Science.gov

Sample records for active microwave techniques

  1. Active microwaves

    NASA Technical Reports Server (NTRS)

    Evans, D.; Vidal-Madjar, D.

    1994-01-01

    Research on the use of active microwaves in remote sensing, presented during plenary and poster sessions, is summarized. The main highlights are: calibration techniques are well understood; innovative modeling approaches have been developed which increase active microwave applications (segmentation prior to model inversion, use of ERS-1 scatterometer, simulations); polarization angle and frequency diversity improves characterization of ice sheets, vegetation, and determination of soil moisture (X band sensor study); SAR (Synthetic Aperture Radar) interferometry potential is emerging; use of multiple sensors/extended spectral signatures is important (increase emphasis).

  2. Active microwave water equivalence

    NASA Technical Reports Server (NTRS)

    Boyne, H. S.; Ellerbruch, D. A.

    1980-01-01

    Measurements of water equivalence using an active FM-CW microwave system were conducted over the past three years at various sites in Colorado, Wyoming, and California. The measurement method is described. Measurements of water equivalence and stratigraphy are compared with ground truth. A comparison of microwave, federal sampler, and snow pillow measurements at three sites in Colorado is described.

  3. NOVEL MICROWAVE FILTER DESIGN TECHNIQUES.

    DTIC Science & Technology

    ELECTROMAGNETIC WAVE FILTERS, MICROWAVE FREQUENCY, PHASE SHIFT CIRCUITS, BANDPASS FILTERS, TUNED CIRCUITS, NETWORKS, IMPEDANCE MATCHING , LOW PASS FILTERS, MULTIPLEXING, MICROWAVE EQUIPMENT, WAVEGUIDE FILTERS, WAVEGUIDE COUPLERS.

  4. NOVEL MICROWAVE FILTER DESIGN TECHNIQUES.

    DTIC Science & Technology

    ELECTRIC FILTERS, MICROWAVE FREQUENCY), (*MICROWAVE EQUIPMENT, ELECTRIC FILTERS), CIRCUITS, CAPACITORS, COILS, RESONATORS, STRIP TRANSMISSION LINES, WAVEGUIDES, TUNING DEVICES, PARAMETRIC AMPLIFIERS, FREQUENCY CONVERTERS .

  5. Advanced techniques for microwave reflectometry

    SciTech Connect

    Sanchez, J.; Branas, B.; Luna, E. de la; Estrada, T.; Zhuravlev, V. |; Hartfuss, H.J.; Hirsch, M.; Geist, T.; Segovia, J.; Oramas, J.L.

    1994-12-31

    Microwave reflectometry has been applied during the last years as a plasma diagnostic of increasing interest, mainly due to its simplicity, no need for large access ports and low radiation damage of exposed components. Those characteristics make reflectometry an attractive diagnostic for the next generation devices. Systems used either for density profile or density fluctuations have also shown great development, from the original single channel heterodyne to the multichannel homodyne receivers. In the present work we discuss three different advanced reflectometer systems developed by CIEMAT members in collaboration with different institutions. The first one is the broadband heterodyne reflectometer installed on W7AS for density fluctuations measurements. The decoupling of the phase and amplitude of the reflected beam allows for quantitative analysis of the fluctuations. Recent results showing the behavior of the density turbulence during the L-H transition on W7AS are shown. The second system shows how the effect of the turbulence can be used for density profile measurements by reflectometry in situations where the complicated geometry of the waveguides cannot avoid many parasitic reflections. Experiments from the TJ-I tokamak will be shown. Finally, a reflectometer system based on the Amplitude Modulation (AM) technique for density profile measurements is discussed and experimental results from the TJ-I tokamak are shown. The AM system offers the advantage of being almost insensitive to the effect of fluctuations. It is able to take a direct measurement of the time delay of the microwave pulse which propagates to the reflecting layer and is reflected back. In order to achieve fast reconstruction for real time monitoring of the density profile application of Neural Networks algorithms will be presented the method can reduce the computing times by about three orders of magnitude. 10 refs., 10 figs.

  6. Techniques for Microwave Dielectric Measurements.

    DTIC Science & Technology

    1986-03-01

    the complex dielectric constant. The theory is developed on the premise that the electromagnetic (EM) fields are unchanged in form and only slightly...values of these shifts, the validity of the theory can come into doubt. It is also true that as the sample is made smaller, the tolerances on the accuracy...Complex Permittivity in Re- entrant Cavity: Part A - Theoretical Analysis of the Method," Microwave Theory Tech., Vol. MTT-28 (1980), pp. 225-28

  7. Processing dentures using a microwave technique.

    PubMed

    Ilbay, S G; Güvener, S; Alkumru, H N

    1994-01-01

    In this research the technique of curing denture base acrylic resins by microwave energy was investigated with respect to polymerization method, hardness, mechanical and physical properties. Twenty-one different polymerization methods were used by varying radiation power and curing time. The Vickers hardness test was applied to the samples which were polymerized. The average value was found to be 22.46 VHN (Vicker hardness number), that is, almost the same as conventionally cured acrylic. The recommended polymerization method of curing acrylic was 3 min at 550 W in a microwave oven. Mechanical and physical tests were applied to the samples which were cured by the recommended polymerization method. The average transverse load to fracture value was found to be 7.6 kg, and the transverse deflection value was 1.5 mm at 3500 g, and 2.9 mm at 5000 g. Water sorption of acrylic resin cured by microwave energy was 0.72 mg cm-2 and the solubility rate in water was 0.038 mg cm-2. Results conformed with the ADA specification. The findings showed that acrylic resin cured by microwave energy is more resistant to mechanical failure than conventionally cured acrylic and this technique can safely be applied to the production of denture bases.

  8. [New techniques of tumor ablation (microwaves, electroporation)].

    PubMed

    de Baere, T

    2011-09-01

    Since the introduction of radiofrequency tumor ablation of liver tumors in the late 1990s, local destructive therapies have been applied to lung, renal and bone lesions. In addition, new techniques have been introduced to compensate for the limitations of radiofrequency ablation, namely the reduced rate of complete ablation for tumors larger than 3 cm and tumors near vessels larger than 3 mm. Microwave ablation is currently evolving rapidly. While it is a technique based on thermal ablation similar to radiofrequency ablation, there are significant differences between both techniques. Electroporation, of interest because of the non-thermal nature of the ablation process, also is under evaluation.

  9. Applications of active microwave imagery

    NASA Technical Reports Server (NTRS)

    Weber, F. P.; Childs, L. F.; Gilbert, R.; Harlan, J. C.; Hoffer, R. M.; Miller, J. M.; Parsons, J.; Polcyn, F.; Schardt, B. B.; Smith, J. L.

    1978-01-01

    The following topics were discussed in reference to active microwave applications: (1) Use of imaging radar to improve the data collection/analysis process; (2) Data collection tasks for radar that other systems will not perform; (3) Data reduction concepts; and (4) System and vehicle parameters: aircraft and spacecraft.

  10. Active microwave users working group program planning

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Bare, J.; Brown, W. E., Jr.; Childs, L. F.; Dellwig, L. F.; Heighway, J. E.; Joosten, R.; Lewis, A. J.; Linlor, W.; Lundien, J. R.

    1978-01-01

    A detailed programmatic and technical development plan for active microwave technology was examined in each of four user activities: (1) vegetation; (2) water resources and geologic applications, and (4) oceanographic applications. Major application areas were identified, and the impact of each application area in terms of social and economic gains were evaluated. The present state of knowledge of the applicability of active microwave remote sensing to each application area was summarized and its role relative to other remote sensing devices was examined. The analysis and data acquisition techniques needed to resolve the effects of interference factors were reviewed to establish an operational capability in each application area. Flow charts of accomplished and required activities in each application area that lead to operational capability were structured.

  11. Active microwave responses - An aid in improved crop classification

    NASA Technical Reports Server (NTRS)

    Rosenthal, W. D.; Blanchard, B. J.

    1984-01-01

    A study determined the feasibility of using visible, infrared, and active microwave data to classify agricultural crops such as corn, sorghum, alfalfa, wheat stubble, millet, shortgrass pasture and bare soil. Visible through microwave data were collected by instruments on board the NASA C-130 aircraft over 40 agricultural fields near Guymon, OK in 1978 and Dalhart, TX in 1980. Results from stepwise and discriminant analysis techniques indicated 4.75 GHz, 1.6 GHz, and 0.4 GHz cross-polarized microwave frequencies were the microwave frequencies most sensitive to crop type differences. Inclusion of microwave data in visible and infrared classification models improved classification accuracy from 73 percent to 92 percent. Despite the results, further studies are needed during different growth stages to validate the visible, infrared, and active microwave responses to vegetation.

  12. COBE differential microwave radiometers - Calibration techniques

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Smoot, G. F.; Janssen, M.; Gulkis, S.; Kogut, A.; Hinshaw, G.; Backus, C.; Hauser, M. G.; Mather, J. C.; Rokke, L.

    1992-01-01

    The COBE spacecraft was launched November 18, 1989 UT carrying three scientific instruments into earth orbit for studies of cosmology. One of these instruments, the Differential Microwave Radiometer (DMR), is designed to measure the large-angular-scale temperature anisotropy of the cosmic microwave background radiation at three frequencies (31.5, 53, and 90 GHz). This paper presents three methods used to calibrate the DMR. First, the signal difference between beam-filling hot and cold targets observed on the ground provides a primary calibration that is transferred to space by noise sources internal to the instrument. Second, the moon is used in flight as an external calibration source. Third, the signal arising from the Doppler effect due to the earth's motion around the barycenter of the solar system is used as an external calibration source. Preliminary analysis of the external source calibration techniques confirms the accuracy of the currently more precise ground-based calibration. Assuming the noise source behavior did not change from the ground-based calibration to flight, a 0.1-0.4 percent relative and 0.7-2.5 percent absolute calibration uncertainty is derived, depending on radiometer channel.

  13. Microwave Diffraction Techniques from Macroscopic Crystal Models

    ERIC Educational Resources Information Center

    Murray, William Henry

    1974-01-01

    Discusses the construction of a diffractometer table and four microwave models which are built of styrofoam balls with implanted metallic reflecting spheres and designed to simulate the structures of carbon (graphite structure), sodium chloride, tin oxide, and palladium oxide. Included are samples of Bragg patterns and computer-analysis results.…

  14. Electromagnetic measurement and modeling techniques for microwave ablation probes.

    PubMed

    Brannan, Joseph D

    2009-01-01

    Broadband scattering parameter measurement of a commercially available microwave ablation probe over the course of a 10 minute 45 Watt ablation cycle within ex-vivo bovine liver tissue is performed. Measurement results are compared to finite difference time domain simulation of the probe in non-ablated and fully ablated tissue geometries. Measurement and simulation results agree well from 0-3 GHz demonstrating the accuracy of a multi-compartmental ablation geometry modeling technique. The electromagnetic modeling technique presented in this paper introduces a useful design tool for optimizing microwave ablation probes without the need for multi-physics simulation packages. The relevance of tissue complex permittivity change with temperature to microwave ablation probe performance is discussed.

  15. A microwave technique for mapping thin sea ice

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.

    1994-01-01

    A technique is presented for mapping the distribution of new, young and first-year sea ice in seasonal sea ice zones that utilizes microwave spectral and polarization information from the Defense Meteorological Satellite Program Special Sensor Microwave/Imager (DMSP SSM/I). The motivation for this work stems from the need for accurate estimates of open water and thin ice within the Arctic ice pack. The technique utilizes the microwave polarization and spectral characteristics of these three ice types through two microwave radiance ratios: the 19.4 GHz polarization and the spectral gradient ratio, which is a measure of the spectral difference between the 19.4-GHz and the 37.0-GHz vertically polarized radiance components. The combined use of the spectral gradient ratio and polarization reduces the low ice concentration bias generally associated with the presence of thin ice types. The microwave polarization, which is sensitive to changes in ice thickness and ice surface characteristics, is used to classify new, young, and first-year ice types.

  16. New tumor ablation techniques for cancer treatment (microwave, electroporation).

    PubMed

    de Baere, T; Deschamps, F

    2014-01-01

    Since the introduction of radiofrequency ablation (RFA) for the treatment of liver tumors at the end of the 1990s, indications for local ablation techniques have been extended to other organs, in particular, the lungs, kidneys and bones. These techniques have also been improved, in particular to try and overcome the limitations of radiofrequency techniques, especially the significant decrease in complete ablation rates for tumors larger than 3cm and tumors that are contiguous to vessels larger than 3mm. Microwave ablation is a rapidly developing thermal ablation technique similar to RFA but with numerous differences. Electroporation, a non-thermal ablation technique with other possibilities, is in earlier stages of clinical development.

  17. Summary of the Active Microwave Workshop, chapter 1. [utilization in applications and aerospace programs

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An overview is given of the utility, feasibility, and advantages of active microwave sensors for a broad range of applications, including aerospace. In many instances, the material provides an in-depth examination of the applicability and/or the technology of microwave remote sensing, and considerable documentation is presented in support of these techniques. An assessment of the relative strengths and weaknesses of active microwave sensor data indicates that satisfactory data are obtainable for several significant applications.

  18. Microwave spectroscopy of the active sun

    NASA Technical Reports Server (NTRS)

    Hurford, Gordon

    1992-01-01

    In studies of solar active regions and bursts, the ability to obtain spatially resolved radio spectra (brightness temperature spectra) opens a whole new range of possibilities for study of the solar corona. For active regions, two-dimensional maps of brightness temperature over a wide range of frequencies allows one to determine temperature, column density, and magnetic field strength over the entire region in a straightforward, unambiguous way. For flares, the time-dependent electron energy distribution, number of accelerated electrons, and magnetic field strength and direction can be found. In practice, obtaining complete radio images at a large number of frequencies is a significant technical challenge, especially while keeping costs down. Our instrument at Owens Valley Radio Observatory provided the starting point for a modest attempt at meeting this goal. We proposed to build three additional, very low-cost 2-m antennas which, when combined with our existing two 27-m dishes, expands the array to 5 elements. This modest increase in number of solar dedicated antennas, from 2 to 5, increases our maximum number of physical baselines from 1 to 10 and allows the instrument to do true imaging of solar microwave sources, both bursts and active regions. Combined with the technique of frequency synthesis, the new array has up to 450 effective baselines, giving imaging capability that approaches that of a sub-arrayed VLA. The prototype antenna design was finalized and the antenna was put into operation in Nov. 1989.

