Balb/c mice. The results were in agreement with published studies. Conclusion Radar detectors can provide automatic monitoring of an animal's locomotor activity in its home cage without perturbing the pattern of its normal behaviour or initiating the spurt of exploration occasioned by transfer to a novel environment. Recording inside breeding cages enables long-term studies with uninterrupted monitoring. The use of electromagnetic waves allows contactless detection and freedom from interference of external stimuli. PMID:16674816

  3. [Analysis of pulsed bioelectric activity of rabbit cerebral cortex in response to low-intensity microwave radiation].

    PubMed

    Luk'ianova, S N; Monseeva, N V

    1998-01-01

    In experiments on 22 rabbits the influence of a pulse microwave irradiation on extracellular activity of separate nervous cells of sensorimotori and occipital areas of a cortex brain is shown. The reaction could consist in activation or in braking frequency of the discharges, that was connected to frequency impulsation in an initial background. The researched mode of a microwave irradiation (1.5 GHz, duration of a pulsed-0.4 microsecond, frequency of their recurrence 1000 Hz, DFEpulsed-300 microW/sm2) had a corrigizing action.

  4. Temporal Signatures of Taste Quality Driven by Active Sensing

    PubMed Central

    Sun, Chengsan; Hill, David L.

    2014-01-01

    Animals actively acquire sensory information from the outside world, with rodents sniffing to smell and whisking to feel. Licking, a rapid motor sequence used for gustation, serves as the primary means of controlling stimulus access to taste receptors in the mouth. Using a novel taste-quality discrimination task in head-restrained mice, we measured and compared reaction times to four basic taste qualities (salt, sour, sweet, and bitter) and found that certain taste qualities are perceived inherently faster than others, driven by the precise biomechanics of licking and functional organization of the peripheral gustatory system. The minimum time required for accurate perception was strongly dependent on taste quality, ranging from the sensory-motor limits of a single lick (salt, ∼100 ms) to several sampling cycles (bitter, >500 ms). Further, disruption of sensory input from the anterior tongue significantly impaired the speed of perception of some taste qualities, with little effect on others. Overall, our results show that active sensing may play an important role in shaping the timing of taste-quality representations and perception in the gustatory system. PMID:24872546

  5. Active contour segmentation for hyperspectral oil spill remote sensing

    NASA Astrophysics Data System (ADS)

    Song, Mei-ping; Chang, Ming; An, Ju-bai; Huang, Jian; Lin, Bin

    2013-08-01

    Oil spills could occur in many conditions, which results in pollution of the natural resources, marine environment and economic health of the area. Whenever we need to identify oil spill, confirm the location or get the shape and acreage of oil spill, we have to get the edge information of oil slick images firstly. Hyperspectral remote sensing imaging is now widely used to detect oil spill. Active Contour Models (ACMs) is a widely used image segmentation method that utilizes the geometric information of objects within images. Region based models are less sensitive to noise and give good performance for images with weak edges or without edges. One of the popular Region based ACMs, active contours without edges Models, is implemented by Chan-Vese. The model has the property of global segmentation to segment all the objects within an image irrespective of the initial contour. In this paper, we propose an improved CV model, which can perform well in the oil spill hyper-spectral image segmentation. The energy function embeds spectral and spatial information, introduces the vector edge stopping function, and constructs a novel length term. Results of the improved model on airborne hyperspectral oil spill images show that it improves the ability of distinguishing between oil spills and sea water, as well as the capability of noise reduction.

  6. Predicting eruptions from precursory activity using remote sensing data hybridization

    NASA Astrophysics Data System (ADS)

    Reath, K. A.; Ramsey, M. S.; Dehn, J.; Webley, P. W.

    2016-07-01

    Many volcanoes produce some level of precursory activity prior to an eruption. This activity may or may not be detected depending on the available monitoring technology. In certain cases, precursors such as thermal output can be interpreted to make forecasts about the time and magnitude of the impending eruption. Kamchatka (Russia) provides an ideal natural laboratory to study a wide variety of eruption styles and precursory activity prior to an eruption. At Bezymianny volcano for example, a clear increase in thermal activity commonly occurs before an eruption, which has allowed predictions to be made months ahead of time. Conversely, the eruption of Tolbachik volcano in 2012 produced no discernable thermal precursors before the large scale effusive eruption. However, most volcanoes fall between the extremes of consistently behaved and completely undetectable, which is the case with neighboring Kliuchevskoi volcano. This study tests the effectiveness of using thermal infrared (TIR) remote sensing to track volcanic thermal precursors using data from both the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Advanced Very High Resolution Radiometer (AVHRR) sensors. It focuses on three large eruptions that produced different levels and durations of effusive and explosive behavior at Kliuchevskoi. Before each of these eruptions, TIR spaceborne sensors detected thermal anomalies (i.e., pixels with brightness temperatures > 2 °C above the background temperature). High-temporal, low-spatial resolution (i.e., ~ hours and 1 km) AVHRR data are ideal for detecting large thermal events occurring over shorter time scales, such as the hot material ejected following strombolian eruptions. In contrast, high-spatial, low-temporal resolution (i.e., days to weeks and 90 m) ASTER data enables the detection of much lower thermal activity; however, activity with a shorter duration will commonly be missed. ASTER and AVHRR data are combined to track low

  7. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities

    PubMed Central

    Velusamy, Palaniyandi; Su, Chia-Hung; Venkat Kumar, Govindarajan; Adhikary, Shritama; Pandian, Kannaiyan; Gopinath, Subash C. B.; Chen, Yeng; Anbu, Periasamy

    2016-01-01

    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications. PMID:27304672

  8. Microwave-assisted extraction of active pharmaceutical ingredient from solid dosage forms.

    PubMed

    Hoang, T H; Sharma, R; Susanto, D; Di Maso, M; Kwong, E

    2007-07-13

    The microwave assisted extraction (MAE) technique has been evaluated for the extraction of active pharmaceutical ingredients (API) from various solid dosage forms. Using immediate release tablets of Compound A as a model, optimization of the extraction method with regards to extraction solvent composition, extraction time and temperature was briefly discussed. Complete recovery of Compound A was achieved when samples were extracted using acetonitrile as the extraction solvent under microwave heating at a constant cell temperature of 50 degrees C for 5 min. The optimized MAE method was applied for content uniformity (single tablet extraction) and potency (multiple tablets extraction) assays of release and stability samples of two products of Compound A (5 and 25mg dose strength) stored at various conditions. To further demonstrate the applicability of MAE, the instrumental extraction conditions (50 degrees C for 5 min) were adopted for the extraction of montelukast sodium (Singulair) from various solid dosage forms using methanol-water (75:25, v/v) as the extraction solvent. The MAE procedure demonstrated an extraction efficiency of 97.4-101.9% label claim with the greatest RSD at 1.4%. The results compare favorably with 97.6-102.3% label claim with the greatest RSD at 2.9% obtained with validated mechanical extraction procedures. The system is affordable, user-friendly and simple to operate and troubleshoot. Rapid extraction process (7 min/run) along with high throughput capacity (up to 23 samples simultaneously) would lead to reduced cycle time and thus increased productivity.

  9. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities.

    PubMed

    Velusamy, Palaniyandi; Su, Chia-Hung; Venkat Kumar, Govindarajan; Adhikary, Shritama; Pandian, Kannaiyan; Gopinath, Subash C B; Chen, Yeng; Anbu, Periasamy

    2016-01-01

    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications.

  10. Specific quorum sensing-disrupting activity (A QSI) of thiophenones and their therapeutic potential.

    PubMed

    Yang, Qian; Scheie, Anne Aamdal; Benneche, Tore; Defoirdt, Tom

    2015-12-09

    Disease caused by antibiotic resistant pathogens is becoming a serious problem, both in human and veterinary medicine. The inhibition of quorum sensing, bacterial cell-to-cell communication, is a promising alternative strategy to control disease. In this study, we determined the quorum sensing-disrupting activity of 20 thiophenones towards the quorum sensing model bacterium V. harveyi. In order to exclude false positives, we propose a new parameter (AQSI) to describe specific quorum sensing activity. AQSI is defined as the ratio between inhibition of quorum sensing-regulated activity in a reporter strain and inhibition of the same activity when it is independent of quorum sensing. Calculation of AQSI allowed to exclude five false positives, whereas the six most active thiophenones (TF203, TF307, TF319, TF339, TF342 and TF403) inhibited quorum sensing at 0.25 μM, with AQSI higher than 10. Further, we determined the protective effect and toxicity of the thiophenones in a highly controlled gnotobiotic model system with brine shrimp larvae. There was a strong positive correlation between the specific quorum sensing-disrupting activity of the thiophenones and the protection of brine shrimp larvae against pathogenic V. harveyi. Four of the most active quorum sensing-disrupting thiophenones (TF 203, TF319, TF339 and TF342) were considered to be promising since they have a therapeutic potential of at least 10.

  11. Ground-Based Passive Microwave Remote Sensing Observations of Soil Moisture at S and L Band with Insight into Measurement Accuracy

    NASA Technical Reports Server (NTRS)

    Laymon, Charles A.; Crosson, William L.; Jackson, Thomas J.; Manu, Andrew; Tsegaye, Teferi D.; Soman, V.; Arnold, James E. (Technical Monitor)

    2001-01-01

    Accurate estimates of spatially heterogeneous algorithm variables and parameters are required in determining the spatial distribution of soil moisture using radiometer data from aircraft and satellites. A ground-based experiment in passive microwave remote sensing of soil moisture was conducted in Huntsville, Alabama from July 1-14, 1996 to study retrieval algorithms and their sensitivity to variable and parameter specification. With high temporal frequency observations at S and L band, we were able to observe large scale moisture changes following irrigation and rainfall events, as well as diurnal behavior of surface moisture among three plots, one bare, one covered with short grass and another covered with alfalfa. The L band emitting depth was determined to be on the order of 0-3 or 0-5 cm below 0.30 cubic centimeter/cubic centimeter with an indication of a shallower emitting depth at higher moisture values. Surface moisture behavior was less apparent on the vegetated plots than it was on the bare plot because there was less moisture gradient and because of difficulty in determining vegetation water content and estimating the vegetation b parameter. Discrepancies between remotely sensed and gravimetric, soil moisture estimates on the vegetated plots point to an incomplete understanding of the requirements needed to correct for the effects of vegetation attenuation. Quantifying the uncertainty in moisture estimates is vital if applications are to utilize remotely-sensed soil moisture data. Computations based only on the real part of the complex dielectric constant and/or an alternative dielectric mixing model contribute a relatively insignificant amount of uncertainty to estimates of soil moisture. Rather, the retrieval algorithm is much more sensitive to soil properties, surface roughness and biomass.

  12. Investigation of atmospheric boundary layer temperature, turbulence, and wind parameters on the basis of passive microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Kadygrov, Evgeny N.; Shur, Genrih N.; Viazankin, Anton S.

    2003-06-01

    The MTP-5, a microwave temperature profiler, has been widely used since 1991 for investigation of the atmospheric boundary layer (ABL). The MTP-5 is an angular scanning single-channel instrument with a central frequency of about 60 GHz, designed to provide continuous, unattended observations. It can measure the thermal emission of the atmosphere with high sensitivity (0.03 K at 1 s integration time) from different zenith angles. On the basis of this measurement, it is possible to retrieve temperature profiles at the altitude range up to 600 m, to calculate wind speed and wind direction at the lowest 250 m, and to get information about some parameters of atmospheric turbulence. This report presents some applications of the MTP-5 instrument data collected in 1998-2001 within a number of international field projects: the dynamics of ABL temperature inversion in a mountain valley (Mesoscale Alpine Program (MAP)), as well as along an island coast (north part of Sakhalin Island, Russia-Japan Project); continuous measurements of the ABL temperature profile provided from a special scientific train that crossed the territory of Russia (the Transcontinental Observations of the Chemistry of the Atmosphere Project (TROICA)); and simultaneous measurements of the ABL temperature profile provided over the central and northern part of Moscow in a continuous mode (the Global Urban Research Meteorology and Environment Project (GURME)). In 1999, two MTP-5 instruments were installed on a platform that was rotating in the azimuth direction at the 310 m Obninsk Meteorological Research Tower (Meteo Tower) to validate the method and microwave equipment for measurement of wind speed and wind direction and investigation of atmospheric turbulence. Spectral analyses of the integrated signal provided an opportunity to estimate the inertial subrange low-frequency limit and its height dependence for thermal turbulence at the lowest 200 m layer. Wavelet analysis of the signal made it possible to

  13. Effects of low power microwave radiation on biological activity of Collagenase enzyme and growth rate of S. Cerevisiae yeast

    NASA Astrophysics Data System (ADS)

    Alsuhaim, Hamad S.; Vojisavljevic, Vuk; Pirogova, E.

    2013-12-01

    Recently, microwave radiation, a type/subset of non-ionizing electromagnetic radiation (EMR) has been widely used in industry, medicine, as well as food technology and mobile communication. Use of mobile phones is rapidly growing. Four years from now, 5.1 billion people will be mobile phone users around the globe - almost 1 billion more mobile users than the 4.3 billion people worldwide using them now. Consequently, exposure to weak radiofrequency/microwave radiation generated by these devices is markedly increasing. Accordingly, public concern about potential hazards on human health is mounting [1]. Thermal effects of radiofrequency/microwave radiation are very well-known and extensively studied. Of particular interest are non-thermal effects of microwave exposures on biological systems. Nonthermal effects are described as changes in cellular metabolism caused by both resonance absorption and induced EMR and are often accompanied by a specific biological response. Non-thermal biological effects are measurable changes in biological systems that may or may not be associated with adverse health effects. In this study we studied non-thermal effects of low power microwave exposures on kinetics of L-lactate dehydrogenase enzyme and growth rate of yeast Saccharomyces Cerevisiae strains type II. The selected model systems were continuously exposed to microwave radiation at the frequency of 968MHz and power of 10dBm using the designed and constructed (custom made) Transverse Electro-Magnetic (TEM) cell [2]. The findings reveal that microwave radiation at 968MHz and power of 10dBm inhibits L-lactate dehydrogenase enzyme activity by 26% and increases significantly (15%) the proliferation rate of yeast cells.

  14. Natural polysaccharides as active biomaterials in nanostructured films for sensing.

    PubMed

    Eiras, Carla; Santos, Amanda C; Zampa, Maysa F; de Brito, Ana Cristina Facundo; Leopoldo Constantino, Carlos J; Zucolotto, Valtencir; dos Santos, José R

    2010-01-01

    The search for natural, biocompatible and degradable materials amenable to be used in biomedical/analytical applications has attracted attention, either from the environmental or medical point of view. Examples are the polysaccharides extracted from natural gums, which have found applications in the food and pharmaceutical industries as stabilizers or thickening agent. In a previous paper, however, it was shown that a Brazilian natural gum, chicha (Sterculia striata), is suitable for application as building block for nanostructured film fabrication in conjunction with phthalocyanines. The films displayed electroactivity and could be used in sensing. In the present paper, we introduce the use of two different natural gums, viz., angico (Anadenanthera colubrina) and caraia (Sterculia urens), as active biomaterials to be used to modification layers, in the form of nanostructured thin films, including the study of dopamine detection. The multilayer films were assembled in conjunction with nickel tetrasulfonated phthalocyanines (NiTsPC) and displayed good chemical and electrochemical stability, allowing their use as transducer elements in sensors for detection of specific neurotransmitters. It is suggested here that nanoscale manipulation of new biodegradable natural polymers opens up a variety of new opportunities for the use of these materials in advanced biomedical and analytical devices.

  15. An integrated active sensing system for damage identifcation and prognosis

    SciTech Connect

    Wait, J. R.; Park, G. H.; Sohn, H.; Farrar, C. R.

    2004-01-01

    This paper illustrates an integrated approach for identifying structural damage. Two damage identification techniques, Lamb wave propagation and impedance-based methods, are investigated utilizing piezoelectric (PZT) actuators/sensors. The Lamb wave propagation and the impedance methods operate in high frequency ranges (typically > 30 kHz) at which there are measurable changes in structural responses even for incipient damage such as small cracks, debonding, delamination, and loose connections. In Lamb wave propagation, one PZT is used to launch an elastic wave through the structure, and responses are measured by an array of sensors. The technique used for the Lamb wave propagation method looks for the possibility of damage by tracking changes in transmission velocity and wave attenuation/reflections. Experimental results show that this method works well for surface anomalies. The impedance method monitors the variations in structural mechanical impedance, which is coupled with the electrical impedance of the PZT. Through monitoring the measured electrical impedance and comparing it to a baseline measurement, a decision can be made about whether or not structural damage has occurred or is imminent. In addition, significant advances have been made recently by incorporating advanced statistic-based signal processing techniques into the impedance methods. To date, several sets of experiments have been conducted on a cantilevered aluminum plate and composite plate to demonstrate the feasibility of this combined active sensing technology.

  16. Realistic Instrumentation Platform for Active and Passive Optical Remote Sensing.

    PubMed

    Brydegaard, Mikkel; Merdasa, Aboma; Gebru, Alem; Jayaweera, Hiran; Svanberg, Sune

    2016-02-01

    We describe the development of a novel versatile optical platform for active and passive remote sensing of environmental parameters. Applications include assessment of vegetation status and water quality. The system is also adapted for ecological studies, such as identification of flying insects including agricultural pests. The system is based on two mid-size amateur astronomy telescopes, continuous-wave diode lasers at different wavelengths ranging from violet to the near infrared, and detector facilities including quadrant photodiodes, two-dimensional and line scan charge-coupled device cameras, and a compact digital spectrometer. Application examples include remote Ramanlaser-induced fluorescence monitoring of water quality at 120 m distance, and insect identification at kilometer ranges using the recorded wing beat frequency and its spectrum of overtones. Because of the low cost this developmental platform is very suitable for advanced research projects in developing countries and has, in fact, been multiplied during hands-on workshops and is now being used by a number of groups at African universities.

  17. Active Sensing with Fabry-Perot Infrared Interferometers

    NASA Astrophysics Data System (ADS)

    Huang, Jin; Gosangi, Rakesh; Gutierrez-Osuna, Ricardo

    2011-09-01

    In this article, we describe an active-sensing framework for infrared (IR) spectroscopy. The goal is to generate a sequence of wavelengths that best discriminates among chemicals. Unlike feature-selection strategies, the sequence is selected on-the-fly as the device acquires data. The framework models the problem as a Partially Observable Markov Decision Process (POMDP), which is solved by a greedy myopic algorithm. In previous work [1], we had applied this framework to temperature-modulated metal oxide sensor. Here, we adapt the framework to a tunable IR sensor based on Fabry-Perot interferometers (FPI). FPIs provide a low-cost alternative to traditional Fourier Transform Infrared Spectroscopy (FTIR), though at the expense of a narrower effective range and lower spectral resolution. Here, we first test whether the framework can scale up to large problems consisting 27 chemicals with 60 dimensions; our previous work on metal oxide sensors employed three chemicals and 7 dimensions. For this purpose, FPI spectra are simulated from FTIR. Then we validate the framework experimentally on 3 chemicals using a prototype instrument based on FPIs. These preliminary results are encouraging and indicate that the framework is able to solve classification problems of reasonable size.

  18. Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation--application in methylene blue adsorption from aqueous solution.

    PubMed

    Deng, Hui; Yang, Le; Tao, Guanghui; Dai, Jiulei

    2009-07-30

    The activated carbon prepared from cotton stalk with ZnCl(2) as activation was investigated under microwave radiation. Effects on the yield and adsorption capacities of activated carbon were evaluated then, such as, microwave power, microwave radiation time and the impregnation ratio of ZnCl(2). It indicated that the optimum conditions were as follows: microwave power of 560 W, microwave radiation time of 9 min and the impregnation ratio of ZnCl(2) was 1.6g/g. Iodine number, amount of methylene blue adsorption and the yield of activated carbon prepared under optimum conditions were 972.92 mg/g, 193.50mg/g and 37.92%, respectively. Laboratory prepared activated carbons were characterized by pH(ZPC), SEM, FT-IR, S(BET) and pore structural parameters. Then they were used as adsorbent for the removal of methylene blue from aqueous solutions under varying conditions of initial concentration, carbon dosage and pH. It indicated that Langmuir isotherm was fitter than Freundlich isotherm and Temkin isotherm.

  19. Bioinspired active whisker sensor for robotic vibrissal tactile sensing

    NASA Astrophysics Data System (ADS)

    Ju, Feng; Ling, Shih-Fu

    2014-12-01

    A whisker transducer (WT) inspired by rat’s vibrissal tactile perception is proposed based on a transduction matrix model characterizing the electro-mechanical transduction process in both forward and backward directions. It is capable of acting as an actuator to sweep the whisker and simultaneously as a sensor to sense the force, motion, and mechanical impedance at whisker tip. Its validity is confirmed by numerical simulation using a finite element model. A prototype is then fabricated and its transduction matrix is determined by parameter identification. The calibrated WT can accurately sense mechanical impedance which is directly related to stiffness, mass and damping. Subsequent vibrissal tactile sensing of sandpaper texture reveals that the real part of mechanical impedance sensed by WT is correlated with sandpaper roughness. Texture discrimination is successfully achieved by inputting the real part to a k-means clustering algorithm. The mechanical impedance sensing ability as well as other features of the WT such as simultaneous-actuation-and-sensing makes it a good solution to robotic tactile sensing.

