Science.gov

Sample records for active microwave soil

  1. Utilization of active microwave roughness measurements to improve passive microwave soil moisture estimates over bare soils

    NASA Technical Reports Server (NTRS)

    Theis, S. W.; Blanchard, B. J.; Blanchard, A. J.

    1984-01-01

    Multisensor aircraft data were used to establish the potential of the active microwave sensor response to be used to compensate for roughness in the passive microwave sensor's response to soil moisture. Only bare fields were used. It is found that the L-band radiometer's capability to estimate soil moisture significantly improves when surface roughness is accounted for with the scatterometers.

  2. Utilization of active microwave roughness measurements to improve passive microwave soil moisture estimates over bare soils

    NASA Technical Reports Server (NTRS)

    Theis, S. W.; Blanchard, A. J.; Blanchard, B. J.

    1986-01-01

    Multisensor aircraft data were used to establish the potential of the active microwave sensor response to be used to compensate for roughness in the passive microwave sensor's response to soil moisture. Only bare fields were used. It is found that the L-band radiometer's capability to estimate soil moisture significantly improves when surface roughness is accounted for with the scatterometers.

  3. Assimilation of Passive and Active Microwave Soil Moisture Retrievals

    NASA Technical Reports Server (NTRS)

    Draper, C. S.; Reichle, R. H.; DeLannoy, G. J. M.; Liu, Q.

    2012-01-01

    Root-zone soil moisture is an important control over the partition of land surface energy and moisture, and the assimilation of remotely sensed near-surface soil moisture has been shown to improve model profile soil moisture [1]. To date, efforts to assimilate remotely sensed near-surface soil moisture at large scales have focused on soil moisture derived from the passive microwave Advanced Microwave Scanning Radiometer (AMSR-E) and the active Advanced Scatterometer (ASCAT; together with its predecessor on the European Remote Sensing satellites (ERS. The assimilation of passive and active microwave soil moisture observations has not yet been directly compared, and so this study compares the impact of assimilating ASCAT and AMSR-E soil moisture data, both separately and together. Since the soil moisture retrieval skill from active and passive microwave data is thought to differ according to surface characteristics [2], the impact of each assimilation on the model soil moisture skill is assessed according to land cover type, by comparison to in situ soil moisture observations.

  4. Active microwave measurement of soil water content

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Cihlar, J.; Moore, R. K.

    1974-01-01

    Measurements of radar backscatter from bare soil at 4.7, 5.9, and 7.1 GHz for incident angles of 0-70 deg have been analyzed to determine sensitivity to soil moisture. Because the effective depth of penetration of the radar signal is only about one skin depth, the observed signals were correlated with the moisture in a skin depth as characterized by the attenuation coefficient (reciprocal of skin depth). Since the attenuation coefficient is a monotonically increasing function of moisture density, it may also be used as a measure of moisture content over the distance involved, which varies with frequency and moisture content. The measurements show an approximately linear increase in scattering with attenuation coefficient of the soil at angles within 10 deg of vertical and all frequencies. At 4.7 GHz this increase continues relatively large out to 70 deg incidence, but by 7.1 GHz the sensitivity is much less even at 20 deg and practically gone at 50 deg.

  5. Assimilation of passive and active microwave soil moisture retrievals

    NASA Astrophysics Data System (ADS)

    Draper, C. S.; Reichle, R. H.; De Lannoy, G. J. M.; Liu, Q.

    2012-02-01

    Near-surface soil moisture observations from the active microwave ASCAT and the passive microwave AMSR-E satellite instruments are assimilated, both separately and together, into the NASA Catchment land surface model over 3.5 years using an ensemble Kalman filter. The impact of each assimilation is evaluated using in situ soil moisture observations from 85 sites in the US and Australia, in terms of the anomaly time series correlation-coefficient, R. The skill gained by assimilating either ASCAT or AMSR-E was very similar, even when separated by land cover type. Over all sites, the mean root-zone R was significantly increased from 0.45 for an open-loop, to 0.55, 0.54, and 0.56 by the assimilation of ASCAT, AMSR-E, and both, respectively. Each assimilation also had a positive impact over each land cover type sampled. For maximum accuracy and coverage it is recommended that active and passive microwave observations be assimilated together.

  6. Active and passive microwave measurements of soil moisture in FIFE

    SciTech Connect

    Wang, J.R. ); Gogineni, S.P.; Ampe, J. )

    1992-11-30

    This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. This paper reports on the application of active and passive microwave measurement systems to the simultaneous determination of soil moisture. These systems have been tested on common targets very few times. Here C and X band scatterometer data from a helicopter base is compared with L band push broom microwave radiometer (PBMR) data taken from the NASA C-130 aircraft. The regions sampled over FIFE encompass areas with different surface treatments. The scatterometers proved to be sensitive to soil moisture over most of the areas studied, while the radiometer lost sensitivity in regions which had been unburned for years, and which thus had substantial dead organic accumulation. The correlation of soil moisture and backscattered signal was observed to increase with off normal angles.

  7. Active microwaves

    NASA Technical Reports Server (NTRS)

    Evans, D.; Vidal-Madjar, D.

    1994-01-01

    Research on the use of active microwaves in remote sensing, presented during plenary and poster sessions, is summarized. The main highlights are: calibration techniques are well understood; innovative modeling approaches have been developed which increase active microwave applications (segmentation prior to model inversion, use of ERS-1 scatterometer, simulations); polarization angle and frequency diversity improves characterization of ice sheets, vegetation, and determination of soil moisture (X band sensor study); SAR (Synthetic Aperture Radar) interferometry potential is emerging; use of multiple sensors/extended spectral signatures is important (increase emphasis).

  8. [Microwave thermal remediation of soil contaminated with crude oil enhanced by granular activated carbon].

    PubMed

    Li, Da-Wei; Zhang, Yao-Bin; Quan, Xie; Zhao, Ya-Zhi

    2009-02-15

    The advantage of rapid, selective and simultaneous heating of microwave heating technology was taken to remediate the crude oil-contaminated soil rapidly and to recover the oil contaminant efficiently. The contaminated soil was processed in the microwave field with addition of granular activated carbon (GAC), which was used as strong microwave absorber to enhance microwave heating of the soil mixture to remove the oil contaminant and recover it by a condensation system. The influences of some process parameters on the removal of the oil contaminant and the oil recovery in the remediation process were investigated. The results revealed that, under the condition of 10.0% GAC, 800 W microwave power, 0.08 MPa absolute pressure and 150 mL x min(-1) carrier gas (N2) flow-rate, more than 99% oil removal could be obtained within 15 min using this microwave thermal remediation enhanced by GAC; at the same time, about 91% of the oil contaminant could be recovered without significant changes in chemical composition. In addition, the experiment results showed that GAC can be reused in enhancing microwave heating of soil without changing its enhancement efficiency obviously.

  9. Synergistic use of active and passive microwave in soil moisture estimation

    NASA Technical Reports Server (NTRS)

    O'Neill, P.; Chauhan, N.; Jackson, T.; Saatchi, S.

    1992-01-01

    Data gathered during the MACHYDRO experiment in central Pennsylvania in July 1990 have been utilized to study the synergistic use of active and passive microwave systems for estimating soil moisture. These data sets were obtained during an eleven-day period with NASA's Airborne Synthetic Aperture Radar (AIRSAR) and Push-Broom Microwave Radiometer (PBMR) over an instrumented watershed which included agricultural fields with a number of different crop covers. Simultaneous ground truth measurements were also made in order to characterize the state of vegetation and soil moisture under a variety of meteorological conditions. A combination algorithm is presented as applied to a representative corn field in the MACHYDRO watershed.

  10. Assimilation of active and passive microwave observations for improved estimates of soil moisture and crop growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Ensemble Kalman Filter-based data assimilation framework that links a crop growth model with active and passive (AP) microwave models was developed to improve estimates of soil moisture (SM) and vegetation biomass over a growing season of soybean. Complementarities in AP observations were incorpo...

  11. Passive/Active Microwave Soil Moisture Disaggregation Using SMAPVEX12 Data

    NASA Astrophysics Data System (ADS)

    Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T. J.; Colliander, A.

    2015-12-01

    The SMAPVEX12 experiment was conducted during June-July 2012 in Manitoba, Canada with the goal of collecting remote sensing data and ground measurements for the development and testing of soil moisture retrieval algorithms under different vegetation and soil conditions for the SMAP (Soil Moisture Active Passive) satellite launched in January 2015. The aircraft based soil moisture data provided by the passive/active microwave sensor PALS (Passive and Active L and S band System) has a nominal spatial resolution of 1500 m. In this study, a change detection algorithm is used for disaggregation of coarse passive microwave soil moisture retrievals with radar backscatter coefficients obtained with the higher spatial resolution UAVSAR (Unmanned Air Vehicle Synthetic Aperture Radar). The accuracy of the disaggregated change in soil moisture was evaluated using ground based soil moisture measurements. Results show that the disaggregation products are well correlated to in situ measurements. Based on the R2, the highest resolution disaggregated product at 5 m exhibits soil moisture heterogeneity that reflects the distribution of the crops. The difference of spatial standard deviation between the disaggregated and in situ soil moisture ranges from <0.001-0.131 m3/m3 also proves the spatial capability of the change detection algorithm at 5 m scale.

  12. Sensitivity of Active and Passive Microwave Observations to Soil Moisture during Growing Corn

    NASA Astrophysics Data System (ADS)

    Judge, J.; Monsivais-Huertero, A.; Liu, P.; De Roo, R. D.; England, A. W.; Nagarajan, K.

    2011-12-01

    Soil moisture (SM) in the root zone is a key factor governing water and energy fluxes at the land surface and its accurate knowledge is critical to predictions of weather and near-term climate, nutrient cycles, crop-yield, and ecosystem productivity. Microwave observations, such as those at L-band, are highly sensitive to soil moisture in the upper few centimeters (near-surface). The two satellite-based missions dedicated to soil moisture estimation include, the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission and the planned NASA Soil Moisture Active/Passive (SMAP) [4] mission. The SMAP mission will include active and passive sensors at L-band to provide global observations of SM, with a repeat coverage of every 2-3 days. These observations can significantly improve root zone soil moisture estimates through data assimilation into land surface models (LSMs). Both the active (radar) and passive (radiometer) microwave sensors measure radiation quantities that are functions of soil dielectric constant and exhibit similar sensitivities to SM. In addition to the SM sensitivity, radar backscatter is highly sensitive to roughness of soil surface and scattering within the vegetation. These effects may produce a much larger dynamic range in backscatter than that produced due to SM changes alone. In this study, we discuss the field observations of active and passive signatures of growing corn at L-band from several seasons during the tenth Microwave, Water and Energy Balance Experiment (MicroWEX-10) conducted in North Central Florida, and to understand the sensitivity of these signatures to soil moisture under dynamic vegetation conditions. The MicroWEXs are a series of season-long field experiments conducted during the growing seasons of sweet corn, cotton, and energy cane over the past six years (for example, [22]). The corn was planted on July 5 and harvested on September 23, 2011 during MicroWEX-10. The size of the field was 0.04 km2 and the soils

  13. Passive microwave soil moisture research

    NASA Technical Reports Server (NTRS)

    Schmugge, T.; Oneill, P. E.; Wang, J. R.

    1986-01-01

    During the four years of the AgRISTARS Program, significant progress was made in quantifying the capabilities of microwave sensors for the remote sensing of soil moisture. In this paper, a discussion is provided of the results of numerous field and aircraft experiments, analysis of spacecraft data, and modeling activities which examined the various noise factors such as roughness and vegetation that affect the interpretability of microwave emission measurements. While determining that a 21-cm wavelength radiometer was the best single sensor for soil moisture research, these studies demonstrated that a multisensor approach will provide more accurate soil moisture information for a wider range of naturally occurring conditions.

  14. Active and passive microwave measurements of soil moisture in FIFE

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Gogineni, S. P.; Ampe, J.

    1992-01-01

    During the intensive field campaigns of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) in May-October of 1987, several nearly simultaneous measurements were made with low-altitude flights of the L-band radiometer and C- and X-band scatterometers over two transects in the Konza Prairie Natural Research Area, some 8 km south of Manhattan, Kansas. These measurements showed that although the scatterometers were sensitive to soil moisture variations in most regions under the flight path, the L-band radiometer lost most of its sensitivity in regions unburned for many years. The correlation coefficient derived from the regression between the radar backscattering coefficient and the soil moisture was found to improve with the increase in antenna incidence angle. This is attributed to a steeper falloff of the backscattering coefficient as a function of local incidence at angles near nadir than at angles greater than 30 deg.

  15. Intercomparisons between passive and active microwave remote sensing, and hydrological modeling for soil moisture

    NASA Technical Reports Server (NTRS)

    Wood, E. F.; Lin, D.-S.; Mancini, M.; Thongs, D.; Troch, P. A.; Jackson, T. J.; Famiglietti, J. S.; Engman, E. T.

    1993-01-01

    Soil moisture estimations from a distributed hydrological model and two microwave sensors were compared with ground measurements collected during the MAC-HYDRO'90 experiment. The comparison was done with the purpose of evaluating the performance of the hydrological model and examining the limitations of remote sensing techniques used in soil moisture estimation. An image integration technique was used to integrate and analyze rainfall, soil properties, land cover, topography, and remote sensing imagery. Results indicate that the hydrological model and microwave sensors successfully picked up temporal variations of soil moisture and that the spatial soil moisture pattern may be remotely sensed with reasonable accuracy using existing algorithms.

  16. Synergism of active and passive microwave data for estimating bare surface soil moisture

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.; Njoku, Eni G.; Wegmueller, Urs

    1993-01-01

    Active and passive microwave sensors were applied effectively to the problem of estimating the surface soil moisture in a variety of environmental conditions. Research to date has shown that both types of sensors are also sensitive to the surface roughness and the vegetation cover. In estimating the soil moisture, the effect of the vegetation and roughness are often corrected either by acquiring multi-configuration (frequency and polarization) data or by adjusting the surface parameters in order to match the model predictions to the measured data. Due to the limitations on multi-configuration spaceborne data and the lack of a priori knowledge of the surface characteristics for parameter adjustments, it was suggested that the synergistic use of the sensors may improve the estimation of the soil moisture over the extreme range of naturally occurring soil and vegetation conditions. To investigate this problem, the backscattering and emission from a bare soil surface using the classical rough surface scattering theory were modeled. The model combines the small perturbation and the Kirchhoff approximations in conjunction with the Peak formulation to cover a wide range of surface roughness parameters with respect to frequency for both active and passive measurements. In this approach, the same analytical method was used to calculate the backscattering and emissivity. Therefore, the active and passive simulations can be combined at various polarizations and frequencies in order to estimate the soil moisture more actively. As a result, it is shown that (1) the emissivity is less dependent on the surface correlation length, (2) the ratio of the backscattering coefficient (HH) over the surface reflectivity (H) is almost independent of the soil moisture for a wide range of surface roughness, and (3) this ratio can be approximated as a linear function of the surface rms height. The results were compared with the data obtained by a multi-frequency radiometer

  17. Passive microwave soil moisture research

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Oneill, P. E.; Wang, J. R.

    1985-01-01

    The AgRISTARS Soil Moisture Project has made significant progress in the quantification of microwave sensor capabilities for soil moisture remote sensing. The 21-cm wavelength has been verified to be the best single channel for radiometric observations of soil moisture. It has also been found that other remote sensing approaches used in conjunction with L-band passive data are more successful than multiple wavelength microwave radiometry in this application. AgRISTARS studies have also improved current understanding of noise factors affecting the interpretability of microwave emission data. The absorption of soil emission by vegetation has been quantified, although this effect is less important than absorption effects for microwave radiometry.

  18. Passive/active microwave soil moisture retrieval disaggregation using SMAPVEX12 data

    NASA Astrophysics Data System (ADS)

    Fang, Bin; Lakshmi, Venkat

    2014-11-01

    SMAPVEX12 is a pre-launch field campaign for evaluating and testing the soil moisture retrievals retrieved from the SMAP project. During this experiment, airborne microwave observations from PALS radiometer and radar: brightness temperature and radar backscatter, as well as ground measurements were acquired. In this study, the remote sensing soil moisture was retrieved from SMAPVEX12 PALS radiometer L-band (6GHz) brightness temperature at high altitude flight. The PALS soil moisture was then aggregated and compared with PALS radar backscatter coefficient to generate high spatial resolution microwave soil moisture in change. The R2 values of PALS soil moisture retrieval validation range from 0.407-0.881, indicating good accuracy of soil moisture retrieval. The R2 values of comparison between aggregated PALS Δ and PALS Δ range from 0.492-0.805, while the downscaled Δ validation range from 0.128- 0.383.

  19. Error Characterisation and Merging of Active and Passive Microwave Soil Moisture Data Sets

    NASA Astrophysics Data System (ADS)

    Wagner, Wolfgang; Gruber, Alexander; de Jeu, Richard; Parinussa, Robert; Chung, Daniel; Dorigo, Wouter; Reimer, Christoph; Kidd, Richard

    2015-04-01

    As part of the Climate Change Initiative (CCI) programme of the European Space Agency (ESA) a data fusion system has been developed which is capable of ingesting surface soil moisture data derived from active and passive microwave sensors (ASCAT, AMSR-E, etc.) flown on different satellite platforms and merging them to create long and consistent time series of soil moisture suitable for use in climate change studies. The so-created soil moisture data records (latest version: ESA CCI SM v02.1 released on 5/12/2014) are freely available and can be obtained from http://www.esa-soilmoisture-cci.org/. As described by Wagner et al. (2012) the principle steps of the data fusion process are: 1) error characterisation, 2) matching to account for data set specific biases, and 3) merging. In this presentation we present the current data fusion process and discuss how new error characterisation methods, such as the increasingly popular triple collocation method as discussed for example by Zwieback et al. (2012) may be used to improve it. The main benefit of an improved error characterisation would be a more reliable identification of the best performing microwave soil moisture retrieval(s) for each grid point and each point in time. In case that two or more satellite data sets provides useful information, the estimated errors can be used to define the weights with which each satellite data set are merged, i.e. the lower its error the higher its weight. This is expected to bring a significant improvement over the current data fusion scheme which is not yet based on quantitative estimates of the retrieval errors but on a proxy measure, namely the vegetation optical depth (Dorigo et al., 2015): over areas with low vegetation passive soil moisture retrievals are used, while over areas with moderate vegetation density active retrievals are used. In transition areas, where both products correlate well, both products are being used in a synergistic way: on time steps where only one of

  20. Soil moisture estimation by airborne active and passive microwave remote sensing: A test-bed for SMAP fusion algorithms

    NASA Astrophysics Data System (ADS)

    Montzka, Carsten; Bogena, Heye; Jagdhuber, Thomas; Hajnsek, Irena; Horn, Ralf; Reigber, Andreas; Hasan, Sayeh; Rüdiger, Christoph; Jaeger, Marc; Vereecken, Harry

    2014-05-01

    The objective of the NASA Soil Moisture Active & Passive (SMAP) mission is to provide global measurements of soil moisture and its freeze/thaw state. The SMAP launch is currently planned for 2014-2015. The SMAP measurement approach is to integrate L-band radar and L-band radiometer as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. The radar and radiometer measurements can be effectively combined to derive soil moisture maps that approach the accuracy of radiometer-only retrievals, but with a higher resolution (being able to approach the radar resolution under some conditions). Aircraft and tower-based instruments will be a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment in Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer (PLMR2) and the active L-band system DLR F-SAR were flown on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e. all types of land cover and experimental monitoring sites. These data are used as a test-bed for the analysis of existing and development of new active-passive fusion techniques. A synergistic use of the two signals can help to decouple soil moisture effects from the effects of vegetation (or roughness) in a better way than in the case of a single instrument. In this study, we present and evaluate three approaches for the fusion of active and passive microwave records for an enhanced representation of the soil moisture status: i) estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter data, ii) disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture, and iii) fusion of two single-source soil moisture products from radar and radiometer.

  1. Soil Moisture Retrieval Through Changing Corn Using Active/Passive Microwave Remote Sensing

    NASA Technical Reports Server (NTRS)

    ONeill, P. E.; Joseph, A.; DeLannoy, G.; Lang, R.; Utku, C.; Kim, E.; Houser, P.; Gish, T.

    2003-01-01

    An extensive field experiment was conducted from May-early October, 2002 at the heavily instrumented USDA-ARS (U.S. Dept. of Agriculture-Agricultural Research Service) OPE3 (Optimizing Production Inputs for Economic and Environmental Enhancement) test site in Beltsville, MD to acquire data needed to address active/passive microwave algorithm, modeling, and ground validation issues for accurate soil moisture retrieval. During the experiment, a tower-mounted 1.4 GHz radiometer (Lrad) and a truck-mounted dual-frequency (1.6 and 4.75 GHz) radar system were deployed on the northern edge of the site. The soil in this portion of the field is a sandy loam (silt 23.5%, sand 60.3%, clay 16.1%) with a measured bulk density of 1.253 g/cu cm. Vegetation cover in the experiment consisted of a corn crop which was measured from just after planting on April 17, 2002 through senescence and harvesting on October 2. Although drought conditions prevailed during the summer, the corn yield was near average, with peak biomass reached in late July.

  2. Soil moisture sensing with microwave techniques

    NASA Technical Reports Server (NTRS)

    Schmugge, T.

    1980-01-01

    Microwave approaches for the remote sensing of soil moisture are discussed, with the advantages described as follows: (1) the all-weather capability, (2) the greater penetration depth into the soil and through vegetation than with optical or infrared sensors, and (3) the large changes in the dielectric properties of soil produced by changes in water content. Both active and passive microwave approaches are discussed. The dependence of the relationship between microwave response and soil moisture on such things as soil texture, surface roughness, vegetative cover and nonuniform moisture and temperature profiles is analyzed from both the experimental and theoretical viewpoints. The dielectric properties of the soil are analyzed quantitatively, as these control the reflective and emissive properties of the soil surface, and a model for estimating a soil's dielectric properties from its texture and moisture content is also presented. Emissivity is calculated using the Fresnel equation of electromagnetic theory, and reflectivity is shown to be decreased by surface roughness, while the backscatter coefficient increases. It is demonstrated, that microwave radiometers are sensitive to soil moisture for a wide range of surface conditions, and that the longer wavelengths are best for soil moisture sensing.

  3. Passive Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Njoku, Eni G.; Entekhabi, Dara

    1994-01-01

    Microwave remote sensing provides a unique capability for direct observation of soil moisture... This Paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods.

  4. Microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Shiue, J. C.; Wang, J. R.

    1988-01-01

    Knowledge of soil moisture is important to many disciplines, such as agriculture, hydrology, and meteorology. Soil moisture distribution of vast regions can be measured efficiently only with remote sensing techniques from airborne or satellite platforms. At low microwave frequencies, water has a much larger dielectric constant than dry soil. This difference manifests itself in surface emissivity (or reflectivity) change between dry and wet soils, and can be measured by a microwave radiometer or radar. The Microwave Sensors and Data Communications Branch is developing microwave remote sensing techniques using both radar and radiometry, but primarily with microwave radiometry. The efforts in these areas range from developing algorithms for data interpretation to conducting feasibility studies for space systems, with a primary goal of developing a microwave radiometer for soil moisture measurement from satellites, such as EOS or the Space Station. These efforts are listed.

  5. Microwave remote sensing of soil water content

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Ulaby, F. T.

    1975-01-01

    Microwave remote sensing of soils to determine water content was considered. A layered water balance model was developed for determining soil water content in the upper zone (top 30 cm), while soil moisture at greater depths and near the surface during the diurnal cycle was studied using experimental measurements. Soil temperature was investigated by means of a simulation model. Based on both models, moisture and temperature profiles of a hypothetical soil were generated and used to compute microwave soil parameters for a clear summer day. The results suggest that, (1) soil moisture in the upper zone can be predicted on a daily basis for 1 cm depth increments, (2) soil temperature presents no problem if surface temperature can be measured with infrared radiometers, and (3) the microwave response of a bare soil is determined primarily by the moisture at and near the surface. An algorithm is proposed for monitoring large areas which combines the water balance and microwave methods.

  6. Microwave Soil Moisture Retrieval Under Trees

    NASA Technical Reports Server (NTRS)

    O'Neill, P.; Lang, R.; Kurum, M.; Joseph, A.; Jackson, T.; Cosh, M.

    2008-01-01

    Soil moisture is recognized as an important component of the water, energy, and carbon cycles at the interface between the Earth's surface and atmosphere. Current baseline soil moisture retrieval algorithms for microwave space missions have been developed and validated only over grasslands, agricultural crops, and generally light to moderate vegetation. Tree areas have commonly been excluded from operational soil moisture retrieval plans due to the large expected impact of trees on masking the microwave response to the underlying soil moisture. Our understanding of the microwave properties of trees of various sizes and their effect on soil moisture retrieval algorithms at L band is presently limited, although research efforts are ongoing in Europe, the United States, and elsewhere to remedy this situation. As part of this research, a coordinated sequence of field measurements involving the ComRAD (for Combined Radar/Radiometer) active/passive microwave truck instrument system has been undertaken. Jointly developed and operated by NASA Goddard Space Flight Center and George Washington University, ComRAD consists of dual-polarized 1.4 GHz total-power radiometers (LH, LV) and a quad-polarized 1.25 GHz L band radar sharing a single parabolic dish antenna with a novel broadband stacked patch dual-polarized feed, a quad-polarized 4.75 GHz C band radar, and a single channel 10 GHz XHH radar. The instruments are deployed on a mobile truck with an 19-m hydraulic boom and share common control software; real-time calibrated signals, and the capability for automated data collection for unattended operation. Most microwave soil moisture retrieval algorithms developed for use at L band frequencies are based on the tau-omega model, a simplified zero-order radiative transfer approach where scattering is largely ignored and vegetation canopies are generally treated as a bulk attenuating layer. In this approach, vegetation effects are parameterized by tau and omega, the microwave

  7. Soil Moisture Active Passive (SMAP) Microwave Radiometer Radio-Frequency Interference (RFI) Mitigation: Initial On-Orbit Results

    NASA Technical Reports Server (NTRS)

    Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Johnson, Joel T.; Aksoy, Mustafa; Bringer, Alexandra

    2015-01-01

    The Soil Moisture Active Passive (SMAP) mission, launched in January 2015, provides global measurements of soil moisture using a microwave radiometer. SMAPs radiometer passband lies within the passive frequency allocation. However, both unauthorized in-band transmitters as well as out-of-band emissions from transmitters operating at frequencies adjacent to this allocated spectrum have been documented as sources of radio frequency interference (RFI) to the L-band radiometers on SMOS and Aquarius. The spectral environment consists of high RFI levels as well as significant occurrences of low level RFI equivalent to 0.1 to 10 K. The SMAP ground processor reports the antenna temperature both before and after RFI mitigation is applied. The difference between these quantities represents the detected RFI level. The presentation will review the SMAP RFI detection and mitigation procedure and discuss early on-orbit RFI measurements from the SMAP radiometer. Assessments of global RFI properties and source types will be provided, as well as the implications of these results for SMAP soil moisture measurements.

  8. Characterization of Soils Using Microwave Radiation

    SciTech Connect

    Aziz, M. F. A.; Senin, H. B.; Jaafar, M. S.; Hashim, S. A.

    2008-05-20

    The aim of this study is to characterize of soils using microwave radiation by the reflection techniques. The sample of soils was collected in Northern Peninsular of Malaysia. There are six types of soil have been indentified, which, sand, clay, loam, silty clay loam, silty loam and clay loam. We use the transmission of microwave using Gunn Diode Transmitter with frequency of 10.525 GHz and the pipette method. The result shows that, the soil type can be indentified using intensity values based on the percentages of the clay. The proposed technique also can be used to characterize soils using by microwave radiation.

  9. Microwave and gamma radiation observations of soil moisture

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Njoku, E. G.; Peck, E.; Ulaby, F. T.

    1979-01-01

    The unique dielectric properties of water at microwave wavelengths afford the possibility for remotely sensing the moisture content in the surface layer of the soil. The surface emissivity and reflectivity for the soils at these wavelengths are strong functions of its moisture content. The changes in emissivity can be observed by passive microwave techniques (radiometry) and the change in reflectivity can be observed by active microwave techniques (radar). The difference in the natural terrestrial gamma ray flux measured for wet and dry soil may be used to determine soil moisture. The presence of water moisture in the soil causes an effective increase in soil density, resulting in an increased attenuation of the gamma flux for wet soil and a corresponding lower flux above the ground surface.

  10. Derivation of soil moisture sensing depth from microwave satellite sensors

    NASA Astrophysics Data System (ADS)

    de Jeu, Richard; Holmes, Thomas

    2015-04-01

    Soil moisture retrievals from low frequency passive microwave satellite sensors (e.g. ESAs current Soil Moisture Ocean Salinity mission (SMOS)) are assumed to estimate spatially explicit soil moisture content of the first centimeters. However, the exact microwave sensing depth and the dynamic nature of the sensing depth at satellite grid scale is still to a large degree unknown. A more reliable estimation of the sensing depth would greatly improve the utility of microwave soil moisture retrievals. Validation activities could be fine-tuned, algorithms could be improved, and modeling applications could match observations to more optimal model depth. In addition to all this, soil moisture sensing depth information is essential for the development of a consistent fundamental soil moisture climate data record. With the availability of multiple polar orbiting satellites with multi-frequency microwave radiometers it has now become possible to study the microwave sensing depth as it manifests itself at observational scales. The approach uses the differences in timing between the diurnal temperature cycle (DTC) of microwave observations and thermal infrared observations as a basis to calculate the sensing depth. Using an intercalibrated multi sensor microwave data set and geostationary thermal infrared observations this approach is used to evaluate sensing depth at several microwave frequencies relevant for soil moisture retrieval. Field data in combination with an integrated thermodynamic hydrological microwave model are then used to develop guidelines for a dynamic sensing depth algorithm. The key advantage of this approach is its global applicability, providing timely and consistent information on sensing depth for different satellite soil moisture datasets.

  11. Dielectric constants of soils at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Geiger, F. E.; Williams, D.

    1972-01-01

    A knowledge of the complex dielectric constant of soils is essential in the interpretation of microwave airborne radiometer data of the earth's surface. Measurements were made at 37 GHz on various soils from the Phoenix, Ariz., area. Extensive data have been obtained for dry soil and soil with water content in the range from 0.6 to 35 percent by dry weight. Measurements were made in a two arm microwave bridge and results were corrected for reflections at the sample interfaces by solution of the parallel dielectric plate problem. The maximum dielectric constants are about a factor of 3 lower than those reported for similar soils at X-band frequencies.

  12. Using Microwaves to Heat Lunar Soil

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.

    2011-01-01

    This slide presentation reviews the use of microwaves to heat lunar soil in order to obtain water. There appears to be large amounts of water in the lunar poles, in Martian areas in lower latitudes and some of the Moons of Jupiter. The presence of water in the south lunar polar region was demonstrated by the Lunar CRater Observation and Sensing Satellite (LCROSS) mission. Microwaves can be used to extract water from lunar soil without excavation. Using microwaves on a lunar soil simulant at least 95% of the water from the regolith permafrost simulant was extracted (2 minutes). The process is modeled using COMSOL Multiphysics Finite Element analysis microwave physics module and demonstrated usingan experiment of an microwave apparatus on a rover.

  13. Soil Moisture Active Passive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration

    NASA Technical Reports Server (NTRS)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; Misra, Sidharth; Dinnat, Emmanuel P.; Hudson, Derek; Le Vine, David M.; De Amici, Giovanni; Mohammed, Priscilla N.; Yueh, Simon H.; Meissner, Thomas

    2016-01-01

    The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earth's surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements.

  14. Microwave soil moisture retrieval under trees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During 2007 a field experiment was conducted with a goal of optimizing microwave soil moisture retrieval algorithms for small to medium deciduous trees. After initial field checkout in Fall 2006, the ComRAD microwave truck instrument system was deployed to a test site with several stands of deciduo...

  15. Passive Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Njoku, Eni G.; Entekhabi, Dara

    1996-01-01

    Microwave remote sensing provides a unique capability for direct observation of soil moisture. Remote measurements from space afford the possibility of obtaining frequent, global sampling of soil moisture over a large fraction of the Earth's land surface. Microwave measurements have the benefit of being largely unaffected by cloud cover and variable surface solar illumination, but accurate soil moisture estimates are limited to regions that have either bare soil or low to moderate amounts of vegetation cover. A particular advantage of passive microwave sensors is that in the absence of significant vegetation cover soil moisture is the dominant effect on the received signal. The spatial resolutions of passive Microwave soil moisture sensors currently considered for space operation are in the range 10-20 km. The most useful frequency range for soil moisture sensing is 1-5 GHz. System design considerations include optimum choice of frequencies, polarizations, and scanning configurations, based on trade-offs between requirements for high vegetation penetration capability, freedom from electromagnetic interference, manageable antenna size and complexity, and the requirement that a sufficient number of information channels be available to correct for perturbing geophysical effects. This paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods. Particularly promising are methods for optimally assimilating passive microwave data into hydrologic models. Further studies are needed to investigate the effects on microwave observations of within-footprint spatial heterogeneity of vegetation cover and subsurface soil characteristics, and to assess the limitations imposed by heterogeneity on the retrievability of large-scale soil moisture information from remote observations.

  16. Error sources in passive and active microwave satellite soil moisture over Australia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of a long-term climate record of soil moisture (SM) involves combining historic and present satellite-retrieved SM data sets. This in turn requires a consistent characterization and deep understanding of the systematic differences and errors in the individual data sets, which vary due to...

  17. Estimation of canopy attenuation for active/passive microwave soil moisture retrieval algorithms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper discusses the importance of the proper characterization of scattering and attenuation in trees needed for accurate retrieval of soil moisture in the presence of trees. Emphasis is placed on determining an accurate estimation of the propagation properties of a vegetation canopy using the c...

  18. Microwave-enhanced thermal decontamination of soil

    SciTech Connect

    Kawala, Z.; Atamanczuk, T.

    1998-09-01

    Results of bench-scale and pilot-scale investigations on the remediation of contaminated sand and soil using microwave energy are presented. Microwave radiation penetrates the soil and heats water and contaminants. Developing vapors are withdrawn from the soil. The experiments suggest that microwave heating is an effective soil remediation technology. The process is rapid as compared to other methods, and its efficiency depends on the dielectric and physicochemical properties of the soil and the contaminant. It allows for the removal of volatile and semivolatile components, and it is especially effective in the case of polar compounds. In the presence of soil moisture, the removal of both polar and nonpolar compounds can be described quantitatively in terms of stream distillation. The remediation proceeds at a temperature not exceeding 100 C. It is of particular importance in the case of soil rich in organic matter, where too high a temperature could result in carbonization of humic substances. The remediation of trichloroethylene-contaminated sand in a pilot-scale microwave heating system simulating the in-situ process is also reported. The profiles of temperature and contaminant concentration in the remediation zone are presented. The pilot-scale investigations indicate a possibility of the use of microwave heating as an in-situ remediation technique. The use of inexpensive low-power generators for the supply of power to individual antennas may help to reduce costs and allow for an unconstrained design of the array of antennas in the ground.

  19. Soil moisture mapping by ground and airborne microwave radiometry

    NASA Technical Reports Server (NTRS)

    Poe, G.; Edgerton, A. T.

    1972-01-01

    Extensive ground-based and airborne investigations were undertaken in conjunction with laboratory dielectric measurements of soils and analytical modeling. Radiometric measurements were made in the vicinity of Phoenix, Arizona at observational wavelengths ranging from 0.81 to 21 cm. Ground experiments were conducted with a microwave field laboratory and airborne measurements were obtained from a CV-990 aircraft. Research activities were focused on establishing basic relationships between microwave emission and the distribution of moisture.

  20. Passive microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Kondratyev, K. Y.; Melentyev, V. V.; Rabinovich, Y. I.; Shulgina, E. M.

    1977-01-01

    The theory and calculations of microwave emission from the medium with the depth-dependent physical properties are discussed; the possibility of determining the vertical profiles of temperature and humidity is considered. Laboratory and aircraft measurements of the soil moisture are described; the technique for determining the productive-moisture content in soil, and the results of aircraft measurements are given.

  1. Multifrequency microwave radiometer measurements of soil moisture

    NASA Technical Reports Server (NTRS)

    Njoku, E. G.; Oneill, P. E.

    1982-01-01

    Ground-based microwave radiometer experiments are carried out to investigate the effects of moisture, temperature, and roughness on microwave emission from bare soils. The measurements are made at frequencies of 0.6-0.9, 1.4, and 10.7 GHz using van-mounted radiometers to observe prepared soil sites in Kern County, CA. Brightness temperature variations of approximately 15 K at 1.4 GHz and 25 K at 10.7 GHz are observed as a result of diurnal changes in the soil temperature. Increasing the soil moisture content from 2% to 15% by volume is found to result in brightness temperature decreases of approximately 70 K at 0.775 and 1.4 GHz and 40 K at 10.7 GHz, depending, to a lesser extent, on polarization and viewing angle. The results attest the significance of soil temperature in deriving soil moisture from microwave radiometer measurements. Comparisons of the microwave measurements with theoretical predictions using smooth surface models give reasonable agreement and support previous results of this nature obtained with other soil types.

  2. Soil decontamination via microwave and radio frequency co-volatilization

    SciTech Connect

    George, C.E.; Lightsey, G.R.; Jun, I.; Fan, J. )

    1992-08-01

    Microwave and radio frequency heating techniques have proven to be suitable on the laboratory scale and for small scale field studies as energy sources for thermal processing of solvent-contaminated hazardous waste and contaminated soils. The process described here is a technique that could be used to remove contaminates from soils or sludges on-site, collect the contaminate in an activated carbon absorption tower, and move the activated carbon off site for regeneration. The data presented show that destruction and removal efficiencies (DRE) of near 100% can be achieved for phenanthrene in simulated API separator sludge and 60% for pentachlorophenol in contaminated soil. A technique to enhance microwave absorption by the addition of carbon particles to the soil or sludge sample to be treated is discussed. 9 refs., 5 figs.

  3. Microwave soil moisture estimation in humid and semiarid watersheds

    NASA Technical Reports Server (NTRS)

    O'Neill, P. E.; Jackson, T. J.; Chauhan, N. S.; Seyfried, M. S.

    1993-01-01

    Land surface hydrologic-atmospheric interactions in humid and semi-arid watersheds were investigated. Active and passive microwave sensors were used to estimate the spatial and temporal distribution of soil moisture at the catchment scale in four areas. Results are presented and discussed. The eventual use of this information in the analysis and prediction of associated hydrologic processes is examined.

  4. Progress in microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Engman, Edwin T.

    1990-01-01

    Significant progress has been made in the application of microwave remote sensing for measuring soil moisture. Both passive and active systems have demonstrated the capability for measuring soil moisture. However, several questions are still unresolved regarding the optimal instrument configuration and other target characteristics, such as roughness and vegetation. In addition, the most likely disciplines for using these data, agriculture and hydrology, do not currently possess adequate models or procedures for using these new data.

  5. Estimating Soil Moisture from Satellite Microwave Observations

    NASA Technical Reports Server (NTRS)

    Owe, M.; VandeGriend, A. A.; deJeu, R.; deVries, J.; Seyhan, E.

    1998-01-01

    Cooperative research in microwave remote sensing between the Hydrological Sciences Branch of the NASA Goddard Space Flight Center and the Earth Sciences Faculty of the Vrije Universiteit Amsterdam began with the Botswana Water and Energy Balance Experiment and has continued through a series of highly successful International Research Programs. The collaboration between these two research institutions has resulted in significant scientific achievements, most notably in the area of satellite-based microwave remote sensing of soil moisture. The Botswana Program was the first joint research initiative between these two institutions, and provided a unique data base which included historical data sets of Scanning Multifrequency Microwave Radiometer (SN4NM) data, climate information, and extensive soil moisture measurements over several large experimental sites in southeast Botswana. These data were the basis for the development of new approaches in physically-based inverse modelling of soil moisture from satellite microwave observations. Among the results from this study were quantitative estimates of vegetation transmission properties at microwave frequencies. A single polarization modelling approach which used horizontally polarized microwave observations combined with monthly composites of Normalized Difference Vegetation Index was developed, and yielded good results. After more precise field experimentation with a ground-based radiometer system, a dual-polarization approach was subsequently developed. This new approach realized significant improvements in soil moisture estimation by satellite. Results from the Botswana study were subsequently applied to a desertification monitoring study for the country of Spain within the framework of the European Community science research programs EFEDA and RESMEDES. A dual frequency approach with only microwave data was used for this application. The Microwave Polarization Difference Index (MPDI) was calculated from 37 GHz data

  6. Microwave soil moisture measurements and analysis

    NASA Technical Reports Server (NTRS)

    Newton, R. W.; Howell, T. A.; Nieber, J. L.; Vanbavel, C. H. M. (Principal Investigator)

    1980-01-01

    An effort to develop a model that simulates the distribution of water content and of temperature in bare soil is documented. The field experimental set up designed to acquire the data to test this model is described. The microwave signature acquisition system (MSAS) field measurements acquired in Colby, Kansas during the summer of 1978 are pesented.

  7. Effect of soil texture on the microwave emission from soils

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1980-01-01

    The intensity brightness temperature of the microwave emission from the soil is determined primarily by its dielectric properties. The large difference between the dielectric constant of water and that of dry soil produces a strong dependence of the soil's dielectric constant on its moisture content. This dependence is effected by the texture of the soil because the water molecules close to the particle surface are tightly bound and do not contribute significantly to the dielectric properties. Since this surface area is a function of the particle size distribution (soil texture), being larger for clay soils with small particles, and smaller for sandy soils with larger particles; the dielectric properties will depend on soil texture. Laboratory measurements of the dielectric constant for soils are summarized. The dependence of the microwave emission on texture is demonstrated by measurements of brightness temperature from an aircraft platform for a wide range of soil textures. It is concluded that the effect of soil texture differences on the observed values can be normalized by expressing the soil moisture values as a percent field capacity for the soil.

  8. Passive Microwave Observation of Soil Water Infiltration

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas J.; Schmugge, Thomas J.; Rawls, Walter J.; ONeill, Peggy E.; Parlange, Marc B.

    1997-01-01

    Infiltration is a time varying process of water entry into soil. Experiments were conducted here using truck based microwave radiometers to observe small plots during and following sprinkler irrigation. Experiments were conducted on a sandy loam soil in 1994 and a silt loam in 1995. Sandy loam soils typically have higher infiltration capabilities than clays. For the sandy loam the observed brightness temperature (TB) quickly reached a nominally constant value during irrigation. When the irrigation was stopped the TB began to increase as drainage took place. The irrigation rates in 1995 with the silt loam soil exceeded the saturated conductivity of the soil. During irrigation the TB values exhibited a pattern that suggests the occurrence of coherent reflection, a rarely observed phenomena under natural conditions. These results suggested the existence of a sharp dielectric boundary (wet over dry soil) that was increasing in depth with time.

  9. Microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1984-01-01

    Because of the large contrast between the dielectric constant of liquid water and that of dry soil at microwave wavelength, there is a strong dependence of the thermal emission and radar backscatter from the soil on its moisture content. This dependence provides a means for the remote sensing of the moisture content in a surface layer approximately 5 cm thick. The feasibility of these techniques is demonstrated from field, aircraft and spacecraft platforms. The soil texture, surface roughness, and vegetative cover affect the sensitivity of the microwave response to moisture variations with vegetation being the most important. It serves as an attenuating layer which can totally obscure the surface. Research indicates that it is possible to obtain five or more levels of moisture discrimination and that a mature corn crop is the limiting vegetation situation.

  10. Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1985-01-01

    Because of the large contrast between the dielectric constant of liquid water and that of dry soil at microwave wavelength, there is a strong dependence of the thermal emission and radar backscatter from the soil on its moisture content. This dependence provides a means for the remote sensing of the moisture content in a surface layer approximately 5 cm thick. The feasibility of these techniques is demonstrated from field, aircraft and spacecraft platforms. The soil texture, surface roughness, and vegetative cover affect the sensitivity of the microwave response to moisture variations with vegetation being the most important. It serves as an attenuating layer which can totally obscure the surface. Research indicates that it is possible to obtain five or more levels of moisture discrimination and that a mature corn crop is the limiting vegetation situation.

  11. Combined active and passive microwave remote sensing of soil moisture for vegetated surfaces at L-band

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The distorted Born approximation (DBA) combined with the numerical solutions of Maxwell equations (NMM3D) has been used for the radar backscattering model for the SMAP mission. The models for vegetated surfaces such as wheat, grass, soybean and corn have been validated with the Soil Moisture Active ...

  12. Assimilation of Synchronous and Asynchronous Active/Passive Microwave Observations at Different Spatial Scales for Improved Soil Moisture and Crop Growth

    NASA Astrophysics Data System (ADS)

    Judge, J.; Liu, P. W.; Monsivais-Huertero, A.; Steele-Dunne, S. C.; Bongiovanni, T. E.; Bindlish, R.; Jackson, T. J.

    2014-12-01

    Assimilation of active and passive (AP) microwave observations at L-band in the crop simulation models is able to improve estimates of soil moisture (SM) and crop growth in the models. These observations provide complementary information for dynamic heterogeneous landscapes. Active observations are more sensitive to soil surface roughness and vegetation structure, while passive observations are more sensitive to SM. These observations may be available at different spatial and temporal resolutions from different satellite platforms. For example, the present ESA Soil Moisture Ocean Salinity (SMOS) mission provides passive observations at 1.41 GHz at 25 km every 2-3 days, while the NASA/CONAE Aquarius mission provides L-band AP observations at spatial resolution of 150 km with a repeat coverage of 7 days for global SM products. The planned NASA Soil Moisture Active Passive mission (SMAP) will provide AP observations at 1.26 and 1.41 GHz at the spatial resolutions of 3 and 30 km, respectively, with a repeat coverage of 2-3 days, starting early 2015. The goal of this study is to develop an Ensemble Kalman Filter-based methodology that assimilates synchronously and asynchronously available backscattering coefficients (σ0) and brightness temperatures (TB) at different spatial scales from SMOS and Aquarius. The Decision Support System for Agrotechnology Transfer (DSSAT) that contains a suite of crop simulation models will be linked to microwave emission and scattering models (DSSAT-A-P) for the assimilation. The methodology will be implemented in the rain fed agricultural region of the Brazilian La Plata Basin in South America, where soybean is the primary crop. The augmented state vector will include both model states and parameters related to soil and vegetation during the growing season. The methodology will be evaluated using a synthetic experiment and also using observations from SMOS and Aquarius. In preliminary results with synthetic experiment, using asynchronous

  13. Active microwave responses - An aid in improved crop classification

    NASA Technical Reports Server (NTRS)

    Rosenthal, W. D.; Blanchard, B. J.

    1984-01-01

    A study determined the feasibility of using visible, infrared, and active microwave data to classify agricultural crops such as corn, sorghum, alfalfa, wheat stubble, millet, shortgrass pasture and bare soil. Visible through microwave data were collected by instruments on board the NASA C-130 aircraft over 40 agricultural fields near Guymon, OK in 1978 and Dalhart, TX in 1980. Results from stepwise and discriminant analysis techniques indicated 4.75 GHz, 1.6 GHz, and 0.4 GHz cross-polarized microwave frequencies were the microwave frequencies most sensitive to crop type differences. Inclusion of microwave data in visible and infrared classification models improved classification accuracy from 73 percent to 92 percent. Despite the results, further studies are needed during different growth stages to validate the visible, infrared, and active microwave responses to vegetation.

  14. Application of artificial neural networks for the soil moisture retrieval from active and passive microwave spaceborne sensors

    NASA Astrophysics Data System (ADS)

    Santi, Emanuele; Paloscia, Simonetta; Pettinato, Simone; Fontanelli, Giacomo

    2016-06-01

    Among the algorithms used for the retrieval of SMC from microwave sensors (both active, such as Synthetic Aperture Radar-SAR, and passive, radiometers), the artificial neural networks (ANN) represent the best compromise between accuracy and computation speed. ANN based algorithms have been developed at IFAC, and adapted to several radar and radiometric satellite sensors, in order to generate SMC products at a resolution varying from hundreds of meters to tens of kilometers according to the spatial scale of each sensor. These algorithms, which are based on the ANN techniques for inverting theoretical and semi-empirical models, have been adapted to the C- to Ka- band acquisitions from spaceborne radiometers (AMSR-E/AMSR2), SAR (Envisat/ASAR, Cosmo-SkyMed) and real aperture radar (MetOP ASCAT). Large datasets of co-located satellite acquisitions and direct SMC measurements on several test sites worldwide have been used along with simulations derived from forward electromagnetic models for setting up, training and validating these algorithms. An overall quality assessment of the obtained results in terms of accuracy and computational cost was carried out, and the main advantages and limitations for an operational use of these algorithms were evaluated. This technique allowed the retrieval of SMC from both active and passive satellite systems, with accuracy values of about 0.05 m3/m3 of SMC or better, thus making these applications compliant with the usual accuracy requirements for SMC products from space.

  15. Effects of soil tillage on the microwave emission of soils

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Koopman, G. J.; Oneill, P. E.; Wang, J. R.

    1985-01-01

    In order to understand the interactions of soil properties and microwave emission better, a series of field experiments were conducted in 1984. Small plots were measured with a truck-mounted passive microwave radiometer operating at 1.4 GHz. These data were collected concurrent with ground observations of soil moisture and bulk density. Treatment effects studied included different soil moisture contents and bulk densities. Evaluations of the data have shown that commonly used models of the dielectric properties of wet soils do not explain the observations obtained in these experiments. This conclusion was based on the fact that the roughness parameters determined through optimization were significantly larger than those observed in similar investigations. These discrepancies are most likely due to the soil structure. Commonly used models assume a homogeneous three phase mixture of soil solids, air and water. Under tilled conditions the soil is actually a two phase mixture of aggregates and voids. Appropriate dielectric models for this tilled condition were evaluated and found to explain the observations. These results indicate that previous conclusions concerning the effects of surface roughness in tilled fields may be incorrect, and they may explain some of the inconsistencies encountered in roughness modeling.

  16. Applications of active microwave imagery

    NASA Technical Reports Server (NTRS)

    Weber, F. P.; Childs, L. F.; Gilbert, R.; Harlan, J. C.; Hoffer, R. M.; Miller, J. M.; Parsons, J.; Polcyn, F.; Schardt, B. B.; Smith, J. L.

    1978-01-01

    The following topics were discussed in reference to active microwave applications: (1) Use of imaging radar to improve the data collection/analysis process; (2) Data collection tasks for radar that other systems will not perform; (3) Data reduction concepts; and (4) System and vehicle parameters: aircraft and spacecraft.

  17. The Temperature in Microwave Soil Moisture Retrieval

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the near future two dedicated soil moisture satellites will be launched, the Soil Moisture and Ocean Salinity (SMOS) satellite and the Soil Moisture Active Passive (SMAP) satellite that are expected to contribute to our understanding of the global hydrological cycle. It is well known that microwa...

  18. Potential of bias correction for downscaling passive microwave and soil moisture data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Passive microwave satellites such as SMOS (Soil Moisture and Ocean Salinity) or SMAP (Soil Moisture Active Passive) observe brightness temperature (TB) and retrieve soil moisture at a spatial resolution greater than most hydrological processes. Bias correction is proposed as a simple method to disag...

  19. Joint microwave and infrared studies for soil moisture determination

    NASA Technical Reports Server (NTRS)

    Njoku, E. G.; Schieldge, J. P.; Kahle, A. B. (Principal Investigator)

    1980-01-01

    The feasibility of using a combined microwave-thermal infrared system to determine soil moisture content is addressed. Of particular concern are bare soils. The theoretical basis for microwave emission from soils and the transport of heat and moisture in soils is presented. Also, a description is given of the results of two field experiments held during vernal months in the San Joaquin Valley of California.

  20. Utilization of microwave energy for decontamination of oil polluted soils.

    PubMed

    Iordache, Daniela; Niculae, Dumitru; Francisc, Ioan Hathazi

    2010-01-01

    Soil oil (petroleum) product pollution represents a great environmental threat as it may contaminate the neighboring soils and surface and underground water. Liquid fuel contamination may occur anywhere during oil (petroleum) product transportation, storing, handling and utilization. The polluted soil recovery represents a complex process due to the wide range of physical, chemical and biological properties of soils which should be analyzed in connection with the study of the contaminated soil behavior under the microwave field action. The soil, like any other non-metallic material, can be heated through microwave energy absorption due to the dielectric losses, expressed by its dielectric complex constant. Oil polluted soil behaves differently in a microwave field depending on the nature, structure and amount of the polluting fuel. Decontamination is performed through volatilization and retrieval of organic contaminant volatile components. After decontamination only a soil fixed residue remains, which cannot penetrate the underground anymore. In carrying out the soil recovery process by means of this technology we should also consider the soil characteristics such as: the soil type, temperature, moisture.The first part of the paper presents the theoretical aspects relating to the behavior of the polluted soil samples in the microwave field, as well as their relating experimental data. The experimental data resulting from the analysis of soils with a different level of pollution point out that the degree of pollutant recovery is high, contributing to changing the initial classification of soils from the point of view of pollution. The paper graphically presents the levels of microwave generated and absorbed power in soil samples, soil temperature during experimentations, specific processing parameters in a microwave field. It also presents the constructive solution of the microwave equipment designed for the contaminated soil in situ treatment.

  1. Microwave remediation of soil contaminated with hexachlorobenzene.

    PubMed

    Yuan, Songhu; Tian, Meng; Lu, Xiaohua

    2006-09-21

    This study describes the remediation of hexachlorobenzene (HCB) contaminated soils by microwave (MW) radiation in a sealed vial. When powdered MnO2 was used as MW absorber, a complete removal of HCB was obtained with 10 min MW by the addition of H2SO4 (50%). But no significant decomposition was observed by the addition of NaOH (10 mol/L) or H2O in the same conditions. In contrast, when powdered Fe was used instead of MnO2, the difference of HCB removals between H2SO4 and NaOH were not obvious. It is noteworthy that more than 95% removal was achieved in any case when the sole aqueous solution of H2SO4, NaOH, H2O or Na2SO4 was added without MnO2 or Fe. As a result, it is possible that water itself contained in the damp soil may act as MW absorber and remediate the contaminated soil without addition of any other MW absorbers. Gas chromatograph/mass spectrum (GC/MS) analysis detected no intermediates in all the processes. The decomposition mechanism of HCB by MW radiation was suggested as the binding of HCB and soil. Whatever fragments formed from HCB by heat were tightly bound to the soil, making it impossible to extract them out. In the end, treatment of practical HCB contaminated soil by MW reduced HCB from 55.8 mg/kg to 0.91 mg/kg.

  2. A microwave systems approach to measuring root zone soil moisture

    NASA Technical Reports Server (NTRS)

    Newton, R. W.; Paris, J. F.; Clark, B. V.

    1983-01-01

    Computer microwave satellite simulation models were developed and the program was used to test the ability of a coarse resolution passive microwave sensor to measure soil moisture over large areas, and to evaluate the effect of heterogeneous ground covers with the resolution cell on the accuracy of the soil moisture estimate. The use of realistic scenes containing only 10% to 15% bare soil and significant vegetation made it possible to observe a 60% K decrease in brightness temperature from a 5% soil moisture to a 35% soil moisture at a 21 cm microwave wavelength, providing a 1.5 K to 2 K per percent soil moisture sensitivity to soil moisture. It was shown that resolution does not affect the basic ability to measure soil moisture with a microwave radiometer system. Experimental microwave and ground field data were acquired for developing and testing a root zone soil moisture prediction algorithm. The experimental measurements demonstrated that the depth of penetration at a 21 cm microwave wavelength is not greater than 5 cm.

  3. Remote monitoring of soil moisture using airborne microwave radiometers

    NASA Technical Reports Server (NTRS)

    Kroll, C. L.

    1973-01-01

    The current status of microwave radiometry is provided. The fundamentals of the microwave radiometer are reviewed with particular reference to airborne operations, and the interpretative procedures normally used for the modeling of the apparent temperature are presented. Airborne microwave radiometer measurements were made over selected flight lines in Chickasha, Oklahoma and Weslaco, Texas. Extensive ground measurements of soil moisture were made in support of the aircraft mission over the two locations. In addition, laboratory determination of the complex permittivities of soil samples taken from the flight lines were made with varying moisture contents. The data were analyzed to determine the degree of correlation between measured apparent temperatures and soil moisture content.

  4. Comparison of Passive and Active Remotely Sensed Microwave Soil Moisture Retrievals using Soil Moisture Simulations (GLDAS) over Different Land Covers in East Asia: using SMOS, ASCAT, AMSR2, and FY-3B

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choi, M.

    2015-12-01

    Soil moisture is a key variable in environmental systems since water and energy fluxes at the surface and atmosphere interface are strongly dependent on soil moisture. Furthermore, soil moisture has been identified as one of the "Essential Climate Variables" expected to improve climate predictions and near-future forecasting. Several studies have been conducted to acquire soil moisture estimates from spaceborne microwave instruments. As a results, soil moisture data is now globally available using several kinds of satellites with different temporal or spatial resolutions. In this study, we investigate four satellite-based soil moisture products, Soil Moisture and Ocean Salinity (SMOS), Advanced Scatterometer (ASCAT), Advanced Microwave Scanning Radiometer-2 (AMSR2), and Fengyun-3B (FY-3B), compared to an independent reference, Global Land Data Assimilation System (GLDAS) soil moisture datasets over East Asia. Biosphere Atmosphere Transfer Scheme (BATS) dataset was utilized for land cover classification. The relationship between the GLDAS soil moisture and satellite products was analyzed by using of temporal correlation, unbiased root mean square difference, mean bias, and lagged variables. Especially, over the arid regions (deserts and semi deserts), SMOS showed the best consistency with GLDAS and it was found that ASCAT soil moisture exhibit best correlation versus GLDAS except desert and semi desert regions (Figure 1.). In addition, performances of AMSR2 soil moisture products based on Land Parameter Retrieval Model (LPRM) and FY-3B over East Asia were also very encouraging (the period 2013).

  5. Microwave irradiation is a useful tool for improving isolation of actinomycetes from soil.

    PubMed

    Wang, D S; Xue, Q H; Zhu, W J; Zhao, J; Duan, J L; Shen, G H

    2013-01-01

    Actinomycetes are an important source of novel, biologically active compounds. New methods need to be developed for isolating previously unknown actinomycetes from soil. The objective of this experiment was to study microwave irradiation of soil as a means for isolating previously unknown actinomycetes. Soil samples were collected at ten elevations between 800 and 3670 m on Taibai Mountain, Shaanxi Province, China. Moistened soil samples were irradiated at 120 W heating power (2450 MHz) for 3 min using a household microwave oven. Irradiation increased total actinomycete, streptomycete, and antagonistic actinomycete counts on three types of culture media. Irradiation also increased the number of culturable actinomycete isolates. Some actinomycete isolates were culturable only after the soil was irradiated, whereas other isolates could not be cultured after irradiation. Irradiation of soil from elevations > 3000 m increased actinomycete counts significantly but had little effect on the number of culturable actinomycete isolates. In contrast, irradiation of samples from elevations < 3000 m had relatively little effect on actinomycete counts, but significantly increased the number of culturable actinomycete isolates. We used 16S rDNA sequence analysis to identify 14 actinomycete isolates that were only culturable after irradiation. Microwave irradiation of soil was helpful for isolating Streptomyces spp., Nocardia spp., Streptosporangium spp., and Lentzea spp. Slightly more than 90% of the identified actinomycete species were biologically active. In conclusion, microwave irradiation is a useful tool for isolating biologically active actinomycetes from soil. PMID:23718054

  6. Microwave irradiation is a useful tool for improving isolation of actinomycetes from soil.

    PubMed

    Wang, D S; Xue, Q H; Zhu, W J; Zhao, J; Duan, J L; Shen, G H

    2013-01-01

    Actinomycetes are an important source of novel, biologically active compounds. New methods need to be developed for isolating previously unknown actinomycetes from soil. The objective of this experiment was to study microwave irradiation of soil as a means for isolating previously unknown actinomycetes. Soil samples were collected at ten elevations between 800 and 3670 m on Taibai Mountain, Shaanxi Province, China. Moistened soil samples were irradiated at 120 W heating power (2450 MHz) for 3 min using a household microwave oven. Irradiation increased total actinomycete, streptomycete, and antagonistic actinomycete counts on three types of culture media. Irradiation also increased the number of culturable actinomycete isolates. Some actinomycete isolates were culturable only after the soil was irradiated, whereas other isolates could not be cultured after irradiation. Irradiation of soil from elevations > 3000 m increased actinomycete counts significantly but had little effect on the number of culturable actinomycete isolates. In contrast, irradiation of samples from elevations < 3000 m had relatively little effect on actinomycete counts, but significantly increased the number of culturable actinomycete isolates. We used 16S rDNA sequence analysis to identify 14 actinomycete isolates that were only culturable after irradiation. Microwave irradiation of soil was helpful for isolating Streptomyces spp., Nocardia spp., Streptosporangium spp., and Lentzea spp. Slightly more than 90% of the identified actinomycete species were biologically active. In conclusion, microwave irradiation is a useful tool for isolating biologically active actinomycetes from soil.

  7. Satellite microwave observations of soil moisture variations. [by the microwave radiometer on the Nimbus 5 satellite

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Rango, A.; Neff, R.

    1975-01-01

    The electrically scanning microwave radiometer (ESMR) on the Nimbus 5 satellite was used to observe microwave emissions from vegetated and soil surfaces over an Illinois-Indiana study area, the Mississippi Valley, and the Great Salt Lake Desert in Utah. Analysis of microwave brightness temperatures (T sub B) and antecedent rainfall over these areas provided a way to monitor variations of near-surface soil moisture. Because vegetation absorbs microwave emission from the soil at the 1.55 cm wavelength of ESMR, relative soil moisture measurements can only be obtained over bare or sparsely vegetated soil. In general T sub B increased during rainfree periods as evaporation of water and drying of the surface soil occurs, and drops in T sub B are experienced after significant rainfall events wet the soil. Microwave observations from space are limited to coarse resolutions (10-25 km), but it may be possible in regions with sparse vegetation cover to estimate soil moisture conditions on a watershed or agricultural district basis, particularly since daily observations can be obtained.

  8. Advances in Assimilation of Satellite-Based Passive Microwave Observations for Soil-Moisture Estimation

    NASA Technical Reports Server (NTRS)

    De Lannoy, Gabrielle J. M.; Pauwels, Valentijn; Reichle, Rolf H.; Draper, Clara; Koster, Randy; Liu, Qing

    2012-01-01

    Satellite-based microwave measurements have long shown potential to provide global information about soil moisture. The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS, [1]) mission as well as the future National Aeronautics and Space Administration (NASA) Soil Moisture Active and Passive (SMAP, [2]) mission measure passive microwave emission at L-band frequencies, at a relatively coarse (40 km) spatial resolution. In addition, SMAP will measure active microwave signals at a higher spatial resolution (3 km). These new L-band missions have a greater sensing depth (of -5cm) compared with past and present C- and X-band microwave sensors. ESA currently also disseminates retrievals of SMOS surface soil moisture that are derived from SMOS brightness temperature observations and ancillary data. In this research, we address two major challenges with the assimilation of recent/future satellite-based microwave measurements: (i) assimilation of soil moisture retrievals versus brightness temperatures for surface and root-zone soil moisture estimation and (ii) scale-mismatches between satellite observations, models and in situ validation data.

  9. Comparison of remote measurements of infrared surface temperatures and microwave soil moisture

    NASA Technical Reports Server (NTRS)

    Perry, Eileen M.; Carlson, Toby N.

    1987-01-01

    Scatterometric measurements of active microwave soil water content and radiometric measurements of thermal IR surface temperatures were made simultaneously fron an aircraft flying 400 m over an agricultural region of France after harvesting. The surface temperatures were used to deterine soil moisture availability estimates according to the Carlson (1986) model. Surface temperature or soil moisture availability and microwave soil moisture were correlated. The standard error in the IR temperature and soil moisture availability due to influences other than soil moisture is found to be + or - 2 C. The standard deviation of the temperature/moisture availability is greater than this standard error. It is shown that correlations between soil water content and moisture availability improve with increasing spatial or temporal variance in the measure surface temperatures.

  10. In situ RF/microwave remediation of soil experiment overview

    SciTech Connect

    Regan, A.H.; Palomares, M.E.; Polston, C.; Rees, D.E.; Roybal, W.T.; Ross, T.J.

    1995-09-01

    Contaminant plumes are significant waste problems that require remediation in both the government and private sectors. The authors are developing an in situ process that uses RF/microwave stimulation to remove pollutants from contaminated soils. This process is more efficient than existing technologies, creates less secondary pollution, and is applicable to situations that are not amenable to treatment by existing technologies. Currently, the most commonly used process is soil vapor extraction. However, even when it is successful, this technology is energy inefficient. The authors objective is to combine RF/microwave energy application with soil vapor extraction to help mobilize and efficiently remove the soil contaminants, specifically demonstrating the viability of RF/microwave induced, in situ, soil remediation of light and dense non-aqueous phase liquids (LNAPL, DNAPL) contaminants.

  11. Waste minimization through high-pressure microwave digestion of soils for gross {alpha}/{beta} analyses

    SciTech Connect

    Yaeger, J.S.; Smith, L.L.

    1995-04-01

    As a result of the U.S. Department of Energy`s (DOE) environmental restoration and waste management activities, laboratories receive numerous analytical requests for gross {alpha}/{beta} analyses. Traditional sample preparation methods for gross {alpha}/{beta} analysis of environmental and mixed waste samples require repetitive leaching, which is time consuming and generates large volumes of secondary wastes. An alternative to leaching is microwave digestion. In the past. microwave technology has had limited application in the radiochemical laboratory because of restrictions on sample size resulting from vessel pressure limitations. However, new microwave vessel designs allow for pressures on the order of 11 MPa (1500 psi). A procedure is described in which microwave digestion is used to prepare environmental soil samples for gross {alpha}/{beta} analysis. Results indicate that the described procedure meets performance requirements for several soil types and is equivalent to traditional digestion techniques. No statistical differences at the 95% confidence interval exist between the measurement on samples prepared from the hot plate and microwave digestion procedures for those soils tested. Moreover, microwave digestion allows samples to be prepared in a fraction of the time with significantly less acid and with lower potential of cross-contamination. In comparison to the traditional hot plate method, the waste volumes required for the microwave procedure are a factor of 10 lower, while the analyst time for sample processing is at least a factor of three lower.

  12. System of extraction of volatiles from soil using microwave processes

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C. (Inventor); Kaukler, William F. (Inventor)

    2013-01-01

    A device for the extraction and collection of volatiles from soil or planetary regolith. The device utilizes core drilled holes to gain access to underlying volatiles below the surface. Microwave energy beamed into the holes penetrates through the soil or regolith to heat it, and thereby produces vapor by sublimation. The device confines and transports volatiles to a cold trap for collection.

  13. Summary of the active microwave users workshop

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A coordinated microwave applications development program was initiated to improve the capability to: (1) identify, monitor, and assess the earth's resources; and (2) monitor the earth's environment and predict significant changes. The program consists of the scientific, technical, and programmatic activities required to develop microwave remote sensing into an operational tool for systematic earth observations.

  14. In situ RF/microwave remediation of soil experiment overview

    SciTech Connect

    Regan, A.H.; Roybal, W.T.; Ortega, R.; Palomares, M.; Rees, D.E.; Tischler, D.