  19. Discrete random media techniques for microwave modeling of vegetated terrain

    NASA Technical Reports Server (NTRS)

    Lang, Roger H.

    1991-01-01

    Microwave remote sensing models of vegetated terrain are investigated. The problem is to determine canopy characteristics such as biomass, canopy height, and the moisture of the underlying soil. The report describes a discrete scatter model which has been employed to model backscatter in the active (radar) case and to model brightness temperature in the passive (radiometric) case. The acquisition of ground truth data is discussed, as well as the comparison of theory and experiment. The overall conclusion of the work has been that the discrete scatter model in conjunction with efficient scatter algorithms and the distorted Born approximation is a most appropriate methodology to use for modeling purposes in the microwave region.

  20. Active-Passive Microwave Remote Sensing of Martian Permafrost and Subsurface Water

    NASA Technical Reports Server (NTRS)

    Raizer, V.; Linkin, V. M.; Ozorovich, Y. R.; Smythe, W. D.; Zoubkov, B.; Babkin, F.

    2000-01-01

    The investigation of permafrost formation global distribution and their appearance in h less than or equal 1 m thick subsurface layer would be investigated successfully by employment of active-passive microwave remote sensing techniques.

  1. Reconstruction Techniques for Sparse Multistatic Linear Array Microwave Imaging

    SciTech Connect

    Sheen, David M.; Hall, Thomas E.

    2014-06-09

    Sequentially-switched linear arrays are an enabling technology for a number of near-field microwave imaging applications. Electronically sequencing along the array axis followed by mechanical scanning along an orthogonal axis allows dense sampling of a two-dimensional aperture in near real-time. In this paper, a sparse multi-static array technique will be described along with associated Fourier-Transform-based and back-projection-based image reconstruction algorithms. Simulated and measured imaging results are presented that show the effectiveness of the sparse array technique along with the merits and weaknesses of each image reconstruction approach.

  2. Scanning microwave microscopy technique for nanoscale characterization of magnetic materials

    NASA Astrophysics Data System (ADS)

    Joseph, C. H.; Sardi, G. M.; Tuca, S. S.; Gramse, G.; Lucibello, A.; Proietti, E.; Kienberger, F.; Marcelli, R.

    2016-12-01

    In this work, microwave characterization of magnetic materials using the scanning microwave microscopy (SMM) technique is presented. The capabilities of the SMM are employed for analyzing and imaging local magnetic properties of the materials under test at the nanoscale. The analyses are performed by acquiring both amplitude and phase of the reflected microwave signal. The changes in the reflection coefficient S11 are related to the local properties of the material under investigation, and the changes in its magnetic properties have been studied as a function of an external DC magnetic bias. Yttrium iron garnet (YIG) films deposited by RF sputtering and grown by liquid phase epitaxial (LPE) on gadolinium gallium garnet (GGG) substrates and permalloy samples have been characterized. An equivalent electromagnetic transmission line model is discussed for the quantitative analysis of the local magnetic properties. We also observed the hysteretic behavior of the reflection coefficient S11 with an external bias field. The imaging and spectroscopy analysis on the experimental results are evidently indicating the possibilities of measuring local changes in the intrinsic magnetic properties on the surface of the material.

  3. Active cleaning technique device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1973-01-01

    The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.

  4. Physical techniques for delivering microwave energy to tissues.

    PubMed Central

    Hand, J. W.

    1982-01-01

    Some of the physical aspects of delivering microwave energy to tissues have been discussed. Effective penetration of a few cm may be achieved with external applicators whilst small coaxial or cylindrical devices can induce localized heating in sites accessible to catheters or to direct invasion. To heat deep tissue sites in general, systems of greater complexity involving a number of applicators with particular phase relationships between them are required. The problems of thermometry in the presence of electromagnetic fields fall outside the scope of this article. Their solution, however, is no less important to the future of clinical hyperthermia than the development of heating techniques. Finally, it should be remembered that physiological parameters such as blood flow have appreciable effects in determining the efficacy of the physical techniques described above. PMID:6950781

  5. Automated Microwave Low Power Testing Techniques for NLC

    SciTech Connect

    Carter, H.; Finley, D.; Gonin, I.; Khabibullin, T.; Romanov, G.; Sun, D.; Adolphsen, C.; Wang, J.; /SLAC

    2005-07-08

    As part of the Next Linear Collider (NLC) collaboration, the NLC structures group at Fermilab has started an R&D program to fabricate NLC accelerator structures in cooperation with commercial companies in order to prepare for mass production of RF structures. To build the Next Linear Collider, thousands accelerator structures containing a million cells are needed. Our primary goal is to explore the feasibility of making these structures in an industrial environment. On the other hand the structure mass production requires ''industrialized''microwave quality control techniques to characterize these structures at different stages of production as efficiently as possible. We developed several automated set-ups based on different RF techniques that are mutually complementary address this problem.

  6. Efficient preparation of nanocrystalline anatase TiO{sub 2} and V/TiO{sub 2} thin layers using microwave drying and/or microwave calcination technique

    SciTech Connect

    Zabova, H.; Sobek, J.; Cirkva, V.; Solcova, O.; Kment, S.; Hajek, M.

    2009-12-15

    This study has demonstrated that the synthesis of TiO{sub 2} and V/TiO{sub 2} thin layers may be significantly improved and extended if microwave energy is employed during the drying and/or calcination step. Thin nanoparticulate titania layers were prepared via the sol-gel method using titanium n-butoxide as a precursor. As prepared films were then analyzed by means of various characterization techniques (Raman spectroscopy, UV/Vis, AFM, XPS) in order to determine their functional properties. The photocatalytic activities of prepared layers were quantified by the decoloring rate of Rhodamine B. All thermal treatments in microwave field were done in the same manner, by using an IR pyrometer in the microwave oven and monitoring the temperature of the heating. Nevertheless the microwave and thermally prepared materials were different. This in turn may lead to differences in their functional and also photocatalytic properties. - Graphical abstract: This study has demonstrated that the synthesis of thin layers may be improved and extended if microwave energy is employed during the preparation process. Microwave processing has the potential to reduce the time, cost and energy input for the production of thin layers.

  7. AMISS - Active and passive MIcrowaves for Security and Subsurface imaging

    NASA Astrophysics Data System (ADS)

    Soldovieri, Francesco; Slob, Evert; Turk, Ahmet Serdar; Crocco, Lorenzo; Catapano, Ilaria; Di Matteo, Francesca

    2013-04-01

    The FP7-IRSES project AMISS - Active and passive MIcrowaves for Security and Subsurface imaging is based on a well-combined network among research institutions of EU, Associate and Third Countries (National Research Council of Italy - Italy, Technische Universiteit Delft - The Netherlands, Yildiz Technical University - Turkey, Bauman Moscow State Technical University - Russia, Usikov Institute for Radio-physics and Electronics and State Research Centre of Superconductive Radioelectronics "Iceberg" - Ukraine and University of Sao Paulo - Brazil) with the aims of achieving scientific advances in the framework of microwave and millimeter imaging systems and techniques for security and safety social issues. In particular, the involved partners are leaders in the scientific areas of passive and active imaging and are sharing their complementary knowledge to address two main research lines. The first one regards the design, characterization and performance evaluation of new passive and active microwave devices, sensors and measurement set-ups able to mitigate clutter and increase information content. The second line faces the requirements to make State-of-the-Art processing tools compliant with the instrumentations developed in the first line, suitable to work in electromagnetically complex scenarios and able to exploit the unexplored possibilities offered by new instrumentations. The main goals of the project are: 1) Development/improvement and characterization of new sensors and systems for active and passive microwave imaging; 2) Set up, analysis and validation of state of art/novel data processing approach for GPR in critical infrastructure and subsurface imaging; 3) Integration of state of art and novel imaging hardware and characterization approaches to tackle realistic situations in security, safety and subsurface prospecting applications; 4) Development and feasibility study of bio-radar technology (system and data processing) for vital signs detection and

  8. Reconstruction techniques for sparse multistatic linear array microwave imaging

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Hall, Thomas E.

    2014-06-01

    Sequentially-switched linear arrays are an enabling technology for a number of near-field microwave imaging applications. Electronically sequencing along the array axis followed by mechanical scanning along an orthogonal axis allows dense sampling of a two-dimensional aperture in near real-time. The Pacific Northwest National Laboratory (PNNL) has developed this technology for several applications including concealed weapon detection, groundpenetrating radar, and non-destructive inspection and evaluation. These techniques form three-dimensional images by scanning a diverging beam swept frequency transceiver over a two-dimensional aperture and mathematically focusing or reconstructing the data into three-dimensional images. Recently, a sparse multi-static array technology has been developed that reduces the number of antennas required to densely sample the linear array axis of the spatial aperture. This allows a significant reduction in cost and complexity of the linear-array-based imaging system. The sparse array has been specifically designed to be compatible with Fourier-Transform-based image reconstruction techniques; however, there are limitations to the use of these techniques, especially for extreme near-field operation. In the extreme near-field of the array, back-projection techniques have been developed that account for the exact location of each transmitter and receiver in the linear array and the 3-D image location. In this paper, the sparse array technique will be described along with associated Fourier-Transform-based and back-projection-based image reconstruction algorithms. Simulated imaging results are presented that show the effectiveness of the sparse array technique along with the merits and weaknesses of each image reconstruction approach.

  9. Circular Bioassay Platforms for Applications in Microwave-Accelerated Techniques

    PubMed Central

    Mohammed, Muzaffer; Clement, Travis C.; Aslan, Kadir

    2014-01-01

    In this paper, we present the design of four different circular bioassay platforms, which are suitable for homogeneous microwave heating, using theoretical calculations (i.e., COMSOL™ multiphysics software). Circular bioassay platforms are constructed from poly(methyl methacrylate) (PMMA) for optical transparency between 400–800 nm, has multiple sample capacity (12, 16, 19 and 21 wells) and modified with silver nanoparticle films (SNFs) to be used in microwave-accelerated bioassays (MABs). In addition, a small monomode microwave cavity, which can be operated with an external microwave generator (100 W), for use with the bioassay platforms in MABs is also developed. Our design parameters for the circular bioassay platforms and monomode microwave cavity during microwave heating were: (i) temperature profiles, (ii) electric field distributions, (iii) location of the circular bioassay platforms inside the microwave cavity, and (iv) design and number of wells on the circular bioassay platforms. We have also carried out additional simulations to assess the use of circular bioassay platforms in a conventional kitchen microwave oven (e.g., 900 W). Our results show that the location of the circular bioassay platforms in the microwave cavity was predicted to have a significant effect on the homogeneous heating of these platforms. The 21-well circular bioassay platform design in our monomode microwave cavity was predicted to offer a homogeneous heating pattern, where inter-well temperature was observed to be in between 23.72–24.13°C and intra-well temperature difference was less than 0.21°C for 60 seconds of microwave heating, which was also verified experimentally. PMID:25568813

  10. Circular Bioassay Platforms for Applications in Microwave-Accelerated Techniques.

    PubMed

    Mohammed, Muzaffer; Clement, Travis C; Aslan, Kadir

    2014-12-02

    In this paper, we present the design of four different circular bioassay platforms, which are suitable for homogeneous microwave heating, using theoretical calculations (i.e., COMSOL™ multiphysics software). Circular bioassay platforms are constructed from poly(methyl methacrylate) (PMMA) for optical transparency between 400-800 nm, has multiple sample capacity (12, 16, 19 and 21 wells) and modified with silver nanoparticle films (SNFs) to be used in microwave-accelerated bioassays (MABs). In addition, a small monomode microwave cavity, which can be operated with an external microwave generator (100 W), for use with the bioassay platforms in MABs is also developed. Our design parameters for the circular bioassay platforms and monomode microwave cavity during microwave heating were: (i) temperature profiles, (ii) electric field distributions, (iii) location of the circular bioassay platforms inside the microwave cavity, and (iv) design and number of wells on the circular bioassay platforms. We have also carried out additional simulations to assess the use of circular bioassay platforms in a conventional kitchen microwave oven (e.g., 900 W). Our results show that the location of the circular bioassay platforms in the microwave cavity was predicted to have a significant effect on the homogeneous heating of these platforms. The 21-well circular bioassay platform design in our monomode microwave cavity was predicted to offer a homogeneous heating pattern, where inter-well temperature was observed to be in between 23.72-24.13°C and intra-well temperature difference was less than 0.21°C for 60 seconds of microwave heating, which was also verified experimentally.

  11. Solar Activity Studies using Microwave Imaging Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    We report on the status of solar cycle 24 based on polar prominence eruptions (PEs) and microwave brightness enhancement (MBE) information obtained by the Nobeyama radioheliograph. The north polar region of the Sun had near-zero field strength for more than three years (2012-2015) and ended only in September 2015 as indicated by the presence of polar PEs and the lack of MBE. The zero-polar-field condition in the south started only around 2013, but it ended by June 2014. Thus the asymmetry in the times of polarity reversal switched between cycle 23 and 24. The polar MBE is a good proxy for the polar magnetic field strength as indicated by the high degree of correlation between the two. The cross-correlation between the high- and low-latitude MBEs is significant for a lag of approximately 5.5 to 7.3 years, suggesting that the polar field of one cycle indicates the sunspot number of the next cycle in agreement with the Babcock-Leighton mechanism of solar cycles. The extended period of near-zero field in the north-polar region should result in a weak and delayed sunspot activity in the northern hemisphere in cycle 25.

  12. Microwave-induced thermogenetic activation of single cells

    SciTech Connect

    Safronov, N. A.; Fedotov, I. V.; Ermakova, Yu. G.; Matlashov, M. E.; Belousov, V. V.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Zheltikov, A. M.

    2015-04-20

    Exposure to a microwave field is shown to enable thermogenetic activation of individual cells in a culture of cell expressing thermosensitive ion channels. Integration of a microwave transmission line with an optical fiber and a diamond quantum thermometer has been shown to allow thermogenetic single-cell activation to be combined with accurate local online temperature measurements based on an optical detection of electron spin resonance in nitrogen–vacancy centers in diamond.