  20. Passive microwave soil moisture research

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Oneill, P. E.; Wang, J. R.

    1985-01-01

    The AgRISTARS Soil Moisture Project has made significant progress in the quantification of microwave sensor capabilities for soil moisture remote sensing. The 21-cm wavelength has been verified to be the best single channel for radiometric observations of soil moisture. It has also been found that other remote sensing approaches used in conjunction with L-band passive data are more successful than multiple wavelength microwave radiometry in this application. AgRISTARS studies have also improved current understanding of noise factors affecting the interpretability of microwave emission data. The absorption of soil emission by vegetation has been quantified, although this effect is less important than absorption effects for microwave radiometry.

  1. Predictive Analysis of Landslide Activity Using Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Markuzon, N.; Regan, J.; Slesnick, C.

    2012-12-01

    Landslides are historically one of the most damaging geohazard phenomena in terms of death tolls and socio-economic losses. Therefore, understanding the underlying causes of landslides and how environmental phenomena affect their frequency and severity is of critical importance. Of specific importance for mitigating future damage is increasing our understanding of how climate change will affect landslide severity, occurrence rates, and damage. We are developing data driven models aimed at predicting landslide activity. The models learn multi-dimensional weather and geophysical patterns associated with historical landslides and estimate location-dependent probabilities for landslides under current or future weather and geophysical conditions. Our approach uses machine learning algorithms capable of determining non-linear associations between dependent variables and landslide occurrence without requiring detailed knowledge of geomorphology. Our primary goal in year one of the project is to evaluate the predictive capabilities of data mining models in application to landslide activity, and to analyze if the approach will discover previously unknown variables and/or relationships important to landslide occurrence, frequency or severity. The models include remote sensing and ground-based data, including weather, landcover, slope, elevation and drainage information as well as urbanization data. The historical landslide dataset we used to build our preliminary models was compiled from City of Seattle landslide files, United States Geological Survey reports, newspaper articles, and a verified subset of the Seattle Landslide Database that consists of all reported landslides within Seattle, WA, between 1948 and 1999. Most of the landslides analyzed to-date are shallow. Using statistical analysis and unsupervised clustering methods we have thus far identified subsets of weather conditions that lead to a significantly higher landslide probability, and have developed

  2. Using high-resolution soil moisture modelling to assess the uncertainty of microwave remotely sensed soil moisture products at the correct spatial and temporal support

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Karssenberg, D.; Bierkens, M. F. P.; Van Dam, J. C.; De Jong, S. M.

    2012-04-01

    Soil moisture is a key variable in the hydrological cycle and important in hydrological modelling. When assimilating soil moisture into flood forecasting models, the improvement of forecasting skills depends on the ability to accurately estimate the spatial and temporal patterns of soil moisture content throughout the river basin. Space-borne remote sensing may provide this information with a high temporal and spatial resolution and with a global coverage. Currently three microwave soil moisture products are available: AMSR-E, ASCAT and SMOS. The quality of these satellite-based products is often assessed by comparing them with in-situ observations of soil moisture. This comparison is however hampered by the difference in spatial and temporal support (i.e., resolution, scale), because the spatial resolution of microwave satellites is rather low compared to in-situ field measurements. Thus, the aim of this study is to derive a method to assess the uncertainty of microwave satellite soil moisture products at the correct spatial support. To overcome the difference in support size between in-situ soil moisture observations and remote sensed soil moisture, we used a stochastic, distributed unsaturated zone model (SWAP, van Dam (2000)) that is upscaled to the support of different satellite products. A detailed assessment of the SWAP model uncertainty is included to ensure that the uncertainty in satellite soil moisture is not overestimated due to an underestimation of the model uncertainty. We simulated unsaturated water flow up to a depth of 1.5m with a vertical resolution of 1 to 10 cm and on a horizontal grid of 1 km2 for the period Jan 2010 - Jun 2011. The SWAP model was first calibrated and validated on in-situ data of the REMEDHUS soil moisture network (Spain). Next, to evaluate the satellite products, the model was run for areas in the proximity of 79 meteorological stations in Spain, where model results were aggregated to the correct support of the satellite

  3. Microwave permittivity and dielectric relaxation of a high surface area activated carbon

    NASA Astrophysics Data System (ADS)

    Atwater, J. E.; Wheeler, R. R., Jr.

    Carbonaceous materials are amenable to microwave heating to varying degrees. The primary indicator of susceptibility is the complex permittivity (ɛ*), of which, the real component correlates with polarization, and the imaginary term represents dielectric loss. For a given material, the complex permittivity is dependent upon both frequency and temperature. Here we report the complex permittivity of a high surface area coconut shell activated carbon which is commonly used in analytical chemistry and a wide variety of industrial separations. Associated polarization-relaxation phenomena are also characterized. Broadband measurements were made using a high temperature compatible open-ended coaxial dielectric probe at frequencies between 0.2 and 26 GHz, and across the temperature region between 24 °C and 191 °C.

  4. Bio-based phenols and fuel production from catalytic microwave pyrolysis of lignin by activated carbons.

    PubMed

    Bu, Quan; Lei, Hanwu; Wang, Lu; Wei, Yi; Zhu, Lei; Zhang, Xuesong; Liu, Yupeng; Yadavalli, Gayatri; Tang, Juming

    2014-06-01

    The aim of this study is to explore catalytic microwave pyrolysis of lignin for renewable phenols and fuels using activated carbon (AC) as a catalyst. A central composite experimental design (CCD) was used to optimize the reaction condition. The effects of reaction temperature and weight hourly space velocity (WHSV, h(-1)) on product yields were investigated. GC/MS analysis showed that the main chemical compounds of bio-oils were phenols, guaiacols, hydrocarbons and esters, most of which were ranged from 71% to 87% of the bio-oils depending on different reaction conditions. Bio-oils with high concentrations of phenol (45% in the bio-oil) were obtained. The calorific value analysis revealed that the high heating values (HHV) of the lignin-derived biochars were from 20.4 to 24.5 MJ/kg in comparison with raw lignin (19 MJ/kg). The reaction mechanism of this process was analyzed.

  5. Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity.

    PubMed

    Yuan, Yuan; Macquarrie, Duncan

    2015-09-20

    Sulfated polysaccharides (fucoidan) from brown seaweed Ascophyllum nodosum were extracted by microwave assisted extraction (MAE) technology. Different conditions of temperature (90-150°C), extraction time (5-30 min) were evaluated and optimal fucoidan yield was 16.08%, obtained from 120°C for 15 min's extraction. Compositional analysis, GPC, HPAEC and IR analysis were employed for characterization of extracted sulfated polysaccharides. Fucose was the main monosaccharide of fucoidan extracted at 90°C while glucuronic acid was the main monosaccharide of fucoidan extracted at 150°C. Both the molecular weight and sulfate content of extracted fucoidan increased with decreasing extraction temperature. All fucoidans exhibited antioxidant activities as measured by DPPH scavenging and reducing power, among which fucoidan extracted at 90°C was highest. This study shows that MAE is an efficient technology to extract sulfated polysaccharides from seaweed and Ascophyllum nodosum could potentially be a resource for natural antioxidants.

  6. Activation of Al2O3 passivation layers on silicon by microwave annealing

    NASA Astrophysics Data System (ADS)

    Ziegler, Johannes; Otto, Martin; Sprafke, Alexander N.; Wehrspohn, Ralf B.

    2013-11-01

    Thin aluminum oxide layers deposited on silicon by thermal atomic layer deposition can be used to reduce the electronic recombination losses by passivating the silicon surfaces. To activate the full passivation ability of such layers, a post-deposition annealing step at moderate temperatures (≈400 ∘C, duration≈30 min) is required. Such an annealing step is commonly done in an oven in air, nitrogen, or forming gas atmosphere. In this work, we investigate the ability to reduce the duration of the annealing step by heating the silicon wafer with a microwave source. The annealing time is significantly reduced to durations below 1 min while achieving effective minority carrier lifetimes similar or higher to that of conventionally oven-annealed samples.

  7. Microwave acid digestion and preconcentration neutron activation analysis of biological and diet samples for iodine.

    PubMed

    Rao, R R; Chatt, A

    1991-07-01

    A simple preconcentration neutron activation analysis (PNAA) method has been developed for the determination of low levels of iodine in biological and nutritional materials. The method involves dissolution of the samples by microwave digestion in the presence of acids in closed Teflon bombs and preconcentration of total iodine, after reduction to iodide with hydrazine sulfate, by coprecipitation with bismuth sulfide. The effects of different factors such as acidity, time for complete precipitation, and concentrations of bismuth, sulfide, and diverse ions on the quantitative recovery of iodide have been studied. The absolute detection limit of the PNAA method is 5 ng of iodine. Precision of measurement, expressed in terms of relative standard deviation, is about 5% at 100 ppb and 10% at 20 ppb levels of iodine. The PNAA method has been applied to several biological reference materials and total diet samples.

  8. Phenolic Content and Antioxidant Activity of Extracts from Whole Buckwheat (Fagopyrum esculentum Moench) With or Without Microwave Irradiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to evaluate the effectiveness of extracting phenolic compounds and antioxidant activity from buckwheat with water, 50% aqueous ethanol, or 100% ethanol using microwave irradiation or a water bath for 15 min at various temperatures (23 – 150 °C). The phenolic content of...

  9. Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics

    SciTech Connect

    Shevchenko, Vladimir F.; Freethy, Simon J.; Huang, Billy K.

    2014-08-21

    A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post-processing mode. SAMI can scan over 16 pre-programmed frequencies in the range of 10-35GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a 'passive' imaging of plasma emission and also an 'active' imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structures. Both modes of operation show good performance in fusion plasma experiments on Mega Amp Spherical Tokamak (MAST). We have obtained the first ever 2-D images of BXO mode conversion windows. With active probing, first ever turbulence velocity maps have been obtained. We present an overview of the diagnostic and discuss recent results. In contrast to quasi-optical microwave imaging systems SAMI requires neither big aperture viewing ports nor large 2-D detector arrays to achieve the desired imaging resolution. The number of effective 'pixels' of the synthesized image is proportional to the number of receiving antennas squared. Thus only a small number of optimised antennas is sufficient for the majority of applications. Possible implementation of SAMI on ITERand DEMO is discussed.

  10. Preparation of activated carbon from sugarcane bagasse by microwave assisted activation for the remediation of semi-aerobic landfill leachate.

    PubMed

    Foo, K Y; Lee, L K; Hameed, B H

    2013-04-01

    This study evaluates the sugarcane bagasse derived activated carbon (SBAC) prepared by microwave heating for the adsorptive removal of ammonical nitrogen and orthophosphate from the semi-aerobic landfill leachate. The physical and chemical properties of SBAC were examined by pore structural analysis, scanning electron microscopy, Fourier transform infrared spectroscopy and elemental analysis. The effects of adsorbent dosage, contact time and solution pH on the adsorption performance were investigated in a batch mode study at 30°C. Equilibrium data were favorably described by the Langmuir isotherm model, with a maximum monolayer adsorption capacity for ammonical nitrogen and orthophosphate of 138.46 and 12.81 mg/g, respectively, while the adsorption kinetic was best fitted to the pseudo-second-order kinetic model. The results illustrated the potential of sugarcane bagasse derived activated carbon for the adsorptive treatment of semi-aerobic landfill leachate.

  11. The Challenge of Active Optical Sensing from Extreme Orbits

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    2004-01-01

    A review of the history and current state of atmospheric sensing lidar from Earth orbit was conducted and it was found that space based earth remote sensing is still in its infancy with only one limited success extended duration autonomous mission to date. An analysis of the basic requirements for some candidate geo-synchronous lidar concepts was completed and it was concluded that significant basic work is required in all areas of lidar development.

  12. Integration method to estimate above-ground biomass in arid prairie regions using active and passive remote sensing data

    NASA Astrophysics Data System (ADS)

    Xing, Minfeng; He, Binbin; Li, Xiaowen

    2014-01-01

    The use of microwave remote sensing for estimating vegetation biomass is limited in arid grassland regions because of the heterogeneous distribution of vegetation, sparse vegetation cover, and the strong influence from soil. To minimize the problem, a synergistic method of active and passive remote sensing data for retrieval of above-ground biomass (AGB) was developed in this paper. Vegetation coverage, which can be easily estimated from optical data, was combined in the scattering model. The total backscattering was divided into the amount attributed to areas covered with vegetation and that attributed to areas of bare soil. Backscattering coefficients were simulated using the established scattering model. A look-up table was established using the relationship between the vegetation water content and the backscattering coefficient for water content retrieval. Then, AGB was estimated using the relationship between the vegetation water content and the AGB. The method was applied to estimate the AGB of the Wutumeiren prairie. Finally, the accuracy and sources of error in this innovative AGB retrieval method were evaluated. The results showed that the predicted AGB correlated with the measured AGB (R2=0.8414, RMSE=0.1953 kg/m2). Thus, the method has operational potential for the estimation of the AGB of herbaceous vegetation in arid regions.

  13. Bridging the Past with Today's Microwave Remote Sensing: A Case Study of Long Term Inundation Patterns in the Mekong River Delta

    NASA Astrophysics Data System (ADS)

    Jensen, K.; McDonald, K. C.; Schroeder, R.; Tessler, Z. D.

    2015-12-01

    Surface inundation extent and its predictability vary tremendously across the globe. This dynamic is being and has been captured by three general categories of satellite imagery: 1) low-spatial-resolution microwave sensors with global coverage and a long record of observations (e.g., SSM/I), 2) optical sensors with high spatial and temporal resolution and global coverage, but with cloud contamination (e.g. MODIS), and 3) in more ''snapshot'' form by high-resolution synthetic aperture radar (SAR) sensors. We explore the ability to bridge techniques that can exploit the higher spatial resolution of more recent data products back in time with the help of the temporal evolution of lower resolution products. We present a study of long term (20+ year) inundation patterns in the Mekong River Delta using baseline observations from the Surface Water Microwave Product Series (SWAMPS), an inundation area fraction product derived at 25km scale from active and passive microwave instruments (ERS, QuikSCAT, ASCAT, and SSM/I) that spans from Jan. 1992 to Jun. 2015. Every hydrological basin has unique characteristics - such as its topography, land cover / land use, and space-time variability - thus, a downscaling algorithm needs to take into account these idiosyncrasies. We merge SWAMPS with topographical information derived from 30m SRTM DEM, river networks from USGS HydroSHEDS, and assess the best statistical procedure to "learn" from two sets of classified SAR data: (1) L-band imaging radar from ALOS PALSAR, 2007-2010, and (2) C-band imagery from the Sentinel-1 mission (2014 to present). We present a comparison of retrospective downscaled flood extent with Landsat imagery and recent observations from SMAP. With a higher spatial resolution of past flooding extent, we can improve our understanding of how delta surface hydrology responds to local and regional events. This is important both in the short-term for accurate flood prediction, as well as on longer-term planning horizons.

  14. 1800MHz Microwave Induces p53 and p53-Mediated Caspase-3 Activation Leading to Cell Apoptosis In Vitro

    PubMed Central

    Xing, Fuqiang; Zhan, Qiuqiang; He, Yiduo; Cui, Jiesheng; He, Sailing; Wang, Guanyu

    2016-01-01

    Recent studies have reported that exposure of mammalian cells to microwave radiation may have adverse effects such as induction of cell apoptosis. However, the molecular mechanisms underlying microwave induced mammalian cell apoptosis are not fully understood. Here, we report a novel mechanism: exposure to 1800MHz microwave radiation induces p53-dependent cell apoptosis through cytochrome c-mediated caspase-3 activation pathway. We first measured intensity of microwave radiation from several electronic devices with an irradiation detector. Mouse NIH/3T3 and human U-87 MG cells were then used as receivers of 1800MHz electromagnetic radiation (EMR) at a power density of 1209 mW/m2. Following EMR exposure, cells were analyzed for viability, intracellular reactive oxygen species (ROS) generation, DNA damage, p53 expression, and caspase-3 activity. Our analysis revealed that EMR exposure significantly decreased viability of NIH/3T3 and U-87 MG cells, and increased caspase-3 activity. ROS burst was observed at 6 h and 48 h in NIH/3T3 cells, while at 3 h in U-87 MG cells. Hoechst 33258 staining and in situ TUNEL assay detected that EMR exposure increased DNA damage, which was significantly restrained in the presence of N-acetyl-L-cysteine (NAC, an antioxidant). Moreover, EMR exposure increased the levels of p53 protein and p53 target gene expression, promoted cytochrome c release from mitochondrion, and increased caspase-3 activity. These events were inhibited by pretreatment with NAC, pifithrin-α (a p53 inhibitor) and caspase inhibitor. Collectively, our findings demonstrate, for the first time, that 1800MHz EMR induces apoptosis-related events such as ROS burst and more oxidative DNA damage, which in turn promote p53-dependent caspase-3 activation through release of cytochrome c from mitochondrion. These findings thus provide new insights into physiological mechanisms underlying microwave-induced cell apoptosis. PMID:27689798

  15. 1800MHz Microwave Induces p53 and p53-Mediated Caspase-3 Activation Leading to Cell Apoptosis In Vitro.

    PubMed

    Xing, Fuqiang; Zhan, Qiuqiang; He, Yiduo; Cui, Jiesheng; He, Sailing; Wang, Guanyu

    Recent studies have reported that exposure of mammalian cells to microwave radiation may have adverse effects such as induction of cell apoptosis. However, the molecular mechanisms underlying microwave induced mammalian cell apoptosis are not fully understood. Here, we report a novel mechanism: exposure to 1800MHz microwave radiation induces p53-dependent cell apoptosis through cytochrome c-mediated caspase-3 activation pathway. We first measured intensity of microwave radiation from several electronic devices with an irradiation detector. Mouse NIH/3T3 and human U-87 MG cells were then used as receivers of 1800MHz electromagnetic radiation (EMR) at a power density of 1209 mW/m2. Following EMR exposure, cells were analyzed for viability, intracellular reactive oxygen species (ROS) generation, DNA damage, p53 expression, and caspase-3 activity. Our analysis revealed that EMR exposure significantly decreased viability of NIH/3T3 and U-87 MG cells, and increased caspase-3 activity. ROS burst was observed at 6 h and 48 h in NIH/3T3 cells, while at 3 h in U-87 MG cells. Hoechst 33258 staining and in situ TUNEL assay detected that EMR exposure increased DNA damage, which was significantly restrained in the presence of N-acetyl-L-cysteine (NAC, an antioxidant). Moreover, EMR exposure increased the levels of p53 protein and p53 target gene expression, promoted cytochrome c release from mitochondrion, and increased caspase-3 activity. These events were inhibited by pretreatment with NAC, pifithrin-α (a p53 inhibitor) and caspase inhibitor. Collectively, our findings demonstrate, for the first time, that 1800MHz EMR induces apoptosis-related events such as ROS burst and more oxidative DNA damage, which in turn promote p53-dependent caspase-3 activation through release of cytochrome c from mitochondrion. These findings thus provide new insights into physiological mechanisms underlying microwave-induced cell apoptosis.

  16. Identification of sewage leaks by active remote-sensing methods

    NASA Astrophysics Data System (ADS)

    Goldshleger, Naftaly; Basson, Uri

    2016-04-01

    The increasing length of sewage pipelines, and concomitant risk of leaks due to urban and industrial growth and development is exposing the surrounding land to contamination risk and environmental harm. It is therefore important to locate such leaks in a timely manner, to minimize the damage. Advances in active remote sensing Ground Penetrating Radar (GPR) and Frequency Domain Electromagnetic (FDEM) technologies was used to identify leaking potentially responsible for pollution and to identify minor spills before they cause widespread damage. This study focused on the development of these electromagnetic methods to replace conventional acoustic methods for the identification of leaks along sewage pipes. Electromagnetic methods provide an additional advantage in that they allow mapping of the fluid-transport system in the subsurface. Leak-detection systems using GPR and FDEM are not limited to large amounts of water, but enable detecting leaks of tens of liters per hour, because they can locate increases in environmental moisture content of only a few percentage along the pipes. The importance and uniqueness of this research lies in the development of practical tools to provide a snapshot and monitoring of the spatial changes in soil moisture content up to depths of about 3-4 m, in open and paved areas, at relatively low cost, in real time or close to real time. Spatial measurements performed using GPR and FDEM systems allow monitoring many tens of thousands of measurement points per hectare, thus providing a picture of the spatial situation along pipelines and the surrounding. The main purpose of this study was to develop a method for detecting sewage leaks using the above-proposed geophysical methods, since their contaminants can severely affect public health. We focused on identifying, locating and characterizing such leaks in sewage pipes in residential and industrial areas.

  17. Aircraft active and passive microwave validation of sea ice concentration from the Defense Meteorological Satellite Program special sensor microwave imager

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Crawford, J. P.; Drinkwater, M. R.; Eppler, D. T.; Farmer, L. D.; Jentz, R. R.; Wackerman, C. C.