    1996-06-01

    Contaminant plumes are significant waste problems that require remediation in both the government and private sectors. The authors have developed an in situ process that uses RF/microwave stimulation to remove pollutants from contaminated soils. This process is more efficient than existing technologies, creates less secondary pollution, and is applicable to situations that are not amenable to treatment by existing technologies. Currently the most commonly used process is soil vapor extraction. However, even when it is successful, this technology is energy inefficient. The objective is to combine RF/microwave energy application with soil vapor extraction to help mobilize and efficiently remove the soil contaminants, specifically demonstrating the viability of RF/microwave induced, in situ, soil remediation of light and dense non-aqueous phase liquids (LNAPL, DNAPL) contaminants. The authors have conducted a number of benchtop experiments involving RF/microwave energy deposition and vapor extraction on controlled contaminated soil samples with successful removal of the contaminants. This paper will describe the experimental hardware utilized, the experiments performed, the chemical analysis performed pre- and post-energy application, and results. In the experiments, two different halogenated liquids were used to contaminate the soil: carbon tetrachloride and 1,1,1-trichloroethane.

  15. Remote sensing of soil moisture with microwave radiometers

    NASA Technical Reports Server (NTRS)

    Schmugge, T.; Wilheit, T.; Webster, W., Jr.; Gloerson, P.

    1976-01-01

    Results are presented that were derived from measurements made by microwave radiometers during the March 1972 and February 1973 flights of National Aeronautics and Space Administration (NASA) Convair-9900 aircraft over agricultural test sites in the southwestern part of United States. The purpose of the missions was to study the use of microwave radiometers for the remote sensing of soil moisture. The microwave radiometers covered the 0.8- to 21-cm wavelength range. The results show a good linear correlation between the observed microwave brightness temperature and moisture content of the 0- to 1-cm layer of the soil. The results at the largest wavelength (21 cm) show the greatest sensitivity to soil moisture variations and indicate the possibility of sensing these variations through a vegetative canopy. The effect of soil texture on the emission from the soil was also studied and it was found that this effect can be compensated for by expressing soil moisture as a percent of field capacity for the soil. The results were compared with calculations based on a radiative transfer model for layered dielectrics and the agreement is very good at the longer wavelengths. At the shorter wavelengths, surface roughness effects are larger and the agreement becomes poorer.

  16. Observed effects of soil organic matter content on the microwave emissivity of soils

    NASA Technical Reports Server (NTRS)

    O'Neill, P. E.; Jackson, T. J.

    1990-01-01

    In order to determine the significance of organic matter content on the microwave emissivity of soils when estimating soil moisture, field experiments were conducted in which 1.4 GHz microwave emissivity data were collected over test plots of sandy loam soil with different organic matter levels (1.8, 4.0, and 6.1 percent) for a range of soil moisture values. Analyses of the observed data show only minor variation in microwave emissivity due to a change in organic matter content at a given moisture level for soils with similar texture and structure. Predictions of microwave emissivity made using a dielectric model for aggregated soils exhibit the same trends and type of response as the measured data when appropriate values for the input parameters were utilized.

  17. Observed effects of soil organic matter content on the microwave intensity of soils

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Oneill, P. E.

    1988-01-01

    In order to determine the significance of organic matter content on the microwave emissivity of soils when estimating soil moisture, field experiments were conducted in which 1.4 GHz microwave emissivity data were collected over test plots of sandy loam soil with different organic matter levels (1.8, 4.0, and 6.1 percent) for a range of soil moisture values. Analyses of the observed data show only minor variation in microwave emissivity due to a change in organic matter content at a given moisture level for soils with similar texture and structure. Predictions of microwave emissivity made using a dielectric model for aggregated soils exhibit the same trends and type of response as the measured data when appropriate values for the input parameters were utilized.

  18. Effect of texture on microwave emission from soils

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1980-01-01

    The intensity brightness temperature, T(B), of the microwave emission from the soil is determined primarily by its dielectric properties. The large difference between the dielectric constant of water and that of dry soil produces a strong dependence of the soil's dielectric constant on its moisture content. This dependence is effected by the texture of the soil because the water molecules close to the particle surface are tightly bound and do not contribute significantly to the dielectric properties. Since this surface area is a function of the particle size distribution (soil texture), being larger for clay soils with small particles, and smaller for sandy soils with larger particles, the dielectric properties will depend on soil texture. This dependence has been demonstrated by laboratory measurements of the dielectric constant for soils which are briefly summarized. The dependence of the microwave emission on texture is demonstrated by measurements of T(B) from an aircraft platform for a wide range of soil textures. It is concluded that the effect of soil texture differences on the observed T(B) values can be normalized by expressing the soil moisture values as a percentage of field capacity for the soil.

  19. Synergies of the European Microwave Remote Sensing Missions SMOS and ASCAT for Monitoring Soil Moisture

    NASA Astrophysics Data System (ADS)

    Scipal, K.; Wagner, W.

    2003-04-01

    The lack of global soil moisture observations is one of the most glaring and pressing deficiencies in current research activities of related fields, from climate monitoring and ecological applications to the quantification of biogeophysical fluxes. This has implications for important issues of the international political agenda like managing global water resources, securing food production and studying climate change. Currently it is held that only microwave remote sensing offers the potential to produce reliable global scale soil moisture information economically. Recognising the urgent need for a soil moisture mission several international initiatives are planning satellite missions dedicated to monitor the global hydrological cycle among them two European microwave satellites. ESA is planning to launch the Soil Moisture and Ocean Salinity Mission SMOS, in 2006. SMOS will measure soil moisture over land and ocean salinity over the oceans. The mission rests on a passive microwave sensor (radiometer) operated in L-band which is currently believed to hold the largest potential for soil moisture retrieval. One year before (2005) EUMETSAT will launch the Meteorological Operational satellite METOP which carries the active microwave system Advanced Scatterometer ASCAT on board. ASCAT has been designed to retrieve winds over the oceans but recent research has established its capability to retrieve soil moisture. Although currently it is hold that, using active microwave techniques, the effect of surface roughness dominates that of soil moisture (while the converse is true for radiometers), the ERS scatterometer was successfully used to derive global soil moisture information at a spatial resolution of 50 km with weekly to decadal temporal resolution. The quality of the soil moisture products have been assessed by independent experts in several pilot projects funded by the European Space Agency. There is evidence to believe that both missions will provide a flow of

  20. ESTAR - A synthetic aperture microwave radiometer for measuring soil moisture

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Griffis, A.; Swift, C. T.; Jackson, T. J.

    1992-01-01

    The measurement of soil moisture from space requires putting relatively large microwave antennas in orbit. Aperture synthesis, an interferometric technique for reducing the antenna aperture needed in space, offers the potential for a practical means of meeting these requirements. An aircraft prototype, electronically steered thinned array L-band radiometer (ESTAR), has been built to develop this concept and to demonstrate its suitability for the measurement of soil moisture. Recent flights over the Walnut Gulch Watershed in Arizona show good agreement with ground truth and with measurements with the Pushbroom Microwave Radiometer (PBMR).

  1. TRMM Microwave Imager soil moisture mapping and flooding during CLASIC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Passive microwave remote sensing has the potential to contribute to flood risk and impact assessment through the direct relationship between emissivity and soil moisture/standing water. Lower frequencies have greater potential because the impacts of atmospheric and vegetation attenuation are minimiz...

  2. Passive microwave response to vegetation and soil moisture on agricultural fields

    NASA Astrophysics Data System (ADS)

    Miller, B.; Bullock, Paul R.

    2014-10-01

    The SMAPVEX12 (Soil Moisture Active/Passive Validation Experiment) was carried out over the summer of 2012 in Manitoba, Canada. The goal of the project was to improve the accuracy of satellite based remote sensing of soil moisture. Data were gathered during a 42-day field campaign with surface measurements on 55 different agricultural fields in south-western Manitoba. The extended duration of the campaign, contrast in soil textures, and variety of crop types over the study region provided an excellent range of soil moisture and vegetation conditions. The study fields ranged from bare to fully vegetated, with volumetric soil moisture levels spanning almost 50%. Remotely sensed data were collected on 17 days by aircraft at 1.4 Ghz with a microwave radiometer at two different resolutions. Observed brightness temperatures from the radiometer showed a typical inverse relationship to the near simultaneous soil moisture measurements from the field. This study will focus on improving existing models for passive microwave retrieval of soil moisture using a more extensive data set of field-measured soil temperature, soil moisture and vegetation biomass from a wider range of crops than has been available in previous studies. The extensive ground data collected will allow for both a validation of the high-resolution passive soil moisture estimate, as well as an analysis on the effect of scaling to a lower resolution passive measurement.

  3. Passive Microwave Observation of Diurnal Surface Soil Moisture

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas J.; ONeill, Peggy E.; Swift, Calvin T.

    1997-01-01

    Microwave radiometers operating at low frequencies are sensitive to surface soil moisture changes. Few studies have been conducted that have involved multifrequency observations at frequencies low enough to measure a significant soil depth and not be attenuated by the vegetation cover. Another unexplored aspect of microwave observations at low frequencies has been the impact of diurnal variations of the soil moisture and temperature on brightness temperature. In this investigation, observations were made using a dual frequency radiometer (1.4 and 2.65 GHz) over bare soil and corn for extended periods in 1994. Comparisons of emissivity and volumetric soil moisture at four depths for bare soils showed that there was a clear correspondence between the 1 cm soil moisture and the 2.65-GHz emissivity and between the 3-5 cm soil moisture and the 1.4-GHZ emissivity, which confirms previous studies. Observations during drying and rainfall demonstrate that new and unique information for hydrologic and energy balance studies can be extracted from these data.

  4. Estimation of soil hydraulic properties with microwave techniques

    NASA Technical Reports Server (NTRS)

    Oneill, P. E.; Gurney, R. J.; Camillo, P. J.

    1985-01-01

    Useful quantitative information about soil properties may be obtained by calibrating energy and moisture balance models with remotely sensed data. A soil physics model solves heat and moisture flux equations in the soil profile and is driven by the surface energy balance. Model generated surface temperature and soil moisture and temperature profiles are then used in a microwave emission model to predict the soil brightness temperature. The model hydraulic parameters are varied until the predicted temperatures agree with the remotely sensed values. This method is used to estimate values for saturated hydraulic conductivity, saturated matrix potential, and a soil texture parameter. The conductivity agreed well with a value measured with an infiltration ring and the other parameters agreed with values in the literature.

  5. Modulation of SSM/I microwave soil radiances by rainfall

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Fulton, Richard

    1992-01-01

    The feasibility of using SSM/I satellite data for estimating the soil moisture content was investigated by correlating the rainfall and soil moisture data with values of the SSM/I microwave brightness temperature obtained for the lower Great Plains in the United States during 1987. It was found that the areas of lowest brightness temperatures coincided with regions of bare soil which had received significant rainfall. The time-history plots of the brightness temperature and the antecedent precipitation index during an extremely large rain event indicated a slow recovery period (about 15 days) back to the dry soil state. However, regions covered with vegetation showed smaller temperature drops and much weaker correlation with rain events, questioning the feasibility of using SSM/I measurements for estimations of soil moisture in regions containing vegetation-covered soil.

  6. Effects of salinity on the microwave emission of soils

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Oneill, P. E.

    1986-01-01

    Controlled plot experiments were conducted to collect L and C band passive microwave data concurrent with ground observations of salinity and soil moisture. Two dielectric mixing models were used with an emission model to predict the emissivity from a bare smooth uniform profile. The models produce nearly identical results when near zero salinity is involved and reproduce the observed data at L band extremely well. Discrepancies at C band are attributed to sampling depth problems. Comparisons of predicted emissivities at various salinities with observed values indicate that the dynamic range of the emissivities can be explained using either of the dielectric mixing models. Evaluation of the entire data set, which included four salinity levels, indicates that for general application the effects of soil salinity can be ignored in interpreting microwave data for estimating soil moisture under most agricultural conditions.

  7. Salinity effects on the microwave emission of soils

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas J.; Oneill, Peggy E.

    1987-01-01

    Controlled plot experiments were conducted to collect L and C band passive microwave data concurrent with ground observations of salinity and soil moisture. Two dielectric mixing models were used with an emission model to predict the emissivity from a bare smooth uniform profile. The models produce nearly identical results when near zero salinity is involved and reproduce the observed data at L band extremely well. Discrepancies at C band are attributed to sampling depth problems. Comparisons of predicted emissivities at various salinities with observed values indicate that the dynamic range of the emissivities can be explained using either of the dielectric mixing models. Evaluation of the entire data set, which included four salinity levels, indicates that for general application the effects of soil salinity can be ignored in interpreting microwave data for estimating soil moisture under most agricultural conditions.

  8. Active Microwave Properties of Vegetation Canopies

    NASA Technical Reports Server (NTRS)

    Paris, J. F. (Principal Investigator)

    1985-01-01

    Potential users of radar imagery need a better fundamental understanding of the capabilities of radar systems for vegetation studies than past studies provide. One approach is the use of theoretical models to predict observable active microwave properties of vegetation. This in turn requires accurate observations of backscattering coefficients and other active microwave properties in field research studies. The background document for the SRAEC program emphasizes the need to relate electromagnetic parameters to classical biophysical descriptors and to understand the role of polarization, especially cross-polarization. The broad goal of this study is to increase the understanding of the effects of canopy structure on the active microwave properties of vegetation canopies, with particular attention to polarization.

  9. Microwave Permittivity and Permeability Measurement on Lunar Soils

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin; Steinfeld, David; Begley, Shelley B.; Winterhalter, Daniel; Allen, Carlton

    2011-01-01

    There has been interest in finding ways to process the lunar regolith since the early analyses of lunar samples returned from the Apollo moon missions. This fact has led to proposals for using microwaves to perform in-situ processing of the lunar soil to support future colonization of the moon. More recently, there has been speculation that the excellent microwave absorption of lunar soil came from the nanophase iron content in the regolith. The motivation for the present study was to begin obtaining a more fundamental understanding of the dielectric and magnetic properties of the regolith at microwave frequencies. A major objective of this study was to obtain information that would help answer the question about whether nanophase iron plays a major role in heating lunar soils. These new measurements over a wide frequency range can also determine the magnitude of the dielectric and magnetic absorption and if there are any resonant features that could be used to enhance processing of the regolith in the future. In addition, these microwave measurements would be useful in confirming that new simulants being developed, particularly those containing nanophase iron, would have the correct composition to simulate the lunar regolith. The results of this study suggest that nanophase iron does not play a major role in heating lunar regolith.

  10. Measuring Soil Hydraulic Conductivity With Microwaves

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J.; Oneill, P. E.

    1985-01-01

    Soil mapping for large or small areas done rapidly. Technique requires simple radiometric measurements of L-band (15 to 30 cm) and thermal infrared emissions from ground within 2 days after saturation of surface. Technique based on observation that correlation exists between L-band emissivity and hydraulic conductivity of soil.

  11. Microwave thermal remediation of crude oil contaminated soil enhanced by carbon fiber.

    PubMed

    Li, Dawei; Zhang, Yaobin; Quan, Xie; Zhao, Yazhi

    2009-01-01

    Thermal remediation of the soil contaminated with crude oil using microwave heating enhanced by carbon fiber (CF) was explored. The contaminated soil was treated with 2.45 GHz microwave, and CF was added to improve the conversion of microwave energy into thermal energy to heat the soil. During microwave heating, the oil contaminant was removed from the soil matrix and recovered by a condensation system of ice-salt bath. The experimental results indicated that CF could efficiently enhance the microwave heating of soil even with relatively low-dose. With 0.1 wt.% CF, the soil could be heated to approximately 700 degrees C within 4 min using 800 W of microwave irradiation. Correspondingly, the contaminated soil could be highly cleaned up in a short time. Investigation of oil recovery showed that, during the remediation process, oil contaminant in the soil could be efficiently recovered without causing significant secondary pollution.

  12. Microwave remote sensing and its application to soil moisture detection

    NASA Technical Reports Server (NTRS)

    Newton, R. W. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. Experimental measurements were utilized to demonstrate a procedure for estimating soil moisture, using a passive microwave sensor. The investigation showed that 1.4 GHz and 10.6 GHz can be used to estimate the average soil moisture within two depths; however, it appeared that a frequency less than 10.6 GHz would be preferable for the surface measurement. Average soil moisture within two depths would provide information on the slope of the soil moisture gradient near the surface. Measurements showed that a uniform surface roughness similar to flat tilled fields reduced the sensitivity of the microwave emission to soil moisture changes. Assuming that the surface roughness was known, the approximate soil moisture estimation accuracy at 1.4 GHz calculated for a 25% average soil moisture and an 80% degree of confidence, was +3% and -6% for a smooth bare surface, +4% and -5% for a medium rough surface, and +5.5% and -6% for a rough surface.

  13. Active microwave remote sensing research program plan. Recommendations of the Earth Resources Synthetic Aperture Radar Task Force. [application areas: vegetation canopies, surface water, surface morphology, rocks and soils, and man-made structures

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A research program plan developed by the Office of Space and Terrestrial Applications to provide guidelines for a concentrated effort to improve the understanding of the measurement capabilities of active microwave imaging sensors, and to define the role of such sensors in future Earth observations programs is outlined. The focus of the planned activities is on renewable and non-renewable resources. Five general application areas are addressed: (1) vegetation canopies, (2) surface water, (3) surface morphology, (4) rocks and soils, and (5) man-made structures. Research tasks are described which, when accomplished, will clearly establish the measurement capabilities in each area, and provide the theoretical and empirical results needed to specify and justify satellite systems using imaging radar sensors for global observations.

  14. Soil temperature error propagation in passive microwave retrieval of soil moisture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the near future two dedicated soil moisture satellites will be launched (SMOS and SMAP), both carrying an L-band radiometer. It is well known that microwave soil moisture retrieval algorithms must account for the physical temperature of the emitting surface. Solutions to this include: difference ...

  15. Microwave-assisted regeneration of activated carbon.

    PubMed

    Foo, K Y; Hameed, B H

    2012-09-01

    Microwave heating was used in the regeneration of methylene blue-loaded activated carbons produced from fibers (PFAC), empty fruit bunches (EFBAC) and shell (PSAC) of oil palm. The dye-loaded carbons were treated in a modified conventional microwave oven operated at 2450 MHz and irradiation time of 2, 3 and 5 min. The virgin properties of the origin and regenerated activated carbons were characterized by pore structural analysis and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement and determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue (MB). Microwave irradiation preserved the pore structure, original active sites and adsorption capacity of the regenerated activated carbons. The carbon yield and the monolayer adsorption capacities for MB were maintained at 68.35-82.84% and 154.65-195.22 mg/g, even after five adsorption-regeneration cycles. The findings revealed the potential of microwave heating for regeneration of spent activated carbons.

  16. Killing activity of microwaves in milk.

    PubMed

    Kindle, G; Busse, A; Kampa, D; Meyer-König, U; Daschner, F D

    1996-08-01

    The killing activity of microwaves of 2450 MHz frequency and 600 W power on Pseudomonas aeruginosa, Escherichia coli, Enterobacter sakazakii, Klebsiella pneumoniae, Staphylococcus aureus, Candida albicans, Mycobacterium terrae and poliomyelitis vaccine-virus suspended in five infant formula preparations was investigated. The samples were brought to the boil (85-100 s depending on milk type). They had reached average temperatures of 82-93 degrees C at this point. Most of the vegetative organisms were killed. In those samples where growth was still detectable after microwave treatment, a significant reduction in viable micro-organisms (at least 5000-fold) was noted. We conclude that microwave beating to the boil is a convenient and fast method to reduce microbial contamination of infant feeds. However, care should be taken to ensure that milk is adequately cooled to the required temperature before it is fed to an infant. PMID:8864939

  17. Soil organic carbon as a factor in passive microwave retrievals of soil water content over agricultural croplands

    NASA Astrophysics Data System (ADS)

    Manns, Hida R.; Berg, Aaron A.; Colliander, Andreas

    2015-09-01

    Remote sensing has the potential to deliver global soil water content (SWC) on vast scales with frequent revisit times for progress in the fields of climate, weather forecasting, agriculture and hydrology. Although surface roughness, vegetation and soil texture have been established as sources of variability in passive microwave interpretation, soil organic carbon (SOC) has not typically been considered as a factor that affects SWC estimation during field sampling campaigns. SOC was observed along with soil texture and bulk density during the Soil Moisture Active Passive Validation Experiment in 2012 (SMAPVEX12), the Soil Moisture Active Passive (SMAP) satellite algorithm development field sampling campaign held June 6 to July 19 in Southern Manitoba, Canada. Aerial measurements from the PALS (Passive Active L-band System) instrument were recorded over agricultural fields and forest areas from aircraft while SWC was measured simultaneously on the ground with resistance probes on 17 sampling dates. Additionally, fields were sampled for surface roughness, vegetation growth and water content, soil and vegetation temperature and soil physical characteristics. A soil core was collected on each field each sampling time to assess bulk density, soil particle size and SOC. SOC accounted for more variability in the anomalies between PALS and ground sampled SWC than sand, clay or bulk density, although all soil variables explained significant variability. With analysis by partial least squares multiple regression over 11 sampling dates and 39 fields where both ground and PALS data were well represented, only SOC contributed significantly to the regression of SWC beyond the variance all soil variables had in common. The significance of SOC in the relative SWC anomalies was highest in very wet and very dry conditions and in loam soil over all sampling dates, while bulk density was more significant in sand soils. This analysis suggests SOC is a simple variable that incorporates

  18. Microwave radiometric measurements of soil moisture in Italy

    NASA Astrophysics Data System (ADS)

    Macelloni, G.; Paloscia, S.; Pampaloni, P.; Santi, E.; Tedesco, M.

    Within the framework of the MAP and RAPHAEL projects, airborne experimental campaigns were carried out by the IFAC group in 1999 and 2000, using a multifrequency microwave radiometer at L, C and X bands (1.4, 6.8 and 10 GHz). The aim of the experiments was to collect soil moisture and vegetation biomass information on agricultural areas to give reliable inputs to the hydrological models. It is well known that microwave emission from soil, mainly at L-band (1.4 GHz), is very well correlated to its moisture content. Two experimental areas in Italy were selected for this project: one was the Toce Valley, Domodossola, in 1999, and the other, the agricultural area of Cerbaia, close to Florence, where flights were performed in 2000. Measurements were carried out on bare soils, corn and wheat fields in different growth stages and on meadows. Ground data of soil moisture (SMC) were collected by other research teams involved in the experiments. From the analysis of the data sets, it has been confirmed that L-band is well related to the SMC of a rather deep soil layer, whereas C-band is sensitive to the surface SMC and is more affected by the presence of surface roughness and vegetation, especially at high incidence angles. An algorithm for the retrieval of soil moisture, based on the sensitivity to moisture of the brightness temperature at C-band, has been tested using the collected data set. The results of the algorithm, which is able to correct for the effect of vegetation by means of the polarisation index at X-band, have been compared with soil moisture data measured on the ground. Finally, the sensitivity of emission at different frequencies to the soil moisture profile was investigated. Experimental data sets were interpreted by using the Integral Equation Model (IEM) and the outputs of the model were used to train an artificial neural network to reproduce the soil moisture content at different depths.

  19. Orbiting passive microwave sensor simulation applied to soil moisture estimation

    NASA Technical Reports Server (NTRS)

    Newton, R. W. (Principal Investigator); Clark, B. V.; Pitchford, W. M.; Paris, J. F.

    1979-01-01

    A sensor/scene simulation program was developed and used to determine the effects of scene heterogeneity, resolution, frequency, look angle, and surface and temperature relations on the performance of a spaceborne passive microwave system designed to estimate soil water information. The ground scene is based on classified LANDSAT images which provide realistic ground classes, as well as geometries. It was determined that the average sensitivity of antenna temperature to soil moisture improves as the antenna footprint size increased. Also, the precision (or variability) of the sensitivity changes as a function of resolution.

  20. Active microwave users working group program planning

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Bare, J.; Brown, W. E., Jr.; Childs, L. F.; Dellwig, L. F.; Heighway, J. E.; Joosten, R.; Lewis, A. J.; Linlor, W.; Lundien, J. R.

    1978-01-01

    A detailed programmatic and technical development plan for active microwave technology was examined in each of four user activities: (1) vegetation; (2) water resources and geologic applications, and (4) oceanographic applications. Major application areas were identified, and the impact of each application area in terms of social and economic gains were evaluated. The present state of knowledge of the applicability of active microwave remote sensing to each application area was summarized and its role relative to other remote sensing devices was examined. The analysis and data acquisition techniques needed to resolve the effects of interference factors were reviewed to establish an operational capability in each application area. Flow charts of accomplished and required activities in each application area that lead to operational capability were structured.

  1. The pushbroom microwave radiometer and aircraft measurement of soil moisture

    NASA Technical Reports Server (NTRS)

    Harrington, R. F.; Lawrence, R. W.; Levine, J. S.; Delnore, V. E.

    1985-01-01

    Soil moisture has been identified as a controlling parameter in the occurrence of atmospheric variations and crop vigor. Evapotranspiration rates impact local temperature, precipitation and motion fields of the atmosphere. The multiple beam pushbroom microwave radiometer (MBPMR) is a candidate for moisture monitoring on the Earth Observation System. A prototype MBPMR has been devised for airborne technology evaluations of pushbroom scanning capabilities. The instrument scans at 1.4 GHz with a Diche radiometer. Test flights on a NASA aircraft with the antenna mounted on the bottom of the fuselage have generated soil moisture data over crop areas for which ground truth data were gathered. Large antennas deployed from the Orbiter could collect sufficient data for mapping the global soil moisture in 6 days.

  2. Soil sample preparation using microwave digestion for uranium analysis

    SciTech Connect

    MOHAGHEGHI,AMIR H.; PRESTON,ROSE; AKBARZADEH,MANSOOR; BAKHTIAR,STEVEN

    2000-04-05

    A new sample preparation procedure has been developed for digestion of soil samples for uranium analysis. The technique employs a microwave oven digestion system to digest the sample and to prepare it for separation chemistry and analysis. The method significantly reduces the volume of acids used, eliminates a large fraction of acid vapor emissions, and speeds up the analysis time. The samples are analyzed by four separate techniques: Gamma Spectrometry, Alpha Spectroscopy using the open digestion method, Kinetic Phosphorescence Analysis (KPA) using open digestion, and KPA by Microwave digestion technique. The results for various analytical methods are compared and used to confirm the validity of the new procedure. The details of the preparation technique along with its benefits are discussed.

  3. Estimating root-zone soil moisture via the simultaneous assimilation of thermal and microwave soil moisture retrievals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The upcoming deployment of satellite-based microwave sensors designed specifically to retrieve surface soil moisture represents an important milestone in efforts to develop hydrologic applications for remote sensing observations. However, the vertical support of microwave-based surface soil moistur...

  4. Field study of in situ remediation of petroleum hydrocarbon contaminated soil on site using microwave energy.

    PubMed

    Chien, Yi-Chi

    2012-01-15

    Many laboratory-scale studies strongly suggested that remediation of petroleum hydrocarbon contaminated soil by microwave heating is very effective; however, little definitive field data existed to support the laboratory-scale observations. This study aimed to evaluate the performance of a field-scale microwave heating system to remediate petroleum hydrocarbon contaminated soil. A constant microwave power of 2 kW was installed directly in the contaminated area that applied in the decontamination process for 3.5h without water input. The C10-C40 hydrocarbons were destroyed, desorbed or co-evaporated with moisture from soil by microwave heating. The moisture may play an important role in the absorption of microwave and in the distribution of heat. The success of this study paved the way for the second and much larger field test in the remediation of petroleum hydrocarbon contaminated soil by microwave heating in place. Implemented in its full configuration for the first time at a real site, the microwave heating has demonstrated its robustness and cost-effectiveness in cleaning up petroleum hydrocarbon contaminated soil in place. Economically, the concept of the microwave energy supply to the soil would be a network of independent antennas which powered by an individual low power microwave generator. A microwave heating system with low power generators shows very flexible, low cost and imposes no restrictions on the number and arrangement of the antennas.

  5. Inflatable Antenna Microwave Radiometer for Soil Moisture Measurement

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Kendall, Bruce M.; Schroeder, Lyle C.; Harrington, Richard F.

    1993-01-01

    Microwave measurements of soil moisture are not being obtained at the required spatial Earth resolution with current technology. Recently, new novel designs for lightweight reflector systems have been developed using deployable inflatable antenna structures which could enable lightweight real-aperture radiometers. In consideration of this, a study was conducted at the NASA Langley Research Center (LaRC) to determine the feasibility of developing a microwave radiometer system using inflatable reflector antenna technology to obtain high spatial resolution radiometric measurements of soil moisture from low Earth orbit and which could be used with a small and cost effective launch vehicle. The required high resolution with reasonable swath width coupled with the L-band measurement frequency for soil moisture dictated the use of a large (30 meter class) real aperture antenna in conjunction with a pushbroom antenna beam configuration and noise-injection type radiometer designs at 1.4 and 4.3 GHz to produce a 370 kilometer cross-track swath with a 10 kilometer resolution that could be packaged for launch with a Titan 2 class vehicle. This study includes design of the inflatable structure, control analysis, structural and thermal analysis, antenna and feed design, radiometer design, payload packaging, orbital analysis, and electromagnetic losses in the thin membrane inflatable materials.

  6. Inversion algorithms for the microwave remote sensing of soil moisture. Experiments with swept frequency microwaves

    NASA Technical Reports Server (NTRS)

    Hancock, G. D.; Waite, W. P.

    1984-01-01

    Two experiments were performed employing swept frequency microwaves for the purpose of investigating the reflectivity from soil volumes containing both discontinuous and continuous changes in subsurface soil moisture content. Discontinuous moisture profiles were artificially created in the laboratory while continuous moisture profiles were induced into the soil of test plots by the environment of an agricultural field. The reflectivity for both the laboratory and field experiments was measured using bi-static reflectometers operated over the frequency ranges of 1.0 to 2.0 GHz and 4.0 to 8.0 GHz. Reflectivity models that considered the discontinuous and continuous moisture profiles within the soil volume were developed and compared with the results of the experiments. This comparison shows good agreement between the smooth surface models and the measurements. In particular the comparison of the smooth surface multi-layer model for continuous moisture profiles and the yield experiment measurements points out the sensitivity of the specular component of the scattered electromagnetic energy to the movement of moisture in the soil.

  7. Assimilation of passive microwave-based soil moisture and snow depth retrievals for drought estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article examines the influence of passive microwave based soil moisture and snow depth retrievals towards improving estimates of drought through data assimilation. Passive microwave based soil moisture and snow depth retrievals from a variety of sensors are assimilated separately into the Noah ...

  8. De-noising of microwave satellite soil moisture time series

    NASA Astrophysics Data System (ADS)

    Su, Chun-Hsu; Ryu, Dongryeol; Western, Andrew; Wagner, Wolfgang

    2013-04-01

    The use of satellite soil moisture data for scientific and operational hydrologic, meteorological and climatological applications is advancing rapidly due to increasing capability and temporal coverage of current and future missions. However evaluation studies of various existing remotely-sensed soil moisture products from these space-borne microwave sensors, which include AMSR-E (Advanced Microwave Scanning Radiometer) on Aqua satellite, SMOS (Soil Moisture and Ocean Salinity) mission and ASCAT (Advanced Scatterometer) on MetOp-A satellite, found them to be significantly different from in-situ observations, showing large biases and different dynamic ranges and temporal patterns (e.g., Albergel et al., 2012; Su et al., 2012). Moreover they can have different error profiles in terms of bias, variance and correlations and their performance varies with land surface characteristics (Su et al., 2012). These severely impede the effort to use soil moisture retrievals from multiple sensors concurrently in land surface modelling, cross-validation and multi-satellite blending. The issue of systematic errors present in data sets should be addressed prior to renormalisation of the data for blending and data assimilation. Triple collocation estimation technique has successfully yielded realistic error estimates (Scipal et al., 2008), but this method relies on availability of large number of coincident data from multiple independent satellite data sets. In this work, we propose, i) a conceptual framework for distinguishing systematic periodic errors in the form of false spectral resonances from non-systematic errors (stochastic noise) in remotely-sensed soil moisture data in the frequency domain; and ii) the use of digital filters to reduce the variance- and correlation-related errors in satellite data. In this work, we focus on the VUA-NASA (Vrije Universiteit Amsterdam with NASA) AMSR-E, CATDS (Centre National d'Etudes Spatiales, CNES) SMOS and TUWIEN (Vienna University of

  9. Soil moisture sensing via swept frequency based microwave sensors.

    PubMed

    Pelletier, Mathew G; Karthikeyan, Sundar; Green, Timothy R; Schwartz, Robert C; Wanjura, John D; Holt, Greg A

    2012-01-01

    There is a need for low-cost, high-accuracy measurement of water content in various materials. This study assesses the performance of a new microwave swept frequency domain instrument (SFI) that has promise to provide a low-cost, high-accuracy alternative to the traditional and more expensive time domain reflectometry (TDR). The technique obtains permittivity measurements of soils in the frequency domain utilizing a through transmission configuration, transmissometry, which provides a frequency domain transmissometry measurement (FDT). The measurement is comparable to time domain transmissometry (TDT) with the added advantage of also being able to separately quantify the real and imaginary portions of the complex permittivity so that the measured bulk permittivity is more accurate that the measurement TDR provides where the apparent permittivity is impacted by the signal loss, which can be significant in heavier soils. The experimental SFI was compared with a high-end 12 GHz TDR/TDT system across a range of soils at varying soil water contents and densities. As propagation delay is the fundamental measurement of interest to the well-established TDR or TDT technique; the first set of tests utilized precision propagation delay lines to test the accuracy of the SFI instrument's ability to resolve propagation delays across the expected range of delays that a soil probe would present when subjected to the expected range of soil types and soil moisture typical to an agronomic cropping system. The results of the precision-delay line testing suggests the instrument is capable of predicting propagation delays with a RMSE of +/-105 ps across the range of delays ranging from 0 to 12,000 ps with a coefficient of determination of r(2) = 0.998. The second phase of tests noted the rich history of TDR for prediction of soil moisture and leveraged this history by utilizing TDT measured with a high-end Hewlett Packard TDR/TDT instrument to directly benchmark the SFI instrument over

  10. In situ RF/microwave remediation of soil benchtop experiment overview and results

    SciTech Connect

    Regan, A.H.; Palomares, M.E.; Polston, C.; Rees, D.E.; Roybal, W.T.

    1996-06-01

    The authors have developed an in-situ process that combines RF/microwave energy application with soil vapor extraction to help mobilize and efficiently remove soil contaminants. They have conducted a number of benchtop experiments involving RF/microwave energy deposition and vapor extraction on controlled contaminated soil samples with successful removal of the DNAPL contaminants. This paper will describe the experiments performed and present results.

  11. Modeling and measurement of microwave emission and backscattering from bare soil surfaces

    NASA Technical Reports Server (NTRS)

    Saatchi, S.; Wegmuller, U.

    1992-01-01

    A multifrequency ground-based radiometer-scatterometer system working at frequencies between 3.0 GHz and 11.0 GHz has been used to study the effect of soil moisture and roughness on microwave emission and backscattering. The freezing and thawing effect of the soil surface and the changes of the surface roughness due to rain and erosion are reported. To analyze the combined active and passive data, a scattering model based on physical optics approximation for the low frequency and geometrical optics approximation for high frequency has been developed. The model is used to calculate the bistatic scattering coefficients from the surface. By considering the conservation of energy, the result has been integrated over a hemisphere above the surface to calculate the emissivity. The backscattering and emission model has been coupled with the observed data in order to extract soil moisture and surface roughness.

  12. Remediation of hydrocarbon-contaminated soils by ex situ microwave treatment: technical, energy and economic considerations.

    PubMed

    Falciglia, P P; Vagliasindi, F G A

    2014-01-01

    In this study, the remediation of diesel-polluted soils was investigated by simulating an ex situ microwave (MW) heating treatment under different conditions, including soil moisture, operating power and heating duration. Based on experimental data, a technical, energy and economic assessment for the optimization of full-scale remediation activities was carried out. Main results show that the operating power applied significantly influences the contaminant removal kinetics and the moisture content in soil has a major effect on the final temperature reachable during MW heating. The first-order kinetic model showed an excellent correlation (r2 > 0.976) with the experimental data for residual concentration at all operating powers and for all soil moistures tested. Excellent contaminant removal values up to 94.8% were observed for wet soils at power higher than 600 W for heating duration longer than 30 min. The use of MW heating with respect to a conventional ex situ thermal desorption treatment could significantly decrease the energy consumption needed for the removal of hydrocarbon contaminants from soils. Therefore, the MW treatment could represent a suitable cost-effective alternative to the conventional thermal treatment for the remediation of hydrocarbon-polluted soil.

  13. Microwave Remote Sensing of Soil Moisture for Estimation of Soil Properties

    NASA Technical Reports Server (NTRS)

    Mattikalli, Nandish M.; Engman, Edwin T.; Jackson, Thomas J.

    1997-01-01

    Surface soil moisture dynamics was derived using microwave remote sensing, and employed to estimate soil physical and hydraulic properties. The L-band ESTAR radiometer was employed in an airborne campaign over the Little Washita watershed, Oklahoma during June 10-18, 1992. Brightness temperature (TB) data were employed in a soil moisture inversion algorithm which corrected for vegetation and soil effects. Analyses of spatial TB and soil moisture dynamics during the dry-down period revealed a direct relationship between changes in TB, soil moisture and soil texture. Extensive regression analyses were carried out which yielded statistically significant quantitative relationships between ratio of percent sand to percent clay (RSC, a term derived to quantify soil texture) and saturated hydraulic conductivity (Ksat) in terms of change components of TB and surface soil moisture. Validation of results indicated that both RSC and Ksat can be estimated with reasonable accuracy. These findings have potential applications for deriving spatial distributions of RSC and Ksat over large areas.

  14. Large scale evaluation of soil moisture retrievals from passive microwave observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For several years passive microwave observations have been used to retrieve surface soil moisture from the Earth’s surface. Several satellite sensors such as the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and WindSat have been used for this purpose using multi-channel observations. Large sc...

  15. Microwave Soil Moisture Retrieval Under Trees Using a Modified Tau-Omega Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During 2007-2009 field experiments have been conducted using the ComRAD microwave truck instrument system with a goal of optimizing microwave soil moisture retrieval algorithms for small to medium deciduous and coniferous trees. A joint effort of NASA / GSFC and George Washington University, ComRAD ...

  16. A new method to inverse soil moisture based on thermal infrared and passive microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Zhuang; Kou, Xiaokang; Zhao, Shaojie; Jiang, Lingmei

    2014-11-01

    Soil moisture is one of the main factors in the water, energy and carbon cycles. It constitutes a major uncertainty in climate and hydrological models. By now, passive microwave remote sensing and thermal infrared remote sensing technology have been used to obtain and monitor soil moisture. However, as the resolution of passive microwave remote sensing is very low and the thermal infrared remote sensing method fails to provide soil temperature on cloudy days, it is hard to monitor the soil moisture accurately. To solve the problem, a new method has been tried in this research. Thermal infrared remote sensing and passive microwave remote sensing technology have been combined based on the delicate experiment. Since the soil moisture retrieved by passive microwave in general represents surface centimeters deep, which is different from deeper soil moisture estimated by thermal inertia method, a relationship between the two depths soil moisture has been established based on the experiment. The results show that there is a good relationship between the soil moisture estimated by passive microwave and thermal infrared remote sensing method. The correlation coefficient is 0.78 and RMSE (root mean square error) is 0.0195 · ?. This research provides a new possible method to inverse soil moisture.

  17. Microwave Dielectric Properties of Soil and Vegetation and Their Estimation From Spaceborne Radar

    NASA Technical Reports Server (NTRS)

    Dobson, M. Craig; McDonald, Kyle C.

    1996-01-01

    This paper is largely tutorial in nature and provides an overview of the microwave dielectric properties of certain natural terrestrial media (soils and vegetation) and recent results in estimating these properties remotely from airborne and orbital synthetic aperture radar (SAR).

  18. Microwave radiometer experiment of soil moisture sensing at BARC test site during summer 1981

    NASA Technical Reports Server (NTRS)

    Wang, J.; Jackson, T.; Engman, E. T.; Gould, W.; Fuchs, J.; Glazer, W.; Oneill, P.; Schmugge, T. J.; Mcmurtrey, J., III

    1984-01-01

    Soil moisture was measured by truck mounted microwave radiometers at the frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz. The soil textures in the two test sites were different so that the soil type effect of microwave radiometric response could be studied. Several fields in each test site were prepared with different surface roughnesses and vegetation covers. Ground truth on the soil moisture, temperature, and the biomass of the vegetation was acquired in support of the microwave radiometric measurements. Soil bulk density for each of the fields in both test sites was sampled. The soils in both sites were measured mechanically and chemically. A tabulation of the measured data is presented and the sensors and operational problems associated with the measurements are discussed.

  19. Active microwave computed brain tomography: the response to a challenge.

    PubMed

    Almirall, H; Broquetas, A; Jofre, L

    1991-02-01

    The potential application of active microwave techniques to brain imaging is studied by numerical simulations and experimentally using a recently developed cylindrical microwave scanner. The potential advantages and limitations of this method in static and dynamic brain imaging are presented and compared with other imaging techniques. PMID:2062119

  20. Microwave remote sensing: Active and passive. Volume 1 - Microwave remote sensing fundamentals and radiometry

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Moore, R. K.; Fung, A. K.

    1981-01-01

    The three components of microwave remote sensing (sensor-scene interaction, sensor design, and measurement techniques), and the applications to geoscience are examined. The history of active and passive microwave sensing is reviewed, along with fundamental principles of electromagnetic wave propagation, antennas, and microwave interaction with atmospheric constituents. Radiometric concepts are reviewed, particularly for measurement problems for atmospheric and terrestrial sources of natural radiation. Particular attention is given to the emission by atmospheric gases, clouds, and rain as described by the radiative transfer function. Finally, the operation and performance characteristics of radiometer receivers are discussed, particularly for measurement precision, calibration techniques, and imaging considerations.

  1. The Impact of Microwave-Derived Surface Soil Moisture on Watershed Hydrological Modeling

    NASA Technical Reports Server (NTRS)

    ONeill, P. E.; Hsu, A. Y.; Jackson, T. J.; Wood, E. F.; Zion, M.

    1997-01-01

    The usefulness of incorporating microwave-derived soil moisture information in a semi-distributed hydrological model was demonstrated for the Washita '92 experiment in the Little Washita River watershed in Oklahoma. Initializing the hydrological model with surface soil moisture fields from the ESTAR airborne L-band microwave radiometer on a single wet day at the start of the study period produced more accurate model predictions of soil moisture than a standard hydrological initialization with streamflow data over an eight-day soil moisture drydown.

  2. Procedures for the description of agricultural crops and soils in optical and microwave remote sensing studies

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Dobson, M. C.; Schmugge, T.; Hoogeboom, P.; Janse, A. R. P.

    1987-01-01

    This paper describes procedures for characterizing agricultural crops and soils in remote sensing studies. The procedures are based on the accumulated experience of a number of researchers active in this field. Therefore, they represent a compromise between the theoretically desirable and the practically feasible, and should thus be an effective aid in further studies of this type. Although the guidelines were prepared specifically for microwave studies, adjustments were made to render the procedures applicable to optical studies as well. Given the increasing number of research teams involved in remote sensing applied to agriculture, there is an opportunity to acquire a broad data base on soils and crops in various geographic regions. To allow intercomparisons of such data, they must be obtained in a consistent manner. By following the proposed procedures and reporting results using the parameters described here, such intercomparisons should be possible on a continental or a global scale.

  3. An SSM/I radiometer simulator for studies of microwave emission from soil. [Special Sensor Microwave/Imager

    NASA Technical Reports Server (NTRS)

    Galantowicz, J. F.; England, A. W.

    1992-01-01

    A ground-based simulator of the defense meterological satellite program special sensor microwave/imager (DMSP SSM/I) is described, and its integration with micrometeorological instrumentation for an investigation of microwave emission from moist and frozen soils is discussed. The simulator consists of three single polarization radiometers which are capable of both Dicke radiometer and total power radiometer modes of operation. The radiometers are designed for untended operation through a local computer and a daily telephone link to a laboratory. The functional characteristics of the radiometers are described, together with their field deployment configuration and an example of performance parameters.

  4. Attenuation of soil microwave emissivity by corn and soybeans at 1.4 and 5 GHz

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas J.; O'Neill, Peggy E.

    1989-01-01

    Theory and experiments have shown that passive microwave radiometers can be used to measure soil moisture. However, the presence of a vegetative cover alters the measurement that might be obtained under bare conditions. Deterministically accounting for the effect of vegetation and developing algorithms for extracting soil moisture from observations of a vegetable-soil complex present significant obstacles to the practical use of this approach. The presence of a vegetation canopy reduces the sensitivity of passive microwave instruments to soil moisture variations. The reduction in sensitivity, as compared to a bare-soil relationship, increases as microwave frequency increases, implying that the longest wavelength sensors should provide the most information. Sensitivity also decreases as the amount of vegetative wet biomass increases for a given type of vegetation.

  5. Effect of vegetation on soil moisture sensing observed from orbiting microwave radiometers

    NASA Technical Reports Server (NTRS)

    Wang, J. R.

    1985-01-01

    The microwave radiometric measurements made by the Skylab 1.4 GHz radiometer and by the 6.6 GHz and 10.7 GHz channels of the Nimbus-7 Scanning Multichannel Microwave Radiometer were analyzed to study the large-area soil moisture variations of land surfaces. Two regions in Texas, one with sparse and the other with dense vegetation covers, were selected for the study. The results gave a confirmation of the vegetation effect observed by ground-level microwave radiometers. Based on the statistics of the satellite data, it was possible to estimate surface soil moisture in about five different levels from dry to wet conditions with a 1.4 GHz radiometer, provided that the biomass of the vegetation cover could be independently measured. At frequencies greater than about 6.6 GHz, the radiometric measurements showed little sensitivity to moisture variation for vegetation-covered soils. The effects of polarization in microwave emission were studied also.

  6. Solar Activity Studies using Microwave Imaging Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    We report on the status of solar cycle 24 based on polar prominence eruptions (PEs) and microwave brightness enhancement (MBE) information obtained by the Nobeyama radioheliograph. The north polar region of the Sun had near-zero field strength for more than three years (2012-2015) and ended only in September 2015 as indicated by the presence of polar PEs and the lack of MBE. The zero-polar-field condition in the south started only around 2013, but it ended by June 2014. Thus the asymmetry in the times of polarity reversal switched between cycle 23 and 24. The polar MBE is a good proxy for the polar magnetic field strength as indicated by the high degree of correlation between the two. The cross-correlation between the high- and low-latitude MBEs is significant for a lag of approximately 5.5 to 7.3 years, suggesting that the polar field of one cycle indicates the sunspot number of the next cycle in agreement with the Babcock-Leighton mechanism of solar cycles. The extended period of near-zero field in the north-polar region should result in a weak and delayed sunspot activity in the northern hemisphere in cycle 25.

  7. Active microwave sensing of the atmosphere, chapter 4

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The use of active microwave systems to study atmospheric phenomena is studied. Atmospheric pollution, weather prediction, climate and weather modification, weather danger and disaster warning, and atmospheric processes and interactions are covered.

  8. Microwave-induced thermogenetic activation of single cells

    SciTech Connect

    Safronov, N. A.; Fedotov, I. V.; Ermakova, Yu. G.; Matlashov, M. E.; Belousov, V. V.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Zheltikov, A. M.

    2015-04-20

    Exposure to a microwave field is shown to enable thermogenetic activation of individual cells in a culture of cell expressing thermosensitive ion channels. Integration of a microwave transmission line with an optical fiber and a diamond quantum thermometer has been shown to allow thermogenetic single-cell activation to be combined with accurate local online temperature measurements based on an optical detection of electron spin resonance in nitrogen–vacancy centers in diamond.

  9. Discrimination of soil hydraulic properties by combined thermal infrared and microwave remote sensing

    NASA Technical Reports Server (NTRS)

    Vandegriend, A. A.; Oneill, P. E.

    1986-01-01

    Using the De Vries models for thermal conductivity and heat capacity, thermal inertia was determined as a function of soil moisture for 12 classes of soil types ranging from sand to clay. A coupled heat and moisture balance model was used to describe the thermal behavior of the top soil, while microwave remote sensing was used to estimate the soil moisture content of the same top soil. Soil hydraulic parameters are found to be very highly correlated with the combination of soil moisture content and thermal inertia at the same moisture content. Therefore, a remotely sensed estimate of the thermal behavior of the soil from diurnal soil temperature observations and an independent remotely sensed estimate of soil moisture content gives the possibility of estimating soil hydraulic properties by remote sensing.

  10. Use of TRMM Microwave Imager (TMI) to characterize soil moisture for the Little River Watershed

    NASA Astrophysics Data System (ADS)

    Cashion, J. E.; Lakshmi, V.; Bosch, D.

    2003-12-01

    Soil moisture plays a critical role in many hydrological processes including infiltration, evaporation, and runoff. Additionally, soil moisture has a direct effect on weather patterns. Satellite based passive microwave sensors offer an effective way to observe soil moisture data over vast areas, and there are currently several satellite systems that detect soil moisture. Long-term in situ (field) measurements of soil moisture are collected in the Little River Watershed (LRWS) located in Tifton, Georgia and compared with the remotely sensed data collected over the watershed. The LRWS has been selected by the United States Department of Agriculture (USDA) to represent the south eastern costal plains region of North America. The LRWS is composed primarily of sandy soils and has a flat topography with meandering streams. The in-situ measurements were collected by stationary soil moisture probes attached to rain gage stations throughout the LRWS for the period 2000-2002. The remotely sensed data was acquired by two satellites viz. - the Tropical Rainfall Measurement Mission Microwave Imager (TMI) for soil moisture and the Moderate Resolution Imaging Spectroradiometer (MODIS) for vegetation. The TMI is equipped with a passive vertically and horizontally polarized 10.65GHz sensor that is capable of detecting soil moisture. Soil moisture collected in the field is related to the TMI brightness temperatures. However, vegetation has a strong affect on the 10.65GHz brightness temperature. The Normalized Difference Vegetation Index (NDVI) data, provided by the (MODIS), are used to evaluate the effect of vegetation on soil microwave emission.

  11. Remediation of soils contaminated with polychlorinated biphenyls by microwave-irradiated manganese dioxide.

    PubMed

    Huang, Guan-yi; Zhao, Ling; Dong, Yuan-hua; Zhang, Qin

    2011-02-15

    The removal of polychlorinated biphenyls (PCBs) using microwave-irradiated manganese dioxide (MnO(2)) in PCB-contaminated soils under different conditions is investigated. The removal of PCB77 in two actual soil samples exhibits strong pH-dependent behavior, and the removal efficiency is higher in acidic soil (Ali-Perudic Ferrosols) than that in neutral soil (Udic Argosols). The removal kinetics of PCB77 using microwave-irradiated MnO(2) under different experimental conditions fits a pseudo-first-order kinetic model well. Both the removal efficiency and the kinetic constant (k) values of PCB77 in Ali-Perudic Ferrosols considerably increase, although in a nonlinear fashion, as the initial amount of MnO(2) is increased, as the treated soil mass is increased, and as the microwave power is increased. The reactivity of three PCBs (PCB28, PCB77, and PCB118) did not present as a function of the degree of chlorination in the reaction with microwave-irradiated MnO(2). The pronounced removal of three PCBs in contaminated soil (all above 95%) indicates that MnO(2) in combination with microwave irradiation is promising for technological applications that seek to remediate sites critically polluted with PCBs.

  12. Orbiting multi-beam microwave radiometer for soil moisture remote sensing

    NASA Technical Reports Server (NTRS)

    Shiue, J. C.; Lawrence, R. W.

    1985-01-01

    The effects of soil moisture and other factors on soil surface emissivity are reviewed and design concepts for a multibeam microwave radiometer with a 15 m antenna are described. Characteristic antenna gain and radiation patterns are shown and losses due to reflector roughness are estimated.

  13. Passive microwave soil moisture downscaling using vegetation index and skin surface temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture satellite estimates are available from a variety of passive microwave satellite sensors, but their spatial resolution is frequently too coarse for use by land managers and other decision makers. In this paper, a soil moisture downscaling algorithm based on a regression relationship bet...

  14. Parametric exponentially correlated surface emission model for L-band passive microwave soil moisture retrieval

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface soil moisture is an important parameter in hydrology and climate investigations. Current and future satellite missions with L-band passive microwave radiometers can provide valuable information for monitoring the global soil moisture. A factor that can play a significant role in the modeling...

  15. Microwave penetration and attenuation in desert soil - A field experiment with the Shuttle Imaging Radar

    NASA Technical Reports Server (NTRS)

    Farr, T. G.; Elachi, C.; Hartl, P.; Chowdhury, K.

    1986-01-01

    Receivers buried in the Nevada desert were used with the Shuttle Imaging Radar to measure microwave attenuation as a function of soil moisture in situ. Results agree closely with laboratory measurements of attenuation and suggest that penetration of tens of centimeters in desert soils is common for L-band (1.2-GHz) radar.

  16. A radiative transfer model for microwave emissions from bare agricultural soils

    NASA Technical Reports Server (NTRS)

    Burke, W. J.; Paris, J. F.

    1975-01-01

    A radiative transfer model for microwave emissions from bare, stratified agricultural soils was developed to assist in the analysis of data gathered in the joint soil moisture experiment. The predictions of the model were compared with preliminary X band (2.8 cm) microwave and ground based observations. Measured brightness temperatures at vertical and horizontal polarizations can be used to estimate the moisture content of the top centimeter of soil with + or - 1 percent accuracy. It is also shown that the Stokes parameters can be used to distinguish between moisture and surface roughness effects.

  17. Requirements of space-borne microwave radiometers for detecting soil moisture contents

    NASA Technical Reports Server (NTRS)

    Burke, H.-H. K.; Burke, W. J.

    1981-01-01

    A multilayer radiative transfer model for predicting the relationship between soil moisture content and microwave emission is summarized. Attention is also given to the performance of various microwave sensors for soil moisture retrieval; here, the requirements of a satellite sensor system for monitoring large-scale soil moisture conditions are discussed. These requirements are presented in terms of (1) the wavelength, (2) atmospheric contamination, (3) polarization, (4) frequency of observation, and (5) spatial resolution. Each parameter is discussed in terms of microwave response. Previous aircraft data with extensive ground truth information are used to support the theories proposed. Trade-offs between the parameters and an optimum sensor system for space monitoring soil moisture information are discussed.

  18. Effect of moisture on efficiency of microwaves to control plant--parasitic nematodes in soil.

    PubMed

    Rahi, Gurcharan S; Rich, Jimmy R

    2011-01-01

    Laboratory studies were conducted to evaluate effect of microwave irradiation of sandy loam soil on thermal energy absorption and control of plant-parasitic nematodes when air dry soil layers were placed on top of less moist, moist, and wet soil layers. The soil was packed in 12 cm high and 10 cm dia columns to a bulk density of 1.4 g/cm3. Moisture contents of air dry, less moist, moist, and wet soils were 0.75, 4.50, 6.00, and 10.30%, respectively, on dry mass basis. The top air dry soil was 4.0 cm thick and the bottom layer was 8.0 cm thick. Temperature measurements and thermal radiation absorption data were monitored in both soil layers and showed that the use of a top dry soil both increased depth of penetration of microwave radiation and it provided insulation for better absorption of thermal energy in the lower layer of soil. An exposure of 65 seconds resulted in soil temperatures high enough to cause significant decrease in nematode population in soil infested with Rotylenchulus reniformis nematodes. No such effect was observed in combination where dry soil layer was placed over dry soil at the bottom. These results are helpful in sterilizing soil used for greenhouses and nurseries.

  19. Microwave-assisted extraction and determination of enrofloxacin and danofloxacin photo-transformation products in soil.

    PubMed

    Speltini, Andrea; Sturini, Michela; Maraschi, Federica; Profumo, Antonella; Albini, Angelo

    2012-09-01

    Here we describe the extraction from soil of the major photo-transformation products (PTPs) of enrofloxacin (ENR) and danofloxacin (DAN), two fluoroquinolones (FQs) widely used in veterinary medicine and of growing environmental concern, because their PTPs have been shown to retain high antibacterial activity. The microwave-assisted extraction (MAE) technique developed previously for determination of FQs, and based on use of an alkaline aqueous solution of Mg(2+) as a complexing agent for the analytes, was applied to agricultural soil samples fortified with different amounts of the PTPs and residues of the parent compounds (53-1000 ng g(-1) for ENR, 24-148 ng g(-1) for DAN). The PTPs, obtained by irradiation of thin layers of the two drugs, were, after extraction, separated and quantified by HPLC-FD. Good recovery (70-130%) and precision (RSDs 1-6% for repeatability and 9-22% for reproducibility) were obtained by use of the overall analytical procedure. The method was applied for the first time to study the in-soil lifecycle of ENR and DAN PTPs, generated in the matrix by irradiation under natural sunlight, at environmentally significant concentrations. Results indicated that soil-adsorbed FQ PTPs are themselves liable to photodegradation and have lifetimes comparable with those of parent compounds.

  20. Microwave backscatter dependence on surface roughness, soil moisture, and soil texture. II - Vegetation-covered soil

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Bradley, G. A.; Dobson, M. C.

    1979-01-01

    Results are presented for an experimental investigation to determine the relationship between radar backscatter coefficient (sigma) and soil moisture for vegetation-covered soil. These results extend a previous report which showed the experimental relationship between sigma and soil moisture for bare soil. It is shown that the highest correlation between sigma and soil moisture is 0.92 for the combined response of four crop types measured at 4.25 GHz, 10 deg incidence angle, and HH polarization. Radar look direction, relative to the crop row direction, is shown to have an insignificant effect on soil-moisture estimation if the radar frequency is higher than 4 GHz. The dependence on soil type can be minimized by expressing soil moisture in units of percent of field capacity. The possibility of using a single radar for measuring soil moisture for both bare and vegetated fields is demonstrated with a linear estimation algorithm having an experimental correlation coefficinet of 0.8.

  1. WindSat Passive Microwave Soil Moisture Retrievals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract: WindSat is a spaceborne fully polarimetric conical scanning microwave radiometer. It operates at frequencies and polarizations that match other radiometers such as the Advanced Microwave Scanning Radiometer (AMSR-E) and in addition it acquires additional polarimetric measurements...

  2. A reexamination of soil textural effects on microwave emission and backscattering

    NASA Technical Reports Server (NTRS)

    Dobson, M. C.; Kouyate, F.; Ulaby, F. T.

    1984-01-01

    Microwave frequency measurements of moist soil dielectric properties are noted to challenge the validity of percent-of-field-capacity as a moisture indicator that is independent of soil texture in terms of microwave sensitivity. In arriving at this view, gravimetric, volumetric, and percent-of-field-capacity were tested for their ability to reduce dielectric behavior divergence between soil textures at 1.4 and 5.0 GHz. The most congruent dielectric behavior between soil textures is found to occur when soil moisture is expressed on a volumetric basis that is proportional to the number of water dipoles/unit volume. An inadequate characterization of soil bulk density in the field, combined with the dependency of bulk density on water retention at field capacity, offers the most plausible explanation for the earlier conclusions.

  3. Active microwave investigation of snowpacks: Experimental documentation, Colorado 1979-1980

    NASA Technical Reports Server (NTRS)

    Stiles, W. H.; Ulaby, F. T.; Aslam, A.; Abdelrazik, M.

    1981-01-01

    During the winter of 1979-1980, the University of Kansas Microwave Active Spectrometer systems measured the backscattering properties of snowpacks under varying conditions at four test sites in Colorado. In addition to the radar data over 1-35 GHz, ground-truth measurements of the atmospheric, snow, and soil characteristics were obtained for each radar data set. The test sites, data acquisition procedures, and data that were acquired in this experiment are presented and described.

  4. Inactivation of Ascaris eggs in soil by microwave treatment compared to UV and ozone treatment.

    PubMed

    Mun, Sungmin; Cho, Shin-Hyeong; Kim, Tong-Soo; Oh, Byung-Taek; Yoon, Jeyong

    2009-09-01

    This study reports on the effect of microwave radiation for inactivation of Ascaris lumbricoides eggs in 25 g of soil compared to ultraviolet irradiation and ozone expose. Microwave radiation at 700 W with 14% water content (w/w) achieved approximately 2.5 log inactivation of eggs in soil within 60s. On the other hand, UV irradiation at 3 mW cm(-2) with and without shaking soil for 3600 s achieved approximately 0.32 and 0.01 log inactivation of eggs, respectively. In ozone treatment, 0.13 log inactivation of eggs was achieved with 5.8+/-0.7 mg L(-1) of dissolved ozone dose for 30 min in a continuous diffusion reactor. In addition, the inactivation of eggs by three disinfection techniques was conducted in water in order to compare the inactivation efficiency of eggs in soil. The inactivation efficiency of microwave radiation was found to be no significant difference between in soil and water. However, the inactivation efficiency of UV irradiation was significantly increased in water while in ozone expose there was no significant difference between in soil and water. Microwave treatment thus proved to be the most efficient method in controlling A. lumbricoides eggs in soil.

  5. Effects of corn stalk orientation and water content on passive microwave sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Oneill, P. E.; Blanchard, B. J.; Wang, J. R.; Gould, W. I.; Jackson, T. J.

    1984-01-01

    A field experiment was conducted utilizing artificial arrangements of plant components during the summer of 1982 to examine the effects of corn canopy structure and plant water content on microwave emission. Truck-mounted microwave radiometers at C (5 GHz) and L (1.4 GHz) band sensed vertically and horizontally polarized radiation concurrent with ground observations of soil moisture and vegetation parameters. Results indicate that the orientation of cut stalks and the distribution of their dielectric properties through the canopy layer can influence the microwave emission measured from a vegetation/soil scene. The magnitude of this effect varies with polarization and frequency and with the amount of water in the plant, disappearing at low levels of vegetation water content. Although many of the canopy structures and orientations studied in this experiment are somewhat artificial, they serve to improve understanding of microwave energy interactions within a vegetation canopy and to aid in the development of appropriate physically based vegetation models.

  6. Correlation of spacecraft passive microwave system data with soil moisture indices (API). [great plains corridor

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J.; Mcfarland, M. J.; Theis, S.; Richter, J. G.

    1981-01-01

    Electrical scanning microwave radiometer brightness temperature, meteorological data, climatological data, and winter wheat crop information were used to estimate that soil moisture content in the Great Plains region. Results over the predominant winter wheat areas indicate that the best potential to infer soil moisture occurs during fall and spring. These periods encompass the growth stages when soil moisture is most important to winter wheat yield. Other significant results are reported.

  7. Impact of electromagnetic microwaves on the germination of spores of Streptomyces xanthochromogenes in a peat soil and in a liquid nutrient medium

    NASA Astrophysics Data System (ADS)

    Komarova, A. S.; Likhacheva, A. A.; Lapygina, E. V.; Maksimova, I. A.; Pozdnyakov, A. I.

    2010-01-01

    The impact of microwaves on the germination of spores of Streptomyces xanthochromogenes in a liquid nutrient medium and in a peat soil was studied. The treatment of inoculums with microwave radiation affected the development of the microorganisms from the stage of spore germination to the stage of the formation of microcolonies of actinomycetes upon the spore cultivation in the liquid medium. Typical hypnum-herbaceous peat was used to study the rate of germination of the actinomycetal spores in soil. The study of the dynamics of the Streptomyces xanthochromogenes population in the control soil (without treatment with microwaves) showed that the most active development of the culture took place in the soil moistened to 60% of the maximum water capacity. When the soil was moistened to the minimum adsorption capacity, the streptomyces did not complete their full cycle of development. The stimulation of the spore germination and mycelium growth with microwaves in the soil medium required a longer period in comparison with that for the liquid medium. The stimulation of the spore germination was observed in the liquid nutrient medium in the case of 30-s treatment and in the soil in the case of 60-s treatment.

  8. Microwave emission from smooth bare fields and soil moisture sampling depth

    NASA Technical Reports Server (NTRS)

    Wang, James R.

    1987-01-01

    This paper studies the depth to which soil moisture can be directly estimated with microwave measurements over smooth bare fields. The analyses are based on both theoretical and experimental considerations at the frequencies of 1.4, 5.0, and 10.7 GHz. Radiative transfer calculations of microwave emissivities at these frequencies are performed with a number of moisture profiles measured for two soils. The calculated emissivities are compared with those derived from the Fresnel equation to deduce the microwave sampling depth in soils. The data acquired from the ground-level radiometric measurements during the summers of 1979-1981 are examined and compared with the theoretical analysis. Both theoretical and experimental analyses lead to the conclusion that the microwave samplinhg depth in soils is about one tenth of the wavelength of observation. It is shown that the moisture content at any depth near the surface of a smooth soil can be estimated, in principle, by a combination of a radiometric measurement and a curve generated by the Fresnel equation at an appropriate frequency, provided that the texture of the soil is known.

  9. Utilization of vegetation indices to improve microwave soil moisture estimates over agricultural lands

    NASA Technical Reports Server (NTRS)

    Theis, S. W.; Blanchard, B. J.; Newton, R. W.

    1984-01-01

    A technique is presented by means of which visible/near-IR data are used to develop corrections in remotely sensed microwave soil moisture signals, in order to account for vegetation effects. Visible/IR data collected with the NASA NS001 Thematic Mapper Simulator were used to calculate the Perpendicular Vegetation Index (PVI), which was then related to the change of sensitivity of the microwave measurement to surface soil moisture. Effective estimation of soil moisture in the presence of vegetation can be made with L-band microwave radiometers and visible/IR sensors when the PVI is lower than 4.3. This technique offers a means for the estimation of moisture from a space platform over many agricultural areas, without expensive ground data collection.

  10. Application of microwave method for moisture determination of organic and organic-mineral soils

    NASA Astrophysics Data System (ADS)

    Kramarenko, V. V.; Nikitenkov, A. N.; Molokov, V. Yu; Shramok, A. V.; Pozdeeva, G. P.

    2016-03-01

    The problem of rapid drying arises when determining moisture, ash and organic matter content, as well as during many other soil tests. For highly-organic and organo-mineral peat soils the problem of advanced measurement of moisture content is of special importance, since after reweighing the dry sample increase in mass may be observed. The article examines the methods in determining the moisture content in peat and organic soils via microwave radiation, which will greatly speed up the process, simplify the complexity and cost of laboratory tests. The paper presents a detailed review of the methods determining moisture content in soils and characteristics, as well as application scope. The work contains the research results on moisture organic soils: drying in a microwave oven and the current domestic standards.

  11. Dual frequency microwave radiometer measurements of soil moisture for bare and vegetated rough surfaces

    NASA Technical Reports Server (NTRS)

    Lee, S. L.

    1974-01-01

    Controlled ground-based passive microwave radiometric measurements on soil moisture were conducted to determine the effects of terrain surface roughness and vegetation on microwave emission. Theoretical predictions were compared with the experimental results and with some recent airborne radiometric measurements. The relationship of soil moisture to the permittivity for the soil was obtained in the laboratory. A dual frequency radiometer, 1.41356 GHz and 10.69 GHz, took measurements at angles between 0 and 50 degrees from an altitude of about fifty feet. Distinct surface roughnesses were studied. With the roughness undisturbed, oats were later planted and vegetated and bare field measurements were compared. The 1.4 GHz radiometer was less affected than the 10.6 GHz radiometer, which under vegetated conditions was incapable of detecting soil moisture. The bare surface theoretical model was inadequate, although the vegetation model appeared to be valid. Moisture parameters to correlate apparent temperature with soil moisture were compared.