  13. Study on disinfestation of pulses using microwave technique.

    PubMed

    Singh, Ranjeet; Singh, K K; Kotwaliwale, N

    2012-08-01

    Mortality of the pulse beetle (Callosobruchus chinensis L.) exposed, continuously, to microwave radiation (2450 MHz) was evaluated as a function of exposure time and percent power level, at adult stages. The microwave exposure time to attain 100% insect mortality at 100 %, 80%, 60%, 40%, and 20% power levels for Chickpea, Pigeon Pea and Green Gram was optimized. Effect of optimized microwave exposure time on viability, germination, cooking and milling characteristics of Chickpea, Pigeon Pea and Green Gram was also evaluated. Adult stage study was characterized by a distinct dose-exposure curve. The mortality curve was following third degree polynomial equation. The seed viability and germination of Chickpea, Pigeon Pea and Green Gram was affected by microwave exposure time and power level. It was observed that as the power level is decreasing the germination and viability of all the pulses are increasing. The effect on cooking and milling characteristics are not affected by microwave exposure time and power level. The insects in the mobile state were observed to move towards the surface from inside the nutrient medium during microwave exposure. They also curled up and in some cases aggregation was observed.

  14. Modelling, analysis and validation of microwave techniques for the characterisation of metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Sulaimalebbe, Aslam

    In the last decade, the study of nanoparticle (NP) systems has become a large and interesting research area due to their novel properties and functionalities, which are different from those of the bulk materials, and also their potential applications in different fields. It is vital to understand the behaviour and properties of nano-materials aiming at implementing nanotechnology, controlling their behaviour and designing new material systems with superior performance. Physical characterisation of NPs falls into two main categories, property and structure analysis, where the properties of the NPs cannot be studied without the knowledge of size and structure. The direct measurement of the electrical properties of metal NPs presents a key challenge and necessitates the use of innovative experimental techniques. There have been numerous reports of two/four point resistance measurements of NPs films and also electrical conductivity of NPs films using the interdigitated microarray (IDA) electrode. However, using microwave techniques such as open ended coaxial probe (OCP) and microwave dielectric resonator (DR) for electrical characterisation of metallic NPs are much more accurate and effective compared to other traditional techniques. This is because they are inexpensive, convenient, non-destructive, contactless, hazardless (i.e. at low power) and require no special sample preparation. This research is the first attempt to determine the microwave properties of Pt and Au NP films, which were appealing materials for nano-scale electronics, using the aforementioned microwave techniques. The ease of synthesis, relatively cheap, unique catalytic activities and control over the size and the shape were the main considerations in choosing Pt and Au NPs for the present study. The initial phase of this research was to implement and validate the aperture admittance model for the OCP measurement through experiments and 3D full wave simulation using the commercially available Ansoft

  15. Microwave pyrolysis of oily sludge with activated carbon.

    PubMed

    Chen, Yi-Rong

    2016-12-01

    The aim of this study is to explore catalytic microwave pyrolysis of crude oil storage tank sludge for fuels using granular activated carbon (GAC) as a catalyst. The effect of GAC loading on the yield of pyrolysis products was also investigated. Heating rate of oily sludge and yield of microwave pyrolysis products such as oil and fuel gas was found to depend on the ratio of GAC to oily sludge. The optimal GAC loading was found to be 10%, while much smaller and larger feed sizes adversely influenced production. During oily sludge pyrolysis, a maximum oil yield of 77.5% was achieved. Pyrolytic oils with high concentrations of diesel oil and gasoline (about 70 wt% in the pyrolytic oil) were obtained. The leaching of heavy metals, such as Cr, As and Pb, was also suppressed in the solid residue after pyrolysis. This technique provides advantages such as harmless treatment of oily sludge and substantial reduction in the consumption of energy, time and cost.

  16. Microwave remote sensing: Active and passive. Volume 3 - From theory to applications

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Moore, R. K.; Fung, A. K.

    1986-01-01

    Aspects of volume scattering and emission theory are discussed, taking into account a weakly scattering medium, the Born approximation, first-order renormalization, the radiative transfer method, and the matrix-doubling method. Other topics explored are related to scatterometers and probing systems, the passive microwave sensing of the atmosphere, the passive microwave sensing of the ocean, the passive microwave sensing of land, the active microwave sensing of land, and radar remote sensing applications. Attention is given to inversion techniques, atmospheric attenuation and emission, a temperature profile retrieval from ground-based observations, mapping rainfall rates, the apparent temperature of the sea, the emission behavior of bare soil surfaces, the emission behavior of vegetation canopies, the emission behavior of snow, wind-vector radar scatterometry, radar measurements of sea ice, and the back-scattering behavior of cultural vegetation canopies.

  17. High precision metrology based microwave effective linewidth measurement technique

    SciTech Connect

    Mo, Nan; Green, Jerome J.; Beitscher, Bailey A.; Patton, Carl E.

    2007-11-15

    A precision microwave effective linewidth measurement technique for magnetic samples has been developed. The measurement utilizes a high-Q cylindrical cavity that contains the sample of interest, a highly stable and programable static magnetic field source, a computer controlled network analyzer for cavity center frequency {omega}{sub c} and quality factor Q{sub c} determinations, and the standard metrological substitution ABA method for accurate relative {omega}{sub c} and Q{sub c} measurements. Sequential long term ABA measurements show that the time and temperature drifts and random errors are the dominant sources of error, with uncertainties in {omega}{sub c}/2{pi} and Q{sub c} in the range of 50 kHz and 25, respectively. The ABA method is applied to eliminate these drifts and minimize the random errors. For measurements over 25 ABA cycles, accuracy is improved to 0.14 kHz for {omega}{sub c}/2{pi} and 3 for Q{sub c}. The temperature variation over a single ABA cycle is generally on the order of 10{sup -3}-10{sup -5} deg. C and there is no need for any further temperature stabilization or correction measures. The overall uncertainty in the 10 GHz effective linewidth determinations for a 3 mm diam, 0.5 mm thick polycrystalline yttrium iron garnet (YIG) disk is 0.15 Oe or less, well below the intrinsic single crystal YIG linewidth. This represents a factor of 10 improvement in measurement accuracy over previous work.

  18. Synthesis of novel quinoxalinone derivatives by conventional and microwave methods and assessing their biological activity.

    PubMed

    Nasir, Waqar; Munawar, Munawar Ali; Ahmed, Ejaz; Sharif, Ahsan; Ahmed, Saeed; Ayub, Amjad; Khan, Misbahul Ain; Nasim, Faizul Hassan

    2011-10-01

    In this study, twenty-one arylaminoquinoxalinone derivatives were synthesized and their antibacterial activities against Staphylococci aureus, Pseudomonas aureus, Escherichia coli, Bacillus subtilis, Salmonella typhi, and Shigella pneumoniae were evaluated relative to known antibiotics; augmentin, ampicillin, and chloramphenicol. The insecticidal activities of the prepared compounds were also investigated against Tribolium castaneum using permethrin as a standard insecticide. The derivatives were synthesized using both conventional and microwave techniques. Their structures were confirmed using spectral techniques and elemental analysis.

  19. A chemical/microwave technique for the measurement of bulk minority carrier lifetime in silicon wafers

    NASA Technical Reports Server (NTRS)

    Luke, Keung L.; Cheng, Li-Jen

    1988-01-01

    A chemical/microwave technique for the measurement of bulk minority carrier lifetime in silicon wafers is described. This method consists of a wet chemical treatment (surface cleaning, oxidation in solution, and measurement in HF solution) to passivate the silicon surfaces, a laser diode array for carrier excitation, and a microwave bridge measuring system which is more sensitive than the microwave systems used previously for lifetime measurement. Representative experimental data are presented to demonstrate this technique. The result reveals that this method is useful for the determination of bulk lifetime of commercial silicon wafers.

  20. Method and apparatus for measuring butterfat and protein content using microwave absorption techniques

    DOEpatents

    Fryer, Michael O.; Hills, Andrea J.; Morrison, John L.

    2000-01-01

    A self calibrating method and apparatus for measuring butterfat and protein content based on measuring the microwave absorption of a sample of milk at several microwave frequencies. A microwave energy source injects microwave energy into the resonant cavity for absorption and reflection by the sample undergoing evaluation. A sample tube is centrally located in the resonant cavity passing therethrough and exposing the sample to the microwave energy. A portion of the energy is absorbed by the sample while another portion of the microwave energy is reflected back to an evaluation device such as a network analyzer. The frequency at which the reflected radiation is at a minimum within the cavity is combined with the scatter coefficient S.sub.11 as well as a phase change to calculate the butterfat content in the sample. The protein located within the sample may also be calculated in a likewise manner using the frequency, S.sub.11 and phase variables. A differential technique using a second resonant cavity containing a reference standard as a sample will normalize the measurements from the unknown sample and thus be self-calibrating. A shuttered mechanism will switch the microwave excitation between the unknown and the reference cavities. An integrated apparatus for measuring the butterfat content in milk using microwave absorption techniques is also presented.

  1. Activities of the Division of Microwave Technology

    NASA Astrophysics Data System (ADS)

    Lewerentz, Birgitta

    1989-11-01

    Multistatic radar technology requirements are very high for antennas, where a maximum of flexibility is desired. Multilobes are often used, or groups of antennas which are electrically operated. Electronics and other electrical equipment were studied for supporting ionizing radiation and several forms of electromagnetic radiation. Ferrite components were studied. For microwave and optical technology, applications are reported. High effect Pulse Microwave radiation (HPM) emitting from an antenna and creating trouble in the electronic equipment, or destruction of this equipment is discussed. The defense against HPM is studied.

  2. COBE Differential Microwave Radiometer (DMR) data processing techniques

    NASA Technical Reports Server (NTRS)

    Jackson, P. D.; Smoot, G. F.; Bennett, C. L.; Aymon, J.; Backus, C.; Deamici, G.; Hinshaw, G.; Keegstra, P. B.; Kogut, A.; Lineweaver, C.

    1992-01-01

    The purpose of the Differential Microwave Radiometer (DMR) experiment on the Cosmic Background Explorer (COBE) satellite is to make whole-sky maps, at frequencies of 31.5, 53, and 90 GHz, of any departures of the Cosmic Microwave Background (CMB) from its mean value of 2.735 K. An elaborate software system is necessary to calibrate and invert the differential measurements, so as to make sky maps free from large scale systematic errors to levels less than a millionth of the CMB.

  3. An optical fiber sensing technique for temperature distribution measurements in microwave heating

    NASA Astrophysics Data System (ADS)

    Wada, Daichi; Sugiyama, Jun-ichi; Zushi, Hiroaki; Murayama, Hideaki

    2015-08-01

    We introduce an optical fiber sensing technique that can measure the temperature distributions along a fiber during microwave heating. We used a long-length fiber Bragg grating (FBG) as an electromagnetic-immune sensor and interrogated temperature distributions along the FBG by an optical frequency domain reflectometry. Water in a glass tube with a length of 820 mm was heated in a microwave oven, and its temperature distribution along the glass tube was measured using the sensing system. The temperature distribution was obtained in 5 mm intervals. Infrared radiometry was also used to compare the temperature measurement results. Time and spatial variations of the temperature distribution profiles were monitored for several microwave input powers. The results clearly depict inhomogeneous temperature profiles. The applicability and effectiveness of the optical fiber distributed measurement technique in microwave heating are demonstrated.

  4. Investigation of direct solar-to-microwave energy conversion techniques

    NASA Technical Reports Server (NTRS)

    Chatterton, N. E.; Mookherji, T. K.; Wunsch, P. K.

    1978-01-01

    Identification of alternative methods of producing microwave energy from solar radiation for purposes of directing power to the Earth from space is investigated. Specifically, methods of conversion of optical radiation into microwave radiation by the most direct means are investigated. Approaches based on demonstrated device functioning and basic phenomenologies are developed. There is no system concept developed, that is competitive with current baseline concepts. The most direct methods of conversion appear to require an initial step of production of coherent laser radiation. Other methods generally require production of electron streams for use in solid-state or cavity-oscillator systems. Further development is suggested to be worthwhile for suggested devices and on concepts utilizing a free-electron stream for the intraspace station power transport mechanism.

  5. A Novel Microwave Beam Steering Technique Using Plasma

    NASA Astrophysics Data System (ADS)

    Linardakis, Peter; Borg, Gerard G.; Harris, Jeffrey H.; Martin, Noel M.

    2002-10-01

    At frequencies above the plasma frequency, electromagnetic waves propagate through plasma with a wavelength longer than the free space wavelength. As a result, a plasma with a centrally peaked density profile can deflect rather than focus electromagnetic waves. We present a plasma device designed specifically to deflect a microwave beam as an alternative to conventional beam deflectors based on antenna arrays. A 22^rc deflection of Ka band microwave has been achieved using a laboratory plasma, with no detrimental effect on the beamwidth or side-lode level and structure. The use of a simple WKB model shows agreement and that the deflection can be increased with appropriate design. Results indicate the potential for increases in dynamic range, in power handling (for example from a gyrotron) and for the reduction of insertion losses over current beam steering systems. A ``plasma lens'' demonstrator device has also been designed to test practical performance aspects such as phase noise and to test optimization parameters.

  6. Technique for Performing Dielectric Property Measurements at Microwave Frequencies

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Jackson, Henry W.