    1991-01-01

    Results are presented of a series of coordinate special sensor microwave imager (SSM/I) underflights that were carried out during March 1988 with NASA and Navy aircraft over portions of the Bering, Beaufort, and Chukchi seas. NASA DC-8 AMMR data from Bering Sea ice edge crossings were used to verify that the ice edge location, defined as the position of the initial ice bands encountered by the aircraft, corresponds to an SSM/I ice concentration of 15 percent. Direct comparison of SSM/I and aircraft ice concentrations for regions having at least 80 percent aircraft coverage reveals that the SSM/I total ice concentration is lower on average by 2.4 +/-2.4 percent. For multiyear ice, NASA and Navy flights across the Beaufort and Chukchi seas show that the SSM/I algorithm correctly maps the large-scale distribution of multiyear ice: the zone of first-year ice off the Alaskan coast, the large areas of mixed first-year and multiyear ice, and the region of predominantly multiyear ice north of the Canadian archipelago.

  18. Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW.

    PubMed

    Li, Wei; Peng, Jinhui; Zhang, Libo; Yang, Kunbin; Xia, Hongying; Zhang, Shimin; Guo, Sheng-hui

    2009-02-01

    Experiments to prepare activated carbon by microwave heating indicated that microwave energy can decrease reaction temperature, save the energy and shorten processing time remarkably compared to conventional heating, owing to its internal and volumetric heating effects. The above results were based on the laboratory-scale experiments. It is desirable to develop a pilot-scale microwave heating equipment and investigate the parameters with the aim of technological industrialization. In the present study, the components and features of the self-invented equipment were introduced. The temperature rise curves of the chars were obtained. Iodine numbers of the activated carbons all exceed the state standard of China under the following conditions: 25 kg/h charging rate, 0.42 rev/min turning rate of ceramic tube, flow rate of steam at pressure of 0.01 MPa and 40 kW microwave heating power after 60 kW pre-activation for 30 min. Pore structure of the sample obtained at a time point of 46 h, which contained BET surface area, and pore size distributions of micropores and total pores, was tested by nitrogen adsorption at 77K.

  19. Using microwave heating to improve the desorption efficiency of high molecular weight VOC from beaded activated carbon.

    PubMed

    Fayaz, Mohammadreza; Shariaty, Pooya; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2015-04-07

    Incomplete regeneration of activated carbon loaded with organic compounds results in heel build-up that reduces the useful life of the adsorbent. In this study, microwave heating was tested as a regeneration method for beaded activated carbon (BAC) loaded with n-dodecane, a high molecular weight volatile organic compound. Energy consumption and desorption efficiency for microwave-heating regeneration were compared with conductive-heating regeneration. The minimum energy needed to completely regenerate the adsorbent (100% desorption efficiency) using microwave regeneration was 6% of that needed with conductive heating regeneration, owing to more rapid heating rates and lower heat loss. Analyses of adsorbent pore size distribution and surface chemistry confirmed that neither heating method altered the physical/chemical properties of the BAC. Additionally, gas chromatography (with flame ionization detector) confirmed that neither regeneration method detectably altered the adsorbate composition during desorption. By demonstrating improvements in energy consumption and desorption efficiency and showing stable adsorbate and adsorbent properties, this paper suggests that microwave heating is an attractive method for activated carbon regeneration particularly when high-affinity VOC adsorbates are present.

  20. Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW

    SciTech Connect

    Li Wei; Peng Jinhui Zhang Libo; Yang Kunbin; Xia Hongying; Zhang Shimin; Guo Shenghui

    2009-02-15

    Experiments to prepare activated carbon by microwave heating indicated that microwave energy can decrease reaction temperature, save the energy and shorten processing time remarkably compared to conventional heating, owing to its internal and volumetric heating effects. The above results were based on the laboratory-scale experiments. It is desirable to develop a pilot-scale microwave heating equipment and investigate the parameters with the aim of technological industrialization. In the present study, the components and features of the self-invented equipment were introduced. The temperature rise curves of the chars were obtained. Iodine numbers of the activated carbons all exceed the state standard of China under the following conditions: 25 kg/h charging rate, 0.42 rev/min turning rate of ceramic tube, flow rate of steam at pressure of 0.01 MPa and 40 kW microwave heating power after 60 kW pre-activation for 30 min. Pore structure of the sample obtained at a time point of 46 h, which contained BET surface area, and pore size distributions of micropores and total pores, was tested by nitrogen adsorption at 77 K.

  1. Effect of Activating Agent on the Preparation of Bamboo-Based High Surface Area Activated Carbon by Microwave Heating

    NASA Astrophysics Data System (ADS)

    Xia, Hongying; Wu, Jian; Srinivasakannan, Chandrasekar; Peng, Jinhui; Zhang, Libo

    2016-06-01

    The present work attempts to convert bamboo into a high surface area activated carbon via microwave heating. Different chemical activating agents such as KOH, NaOH, K2CO3 and Na2CO3 were utilized to identify a most suitable activating agent. Among the activating agents tested KOH was found to generate carbon with the highest porosity and surface area. The effect of KOH/C ratio on the porous nature of the activated carbon has been assessed. An optimal KOH/C ratio of 4 was identified, beyond which the surface area as well as the pore volume were found to decrease. At the optimized KOH/C ratio the surface area and the pore volume were estimated to be 3,441 m2/g and 2.093 ml/g, respectively, with the significant proportion of which being microporous (62.3%). Activated carbon prepared under the optimum conditions was further characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Activated carbons with so high surface area and pore volume are very rarely reported, which could be owed to the nature of the precursor and the optimal conditions of mixture ratio adopted in the present work.

  2. Tundra snow cover properties from in-situ observation and multi-scale passive microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Rees, Andrew

    The overall objective of this research is to improve operational capabilities for estimating end of winter, pre-melt tundra SWE in a representative tundra study area using satellite passive microwave data. The study area for the project is located in the Daring-Exeter-Yamba portion of the Upper-Coppermine River Basin in the Northwest Territories. The size, orientation and boundaries of the study area were defined based on the satellite EASE grid (25 x 25 km) centroid located closest to the Tundra Ecosystem Research Station operated by the Government of the Northwest Territories. Data were collected during intensive late winter field campaigns in 2004,2005,2006,2007,2008, and 2009. During each field campaign, snow depth, density and stratigraphy were recorded at sites throughout the study area. During the 2005 and 2008 seasons, multi-scale airborne passive microwave radiometer data were also acquired. During the 2007 season, ground based passive microwave radiometer data were acquired. For each year, temporally coincident AMSR-E satellite Tb were obtained. The spatial distribution of snow depth, density and SWE in the study area is controlled by the interaction of blowing snow with terrain and land cover. Despite the spatial heterogeneity of snow cover, several inter-annual consistencies were identified. Tundra snow density is consistent when considered on a site-by-site basis and among different terrain types. A regional average density of 0.294 g/cm3 was derived from the six years of measurements. When applied to site snow depths, there is little difference in SWE derived from either the site or the regional average density. SWE is more variable from site to site and year to year than density which requires the use of a terrain based classification to better quantify regional SWE. The variability in SWE was least on lakes and flat tundra, while greater on slopes and plateaus. Despite the variability, the inter-annual ratios of SWE among different terrain types

  3. Rapid microwave-assisted synthesis of molecularly imprinted polymers on carbon quantum dots for fluorescent sensing of tetracycline in milk.

    PubMed

    Hou, Juan; Li, Huiyu; Wang, Long; Zhang, Ping; Zhou, Tianyu; Ding, Hong; Ding, Lan

    2016-01-01

    In this paper, a novel, selective and eco-friendly sensor for the detection of tetracycline was developed by grafting imprinted polymers onto the surface of carbon quantum dots. A simple microwave-assisted approach was utilized to fabricate the fluorescent imprinted composites rapidly for the first time, which could shorten the polymerization time and simplify the experimental procedure dramatically. The novel composites not only demonstrated excellent fluorescence stability and special binding sites, but also could selectively accumulate target analytes. Under optimal conditions, the relative fluorescence intensity of the composites decreased linearly with increasing the concentration of tetracycline from 20 nM to 14 µM. The detection limit of tetracycline was 5.48 nM. The precision and reproducibility of the proposed sensor were also acceptable. Significantly, the practicality of this ultrasensitive sensor for tetracycline detection in milk was further validated, revealing the advantages of simplicity, sensitivity, selectivity and low cost. This approach combines the high selective adsorption property of molecular imprinted polymers and the sensitivity of fluorescence detection. It is envisioned that the development of fluorescent molecularly imprinted composites will offer a new way of thinking for rapid analysis in complex samples.

  4. Quorum Sensing Inhibitory Activity of Giganteone A from Myristica cinnamomea King against Escherichia coli Biosensors.

    PubMed

    Sivasothy, Yasodha; Krishnan, Thiba; Chan, Kok-Gan; Abdul Wahab, Siti Mariam; Othman, Muhamad Aqmal; Litaudon, Marc; Awang, Khalijah

    2016-03-21

    Malabaricones A-C (1-3) and giganteone A (4) were isolated from the bark of Myristica cinnamomea King. Their structures were elucidated and characterized by means of NMR and MS spectral analyses. These isolates were evaluated for their anti-quorum sensing activity using quorum sensing biosensors, namely Escherichia coli [pSB401] and Escherichia coli [pSB1075], whereby the potential of giganteone A (4) as a suitable anti-quorum sensing agent was demonstrated.

  5. Antioxidant activity in barley (Hordeum Vulgare L.) grains roasted in a microwave oven under conditions optimized using response surface methodology.

    PubMed

    Omwamba, Mary; Hu, Qiuhui

    2010-01-01

    Microwave processing and cooking of foods is a recent development that is gaining momentum in household as well as large-scale food applications. Barley contains phenol compounds which possess antioxidant activity. In this study the microwave oven roasting condition was optimized to obtain grains with high antioxidant activity measured as the ability to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical. Antioxidant activity of grains roasted under optimum conditions was assessed based on DPPH radical scavenging activity, reducing power and inhibition of oxidation in linoleic acid system. The optimum condition for obtaining roasted barley with high antioxidant activity (90.5% DPPH inhibition) was found to be at 600 W microwave power, 8.5 min roasting time, and 61.5 g or 2 layers of grains. The roasting condition influenced antioxidant activity both individually and interactively. Statistical analysis showed that the model was significant (P < 0.0001). The acetone extract had significantly high inhibition of lipid peroxidation and DPPH radical scavenging activity compared to the aqueous extract and alpha-tocopherol. The reducing power of acetone extracts was not significantly different from alpha-tocopherol. The acetone extract had twice the amount of phenol content compared to the aqueous extract indicating its high extraction efficiency. GC-MS analysis revealed the presence of phenol acids, amino phenols, and quinones. The aqueous extract did not contain 3,4-dihydroxybenzaldehyde and 4-hydroxycinnamic acid which are phenol compounds reported to contribute to antioxidant activity in barley grain.

  6. Estimation of oceanic rainfall using passive and active measurements from SeaWinds spaceborne microwave sensor

    NASA Astrophysics Data System (ADS)

    Ahmad, Khalil Ali

    The Ku band microwave remote sensor, SeaWinds, was developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Two identical SeaWinds instruments were launched into space. The first was flown onboard NASA QuikSCAT satellite which has been orbiting the Earth since June 1999, and the second instrument flew onboard the Japanese Advanced Earth Observing Satellite II (ADEOS-II) from December 2002 till October 2003 when an irrecoverable solar panel failure caused a premature end to the ADEOS-II satellite mission. SeaWinds operates at a frequency of 13.4 GHz, and was originally designed to measure the speed and direction of the ocean surface wind vector by relating the normalized radar backscatter measurements to the near surface wind vector through a geophysical model function (GMF). In addition to the backscatter measurement capability, SeaWinds simultaneously measures the polarized radiometric emission from the surface and atmosphere, utilizing a ground signal processing algorithm known as the QuikSCAT/ SeaWinds Radiometer (QRad/SRad). This dissertation presents the development and validation of a mathematical inversion algorithm that combines the simultaneous active radar backscatter and the passive microwave brightness temperatures observed by the SeaWinds sensor to retrieve the oceanic rainfall. The retrieval algorithm is statistically based, and has been developed using collocated measurements from SeaWinds, the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) rain rates, and Numerical Weather Prediction (NWP) wind fields from the National Centers for Environmental Prediction (NCEP). The oceanic rain is retrieved on a spacecraft wind vector cell (WVC) measurement grid that has a spatial resolution of 25 km. To evaluate the accuracy of the retrievals, examples of the passive-only, as well as the combined active/passive rain estimates from SeaWinds are presented, and comparisons are made with the standard

  7. Microwave hydrology: A trilogy

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.; Johnston, E. J.; Girard, M. A.; Regusters, H. A.

    1985-01-01

    Microwave hydrology, as the term in construed in this trilogy, deals with the investigation of important hydrological features on the Earth's surface as they are remotely, and passively, sensed by orbiting microwave receivers. Microwave wavelengths penetrate clouds, foliage, ground cover, and soil, in varying degrees, and reveal the occurrence of standing liquid water on and beneath the surface. The manifestation of liquid water appearing on or near the surface is reported by a microwave receiver as a signal with a low flux level, or, equivalently, a cold temperature. Actually, the surface of the liquid water reflects the low flux level from the cosmic background into the input terminals of the receiver. This trilogy describes and shows by microwave flux images: the hydrological features that sustain Lake Baykal as an extraordinary freshwater resource; manifestations of subsurface water in Iran; and the major water features of the Congo Basin, a rain forest.

  8. Quaternized Carboxymethyl Chitosan-Based Silver Nanoparticles Hybrid: Microwave-Assisted Synthesis, Characterization and Antibacterial Activity

    PubMed Central

    Huang, Siqi; Wang, Jing; Zhang, Yang; Yu, Zhiming; Qi, Chusheng

    2016-01-01

    A facile, efficient, and eco-friendly approach for the preparation of uniform silver nanoparticles (Ag NPs) was developed. The synthesis was conducted in an aqueous medium exposed to microwave irradiation for 8 min, using laboratory-prepared, water-soluble quaternized carboxymethyl chitosan (QCMC) as a chemical reducer and stabilizer and silver nitrate as the silver source. The structure of the prepared QCMC was characterized using Fourier transform infrared (FT-IR) and 1H nuclear magnetic resonance (NMR). The formation, size distribution, and dispersion of the Ag NPs in the QCMC matrix were determined using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-Vis), transmission electron microscopy (TEM), and field emission scanning electron microscope (FESEM) analysis, and the thermal stability and antibacterial properties of the synthesized QCMC-based Ag NPs composite (QCMC-Ag) were also explored. The results revealed that (1) QCMC was successfully prepared by grafting quaternary ammonium groups onto carboxymethyl chitosan (CMC) chains under microwave irradiation in water for 90 min and this substitution appeared to have occurred at -NH2 sites on C2 position of the pyranoid ring; (2) uniform and stable spherical Ag NPs could be synthesized when QCMC was used as the reducing and stabilizing agent; (3) Ag NPs were well dispersed in the QCMC matrix with a narrow size distribiution in the range of 17–31 nm without aggregation; and (4) due to the presence of Ag NPs, the thermal stability and antibacterial activity of QCMC-Ag were dramatically improved relative to QCMC. PMID:28335246

  9. Improving the biogas production performance of municipal waste activated sludge via disperser induced microwave disintegration.

    PubMed

    Kavitha, S; Rajesh Banu, J; Vinoth Kumar, J; Rajkumar, M

    2016-10-01

    In this study, the influence of disperser induced microwave pretreatment was investigated to analyze the proficiency of floc disruption on subsequent disintegration and biodegradability process. Initially, the flocs in the sludge was disrupted through disperser at a specific energy input of 25.3kJ/kgTS. The upshot of the microwave disintegration presents that the solids reduction and solubilization of floc disrupted (disperser induced microwave pretreated) sludge was found to be 17.33% and 22% relatively greater than that achieved in microwave pretreated (9.3% and 16%) sludge alone. The biodegradability analysis, affords an evaluation of parameter confidence and correlation determination. The eventual biodegradability of microwave pretreated, and floc disrupted sludges were computed to be 0.15(gCOD/gCOD) and 0.28(gCOD/gCOD), respectively. An economic assessment of this study offers a positive net profit of about 104.8USD/ton of sludge in floc disrupted sample.

  10. Quorum Sensing Activity in Pandoraea pnomenusa RB38

    PubMed Central

    Ee, Robson; Lim, Yan-Lue; Kin, Lin-Xin; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Strain RB38 was recovered from a former dumping area in Malaysia. MALDI-TOF mass spectrometry and genomic analysis identified strain RB-38 as Pandoraea pnomenusa. Various biosensors confirmed its quorum sensing properties. High resolution triple quadrupole liquid chromatography–mass spectrometry analysis was subsequently used to characterize the N-acyl homoserine lactone production profile of P. pnomenusa strain RB38, which validated that this isolate produced N-octanoyl homoserine lactone as a quorum sensing molecule. This is the first report of the production of N-octanoyl homoserine lactone by P. pnomenusa strain RB38. PMID:24919016

  11. U. S. GEOLOGICAL SURVEY LAND REMOTE SENSING ACTIVITIES.

    USGS Publications Warehouse

    Frederick, Doyle G.

    1983-01-01

    USGS uses all types of remotely sensed data, in combination with other sources of data, to support geologic analyses, hydrologic assessments, land cover mapping, image mapping, and applications research. Survey scientists use all types of remotely sensed data with ground verifications and digital topographic and cartographic data. A considerable amount of research is being done by Survey scientists on developing automated geographic information systems that can handle a wide variety of digital data. The Survey is also investigating the use of microprocessor computer systems for accessing, displaying, and analyzing digital data.

  12. Monitoring boreal ecosystem phenology with integrated active/passive microwave remote sensing

    NASA Technical Reports Server (NTRS)

    McDonald, K. C.; Njoku, E.; Kimball, J.; Running, S.; Thompson, C.; Lee, J. K.

    2002-01-01

    The important role of the high latitudes in the functioning of global processes is becoming well established. The size and remoteness of arctic and boreal ecosystems, however, pose a challenge to quantification of both terrestrial ecosystem processes and their feedbacks to regional and global climate conditions. Boreal and arctic regions form a complex land cover mosaic where vegetation structure, condition and distribution are strongly regulated by environmental factors such as moisture availability, permafrost, growing season length, disturbance and soil nutrients.

  13. Urban rainfall estimation employing commercial microwave links

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko; ten Veldhuis, Marie-claire

    2015-04-01

    Urban areas often lack rainfall information. To increase the number of rainfall observations in cities, microwave links from operational cellular telecommunication networks may be employed. Although this new potential source of rainfall information has been shown to be promising, its quality needs to be demonstrated more extensively. In the Rain Sense kickstart project of the Amsterdam Institute for Advanced Metropolitan Solutions (AMS), sensors and citizens are preparing Amsterdam for future weather. Part of this project is rainfall estimation using new measurement techniques. Innovative sensing techniques will be utilized such as rainfall estimation from microwave links, umbrellas for weather sensing, low-cost sensors at lamp posts and in drainage pipes for water level observation. These will be combined with information provided by citizens in an active way through smartphone apps and in a passive way through social media posts (Twitter, Flickr etc.). Sensor information will be integrated, visualized and made accessible to citizens to help raise citizen awareness of urban water management challenges and promote resilience by providing information on how citizens can contribute in addressing these. Moreover, citizens and businesses can benefit from reliable weather information in planning their social and commercial activities. In the end city-wide high-resolution rainfall maps will be derived, blending rainfall information from microwave links and weather radars. This information will be used for urban water management. This presentation focuses on rainfall estimation from commercial microwave links. Received signal levels from tens of microwave links within the Amsterdam region (roughly 1 million inhabitants) in the Netherlands are utilized to estimate rainfall with high spatial and temporal resolution. Rainfall maps will be presented and compared to a gauge-adjusted radar rainfall data set. Rainfall time series from gauge(s), radars and links will be compared.

  14. Remediation of anionic dye from aqueous system using bio-adsorbent prepared by microwave activation.

    PubMed

    Sharma, Arush; Sharma, Gaurav; Naushad, Mu; Ghfar, Ayman A; Pathania, Deepak

    2017-04-07

    The present study was attempted to ascertain the possible application of activated carbon as cost effective and eco-friendly adsorbent prepared via microwave (MW) assisted chemical activation. The activated carbon was characterized using different techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and field-emission scanning electron microscope (FESEM). The various adsorption parameters have been optimized to examine the viability of activated carbon as a plausible sorbent for the remediation of Congo red (CR) dye from aquatic system. The adsorption equilibrium was interpreted using Langmuir, Freundlich and Tempkin isotherms. The equilibrium data adequately fitted to Langmuir isotherm with stronger R(2) (0.994). The maximum adsorption capacity (qm) of activated carbon was recorded to be 68.96 mg/g. Additionally, sorptional kinetic data were examined by reaction based and diffusion based models such as pseudo-first-order, pseudo-second-order, Elovich model and intra-particle diffusion, Dumwald-Wagner models, respectively. The experimental results indicated that pseudo-second-order equation and Elovich model better discuss the adsorption kinetics. The computed values of thermodynamic parameters such as free energy change (ΔG(0)), enthalpy change (ΔH(0)) and entropy change (ΔS(0)) were recorded as -3.63 kJ/mol, 42.47 kJ/mol, 152.07 J/mol K, respectively at 30°C, which accounted for favorable, spontaneous and endothermic process. The regeneration study emphasized that percentage uptake declined from 90.35 to 83.45% after 6cycles of testing. So, our findings implied that activated carbon produced from biomass must be cost-effectively used as an adsorbent for detoxifying the CR dye from industrial effluents.