  12. Soil moisture verification study of the ESTAR microwave radiometer - Walnut Gulch, AZ 1991

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Le Vine, D. M.; Griffis, A.; Goodrich, D. C.; Schmugge, T. J.; Swift, C. T.; O'Neill, P. E.; Roberts, R. R.; Parry, R.

    1992-01-01

    The application of an electronically steered thinned array L-band radiometer (ESTAR) for soil moisture mapping is investigated over the arid rangeland Walnut Gulch Watershed. Antecedent rainfall and evaporation for the flights are very different and result in a wide range of soil moisture conditions. The high spatial variability of rainfall events within this region results in moisture conditions with dramatic spatial patterns. Sensor performance is verified using two approaches. Microwave data are used in conjunction with a microwave emission model to predict soil moisture. These predictions are compared to ground observations of soil moisture. A second verification is possible using an extensive data set. Both tests showed that the ESTAR is capable of providing soil moisture with the same level of accuracy as existing systems.

  13. Microwave remote sensing of soil moisture, volume 1. [Guymon, Oklahoma and Dalhart, Texas

    NASA Technical Reports Server (NTRS)

    Mcfarland, M. J. (Principal Investigator); Theis, S. W.; Rosenthal, W. D.; Jones, C. L.

    1982-01-01

    Multifrequency sensor data from NASA's C-130 aircraft were used to determine which of the all weather microwave sensors demonstrated the highest correlation to surface soil moisture over optimal bare soil conditions, and to develop and test techniques which use visible/infrared sensors to compensate for the vegetation effect in this sensor's response to soil moisture. The L-band passive microwave radiometer was found to be the most suitable single sensor system to estimate soil moisture over bare fields. The perpendicular vegetation index (PVI) as determined from the visible/infrared sensors was useful as a measure of the vegetation effect on the L-band radiometer response to soil moisture. A linear equation was developed to estimate percent field capacity as a function of L-band emissivity and the vegetation index. The prediction algorithm improves the estimation of moisture significantly over predictions from L-band emissivity alone.

  14. Surface temperature and soil moisture retrieval in the Sahel from airborne multifrequency microwave radiometry

    SciTech Connect

    Calvet, J.C.

    1996-03-01

    Bipolarized microwave brightness temperatures of Sahel semiarid landscapes are analyzed at two frequencies: 5.05 and 36.5 GHz. These measurements were performed in Niger, West Africa, by the radiometer PORTOS in the framework of the Hydrologic Atmospheric Pilot Experiment in the Sahel (HAPEX-Sahel), during the end of the rainy season (August--September 1992). The airborne microwave data were collected simultaneously with radiosoundings of the atmosphere, and ground measurements of surface temperature, soil moisture, and biomass of several vegetation types. After estimating the soil roughness parameters, it is shown that two kinds of vegetation canopies must be considered: sparse canopies and patchy canopies including bare soil strips. The mixed soil vegetation microwave emission is analyzed using a random continuous approach. The sparse canopy emission is efficiently described by considering the vegetation layer as homogeneous. Conversely, a simple soil-vegetation mixing equation must be used for the patchy canopies. The problem with retrieving the canopy temperature and the near-surface soil moisture is addressed. For every canopy, soil moisture retrieval is possible. Soil moisture maps are proposed. The canopy temperature can also be retrieved with good accuracy provided both vertical (v) and horizontal (h) polarizations are available. It is shown that the retrieved variables can be used to separate landscape units through a classification procedure.

  15. Enhanced binding of hydrophobic organic contaminants by microwave-assisted humification of soil organic matter.

    PubMed

    Hur, Jin; Park, Sung-Won; Kim, Min Chan; Kim, Han S

    2013-11-01

    Enhanced binding of hydrophobic organic contaminants (HOCs) with soil organic matter (SOM) by microwave (MW) irradiation was investigated in this study. We used fluorescence excitation emission matrix, humification index (HIX), and organic carbon partitioning coefficient (Koc) to examine characteristic changes in SOM and its sorptive capacity for HOCs. When MW was irradiated to soils, protein-like fluorescence decreased but fulvic- and humic-like fluorescence increased. The addition of activated carbon in the presence of oxygen facilitated the humification-like alteration of SOM more significantly, evidenced by increases in fulvic- and humic-like fluorescence signals. The extent of SOM-phenanthrene binding also increased with MW treatment, supported by a notable increase in Koc value from 1.8×10(4) to 7.3×10(5)Lkg(-1). Various descriptors indicating the physical and chemical properties of SOM along with the relative percentage of humic-like fluorescence and HIX values demonstrated strong linear relationships with Koc values. These linear relationships indicated that the increased binding affinity of SOM for phenanthrene was attributed to enhanced SOM humification, which was stimulated by MW irradiation. Thus, our results demonstrate that MW irradiation could be effectively used for remediation or for assessing the environmental risks of HOC-contaminated soils and groundwater.

  16. Artificial and enhanced humification of soil organic matter using microwave irradiation.

    PubMed

    Kim, Min Chan; Kim, Han S

    2013-04-01

    Microwave (MW) irradiation, a less energy-intensive irradiation technique, was employed to promote the changes in physicochemical properties of soil organic matter (SOM). MW was irradiated to forest soils for 10 min. Then, the physical and chemical properties of the SOM were analyzed with UV absorbance spectroscopy, Fourier transform infrared spectroscopy, elemental analysis, and size exclusion chromatography. Also, the SOM was fractionated into biopolymer, fulvic acid, and humic acid, and each fraction was analyzed quantitatively. These analyses revealed that the SOM became more aromatic and nonpolar, highly condensed, and macromolecular organic substances that possess a higher amount of functional groups found in highly humified substances than the original SOM as a result of the MW irradiation. The humification-like alteration of SOM property was attributable to the thermal cracking and to the radical reaction, particularly when the MW was irradiated along with activated carbon under the aerobic condition. The results of this study suggest that the artificial and enhanced property changes of SOM can be accomplished by MW irradiation on an engineering time scale, which can contribute to the successful soil and groundwater remediation practice.

  17. Impact of microwave derived soil moisture on hydrologic simulations using a spatially distributed water balance model

    NASA Technical Reports Server (NTRS)

    Lin, D. S.; Wood, E. F.; Famiglietti, J. S.; Mancini, M.

    1994-01-01

    Spatial distributions of soil moisture over an agricultural watershed with a drainage area of 60 ha were derived from two NASA microwave remote sensors, and then used as a feedback to determine the initial condition for a distributed water balance model. Simulated hydrologic fluxes over a period of twelve days were compared with field observations and with model predictions based on a streamflow derived initial condition. The results indicated that even the low resolution remotely sensed data can improve the hydrologic model's performance in simulating the dynamics of unsaturated zone soil moisture. For the particular watershed under study, the simulated water budget was not sensitive to the resolutions of the microwave sensors.

  18. Land surface model calibration through microwave data assimilation for improving soil moisture simulations

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Zhu, La; Chen, Yingying; Zhao, Long; Qin, Jun; Lu, Hui; Tang, Wenjun; Han, Menglei; Ding, Baohong; Fang, Nan

    2016-02-01

    Soil moisture is a key variable in climate system, and its accurate simulation needs effective soil parameter values. Conventional approaches may obtain soil parameter values at point scale, but they are costly and not efficient at grid scale (10-100 km) of current climate models. This study explores the possibility to estimate soil parameter values by assimilating AMSR-E (Advanced Microwave Scanning Radiometer for Earth Observing System) brightness temperature (TB) data. In the assimilation system, the TB is simulated by the coupled system of a land surface model (LSM) and a radiative transfer model (RTM), and the simulation errors highly depend on parameters in both the LSM and the RTM. Thus, sensitive soil parameters may be inversely estimated through minimizing the TB errors. A crucial step for the parameter estimation is made to suppress the contamination of uncertainties in atmospheric forcing data. The effectiveness of the estimated parameter values is evaluated against intensive measurements of soil parameters and soil moisture in three grasslands of the Tibetan Plateau and the Mongolian Plateau. The results indicate that this satellite data-based approach can improve the data quality of soil porosity, a key parameter for soil moisture modeling, and LSM simulations with the estimated parameter values reasonably reproduce the measured soil moisture. This demonstrates it is feasible to calibrate LSMs for soil moisture simulations at grid scale by assimilating microwave satellite data, although more efforts are expected to improve the robustness of the model calibration.

  19. The effect of row structure on soil moisture retrieval accuracy from passive microwave data.

    PubMed

    Xingming, Zheng; Kai, Zhao; Yangyang, Li; Jianhua, Ren; Yanling, Ding

    2014-01-01

    Row structure causes the anisotropy of microwave brightness temperature (TB) of soil surface, and it also can affect soil moisture retrieval accuracy when its influence is ignored in the inversion model. To study the effect of typical row structure on the retrieved soil moisture and evaluate if there is a need to introduce this effect into the inversion model, two ground-based experiments were carried out in 2011. Based on the observed C-band TB, field soil and vegetation parameters, row structure rough surface assumption (Q p model and discrete model), including the effect of row structure, and flat rough surface assumption (Q p model), ignoring the effect of row structure, are used to model microwave TB of soil surface. Then, soil moisture can be retrieved, respectively, by minimizing the difference of the measured and modeled TB. The results show that soil moisture retrieval accuracy based on the row structure rough surface assumption is approximately 0.02 cm(3)/cm(3) better than the flat rough surface assumption for vegetated soil, as well as 0.015 cm(3)/cm(3) better for bare and wet soil. This result indicates that the effect of row structure cannot be ignored for accurately retrieving soil moisture of farmland surface when C-band is used.

  20. Global Evaporation Estimates from SMAP Passive Microwave Soil Moisture Retrievals Using Conditional Sampling.

    NASA Astrophysics Data System (ADS)

    Vreugdenhil, M.; Entekhabi, D.; Konings, A. G.; Salvucci, G.; Hogan, P.

    2015-12-01

    Evaporation links the water, energy and carbon cycles over land yet even its climatology on global scale is not observed. Tower-based flux measurements are sparse and do not cover diverse biomes and climates. In the last decades, many strategies to derive evaporation based on remote sensing measurements have been developed. However, these methods are dependent on a variety of assumptions and auxiliary data, making them more prone to error propagation. A more data-driven method was developed by Salvucci (2001), who found that under statistical stationary conditions the expected change in soil moisture storage is zero when conditioned to a certain storage for a certain time interval. Consequently, using the water balance, precipitation conditionally averaged to the soil moisture storage is equal to the total loss: evaporation and drainage. Using only soil moisture and precipitation data as model inputs reduces the sources of uncertainty. In this presentation we provide the first estimates of global evaporation from NASA's Soil Moisture Active Passive mission by applying the conditional sampling method to passive microwave soil moisture time series and in situ precipitation data. The obtained evaporation estimates show a good correspondence to measured evaporation from eddy correlation towers over selected field sites. Subsequently, a simple approach is developed to directly estimate evaporation from SMAP soil moisture data. This approach enables the investigation of dynamics in evaporation during the dry-down after storms. The timing of the transition between the different stages of evaporation is assessed for different climates especially the transition from stage 1 to stage 2 evaporation; atmosphere limited evaporation to soil limited evaporation respectively. Investigations into the dynamics of unstressed evaporation and transpiration and the transition from stage 1 to stage 2 evaporation increases our understanding of water stress and soil desiccation. It also

  1. Active synthetic soil

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Inventor); Henninger, Donald L. (Inventor); Allen, Earl R. (Inventor); Golden, Dadigamuwage C. (Inventor)

    1995-01-01

    A synthetic soil/fertilizer for horticultural application having all the agronutrients essential for plant growth is disclosed. The soil comprises a synthetic apatite fertilizer having sulfur, magnesium and micronutrients dispersed in a calcium phosphate matrix, a zeolite cation exchange medium saturated with a charge of potassium and nitrogen cations, and an optional pH buffer. Moisture dissolves the apatite and mobilizes the nutrient elements from the apatite matrix and the zeolite charge sites.

  2. Active synthetic soil

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Inventor); Henninger, Donald L. (Inventor); Allen, Earl R. (Inventor); Golden, Dadigamuwage C. (Inventor)

    1995-01-01

    A synthetic soil/fertilizer for horticultural application having all the agronutrients essential for plant growth is disclosed. The soil comprises a synthetic apatite fertilizer having sulfur, magnesium, and micronutrients dispersed in a calcium phosphate matrix, a zeolite cation exchange medium saturated with a charge of potassium and nitrogen cations, and an optional pH buffer. Moisture dissolves the apatite and mobilizes the nutrient elements from the apatite matrix and the zeolite charge sites.

  3. Rock fraction effects on the interpretation of microwave emission from soils

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas J.; Kostov, Kosta; Saatchi, Sasan S.

    1991-01-01

    The effects of rock fraction on the relationship between microwave emission and surface soil moisture were investigated through a combination of laboratory dielectric measurements and field observation of emissivity. Field measurements were conducted which included soils with and without rocks. Microwave brightness temperature was measured at L and C band using a truck-mounted radiometer. Dielectric measurements were made at L band. Field observations of emissivity showed that the presence of rocks decreases the range of the measurements. At 21 cm this decrease was relatively small; however, at 6 cm almost all sensitivity to soil moisture was eliminated by the presence of 35 percent rocks. Comparisons between observed and predicted data showed that the effects of rock fraction are not significant in estimating the sample soil moisture for the tested conditions.

  4. Multifrequency passive microwave observations of soil moisture in an arid rangeland environment

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Schmugge, T. J.; Parry, R.; Kustas, W. P.; Ritchie, J. C.; Shutko, A. M.; Khaldin, A.; Reutov, E.; Novichikhin, E.; Liberman, B.

    1992-01-01

    A cooperative experiment was conducted by teams from the U.S. and U.S.S.R. to evaluate passive microwave instruments and algorithms used to estimate surface soil moisture. Experiments were conducted as part of an interdisciplinary experiment in an arid rangeland watershed located in the southwest United States. Soviet microwave radiometers operating at wavelengths of 2.25, 21 and 27 cm were flown on a U.S. aircraft. Radio frequency interference limited usable data to the 2.25 and 21 cm systems. Data have been calibrated and compared to ground observations of soil moisture. These analyses showed that the 21 cm system could produce reliable and useful soil moisture information and that the 2.25 cm system was of no value for soil moisture estimation in this experiment.

  5. Temporal observations of surface soil moisture using a passive microwave sensor

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; O'Neill, P.

    1987-01-01

    A series of 10 aircraft flights was conducted over agricultural fields to evaluate relationships between observed surface soil moisture and soil moisture predicted using passive microwave sensor observations. An a priori approach was used to predict values of surface soil moisture for three types of fields: tilled corn, no-till corn with soybean stubble, and idle fields with corn stubble. Acceptable predictions were obtained for the tilled corn fields, while poor results were obtained for the others. The source of error is suspected to be the density and orientation of the surface stubble layer; however, further research is needed to verify this explanation. Temporal comparisons between observed, microwave predicted, and soil water-simulated moisture values showed similar patterns for tilled well-drained fields. Divergences between the observed and simulated measurements were apparent on poorly drained fields. This result may be of value in locating and mapping hydrologic contributing areas.

  6. The effects of vegetation and soil hydraulic properties on passive microwave sensing of soil moisture: Data report for the 1982 fiels experiments

    NASA Technical Reports Server (NTRS)

    Oneill, P.; Jackson, T.; Blanchard, B. J.; Vandenhoek, R.; Gould, W.; Wang, J.; Glazar, W.; Mcmurtrey, J., III

    1983-01-01

    Field experiments to (1) study the biomass and geometrical structure properties of vegetation canopies to determine their impact on microwave emission data, and (2) to verify whether time series microwave data can be related to soil hydrologic properties for use in soil type classification. Truck mounted radiometers at 1.4 GHz and 5 GHz were used to obtain microwave brightness temperatures of bare vegetated test plots under different conditions of soil wetness, plant water content and canopy structure. Observations of soil moisture, soil temperature, vegetation biomass and other soil and canopy parameters were made concurrently with the microwave measurements. The experimental design and data collection procedures for both experiments are documented and the reduced data are presented in tabular form.

  7. IRIS - A concept for microwave sensing of soil moisture and ocean salinity

    NASA Technical Reports Server (NTRS)

    Moghaddam, M.; Njoku, E.

    1997-01-01

    A concept is described for passive microwave sensing of soil moisture and ocean salinity from space. The Inflatable Radiometric Imaging System (IRIS) makes use of a large-diameter, offset-fed, parabolic-torus antenna with multiple feeds, in a conical pushbroom configuration.

  8. Estimating Long Term Surface Soil Moisture in the GCIP Area From Satellite Microwave Observations

    NASA Technical Reports Server (NTRS)

    Owe, Manfred; deJeu, Vrije; VandeGriend, Adriaan A.

    2000-01-01

    Soil moisture is an important component of the water and energy balances of the Earth's surface. Furthermore, it has been identified as a parameter of significant potential for improving the accuracy of large-scale land surface-atmosphere interaction models. However, accurate estimates of surface soil moisture are often difficult to make, especially at large spatial scales. Soil moisture is a highly variable land surface parameter, and while point measurements are usually accurate, they are representative only of the immediate site which was sampled. Simple averaging of point values to obtain spatial means often leads to substantial errors. Since remotely sensed observations are already a spatially averaged or areally integrated value, they are ideally suited for measuring land surface parameters, and as such, are a logical input to regional or larger scale land process models. A nine-year database of surface soil moisture is being developed for the Central United States from satellite microwave observations. This region forms much of the GCIP study area, and contains most of the Mississippi, Rio Grande, and Red River drainages. Daytime and nighttime microwave brightness temperatures were observed at a frequency of 6.6 GHz, by the Scanning Multichannel Microwave Radiometer (SMMR), onboard the Nimbus 7 satellite. The life of the SMMR instrument spanned from Nov. 1978 to Aug. 1987. At 6.6 GHz, the instrument provided a spatial resolution of approximately 150 km, and an orbital frequency over any pixel-sized area of about 2 daytime and 2 nighttime passes per week. Ground measurements of surface soil moisture from various locations throughout the study area are used to calibrate the microwave observations. Because ground measurements are usually only single point values, and since the time of satellite coverage does not always coincide with the ground measurements, the soil moisture data were used to calibrate a regional water balance for the top 1, 5, and 10 cm

  9. Microwave noise field: active radiometry principles and applications

    NASA Astrophysics Data System (ADS)

    Polivka, Jiri

    2012-06-01

    Principles of Active Radiometry are presented. Noise radiators are used to generate the low-coherence microwave noise field, and radiometers to evaluate its intensity, polarization and coherence. Several types of noise radiators are described as well as radiometers and antennas. The following applications are introduced: Material evaluation where insertion loss and reflectivity of grainy, irregular and moving objects are preferable. Microwave Coherence Tomography allowing the depth irregularity to be detected in low-loss objects. Near-Field antenna testing, field coherence evaluation, and spatial combining of noise radiators.

  10. Active microwave remote sensing of oceans, chapter 3

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A rationale is developed for the use of active microwave sensing in future aerospace applications programs for the remote sensing of the world's oceans, lakes, and polar regions. Summaries pertaining to applications, local phenomena, and large-scale phenomena are given along with a discussion of orbital errors.

  11. Estimating Sea Surface Salinity and Wind Using Combined Passive and Active L-Band Microwave Observations

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Chaubell, Mario J.

    2012-01-01

    Several L-band microwave radiometer and radar missions have been, or will be, operating in space for land and ocean observations. These include the NASA Aquarius mission and the Soil Moisture Active Passive (SMAP) mission, both of which use combined passive/ active L-band instruments. Aquarius s passive/active L-band microwave sensor has been designed to map the salinity field at the surface of the ocean from space. SMAP s primary objectives are for soil moisture and freeze/thaw detection, but it will operate continuously over the ocean, and hence will have significant potential for ocean surface research. In this innovation, an algorithm has been developed to retrieve simultaneously ocean surface salinity and wind from combined passive/active L-band microwave observations of sea surfaces. The algorithm takes advantage of the differing response of brightness temperatures and radar backscatter to salinity, wind speed, and direction, thus minimizing the least squares error (LSE) measure, which signifies the difference between measurements and model functions of brightness temperatures and radar backscatter. The algorithm uses the conjugate gradient method to search for the local minima of the LSE. Three LSE measures with different measurement combinations have been tested. The first LSE measure uses passive microwave data only with retrieval errors reaching 1 to 2 psu (practical salinity units) for salinity, and 1 to 2 m/s for wind speed. The second LSE measure uses both passive and active microwave data for vertical and horizontal polarizations. The addition of active microwave data significantly improves the retrieval accuracy by about a factor of five. To mitigate the impact of Faraday rotation on satellite observations, the third LSE measure uses measurement combinations invariant under the Faraday rotation. For Aquarius, the expected RMS SSS (sea surface salinity) error will be less than about 0.2 psu for low winds, and increases to 0.3 psu at 25 m/s wind speed

  12. Technology advances in active and passive microwave sensing through 1985

    NASA Technical Reports Server (NTRS)

    Barath, F. T.

    1977-01-01

    As a result of a growing awareness by the remote sensing community of the unique capabilities of passive and active microwave sensors, these instruments are expected to grow in the next decade in numbers, versatility and complexity. The Nimbus-G and Seasat-A Scanning Multichannel Microwave Spectrometer (SMMR), the Seasat-A radar altimeter, scatterometer and synthetic aperture radar represent the first systematic attempt at exploring a wide variety of applications utilizing microwave sensing techniques and are indicators of the directions in which the pertinent technology is likely to evolve. The trend is toward high resolution multi-frequency imagers spanning wide frequency ranges and wide swaths requiring sophisticated receivers, real-time data processors and most importantly, complex antennas.

  13. Disaggregation Of Passive Microwave Soil Moisture For Use In Watershed Hydrology Applications

    NASA Astrophysics Data System (ADS)

    Fang, Bin

    In recent years the passive microwave remote sensing has been providing soil moisture products using instruments on board satellite/airborne platforms. Spatial resolution has been restricted by the diameter of antenna which is inversely proportional to resolution. As a result, typical products have a spatial resolution of tens of kilometers, which is not compatible for some hydrological research applications. For this reason, the dissertation explores three disaggregation algorithms that estimate L-band passive microwave soil moisture at the subpixel level by using high spatial resolution remote sensing products from other optical and radar instruments were proposed and implemented in this investigation. The first technique utilized a thermal inertia theory to establish a relationship between daily temperature change and average soil moisture modulated by the vegetation condition was developed by using NLDAS, AVHRR, SPOT and MODIS data were applied to disaggregate the 25 km AMSR-E soil moisture to 1 km in Oklahoma. The second algorithm was built on semi empirical physical models (NP89 and LP92) derived from numerical experiments between soil evaporation efficiency and soil moisture over the surface skin sensing depth (a few millimeters) by using simulated soil temperature derived from MODIS and NLDAS as well as AMSR-E soil moisture at 25 km to disaggregate the coarse resolution soil moisture to 1 km in Oklahoma. The third algorithm modeled the relationship between the change in co-polarized radar backscatter and the remotely sensed microwave change in soil moisture retrievals and assumed that change in soil moisture was a function of only the canopy opacity. The change detection algorithm was implemented using aircraft based the remote sensing data from PALS and UAVSAR that were collected in SMPAVEX12 in southern Manitoba, Canada. The PALS L-band h-polarization radiometer soil moisture retrievals were disaggregated by combining them with the PALS and UAVSAR L

  14. Dielectric constants of soils at microwave frequencies-2

    NASA Technical Reports Server (NTRS)

    Wang, J.; Schmugge, T.; Williams, D.

    1978-01-01

    The dielectric constants of several soil samples were measured at frequencies of 5 and 19 GHz using the infinite transmission line method. The results of these measurements are presented and discussed with respect to soil types and texture structures. A comparison is made with other measurements at 1.4 GHz. At all three frequencies, the dependence of dielectric constant on soil moisture can be approximated by two straight lines. At low moisture, the slope is less than at high moisture level. The intersection of the two lines is believed to be a function of soil texture.

  15. An Evaluation of Soil Moisture Retrievals Using Aircraft and Satellite Passive Microwave Observations during SMEX02

    NASA Technical Reports Server (NTRS)

    Bolten, John D.; Lakshmi, Venkat

    2009-01-01

    The Soil Moisture Experiments conducted in Iowa in the summer of 2002 (SMEX02) had many remote sensing instruments that were used to study the spatial and temporal variability of soil moisture. The sensors used in this paper (a subset of the suite of sensors) are the AQUA satellite-based AMSR-E (Advanced Microwave Scanning Radiometer- Earth Observing System) and the aircraft-based PSR (Polarimetric Scanning Radiometer). The SMEX02 design focused on the collection of near simultaneous brightness temperature observations from each of these instruments and in situ soil moisture measurements at field- and domain- scale. This methodology provided a basis for a quantitative analysis of the soil moisture remote sensing potential of each instrument using in situ comparisons and retrieved soil moisture estimates through the application of a radiative transfer model. To this end, the two sensors are compared with respect to their estimation of soil moisture.

  16. Killing and preserving nematodes in soil samples with chemicals and microwave energy.

    PubMed

    Barker, K R; Gooding, G V; Elder, A S; Eplee, R E

    1972-04-01

    Three basic procedures for treating nematode-bearing soil samples for international shipment or from areas under quarantine were tested for their killing effect and recovery of nematodes by sugar flotation for diagnostic and advisory purposes. These were: fumigation with methyl bromide followed by storage at -15 C; microwave treatment (2450 MHz, 630 w, 2-5 min) followed by addition of FAA + picric acid or 5% Formalin; and adding chemical preservatives (FAA + picric acid, 5% Formalin, NAN, and 2-phenoxyethanol) directly to the soil. Larvae of Heterodera glycines in eggs within cysts were stimulated to hatch by 2-rain exposure to microwaves, and an exposure of 5 rain was required to kill them. Soil type and moisture significantly affected microwave effectiveness. Direct saturation of soil samples with preservative chemical solutions (FAA + picric acid or 5% Formalin) was most effective, and often increased the number of nematodes recovered. The high concentration (2%) of NaN a required for soil sterilization is too hazardous for routine work. NaN, therefore, is not recommended for this purpose.

  17. Estimating surface soil moisture from satellite microwave measurements and a satellite derived vegetation index

    NASA Technical Reports Server (NTRS)

    Owe, Manfred; Chang, Alfred; Golus, Robert E.

    1988-01-01

    Normalized 18-GHz microwave brightness temperatures, T(B), and a vegetation index determined from satellite radiometer data are combined with climatically modeled surface moisture estimates to constrain a simple physically based soil moisture model. It is found that the normalized T(B) values correlated well with soil moisture when the data were segregated by vegetation index range, but less so when all the data were combined. By using the vegetation index parameter, the model is shown to account for about 70 percent of the variability in modeled surface soil moisture.

  18. Response surface methodology for the microwave-assisted extraction of insecticides from soil samples.

    PubMed

    Hernández-Soriano, M Carmen; Peña, Aránzazu; Mingorance, M Dolores

    2007-09-01

    The extraction of two pyrethroid insecticides (deltamethrin and alpha-cypermethrin) together with three organophosphorus insecticides (dimethoate, diazinon and malathion) from soil samples was carried out with microwave-assisted technology. Experimental designs showed that extraction temperature, addition of water to the extractant and solvent/soil ratio were the variables that affected the recoveries of the pesticide the most. Response surface methodology was applied to find the optimum values of the variables involved in the extractions of the analytes. In addition, in order to achieve near-optimal extraction conditions, a desirability function was used to optimize the five pesticides simultaneously. The optimized conditions were applied to different types of soils.

  19. [Study of microelements in plant's ash and environmental soil by microwave digestion ICP-AES].

    PubMed

    Zhang, Yu-Ling; Wang, Song-Jun; Wang, Pu-Jun; Cai, Yu

    2009-08-01

    A model MDS-2002A microwave digestion sample preparation system with auto control pressure in obturation was developed for the determination of microelements in clearing-up plant's ash and environment soil sample by ICP-AES. The authors discussed sample preparation result influenced by mixed acid system, scale of mixed acid dispensation, proportion between solid and liquid and time of microwave clearing. Excellent project was A2B1C2, work procedure 2 in microwave process. When the dispensation scale was 6 : 2 : 1 : 1 and mixed acid system was HNO3-HCl-HF-HClO4, the result was the best in 10 min of microwave clearing at highest power. The reagent was dried at constant temperature electric heating board, with its salinity being dissolved by aqua fortis. The method was validated through the soil (GBW07401) and plant (GBW07603) for national standard matter. The relative error of its result is between 0.00% and 7.14%, and the relative standard deviation is between 0.87% and 5.25%. The method is quick, handy, saving reagent and completely digesting in dealing with plant's ash and soil sample, and the accuracy and precision of results are satisfying.

  20. Spatiotemporal analysis of soil moisture in using active and passive remotely sensed data and ground observations

    NASA Astrophysics Data System (ADS)

    Li, H.; Fang, B.; Lakshmi, V.

    2015-12-01

    Abstract: Soil moisture plays a vital role in ecosystem, biological processes, climate, weather and agriculture. The Soil Moisture Active Passive (SMAP) improves data by combining the advantages and avoiding the limitation of passive microwave remote sensing (low resolution), and active microwave (challenge of soil moisture retrieval). This study will advance the knowledge of the application of soil moisture by using the Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) data as well as data collected at Walnut Gulch Arizona in August 2015 during SMAPVEX15. Specifically, we will analyze the 5m radar data from Unmanned Airborne Vehicle Synthetic Aperture Radar (UAVSAR) to study spatial variability within the PALS radiometer pixel. SMAPVEX12/15 and SMAP data will also be analyzed to evaluate disaggregation algorithms. The analytical findings will provide valuable information for policy-makers to initiate and adjust protocols and regulations for protecting land resources and improving environmental conditions. Keywords: soil moisture, Remote Sensing (RS), spatial statistic

  1. L band push broom microwave radiometer: Soil moisture verification and time series experiment Delmarva Peninsula

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Shiue, J.; Oneill, P.; Wang, J.; Fuchs, J.; Owe, M.

    1984-01-01

    The verification of a multi-sensor aircraft system developed to study soil moisture applications is discussed. This system consisted of a three beam push broom L band microwave radiometer, a thermal infrared scanner, a multispectral scanner, video and photographic cameras and an onboard navigational instrument. Ten flights were made of agricultural sites in Maryland and Delaware with little or no vegetation cover. Comparisons of aircraft and ground measurements showed that the system was reliable and consistent. Time series analysis of microwave and evaporation data showed a strong similarity that indicates a potential direction for future research.

  2. Passive microwave remote sensing of soil moisture: Results from HAPEX, FIFE, and MONSOON 90

    NASA Technical Reports Server (NTRS)

    Schmugge, Thomas; Jackson, T. J.; Wang, J. R.

    1991-01-01

    HAPEX (Hydrologic Atmospheric Pilot Experiment), FIFE (First ISLSCP Field Experiment) and MONSOON 90 which used an imaging microwave radiometer operating at a frequency of 1.42 GHz are reported. For FIFE and MONSOON 90, a wide range of moisture conditions were present and it was possible to observe the drydown of the soil following heavy rain and to map its spatial variation. The quantitive agreement of microwave observations and ground measurements was very good. In HAPEX there were no significant rains and conditions were generally rather dry, however, moisture variations due to irrigation were observed.

  3. Monitoring seasonal variations of soil moisture and vegetation cover using satellite microwave radiometry

    NASA Technical Reports Server (NTRS)

    Kerr, Y. H.; Njoku, E. G.

    1988-01-01

    The NIMBUS-7 scanning multichannel microwave radiometer measured brightness temperatures at 5 frequencies (6.6, 10.7, 18, 21, 37 GHz), all dual-polarized with a 50 deg incidence angle over Africa since 1978. A 3 yr data set is being processed (1983 to 1985), and a theoretical model was developed, allowing investigation of the microwave emissivity of land features in the frequency range 6.6 to 37 GHz and of the extent to which vegetation and roughness can be determined in order to improve the soil moisture estimation.

  4. Passive microwave remote sensing of soil moisture - Results from HAPEX, FIFE and MONSOON 90

    NASA Technical Reports Server (NTRS)

    Schmugge, T.; Jackson, T. J.; Kustas, W. P.; Wang, J. R.

    1992-01-01

    HAPEX (Hydrologic Atmospheric Pilot Experiment), FIFE (First ISLSCP Field Experiment) and MONSOON 90 which used an imaging microwave radiometer operating at a frequency of 1.42 GHz are reported. For FIFE and MONSOON 90, a wide range of moisture conditions were present and it was possible to observe the drydown of the soil following heavy rain and to map its spatial variation. The quantitative agreement of microwave observations and ground measurements was very good. In HAPEX there were no significant rains and conditions were generally rather dry, however, moisture variations due to irrigation were observed.

  5. Monitoring of soil moisture using operational microwave satellites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate and timely knowledge of the water availability in the soil column is essential for water recourse management and agricultural decision making. Soil water information is a crucial model input as well as it is an important source of information for the proper understanding and interpretation ...

  6. The NASA Soil Moisture Active Passive (SMAP) Mission: Overview

    NASA Technical Reports Server (NTRS)

    O'Neill, Peggy; Entekhabi, Dara; Njoku, Eni; Kellogg, Kent

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council?s Decadal Survey [1]. Its mission design consists of L-band radiometer and radar instruments sharing a rotating 6-m mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every 2-3 days. The combined active/passive microwave soil moisture product will have a spatial resolution of 10 km and a mean latency of 24 hours. In addition, the SMAP surface observations will be combined with advanced modeling and data assimilation to provide deeper root zone soil moisture and net ecosystem exchange of carbon. SMAP is expected to launch in the late 2014 - early 2015 time frame.

  7. Estimation of Soil Moisture Profile using a Simple Hydrology Model and Passive Microwave Remote Sensing

    NASA Technical Reports Server (NTRS)

    Soman, Vishwas V.; Crosson, William L.; Laymon, Charles; Tsegaye, Teferi

    1998-01-01

    Soil moisture is an important component of analysis in many Earth science disciplines. Soil moisture information can be obtained either by using microwave remote sensing or by using a hydrologic model. In this study, we combined these two approaches to increase the accuracy of profile soil moisture estimation. A hydrologic model was used to analyze the errors in the estimation of soil moisture using the data collected during Huntsville '96 microwave remote sensing experiment in Huntsville, Alabama. Root mean square errors (RMSE) in soil moisture estimation increase by 22% with increase in the model input interval from 6 hr to 12 hr for the grass-covered plot. RMSEs were reduced for given model time step by 20-50% when model soil moisture estimates were updated using remotely-sensed data. This methodology has a potential to be employed in soil moisture estimation using rainfall data collected by a space-borne sensor, such as the Tropical Rainfall Measuring Mission (TRMM) satellite, if remotely-sensed data are available to update the model estimates.

  8. Potential of microwaves to control plant-parasitic nematodes in soil.

    PubMed

    Rahi, Gurcharan S; Rich, Jimmy R

    2008-01-01

    Microwave radiation of 2450 MHz frequency was used to irradiate sandy loam soil placed in 12 cm high and 10 cm dia columns as a function of exposure times of 30, 45, 60, and 120 s. This was done to evaluate the effect of radiation on the highest soil temperature attained and subsequent temperature patterns in relation to time. Soil columns were packed to a field bulk density of approximately 1.4 g/cm3, and treatments consisted of moist soil, dry soil, and layers of moist and dry soil of varying thicknesses. Moisture contents of moist and dry soil were 10% and 2%, respectively, on a dry mass basis. An exposure time of 45 seconds was the most efficient in yielding soil temperatures high enough to kill plant-parasitic nematodes. Irradiation of soil infested with Rotylenchulus reniform nematodes for 45 seconds resulted in a 99% extermination of the organisms in all treatments. However, radiation proved to be most effective in nematode control with 6.0 cm dry soil placed over 6.0 cm moist soil.

  9. Potential of microwaves to control plant-parasitic nematodes in soil.

    PubMed

    Rahi, Gurcharan S; Rich, Jimmy R

    2008-01-01

    Microwave radiation of 2450 MHz frequency was used to irradiate sandy loam soil placed in 12 cm high and 10 cm dia columns as a function of exposure times of 30, 45, 60, and 120 s. This was done to evaluate the effect of radiation on the highest soil temperature attained and subsequent temperature patterns in relation to time. Soil columns were packed to a field bulk density of approximately 1.4 g/cm3, and treatments consisted of moist soil, dry soil, and layers of moist and dry soil of varying thicknesses. Moisture contents of moist and dry soil were 10% and 2%, respectively, on a dry mass basis. An exposure time of 45 seconds was the most efficient in yielding soil temperatures high enough to kill plant-parasitic nematodes. Irradiation of soil infested with Rotylenchulus reniform nematodes for 45 seconds resulted in a 99% extermination of the organisms in all treatments. However, radiation proved to be most effective in nematode control with 6.0 cm dry soil placed over 6.0 cm moist soil. PMID:19227078

  10. Determination of phthalate esters in soil samples by microwave assisted extraction and high performance liquid chromatography.

    PubMed

    Liang, Pei; Zhang, Linlin; Peng, Lili; Li, Qian; Zhao, Ehong

    2010-08-01

    A method was developed for the determination of phthalate esters (dimethyl phthalate, diethyl phthalate, benzyl butyl phthalate, di-n-butyl phthalate, di-n-octyl phthalate and di-(2-ethylhextyl) phthalate) in soil samples. The method was based on microwave-assisted extraction of soil using acetonitrile as extractant. Phthalate esters in the extract were determined by high performance liquid chromatography with variable wavelength detector. Microwave-assisted extraction operational parameters, such as the solvent type, extraction temperature and time, were studied and optimized. Under the resultant conditions, recoveries of phthalate esters from spiked soil samples were in the range from 84 to 115% for two different spiking levels (0.1 and 0.5 microg g(-1)), and relative standard deviations of the recoveries were below 8%. The limits of detection ranged from 1.24 to 3.15 microg L(-1). The method did not require clean-up or preconcentration steps. The obtained results showed that microwave-assisted extraction combined with high performance liquid chromatography was a fast and simple method for the determination of phthalate esters in soil samples.

  11. Synergy between optical and microwave remote sensing to derive soil and vegetation parameters from MAC Europe 1991 Experiment

    NASA Technical Reports Server (NTRS)

    Taconet, O.; Benallegue, M.; Vidal, A.; Vidal-Madjar, D.; Prevot, L.; Normand, M.

    1993-01-01

    The ability of remote sensing for monitoring vegetation density and soil moisture for agricultural applications is extensively studied. In optical bands, vegetation indices (NDVI, WDVI) in visible and near infrared reflectances are related to biophysical quantities as the leaf area index, the biomass. In active microwave bands, the quantitative assessment of crop parameters and soil moisture over agricultural areas by radar multiconfiguration algorithms remains prospective. Furthermore the main results are mostly validated on small test sites, but have still to be demonstrated in an operational way at a regional scale. In this study, a large data set of radar backscattering has been achieved at a regional scale on a French pilot watershed, the Orgeval, along two growing seasons in 1988 and 1989 (mainly wheat and corn). The radar backscattering was provided by the airborne scatterometer ERASME, designed at CRPE, (C and X bands and HH and VV polarizations). Empirical relationships to estimate water crop and soil moisture over wheat in CHH band under actual field conditions and at a watershed scale are investigated. Therefore, the algorithms developed in CHH band are applied for mapping the surface conditions over wheat fields using the AIRSAR and TMS images collected during the MAC EUROPE 1991 experiment. The synergy between optical and microwave bands is analyzed.

  12. Advanced microwave soil moisture studies. [Big Sioux River Basin, Iowa

    NASA Technical Reports Server (NTRS)

    Dalsted, K. J.; Harlan, J. C.

    1983-01-01

    Comparisons of low level L-band brightness temperature (TB) and thermal infrared (TIR) data as well as the following data sets: soil map and land cover data; direct soil moisture measurement; and a computer generated contour map were statistically evaluated using regression analysis and linear discriminant analysis. Regression analysis of footprint data shows that statistical groupings of ground variables (soil features and land cover) hold promise for qualitative assessment of soil moisture and for reducing variance within the sampling space. Dry conditions appear to be more conductive to producing meaningful statistics than wet conditions. Regression analysis using field averaged TB and TIR data did not approach the higher sq R values obtained using within-field variations. The linear discriminant analysis indicates some capacity to distinguish categories with the results being somewhat better on a field basis than a footprint basis.

  13. A Comparison between Lightning Activity and Passive Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Kevin, Driscoll T.; Hugh, Christian J.; Goodman, Steven J.

    1999-01-01

    A recent examination of data from the Lightning Imaging Sensor (LIS) and the TRMM Microwave Imager (TMI) suggests that storm with the highest frequency of lightning also possess the most pronounced microwave scattering signatures at 37 and 85 GHz. This study demonstrates a clear dependence between lightning and the passive microwave measurements, and accentuates how direct the relationship really is between cloud ice and lightning activity. In addition, the relationship between the quantity of ice content and the frequency of lightning (not just the presence of lightning) , is consistent throughout the seasons in a variety of regimes. Scatter plots will be presented which show the storm-averaged brightness temperatures as a function of the lightning density of the storms (L/Area) . In the 85 GHz and 37 GHz scatter plots, the brightness temperature is presented in the form Tb = k1 x log10(L/Area) + k2, where the slope of the regression, k1, is 58 for the 85 GHz relationship and 30.7 for the 37 GHz relationship. The regression for both these fits showed a correlation of 0.76 (r2 = 0.58), which is quite promising considering the simple procedure used to make the comparisons, which have not yet even been corrected for the view angle differences between the instruments, or the polarization corrections in the microwave imager.

  14. Soil disturbance increases soil microbial enzymatic activity in arid ecoregion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Functional diversity of the soil microbial community is commonly used in the assessment of soil health as it relates to the activity of soil microflora involved in carbon cycling. Soil microbes in different microenvironments will have varying responses to different substrates, thus catabolic fingerp...

  15. Seasonally Frozen Soil Monitoring Using Passive Microwave Satellite Data and Simulation Modeling

    NASA Technical Reports Server (NTRS)

    Toll, D. L.; Owe, M.; Levine, E.

    1998-01-01

    Satellite data and simulation modeling were used to assess seasonally frozen soils in the central US - Canada borders area (46-53 degrees N and 96-108 degrees). We used Scanning Multichannel Microwave Radiometer (SMMR) satellite data to delineate the top layer of frozen soils. SMMR is a passive microwave sensor having five channels (6.6, 10, 18, 21 and 37 GHz) with a horizontal and vertical polarization. SMRR data are available between 1978-1987 with noon and midnight overpass and footprint sizes between 25 km and 150 km. SMMR data were processed from resampled 1/4 degree grid cells during fall freeze-up and spring thaw (fall 1985 - spring 1987). The dielectric properties of a target may directly affect the satellite signal. The dielectric value is an order of magnitude smaller for frozen soil water. There are other significant changes to the emitted microwave signal from changes to the surface physical temperature, attenuation of the soil signal from plant water and soil moisture. We further characterized the temporal and spatial dynamic of frozen soils using the FroST (Frozen Soil Temperature) simulation model. The FroST model was used to further predict soil water and ice content, and soil temperature. SMMR results were compared versus 5-cm soil temperature data from available weather stations (14 in Canada and 11 for available months in the US). SMMR data were analyzed as a function of frequency, polarization, polarization difference, and "frequency gradient". In addition, vegetation density, physical temperature and snow depth were also considered. Preliminary analysis of SMMR derived frozen soil/thaw classification using a simple threshold classification indicates a mean overall classification accuracy by season of 85 percent. A sensitivity analysis for different soils with varying amounts of snow was conducted with FroST, which showed that the amount of snow, and the time of snow fall and melt affected the ice and water content, and depth of thaw. These

  16. Crystallization and activation of silicon by microwave rapid annealing

    NASA Astrophysics Data System (ADS)

    Kimura, Shunsuke; Ota, Kosuke; Hasumi, Masahiko; Suzuki, Ayuta; Ushijima, Mitsuru; Sameshima, Toshiyuki

    2016-07-01

    A combination of the carbon-powder absorber with microwave irradiation is proposed as a rapid heat method. 2-μm-diameter carbon powders with a packing density of 0.08 effectively absorbed 2.45 GHz 1000-W-microwave and heated themselves to 1163 °C for 26 s. The present heat treatment recrystallized n-type crystalline silicon surfaces implanted with 1.0 × 10^{15}hbox {-cm}^{-2}-boron and phosphorus atoms with crystalline volume ratios of 0.99 and 0.93, respectively, by microwave irradiation at 1000 W for 20 s. Activation and carrier generation were simultaneously achieved with a sheet resistivity of 62 Ω / hbox {sq}. A high photo-induced-carrier effective lifetime of 1.0 × 10^{-4} s was also achieved. Typical electrical current-rectified characteristic and solar cell characteristic with an efficiency of 12.1 % under 100-mW/cm2-air-mass-1.5 illumination were obtained. Moreover, heat treatment with microwave irradiation at 1000 W for 22 s successfully crystallized silicon thin films with thicknesses ranging from 2.4 to 50 nm formed on quartz substrates. Nano-crystalline cluster structure with a high volume ratio of 50 % was formed in the 1.8-nm (initial 2.4-nm)-thick silicon films. Photoluminescence around 1.77 eV was observed for the 1.8-nm-thick silicon films annealed at 260 °C in 1.3 × 106-Pa-H2O-vapor for 3 h after the microwave heating.

  17. Investigating Baseline, Alternative and Copula-based Algorithm for combining Airborne Active and Passive Microwave Observations in the SMAP Context

    NASA Astrophysics Data System (ADS)

    Montzka, C.; Lorenz, C.; Jagdhuber, T.; Laux, P.; Hajnsek, I.; Kunstmann, H.; Entekhabi, D.; Vereecken, H.

    2015-12-01

    The objective of the NASA Soil Moisture Active & Passive (SMAP) mission is to provide global measurements of soil moisture and freeze/thaw states. SMAP integrates L-band radar and radiometer instruments as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. Airborne instruments will be a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment, Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer (PLMR2) and the active L-band system F-SAR of DLR were flown simultaneously on the same platform on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e. all types of land cover and experimental monitoring sites with in situ sensors. Here, we used the obtained data sets as a test-bed for the analysis of three active-passive fusion techniques: A) The SMAP baseline algorithm: Disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture, B), the SMAP alternative algorithm: Estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter and C) Copula-based combination of active and passive microwave data. For method C empirical Copulas were generated and theoretical Copulas fitted both on the level of the raw products brightness temperature and backscatter as well as two soil moisture products. Results indicate that the regression parameters for method A and B are dependent on the radar vegetation index (RVI). Similarly, for method C the best performance was gained by generating separate Copulas for individual land use classes. For more in-depth analyses longer time series are necessary as can obtained by airborne campaigns, therefore, the methods will be applied to SMAP data.

  18. Significance of agricultural row structure on the microwave emissivity of soils

    NASA Technical Reports Server (NTRS)

    Promes, P. M.; Jackson, T. J.; O'Neill, P. E.

    1987-01-01

    A series of field experiments was carried out to extend the data base available for verifying agricultural row effect models of emissivity. The row effects model was used to simulate a data base from which an algorithm could be developed to account for row effects when the scene dielectric constant and small-scale roughness are unknown. One objective of the study was to quantify the significance of row structure and to develop a practical procedure for removing the effects of periodic row structure on the microwave emissivity of a soil in order to use the emissivity values to estimate the soil moisture. A second objective was to expand the data set available for model verification through field observations using a truck-mounted 1.4-GHz microwave radiometer.

  19. Dielectric properties of soil of Indo-Gangetic region of Haryana at C - Band microwave frequency

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev; Sharma, Anupamdeep

    2015-08-01

    The paper presents measurement of complex dielectric constant of soil of Indo-gangetic region of Haryana (India) at C - Band microwave frequency. Four samples were collected from different parts of Haryana from districts- Ambala, Yamunanagar, Kurukshetra and Panchkula. The real part (∈') and imaginary part (∈″) of complex dielectric constant were measured at C - Band microwave frequency. The variation of ∈' and ∈″ of soil of Indo- Gangetic region were studied for various moisture contents. The values of ∈' and ∈″ increases slowly with gravimetric moisture content and then rapidly after a fixed frequency The results obtained are studied statistically, showed that ∈' significant correlation with moisture content and sand percentage whereas ∈″ has significant correlation only with moisture content and not with sand percentage. The results obtained are useful in agriculture.

  20. A parameterization of effective soil temperature for microwave emission

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Schmugge, T. J.; Mo, T. (Principal Investigator)

    1981-01-01

    A parameterization of effective soil temperature is discussed, which when multiplied by the emissivity gives the brightness temperature in terms of surface (T sub o) and deep (T sub infinity) soil temperatures as T = T sub infinity + C (T sub o - T sub infinity). A coherent radiative transfer model and a large data base of observed soil moisture and temperature profiles are used to calculate the best-fit value of the parameter C. For 2.8, 6.0, 11.0, 21.0 and 49.0 cm wavelengths. The C values are respectively 0.802 + or - 0.006, 0.667 + or - 0.008, 0.480 + or - 0.010, 0.246 + or - 0.009, and 0,084 + or - 0.005. The parameterized equation gives results which are generally within one or two percent of the exact values.

  1. AMISS - Active and passive MIcrowaves for Security and Subsurface imaging

    NASA Astrophysics Data System (ADS)

    Soldovieri, Francesco; Slob, Evert; Turk, Ahmet Serdar; Crocco, Lorenzo; Catapano, Ilaria; Di Matteo, Francesca

    2013-04-01

    The FP7-IRSES project AMISS - Active and passive MIcrowaves for Security and Subsurface imaging is based on a well-combined network among research institutions of EU, Associate and Third Countries (National Research Council of Italy - Italy, Technische Universiteit Delft - The Netherlands, Yildiz Technical University - Turkey, Bauman Moscow State Technical University - Russia, Usikov Institute for Radio-physics and Electronics and State Research Centre of Superconductive Radioelectronics "Iceberg" - Ukraine and University of Sao Paulo - Brazil) with the aims of achieving scientific advances in the framework of microwave and millimeter imaging systems and techniques for security and safety social issues. In particular, the involved partners are leaders in the scientific areas of passive and active imaging and are sharing their complementary knowledge to address two main research lines. The first one regards the design, characterization and performance evaluation of new passive and active microwave devices, sensors and measurement set-ups able to mitigate clutter and increase information content. The second line faces the requirements to make State-of-the-Art processing tools compliant with the instrumentations developed in the first line, suitable to work in electromagnetically complex scenarios and able to exploit the unexplored possibilities offered by new instrumentations. The main goals of the project are: 1) Development/improvement and characterization of new sensors and systems for active and passive microwave imaging; 2) Set up, analysis and validation of state of art/novel data processing approach for GPR in critical infrastructure and subsurface imaging; 3) Integration of state of art and novel imaging hardware and characterization approaches to tackle realistic situations in security, safety and subsurface prospecting applications; 4) Development and feasibility study of bio-radar technology (system and data processing) for vital signs detection and

  2. Effective dopant activation via low temperature microwave annealing of ion implanted silicon

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; David Theodore, N.; Vemuri, Rajitha N. P.; Das, Sayantan; Lu, Wei; Lau, S. S.; Alford, T. L.

    2013-11-01

    Susceptor-assisted microwave annealing enables effective dopant activation, at low temperatures, in ion-implanted Si. Given similar thermal budgets for microwave annealing and rapid thermal annealing (RTA), sheet resistances of microwave annealed Si, with either B+ or P+ implants, are lower than the values obtained using RTA. The fraction of dopants activated is as high as 18% for B+ implants and 64% for P+ implants. Dopant diffusion is imperceptible after microwave annealing, but significant after RTA, for P+ implanted Si samples with the same dopant activation. Microwave annealing achieves such properties using shorter anneal times and lower peak temperatures compared to RTA.

  3. Modeling the Effect of Vegetation on Passive Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Liu, Y. P.; Inguva, R.; Crosson, W. L.; Coleman, T. L.; Laymon, C.; Fahsi, A.

    1998-01-01

    The effect of vegetation on passive microwave remote sensing of soil moisture is studied. The radiative transfer modeling work of Njoku and Kong is applied to a stratified medium of which the upper layer is treated as a layer of vegetation. An effective dielectric constant for this vegetation layer is computed using estimates of the dielectric constant of individual components of the vegetation layer. The horizontally-polarized brightness temperature is then computed as a function of the incidence angle. Model predictions are used to compare with the data obtained in the Huntsville '96, remote sensing of soil moisture experiment, and with predictions obtained using a correction procedure of Jackson and Schmugge.

  4. Using Multi-Dimensional Microwave Remote Sensing Information for the Retrieval of Soil Surface Roughness

    NASA Astrophysics Data System (ADS)

    Marzahn, P.; Ludwig, R.

    2016-06-01

    In this Paper the potential of multi parametric polarimetric SAR (PolSAR) data for soil surface roughness estimation is investigated and its potential for hydrological modeling is evaluated. The study utilizes microwave backscatter collected from the Demmin testsite in the North-East Germany during AgriSAR 2006 campaign using fully polarimetric L-Band airborne SAR data. For ground truthing extensive soil surface roughness in addition to various other soil physical properties measurements were carried out using photogrammetric image matching techniques. The correlation between ground truth roughness indices and three well established polarimetric roughness estimators showed only good results for Re[ρRRLL] and the RMS Height s. Results in form of multitemporal roughness maps showed only satisfying results due to the fact that the presence and development of particular plants affected the derivation. However roughness derivation for bare soil surfaces showed promising results.

  5. Passive Microwave Soil Moisture Retrieval through Combined Radar/Radiometer Ground Based Simulator with Special Reference to Dielectric Schemes

    NASA Astrophysics Data System (ADS)

    Srivastava, Prashant K., ,, Dr.; O'Neill, Peggy, ,, Dr.

    2014-05-01

    Soil moisture is an important element for weather and climate prediction, hydrological sciences, and applications. Hence, measurements of this hydrologic variable are required to improve our understanding of hydrological processes, ecosystem functions, and the linkages between the Earth's water, energy, and carbon cycles (Srivastava et al. 2013). The retrieval of soil moisture depends not only on parameterizations in the retrieval algorithm but also on the soil dielectric mixing models used (Behari 2005). Although a number of soil dielectric mixing models have been developed, testing these models for soil moisture retrieval has still not been fully explored, especially with SMAP-like simulators. The main objective of this work focuses on testing different dielectric models for soil moisture retrieval using the Combined Radar/Radiometer (ComRAD) ground-based L-band simulator developed jointly by NASA/GSFC and George Washington University (O'Neill et al., 2006). The ComRAD system was deployed during a field experiment in 2012 in order to provide long active/passive measurements of two crops under controlled conditions during an entire growing season. L-band passive data were acquired at a look angle of 40 degree from nadir at both horizontal & vertical polarization. Currently, there are many dielectric models available for soil moisture retrieval; however, four dielectric models (Mironov, Dobson, Wang & Schmugge and Hallikainen) were tested here and found to be promising for soil moisture retrieval (some with higher performances). All the above-mentioned dielectric models were integrated with Single Channel Algorithms using H (SCA-H) and V (SCA-V) polarizations for the soil moisture retrievals. All the ground-based observations were collected from test site-United States Department of Agriculture (USDA) OPE3, located a few miles away from NASA GSFC. Ground truth data were collected using a theta probe and in situ sensors which were then used for validation. Analysis

  6. The Capability of Microwave Radiometers In Retrieving Soil Moisture Profiles Using A Neural Networks

    NASA Astrophysics Data System (ADS)

    Macelloni, G.; Paloscia, S.; Santi, E.; Tedesco, M.

    Hydrological models require the knowledge of land surface parameters like soil mois- ture and snow properties with a large spatial distribution and high temporal frequency. Whilst conventional methods are unable to satisfy the constraints of space and time estimation of these parameters, the use of remote sensing data represents a real im- provement. In particular the potential of data collected by microwave radiometers at low frequencies to extract soil moisture has been clearly demonstrated in several pa- pers. However, the penetration power into the soil depends on frequency and, whereas L-band is able to estimate the moisture of a relatively thick soil layer, higher frequen- cies are only sensitive to the moisture of soil layer closer to the surface. This remark leads to the hypothesis that multifrequency observations could be able to retrieve a soil moisture profile. In several experiments carried out both on agricultural fields and on samples of soil in a tank, by using the IROE multifrequency microwave radiometers, the effect of moisture and surface roughness on different frequencies was studied. From this experiments the capability of L-band in measuring the moisture of a soil layer of several centimeters, in the order of the wavelength, was confirmed, as well the sensitivity to the moisture of the first centimeters layer at C- and X-bands, and the one of the very first layer of smooth soil at Ka-band. Using an electromagnetic model (Integral Equation Model, IEM) the brightness temperatures as a function of the in- cidence angle were computed at 1.4, 6, 10, and 37 GHz for different soil moisture profiles and different surface roughness. A particular consideration was dedicated to the latter parameter, since, especially at Ka band, surface roughness strongly affects the emission and masks the effect of moisture. Different soil moisture profiles have been tested: increasing and decreasing with depth and also constant for sandy and sandy-loam soils. After this

  7. Statistical Analysis of the Correlation between Microwave Emission Anomalies and Seismic Activity Based on AMSR-E Satellite Data

    NASA Astrophysics Data System (ADS)

    qin, kai; Wu, Lixin; De Santis, Angelo; Zhang, Bin

    2016-04-01

    Pre-seismic thermal IR anomalies and ionosphere disturbances have been widely reported by using the Earth observation system (EOS). To investigate the possible physical mechanisms, a series of detecting experiments on rock loaded to fracturing were conducted. Some experiments studies have demonstrated that microwave radiation energy will increase under the loaded rock in specific frequency and the feature of radiation property can reflect the deformation process of rock fracture. This experimental result indicates the possibility that microwaves are emitted before earthquakes. Such microwaves signals are recently found to be detectable before some earthquake cases from the brightness temperature data obtained by the microwave-radiometer Advanced Microwave-Scanning Radiometer for the EOS (AMSR-E) aboard the satellite Aqua. This suggested that AMSR-E with vertical- and horizontal-polarization capability for six frequency bands (6.925, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz) would be feasible to detect an earthquake which is associated with rock crash or plate slip. However, the statistical analysis of the correlation between satellite-observed microwave emission anomalies and seismic activity are firstly required. Here, we focus on the Kamchatka peninsula to carry out a statistical study, considering its high seismicity activity and the dense orbits covering of AMSR-E in high latitudes. 8-years (2003-2010) AMSR-E microwave brightness temperature data were used to reveal the spatio-temporal association between microwave emission anomalies and 17 earthquake events (M>5). Firstly, obvious spatial difference of microwave brightness temperatures between the seismic zone at the eastern side and the non-seismic zone the western side within the Kamchatka peninsula are found. Secondly, using both vertical- and horizontal-polarization to extract the temporal association, it is found that abnormal changes of microwave brightness temperatures appear generally 2 months before the

  8. Spatio-temporal evaluation of resolution enhancement for passive microwave soil moisture and vegetation optical depth

    NASA Astrophysics Data System (ADS)

    Gevaert, A. I.; Parinussa, R. M.; Renzullo, L. J.; van Dijk, A. I. J. M.; de Jeu, R. A. M.

    2016-03-01

    Space-borne passive microwave radiometers are used to derive land surface parameters such as surface soil moisture and vegetation optical depth (VOD). However, the value of such products in regional hydrology is limited by their coarse resolution. In this study, the land parameter retrieval model (LPRM) is used to derive enhanced resolution (∼10 km) soil moisture and VOD from advanced microwave scanning radiometer (AMSR-E) brightness temperatures sharpened by a modulation technique based on high-frequency observations. A precipitation mask based on brightness temperatures was applied to remove precipitation artefacts in the sharpened LPRM products. The spatial and temporal patterns in the resulting products are evaluated against field-measured and modeled soil moisture as well as the normalized difference vegetation index (NDVI) over mainland Australia. Results show that resolution enhancement accurately sharpens the boundaries of different vegetation types, lakes and wetlands. Significant changes in temporal agreement between LPRM products and related datasets are limited to specific areas, such as lakes and coastal areas. Spatial correlations, on the other hand, increase over most of Australia. In addition, hydrological signals from irrigation and water bodies that were absent in the low-resolution soil moisture product become clearly visible after resolution enhancement. The increased information detail in the high-resolution LPRM products should benefit hydrological studies at regional scales.

  9. High Resolution UAV-based Passive Microwave L-band Imaging of Soil Moisture

    NASA Astrophysics Data System (ADS)

    Gasiewski, A. J.; Stachura, M.; Elston, J.; McIntyre, E. M.

    2013-12-01

    Due to long electrical wavelengths and aperture size limitations the scaling of passive microwave remote sensing of soil moisture from spaceborne low-resolution applications to high resolution applications suitable for precision agriculture requires use of low flying aerial vehicles. This presentation summarizes a project to develop a commercial Unmanned Aerial Vehicle (UAV) hosting a precision microwave radiometer for mapping of soil moisture in high-value shallow root-zone crops. The project is based on the use of the Tempest electric-powered UAV and a compact digital L-band (1400-1427 MHz) passive microwave radiometer developed specifically for extremely small and lightweight aerial platforms or man-portable, tractor, or tower-based applications. Notable in this combination are a highly integrated UAV/radiometer antenna design and use of both the upwelling emitted signal from the surface and downwelling cold space signal for precise calibration using a lobe-correlating radiometer architecture. The system achieves a spatial resolution comparable to the altitude of the UAV above the ground while referencing upwelling measurements to the constant and well-known background temperature of cold space. The radiometer incorporates digital sampling and radio frequency interference mitigation along with infrared, near-infrared, and visible (red) sensors for surface temperature and vegetation biomass correction. This NASA-sponsored project is being developed both for commercial application in cropland water management, L-band satellite validation, and estuarian plume studies.

  10. A comparison of radiative transfer models for predicting the microwave emission from soils

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Choudhury, B. J.

    1980-01-01

    Two general types of numerical models for predicting microwave emission from soils are compared-coherent and noncoherent. In the former, radiation in the soil is treated coherently, and the boundary conditions on the electric fields across the layer boundaries are used to calculate the radiation intensity. In the latter, the radiation is assumed to be noncoherent, and the intensities of the radiation are considered directly. The results of the two approaches may be different because of the effects of interference, which can cause the transmitted intensity at the surface (i.e., emissivity) to be sometimes higher and sometimes lower for the coherent case than for the noncoherent case, depending on the relative phases of reflected fields from the lower layers. This coupling between soil layers in the coherent models leads to greater soil moisture sampling depths observed with this type of model, and is the major difference that is found between the two types of models. In noncoherent models, the emissivity is determined by the dielectric constraint at the air/soil interface. The subsequent differences in the results are functions of both the frequency of the radiation being considered and the steepness of the moisture gradient near the surface. The calculations were performed at frequencies of 1.4 and 19.4 GHz and for two sets of soil profiles. Little difference was observed between the models at 19.4 GHz; and only at the lower frequency were differences apparent because of the greater soil moisture sampling depth at this frequency.

  11. Modelling of microwave emission and scattering from snow and soil

    NASA Technical Reports Server (NTRS)

    Fung, Adrian K.; Chen, M. F.

    1989-01-01

    In the past a snow layer has been modeled as a homogeneous layer embedded with sparsely populated Rayleigh scatterers above an irregular ground surface. The effect of the ground surface can be ignored if the layer is sufficiently lossy due to wetness in the snow. The top surface of the snow layer may be treated as plane or irregular depending upon its actual shape and its wetness condition. For a dry snow condition where the electromagnetic wave can penetrate easily one can ignore the air-snow interface. As a result a variety of emission and scattering models exist. An improvement to the existing scattering or emission model would consist of an irregular layer with densely populated correlated scatterers. The development of this model and its application to scattering and emission from a snow layer are discussed. Also disucssed is a surface scattering model for a soil surface.

  12. Effect of surface roughness on the microwave emission from soils

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Schmugge, T. J.; Newton, R. W.; Chang, A. T. C.

    1978-01-01

    The effect of surface roughness on the brightness temperature of a moist terrain was studied through the modification of Fresnel reflection coefficient and using the radiative transfer equation. The modification involves introduction of a single parameter to characterize the roughness. It is shown that this parameter depends on both the surface height variance and the horizontal scale of the roughness. Model calculations are in good quantitative agreement with the observed dependence of the brightness temperature on the moisture content in the surface layer. Data from truck mounted and airborne radiometers are presented for comparison. The results indicate that the roughness effects are greatest for wet soils where the difference between smooth and rough surfaces can be as great as 50K.

  13. Water based microwave assisted extraction of thiamethoxam residues from vegetables and soil for determination by HPLC.

    PubMed

    Karmakar, Rajib; Singh, Shashi Bala; Kulshrestha, Gita

    2012-02-01

    A microwave assisted extraction (MAE) method for determination of thiamethoxam residues in vegetable and soil samples was standardized. Insecticide spiked vegetable and soil samples were extracted by MAE using water as an extraction solvent, cleaned up by solid phase extraction and analysed by high performance liquid chromatography on photodiode array detector. The recoveries of the insecticide from various vegetable (tomato, radish, brinjal, okra, French been, sugarbeet) and soil (sandy loam, silty clay loam, sandy clay loam, loamy sand) samples at 0.1 and 0.5 μg g(-1) spiking levels ranged from 79.8% to 86.2% and from 82.1% to 87.0%, respectively. The recoveries by MAE were comparable to those obtained by the conventional blender and shake-flask extraction techniques. The precision of the MAE method was demonstrated by relative standard deviations of <3% for the insecticide.

  14. Large area mapping of soil moisture using the ESTAR passive microwave radiometer

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Levine, D. M.; Swift, C. T.; Schmugge, T. J.

    1994-01-01

    Investigations designed to study land surface hydrologic-atmospheric interactions, showing the potential of L band passive microwave radiometry for measuring surface soil moisture over large areas, are discussed. Satisfying the data needs of these investigations requires the ability to map large areas rapidly. With aircraft systems this means a need for more beam positions over a wider swath on each flightline. For satellite systems the essential problem is resolution. Both of these needs are currently being addressed through the development and verification of Electronically Scanned Thinned Array Radiometer (ESTAR) technology. The ESTAR L band radiometer was evaluated for soil moisture mapping applications in two studies. The first was conducted over the semiarid rangeland Walnut Gulch watershed located in south eastern Arizona (U.S.). The second was performed in the subhumid Little Washita watershed in south west Oklahoma (U.S.). Both tests showed that the ESTAR is capable of providing soil moisture with the same level of accuracy as existing systems.

  15. Characterization of Soil Samples of Enzyme Activity

    ERIC Educational Resources Information Center

    Freeland, P. W.

    1977-01-01

    Described are nine enzyme essays for distinguishing soil samples. Colorimetric methods are used to compare enzyme levels in soils from different sites. Each soil tested had its own spectrum of activity. Attention is drawn to applications of this technique in forensic science and in studies of soil fertility. (Author/AJ)

  16. Active microwave remote sensing of earth/land, chapter 2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Geoscience applications of active microwave remote sensing systems are examined. Major application areas for the system include: (1) exploration of petroleum, mineral, and ground water resources, (2) mapping surface and structural features, (3) terrain analysis, both morphometric and genetic, (4) application in civil works, and (5) application in the areas of earthquake prediction and crustal movements. Although the success of radar surveys has not been widely publicized, they have been used as a prime reconnaissance data base for mineral exploration and land-use evaluation in areas where photography cannot be obtained.