    2010-01-01

    A paper discusses the need to perform accurate dielectric property measurements on larger sized samples, particularly liquids at microwave frequencies. These types of measurements cannot be obtained using conventional cavity perturbation methods, particularly for liquids or powdered or granulated solids that require a surrounding container. To solve this problem, a model has been developed for the resonant frequency and quality factor of a cylindrical microwave cavity containing concentric cylindrical samples. This model can then be inverted to obtain the real and imaginary dielectric constants of the material of interest. This approach is based on using exact solutions to Maxwell s equations for the resonant properties of a cylindrical microwave cavity and also using the effective electrical conductivity of the cavity walls that is estimated from the measured empty cavity quality factor. This new approach calculates the complex resonant frequency and associated electromagnetic fields for a cylindrical microwave cavity with lossy walls that is loaded with concentric, axially aligned, lossy dielectric cylindrical samples. In this approach, the calculated complex resonant frequency, consisting of real and imaginary parts, is related to the experimentally measured quantities. Because this approach uses Maxwell's equations to determine the perturbed electromagnetic fields in the cavity with the material(s) inserted, one can calculate the expected wall losses using the fields for the loaded cavity rather than just depending on the value of the fields obtained from the empty cavity quality factor. These additional calculations provide a more accurate determination of the complex dielectric constant of the material being studied. The improved approach will be particularly important when working with larger samples or samples with larger dielectric constants that will further perturb the cavity electromagnetic fields. Also, this approach enables the ability to have a

  7. A new technique to pyrolyse biomass in a microwave system: effect of stirrer speed.

    PubMed

    Abubakar, Zubairu; Salema, Arshad Adam; Ani, Farid Nasir

    2013-01-01

    A new technique to pyrolyse biomass in microwave (MW) system is presented in this paper to solve the problem of bio-oil deposition. Pyrolysis of oil palm shell (OPS) biomass was conducted in 800 W and 2.45 GHz frequency MW system using an activated carbon as a MW absorber. The temperature profile, product yield and the properties of the products were found to depend on the stirrer speed and MW absorber percentage. The highest bio-oil yield of 28 wt.% was obtained at 25% MW absorber and 50 rpm stirrer speed. Bio-char showed highest calorific value of the 29.5 MJ/kg at 50% MW absorber and 100 rpm stirrer speed. Bio-oil from this study was rich in phenol with highest detected as 85 area% from the GC-MS results. Thus, OPS bio-oil can become potential alternative to petroleum-based chemicals in various phenolic based applications.

  8. Unified microwave moisture sensing technique for grain and seed

    NASA Astrophysics Data System (ADS)

    Trabelsi, Samir; Nelson, Stuart O.

    2007-04-01

    A unified method for moisture sensing in cereal grain and oilseed from a single calibration equation, which is obtained from measurement of dielectric properties at a single microwave frequency, is presented. The method is based on a complex permittivity calibration function that is independent of both bulk density and kind of material. Performance of the method was tested for soybeans, corn, wheat, sorghum, barley and oats at 7 GHz and about 23 °C. The standard error of calibration for moisture prediction from complex permittivity measurements was 0.8%.

  9. Decrystallization of Crystals Using Gold "Nano-Bullets" and the Metal-Assisted and Microwave-Accelerated Decrystallization Technique.

    PubMed

    Thompson, Nishone; Boone-Kukoyi, Zainab; Shortt, Raquel; Lansiquot, Carisse; Kioko, Bridgit; Bonyi, Enock; Toker, Salih; Ozturk, Birol; Aslan, Kadir

    2016-10-18

    Gout is caused by the overproduction of uric acid and the inefficient metabolism of dietary purines in humans. Current treatments of gout, which include anti-inflammatory drugs, cyclooxygenase-2 inhibitors, and systemic glucocorticoids, have harmful side-effects. Our research laboratory has recently introduced an innovative approach for the decrystallization of biological and chemical crystals using the Metal-Assisted and Microwave-Accelerated Evaporative Decrystallization (MAMAD) technique. In the MAMAD technique, microwave energy is used to heat and activate gold nanoparticles that behave as "nano-bullets" to rapidly disrupt the crystal structure of biological crystals placed on planar surfaces. In this study, crystals of various sizes and compositions were studied as models for tophaceous gout at different stages (i.e., uric acid as small crystals (~10-100 μm) and l-alanine as medium (~300 μm) and large crystals (~4400 μm). Our results showed that the use of the MAMAD technique resulted in the reduction of the size and number of uric acid and l-alanine crystals up to >40% when exposed to intermittent microwave heating (up to 20 W power at 8 GHz) in the presence of 20 nm gold nanoparticles up to 120 s. This study demonstrates that the MAMAD technique can be potentially used as an alternative therapeutic method for the treatment of gout by effective decrystallization of large crystals, similar in size to those that often occur in gout.

  10. Techniques for active passivation

    SciTech Connect

    Roscioli, Joseph R.; Herndon, Scott C.; Nelson, Jr., David D.

    2016-12-20

    In one embodiment, active (continuous or intermittent) passivation may be employed to prevent interaction of sticky molecules with interfaces inside of an instrument (e.g., an infrared absorption spectrometer) and thereby improve response time. A passivation species may be continuously or intermittently applied to an inlet of the instrument while a sample gas stream is being applied. The passivation species may have a highly polar functional group that strongly binds to either water or polar groups of the interfaces, and once bound presents a non-polar group to the gas phase in order to prevent further binding of polar molecules. The instrument may be actively used to detect the sticky molecules while the passivation species is being applied.

  11. The research of ceramic materials for applications in the glass industry including microwave heating techniques

    NASA Astrophysics Data System (ADS)

    Kogut, K.; Kasprzyk, K.; Zboromirska-Wnukiewicz, B.; Ruziewicz, T.

    2016-02-01

    The melting of a glass is a very energy-intensive process. Selection of energy sources, the heating technique and the method of heating recovery are a fundamental issue from the furnace design point of view of and economic effectiveness of the process. In these processes the problem constitutes the lack of the appropriate ceramic materials that would meet the requirements. In this work the standard ceramic materials were examined and verified. The possibilities of application of microwave techniques were evaluated. In addition the requirements regarding the parameters of new ceramic materials applied for microwave technologies were determined.

  12. Active microwave remote sensing of oceans, chapter 3

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A rationale is developed for the use of active microwave sensing in future aerospace applications programs for the remote sensing of the world's oceans, lakes, and polar regions. Summaries pertaining to applications, local phenomena, and large-scale phenomena are given along with a discussion of orbital errors.

  13. Characterization of hydroxypropylmethylcellulose films using microwave non-destructive testing technique.

    PubMed

    Anuar, Nor Khaizan; Wui, Wong Tin; Ghodgaonkar, Deepak K; Taib, Mohd Nasir

    2007-01-17

    The applicability of microwave non-destructive testing (NDT) technique in characterization of matrix property of pharmaceutical films was investigated. Hydroxypropylmethylcellulose and loratadine were selected as model matrix polymer and drug, respectively. Both blank and drug loaded hydroxypropylmethylcellulose films were prepared using the solvent-evaporation method and were conditioned at the relative humidity of 25, 50 and 75% prior to physicochemical characterization using microwave NDT technique as well as ultraviolet spectrophotometry, differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR) techniques. The results indicated that blank hydroxypropylmethylcellulose film exhibited a greater propensity of polymer-polymer interaction at the O-H and C-H domains of the polymer chains upon conditioned at a lower level of relative humidity. In the case of loratadine loaded films, a greater propensity of polymer-polymer and/or drug-polymer interaction via the O-H moiety was mediated in samples conditioned at the lower level of relative humidity, and via the C-H moiety when 50% relative humidity was selected as the condition for sample storage. Apparently, the absorption and transmission characteristics of both blank and drug loaded films for microwave varied with the state of polymer-polymer and/or drug-polymer interaction involving the O-H and C-H moieties. The measurement of microwave NDT test at 8GHz was sensitive to the chemical environment involving O-H moiety while it was greatly governed by the C-H moiety in test conducted at a higher frequency band of microwave. Similar observation was obtained with respect to the profiles of microwave NDT measurements against the state of polymer-polymer and/or drug-polymer interaction of hydroxypropylmethylcellulose films containing chlorpheniramine maleate. The microwave NDT measurement is potentially suitable for use as an apparent indicator of the state of polymer-polymer and drug

  14. Estimation of soil hydraulic properties with microwave techniques

    NASA Technical Reports Server (NTRS)

    Oneill, P. E.; Gurney, R. J.; Camillo, P. J.

    1985-01-01

    Useful quantitative information about soil properties may be obtained by calibrating energy and moisture balance models with remotely sensed data. A soil physics model solves heat and moisture flux equations in the soil profile and is driven by the surface energy balance. Model generated surface temperature and soil moisture and temperature profiles are then used in a microwave emission model to predict the soil brightness temperature. The model hydraulic parameters are varied until the predicted temperatures agree with the remotely sensed values. This method is used to estimate values for saturated hydraulic conductivity, saturated matrix potential, and a soil texture parameter. The conductivity agreed well with a value measured with an infiltration ring and the other parameters agreed with values in the literature.

  15. Assimilation of Passive and Active Microwave Soil Moisture Retrievals

    NASA Technical Reports Server (NTRS)

    Draper, C. S.; Reichle, R. H.; DeLannoy, G. J. M.; Liu, Q.

    2012-01-01

    Root-zone soil moisture is an important control over the partition of land surface energy and moisture, and the assimilation of remotely sensed near-surface soil moisture has been shown to improve model profile soil moisture [1]. To date, efforts to assimilate remotely sensed near-surface soil moisture at large scales have focused on soil moisture derived from the passive microwave Advanced Microwave Scanning Radiometer (AMSR-E) and the active Advanced Scatterometer (ASCAT; together with its predecessor on the European Remote Sensing satellites (ERS. The assimilation of passive and active microwave soil moisture observations has not yet been directly compared, and so this study compares the impact of assimilating ASCAT and AMSR-E soil moisture data, both separately and together. Since the soil moisture retrieval skill from active and passive microwave data is thought to differ according to surface characteristics [2], the impact of each assimilation on the model soil moisture skill is assessed according to land cover type, by comparison to in situ soil moisture observations.

  16. Microwave-accelerated bioassay technique for rapid and quantitative detection of biological and environmental samples.

    PubMed

    Mohammed, Muzaffer; Syed, Maleeha F; Aslan, Kadir

    2016-01-15

    Quantitative detection of molecules of interest from biological and environmental samples in a rapid manner, particularly with a relevant concentration range, is imperative to the timely assessment of human diseases and environmental issues. In this work, we employed the microwave-accelerated bioassay (MAB) technique, which is based on the combined use of circular bioassay platforms and microwave heating, for rapid and quantitative detection of Glial Fibrillary Acidic Protein (GFAP) and Shiga like toxin (STX 1). The proof-of-principle use of the MAB technique with the circular bioassay platforms for the rapid detection of GFAP in buffer based on colorimetric and fluorescence readouts was demonstrated with a 900W kitchen microwave. We also employed the MAB technique with a new microwave system (called the iCrystal system) for the detection of GFAP from mice with brain injuries and STX 1 from a city water stream. Control bioassays included the commercially available gold standard bioassay kits run at room temperature. Our results show that the lower limit of detection (LLOD) of the colorimetric and fluorescence based bioassays for GFAP was decreased by ~1000 times using the MAB technique and our circular bioassay platforms as compared to the commercially available bioassay kits. The overall bioassay time for GFAP and STX 1 was reduced from 4h using commercially available bioassay kits to 10min using the MAB technique.

  17. Microwave-Accelerated Bioassay Technique for Rapid and Quantitative Detection of Biological and Environmental Samples

    PubMed Central

    Mohammed, Muzaffer; Syed, Maleeha F.; Aslan, Kadir

    2015-01-01

    Quantitative detection of molecules of interest from biological and environmental samples in a rapid manner, particularly with a relevant concentration range, is imperative to the timely assessment of human diseases and environmental issues. In this work, we employed the microwave-accelerated bioassay (MAB) technique, which is based on the combined use of circular bioassay platforms and microwave heating, for rapid and quantitative detection of Glial Fibrillary Acidic Protein (GFAP) and Shiga like toxin (STX 1). The proof-of-principle use of the MAB technique with the circular bioassay platforms for the rapid detection of GFAP in buffer based on colorimetric and fluorescence readouts was demonstrated with a 900 W kitchen microwave. We also employed the MAB technique with a new microwave system (called the iCrystal system) for the detection of GFAP from mice with brain injuries and STX 1 from a city water stream. Control bioassays included the commercially available gold standard bioassay kits run at room temperature. Our results show that the lower limit of detection (LLOD) of the colorimetric and fluorescence based bioassays for GFAP was decreased by ~1,000 times using the MAB technique and our circular bioassay platforms as compared to the commercially available bioassay kits. The overall bioassay time for GFAP and STX 1 was reduced from 4 hours using commercially available bioassay kits to 10 minutes using the MAB technique. PMID:26356762

  18. Microwaving Blood as a Non-Destructive Technique for Haemoglobin Measurements on Microlitre Samples

    PubMed Central

    Basey-Fisher, Toby H.; Guerra, Nadia; Triulzi, Chiara; Gregory, Andrew; Hanham, Stephen M.; Stevens, Molly M.; Maier, Stefan A.; Klein, Norbert

    2016-01-01

    The non-destructive ex vivo determination of haemoglobin (Hgb) concentration offers the capability to conduct multiple red blood cell haematological measurements on a single sample, an advantage that current optical techniques are unable to offer. Here, a microwave method and device for the accurate and non-destructive determination of Hgb concentration in microlitre blood samples are described. Using broadband microwave spectroscopy, a relationship is established between the dielectric properties of murine blood and Hgb concentration that is utilized to create a technique for the determination of Hgb concentration. Subsequently, a microwave dielectric resonator-microfluidic system is implemented in the analysis of 52 murine samples with microlitre volumes and Hgb concentrations ranging from 0 to 17 g dL−1. Using the characterized relationship, independent and minimally invasive Hgb measurements are made on nine healthy mice as well as seven with mutations in the Adenomatous polyposis coli (APC) gene that leads to colorectal cancer and consequently anaemia. PMID:24002989

  19. Development of Infrared and Microwave Techniques for Cloud Parameter Inference from Satellite Imagery and Sounder Data.

    DTIC Science & Technology

    1980-08-30

    clouds and precipitation on the Nimbus VI ESMR channel and the use of ESMR vertical and horizontal polarization components for the determination ot...channels of the Nimbus VI satellite. Random error analyses revealed that the cloud sounding technique employin’g a combiration of infrared and...microwave frequencies appears to be theoretically rigorous and practically workable. Thus, applications of the cloud sounding technique to the Nimbus VI

  20. A Microwave Technique for Mapping Ice Temperature in the Arctic Seasonal Sea Ice Zone

    NASA Technical Reports Server (NTRS)

    St.Germain, Karen M.; Cavalieri, Donald J.