  15. Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method.

    PubMed

    Hong, Xuesen; Wen, Junjie; Xiong, Xuhua; Hu, Yongyou

    2016-03-01

    Silver nanoparticles (AgNPs) are used as sustained-release bactericidal agents for water treatment. Among the physicochemical characteristics of AgNPs, shape is an important parameter relevant to the antibacterial activity. Three typically shaped AgNPs, nanocubes, nanospheres, and nanowires, were prepared via a microwave-assisted method and characterized by TEM, UV-vis, and XRD. The antibacterial activity of AgNPs was determined by OD growth curves tests, MIC tests, and cell viability assay against Escherichia coli. The interaction between AgNPs and bacterial cells was observed by TEM. The results showed that the three differently shaped AgNPs were nanoscale, 55 ± 10 nm in edge length for nanocubes, 60 ± 15 nm in diameter for nanospheres, 60 ± 10 nm in diameter and 2-4 μm in length for nanowires. At the bacterial concentration of 10(4) CFU/mL, the MIC of nanocubes, nanospheres, and nanowires were 37.5, 75, and 100 μg/mL, respectively. Due to the worst contact with bacteria, silver nanowires exhibited the weakest antibacterial activity compared with silver nanocubes and silver nanospheres. Besides, silver nanocubes mainly covered by {100} facets showed stronger antibacterial activity than silver nanospheres covered by {111} facets. It suggests that the shape effect on the antibacterial activity of AgNPs is attributed to the specific surface areas and facets reactivity; AgNPs with larger effective contact areas and higher reactive facets exhibit stronger antibacterial activity.

  16. Sense of Cohesion among Community Activists Engaging in Volunteer Activity

    ERIC Educational Resources Information Center

    Levy, Drorit; Itzhaky, Haya; Zanbar, Lea; Schwartz, Chaya

    2012-01-01

    The present article attempts to shed light on the direct and indirect contribution of personal resources and community indices to Sense of Cohesion among activists engaging in community volunteer work. The sample comprised 481 activists. Based on social systems theory, three levels of variables were examined: (1) inputs, which included personal…

  17. Activities of the Remote Sensing Information Sciences Research Group

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Botkin, D.; Peuquet, D.; Smith, T.; Star, J. L. (Principal Investigator)

    1984-01-01

    Topics on the analysis and processing of remotely sensed data in the areas of vegetation analysis and modelling, georeferenced information systems, machine assisted information extraction from image data, and artificial intelligence are investigated. Discussions on support field data and specific applications of the proposed technologies are also included.

  18. Remote sensing research activities related to academic institutions

    NASA Technical Reports Server (NTRS)

    Myers, V. I.

    1980-01-01

    The role of research in the educational setting is discussed. Curriculum developments for integrating teaching and research are described. Remote sensing technology is used as an example of bridging the gap between research and application. Recommendations are presented for strengthing research groups.

  19. Solvent-free microwave extraction of essential oil from Dryopteris fragrans and evaluation of antioxidant activity.

    PubMed

    Li, Xiao-Juan; Wang, Wei; Luo, Meng; Li, Chun-Ying; Zu, Yuan-Gang; Mu, Pan-Song; Fu, Yu-Jie

    2012-07-15

    Solvent-free microwave extraction (SFME) of the essential oil from Dryopteris fragrans and its antioxidant activity were investigated. A central composite design combined with response surface methodology was applied to study the influences of extraction time, irradiation power and humidity (proportion of water pretreatment). A maximal extraction yield of 0.33% was achieved under optimal conditions of extraction time 34 min, irradiation power 520 W and humidity 51%. Sixteen compounds, representing 89.65% of the oil, were identified, of which the major ones, (1R,4S,11R)-4,6,6,11-tetramethyltricyclo[5.4.0.0(4,8)]undecan-1-ol (30.49%), 1R,4S,7S,11R-2,2,4,8-tetramethyltricyclo[5.3.1.0(4,11)]undec-8-ene (22.91%) and, 1,4,4a,5,6,7,8,8a-octahydro-2,5,5,8a-tetramethyl-1-naphthalenemethanol (15.11%), accounted for 68.51% of the oil. The antioxidant activity of the essential oil was assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH), β-carotene/linoleic acid, and reducing power assay, the IC50 values were 0.19, 0.09 and 0.18 mg/mL, respectively. All these results suggest that SFME represents an excellent alternative protocol for production of essential oils from plant materials.

  20. Enhanced photocatalytic activity of ZnO-graphene nanocomposites prepared by microwave synthesis

    NASA Astrophysics Data System (ADS)

    Herring, Natalie P.; Almahoudi, Serial H.; Olson, Chelsea R.; El-Shall, M. Samy

    2012-12-01

    This work reports a simple one-step synthesis of ZnO nanopyramids supported on reduced graphene oxide (RGO) nanosheets using microwave irradiation (MWI) of zinc acetate and GO in the presence of a mixture of oleic acid and oleylamine. The rapid decomposition of zinc acetate by MWI in the presence of the mixture of oleic acid and oleylamine results in the formation of hexagonal ZnO nanopyramids. GO has a high affinity for absorbing MWI, which results in a high local heating effect around the GO nanosheets and facilitates the reduction of GO by the oleylamine. The RGO nanosheets act as heterogeneous surface sites for the nucleation and growth of the ZnO nanopyramids. Using ligand exchange, the ZnO-RGO nanocomposites can be dispersed in an aqueous medium, thus allowing their use as photocatalysts for the degradation of the malachite green dye in water. The ZnO-RGO nanocomposites show enhanced photocatalytic activity for the degradation of the dye over the unsupported ZnO nanopyramids. The enhanced activity is attributed to efficient charge transfer of the photogenerated electrons in the conduction band of ZnO to graphene. This enhances the oxidative pathway of the holes generated in the valence band of ZnO which can effectively lead to the degradation and mineralization of the malachite green. The ZnO nanopyramids supported on RGO could have improved performance in other photocatalytic reactions and also in solar energy conversion.

  1. Classification methods for monitoring Arctic sea ice using OKEAN passive/active two-channel microwave data

    USGS Publications Warehouse

    Belchansky, Gennady I.; Douglas, David C.

    2000-01-01

    This paper presents methods for classifying Arctic sea ice using both passive and active (2-channel) microwave imagery acquired by the Russian OKEAN 01 polar-orbiting satellite series. Methods and results are compared to sea ice classifications derived from nearly coincident Special Sensor Microwave Imager (SSM/I) and Advanced Very High Resolution Radiometer (AVHRR) image data of the Barents, Kara, and Laptev Seas. The Russian OKEAN 01 satellite data were collected over weekly intervals during October 1995 through December 1997. Methods are presented for calibrating, georeferencing and classifying the raw active radar and passive microwave OKEAN 01 data, and for correcting the OKEAN 01 microwave radiometer calibration wedge based on concurrent 37 GHz horizontal polarization SSM/I brightness temperature data. Sea ice type and ice concentration algorithms utilized OKEAN's two-channel radar and passive microwave data in a linear mixture model based on the measured values of brightness temperature and radar backscatter, together with a priori knowledge about the scattering parameters and natural emissivities of basic sea ice types. OKEAN 01 data and algorithms tended to classify lower concentrations of young or first-year sea ice when concentrations were less than 60%, and to produce higher concentrations of multi-year sea ice when concentrations were greater than 40%, when compared to estimates produced from SSM/I data. Overall, total sea ice concentration maps derived independently from OKEAN 01, SSM/I, and AVHRR satellite imagery were all highly correlated, with uniform biases, and mean differences in total ice concentration of less than four percent (sd<15%).

  2. Effect of ultrasonic and microwave disintegration on physico-chemical and biodegradation characteristics of waste-activated sludge.

    PubMed

    Doğruel, Serdar; Özgen, Aslı Sedem

    2017-04-01

    The purpose of this study was to investigate the effect of ultrasonic and microwave disintegration on physico-chemical and biodegradability properties of waste-activated sludge (WAS) from a municipal wastewater treatment plant. Another aim was to carry out particle size distribution (PSD) analysis as an integral component of sludge characterization to highlight the transformation mechanisms involved in pretreatment processes and better understand the biodegradation patterns of sonicated and irradiated WAS liquids examined by means of respirometric measurements. Various combinations of sonication and microwave irradiation parameters were applied to optimize operating conditions. The optimum ultrasonic density was determined as 1.5 W/mL, and energy dosages lower than 30,000 kJ/kg TS resulted in a fairly linear increase in the soluble chemical oxygen demand (SCOD) release. An irradiation time of 10 min and a temperature of 175°C were selected as the optimum microwave pretreatment conditions for sludge liquefaction. The most apparent impact of ultrasonication on the PSD of COD was the shifting of the peak at the particulate fraction (>1600 nm) toward the lowest size range (<2 nm). Microwave heating at the selected experimental conditions and ultrasonic pretreatment at 30,000 kJ/kg TS exhibited comparable size distribution and biodegradation characteristics to those of domestic sewage.

  3. Microwave-swing adsorption to capture and recover vapors from air streams with activated carbon fiber cloth.

    PubMed

    Hashisho, Zaher; Rood, Mark; Botich, Leon

    2005-09-01

    Adsorption with regeneration is a desirable means to control the emissions of organic vapors such as hazardous air pollutants (HAPs) and volatile organic compounds (VOCs) from air streams as it allows for capture, recovery, and reuse of those VOCs/HAPS. Integration of activated-carbon fiber-cloth (ACFC) adsorbent with microwave regeneration provides promise as a new adsorption/ regeneration technology. This research investigates the feasibility of using microwaves to regenerate ACFC as part of a process for capture and recovery of organic vapors from gas streams. A bench-scale fixed-bed microwave-swing adsorption (MSA) system was built and tested for adsorption of water vapor, methyl ethyl ketone (MEK), and tetrachloroethylene (PERC) from an airstream and then recovery of those vapors with microwave regeneration. The electromagnetic heating behavior of dry and vapor-saturated ACFC was also characterized. The MSA system successfully adsorbed organic vapors from the airstreams, allowed for rapid regeneration of the ACFC cartridge, and recovered the water and organic vapors as liquids.

  4. Modeling Chemical Detection Sensitivities of Active and Passive Remote Sensing Systems

    SciTech Connect

    Scharlemann, E T

    2003-07-28

    During nearly a decade of remote sensing programs under the auspices of the U. S. Department of Energy (DOE), LLNL has developed a set of performance modeling codes--called APRS--for both Active and Passive Remote Sensing systems. These codes emphasize chemical detection sensitivity in the form of minimum detectable quantities with and without background spectral clutter and in the possible presence of other interfering chemicals. The codes have been benchmarked against data acquired in both active and passive remote sensing programs at LLNL and Los Alamos National Laboratory (LANL). The codes include, as an integral part of the performance modeling, many of the data analysis techniques developed in the DOE's active and passive remote sensing programs (e.g., ''band normalization'' for an active system, principal component analysis for a passive system).

  5. Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Active ground optical remote sensing (AGORS) devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and ...

  6. Hybrid architecture active wavefront sensing and control system, and method

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D. (Inventor); Dean, Bruce H. (Inventor); Hyde, Tristram T. (Inventor)

    2011-01-01

    According to various embodiments, provided herein is an optical system and method that can be configured to perform image analysis. The optical system can comprise a telescope assembly and one or more hybrid instruments. The one or more hybrid instruments can be configured to receive image data from the telescope assembly and perform a fine guidance operation and a wavefront sensing operation, simultaneously, on the image data received from the telescope assembly.

  7. Microwave applications range from under the soil to the stratosphere

    NASA Astrophysics Data System (ADS)

    Bierman, Howard

    1990-11-01

    While the current cutback in defense spending had a negative impact on the microwave industry, microwave technology is now being applied to improve mankind's health, to clean up the environment, and provide more food. The paper concentrates on solutions for traffic jams and collision avoidance, the application of microwave hyperthermia to detect and destroy cancer cells, applications for controlling ozone-layer depletion, for investigating iceberg activity and ocean-current patterns in the Arctic, and for measuring soil-moisture content to improve crop efficiency. An experimental 60-GHz communication system for maintaining contact with up to 30 vehicles is described, along with dielectric-loaded lens and multimicrostrip hyperthermia applicators, and microwave equipment for NASA's upper-atmosphere research satellite and ESA's remote-sensing satellite. Stripline techniques to monitor process control on semiconductor wafer and paper production lines are also outlined.

  8. Frequency requirements for active earth observation sensors

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The foundation and rationale for the selection of microwave frequencies for active remote sensing usage and for subsequent use in determination of sharing criteria and allocation strategies for the WARC-79 are presented.

  9. Microwave Ovens

    MedlinePlus

    ... Emitting Products Radiation-Emitting Products and Procedures Home, Business, and Entertainment Products Microwave ... for Consumers Laws, Regulations & Standards Industry Guidance Other Resources Description Microwave ...

  10. Microwave-assisted digestion using nitric acid for heavy metals and sulfated ash testing in active pharmaceutical ingredients.

    PubMed

    Pluhácek, T; Hanzal, J; Hendrych, J; Milde, D

    2016-04-01

    The monitoring of inorganic impurities in active pharmaceutical ingredients plays a crucial role in the quality control of the pharmaceutical production. The heavy metals and residue on ignition/sulfated ash methods employing microwave-assisted digestion with concentrated nitric acid have been demonstrated as alternatives to inappropriate compendial methods recommended in United States Pharmacopoeia (USP) and European Pharmacopoeia (Ph. Eur.). The recoveries using the heavy metals method ranged between 89% and 122% for nearly all USP and Ph. Eur. restricted elements as well as the recoveries of sodium sulfate spikes were around 100% in all tested matrices. The proposed microwave-assisted digestion method allowed simultaneous decomposition of 15 different active pharmaceutical ingredients with sample weigh up to 1 g. The heavy metals and sulfated ash procedures were successfully applied to the determination of heavy metals and residue on ignition/sulfated ash content in mycophenolate mofetil, nicergoline and silymarin.

  11. Microwave-assisted synthesis and characterization of optically active poly (ester-imide)s incorporating L-alanine.

    PubMed

    Zahmatkesh, Saeed; Hajipour, Abdol R

    2010-04-01

    Pyromellitic dianhydride (1) was reacted with L-alanine (2) to result [N,N'-(pyromellitoyl)-bis-L-alanine diacid] (3). This compound (3) was converted to N,N'-(pyromellitoyl)-bis-L-alanine diacyl chloride (4) by reaction with thionyl chloride. The microwave-assisted polycondensation of this diacyl chloride (4) with polyethyleneglycol-diol (PEG-200) and/or three synthetic aromatic diols furnish a series of new PEIs and Co-PEIs in a laboratory microwave oven (Milestone). The resulting polymers and copolymers have inherent viscosities in the range of 0.31-0.53 dl g(-1). These polymers are optically active, thermally stable and soluble in polar aprotic solvents such as DMF, DMSO, NMP, DMAc, and sulfuric acid. All of the above polymers were fully characterized by IR spectroscopy, (1)H NMR spectroscopy, elemental analyses, specific rotation and thermal analyses. Some structural characterizations and physical properties of these optically active PEIs and Co-PEIs have been reported.

  12. P-doped TiO2 with superior visible-light activity prepared by rapid microwave hydrothermal method

    NASA Astrophysics Data System (ADS)

    Niu, Jinfen; Lu, Pan; Kang, Mei; Deng, Kunfa; Yao, Binghua; Yu, Xiaojiao; Zhang, Qian

    2014-11-01

    Phosphorous-doped anatase TiO2 powders (P-TiO2) were prepared by rapid microwave hydrothermal method. The resulting materials were characterized by XRD, SEM, XPS, DRS and N2 adsorption. P-doping decreased the band gap and enlarged the surface area of P-doped samples than that of undoped TiO2 samples. Therefore, the photocatalytic degradation of methyl blue (MB) and tetracycline hydrochloride (Tc) experiments showed that the P-TiO2 catalysts, especially the two-steps-controlling products P-TiO2-2, exhibited higher degradation efficiency than the undoped TiO2 and commercial P25 under visible-light irradiation. Hydroxyl radicals (rad OH) have been confirmed to be the active species during the photocatalytic oxidation reaction. The microwave hydrothermal method confirms to be very suitable for the synthesis of superior visible-light activity P-doped samples.

  13. Active microwave measurements of sea ice under fall conditions: The RADARSAT/FIREX fall experiment. [in the Canadian Arctic

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.; Kim, Y. S.; Moore, R. K.

    1984-01-01

    A series of measurements of the active microwave properties of sea ice under fall growing conditions was conducted. Ice in the inland waters of Mould Bay, Crozier Channel, and intrepid inlet and ice in the Arctic Ocean near Hardinge Bay was investigated. Active microwave data were acquired using a helicopter borne scatterometer. Results show that multiyear ice frozen in grey or first year ice is easily detected under cold fall conditions. Multiyear ice returns were dynamic due to response to two of its scene constituents. Floe boundaries between thick and thin ice are well defined. Multiyear pressure ridge returns are similar in level to background ice returns. Backscatter from homogeneous first year ice is seen to be primarily due to surface scattering. Operation at 9.6 GHz is more sensitive to the detailed changes in scene roughness, while operation at 5.6 GHz seems to track roughness changes less ably.

  14. Remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Schmugge, T.

    1976-01-01

    The surface emissivity and reflectivity of soil are strong functions of its moisture content. Changes in emissivity, observed by passive microwave techniques (radiometry), and changes in reflectivity, observed by active microwave techniques (radar), can provide information on the moisture content of the 0 to 5 cm surface layer. In addition, the thermal inertia of the surface layer, which can be remotely sensed by observing the diurnal range of surface temperature, is an indicator of soil moisture content. The thermal infrared approach to remote sensing of soil moisture has little utility in the presence of cloud cover, but provides soil moisture data at high spatial resolutions and thermal data which are a potentially useful indicator of crop status. Microwave techniques can penetrate cloud covers. The passive technique has been demonstrated by both aircraft and spacecraft instruments, but spatial resolution is limited by the size of the antenna which can be flown. Active microwave systems offer the possibility of better spatial resolution, but have yet to be demonstrated from aircraft or spacecraft platforms.

  15. Monitoring of Vibrio harveyi quorum sensing activity in real time during infection of brine shrimp larvae.

    PubMed

    Defoirdt, Tom; Sorgeloos, Patrick

    2012-12-01

    Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host-pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp.

  16. Pulse activity of populations of cortical neurons under microwave exposures of different intensity.

    PubMed

    Chizhenkova, R A

    2004-06-01

    In rabbit pulse flows of populations of cortical neurons were investigated prior to, during, and after 1-min microwave irradiation (wavelength 37.5 cm, power density 0.2-40 mW/cm2). It was found that the microwave irradiation produced shifts in mean values of interspike intervals and in the number of spike bursts. Peculiarities of rearrangements of pulse flows of cortical neurons were conditioned by an intensity of exposures.

  17. Monitoring of Surface Wetness from active microwave satellite data in permafrost regions

    NASA Astrophysics Data System (ADS)

    Bartsch, A.; Boike, J.; Sabel, D.; Wagner, W.

    2008-12-01

    Soil moisture content impacts land surface energy dynamics, regional runoff dynamics and vegetation productivity. Coarse to medium resolution data from active microwave instruments onboard satellites which are currently in space are able to provide such valuable information for operational use. Scatterometer (ERS, Metop ASCAT) can be applied on regional to global scale. ScanSAR systems are suitable for regional to continental monitoring and for the investigation of scaling issues. The original approach which was developed for scatterometer data (Wagner et al. 1999) has been transferred to ScanSAR data within the framework of the ESA Tiger innovator project SHARE (www.ipf.tuwien.ac.at/radar/share). Data from the ENVISAT ASAR instrument operating in Global Mode (1km resolution) have not only been used over the southern African subcontinent, but also over entire Australia and within other regional studies. Current research focuses on the validation and investigation of scaling issues of satellite derived surface wetness in permafrost environment. A comparison to soil moisture measurements has been carried out over the Lena- Delta, Russia. Measurements are from a site on Samoylov Island, which is characterized by polygonal tundra. Best aggreement of the 1km resolution satellit data was found for polygon centres, with a Pearson correlation of 0.72. Timeseries analyses from this and other sites in Siberia will be presented.

  18. Impact of active ingredients on the swelling properties of orally disintegrating tablets prepared by microwave treatment.