  17. Development of long-wave microwave satellite systems for measuring soil moisture

    NASA Astrophysics Data System (ADS)

    Engman, Edwin T.

    1998-12-01

    The science need for remotely sensed soil moisture has been well established in the hydrologic, climate change and weather forecasting communities. There also have been a number of programs that have demonstrated the feasibility of using long wave microwave sensors for estimating soil moisture. These have ranged from truck mounted sensors, to intensive airborne campaigns with science objectives. Based on this history of truck and aircraft experiments, the science community has settled on a soil moisture product that meets the following criteria: a two day global repeat, a measured layer of 5 cm of soil, a footprint of 20 to 30 km, and an absolute accuracy of plus or minus 4% volumetric soil moisture. The principal sensor to accomplish this is an L-band passive microwave radiometer. A soil moisture mission is being proposed for the NASA Earth Systems Science Pathfinder (ESSP) mission which has very real constraints of a limited budget which includes the launch vehicle, and a three year award to launch time schedule. Within the past few years there have been a number of mission concepts proposed that meet the challenge of getting a very large antenna in space in order to realize a spatial resolution on the ground that meets the science and applications needs. This paper describes some of the alternative concepts considered to meet these unusual requirements and the ways to solve the very large antenna challenge, and the criteria used to choose the final design for an ESSP proposal. The paper also discusses the alternatives considered to obtain the necessary ancillary data for characterizing the surface roughness, the surface temperature and the attenuation affects of vegetation.

  18. Low temperature regeneration of activated carbons using microwaves: revising conventional wisdom.

    PubMed

    Calışkan, E; Bermúdez, J M; Parra, J B; Menéndez, J A; Mahramanlıoğlu, M; Ania, C O

    2012-07-15

    The purpose of this work was to explore the application of microwaves for the low temperature regeneration of activated carbons saturated with a pharmaceutical compound (promethazine). Contrary to expectations, microwave-assisted regeneration did not lead to better results than those obtained under conventional electric heating. At low temperatures the regeneration was incomplete either under microwave and conventional heating, being this attributed to the insufficient input energy. At mild temperatures, a fall in the adsorption capacity upon cycling was obtained in both devices, although this was much more pronounced for the microwave. These results contrast with previous studies on the benefits of microwaves for the regeneration of carbon materials. The fall in the adsorption capacity after regeneration was due to the thermal cracking of the adsorbed molecules inside the carbon porous network, although this effect applies to both devices. When microwaves are used, along with the thermal heating of the carbon bed, a fraction of the microwave energy seemed to be directly used in the decomposition of promethazine through the excitation of the molecular bonds by microwaves (microwave-lysis). These results point out that the nature of the adsorbate and its ability to interact with microwave are key factors that control the application of microwaves for regeneration of exhausted activated carbons.

  19. Microwave remote sensing of soil moisture content over bare and vegetated fields

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Shiue, J. C.; Mcmurtrey, J. E., III

    1980-01-01

    Remote measurements of soil moisture contents over bare fields and fields covered with orchard grass, corn, and soybean were made during October 1979 with 1.4 GHz and 5 GHz microwave radiometers mounted on a truck. Ground truth of soil moisture content, ambient air, and soil temperatures was acquired concurrently with the radiometric measurements. The biomass of the vegetation was sampled about once a week. The measured brightness temperatures over bare fields were compared with those of radiative transfer model calculations using as inputs the acquired soil moisture and temperature data with appropriate values of dielectric constants for soil-water mixtures. Good agreement was found between the calculated and the measured results over 10-70 deg incident angles. The presence of vegetation was found to reduce the sensitivity of soil moisture sensing. At 1.4 GHz the sensitivity reduction ranged from approximately 20% for 10-cm tall grassland to over 60% for the dense soybean field. At 5 GHz the corresponding reduction in sensitivity ranged from approximately 70 to approximately 90%.

  20. A New Approach in Downscaling Microwave Soil Moisture Product using Machine Learning

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, Peyman; Yan, Hongxiang; Moradkhani, Hamid

    2016-04-01

    Understating the soil moisture pattern has significant impact on flood modeling, drought monitoring, and irrigation management. Although satellite retrievals can provide an unprecedented spatial and temporal resolution of soil moisture at a global-scale, their soil moisture products (with a spatial resolution of 25-50 km) are inadequate for regional study, where a resolution of 1-10 km is needed. In this study, a downscaling approach using Genetic Programming (GP), a specialized version of Genetic Algorithm (GA), is proposed to improve the spatial resolution of satellite soil moisture products. The GP approach was applied over a test watershed in United States using the coarse resolution satellite data (25 km) from Advanced Microwave Scanning Radiometer - EOS (AMSR-E) soil moisture products, the fine resolution data (1 km) from Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index, and ground based data including land surface temperature, vegetation and other potential physical variables. The results indicated the great potential of this approach to derive the fine resolution soil moisture information applicable for data assimilation and other regional studies.

  1. Microwave remote sensing of soil moisture content over bare and vegetated fields

    NASA Astrophysics Data System (ADS)

    Wang, J. R.; Shiue, J. C.; McMurtrey, J. E., III

    1980-10-01

    Remote measurements of soil moisture contents over bare fields and fields covered with orchard grass, corn, and soybean were made during October 1979 with 1.4 GHz and 5 GHz microwave radiometers mounted on a truck. Ground truth of soil moisture content, ambient air and soil temperatures was acquired concurrently with the radiometric measurements. The biomass of the vegetation was sampled about once a week. The measured brightness temperatures over bare fields were compared with those of radiative transfer model calculations using as inputs the acquired soil moisture and temperature data with appropriate values of dielectric constants for soil-water mixtures. Good agreement was found between the calculated and the measured results over 10°-70° incident angles. The presence of vegetation was found to reduce the sensitivity of soil moisture sensing. At 1.4 GHz the sensitivity reduction ranged from ˜20% for 10-cm tall grassland to over 60% for the dense soybean field. At 5 GHz the corresponding reduction in sensitivity ranged from ˜70% to ˜90%.

  2. Summary of the Active Microwave Workshop, chapter 1. [utilization in applications and aerospace programs

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An overview is given of the utility, feasibility, and advantages of active microwave sensors for a broad range of applications, including aerospace. In many instances, the material provides an in-depth examination of the applicability and/or the technology of microwave remote sensing, and considerable documentation is presented in support of these techniques. An assessment of the relative strengths and weaknesses of active microwave sensor data indicates that satisfactory data are obtainable for several significant applications.

  3. Soil moisture detection by Skylab's microwave sensors. [radiometer/scatterometer measurements of Texas

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Ulaby, F. T. (Principal Investigator); Barr, J. C.; Sobti, A.

    1974-01-01

    The author has identified the following significant results. Terrain microwave backscatter and emission response to soil moisture variations were investigated using Skylab's 13.9 GHz RADSCAT (radiometer/scatterometer) system. Data acquired on June 5, 1973, over a test site in west-central Texas indicated a fair degree of correlation with composite rainfall. The scan made was cross-track contiguous (CTC) with a pitch of 29.4 deg and no roll effect. Vertical polarization was employed with both radiometer and scatterometer. The composite rainfall was computed according to the flood prediction technique using rainfall data supplied by weather reporting stations.

  4. Data Assimilation of Space-Based Passive Microwave Soil Moisture Retrievals and the Correction for a Dynamic Open Water Fraction

    NASA Astrophysics Data System (ADS)

    Gouweleeuw, Ben T.; van Dijik, Albert I. J. M.; Renzullo, Luigi J.

    2011-01-01

    The large observation footprint of low-frequency satellite microwave emissions complicates the interpretation of near-surface soil moisture retrievals. Temporal changes in the extent of smaller water bodies can cause significant and dynamic biases. We analysed the influence of open water on near-surface soil moisture retrievals from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) for three areas in Oklahoma, USA. Differences between on-ground observations or model estimates and AMSR-E retrievals were compared to dynamic estimates of open water fraction derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). The comparison indicates that seasonally varying biases of up to 20% soil water content can be attributed to the presence of relatively small areas (<5%) of open water in or near the sensor footprint. The results presented here feed into the discussion if the retrieved variable or the observed microwave brightness temperature is most suitable for assimilation with simulated fields from land surface models.

  5. A Method to Estimate Crop Effects in Passive Microwave Soil Moisture Retrieval Above C-band

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Xu, Y.; Shi, J.

    2009-12-01

    To remove vegetation effects in soil moisture retrieval by passive microwave technique at lower frequencies such as L- or C-band, the τ-ω model is often used, where ω is single scattering albedo of vegetation, and τ is its opacity (τ=exp(-t), t is transmissivity of vegetation). At frequencies above C-band, such as AMSR-E (the lowest frequency is 6.925GHz) or Chinese FY-3A (launched in 2008, the lowest frequency is 10.65GHz), both the scattering and transmission characteristics of short vegetation are not known exactly. In this paper, a Matrix-Doubling (thereafter M-D) microwave emission model was used to simulate emission of corn field at C (6.925GHz) and X (10.65GHz) bands. Total emission and vegetation layer emission contribution are verified by a microwave radiometer in a field experiment, respectively. The effective single scattering albedo and transmissivity of corn above C-band were derived by comparison the results of M-D model with those of τ-ω model at same environment, which were then verified by SMEX02 data. In τ-ω model the vegetation is treated as an uniform media. While the M-D model used in this paper is based on ray-tracing technique, which could account for multiple scattering inside vegetation layer, as well as that between vegetation and soil surface as frequency goes higher. The orientation and geometry parameters of vegetation could be considered in M-D. The ground surface emission model in M-D is AIEM. To verify the results by M-D model, we did a field experiment at QingYuan, Hebei Province of China in July 7, 2008 by a German-made truck-mounted microwave radiometer. At 6.925GHz, the simulated Brightness Temperature by M-D model vs. collected data were good. To verify the emission contribution from corn layer only, an Aluminum foil was placed on the ground below the corn, so as to mask the soil emission. The measured data vs. simulation were close. Since M-D model is very complicated, it’s difficult to relate the soil emission (soil

  6. Microwave photonic bandgap devices with active plasma elements

    NASA Astrophysics Data System (ADS)

    Wang, Benjamin; Colon Quinones, Roberto; Biggs, David; Underwood, Thomas; Lucca Fabris, Andrea; Cappelli, Mark; Stanford Plasma Physics Laboratory Team

    2015-09-01

    A 3-D alumina rod based microwave photonic crystal device with integrated gaseous plasma elements is designed and characterized. Modulation of the plasma density of the active plasma elements is shown to allow for high fidelity modulation of the output signal of the photonic crystal device. Finite difference time domain (FDTD) simulations of the device are presented, and the functional effects of the plasma electron density, plasma collision frequency, and plasma dimensions are studied. Experimental characterization of the transmission of the device shows active tunability through adjustments of plasma parameters, including discharge current and plasma size. Additional photonic crystal structures with integrated plasma elements are explored. Sponsored by the AFSOR MURI and DOD NDSEG.

  7. Estimating effective roughness parameters of the L-MEB model for soil moisture retrieval using passive microwave observations from SMAPVEX12

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although there have been efforts to improve existing soil moisture retrieval algorithms, the ability to estimate soil moisture from passive microwave observations is still hampered by problems in accurately modeling the observed microwave signal. This paper focuses on the estimation of effective sur...

  8. In situ remediation of soils contaminated with toxic metal ions using microwave energy.

    PubMed

    Abramovitch, Rudolph A; ChangQing, Lu; Hicks, Evan; Sinard, Joseph

    2003-12-01

    Following onto our work on the in situ remediation of soils contaminated with PAH's, PCB's and other polychlorinated organic compounds using microwave energy, we now report a preliminary investigation on the in situ remediation of soils contaminated with toxic metal ions: Cd(II), Mn(II), Th(IV), Cr(III) and mainly Cr(VI). The soil is partially vitrified in the process, and extraction with hot (70 degrees C) 35% nitric acid for 4.5 h leads to the recovery of very small amounts of the metals which had been spiked into the clean soil: Cd, Mn, and Cr(III) are completely immobilized (unextractable), Th is mostly unextractable, and Cr(VI) partially extractable at very high levels of spiking, but almost completely unextractable using the US EPA Toxicity Characteristic Leaching Procedure. This suggests that contaminated soils which are not going to be used for agricultural purposes can be remediated safely to preset depths without fear of the toxic metal ions leaching out for a long time. PMID:14512111

  9. Microwave pyrolysis of oily sludge with activated carbon.

    PubMed

    Chen, Yi-Rong

    2016-12-01

    The aim of this study is to explore catalytic microwave pyrolysis of crude oil storage tank sludge for fuels using granular activated carbon (GAC) as a catalyst. The effect of GAC loading on the yield of pyrolysis products was also investigated. Heating rate of oily sludge and yield of microwave pyrolysis products such as oil and fuel gas was found to depend on the ratio of GAC to oily sludge. The optimal GAC loading was found to be 10%, while much smaller and larger feed sizes adversely influenced production. During oily sludge pyrolysis, a maximum oil yield of 77.5% was achieved. Pyrolytic oils with high concentrations of diesel oil and gasoline (about 70 wt% in the pyrolytic oil) were obtained. The leaching of heavy metals, such as Cr, As and Pb, was also suppressed in the solid residue after pyrolysis. This technique provides advantages such as harmless treatment of oily sludge and substantial reduction in the consumption of energy, time and cost.

  10. A synthetic aperture microwave radiometer to measure soil moisture and ocean salinity from space

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Hilliard, L. M.; Swift, C. T.; Ruf, C. S.; Garrett, L. B.

    1991-01-01

    A concept is presented for a microwave radiometer in space to measure soil moisture and ocean salinity as part of an 'Earth Probe' mission. The measurements could be made using an array of stick antennas. The L-band channel (1.4 GHz) would be the primary channel for determining soil moisture, with the S-band (2.65-GHz) and C-band (5.0-GHz) channels providing ancillary information to help correct for the effects of the vegetation canopy and possibly to estimate a moisture profile. A preliminary study indicates that an orbit at 450 km would provide coverage of better than 95 percent of the earth every 3 days. A 10-km resolution cell (at nadir) requires stick antennas about 9.5-m long at L-band. The S-band and C-band sticks would be substantially shorter (5 m and 2.7 m, respectively).

  11. Drought index driven by L-band microwave soil moisture data

    NASA Astrophysics Data System (ADS)

    Bitar, Ahmad Al; Kerr, Yann; Merlin, Olivier; Cabot, François; Choné, Audrey; Wigneron, Jean-Pierre

    2014-05-01

    Drought is considered in many areas across the globe as one of the major extreme events. Studies do not all agree on the increase of the frequency of drought events over the past 60 years [1], but they all agree that the impact of droughts has increased and the need for efficient global monitoring tools has become most than ever urgent. Droughts are monitored through drought indexes, many of which are based on precipitation (Palmer index(s), PDI…), on vegetation status (VDI) or on surface temperatures. They can also be derived from climate prediction models outputs. The GMO has selected the (SPI) Standardized Precipitation Index as the reference index for the monitoring of drought at global scale. The drawback of this index is that it is directly dependent on global precipitation products that are not accurate over global scale. On the other hand, Vegetation based indexes show the a posteriori effect of drought, since they are based on NDVI. In this study, we choose to combine the surface soil moisture from microwave sensor with climate data to access a drought index. The microwave data are considered from the SMOS (Soil Moisture and Ocean Salinity) mission at L-Band (1.4 Ghz) interferometric radiometer from ESA (European Space Agency) [2]. Global surface soil moisture maps with 3 days coverage for ascending 6AM and descending 6PM orbits SMOS have been delivered since January 2010 at a 40 km nominal resolution. We use in this study the daily L3 global soil moisture maps from CATDS (Centre Aval de Traitement des Données SMOS) [3,4]. We present a drought index computed by a double bucket hydrological model driven by operational remote sensing data and ancillary datasets. The SPI is also compared to other drought indicators like vegetation indexes and Palmer drought index. Comparison of drought index to vegetation indexes from AVHRR and MODIS over continental United States show that the drought index can be used as an early warning system for drought monitoring as

  12. Correcting Errors in Catchment-Scale Satellite Rainfall Accumulation Using Microwave Satellite Soil Moisture Products

    NASA Astrophysics Data System (ADS)

    Ryu, D.; Crow, W. T.

    2011-12-01

    Streamflow forecasting in the poorly gauged or ungauged catchments is very difficult mainly due to the absence of the input forcing data for forecasting models. This challenge poses a threat to human safety and industry in the areas where proper warning system is not provided. Currently, a number of studies are in progress to calibrate streamflow models without relying on ground observations as an effort to construct a streamflow forecasting systems in the ungauged catchments. Also, recent advances in satellite altimetry and innovative application of the optical has enabled mapping streamflow rate and flood extent in the remote areas. In addition, remotely sensed hydrological variables such as the real-time satellite precipitation data, microwave soil moisture retrievals, and surface thermal infrared observations have the great potential to be used as a direct input or signature information to run the forecasting models. In this work, we evaluate a real-time satellite precipitation product, TRMM 3B42RT, and correct errors of the product using the microwave satellite soil moisture products over 240 catchments in Australia. The error correction is made by analyzing the difference between output soil moisture of a simple model forced by the TRMM product and the satellite retrievals of soil moisture. The real-time satellite precipitation products before and after the error correction are compared with the daily gauge-interpolated precipitation data produced by the Australian Bureau of Meteorology. The error correction improves overall accuracy of the catchment-scale satellite precipitation, especially the root mean squared error (RMSE), correlation, and the false alarm ratio (FAR), however, only a marginal improvement is observed in the probability of detection (POD). It is shown that the efficiency of the error correction is affected by the surface vegetation density and the annual precipitation of the catchments.

  13. Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties.

    PubMed

    Xian, Yu; Wang, Meie; Chen, Weiping

    2015-11-01

    Soil enzyme activities are greatly influenced by soil properties and could be significant indicators of heavy metal toxicity in soil for bioavailability assessment. Two groups of experiments were conducted to determine the joint effects of heavy metals and soil properties on soil enzyme activities. Results showed that arylsulfatase was the most sensitive soil enzyme and could be used as an indicator to study the enzymatic toxicity of heavy metals under various soil properties. Soil organic matter (SOM) was the dominant factor affecting the activity of arylsulfatase in soil. A quantitative model was derived to predict the changes of arylsulfatase activity with SOM content. When the soil organic matter content was less than the critical point A (1.05% in our study), the arylsulfatase activity dropped rapidly. When the soil organic matter content was greater than the critical point A, the arylsulfatase activity gradually rose to higher levels showing that instead of harm the soil microbial activities were enhanced. The SOM content needs to be over the critical point B (2.42% in our study) to protect its microbial community from harm due to the severe Pb pollution (500mgkg(-1) in our study). The quantitative model revealed the pattern of variation of enzymatic toxicity due to heavy metals under various SOM contents. The applicability of the model under wider soil properties need to be tested. The model however may provide a methodological basis for ecological risk assessment of heavy metals in soil.

  14. Monolithic microwave integrated circuit devices for active array antennas

    NASA Technical Reports Server (NTRS)

    Mittra, R.

    1984-01-01

    Two different aspects of active antenna array design were investigated. The transition between monolithic microwave integrated circuits and rectangular waveguides was studied along with crosstalk in multiconductor transmission lines. The boundary value problem associated with a discontinuity in a microstrip line is formulated. This entailed, as a first step, the derivation of the propagating as well as evanescent modes of a microstrip line. The solution is derived to a simple discontinuity problem: change in width of the center strip. As for the multiconductor transmission line problem. A computer algorithm was developed for computing the crosstalk noise from the signal to the sense lines. The computation is based on the assumption that these lines are terminated in passive loads.

  15. Influence of humidity and of the electric and magnetic microwave radiation fields on the remediation of TCE-contaminated natural sandy soils.

    PubMed

    Horikoshi, Satoshi; Muratani, Masaru; Miyabe, Kouta; Ohmura, Keisuke; Hirowatari, Tomoaki; Serpone, Nick; Abe, Masahiko

    2011-01-01

    The influence of moisture content (15% w/w) on the remediation (vaporization) of trichloroethylene (TCE) present in natural sands, chosen as a TCE-polluted model system for soils, was investigated with regard to applied microwave power levels, the depth of the sand sample, and the dielectric factors. The heating process occurring in the sand samples arises through the microwave conduction loss heating and dielectric loss heating mechanisms. The characteristic relevance of the electric and magnetic microwave radiation fields to the heating mechanisms was also examined. Heating by the magnetic microwave radiation field was considerable when magnetite was added to the dry and wet sand samples as the microwave absorber. Optimal microwave conditions are reported for a single-mode microwave applicator. Near-quantitative elimination of the TCE contaminant was achieved for sandy soils within a very short time.

  16. Influence of humidity and of the electric and magnetic microwave radiation fields on the remediation of TCE-contaminated natural sandy soils.

    PubMed

    Horikoshi, Satoshi; Muratani, Masaru; Miyabe, Kouta; Ohmura, Keisuke; Hirowatari, Tomoaki; Serpone, Nick; Abe, Masahiko

    2011-01-01

    The influence of moisture content (15% w/w) on the remediation (vaporization) of trichloroethylene (TCE) present in natural sands, chosen as a TCE-polluted model system for soils, was investigated with regard to applied microwave power levels, the depth of the sand sample, and the dielectric factors. The heating process occurring in the sand samples arises through the microwave conduction loss heating and dielectric loss heating mechanisms. The characteristic relevance of the electric and magnetic microwave radiation fields to the heating mechanisms was also examined. Heating by the magnetic microwave radiation field was considerable when magnetite was added to the dry and wet sand samples as the microwave absorber. Optimal microwave conditions are reported for a single-mode microwave applicator. Near-quantitative elimination of the TCE contaminant was achieved for sandy soils within a very short time. PMID:21701102

  17. Parameters affecting microwave-assisted extraction of organophosphorus pesticides from agricultural soil.

    PubMed

    Fuentes, Edwar; Báez, María E; Labra, Ronnie

    2007-10-26

    This work describes an optimised method for the determination of six representative organophosphorus pesticides (OPPs) (diazinon, parathion, methyl pirimiphos, methyl parathion, ethoprophos, and fenitrothion) in agricultural soils. The method is based on microwave-assisted extraction using a water-methanol modified mixture for desorption and simultaneous partitioning on n-hexane (MAEP), together with gas chromatography-flame photometric detection (GC-FPD). To improve GC-FPD signals (peak intensity and shape) olive oil was used effectively as a "matrix mimic". The optimisation of the extraction method was achieved in two steps: an initial approach through experimental design and principal component analysis where recovery of compounds using a water-methanol mixture ranged from 54 to 77%, and the second one by studying the addition of KH2PO4 to the extracting solution where recoveries were significantly increased, molecular replacing of OPPs from adsorption sites by phosphate being the probable extraction mechanism. Under optimised conditions, recoveries of pesticides from different soils were higher than 73%, except for methyl parathion in some soils, with SD equal or lower than 11% and detection limits ranging from 0.004 to 0.012 microg g(-1). The proposed method was used to determine OPPs in soil samples from different agricultural zones of Chile.

  18. Radio to microwave dielectric characterisation of constitutive electromagnetic soil properties using vector network analyses

    NASA Astrophysics Data System (ADS)

    Schwing, M.; Wagner, N.; Karlovsek, J.; Chen, Z.; Williams, D. J.; Scheuermann, A.

    2016-04-01

    The knowledge of constitutive broadband electromagnetic (EM) properties of porous media such as soils and rocks is essential in the theoretical and numerical modeling of EM wave propagation in the subsurface. This paper presents an experimental and numerical study on the performance EM measuring instruments for broadband EM wave in the radio-microwave frequency range. 3-D numerical calculations of a specific sensor were carried out using the Ansys HFSS (high frequency structural simulator) to further evaluate the probe performance. In addition, six different sensors of varying design, application purpose, and operational frequency range, were tested on different calibration liquids and a sample of fine-grained soil over a frequency range of 1 MHz-40 GHz using four vector network analysers. The resulting dielectric spectrum of the soil was analysed and interpreted using a 3-term Cole-Cole model under consideration of a direct current conductivity contribution. Comparison of sensor performances on calibration materials and fine-grained soils showed consistency in the measured dielectric spectra at a frequency range from 100 MHz-2 GHz. By combining open-ended coaxial line and coaxial transmission line measurements, the observable frequency window could be extended to a truly broad frequency range of 1 MHz-40 GHz.

  19. The dielectric properties of soil-water mixtures at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Wang, J. R.

    1979-01-01

    Recent measurements on the dielectric constants of soil-water mixtures show the existence of two frequency regions in which the dielectric behavior of these mixtures was quite different. At the frequencies of 1.4 GHz to 5 GHz, there were strong evidences that the variations of the dielectric (epsilon) with water content (W) depended on soil type. While the real part of epsilon for sandy soils rose rapidly with the increase in W, epsilon for the high-clay content soils rose only slowly with W. As a consequence, epsilon was generally higher for the sandy soils than for the high-clay content soils at a given W. On the other hand, most of the measurements at frequencies 1 GHz indicated the increase of epsilon with W independent of soil types. At a given W, epsilon' (sandy soil) approximately equals epsilon (high-clay content soil) within the precision of the measurements. These observational features can be satisfactorily interpreted in terms of a simple dielectric relaxation model, with an appropriate choice of the mean relaxation frequency f(m) and the range of the activation energy (beta). It was found that smaller f(m) and larger beta were required for the high-clay content soils than the sandy soils in order to be consistent with the measured data.

  20. A Methodology for Surface Soil Moisture and Vegetation Optical Depth Retrieval Using the Microwave Polarization Difference Index

    NASA Technical Reports Server (NTRS)

    Owe, Manfred; deJeu, Richard; Walker, Jeffrey; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    A methodology for retrieving surface soil moisture and vegetation optical depth from satellite microwave radiometer data is presented. The procedure is tested with historical 6.6 GHz brightness temperature observations from the Scanning Multichannel Microwave Radiometer over several test sites in Illinois. Results using only nighttime data are presented at this time, due to the greater stability of nighttime surface temperature estimation. The methodology uses a radiative transfer model to solve for surface soil moisture and vegetation optical depth simultaneously using a non-linear iterative optimization procedure. It assumes known constant values for the scattering albedo and roughness. Surface temperature is derived by a procedure using high frequency vertically polarized brightness temperatures. The methodology does not require any field observations of soil moisture or canopy biophysical properties for calibration purposes and is totally independent of wavelength. Results compare well with field observations of soil moisture and satellite-derived vegetation index data from optical sensors.

  1. Soil solid-phase controls lead activity in soil solution.

    PubMed

    Badawy, S H; Helal, M I D; Chaudri, A M; Lawlor, K; McGrath, S P

    2002-01-01

    Lead pollution of the environment is synonymous with civilization. It has no known biological function, and is naturally present in soil, but its presence in food crops is deemed undesirable. The concern regarding Pb is mostly due to chronic human and animal health effects, rather then phytotoxicity. However, not much is known about the chemistry and speciation of Pb in soils. We determined the activity of Pb2+, in near neutral and alkaline soils, representative of alluvial, desertic and calcareous soils of Egypt, using the competitive chelation method. Lead activity ranged from 10(-6.73) to 10(-4.83) M, and was negatively correlated with soil and soil solution pH (R2 = -0.92, P < 0.01 and R2 = -0.89, P < 0.01, respectively). It could be predicted in soil solution from the equation: log(Pb2+) = 9.9 - 2pH. A solubility diagram for the various Pb minerals found in soil was constructed using published thermodynamic data obtained from the literature, and our measured Pb2+ activities compared with this information. The measured Pb2+ activities were undersaturated with regard to the solubility of PbSiO3 in equilibrium with SiO2 (soil). However, they were supersaturated with regard to the solubilities of the Pb carbonate minerals PbCO3 (cerussite) and Pb3(CO3)2(OH)2 in equilibrium with atmospheric CO2 and hydroxide Pb(OH)2. They were also supersaturated with regard to the solubilities of the Pb phosphate minerals Pb3(PO4)2, Pb5(PO4)3OH, and Pb4O(PO4)2 in equilibrium with tricalcium phosphate and CaCO3. The activity of Pb2+ was not regulated by any mineral of known solubility in our soils, but possibly by a mixture of Pb carbonate and phosphate minerals.

  2. Active Microwave Remote Sensing Observations of Weddell Sea Ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1997-01-01

    Since July 1991, the European Space Agency's ERS-1 and ERS-2 satellites have acquired radar data of the Weddell Sea, Antarctica. The Active Microwave Instrument on board ERS has two modes; SAR and Scatterometer. Two receiving stations enable direct downlink and recording of high bit-rate, high resolution SAR image data of this region. When not in an imaging mode, when direct SAR downlink is not possible, or when a receiving station is inoperable, the latter mode allows normalized radar cross-section data to be acquired. These low bit-rate ERS scatterometer data are tape recorded, downlinked and processed off-line. Recent advances in image generation from Scatterometer backscatter measurements enable complementary medium-scale resolution images to be made during periods when SAR images cannot be acquired. Together, these combined C-band microwave image data have for the first time enabled uninterrupted night and day coverage of the Weddell Sea region at both high (25 m) and medium-scale (-20 km) resolutions. C-band ERS-1 radar data are analyzed in conjunction with field data from two simultaneous field experiments in 1992. Satellite radar signature data are compared with shipborne radar data to extract a regional and seasonal signature database for recognition of ice types in the images. Performance of automated sea-ice tracking algorithms is tested on Antarctic data to evaluate their success. Examples demonstrate that both winter and summer ice can be effectively tracked. The kinematics of the main ice zones within the Weddell Sea are illustrated, together with the complementary time-dependencies in their radar signatures. Time-series of satellite images are used to illustrate the development of the Weddell Sea ice cover from its austral summer minimum (February) to its winter maximum (September). The combination of time-dependent microwave signatures and ice dynamics tracking enable various drift regimes to be defined which relate closely to the circulation of the

  3. Space time soil wetness variations monitoring by a multi-temporal microwave satellite records analysis

    NASA Astrophysics Data System (ADS)

    Lacava, T.; Di Leo, E. V.; Pergola, N.; Tramutoli, V.

    In the last few years, remote sensing observations have become a useful tool for providing hydrological information, including the quantification of the main physical characteristics of the catchment, such as topography and land use, and of its variables, like soil moisture or snow cover. Moreover, satellite data have also been largely used in the framework of hydro-meteorological risk mitigation. Recently, an innovative Soil Wetness Variation Index (SWVI) has been proposed, using data acquired by the microwave radiometer AMSU (Advanced Microwave Sounding Unit) which flies aboard NOAA (National Oceanic and Atmospheric Administration) satellites. SWVI is based on a general approach for multi-temporal satellite data analysis (RAT - Robust AVHRR Techniques). This approach exploits the analysis of long-term multi-temporal satellite records in order to obtain a former characterization of the measured signal, in term of expected value and natural variability, providing a further identification of signal anomalies by an automatic, unsupervised change-detection step. Such an approach has already demonstrated, in several studies carried out on extreme flooding events which occurred in Europe in the past few years, its capability in reducing spurious effects generated by natural/observational noise. In this paper, the proposed approach is applied to the analysis of the flooding event which occurred in Europe (primarily in NW Spain) in June 2000. Results obtained, in terms of reliability as well as efficiency in space-time monitoring of soil wetness variation, are presented. Future prospects, in terms of exportability of the methodology on the new dedicated satellite missions, like ESA-SMOS and NASA-HYDROS, are also discussed.

  4. Evaluation-of soil enzyme activities as soil quality indicators in sludge-amended soils.

    PubMed

    Dindar, Efsun; Şağban, Fatma Olcay Topaç; Başkaya, Hüseyin Savaş

    2015-07-01

    Soil enzymatic activities are commonly used as biomarkers of soil quality. Several organic and inorganic compounds found in municipal wastewater sludges can possibly be used as fertilizers. Monitoring and evaluating the quality of sludge amended soils with enzyme activities accepted as a beneficial practice with respect to sustainable soil management. In the present study, variation of some enzyme activities (Alkaline phosphatase, dehydrogenase, urease and beta-glucosidase activities) in soils amended with municipal wastewater sludge at different application rates (50, 100 and 200 t ha(-1) dry sludge) was evaluated. Air dried sludge samples were applied to soil pots and sludge-soil mixtures were incubated during a period of three months at 28 degrees C. The results of the study showed that municipal wastewater sludge amendment apparently increased urease, dehydrogenase, alkaline phosphatase and P-glucosidase activities in soil by 48-70%, 14-47%, 33-66% and 9-14%, respectively. The maximum activity was generally observed in sludge amended soil with dose of 200 t ha(-1). Urease activity appeared to be a better indicator of soil enhancement with wastewater sludge, as its activity was more strongly increased by sludge amendment. Accordingly, urease activity is suggested to be soil quality indicator best suited for measuring existing conditions and potential changes in sludge-amended soil.

  5. New potentially active pyrazinamide derivatives synthesized under microwave conditions.

    PubMed

    Jandourek, Ondrej; Dolezal, Martin; Kunes, Jiri; Kubicek, Vladimir; Paterova, Pavla; Pesko, Matus; Buchta, Vladimir; Kralova, Katarina; Zitko, Jan

    2014-01-01

    A series of 18 N-alkyl substituted 3-aminopyrazine-2-carboxamides was prepared in this work according to previously experimentally set and proven conditions using microwave assisted synthesis methodology. This approach for the aminodehalogenation reaction was chosen due to higher yields and shorter reaction times compared to organic reactions with conventional heating. Antimycobacterial, antibacterial, antifungal and photosynthetic electron transport (PET) inhibiting in vitro activities of these compounds were investigated. Experiments for the determination of lipophilicity were also performed. Only a small number of substances with alicyclic side chain showed activity against fungi which was the same or higher than standards and the biological efficacy of the compounds increased with rising lipophilicity. Nine pyrazinamide derivatives also inhibited PET in spinach chloroplasts and the IC50 values of these compounds varied in the range from 14.3 to 1590.0 μmol/L. The inhibitory activity was connected not only with the lipophilicity, but also with the presence of secondary amine fragment bounded to the pyrazine ring. Structure-activity relationships are discussed as well. PMID:24995919

  6. High Spatial Resolution Soil Moisture with Passive Active Sensors Using a Change Detection Approach: Studies Using SMAPVEX12 Data

    NASA Astrophysics Data System (ADS)

    Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T. J.

    2014-12-01

    Soil moisture is an important variable in many areas of geosciences. The passive microwave sensors have been providing soil moisture of various spatial resolutions and are available for all-weather conditions. However, restricted by the antenna diameter of microwave radiometer, the spatial resolution of passive microwave soil moisture product is at tens of kilometers and needs to be improved for many applications. The SMAP (Soil Moisture Active Passive) is set to be launched in late 2014 and will be the first mission to provide L-band radar/radiometer soil moisture retrievals at three resolutions. The SMAPVEX12 is a pre-launch field validation experiment for evaluating and testing the soil moisture retrievals acquired from SMAP satellite. Airborne data using PALS (Passive/Active L-band Sensor) at two along-track resolutions (650 m and 1590 m) and UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) at 5 m spatial resolution as well as in-situ measurements were collected during the campaign. The study will implement a Single Channel Algorithm (SCA) to retrieve soil moisture from high/low altitude PALS L-band radiometer observations, as well as produce downscaled soil moisture change by combining low spatial resolution soil moisture retrievals and high spatial resolution PALS L-band radar observations through a change-detection algorithm, which models the relationship between change in radar backscatter and the change in soil moisture.

  7. Determination of inorganic pollutants in soil after volatilization using microwave-induced combustion

    NASA Astrophysics Data System (ADS)

    Picoloto, Rochele S.; Wiltsche, Helmar; Knapp, Günter; Mello, Paola A.; Barin, Juliano S.; Flores, Erico M. M.

    2013-08-01

    Microwave-induced combustion (MIC) was applied for analyte volatilization from soil and subsequent determination of As, Cd and Pb by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES), and Hg by cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS). Soil samples (up to 300 mg) were mixed with microcrystalline cellulose, pressed as pellets and combusted in closed quartz vessels pressurized with 20 bar O2. Analytes were volatilized from soil during combustion and quantitatively absorbed in a suitable solution: nitric acid (1, 2, 4 or 6 mol L- 1) or a solution of nitric (2 mol L- 1) and hydrochloric (1, 2 or 4 mol L- 1) acids. Accuracy was evaluated using certified reference materials of soil (NIST 2709, San Joaquin Soil) and sediment (SUD-1, Sudbury sediment for trace elements). Agreement with certified values was better than 95% (t-test, 95% confidence level) for all analytes when 6 mL of a solution of 2 mol L- 1 HNO3 and 2 mol L- 1 HCl was used with a reflux step of 5 min. The limit of detection was 0.010, 0.002, 0.009 and 0.012 μg g- 1 for As, Cd, Hg and Pb, respectively using ICP-MS determination. A clear advantage of the proposed method over classical approaches is that only diluted solution is used. Moreover, a complete separation of the analytes from matrix is achieved minimizing potential interferences in ICP-MS or ICP-OES determination. Up to eight samples can be digested in a single run of only 25 min, resulting in a solution suitable for the determination of all analytes by both techniques.

  8. Mesoscale monitoring of the soil freeze/thaw boundary from orbital microwave radiometry

    NASA Technical Reports Server (NTRS)

    Dobson, Craig; Ulaby, Fawwaz T.; Zuerndorfer, Brian; England, Anthony W.

    1990-01-01

    A technique was developed for mapping the spatial extent of frozen soils from the spectral characteristics of the 10.7 to 37 GHz radiobrightness. Through computational models for the spectral radiobrightness of diurnally heated freesing soils, a distinctive radiobrightness signature was identified for frozen soils, and the signature was cast as a discriminant for unsupervised classification. In addition to large area images, local area spatial averages of radiobrightness were calculated for each radiobrightness channel at 7 meteorologic sites within the test region. Local area averages at the meteorologic sites were used to define the preliminary boundaries in the Freeze Indicator discriminate. Freeze Indicator images based upon Nimbus 7, Scanning Multichannel Microwave Radiometer (SMMR) data effectively map temporal variations in the freeze/thaw pattern for the northern Great Plains at the time scale of days. Diurnal thermal gradients have a small but measurable effect upon the SMMR spectral gradient. Scale-space filtering can be used to improve the spatial resolution of a freeze/thaw classified image.

  9. Mesoscale monitoring of the soil freeze/thaw boundary from orbital microwave radiometry

    NASA Technical Reports Server (NTRS)

    Ulaby, Fawwaz T.; Dobson, M. Craig; Kuhn, William R.

    1988-01-01

    The fundamental objectives are to test the feasibility of delineating the lateral boundary between frozen and thawed condition in the surface layer of soil from orbital microwave radiometry and secondly to examine the sensitivity of general circulation models to an explicit parameterization of the boundary condition. Physical models were developed to relate emissivity to scene properties and a simulation package was developed to predict brightness temperature as a function of emissivity and physical temperature in order to address issues of heterogeneity, scaling, and scene dynamics. Radiative transfer models were develped for both bare soil surfaces and those obscured by an intervening layer of vegetation or snow. These models relate the emissivity to the physical properties of the soil and to those of the snow or vegetation cover. A SMMR simulation package was developed to evaluate the adequacy of the emission models and the limiting effects of scaling for realistic scenarios incorporating spatially heterogeneous scenes with dynamic moisture and temperature gradients at the pixel scale.

  10. The Passive Microwave Remote Sensing of Soil Moisture: the Effect of Tilled Row Structure

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Newton, R. W.; Rouse, J. W.

    1979-01-01

    The tilled rowstructure is known to be one of the important factors affecting the observations of the microwave emission from a natural surface. Measurements of this effect were carried out with both I and X band radiometers mounted on a mobile truck on a bare 40 m x 45 m row tilled field. The soil moisture content during the measurements ranged from approximately 10 percent to approximately 30 percent by dry weight. The results of these measurements showed that the variations of the antenna temperatures with incident angle theta changed with the azimuthal angle a measured from the row direction. A numerical calculation based on a composite surface roughness was made and found to predict the observed features within the model's limit of accuracy. It was concluded that the difference between the horizontally and vertically polarized temperatures was due to the change in the local angle of field emission within the antenna field of view caused by the large scale row structure.

  11. Soil moisture from the recent AMSR2 and FY3B multi-frequency passive microwave sensors

    NASA Astrophysics Data System (ADS)

    Parinussa, Robert; Wang, Guojie; de Jeu, Richard

    2014-05-01

    Over the years several different multi-frequency passive microwave sensors were used to estimate surface soil moisture. An historical multi-frequency passive microwave database from these satellite platforms was already used to generate a long term (32 years) surface soil moisture dataset. The Land Parameter Retrieval Algorithm (LPRM) was applied to this historical multi-frequency passive microwave database, including the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E), that plays a dominant role in the 2002-2011 period. The Advanced Microwave Scanning Radiometer 2 (AMSR2) shares a similar design with its predecessor, it was improved based on general technical development as well as the valuable heritage that AMSR-E left behind. Most recently, the Japanese Aerospace Exploration Agency (JAXA) started offering brightness temperature observations from the AMSR2 radiometer. In the recent years, China's National Satellite Meteorological Center (NSMC) developed meteorological satellites. The NSMC has polar orbiting sun-synchronized meteorological satellites in operation since 1988 in the so-called FengYun (FY) satellite series. FY3 is China's 2nd generation polar orbiting satellite series, its design was based on the previous polar orbiting satellite series and FY3 will ultimately become series of four satellites (FY3A to FY3D). The FY3B satellite is the 2nd satellite of the FY3 series and it's the 1st in the series to carry a microwave imager (MWRI) onboard observing the Earth's surface in 10 microwave channels. Brightness temperature observations of these recently developed sensors were compared to the existing database. An inter-calibration step was performed in order to overcome small difference in brightness temperature observations as a result of the different sensor calibration procedures. The LPRM was applied to observations made by the FY3B and AMSR2 sensors resulting in global soil moisture products. After the implementation of the

  12. Soil Moisture Estimation by Assimilating L-Band Microwave Brightness Temperature with Geostatistics and Observation Localization

    PubMed Central

    Han, Xujun; Li, Xin; Rigon, Riccardo; Jin, Rui; Endrizzi, Stefano

    2015-01-01

    The observation could be used to reduce the model uncertainties with data assimilation. If the observation cannot cover the whole model area due to spatial availability or instrument ability, how to do data assimilation at locations not covered by observation? Two commonly used strategies were firstly described: One is covariance localization (CL); the other is observation localization (OL). Compared with CL, OL is easy to parallelize and more efficient for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations, in which the geostatistical semivariogram was used to fit the spatial correlated characteristics of synthetic L-Band microwave brightness temperature measurement. The fitted semivariogram model and the local ensemble transform Kalman filter algorithm are combined together to weight and assimilate the observations within a local region surrounding the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs with one nearest observation assimilated, 5_Obs with no more than five nearest local observations assimilated, and 9_Obs with no more than nine nearest local observations assimilated. The scenarios with no more than 16, 25, and 36 local observations were also compared. From the results we can conclude that more local observations involved in assimilation will improve estimations with an upper bound of 9 observations in this case. This study demonstrates the potentials of geostatistical correlation representation in OL to improve data assimilation of catchment scale soil moisture using synthetic L-band microwave brightness temperature, which cannot cover the study area fully in space due to vegetation effects. PMID:25635771

  13. Soil moisture estimation by assimilating L-band microwave brightness temperature with geostatistics and observation localization.

    PubMed

    Han, Xujun; Li, Xin; Rigon, Riccardo; Jin, Rui; Endrizzi, Stefano

    2015-01-01

    The observation could be used to reduce the model uncertainties with data assimilation. If the observation cannot cover the whole model area due to spatial availability or instrument ability, how to do data assimilation at locations not covered by observation? Two commonly used strategies were firstly described: One is covariance localization (CL); the other is observation localization (OL). Compared with CL, OL is easy to parallelize and more efficient for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations, in which the geostatistical semivariogram was used to fit the spatial correlated characteristics of synthetic L-Band microwave brightness temperature measurement. The fitted semivariogram model and the local ensemble transform Kalman filter algorithm are combined together to weight and assimilate the observations within a local region surrounding the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs with one nearest observation assimilated, 5_Obs with no more than five nearest local observations assimilated, and 9_Obs with no more than nine nearest local observations assimilated. The scenarios with no more than 16, 25, and 36 local observations were also compared. From the results we can conclude that more local observations involved in assimilation will improve estimations with an upper bound of 9 observations in this case. This study demonstrates the potentials of geostatistical correlation representation in OL to improve data assimilation of catchment scale soil moisture using synthetic L-band microwave brightness temperature, which cannot cover the study area fully in space due to vegetation effects.

  14. A search in the infrared to microwave for astroengineering activity

    NASA Astrophysics Data System (ADS)

    Slysh, V. I.

    Huge space power plants (Dyson Spheres) utilizing most of a star's energy should be detectable as infrared or microwave sources. A recent far infrared all-sky survey has revealed many sources with a spectrum peaking on this region which is characteristic of the thermal emission of the hypothetical Dyson spheres. The possibility of confusing them with thick circumstellar dust shells around evolved red giant stars is discussed. Microwave detection of cool extended Dyson Spheres by all-sky surveys searching for microwave background fluctuations is also considered.

  15. Estimates of Long Term Surface Soil Moisture in the Midwestern U.S. Derived from Satellite Microwave Observations

    NASA Technical Reports Server (NTRS)

    Owe, M.; deJeu, R.; VandeGriend, A. A.; Ag, R. J.

    1999-01-01

    Soil moisture is a key component of the water and energy balances of the Earth's surface, and has been identified as a parameter of significant potential for improving the accuracy of large-scale land surface-atmosphere interaction models. However, soil moisture is often somewhat difficult to measure accurately in both space and time, especially at large spatial scales. Soil moisture is highly variable, and while point measurements are typically quite accurate, subsequent areal averaging of these measurements often leads to large errors. Since remotely sensed land surface observations are already a spatially averaged or areally integrated value, they are a logical input parameter to regional or larger scale land process models. A database of long-term soil moisture was compared to satellite microwave observations over test sites in the Midwestern United States. Ground measurements of average volumetric surface soil moisture in the top ten cm were made bimonthly at 19 locations throughout the state of Illinois. Nighttime microwave brightness temperatures were observed at a frequency of 6.6 GHz, by the Scanning Multichannel Microwave Radiometer (SMMR), onboard the Nimbus 7 satellite. The life of the SMMR instrument spanned from Nov. 1978 to Aug. 1987. At 6.6 GHz, the instrument provided a spatial resolution of approximately 150 km, and a temporal frequency over the test area of about 3 nighttime orbits per week. Vegetation radiative transfer characteristics, such as the canopy transmissivity, were estimated from vegetation indices such as the Normalized Difference Vegetation Index (NDVI) and the 37 GHz Microwave Polarization Difference Index (MPDI). Because the time of satellite coverage does not always coincide with the ground measurements of soil moisture, the existing ground data were used to calibrate a water balance for the top IO cm surface layer in order to interpolate daily surface moisture values. Such a climate-based approach is often more appropriate for

  16. Microwave and Beam Activation of Nanostructured Catalysts for Environmentally Friendly, Energy Efficient Heavy Crude Oil Processing

    SciTech Connect

    2009-03-01

    This factsheet describes a study whose goal is initial evaluation and development of energy efficient processes which take advantage of the benefits offered by nanostructured catalysts which can be activated by microwave, RF, or radiation beams.

  17. Imaging of Active Microwave Devices at Cryogenic Temperatures using Scanning Near-Field Microwave Microscopy

    NASA Astrophysics Data System (ADS)

    Thanawalla, Ashfaq S.; Dutta, S. K.; Vlahacos, C. P.; Steinhauer, D. E.; Feenstra, B. J.; Anlage, Steven M.; Wellstood, F. C.

    1998-03-01

    The ability to image electric fields in operating microwave devices is interesting both from the fundamental point of view and for diagnostic purposes. To that end we have constructed a scanning near-field microwave microscope which uses an open-ended coaxial probe and operates at cryogenic temperatures.(For related publications see: C. P. Vlahacos, R. C. Black, S. M. Anlage, A. Amar and F. C. Wellstood, Appl. Phys. Lett. 69), 3274 (1996) and S. M. Anlage, C. P. Vlahacos, Sudeep Dutta and F. C. Wellstood, IEEE Trans. Appl. Supercond. 7, 3686 (1997). Using this system we have imaged electric fields generated by both normal metal and superconducting microstrip resonators at temperatures ranging from 77 K to 300 K. We will present images and discuss our results including observations of clear standing wave patterns at the fundamental resonant frequency and an increased quality factor of the resonators at low temperatures.

  18. Effects of microwave heating on porous structure of regenerated powdered activated carbon used in xylose.

    PubMed

    Li, Wei; Wang, Xinying; Peng, Jinhui

    2014-01-01

    The regeneration of spent powdered activated carbons used in xylose decolourization by microwave heating was investigated. Effects of microwave power and microwave heating time on the adsorption capacity of regenerated activated carbons were evaluated. The optimum conditions obtained are as follows: microwave power 800W; microwave heating time 30min. Regenerated activated carbon in this work has high adsorption capacities for the amount of methylene blue of 16 cm3/0.1 g and the iodine number of 1000.06mg/g. The specific surface areas of fresh commercial activated carbon, spent carbon and regenerated activated carbon were calculated according to the Brunauer, Emmett and Teller method, and the pore-size distributions of these carbons were characterized by non-local density functional theory (NLDFT). The results show that the specific surface area and the total pore volume of regenerated activated carbon are 1064 m2/g and 1.181 mL/g, respectively, indicating the feasibility of regeneration of spent powdered activated carbon used in xylose decolourization by microwave heating. The results of surface fractal dimensions also confirm the results of isotherms and NLDFT.

  19. Effects of microwave heating on porous structure of regenerated powdered activated carbon used in xylose.

    PubMed

    Li, Wei; Wang, Xinying; Peng, Jinhui

    2014-01-01

    The regeneration of spent powdered activated carbons used in xylose decolourization by microwave heating was investigated. Effects of microwave power and microwave heating time on the adsorption capacity of regenerated activated carbons were evaluated. The optimum conditions obtained are as follows: microwave power 800W; microwave heating time 30min. Regenerated activated carbon in this work has high adsorption capacities for the amount of methylene blue of 16 cm3/0.1 g and the iodine number of 1000.06mg/g. The specific surface areas of fresh commercial activated carbon, spent carbon and regenerated activated carbon were calculated according to the Brunauer, Emmett and Teller method, and the pore-size distributions of these carbons were characterized by non-local density functional theory (NLDFT). The results show that the specific surface area and the total pore volume of regenerated activated carbon are 1064 m2/g and 1.181 mL/g, respectively, indicating the feasibility of regeneration of spent powdered activated carbon used in xylose decolourization by microwave heating. The results of surface fractal dimensions also confirm the results of isotherms and NLDFT. PMID:24645431

  20. Methanogenic activities in alpine soils.

    PubMed

    Wagner, Andreas O; Hofmann, Katrin; Prem, Eva; Illmer, Paul

    2012-07-01

    Uncontrolled microbial methane production is playing an important role in global warming. In the present study, we showed that water content and incubation temperature increase the potential for methane formation in the two alpine soils under investigation. Beside these factors, the grazing of cows and thus the amendment of methanogenic microorganisms by cattle dung is the most important factor determining the potential of methane production in those soils.

  1. The SIR-B observations of microwave backscatter dependence on soil moisture, surface roughness, and vegetation covers

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Shiue, J. C.; Engman, E. T.; Rusek, M.; Steinmeier, C.

    1986-01-01

    An experiment was conducted from an L-band SAR aboard Space Shuttle Challenger in October 1984 to study the microwave backscatter dependence on soil moisture, surface roughness, and vegetation cover. The results based on the analyses of an image obtained at 21-deg incidence angle show a positive correlatlion between scattering coefficient and soil moisture content, with a sensitivity comparable to that derived from the ground radar measurements reported by Ulaby et al. (1978). The surface roughness strongly affects the microwave backscatter. A factor of two change in the standard deviation of surface roughness height gives a corresponding change of about 8 dB in the scattering coefficient. The microwave backscatter also depends on the vegetation types. Under the dry soil conditions, the scattering coefficient is observed to change from about -24 dB for an alfalfa or lettuce field to about -17 dB for a mature corn field. These results suggest that observations with a SAR system of multiple frequencies and polarizations are required to unravel the effects of soil moisture, surface roughness, and vegetation cover.

  2. Effect of Microwave Heating Conditions on the Preparation of High Surface Area Activated Carbon from Waste Bamboo

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Hongying Xia; Zhang, Libo; Xia, Yi; Peng, Jinhui; Wang, Shixing; Zheng, Zhaoqiang; Zhang, Shengzhou

    2015-11-01

    The present study reports the effect of microwave power and microwave heating time on activated carbon adsorption ability. The waste bamboo was used to preparing high surface area activated carbon via microwave heating. The bamboo was carbonized for 2 h at 600°C to be used as the raw material. According to the results, microwave power and microwave heating time had a significant impact on the activating effect. The optimal KOH/C ratio of 4 was identified when microwave power and microwave heating time were 700 W and 15 min, respectively. Under the optimal conditions, surface area was estimated to be 3441 m2/g with pore volume of 2.093 ml/g and the significant proportion of activated carbon was microporous (62.3%). The results of Fourier transform infrared spectroscopy (FTIR) were illustrated that activated carbon surface had abundant functional groups. Additionally the pore structure is characterized using Scanning Electron Microscope (SEM).

  3. Metatranscriptomic census of active protists in soils

    PubMed Central

    Geisen, Stefan; Tveit, Alexander T; Clark, Ian M; Richter, Andreas; Svenning, Mette M; Bonkowski, Michael; Urich, Tim

    2015-01-01

    The high numbers and diversity of protists in soil systems have long been presumed, but their true diversity and community composition have remained largely concealed. Traditional cultivation-based methods miss a majority of taxa, whereas molecular barcoding approaches employing PCR introduce significant biases in reported community composition of soil protists. Here, we applied a metatranscriptomic approach to assess the protist community in 12 mineral and organic soil samples from different vegetation types and climatic zones using small subunit ribosomal RNA transcripts as marker. We detected a broad diversity of soil protists spanning across all known eukaryotic supergroups and revealed a strikingly different community composition than shown before. Protist communities differed strongly between sites, with Rhizaria and Amoebozoa dominating in forest and grassland soils, while Alveolata were most abundant in peat soils. The Amoebozoa were comprised of Tubulinea, followed with decreasing abundance by Discosea, Variosea and Mycetozoa. Transcripts of Oomycetes, Apicomplexa and Ichthyosporea suggest soil as reservoir of parasitic protist taxa. Further, Foraminifera and Choanoflagellida were ubiquitously detected, showing that these typically marine and freshwater protists are autochthonous members of the soil microbiota. To the best of our knowledge, this metatranscriptomic study provides the most comprehensive picture of active protist communities in soils to date, which is essential to target the ecological roles of protists in the complex soil system. PMID:25822483

  4. Metatranscriptomic census of active protists in soils.

    PubMed

    Geisen, Stefan; Tveit, Alexander T; Clark, Ian M; Richter, Andreas; Svenning, Mette M; Bonkowski, Michael; Urich, Tim

    2015-10-01

    The high numbers and diversity of protists in soil systems have long been presumed, but their true diversity and community composition have remained largely concealed. Traditional cultivation-based methods miss a majority of taxa, whereas molecular barcoding approaches employing PCR introduce significant biases in reported community composition of soil protists. Here, we applied a metatranscriptomic approach to assess the protist community in 12 mineral and organic soil samples from different vegetation types and climatic zones using small subunit ribosomal RNA transcripts as marker. We detected a broad diversity of soil protists spanning across all known eukaryotic supergroups and revealed a strikingly different community composition than shown before. Protist communities differed strongly between sites, with Rhizaria and Amoebozoa dominating in forest and grassland soils, while Alveolata were most abundant in peat soils. The Amoebozoa were comprised of Tubulinea, followed with decreasing abundance by Discosea, Variosea and Mycetozoa. Transcripts of Oomycetes, Apicomplexa and Ichthyosporea suggest soil as reservoir of parasitic protist taxa. Further, Foraminifera and Choanoflagellida were ubiquitously detected, showing that these typically marine and freshwater protists are autochthonous members of the soil microbiota. To the best of our knowledge, this metatranscriptomic study provides the most comprehensive picture of active protist communities in soils to date, which is essential to target the ecological roles of protists in the complex soil system. PMID:25822483

  5. Metatranscriptomic census of active protists in soils.

    PubMed

    Geisen, Stefan; Tveit, Alexander T; Clark, Ian M; Richter, Andreas; Svenning, Mette M; Bonkowski, Michael; Urich, Tim

    2015-10-01

    The high numbers and diversity of protists in soil systems have long been presumed, but their true diversity and community composition have remained largely concealed. Traditional cultivation-based methods miss a majority of taxa, whereas molecular barcoding approaches employing PCR introduce significant biases in reported community composition of soil protists. Here, we applied a metatranscriptomic approach to assess the protist community in 12 mineral and organic soil samples from different vegetation types and climatic zones using small subunit ribosomal RNA transcripts as marker. We detected a broad diversity of soil protists spanning across all known eukaryotic supergroups and revealed a strikingly different community composition than shown before. Protist communities differed strongly between sites, with Rhizaria and Amoebozoa dominating in forest and grassland soils, while Alveolata were most abundant in peat soils. The Amoebozoa were comprised of Tubulinea, followed with decreasing abundance by Discosea, Variosea and Mycetozoa. Transcripts of Oomycetes, Apicomplexa and Ichthyosporea suggest soil as reservoir of parasitic protist taxa. Further, Foraminifera and Choanoflagellida were ubiquitously detected, showing that these typically marine and freshwater protists are autochthonous members of the soil microbiota. To the best of our knowledge, this metatranscriptomic study provides the most comprehensive picture of active protist communities in soils to date, which is essential to target the ecological roles of protists in the complex soil system.

  6. Microbial activity in soils following steam treatment.

    PubMed

    Richardson, Ruth E; James, C Andrew; Bhupathiraju, Vishvesh K; Alvarez-Cohen, Lisa

    2002-01-01

    Steam enhanced extraction (SEE) is an aquifer remediation technique that can be effective at removing the bulk of non-aqueous phase liquid (NAPL) contamination from the subsurface, particularly highly volatile contaminants. However, low volatility compounds such as polynuclear aromatic hydrocarbons (PAHs) are less efficiently removed by this process. This research evaluated the effects of steam injection on soil microbial activity, community structure, and the potential for biodegradation of contaminants following steam treatment. Three different soils were evaluated: a laboratory-prepared microbially-enriched soil, soil from a creosote contaminated field site, and soil from a chlorinated solvent and waste oil contaminated field site. Results from field-scale steaming are also presented. Microbial activity before and after steam treatment was evaluated using direct epifluorescent microscopy (DEM) using the respiratory activity dye 5-cyano-2,3, ditolyl tetrazolium chloride (CTC) in conjunction with the fluorochrome 5-(4,6-dichlorotriazinyl) aminofluorescein (DTAF) to yield a quantitative assessment of active and total microbial numbers. DEM results indicate that steamed soils that were analyzed while still hot exhibited microbial activity levels that were below detection. However, soil samples that were slowly cooled, more closely reflecting the conditions of applied SEE, exhibited microbial activity levels that were comparable to presteamed soils. Samples from a field-site where steam was applied continuously for 6 weeks also showed high levels of microbial activity following cooling. The metabolic capabilities of the steamed communities were investigated by measuring cell growth in enrichment cultures on various substrates. These studies provided evidence that organisms capable of biodegradation were among the mesophilic populations that survived steam treatment. Fluorescent in situ hybridization (FISH) analysis of the soils with domain-level rRNA probes suggest

  7. Advances on simultaneous desulfurization and denitrification using activated carbon irradiated by microwaves.

    PubMed

    Ma, Shuang-Chen; Gao, Li; Ma, Jing-Xiang; Jin, Xin; Yao, Juan-Juan; Zhao, Yi

    2012-06-01

    This paper describes the research background and chemistry of desulfurization and denitrification technology using microwave irradiation. Microwave-induced catalysis combined with activated carbon adsorption and reduction can reduce nitric oxide to nitrogen and sulfur dioxide to sulfur from flue gas effectively. This paper also highlights the main drawbacks of this technology and discusses future development trends. It is reported that the removal of sulfur dioxide and nitric oxide using microwave irradiation has broad prospects for development in the field of air pollution control.

  8. Retrieval of soil moisture based on passive microwaves measurements from AMSR-E over a Sahelian region.

    NASA Astrophysics Data System (ADS)

    Gruhier, C.; de Rosnay, P.; Wigneron, J.-P.

    2009-04-01

    Soil moisture is a crucial variable which influences the land surface processes. The feedback on precipitation is particularly strong over the Sahelian region. Access to soil moisture value is difficult because of its high spatial and temporal variability. Large scale measurements are of great importance for land surface modeling and numerical weather prediction. Remote sensing approaches are the more appropriated to provide land surface informations at continental scale and high temporal frequency. Among all channels available, passive microwaves are the most sensitive to soil moisture variations. This study proposed a retrieval of soil moisture based on AMSR-E (Advanced Microwave Scanning Radiometer - Earth Observing System) measurements over a Sahelian region. The study area is located in Gourma region in Mali. This site has been instrumented in the context of the AMMA project (African Monsoon Multidisciplinary Analysis). The soil moisture network was specifically designed to address the validation of remotely sensed soil moisture in the context of the SMOS mission (Soil Moisture an Ocean Salinity). AMSR-E is a passive microwaves sensor launched on AQUA in 2002. It provides brightness temperature at fives frequencies (6.9 to 89GHz) and two polarizations. Its high temporal frequency is particularly appropriated to the quick rainy events. Gruhier et al (2008-a) shows the great sensibility of the 6.9GHz channel over the study area. The goal of this study is to use the complete temporal series available from AMSR-E from 2002 to 2008 to provide soil moisture values. In a first time, a simple correction is applied to brightness temperature to correct the variations explained by instrument calibration. Secondly, the range of AMSR-E brightness temperatures values is used to identify the range of Soil Wetness Index values on each pixel. Finally, sample ground measurements are used to develop retrieval algorithm, which provide volumetric values. Retrieved soil moisture

  9. Volcanic eruption source parameters from active and passive microwave sensors

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario; Marzano, Frank S.; Cimini, Domenico; Mereu, Luigi

    2016-04-01

    It is well known, in the volcanology community, that precise information of the source parameters characterising an eruption are of predominant interest for the initialization of the Volcanic Transport and Dispersion Models (VTDM). Source parameters of main interest would be the top altitude of the volcanic plume, the flux of the mass ejected at the emission source, which is strictly related to the cloud top altitude, the distribution of volcanic mass concentration along the vertical column as well as the duration of the eruption and the erupted volume. Usually, the combination of a-posteriori field and numerical studies allow constraining the eruption source parameters for a given volcanic event thus making possible the forecast of ash dispersion and deposition from future volcanic eruptions. So far, remote sensors working at visible and infrared channels (cameras and radiometers) have been mainly used to detect, track and provide estimates of the concentration content and the prevailing size of the particles propagating within the ash clouds up to several thousand of kilometres far from the source as well as track back, a-posteriori, the accuracy of the VATDM outputs thus testing the initial choice made for the source parameters. Acoustic wave (infrasound) and microwave fixed scan radar (voldorad) were also used to infer source parameters. In this work we want to put our attention on the role of sensors operating at microwave wavelengths as complementary tools for the real time estimations of source parameters. Microwaves can benefit of the operability during night and day and a relatively negligible sensitivity to the presence of clouds (non precipitating weather clouds) at the cost of a limited coverage and larger spatial resolution when compared with infrared sensors. Thanks to the aforementioned advantages, the products from microwaves sensors are expected to be sensible mostly to the whole path traversed along the tephra cloud making microwaves particularly

  10. Spectral signatures of soil, snow and sea ice as observed by passive microwave and thermal infrared techniques

    NASA Technical Reports Server (NTRS)

    Schmugge, T.

    1984-01-01

    There have been many passive microwave observations of soil, snow, and sea ice surfaces made during the past several years. These measurements have been from tower, aircraft, and spacecraft platforms covering the wavelength range from 0.8 cm to 50 cm. Based on these data it can be concluded that the longer wavelengths (greater than 5 cm) are more effective for soil moisture observations because of a greater capability to penetrate vegetation, while the shorter wavelengths (1 to 3 cm) are best for snow and sea ice observations since the dominant process is volume scattering by the ice grains in the snow and the brine cells in sea ice. Because it is the intensity of a thermal emission process that is being measured, thermal infrared measurements are necessary to separate the emissivity and temperature effects in the microwave emission.

  11. Observations of the seasonal variability of soil moisture and vegetation cover over Africa using satellite microwave radiometry

    NASA Technical Reports Server (NTRS)

    Njoku, Eni G.; Patel, Indu R.

    1986-01-01

    Multispectral passive microwave data from the scanning multichannel microwave radiometer (SMMR) on the Nimbus-7 satellite were processed selectively for a 1 yr period over Africa. The data show a wide dynamic range of brightness temperature (180 to 290 K), corresponding to variations in surface features such as moisture, temperature, vegetation, roughness, and large-scale topography. It appears that soil moisture variability is detectable with the SMMR over large regions of Africa. To what extent roughness and vegetation affect this capability is not clear. The lowest SMMR frequency is C-band (6.6 GHz), thus any soil moisture sensitivity at this frequency would be much improved by a sensor at L-band (1 to 2 GHz) less affected by roughness and vegetation.

  12. Estimating rootzone soil moisture by assimilating both microwave based surface soil moisture and thermal based soil moisture proxy observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of synthetic data assimilation experiments are carried out at the USDA Economic and Environmental Enhancement (OPE3) site in Beltsville, Maryland. As a first case, only surface soil moisture retrievals are assimilated into a land surface model using the Ensemble Kalman filter (EnKF). This...

  13. A multifrequency evaluation of active and passive microwave sensors for oil spill detection and assessment

    NASA Technical Reports Server (NTRS)

    Fenner, R. G.; Reid, S. C.; Solie, C. H.

    1980-01-01

    An evaluation is given of how active and passive microwave sensors can best be used in oil spill detection and assessment. Radar backscatter curves taken over oil spills are presented and their effect on synthetic aperture radar (SAR) imagery are discussed. Plots of microwave radiometric brightness variations over oil spills are presented and discussed. Recommendations as to how to select the best combination of frequency, viewing angle, and sensor type for evaluation of various aspects of oil spills are also discussed.

  14. High-Q active ring microwave resonators based on ferrite-ferroelectric layered structures

    NASA Astrophysics Data System (ADS)

    Ustinov, Alexey B.; Srinivasan, G.; Kalinikos, Boris A.

    2008-05-01

    An electric and magnetic field tunable (dual-tunable) microwave active ring resonator is designed and characterized. The device structure is implemented with a microwave amplifier and a ferrite-ferroelectric delay line in the feedback loop. At 8GHz, an effective Q factor of 50 000 and tuning by 5MHz with an electric field are achieved. The performance characteristics of the resonator are presented and discussed.

  15. Preparation of activated carbon by microwave heating of langsat (Lansium domesticum) empty fruit bunch waste.

    PubMed

    Foo, K Y; Hameed, B H

    2012-07-01

    The feasibility of langsat empty fruit bunch waste for preparation of activated carbon (EFBLAC) by microwave-induced activation was explored. Activation with NaOH at the IR ratio of 1.25, microwave power of 600 W for 6 min produced EFBLAC with a carbon yield of 81.31% and adsorption uptake for MB of 302.48 mg/g. Pore structural analysis, scanning electron microscopy and Fourier transform infrared spectroscopy demonstrated the physical and chemical characteristics of EFBLAC. Equilibrium data were best described by the Langmuir isotherm, with a monolayer adsorption capacity of 402.06 mg/g, and the adsorption kinetics was well fitted to the pseudo-second-order equation. The findings revealed the potential to prepare high quality activated carbon from langsat empty fruit bunch waste by microwave irradiation.