    1997-01-01

    A technique for deriving ice temperature in the Arctic seasonal sea ice zone from passive microwave radiances has been developed. The algorithm operates on brightness temperatures derived from the Special Sensor Microwave/Imager (SSM/I) and uses ice concentration and type from a previously developed thin ice algorithm to estimate the surface emissivity. Comparisons of the microwave derived temperatures with estimates derived from infrared imagery of the Bering Strait yield a correlation coefficient of 0.93 and an RMS difference of 2.1 K when coastal and cloud contaminated pixels are removed. SSM/I temperatures were also compared with a time series of air temperature observations from Gambell on St. Lawrence Island and from Point Barrow, AK weather stations. These comparisons indicate that the relationship between the air temperature and the ice temperature depends on ice type.

  1. Determination of solid-propellant transient regression rates using a microwave Doppler shift technique

    NASA Technical Reports Server (NTRS)

    Strand, L. D.; Schultz, A. L.; Reedy, G. K.

    1972-01-01

    A microwave Doppler shift system, with increased resolution over earlier microwave techniques, was developed for the purpose of measuring the regression rates of solid propellants during rapid pressure transients. A continuous microwave beam is transmitted to the base of a burning propellant sample cast in a metal waveguide tube. A portion of the wave is reflected from the regressing propellant-flame zone interface. The phase angle difference between the incident and reflected signals and its time differential are continuously measured using a high resolution microwave network analyzer and related instrumentation. The apparent propellant regression rate is directly proportional to this latter differential measurement. Experiments were conducted to verify the (1) spatial and time resolution of the system, (2) effect of propellant surface irregularities and compressibility on the measurements, and (3) accuracy of the system for quasi-steady-state regression rate measurements. The microwave system was also used in two different transient combustion experiments: in a rapid depressurization bomb, and in the high-frequency acoustic pressure environment of a T-burner.

  2. Techniques and instrumental complex for research of influence of microwaves encoded by brain neural signals on biological objects’ psycho physiological state

    NASA Astrophysics Data System (ADS)

    Gurkovskiy, B. V.; Zhuravlev, B. V.; Onishchenko, E. M.; Simakov, A. B.; Trifonova, N. Yu; Voronov, Yu A.

    2016-10-01

    New instrumental technique for research of the psycho-physiological reactions of the bio-objects under the microwave electromagnetic radiation, modulated by interval patterns of neural activity in the brain registered under different biological motivations, are suggested. The preliminary results of these new tool tests in real psycho physiological experiments on rats are presented.

  3. Microwave-assisted techniques (MATs); a quick way to extract a fragrance: a review.

    PubMed

    Kokolakis, Antonios K; Golfinopoulos, Spyridon K

    2013-10-01

    In recent years microwave-assisted techniques (MATs) have been introduced as a new process design and operation for essential oils extraction, representing a viable alternative to conventional old-type methods of distillation which are routinely used for the isolation of essential oils from herbs, flowers and spices prior to gas chromatographic analysis. The novelty of the technique lies in a microwave heating source generating a mixture of boiling solvent with the raw plant material settled above (or drenched inside). Several variations of distillation techniques are evaluated in terms of substantial energy saving, rapidity, product yield, cleanliness and product quality. Results confirm the effectiveness of MATs, which allow extraction of essential oils in shorter extraction time (up-to 9 times faster), using "greener" procedures and provide a higher quality essential oil with better sensory and antioxidant properties.

  4. Microwave Heating of Synthetic Skin Samples for Potential Treatment of Gout Using the Metal-Assisted and Microwave-Accelerated Decrystallization Technique

    PubMed Central

    2016-01-01

    Physical stability of synthetic skin samples during their exposure to microwave heating was investigated to demonstrate the use of the metal-assisted and microwave-accelerated decrystallization (MAMAD) technique for potential biomedical applications. In this regard, optical microscopy and temperature measurements were employed for the qualitative and quantitative assessment of damage to synthetic skin samples during 20 s intermittent microwave heating using a monomode microwave source (at 8 GHz, 2–20 W) up to 120 s. The extent of damage to synthetic skin samples, assessed by the change in the surface area of skin samples, was negligible for microwave power of ≤7 W and more extensive damage (>50%) to skin samples occurred when exposed to >7 W at initial temperature range of 20–39 °C. The initial temperature of synthetic skin samples significantly affected the extent of change in temperature of synthetic skin samples during their exposure to microwave heating. The proof of principle use of the MAMAD technique was demonstrated for the decrystallization of a model biological crystal (l-alanine) placed under synthetic skin samples in the presence of gold nanoparticles. Our results showed that the size (initial size ∼850 μm) of l-alanine crystals can be reduced up to 60% in 120 s without damage to synthetic skin samples using the MAMAD technique. Finite-difference time-domain-based simulations of the electric field distribution of an 8 GHz monomode microwave radiation showed that synthetic skin samples are predicted to absorb ∼92.2% of the microwave radiation. PMID:27917407

  5. Microwave Heating of Synthetic Skin Samples for Potential Treatment of Gout Using the Metal-Assisted and Microwave-Accelerated Decrystallization Technique.

    PubMed

    Toker, Salih; Boone-Kukoyi, Zainab; Thompson, Nishone; Ajifa, Hillary; Clement, Travis; Ozturk, Birol; Aslan, Kadir

    2016-11-30

    Physical stability of synthetic skin samples during their exposure to microwave heating was investigated to demonstrate the use of the metal-assisted and microwave-accelerated decrystallization (MAMAD) technique for potential biomedical applications. In this regard, optical microscopy and temperature measurements were employed for the qualitative and quantitative assessment of damage to synthetic skin samples during 20 s intermittent microwave heating using a monomode microwave source (at 8 GHz, 2-20 W) up to 120 s. The extent of damage to synthetic skin samples, assessed by the change in the surface area of skin samples, was negligible for microwave power of ≤7 W and more extensive damage (>50%) to skin samples occurred when exposed to >7 W at initial temperature range of 20-39 °C. The initial temperature of synthetic skin samples significantly affected the extent of change in temperature of synthetic skin samples during their exposure to microwave heating. The proof of principle use of the MAMAD technique was demonstrated for the decrystallization of a model biological crystal (l-alanine) placed under synthetic skin samples in the presence of gold nanoparticles. Our results showed that the size (initial size ∼850 μm) of l-alanine crystals can be reduced up to 60% in 120 s without damage to synthetic skin samples using the MAMAD technique. Finite-difference time-domain-based simulations of the electric field distribution of an 8 GHz monomode microwave radiation showed that synthetic skin samples are predicted to absorb ∼92.2% of the microwave radiation.

  6. Microwave digestion techniques in the sequential extraction of calcium, iron, chromium, manganese, lead, and zinc in sediments

    SciTech Connect

    Mahan, K.I.; Foderaro, T.A.; Garza, T.L.; Martinez, R.M.; Maroney, G.A.; Trivisonno, M.R.; Willging, E.M.

    1987-04-01

    The sequential extraction scheme of Tessier partitions metals in sediments into exchangeable, carbonate bound iron-manganese oxide bound, organic bound, and residual binding fractions. Extraction rate experiments using conventional and microwave heating showed that microwave heating produces results comparable to the conventional procedure. Sequential microwave extraction procedures were established from the results of the extraction rate experiments. Recoveries of total metals from NBS SRM 1645 ranged from 76% to 120% for the conventional procedure and 62% to 120% for the microwave procedure. Recoveries of total metals using the microwave and conventional techniques were reasonably comparable except for iron (62% by microwave vs. 76% by conventional). Substitution of an aqua regia/HF extraction for total/residual metals results in essentially complete recovery of metals. Precision obtained from 31 replicate samples of the California Gulch, Colorado, sediment yielded about an average 11% relative standard deviation excluding the exchangeable fraction which was more variable.

  7. Microwave non-destructive testing technique for characterization of HPMC-PEG 3000 films.

    PubMed

    Wong, T W; Deepak, K G; Taib, M N; Anuar, N K

    2007-10-01

    The capacity of microwave non-destructive testing (NDT) technique to characterize the matrix property of binary polymeric films for use as transdermal drug delivery system was investigated. Hydroxypropylmethylcellulose (HPMC) and polyethylene glycol (PEG) 3000 were the choice of polymeric matrix and plasticizer, respectively with loratadine as the model drug. Both blank and drug loaded HPMC-PEG 3000 films were prepared using the solvent-evaporation method. These films were conditioned at the relative humidity of 25, 50 and 75% prior to physicochemical characterization using the established methods of ultra-violet spectrophotometry, differential scanning calorimetry and Fourier transform infrared spectroscopy methods, as well as, novel microwave NDT technique. Blank films exhibited a greater propensity of polymer-polymer interaction at the O-H domain upon storage at a lower level of relative humidity, whereas drug loaded films exhibited a greater propensity of polymer-polymer, polymer-plasticizer and/or drug-polymer interaction via the O-H, C-H and/or aromatic C=C functional groups when they were stored at a lower or moderate level of relative humidity. The absorption and transmission characteristics of both blank and drug loaded films for microwave varied with the state of polymer-polymer, polymer-plasticizer, and/or drug-polymer interaction of the matrix. The measurements of microwave NDT test at 8 and 12 GHz were sensitive to the polar fraction of film involving functional group such as O-H moiety and the less polar environment of matrix consisting of functional groups such as C-H and aromatic C=C moieties. The state of interaction between polymer, plasticizer and/or drug of a binary polymeric film can be elucidated through its absorption and transmission profiles of microwave.

  8. Microwave band on-chip coil technique for single electron spin resonance in a quantum dot

    NASA Astrophysics Data System (ADS)

    Obata, Toshiaki; Pioro-Ladrière, Michel; Kubo, Toshihiro; Yoshida, Katsuharu; Tokura, Yasuhiro; Tarucha, Seigo

    2007-10-01

    Microwave band on-chip microcoils are developed for the application to single electron spin resonance measurement with a single quantum dot. Basic properties such as characteristic impedance and electromagnetic field distribution are examined for various coil designs by means of experiment and simulation. The combined setup operates relevantly in the experiment at dilution temperature. The frequency responses of the return loss and Coulomb blockade current are examined. Capacitive coupling between a coil and a quantum dot causes photon assisted tunneling, whose signal can greatly overlap the electron spin resonance signal. To suppress the photon assisted tunneling effect, a technique for compensating for the microwave electric field is developed. Good performance of this technique is confirmed from measurement of Coulomb blockade oscillations.

  9. Microwave oven-based technique for immunofluorescent staining of paraffin-embedded tissues.

    PubMed

    Long, Delwin J; Buggs, Colleen

    2008-02-01

    Immunohistochemical analysis of formalin-fixed paraffin-embedded tissues can be challenging due to potential modifications of protein structure by exposure to formalin. Heat-induced antigen retrieval techniques can reverse reactions between formalin and proteins that block antibody recognition. Interactions between antibodies and antigens are further enhanced by microwave irradiation, which has simplified immunohistochemical staining protocols. In this report, we modify a technique for antigen retrieval and immunofluorescent staining of formalin-fixed paraffin-embedded tissues by showing that it works well with several antibodies and buffers. This microwave-assisted method for antigen retrieval and immunofluorescent staining eliminates the need for blocking reagents and extended washes, which greatly simplifies the protocol allowing one to complete the analysis in less than 3 h.

  10. Separation of oil-water-sludge emulsions coming from palm oil mill process through microwave techniques.

    PubMed

    Pérez-Páez, Rocío; Catalá-Civera, José Manuel; García-Baños, Beatriz; Castillo, Edgar F; Bastos, Johanna M; Zambrano, Luz S

    2008-01-01

    The palm oil mills extraction process requires the separation of oil-water-sludge emulsions. For this purpose, the use of sedimentation and/or centrifugation techniques have been required until now. However, significant losses persist in different process flows and new methods are needed to further decrease them, such as methods based on electromagnetic waves application. In the study, emulsions obtained from two flow processes, namely press liquor stream (PL) and recovered stream of the centrifugal step (RC), were exposed to microwave radiation with different exposure times. In the case of the press liquor stream, different oil/water dilution ratios were also studied. The sedimentation speed and efficiency were studied for the irradiated samples and compared to those obtained for the same fluids with no radiation. Also, chromatographic tests were performed on the recovered oil to determine the effect on the oil quality after microwave radiation. The obtained results allow us to conclude that microwave exposure during periods below 1 minute lead to better sedimentation speed and efficiency. It was observed that microwaves facilitate the break of the charges and polarities balances in the emulsions at considerably lower temperatures than the corresponding in the conventional process, without affecting the recovered oil quality.

  11. Determination of multi-walled carbon nanotube bioaccumulation in earthworms measured by a microwave-based detection technique

    EPA Science Inventory

    Reliable quantification techniques for carbon nanotubes (CNTs) are limited. In this study, a new procedure was developed for quantifying multi-walled carbon nanotubes (MWNTs) in earthworms (Eisenia fetida) based on freeze drying and microwave-induced heating. Specifically, earthw...

  12. Active microwave remote sensing of earth/land, chapter 2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Geoscience applications of active microwave remote sensing systems are examined. Major application areas for the system include: (1) exploration of petroleum, mineral, and ground water resources, (2) mapping surface and structural features, (3) terrain analysis, both morphometric and genetic, (4) application in civil works, and (5) application in the areas of earthquake prediction and crustal movements. Although the success of radar surveys has not been widely publicized, they have been used as a prime reconnaissance data base for mineral exploration and land-use evaluation in areas where photography cannot be obtained.

  13. Microwave hydrodiffusion and gravity, a new technique for extraction of essential oils.

    PubMed

    Vian, Maryline Abert; Fernandez, Xavier; Visinoni, Franco; Chemat, Farid

    2008-05-09

    A new process design and operation for the extraction of essential oils was developed. Microwave hydrodiffusion and gravity (MHG) is a combination of microwaves for hydrodiffusion of essential oils from the inside to the exterior of biological material and earth gravity to collect and separate. MHG is performed at atmospheric pressure without adding any solvent or water. MHG has been compared with a conventional technique, hydrodistillation (HD), for the extraction of essential oil from two aromatic herbs: spearmint (Mentha spicata L.) and pennyroyal (Mentha pulegium L.) belonging to the Labiatae family. The essential oils extracted by MHG for 15 min were quantitatively (yield) and qualitatively (aromatic profile) similar to those obtained by conventional hydrodistillation for 90 min. MHG also prevents pollution through potential 90% of energy saved which can lead to greenhouse gas emission benefits.