    PubMed

    Sano, Syusuke; Iwao, Yasunori; Kimura, Susumu; Noguchi, Shuji; Itai, Shigeru

    2014-07-01

    The impact of different active pharmaceutical ingredients (APIs) loading on the properties of orally disintegrating tablets (ODTs) prepared according to our previously reported microwave (MW) treatment process was evaluated using famotidine (FAM), acetaminophen (AAP), and ibuprofen (IBU). None of the APIs interrupted the tablet swelling during the MW treatment and the tablet hardness were improved by more than 20 N. MW treatment, however, led to a significant increase in the disintegration time of the ODTs containing IBU, but it had no impact on that of the ODTs containing FAM or AAP. This increased disintegration time of the ODTs containing IBU was attributed to the relatively low melting point of IBU (Tm=76 °C), with the IBU particles melting during the MW treatment to form agglomerates, which interrupted the penetration of water into the tablets and delayed their disintegration. The effects of the MW treatment on the chemical stability and dissolution properties of ODTs were also evaluated. The results revealed that MW treatment did not promote the degradations of FAM and AAP or delay their release from the ODTs, while dissolution of the ODTs containing IBU delayed by MW treatment. Based on these results, the MW method would be applicable to the preparation of ODTs containing APIs with melting points higher than 110 °C.

  19. Preparation of Granular Red Mud Adsorbent using Different Binders by Microwave Pore - Making and Activation Method

    NASA Astrophysics Data System (ADS)

    Le, Thiquynhxuan; Wang, Hanrui; Ju, Shaohua; Peng, Jinhui; Zhou, Liexing; Wang, Shixing; Yin, Shaohua; Liu, Chao

    2016-04-01

    In this work, microwave energy is used for preparing a granular red mud (GRM) adsorbent made of red mud with different binders, such as starch, sodium silicate and cement. The effects of the preparation parameters, such as binder type, binder addition ratio, microwave heating temperature, microwave power and holding time, on the absorption property of GRM are investigated. The BET surface area, strength, pore structure, XRD and SEM of the GRM absorbent are analyzed. The results show that the microwave roasting has a good effect on pore-making of GRM, especially when using organic binder. Both the BET surface area and the strength of GRM obtained by microwave heating are significantly higher than that by conventional heating. The optimum conditions are obtained as follows: 6:100 (w/w) of starch to red mud ratio, microwave roasting with a power of 2.6 kW at 500℃ for holding time of 30 min. The BET surface area, pore volume and average pore diameter of GRM prepared at the optimum conditions are 15.58 m2/g, 0.0337 cm3/g and 3.1693 A0, respectively.

  20. Permafrost vulnerability and active layer thickness increases over the high northern latitudes inferred from satellite remote sensing and process model assessments

    NASA Astrophysics Data System (ADS)

    Park, Hotaek; Kim, Youngwook

    2016-04-01

    Permafrost extent (PE) and active layer thickness (ALT) are important for assessing high northern latitude (HNL) ecological and hydrological processes, and potential land-atmosphere carbon and climate feedbacks. We developed a new approach to infer PE from satellite microwave remote sensing of daily landscape freeze-thaw (FT) status. Our results document, for the first time, the use of satellite microwave FT observations for monitoring permafrost extent and condition. The FT observations define near-surface thermal status used to determine permafrost extent and stability over a 30-year (1980-2009) satellite record. The PE results showed similar performance against independent inventory and process model (CHANGE) estimates, but with larger differences over heterogeneous permafrost subzones. A consistent decline in the ensemble mean of permafrost areas (-0.33 million km2 decade-1; p < 0.05) coincides with regional warming (0.4 °C decade-1; p < 0.01), while more than 40% (9.6 million km2) of permafrost areas are vulnerable to degradation based on the 30-year PE record. ALT estimates determined from satellite (MODIS) and ERA-Interim temperatures, and CHANGE simulations, compared favorably with independent field observations and indicate deepening ALT trends consistent with widespread permafrost degradation under recent climate change. The integration of remote sensing and modeling of permafrost and active layer conditions developed from this study may facilitate regular and effective regional monitoring of these parameters, and expand applications of remote sensing for examining permafrost-related feedbacks and consequences for biogeochemical and hydrological cycling in the Arctic.

  1. Retrieval of Precipitation Profiles from Multiresolution, Multifrequency, Active and Passive Microwave Observations

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Anagnostou, Emmanouil N.; Olson, William S.; Starr, David OC. (Technical Monitor)

    2002-01-01

    In this study, a technique for estimating vertical profiles of precipitation from multifrequency, multiresolution active and passive microwave observations is investigated using both simulated and airborne data. The technique is applicable to the Tropical Rainfall Measuring Mission (TRMM) satellite multi-frequency active and passive observations. These observations are characterized by various spatial and sampling resolutions. This makes the retrieval problem mathematically more difficult and ill-determined because the quality of information decreases with decreasing resolution. A model that, given reflectivity profiles and a small set of parameters (including the cloud water content, the intercept drop size distribution, and a variable describing the frozen hydrometeor properties), simulates high-resolution brightness temperatures is used. The high-resolution simulated brightness temperatures are convolved at the real sensor resolution. An optimal estimation procedure is used to minimize the differences between simulated and observed brightness temperatures. The retrieval technique is investigated using cloud model synthetic and airborne data from the Fourth Convection And Moisture Experiment. Simulated high-resolution brightness temperatures and reflectivities and airborne observation strong are convolved at the resolution of the TRMM instruments and retrievals are performed and analyzed relative to the reference data used in observations synthesis. An illustration of the possible use of the technique in satellite rainfall estimation is presented through an application to TRMM data. The study suggests improvements in combined active and passive retrievals even when the instruments resolutions are significantly different. Future work needs to better quantify the retrievals performance, especially in connection with satellite applications, and the uncertainty of the models used in retrieval.

  2. ALTERNATIVE ROUTES FOR CATALYST PREPARATION: USE OF ULTRASOUND AND MICROWAVE IRRADIATION FOR THE PREPARATION OF VANADIUM PHOSPHORUS OXIDE CATALYST AND THEIR ACTIVITY FOR HYDROCARBON OXIDATION

    EPA Science Inventory

    Vanadium phosphorus oxide (VPO) has been prepared using ultrasound and microwave irradiation methods and compared with the catalyst prepared by conventional method for both the phase composition and activity for hydrocarbon oxidation. It is found that ultrasound irradiation metho...

  3. Aircraft remote sensing of soil moisture and hydrologic parameters, Taylor Creek, Florida, and Little River, Georgia, 1979 data report

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Schmugge, T. J.; Allen, L. H., Jr.; Oneill, P.; Slack, R.; Wang, J.; Engman, E. T.

    1981-01-01

    Experiments were conducted to evaluate aircraft remote sensing techniques for hydrology in a wide range of physiographic and climatic regions using several sensor platforms. The data were collected in late 1978 and during 1979 in two humid areas--Taylor Creek, Fla., and Little River, Ga. Soil moisture measurements and climatic observations are presented as well as the remote sensing data collected using thermal infrared, passive microwave, and active microwave systems.

  4. Microwave radiation absorption: behavioral effects.

    PubMed

    D'Andrea, J A

    1991-07-01

    The literature contains much evidence that absorption of microwave energy will lead to behavioral changes in man and laboratory animals. The changes include simple perturbations or outright stoppage of ongoing behavior. On one extreme, intense microwave absorption can result in seizures followed by death. On the other extreme, man and animals can hear microwave pulses at very low rates of absorption. Under certain conditions of exposure, animals will avoid microwaves, while under other conditions, they will actively work to obtain warmth produced by microwaves. Some research has shown behavioral effects during chronic exposure to low-level microwaves. The specific absorption rates that produce behavioral effects seem to depend on microwave frequency, but controversy exists over thresholds and mechanism of action. In all cases, however, the behavioral disruptions cease when chronic microwave exposure is terminated. Thermal changes in man and animals during microwave exposure appear to account for all reported behavioral effects.

  5. Using Airborne Microwave Remotely Sensed Root-Zone Soil Moisture and Flux Measurements to Improve Regional Predictions of Carbon Fluxes in a Terrestrial Biosphere Model

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Antonarakis, A. S.; Medvigy, D.; Burgin, M. S.; Crow, W. T.; Milak, S.; Jaruwatanadilok, S.; Truong-Loi, M.; Moghaddam, M.; Saatchi, S. S.; Cuenca, R. H.; Moorcroft, P. R.

    2013-12-01

    North American ecosystems are critical components of the global carbon cycle, exchanging large amounts of carbon dioxide and other gases with the atmosphere. Net ecosystem exchange (NEE) of CO2 between atmosphere and ecosystems quantifies these carbon fluxes, but current continental-scale estimates contain high levels of uncertainty. Root-zone soil moisture (RZSM) and its spatial and temporal heterogeneity influences NEE and improved estimates can help reduce uncertainty in NEE estimates. We used the RZSM measurements from the Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) mission, and the carbon, water and energy fluxes observed by the eddy-covariance flux towers to constrain the Ecosystem Demography Model 2.2 (ED2.2) to improve its predictions of carbon fluxes. The parameters of the ED2.2 model were first optimized at seven flux tower sites in North America, which represent six different biomes, by constraining the model against a suite of flux measurements and forest inventory measurements through a Bayesian Markov-Chain Monte Carlo framework. We further applied the AirMOSS RZSM products to constrain the ED2.2 model to achieve better estimates of regional NEE. Evaluation against flux tower measurements and forest dynamics measurements shows that the constrained ED2.2 model produces improved predictions of monthly to annual carbon fluxes. The remote sensing based RZSM can further help improve the spatial patterns and temporal variations of model NEE. The results demonstrate that model-data fusion can substantially improve model performance and highlight the important role of RZSM in regulating the spatial and temporal heterogeneities of carbon fluxes.

  6. Microwave accelerated synthesis of zinc oxide nanoplates and their enhanced photocatalytic activity under UV and solar illuminations

    NASA Astrophysics Data System (ADS)

    Anas, S.; Rahul, S.; Babitha, K. B.; Mangalaraja, R. V.; Ananthakumar, S.

    2015-11-01

    Photoactive zinc based nanoplates were developed through a rapid microwave synthesis. A low temperature thermolysis reaction in a surfactant medium was initially performed for producing microwave active zinc based polar precursors. Using these precursors, the zinc oxide nanopowder having platelet morphologies were prepared. The nanoplatelets exhibited random growth with non-polar (1 0 1) surface as the major growth plane. The structural and functional features of the resultant zinc oxide samples were monitored using XRD, FTIR, TEM and PL. The photocatalytic activities of the samples were investigated through the standard photoreduction kinetics using the methylene blue dye. The catalytic efficiencies of the samples were checked both under UV and sunlight. A comparative study was also performed with the standard TiO2 sample. The analyses revealed that the microwave derived zinc oxide have higher catalytic efficiency, than the standard titania samples, both under UV and sunlight illuminations. The unique nature of the zinc oxide non-polar surfaces can be attributed due to the presence of more active two dimensional open surfaces and the higher content of oxygen defect concentrations.

  7. The Object of Activity: Making Sense of the Sense-Maker

    ERIC Educational Resources Information Center

    Kaptelinin, Victor

    2005-01-01

    The concept of "the object of activity" plays a key role in research based on activity theory. However, the usefulness of this concept is somewhat undermined by the fact that a number of problems related to its meaning and its contexts of use remain unsolved. This article is an attempt to address some of these problems. The article focuses on 3…

  8. A tactile vision substitution system for the study of active sensing.

    PubMed

    Hsu, Brian; Hsieh, Cheng-Han; Yu, Sung-Nien; Ahissar, Ehud; Arieli, Amos; Zilbershtain-Kra, Yael

    2013-01-01

    This paper presents a tactile vision substitution system (TVSS) for the study of active sensing. Two algorithms, namely image processing and trajectory tracking, were developed to enhance the capability of conventional TVSS. Image processing techniques were applied to reduce the artifacts and extract important features from the active camera and effectively converted the information into tactile stimuli with much lower resolution. A fixed camera was used to record the movement of the active camera. A trajectory tracking algorithm was developed to analyze the active sensing strategy of the TVSS users to explore the environment. The image processing subsystem showed advantageous improvement in extracting object's features for superior recognition. The trajectory tracking subsystem, on the other hand, enabled accurately locating the portion of the scene pointed by the active camera and providing profound information for the study of active sensing strategy applied by TVSS users.

  9. Young Scientists Explore the Five Senses. Book 4--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of the five senses. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each…

  10. Upregulation of HIF-1α via activation of ERK and PI3K pathway mediated protective response to microwave-induced mitochondrial injury in neuron-like cells.

    PubMed

    Zhao, Li; Yang, Yue-Feng; Gao, Ya-Bing; Wang, Shui-Ming; Wang, Li-Feng; Zuo, Hong-Yan; Dong, Ji; Xu, Xin-Ping; Su, Zhen-Tao; Zhou, Hong-Mei; Zhu, Ling-Ling; Peng, Rui-Yun

    2014-12-01

    Microwave-induced learning and memory deficits in animal models have been gaining attention in recent years, largely because of increasing public concerns on growing environmental influences. The data from our group and others have showed that the injury of mitochondria, the major source of cellular adenosine triphosphate (ATP) in primary neurons, could be detected in the neuron cells of microwave-exposed rats. In this study, we provided some insights into the cellular and molecular mechanisms behind mitochondrial injury in PC12 cell-derived neuron-like cells. PC12 cell-derived neuron-like cells were exposed to 30 mW/cm(2) microwave for 5 min, and damages of mitochondrial ultrastructure could be observed by using transmission electron microscopy. Impairments of mitochondrial function, indicated by decrease of ATP content, reduction of succinate dehydrogenase (SDH) and cytochrome c oxidase (COX) activities, decrease of mitochondrial membrane potential (MMP), and increase of reactive oxygen species (ROS) production, could be detected. We also found that hypoxia-inducible factor-1 (HIF-1α), a key regulator responsible for hypoxic response of the mammalian cells, was upregulated in microwave-exposed neuron-like cells. Furthermore, HIF-1α overexpression protected mitochondria from injury by increasing the ATP contents and MMP, while HIF-1α silence promoted microwave-induced mitochondrial damage. Finally, we demonstrated that both ERK and PI3K signaling activation are required in microwave-induced HIF-1α activation and protective response. In conclusion, we elucidated a regulatory connection between impairments of mitochondrial function and HIF-1α activation in microwave-exposed neuron-like cells. By modulating mitochondrial function and protecting neuron-like cells against microwave-induced mitochondrial injury, HIF-1α represents a promising therapeutic target for microwave radiation injury.

  11. Smart active multiwave sensing with zero background amplitude modulated probes

    SciTech Connect

    Ruggiero, A.J.; Young, R.A.; Jelsma, L.

    1994-07-01

    Recently, a new approach to multi-wavelength remote sensing has been proposed based on the generation and detection of spectral ``pickets`` synthesized from the frequency filtered bandwidth of a modelocked laser. Using linear array liquid crystal spatial light modulator (SLM) technology for spectral filtering permits real time grey scale control of individual picket amplitudes and phases, making it possible to independently modulate picket characteristics in the kHz to MHz regime. Due to the versatility of this approach, a whole suite of spectroscopies based on detection techniques that are similar to conventional sideband spectroscopies can be implemented. These techniques not only inherit the S/N advantages of their conventional counterparts, they can also be easily extended to simultaneous multi-wavelength operation using frequency multiplex techniques and configured for real time adaptive data acquisition. We report the laboratory demonstration and theoretical development of a new class of zero background AM modulated spectroscopic probes for differential absorption measurements. Preliminary detection sensitivities on the order of 10{sup {minus}6} can be inferred from our measurements. Application of this technique to realistic remote sensing scenarios, advantages over other modulation and direct detection approaches, as well as the present limitations and theoretical limits to detection sensitivity will be discussed.

  12. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, J. A.

    1992-01-01

    Research findings are summarized for projects dealing with the following: application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated Mie scatterers with size distribution and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; theoretical modeling for passive microwave remote sensing of earth terrain; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.

  13. The heat-shock factor is not activated in mammalian cells exposed to cellular phone frequency microwaves.

    PubMed

    Laszlo, Andrei; Moros, Eduardo G; Davidson, Teri; Bradbury, Matt; Straube, William; Roti Roti, Joseph

    2005-08-01

    There has been considerable interest in the biological effects of exposure to radiofrequency electromagnetic radiation, given the explosive growth of cellular telephone use, with the possible induction of malignancy being a significant concern. Thus the determination of whether nonthermal effects of radiofrequency electromagnetic radiation contribute to the process leading to malignancy is an important task. One proposed pathway to malignancy involves the induction of the stress response by exposures to cell phone frequency microwaves. The first step in the induction of the stress response is the activation of the DNA-binding activity of the specific transcription factor involved in this response, the heat-shock factor (HSF). The DNA-binding activity of HSF in hamster, mouse and human cells was determined after acute and continuous exposures to frequency domain multiple access (FDMA)- or code domain multiple access (CDMA)-modulated microwaves at low (0.6 W/kg) or high (approximately 5 W/kg) SARs at frequencies used for mobile communication. The DNA-binding activity of HSF was monitored using a gel shift assay; the calibration of this assay indicated that an increase of approximately 10% in the activation of the DNA-binding activity of HSF after a 1 degrees C increase in temperature could be detected. We failed to detect any increase in the DNA-binding ability of HSF in cultured mammalian cells as a consequence of any exposure tested, within the sensitivity of our assay. Our results do not support the notion that the stress response is activated as a consequence of exposure to microwaves of frequencies associated with mobile communication devices.

  14. Optimization of preparation of activated carbon from cotton stalk by microwave assisted phosphoric acid-chemical activation.

    PubMed

    Deng, Hui; Zhang, Genlin; Xu, Xiaolin; Tao, Guanghui; Dai, Jiulei

    2010-10-15

    The preparation of activated carbon (AC) from cotton stalk was investigated in this paper. Orthogonal array experimental design method was used to optimize the preparation of AC using microwave assisted phosphoric acid. Optimized parameters were radiation power of 400 W, radiation time of 8 min, concentration of phosphoric acid of 50% by volume and impregnation time of 20 h, respectively. The surface characteristics of the AC prepared under optimized condition were examined by pore structure analysis, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Pore structure analysis shows that mecropores constitute more of the porosity of the prepared AC. Compared to cotton stalk, different functionalities and morphology on the carbon surfaces were formed in the prepared process. The adsorption capacity of the AC was also investigated by removing methylene blue (MB) in aqueous solution. The equilibrium data of the adsorption was well fitted to the Langmuir isotherm. The maximum adsorption capacity of MB on the prepared AC is 245.70 mg/g. The adsorption process follows the pseudo-second-order kinetic model.

  15. Microwave ECR Ion Thruster Development Activities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2002-01-01

    Outer solar system missions will have propulsion system lifetime requirements well in excess of that which can be satisfied by ion thrusters utilizing conventional hollow cathode technology. To satisfy such mission requirements, other technologies must be investigated. One possible approach is to utilize electrodeless plasma production schemes. Such an approach has seen low power application less than 1 kW on earth-space spacecraft such as ARTEMIS which uses the rf thruster the RIT 10 and deep space missions such as MUSES-C which will use a microwave ion thruster. Microwave and rf thruster technologies are compared. A microwave-based ion thruster is investigated for potential high power ion thruster systems requiring very long lifetimes.

  16. Synergistic use of Active Passive Remote Sensing in Change Detection

    NASA Astrophysics Data System (ADS)

    Lakshmi, V.; Narayan, U.