  16. Technology advances in active and passive microwave sensing through 1985. [microwave technology for the Seasat-A and Nimbus-G satellites

    NASA Technical Reports Server (NTRS)

    Barath, F. T.

    1977-01-01

    The capabilities of passive and active microwave sensors are discussed. The Nimbus-G and Seasat-A scanning multichannel microwave spectrometer, the Seasat-A radar altimeter, scatterometer and synthetic aperture radar represent the first systematic attempt at exploring a wide variety of applications utilizing microwave sensing techniques and are indicators of the directions in which the pertinent technology is likely to evolve. The trend is toward high resolution multi-frequency imagers spanning wide frequency ranges and wide swaths requiring sophisticated receivers, real-time data processors and most importantly, complex antennas.

  17. [Relationship between soil enzyme activities and trace element contents in Eucalyptus plantation soil].

    PubMed

    Li, Yuelin; Peng, Shaolin; Li, Zhihui; Ren, Hai; Li, Zhi'an

    2003-03-01

    Canonical correlation analysis on soil enzyme activities and trace element contents in Eucalyptus plantation soil showed that among the test elements, only Zn and Mn affected enzyme activity. Both Zn and Mn increased soil proteinase activity. Zn decreased the activities of soil urease and peroxidase, while Mn promoted them. "Integral soil enzyme factor" could be used as an index of soil fertility. Together with other growth factors, this index should be considered when evaluating soil fertility of Eucalyptus forest sites. It also had a definite significance on the division of Eucalyptus soil families. PMID:12836538

  18. Determination of Beryllium in Soil and Sediment by Graphite Furnace Atomic Absorption with a Microwave-Acid Digestion Method.

    PubMed

    Lin, Hai-lan; Gan, Jie; Yu, Lei; Zhu, Ri-long; Tian, Yun; Luo, Yue-ping

    2015-11-01

    A method for determination of beryllium in soils and sediments by microwave-acid digestion/graphite furnace atomic absorption (GFAA) is described. In this paper, the working conditions of the instrument are optimized, the drawing of calibration curve is expounded, the pretreatment process of soil and sediments (including microwave heating process and the selection of digestion system) is discussed, and the interference of coexisting elements is examined. The sample was pretreated by microwave digestion parameters using HNO₃/ HCl/HF mixed acid system. The method is fast and simple without matrix modifier, and has no interference by coexisting ions, and has high repeatability and reproducibility. Under the optimal experimental conditions, the limit of detection (LOD) is 0.004 9 mg · kg⁻¹ (sample quantity 0.200 0 g, sample volume 25 mL), and the limits of quantitation (LOQ) is 0.20 mg · kg⁻¹. This method is used to measure the standard samples and actual samples, whether in the laboratory, or between laboratories, has good accuracy and precision.

  19. Determination of Beryllium in Soil and Sediment by Graphite Furnace Atomic Absorption with a Microwave-Acid Digestion Method.

    PubMed

    Lin, Hai-lan; Gan, Jie; Yu, Lei; Zhu, Ri-long; Tian, Yun; Luo, Yue-ping

    2015-11-01

    A method for determination of beryllium in soils and sediments by microwave-acid digestion/graphite furnace atomic absorption (GFAA) is described. In this paper, the working conditions of the instrument are optimized, the drawing of calibration curve is expounded, the pretreatment process of soil and sediments (including microwave heating process and the selection of digestion system) is discussed, and the interference of coexisting elements is examined. The sample was pretreated by microwave digestion parameters using HNO₃/ HCl/HF mixed acid system. The method is fast and simple without matrix modifier, and has no interference by coexisting ions, and has high repeatability and reproducibility. Under the optimal experimental conditions, the limit of detection (LOD) is 0.004 9 mg · kg⁻¹ (sample quantity 0.200 0 g, sample volume 25 mL), and the limits of quantitation (LOQ) is 0.20 mg · kg⁻¹. This method is used to measure the standard samples and actual samples, whether in the laboratory, or between laboratories, has good accuracy and precision. PMID:26978948

  20. [Determination of heavy metals in artificial soil on railway rock-cut slopes by microwave digestion-AAS].

    PubMed

    Chen, Zhao-Qiong; Fang, Chen; Ai, Ying-Wei; Gao, Hong-Ying; Pan, Dan-Dan; Li, Xin-Yue

    2013-08-01

    The purpose of this paper is as follows: (1) Optimizing the parameters of microwave digestion-atomic absorption spectroscopy (AAS) and establishing method for the determination of heavy metals in artificial soils. (2) Evaluating heavy metal pollution conditions in artificial soil samples from railway rock-cut slopes. The results showed that the mixture of HNO3-H2O2-HF was found to have the best digestion efficiency; under the optimized conditions, the recoveries of the method ranged from 95% to 105%; the measurement precision and the relative deviation were less than 4% and 5%, respectively; the concentrations of Cd, Pb and Zn were significantly higher in the artificial soil on railway rock-cut slope than in the control soil, and they were 4.7, 1.3 and 1.2 times as much as the control soil, respectively; compared to the contents of Cr, Cu and Fe in control soils, there was no significant difference. This research will provide a reliable method for determining metal elements in artificial soils on rock-cut slopes and a theoretical basis for the management of the railway rock-cut slopes.

  1. Influence of Polarity and Activation Energy in Microwave-Assisted Organic Synthesis (MAOS).

    PubMed

    Rodríguez, Antonio M; Prieto, Pilar; de la Hoz, Antonio; Díaz-Ortiz, Ángel; Martín, D Raúl; García, José I

    2015-06-01

    The aim of this work was to determine the parameters that have decisive roles in microwave-assisted reactions and to develop a model, using computational chemistry, to predict a priori the type of reactions that can be improved under microwaves. For this purpose, a computational study was carried out on a variety of reactions, which have been reported to be improved under microwave irradiation. This comprises six types of reactions. The outcomes obtained in this study indicate that the most influential parameters are activation energy, enthalpy, and the polarity of all the species that participate. In addition to this, in most cases, slower reacting systems observe a much greater improvement under microwave irradiation. Furthermore, for these reactions, the presence of a polar component in the reaction (solvent, reagent, susceptor, etc.) is necessary for strong coupling with the electromagnetic radiation. We also quantified that an activation energy of 20-30 kcal mol(-1) and a polarity (μ) between 7-20 D of the species involved in the process is required to obtain significant improvements under microwave irradiation.

  2. Influence of microwave irradiation on boron concentrate activation with an emphasis on surface properties

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Zhang, Qiaoyi; Liu, Yajing; Xue, Xiangxin; Duan, Peining

    2016-11-01

    In this study, we employed microwave irradiation for activating boron concentrate, an abundant but low-grade boron mineral resource in China. The boron concentrate was pretreated by microwave irradiation based on TG-DTG-DSC analysis, and the influence of each parameter on processing efficiency was characterized using chemical analysis, XRD, SEM, FTIR and particle distribution analysis. Subsequently, the surface properties of boron concentrate and the mechanism of microwave irradiation was analyzed. Our results indicate that microwave irradiation decreased the processing temperature and shortened the roasting time by accelerating dehydroxylation and oxidation reactions in the boron concentrate, reducing the particle diameter and damaging the microstructure of the minerals, and it increased the B2O3 activity of boron from 64.68% to 86.73%, greater than the optimal conventional treatment. Compared with the simple thermal field, microwave roasting obviously increased ability of the boron concentrate to absorb OH- in the leachant and promoted boron leaching by expanding the contact area of the mineral exposed to leachant, boosting the amount of Mg2+ and Fe3+ on mineral surfaces, and increasing the hydrophilicity of the boron concentrate respectively. It enhanced the γSVLW and γSV- of boron concentrate from 29.15 mJ/m2 and 5.07 mJ/m2 to 37.07 mJ/m2 and 12.41 mJ/m2.

  3. Soil and Water Conservation Activities for Scouts.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    The purpose of the learning activities outlined in this booklet is to help Scouts understand some conservation principles which hopefully will lead to the development of an attitude of concern for the environment and a commitment to help with the task of using and managing soil, water, and other natural resources for long range needs as well as…

  4. Impacts of Different Assimilation Methodologies on Crop Yield Estimates Using Active and Passive Microwave Dataset at L-Band

    NASA Astrophysics Data System (ADS)

    Liu, P.; Bongiovanni, T. E.; Monsivais-Huertero, A.; Bindlish, R.; Judge, J.

    2013-12-01

    Accurate estimates of crop yield are important for managing agricultural production and food security. Although the crop growth models, such as the Decision Support System Agrotechnology Transfer (DSSAT), have been used to simulate crop growth and development, the crop yield estimates still diverge from the reality due to different sources of errors in the models and computation. Auxiliary observations may be incorporated into such dynamic models to improve predictions using data assimilation. Active and passive (AP) microwave observations at L-band (1-2 GHz) are sensitive to dielectric and geometric properties of soil and vegetation, including soil moisture (SM), vegetation water content (VWC), surface roughness, and vegetation structure. Because SM and VWC are one of the governing factors in estimating crop yield, microwave observations may be used to improve crop yield estimates. Current studies have shown that active observations are more sensitive to the surface roughness of soil and vegetation structure during the growing season, while the passive observations are more sensitive to the SM. Backscatter and emission models linked with the DSSAT model (DSSAT-A-P) allow assimilation of microwave observations of backscattering coefficient (σ0) and brightness temperature (TB) may provide biophysically realistic estimates of model states and parameters. The present ESA Soil Moisture Ocean Salinity (SMOS) mission provides passive observations at 1.41 GHz at 25 km every 2-3 days, and the NASA/CNDAE Aquarius mission provides L-band AP observations at spatial resolution of 150 km with a repeat coverage of 7 days for global SM products. In 2014, the planned NASA Soil Moisture Active Passive mission will provide AP observations at 1.26 and 1.41 GHz at the spatial resolutions of 3 and 30 km, respectively, with a repeat coverage of 2-3 days. The goal of this study is to understand the impacts of assimilation of asynchronous and synchronous AP observations on crop yield

  5. Use of Radar Vegetation Index (RVI) in Passive Microwave Algorithms for Soil Moisture Estimates

    NASA Astrophysics Data System (ADS)

    Rowlandson, T. L.; Berg, A. A.

    2013-12-01

    The Soil Moisture Active Passive (SMAP) satellite will provide a unique opportunity for the estimation of soil moisture by having simultaneous radar and radiometer measurements available. As with the Soil Moisture and Ocean Salinity (SMOS) satellite, the soil moisture algorithms will need to account for the contribution of vegetation to the brightness temperature. Global maps of vegetation volumetric water content (VWC) are difficult to obtain, and the SMOS mission has opted to estimate the optical depth of standing vegetation by using a relationship between the VWC and the leaf area index (LAI). LAI is estimated from optical remote sensing or through soil-vegetation-atmosphere transfer modeling. During the growing season, the VWC of agricultural crops can increase rapidly, and if cloud cover exists during an optical acquisition, the estimation of LAI may be delayed, resulting in an underestimation of the VWC and overestimation of the soil moisture. Alternatively, the radar vegetation index (RVI) has shown strong correlation and linear relationship with VWC for rice and soybeans. Using the SMAP radar to produce RVI values that are coincident to brightness temperature measurements may eliminate the need for LAI estimates. The SMAP Validation Experiment 2012 (SMAPVEX12) was a cal/val campaign for the SMAP mission held in Manitoba, Canada, during a 6-week period in June and July, 2012. During this campaign, soil moisture measurements were obtained for 55 fields with varying soil texture and vegetation cover. Vegetation was sampled from each field weekly to determine the VWC. Soil moisture measurements were taken coincident to overpasses by an aircraft carrying the Passive and Active L-band System (PALS) instrumentation. The aircraft flew flight lines at both high and low altitudes. The low altitude flight lines provided a footprint size approximately equivalent to the size of the SMAPVEX12 field sites. Of the 55 field sites, the low altitude flight lines provided

  6. Enzyme activities by indicator of quality in organic soil

    NASA Astrophysics Data System (ADS)

    Raigon Jiménez, Mo; Fita, Ana Delores; Rodriguez Burruezo, Adrián

    2016-04-01

    The analytical determination of biochemical parameters, as soil enzyme activities and those related to the microbial biomass is growing importance by biological indicator in soil science studies. The metabolic activity in soil is responsible of important processes such as mineralization and humification of organic matter. These biological reactions will affect other key processes involved with elements like carbon, nitrogen and phosphorus , and all transformations related in soil microbial biomass. The determination of biochemical parameters is useful in studies carried out on organic soil where microbial processes that are key to their conservation can be analyzed through parameters of the metabolic activity of these soils. The main objective of this work is to apply analytical methodologies of enzyme activities in soil collections of different physicochemical characteristics. There have been selective sampling of natural soils, organic farming soils, conventional farming soils and urban soils. The soils have been properly identified conserved at 4 ° C until analysis. The enzyme activities determinations have been: catalase, urease, cellulase, dehydrogenase and alkaline phosphatase, which bring together a representative group of biological transformations that occur in the soil environment. The results indicate that for natural and agronomic soil collections, the values of the enzymatic activities are within the ranges established for forestry and agricultural soils. Organic soils are generally higher level of enzymatic, regardless activity of the enzyme involved. Soil near an urban area, levels of activities have been significantly reduced. The vegetation cover applied to organic soils, results in greater enzymatic activity. So the quality of these soils, defined as the ability to maintain their biological productivity is increased with the use of cover crops, whether or spontaneous species. The practice of cover based on legumes could be used as an ideal choice

  7. Using high-resolution soil moisture modelling to assess the uncertainty of microwave remotely sensed soil moisture products at the correct spatial and temporal support

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Karssenberg, D.; Bierkens, M. F. P.; Van Dam, J. C.; De Jong, S. M.

    2012-04-01

    Soil moisture is a key variable in the hydrological cycle and important in hydrological modelling. When assimilating soil moisture into flood forecasting models, the improvement of forecasting skills depends on the ability to accurately estimate the spatial and temporal patterns of soil moisture content throughout the river basin. Space-borne remote sensing may provide this information with a high temporal and spatial resolution and with a global coverage. Currently three microwave soil moisture products are available: AMSR-E, ASCAT and SMOS. The quality of these satellite-based products is often assessed by comparing them with in-situ observations of soil moisture. This comparison is however hampered by the difference in spatial and temporal support (i.e., resolution, scale), because the spatial resolution of microwave satellites is rather low compared to in-situ field measurements. Thus, the aim of this study is to derive a method to assess the uncertainty of microwave satellite soil moisture products at the correct spatial support. To overcome the difference in support size between in-situ soil moisture observations and remote sensed soil moisture, we used a stochastic, distributed unsaturated zone model (SWAP, van Dam (2000)) that is upscaled to the support of different satellite products. A detailed assessment of the SWAP model uncertainty is included to ensure that the uncertainty in satellite soil moisture is not overestimated due to an underestimation of the model uncertainty. We simulated unsaturated water flow up to a depth of 1.5m with a vertical resolution of 1 to 10 cm and on a horizontal grid of 1 km2 for the period Jan 2010 - Jun 2011. The SWAP model was first calibrated and validated on in-situ data of the REMEDHUS soil moisture network (Spain). Next, to evaluate the satellite products, the model was run for areas in the proximity of 79 meteorological stations in Spain, where model results were aggregated to the correct support of the satellite

  8. Effects of microwave exposure on the hamster immune system. I. Natural killer cell activity

    SciTech Connect

    Yang, H.K.; Cain, C.A.; Lockwood, J.; Tompkins, W.A.

    1983-01-01

    Hamsters were exposed to repeated or single doses of microwave energy and monitored for changes in core body temperature, circulating leukocyte profiles, serum corticosteroid levels, and natural killer (NK) cell activity in various tissues. NK cytotoxicity was measured in a /sup 51/Cr-release assay employing baby hamster kidney (BHK) targets or BHK infected with herpes simplex virus. Repeated exposure of hamsters at 15 mW/cm2 for 60 min/day had no significant effect on natural levels of spleen-cell NK activity against BHK targets. Similarly, repeated exposure at 15 mW/cm2 over a 5-day period had no demonstrable effect on the induction of spleen NK activity by vaccinia virus immunization, that is, comparable levels of NK were induced in untreated and microwave-treated animals. In contrast, treatment of hamsters with a single 60-min microwave exposure at 25 mW/cm2 caused a significant suppression in induced spleen NK activity. A similar but less marked decrease in spleen NK activity was observed in sham-exposed animals. Moreover, the sham effects on NK activity were not predictable and appeared to represent large individual animal variations in the response to stress factors. Depressed spleen NK activity was evident as early as 4 h postmicrowave treatment and returned to normal levels by 8 h. Hamsters exposed at 25 mW/cm2 showed an elevated temperature of 3.0-3.5 degrees C that returned to normal within 60 min after termination of microwave exposure. These animals also showed a marked lymphopenia and neutrophilia by 1 h posttreatment that returned to normal by 8-10 h. Serum glucocorticosteroids were elevated between 1 aNd 8 h after microwave treatment. Sham-exposed animals did not demonstrate significant changes in core body temperature, peripheral blood leukocyte (PBL) profile, or glucocorticosteroid levels as compared to minimum-handling controls.

  9. [The activity of prooxidant-antioxidant system in loach embryos under the action of microwave radiation].

    PubMed

    Iaremchuk, M M; Dyka, M V; Sanahurs'kyĭ, D I

    2014-01-01

    Electromagnetic radiation (EMR) affects biological organisms, primarily on the cellular level. However, the effects of EMR at low-intensity exposure on animals and state of metabolic systems are not fully defined yet. Thus, research of microwave radiation influence on the processes of lipid peroxidation and antioxidant protection system is important for understanding the mechanisms of EMR action on the cell, in particular, and organism development on the whole. The content of lipid peroxidation products--lipid hydroperoxides, thiobarbituric acid reactive substances and the activity of antioxidant enzymes--superoxide dismutase, glutathione peroxidase and catalase in loach embryos under the action of microwave radiation (GSM-900 MHz, SAR = 1.1 Vt/kg) lasting 1; 5; 10 and 20 min during early embryogenesis were studied. It has been found that content of lipid peroxidation products in germ cells undergoes significant changes under the action of low-intensity EMR. The effect of microwave radiation (1, 5, 10 min) leads to the increase of superoxide dismutase activity, nevertheless, 20 min exposure decreased this index to the level of control values as it is shown. It has been established that EMR at frequencies used for mobile communications reduce the activity of antioxidant protection system components, especially catalase and glutathione peroxidase. The growth of catalase activity at the 10-cell stage of blastomere division (P < 0.05) is an exception. The results of two-way analysis of variance attest that microwave radiation factor causes the large part of all observable modifications. PMID:25816598

  10. [The activity of prooxidant-antioxidant system in loach embryos under the action of microwave radiation].

    PubMed

    Iaremchuk, M M; Dyka, M V; Sanahurs'kyĭ, D I

    2014-01-01

    Electromagnetic radiation (EMR) affects biological organisms, primarily on the cellular level. However, the effects of EMR at low-intensity exposure on animals and state of metabolic systems are not fully defined yet. Thus, research of microwave radiation influence on the processes of lipid peroxidation and antioxidant protection system is important for understanding the mechanisms of EMR action on the cell, in particular, and organism development on the whole. The content of lipid peroxidation products--lipid hydroperoxides, thiobarbituric acid reactive substances and the activity of antioxidant enzymes--superoxide dismutase, glutathione peroxidase and catalase in loach embryos under the action of microwave radiation (GSM-900 MHz, SAR = 1.1 Vt/kg) lasting 1; 5; 10 and 20 min during early embryogenesis were studied. It has been found that content of lipid peroxidation products in germ cells undergoes significant changes under the action of low-intensity EMR. The effect of microwave radiation (1, 5, 10 min) leads to the increase of superoxide dismutase activity, nevertheless, 20 min exposure decreased this index to the level of control values as it is shown. It has been established that EMR at frequencies used for mobile communications reduce the activity of antioxidant protection system components, especially catalase and glutathione peroxidase. The growth of catalase activity at the 10-cell stage of blastomere division (P < 0.05) is an exception. The results of two-way analysis of variance attest that microwave radiation factor causes the large part of all observable modifications.

  11. Inhibitory effect of microwaved thinned nectarine extracts on polyphenol oxidase activity.

    PubMed

    Redondo, Diego; Venturini, María E; Oria, Rosa; Arias, Esther

    2016-04-15

    By-products from agricultural practices or from the fruit processing industry are a source of bioactive compounds that could be used in the food industry. Such by-products include thinned fruits, which are expected to contain high quantities of interesting compounds. One possible application of this fruits is the prevention of the enzymatic browning suffered by fruits and vegetables after minimal processing. The aim of this study is to determine the in vitro and in vivo activity of microwaved extracts obtained from thinned nectarines. It has been observed that in vitro the extracts obtained after the application of high microwave power levels (500, 1000 and 1500 W) are mixed type inhibitors of polyphenoloxidase enzyme, showing an irreversible inactivation. This inhibition could be attributed to the Maillard reaction products formed during the microwave treatment. In vivo, a solution of 2% of the extract obtained at 1500 W inhibited the enzymatic browning in minimally processed peaches for 8 days of storage.

  12. Inhibitory effect of microwaved thinned nectarine extracts on polyphenol oxidase activity.

    PubMed

    Redondo, Diego; Venturini, María E; Oria, Rosa; Arias, Esther

    2016-04-15

    By-products from agricultural practices or from the fruit processing industry are a source of bioactive compounds that could be used in the food industry. Such by-products include thinned fruits, which are expected to contain high quantities of interesting compounds. One possible application of this fruits is the prevention of the enzymatic browning suffered by fruits and vegetables after minimal processing. The aim of this study is to determine the in vitro and in vivo activity of microwaved extracts obtained from thinned nectarines. It has been observed that in vitro the extracts obtained after the application of high microwave power levels (500, 1000 and 1500 W) are mixed type inhibitors of polyphenoloxidase enzyme, showing an irreversible inactivation. This inhibition could be attributed to the Maillard reaction products formed during the microwave treatment. In vivo, a solution of 2% of the extract obtained at 1500 W inhibited the enzymatic browning in minimally processed peaches for 8 days of storage. PMID:26616994

  13. Biochemical activities in soil overlying Paraho processed oil shale

    SciTech Connect

    Sorensen, D.L.

    1982-01-01

    Microbial activity development in soil materials placed over processed oil shale is vital to the plant litter decomposition, cycling of nutrients, and soil organic matter accumulation and maintenance. Samples collected in the summers of 1979, 1980, and 1981 from revegetated soil 30-, 61-, and 91-cm deep overlying spent oil shale in the Piceance Basin of northwestern Colorado were assayed for dehydrogenease activity with glucose and without glucose, for phosphatase activity, and for acetylene reduction activity. Initial ammonium and nitrite nitrogen oxidation rates and potential denitrification rates were determined in 1981. Zymogenous dehydrogenase activity, phosphatase activity, nitrogenase activity, potential denitrification rates, and direct microscopic counts were lower in surface soil 30 cm deep, and were frequently lower in surface soil 61 cm deep over processed shale than in a surface-disturbed control area soil. Apparently, microbial activities are stressed in these more shallow replaced soils. Soil 61 cm deep over a coarse-rock capillary barrier separating the soil from the spent shale, frequently had improved biochemical activity. Initial ammonium and nitrite nitrogen oxidation rates were lower in all replaced soils than in the disturbed control soil. Soil core samples taken in 1981 were assayed for dehydrogenase and phosphatase activities, viable bacteria, and viable fungal propagules. In general, microbial activity decreased quickly below the surface. At depths greater than 45 cm, microbial activities were similar in buried spent shale and surface-disturbed control soil.

  14. High dopant activation of phosphorus in Ge crystal with high-temperature implantation and two-step microwave annealing

    NASA Astrophysics Data System (ADS)

    Shih, Tzu-Lang; Su, Yin-Hsien; Lee, Wen-Hsi

    2016-09-01

    In this letter, high-temperature ion implantation and low-temperature microwave annealing were employed to achieve high n-type active concentrations, approaching the solid solubility limit, in germanium. To use the characteristics of microwave annealing more effectively, a two-step microwave annealing process was employed. In the first annealing step, a high-power (1200 W; 425 °C) microwave was used to achieve solid-state epitaxial regrowth and to enhance microwave absorption. In the second annealing step, contrary to the usual process of thermal annealing with higher temperature, a lower-power (900 W; 375 °C) microwave process was used to achieve a low sheet resistance, 78Ω/◻, and a high carrier concentration, 1.025 × 1020 P/cm3, which is close to the solid solubility limit of 2 × 1020 P/cm3.

  15. Quantification of pendimethalin in soil and garlic samples by microwave-assisted solvent extraction and HPLC method.

    PubMed

    Shah, Jasmin; Jan, M Rasul; Shehzad, Farhat-un-nisa; Ara, Behisht

    2011-04-01

    A method for the residual pendimethalin in soil and vegetable samples was developed. The method is based on extraction of pendimethalin from samples using microwave-assisted solvent extraction (MASE) with acetone, ethanol, and water as extraction solvent. Extracted pendimethalin samples were analyzed by high-performance liquid chromatography with ultraviolet detector at 240 nm. The MASE parameters, temperature, heating time, and solvent types were optimized with the feasibility of MASE application in the determination of pendimethalin extraction efficiency of pendimethalin from soil and vegetable samples. The maximum temperature that can be used during the heating for MASE is 60°C, where the recovery percentages reached 97%. Linearity for pendimethalin was found in the range of 2-20 μg mL(-1) with limits of detection and limits of quantification of 0.059 and 0.17 μg mL(-1), respectively.

  16. Microwave-assisted solvent extraction of polynuclear aromatic hydrocarbons from soils -- report of an interlaboratory study

    SciTech Connect

    Jassie, L.B.; Kierstead, T.; Hays, M.J.; Wise, S.A.

    1995-12-31

    Solvent extractions are among the oldest and most widely practiced sample preparation techniques for chemical analysis. Solvents are selected to dissolve target analytes based on the affinity between solvent and solute and range from highly polar molecules like water to lipophilic hydrocarbons, depending on the target analyte. Although traditional liquid/solid extraction methods are labor intensive and often time consuming, newer extraction techniques using microwave heating more efficiently leach additives from plastics, natural products from botanicals, and pesticides and PAHs from sediment. Certain solvent molecules heat well in microwave fields because the electromagnetic radiation couples with the polar species and energy is transferred to the solution through dipole rotation. We`ll show why some solvents are more logical choices for matching microwave heating technology with an extraction application. Results will be presented of a study extracting PAHs from materials of environmental interest along with the results of a round robin we conducted comparing the recovery efficiency of microwave extractions with conventional extractions. We have also been evaluating solvents with good dielectric properties which may lead to more efficient and environmentally friendly extraction systems. Closed vessel microwave extraction dramatically reduces the solvent volumes needed and the length of the extraction step. With automated cleanup, improved sample throughput is possible.

  17. Retrieving soil surface temperature under snowpack using special sensor microwave/imager brightness temperature in forested areas of Heilongjiang, China: an improved method

    NASA Astrophysics Data System (ADS)

    Zheng, Xingming; Li, Xiaofeng; Jiang, Tao; Ding, Yanling; Wu, Lili; Zhang, Shiyi; Zhao, Kai

    2016-04-01

    Soil surface temperature (Ts) is an important indicator of global temperature change and a key input parameter for retrieving land surface variables using remote sensing techniques. Due to the masking in the thermal infrared band and the scattering in the microwave band of snow, the temperature of soil surfaces covered by snow is difficult to infer from remote sensing data. We attempted to estimate Ts under snow cover using brightness temperature data from the special sensor microwave/imager. Ts under snow cover was underestimated due to the strong scattering effect of snow on upward soil microwave emissions at 37 GHz. The underestimated portion of Ts is related to snow properties, such as depth, grain size, and moisture. Based on the microwave emission model of layered snowpacks, the simulated results revealed a linear relationship between the underestimated Ts and the brightness temperature difference (TBD) at 19 and 37 GHz. When TBDs at 19 and 37 GHz were introduced to the Ts estimation method, accuracy improved, i.e., the root mean square error and bias of the estimated Ts decreased greatly, especially for dry snow. This improvement allows Ts estimation of snow-covered surfaces from 37 GHz microwave brightness temperature.

  18. Retrieving soil surface temperature under snowpack using special sensor microwave/imager brightness temperature in forested areas of Heilongjiang, China: an improved method

    NASA Astrophysics Data System (ADS)

    Zheng, Xingming; Li, Xiaofeng; Jiang, Tao; Ding, Yanling; Wu, Lili; Zhang, Shiyi; Zhao, Kai

    2016-04-01

    Soil surface temperature (Ts) is an important indicator of global temperature change and a key input parameter for retrieving land surface variables using remote sensing techniques. Due to the masking in the thermal infrared band and the scattering in the microwave band of snow, the temperature of soil surfaces covered by snow is difficult to infer from remote sensing data. We attempted to estimate Ts under snow cover using brightness temperature data from the special sensor microwave/imager. Ts under snow cover was underestimated due to the strong scattering effect of snow on upward soil microwave emissions at 37 GHz. The underestimated portion of Ts is related to snow properties, such as depth, grain size, and moisture. Based on the microwave emission model of layered snowpacks, the simulated results revealed a linear relationship between the underestimated Ts and the brightness temperature difference (TBD) at 19 and 37 GHz. When TBDs at 19 and 37 GHz were introduced to the Ts estimation method, accuracy improved, i.e., the root mean square error and bias of the estimated Ts decreased greatly, especially for dry snow. This improvement allows Ts estimation of snow-covered surfaces from 37 GHz microwave brightness temperature.

  19. The Soil Moisture Active Passive (SMAP) applications activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) mission is one of the first-tier satellite missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space. The SMAP mission 1 is under development by NASA and is scheduled for launch late in 2014. The SMAP mea...

  20. Evaluation of three different data fusion approaches that uses satellite soil moisture from different passive microwave sensors to construct one consistent climate record

    NASA Astrophysics Data System (ADS)

    van der Schalie, Robin; de Jeu, Richard; Kerr, Yann; Wigneron, Jean-Pierre; Rodríguez-Fernández, Nemesio; Al-Yaari, Amen; Drusch, Matthias; Mecklenburg, Susanne; Dolman, Han

    2016-04-01

    Datasets that are derived from satellite observations are becoming increasingly important for measuring key parameters of the Earth's climate and are therefore crucial in research on climate change, giving the opportunity to researchers to detect anomalies and long-term trends globally. One of these key parameters is soil moisture (SM), which has a large impact on water, energy and biogeochemical cycles worldwide. A long-term SM data record from active and passive microwave satellite observations was developed as part of ESA's Climate Change Initiative (ESA-CCI-SM, http://www.esa-soilmoisture-cci.org/). Currently the dataset covers a period from 1978 to 2014 and is updated regularly, observations from a several microwave satellites including: ERS-1, ERS-2, METOP-A, Nimbus 7 SMMR, DMSP SSM/I, TRMM TMI, Aqua AMSRE, Coriolis WindSat, and GCOM-W1 AMSR2. In 2009, ESA launched the Soil Moisture and Ocean Salinity (SMOS, Kerr et al., 2010) mission, carrying onboard a unique L-band radiometer, but its SM retrievals are not yet part of this dataset. Due to the different radiometric characteristics of SMOS, integrating SMOS into the ESA-CCI-SM dataset is not straight forward. Therefore several approaches have been tested to fuse soil moisture retrievals from SMOS and AMSRE, which currently forms the basis of the passive microwave part within ESA-CCI-SM project. These approaches are: 1. A Neural Network Fusion approach (Rodríguez-Fernández et al., 2015), 2. A regression approach (Wigneron et al., 2004; Al-Yaari et al., 2015) and 3. A radiative transfer based approach, using the Land Parameter Retrieval Model (Van der Schalie et al., 2016). This study evaluates the three different approaches and tests their skills against multiple datasets, including MERRA-Land, ERA-Interim/Land, the current ESA-CCI-SM v2.2 and in situ measurements from the International Soil Moisture Network and present a recommendation for the potential integration of SMOS soil moisture into the ESA

  1. Evaluation of three different data fusion approaches that uses satellite soil moisture from different passive microwave sensors to construct one consistent climate record

    NASA Astrophysics Data System (ADS)

    van der Schalie, Robin; de Jeu, Richard; Kerr, Yann; Wigneron, Jean-Pierre; Rodríguez-Fernández, Nemesio; Al-Yaari, Amen; Drusch, Matthias; Mecklenburg, Susanne; Dolman, Han

    2016-04-01

    Datasets that are derived from satellite observations are becoming increasingly important for measuring key parameters of the Earth's climate and are therefore crucial in research on climate change, giving the opportunity to researchers to detect anomalies and long-term trends globally. One of these key parameters is soil moisture (SM), which has a large impact on water, energy and biogeochemical cycles worldwide. A long-term SM data record from active and passive microwave satellite observations was developed as part of ESA's Climate Change Initiative (ESA-CCI-SM, http://www.esa-soilmoisture-cci.org/). Currently the dataset covers a period from 1978 to 2014 and is updated regularly, observations from a several microwave satellites including: ERS-1, ERS-2, METOP-A, Nimbus 7 SMMR, DMSP SSM/I, TRMM TMI, Aqua AMSRE, Coriolis WindSat, and GCOM-W1 AMSR2. In 2009, ESA launched the Soil Moisture and Ocean Salinity (SMOS, Kerr et al., 2010) mission, carrying onboard a unique L-band radiometer, but its SM retrievals are not yet part of this dataset. Due to the different radiometric characteristics of SMOS, integrating SMOS into the ESA-CCI-SM dataset is not straight forward. Therefore several approaches have been tested to fuse soil moisture retrievals from SMOS and AMSRE, which currently forms the basis of the passive microwave part within ESA-CCI-SM project. These approaches are: 1. A Neural Network Fusion approach (Rodríguez-Fernández et al., 2015), 2. A regression approach (Wigneron et al., 2004; Al-Yaari et al., 2015) and 3. A radiative transfer based approach, using the Land Parameter Retrieval Model (Van der Schalie et al., 2016). This study evaluates the three different approaches and tests their skills against multiple datasets, including MERRA-Land, ERA-Interim/Land, the current ESA-CCI-SM v2.2 and in situ measurements from the International Soil Moisture Network and present a recommendation for the potential integration of SMOS soil moisture into the ESA

  2. Botswana water and surface energy balance research program. Part 2: Large scale moisture and passive microwaves

    NASA Technical Reports Server (NTRS)

    Vandegriend, A. A.; Owe, M.; Chang, A. T. C.

    1992-01-01

    The Botswana water and surface energy balance research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. The research program consisted of two major, mutually related components: a surface energy balance modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components are explained in general and activities performed within the passive microwave research component are summarized. The microwave theory is discussed taking into account: soil dielectric constant, emissivity, soil roughness effects, vegetation effects, optical depth, single scattering albedo, and wavelength effects. The study site is described. The soil moisture data and its processing are considered. The relation between observed large scale soil moisture and normalized brightness temperatures is discussed. Vegetation characteristics and inverse modeling of soil emissivity is considered.

  3. Ground truth report 1975 Phoenix microwave experiment. [Joint Soil Moisture Experiment

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J.

    1975-01-01

    Direct measurements of soil moisture obtained in conjunction with aircraft data flights near Phoenix, Arizona in March, 1975 are summarized. The data were collected for the Joint Soil Moisture Experiment.

  4. Engineered biochar from microwave-assisted catalytic pyrolysis of switchgrass for increasing water-holding capacity and fertility of sandy soil.

    PubMed

    Mohamed, Badr A; Ellis, Naoko; Kim, Chang Soo; Bi, Xiaotao; Emam, Ahmed El-Raie

    2016-10-01

    Engineered biochars produced from microwave-assisted catalytic pyrolysis of switchgrass have been evaluated in terms of their ability on improving water holding capacity (WHC), cation exchange capacity (CEC) and fertility of loamy sand soil. The addition of K3PO4, clinoptilolite and/or bentonite as catalysts during the pyrolysis process increased biochar surface area and plant nutrient contents. Adding biochar produced with 10wt.% K3PO4+10 wt.% clinoptilolite as catalysts to the soil at 2wt% load increased soil WHC by 98% and 57% compared to the treatments without biochar (control) and with 10wt.% clinoptilolite, respectively. Synergistic effects on increased soil WHC were manifested for biochars produced from combinations of two additives compared to single additive, which may be the result of increased biochar microporosity due to increased microwave heating rate. Biochar produced from microwave catalytic pyrolysis was more efficient in increasing the soil WHC due to its high porosity in comparison with the biochar produced from conventional pyrolysis at the same conditions. The increases in soil CEC varied widely compared to the control soil, ranging from 17 to 220% for the treatments with biochars produced with 10wt% clinoptilolite at 400°C, and 30wt% K3PO4 at 300°C, respectively. Strong positive correlations also exist among soil WHC with CEC and biochar micropore area. Biochar from microwave-assisted catalytic pyrolysis appears to be a novel approach for producing biochar with high sorption affinity and high CEC. These catalysts remaining in the biochar product would provide essential nutrients for the growth of bioenergy and food crops.

  5. NASA Soil Moisture Active Passive (SMAP) Applications

    NASA Astrophysics Data System (ADS)

    Orr, Barron; Moran, M. Susan; Escobar, Vanessa; Brown, Molly E.

    2014-05-01

    The launch of the NASA Soil Moisture Active Passive (SMAP) mission in 2014 will provide global soil moisture and freeze-thaw measurements at moderate resolution (9 km) with latency as short as 24 hours. The resolution, latency and global coverage of SMAP products will enable new applications in the fields of weather, climate, drought, flood, agricultural production, human health and national security. To prepare for launch, the SMAP mission has engaged more than 25 Early Adopters. Early Adopters are users who have a need for SMAP-like soil moisture or freeze-thaw data, and who agreed to apply their own resources to demonstrate the utility of SMAP data for their particular system or model. In turn, the SMAP mission agreed to provide Early Adopters with simulated SMAP data products and pre-launch calibration and validation data from SMAP field campaigns, modeling, and synergistic studies. The applied research underway by Early Adopters has provided fundamental knowledge of how SMAP data products can be scaled and integrated into users' policy, business and management activities to improve decision-making efforts. This presentation will cover SMAP applications including weather and climate forecasting, vehicle mobility estimation, quantification of greenhouse gas emissions, management of urban potable water supply, and prediction of crop yield. The presentation will end with a discussion of potential international applications with focus on the ESA/CEOS TIGER Initiative entitled "looking for water in Africa", the United Nations (UN) Convention to Combat Desertification (UNCCD) which carries a specific mandate focused on Africa, the UN Framework Convention on Climate Change (UNFCCC) which lists soil moisture as an Essential Climate Variable (ECV), and the UN Food and Agriculture Organization (FAO) which reported a food and nutrition crisis in the Sahel.

  6. Influence of spatial variability of hydraulic characteristics of soils on surface parameters obtained from remote sensing data in infrared and microwaves

    NASA Technical Reports Server (NTRS)

    Brunet, Y.; Vauclin, M.

    1985-01-01

    The correct interpretation of thermal and hydraulic soil parameters infrared from remotely sensed data (thermal infrared, microwaves) implies a good understanding of the causes of their temporal and spatial variability. Given this necessity, the sensitivity of the surface variables (temperature, moisture) to the spatial variability of hydraulic soil properties is tested with a numerical model of heat and mass transfer between bare soil and atmosphere. The spatial variability of hydraulic soil properties is taken into account in terms of the scaling factor. For a given soil, the knowledge of its frequency distribution allows a stochastic use of the model. The results are treated statistically, and the part of the variability of soil surface parameters due to that of soil hydraulic properties is evaluated quantitatively.

  7. Potential of jackfruit peel as precursor for activated carbon prepared by microwave induced NaOH activation.

    PubMed

    Foo, K Y; Hameed, B H

    2012-05-01

    The feasibility of preparing activated carbon (JPAC) from jackfruit peel, an industrial residue abundantly available from food manufacturing plants via microwave-assisted NaOH activation was explored. The influences of chemical impregnation ratio, microwave power and radiation time on the properties of activated carbon were investigated. JPAC was examined by pore structural analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption isotherm, elemental analysis, surface acidity/basicity and zeta potential measurements. The adsorptive behavior of JPAC was quantified using methylene blue as model dye compound. The best conditions resulted in JPAC with a monolayer adsorption capacity of 400.06 mg/g and carbon yield of 80.82%. The adsorption data was best fitted to the pseudo-second-order equation, while the adsorption mechanism was well described by the intraparticle diffusion model. The findings revealed the versatility of jackfruit peels as good precursor for preparation of high quality activated carbon.

  8. Rock fraction effects on the interpretation of microwave emission from soils

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas J.; Kostov, Kosta G.; Saatchi, Sasan S.

    1992-01-01

    The effect of the rock fraction of soil on emissivity is presently investigated through a combination of laboratory dielectric measurements and field observation of emissivity from soils with and without rocks. The rock fraction reduced the range of emissivity; beyond this, it appears to be important only in determining the moisture in the soil component. Data gathered at 6 cm indicate that the presence of rocks renders this and shorter wavelengths useless as soil-moisture sensors. Modeling of the 21-cm case suggest that rock-fraction effects on soil dielectric properties can be compensated for by the greater surface roughness.

  9. Renewable phenols production by catalytic microwave pyrolysis of Douglas fir sawdust pellets with activated carbon catalysts.

    PubMed

    Bu, Quan; Lei, Hanwu; Wang, Lu; Wei, Yi; Zhu, Lei; Liu, Yupeng; Liang, Jing; Tang, Juming

    2013-08-01

    The effects of different activated carbon (AC) catalysts based on various carbon sources on products yield and chemical compositions of upgraded pyrolysis oils were investigated using microwave pyrolysis of Douglas fir sawdust pellets. Results showed that high amounts of phenols were obtained (74.61% and 74.77% in the upgraded bio-oils by DARCO MRX (wood based) and DARCO 830 (lignite coal based) activated carbons, respectively). The catalysts recycling test of the selected catalysts indicated that the carbon catalysts can be reused for at least 3-4 times and produced high concentrations of phenol and phenolic compounds. The chemical reaction mechanism for phenolics production during microwave pyrolysis of biomass was analyzed. PMID:23765005

  10. Renewable phenols production by catalytic microwave pyrolysis of Douglas fir sawdust pellets with activated carbon catalysts.

    PubMed

    Bu, Quan; Lei, Hanwu; Wang, Lu; Wei, Yi; Zhu, Lei; Liu, Yupeng; Liang, Jing; Tang, Juming

    2013-08-01

    The effects of different activated carbon (AC) catalysts based on various carbon sources on products yield and chemical compositions of upgraded pyrolysis oils were investigated using microwave pyrolysis of Douglas fir sawdust pellets. Results showed that high amounts of phenols were obtained (74.61% and 74.77% in the upgraded bio-oils by DARCO MRX (wood based) and DARCO 830 (lignite coal based) activated carbons, respectively). The catalysts recycling test of the selected catalysts indicated that the carbon catalysts can be reused for at least 3-4 times and produced high concentrations of phenol and phenolic compounds. The chemical reaction mechanism for phenolics production during microwave pyrolysis of biomass was analyzed.

  11. Microwave annealing

    NASA Astrophysics Data System (ADS)

    Lee, Yao-Jen; Cho, T.-C.; Chuang, S.-S.; Hsueh, F.-K.; Lu, Y.-L.; Sung, P.-J.; Chen, S.-J.; Lo, C.-H.; Lai, C.-H.; Current, Michael I.; Tseng, T.-Y.; Chao, T.-S.; Yang, F.-L.

    2012-11-01

    Microwave annealing of dopants in Si has been reported to produce highly activated junctions at temperatures far below those needed for comparable results using conventional thermal processes. However the details of the kinetics and mechanisms for microwave annealing are far from well understood. Comparisons between MWA and RTA of dopants in implanted Si has been investigated to produce highly activated junctions. First, As, 31P, and BF 2 implants in Si substrate were annealed by MWA at temperatures below 550 °C.

  12. Microwave sensors for earth resource observations in the 1980's

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr.; Harnage, M. J., Jr.

    1980-01-01

    Future trends in microwave sensing are identified with reference to the workshops organized by the Active Microwave Remote Sensing Research Program. The workshops demonstrated that (1) microwave techniques have great potential for earth observations of renewable and nonrenewable resources and (2) existing research does not adequately assess microwave sensor measurement capabilities. The need for synoptic information includes such areas as cloud-free, surface-roughness and electrical-properties data. Attention is given to applications including all-weather imaging, sensitivity to vegetation and soil-moisture conditions. Research tasks to be accomplished during the next five years are discussed.

  13. Detection of lowland flooding using active microwave systems

    NASA Technical Reports Server (NTRS)

    Ormsby, J. P.; Blanchard, B.J.; Blanchard, A. J.

    1985-01-01

    The development of radar systems with longer wavelenths (greater than 3 cm) has provided new possibilities regarding the utilization of radar. Thus, it has been found that the interpretation of data from radar images can be a valuable classification aid for applications related to water resources. In the case of an interpreter accustomed to photographic or visible/infrared images, an evaluation of radar images presents some problems, because the radar is sensing a set of surface characteristics which have little influence on visible/infrared systems. Detectable features in radar images caused by differences in dielectric properties are usually associated with the water content of either soils or vegetation. The present paper is concerned with studies which were initiated in 1976. The studies had the objective to define the magnitude of the effects on radar data caused by flood waters under vegetation. The obtained results indicate the feasibility to detect flood conditions beneath a forest canopy, and to obtain an improved definition of the land-water boundary.

  14. Microwave-assisted preparation of azachalcones and their N-alkyl derivatives with antimicrobial activities.

    PubMed

    Usta, Asu; Öztürk, Elif; Beriş, Fatih Ş

    2014-01-01

    Two new azachalcones were prepared by both Claisen-Schmidt condensation and a simple environmentally trendy microwave-assisted method. Ten new N-alkyl (C6,8,10,12,14)-substituted azachalconium bromides (3a-e, 4a-e) were prepared from compounds 1 and 2 with corresponding alkyl halides. The antimicrobial activities of all the compounds were tested against Enterococcus faecalis, Yersinia pseudotuberculosis, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus micro-organisms. PMID:24571646

  15. Activity of soil dehydrogenases, urease, and acid and alkaline phosphatases in soil polluted with petroleum.

    PubMed

    Wyszkowska, Jadwiga; Wyszkowski, Mirosław

    2010-01-01

    This study was undertaken to (1) determine the effects of petroleum pollution on changes in the biochemical properties of soil and (2) demonstrate whether the application of compost, bentonite, and calcium oxide is likely to restore biological balance. Petroleum soil pollution at a dose ranging from 2.5 to 10 cm(3)/kg disturbed the biochemical balance as evidenced by inhibition of the activities of soil dehydrogenases (SDH), urease (URE), and acid phosphatase (ACP). The greatest change was noted in the activity of SDH, whereas the least change occurred in URE. Petroleum significantly increased the activity of soil alkaline phosphatase (ALP) in soil used for spring rape, whereas in soil used for oat harvest there was decreased ALP activity. The application of compost, bentonite, and calcium oxide to soil proved effective in mitigating the adverse effects of petroleum on the activities of soil enzymes. Soil enrichment with compost, bentonite, and calcium oxide was found to stimulate the activities of URE and ALP and inhibit the activity of ACP. The influence of bentonite and calcium oxide was greater than that of compost. Calcium oxide and, to a lesser extent, compost were found to increase the activity of SDH, whereas bentonite exerted the opposite effect, especially in the case of the main crop, spring rape. The activities of SDH, URE, and ACP were higher in soil used for rape than that for oats. In contrast the activity of ALP was higher in soil used for oats. Data thus indicate that compost and especially bentonite and calcium oxide exerted a positive effect on activities of some enzymes in soil polluted with petroleum. Application of neutralizing additives to soil restored soil biological balance by counteracting the negative influence of petroleum on activities of URE and ALP. PMID:20706945

  16. Fast low-pressure microwave assisted extraction and gas chromatographic determination of polychlorinated biphenyls in soil samples.

    PubMed

    Bruzzoniti, M C; Maina, R; Tumiatti, V; Sarzanini, C; Rivoira, L; De Carlo, R M

    2012-11-23

    A new technology equipment for low-pressure microwave assisted extraction (usually employed for organic chemistry reactions), recently launched in the market, is used for the first time in environmental analysis for the extraction of commercial technical Aroclor mixtures from soil. Certified reference materials of Aroclor 1260, Aroclor 1254 and Aroclor 1242 in transformer oils were used to contaminate the soil samples and to optimize the extraction method as well as the subsequent gas chromatographic electron capture detection (GC-ECD) analytical method. The study was performed optimizing the extraction, the purification and the gas chromatographic separation conditions to enhance the resolution of difficult pairs of congeners (C28/31 and C141/179). After optimization, the recovery yields were included within the range 79-84%. The detection limits, evaluated for two different commercial polychlorinated biphenyl (PCB) mixtures (Aroclor 1260 and Aroclor 1242) were 0.056 ± 0.001 mg/kg and 0.290 ± 0.006 mg/kg, respectively. The method, validated with certified soil samples, was used to analyze a soil sample after an event of failure of a pole-mounted transformer which caused the dumping of PCB contaminated oil in soil. Moreover, the method provides simple sample handling, fast extraction with reduced amount of sample and solvents than usually required, and simple purification step involving the use of solvent (cyclohexane) volumes as low as 5 mL. Reliability and reproducibility of extraction conditions are ensured by direct and continuous monitoring of temperature and pressure conditions. PMID:23084486

  17. Fast low-pressurized microwave-assisted extraction of benzotriazole, benzothiazole and benezenesulfonamide compounds from soil samples.

    PubMed

    Speltini, Andrea; Sturini, Michela; Maraschi, Federica; Porta, Alessio; Profumo, Antonella

    2016-01-15

    Benzotriazoles (BTRs), benzothiazoles (BTs) and benzenesulfonamides (BSAs), compounds largely used in industrial and household applications, are ubiquitous emerging contaminants. In this work a novel, straightforward procedure for the simultaneous determination of two BTRs (1H-benzotriazole, 5-methyl-1H-benzotriazole), three BTs (benzothiazole, 2-hydroxybenzothiazole, 2-methylthiobenzothiazole) and two BSAs (benzenesulfonamide, toluenesulfonamide) in soil has been developed. The target analytes were extracted from soil by a single low-pressurized microwave-assisted extraction (MAE) cycle (120°C, 10min) and quantified by high-performance liquid chromatography with UV detection. For all the seven analytes, quantitative extraction yields (72-119%, n=4) were observed from recovery tests on soil samples (1g) spiked with 5, 10 and 50mg kg(-1), using 4mL water-methanol (85:15) as extracting solution. For the lower concentrations levels (100, 250 and 500μg kg(-1)), the analytes were extracted from soil samples (2-3g) using 6mL methanol, and the extract was pre-concentrated by evaporation before analysis; recoveries in the range 70-117% were obtained (n=4). Suitable intra-day and inter-day precision were observed, with values of relative standard deviation generally below 6% and 11% (n=4), respectively. Linearity was evaluated in the concentration range 0.5-10mg L(-1) by matrix-matched standards, obtaining r(2)>0.9996. The experimental method quantification limit (MQL) was 100μg kg(-1). The entire procedure has been successfully applied to the analysis of real impacted soil samples. PMID:26592614

  18. Fast low-pressure microwave assisted extraction and gas chromatographic determination of polychlorinated biphenyls in soil samples.

    PubMed

    Bruzzoniti, M C; Maina, R; Tumiatti, V; Sarzanini, C; Rivoira, L; De Carlo, R M

    2012-11-23

    A new technology equipment for low-pressure microwave assisted extraction (usually employed for organic chemistry reactions), recently launched in the market, is used for the first time in environmental analysis for the extraction of commercial technical Aroclor mixtures from soil. Certified reference materials of Aroclor 1260, Aroclor 1254 and Aroclor 1242 in transformer oils were used to contaminate the soil samples and to optimize the extraction method as well as the subsequent gas chromatographic electron capture detection (GC-ECD) analytical method. The study was performed optimizing the extraction, the purification and the gas chromatographic separation conditions to enhance the resolution of difficult pairs of congeners (C28/31 and C141/179). After optimization, the recovery yields were included within the range 79-84%. The detection limits, evaluated for two different commercial polychlorinated biphenyl (PCB) mixtures (Aroclor 1260 and Aroclor 1242) were 0.056 ± 0.001 mg/kg and 0.290 ± 0.006 mg/kg, respectively. The method, validated with certified soil samples, was used to analyze a soil sample after an event of failure of a pole-mounted transformer which caused the dumping of PCB contaminated oil in soil. Moreover, the method provides simple sample handling, fast extraction with reduced amount of sample and solvents than usually required, and simple purification step involving the use of solvent (cyclohexane) volumes as low as 5 mL. Reliability and reproducibility of extraction conditions are ensured by direct and continuous monitoring of temperature and pressure conditions.

  19. Fast low-pressurized microwave-assisted extraction of benzotriazole, benzothiazole and benezenesulfonamide compounds from soil samples.

    PubMed

    Speltini, Andrea; Sturini, Michela; Maraschi, Federica; Porta, Alessio; Profumo, Antonella

    2016-01-15

    Benzotriazoles (BTRs), benzothiazoles (BTs) and benzenesulfonamides (BSAs), compounds largely used in industrial and household applications, are ubiquitous emerging contaminants. In this work a novel, straightforward procedure for the simultaneous determination of two BTRs (1H-benzotriazole, 5-methyl-1H-benzotriazole), three BTs (benzothiazole, 2-hydroxybenzothiazole, 2-methylthiobenzothiazole) and two BSAs (benzenesulfonamide, toluenesulfonamide) in soil has been developed. The target analytes were extracted from soil by a single low-pressurized microwave-assisted extraction (MAE) cycle (120°C, 10min) and quantified by high-performance liquid chromatography with UV detection. For all the seven analytes, quantitative extraction yields (72-119%, n=4) were observed from recovery tests on soil samples (1g) spiked with 5, 10 and 50mg kg(-1), using 4mL water-methanol (85:15) as extracting solution. For the lower concentrations levels (100, 250 and 500μg kg(-1)), the analytes were extracted from soil samples (2-3g) using 6mL methanol, and the extract was pre-concentrated by evaporation before analysis; recoveries in the range 70-117% were obtained (n=4). Suitable intra-day and inter-day precision were observed, with values of relative standard deviation generally below 6% and 11% (n=4), respectively. Linearity was evaluated in the concentration range 0.5-10mg L(-1) by matrix-matched standards, obtaining r(2)>0.9996. The experimental method quantification limit (MQL) was 100μg kg(-1). The entire procedure has been successfully applied to the analysis of real impacted soil samples.

  20. Quantification of triazine herbicides in soil by microwave-assisted extraction and high-performance liquid chromatography.

    PubMed

    Shah, Jasmin; Rasul Jan, M; Ara, Behisht; Shehzad, Farhat-Un-Nisa

    2011-07-01

    A method for the determination of herbicides residues, triazine (atrazine, metribuzin, ametryn, and terbutryn), in soil samples with high-performance liquid chromatography (HPLC)-UV detection is described. The proposed method is based on microwave-assisted extraction (MAE) of soil samples for 4 min at 80% of 850-W magnetron outputs in the presence of mixture of solvents (methanol/acetonitrile/ethylacetate). Related important factors influencing the MAE efficiency, such as the solvent type and volume, irradiation energy, and time, were optimized in detail. Calibration curve ranges established using HPLC for metribuzin, atrazine, ametryn, and terbutryn are 1.0-19.0, 0.9-18.0, 0.6-11.0, and 0.7-11.0 µg mL( -1), respectively. The limits of detection of metribuzin, atrazine, ametryn, and terbutryn are 0.30, 0.24, 0.16, and 0.20 µg mL( -1) while limits of quantification are 1.0, 0.80, 0.50, and 0.60 µg mL( -1), respectively. A Plackett-Burman factorial design was used as a screening method in order to select the variables that influence MAE extraction. The recoveries of the method at three different spiked levels were assessed by analyzing real soil samples and were found to be in the range of 83.33 ± 0.12-96.33 ± 0.23 with good precision (<8%).

  1. Microwave-assisted extraction of polysaccharides from Yupingfeng powder and their antioxidant activity

    PubMed Central

    Wang, Dan; Zhang, Bi-Bo; Qu, Xiao-Xia; Gao, Feng; Yuan, Min-Yong

    2015-01-01

    Background: Microwave-assisted reflux extraction of polysaccharides YPF-P from the famous Chinese traditional drug, Yupingfeng powder, optimization of extracting conditions and evaluation of their antioxidant activity were conducted in this study. Results: Single factor effect trends were achieved through yields and contends of YPF-P obtained from different extracting conditions. Then through a three-level, four-variable Box-Behnken design of response surface methodology adopting yield as response, the optimal conditions were determined as follows: Material/solvent ratio 1:23.37, microwave power 560 W, Extraction temperature 64°C, and extraction time 9.62 min. Under the optimal conditions, the YPF-P extraction yield was 3.23%, and its content was detected as 38.52%. In antioxidant assays, the YPF-P was tested to possess 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities with an IC50 value of 0.262 mg/ml. In addition, YPF-P was also proved to have relatively low ferric reducing antioxidant power (FRAP), compared to Vc, through FRAP assay. Conclusion: In the microwave assisted reflux extraction research, good YPF-P yield was achieved from materials with relatively low YPF-P content. And for the first time, both DPPH and FRAP assays were conducted on YPF-P, which proved that the antioxidant activity of YPF-P contributed to the functions of this medicine. PMID:26246730

  2. Preparation and characterization of activated carbon from sunflower seed oil residue via microwave assisted K2CO3 activation.

    PubMed

    Foo, K Y; Hameed, B H

    2011-10-01

    Sunflower seed oil residue, a by-product of sunflower seed oil refining, was utilized as a feedstock for preparation of activated carbon (SSHAC) via microwave induced K(2)CO(3) chemical activation. SSHAC was characterized by Fourier transform infrared spectroscopy, nitrogen adsorption-desorption and elemental analysis. Surface acidity/basicity was examined with acid-base titration, while the adsorptive properties of SSHAC were quantified using methylene blue (MB) and acid blue 15 (AB). The monolayer adsorption capacities of MB and AB were 473.44 and 430.37 mg/g, while the Brunauer-Emmett-Teller surface area, Langmuir surface area and total pore volume were 1411.55 m(2)/g, 2137.72 m(2)/g and 0.836 cm(3)/g, respectively. The findings revealed the potential to prepare high surface area activated carbon from sunflower seed oil residue by microwave irradiation.

  3. Evaluation of soil biological activity after a diesel fuel spill.

    PubMed

    Serrano, A; Tejada, M; Gallego, M; Gonzalez, J L

    2009-06-15

    Diesel fuel contamination in soils may be toxic to soil microorganisms and plants and acts as a source of groundwater contamination. The objective of this study was to evaluate the soil biological activity and phytotoxicity to garden cress (Lepidium sativum L.) in a soil polluted with diesel fuel. For this, a diesel fuel spill was simulated on agricultural soil at dose 1 l m(-2). During the experiment (400 days) the soil was not covered in vegetation and no agricultural tasks were carried out. A stress period of 18 days following the spill led to a decrease in soil biological activity, reflected by the soil microbial biomass and soil enzymatic activities, after which it increased again. The n-C(17)/Pristine and n-C(18)/Phytane ratios were correlated negatively and significantly with the dehydrogenase, arylsulphatase, protease, phosphatase and urease activities and with the soil microbial biomass during the course of the experiment. The beta-glucosidase activity indicated no significant connection with the parameters related with the evolution of hydrocarbons in the soil. Finally, the germination activity of the soil was seen to recover 200 days after the spill.

  4. Improving spatial representation of soil moisture by integration of microwave observations and the temperature-vegetation-drought index derived from MODIS products

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Ling, Ziwei; Wang, Yang; Zeng, Hui

    2016-03-01

    The microwave observations of land surface soil moisture have been widely used for studying environmental change at large spatial scales. However, the coarse spatial resolution of the products limits their local-scale applications. In this paper, we developed a new method, which integrates the coarse spatial resolution soil moisture derived from microwave sensors and the temperature-vegetation-drought-index (TVDI) derived from the Moderate-resolution Imaging Spectroradiometer (MODIS) products, to spatially downscale soil moisture data from 25-km resolution to 1-km resolution. First, we assessed the quality of the remotely sensed soil moisture by comparing their values with field measured soil moisture at three temporal scales and two spatial scales. Second, we analyzed the robustness of the developed approach namely the PKU method by comparing its performance with the results of three published methods (i.e., the triangle-based method, the Merlin method, and the UCLA method) at the Magqu soil moisture monitoring network located in the northeastern Tibetan grasslands. The modeling results showed that by integrating the contextual information from the relatively fine spatial resolution MODIS products, spatial soil moisture representations were significantly improved. The PKU method produced the most accurate spatially disaggregated soil moisture among the four methods. In conclusion, the PKU method developed in this study is a practical and efficient approach for improving spatial representations of the coarse spatial resolution soil moisture data derived from microwave remote sensors. Within the PKU method, our refined method for estimating the parameters of the dry-edge outperforms the traditional method.

  5. Effects of butachlor on microbial enzyme activities in paddy soil.

    PubMed

    Min, Hang; Ye, Yang-Fang; Chen, Zhong-Yun; Wu, Wei-Xiang; Du, Yu-Feng

    2002-07-01

    This paper reports the influences of the herbicide butachlor (n-butoxymethl-chloro-2', 6'-diethylacetnilide) on microbial respiration, nitrogen fixation and nitrification, and on the activities of dehydrogenase and hydrogen peroxidase in paddy soil. The results showed that after application of butachlor with concentrations of 5.5 micrograms/g dried soil, 11.0 micrograms/g dried soil and 22.0 micrograms/g dried soil, the application of butachlor enhanced the activity of dehydrogenase at increasing concentrations. The soil dehydrogenase showed the highest activity on the 16th day after application of 22.0 micrograms/g dried soil of butachlor. The hydrogen peroxidase could be stimulated by butachlor. The soil respiration was depressed within a period from several days to more than 20 days, depending on concentrations of butachlor applied. Both the nitrogen fixation and nitrification were stimulated in the beginning but reduced greatly afterwards in paddy soil.

  6. [Determination of inorganic elements in the soil-grass-animal system by sealed microwave digestion ICP-AES].

    PubMed

    Xin, Guo-Sheng; Hu, Zheng; Zhou, Wei; Yang, Zhi-Qiang; Guo, Xu-Sheng; Long, Rui-Jun

    2010-02-01

    The contents of inorganic elements including K, Ca, Na, Mg, P, S, Fe, Cu, Mn, Zn, Mo, and Co in the soil-grass-animal mineral system from Qinghai Tibetan Plateau were determined by ICP-AES using high pressure system-sealed microwave digestion. The sample of soil was digested with HNO3-HF-H2O2 acids system, but others including pasture, animal fur, liver, and serum were digested with HNO3-H2O2 acids system. The operation would be simplified and the blank value would be decreased with the above acids systems. The results were proved to be reliable with the relative standard deviation being 0.271%-2.633% for Ca, 2.971%-4.854% for Co, 0.372%-2.874% for Cu, 0.600%-3.683% for Fe, 0.347%-2.829% for K, 0.626%-2.593% for Mg, 0.705%-4.828% for Mn, 2.946%-4.622% for Mo, 0.689%-3.621% for Na, 0.422%-3.890% for P, and 0.143%-4.622% for S, 0.166%-2.399% for Zn, and all of them were less than 5% for all the elements, and the recovery being 97.1%-101.4% for Ca, 93.5%-112.5% for Co, 95.2%-104.0% for Cu, 96.9%-104.2% for Fe, 96.1%-105.6% for K, 96.2%-102.8% for Mg, 91.5%-108.9% for Mn, 95.0%-113.5% for Mo, 95.2%-101.8% for Na, 94.7%-100.7% for P, 98.3%-108.4% for S, and 97.5%-102.0% for Zn by adding standard recovery experiment. The results of determination were proved that the method of sealed microwave digestion ICP-AES was sensitive, precise, easy to operate and rapid for the determination of inorganic elements in the soil-grass-animal mineral system, and could satisfy the sample examination request. The methods and results were meaningful to research on the soil-pasture-animal mineral system including the contents of mineral elements, the circulation of mineral elements, the interaction, and the application of mineral additive.

  7. Extraction and analysis of avermectines in agricultural soils by microwave assisted extraction and ultra high performance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Raich-Montiu, J; Prat, M D; Granados, M

    2011-07-01

    A method for the analysis of avermectines (abamectine, doramectine and ivermectine) in soils has been developed. The analytes are extracted with acetonitrile/water (90:10) by using microwave assisted extraction. The extract is cleaned-up through solid phase extraction with Oasis HLB cartridges and analyzed by ultra high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). Separation is obtained in 3 min. Extraction of analytes from the soil, that is the most critical point, has been studied in detail, and the effect of soil composition and aging time on the analytes recovery has been investigated. PMID:21641416

  8. Microwave activation of electrochemical processes: enhanced electrodehalogenation in organic solvent media.

    PubMed

    Tsai, Yu-Chen; Coles, Barry A; Compton, Richard G; Marken, Frank

    2002-08-21

    The effect of high-intensity microwave radiation focused into a "hot spot" region in the vicinity of an electrode on electrochemical processes with and without coupled chemical reaction steps has been investigated in organic solvent media. First, the electrochemically reversible oxidation of ferrocene in acetonitrile and DMF is shown to be affected by microwave-induced thermal activation, resulting in increased currents and voltammetric wave shape effects. A FIDAP simulation investigation allows quantitative insight into the temperature distribution and concentration gradients at the electrode / solution interface. Next, the effect of intense microwave radiation on electroorganic reactions is considered for the case of ECE processes. Experimental data for the reduction of p-bromonitrobenzene, o-bromonitrobenzene, and m-iodonitrobenzene in DMF and acetonitrile are analyzed in terms of an electron transfer (E), followed by a chemical dehalogenation step (C), and finally followed by another electron-transfer step (E). The presence of the "hot spot" in the solution phase favors processes with high activation barriers.

  9. Comparison of active and passive microwave signatures of Arctic sea ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, M. R.; Crawford, J. P.; Cavalieri, D. J.; Holt, B.; Carsey, F. D.

    1990-01-01

    In March 1988, overlapping active and passive microwave instrument data were acquired over Arctic sea ice using the NASA DC-8 aircraft equipped with multifrequency, variable polarization SAR and radiometer. Flights were conducted as a series of coordinated underflights of the DMSP SSM/I satellite radiometer in order to validate ice products derived from the SSM/I radiances. Subsequent flights by an NRL P-3 aircraft enabled overlapping high-resolution, single frequency image data to be acquired over the same regions using a Ka-band scanning microwave radiometer. In this paper, techniques are discussed for the accurate coregistration of the three aircraft datasets. Precise coregistration to an accuracy of 100 m plus or minus 25 m has, for the first time, enabled the detailed comparison of temporally and spatially coincident active and passive airborne microwave datasets. Preliminary results from the intercomparisons indicate that the SAR has highly frequency- and polarization-dependent signatures, which at 5.3 GHz (C-band) show an extremely high correlation with the 37 GHz radiometric temperatures.