  14. Low temperature regeneration of activated carbons using microwaves: revising conventional wisdom.

    PubMed

    Calışkan, E; Bermúdez, J M; Parra, J B; Menéndez, J A; Mahramanlıoğlu, M; Ania, C O

    2012-07-15

    The purpose of this work was to explore the application of microwaves for the low temperature regeneration of activated carbons saturated with a pharmaceutical compound (promethazine). Contrary to expectations, microwave-assisted regeneration did not lead to better results than those obtained under conventional electric heating. At low temperatures the regeneration was incomplete either under microwave and conventional heating, being this attributed to the insufficient input energy. At mild temperatures, a fall in the adsorption capacity upon cycling was obtained in both devices, although this was much more pronounced for the microwave. These results contrast with previous studies on the benefits of microwaves for the regeneration of carbon materials. The fall in the adsorption capacity after regeneration was due to the thermal cracking of the adsorbed molecules inside the carbon porous network, although this effect applies to both devices. When microwaves are used, along with the thermal heating of the carbon bed, a fraction of the microwave energy seemed to be directly used in the decomposition of promethazine through the excitation of the molecular bonds by microwaves (microwave-lysis). These results point out that the nature of the adsorbate and its ability to interact with microwave are key factors that control the application of microwaves for regeneration of exhausted activated carbons.

  15. Comparison of active and passive microwave signatures of Arctic sea ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, M. R.; Crawford, J. P.; Cavalieri, D. J.; Holt, B.; Carsey, F. D.

    1990-01-01

    In March 1988, overlapping active and passive microwave instrument data were acquired over Arctic sea ice using the NASA DC-8 aircraft equipped with multifrequency, variable polarization SAR and radiometer. Flights were conducted as a series of coordinated underflights of the DMSP SSM/I satellite radiometer in order to validate ice products derived from the SSM/I radiances. Subsequent flights by an NRL P-3 aircraft enabled overlapping high-resolution, single frequency image data to be acquired over the same regions using a Ka-band scanning microwave radiometer. In this paper, techniques are discussed for the accurate coregistration of the three aircraft datasets. Precise coregistration to an accuracy of 100 m plus or minus 25 m has, for the first time, enabled the detailed comparison of temporally and spatially coincident active and passive airborne microwave datasets. Preliminary results from the intercomparisons indicate that the SAR has highly frequency- and polarization-dependent signatures, which at 5.3 GHz (C-band) show an extremely high correlation with the 37 GHz radiometric temperatures.

  16. Degradation and dechlorination of pentachlorophenol by microwave-activated persulfate.

    PubMed

    Qi, Chengdu; Liu, Xitao; Zhao, Wei; Lin, Chunye; Ma, Jun; Shi, Wenxiao; Sun, Qu; Xiao, Hao

    2015-03-01

    The degradation performance of pentachlorophenol (PCP) by the microwave-activated persulfate (MW/PS) process was investigated in this study. The results indicated that degradation efficiency of PCP in the MW/PS process followed pseudo-first-order kinetics, and compared with conventional heating, microwave heating has a special effect of increasing the reaction rate and reducing the process time. A higher persulfate concentration and reaction temperature accelerated the PCP degradation rate. Meanwhile, increasing the pH value and ionic strength of the phosphate buffer slowed down the degradation rate. The addition of ethanol and tert-butyl alcohol as hydroxyl radical and sulfate radical scavengers proved that the sulfate radicals were the dominant active species in the MW/PS process. Gas chromatography-mass spectrometry (GC-MS) was employed to identify the intermediate products, and then a plausible degradation pathway involving dechlorination, hydrolysis, and mineralization was proposed. The acute toxicity of PCP, as tested with Photobacterium phosphoreum, Vibrio fischeri, and Vibrio qinghaiensis, was negated quickly during the MW/PS process, which was in agreement with the nearly complete mineralization of PCP. These results showed that the MW/PS process could achieve a high mineralization level in a short time, which provided an efficient way for PCP elimination from wastewater.

  17. Observation of localized heating phenomena during microwave heating of mixed powders using in situ x-ray diffraction technique

    SciTech Connect

    Sabelström, N. Hayashi, M.; Watanabe, T.; Nagata, K.

    2014-10-28

    In materials processing research using microwave heating, there have been several observations of various phenomena occurring known as microwave effects. One significant example of such a phenomenon is increased reaction kinetics. It is believed that there is a possibility that this might be caused by localized heating, were some reactants would attain a higher than apparent temperature. To examine whether such thermal gradients are indeed possible, mixed powders of two microwave non-absorbers, alumina and magnesia, were mixed with graphite, a known absorber, and heated in a microwave furnace. During microwave irradiation, the local temperatures of the respective sample constituents were measured using an in situ x-ray diffraction technique. In the case of the alumina and graphite sample, a temperature difference of around 100 °C could be observed.

  18. Ultrasonic, microwave, and millimeter wave inspection techniques for adhesively bonded stacked open honeycomb core composites

    NASA Astrophysics Data System (ADS)

    Thomson, Clint D.; Cox, Ian; Ghasr, Mohammad Tayeb Ahmed; Ying, Kuang P.; Zoughi, Reza

    2015-03-01

    Honeycomb sandwich composites are used extensively in the aerospace industry to provide stiffness and thickness to lightweight structures. A common fabrication method for thick, curved sandwich structures is to stack and bond multiple honeycomb layers prior to machining core curvatures. Once bonded, each adhesive layer must be inspected for delaminations and the presence of unwanted foreign materials. From a manufacturing and cost standpoint, it can be advantageous to inspect the open core prior to face sheet closeout in order to reduce end-article scrap rates. However, by nature, these honeycomb sandwich composite structures are primarily manufactured from low permittivity and low loss materials making detection of delamination and some of the foreign materials (which also are low permittivity and low loss) quite challenging in the microwave and millimeter wave regime. Likewise, foreign materials such as release film in adhesive layers can be sufficiently thin as to not cause significant attenuation in through-transmission ultrasonic signals, making them difficult to detect. This paper presents a collaborative effort intended to explore the efficacy of different non-contact NDI techniques for detecting flaws in a stacked open fiberglass honeycomb core panel. These techniques primarily included air-coupled through-transmission ultrasonics, single-sided wideband synthetic aperture microwave and millimeter-wave imaging, and lens-focused technique. The goal of this investigation has been to not only evaluate the efficacy of these techniques, but also to determine their unique advantages and limitations for evaluating parameters such as flaw type, flaw size, and flaw depth.

  19. MICROWAVE INSPECTION TECHNIQUES FOR DETERMINING ABLATIVE SHIELD THICKNESS AND CERAMIC MATERIALS PROPERTIES.

    DTIC Science & Technology

    CERAMIC MATERIALS , NONDESTRUCTIVE TESTING, MICROWAVES, HEAT SHIELDS, ABLATION, THICKNESS, REENTRY VEHICLES, MICROWAVE EQUIPMENT, DIELECTRIC PROPERTIES, ATTENUATION, WAVE PROPAGATION, REFLECTION, X BAND, COATINGS.

  20. New dual-frequency microwave technique for retrieving liquid water path over land

    NASA Astrophysics Data System (ADS)

    Deeter, M. N.; Vivekanandan, J.

    2006-08-01

    We present and demonstrate a new methodology for retrieving liquid water path over land using satellite-based microwave observations. As input, the technique exploits Advanced Microwave Scanning Radiometer for EOS (AMSR-E) brightness temperature polarization-difference signals at 37 and 89 GHz. Regression analysis performed on model simulations indicates that over variable atmospheric and surface conditions these polarization-difference signals can be simply parameterized in terms of the surface emissivity polarization-difference (Δɛ), surface temperature, liquid water path (LWP), and precipitable water vapor (PWV). By exploiting the weak frequency dependence of Δɛ, a simple expression is obtained which enables fast and direct (noniterative) retrievals of LWP. The new methodology is demonstrated and validated using several months of AMSR-E observations over (1) the Southern Great Plains (SGP) of the United States and (2) an area near Montreal, Canada, instrumented during the Alliance Icing Research Study II (AIRS II) field campaign. Comparisons are also made with MODIS LWP retrieval results for one scene over the SGP region. Retrieval results in clear-sky conditions indicate an uncertainty on the order of 0.06 mm, in agreement with theoretical estimates. In cloudy conditions, results using the new method are systematically smaller than results for both ground-based microwave radiometers and MODIS but are well correlated.

  1. Microwave and Millimeter Wave Imaging Using Synthetic Aperture Focusing and Holographical Techniques

    NASA Technical Reports Server (NTRS)

    Case, Joseph Tobias

    2005-01-01

    Microwave and millimeter wave nondestructive testing and evaluation (NDT&E) methods have shown great potential for determining material composition in composite structures, determining material thickness or debond thickness between two layers, and determining the location and size of flaws, defects, and anomalies. The same testing methods have also shown great potential to produce relatively high-resolution images of voids inside Spray On Foam Insulation (SOFI) test panels using real focused methods employing lens antennas. An alternative to real focusing methods are synthetic focusing methods. The essence of synthetic focusing is to match the phase of the scattered signal to measured points spaced regularly on a plane. Many variations of synthetic focusing methods have already been developed for radars, ultrasonic testing applications, and microwave concealed weapon detection. Two synthetic focusing methods were investigated; namely, a) frequency-domain synthetic aperture focusing technique (FDSAFT), and b) wide-band microwave holography. These methods were applied towards materials whose defects were of low dielectric contrast like air void in SOFI. It is important to note that this investigation used relatively low frequencies from 8.2 GHz to 26.5 GHz that are not conducive for direct imaging of the SOFI. The ultimate goal of this work has been to demonstrate the capability of these methods before they are applied to much higher frequencies such as the millimeter wave frequency spectrum (e.g., 30-300 GHz).

  2. A Combined Infrared and Microwave Technique for Studying the Diurnal Variation of Rainfall over Amazonia

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Anagnostou, Emmanouil; Adler, Robert F.

    1999-01-01

    Over 10 years of continuous data from the Special Sensor microwave Imager (SSM/I) aboard a series of Defense Department satellites has made it possible to construct regional rainfall climatologies at high spatial resolution. Using the Goddard Profiling Algorithm (GPROF), monthly estimates of precipitation were made over the region of northern Brazil, including the Amazon Basin, for 1987 to 1998. GPROF is a physical approach to passive microwave precipitation retrieval, which uses the Goddard Cumulus Ensemble (cloud) model to establish prior probability densities of precipitation structures. Precipitation fields from GPROF were stratified into morning and evening satellite overpasses, and accumulated at monthly intervals at 0.5 degree spatial resolution. Important diurnal effects were noted in the analysis, the most pronounced being a land/sea breeze circulation along the northern coast of Brazil and a mountain/valley circulation along the Andes. There were also indications of morning rainfall maxima along the major rivers, and evening maxima between the rivers. The addition of simultaneous geosynchronous infrared (IR) data leads to the current technique, which takes advantage of the 30 minute sampling and 4 km spatial resolution of the infrared channel and the better physics of the microwave retrieval. The resultant IR method is subsequently used to derive the diurnal variability of rainfall over the Amazon basin, and further, to investigate the relative contribution from its convective and stratiform components.

  3. A facile synthesis of ZnWO{sub 4} nanoparticles by microwave assisted technique and its application in photocatalysis

    SciTech Connect

    Garadkar, K.M.; Ghule, L.A.; Sapnar, K.B.; Dhole, S.D.

    2013-03-15

    Highlights: ► Nanocrystalline ZnWO{sub 4} particles were successfully prepared by a microwave method. ► Spherical morphology with a 10 nm size. ► The band is 3.4 eV. ► The photodegradation of RhB was 95% within 25 min. - Abstract: A simple microwave assisted technique has been successfully developed to synthesize ZnWO{sub 4} nanoparticles. The X-ray diffraction results indicated that the synthesized nanoparticles exhibited only wolframite structure. Structural, morphological and optical properties of ZnWO{sub 4} nanoparticles have been analyzed by XRD, SEM, TEM EDAX, UV–vis and FT-IR spectral measurements. The transmission electron microscopy (TEM) image revealed that particle size of ZnWO{sub 4} nanoparticles was found to be 10 nm, the band-gap of ZnWO{sub 4} nanoparticles was found to be 3.4 eV. The photocatalytic activities for aqueous Rhodamine B and Methylene Blue samples were investigated and observed that ZnWO{sub 4} nanoparticles exhibited highly enhanced photocatalytic activity towards RhB than MB.

  4. Kinetic activation-relaxation technique.

    PubMed

    Béland, Laurent Karim; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand

    2011-10-01

    We present a detailed description of the kinetic activation-relaxation technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe, and structural relaxation in a-Si (amorphous silicon).

  5. Kinetic activation-relaxation technique

    NASA Astrophysics Data System (ADS)

    Béland, Laurent Karim; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand

    2011-10-01

    We present a detailed description of the kinetic activation-relaxation technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe, and structural relaxation in a-Si (amorphous silicon).

  6. Monolithic microwave integrated circuit devices for active array antennas

    NASA Technical Reports Server (NTRS)

    Mittra, R.

    1984-01-01

    Two different aspects of active antenna array design were investigated. The transition between monolithic microwave integrated circuits and rectangular waveguides was studied along with crosstalk in multiconductor transmission lines. The boundary value problem associated with a discontinuity in a microstrip line is formulated. This entailed, as a first step, the derivation of the propagating as well as evanescent modes of a microstrip line. The solution is derived to a simple discontinuity problem: change in width of the center strip. As for the multiconductor transmission line problem. A computer algorithm was developed for computing the crosstalk noise from the signal to the sense lines. The computation is based on the assumption that these lines are terminated in passive loads.

  7. Degree of polarization technique used in PMD compensation of optical microwave transmission systems

    NASA Astrophysics Data System (ADS)

    Liu, Hankui; Zhang, Xianmin; Chen, Kangsheng

    2004-06-01

    Polarization-mode dispersion (PMD) can severely degrade the performance of optical microwave transmission systems by inducing a periodic power fading of the received RF signal that depends on the subcarrier frequency and accumulated differential group delay (DGD) along fiber. We derive a compact analytical expression of the degree of polarization (DOP) of optical signal using Jones and Stokes representations based on first-order assumption. Using this expression, we quantify the signal DOP fading induced by PMD by means of numerical simulations for BPSK and ASK modulations. The dependences of signal DOP on subcarrier frequency, accumulated DGD, and modulation formats have been demonstrated. It is found that signal DOP has similar periodic fading with the power of received RF signal, which is caused by DGD. Moreover, if the DOP technique is used in the PMD compensation of the optical microwave transmission systems, the DOP degradation is more sensitive to the DGD in the system modulated by BPSK than by ASK. The performance of this technique is immune to residual chromatic dispersion of the fiber.