    2006-05-01

    Retrieval of soil moisture from low frequency (1-18 GHz) satellite radiometers is well established, however satellite radiometers have the problem of moderately coarse spatial resolution limiting their potential applications such as incorporation of soil moisture estimates in agriculture or initializing mesoscale weather models. Radars are capable of much higher spatial resolution than radiometers especially with synthetic aperture processing. However, retrieval of soil moisture using radar backscattering coefficients is difficult due to more complex signal target interaction associated with measured radar backscatter data. An optimal soil moisture retrieval algorithm that combines the higher spatial resolution of radar with higher sensitivity of a radiometer to arrive at high-resolution soil moisture change developed by the authors has been used in this study. We attempt to derive high resolution change in soil moisture estimates by combining lower resolution (25 km) soil moisture product obtained from the Advanced Microwave Scanning Radiometer (AMSR-E, C- band) with high resolution (4 km) radar backscatter obtained from the Precipitation Radar (PR, Ku- band) aboard the Tropical Rainfall Measuring Mission (TRMM). PR was selected over other operational lower frequency radars (e.g. ERS-1, RADARSAT) because of its high revisit rate, which is important for capturing the temporal variability of soil moisture. The analysis is done for a one year time period and by assigning expected minimum and maximum soil moisture values for each pixel within the study area a time series of absolute soil moisture is obtained for each pixel. The soil moisture time series are qualitatively assessed by comparison with the rainfall rate data product obtained from the TRMM mission, as there are no in situ measurements of soil moisture for validation. The study area for this work is in the African Sahel region selected because of low vegetation cover and high soil moisture variability

  17. A Moderate-resolution Geosynchronous Microwave Sounder

    NASA Technical Reports Server (NTRS)

    Shiue, James

    2004-01-01

    The introduction of microwave radiometers for remote sensing of atmospheric temperature and humidity began in early 1970s, when NASA's Nimbus series experimental satellites tested a number of microwave payloads which are the precursors of today's operational microwave temperature and humidity sounders such as the Advanced Microwave Sounding Unit (AMSU-A and AMSU-B), now flying on several Lower Earth Orbiting (LEO) satellites, notably the National Oceanic and Atmospheric (NOAA)-series weather satellites. The Advanced Technology Microwave Sounder (ATMS) will be the next generation microwave sounder, now being developed by NASA for the future U.S. National Polar-orbiting Operational Environmental Satellites System (NPOESS), slated for operation late this decade. The unique feature of a microwave sensor is its cloud-penetrating capability. And the visible and IR sensors are usually greatly degraded by cloud covers. But under the cloud cover is where the weather can be most "active," and atmospheric measurements are most urgently needed. This unique capability has been well proven by AMSU-A, and AMSU-B on LEO satellites. The same capability is also true for a microwave sounder on a GEO satellite. The key advantage of a sensor on a GEO-platform is its "high temporal resolution." A sensor on a GEO-platform can almost "continuous" monitor a given scene on Earth. On the other hand, the major drawback the GEO-platform is its poor spatial resolution. This is probably the main reason why a geosynchronous microwave sounder has yet to be realized. Take the ATMS as an example. It has a 20 cm diameter antenna (temperature channels), producing a 2.2 degree beam, resulting in a footprint of 32 km (from the NPOESS 833 km orbit). From a GEO-orbit the same 32 km footprint would need an antenna 43 times larger, or 860 cm diameter. We will discuss the needs and advantages of such a GEO-microwave sounder with a straw-man design, and show the expected performance characteristics, such as

  18. Microwave-Hydrothermal Synthesis of SnO2-CNTs Hybrid Nanocomposites with Visible Light Photocatalytic Activity

    PubMed Central

    Wu, Shuisheng; Dai, Weili

    2017-01-01

    SnO2 nanoparticles coated on carbon nanotubes (CNTs) were prepared via a simple microwave-hydrothermal route. The as-obtained SnO2-CNTs composites were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The photocatalytic activity of as-prepared SnO2-CNTs for degradation of Rhodamine B under visible light irradiation was investigated. The results show that SnO2-CNTs nanocomposites have a higher photocatalytic activity than pure SnO2 due to the rapid transferring of electrons and the effective separation of holes and electrons on SnO2-CNTs. PMID:28336888

  19. Microwave-Hydrothermal Synthesis of SnO2-CNTs Hybrid Nanocomposites with Visible Light Photocatalytic Activity.

    PubMed

    Wu, Shuisheng; Dai, Weili

    2017-03-03

    SnO2 nanoparticles coated on carbon nanotubes (CNTs) were prepared via a simple microwave-hydrothermal route. The as-obtained SnO2-CNTs composites were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The photocatalytic activity of as-prepared SnO2-CNTs for degradation of Rhodamine B under visible light irradiation was investigated. The results show that SnO2-CNTs nanocomposites have a higher photocatalytic activity than pure SnO2 due to the rapid transferring of electrons and the effective separation of holes and electrons on SnO2-CNTs.

  20. Botswana water and surface energy balance research program. Part 2: Large scale moisture and passive microwaves

    NASA Technical Reports Server (NTRS)

    Vandegriend, A. A.; Owe, M.; Chang, A. T. C.

    1992-01-01

    The Botswana water and surface energy balance research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. The research program consisted of two major, mutually related components: a surface energy balance modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components are explained in general and activities performed within the passive microwave research component are summarized. The microwave theory is discussed taking into account: soil dielectric constant, emissivity, soil roughness effects, vegetation effects, optical depth, single scattering albedo, and wavelength effects. The study site is described. The soil moisture data and its processing are considered. The relation between observed large scale soil moisture and normalized brightness temperatures is discussed. Vegetation characteristics and inverse modeling of soil emissivity is considered.

  1. Assessment of Anti-Quorum Sensing Activity for Some Ornamental and Medicinal Plants Native to Egypt

    PubMed Central

    Zaki, Ahmed A.; Shaaban, Mona I.; Hashish, Nadia E.; Amer, Mohamed A.; Lahloub, Mohamed-Farid

    2013-01-01

    This study investigated the effects of some plant extracts on the bacterial communication system, expressed as quorum sensing (QS) activity. Quorum sensing has a directly proportional effect on the amount of certain compounds, such as pigments, produced by the bacteria. Alcohol extracts of 23 ornamental and medicinal plants were tested for anti-QS activity by the Chromobacterium violaceum assay using the agar cup diffusion method. The screening revealed the anti-QS activity of six plants; namely the leaves of Adhatoda vasica Nees, Bauhinia purpurea L., Lantana camara L., Myoporum laetum G. Forst.; the fruits of Piper longum L.; and the aerial parts of Taraxacum officinale F.H. Wigg. PMID:23641343

  2. The senses of active and passive forces at the human ankle joint.

    PubMed

    Savage, G; Allen, T J; Proske, U

    2015-07-01

    The traditional view of the neural basis for the sense of muscle force is that it is generated at least in part within the brain. Recently it has been proposed that force sensations do not arise entirely centrally and that there is a contribution from peripheral receptors within the contracting muscle. Evidence comes from experiments on thumb flexor and elbow flexor muscles. Here we have studied the sense of force in plantar flexor muscles of the human ankle, looking for further evidence for such a mechanism. The active angle-torque curve was measured for muscles of both legs, and for each muscle, ankle angles were identified on the ascending and descending limbs of the curve where active forces were similar. In a plantar flexion force matching task, subjects were asked to match the force in one foot, generated on the ascending limb of the curve, with force in the other foot, generated on the descending limb. It was hypothesised that despite active forces being similar, the sensation generated in the more stretched muscle should be greater because of the contribution from its peripheral stretch receptors, leading to an overestimation of the force in the stretched muscle. It was found that provided that the comparison was between active forces, there was no difference in the forces generated by the two legs, supporting the central hypothesis for the sense of force. When total forces were matched, including a component of passive force due to muscle stretch, subjects seemed to ignore the passive component. Yet subjects had an acute sense of passive force, provided that the muscles remained relaxed. It was concluded that subjects had two senses, a sense of active force, generated centrally, and a sense of passive force, or perhaps muscle stretch, generated within the muscle itself.

  3. Microwave-Assisted Simultaneous Extraction of Luteolin and Apigenin from Tree Peony Pod and Evaluation of Its Antioxidant Activity

    PubMed Central

    Wang, Hongzheng; Yang, Lei; Zu, Yuangang; Zhao, Xiuhua

    2014-01-01

    An efficient microwave-assisted extraction (MAE) technique was employed in simultaneous extraction of luteolin and apigenin from tree peony pod. The MAE procedure was optimized using response surface methodology (RSM) and compared with other conventional extraction techniques of macerate extraction (ME) and heat reflux extraction (HRE). The optimal conditions of MAE were as follows: employing 70% ethanol volume fraction as solvent, soaking time of 4 h, liquid-solid ratio of 10 (mL/g), microwave irradiation power of 265 W, microwave irradiation time of 9.6 min, and 3 extraction cycles. Under the optimal conditions, 151 μg/g luteolin and 104 μg/g apigenin were extracted from the tree peony pod. Compared with ME and HRE, MAE gave the highest extraction efficiency. The antioxidant activities of the extracts obtained by MAE, ME, and HRE were evaluated using a 2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH) free radical-scavenging assay, a ferric reducing antioxidant power assay (FRAP), and a reducing power assay. Meanwhile, the structural changes of the unprocessed and processed tree peony pod samples were analyzed by scanning electron microscopy. PMID:25405227

  4. Head-mounted active noise control system with virtual sensing technique

    NASA Astrophysics Data System (ADS)

    Miyazaki, Nobuhiro; Kajikawa, Yoshinobu

    2015-03-01

    In this paper, we apply a virtual sensing technique to a head-mounted active noise control (ANC) system we have already proposed. The proposed ANC system can reduce narrowband noise while improving the noise reduction ability at the desired locations. A head-mounted ANC system based on an adaptive feedback structure can reduce noise with periodicity or narrowband components. However, since quiet zones are formed only at the locations of error microphones, an adequate noise reduction cannot be achieved at the locations where error microphones cannot be placed such as near the eardrums. A solution to this problem is to apply a virtual sensing technique. A virtual sensing ANC system can achieve higher noise reduction at the desired locations by measuring the system models from physical sensors to virtual sensors, which will be used in the online operation of the virtual sensing ANC algorithm. Hence, we attempt to achieve the maximum noise reduction near the eardrums by applying the virtual sensing technique to the head-mounted ANC system. However, it is impossible to place the microphone near the eardrums. Therefore, the system models from physical sensors to virtual sensors are estimated using the Head And Torso Simulator (HATS) instead of human ears. Some simulation, experimental, and subjective assessment results demonstrate that the head-mounted ANC system with virtual sensing is superior to that without virtual sensing in terms of the noise reduction ability at the desired locations.

  5. A self-sensing active magnetic bearing based on a direct current measurement approach.

    PubMed

    Niemann, Andries C; van Schoor, George; du Rand, Carel P

    2013-09-11

    Active magnetic bearings (AMBs) have become a key technology in various industrial applications. Self-sensing AMBs provide an integrated sensorless solution for position estimation, consolidating the sensing and actuating functions into a single electromagnetic transducer. The approach aims to reduce possible hardware failure points, production costs, and system complexity. Despite these advantages, self-sensing methods must address various technical challenges to maximize the performance thereof. This paper presents the direct current measurement (DCM) approach for self-sensing AMBs, denoting the direct measurement of the current ripple component. In AMB systems, switching power amplifiers (PAs) modulate the rotor position information onto the current waveform. Demodulation self-sensing techniques then use bandpass and lowpass filters to estimate the rotor position from the voltage and current signals. However, the additional phase-shift introduced by these filters results in lower stability margins. The DCM approach utilizes a novel PA switching method that directly measures the current ripple to obtain duty-cycle invariant position estimates. Demodulation filters are largely excluded to minimize additional phase-shift in the position estimates. Basic functionality and performance of the proposed self-sensing approach are demonstrated via a transient simulation model as well as a high current (10 A) experimental system. A digital implementation of amplitude modulation self-sensing serves as a comparative estimator.

  6. Sensing network for electromagnetic fields generated by seismic activities

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.

    2014-06-01

    The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.

  7. Discrete random media techniques for microwave modeling of vegetated terrain

    NASA Technical Reports Server (NTRS)

    Lang, Roger H.

    1991-01-01

    Microwave remote sensing models of vegetated terrain are investigated. The problem is to determine canopy characteristics such as biomass, canopy height, and the moisture of the underlying soil. The report describes a discrete scatter model which has been employed to model backscatter in the active (radar) case and to model brightness temperature in the passive (radiometric) case. The acquisition of ground truth data is discussed, as well as the comparison of theory and experiment. The overall conclusion of the work has been that the discrete scatter model in conjunction with efficient scatter algorithms and the distorted Born approximation is a most appropriate methodology to use for modeling purposes in the microwave region.

  8. Characteristics of active spectral sensor for plant sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant stress has been estimated by spectral signature using both passive and active sensors. As optical sensors measure reflected light from a target, changes in illumination conditions critically affect sensor response. Active spectral sensors minimize the illumination effects by producing their ...

  9. The effects of vegetation and soil hydraulic properties on passive microwave sensing of soil moisture: Data report for the 1982 fiels experiments

    NASA Technical Reports Server (NTRS)

    Oneill, P.; Jackson, T.; Blanchard, B. J.; Vandenhoek, R.; Gould, W.; Wang, J.; Glazar, W.; Mcmurtrey, J., III

    1983-01-01

    Field experiments to (1) study the biomass and geometrical structure properties of vegetation canopies to determine their impact on microwave emission data, and (2) to verify whether time series microwave data can be related to soil hydrologic properties for use in soil type classification. Truck mounted radiometers at 1.4 GHz and 5 GHz were used to obtain microwave brightness temperatures of bare vegetated test plots under different conditions of soil wetness, plant water content and canopy structure. Observations of soil moisture, soil temperature, vegetation biomass and other soil and canopy parameters were made concurrently with the microwave measurements. The experimental design and data collection procedures for both experiments are documented and the reduced data are presented in tabular form.

  10. Retrieval of spinach crop parameters by microwave remote sensing with back propagation artificial neural networks: A comparison of different transfer functions

    NASA Astrophysics Data System (ADS)

    Prasad, Rajendra; Pandey, A.; Singh, K. P.; Singh, V. P.; Mishra, R. K.; Singh, D.

    2012-08-01

    Back propagation artificial natural network (BPANN) is a well known and widely used machine learning methodology in the field of remote sensing. In this paper an attempt is made to retrieve the spinach crop parameters like biomass, leaf area index, average plant height and soil moisture content by using the X-band scattering coefficients with BPANN at different growth stages of this crop. The maturity age of this crop was found to be 45 days from the date of sowing. After 45 days from the date of sowing, this crop was cut at a certain height for production. Then, it is a point of interest to investigate the microwave response of variation in production. Significant variations in all the crop parameters were observed after cutting the crop and consequently made the problem more critical. Our work confirms the utility of BPANN in handling such a non-linear data set. The BPANN is essentially a network of simple processing nodes arranged into different layers as input, hidden and the output. The input layer propagates components of a particular input vector after weighting these with synaptic weights to each node in the hidden layer. At each node, these weighted input vector components are added. Each hidden layer computes output corresponding to these weighted sum through a non-linear/linear function (e.g. LOGSIG, TANSIG and PURLIN). These functions are known as transfer functions. Thus, each of the hidden layer nodes compute output values, which become inputs to the nodes of the output layer. At nodes of output layer also a weighted sum of outputs of previous layer (hidden layer) are obtained and processed through a transfer function. Thus, the output layer nodes compute the network output for the particular input vector. In this paper, output nodes use linear transfer function. Different transfer functions e.g. TANSIG, LOGSIG and PURELIN were used and the performance of the ANN was optimized by changing the number of neurons in the hidden layers. The present

  11. Antimicrobial and antibiofilm activity of quorum sensing peptides and Peptide analogues against oral biofilm bacteria.

    PubMed

    LoVetri, Karen; Madhyastha, Srinivasa

    2010-01-01

    Widespread antibiotic resistance is a major incentive for the investigation of novel ways to treat or prevent infections. Much effort has been put into the discovery of peptides in nature accompanied by manipulation of natural peptides to improve activity and decrease toxicity. The ever increasing knowledge about bacteria and the discovery of quorum sensing have presented itself as another mechanism to disrupt the infection process. We have shown that the natural quorum sensing (QS) peptide, competence-stimulating peptide (CSP), used by the caries causing bacteria Streptococcus mutans when used in higher than normally present concentrations can actually contribute to cell death in S. mutans. Using an analogue of this quorum sensing peptide (KBI-3221), we have shown it to be beneficial at decreasing biofilm of various Streptococcus species. This chapter looks at a number of assay methods to test the inhibitory effects of quorum sensing peptides and their analogues on the growth and biofilm formation of oral bacteria.

  12. Remote sensing and image interpretation

    NASA Technical Reports Server (NTRS)

    Lillesand, T. M.; Kiefer, R. W. (Principal Investigator)

    1979-01-01

    A textbook prepared primarily for use in introductory courses in remote sensing is presented. Topics covered include concepts and foundations of remote sensing; elements of photographic systems; introduction to airphoto interpretation; airphoto interpretation for terrain evaluation; photogrammetry; radiometric characteristics of aerial photographs; aerial thermography; multispectral scanning and spectral pattern recognition; microwave sensing; and remote sensing from space.

  13. Zinc activates damage-sensing TRPA1 ion channels

    PubMed Central

    Hu, Hongzhen; Bandell, Michael; Petrus, Matt J.; Zhu, Michael X.; Patapoutian, Ardem

    2009-01-01

    Zinc is an essential biological trace element. It is required for the structure or function of over 300 proteins, and is increasingly recognized for its role in cell signaling. However, high concentrations of zinc have cytotoxic effects, and overexposure to zinc can cause pain and inflammation through unknown mechanisms. Here we show that zinc excites nociceptive somatosensory neurons and causes nociception in mice through TRPA1, a cation channel previously shown to mediate the pungency of wasabi and cinnamon through cysteine-modification. Zinc activates TRPA1 through a novel mechanism that requires zinc influx through TRPA1 channels and subsequent activation via specific intracellular cysteine and histidine residues. TRPA1 is highly sensitive to intracellular zinc, as low nanomolar concentrations activate TRPA1 and modulate its sensitivity. These findings identify TRPA1 as a major target for the sensory effects of zinc, and support an emerging role for zinc as a signaling molecule that can modulate sensory transmission. PMID:19202543

  14. Dynamical quorum sensing and clustering dynamics in a population of spatially distributed active rotators

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Maeyama, Satomi

    2013-02-01

    A model of clustering dynamics is proposed for a population of spatially distributed active rotators. A transition from excitable to oscillatory dynamics is induced by the increase of the local density of active rotators. It is interpreted as dynamical quorum sensing. In the oscillation regime, phase waves propagate without decay, which generates an effectively long-range interaction in the clustering dynamics. The clustering process becomes facilitated and only one dominant cluster appears rapidly as a result of the dynamical quorum sensing. An exact localized solution is found to a simplified model equation, and the competitive dynamics between two localized states is studied numerically.

  15. On the haptic nature of the active electric sense of fish.

    PubMed

    Caputi, Angel A; Aguilera, Pedro A; Carolina Pereira, Ana; Rodríguez-Cattáneo, Alejo

    2013-11-06

    Electroreception is a sensory modality present in chondrichthyes, actinopterygii, amphibians, and mammalian monotremes. The study of this non-intuitive sensory modality has provided insights for better understanding of sensory systems in general and inspired the development of innovative artificial devices. Here we review evidence obtained from the analysis of electrosensory images, neurophysiological data from the recording of unitary activity in the electrosensory lobe, and psychophysical data from analysis of novelty responses provoked in well-defined stimulus conditions, which all confirm that active electroreception has a short range, and that the influence of exploratory movements on object identification is strong. In active electric images two components can be identified: a "global" image profile depending on the volume, shape and global impedance of an object and a "texture" component depending on its surface attributes. There is a short range of the active electric sense and the progressive "blurring" of object image with distance. Consequently, the lack of precision regarding object location, considered together, challenge the current view of this sense as serving long range electrolocation and the commonly used metaphor of "electric vision". In fact, the active electric sense shares more commonalities with human active touch than with teleceptive senses as vision or audition. Taking into account that other skin exteroceptors and proprioception may be congruently stimulated during fish exploratory movements we propose that electric, mechanoceptive and proprioceptive sensory modalities found in electric fish could be considered together as a single haptic sensory system. This article is part of a Special Issue entitled Neural Coding 2012.

  16. Making Sense of Total VET Activity: An Initial Market Analysis

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2016

    2016-01-01

    Following the successful first national publication of total vocational education and training (VET) activity and presentation of various informative data products, NCVER has continued to undertake further analysis of the submitted data. This paper is the first in a suite of the National Centre for Vocational Education Research (NCVER) authored…

  17. Molten salt-supported polycondensation of optically active diacid monomers with an aromatic thiazole-bearing diamine using microwave irradiation

    PubMed Central

    Mallakpour, Shadpour; Zadehnazari, Amin

    2013-01-01

    Microwave heating was used to prepare optically active thiazole-bearing poly(amide-imide)s. Polymerization reactions were carried out in the molten tetrabutylammonium bromide as a green molten salt medium and triphenyl phosphite as the homogenizer. Structural elucidation of the compounds was performed by Fourier transform infrared and NMR spectroscopic data and elemental analysis results. The polymeric samples were readily soluble in various organic solvents, forming low-colored and flexible thin films via solution casting. They showed high thermal stability with decomposition temperature being above 360 °C. They were assembled randomly in a nanoscale size. PMID:25685498

  18. Microwave Oven Observations.

    ERIC Educational Resources Information Center

    Sumrall, William J.; Richardson, Denise; Yan, Yuan

    1998-01-01

    Explains a series of laboratory activities which employ a microwave oven to help students understand word problems that relate to states of matter, collect data, and calculate and compare electrical costs to heat energy costs. (DDR)

  19. Does Active Learning through an Antisense Jigsaw Make Sense?

    NASA Astrophysics Data System (ADS)

    Seetharaman, Mahadevan; Musier-Forsyth, Karin

    2003-12-01

    Three journal articles on nucleic acid antisense modification strategies were assigned to 12 students as part of an active learning "jigsaw" exercise for a graduate-level chemistry course on nucleic acids. Each student was required to read one of the three articles. This assignment was preceded by an hour-long lecture on the basic concepts in antisense antigene technology. On the day of the jigsaw, the students with the same article (three groups of four students) discussed their article briefly, and then formed four new groups where no one had read the same article. Each student spent about five minutes teaching his or her article to the other group members, using specific questions provided to guide the discussion. This exercise laid the foundation for bringing the discussion to the entire class, where most of the students actively participated. To test the students' comprehension of the reading materials, a problem set was designed that required not only an understanding of the three articles, but also application of the concepts learned. The effectiveness of this active learning strategy and its applicability to other topics are discussed in this article.