  10. Improved detectability in medical microwave radio-thermometers as obtained by active antennas.

    PubMed

    Jacobsen, Svein; Klemetsen, Øystein

    2008-12-01

    Microwave radiometry is a spectral measurement technique for resolving blackbody radiation of heated matter above absolute zero. The emission levels vary with frequency and are at body temperatures maximized in the infrared spectral band. Medical radio-thermometers are mostly noninvasive short-range instruments that can provide temperature distributions in subcutaneous biological tissues when operated in the microwave region. However, a crucial limitation of the microwave radiometric observation principle is the extremely weak signal level of the thermal noise emitted by the lossy material (-174 dBm/Hz at normal body temperature). To improve the radiometer SNR, we propose to integrate a tiny, moderate gain, low-noise preamplifier (LNA) close to the antenna terminals as to obtain increased detectability of deep seated thermal gradients within the volume under investigation. The concept is verified experimentally in a lossy phantom medium by scanning an active antenna across a thermostatically controlled water phantom with a hot object embedded at 38 mm depth. Three different setups were investigated with decreasing temperature contrasts between the target and ambient medium. As a direct consequence of less ripple on the raw radiometric signal, statistical analysis shows a marked increase in signal-to-clutter ratio of the brightness temperature spatial scan profiles, when comparing active antenna operation with conventional passive setups.

  11. Influence of microwave parameters and water activity on radical generation in rice starch.

    PubMed

    Fan, Daming; Liu, Yixiao; Hu, Bo; Lin, Lufen; Huang, Luelue; Wang, Liyun; Zhao, Jianxin; Zhang, Hao; Chen, Wei

    2016-04-01

    Radical generation in rice starch under microwave treatment as well as the related chemical bond changes were investigated by electron paramagnetic resonance (EPR) and Raman spectroscopy. Samples with water activity of 0.4 and 0.7 have been treated and analyzed. It was found that microwave power level and water content could influence the amount of radicals along with the radical components and their contribution. Raman spectra showed corresponding changes in vibrational features of chemical bonds. During storage the signal intensity started to drop after a short period of increase. Rice starch radicals were relatively stable and could exist a long time in room temperature. Through signal simulation, 3 main components were separated from the original spectra and the evolving process was investigated. The main component was the radical located on C1 position in the glucose ring. PMID:26593462

  12. Antioxidant Activity and Phenolic Content of Microwave-Assisted Solanum melongena Extracts

    PubMed Central

    Modica, Maria N.; Pittalà, Valeria; Siracusa, Maria A.; Sorrenti, Valeria; Acquaviva, Rosaria

    2014-01-01

    Eggplant fruit is a very rich source of polyphenol compounds endowed with antioxidant properties. The aim of this study was to extract polyphenols from eggplant entire fruit, pulp, or skin, both fresh and dry, and compare results between conventional extraction and microwave-assisted extraction (MAE). The effects of time exposure (15, 30, 60, and 90 min) and solvent (water 100% or ethanol/water 50%) were also evaluated. The highest amount of polyphenols was found in the extract obtained from dry peeled skin treated with 50% aqueous ethanol, irradiated with microwave; this extract contained also high quantity of flavonoids and showed good antioxidant activity expressed by its capacity to scavenge superoxide anion and to inhibit lipid peroxidation. PMID:24683354

  13. NASA Activities as they Relate to Microwave Technology for Aerospace Communications Systems

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2011-01-01

    This presentation discusses current NASA activities and plans as they relate to microwave technology for aerospace communications. The presentations discusses some examples of the aforementioned technology within the context of the existing and future communications architectures and technology development roadmaps. Examples of the evolution of key technology from idea to deployment are provided as well as the challenges that lay ahead regarding advancing microwave technology to ensure that future NASA missions are not constrained by lack of communication or navigation capabilities. The presentation closes with some examples of emerging ongoing opportunities for establishing collaborative efforts between NASA, Industry, and Academia to encourage the development, demonstration and insertion of communications technology in pertinent aerospace systems.

  14. Slow potentials and spike unit activity of the cerebral cortex of rabbits exposed to microwaves

    SciTech Connect

    Chizhenkova, R.A.

    1988-01-01

    Unanesthetized rabbits exposed to 12.5-cm microwaves at a field intensity of 40 mW/cm/sup 2/ in the region of the head showed an increase in the number of slow waves and spindle-shaped firings in the EEG and a change in the discharge frequency of neurons in the visual cortex in 41-52% of the cases. An enhancement of the evoked response of visual cortex neurons to light was observed in 61% of the cases and a facilitation of the driving response in 80% of all cases. It is concluded that the evoked response is a more sensitive indicator of the microwave effect than background activity. The effects of the fields were most distinctly observed with the driving response.

  15. Antioxidant activity and phenolic content of microwave-assisted Solanum melongena extracts.

    PubMed

    Salerno, Loredana; Modica, Maria N; Pittalà, Valeria; Romeo, Giuseppe; Siracusa, Maria A; Di Giacomo, Claudia; Sorrenti, Valeria; Acquaviva, Rosaria

    2014-01-01

    Eggplant fruit is a very rich source of polyphenol compounds endowed with antioxidant properties. The aim of this study was to extract polyphenols from eggplant entire fruit, pulp, or skin, both fresh and dry, and compare results between conventional extraction and microwave-assisted extraction (MAE). The effects of time exposure (15, 30, 60, and 90 min) and solvent (water 100% or ethanol/water 50%) were also evaluated. The highest amount of polyphenols was found in the extract obtained from dry peeled skin treated with 50% aqueous ethanol, irradiated with microwave; this extract contained also high quantity of flavonoids and showed good antioxidant activity expressed by its capacity to scavenge superoxide anion and to inhibit lipid peroxidation.

  16. Influence of microwave parameters and water activity on radical generation in rice starch.

    PubMed

    Fan, Daming; Liu, Yixiao; Hu, Bo; Lin, Lufen; Huang, Luelue; Wang, Liyun; Zhao, Jianxin; Zhang, Hao; Chen, Wei

    2016-04-01

    Radical generation in rice starch under microwave treatment as well as the related chemical bond changes were investigated by electron paramagnetic resonance (EPR) and Raman spectroscopy. Samples with water activity of 0.4 and 0.7 have been treated and analyzed. It was found that microwave power level and water content could influence the amount of radicals along with the radical components and their contribution. Raman spectra showed corresponding changes in vibrational features of chemical bonds. During storage the signal intensity started to drop after a short period of increase. Rice starch radicals were relatively stable and could exist a long time in room temperature. Through signal simulation, 3 main components were separated from the original spectra and the evolving process was investigated. The main component was the radical located on C1 position in the glucose ring.

  17. Microwave remote sensing from space

    NASA Technical Reports Server (NTRS)

    Carver, K. R.; Elachi, C.; Ulaby, F. T.

    1985-01-01

    Spaceborne microwave remote sensors provide perspectives of the earth surface and atmosphere which are of unique value in scientific studies of geomorphology, oceanic waves and topography, atmospheric water vapor and temperatures, vegetation classification and stress, ice types and dynamics, and hydrological characteristics. Microwave radars and radiometers offer enhanced sensitivities to the geometrical characteristics of the earth's surface and its cover, to water in all its forms - soil and vegetation moisture, ice, wetlands, oceans, and atmospheric water vapor, and can provide high-resolution imagery of the earth's surface independent of cloud cover or sun angle. A brief review of the historical development and principles of active and passive microwave remote sensing is presented, with emphasis on the unique characteristics of the information obtainable in the microwave spectrum and the value of this information to global geoscientific studies. Various spaceborne microwave remote sensors are described, with applications to geology, planetology, oceanography, glaciology, land biology, meteorology, and hydrology. A discussion of future microwave remote sensor technological developments and challenges is presented, along with a summary of future missions being planned by several countries.

  18. Active microwave remote sensing of an anisotropic random medium layer

    NASA Technical Reports Server (NTRS)

    Lee, J. K.; Kong, J. A.

    1985-01-01

    A two-layer anisotropic random medium model has been developed to study the active remote sensing of the earth. The dyadic Green's function for a two-layer anisotropic medium is developed and used in conjunction with the first-order Born approximation to calculate the backscattering coefficients. It is shown that strong cross-polarization occurs in the single scattering process and is indispensable in the interpretation of radar measurements of sea ice at different frequencies, polarizations, and viewing angles. The effects of anisotropy on the angular responses of backscattering coefficients are also illustrated.

  19. Soil moisture retrievals from the WindSat spaceborne polarimetric microwave radiometer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface soil moisture plays an important role in many water- and energy-balanced related studies. It is an important parameter in several applications, such as numerical weather predictions, global change modelling, forecasting of surface runoff and modelling of evaporation. Soil moisture is conside...

  20. Error characterization of microwave satellite soil moisture data sets using fourier analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture is a key geophysical variable in hydrological and meteorological processes. Accurate and current observations of soil moisture over meso to global scales used as inputs to hydrological, weather and climate modelling will benefit the predictability and understanding of these processes. ...

  1. Error characterization of microwave satellite soil moisture data sets using fourier analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract: Soil moisture is a key geophysical variable in hydrological and meteorological processes. Accurate and current observations of soil moisture over mesoscale to global scales as inputs to hydrological, weather and climate modelling will benefit the predictability and understanding of these p...

  2. Effects of soil type and farm management on soil ecological functional genes and microbial activities

    SciTech Connect

    Reeve, Jennifer; Schadt, Christopher Warren; Carpenter-Boggs, Lynne; Kang, S.; Zhou, Jizhong; Reganold, John P.

    2010-01-01

    Relationships between soil microbial diversity and soil function are the subject of much debate. Process-level analyses have shown that microbial function varies with soil type and responds to soil management. However, such measurements cannot determine the role of community structure and diversity in soil function. The goal of this study was to investigate the role of gene frequency and diversity, measured by microarray analysis, on soil processes. The study was conducted in an agro-ecosystem characterized by contrasting management practices and soil types. Eight pairs of adjacent commercial organic and conventional strawberry fields were matched for soil type, strawberry variety, and all other environmental conditions. Soil physical, chemical and biological analyses were conducted including functional gene microarrays (FGA). Soil physical and chemical characteristics were primarily determined by soil textural type (coarse vs fine-textured), but biological and FGA measures were more influenced by management (organic vs conventional). Organically managed soils consistently showed greater functional activity as well as FGA signal intensity (SI) and diversity. Overall FGA SI and diversity were correlated to total soil microbial biomass. Functional gene group SI and/or diversity were correlated to related soil chemical and biological measures such as microbial biomass, cellulose, dehydrogenase, ammonium and sulfur. Management was the dominant determinant of soil biology as measured by microbial gene frequency and diversity, which paralleled measured microbial processes.

  3. Structure and polarization of active region microwave emission

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Alissandrakis, C. E.

    1984-01-01

    Active region radio emission observations made at 6.16 cm wavelength during May 20-27, 1980, are the bases of maps of total intensity and circular polarization presented for the three regions whose Hale numbers are 16850, 16863, and 16864. A detailed comparison is made between these maps and on- and off-band H-alpha pictures and magnetograms. The neutral lines with which the strongest sources were associated have their two opposite polarities close to each other, implying a high magnetic field gradient, and are also associated with arch filament systems. A detailed analysis is undertaken of observations of the circular polarization sense inversion in region 16863. The large scale structure of the magnetic field can be approximated by a dipole with its axis inclined by 11 deg with respect to the photosphere, and with a dipole moment of about 2 x 10 to the 31 power cgs units.

  4. Effects of organic dairy manure amendment on soil phosphatase activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic dairy production is increasing in the U.S. due to concerns over environmental, human, and animal health. It is well known that the application of livestock manure to soil can influence enzyme activities involved in nutrient cycling and soil fertility, such as soil phosphatases; however, orga...

  5. Accommodating Students with Disabilities in Soil Science Activities

    ERIC Educational Resources Information Center

    Langley-Turnbaugh, S. J.; Murphy, Kate; Levin, E.

    2004-01-01

    Soil science education is lacking in terms of accommodations for persons with disabilities. Individuals with disabilities are often excluded from soil science activities in school, and from soil science careers. GLOBE (Global Learning Observations to Benefit the Environment) is a worldwide, hands-on primary and secondary school-based education and…

  6. Remote Sensing Observatory Validation of Surface Soil Moisture Using Advanced Microwave Scanning Radiometer E, Common Land Model, and Ground Based Data: Case Study in SMEX03 Little River Region, Georgia, U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimal soil moisture estimation may be characterized by inter-comparisons among remotely sensed measurements, ground-based measurements, and land surface models. In this study, we compared soil moisture from Advanced Microwave Scanning Radiometer E (AMSR-E), ground-based measurements, and Soil-Vege...

  7. Calculations of the spectral nature of the microwave emission from soils. [Arizona and Georgia

    NASA Technical Reports Server (NTRS)

    Mo, T.; Schmugge, T. J.; Choudhury, B. J. (Principal Investigator)

    1980-01-01

    The brightness temperatures for a set of soil profiles observed at USDA facilities in Arizona and Georgia were calculated at the wavelengths of 2.8, 6, 11, 21, and 49 cm using a coherent radiative transfer model. The soil moisture sampling depth is found to be a function of wavelength and is in the range 0.06 to 0.1 of a wavelength. The thermal sampling depth also depends on wavelength and is approximately equal to one wavelength at dry soil condition and 0.1 - 0.5 wavelengths at wet soil conditions. Calculated values of emissivity show strong diurnal variations when the soils are wet, while there is little diurnal change when the soil is dry. The soil moistures within the four depth intervals of 0-2, 0-5, 0-9, and 0-15 cm were parameterized as function of the calculated emissivity and brightness temperature. Best-fit parameters and correlation coefficients are presented for five wavelengths. Interrelationships among the effective temperature, surface temperature, and emissivity are displayed.

  8. [Relationship among soil enzyme activities, vegetation state, and soil chemical properties of coal cinder yard].

    PubMed

    Wang, Youbao; Zhang, Li; Liu, Dengyi

    2003-01-01

    From field investigation and laboratory analysis, the relationships among soil enzyme activities, vegetation state and soil chemical properties of coal cinder yard in thermal power station were studied. The results showed that vegetation on coal cinder yard was distributed in scattered patch mainly with single species of plant, and herbs were the dominant species. At the same time, the activity of three soil enzymes had a stronger relativity to environment conditions, such as vegetation state and soil chemical properties. The sensitivity of three soil enzymes to environmental stress was in order of urease > sucrase > catalase. The relativity of three soil enzymes to environmental factor was in order of sucrase > urease > catalase. Because of urease being the most susceptible enzyme to environmental conditions, and it was marked or utmost marked interrelated with vegetation state and soil chemical properties, urease activity could be used as an indicator for the reclamation of wasteland.

  9. Solvent-free microwave-assisted extraction of fluoroquinolones from soil and liquid chromatography-fluorescence determination.

    PubMed

    Sturini, Michela; Speltini, Andrea; Maraschi, Federica; Rivagli, Elisa; Profumo, Antonella

    2010-11-19

    Presented hereafter is a novel method entailing solvent free microwave-assisted extraction (MAE) and HPLC equipped with Fluorimetric Detector (HPLC-FD) for the simultaneous determination at μgkg(-1) concentration of eight fluoroquinolone antibiotics (FQs) (Ciprofloxacin, Danofloxacin, Enrofloxacin, Flerofloxacin, Levofloxacin, Marbofloxacin, Norfloxacin and Orbifloxacin) in agricultural soils. The extraction was quantitatively performed, in a single step, by using an aqueous solution containing Mg(II) as complexing agent, thus avoiding consumption of organic solvents. The optimal MAE conditions have been established through a chemometric approach by considering temperature, irradiation time and matrix moisture or solvent, as the most important recognized variables affecting the extraction yield. Satisfying recoveries (69-110%, spikes 0.03-0.5mgkg(-1)) were gained with a single MAE cycle of 20min, at 80°C in 20% (w/v) Mg(NO(3))(2) solution as leaching agent. MAE-SPE recoveries at 10μgkg(-1), concentration near method quantification limits (MQLs), were in the range 60-85%. Good repeatability and within-lab reproducibility were observed (both in the range 1-16%). The applicability of the method to real samples was assessed on natural contaminated soils. Compared to ultrasonic-assisted extraction (UAE), MAE was shown to be highly competitive in terms of extraction efficacy and analysis speed.

  10. Microwave-assisted preparation and adsorption performance of activated carbon from biodiesel industry solid reside: influence of operational parameters.

    PubMed

    Foo, K Y; Hameed, B H

    2012-01-01

    Preparation of activated carbon has been attempted using KOH as activating agent by microwave heating from biodiesel industry solid residue, oil palm empty fruit bunch (EFBAC). The significance of chemical impregnation ratio (IR), microwave power and activation time on the properties of activated carbon were investigated. The optimum condition has been identified at the IR of 1.0, microwave power of 600 W and activation time of 7 min. EFBAC was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement, determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue as dye model compound. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 395.30 mg/g and carbon yield of 73.78%, while the BET surface area and total pore volume were corresponding to 1372 m2/g and 0.76 cm3/g, respectively.

  11. Combined evaluation of optical and microwave satellite dataset for soil moisture deficit estimation

    NASA Astrophysics Data System (ADS)

    Srivastava, Prashant K.; Han, Dawei; Islam, Tanvir; Singh, Sudhir Kumar; Gupta, Manika; Gupta, Dileep Kumar; Kumar, Pradeep

    2016-04-01

    Soil moisture is a key variable responsible for water and energy exchanges from land surface to the atmosphere (Srivastava et al., 2014). On the other hand, Soil Moisture Deficit (or SMD) can help regulating the proper use of water at specified time to avoid any agricultural losses (Srivastava et al., 2013b) and could help in preventing natural disasters, e.g. flood and drought (Srivastava et al., 2013a). In this study, evaluation of Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) and soil moisture from Soil Moisture and Ocean Salinity (SMOS) satellites are attempted for prediction of Soil Moisture Deficit (SMD). Sophisticated algorithm like Adaptive Neuro Fuzzy Inference System (ANFIS) is used for prediction of SMD using the MODIS and SMOS dataset. The benchmark SMD estimated from Probability Distributed Model (PDM) over the Brue catchment, Southwest of England, U.K. is used for all the validation. The performances are assessed in terms of Nash Sutcliffe Efficiency, Root Mean Square Error and the percentage of bias between ANFIS simulated SMD and the benchmark. The performance statistics revealed a good agreement between benchmark and the ANFIS estimated SMD using the MODIS dataset. The assessment of the products with respect to this peculiar evidence is an important step for successful development of hydro-meteorological model and forecasting system. The analysis of the satellite products (viz. SMOS soil moisture and MODIS LST) towards SMD prediction is a crucial step for successful hydrological modelling, agriculture and water resource management, and can provide important assistance in policy and decision making. Keywords: Land Surface Temperature, MODIS, SMOS, Soil Moisture Deficit, Fuzzy Logic System References: Srivastava, P.K., Han, D., Ramirez, M.A., Islam, T., 2013a. Appraisal of SMOS soil moisture at a catchment scale in a temperate maritime climate. Journal of Hydrology 498, 292-304. Srivastava, P.K., Han, D., Rico

  12. Microwave hydrothermal synthesis of AgInS{sub 2} with visible light photocatalytic activity

    SciTech Connect

    Zhang, Wenjuan; Li, Danzhen; Chen, Zhixin; Sun, Meng; Li, Wenjuan; Lin, Qiang; Fu, Xianzhi

    2011-07-15

    Highlights: {yields} AgInS{sub 2} nanoparticles were synthesized by a microwave hydrothermal method. {yields} This method involves no organic solvents, catalysts, or surfactants. {yields} AgInS{sub 2} showed higher activity for photocatalytic degradation MO than TiO{sub 2-x}N{sub x}. {yields} Holes, O{sub 2}{center_dot}{sup -}, and H{sub 2}O{sub 2} played an important role in the photocatalytic process. -- Abstract: AgInS{sub 2} nanoparticles with superior visible light photocatalytic activity were successfully synthesized by a microwave hydrothermal method. This method is a highly efficient and rapid route that involves no organic solvents, catalysts, or surfactants. The photocatalytic activity of AgInS{sub 2} nanoparticles was investigated through the degradation of dyes under visible light irradiation. Compared with TiO{sub 2-x}N{sub x}, AgInS{sub 2} has exhibited a superior activity for photocatalytic degradation MO under the same condition. The experiment results showed that superoxide radicals (O{sub 2}{center_dot}{sup -}), hydrogen peroxides (H{sub 2}O{sub 2}) and holes (h{sup +}) were the mainly active species for the degradation of organic pollutants over AgInS{sub 2}. Through the determination of flat band potential, the energy band structure of the sample was obtained. A possible mechanism for the degradation of organic pollutant over AgInS{sub 2} was proposed.

  13. Evaluation of cadmium in greenhouse soils and agricultural products of Jiroft (Iran) using microwave digestion prior to atomic absorption spectrometry determination.

    PubMed

    Afzali, Daryoush; Fathirad, Fariba; Afzali, Zahra; Majdzadeh-Kermani, Seyed Mohammad Javad

    2015-03-01

    This study determines total levels of potentially toxic trace element, Cd (II) in Jiroft (Kerman, Iran) greenhouse soil and agricultural products that are grown in these greenhouses (tomatoes and cucumbers), and the comparison with soil outside of greenhouse using microwave digestion prior to flame atomic absorption spectrometry determination. The results show that the cadmium concentration in greenhouse soil is 0.9-1.9 mg kg(-1) and out of greenhouse is 0.4-1.0 mg kg(-1). Also, cadmium concentration range in tomatoes and cucumbers is about 0.07-0.40 mg kg(-1). The obtained results show that the concentration of this metal in greenhouse soil is higher than outside soil samples and is below the safe limit.

  14. Microwave remote sensing of soil moisture content over bare and vegetated fields

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Shiue, J. C.; Mcmurtrey, J. E., III (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. Ground truth of soil moisture content, and ambient air and soil temperatures were acquired concurrently with measurements of soil moisture in bare fields and fields covered with grass, corn, and soybeans obtained with 1.4 GHz and 5 GHz radiometers mounted on a truck. The biomass of the vegetation was sampled about once a week. The measured brightness temperatures over the bare fields were compared with those of radiative transfer model calculations using as inputs the acquired soil moisture and temperatures data with appropriate values of dielectric constants for soil-water mixtures. A good agreement was found between the calculated and measured results over 10 deg to 70 deg incident angles. The presence of vegetation reduced the sensitivity of soil moisture sensing. At 1.4 GHz the sensitivity reduction ranged from about 20% for 10 cm tall grassland cover to over 50 to 60% for the dense soybean field. At 5 GHz corresponding reduction in sensitivity ranged from approximately 70% to approximately 90%.

  15. Response of soil microbial activity and biodiversity in soils polluted with different concentrations of cypermethrin insecticide.

    PubMed

    Tejada, Manuel; García, Carlos; Hernández, Teresa; Gómez, Isidoro

    2015-07-01

    We performed a laboratory study into the effect of cypermethrin insecticide applied to different concentrations on biological properties in two soils [Typic Xerofluvent (soil A) and Xerollic Calciorthid (soil B)]. Two kg of each soil were polluted with cypermethrin at a rate of 60, 300, 600, and 1,200 g ha(-1) (C1, C2, C3, and C4 treatments). A nonpolluted soil was used as a control (C0 treatment). For all treatments and each experimental soil, soil dehydrogenase, urease, β-glucosidase, phosphatase, and arylsulphatase activities and soil microbial community were analysed by phospholipid fatty acids, which were measured at six incubation times (3, 7, 15, 30, 60, and 90 days). The behavior of the enzymatic activities and microbial population were dependent on the dose of insecticide applied to the soil. Compared with the C0 treatment, in soil A, the maximum inhibition of the enzymatic activities was at 15, 30, 45, and 90 days for the C1, C2, C3, and C4 treatments, respectively. However, in soil B, the maximum inhibition occurred at 7, 15, 30, and 45 days for the C1, C2, C3, and C4 treatments, respectively. These results suggest that the cypermethrin insecticide caused a negative effect on soil enzymatic activities and microbial diversity. This negative impact was greater when a greater dose of insecticide was used; this impact was also greater in soil with lower organic matter content. For both soils, and from these respective days onward, the enzymatic activities and microbial populations progressively increased by the end of the experimental period. This is possibly due to the fact that the insecticide or its breakdown products and killed microbial cells, subsequently killed by the insecticide, are being used as a source of energy or as a carbon source for the surviving microorganisms for cell proliferation.

  16. Microwave assisted synthesis, antifungal activity, and DFT study of some novel triazolinone derivatives.

    PubMed

    Sun, Na-Bo; Jin, Jian-Zhong; He, Fang-Yue

    2015-01-01

    A series of some novel 1,2,4-triazol-5(4H)-one derivatives were designed and synthesized under microwave irradiation via multistep reaction. The structures of 1,2,4-triazoles were confirmed by (1)H NMR, MS, FTIR, and elemental analysis. The antifungal activities of 1,2,4-triazoles were determined. The antifungal activity results indicated that the compounds 5c, 5f, and 5h exhibited good activity against Pythium ultimum, and the compounds 5b and 5c displayed good activity against Corynespora cassiicola. Theoretical calculation of the compound 5c was carried out with B3LYP/6-31G (d). The full geometry optimization was carried out using 6-31G(d) basis set, and the frontier orbital energy and electrostatic potential were discussed, and the structure-activity relationship was also studied. PMID:25861651

  17. The Soil Moisture Active Passive (SMAP) Applications Activity

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Moran, Susan; Escobar, Vanessa; Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission is one of the first-tier satellite missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space. The SMAP mission 1 is under development by NASA and is scheduled for launch late in 2014. The SMAP measurements will allow global and high-resolution mapping of soil moisture and its freeze/thaw state at resolutions from 3-40 km. These measurements will have high value for a wide range of environmental applications that underpin many weather-related decisions including drought and flood guidance, agricultural productivity estimation, weather forecasting, climate predictions, and human health risk. In 2007, NASA was tasked by The National Academies to ensure that emerging scientific knowledge is actively applied to obtain societal benefits by broadening community participation and improving means for use of information. SMAP is one of the first missions to come out of this new charge, and its Applications Plan forms the basis for ensuring its commitment to its users. The purpose of this paper is to outline the methods and approaches of the SMAP applications activity, which is designed to increase and sustain the interaction between users and scientists involved in mission development.

  18. An intercomparison of remotely sensed soil moisture products at various spatial scales over the Iberian penisula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture (SM) can be retrieved from active microwave (AM)-, passive microwave (PM)- and thermal infrared (TIR)-observations, each having their unique spatial- and temporal-coverage. A limitation of TIR-based SM retrievals is its dependency on cloud-free conditions, while microwave retrievals ar...

  19. Application of microwave-irradiated manganese dioxide in the removal of polychlorinated biphenyls from soil contaminated by capacitor oil.

    PubMed

    Lin, Zhi-Rong; Zhao, Ling; Dong, Yuan-Hua

    2013-01-01

    The removal of polychlorinated biphenyls (PCBs) from soil contaminated with capacitor oil, using microwave (MW)-irradiated manganese dioxide (MnO2), was examined under different conditions. The effects of different types of MnO2 added as oxidant, as well as the initial amount of water, MnO2, and sulphuric acid solution, were also investigated. The removal efficiencies for dichlorobiphenyls, trichlorobiphenyls, tetrachlorobiphenyls, pentachlorobiphenyls, hexachloro-biphenyls, heptachlorobiphenyls, and octachlorobiphenyls were approximately 95.9%, 82.5%, 52.0%, 71.6%, 62.5%, 28.6%, and 16.1%, respectively, by 800 W MW irradiation for 45 min with the assistance of 0.1 g delta-MnO2 and 0.2 mL water in 1.0 g severely PCB-contaminated soil (sigma PCB = 1560.82 mg/kg); meanwhile, the concentrations of Mn2+ ions detected were from 10.6 +/- 1.9 mg/kg at 0 min to 108.2 +/- 7.8 mg/kg after 45 min MW irradiation, indicating that MnO2 acted as not only a MW absorber but also an oxidizer. Removal efficiencies of PCBs from contaminated soil increased with increasing the amounts of water and MnO2 added. The type of MnO2 also affected the removal of PCBs, following an order of delta-MnO2 > alpha-MnO2 > beta-MnO2. The addition of low concentration of sulphuric acid (such as 1.0 mol/L) solution was favourable for the removal of low chloro-substituted PCBs, but the addition of more than 1.0 mol/L sulphuric acid reduced the removal of all PCBs. The pronounced removal of PCBs from contaminated soil in a short treatment time indicates that MW irradiation with the assistance of MnO2 is an efficient and promising technology for the remediation of PCB-contaminated soil.

  20. [Effect of fertilization levels on soil microorganism amount and soil enzyme activities].

    PubMed

    Wang, Wei-Ling; Du, Jun-Bo; Xu, Fu-Li; Zhang, Xiao-Hu

    2013-11-01

    Field experiments were conducted in Shangluo pharmaceutical base in Shaanxi province to study the effect of nitrogen, phosphorus and potassium in different fertilization levels on Platycodon grandiflorum soil microorganism and activities of soil enzyme, using three-factor D-saturation optimal design with random block design. The results showed that N0P2K2, N2P2K0, N3P1K3 and N3P3K1 increased the amount of bacteria in 0-20 cm of soil compared with N0P0K0 by 144.34%, 39.25%, 37.17%, 53.58%, respectively. The amount of bacteria in 2040 cm of soil of N3P1K3 increased by 163.77%, N0P0K3 increased the amount of soil actinomycetes significantly by 192.11%, while other treatments had no significant effect. N2P0K2 and N3P1K3 increased the amounts of fungus significantly in 0-20 cm of soil compared with N0P0K0, increased by 35.27% and 92.21%, respectively. N3P0K0 increased the amounts of fungus significantly in 20-40 cm of soil by 165.35%, while other treatments had no significant effect. All treatments decrease soil catalase activity significantly in 0-20 cm of soil except for N2P0K2, and while N2P2K0 and NPK increased catalase activity significantly in 2040 cm of soil. Fertilization regime increased invertase activity significantly in 2040 cm of soil, and decreased phosphatase activity inordinately in 0-20 cm of soil, while increased phosphatase activity in 2040 cm of soil other than N1P3K3. N3P0K0, N0P0K3, N2P0K2, N2P2K0 and NPK increased soil urease activity significantly in 0-20 cm of soil compared with N0P0K0 by 18.22%, 14.87%,17.84%, 27.88%, 24.54%, respectively. Fertilization regime increased soil urease activity significantly in 2040 cm of soil other than N0P2K2. PMID:24558863

  1. Soil Active Layer Freeze/Thaw Detection Using Combined L- and P-Band Radar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Du, J.; Kimball, J. S.; Moghaddam, M.

    2014-12-01

    Monitoring of soil active layer freeze-thaw (FT) dynamics is critical for studying high-latitude ecosystem and environmental changes. We evaluated the potential of inferring FT state dynamics within a tundra soil profile using combined L- and P-band radar remote sensing and forward radiative transfer modeling of backscatter characteristics. A first-order two-layer soil scattering model (FTSS) was developed in this study to analyze soil multi-layer scattering effects. The FTSS was evaluated against other sophisticated modeling approaches and showed comparable performance. The FTSS was then applied to analyzing L- and P-band microwave responses to layered soil. We find that soil volume scattering is rather weak for the two frequencies for frozen or dry soil with mean particle size below 10mm diameter. Dielectric contrast between adjacent soil layers can contribute to total backscatter at both L- and P-band with more significant impact on P-band than L-band signals depending on the depth of soil profile. Combined L- and P-band radar data are shown to have greater utility than single channel observations in detecting soil FT dynamics and dielectric profile inhomogeneity. Further analysis using available airborne synthetic aperture radar (SAR) data and in-situ measurements also confirm that soil profile heterogeneity can be effectively detected using combined L- and P-band radar backscatter data. This study demonstrates the potential of lower frequency SARs from airborne missions, including UAV-SAR and AirMOSS, for Arctic and alpine assessment of soil active layer properties.

  2. Measurement of microbial biomass and activity in landfill soils.

    SciTech Connect

    Bogner, J. E.; Miller, R. M.; Spokas, K.; Environmental Research

    1995-01-01

    Two complementary techniques, which have been widely used to provide a general measure of microbial biomass or microbial activity in natural soils, were evaluated for their applicability to soils from the Mallard North and Mallard Lake Landfills, DuPage County, Illinois, U.S.A. Included were: (1) a potassium sulphate extraction technique with quantification of organic carbon for measurement of microbial biomass; and (2) an arginine ammonification technique for microbial activity. Four profiles consisting of replaced soils were sampled for this study; units included topsoil (mixed mollisol A and B horizons), compacted clay cover (local calcareous Wisconsinan age glacial till), and mixed soil/refuse samples. Internally consistent results across the four profiles and good correlations with other independent indicators of microbial activity (moisture, organic matter content, nitrogen, and phosphorus) suggest that, even though these techniques were developed mainly for natural mineral soils, they are also applicable to disturbed landfill soils.

  3. Short term prediction of dynamic hydra precipitation activity using a microwave radiometer over Eastern Himalaya, India

    NASA Astrophysics Data System (ADS)

    Singh, S.

    2015-12-01

    First ever study of the feasibility of ground based radiometric study to predict a very short term based rain precipitation study has been conducted in eastern Himalaya, Darjeeling (27.01°N, 88.15°E, 2200 masl). Short term prediction or nowcasting relates to forecasting convective precipitation for time periods less than a few hours to avoid its effect on agriculture, aviation and lifestyle. Theoretical models involving radiometric predictions are not well understood and lack in temporal and spatial resolution. In this study specific utilization of a microwave Radiometer (Radiometrics Corporation, USA) for online monitoring of precipitable rainfall activity has been observed repeatability of data has been established. Previous few studies have shown the increase of water vapour and corresponding Brightness Temperature, but in mountain climatic conditions over Darjeeling, due to presence of fog 90 % of the year, water vapour monitoring related predictions can lead to false alarms. The measurement of blackbody emission noise in the bands of 23.8 GHz and 31.4 GHz, using a quadratic regression retrieval algorithm is converted to atmospheric parameters like integrated water vapour and liquid water content. It has been found in our study that the liquid water shows significant activity prior to precipitation events even for mild and stratiform rainfall. The alarm can be generated well 20 mins before the commencement of actual rain events even in the upper atmosphere of 6 Kms, measured by a rain radar also operating in 24 Ghz microwave band. Although few rain events were found and reported which do not respond in the microwave liquid water channel. Efforts to identify such rain events and their possible explanation is going on and shall be reported in near future. Such studies are important to predict flash flooding in the Himalayas. Darjeeling owing to its geographical conditions experiences mild to very heavy rain. Such studies help improve aspects of Himalayas as

  4. Migration testing of plastics and microwave-active materials for high-temperature food-use applications.

    PubMed

    Castle, L; Jickells, S M; Gilbert, J; Harrison, N

    1990-01-01

    Temperatures have been measured using a fluoro-optic probe at the food/container or food/packaging interfaces as appropriate, for a range of foods heated in either a microwave or a conventional oven. Reheating ready-prepared foods packaged in plastics pouches, trays or dishes in the microwave oven, according to the manufacturers' instructions, resulted in temperatures in the range 61-121 degrees C. Microwave-active materials (susceptors) in contact with ready-prepared foods frequently reached local spot temperatures above 200 degrees C. For foods cooked in a microwave oven according to published recipes, temperatures from 91 degrees C to 200 degrees C were recorded, whilst similar temperatures (92-194 degrees C) were attained in a conventional oven, but over longer periods of time. These measurements form the basis for examining compliance with specific and overall migration limits for plastics materials. The testing conditions proposed depend on the intended use of the plastic - for microwave oven use for aqueous foods, for all lidding materials, and for reheating of foods, testing would only be required with aqueous simulants for 1 h at 100 degrees C; for unspecified microwave oven use, testing with olive oil would be required for 30 min at 150 degrees C; and for unspecified use in a conventional oven testing with olive oil would be required for 2 h at 175 degrees C. For microwave-active materials, it is proposed that testing is carried out in the microwave oven using a novel semi-solid simulant comprising olive oil and water absorbed onto an inert support of diatomaceous earth. The testing in this instance is carried out with the simulant instead of food in a package and heating in the microwave oven at 600 W for 4 min for every 100 g of simulant employed. There is an option in every case to test for migration using real foods rather than simulants if it can be demonstrated that results using simulants are unrepresentative of those for foods. The proposed

  5. Analysis of sulfonamides in soil, sediment, and sludge based on dynamic microwave-assisted micellar extraction.

    PubMed

    Wang, Hui; Ding, Jie; Ding, Lan; Ren, Nanqi

    2016-07-01

    A green and high-throughput analytical method was described for the simultaneous determination of ten sulfonamides (SAs) from soil, sediment, and sludge in northeast China. None of potentially hazardous organic solvents was used in the whole sample preparation procedure, and the total preparation time of 15 samples was about 18 min. The limits of detection for the SAs were in the range of 0.42-0.68 ng g(-1). The intra-day and inter-day precisions, expressed by the relative standard deviation, were below 7 %. Under the optimum conditions, the recoveries of ten SAs were between 69.7 and 102.7 %. The proposed method was successfully applied to analyze the SAs residues in agricultural soils, river sediments, and sewage sludge. SAs were found at the levels of 1.40-2.31 ng g(-1) and 3.77-29.29 ng g(-1) in the sediments and sludge, respectively. The aging effect of spiked soil samples on the SAs recoveries was examined, and the results demonstrate that eight SAs could persist in five soils for 3 months. Compared with the traditional method, the proposed method could reduce the consumption of the organic solvent, shorten the sample preparation time, and increase the sample throughput.

  6. Stand-alone error characterisation of microwave satellite soil moisture using a Fourier method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Error characterisation of satellite-retrieved soil moisture (SM) is crucial for maximizing their utility in research and applications in hydro-meteorology and climatology. Error characteristics can provide insights for retrieval development and validation, and inform suitable strategies for data fus...

  7. Microwave Soil Moisture Retrieval Under Trees Using a Modified Tau-Omega Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    IPAD is to provide timely and accurate estimates of global crop conditions for use in up-to-date commodity intelligence reports. A crucial requirement of these global crop yield forecasts is the regional characterization of surface and sub-surface soil moisture. However, due to the spatial heterogen...

  8. Continental-Scale Evaluation of Assimilated Soil Moisture Retrievals From the Advanced Microwave Scanning Radiometer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture is a fundamental data source used in crop growth stage and crop stress models developed by the USDA Foreign Agriculture Service for global crop estimation. USDA’s International Production Assessment Division (IPAD) of the Office of Global Analysis (OGA). Currently, the PECAD DSS utiliz...

  9. Microbial Community Structure and Enzyme Activities in Semiarid Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Acosta-Martinez, V. A.; Zobeck, T. M.; Gill, T. E.; Kennedy, A. C.

    2002-12-01

    The effect of agricultural management practices on the microbial community structure and enzyme activities of semiarid soils of different textures in the Southern High Plains of Texas were investigated. The soils (sandy clay loam, fine sandy loam and loam) were under continuous cotton (Gossypium hirsutum L.) or in rotations with peanut (Arachis hypogaea L.), sorghum (Sorghum bicolor L.) or wheat (Triticum aestivum L.), and had different water management (irrigated or dryland) and tillage (conservation or conventional). Microbial community structure was investigated using fatty acid methyl ester (FAME) analysis by gas chromatography and enzyme activities, involved in C, N, P and S cycling of soils, were measured (mg product released per kg soil per h). The activities of b-glucosidase, b-glucosaminidase, alkaline phosphatase, and arylsulfatase were significantly (P<0.05) increased in soils under cotton rotated with sorghum or wheat, and due to conservation tillage in comparison to continuous cotton under conventional tillage. Principal component analysis showed FAME profiles of these soils separated distinctly along PC1 (20 %) and PC2 (13 %) due to their differences in soil texture and management. No significant differences were detected in FAME profiles due to management practices for the same soils in this sampling period. Enzyme activities provide early indications of the benefits in microbial populations and activities and soil organic matter under crop rotations and conservation tillage in comparison to the typical practices in semiarid regions of continuous cotton and conventional tillage.

  10. Effects of organic carbon sequestration strategies on soil enzymatic activities

    NASA Astrophysics Data System (ADS)

    Puglisi, E.; Suciu, N.; Botteri, L.; Ferrari, T.; Coppolecchia, D.; Trevisan, M.; Piccolo, A.

    2009-04-01

    Greenhouse gases emissions can be counterbalanced with proper agronomical strategies aimed at sequestering carbon in soils. These strategies must be tested not only for their ability in reducing carbon dioxide emissions, but also for their impact on soil quality: enzymatic activities are related to main soil ecological quality, and can be used as early and sensitive indicators of alteration events. Three different strategies for soil carbon sequestration were studied: minimum tillage, protection of biodegradable organic fraction by compost amendment and oxidative polimerization of soil organic matter catalyzed by biometic porfirins. All strategies were compared with a traditional agricultural management based on tillage and mineral fertilization. Experiments were carried out in three Italian soils from different pedo-climatic regions located respectively in Piacenza, Turin and Naples and cultivated with maize or wheat. Soil samples were taken for three consecutive years after harvest and analyzed for their content in phosphates, ß-glucosidase, urease and invertase. An alteration index based on these enzymatic activities levels was applied as well. The biomimetic porfirin application didn't cause changes in enzymatic activities compared to the control at any treatment or location. Enzymatic activities were generally higher in the minimum tillage and compost treatment, while differences between location and date of samplings were limited. Application of the soil alteration index based on enzymatic activities showed that soils treated with compost or subjected to minimum tillage generally have a higher biological quality. The work confirms the environmental sustainability of the carbon sequestering agronomical practices studied.

  11. Activation of VEGF/Flk-1-ERK Pathway Induced Blood-Brain Barrier Injury After Microwave Exposure.

    PubMed

    Wang, Li-Feng; Li, Xiang; Gao, Ya-Bing; Wang, Shui-Ming; Zhao, Li; Dong, Ji; Yao, Bin-Wei; Xu, Xin-Ping; Chang, Gong-Min; Zhou, Hong-Mei; Hu, Xiang-Jun; Peng, Rui-Yun

    2015-08-01

    Microwaves have been suggested to induce neuronal injury and increase permeability of the blood-brain barrier (BBB), but the mechanism remains unknown. The role of the vascular endothelial growth factor (VEGF)/Flk-1-Raf/MAPK kinase (MEK)/extracellular-regulated protein kinase (ERK) pathway in structural and functional injury of the blood-brain barrier (BBB) following microwave exposure was examined. An in vitro BBB model composed of the ECV304 cell line and primary rat cerebral astrocytes was exposed to microwave radiation (50 mW/cm(2), 5 min). The structure was observed by scanning electron microscopy (SEM) and the permeability was assessed by measuring transendothelial electrical resistance (TEER) and horseradish peroxidase (HRP) transmission. Activity and expression of VEGF/Flk-1-ERK pathway components and occludin also were examined. Our results showed that microwave radiation caused intercellular tight junctions to broaden and fracture with decreased TEER values and increased HRP permeability. After microwave exposure, activation of the VEGF/Flk-1-ERK pathway and Tyr phosphorylation of occludin were observed, along with down-regulated expression and interaction of occludin with zonula occludens-1 (ZO-1). After Flk-1 (SU5416) and MEK1/2 (U0126) inhibitors were used, the structure and function of the BBB were recovered. The increase in expression of ERK signal transduction molecules was muted, while the expression and the activity of occludin were accelerated, as well as the interactions of occludin with p-ERK and ZO-1 following microwave radiation. Thus, microwave radiation may induce BBB damage by activating the VEGF/Flk-1-ERK pathway, enhancing Tyr phosphorylation of occludin, while partially inhibiting expression and interaction of occludin with ZO-1.

  12. Activity concentration of caesium-137 in agricultural soils.

    PubMed

    Aslani, Mahmoud A A; Aytas, Sule; Akyil, Sema; Yaprak, Gunseli; Yener, Gungor; Eral, Meral

    2003-01-01

    In this study, we measured 137Cs activity concentrations in the soil samples taken from agricultural lands in the Buyuk Menderes Basin in Turkey in 1997 and 1998. The soil samples were collected from 42 sites in this Basin. The activity concentration of 137Cs was found to range between 2.81+/-0.17 Bq.kg(-1) and 20.75+/-0.29 Bq.kg(-1). The effect of organic matter, clay, silt and sand contents and pH of the soil on the relative adsorption of the 137Cs on the soil surface were also studied.

  13. Active-Layer Soil Moisture Content Regional Variations in Alaska and Russia by Ground-Based and Satellite-Based Methods, 2002 Through 2014

    NASA Astrophysics Data System (ADS)

    Muskett, Reginald; Romanovsky, Vladimir; Cable, William; Kholodov, Alexander

    2015-04-01

    Soil moisture is a vital physical parameter of the active-layer in permafrost environments, and associated biological and geophysical processes operative at the microscopic to hemispheric spatial scales and at hourly to multidecadal time scales. While in-situ measurements can give the highest quality of information on a site-specific basis, the vast permafrost terrains of North America and Eurasia require space-based techniques for assessments of cause and effect and long-term changes and impacts from the changes of permafrost and the active-layer. Satellite-based 6.925 and 10.65 GHz sensor algorithmic retrievals of soil moisture by Advanced Microwave Scanning Radiometer - Earth Observation System (AMSR-E) onboard NASA-Aqua and follow-on AMSR2 onboard JAXA-Global Change Observation Mission - Water-1 are ongoing since July 2002. Accurate land-surface temperature and vegetation parameters are critical to the success of passive microwave algorithmic retrieval schemes. Strategically located soil moisture measurements are needed for spatial and temporal co-location evaluation and validation of the space-based algorithmic estimates. We compare on a daily basis ground-based (subsurface-probe) 50- and 70-MHz radio-frequency soil moisture measurements with NASA- and JAXA-algorithmic retrieval passive microwave retrievals. We find improvements in performance of the JAXA-algorithm (AMSR-E reprocessed and AMSR2 ongoing) relative to the earlier NASA-algorithm version. In the boreal forest regions accurate land-surface temperatures and vegetation parameters are still needed for algorithmic retrieval success. Over the period of AMSR-E retrievals we find evidence of at the high northern latitudes of growing terrestrial radio-frequency interference in the 10.65 GHz channel soil moisture content. This is an important error source for satellite-based active and passive microwave remote sensing soil moisture retrievals in Arctic regions that must be addressed. Ref: International

  14. Spanish activities (research and industrial applications) in the field of microwave material treatment

    SciTech Connect

    Catala Civera, J.M.; Reyes Davo, E.R. de los

    1996-12-31

    The GCM (Microwave Heating Group) within the Communications Department at the Technical University of Valencia is dedicated to the study of microwaves and their use in the current industrial processes in the Valencian Community and in Spain. To this end, a microwave heating laboratory has been developed and the benefits of incorporating microwave technologies into current industrial processes have been demonstrated. In this paper some of the industrial applications which are being investigated are presented.

  15. Soil surface disturbances in cold deserts: Effects on nitrogenase activity in cyanobacterial-lichen soil crusts

    USGS Publications Warehouse

    Belnap, Jayne

    1996-01-01

    CyanobacteriaMichen soil crusts can be a dominant source of nitrogen for cold-desert ecosystems. Effects of surface disturbance from footprints, bike and vehicle tracks on the nitrogenase activity in these crusts was investigated. Surface disturbances reduced nitrogenase activity by 30-100%. Crusts dominated by the cyanobacterium Microcoleus vaginatus on sandy soils were the most susceptible to disruption; crusts on gypsiferous soils were the least susceptible. Crusts where the soil lichen Collema tenax was present showed less immediate effects; however, nitrogenase activity still declined over time. Levels of nitrogenase activity reduction were affected by the degree of soil disruption and whether sites were dominated by cyanobacteria with or without heterocysts. Consequently, anthropogenic surface disturbances may have serious implications for nitrogen budgets in these ecosystems.

  16. Evaluation of non-thermal effects by microwave irradiation in hydrolysis of waste-activated sludge.

    PubMed

    Byun, I G; Lee, J H; Lee, J M; Lim, J S; Park, T J

    2014-01-01

    The activation energy (Ea) for waste-activated sludge (WAS) hydrolysis was compared between microwave irradiation (MW) and conventional heating (CH) methods to evaluate the non-thermal effect of MW. The microwave-assisted hydrolysis of WAS was assumed to follow the first-order kinetics on the basis of volatile suspended solids (VSS) conversion to soluble chemical oxygen demand (SCOD) for different initial VSS concentrations. By comparing the VSS decrement and the SCOD increment between MW and CH at different absolute temperatures of 323, 348 and 373 K, the average ratio of VSS conversion to SCOD was determined to range from 1.42 to 1.64 g SCOD/g VSS. These results corresponded to the theoretical value of 1.69 g SCOD/g VSS based on the assumption that the molecular formula of sludge was C10H19O3N. Consequently, the Ea of the MW-assisted WAS hydrolysis was much lower than that of CH for the same temperature conditions. The non-thermal effect of MW in the hydrolysis of WAS could be identified with the lower Ea than that of CH. PMID:25116507

  17. Efficient Catalytic Activity BiFeO3 Nanoparticles Prepared by Novel Microwave-Assisted Synthesis.

    PubMed

    Zou, Jing; Gong, Wanyun; Ma, Jinai; Li, Lu; Jiang, Jizhou

    2015-02-01

    A novel microwave-assisted sol-gel method was applied to the synthesis of the single-phase perovskite bismuth ferrite nanoparticles (BFO NPs) with the mean diameter ca. 73.7 nm. The morphology was characterized by scanning electron microscope (SEM). The X-ray diffraction (XRD) revealed the rhombohedral phase with R3c space group. The weak ferromagnetic behavior at room temperature was affirmed by the vibrating sample magnetometer (VSM). According to the UV-vis diffuse reflectance spectrum (UV-DSR), the band gap energy of BFO NPs was determined to be 2.18 eV. The electrochemical activity was evaluated by BFO NPs-chitosan-glassy carbon electrode (BFO-CS-GCE) sensor for detection of p-nitrophenol contaminants. The material showed an efficient oxidation catalytic activity by degrading methylene blue (MB). It was found that the degradation efficiency of 10 mg L-1 MB at pH 6.0 was above 90.9% after ultrasound- and microwave-combined-assisted (US-MW) irradiation for 15 min with BFO NPs as catalyst and H202 as oxidant. A possible reaction mechanism of degradation of MB was also proposed.

  18. Low-level microwave irradiation and central cholinergic activity: a dose-response study

    SciTech Connect

    Lai, H.; Carino, M.A.; Horita, A.; Guy, A.W.

    1989-01-01

    Rats were irradiated with circularly polarized, 2,450-MHz pulsed microwaves (2-microseconds pulses, 500 pulses per second (pps)) for 45 min in the cylindrical waveguide system of Guy et al. Immediately after exposure, sodium-dependent high-affinity choline uptake, an indicator of cholinergic activity in neural tissue, was measured in the striatum, frontal cortex, hippocampus, and hypothalamus. The power density was set to give average whole-body specific absorption rates (SAR) of 0.3, 0.45, 0.6, 0.75, 0.9, or 1.2 W/kg to study the dose-response relationship between the rate of microwave energy absorption and cholinergic activity in the different areas of the brain. Decrease in choline uptake was observed in the striatum at a SAR of 0.75 W/kg and above, whereas for the frontal cortex and hippocampus, decreases in choline uptake were observed at a SAR of 0.45 W/kg and above. No significant effect was observed in the hypothalamus at the irradiation power densities studied. The probit analysis was used to determine the SAR50 in each brain area, i.e., the SAR at which 50% of maximum response was elicited. SAR50 values for the striatum, frontal cortex, and hippocampus were 0.65, 0.38, and 0.44 W/kg, respectively.

  19. Evaluation of non-thermal effects by microwave irradiation in hydrolysis of waste-activated sludge.

    PubMed

    Byun, I G; Lee, J H; Lee, J M; Lim, J S; Park, T J

    2014-01-01

    The activation energy (Ea) for waste-activated sludge (WAS) hydrolysis was compared between microwave irradiation (MW) and conventional heating (CH) methods to evaluate the non-thermal effect of MW. The microwave-assisted hydrolysis of WAS was assumed to follow the first-order kinetics on the basis of volatile suspended solids (VSS) conversion to soluble chemical oxygen demand (SCOD) for different initial VSS concentrations. By comparing the VSS decrement and the SCOD increment between MW and CH at different absolute temperatures of 323, 348 and 373 K, the average ratio of VSS conversion to SCOD was determined to range from 1.42 to 1.64 g SCOD/g VSS. These results corresponded to the theoretical value of 1.69 g SCOD/g VSS based on the assumption that the molecular formula of sludge was C10H19O3N. Consequently, the Ea of the MW-assisted WAS hydrolysis was much lower than that of CH for the same temperature conditions. The non-thermal effect of MW in the hydrolysis of WAS could be identified with the lower Ea than that of CH.

  20. Efficient Catalytic Activity BiFeO3 Nanoparticles Prepared by Novel Microwave-Assisted Synthesis.

    PubMed

    Zou, Jing; Gong, Wanyun; Ma, Jinai; Li, Lu; Jiang, Jizhou

    2015-02-01

    A novel microwave-assisted sol-gel method was applied to the synthesis of the single-phase perovskite bismuth ferrite nanoparticles (BFO NPs) with the mean diameter ca. 73.7 nm. The morphology was characterized by scanning electron microscope (SEM). The X-ray diffraction (XRD) revealed the rhombohedral phase with R3c space group. The weak ferromagnetic behavior at room temperature was affirmed by the vibrating sample magnetometer (VSM). According to the UV-vis diffuse reflectance spectrum (UV-DSR), the band gap energy of BFO NPs was determined to be 2.18 eV. The electrochemical activity was evaluated by BFO NPs-chitosan-glassy carbon electrode (BFO-CS-GCE) sensor for detection of p-nitrophenol contaminants. The material showed an efficient oxidation catalytic activity by degrading methylene blue (MB). It was found that the degradation efficiency of 10 mg L-1 MB at pH 6.0 was above 90.9% after ultrasound- and microwave-combined-assisted (US-MW) irradiation for 15 min with BFO NPs as catalyst and H202 as oxidant. A possible reaction mechanism of degradation of MB was also proposed. PMID:26353647

  1. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  2. Earth Observing System/Advanced Microwave SoundingUnit-A (EOS/AMSU-A): Acquisition activities plan

    NASA Technical Reports Server (NTRS)

    Schwantje, Robert

    1994-01-01

    This is the acquisition activities plan for the software to be used in the Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) system. This document is submitted in response to Contract NAS5-323 14 as CDRL 508. The procurement activities required to acquire software for the EOS/AMSU-A program are defined.

  3. Calculations of microwave brightness temperature of rough soil surfaces: Bare field

    NASA Technical Reports Server (NTRS)

    Mo, T.; Schmugge, T. J.; Wang, J. R.

    1985-01-01

    A model for simulating the brightness temperatures of soils with rough surfaces is developed. The surface emissivity of the soil media is obtained by the integration of the bistatic scattering coefficients for rough surfaces. The roughness of a soil surface is characterized by two parameters, the surface height standard deviation sigma and its horizontal correlation length l. The model calculations are compared to the measured angular variations of the polarized brightness temperatures at both 1.4 GHz and 5 GHz frequences. A nonlinear least-squares fitting method is used to obtain the values of delta and l that best characterize the surface roughness. The effect of shadowing is incorporated by introducing a function S(theta), which represents the probability that a point on a rough surface is not shadowed by other parts of the surface. The model results for the horizontal polarization are in excellent agreement with the data. However, for the vertical polarization, some discrepancies exist between the calculations and data, particularly at the 1.4 GHz frequency. Possible causes of the discrepancy are discussed.

  4. Soil organic components distribution in a podzol and the possible relations with the biological soil activities

    NASA Astrophysics Data System (ADS)

    Alvarez-Romero, Marta; Papa, Stefania; Verstraeten, Arne; Curcio, Elena; Cools, Nathalie; Lozano-Garcia, Beatriz; Parras-Alcántara, Luis; Coppola, Elio

    2016-04-01

    This research reports the preliminary results of a study based on the SOC (Soil Organic Carbon) fractionation in a pine forest soil (Pinus nigra). Hyperskeletic Albic Podzol soil (P113005, World Reference Base, 2014), described by the following sequence O-Ah-E-Bh-Bs-Cg, was investigated at Zoniën, Belgium. Total (TOC) and extractable (TEC) soil contents were determined by Italian official method of soil analysis. Different soil C fractions were also determined: Humic Acid Carbon (HAC) and Fulvic Acid Carbon (FAC). Not Humic Carbon (NHC) and Humin Carbon (Huc) fractions were obtained by difference. Along the mineral soil profile, therefore, were also tested some enzymatic activities, such as cellulase, xylanase, laccase and peroxidase, involved in the degradation of the main organic substance components, and dehydrogenase activity, like soil microbial biomass index. The results shows a differential TEC fractions distribution in the soil profile along three fronts of progress: (i) An E leaching horizon of TEC; Bh horizon (humic) of humic acids preferential accumulation, morphologically and analytically recognizable, in which humic are more insoluble that fulvic acids, and predominate over the latter; (ii) horizon Bs (spodic) in which fulvic acids are more soluble that humic acid, and predominate in their turn. All enzyme activities appear to be highest in the most superficial part of the mineral profile and decrease towards the deeper layers with different patterns. It is known that the enzymes production in a soil profile reflects the organic substrates availability, which in turn influences the density and the composition of the microbial population. The deeper soil horizons contain microbial communities adapted and specialized to their environment and, therefore, different from those present on the surface The results suggest that the fractionation technique of TEC is appropriate to interpret the podsolisation phenomenon that is the preferential distribution of

  5. Persistence of biologically active compounds in soil: Final report

    SciTech Connect

    Williams, S.E.

    1987-02-01

    This document describes the long-term effects of soil-applied oil shale process water on the VA fungi and Rhizobium bacteria in a native soil. Techniques include assessing the VA fungal activity at field treatment plots and using treated field soils in a bioassay to determine VA infection and Rhizobium-nodulation potentials four years after process water application. 52 refs., 32 figs., 2 tabs.

  6. New Combined L-band Active/Passive Soil Moisture Retrieval Algorithm Optimized for Argentine Plains

    NASA Astrophysics Data System (ADS)

    Bruscantini, C. A.; Grings, F. M.; Salvia, M.; Ferrazzoli, P.; Karszenbaum, H.

    2015-12-01

    The ability of L-band passive microwave satellite observations to provide soil moisture (mv) measurements is well known. Despite its high sensitivity to near-surface mv, radiometric technology suffers from having a relatively low spatial resolution. Conversely active microwave observations, although their finer resolution, are difficult to be interpreted for mv content due to the confounding effects of vegetation and roughness. There have been and there are strong motivations for the realization of satellite missions that carry passive and active microwave instruments on board. This has also led to important contributions in algorithm development. In this line of work, NASA-CONAE SAC-D/Aquarius mission had on board an L band radiometer and scatterometer. This was followed by the launch of NASA SMAP mission (Soil Moisture Active Passive), as well as several airborne campaigns that provide active and passive measurements. Within this frame, a new combined active/passive mv retrieval algorithm is proposed by deriving an analytical expression of brightness temperature and radar backscattering relation using explicit semi-empirical models. Simple models (i.e. that can be easily inverted and have relatively low amount of ancillary parameters) were selected: ω-τ model (Jackson et al., 1982, Water Resources Research) and radar-only model (Narvekar et al., 2015, IEEE Transactions on Geoscience and Remote Sensing). A major challenge involves coupling the active and passive models to be consistent with observations. Coupling equations can be derived using theoretical active/passive high-order radiative transfer models, such as 3D Numerical Method of Maxwell equations (Zhou et al., 2004, IEEE Transactions on Geoscience and Remote Sensing) and Tor Vergata (Ferrazzoli et al., 1995,Remote Sensing of Environment) models. In this context, different coupling equations can be optimized for different land covers using theoretical forward models with specific parametrization for each

  7. Effects of cadium, zinc and lead on soil enzyme activities.

    PubMed

    Yang, Zhi-xin; Liu, Shu-qing; Zheng, Da-wei; Feng, Sheng-dong

    2006-01-01

    Heavy metal (HM) is a major hazard to the soil-plant system. This study investigated the combined effects of cadium (Cd), zinc (Zn) and lead (Pb) on activities of four enzymes in soil, including calatase, urease, invertase and alkalin phosphatase. HM content in tops of canola and four enzymes activities in soil were analyzed at two months after the metal additions to the soil. Pb was not significantly inhibitory than the other heavy metals for the four enzyme activities and was shown to have a protective role on calatase activity in the combined presence of Cd, Zn and Pb; whereas Cd significantly inhibited the four enzyme activities, and Zn only inhibited urease and calatase activities. The inhibiting effect of Cd and Zn on urease and calatase activities can be intensified significantly by the additions of Zn and Cd. There was a negative synergistic inhibitory effect of Cd and Zn on the two enzymes in the presence of Cd, Zn and Pb. The urease activity was inhibited more by the HM combinations than by the metals alone and reduced approximately 20%-40% of urease activity. The intertase and alkaline phosphatase activities significantly decreased only with the increase of Cd concentration in the soil. It was shown that urease was much more sensitive to HM than the other enzymes. There was a obvious negative correlation between the ionic impulsion of HM in soil, the ionic impulsion of HM in canola plants tops and urease activity. It is concluded that the soil urease activity may be a sensitive tool for assessing additive toxic combination effect on soil biochemical parameters.

  8. Microwave resonant activation in hybrid single-gap/two-gap Josephson tunnel junctions

    NASA Astrophysics Data System (ADS)

    Carabello, Steven; Lambert, Joseph G.; Mlack, Jerome; Dai, Wenqing; Li, Qi; Chen, Ke; Cunnane, Daniel; Xi, X. X.; Ramos, Roberto C.

    2016-09-01

    Microwave resonant activation is a powerful, straightforward technique to study classical and quantum systems, experimentally realized in Josephson junction devices cooled to very low temperatures. These devices typically consist of two single-gap superconductors separated by a weak link. We report the results of the first resonant activation experiments on hybrid thin film Josephson junctions consisting of a multi-gap superconductor (MgB2) and a single-gap superconductor (Pb or Sn). We can interpret the plasma frequency in terms of theories both for conventional and hybrid junctions. Using these models, we determine the junction parameters including critical current, resistance, and capacitance and find moderately high quality factors of Q0˜ 100 for these junctions.

  9. ESA activities in the use of microwaves for the remote sensing of the Earth

    NASA Technical Reports Server (NTRS)

    Maccoll, D.

    1984-01-01

    The program of activities under way in the European Space Agency (ESA) directed towards Remote Sensing of the oceans and troposphere is discussed. The initial project is the launch of a satellite named ERS-1 with a primary payload of microwave values in theee C- and Ku-bands. This payload is discussed in depth. The secondary payload includes precision location experiments and an instrument to measure sea surface temperature, which are described. The important topic of calibration is extensively discussed, and a review of activities directed towards improvements to the instruments for future satellites is presented. Some discussion of the impact of the instrument payload on the spacecraft design follows and the commitment of ESA to the provision of a service of value to the ultimate user is emphasized.

  10. NASA's Soil Moisture Active Passive (SMAP) Observatory

    NASA Technical Reports Server (NTRS)

    Kellogg, Kent; Thurman, Sam; Edelstein, Wendy; Spencer, Michael; Chen, Gun-Shing; Underwood, Mark; Njoku, Eni; Goodman, Shawn; Jai, Benhan

    2013-01-01

    The SMAP mission will produce high-resolution and accurate global maps of soil moisture and its freeze/thaw state using data from a non-imaging synthetic aperture radar and a radiometer, both operating at L-band.

  11. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities.

    PubMed

    Velusamy, Palaniyandi; Su, Chia-Hung; Venkat Kumar, Govindarajan; Adhikary, Shritama; Pandian, Kannaiyan; Gopinath, Subash C B; Chen, Yeng; Anbu, Periasamy

    2016-01-01

    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications. PMID:27304672

  12. Fe-, Co-, and Ni-Loaded Porous Activated Carbon Balls as Lightweight Microwave Absorbents.

    PubMed

    Li, Guomin; Wang, Liancheng; Li, Wanxi; Xu, Yao

    2015-11-16

    Porous activated carbon ball (PACB) composites impregnated with iron, cobalt, nickel and/or their oxides were synthesized through a wet chemistry method involving PACBs as the carrier to load Fe(3+), Co(2+), and Ni(2+) ions and a subsequent carbothermal reduction at different annealing temperatures. The results show that the pyrolysis products of nitrates and/or the products from the carbothermal reduction are embedded in the pores of the PACBs, with different distributions, resulting in different crystalline phases. The as-prepared PACB composites possessed high specific surface areas of 791.2-901.5 m(2)  g(-1) and low densities of 1.1-1.3 g cm(-3). Minimum reflection loss (RL) values of -50.1, -20.6, and -20.4 dB were achieved for Fe-PACB (annealed at 500 °C), Co-PACB (annealed at 800 °C), and Ni-PACB (annealed at 800 °C) composites, respectively. Moreover, the influence of the amount of the magnetic components in the PACB composites on the microwave-absorbing performances was investigated, further confirming that the dielectric loss was the primary contributor to microwave absorption. PMID:26373310

  13. Cellulose/CaCO3 nanocomposites: microwave ionic liquid synthesis, characterization, and biological activity.

    PubMed

    Ma, Ming-Guo; Dong, Yan-Yan; Fu, Lian-Hua; Li, Shu-Ming; Sun, Run-Cang

    2013-02-15

    The purposes of this article are to synthesize the biomass-based hybrid nanocomposites using green method in green solvent and evaluate its biological activity. In this paper, microwave-assisted ionic liquid method is applied to the preparation of cellulose/CaCO(3) hybrid nanocomposites in the alkali extraction cellulose using CaCl(2) and Na(2)CO(3) as starting reactants. The ionic liquid acts as the excellent solvent for absorbing microwave and the dissolution of cellulose, and the synthesis of cellulose/CaCO(3) nanocomposites. The influences of reaction parameters such as the cellulose concentration and the types of solvent on the products were investigated. The increasing cellulose concentration favored the growth of CaCO(3). The morphologies of CaCO(3) changed from polyhedral to cube to particle with increasing cellulose concentration. Moreover, the solvents had an effect on the shape and dispersion of CaCO(3). Cytotoxicity experiments demonstrated that the cellulose/CaCO(3) nanocomposites had good biocompatibility and could be a candidate for the biomedical applications. PMID:23399205

  14. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities

    PubMed Central

    Velusamy, Palaniyandi; Su, Chia-Hung; Venkat Kumar, Govindarajan; Adhikary, Shritama; Pandian, Kannaiyan; Gopinath, Subash C. B.; Chen, Yeng; Anbu, Periasamy

    2016-01-01

    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications. PMID:27304672

  15. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities.

    PubMed

    Velusamy, Palaniyandi; Su, Chia-Hung; Venkat Kumar, Govindarajan; Adhikary, Shritama; Pandian, Kannaiyan; Gopinath, Subash C B; Chen, Yeng; Anbu, Periasamy

    2016-01-01

    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications.

  16. The Soil Moisture Active/Passive Mission (SMAP)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active/Passive (SMAP) mission will deliver global views of soil moisture content and its freeze/thaw state that are critical terrestrial water cycle state variables. Polarized measurements obtained with a shared antenna L-band radar and radiometer system will allow accurate estima...