  8. Active Microwave Remote Sensing Observations of Weddell Sea Ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1997-01-01

    Since July 1991, the European Space Agency's ERS-1 and ERS-2 satellites have acquired radar data of the Weddell Sea, Antarctica. The Active Microwave Instrument on board ERS has two modes; SAR and Scatterometer. Two receiving stations enable direct downlink and recording of high bit-rate, high resolution SAR image data of this region. When not in an imaging mode, when direct SAR downlink is not possible, or when a receiving station is inoperable, the latter mode allows normalized radar cross-section data to be acquired. These low bit-rate ERS scatterometer data are tape recorded, downlinked and processed off-line. Recent advances in image generation from Scatterometer backscatter measurements enable complementary medium-scale resolution images to be made during periods when SAR images cannot be acquired. Together, these combined C-band microwave image data have for the first time enabled uninterrupted night and day coverage of the Weddell Sea region at both high (25 m) and medium-scale (-20 km) resolutions. C-band ERS-1 radar data are analyzed in conjunction with field data from two simultaneous field experiments in 1992. Satellite radar signature data are compared with shipborne radar data to extract a regional and seasonal signature database for recognition of ice types in the images. Performance of automated sea-ice tracking algorithms is tested on Antarctic data to evaluate their success. Examples demonstrate that both winter and summer ice can be effectively tracked. The kinematics of the main ice zones within the Weddell Sea are illustrated, together with the complementary time-dependencies in their radar signatures. Time-series of satellite images are used to illustrate the development of the Weddell Sea ice cover from its austral summer minimum (February) to its winter maximum (September). The combination of time-dependent microwave signatures and ice dynamics tracking enable various drift regimes to be defined which relate closely to the circulation of the

  9. Novel techniques for the thermal management of space-based, high-power microwave tubes

    NASA Astrophysics Data System (ADS)

    Rose, M. F.; Hyder, Anthony K.; Askew, R. F.; Chow, L.; Gilmour, A. S., Jr.; Faghri, A.

    1991-10-01

    This work is based in part on a study by the authors to determine the applicability of several concepts to the cooling of high-power linear microwave tubes operating in space under a variety of conditions. The authors focus on: direct radiation to space, beam exit to space, thermal storage, secondary coolant loops/heat pipes, and the use of supercritical hydrogen as a coolant with subsequent ejection to space. Each of these techniques is evaluated within the framework of a neutral particle beam weapons system or other limited duty cycle device which might lay dormant for long periods of time, come to life, and function reliably for a specified time. System impact for each technique is estimated in terms of impact on weight, volume, spacecraft interaction, and ease of implementation.

  10. Electrical properties of bilayer graphene synthesized using surface wave microwave plasma techniques at low temperature

    NASA Astrophysics Data System (ADS)

    Yamada, Takatoshi; Kato, Hiromitsu; Okigawa, Yuki; Ishihara, Masatou; Hasegawa, Masataka

    2017-01-01

    Bilayer graphene was synthesized at low temperature using surface wave microwave plasma techniques where poly(methyl metacrylate) (PMMA) and methane (CH4) were used as carbon sources. Temperature-dependent Hall effect measurements were carried out in a helium atmosphere. Sheet resistance, sheet carrier density and mobility showed weak temperature dependence for graphene from PMMA, and the highest carrier mobility is 740 cm2 V-1 s-1. For graphene from CH4, tunneling of the domain boundary limited carrier transport. The difference in average domain size was determined by Raman signal maps. In addition, residuals of PMMA were detected on graphene from PMMA. The low sheet resistances of graphene synthesized at a temperature of 280 °C using plasma techniques were explained by the PMMA related residuals rather than the domain sizes.

  11. Dimensional characterization of a quasispherical resonator by microwave and coordinate measurement techniques

    NASA Astrophysics Data System (ADS)

    Underwood, R.; Flack, D.; Morantz, P.; Sutton, G.; Shore, P.; de Podesta, M.

    2011-02-01

    We describe the dimensional characterization of copper quasisphere NPL-Cranfield 2. The quasisphere is assembled from two hemispheres such that the internal shape is a triaxial ellipsoid, the major axes of which have nominal radii 62.000 mm, 62.031 mm and 62.062 mm. The artefact has been manufactured using diamond-turning technology and shows a deviation from design form of less than ±1 µm over most of its surface. Our characterization involves both coordinate measuring machine (CMM) experiments and microwave resonance spectroscopy. We have sought to reduce the dimensional uncertainty below the maximum permissible error of the CMM by comparative measurements with silicon and Zerodur spheres of known volume. Using this technique we determined the equivalent radius with an uncertainty of u(k = 1) = 114 nm, a fractional uncertainty of 1.8 parts in 106. Due to anisotropy of the probe response, we could only determine the eccentricities of the quasihemispheres with a fractional uncertainty of approximately 2%. Our microwave characterization uses the TM11 to TM18 resonances. We find the equivalent radius inferred from analysis of these modes to be consistent within ±4 nm with an overall uncertainty u(k = 1) = 11 nm. We discuss corrections for surface conductivity, waveguide perturbations and dielectric surface layers. We find that the CMM radius estimates derived from each hemisphere cannot be used to accurately predict the equivalent radius of the assembled resonator for two reasons. Firstly, the equatorial flanges are flat only to within ±1 µm, leading to an equatorial 'gap' whose dimension cannot be reliably estimated. Secondly, the resonator undergoes significant elastic distortion when the bolts connecting the hemispheres are tightened. We provide CMM and microwave measurements to support these conclusions in addition to finite-element modelling. Finally, we consider the implications of this work on a forthcoming experiment to determine the Boltzmann constant

  12. Some Signal Processing Techniques for Use in Broadband Time Domain Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cooke, S. A.

    2016-06-01

    At the present time, in the typical broadband, time domain microwave spectroscopy experiment each free induction decay (FID) collected is on the order of 10^6 data points in length with a sampling rate on the order of 10-12 seconds per point. Traditionally, the FID is processed using a fast Fourier transform algorithm (FFT) with the resulting power spectrum used in ensuing spectral analyses. For use with the FFT algorithm we have implemented some pre- and post-processing techniques to improve the signal quality. These techniques include the use of Lissajous plots to ensure phase stability in signal addition, novel windowing functions, and also automated broadband phase corrections which allow the absorption spectrum to be used as a more highly resolved version of the traditional power spectrum (see figure). We have also implemented alternatives to the FFT algorithm for time domain signal processing including Hankel singular valued decomposition, a maximum entropy method, and wavelet transformations. Although these techniques are unlikely to be used in place of a fast Fourier transform we will demonstrate how each of these techniques may be used to augment the traditional FFT algorithm in regards to spectral analysis.

  13. Passive Microwave Algorithms for Sea Ice Concentration: A Comparison of Two Techniques

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Cavalieri, Donald J.; Parkinson, Claire L.; Gloersen, Per

    1997-01-01

    The most comprehensive large-scale characterization of the global sea ice cover so far has been provided by satellite passive microwave data. Accurate retrieval of ice concentrations from these data is important because of the sensitivity of surface flux(e.g. heat, salt, and water) calculations to small change in the amount of open water (leads and polynyas) within the polar ice packs. Two algorithms that have been used for deriving ice concentrations from multichannel data are compared. One is the NASA Team algorithm and the other is the Bootstrap algorithm, both of which were developed at NASA's Goddard Space Flight Center. The two algorithms use different channel combinations, reference brightness temperatures, weather filters, and techniques. Analyses are made to evaluate the sensitivity of algorithm results to variations of emissivity and temperature with space and time. To assess the difference in the performance of the two algorithms, analyses were performed with data from both hemispheres and for all seasons. The results show only small differences in the central Arctic in but larger disagreements in the seasonal regions and in summer. In some ares in the Antarctic, the Bootstrap technique show ice concentrations higher than those of the Team algorithm by as much as 25%; whereas, in other areas, it shows ice concentrations lower by as much as 30%. The The differences in the results are caused by temperature effects, emissivity effects, and tie point differences. The Team and the Bootstrap results were compared with available Landsat, advanced very high resolution radiometer (AVHRR) and synthetic aperture radar (SAR) data. AVHRR, Landsat, and SAR data sets all yield higher concentrations than the passive microwave algorithms. Inconsistencies among results suggest the need for further validation studies.

  14. Implementation of Microwave Active Nulling and Interrogation of Boundary Impedance

    DTIC Science & Technology

    2006-05-01

    Sep. 2004. Electromagnetic Interrogation over Electric Boundary -H. How and C. Vittoria, "Microwave Impedance Control Over a Ferrite Boundary Layer...Utilizing Nonreciprocal Wave Propagation," IEEE Trans. Microwave Theory Tech., MTT-52(8), 2004. Electromagnetic Interrogation involving Hexagonal Ferrite ...H. How, X. Zuo, and C. Vittoria, "Wave Propagation in Ferrite Involving Planar Anisotropy - Theory and Experiment" IEEE Trans. Magnetics, Mag-41(8

  15. Modulation of surface structure and catalytic properties of cerium oxide nanoparticles by thermal and microwave synthesis techniques

    NASA Astrophysics Data System (ADS)

    He, Jian; Zhou, Lan; Liu, Jie; Yang, Lu; Zou, Ling; Xiang, Junyu; Dong, Shiwu; Yang, Xiaochao

    2017-04-01

    Cerium oxide nanoparticles (CNPs) have been intensively explored for biomedical applications in recent few years due to the versatile enzyme mimetic activities of the nanoparticles. However, the control of CNPs quality through the optimization of synthesis conditions remains largely unexplored as most of the previous studies only focus on utilizing the catalytic activities of the nanoparticles. In the present study, CNPs with size about 5 nm were synthesized by thermal decomposition method using traditional convective heating and recently developed microwave irradiation as heating source. The quality of CNPs synthesized by the two heating manner was evaluated. The CNPs synthesized by convective heating were slightly smaller than that synthesized by microwave irradiation heating. The cores of the CNPs synthesized by the two heating manner have similar crystal structure. While the surface subtle structures of the CNPs synthesized by two heating manner were different. The CNPs synthesized by microwave irradiation have more surface reactive hot spot than that synthesized by convective heating as the nanoparticles responded more actively to the redox environment variation. This difference resulted in the higher superoxide dismutase (SOD) mimetic activity of CNPs synthesized by microwave irradiation heating than that of the convective heating. Preliminary experiments indicated that the CNPs synthesized by microwave irradiation heating could better protect cells from oxidative stress due to the higher SOD mimetic activity of the nanoparticles.

  16. Analytical and Numerical Studies of Active and Passive Microwave Ocean Remote Sensing

    DTIC Science & Technology

    2001-09-30

    of both analytical and efficient numerical methods for electromagnetics and hydrodynamics. New insights regarding these phenomena can then be applied to improve microwave active and passive remote sensing of the ocean surface.

  17. Microwave and Beam Activation of Nanostructured Catalysts for Environmentally Friendly, Energy Efficient Heavy Crude Oil Processing

    SciTech Connect

    2009-03-01

    This factsheet describes a study whose goal is initial evaluation and development of energy efficient processes which take advantage of the benefits offered by nanostructured catalysts which can be activated by microwave, RF, or radiation beams.

  18. Effects of microwave heating on porous structure of regenerated powdered activated carbon used in xylose.

    PubMed

    Li, Wei; Wang, Xinying; Peng, Jinhui

    2014-01-01

    The regeneration of spent powdered activated carbons used in xylose decolourization by microwave heating was investigated. Effects of microwave power and microwave heating time on the adsorption capacity of regenerated activated carbons were evaluated. The optimum conditions obtained are as follows: microwave power 800W; microwave heating time 30min. Regenerated activated carbon in this work has high adsorption capacities for the amount of methylene blue of 16 cm3/0.1 g and the iodine number of 1000.06mg/g. The specific surface areas of fresh commercial activated carbon, spent carbon and regenerated activated carbon were calculated according to the Brunauer, Emmett and Teller method, and the pore-size distributions of these carbons were characterized by non-local density functional theory (NLDFT). The results show that the specific surface area and the total pore volume of regenerated activated carbon are 1064 m2/g and 1.181 mL/g, respectively, indicating the feasibility of regeneration of spent powdered activated carbon used in xylose decolourization by microwave heating. The results of surface fractal dimensions also confirm the results of isotherms and NLDFT.

  19. Imaging of Active Microwave Devices at Cryogenic Temperatures using Scanning Near-Field Microwave Microscopy

    NASA Astrophysics Data System (ADS)

    Thanawalla, Ashfaq S.; Dutta, S. K.; Vlahacos, C. P.; Steinhauer, D. E.; Feenstra, B. J.; Anlage, Steven M.; Wellstood, F. C.

    1998-03-01

    The ability to image electric fields in operating microwave devices is interesting both from the fundamental point of view and for diagnostic purposes. To that end we have constructed a scanning near-field microwave microscope which uses an open-ended coaxial probe and operates at cryogenic temperatures.(For related publications see: C. P. Vlahacos, R. C. Black, S. M. Anlage, A. Amar and F. C. Wellstood, Appl. Phys. Lett. 69), 3274 (1996) and S. M. Anlage, C. P. Vlahacos, Sudeep Dutta and F. C. Wellstood, IEEE Trans. Appl. Supercond. 7, 3686 (1997). Using this system we have imaged electric fields generated by both normal metal and superconducting microstrip resonators at temperatures ranging from 77 K to 300 K. We will present images and discuss our results including observations of clear standing wave patterns at the fundamental resonant frequency and an increased quality factor of the resonators at low temperatures.