  20. Quantification of fatigue cracking in CT specimens with passive and active piezoelectric sensing

    NASA Astrophysics Data System (ADS)

    Yu, Jianguo; Ziehl, Paul; Zarate, Boris; Caicedo, Juan; Yu, Lingyu; Giurgiutiu, Victor; Metrovich, Brian; Matta, Fabio

    2010-04-01

    Monitoring of fatigue cracks in steel bridges is of interest to bridge owners and agencies. Monitoring of fatigue cracks has been attempted with acoustic emission using either resonant or broadband sensors. One drawback of passive sensing is that the data is limited to that caused by growing cracks. In this work, passive emission was complemented with active sensing (piezoelectric wafer active sensors) for enhanced detection capabilities. Passive and active sensing methods were described for fatigue crack monitoring on specialized compact tension specimens. The characteristics of acoustic emission were obtained to understand the correlation of acoustic emission behavior and crack growth. Crack and noise induced signals were interpreted through Swansong II Filter and waveform-based approaches, which are appropriate for data interpretation of field tests. Upon detection of crack extension, active sensing was activated to measure the crack size. Model updating techniques were employed to minimize the difference between the numerical results and experimental data. The long term objective of this research is to develop an in-service prognostic system to monitor structural health and to assess the remaining fatigue life.

  1. Investigation of remote sensing techniques of measuring soil moisture

    NASA Technical Reports Server (NTRS)

    Newton, R. W. (Principal Investigator); Blanchard, A. J.; Nieber, J. L.; Lascano, R.; Tsang, L.; Vanbavel, C. H. M.

    1981-01-01

    Major activities described include development and evaluation of theoretical models that describe both active and passive microwave sensing of soil moisture, the evaluation of these models for their applicability, the execution of a controlled field experiment during which passive microwave measurements were acquired to validate these models, and evaluation of previously acquired aircraft microwave measurements. The development of a root zone soil water and soil temperature profile model and the calibration and evaluation of gamma ray attenuation probes for measuring soil moisture profiles are considered. The analysis of spatial variability of soil information as related to remote sensing is discussed as well as the implementation of an instrumented field site for acquisition of soil moisture and meteorologic information for use in validating the soil water profile and soil temperature profile models.

  2. Characterization of Deep Tunneling Activity through Remote-Sensing Techniques

    SciTech Connect

    R. G. Best, P. J. Etzler, and J. D. Bloom

    1997-10-01

    This work is a case study demonstrating the uses of multispectral and multi-temporal imagery to characterize deep tunneling activity. A drainage tunnel excavation in Quincy, MA is the case locality. Data used are aerial photographs (digitized) and Daedalus 3600 MSS image data that were collected in July and October of 1994. Analysis of the data includes thermal characterization, spectral characterization, multi-temporal analysis, and volume estimation using digital DEM generation. The results demonstrate the type of information that could be generated by multispectral, multi-temporal data if the study locality were a clandestine excavation site with restricted surface access.

  3. Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge

    SciTech Connect

    Uma Rani, R.; Adish Kumar, S.; Kaliappan, S.; Yeom, IckTae; Rajesh Banu, J.

    2013-05-15

    Highlights: ► Microwave pretreatment of dairy WAS was studied. ► MW pretreatment at 70% intensity for 12 min, COD solubilization was 18.6%. ► Biogas production and SS reduction was 35% and 14% higher than control. ► In digester at 15 days SRT with medium OLR, SS and VS reduction was 67% and 64%. ► Biogas and methane production was 57% and 49% higher than control, in digesters. - Abstract: Microwave (MW) irradiation is one of the new and possible methods used for pretreating the sludge. Following its use in different fields, this MW irradiation method has proved to be more appropriate in the field of environmental research. In this paper, we focused on the effects of MW irradiation at different intensities on solubilization, biodegradation and anaerobic digestion of sludge from the dairy sludge. The changes in the soluble fractions of the organic matter, the biogas yield, the methane content in the biogas were used as control parameters for evaluating the efficiency of the MW pretreatment. Additionally, the energetic efficiency was also examined. In terms of an energetic aspect, the most economical pretreatment of sludge was at 70% intensity for 12 min irradiation time. At this, COD solubilization, SS reduction and biogas production were found to be 18.6%, 14% and 35% higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein and carbohydrate hydrolysis was also performed successfully by this microwave pretreatment even at low irradiation energy input. Also, experiments were carried out in semi continuous anaerobic digesters, with 3.5 L working volume. Combining microwave pretreatment with anaerobic digestion led to 67%, 64% and 57% of SS reduction, VS reduction and biogas production higher than the control, respectively.

  4. Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge.

    PubMed

    Uma Rani, R; Adish Kumar, S; Kaliappan, S; Yeom, Icktae; Rajesh Banu, J

    2013-05-01

    Microwave (MW) irradiation is one of the new and possible methods used for pretreating the sludge. Following its use in different fields, this MW irradiation method has proved to be more appropriate in the field of environmental research. In this paper, we focused on the effects of MW irradiation at different intensities on solubilization, biodegradation and anaerobic digestion of sludge from the dairy sludge. The changes in the soluble fractions of the organic matter, the biogas yield, the methane content in the biogas were used as control parameters for evaluating the efficiency of the MW pretreatment. Additionally, the energetic efficiency was also examined. In terms of an energetic aspect, the most economical pretreatment of sludge was at 70% intensity for 12 min irradiation time. At this, COD solubilization, SS reduction and biogas production were found to be 18.6%, 14% and 35% higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein and carbohydrate hydrolysis was also performed successfully by this microwave pretreatment even at low irradiation energy input. Also, experiments were carried out in semi continuous anaerobic digesters, with 3.5L working volume. Combining microwave pretreatment with anaerobic digestion led to 67%, 64% and 57% of SS reduction, VS reduction and biogas production higher than the control, respectively.

  5. The analysis of animal bioelectric brain activity influenced by microwaves or by the introduction of strychnine.

    PubMed

    Sidorenko, A V

    1999-02-01

    The widespread impact made by technology has raised concerns about the safety of human exposure to electromagnetic radiation in the environment. The brain is especially sensitive to the influence of microwaves. The most effective method for estimation of the organism's functional states is an analysis of electroencephalograms. The statistical and spectral methods are usually used for analysis of animal electrocorticograms. The information obtained in such way is the integrated character and it is sometimes insufficient for identification of the brain state charging caused by various factors, especially microwaves altering the ecological situation. The nonlinear dynamics method is used in our work concurrent with the spectral correlation method for animal electrocorticogram processing. The correlation dimensionality represents a numerical criterion allowing for comparative investigation of various dynamic states of the system. In the process of investigation, it has been found that the nonlinear dynamics method may be used to analyze the electrocorticograms of experimental animal in different functional states being confirmed by increasing parameter of the correlation dimensionality in electrocorticograms of animal irradiated by microwaves or subjected to the introduction of strychnine.

  6. Interactive Change Detection Using High Resolution Remote Sensing Images Based on Active Learning with Gaussian Processes

    NASA Astrophysics Data System (ADS)

    Ru, Hui; Yu, Huai; Huang, Pingping; Yang, Wen

    2016-06-01

    Although there have been many studies for change detection, the effective and efficient use of high resolution remote sensing images is still a problem. Conventional supervised methods need lots of annotations to classify the land cover categories and detect their changes. Besides, the training set in supervised methods often has lots of redundant samples without any essential information. In this study, we present a method for interactive change detection using high resolution remote sensing images with active learning to overcome the shortages of existing remote sensing image change detection techniques. In our method, there is no annotation of actual land cover category at the beginning. First, we find a certain number of the most representative objects in unsupervised way. Then, we can detect the change areas from multi-temporal high resolution remote sensing images by active learning with Gaussian processes in an interactive way gradually until the detection results do not change notably. The artificial labelling can be reduced substantially, and a desirable detection result can be obtained in a few iterations. The experiments on Geo-Eye1 and WorldView2 remote sensing images demonstrate the effectiveness and efficiency of our proposed method.

  7. Remote sensing of atmospheric water vapor, liquid water, and wind speed at the ocean surface by passive microwave techniques from the Nimbus 5 satellite

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Wilheit, T. T.

    1979-01-01

    The microwave brightness temperature measurements for Nimbus 5 electrically scanned microwave radiometer (ESMR) and Nimbus-E microwave spectrometer (NEMS) are used to retrieve the atmospheric water vapor, liquid water, and wind speed by a quasi-statistical retrieval technique. It is shown that the brightness temperature can be utilized to yield these parameters under various weather conditions. Observations at 19.35, 22.235, and 31.4 GHz were input to the regression equations. The retrieved values of these parameters for portions of two Nimbus 5 orbits are presented. Then comparison between the retrieved parameters and the available observations on the total water vapor content and the surface wind speed are made.

  8. Remote sensing of atmospheric water vapor, liquid water and wind speed at the ocean surface by passive microwave techniques from the Nimbus-5 satellite

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Wilheit, T. T.

    1977-01-01

    The microwave brightness temperature measurements for Nimbus-5 electrically scanned microwave radiometer and Nimbus E microwave spectrometer are used to retrieve the atmospheric water vapor, liquid water and wind speed by a quasi-statistical retrieval technique. It is shown that the brightness temperature can be utilized to yield these parameters under various weather conditions. Observations at 19.35 GHz, 22.235 GHz and 31.4 GHz were input to the regression equations. The retrieved values of these parameters for portions of two Nimbus-5 orbits are presented. Then comparison between the retrieved parameters and the available observations on the total water vapor content and the surface wind speed are made. The estimated errors for retrieval are approximately 0.15 g/sq cm for water vapor content, 6.5 mg/sq cm for liquid water content and 6.6 m/sec for surface wind speed.

  9. Active and Passive Sensing from Geosynchronous and Libration Orbits

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark; Raymond, Carol; Hildebrand, Peter

    2003-01-01

    The development of the LEO (EOS) missions has led the way to new technologies and new science discoveries. However, LEO measurements alone cannot cost effectively produce high time resolution measurements needed to move the science to the next level. Both GEO and the Lagrange points, L1 and L2, provide vantage points that will allow higher time resolution measurements. GEO is currently being exploited by weather satellites, but the sensors currently operating at GEO do not provide the spatial or spectral resolution needed for atmospheric trace gas, ocean or land surface measurements. It is also may be possible to place active sensors in geostationary orbit. It seems clear, that the next era in earth observation and discovery will be opened by sensor systems operating beyond near earth orbit.

  10. Active Planning, Sensing and Recognition Using a Resource-Constrained Discriminant POMDP

    DTIC Science & Technology

    2014-06-28

    ADDRESS. William Marsh Rice University 6100 Main St., MS-16 Houston, TX 77005 -1827 ABSTRACT Active Planning, Sensing and Recognition Using a...Urbana, IL 61801 ‡Dept. of Computer Science, Rice University, Houston, TX 77005 §U.S. Army Research Laboratory, Adelphi, MD 20783 {wang308, zwang119

  11. More than Activities: Using a "Sense of Place" to Enrich Student Experience in Adventure Sport

    ERIC Educational Resources Information Center

    Leather, Mark; Nicholls, Fiona

    2016-01-01

    There has been increasing interest in recent years in the significance of a sense of place in the literature of outdoor adventure education. In the UK relationships between outdoor education and the environment still appear largely focused on the science of the natural environment and the activity in question. In this paper, we present empirical…

  12. Active Teaching Strategies for a Sense of Salience: End-of-Life Communication

    ERIC Educational Resources Information Center

    Kopp, Mary L.

    2013-01-01

    This study compared active teaching strategies with passive lecture by evaluating cognitive, affective, and psychomotor learning outcomes, while highlighting end-of-life communication in nursing education. The problem addressed was twofold: First, passive lecture prevents transfer to situational decision-making, or a sense of salience (Benner,…

  13. Microbial short-chain fatty acid production and extracellular enzymes activities during in vitro fermentation of polysaccharides from the seeds of Plantago asiatica L. treated with microwave irradiation.

    PubMed

    Hu, Jie-Lun; Nie, Shao-Ping; Li, Chang; Fu, Zhi-Hong; Xie, Ming-Yong

    2013-06-26

    Effects of microwave irradiation on microbial short-chain fatty acid production and the activites of extracellular enzymes during in vitro fermentation of the polysaccharide from Plantago asiatica L. were investigated in this study. It was found that the apparent viscosity, average molecular weight, and particle size of the polysaccharide decreased after microwave irradiation. Reducing sugar amount increased with molecular weight decrease, suggesting the degradation may derive from glycosidic bond rupture. The polysaccharide surface topography was changed from large flakelike structure to smaller chips. FT-IR showed that microwave irradiation did not alter the primary functional groups in the polysaccharide. However, short-chain fatty acid productions of the polysaccharide during in vitro fermentation significantly increased after microwave irradiation. Activities of microbial extracellular enzymes xylanase, arabinofuranosidase, xylosidase, and glucuronidase in fermentation cultures supplemented with microwave irradiation treated polysaccharide were also generally higher than those of untreated polysaccharide. This showed that microwave irradiation could be a promising degradation method for the production of value-added polysaccharides.

  14. Models to support active sensing of biological aerosol clouds

    NASA Astrophysics Data System (ADS)

    Brown, Andrea M.; Kalter, Jeffrey M.; Corson, Elizabeth C.; Chaudhry, Zahra; Boggs, Nathan T.; Brown, David M.; Thomas, Michael E.; Carter, Christopher C.

    2013-05-01

    Elastic backscatter LIght Detection And Ranging (LIDAR) is a promising approach for stand-off detection of biological aerosol clouds. Comprehensive models that explain the scattering behavior from the aerosol cloud are needed to understand and predict the scattering signatures of biological aerosols under varying atmospheric conditions and against different aerosol backgrounds. Elastic signatures are dependent on many parameters of the aerosol cloud, with two major components being the size distribution and refractive index of the aerosols. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) has been in a unique position to measure the size distributions of released biological simulant clouds using a wide assortment of aerosol characterization systems that are available on the commercial market. In conjunction with the size distribution measurements, JHU/APL has also been making a dedicated effort to properly measure the refractive indices of the released materials using a thin-film absorption technique and laboratory characterization of the released materials. Intimate knowledge of the size distributions and refractive indices of the biological aerosols provides JHU/APL with powerful tools to build elastic scattering models, with the purpose of understanding, and ultimately, predicting the active signatures of biological clouds.

  15. Microbial growth and quorum sensing antagonist activities of herbal plants extracts.

    PubMed

    Al-Hussaini, Reema; Mahasneh, Adel M

    2009-09-03

    Antimicrobial and antiquorum sensing (AQS) activities of fourteen ethanolic extracts of different parts of eight plants were screened against four Gram-positive, five Gram-negative bacteria and four fungi. Depending on the plant part extract used and the test microorganism, variable activities were recorded at 3 mg per disc. Among the Grampositive bacteria tested, for example, activities of Laurus nobilis bark extract ranged between a 9.5 mm inhibition zone against Bacillus subtilis up to a 25 mm one against methicillin resistant Staphylococcus aureus. Staphylococcus aureus and Aspergillus fumigatus were the most susceptible among bacteria and fungi tested towards other plant parts. Of interest is the tangible antifungal activity of a Tecoma capensis flower extract, which is reported for the first time. However, minimum inhibitory concentrations (MIC's) for both bacteria and fungi were relatively high (0.5-3.0 mg). As for antiquorum sensing activity against Chromobacterium violaceum, superior activity (>17 mm QS inhibition) was associated with Sonchus oleraceus and Laurus nobilis extracts and weak to good activity (8-17 mm) was recorded for other plants. In conclusion, results indicate the potential of these plant extracts in treating microbial infections through cell growth inhibition or quorum sensing antagonism, which is reported for the first time, thus validating their medicinal use.

  16. Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents.

    PubMed

    Saucier, Caroline; Adebayo, Matthew A; Lima, Eder C; Cataluña, Renato; Thue, Pascal S; Prola, Lizie D T; Puchana-Rosero, M J; Machado, Fernando M; Pavan, Flavio A; Dotto, G L

    2015-05-30

    Microwave-induced chemical activation process was used to prepare an activated carbon from cocoa shell for efficient removal of two anti-inflammatories, sodium diclofenac (DFC) and nimesulide (NM), from aqueous solutions. A paste was obtained from a mixture of cocoa shell and inorganic components; with a ratio of inorganic: organic of 1 (CSC-1.0). The mixture was pyrolyzed in a microwave oven in less than 10 min. The CSC-1.0 was acidified with a 6 mol L(-1) HCl under reflux to produce MWCS-1.0. The CSC-1.0 and MWCS-1.0 were characterized using FTIR, SEM, N2 adsorption/desorption curves, X-ray diffraction, and point of zero charge (pHpzc). Experimental variables such as initial pH of the adsorbate solutions and contact time were optimized for adsorptive characteristics of MWCS-1.0. The optimum pH for removal of anti-inflammatories ranged between 7.0 and 8.0. The kinetic of adsorption was investigated using general order, pseudo first-order and pseu do-second order kinetic models. The maximum amounts of DCF and NM adsorbed onto MWCS-1.0 at 25 °C are 63.47 and 74.81 mg g(-1), respectively. The adsorbent was tested on two simulated hospital effluents. MWCS-1.0 is capable of efficient removal of DCF and NM from a medium that contains high sugar and salt concentrations.

  17. Sensing performance of electrically conductive fabrics and dielectric electro active polymers for parachutes

    NASA Astrophysics Data System (ADS)

    Favini, Eric; Niezrecki, Christopher; Manohar, Sanjeev K.; Willis, David; Chen, Julie; Niemi, Eugene; Desabrais, Kenneth; Charette, Christine

    2011-04-01

    This paper quantifies the sensing capabilities of novel smart materials in an effort to improve the performance, better understand the physics, and enhance the safety of parachutes. Based upon a recent review of actuation technologies for parachute applications, it was surmised that the actuators reviewed could not be used to effectively alter the drag or lift (i.e. geometry, porosity, or air vent openings) of a parachute during flight. However, several materials showed potential for sensing applications within a parachute, specifically electrically conductive fabrics and dielectric electro-active polymers. This paper introduces several new conductive fabrics and provides an evaluation of the sensing performance of these smart materials based upon test results using mechanical testing and digital image correlation for comparison.

  18. Structural sensing of interior sound for active control of noise in structural-acoustic cavities.

    PubMed

    Bagha, Ashok K; Modak, S V

    2015-07-01

    This paper proposes a method for structural sensing of acoustic potential energy for active control of noise in a structural-acoustic cavity. The sensing strategy aims at global control and works with a fewer number of sensors. It is based on the established concept of radiation modes and hence does not add too many states to the order of the system. Acoustic potential energy is sensed using a combination of a Kalman filter and a frequency weighting filter with the structural response measurements as the inputs. The use of Kalman filter also makes the system robust against measurement noise. The formulation of the strategy is presented using finite element models of the system including that of sensors and actuators so that it can be easily applied to practical systems. The sensing strategy is numerically evaluated in the framework of Linear Quadratic Gaussian based feedback control of interior noise in a rectangular box cavity with a flexible plate with single and multiple pairs of piezoelectric sensor-actuator patches when broadband disturbances act on the plate. The performance is compared with an "acoustic filter" that models the complete transfer function from the structure to the acoustic domain. The sensing performance is also compared with a direct estimation strategy.

  19. A novel algorithm for monitoring reservoirs under all-weather conditions at a high temporal resolution through passive microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Gao, Huilin

    2016-08-01

    Flood mitigation in developing countries has been hindered by a lack of near real-time reservoir storage information at high temporal resolution. By leveraging satellite passive microwave observations over a reservoir and its vicinity, we present a globally applicable new algorithm to estimate reservoir storage under all-weather conditions at a 4 day time step. A weighted horizontal ratio (WHR) based on the brightness temperatures at 36.5 GHz is introduced, with its coefficients calibrated against an area training data set over each reservoir. Using a predetermined area-elevation (A-H) relationship, these coefficients are then applied to the microwave data to calculate the storage. Validation results over four reservoirs in South Asia indicate that the microwave-based storage estimations (after noise reduction) perform well (with coefficients of determination ranging from 0.41 to 0.74). This is the first time that passive microwave observations are fused with other satellite data for quantifying the storage of individual reservoirs.

  20. Analysis of stability and type-independence of three density-independent calibration functions for microwave moisture sensing in shelled and unshelled peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A microwave dielectric method was used for nondestructive and instantaneous determination of moisture content in shelled and unshelled peanuts of various types from transmission measurements of their relative complex permittivities in free space at 23 °C between 5 and 15 GHz. Moisture content was es...