  17. Measurements of microbial community activities in individual soil macroaggregates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The functional potential of single soil aggregates may provide insights into the localized distribution of microbial activities better than traditional assays conducted on bulk quantities of soil. Thus, we scaled down enzyme assays for ß-glucosidase, N-acetyl-ß-D-glucosaminidase, lipase, and leucine...

  18. Soil Moisture Active Passive Validation Experiment 2008 (SMAPVEX08)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive Mission (SMAP) is currently addressing issues related to the development and selection of soil moisture retrieval algorithms. Several forums have identified a number of specific questions that require supporting field experiments. Addressing these issues as soon as p...

  19. Studying the Activities of Microorganisms in Soil Using Slides.

    ERIC Educational Resources Information Center

    Cullimore, D. Roy; Pipe, Annette E.

    1980-01-01

    Two implanted slide techniques are described by which activity of proteolylic bacteria and the growth of algae in the soil can be readily studied by school students using simple apparatus and methods. Variations are suggested for studying the effects of agricultural practices and environmental conditions on the soil bacteria and algae. (Author/DS)

  20. Purification of bacterial genomic DNA in less than 20 min using chelex-100 microwave: examples from strains of lactic acid bacteria isolated from soil samples.

    PubMed

    Reyes-Escogido, Lourdes; Balam-Chi, Mario; Rodríguez-Buenfil, Ingrid; Valdés, Jesús; Kameyama, Luis; Martínez-Pérez, Francisco

    2010-11-01

    We established a Chelex 100-Microwave method for the purification of bacterial genomic DNA (gDNA) in less than 20 min with high yield and good quality, useful for multiple purposes. It combines Chelex 100, proteinase K, RNase A and heating in a microwave oven. The resulting gDNA was used directly to identify bacterial species of the Order Lactobacillales by means of PCR amplification of their 16S rDNA gene, isolated from sediments on the Yucatan Peninsula, Mexico. This method produced gDNA free of phenolic and protein residual contaminants from 100 of these isolated bacteria. 16S rDNA amplification and sequencing showed Pediococcus acidilactici to prevail in inland lagoons, and Pediococcus pentosaceus, Lactobacillus plantarum, Lactobacillus sp., and Lactobacillus fermentum to be most abundant in the soils of livestock farms. The combination of Chelex 100, enzymes and microwave heating used in the Chelex 100-Microwave method produced large amounts of highly pure gDNA from Gram-positive and Gram-negative bacteria, in less than 20 min.

  1. Optimal spatial sampling techniques for ground truth data in microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Rao, R. G. S.; Ulaby, F. T.

    1977-01-01

    The paper examines optimal sampling techniques for obtaining accurate spatial averages of soil moisture, at various depths and for cell sizes in the range 2.5-40 acres, with a minimum number of samples. Both simple random sampling and stratified sampling procedures are used to reach a set of recommended sample sizes for each depth and for each cell size. Major conclusions from statistical sampling test results are that (1) the number of samples required decreases with increasing depth; (2) when the total number of samples cannot be prespecified or the moisture in only one single layer is of interest, then a simple random sample procedure should be used which is based on the observed mean and SD for data from a single field; (3) when the total number of samples can be prespecified and the objective is to measure the soil moisture profile with depth, then stratified random sampling based on optimal allocation should be used; and (4) decreasing the sensor resolution cell size leads to fairly large decreases in samples sizes with stratified sampling procedures, whereas only a moderate decrease is obtained in simple random sampling procedures.

  2. Investigation of remote sensing techniques of measuring soil moisture

    NASA Technical Reports Server (NTRS)

    Newton, R. W. (Principal Investigator); Blanchard, A. J.; Nieber, J. L.; Lascano, R.; Tsang, L.; Vanbavel, C. H. M.

    1981-01-01

    Major activities described include development and evaluation of theoretical models that describe both active and passive microwave sensing of soil moisture, the evaluation of these models for their applicability, the execution of a controlled field experiment during which passive microwave measurements were acquired to validate these models, and evaluation of previously acquired aircraft microwave measurements. The development of a root zone soil water and soil temperature profile model and the calibration and evaluation of gamma ray attenuation probes for measuring soil moisture profiles are considered. The analysis of spatial variability of soil information as related to remote sensing is discussed as well as the implementation of an instrumented field site for acquisition of soil moisture and meteorologic information for use in validating the soil water profile and soil temperature profile models.

  3. Remediation of hexachlorobenzene contaminated soils by rhamnolipid enhanced soil washing coupled with activated carbon selective adsorption.

    PubMed

    Wan, Jinzhong; Chai, Lina; Lu, Xiaohua; Lin, Yusuo; Zhang, Shengtian

    2011-05-15

    The present study investigates the selective adsorption of hexachlorobenzene (HCB) from rhamnolipid solution by a powdered activated carbon (PAC). A combined soil washing-PAC adsorption technique is further evaluated on the removal of HCB from two soils, a spiked kaolin and a contaminated real soil. PAC at a dosage of 10 g L(-1) could achieve a HCB removal of 80-99% with initial HCB and rhamnolipid concentrations of 1 mg L(-1) and 3.3-25 g L(-1), respectively. The corresponding adsorptive loss of rhamnolipid was 8-19%. Successive soil washing-PAC adsorption tests (new soil sample was subjected to washing for each cycle) showed encouraging leaching and adsorption performances for HCB. When 25 g L(-1) rhamnolipid solution was applied, HCB leaching from soils was 55-71% for three cycles of washing, and HCB removal by PAC was nearly 90%. An overall 86% and 88% removal of HCB were obtained for kaolin and real soil, respectively, by using the combined process to wash one soil sample for twice. Our investigation suggests that coupling AC adsorption with biosurfactant-enhanced soil washing is a promising alternative to remove hydrophobic organic compounds from soils. PMID:21397398

  4. Soil biological activity at European scale - two calculation concepts

    NASA Astrophysics Data System (ADS)

    Krüger, Janine; Rühlmann, Jörg

    2014-05-01

    The CATCH-C project aims to identify and improve the farm-compatibility of Soil Management Practices including to promote productivity, climate change mitigation and soil quality. The focus of this work concentrates on turnover conditions for soil organic matter (SOM). SOM is fundamental for the maintenance of quality and functions of soils while SOM storage is attributed a great importance in terms of climate change mitigation. The turnover conditions depend on soil biological activity characterized by climate and soil properties. To assess the turnover conditions two model concepts are applied: (I) Biological active time (BAT) regression approach derived from CANDY model (Franko & Oelschlägel 1995) expresses the variation of air temperature, precipitation and soil texture as a timescale and an indicator of biological activity for soil organic matter (SOM) turnover. (II) Re_clim parameter within the Introductory Carbon Balance Model (Andrén & Kätterer 1997) states the soil temperature and soil water to estimate soil biological activity. The modelling includes two strategies to cover the European scale and conditions. BAT was calculated on a 20x20 km grid basis. The European data sets of precipitation and air temperature (time period 1901-2000, monthly resolution), (Mitchell et al. 2004) were used to derive long-term averages. As we focus on agricultural areas we included CORINE data (2006) to extract arable land. The resulting BATs under co-consideration of the main soil textures (clay, silt, sand and loam) were investigated per environmental zone (ENZs, Metzger et al. 2005) that represents similar conditions for precipitation, temperature and relief to identify BAT ranges and hence turnover conditions for each ENZ. Re_clim was quantified by climatic time series of more than 250 weather stations across Europe presented by Klein Tank et al. (2002). Daily temperature, precipitation and potential evapotranspiration (maximal thermal extent) were used to calculate

  5. Soil biological activity as affected by tillage intensity

    NASA Astrophysics Data System (ADS)

    Gajda, A. M.; Przewłoka, B.

    2012-02-01

    The effect of tillage intensity on changes of microbiological activity and content of particulate organic matter in soil under winter wheat duirng 3 years was studied. Microbial response related to the tillage-induced changes in soil determined on the content of biomass C and N, the rate of CO2 evolution, B/F ratio, the activity of dehydrogenases, acid and alkaline phosphatases, soil C/N ratio and microbial biomass C/N ratio confirmed the high sensitivity of soil microbial populations to the tillage system applied. After three year studies, the direct sowing system enhanced the increase of labile fraction of organic matter content in soil. There were no significant changes in the labile fraction quantity observed in soil under conventional tillage. Similar response related to the tillage intensity was observed in particulate organic matter quantities expressed as a percentage of total organic matter in soil. A high correlation coefficients calculated between contents of soil microbial biomass C and N, particulate organic matter and potentially mineralizable N, and the obtained yields of winter wheat grown on experimental fields indicated on a high importance of biological quality of status of soil for agricultural crop production.

  6. SMOS Soil moisture Cal val activities

    NASA Astrophysics Data System (ADS)

    Kerr, Y.; Mialon, A.; Bitar, A. Al; Leroux, D.; Richaume, P.; Gruhier, C.; Berthon, L.; Novello, N.; Rudiger, C.; Bircher, S.; Wigneron, J. P.; Ferrazzoli, P.; Rahmoune, R.

    2012-04-01

    SMOS, successfully launched on November 2, 2009, uses an L Band radiometer with aperture synthesis to achieve a good spatial resolution.. It was developed and made under the leadership of the European Space Agency (ESA) as an Earth Explorer Opportunity mission. It is a joint program with the Centre National d'Etudes Spatiales (CNES) in France and the Centro para el Desarrollo Tecnologico Industrial (CDTI) in Spain. SMOS carries a single payload, an L band 2D interferometric,radiometer in the 1400-1427 MHz protected band. This wavelength penetrates well through the vegetation and with the atmosphere being almost transparent, it enables us to infer both soil moisture and vegetation water content. SMOS achieves an unprecedented spatial resolution of 50 km at L-band maximum (43 km on average) with multi angular-dual polarized (or fully polarized) brightness temperatures over the globe and with a revisit time smaller than 3 days. SMOS is now acquiring data and has undergone the commissioning phase. The data quality exceeds what was expected, showing very good sensitivity and stability. The data is however very much impaired by man made emission in the protected band, leading to degraded measurements in several areas including parts of Europe and China. Many different international teams are now performing cal val activities in various parts of the world, with notably large field campaigns either on the long time scale or over specific targets to address the specific issues. These campaigns take place in various parts of the world and in different environments, from the Antarctic plateau to the deserts, from rain forests to deep oceans. SMOS is a new sensor, making new measurements and paving the way for new applications. It requires a detailed analysis of the data so as to validate both the approach and the quality of the retrievals, and allow for monitoring and the evolution of the sensor. To achieve such goals it is very important to link efficiently ground

  7. Analysis of soil moisture retrieval from airborne passive/active L-band sensor measurements in SMAPVEX 2012

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Song, Hongting; Tan, Lei; Li, Yinan; Li, Hao

    2014-11-01

    Soil moisture is a key component in the hydrologic cycle and climate system. It is an important input parameter for many hydrologic and meteorological models. NASA'S upcoming Soil Moisture Active Passive (SMAP) mission, to be launched in October 2014, will address this need by utilizing passive and active microwave measurements at L-band, which will penetrate moderately dense canopies. In preparation for the SMAP mission, the Soil Moisture Validation Experiment 2012 (SMAPVEX12) was conducted from 6 June to 17 July 2012 in the Carment-Elm Creek area in Manitoba, Canada. Over a period of six weeks diverse land cover types ranging from agriculture over pasture and grassland to forested sites were re-visited several times a week. The Passive/Active L-band Sensor (PALS) provides radiometer products, vertically and horizontally polarized brightness temperatures, and radar products. Over the past two decades, successful estimation of soil moisture has been accomplished using passive and active L-band data. However, remaining uncertainties related to surface roughness and the absorption, scattering, and emission by vegetation must be resolved before soil moisture retrieval algorithms can be applied with known and acceptable accuracy using satellite observations. This work focuses on analyzing the Passive/Active L-band Sensor observations of sites covered during SMAPVEX12, investigating the observed data, parameterizing vegetation covered surface model, modeling inversion algorithm and analyzing observed soil moisture changes over the time period of six weeks. The data and analysis results from this study are aimed at increasing the accuracy and range of validity of SMAP soil moisture retrievals via enhancing the accuracy for soil moisture retrieval.

  8. Effects of low power microwave radiation on biological activity of Collagenase enzyme and growth rate of S. Cerevisiae yeast

    NASA Astrophysics Data System (ADS)

    Alsuhaim, Hamad S.; Vojisavljevic, Vuk; Pirogova, E.

    2013-12-01

    Recently, microwave radiation, a type/subset of non-ionizing electromagnetic radiation (EMR) has been widely used in industry, medicine, as well as food technology and mobile communication. Use of mobile phones is rapidly growing. Four years from now, 5.1 billion people will be mobile phone users around the globe - almost 1 billion more mobile users than the 4.3 billion people worldwide using them now. Consequently, exposure to weak radiofrequency/microwave radiation generated by these devices is markedly increasing. Accordingly, public concern about potential hazards on human health is mounting [1]. Thermal effects of radiofrequency/microwave radiation are very well-known and extensively studied. Of particular interest are non-thermal effects of microwave exposures on biological systems. Nonthermal effects are described as changes in cellular metabolism caused by both resonance absorption and induced EMR and are often accompanied by a specific biological response. Non-thermal biological effects are measurable changes in biological systems that may or may not be associated with adverse health effects. In this study we studied non-thermal effects of low power microwave exposures on kinetics of L-lactate dehydrogenase enzyme and growth rate of yeast Saccharomyces Cerevisiae strains type II. The selected model systems were continuously exposed to microwave radiation at the frequency of 968MHz and power of 10dBm using the designed and constructed (custom made) Transverse Electro-Magnetic (TEM) cell [2]. The findings reveal that microwave radiation at 968MHz and power of 10dBm inhibits L-lactate dehydrogenase enzyme activity by 26% and increases significantly (15%) the proliferation rate of yeast cells.

  9. Soil Properties, Nutrient Dynamics, and Soil Enzyme Activities Associated with Garlic Stalk Decomposition under Various Conditions

    PubMed Central

    Han, Xu; Cheng, Zhihui; Meng, Huanwen

    2012-01-01

    The garlic stalk is a byproduct of garlic production and normally abandoned or burned, both of which cause environmental pollution. It is therefore appropriate to determine the conditions of efficient decomposition, and equally appropriate to determine the impact of this decomposition on soil properties. In this study, the soil properties, enzyme activities and nutrient dynamics associated with the decomposition of garlic stalk at different temperatures, concentrations and durations were investigated. Stalk decomposition significantly increased the values of soil pH and electrical conductivity. In addition, total nitrogen and organic carbon concentration were significantly increased by decomposing stalks at 40°C, with a 5∶100 ratio and for 10 or 60 days. The highest activities of sucrase, urease and alkaline phosphatase in soil were detected when stalk decomposition was performed at the lowest temperature (10°C), highest concentration (5∶100), and shortest duration (10 or 20 days). The evidence presented here suggests that garlic stalk decomposition improves the quality of soil by altering the value of soil pH and electrical conductivity and by changing nutrient dynamics and soil enzyme activity, compared to the soil decomposition without garlic stalks. PMID:23226411

  10. ACTIVE SOIL DEPRESSURIZATION (ASD) DEMONSTRATION IN A LARGE BUILDING

    EPA Science Inventory

    The report gives results of an evaluation of the feasibility of implementing radon resistant construction techniques -- especially active soil depressurization (ASD) -- in new large buildings in Florida. Indoor radon concentrations and radon entry were monitored in a finished bui...

  11. Effect of elevated CO2 on chlorpyriphos degradation and soil microbial activities in tropical rice soil.

    PubMed

    Adak, Totan; Munda, Sushmita; Kumar, Upendra; Berliner, J; Pokhare, Somnath S; Jambhulkar, N N; Jena, M

    2016-02-01

    Impact of elevated CO2 on chlorpyriphos degradation, microbial biomass carbon, and enzymatic activities in rice soil was investigated. Rice (variety Naveen, Indica type) was grown under four conditions, namely, chambered control, elevated CO2 (550 ppm), elevated CO2 (700 ppm) in open-top chambers and open field. Chlorpyriphos was sprayed at 500 g a.i. ha(-1) at maximum tillering stage. Chlorpyriphos degraded rapidly from rice soils, and 88.4% of initially applied chlorpyriphos was lost from the rice soil maintained under elevated CO2 (700 ppm) by day 5 of spray, whereas the loss was 80.7% from open field rice soil. Half-life values of chlorpyriphos under different conditions ranged from 2.4 to 1.7 days with minimum half-life recorded with two elevated CO2 treatments. Increased CO2 concentration led to increase in temperature (1.2 to 1.8 °C) that played a critical role in chlorpyriphos persistence. Microbial biomass carbon and soil enzymatic activities specifically, dehydrogenase, fluorescien diacetate hydrolase, urease, acid phosphatase, and alkaline phosphatase responded positively to elevated CO2 concentrations. Generally, the enzyme activities were highly correlated with each other. Irrespective of the level of CO2, short-term negative influence of chlorpyriphos was observed on soil enzymes till day 7 of spray. Knowledge obtained from this study highlights that the elevated CO2 may negatively influence persistence of pesticide but will have positive effects on soil enzyme activities. PMID:26790432

  12. Effect of elevated CO2 on chlorpyriphos degradation and soil microbial activities in tropical rice soil.

    PubMed

    Adak, Totan; Munda, Sushmita; Kumar, Upendra; Berliner, J; Pokhare, Somnath S; Jambhulkar, N N; Jena, M

    2016-02-01

    Impact of elevated CO2 on chlorpyriphos degradation, microbial biomass carbon, and enzymatic activities in rice soil was investigated. Rice (variety Naveen, Indica type) was grown under four conditions, namely, chambered control, elevated CO2 (550 ppm), elevated CO2 (700 ppm) in open-top chambers and open field. Chlorpyriphos was sprayed at 500 g a.i. ha(-1) at maximum tillering stage. Chlorpyriphos degraded rapidly from rice soils, and 88.4% of initially applied chlorpyriphos was lost from the rice soil maintained under elevated CO2 (700 ppm) by day 5 of spray, whereas the loss was 80.7% from open field rice soil. Half-life values of chlorpyriphos under different conditions ranged from 2.4 to 1.7 days with minimum half-life recorded with two elevated CO2 treatments. Increased CO2 concentration led to increase in temperature (1.2 to 1.8 °C) that played a critical role in chlorpyriphos persistence. Microbial biomass carbon and soil enzymatic activities specifically, dehydrogenase, fluorescien diacetate hydrolase, urease, acid phosphatase, and alkaline phosphatase responded positively to elevated CO2 concentrations. Generally, the enzyme activities were highly correlated with each other. Irrespective of the level of CO2, short-term negative influence of chlorpyriphos was observed on soil enzymes till day 7 of spray. Knowledge obtained from this study highlights that the elevated CO2 may negatively influence persistence of pesticide but will have positive effects on soil enzyme activities.

  13. Bio-based phenols and fuel production from catalytic microwave pyrolysis of lignin by activated carbons.

    PubMed

    Bu, Quan; Lei, Hanwu; Wang, Lu; Wei, Yi; Zhu, Lei; Zhang, Xuesong; Liu, Yupeng; Yadavalli, Gayatri; Tang, Juming

    2014-06-01

    The aim of this study is to explore catalytic microwave pyrolysis of lignin for renewable phenols and fuels using activated carbon (AC) as a catalyst. A central composite experimental design (CCD) was used to optimize the reaction condition. The effects of reaction temperature and weight hourly space velocity (WHSV, h(-1)) on product yields were investigated. GC/MS analysis showed that the main chemical compounds of bio-oils were phenols, guaiacols, hydrocarbons and esters, most of which were ranged from 71% to 87% of the bio-oils depending on different reaction conditions. Bio-oils with high concentrations of phenol (45% in the bio-oil) were obtained. The calorific value analysis revealed that the high heating values (HHV) of the lignin-derived biochars were from 20.4 to 24.5 MJ/kg in comparison with raw lignin (19 MJ/kg). The reaction mechanism of this process was analyzed. PMID:24747393

  14. Fast and efficient benign oxidation of native wheat starch by acidic bromate under microwave activation.

    PubMed

    Komulainen, Sanna; Diaz, Estibaliz; Pursiainen, Jouni; Lajunen, Marja

    2013-02-15

    A simple oxidation of starch in water by bromate was substantially improved by microwave activation. In the oxidation of native wheat starch its advantages were the highly reduced need of oxidant from 1.05 to 0.1-0.25 equiv, shortened reaction time from 2 to 5.5h to 10 min, and moderate or high yields of oxidation content (degree of oxidation 0.22-0.55) of water-soluble products. Acidic treatment before the oxidation reaction promoted the carbonyl formation yielding higher contents of oxidized products (degree of oxidation 0.43-0.55) than without it (degree of oxidation 0.22-0.28). The pretreatment did not have similar effect on the amount of carboxyl groups. The oxidation route of acidic bromate oxidation of starch is discussed.

  15. Microwave acid digestion and preconcentration neutron activation analysis of biological and diet samples for iodine.

    PubMed

    Rao, R R; Chatt, A

    1991-07-01

    A simple preconcentration neutron activation analysis (PNAA) method has been developed for the determination of low levels of iodine in biological and nutritional materials. The method involves dissolution of the samples by microwave digestion in the presence of acids in closed Teflon bombs and preconcentration of total iodine, after reduction to iodide with hydrazine sulfate, by coprecipitation with bismuth sulfide. The effects of different factors such as acidity, time for complete precipitation, and concentrations of bismuth, sulfide, and diverse ions on the quantitative recovery of iodide have been studied. The absolute detection limit of the PNAA method is 5 ng of iodine. Precision of measurement, expressed in terms of relative standard deviation, is about 5% at 100 ppb and 10% at 20 ppb levels of iodine. The PNAA method has been applied to several biological reference materials and total diet samples. PMID:1897721

  16. Snowfall estimation from space-borne active and passive microwave observations

    NASA Astrophysics Data System (ADS)

    Grecu, M.

    2006-12-01

    In this study, an algorithm to estimate snowfall from passive and active microwave observations is formulated and analyzed using both simulated and real observations. A high resolution cloud resolving model (CRM) is used to simulate a snowfall event and space-borne radar and radiometer observations similar to those of the future Global Precipitation Mission (GPM) are synthesized from the CRM data. Then a combined radar- radiometer similar to that of Grecu et al. (2004) is applied to the synthetic data. It is found that in spite of dual-frequency radar and millimeter-wave radiometer observations, snow retrievals from GPM-like observations are subject to various uncertainties. Simple parameterizations are devised to minimize these uncertainties. The combined radar-radiometer, modified to account for differences between the instruments deployed in Wakasa Bay Experiment and the GPM instruments, is applied to real data from the Wakasa Bay Experiment. Results show the algorithm's feasibility.

  17. Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity.

    PubMed

    Yuan, Yuan; Macquarrie, Duncan

    2015-09-20

    Sulfated polysaccharides (fucoidan) from brown seaweed Ascophyllum nodosum were extracted by microwave assisted extraction (MAE) technology. Different conditions of temperature (90-150°C), extraction time (5-30 min) were evaluated and optimal fucoidan yield was 16.08%, obtained from 120°C for 15 min's extraction. Compositional analysis, GPC, HPAEC and IR analysis were employed for characterization of extracted sulfated polysaccharides. Fucose was the main monosaccharide of fucoidan extracted at 90°C while glucuronic acid was the main monosaccharide of fucoidan extracted at 150°C. Both the molecular weight and sulfate content of extracted fucoidan increased with decreasing extraction temperature. All fucoidans exhibited antioxidant activities as measured by DPPH scavenging and reducing power, among which fucoidan extracted at 90°C was highest. This study shows that MAE is an efficient technology to extract sulfated polysaccharides from seaweed and Ascophyllum nodosum could potentially be a resource for natural antioxidants. PMID:26050894

  18. Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity.

    PubMed

    Yuan, Yuan; Macquarrie, Duncan

    2015-09-20

    Sulfated polysaccharides (fucoidan) from brown seaweed Ascophyllum nodosum were extracted by microwave assisted extraction (MAE) technology. Different conditions of temperature (90-150°C), extraction time (5-30 min) were evaluated and optimal fucoidan yield was 16.08%, obtained from 120°C for 15 min's extraction. Compositional analysis, GPC, HPAEC and IR analysis were employed for characterization of extracted sulfated polysaccharides. Fucose was the main monosaccharide of fucoidan extracted at 90°C while glucuronic acid was the main monosaccharide of fucoidan extracted at 150°C. Both the molecular weight and sulfate content of extracted fucoidan increased with decreasing extraction temperature. All fucoidans exhibited antioxidant activities as measured by DPPH scavenging and reducing power, among which fucoidan extracted at 90°C was highest. This study shows that MAE is an efficient technology to extract sulfated polysaccharides from seaweed and Ascophyllum nodosum could potentially be a resource for natural antioxidants.

  19. Microwave acid digestion and preconcentration neutron activation analysis of biological and diet samples for iodine.

    PubMed

    Rao, R R; Chatt, A

    1991-07-01

    A simple preconcentration neutron activation analysis (PNAA) method has been developed for the determination of low levels of iodine in biological and nutritional materials. The method involves dissolution of the samples by microwave digestion in the presence of acids in closed Teflon bombs and preconcentration of total iodine, after reduction to iodide with hydrazine sulfate, by coprecipitation with bismuth sulfide. The effects of different factors such as acidity, time for complete precipitation, and concentrations of bismuth, sulfide, and diverse ions on the quantitative recovery of iodide have been studied. The absolute detection limit of the PNAA method is 5 ng of iodine. Precision of measurement, expressed in terms of relative standard deviation, is about 5% at 100 ppb and 10% at 20 ppb levels of iodine. The PNAA method has been applied to several biological reference materials and total diet samples.

  20. NASA's Potential Contributions to Avalanche Forecasting Using Active and Passive Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir

    2007-01-01

    This Candidate Solution is based on using active and passive microwave measurements acquired from NASA satellites to improve USDA (U.S. Department of Agriculture) Forest Service forecasting of avalanche danger. Regional Avalanche Centers prepare avalanche forecasts using ground measurements of snowpack and mountain weather conditions. In this Solution, range of the in situ observations is extended by adding remote sensing measurements of snow depth, snow water equivalent, and snowfall rate acquired by satellite missions that include Aqua, CloudSat, future GPM (Global Precipitation Measurement), and the proposed SCLP (Snow and Cold Land Processes). Measurements of snowpack conditions and time evolution are improved by combining the in situ and satellite observations with a snow model. Recurring snow observations from NASA satellites increase accuracy of avalanche forecasting, which helps the public and the managers of public facilities make better avalanche safety decisions.

  1. Role of the conducting layer substrate on TiO2 nucleation when using microwave activated chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Zumeta, I.; Espinosa, R.; Ayllón, J. A.; Vigil, E.

    2002-12-01

    Nanostructured TiO2 is used in novel dye sensitized solar cells. Because of their interaction with light, thin TiO2 films are also used as coatings for self-cleaning glasses and tiles. Microwave activated chemical bath deposition represents a simple and cost-effective way to obtain nanostructured TiO2 films. It is important to study, in this technique, the role of the conducting layer used as the substrate. The influence of microwave-substrate interactions on TiO2 deposition is analysed using different substrate positions, employing substrates with different conductivities, and also using different microwave radiation powers for film deposition. We prove that a common domestic microwave oven with a large cavity and inhomogeneous radiation field can be used with equally satisfactory results. The transmittance spectra of the obtained films were studied and used to analyse film thickness and to obtain gap energy values. The results, regarding different indium-tin oxide resistivities and different substrate positions in the oven cavity, show that the interaction of the microwave field with the conducting layer is determinant in layer deposition. It has also been found that film thickness increases with the power of the applied radiation while the gap energies of the TiO2 films decrease approaching the 3.2 eV value reported for bulk anatase. This indicates that these films are not crystalline and it agrees with x-ray spectra that do not reveal any peak.

  2. Soil microbial activities beneath Stipa tenacissima L. and in surrounding bare soil

    NASA Astrophysics Data System (ADS)

    Novosadová, I.; Ruiz Sinoga, J. D.; Záhora, J.; Fišerová, H.

    2010-05-01

    Open steppes dominated by Stipa tenacissima L. constitute one of the most representative ecosystems of the semi-arid zones of Eastern Mediterranean Basin (Iberian Peninsula, North of Africa). These steppes show a higher degree of variability in composition and structure. Ecosystem functioning is strongly related to the spatial pattern of grass tussocks. Soils beneath S. tenacissima grass show higher fertility and improved microclimatic conditions, favouring the formation of "resource islands" (Maestre et al., 2007). On the other hand in "resource islands" and in surrounding bare soil exists the belowground zone of influence. The competition for water and resources between plants and microorganisms is strong and mediated trough an enormous variety of exudates and resource depletion intended to regulate soil microbial communities in the rhizosphere, control herbivory, encourage beneficial symbioses, and change chemical and physical properties in soil (Pugnaire et Armas, 2008). Secondary compounds and allelopathy restrict other species growth and contribute to patchy plant distribution. Active root segregation affects not only neighbourś growth but also soil microbial activities. The objective of this study was to assess the effect of Stipa tenacissima on the key soil microbial activities under controlled incubation conditions (basal and potential respiration; net nitrogen mineralization). The experimental plots were located in the province Almería in Sierra de los Filabres Mountains near the village Gérgal (southeast Spain) in the small catchment which is situated between 1090 - 1165 m a.s.l. The area with extent of 82 000 m2 is affected by soil degradation. The climate is semiarid Mediterranean. The mean annual rainfall is of about 240 mm mostly concentrated in autumn and spring. The mean annual temperature is 13.9° C. The studied soil has a loam to sandy clay texture and is classified as Lithosol (FAO-ISRIC and ISSS, 1998). The vegetation of these areas is an

  3. Fate and activity of microorganisms introduced into soil.

    PubMed Central

    van Veen, J A; van Overbeek, L S; van Elsas, J D

    1997-01-01

    Introduced microorganisms are potentially powerful agents for manipulation of processes and/or components in soil. Fields of application include enhancement of crop growth, protection of crops against plant-pathogenic organisms, stimulation of biodegradation of xenobiotic compounds (bioaugmentation), and improvement of soil structure. Inoculation of soils has already been applied for decades, but it has often yielded inconsistent or disappointing results. This is caused mainly by a commonly observed rapid decline in inoculant population activity following introduction into soil, i.e., a decline of the numbers of inoculant cells and/or a decline of the (average) activity per cell. In this review, we discuss the available information on the effects of key factors that determine the fate and activity of microorganisms introduced into soil, with emphasis on bacteria. The factors addressed include the physiological status of the inoculant cells, the biotic and abiotic interactions in soil, soil properties, and substrate availability. Finally, we address the possibilities available to effectively manipulate the fate and activity of introduced microorganisms in relation to the main areas of their application. PMID:9184007

  4. Phenolic Content and Antioxidant Activity of Extracts from Whole Buckwheat (Fagopyrum esculentum Moench) With or Without Microwave Irradiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to evaluate the effectiveness of extracting phenolic compounds and antioxidant activity from buckwheat with water, 50% aqueous ethanol, or 100% ethanol using microwave irradiation or a water bath for 15 min at various temperatures (23 – 150 °C). The phenolic content of...

  5. Spatial Variations of Soil Microbial Activities in Saline Groundwater-Irrigated Soil Ecosystem

    NASA Astrophysics Data System (ADS)

    Chen, Li-Juan; Feng, Qi; Li, Chang-Sheng; Song, You-Xi; Liu, Wei; Si, Jian-Hua; Zhang, Bao-Gui

    2016-05-01

    Spatial variations of soil microbial activities and its relationship with environmental factors are very important for estimating regional soil ecosystem function. Based on field samplings in a typical saline groundwater-irrigated region, spatial variations of soil microbial metabolic activities were investigated. Combined with groundwater quality analysis, the relationship between microbial activities and water salinity was also studied. The results demonstrated that moderate spatial heterogeneity of soil microbial activities presented under the total dissolved solids (TDS) of groundwater ranging from 0.23 to 12.24 g L-1. Groundwater salinity and microbial activities had almost opposite distribution characteristics: slight saline water was mainly distributed in west Baqu and south Quanshan, while severe saline and briny water were dominant in east Baqu and west Huqu; however, total AWCD was higher in the east-center and southwest of Baqu and east Huqu, while it was lower in east Baqu and northwest Huqu. The results of correlation analyses demonstrated that high-salinity groundwater irrigation had significantly adverse effects on soil microbial activities. Major ions Ca2+, Mg2+, Cl_, and SO4 2- in groundwater decisively influenced the results. Three carbon sources, carbohydrates, amines, and phenols, which had minor utilization rates in all irrigation districts, were extremely significantly affected by high-salinity groundwater irrigation. The results presented here offer an approach for diagnosing regional soil ecosystem function changes under saline water irrigation.

  6. Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics

    SciTech Connect

    Shevchenko, Vladimir F.; Freethy, Simon J.; Huang, Billy K.

    2014-08-21

    A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post-processing mode. SAMI can scan over 16 pre-programmed frequencies in the range of 10-35GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a 'passive' imaging of plasma emission and also an 'active' imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structures. Both modes of operation show good performance in fusion plasma experiments on Mega Amp Spherical Tokamak (MAST). We have obtained the first ever 2-D images of BXO mode conversion windows. With active probing, first ever turbulence velocity maps have been obtained. We present an overview of the diagnostic and discuss recent results. In contrast to quasi-optical microwave imaging systems SAMI requires neither big aperture viewing ports nor large 2-D detector arrays to achieve the desired imaging resolution. The number of effective 'pixels' of the synthesized image is proportional to the number of receiving antennas squared. Thus only a small number of optimised antennas is sufficient for the majority of applications. Possible implementation of SAMI on ITERand DEMO is discussed.

  7. Retrieval of Precipitation Profiles from Multiresolution, Multifrequency, Active and Passive Microwave Observations

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Olson, William S.; Anagnostou, Emmanouil N.

    2003-01-01

    In this study, a technique for estimating vertical profiles of precipitation from multifrequency, multiresolution active and passive microwave observations is investigated. The technique is applicable to the Tropical Rainfall Measuring Mission (TRMM) observations and it is based on models that simulate high-resolution brightness temperatures as functions of observed reflectivity profiles and a parameter related to the rain drop-size-distribution. The modeled high-resolution brightness temperatures are used to determine normalized brightness temperature polarizations at the microwave radiometer resolution. An optimal estimation procedure is employed to minimize the differences between the simulated and observed normalized polarizations by adjusting the drop-size-distribution parameter. The impact of other unknowns that are not independent variables in the optimal estimation but affect the retrievals is minimized through statistical parameterizations derived from cloud model simulations. The retrieval technique is investigated using TRMM observations collected during the Kwajalein Experiment (KWAJEX). These observations cover an area extending from 5 deg to deg N latitude and 166 deg to 172 deg E longitude from July to September 1999, and are coincident with various ground-based observations, facilitating a detailed analysis of the retrieved precipitation. Using the method developed in this study, precipitation estimates consistent with both the passive and active TRMM observations are obtained. Various parameters characterizing these estimates, i.e. the rain rate, the precipitation water content, the drop-size-distribution intercept, and the mass weighted mean drop diameter, are in good qualitative agreement with independent experimental and theoretical estimates. Combined rain estimates are in general higher than the official TRMM Precipitation Radar (PR) only estimates for the area and the period considered in the study. Ground-based precipitation estimates

  8. Retrieval of Precipitation Profiles from Multiresolution, Multifrequency Active and Passive Microwave Observations.

    NASA Astrophysics Data System (ADS)

    Grecu, Mircea; Olson, William S.; Anagnostou, Emmanouil N.

    2004-04-01

    In this study, a technique for estimating vertical profiles of precipitation from multifrequency, multiresolution active and passive microwave observations is investigated. The technique is applicable to the Tropical Rainfall Measuring Mission (TRMM) observations, and it is based on models that simulate high-resolution brightness temperatures as functions of observed reflectivity profiles and a parameter related to the raindrop size distribution. The modeled high-resolution brightness temperatures are used to determine normalized brightness temperature polarizations at the microwave radiometer resolution. An optimal estimation procedure is employed to minimize the differences between the simulated and observed normalized polarizations by adjusting the drop size distribution parameter. The impact of other unknowns that are not independent variables in the optimal estimation, but affect the retrievals, is minimized through statistical parameterizations derived from cloud model simulations. The retrieval technique is investigated using TRMM observations collected during the Kwajalein Experiment (KWAJEX). These observations cover an area extending from 5° to 12°N latitude and from 166° to 172°E longitude from July to September 1999 and are coincident with various ground-based observations, facilitating a detailed analysis of the retrieved precipitation. Using the method developed in this study, precipitation estimates consistent with both the passive and active TRMM observations are obtained. Various parameters characterizing these estimates, that is, the rain rate, precipitation water content, drop size distribution intercept, and the mass- weighted mean drop diameter, are in good qualitative agreement with independent experimental and theoretical estimates. Combined rain estimates are, in general, higher than the official TRMM precipitation radar (PR)-only estimates for the area and the period considered in the study. Ground-based precipitation estimates, derived

  9. Active and total prokaryotic communities in dryland soils.

    PubMed

    Angel, Roey; Pasternak, Zohar; Soares, M Ines M; Conrad, Ralf; Gillor, Osnat

    2013-10-01

    The relationship between total and metabolically active soil microbial communities can change drastically with environment. In dry lands, water availability is a key factor limiting cells' activity. We surveyed the diversity of total and active Archaea and Bacteria in soils ranging from arid desert to Mediterranean forests. Thirty composited soil samples were retrieved from five sites along a precipitation gradient, collected from patches located between and under the dominant perennial plant at each site. Molecular fingerprinting was used to site-sort the communities according of their 16S rRNA genes (total community) and their rRNA (active community) amplified by PCR or RT-PCR from directly extracted soil nucleic acids. The differences between soil samples were much higher in total rather than active microbial communities: differences in DNA fingerprints between sites were 1.2 and 2.5 times higher than RNA differences (for Archaea and Bacteria, respectively). Patch-type discrepancies between DNA fingerprints were on average 2.7-19.7 times greater than RNA differences. Moreover, RNA-based community patterns were highly correlated with soil moisture but did not necessarily follow spatial distribution pattern. Our results suggest that in water-limited environments, the spatial patterns obtained by the analysis of active communities are not as robust as those drawn from total communities. PMID:23730745

  10. Active and total prokaryotic communities in dryland soils.

    PubMed

    Angel, Roey; Pasternak, Zohar; Soares, M Ines M; Conrad, Ralf; Gillor, Osnat

    2013-10-01

    The relationship between total and metabolically active soil microbial communities can change drastically with environment. In dry lands, water availability is a key factor limiting cells' activity. We surveyed the diversity of total and active Archaea and Bacteria in soils ranging from arid desert to Mediterranean forests. Thirty composited soil samples were retrieved from five sites along a precipitation gradient, collected from patches located between and under the dominant perennial plant at each site. Molecular fingerprinting was used to site-sort the communities according of their 16S rRNA genes (total community) and their rRNA (active community) amplified by PCR or RT-PCR from directly extracted soil nucleic acids. The differences between soil samples were much higher in total rather than active microbial communities: differences in DNA fingerprints between sites were 1.2 and 2.5 times higher than RNA differences (for Archaea and Bacteria, respectively). Patch-type discrepancies between DNA fingerprints were on average 2.7-19.7 times greater than RNA differences. Moreover, RNA-based community patterns were highly correlated with soil moisture but did not necessarily follow spatial distribution pattern. Our results suggest that in water-limited environments, the spatial patterns obtained by the analysis of active communities are not as robust as those drawn from total communities.

  11. [Effects of different fertilizer application on soil active organic carbon].

    PubMed

    Zhang, Rui; Zhang, Gui-Long; Ji, Yan-Yan; Li, Gang; Chang, Hong; Yang, Dian-Lin

    2013-01-01

    The variation characteristics of the content and components of soil active organic carbon under different fertilizer application were investigated in samples of calcareous fluvo-aquic soil from a field experiment growing winter wheat and summer maize in rotation in the North China Plain. The results showed that RF (recommended fertilization), CF (conventional fertilization) and NPK (mineral fertilizer alone) significantly increased the content of soil dissolved organic carbon and easily oxidized organic carbon by 24.92-38.63 mg x kg(-1) and 0.94-0.58 mg x kg(-1) respectively compared to CK (unfertilized control). The soil dissolved organic carbon content under OM (organic manure) increased greater than those under NPK and single fertilization, soil easily oxidized organic carbon content under OM and NPK increased greater than that under single chemical fertilization. OM and NPK showed no significant role in promoting the soil microbial biomass carbon, but combined application of OM and NPK significantly increased the soil microbial biomass carbon content by 36.06% and 20.69%, respectively. Soil easily oxidized organic carbon, dissolved organic carbon and microbial biomass carbon accounted for 8.41% - 14.83%, 0.47% - 0.70% and 0.89% - 1.20% of the total organic carbon (TOC), respectively. According to the results, the fertilizer application significantly increased the proportion of soil dissolved organic carbon and easily oxidized organic carbon, but there was no significant difference in the increasing extent of dissolved organic carbon. The RF and CF increased the proportion of soil easily oxidized organic carbon greater than OM or NPK, and significantly increased the proportion of microbial biomass carbon. OM or RF had no significant effect on the proportion of microbial biomass carbon. Therefore, in the field experiment, appropriate application of organic manure and chemical fertilizers played an important role for the increase of soil active organic carbon

  12. [Effects of different fertilizer application on soil active organic carbon].

    PubMed

    Zhang, Rui; Zhang, Gui-Long; Ji, Yan-Yan; Li, Gang; Chang, Hong; Yang, Dian-Lin

    2013-01-01

    The variation characteristics of the content and components of soil active organic carbon under different fertilizer application were investigated in samples of calcareous fluvo-aquic soil from a field experiment growing winter wheat and summer maize in rotation in the North China Plain. The results showed that RF (recommended fertilization), CF (conventional fertilization) and NPK (mineral fertilizer alone) significantly increased the content of soil dissolved organic carbon and easily oxidized organic carbon by 24.92-38.63 mg x kg(-1) and 0.94-0.58 mg x kg(-1) respectively compared to CK (unfertilized control). The soil dissolved organic carbon content under OM (organic manure) increased greater than those under NPK and single fertilization, soil easily oxidized organic carbon content under OM and NPK increased greater than that under single chemical fertilization. OM and NPK showed no significant role in promoting the soil microbial biomass carbon, but combined application of OM and NPK significantly increased the soil microbial biomass carbon content by 36.06% and 20.69%, respectively. Soil easily oxidized organic carbon, dissolved organic carbon and microbial biomass carbon accounted for 8.41% - 14.83%, 0.47% - 0.70% and 0.89% - 1.20% of the total organic carbon (TOC), respectively. According to the results, the fertilizer application significantly increased the proportion of soil dissolved organic carbon and easily oxidized organic carbon, but there was no significant difference in the increasing extent of dissolved organic carbon. The RF and CF increased the proportion of soil easily oxidized organic carbon greater than OM or NPK, and significantly increased the proportion of microbial biomass carbon. OM or RF had no significant effect on the proportion of microbial biomass carbon. Therefore, in the field experiment, appropriate application of organic manure and chemical fertilizers played an important role for the increase of soil active organic carbon

  13. Assessment of genotoxic activity of petroleum hydrocarbon-bioremediated soil.

    PubMed

    Płaza, Grazyna; Nałecz-Jawecki, Grzegorz; Ulfig, Krzysztof; Brigmon, Robin L

    2005-11-01

    The relationship between toxicity and soil contamination must be understood to develop reliable indicators of environmental restoration for bioremediation. Two bacterial rapid bioassays, SOS chromotest and the umu test with and without metabolic activation (S-9 mixture), were used to evaluate the genotoxicity of petroleum hydrocarbon-contaminated soil following bioremediation treatment. The soil was taken from an engineered biopile at the Czechowice-Dziedzice Polish oil refinery (CZOR). The bioremediation process in the biopile lasted 4 years, and the toxicity measurements were done after this treatment. Carcinogens detected in the soil, polyaromatic hydrocarbons (PAHs), were reduced to low concentrations (2mg/kg dry wt) by the bioremediation process. Genotoxicity was not observed for soils tested with and without metabolic activation by a liver homogenate (S-9 mixture). However, the umu test was more sensitive than the SOS chromotest in the analysis of petroleum hydrocarbon-bioremediated soil. Analytical results of soil used in the bioassays confirmed that the bioremediation process reduced 81% of the petroleum hydrocarbons including PAHs. We conclude that the combined test systems employed in this study are useful tools for the genotoxic examination of remediated petroleum hydrocarbon-contaminated soil.

  14. ASSESSMENT OF GENOTOXIC ACTIVITY OF PETROLEUM HYDROCARBON-BIOREMEDIATED SOIL

    SciTech Connect

    BRIGMON, ROBIN

    2004-10-20

    The relationship between toxicity and soil contamination must be understood to develop reliable indicators of environmental restoration for bioremediation. Two bacterial rapid bioassays: SOS chromotest and umu-test with and without metabolic activation (S-9 mixture) were used to evaluate genotoxicity of petroleum hydrocarbon-contaminated soil following bioremediation treatment. The soil was taken from an engineered biopile at the Czor Polish oil refinery. The bioremediation process in the biopile lasted 4 years, and the toxicity measurements were done after this treatment. Carcinogens detected in the soil, polyaromatic hydrocarbons (PAHs), were reduced to low concentrations (2 mg/kg dry wt) by the bioremediation process. Genotoxicity was not observed for soils tested with and without metabolic activation by a liver homogenate (S-9 mixture). However, umu-test was more sensitive than SOS-chromotest in the analysis of petroleum hydrocarbon-bioremediated soil. Analytical results of soil used in the bioassays confirmed that the bioremediation process reduced 81 percent of the petroleum hydrocarbons including PAHs. We conclude that the combined test systems employed in this study are useful tools for the genotoxic examination of remediated petroleum hydrocarbon-contaminated soil.

  15. Improvement of activated sludge dewaterability by humus soil induced bioflocculation.

    PubMed

    Choi, Young-Gyun; Kim, Seong-Hong; Kim, Hee-Jun; Kim, Gyu Dong; Chung, Tai-Hak

    2004-01-01

    Effects of humus soil particles on the dewaterability of activated sludge were investigated. Cations leaching increased proportionally with the dosage of humus soil, and the leaching was not significant after 2 h. Divalent cations, Ca2+ and Mg2+, leaching from the humus soil played an important role in improving dewaterability of the biological sludge. On the contrary, dewaterability was not affected or slightly deteriorated by the monovalent cations, K+ and Na+ leached from the humus soil. Improvement in dewaterability of the sludge by addition of humus soil was higher than that of equivalent cations mixture. It seemed that the decrease of supracolloidal bio-particles (1 to 100 microm in diameter) resulted in diminishing of the blinding effect on cake and filter medium. SRF (specific resistance to filtration) of the humus soil added sludge varied in parallel with the M/D (monovalent to divalent cation) ratio, and the M/D ratio could be utilized as a useful tool for evaluation of the sludge dewatering characteristics. Long-term effects of humus soil on the improvement of activated sludge dewaterability were clearly identified by continuous operation results of a bench-scale MLE (Modified Ludzack Ettinger) system combined with a humus soil contactor. On the other hand, dewaterability of the control sludge was only slightly improved by a decrease in M/D ratio of the wastewater influent.

  16. 1800MHz Microwave Induces p53 and p53-Mediated Caspase-3 Activation Leading to Cell Apoptosis In Vitro

    PubMed Central

    Xing, Fuqiang; Zhan, Qiuqiang; He, Yiduo; Cui, Jiesheng; He, Sailing; Wang, Guanyu

    2016-01-01

    Recent studies have reported that exposure of mammalian cells to microwave radiation may have adverse effects such as induction of cell apoptosis. However, the molecular mechanisms underlying microwave induced mammalian cell apoptosis are not fully understood. Here, we report a novel mechanism: exposure to 1800MHz microwave radiation induces p53-dependent cell apoptosis through cytochrome c-mediated caspase-3 activation pathway. We first measured intensity of microwave radiation from several electronic devices with an irradiation detector. Mouse NIH/3T3 and human U-87 MG cells were then used as receivers of 1800MHz electromagnetic radiation (EMR) at a power density of 1209 mW/m2. Following EMR exposure, cells were analyzed for viability, intracellular reactive oxygen species (ROS) generation, DNA damage, p53 expression, and caspase-3 activity. Our analysis revealed that EMR exposure significantly decreased viability of NIH/3T3 and U-87 MG cells, and increased caspase-3 activity. ROS burst was observed at 6 h and 48 h in NIH/3T3 cells, while at 3 h in U-87 MG cells. Hoechst 33258 staining and in situ TUNEL assay detected that EMR exposure increased DNA damage, which was significantly restrained in the presence of N-acetyl-L-cysteine (NAC, an antioxidant). Moreover, EMR exposure increased the levels of p53 protein and p53 target gene expression, promoted cytochrome c release from mitochondrion, and increased caspase-3 activity. These events were inhibited by pretreatment with NAC, pifithrin-α (a p53 inhibitor) and caspase inhibitor. Collectively, our findings demonstrate, for the first time, that 1800MHz EMR induces apoptosis-related events such as ROS burst and more oxidative DNA damage, which in turn promote p53-dependent caspase-3 activation through release of cytochrome c from mitochondrion. These findings thus provide new insights into physiological mechanisms underlying microwave-induced cell apoptosis. PMID:27689798

  17. Effect of Activating Agent on the Preparation of Bamboo-Based High Surface Area Activated Carbon by Microwave Heating

    NASA Astrophysics Data System (ADS)

    Xia, Hongying; Wu, Jian; Srinivasakannan, Chandrasekar; Peng, Jinhui; Zhang, Libo

    2016-06-01

    The present work attempts to convert bamboo into a high surface area activated carbon via microwave heating. Different chemical activating agents such as KOH, NaOH, K2CO3 and Na2CO3 were utilized to identify a most suitable activating agent. Among the activating agents tested KOH was found to generate carbon with the highest porosity and surface area. The effect of KOH/C ratio on the porous nature of the activated carbon has been assessed. An optimal KOH/C ratio of 4 was identified, beyond which the surface area as well as the pore volume were found to decrease. At the optimized KOH/C ratio the surface area and the pore volume were estimated to be 3,441 m2/g and 2.093 ml/g, respectively, with the significant proportion of which being microporous (62.3%). Activated carbon prepared under the optimum conditions was further characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Activated carbons with so high surface area and pore volume are very rarely reported, which could be owed to the nature of the precursor and the optimal conditions of mixture ratio adopted in the present work.

  18. AN ACTIVE-PASSIVE COMBINED ALGORITHM FOR HIGH SPATIAL RESOLUTION RETRIEVAL OF SOIL MOISTURE FROM SATELLITE SENSORS (Invited)

    NASA Astrophysics Data System (ADS)

    Lakshmi, V.; Mladenova, I. E.; Narayan, U.

    2009-12-01

    Soil moisture is known to be an essential factor in controlling the partitioning of rainfall into surface runoff and infiltration and solar energy into latent and sensible heat fluxes. Remote sensing has long proven its capability to obtain soil moisture in near real-time. However, at the present time we have the Advanced Scanning Microwave Radiometer (AMSR-E) on board NASA’s AQUA platform is the only satellite sensor that supplies a soil moisture product. AMSR-E coarse spatial resolution (~ 50 km at 6.9 GHz) strongly limits its applicability for small scale studies. A very promising technique for spatial disaggregation by combining radar and radiometer observations has been demonstrated by the authors using a methodology is based on the assumption that any change in measured brightness temperature and backscatter from one to the next time step is due primarily to change in soil wetness. The approach uses radiometric estimates of soil moisture at a lower resolution to compute the sensitivity of radar to soil moisture at the lower resolution. This estimate of sensitivity is then disaggregated using vegetation water content, vegetation type and soil texture information, which are the variables on which determine the radar sensitivity to soil moisture and are generally available at a scale of radar observation. This change detection algorithm is applied to several locations. We have used aircraft observed active and passive data over Walnut Creek watershed in Central Iowa in 2002; the Little Washita Watershed in Oklahoma in 2003 and the Murrumbidgee Catchment in southeastern Australia for 2006. All of these locations have different soils and land cover conditions which leads to a rigorous test of the disaggregation algorithm. Furthermore, we compare the derived high spatial resolution soil moisture to in-situ sampling and ground observation networks

  19. Dehydrogenase activity of forest soils depends on the assay used

    NASA Astrophysics Data System (ADS)

    Januszek, Kazimierz; Długa, Joanna; Socha, Jarosław

    2015-01-01

    Dehydrogenases are exclusively intracellular enzymes, which play an important role in the initial stages of oxidation of soil organic matter. One of the most frequently used methods to estimate dehydrogenase activity in soil is based on the use of triphenyltetrazolium chloride as an artificial electron acceptor. The purpose of this study was to compare the activity of dehydrogenases of forest soils with varied physicochemical properties using different triphenyltetrazolium chloride assays. The determination was carried out using the original procedure by Casida et al., a modification of the procedure which involves the use of Ca(OH)2 instead of CaCO3, the Thalmann method, and the assay by Casida et al. without addition of buffer or any salt. Soil dehydrogenase activity depended on the assay used. Dehydrogenase determined by the Casida et al. method without addition of buffer or any salt correlated with the pH values of soils. The autoclaved strongly acidic samples of control soils showed high concentrations of triphenylformazan, probably due to chemical reduction of triphenyltetrazolium chloride. There is, therefore, a need for a sterilization method other than autoclaving, ie a process that results in significant changes in soil properties, thus helping to increase the chemical reduction of triphenyltetrazolium chloride.

  20. Using microwave heating to improve the desorption efficiency of high molecular weight VOC from beaded activated carbon.

    PubMed

    Fayaz, Mohammadreza; Shariaty, Pooya; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2015-04-01

    Incomplete regeneration of activated carbon loaded with organic compounds results in heel build-up that reduces the useful life of the adsorbent. In this study, microwave heating was tested as a regeneration method for beaded activated carbon (BAC) loaded with n-dodecane, a high molecular weight volatile organic compound. Energy consumption and desorption efficiency for microwave-heating regeneration were compared with conductive-heating regeneration. The minimum energy needed to completely regenerate the adsorbent (100% desorption efficiency) using microwave regeneration was 6% of that needed with conductive heating regeneration, owing to more rapid heating rates and lower heat loss. Analyses of adsorbent pore size distribution and surface chemistry confirmed that neither heating method altered the physical/chemical properties of the BAC. Additionally, gas chromatography (with flame ionization detector) confirmed that neither regeneration method detectably altered the adsorbate composition during desorption. By demonstrating improvements in energy consumption and desorption efficiency and showing stable adsorbate and adsorbent properties, this paper suggests that microwave heating is an attractive method for activated carbon regeneration particularly when high-affinity VOC adsorbates are present.

  1. Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW

    SciTech Connect

    Li Wei; Peng Jinhui Zhang Libo; Yang Kunbin; Xia Hongying; Zhang Shimin; Guo Shenghui

    2009-02-15

    Experiments to prepare activated carbon by microwave heating indicated that microwave energy can decrease reaction temperature, save the energy and shorten processing time remarkably compared to conventional heating, owing to its internal and volumetric heating effects. The above results were based on the laboratory-scale experiments. It is desirable to develop a pilot-scale microwave heating equipment and investigate the parameters with the aim of technological industrialization. In the present study, the components and features of the self-invented equipment were introduced. The temperature rise curves of the chars were obtained. Iodine numbers of the activated carbons all exceed the state standard of China under the following conditions: 25 kg/h charging rate, 0.42 rev/min turning rate of ceramic tube, flow rate of steam at pressure of 0.01 MPa and 40 kW microwave heating power after 60 kW pre-activation for 30 min. Pore structure of the sample obtained at a time point of 46 h, which contained BET surface area, and pore size distributions of micropores and total pores, was tested by nitrogen adsorption at 77 K.

  2. Contribution of microbial activity to virus reduction in saturated soil.

    PubMed

    Nasser, A M; Glozman, R; Nitzan, Y

    2002-05-01

    Application of wastewater to soil may result in the contamination of groundwater and soil with pathogenic microorganisms and other biological and chemical agents. This study was performed to determine the antiviral microbial activity of soil saturated with secondary effluent. Low concentrations (0.05mg/ml) of protease pronase resulted in the inactivation of more than 90% of seeded Cox-A9 virus, whereas Poliovirus type 1, Hepatitis A virus (HAV) and MS2 bacteriophages were found to be insensitive to the enzyme activity. Exposure of Cox A9 virus to P. aeruginosa extracellular enzymes resulted in 99% inactivation of the seeded virus. Hepatitis A virus was found to be as sensitive as the Cox A9 virus, whereas Poliovirus 1 and MS2 were found to be insensitive to P. aeruginosa extracellular enzymatic activity. Furthermore, the time required for 99% reduction (T99) of Cox A9 and MS-2 Bacteriophage, at 15 degrees C, in soil saturated with secondary effluent was found to be 7 and 21 days, respectively. Faster inactivation was observed for MS2 and Cox A9 in soil saturated with secondary effluent incubated at 30 degrees C, T99 of 2 and 0.3 days, respectively. Although the concentration of the total bacterial count in the soil samples increased from 10(3) cfu/g to 10(5) cfu/g after 20 days of incubation at 30 degrees C, the proteolytic activity was below the detection level. The results of this study indicate that the virucidal effect of microbial activity is virus type dependent. Furthermore microbial activity in the soil material can be enhanced by the application of secondary effluent at higher temperature. The results also showed that MS2 bacteriophage can be used to predict viral contamination of soil and groundwater.

  3. Diversity and Activity of Methanotrophic Bacteria in Different Upland Soils

    PubMed Central

    Knief, Claudia; Lipski, André; Dunfield, Peter F.

    2003-01-01

    Samples from diverse upland soils that oxidize atmospheric methane were characterized with regard to methane oxidation activity and the community composition of methanotrophic bacteria (MB). MB were identified on the basis of the detection and comparative sequence analysis of the pmoA gene, which encodes a subunit of particulate methane monooxygenase. MB commonly detected in soils were closely related to Methylocaldum spp., Methylosinus spp., Methylocystis spp., or the “forest sequence cluster” (USC α), which has previously been detected in upland soils and is related to pmoA sequences of type II MB (Alphaproteobacteria). As well, a novel group of sequences distantly related (<75% derived amino acid identity) to those of known type I MB (Gammaproteobacteria) was often detected. This novel “upland soil cluster γ” (USC γ) was significantly more likely to be detected in soils with pH values of greater than 6.0 than in more acidic soils. To identify active MB, four selected soils were incubated with 13CH4 at low mixing ratios (<50 ppm of volume), and extracted methylated phospholipid fatty acids (PLFAs) were analyzed by gas chromatography-online combustion isotope ratio mass spectrometry. Incorporation of 13C into PLFAs characteristic for methanotrophic Gammaproteobacteria was observed in all soils in which USC γ sequences were detected, suggesting that the bacteria possessing these sequences were active methanotrophs. A pattern of labeled PLFAs typical for methanotrophic Alphaproteobacteria was obtained for a sample in which only USC α sequences were detected. The data indicate that different MB are present and active in different soils that oxidize atmospheric methane. PMID:14602631

  4. On-line coupling of dynamic microwave-assisted extraction to solid-phase extraction for the determination of sulfonamide antibiotics in soil.

    PubMed

    Chen, Ligang; Zeng, Qinglei; Wang, Hui; Su, Rui; Xu, Yang; Zhang, Xiaopan; Yu, Aimin; Zhang, Hanqi; Ding, Lan

    2009-08-26

    A rapid technique based on dynamic microwave-assisted extraction (DMAE) coupled on-line with solid-phase extraction (SPE) was developed for the determination of sulfonamides (SAs) including sulfadiazine, sulfameter, sulfamonomethoxine and sulfaquinoxaline in soil. The SAs were first extracted with acetonitrile under the action of microwave energy, and then directly introduced into the SPE column which was packed with neutral alumina for preconcentration of analytes and clean-up of sample matrix. Subsequently, the SAs trapped on the alumina were eluted with 0.3% acetic acid aqueous solution and determined by liquid chromatography-tandem mass spectrometry. The DMAE parameters were optimized by the Box-Behnken design. Maximum extraction efficiency was achieved using 320 W of microwave power; 12 mL of extraction solvent and 0.8 mL min(-1) of extraction solvent flow rate. The limits of detection and quantification obtained are in the range of 1.4-4.8 ng g(-1) and 4.6-16.0 ng g(-1) for the SAs, respectively. The mean values of relative standard deviation of intra- and inter-day ranging from 2.7% to 5.3% and from 5.6% to 6.7% are obtained, respectively. The recoveries of SAs obtained by analyzing four spiked soil samples at three fortified levels (20 ng g(-1), 100ngg(-1) and 500 ng g(-1)) were from 82.6+/-6.0% to 93.7+/-5.5%. The effect of standing time of spiked soil sample on the SAs recoveries was examined. The recoveries of SAs decreased from (86.3-101.9)% to (37.6-47.5)% when the standing time changed from one day to four weeks. PMID:19646585

  5. Activation Energy of Extracellular Enzymes in Soils from Different Biomes

    PubMed Central

    Steinweg, J. Megan; Jagadamma, Sindhu; Frerichs, Joshua; Mayes, Melanie A.

    2013-01-01

    Enzyme dynamics are being incorporated into soil carbon cycling models and accurate representation of enzyme kinetics is an important step in predicting belowground nutrient dynamics. A scarce number of studies have measured activation energy (Ea) in soils and fewer studies have measured Ea in arctic and tropical soils, or in subsurface soils. We determined the Ea for four typical lignocellulose degrading enzymes in the A and B horizons of seven soils covering six different soil orders. We also elucidated which soil properties predicted any measurable differences in Ea. β-glucosidase, cellobiohydrolase, phenol oxidase and peroxidase activities were measured at five temperatures, 4, 21, 30, 40, and 60°C. Ea was calculated using the Arrhenius equation. β-glucosidase and cellobiohydrolase Ea values for both A and B horizons in this study were similar to previously reported values, however we could not make a direct comparison for B horizon soils because of the lack of data. There was no consistent relationship between hydrolase enzyme Ea and the environmental variables we measured. Phenol oxidase was the only enzyme that had a consistent positive relationship between Ea and pH in both horizons. The Ea in the arctic and subarctic zones for peroxidase was lower than the hydrolases and phenol oxidase values, indicating peroxidase may be a rate limited enzyme in environments under warming conditions. By including these six soil types we have increased the number of soil oxidative enzyme Ea values reported in the literature by 50%. This study is a step towards better quantifying enzyme kinetics in different climate zones. PMID:23536898

  6. Active Layer Soil Carbon and Nutrient Mineralization, Barrow, Alaska, 2012

    DOE Data Explorer

    Stan D. Wullschleger; Holly M. Vander Stel; Colleen Iversen; Victoria L. Sloan; Richard J. Norby; Mallory P. Ladd; Jason K. Keller; Ariane Jong; Joanne Childs; Deanne J. Brice

    2015-10-29

    This data set consists of bulk soil characteristics as well as carbon and nutrient mineralization rates of active layer soils manually collected from the field in August, 2012, frozen, and then thawed and incubated across a range of temperatures in the laboratory for 28 day periods in 2013-2015. The soils were collected from four replicate polygons in each of the four Areas (A, B, C, and D) of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Soil samples were coincident with the established Vegetation Plots that are located in center, edge, and trough microtopography in each polygon. Data included are 1) bulk soil characteristics including carbon, nitrogen, gravimetric water content, bulk density, and pH in 5-cm depth increments and also by soil horizon, 2) carbon, nitrogen, and phosphorus mineralization rates for soil horizons incubated aerobically (and in one case both aerobically and anaerobically) for 28 days at temperatures that included 2, 4, 8, and 12 degrees C. Additional soil and incubation data are forthcoming. They will be available when published as part of another paper that includes additional replicate analyses.

  7. Acute low-level microwave exposure and central cholinergic activity: studies on irradiation parameters

    SciTech Connect

    Lai, H.; Horita, A.; Guy, A.W.

    1988-01-01

    Sodium-dependent high-affinity choline uptake was measured in the striatum, frontal cortex, hippocampus, and hypothalamus of rats after acute exposure (45 min) to pulsed (2 microseconds, 500 pps) or continuous-wave 2,450-MHz microwaves in cylindrical waveguides or miniature anechoic chambers. In all exposure conditions, the average whole-body specific absorption rate was at 0.6 W/kg. Decrease in choline uptake was observed in the frontal cortex after microwave exposure in all of the above irradiation conditions. Regardless of the exposure system used, hippocampal choline uptake was decreased after exposure to pulsed but not continuous-wave microwaves. Striatal choline uptake was decreased after exposure to either pulsed or continuous-wave microwaves in the miniature anechoic chamber. No significant change in hypothalamic choline uptake was observed under any of the exposure conditions studied. We conclude that depending on the parameters of the radiation, microwaves can elicit specific and generalized biological effects.

  8. Microwave assisted synthesis, cholinesterase enzymes inhibitory activities and molecular docking studies of new pyridopyrimidine derivatives.

    PubMed

    Basiri, Alireza; Murugaiyah, Vikneswaran; Osman, Hasnah; Kumar, Raju Suresh; Kia, Yalda; Ali, Mohamed Ashraf

    2013-06-01

    A series of hitherto unreported pyrido-pyrimidine-2-ones/pyrimidine-2-thiones were synthesized under microwave assisted solvent free reaction conditions in excellent yields and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibitory activity. Among the pyridopyrimidine derivatives, 7e and 7l displayed 2.5- and 1.5-fold higher enzyme inhibitory activities against AChE as compared to standard drug, galanthamine, with IC50 of 0.80 and 1.37 μM, respectively. Interestingly, all the compounds except 6k, 7j and 7k displayed higher inhibitory potential against BChE enzyme in comparison to standard with IC50 ranging from 1.18 to 18.90 μM. Molecular modeling simulations of 7e and 7l was performed using three-dimensional structure of Torpedo californica AChE (TcAChE) and human butyrylcholinesterase (hBChE) enzymes to disclose binding interaction and orientation of these molecule into the active site gorge of respective receptors.

  9. Non-military microwave applications

    NASA Astrophysics Data System (ADS)

    Bierman, Howard

    1990-04-01

    The nonmilitary applications of microwave technology in medicine, communications, and agriculture are discussed. Particular attention is given to a microwave multichannel multipoint video distribution system (a broadcasting system with up to 20 programs drawn from satellites, video tape libraries, and locally generated material); microwaves used in DBS distribution; satellite receivers for data communications; microwave thermography used for early cancer detection, brain temperature measurements, and appendicitis diagnosis; an experimental Doppler radar assembly for guiding robots walking on a factory floor; and an agricultural application where microwaves are used to break down slugs in soil and thus improve potato and grain crops. Schematic diagrams are included.

  10. Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method.