  1. Does dystonic muscle activity affect sense of effort in cervical dystonia?

    PubMed Central

    Carment, Loïc; Maier, Marc A.; Sangla, Sophie; Guiraud, Vincent; Mesure, Serge; Vidailhet, Marie

    2017-01-01

    Background Focal dystonia has been associated with deficient processing of sense of effort cues. However, corresponding studies are lacking in cervical dystonia (CD). We hypothesized that dystonic muscle activity would perturb neck force control based on sense of effort cues. Methods Neck extension force control was investigated in 18 CD patients with different clinical features (7 with and 11 without retrocollis) and in 19 control subjects. Subjects performed force-matching and force-maintaining tasks at 5% and 20% of maximum voluntary contraction (MVC). Three task conditions were tested: i) with visual force feedback, ii) without visual feedback (requiring use of sense of effort), iii) without visual feedback, but with neck extensor muscle vibration (modifying muscle afferent cues). Trapezius muscle activity was recorded using electromyography (EMG). Results CD patients did not differ in task performance from healthy subjects when using visual feedback (ANOVA, p>0.7). In contrast, when relying on sense of effort cues (without visual feedback, 5% MVC), force control was impaired in patients without retrocollis (p = 0.006), but not in patients with retrocollis (p>0.2). Compared to controls, muscle vibration without visual feedback significantly affected performance in patients with retrocollis (p<0.001), but not in patients without retrocollis. Extensor EMG during rest, included as covariate in ANOVA, explained these group differences. Conclusion This study shows that muscle afferent feedback biases sense of effort cues when controlling neck forces in patients with CD. The bias acts on peripheral or central sense of effort cues depending on whether the task involves dystonic muscles. This may explain why patients with retrocollis more accurately matched isometric neck extension forces. This highlights the need to consider clinical features (pattern of dystonic muscles) when evaluating sensorimotor integration in CD. PMID:28192488

  2. Soil Moisture Active Passive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration

    NASA Technical Reports Server (NTRS)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; Misra, Sidharth; Dinnat, Emmanuel P.; Hudson, Derek; Le Vine, David M.; De Amici, Giovanni; Mohammed, Priscilla N.; Yueh, Simon H.; Meissner, Thomas

    2016-01-01

    The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earth's surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements.

  3. Cloud and Radiation Mission with Active and Passive Sensing from the Space Station

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1998-01-01

    A cloud and aerosol radiative forcing and physical process study involving active laser and radar profiling with a combination of passive radiometric sounders and imagers would use the space station as an observation platform. The objectives are to observe the full three dimensional cloud and aerosol structure and the associated physical parameters leading to a complete measurement of radiation forcing processes. The instruments would include specialized radar and lidar for cloud and aerosol profiling, visible, infrared and microwave imaging radiometers with comprehensive channels for cloud and aerosol observation and specialized sounders. The low altitude,. available power and servicing capability of the space station are significant advantages for the active sensors and multiple passive instruments.

  4. Embodied information processing: vibrissa mechanics and texture features shape micromotions in actively sensing rats.

    PubMed

    Ritt, Jason T; Andermann, Mark L; Moore, Christopher I

    2008-02-28

    Peripheral sensory organs provide the first transformation of sensory information, and understanding how their physical embodiment shapes transduction is central to understanding perception. We report the characterization of surface transduction during active sensing in the rodent vibrissa sensory system, a widely used model. Employing high-speed videography, we tracked vibrissae while rats sampled rough and smooth textures. Variation in vibrissa length predicted motion mean frequencies, including for the highest velocity events, indicating that biomechanics, such as vibrissa resonance, shape signals most likely to drive neural activity. Rough surface contact generated large amplitude, high-velocity "stick-slip-ring" events, while smooth surfaces generated smaller and more regular stick-slip oscillations. Both surfaces produced velocities exceeding those applied in reduced preparations, indicating active sensation of surfaces generates more robust drive than previously predicted. These findings demonstrate a key role for embodiment in vibrissal sensing and the importance of input transformations in sensory representation.

  5. Microwave-assisted synthesis of CdO-ZnO nanocomposite and its antibacterial activity against human pathogens

    NASA Astrophysics Data System (ADS)

    Karthik, K.; Dhanuskodi, S.; Gobinath, C.; Sivaramakrishnan, S.

    2015-03-01

    CdO-ZnO nanocomposite was prepared by microwave-assisted method and characterized by X-ray crystallography (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FT-IR). It exhibits hexagonal cubic structure with an average crystallite size of 27 nm. From the UV-Vis spectra, the bandgap is estimated as 2.92 eV. The fluorescence spectrum shows a near band edge emission at 422 nm. In addition the antibacterial activity of CdO-ZnO nanocomposite was carried out in-vitro against two kinds of bacteria: gram negative bacteria (G -ve) i.e. Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and gram positive bacteria (G +ve): Staphylococcus aureus, Proteus vulgaris and Bacillus spp. This study indicates the zone of inhibition of 40 mm has high antibacterial activity towards the gram positive bacterium S. aureus.

  6. Microwave-assisted synthesis of CdO-ZnO nanocomposite and its antibacterial activity against human pathogens.

    PubMed

    Karthik, K; Dhanuskodi, S; Gobinath, C; Sivaramakrishnan, S

    2015-03-15

    CdO-ZnO nanocomposite was prepared by microwave-assisted method and characterized by X-ray crystallography (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FT-IR). It exhibits hexagonal cubic structure with an average crystallite size of 27 nm. From the UV-Vis spectra, the bandgap is estimated as 2.92 eV. The fluorescence spectrum shows a near band edge emission at 422 nm. In addition the antibacterial activity of CdO-ZnO nanocomposite was carried out in-vitro against two kinds of bacteria: gram negative bacteria (G -ve) i.e. Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and gram positive bacteria (G +ve): Staphylococcus aureus, Proteus vulgaris and Bacillus spp. This study indicates the zone of inhibition of 40 mm has high antibacterial activity towards the gram positive bacterium S. aureus.

  7. Microwave-assisted synthesis, characterization and biological activities of organotin (IV) complexes with some thio Schiff bases

    NASA Astrophysics Data System (ADS)

    Singh, Ran Vir; Chaudhary, Pratibha; Chauhan, Shikha; Swami, Monika

    2009-03-01

    Microwave-assisted synthesis and characterization of the organotin (IV) complexes are reported. Trigonal bipyramidal and octahedral complexes of tin (IV) have been synthesized by the reaction of dimethyltin (IV) dichloride with 4-nitrobenzanilide- S-benzyldithiocarbazate (L 1H), 4-chlorobenzanilide- S-benzyldithiocarbazate (L 2H), 4-nitrobenzanilidebenzothiazoline (L 3H) and 4-chlorobenzanilidebenzothiazoline (L 4H). The complexes so formed were characterized by elemental analysis, conductance measurements, molecular weight determinations and spectral data viz. IR, UV-Visible, 1H and 13C NMR. The anti-microbial activities of the ligands and their corresponding organotin (IV) complexes have been screened against various strains of bacteria and fungi. Antifertility activity against male albino rats has also been reported.

  8. Removal of Pb(II) from water by the activated carbon modified by nitric acid under microwave heating.

    PubMed

    Yao, Shuheng; Zhang, Jiajun; Shen, Dekui; Xiao, Rui; Gu, Sai; Zhao, Ming; Liang, Junyu

    2016-02-01

    The rice husk based activated carbon (RH-AC) was treated by nitric acid under microwave heating, in order to improve its capability for the removal of heavy metal ions from water. The optimal conditions for the modification of RH-AC (M-RH-AC) were determined by means of orthogonal array experimental design, giving those as the concentration of nitric acid of 8mol/L, modification time of 15min, modification temperature of 130°C and microwave power of 800W. The characteristics of the M-RH-AC and RH-AC were examined by BET, XRD, Raman spectrum, pH titration, zeta potential, Boehm titration and FTIR analysis. The M-RH-AC has lower pore surface area, smaller crystallite, lower pHIEP and more oxygen-containing functional groups than the RH-AC. Removal capacity of Pb(II) ions by the M-RH-AC and RH-AC from water solution was estimated concerning the influence of contact time, pH value, and initial concentration. The equilibrium time of Pb(II) removal was found to be around 90min after modification process. Two kinetic models are adopted to describe the possible Pb(II) adsorption mechanism, finding that the adsorption rate of Pb(II) ions by the M-RH-AC is larger than that of RH-AC.

  9. Fusion of Active and Passive Microwave Observations to Create AN Essential Climate Variable Data Record on Soil Moisture

    NASA Astrophysics Data System (ADS)

    Wagner, W.; Dorigo, W.; de Jeu, R.; Fernandez, D.; Benveniste, J.; Haas, E.; Ertl, M.

    2012-07-01

    Soil moisture was recently included in the list of Essential Climate Variables (ECVs) that are deemed essential for IPCC (Intergovernmental Panel on Climate Change) and UNFCCC (United Nations Framework Convention on Climate Change) needs and considered feasible for global observation. ECVs data records should be as long, complete and consistent as possible, and in the case of soil moisture this means that the data record shall be based on multiple data sources, including but not limited to active (scatterometer) and passive (radiometer) microwave observations acquired preferably in the low-frequency microwave range. Among the list of sensors that can be used for this task are the C-band scatterometers on board of the ERS and METOP satellites and the multi-frequency radiometers SMMR, SSM/I, TMI, AMSR-E, and Windsat. Together, these sensors already cover a time period of more than 30 years and the question is how can observations acquired by these sensors be merged to create one consistent data record? This paper discusses on a high-level possible approaches for fusing the individual satellite data. It is argued that the best possible approach for the fusion of the different satellite data sets is to merge Level 2 soil moisture data derived from the individual satellite data records. This approach has already been demonstrated within the WACMOS project (http://wacmos.itc.nl/) funded by European Space Agency (ESA) and will be further improved within the Climate Change Initiative (CCI) programme of ESA (http://www.esa-cci.org/).

  10. Microwave assisted synthesis of sheet-like Cu/BiVO{sub 4} and its activities of various photocatalytic conditions

    SciTech Connect

    Chen, Xi; Li, Li; Yi, Tingting; Zhang, WenZhi; Zhang, Xiuli; Wang, Lili

    2015-09-15

    The Cu/BiVO{sub 4} photocatalyst with visible-light responsivity was prepared by the microwave-assisted hydrothermal method. The phase structures, chemical composition and surface physicochemical properties were well-characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance absorption (UV–vis/DRS), scanning electron microscopy (SEM), and N{sub 2} adsorption–desorption tests. Results indicate that the crystal structure of synthetic composite materials is mainly monoclinic scheelite BiVO{sub 4}, which is not changed with the increasing doping amount of Cu. In addition, the presence of Cu not only enlarges the range of the composite materials under the visible-light response, but also increases the BET value significantly. Compared to pure BiVO{sub 4}, 1% Cu/BiVO{sub 4}-160 performs the highest photocatalytic activity to degrade methylene blue under the irradiation of ultraviolet, visible and simulated sunlight. In addition, the capture experiments prove that the main active species was superoxide radicals during photocatalytic reaction. Moreover, the 1% Cu/BiVO{sub 4}-160 composite shows good photocatalytic stability after three times of recycling. - Graphical abstract: A series of BiVO{sub 4} with different amounts of Cu doping were prepared by the microwave-assisted method, moreover, which performed the high photocatalytic activities to degrade methylene blue under multi-mode. - Highlights: • A series of Cu/BiVO{sub 4} with different amounts of Cu doping were prepared by microwave-assisted synthesis. • The morphologies of as-samples were different with the amount of Cu doping increased. • Compared with pure BiVO{sub 4}, as-Cu/BiVO{sub 4} showed stronger absorption in the visible light region obviously. • 1% Cu/BiVO{sub 4}-160 performed the high photocatalytic activities to degrade methylene blue under multi-mode. • OH{sup •} and h{sup +} both play important roles in the photocatalytic reaction.

  11. Comparison of essential oil composition and antimicrobial activity of Coriandrum sativum L. extracted by hydrodistillation and microwave-assisted hydrodistillation.

    PubMed

    Sourmaghi, Mohammad Hossein Salehi; Kiaee, Gita; Golfakhrabadi, Fereshteh; Jamalifar, Hossein; Khanavi, Mahnaz

    2015-04-01

    Coriander (Coriandrum sativum L.), is an annual herb in the Apiaceae family which disperses in Mediterranean and Middle Eastern regions. The Coriander essential oil has been used in food products, perfumes, cosmetics and pharmaceutical industries for its flavor and odor. In Iran, fruits of Coriander used in pickle, curry powders, sausages, cakes, pastries, biscuits and buns. The aim of this study was to investigate microwave radiation effects on quality, quantity and antimicrobial activity of essential oil of Coriander fruits. The essential oils were obtained from the Coriander fruits by hydrodistillation (HD) and Microwave-assisted hydrodistillation (MAHD) then, the oils were analyzed by GC and GC-MS. Antimicrobial activities of essential oils were evaluated against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans by microdilution method. The results indicated that the HD and MAHD essential oils (EO) were dominated by monoterpenoids such as linalool, geranyl acetate and γ-terpinene. The major compound in both EO was linalool which its amount in HD and MAHD was 63 % and 66 %, respectively. The total amount of monoterpenes hydrocarbons in HD EO differ significantly with the amount in MAHD EO (12.56 % compare to 1.82 %). HD EO showed greater activity against Staphylococcus aureus and Candida albicans than MAHD EO. Moreover, their activities against Ecoli and P. aeruginosa were the same with Minimum Inhibitory Concentration (MIC) 0.781 and 6.25 μL mL(-1), respectively. By using MAHD method, it was superior in terms of saving energy and extraction time, although the oil yield and total composition decrease by using this method.

  12. A comparative study on the effect of conventional thermal pasteurisation, microwave and ultrasound treatments on the antioxidant activity of five fruit juices.

    PubMed

    Saikia, Sangeeta; Mahnot, Nikhil Kumar; Mahanta, Charu Lata

    2016-06-01

    A comparative study on the effect of conventional thermal pasteurisation, microwave and ultrasound treatments on the phytochemical and antioxidant activities of juices from carambola (Averrhoa carambola L.), black jamun (Syzygium cumuni L.Skeels.), watermelon (Citrullus lanatus var lanatus), pineapple (Ananas comosus L. Merr) and litchi (Litchi chinensis Sonn.) was carried out. Depending on the type of fruit sample and treatment, increase or decrease in phytochemical values was observed. Overall, sonication had a positive effect on the total flavonoid content in all the juice samples followed by microwave treatment with exceptions in some cases. High-performance liquid chromatography study showed the presence of different phenolic acids depending on the sample type. The phenolic acids in some processed carambola juice samples showed decrease or complete destruction, while in some cases, an increase or appearance of newer phenolic acid originally not detected in the fresh juice was observed as seen in conventional thermal pasteurisation, microwaved at 600 W and sonicated juices. Both microwaved and sonicated samples were found to have positive effect on the phenolic content and antioxidant activity with exceptions in some cases. Therefore, microwave and sonication treatment could be used in place of thermal pasteurisation depending on the sample requirements.

  13. Active and Passive Microwave Determination of the Circulation and Characteristics of Weddell and Ross Sea Ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.; Liu, Xiang

    2000-01-01

    A combination of satellite microwave data sets are used in conjunction with ECMWF (Medium Range Weather Forecasts) and NCEP (National Center for Environment Prediction) meteorological analysis fields to investigate seasonal variability in the circulation and sea-ice dynamics of the Weddell and Ross Seas. Results of sea-ice tracking using SSM/I (Special Sensor Microwave Imager), Scatterometer and SAR images are combined with in-situ data derived from Argos buoys and GPS drifters to validate observed drift patterns. Seasonal 3-month climatologies of ice motion and drift speed variance illustrate the response of the sea-ice system to seasonal forcing. A melt-detection algorithm is used to track the onset of seasonal melt, and to determine the extent and duration of atmospherically-led surface melting during austral summer. Results show that wind-driven drift regulates the seasonal distribution and characteristics of sea-ice and the intensity of the cyclonic Gyre circulation in these two regions.

  14. Analysis of interference to remote passive microwave sensors

    NASA Technical Reports Server (NTRS)

    Boyd, Douglas; Tillotson, Tom

    1986-01-01

    The final acts of the 1979 World Administrative Radio Conference (WARC) were analyzed to determine potential interference to remote passive microwave sensors. Using interferer populations determined from the U.S. Government and FCC Master File Lists and assuming uniform geographical distribution of interferers, the level of interference from shared services and active services in adjacent and subharmonic bands was calculated for each of the 22 passive sensing bands. In addition, due to the theoretically large antennas required for passive sensing, an analysis was performed to determine if smaller antennas, i.e., relaxed resolution requirements, would have an effect on interference and to what extent.

  15. A multi-mode sensing system for corrosion detection using piezoelectric wafer active sensors

    NASA Astrophysics Data System (ADS)

    Yu, Lingyu; Giurgiutiu, Victor; Pollock, Patrick

    2008-03-01

    As an emerging technology for in-situ damage detection and nondestructive evaluation, structural health monitoring with active sensors (active SHM) plays as a promising candidate for the pipeline inspection and diagnosis. Piezoelectric wafer active sensor (PWAS), as an active sensing device, can be permanently attached to the structure to interrogate it at will and can operate in propagating wave mode or electromechanical impedance mode. Its small size and low cost (about $10 each) make itself a potential and unique technology for in-situ SHM application. The objective of the research in this paper is to develop a permanently installed in-situ "multi-mode" sensing system for the corrosion monitoring and prediction of critical pipeline systems. Such a system is used during in-service period, recording and monitoring the changes of the pipelines over time, such as corrosion, wall thickness, etc. Having the real-time data available, maintenance strategies based on these data can then be developed to ensure a safe and less expensive operation of the pipeline systems. After a detailed review of PWAS SHM methods, including ultrasonic, impedance, and thickness measurement, we introduce the concept of PWAS-based multi-mode sensing approach for corrosion detection in pipelines. Particularly, we investigate the potential for using PWAS waves for in thickness mode experimentally. Finally, experiments are conducted to verify the corrosion detection ability of the PWAS network in both metallic plate and pipe in a laboratory setting. Results show successful corrosion localization in both tests.

  16. Concurrent remote sensing of Arctic sea ice from submarine and aircraft

    NASA Technical Reports Server (NTRS)

    Wadhams, P.; Davis, N. R.; Comiso, J. C.; Kutz, R.; Crawford, J.; Jackson, G.; Krabill, W.; Sear, C. B.; Swift, R.; Tucker, W. B., III

    1991-01-01

    In May 1987 a concurrent remote sensing study of Arctic sea ice from above and below was carried out. A submarine equipped with sidescan and upward looking sonar collaborated with two remote sensing aircraft equipped with passive microwave, synthetic aperture radar (SAR), a laser profilometer and an infrared radiometer. By careful registration of the three tracks it has been possible to find relationships between ice type, ice morphology and thickness, SAR backscatter and microwave brightness temperatures. The key to the process has been the sidescan sonar's ability to identify ice type through differences in characteristic topography. Over a heavily ridged area of mainly multiyear ice there is a strong positive correlation between SAR backscatter and ice draft or elevation. It was also found that passive and active microwave complement each other in that SAR has a high contrast between open water and multiyear ice, while passive microwave has a high contrast between open water and first-year ice.

  17. Inexpensive Microwave Moisture Sensor for Granular Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A prototype microwave moisture sensor is described that was assembled from relatively inexpensive microwave components and tested for sensing moisture content in corn and wheat. Components include off-the-shelf voltage-controlled oscillator, isolator, power splitter, two 19-dBi microstrip patch ant...

  18. Interferometric Synthetic Aperture Microwave Radiometers : an Overview

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; McKague, Darren

    2011-01-01

    This paper describes 1) the progress of the work of the IEEE Geoscience and Remote Sensing Society (GRSS) Instrumentation and Future Technologies Technical Committee (IFT-TC) Microwave Radiometer Working Group and 2) an overview of the development of interferometric synthetic aperture microwave radiometers as an introduction to a dedicated session.

  19. Remote Sensing and Remote Control Activities in Europe and America: Part 2--Remote Sensing Ground Stations in Europe,

    DTIC Science & Technology

    2007-11-02

    Development tasks and products of remote sensing ground stations in Europe are represented by the In-Sec Corporation and the Schlumberger Industries Corporation. The article presents the main products of these two corporations.

  20. Facile One-Step Microwave-Assisted Route towards Ni Nanospheres/Reduced Graphene Oxide Hybrids for Non-Enzymatic Glucose Sensing

    PubMed Central

    Wang, Zhigang; Hu, Yong; Yang, Wenlong; Zhou, Mojiao; Hu, Xiao

    2012-01-01

    In this work, a facile one-step microwave-assisted method for deposition of monodisperse Ni nanospheres on reduced graphene oxide (rGO) sheets to form Ni-rGO nanohybrids is discussed. In the presence of hydrazine monohydrate, Ni nanospheres are grown onto rGO sheets using nickel precursor and GO as starting materials in ethylene glycol (EG) solution under a low level of microwave irradiation (300 W) for 20 min, during which GO is also reduced to rGO. The as-prepared nanohybrids exhibit well-dispersed Ni nanosphere (about 80 nm in diameter) loadings and effective reduction of graphene oxide. The resulting Ni-rGO nanohybrids-modified glassy carbon electrode (GCE) shows significantly improved electrochemical performance in nonenzymatic amperometric glucose detection. In addition, interference from the oxidation of common interfering species under physiological conditions, such as ascorbic acid (AA) and uric acid (UA), is effectively avoided. PMID:22666063