    PubMed

    Hong, Xuesen; Wen, Junjie; Xiong, Xuhua; Hu, Yongyou

    2016-03-01

    Silver nanoparticles (AgNPs) are used as sustained-release bactericidal agents for water treatment. Among the physicochemical characteristics of AgNPs, shape is an important parameter relevant to the antibacterial activity. Three typically shaped AgNPs, nanocubes, nanospheres, and nanowires, were prepared via a microwave-assisted method and characterized by TEM, UV-vis, and XRD. The antibacterial activity of AgNPs was determined by OD growth curves tests, MIC tests, and cell viability assay against Escherichia coli. The interaction between AgNPs and bacterial cells was observed by TEM. The results showed that the three differently shaped AgNPs were nanoscale, 55 ± 10 nm in edge length for nanocubes, 60 ± 15 nm in diameter for nanospheres, 60 ± 10 nm in diameter and 2-4 μm in length for nanowires. At the bacterial concentration of 10(4) CFU/mL, the MIC of nanocubes, nanospheres, and nanowires were 37.5, 75, and 100 μg/mL, respectively. Due to the worst contact with bacteria, silver nanowires exhibited the weakest antibacterial activity compared with silver nanocubes and silver nanospheres. Besides, silver nanocubes mainly covered by {100} facets showed stronger antibacterial activity than silver nanospheres covered by {111} facets. It suggests that the shape effect on the antibacterial activity of AgNPs is attributed to the specific surface areas and facets reactivity; AgNPs with larger effective contact areas and higher reactive facets exhibit stronger antibacterial activity.

  11. Biofuel intercropping effects on soil carbon and microbial activity.

    PubMed

    Strickland, Michael S; Leggett, Zakiya H; Sucre, Eric B; Bradford, Mark A

    2015-01-01

    Biofuels will help meet rising demands for energy and, ideally, limit climate change associated with carbon losses from the biosphere to atmosphere. Biofuel management must therefore maximize energy production and maintain ecosystem carbon stocks. Increasingly, there is interest in intercropping biofuels with other crops, partly because biofuel production on arable land might reduce availability and increase the price of food. One intercropping approach involves growing biofuel grasses in forest plantations. Grasses differ from trees in both their organic inputs to soils and microbial associations. These differences are associated with losses of soil carbon when grasses become abundant in forests. We investigated how intercropping switchgrass (Panicum virgalum), a major candidate for cellulosic biomass production, in loblolly pine (Pinus taeda) plantations affects soil carbon, nitrogen, and microbial dynamics. Our design involved four treatments: two pine management regimes where harvest residues (i.e., biomass) were left in place or removed, and two switchgrass regimes where the grass was grown with pine under the same two biomass scenarios (left or removed). Soil variables were measured in four 1-ha replicate plots in the first and second year following switchgrass planting. Under switchgrass intercropping, pools of mineralizable and particulate organic matter carbon were 42% and 33% lower, respectively. These declines translated into a 21% decrease in total soil carbon in the upper 15 cm of the soil profile, during early stand development. The switchgrass effect, however, was isolated to the interbed region where switchgrass is planted. In these regions, switchgrass-induced reductions in soil carbon pools with 29%, 43%, and 24% declines in mineralizable, particulate, and total soil carbon, respectively. Our results support the idea that grass inputs to forests can prime the activity of soil organic carbon degrading microbes, leading to net reductions in stocks

  12. Microbiological activity of soils populated by Lasius niger ants

    NASA Astrophysics Data System (ADS)

    Golichenkov, M. V.; Neimatov, A. L.; Kiryushin, A. V.

    2009-07-01

    Ants are the most widespread colonial insects assigned to the Hymenoptera order. They actively use soil as a habitat; being numerous, they create a specific microrelief. It is shown that ants affect microbiological processes of the carbon and nitrogen cycles. The carbon content in anthills remains stable throughout the growing season, and the respiration intensity is about three times higher as compared with that in the control soil. The highest methane production (0.08 nmol of CH4/g per day) in the anthill is observed at the beginning of the growing season and exceeds that in the control soil by four times. The most active nitrogen fixation (about 4 nmol of C2H4/g per h) in the anthill takes place in the early growing season, whereas, in the control soil, it is observed in the middle of the growing season. At the same time, the diazotrophic activity is higher in the control soil. The lowest denitrification in the anthill is observed at the beginning and end of the growing season. The dynamics of the denitrification in the anthill are opposite to the dynamics of the diazotrophic activity. We suppose that these regularities of the biological activity in the anthill are related to the ecology of the ants and the changes in their food preferences during the growing season.

  13. Acid-activated biochar increased sulfamethazine retention in soils.

    PubMed

    Vithanage, Meththika; Rajapaksha, Anushka Upamali; Zhang, Ming; Thiele-Bruhn, Sören; Lee, Sang Soo; Ok, Yong Sik

    2015-02-01

    Sulfamethazine (SMZ) is an ionizable and highly mobile antibiotic which is frequently found in soil and water environments. We investigated the sorption of SMZ onto soils amended with biochars (BCs) at varying pH and contact time. Invasive plants were pyrolyzed at 700 °C and were further activated with 30 % sulfuric (SBBC) and oxalic (OBBC) acids. The sorption rate of SMZ onto SBBC and OBBC was pronouncedly pH dependent and was decreased significantly when the values of soil pH increased from 3 to 5. Modeled effective sorption coefficients (K D,eff) values indicated excellent sorption on SBBC-treated loamy sand and sandy loam soils for 229 and 183 L/kg, respectively. On the other hand, the low sorption values were determined for OBBC- and BBC700-treated loamy sand and sandy loam soils. Kinetic modeling demonstrated that the pseudo second order model was the best followed by intra-particle diffusion and the Elovich model, indicating that multiple processes govern SMZ sorption. These findings were also supported by sorption edge experiments based on BC characteristics. Chemisorption onto protonated and ligand containing functional groups of the BC surface, and diffusion in macro-, meso-, and micro-pores of the acid-activated BCs are the proposed mechanisms of SMZ retention in soils. Calculated and experimental q e (amount adsorbed per kg of the adsorbent at equilibrium) values were well fitted to the pseudo second order model, and the predicted maximum equilibrium concentration of SBBC for loamy sand soils was 182 mg/kg. Overall, SBBC represents a suitable soil amendment because of its high sorption rate of SMZ in soils.

  14. Microwave hydrology: A trilogy

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.; Johnston, E. J.; Girard, M. A.; Regusters, H. A.

    1985-01-01

    Microwave hydrology, as the term in construed in this trilogy, deals with the investigation of important hydrological features on the Earth's surface as they are remotely, and passively, sensed by orbiting microwave receivers. Microwave wavelengths penetrate clouds, foliage, ground cover, and soil, in varying degrees, and reveal the occurrence of standing liquid water on and beneath the surface. The manifestation of liquid water appearing on or near the surface is reported by a microwave receiver as a signal with a low flux level, or, equivalently, a cold temperature. Actually, the surface of the liquid water reflects the low flux level from the cosmic background into the input terminals of the receiver. This trilogy describes and shows by microwave flux images: the hydrological features that sustain Lake Baykal as an extraordinary freshwater resource; manifestations of subsurface water in Iran; and the major water features of the Congo Basin, a rain forest.

  15. Climate effect on soil enzyme activities and dissolved organic carbon in mountain calcareous soils: a soil-transplant experiment

    NASA Astrophysics Data System (ADS)

    Puissant, Jérémy; Cécillon, Lauric; Mills, Robert T. E.; Gavazov, Konstantin; Robroek, Bjorn J. M.; Spiegelberger, Thomas; Buttler, Alexandre; Brun, Jean-Jacques

    2013-04-01

    Mountain soils store huge amounts of carbon as soil organic matter (SOM) which may be highly vulnerable to the strong climate changes that mountain areas currently experience worldwide. Climate modifications are expected to impact microbial activity which could change the rate of SOM decomposition/accumulation, thereby questioning the net C source/sink character of mountain soils. To simulate future climate change expected in the 21st century in the calcareous pre-Alps, 15 blocks (30 cm deep) of undisturbed soil were taken from a mountain pasture located at 1400 m a.s.l. (Marchairuz, Jura, Switzerland) and transplanted into lysimeters at the same site (control) and at two other sites located at 1000 m a.s.l. and 600 m a.s.l. (5 replicates per site). This transplantation experiment which started in 2009 simulates a climate warming with a temperature increase of 4° C and a decreased humidity of 40 % at the lowest site. In this study, we used soil extracellular enzyme activities (EEA) as functional indicators of SOM decomposition to evaluate the effect of climate change on microbial activity and SOM dynamics along the seasons. Dissolved organic carbon (DOC) was also measured to quantify the assimilable carbon for microorganism. In autumn 2012, a first sampling step out of four (winter, spring and summer 2013) has been realized. We extracted 15 cm deep soil cores from each transplant (x15) and measured (i) DOC and (ii) the activities of nine different enzymes. Enzymes were chosen to represent the degradation of the most common classes of biogeochemical compounds in SOM. β-glucosidase, β-D-cellubiosidase, β-Xylosidase, N-acetyl-β-glucosaminidase, leucine aminopeptidase, lipase, phenoloxidase respectively represented the degradation of sugar, cellulose, hemicellulose, chitin, protein, lipid and lignin. Moreover, the fluorescein diacetate (FDA) hydrolysis was used to provide an estimate of global microbial activity and phosphatase was used to estimate phosphorus

  16. Effects of microwave exposure and Gemcitabine treatment on apoptotic activity in Burkitt's lymphoma (Raji) cells.

    PubMed

    Canseven, Ayşe G; Esmekaya, Meric Arda; Kayhan, Handan; Tuysuz, Mehmet Zahid; Seyhan, Nesrin

    2015-01-01

    We investigated the effects of 1.8 MHz Global System for Mobile Communications (GSM)-modulated microwave (MW) radiation on apoptotic level and cell viability of Burkitt's lymphoma (Raji) cells with or without Gemcitabine, which exhibits cell phase specificity, primarily killing cells undergoing DNA synthesis (S-phase). Raji cells were exposed to 1.8 GHz GSM-modulated MW radiation at a specific absorption rate (SAR) of 0.350 W/kg in a CO2 incubator. The duration of the exposure was 24 h. The amount of apoptotic cells was analyzed using Annexin V-FITC and propidium iodide (PI) staining with flow cytometer. The apoptotic activity of MW exposed Raji cells was increased significantly. In addition, cell viability of exposed samples was significantly decreased. Combined exposure of MW and Gemcitabine increased the amount of apoptotic cells than MW radiation alone. Moreover, viability of MW + Gemcitabine exposed cells was lower than that of cells exposed only to MW. These results demonstrated that MW radiation exposure and Gemcitabine treatment have a synergistic effect on apoptotic activity of Raji cells.

  17. Microwave plasma doping: Arsenic activation and transport in germanium and silicon

    NASA Astrophysics Data System (ADS)

    Miyoshi, Hidenori; Oka, Masahiro; Ueda, Hirokazu; Ventzek, Peter L. G.; Sugimoto, Yasuhiro; Kobayashi, Yuuki; Nakamura, Genji; Hirota, Yoshihiro; Kaitsuka, Takanobu; Kawakami, Satoru

    2016-04-01

    Microwave RLSA™ plasma doping technology has enabled conformal doping of non-planar semiconductor device structures. An important attribute of RLSA™ plasma doping is that it does not impart physical damage during processing. In this work, carrier activation measurements for AsH3 based plasma doping into silicon (Si) and germanium (Ge) using rapid thermal annealing are presented. The highest carrier concentrations are 3.6 × 1020 and 4.3 × 1018 cm-3 for Si and Ge, respectively. Secondary ion mass spectrometry depth profiles of arsenic in Ge show that intrinsic dopant diffusion for plasma doping followed by post activation anneal is much slower than for conventional ion implantation. This is indicative of an absence of defects. The comparison is based on a comparison of diffusion times at identical annealing temperatures. The absence of defects, like those generated in conventional ion implantation, in RLSA™ based doping processes makes RLSA™ doping technology useful for damage free conformal doping of topographic structures.

  18. Microwave synthesis and photocatalytic activity of Tb(3+) doped BiVO4 microcrystals.

    PubMed

    Wang, Ying; Liu, Fuyang; Hua, Yingjie; Wang, Chongtai; Zhao, Xudong; Liu, Xiaoyang; Li, Hongdong

    2016-12-01

    Tb(3+) doped BiVO4 has been successfully synthesized by a simple microwave-assisted hydrothermal method at 140°C for 30min. The structure, morphology and optical property of the Tb(3+) doped BiVO4 products have been systematically investigated. This study indicates that the incorporation of Tb(3+) could induce the conversion of structure from monoclinic to tetragonal for BiVO4. Furthermore, the as-obtained Tb(3+) doped BiVO4 samples showed an obvious morphological change: the hollow square rod-like BiVO4 crystal gradually changed to spindle-like crystal. The Tb(3+) doped BiVO4 products exhibited extraordinary photocatalytic activity for Methylene Blue (MB) degradation under visible light irradiation. The doped BiVO4 at a molar ratio of 2at% (Tb and Bi) with a mixture of monoclinic and tetragonal phases showed and prominent photocatalytic degradation rate, which reached 99.9% in 120min. The results suggest that the differences in the photocatalytic activity of these BiVO4 crystals with different Tb(3+) doping concentrations can be attributed to the change of crystalline phases, and the coexistence of the monoclinic/tetragonal phases in BiVO4 products, which improve the efficient charge separation and transportation. PMID:27565962

  19. Spatial variability of the dehydrogenase activity in forest soils

    NASA Astrophysics Data System (ADS)

    Błońska, Ewa; Lasota, Jarosław

    2014-05-01

    The aim of this study was to assess the spatial variability of the dehydrogenase activity (DH) in forest soils using geostatistics. We have studied variability soil dehydrogenase and their relationship with variability of some physic-chemical properties. Two study areas (A and B) were set up in southern Poland in the Zlotoryja Forest District. Study areas were covered by different types of vegetation (A- broadleaf forest with beech, ash and sycamore), B- coniferous forest with Norway spruce). The soils were classified as Dystric Cambisols (WRB 2006). The samples for laboratory testing were collected from 49 places on each areas. 15 cm of surface horizon of soil were taken (with previously removed litter). Dehydrogenase activity was marked with Lenhard's method according to the Casida procedure. Soil pH, nitrogen (N) and soil organic carbon (C) content (by LECO CNS 2000 carbon analyzer) was marked. C/N ratio was calculated. Particle size composition was determined using laser diffraction. Statistical analysis were performed using STATISTICA 10 software. Geostatistical analysis and mapping were done by application of GS 9+ (Gamma Design) and Surfer 11 (Golden Software). The activity of DH ranged between 5,02 and 71,20 mg TPP• kg-1 •24 h-1 on the A area and between 0,94 and 16,47 mg TPP• kg-1 •24 h-1. Differences in spatial variability of the analised features were noted. The variability of dehydrogenase activity on the A study area was described by an exponential model, whereas on the B study area the spatial correlation has not been noted. The relationship of dehydrogenase activity with the remaining parameters of soil was noted only in the case of A study area. The variability of organic carbon content on the A and B study areas were described by an exponential model. The variability of nitrogen content on both areas were described by an spherical model.

  20. Determination of microwave vegetation optical depth and single scattering albedo from large scale soil moisture and Nimbus/SMMR satellite observations

    NASA Technical Reports Server (NTRS)

    Van De Griend, A. A.; Owe, M.

    1993-01-01

    The single scattering albedo and optical depth of typical savanna vegetation in Botswana (Africa) have been determined by inverse modelling using satellite observed microwave signatures and surface soil moisture. Soil emissivity was modelled using a multi-layer radiative transfer model. The study is based on large scale surface moisture data and Nimbus/SMMR 6-6 GHz and 37 GHz dual polarized brightness temperatures over a 3-year period. As compared to the optical depths, the derived single scattering albedos displayed only minor seasonal variations, whereas the values fit well within the range reported in the literature from laboratory and field experiments. Both 6-6 and 37GHz optical depths were found to be significantly related to NDVI-values derived from NOAA/AVHRR.

  1. Modeling in situ soil enzyme activity using continuous field soil moisture and temperature data

    NASA Astrophysics Data System (ADS)

    Steinweg, J. M.; Wallenstein, M. D.

    2010-12-01

    Moisture and temperature are key drivers of soil organic matter decomposition, but there is little consensus on how climate change will affect the degradation of specific soil compounds under field conditions. Soil enzyme activities are a useful metric of soil community microbial function because they are they are the direct agents of decomposition for specific substrates in soil. However, current standard enzyme assays are conducted under optimized conditions in the laboratory and do not accurately reflect in situ enzyme activity, where diffusion and substrate availability may limit reaction rates. The Arrhenius equation, k= A*e(-Ea/RT), can be used to predict enzyme activity (k), collision frequency (A) or activation energy (Ea), but is difficult to parameterize when activities are measured under artificial conditions without diffusion or substrate limitation. We developed a modifed equation to estimate collision frequency and activation energy based on soil moisture to model in-situ enzyme activites. Our model was parameterized using data we collected from the Boston Area Climate Experiment (BACE) in Massachusetts; a multi-factor climate change experiment that provides an opportunity to assess how changes in moisture availability and temperature may impact enzyme activity. Soils were collected from three precipitation treatments and four temperature treatments arranged in a full-factorial design at the BACE site in June 2008, August 2008, January 2009 and June 2009. Enzyme assays were performed at four temperatures (4, 15, 25 and 35°C) to calculate temperature sensitivity and activation energy over the different treatments and seasons. Enzymes activities were measured for six common enzymes involved in carbon (β-glucosidase, cellobiohydrolase, xylosidase), phosphorus (phosphatase) and nitrogen cycling (N-acetyl glucosaminidase, and leucine amino peptidase). Potential enzyme activity was not significantly affected by precipitation, warming or the interaction of

  2. Classification methods for monitoring Arctic sea ice using OKEAN passive/active two-channel microwave data

    USGS Publications Warehouse

    Belchansky, Gennady I.; Douglas, David C.

    2000-01-01

    This paper presents methods for classifying Arctic sea ice using both passive and active (2-channel) microwave imagery acquired by the Russian OKEAN 01 polar-orbiting satellite series. Methods and results are compared to sea ice classifications derived from nearly coincident Special Sensor Microwave Imager (SSM/I) and Advanced Very High Resolution Radiometer (AVHRR) image data of the Barents, Kara, and Laptev Seas. The Russian OKEAN 01 satellite data were collected over weekly intervals during October 1995 through December 1997. Methods are presented for calibrating, georeferencing and classifying the raw active radar and passive microwave OKEAN 01 data, and for correcting the OKEAN 01 microwave radiometer calibration wedge based on concurrent 37 GHz horizontal polarization SSM/I brightness temperature data. Sea ice type and ice concentration algorithms utilized OKEAN's two-channel radar and passive microwave data in a linear mixture model based on the measured values of brightness temperature and radar backscatter, together with a priori knowledge about the scattering parameters and natural emissivities of basic sea ice types. OKEAN 01 data and algorithms tended to classify lower concentrations of young or first-year sea ice when concentrations were less than 60%, and to produce higher concentrations of multi-year sea ice when concentrations were greater than 40%, when compared to estimates produced from SSM/I data. Overall, total sea ice concentration maps derived independently from OKEAN 01, SSM/I, and AVHRR satellite imagery were all highly correlated, with uniform biases, and mean differences in total ice concentration of less than four percent (sd<15%).

  3. Effect of elevated CO2 on degradation of azoxystrobin and soil microbial activity in rice soil.

    PubMed

    Manna, Suman; Singh, Neera; Singh, V P

    2013-04-01

    An experiment was conducted in open-top chambers (OTC) to study the effect of elevated CO2 (580 ± 20 μmol mol(-1)) on azoxystrobin degradation and soil microbial activities. Results indicated that elevated CO2 did not have any significant effect on the persistence of azoxystrobin in rice-planted soil. The half-life values for the azoxystrobin in rice soils were 20.3 days in control (rice grown at ambient CO2 outdoors), 19.3 days in rice grown under ambient CO2 atmosphere in OTC, and 17.5 days in rice grown under elevated CO2 atmosphere in OTC. Azoxystrobin acid was recovered as the only metabolite of azoxystrobin, but it did not accumulate in the soil/water and was further metabolized. Elevated CO2 enhanced soil microbial biomass (MBC) and alkaline phosphatase activity of soil. Compared with rice grown at ambient CO2 (both outdoors and in OTC), the soil MBC at elevated CO2 increased by twofold. Elevated CO2 did not affect dehydrogenase, fluorescein diacetate, and acid phosphatase activity. Azoxystrobin application to soils, both ambient and elevated CO2, inhibited alkaline phosphates activity, while no effect was observed on other enzymes. Slight increase (1.8-2 °C) in temperature inside OTC did not affect microbial parameters, as similar activities were recorded in rice grown outdoors and in OTC at ambient CO2. Higher MBC in soil at elevated CO2 could be attributed to increased carbon availability in the rhizosphere via plant metabolism and root secretion; however, it did not significantly increase azoxystrobin degradation, suggesting that pesticide degradation was not the result of soil MBC alone. Study suggested that increased CO2 levels following global warming might not adversely affect azoxystrobin degradation. However, global warming is a continuous and cumulative process, therefore, long-term studies are necessary to get more realistic assessment of global warming on fate of pesticide. PMID:22773147

  4. Ice Nucleation Activity in the Widespread Soil Fungus Mortierella alpina

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, J.; Hill, T. C. J.; Pummer, B. G.; Franc, G. D.; Pöschl, U.

    2014-08-01

    Biological residues in soil dust are a potentially strong source of atmospheric ice nuclei (IN). So far, however, the abundance, diversity, sources, seasonality, and role of biological - in particular, fungal - IN in soil dust have not been characterized. By analysis of the culturable fungi in topsoils, from a range of different land use and ecosystem types in south-east Wyoming, we found ice nucleation active (INA) fungi to be both widespread and abundant, particularly in soils with recent inputs of decomposable organic matter. Across all investigated soils, 8% of fungal isolates were INA. All INA isolates initiated freezing at -5 to -6 °C, and belonged to a single zygomycotic species, Mortierella alpina (Mortierellales, Mortierellomycotina). By contrast, the handful of fungal species so far reported as INA all belong within the Ascomycota or Basidiomycota phyla. M. alpina is known to be saprobic, widespread in soil and present in air and rain. Sequencing of the ITS region and the gene for γ-linolenic-elongase revealed four distinct clades, affiliated to different soil types. The IN produced by M. alpina seem to be proteinaceous, <300 kDa in size, and can be easily washed off the mycelium. Ice nucleating fungal mycelium will ramify topsoils and probably also release cell-free IN into it. If these IN survive decomposition or are adsorbed onto mineral surfaces, their contribution might accumulate over time, perhaps to be transported with soil dust and influencing its ice nucleating properties.

  5. Sample preparation of sewage sludge and soil samples for the determination of polycyclic aromatic hydrocarbons based on one-pot microwave-assisted saponification and extraction.

    PubMed

    Pena, M Teresa; Pensado, Luis; Casais, M Carmen; Mejuto, M Carmen; Cela, Rafael

    2007-04-01

    A microwave-assisted sample preparation (MASP) procedure was developed for the analysis of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge and soil samples. The procedure involved the simultaneous microwave-assisted extraction of PAHs with n-hexane and the hydrolysis of samples with methanolic potassium hydroxide. Because of the complex nature of the samples, the extracts were submitted to further cleaning with silica and Florisil solid-phase extraction cartridges connected in series. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[e]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3-cd]pyrene, were considered in the study. Quantification limits obtained for all of these compounds (between 0.4 and 14.8 microg kg(-1) dry mass) were well below of the limits recommended in the USA and EU. Overall recovery values ranged from 60 to 100%, with most losses being due to evaporation in the solvent exchange stages of the procedure, although excellent extraction recoveries were obtained. Validation of the accuracy was carried out with BCR-088 (sewage sludge) and BCR-524 (contaminated industrial soil) reference materials.

  6. Microwave-assisted extraction combined with dispersive liquid-liquid microextraction as a new approach to determination of chlorophenols in soil and sediments.

    PubMed

    Naeeni, Mohammad Hosein; Yamini, Yadollah; Rezaee, Mohammad; Seidi, Shahram

    2012-09-01

    A new method was applied for extraction of five chlorophenols from soil and marine sediment samples. Microwave-assisted extraction coupled with dispersive liquid-liquid microextraction followed by semi-automated in-syringe back-extraction technique was used as an extraction technique. Microwave-assisted extraction was performed by using 2.0 mL of alkaline water at pH 10.0. After extraction, the pH of extraction solution was adjusted at 6.0 and dispersive liquid-liquid microextraction procedure was done using 1.0 mL of acetone as a disperser solvent and 37.0 μL of chlorobenzene as extraction solvent. About 20.0 ± 0.5 μL sedimented phase was collected after centrifugation step. Then, chlorophenols were back extracted into 20 μL of alkaline water at pH 12.0 within the microsyringe. Finally, 20.0 μL of aqueous solution was injected into high performance liquid chromatography with ultra violet detection for analysis. The obtained recovery and preconcentration factors for the analytes were in the range of 68.0-82.0% and 25-30, respectively, with relative standard deviations ≤7.6%. The limits of the detection were found in the range of 0.0005-0.002 mg/kg. The method provides a simple and fast procedure for the extraction and determination of chlorophenols in soil and marine sediment samples.

  7. Determination of chromium in Mentha piperita L. and soil by graphite furnace atomic absorption spectrometry after sequential extraction and microwave-assisted acid digestion to assess potential bioavailability.

    PubMed

    Razić, Slavica; Dogo, Svetlana

    2010-01-01

    Analysis of chromium in Mentha piperita and the soil where it is cultivated was done. The capacity of soil for chromium immobilization and the capacity of M. piperita L., to control its uptake were analyzed by spiking the soil with standard solutions of Cr(III). For each concentration three acidity levels: natural, one unit below and one above its natural acidity (pH(2)=6, pH(1)=5 and pH(3)=7) were tested. Three-stage sequential extraction was performed (I stage: 1M ammonium-acetate, II stage: 0.1M hydroxylamine-chlorohydrate and III stage: 0.2/0.2M oxalic acid/ammonium-oxalate mixture). The chromium content in the extracts was obtained after the measurements by GFAAS. The results (expressed in mgL(-1)), at pH(1), pH(2) and pH(3), respectively, were as follows: I stage: 4.64-10.93, 0.79-5.78 and 0.26-5.26; II stage: 1.14-15.99, 0.76-20.31 and 0.67-20.64; III stage: 0.67-20.64, 19.17-100.76 and 19.17-116.05. A high potential of the soil for chromium immobilization was observed. In parallel, soil and plant samples were prepared by microwave-assisted acid digestion for total chromium determination. By analysis of SRMs (NIST SRM 2711 - Montana II Soil, NIST SRM 8433 - Corn Bran and NIST SRM 1547 - Peach Leaves) good recoveries (72.7-115.3%) were obtained. Additionally, iron and manganese oxides and hydroxides were recognized as matrix components of special importance for mobility of chromium species within a soil structures so, the determination of Mn and Fe was done too.

  8. Diversity and Activity of Lysobacter Species from Disease Suppressive Soils

    PubMed Central

    Gómez Expósito, Ruth; Postma, Joeke; Raaijmakers, Jos M.; De Bruijn, Irene

    2015-01-01

    The genus Lysobacter includes several species that produce a range of extracellular enzymes and other metabolites with activity against bacteria, fungi, oomycetes, and nematodes. Lysobacter species were found to be more abundant in soil suppressive against the fungal root pathogen Rhizoctonia solani, but their actual role in disease suppression is still unclear. Here, the antifungal and plant growth-promoting activities of 18 Lysobacter strains, including 11 strains from Rhizoctonia-suppressive soils, were studied both in vitro and in vivo. Based on 16S rRNA sequencing, the Lysobacter strains from the Rhizoctonia-suppressive soil belonged to the four species Lysobacter antibioticus, Lysobacter capsici, Lysobacter enzymogenes, and Lysobacter gummosus. Most strains showed strong in vitro activity against R. solani and several other pathogens, including Pythium ultimum, Aspergillus niger, Fusarium oxysporum, and Xanthomonas campestris. When the Lysobacter strains were introduced into soil, however, no significant and consistent suppression of R. solani damping-off disease of sugar beet and cauliflower was observed. Subsequent bioassays further revealed that none of the Lysobacter strains was able to promote growth of sugar beet, cauliflower, onion, and Arabidopsis thaliana, either directly or via volatile compounds. The lack of in vivo activity is most likely attributed to poor colonization of the rhizosphere by the introduced Lysobacter strains. In conclusion, our results demonstrated that Lysobacter species have strong antagonistic activities against a range of pathogens, making them an important source for putative new enzymes and antimicrobial compounds. However, their potential role in R. solani disease suppressive soil could not be confirmed. In-depth omics'–based analyses will be needed to shed more light on the potential contribution of Lysobacter species to the collective activities of microbial consortia in disease suppressive soils. PMID:26635735

  9. Diversity and Activity of Lysobacter Species from Disease Suppressive Soils.

    PubMed

    Gómez Expósito, Ruth; Postma, Joeke; Raaijmakers, Jos M; De Bruijn, Irene

    2015-01-01

    The genus Lysobacter includes several species that produce a range of extracellular enzymes and other metabolites with activity against bacteria, fungi, oomycetes, and nematodes. Lysobacter species were found to be more abundant in soil suppressive against the fungal root pathogen Rhizoctonia solani, but their actual role in disease suppression is still unclear. Here, the antifungal and plant growth-promoting activities of 18 Lysobacter strains, including 11 strains from Rhizoctonia-suppressive soils, were studied both in vitro and in vivo. Based on 16S rRNA sequencing, the Lysobacter strains from the Rhizoctonia-suppressive soil belonged to the four species Lysobacter antibioticus, Lysobacter capsici, Lysobacter enzymogenes, and Lysobacter gummosus. Most strains showed strong in vitro activity against R. solani and several other pathogens, including Pythium ultimum, Aspergillus niger, Fusarium oxysporum, and Xanthomonas campestris. When the Lysobacter strains were introduced into soil, however, no significant and consistent suppression of R. solani damping-off disease of sugar beet and cauliflower was observed. Subsequent bioassays further revealed that none of the Lysobacter strains was able to promote growth of sugar beet, cauliflower, onion, and Arabidopsis thaliana, either directly or via volatile compounds. The lack of in vivo activity is most likely attributed to poor colonization of the rhizosphere by the introduced Lysobacter strains. In conclusion, our results demonstrated that Lysobacter species have strong antagonistic activities against a range of pathogens, making them an important source for putative new enzymes and antimicrobial compounds. However, their potential role in R. solani disease suppressive soil could not be confirmed. In-depth omics'-based analyses will be needed to shed more light on the potential contribution of Lysobacter species to the collective activities of microbial consortia in disease suppressive soils. PMID:26635735

  10. Diversity and Activity of Lysobacter Species from Disease Suppressive Soils.

    PubMed

    Gómez Expósito, Ruth; Postma, Joeke; Raaijmakers, Jos M; De Bruijn, Irene

    2015-01-01

    The genus Lysobacter includes several species that produce a range of extracellular enzymes and other metabolites with activity against bacteria, fungi, oomycetes, and nematodes. Lysobacter species were found to be more abundant in soil suppressive against the fungal root pathogen Rhizoctonia solani, but their actual role in disease suppression is still unclear. Here, the antifungal and plant growth-promoting activities of 18 Lysobacter strains, including 11 strains from Rhizoctonia-suppressive soils, were studied both in vitro and in vivo. Based on 16S rRNA sequencing, the Lysobacter strains from the Rhizoctonia-suppressive soil belonged to the four species Lysobacter antibioticus, Lysobacter capsici, Lysobacter enzymogenes, and Lysobacter gummosus. Most strains showed strong in vitro activity against R. solani and several other pathogens, including Pythium ultimum, Aspergillus niger, Fusarium oxysporum, and Xanthomonas campestris. When the Lysobacter strains were introduced into soil, however, no significant and consistent suppression of R. solani damping-off disease of sugar beet and cauliflower was observed. Subsequent bioassays further revealed that none of the Lysobacter strains was able to promote growth of sugar beet, cauliflower, onion, and Arabidopsis thaliana, either directly or via volatile compounds. The lack of in vivo activity is most likely attributed to poor colonization of the rhizosphere by the introduced Lysobacter strains. In conclusion, our results demonstrated that Lysobacter species have strong antagonistic activities against a range of pathogens, making them an important source for putative new enzymes and antimicrobial compounds. However, their potential role in R. solani disease suppressive soil could not be confirmed. In-depth omics'-based analyses will be needed to shed more light on the potential contribution of Lysobacter species to the collective activities of microbial consortia in disease suppressive soils.

  11. Application of mesotrione at different doses in an amended soil: Dissipation and effect on the soil microbial biomass and activity.

    PubMed

    Pose-Juan, Eva; Sánchez-Martín, María Jesús; Herrero-Hernández, Eliseo; Rodríguez-Cruz, María Sonia

    2015-12-01

    The aim of this work was to estimate the dissipation of mesotrione applied at three doses (2, 10 and 50 mg kg(-1) dw) in an unamended agricultural soil, and this same soil amended with two organic residues (green compost (C) and sewage sludge (SS)). The effects of herbicide and organic residue on the abundance and activity of soil microbial communities were also assessed by determining soil microbial parameters such as biomass, dehydrogenase activity (DHA), and respiration. Lower dissipation rates were observed for a higher herbicide dose. The highest half-life (DT50) values were observed in the SS-amended soil for the three herbicide doses applied. Biomass values increased in the amended soils compared to the unamended one in all the cases studied, and increased over the incubation period in the SS-amended soil. DHA mean values significantly decreased in the SS-amended soil, and increased in the C-amended soil compared to the unamended ones, under all conditions. At time 0 days, respiration values were significantly higher in SS-amended soils (untreated and treated with mesotrione) than in the unamended and C-amended soils. The effect of mesotrione on soil biomass, DHA and respiration was different depending on incubation time and soil amendment and herbicide dose applied. The results support the need to consider the possible non-target effects of pesticides and organic amendments simultaneously applied on soil microbial communities to prevent negative impacts on soil quality. PMID:26188530

  12. Microwave-assisted digestion using nitric acid for heavy metals and sulfated ash testing in active pharmaceutical ingredients.

    PubMed

    Pluhácek, T; Hanzal, J; Hendrych, J; Milde, D

    2016-04-01

    The monitoring of inorganic impurities in active pharmaceutical ingredients plays a crucial role in the quality control of the pharmaceutical production. The heavy metals and residue on ignition/sulfated ash methods employing microwave-assisted digestion with concentrated nitric acid have been demonstrated as alternatives to inappropriate compendial methods recommended in United States Pharmacopoeia (USP) and European Pharmacopoeia (Ph. Eur.). The recoveries using the heavy metals method ranged between 89% and 122% for nearly all USP and Ph. Eur. restricted elements as well as the recoveries of sodium sulfate spikes were around 100% in all tested matrices. The proposed microwave-assisted digestion method allowed simultaneous decomposition of 15 different active pharmaceutical ingredients with sample weigh up to 1 g. The heavy metals and sulfated ash procedures were successfully applied to the determination of heavy metals and residue on ignition/sulfated ash content in mycophenolate mofetil, nicergoline and silymarin. PMID:27209695

  13. Active microwave measurements of sea ice under fall conditions: The RADARSAT/FIREX fall experiment. [in the Canadian Arctic

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.; Kim, Y. S.; Moore, R. K.

    1984-01-01

    A series of measurements of the active microwave properties of sea ice under fall growing conditions was conducted. Ice in the inland waters of Mould Bay, Crozier Channel, and intrepid inlet and ice in the Arctic Ocean near Hardinge Bay was investigated. Active microwave data were acquired using a helicopter borne scatterometer. Results show that multiyear ice frozen in grey or first year ice is easily detected under cold fall conditions. Multiyear ice returns were dynamic due to response to two of its scene constituents. Floe boundaries between thick and thin ice are well defined. Multiyear pressure ridge returns are similar in level to background ice returns. Backscatter from homogeneous first year ice is seen to be primarily due to surface scattering. Operation at 9.6 GHz is more sensitive to the detailed changes in scene roughness, while operation at 5.6 GHz seems to track roughness changes less ably.

  14. Active-Layer Soil Moisture Content Regional Variations in Alaska and Russia by Ground-Based and Satellite-Based Methods, 2002 Through 2014

    NASA Astrophysics Data System (ADS)

    Muskett, Reginald; Romanovsky, Vladimir; Cable, William; Kholodov, Alexander

    2016-04-01

    Soil moisture is a vital physical parameter of the active-layer in permafrost environments, and associated biological and geophysical processes operative at the microscopic to hemispheric spatial scales and at hourly to multidecadal time scales. While in-situ measurements can give the highest quality of information on a site-specific basis, the vast permafrost terrains of North America and Eurasia require space-based techniques for assessments of cause and effect and long-term changes and impacts from the changes of permafrost and the active-layer. Satellite-based 6.925 and 10.65 GHz sensor algorithmic retrievals of soil moisture by Advanced Microwave Scanning Radiometer - Earth Observation System (AMSR-E) onboard NASA-Aqua and follow-on AMSR2 onboard JAXA-Global Change Observation Mission - Water-1 are ongoing since July 2002. Accurate land-surface temperature and vegetation parameters are critical to the success of passive microwave algorithmic retrieval schemes. Strategically located soil moisture measurements are needed for spatial and temporal co-location evaluation and validation of the space-based algorithmic estimates. We compare on a daily basis ground-based (subsurface-probe) 50- and 70-MHz radio-frequency soil moisture measurements with NASA- and JAXA-algorithmic retrieval passive microwave retrievals. We find improvements in performance of the JAXA-algorithm (AMSR-E reprocessed and AMSR2 ongoing) relative to the earlier NASA-algorithm version. In the boreal forest regions accurate land-surface temperatures and vegetation parameters are still needed for algorithmic retrieval success. Over the period of AMSR-E retrievals we find evidence of at the high northern latitudes of growing terrestrial radio-frequency interference in the 10.65 GHz channel soil moisture content. This is an important error source for satellite-based active and passive microwave remote sensing soil moisture retrievals in Arctic regions that must be addressed. Ref: Muskett, R

  15. Impact of active ingredients on the swelling properties of orally disintegrating tablets prepared by microwave treatment.

    PubMed

    Sano, Syusuke; Iwao, Yasunori; Kimura, Susumu; Noguchi, Shuji; Itai, Shigeru

    2014-07-01

    The impact of different active pharmaceutical ingredients (APIs) loading on the properties of orally disintegrating tablets (ODTs) prepared according to our previously reported microwave (MW) treatment process was evaluated using famotidine (FAM), acetaminophen (AAP), and ibuprofen (IBU). None of the APIs interrupted the tablet swelling during the MW treatment and the tablet hardness were improved by more than 20 N. MW treatment, however, led to a significant increase in the disintegration time of the ODTs containing IBU, but it had no impact on that of the ODTs containing FAM or AAP. This increased disintegration time of the ODTs containing IBU was attributed to the relatively low melting point of IBU (Tm=76 °C), with the IBU particles melting during the MW treatment to form agglomerates, which interrupted the penetration of water into the tablets and delayed their disintegration. The effects of the MW treatment on the chemical stability and dissolution properties of ODTs were also evaluated. The results revealed that MW treatment did not promote the degradations of FAM and AAP or delay their release from the ODTs, while dissolution of the ODTs containing IBU delayed by MW treatment. Based on these results, the MW method would be applicable to the preparation of ODTs containing APIs with melting points higher than 110 °C.

  16. Enhanced activity in ethanol oxidation of Pt3Sn electrocatalysts synthesized by microwave irradiation

    NASA Astrophysics Data System (ADS)

    Stevanović, S.; Tripković, D.; Rogan, J.; Minić, D.; Gavrilović, A.; Tripković, A.; Jovanović, V. M.

    2011-12-01

    High surface area carbon supported Pt and Pt3Sn catalysts were synthesized by microwave irradiation and investigated in the ethanol electro-oxidation reaction. The catalysts were obtained using a modified polyol method in an ethylene glycol solution and were characterized in terms of structure, morphology and composition by employing XRD, STM and EDX techniques. The diffraction peaks of Pt3Sn/C catalyst in XRD patterns are shifted to lower 2θ values with respect to the corresponding peaks at Pt/C catalyst as a consequence of alloy formation between Pt and Sn. Particle size analysis from STM and XRD shows that Pt and Pt3Sn clusters are of a small diameter (˜2 nm) with a narrow size distribution. Pt3Sn/C catalyst is highly active in ethanol oxidation with the onset potential shifted for ˜150 mV to more negative values and with ˜2 times higher currents in comparison to Pt/C.

  17. Preparation of Granular Red Mud Adsorbent using Different Binders by Microwave Pore - Making and Activation Method

    NASA Astrophysics Data System (ADS)

    Le, Thiquynhxuan; Wang, Hanrui; Ju, Shaohua; Peng, Jinhui; Zhou, Liexing; Wang, Shixing; Yin, Shaohua; Liu, Chao

    2016-04-01

    In this work, microwave energy is used for preparing a granular red mud (GRM) adsorbent made of red mud with different binders, such as starch, sodium silicate and cement. The effects of the preparation parameters, such as binder type, binder addition ratio, microwave heating temperature, microwave power and holding time, on the absorption property of GRM are investigated. The BET surface area, strength, pore structure, XRD and SEM of the GRM absorbent are analyzed. The results show that the microwave roasting has a good effect on pore-making of GRM, especially when using organic binder. Both the BET surface area and the strength of GRM obtained by microwave heating are significantly higher than that by conventional heating. The optimum conditions are obtained as follows: 6:100 (w/w) of starch to red mud ratio, microwave roasting with a power of 2.6 kW at 500℃ for holding time of 30 min. The BET surface area, pore volume and average pore diameter of GRM prepared at the optimum conditions are 15.58 m2/g, 0.0337 cm3/g and 3.1693 A0, respectively.

  18. Biological activity of soil contaminated with cobalt, tin, and molybdenum.

    PubMed

    Zaborowska, Magdalena; Kucharski, Jan; Wyszkowska, Jadwiga

    2016-07-01

    In this age of intensive industrialization and urbanization, mankind's highest concern should be to analyze the effect of all metals accumulating in the environment, both those considered toxic and trace elements. With this aim in mind, a unique study was conducted to determine the potentially negative impact of Sn(2+), Co(2+), and Mo(5+) in optimal and increased doses on soil biological properties. These metals were applied in the form of aqueous solutions of Sn(2+) (SnCl2 (.)2H2O), Co(2+) (CoCl2 · 6H2O), and Mo(5+) (MoCl5), each in the doses of 0, 25, 50, 100, 200, 400, and 800 mg kg(-1) soil DM. The activity of dehydrogenases, urease, acid phosphatase, alkaline phosphatase, arylsulfatase, and catalase and the counts of twelve microorganism groups were determined on the 25th and 50th day of experiment duration. Moreover, to present the studied problem comprehensively, changes in the biochemical activity and yield of spring barley were shown using soil and plant resistance indices-RS. The study shows that Sn(2+), Co(2+), and Mo(5+) disturb the state of soil homeostasis. Co(2+) and Mo(5+) proved the greatest soil biological activity inhibitors. The residence of these metals in soil, particularly Co(2+), also generated a drastic decrease in the value of spring barley resistance. Only Sn(2+) did not disrupt its yielding. The studied enzymes can be arranged as follows for their sensitivity to Sn(2+), Co(2+), Mo(5+): Deh > Ure > Aryl > Pal > Pac > Cat. Dehydrogenases and urease may be reliable soil health indicators. PMID:27277093

  19. Retrieval of Precipitation Profiles from Multiresolution, Multifrequency, Active and Passive Microwave Observations

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Anagnostou, Emmanouil N.; Olson, William S.; Starr, David OC. (Technical Monitor)

    2002-01-01

    In this study, a technique for estimating vertical profiles of precipitation from multifrequency, multiresolution active and passive microwave observations is investigated using both simulated and airborne data. The technique is applicable to the Tropical Rainfall Measuring Mission (TRMM) satellite multi-frequency active and passive observations. These observations are characterized by various spatial and sampling resolutions. This makes the retrieval problem mathematically more difficult and ill-determined because the quality of information decreases with decreasing resolution. A model that, given reflectivity profiles and a small set of parameters (including the cloud water content, the intercept drop size distribution, and a variable describing the frozen hydrometeor properties), simulates high-resolution brightness temperatures is used. The high-resolution simulated brightness temperatures are convolved at the real sensor resolution. An optimal estimation procedure is used to minimize the differences between simulated and observed brightness temperatures. The retrieval technique is investigated using cloud model synthetic and airborne data from the Fourth Convection And Moisture Experiment. Simulated high-resolution brightness temperatures and reflectivities and airborne observation strong are convolved at the resolution of the TRMM instruments and retrievals are performed and analyzed relative to the reference data used in observations synthesis. An illustration of the possible use of the technique in satellite rainfall estimation is presented through an application to TRMM data. The study suggests improvements in combined active and passive retrievals even when the instruments resolutions are significantly different. Future work needs to better quantify the retrievals performance, especially in connection with satellite applications, and the uncertainty of the models used in retrieval.

  20. Soil hydrological and soil property changes resulting from termite activity on agricultural fields in Burkina Faso

    NASA Astrophysics Data System (ADS)

    Mettrop, I.; Cammeraat, L. H.; Verbeeten, E.

    2009-04-01

    Termites are important ecosystem-engineers in subtropical and tropical regions. The effect of termite activity affecting soil infiltration is well documented in the Sahelian region. Most studies find increased infiltration rates on surfaces that are affected by termite activity in comparison to crusted areas showing non-termite presence. Crusted agricultural fields in the Sanmatenga region in Burkina Faso with clear termite activity were compared to control fields without visual ground dwelling termite activity. Fine scale rainfall simulations were carried out on crusted termite affected and control sites. Furthermore soil moisture change, bulk density, soil organic matter as well as general soil characteristics were studied. The top soils in the study area were strongly crusted (structural crust) after the summer rainfall and harvest of millet. They have a loamy sand texture underlain by a shallow sandy loam Bt horizon. The initial soil moisture conditions were significantly higher on the termite plots when compared to control sites. It was found that the amount of runoff produced on the termite plots was significantly higher, and also the volumetric soil moisture content after the experiments was significantly lower if compared to the control plots. Bulk density showed no difference whereas soil organic matter was significantly higher under termite affected areas, in comparison to the control plots. Lab tests showed no significant difference in hydrophobic behavior of the topsoil and crust material. Micro and macro-structural properties of the topsoil did not differ significantly between the termite sites and the control sites. The texture of the top 5 cm of the soil was also found to be not significantly different. The infiltration results are contradictory to the general literature, which reports increased infiltration rates after prolonged termite activity although mostly under different initial conditions. The number of nest entrances was clearly higher in

  1. Phenol oxidase activity in secondary transformed peat-moorsh soils

    NASA Astrophysics Data System (ADS)

    Styła, K.; Szajdak, L.

    2009-04-01

    The chemical composition of peat depends on the geobotanical conditions of its formation and on the depth of sampling. The evolution of hydrogenic peat soils is closely related to the genesis of peat and to the changes in water conditions. Due to a number of factors including oscillation of ground water level, different redox potential, changes of aerobic conditions, different plant communities, and root exudes, and products of the degradation of plant remains, peat-moorsh soils may undergo a process of secondary transformation conditions (Sokolowska et al. 2005; Szajdak et al. 2007). Phenol oxidase is one of the few enzymes able to degrade recalcitrant phenolic materials as lignin (Freeman et al. 2004). Phenol oxidase enzymes catalyze polyphenol oxidation in the presence of oxygen (O2) by removing phenolic hydrogen or hydrogenes to from radicals or quinines. These products undergo nucleophilic addition reactions in the presence or absence of free - NH2 group with the eventual production of humic acid-like polymers. The presence of phenol oxidase in soil environments is important in the formation of humic substances a desirable process because the carbon is stored in a stable form (Matocha et al. 2004). The investigations were carried out on the transect of peatland 4.5 km long, located in the Agroecological Landscape Park host D. Chlapowski in Turew (40 km South-West of Poznań, West Polish Lowland). The sites of investigation were located along Wyskoć ditch. The following material was taken from four chosen sites marked as Zbechy, Bridge, Shelterbelt and Hirudo in two layers: cartel (0-50cm) and cattle (50-100cm). The object of this study was to characterize the biochemical properties by the determination of the phenol oxidize activity in two layers of the four different peat-moors soils used as meadow. The phenol oxidase activity was determined spectrophotometrically by measuring quinone formation at λmax=525 nm with catechol as substrate by method of Perucci

  2. ALTERNATIVE ROUTES FOR CATALYST PREPARATION: USE OF ULTRASOUND AND MICROWAVE IRRADIATION FOR THE PREPARATION OF VANADIUM PHOSPHORUS OXIDE CATALYST AND THEIR ACTIVITY FOR HYDROCARBON OXIDATION

    EPA Science Inventory

    Vanadium phosphorus oxide (VPO) has been prepared using ultrasound and microwave irradiation methods and compared with the catalyst prepared by conventional method for both the phase composition and activity for hydrocarbon oxidation. It is found that ultrasound irradiation metho...

  3. The Soil Moisture Active and Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Nijoku, Eni G.; ONeill, Peggy E.; Kellogg, Kent H.; Crow, Wade T.; Edelstein, Wendy N.; Entin, Jared K.; Goodman, Shawn D.; Jackson, Thomas J.; Johnson, Joel; Kimball, John; Piepmeier, Jeffrey R.; Koster, Randal D.; McDonald, Kyle C.; Moghaddam, Mahta; Moran, Susan; Reichle, Rolf; Shi, J. C.; Spencer, Michael W.; Thurman, Samuel W.; Tsang, Leung; VanZyl, Jakob

    2009-01-01

    The Soil Moisture Active and Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council s Decadal Survey. SMAP will make global measurements of the moisture present at Earth's land surface and will distinguish frozen from thawed land surfaces. Direct observations of soil moisture and freeze/thaw state from space will allow significantly improved estimates of water, energy and carbon transfers between land and atmosphere. Soil moisture measurements are also of great importance in assessing flooding and monitoring drought. SMAP observations can help mitigate these natural hazards, resulting in potentially great economic and social benefits. SMAP soil moisture and freeze/thaw timing observations will also reduce a major uncertainty in quantifying the global carbon balance by helping to resolve an apparent missing carbon sink on land over the boreal latitudes. The SMAP mission concept would utilize an L-band radar and radiometer. These instruments will share a rotating 6-meter mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days. The SMAP instruments provide direct measurements of surface conditions. In addition, the SMAP project will use these observations with advanced modeling and data assimilation to provide deeper root-zone soil moisture and estimates of land surface-atmosphere exchanges of water, energy and carbon. SMAP is scheduled for a 2014 launch date

  4. Effects of Soil Property Uncertainty on Projected Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Harp, D. R.; Atchley, A. L.; Coon, E.; Painter, S. L.; Wilson, C. J.; Romanovsky, V. E.; Liljedahl, A.

    2014-12-01

    Uncertainty in future climate is often assumed to contribute the largest uncertainty to active layer thickness (ALT) projections. However, the impact of soil property uncertainty on these projections may be significant. In this research, we evaluate the contribution of soil property uncertainty on ALT projections at the Barrow Environmental Observatory, Alaska. The effect of variations in porosity, thermal conductivity, saturation, and water retention properties of peat and mineral soil are evaluated. The micro-topography of ice wedge polygons present at the site is included in the analysis using three 1D column models to represent polygon center, rim and trough features. The Arctic Terrestrial Simulator (ATS) is used to model multiphase thermal and hydrological processes in the subsurface. We apply the Null-Space Monte Carlo (NSMC) algorithm to identify an ensemble of soil property combinations that produce simulated temperature profiles that are consistent with temperature measurements available from the site. ALT is simulated for the ensemble of soil property combinations for four climate scenarios. The uncertainty in ALT due to soil properties within and across climate scenarios is evaluated. This work was supported by LANL Laboratory Directed Research and Development Project LDRD201200068DR and by the The Next-Generation Ecosystem Experiments (NGEE Arctic) project. NGEE-Arctic is supported by the Office of Biological and Environmental Research in the DOE Office of Science.

  5. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more

  6. [Vertical distribution of soil active carbon and soil organic carbon storage under different forest types in the Qinling Mountains].

    PubMed

    Wang, Di; Geng, Zeng-Chao; She, Diao; He, Wen-Xiang; Hou, Lin

    2014-06-01

    Adopting field investigation and indoor analysis methods, the distribution patterns of soil active carbon and soil carbon storage in the soil profiles of Quercus aliena var. acuteserrata (Matoutan Forest, I), Pinus tabuliformis (II), Pinus armandii (III), pine-oak mixed forest (IV), Picea asperata (V), and Quercus aliena var. acuteserrata (Xinjiashan Forest, VI) of Qinling Mountains were studied in August 2013. The results showed that soil organic carbon (SOC), microbial biomass carbon (MBC), dissolved organic carbon (DOC), and easily oxidizable carbon (EOC) decreased with the increase of soil depth along the different forest soil profiles. The SOC and DOC contents of different depths along the soil profiles of P. asperata and pine-oak mixed forest were higher than in the other studied forest soils, and the order of the mean SOC and DOC along the different soil profiles was V > IV > I > II > III > VI. The contents of soil MBC of the different forest soil profiles were 71.25-710.05 mg x kg(-1), with a content sequence of I > V > N > III > II > VI. The content of EOC along the whole soil profile of pine-oak mixed forest had a largest decline, and the order of the mean EOC was IV > V> I > II > III > VI. The sequence of soil organic carbon storage of the 0-60 cm soil layer was V > I >IV > III > VI > II. The MBC, DOC and EOC contents of the different forest soils were significanty correlated to each other. There was significant positive correlation among soil active carbon and TOC, TN. Meanwhile, there was no significant correlation between soil active carbon and other soil basic physicochemical properties.

  7. Ground-Based Passive Microwave Remote Sensing Observations of Soil Moisture at S and L Band with Insight into Measurement Accuracy

    NASA Technical Reports Server (NTRS)

    Laymon, Charles A.; Crosson, William L.; Jackson, Thomas J.; Manu, Andrew; Tsegaye, Teferi D.; Soman, V.; Arnold, James E. (Technical Monitor)

    2001-01-01

    Accurate estimates of spatially heterogeneous algorithm variables and parameters are required in determining the spatial distribution of soil moisture using radiometer data from aircraft and satellites. A ground-based experiment in passive microwave remote sensing of soil moisture was conducted in Huntsville, Alabama from July 1-14, 1996 to study retrieval algorithms and their sensitivity to variable and parameter specification. With high temporal frequency observations at S and L band, we were able to observe large scale moisture changes following irrigation and rainfall events, as well as diurnal behavior of surface moisture among three plots, one bare, one covered with short grass and another covered with alfalfa. The L band emitting depth was determined to be on the order of 0-3 or 0-5 cm below 0.30 cubic centimeter/cubic centimeter with an indication of a shallower emitting depth at higher moisture values. Surface moisture behavior was less apparent on the vegetated plots than it was on the bare plot because there was less moisture gradient and because of difficulty in determining vegetation water content and estimating the vegetation b parameter. Discrepancies between remotely sensed and gravimetric, soil moisture estimates on the vegetated plots point to an incomplete understanding of the requirements needed to correct for the effects of vegetation attenuation. Quantifying the uncertainty in moisture estimates is vital if applications are to utilize remotely-sensed soil moisture data. Computations based only on the real part of the complex dielectric constant and/or an alternative dielectric mixing model contribute a relatively insignificant amount of uncertainty to estimates of soil moisture. Rather, the retrieval algorithm is much more sensitive to soil properties, surface roughness and biomass.

  8. Microwave-assisted Synthesis and antifungal activity of coumarin[8,7-e][1,3]oxazine derivatives.

    PubMed

    Zhang, Ming-Zhi; Zhang, Rong-Rong; Yin, Wen-Zheng; Yu, Xiang; Zhang, Ya-Ling; Liu, Pin; Gu, Yu-Cheng; Zhang, Wei-Hua

    2016-08-01

    The synthesis of novel coumarin[8,7-e][1,3]oxazine derivatives through a microwave-assisted three-component one-pot Mannich reaction is described in this study. All the target compounds were evaluated in vitro for their antifungal activity against Botrytis cinerea, Colletotrichum capsici, Alternaria solani, Gibberella zeae, Rhizoctonia solani, and Alternaria mali. The preliminary bioassays showed that 5e, 5m, and 5s exhibited good antifungal activity and the most active compound was 5m with an [Formula: see text] value as low as 2.1 nM against Botrytis cinerea. PMID:26880591

  9. Upregulation of HIF-1α via activation of ERK and PI3K pathway mediated protective response to microwave-induced mitochondrial injury in neuron-like cells.

    PubMed

    Zhao, Li; Yang, Yue-Feng; Gao, Ya-Bing; Wang, Shui-Ming; Wang, Li-Feng; Zuo, Hong-Yan; Dong, Ji; Xu, Xin-Ping; Su, Zhen-Tao; Zhou, Hong-Mei; Zhu, Ling-Ling; Peng, Rui-Yun

    2014-12-01

    Microwave-induced learning and memory deficits in animal models have been gaining attention in recent years, largely because of increasing public concerns on growing environmental influences. The data from our group and others have showed that the injury of mitochondria, the major source of cellular adenosine triphosphate (ATP) in primary neurons, could be detected in the neuron cells of microwave-exposed rats. In this study, we provided some insights into the cellular and molecular mechanisms behind mitochondrial injury in PC12 cell-derived neuron-like cells. PC12 cell-derived neuron-like cells were exposed to 30 mW/cm(2) microwave for 5 min, and damages of mitochondrial ultrastructure could be observed by using transmission electron microscopy. Impairments of mitochondrial function, indicated by decrease of ATP content, reduction of succinate dehydrogenase (SDH) and cytochrome c oxidase (COX) activities, decrease of mitochondrial membrane potential (MMP), and increase of reactive oxygen species (ROS) production, could be detected. We also found that hypoxia-inducible factor-1 (HIF-1α), a key regulator responsible for hypoxic response of the mammalian cells, was upregulated in microwave-exposed neuron-like cells. Furthermore, HIF-1α overexpression protected mitochondria from injury by increasing the ATP contents and MMP, while HIF-1α silence promoted microwave-induced mitochondrial damage. Finally, we demonstrated that both ERK and PI3K signaling activation are required in microwave-induced HIF-1α activation and protective response. In conclusion, we elucidated a regulatory connection between impairments of mitochondrial function and HIF-1α activation in microwave-exposed neuron-like cells. By modulating mitochondrial function and protecting neuron-like cells against microwave-induced mitochondrial injury, HIF-1α represents a promising therapeutic target for microwave radiation injury.

  10. Blending foundry sands with soil: Effect on dehydrogenase activity.

    PubMed

    Dungan, Robert S; Kukier, Urzsula; Lee, Brad

    2006-03-15

    Each year U.S. foundries landfill several million tons of sand that can no longer be used to make metalcasting molds and cores. A possible use for these materials is as an ingredient in manufactured soils; however, potentially harmful metals and resin binders (used to make cores) may adversely impact the soil microbial community. In this study, the dehydrogenase activity (DHA) of soil amended with molding sand (clay-coated sand known as "green sand") or core sands at 10%, 30%, and 50% (dry wt.) was determined. The green sands were obtained from iron, aluminum, and brass foundries; the core sands were made with phenol-formaldehyde or furfuryl alcohol based resins. Overall, incremental additions of these sands resulted in a decrease in the DHA which lasted throughout the 12-week experimental period. A brass green sand, which contained high concentrations of Cu, Pb, and Zn, severely impacted the DHA. By week 12 no DHA was detected in the 30% and 50% treatments. In contrast, the DHA in soil amended with an aluminum green sand was 2.1 times higher (all blending ratios), on average, at week 4 and 1.4 times greater (30% and 50% treatments only) than the controls by week 12. In core sand-amended soil, the DHA results were similar to soils amended with aluminum and iron green sands. Increased activity in some treatments may be a result of the soil microorganisms utilizing the core resins as a carbon source. The DHA assay is a sensitive indicator of environmental stress caused by foundry sand constituents and may be useful to assess which foundry sands are suitable for beneficial use in the environment. PMID:15975632

  11. Microbial and enzymatic activity of soil contaminated with azoxystrobin.

    PubMed

    Baćmaga, Małgorzata; Kucharski, Jan; Wyszkowska, Jadwiga

    2015-10-01

    The use of fungicides in crop protection still effectively eliminates fungal pathogens of plants. However, fungicides may dissipate to various elements of the environment and cause irreversible changes. Considering this problem, the aim of the presented study was to evaluate changes in soil biological activity in response to contamination with azoxystrobin. The study was carried out in the laboratory on samples of sandy loam with a pH of 7.0 in 1 Mol KCl dm(-3). Soil samples were treated with azoxystrobin in one of four doses: 0.075 (dose recommended by the manufacturer), 2.250, 11.25 and 22.50 mg kg(-1) soil DM (dry matter of soil). The control soil sample did not contain fungicide. Bacteria were identified based on 16S rRNA gene sequencing, and fungi were identified by internal transcribed spacer (ITS) region sequencing. The study revealed that increased doses of azoxystrobin inhibited the growth of organotrophic bacteria, actinomycetes and fungi. The fungicide also caused changes in microbial biodiversity. The lowest values of the colony development (CD) index were recorded for fungi and the ecophysiological (EP) index for organotrophic bacteria. Azoxystrobin had an inhibitory effect on the activity of dehydrogenases, catalase, urease, acid phosphatase and alkaline phosphatase. Dehydrogenases were found to be most resistant to the effects of the fungicide, while alkaline phosphatase in the soil recovered the balance in the shortest time. Four species of bacteria from the genus Bacillus and two species of fungi from the genus Aphanoascus were isolated from the soil contaminated with the highest dose of azoxystrobin (22.50 mg kg(-1)). PMID:26343782

  12. Effects of plant species coexistence on soil enzyme activities and soil microbial community structure under Cd and Pb combined pollution.

    PubMed

    Gao, Yang; Zhou, Pei; Mao, Liang; Zhi, Yueer; Zhang, Chunhua; Shi, Wanjun

    2010-01-01

    The relationship between plant species coexistence and soil microbial communities under heavy metal pollution has attracted much attention in ecology. However, whether plant species coexistence could offset the impacts of heavy metal combined pollution on soil microbial community structure and soil enzymes activities is not well studied. The modified ecological dose model and PCR-RAPD method were used to assess the effects of two plant species coexistence on soil microbial community and enzymes activities subjected to Cd and Pb combined stress. The results indicated that monoculture and mixed culture would increased microbe populations under Cd and Pb combined stress, and the order of sensitivity of microbial community responding to heavy metal stress was: actinomycetes > bacteria > fungi. The respirations were significantly higher in planted soil than that in unplanted soil. The plant species coexistence could enhance soil enzyme activities under Cd and Pb combined. Furthermore, planted soil would be helpful to enhance soil genetic polymorphisms, but Cd and Pb pollution would cause a decrease on soil genetic polymorphisms. Mixed culture would increase the ecological dose 50% (EDs50) values, and the ED50 values for soil enzyme activities decreased with increasing culture time. The dehydrogenase was most sensitive to metal addition and easily loses activity under low dose of heavy metal. However, it was difficult to fully inhibit the phoshpatase activity, and urease responded similarly with phosphatase.

  13. Utilization of oil palm biodiesel solid residue as renewable sources for preparation of granular activated carbon by microwave induced KOH activation.

    PubMed

    Foo, K Y; Hameed, B H

    2013-02-01

    In this work, preparation of granular activated carbon from oil palm biodiesel solid residue, oil palm shell (PSAC) by microwave assisted KOH activation has been attempted. The physical and chemical properties of PSAC were characterized using scanning electron microscopy, volumetric adsorption analyzer and elemental analysis. The adsorption behavior was examined by performing batch adsorption experiments using methylene blue as dye model compound. Equilibrium data were simulated using the Langmuir, Freundlich and Temkin isotherm models. Kinetic modeling was fitted to the pseudo-first-order, pseudo-second-order and Elovich kinetic models, while the adsorption mechanism was determined using the intraparticle diffusion and Boyd equations. The result was satisfactory fitted to the Langmuir isotherm model with a monolayer adsorption capacity of 343.94mg/g at 30°C. The findings support the potential of oil palm shell for preparation of high surface area activated carbon by microwave assisted KOH activation.

  14. Identifying the Influence of Variable Ice Types on Passive and Active Microwave Measurements for the Purpose of SWE Retrieval

    NASA Astrophysics Data System (ADS)

    Gunn, G. E.; Duguay, C. R.; Derksen, C.

    2010-12-01

    Dual polarized airborne passive microwave (PM) brightness temperatures (Tbs) at 6.9, 19 and 37 GHz H/V and satellite X-band (9.65 GHz VV/VH) active microwave backscatter measurements were combined with coincident in-situ measurements of snow and ice characteristics to determine the potential of unique emission/interaction caused by variable ice properties. Algorithms designed to estimate snow water equivalent (SWE) using the common brightness temperature difference approach (37GHz - 19 GHz) continually underestimate in-situ levels when applied to pure-ice pixels in the Canadian subarctic. Ice thickness measurements were positively correlated with 19 GHz vertically polarised (V pol) passive microwave emissions (R= 0.67), and negatively with 19 GHz horizontally polarised (H pol) emissions (R = -0.79), indicating that surface conditions at the ice/snow interface affect the emissivity at H pol. This study examines the effect of ice types on coincident passive and active microwave measurements for free-floating ice in two lakes (Sitidgi, Husky Lakes). Ice types are delineated using the SAR segmentation program MAGIC (MAp Guided Ice Classification) that has previously been used to characterize sea ice types. Based on output ice types produced by MAGIC, the relationship between active and passive microwave measurements is examined. Output ice classes corresponded well to those measured at coincident in-situ sampling sites. Emissions at 19 GHz H and cross-polarised X-band backscatter (9.65 GHz) increase coincident to ice types that exhibit more scattering potential. Clear ice exhibits the lowest return, followed by a transition zone between clear ice and grey ice. Grey ice exhibits higher returns as a result of the inclusion of spherical air bubbles, followed by rafted ice, which exhibits an excess of scattering potential. Concurrently, transects of dual polarized 6.9 and 19 GHz PM Tbs exhibited a positive relationship with cross-polarized active microwave backscatter (VH

  15. Aminocyclopyrachlor sorption in biochar and activated charcoal amended soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aminocyclopyrachlor is a new herbicide active ingredient, classified as a member of the new chemical class “pyrimidine carboxylic acids”. It is used for control of broadleaf weeds and brush on non-cropland. Due to its potential mobility in some soils, there is interest in whether aminocyclopyrachlor...

  16. The soil moisture active passive (SMAP) mission and validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) satellite will be launched by the National Aeronautics and Space Administration in October 2014. This satellite is the culmination of basic research and applications development over the past thirty years. During most of this period, research and development o...

  17. Soil Moisture Active Passive Satellite Status and Recent Validation Results

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) mission was launched in January, 2015 and began its calibration and validation (cal/val) phase in May, 2015. Cal/Val will begin with a focus on instrument measurements, brightness temperature and backscatter, and evolve to the geophysical products that include...

  18. The Soil Moisture Active and Passive (SMAP) Mission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active and Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council’s Decadal Survey. SMAP will make global measurements of the moisture present at Earth's land surface and will distinguish frozen f...

  19. SMAPVEX08: Soil Moisture Active Passive Validation Experiment 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive Mission (SMAP) is currently addressing issues related to the development and selection of retrieval algorithms as well as refining the mission design and instruments. Some of these issues require resolution as soon as possible. Several forums had identified specific ...

  20. Amazing Soil Stories: Adventure and Activity Book [and] Teacher's Guide to the Activity Book.

    ERIC Educational Resources Information Center

    California Association of Resource Conservation Districts, Sacramento.

    The student activity book offers a variety of written exercises and "hands on" experiments and demonstrations for students at the fourth grade level. The book begins with a cartoon story that follows the adventures of a student investigating a soil erosion crisis and what her community can do to prevent soil erosion. Interspersed within the story…