  20. Laser ablation of liver tumors: An ancillary technique, or an alternative to radiofrequency and microwave?

    PubMed Central

    Sartori, Sergio; Di Vece, Francesca; Ermili, Francesca; Tombesi, Paola

    2017-01-01

    Radiofrequency ablation (RFA) is currently the most popular and used ablation modality for the treatment of non surgical patients with primary and secondary liver tumors, but in the last years microwave ablation (MWA) is being technically improved and widely rediscovered for clinical use. Laser thermal ablation (LTA) is by far less investigated and used than RFA and MWA, but the available data on its effectiveness and safety are quite good and comparable to those of RFA and MWA. All the three hyperthermia-based ablative techniques, when performed by skilled operators, can successfully treat all liver tumors eligible for thermal ablation, and to date in most centers of interventional oncology or interventional radiology the choice of the technique usually depends on the physician’s preference and experience, or technical availability. However, RFA, MWA, and LTA have peculiar advantages and limitations that can make each of them more suitable than the other ones to treat patients and tumors with different characteristics. When all the three thermal ablation techniques are available, the choice among RFA, MWA, and LTA should be guided by their advantages and disadvantages, number, size, and location of the liver nodules, and cost-saving considerations, in order to give patients the best treatment option.

  1. Determination of halogens in coal after digestion using the microwave-induced combustion technique

    SciTech Connect

    Flores, E.M.M.; Mesko, M.F.; Moraes, D.P.; Pereira, J.S.F.; Mello, P.A.; Barin, J.S.; Knapp, G.

    2008-03-15

    The microwave-induced combustion (MIC) technique was applied for coal digestion and further determination of bromide, chloride, fluoride, and iodide by ion chromatography (IC). Samples (up to 500 mg) were combusted at 2 MPa of oxygen. Combustion was complete in less than 50 s, and analytes were absorbed in water or (NH{sub 4}){sub 2}CO{sub 3} solution. A reflux step was applied to improve analyte absorption. Accuracy was evaluated for Br, Cl, and F using certified reference coal and spiked samples for I. For Br, Cl, and F, the agreement was between 96 and 103% using 50 mmol L{sup -1} (NH{sub 4}){sub 2}CO{sub 3} as the absorbing solution and 5 min of reflux. With the use of the same conditions, the recoveries for I were better than 97%. Br, Cl, and I were also determined in MIC digests by inductively coupled plasma mass spectrometry, inductively coupled plasma optical emission spectrometry, and F was determined by an ion-selective electrode with agreement better than 95% to the values obtained using IC. Temperature during combustion was higher than 1350 {sup o}C, and the residual carbon content was lower than 1%. With the use of the MIC technique, up to eight samples could be processed simultaneously, and a single absorbing solution was suitable for all analytes and determination techniques (limit of detection by IC was better than 3 {mu} g g{sup -1} for all halogens).

  2. Determination of halogens in coal after digestion using the microwave-induced combustion technique.

    PubMed

    Flores, Erico M M; Mesko, Marcia F; Moraes, Diogo P; Pereira, Juliana S F; Mello, Paola A; Barin, Juliano S; Knapp, Günter

    2008-03-15

    The microwave-induced combustion (MIC) technique was applied for coal digestion and further determination of bromide, chloride, fluoride, and iodide by ion chromatography (IC). Samples (up to 500 mg) were combusted at 2 MPa of oxygen. Combustion was complete in less than 50 s, and analytes were absorbed in water or (NH(4))(2)CO(3) solution. A reflux step was applied to improve analyte absorption. Accuracy was evaluated for Br, Cl, and F using certified reference coal and spiked samples for I. For Br, Cl, and F, the agreement was between 96 and 103% using 50 mmol L(-1) (NH(4))(2)CO(3) as the absorbing solution and 5 min of reflux. With the use of the same conditions, the recoveries for I were better than 97%. Br, Cl, and I were also determined in MIC digests by inductively coupled plasma mass spectrometry, inductively coupled plasma optical emission spectrometry, and F was determined by an ion-selective electrode with agreement better than 95% to the values obtained using IC. Temperature during combustion was higher than 1350 degrees C, and the residual carbon content was lower than 1%. With the use of the MIC technique, up to eight samples could be processed simultaneously, and a single absorbing solution was suitable for all analytes and determination techniques (limit of detection by IC was better than 3 microg g(-1) for all halogens).

  3. Microwave activated electrochemical degradation of 2,4-dichlorophenoxyacetic acid at boron-doped diamond electrode.

    PubMed

    Gao, Junxia; Zhao, Guohua; Shi, Wei; Li, Dongming

    2009-04-01

    A method for improving the oxidation ability of the electrode is proposed by using microwave activation in electrochemical oxidation. The electrochemical degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) with microwave radiation (MW-EC) was carried out in a continuous flow system under atmospheric pressure. In 3 h the removal of COD, ACE (average current efficiency) and Cl(-) concentration was 1.63, 2.25 and 1.67 times as that without microwave radiation, respectively. The high degradation ability was resulted from the more active centers at the electrode surface due to the microwave radiation. The decay kinetics of 2,4-D followed a pseudo first-order reaction. The rate constant was increased to 2.16x10(-4) s(-1) with the microwave radiation, while it was 8.52x10(-5) s(-1) with electrochemical treatment only (EC). Under both conditions, the main intermediates were identified and quantified by High Performance Liquid Chromatography (HPLC). The formation rate of intermediate products and further degradation rate were increased by about 50-120% with the microwave radiation. The activation of electrochemical oxidation by microwave was discussed from the diffusion process, adsorption and the temperature at boron-doped diamond (BDD) electrode.

  4. Effect of Microwave Heating Conditions on the Preparation of High Surface Area Activated Carbon from Waste Bamboo

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Hongying Xia; Zhang, Libo; Xia, Yi; Peng, Jinhui; Wang, Shixing; Zheng, Zhaoqiang; Zhang, Shengzhou

    2015-11-01

    The present study reports the effect of microwave power and microwave heating time on activated carbon adsorption ability. The waste bamboo was used to preparing high surface area activated carbon via microwave heating. The bamboo was carbonized for 2 h at 600°C to be used as the raw material. According to the results, microwave power and microwave heating time had a significant impact on the activating effect. The optimal KOH/C ratio of 4 was identified when microwave power and microwave heating time were 700 W and 15 min, respectively. Under the optimal conditions, surface area was estimated to be 3441 m2/g with pore volume of 2.093 ml/g and the significant proportion of activated carbon was microporous (62.3%). The results of Fourier transform infrared spectroscopy (FTIR) were illustrated that activated carbon surface had abundant functional groups. Additionally the pore structure is characterized using Scanning Electron Microscope (SEM).

  5. Microwave-assisted extraction of active pharmaceutical ingredient from solid dosage forms.

    PubMed

    Hoang, T H; Sharma, R; Susanto, D; Di Maso, M; Kwong, E

    2007-07-13

    The microwave assisted extraction (MAE) technique has been evaluated for the extraction of active pharmaceutical ingredients (API) from various solid dosage forms. Using immediate release tablets of Compound A as a model, optimization of the extraction method with regards to extraction solvent composition, extraction time and temperature was briefly discussed. Complete recovery of Compound A was achieved when samples were extracted using acetonitrile as the extraction solvent under microwave heating at a constant cell temperature of 50 degrees C for 5 min. The optimized MAE method was applied for content uniformity (single tablet extraction) and potency (multiple tablets extraction) assays of release and stability samples of two products of Compound A (5 and 25mg dose strength) stored at various conditions. To further demonstrate the applicability of MAE, the instrumental extraction conditions (50 degrees C for 5 min) were adopted for the extraction of montelukast sodium (Singulair) from various solid dosage forms using methanol-water (75:25, v/v) as the extraction solvent. The MAE procedure demonstrated an extraction efficiency of 97.4-101.9% label claim with the greatest RSD at 1.4%. The results compare favorably with 97.6-102.3% label claim with the greatest RSD at 2.9% obtained with validated mechanical extraction procedures. The system is affordable, user-friendly and simple to operate and troubleshoot. Rapid extraction process (7 min/run) along with high throughput capacity (up to 23 samples simultaneously) would lead to reduced cycle time and thus increased productivity.

  6. Advances on simultaneous desulfurization and denitrification using activated carbon irradiated by microwaves.

    PubMed

    Ma, Shuang-Chen; Gao, Li; Ma, Jing-Xiang; Jin, Xin; Yao, Juan-Juan; Zhao, Yi

    2012-06-01

    This paper describes the research background and chemistry of desulfurization and denitrification technology using microwave irradiation. Microwave-induced catalysis combined with activated carbon adsorption and reduction can reduce nitric oxide to nitrogen and sulfur dioxide to sulfur from flue gas effectively. This paper also highlights the main drawbacks of this technology and discusses future development trends. It is reported that the removal of sulfur dioxide and nitric oxide using microwave irradiation has broad prospects for development in the field of air pollution control.

  7. Volcanic eruption source parameters from active and passive microwave sensors

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario; Marzano, Frank S.; Cimini, Domenico; Mereu, Luigi

    2016-04-01

    It is well known, in the volcanology community, that precise information of the source parameters characterising an eruption are of predominant interest for the initialization of the Volcanic Transport and Dispersion Models (VTDM). Source parameters of main interest would be the top altitude of the volcanic plume, the flux of the mass ejected at the emission source, which is strictly related to the cloud top altitude, the distribution of volcanic mass concentration along the vertical column as well as the duration of the eruption and the erupted volume. Usually, the combination of a-posteriori field and numerical studies allow constraining the eruption source parameters for a given volcanic event thus making possible the forecast of ash dispersion and deposition from future volcanic eruptions. So far, remote sensors working at visible and infrared channels (cameras and radiometers) have been mainly used to detect, track and provide estimates of the concentration content and the prevailing size of the particles propagating within the ash clouds up to several thousand of kilometres far from the source as well as track back, a-posteriori, the accuracy of the VATDM outputs thus testing the initial choice made for the source parameters. Acoustic wave (infrasound) and microwave fixed scan radar (voldorad) were also used to infer source parameters. In this work we want to put our attention on the role of sensors operating at microwave wavelengths as complementary tools for the real time estimations of source parameters. Microwaves can benefit of the operability during night and day and a relatively negligible sensitivity to the presence of clouds (non precipitating weather clouds) at the cost of a limited coverage and larger spatial resolution when compared with infrared sensors. Thanks to the aforementioned advantages, the products from microwaves sensors are expected to be sensible mostly to the whole path traversed along the tephra cloud making microwaves particularly

  8. A multifrequency evaluation of active and passive microwave sensors for oil spill detection and assessment

    NASA Technical Reports Server (NTRS)

    Fenner, R. G.; Reid, S. C.; Solie, C. H.

    1980-01-01

    An evaluation is given of how active and passive microwave sensors can best be used in oil spill detection and assessment. Radar backscatter curves taken over oil spills are presented and their effect on synthetic aperture radar (SAR) imagery are discussed. Plots of microwave radiometric brightness variations over oil spills are presented and discussed. Recommendations as to how to select the best combination of frequency, viewing angle, and sensor type for evaluation of various aspects of oil spills are also discussed.

  9. Characterization of Aroma-Active Compounds in Microwave Blanced Peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microwave blanching of peanuts has been explored as an alternative to conventional oven methods based on its speed of operation, energy savings, and efficiency of process control. Although processing times can be greatly reduced,the occurrence of stale/floral and ashy off-flavors has been reported a...

  10. Active and passive microwave measurements in Hurricane Allen

    NASA Technical Reports Server (NTRS)

    Delnore, V. E.; Bahn, G. S.; Grantham, W. L.; Harrington, R. F.; Jones, W. L.

    1985-01-01

    The NASA Langley Research Center analysis of the airborne microwave remote sensing measurements of Hurricane Allen obtained on August 5 and 8, 1980 is summarized. The instruments were the C-band stepped frequency microwave radiometer and the Ku-band airborne microwave scatterometer. They were carried aboard a NOAA aircraft making storm penetrations at an altitude of 3000 m and are sensitive to rain rate, surface wind speed, and surface wind vector. The wind speed is calculated from the increase in antenna brightness temperature above the estimated calm sea value. The rain rate is obtained from the difference between antenna temperature increases measured at two frequencies, and wind vector is determined from the sea surface normalized radar cross section measured at several azimuths. Comparison wind data were provided from the inertial navigation systems aboard both the C-130 aircraft at 3000 m and a second NOAA aircraft (a P-3) operating between 500 and 1500 m. Comparison rain rate data were obtained with a rain radar aboard the P-3. Evaluation of the surface winds obtained with the two microwave instruments was limited to comparisons with each other and with the flight level winds. Two important conclusions are drawn from these comparisons: (1) the radiometer is accurate when predicting flight level wind speeds and rain; and (2) the scatterometer produces well behaved and consistent wind vectors for the rain free periods.

  11. High-temperature, microwave-assisted UV digestion: a promising sample preparation technique for trace element analysis.

    PubMed

    Florian, D; Knapp, G

    2001-04-01

    A novel, microwave-assisted, high-temperature UV digestion procedure was developed for the accelerated decomposition of interfering dissolved organic carbon (DOC) prior to trace element analysis of liquid samples such as, industrial/municipal wastewater, groundwater, and surface water, body fluids, infusions, beverages, and sewage. The technique is based on a closed, pressurized, microwave digestion device. UV irradiation is generated by immersed electrodeless Cd discharge lamps (228 nm) operated by the microwave field in the oven cavity. To enhance excitation efficiency an antenna was fixed on top of the microwave lamp. The established immersion system enables maximum reaction temperatures up to 250-280 degrees C, resulting in a tremendous increase of mineralization efficiency. Compared to open UV digestion devices, decomposition time is reduced by a factor of 5 and the maximum initial concentration of DOC can be raised by at least a factor of 50. The system's performance on a real-type sample was evaluated for the mineralization of skimmed milk (IRMM, CRM 151) and subsequent determination of trace elements using standard spectroscopic techniques. Recovery for Cd (109%), Cu (112%), Fe (99%), and Pb (96%) showed good agreement with the 95% confidence interval of the certified values.

  12. Microwave Ignited Combustion Synthesis as a Joining Technique for Dissimilar Materials

    NASA Astrophysics Data System (ADS)

    Rosa, Roberto; Colombini, Elena; Veronesi, Paolo; Poli, Giorgio; Leonelli, Cristina

    2012-05-01

    Microwave energy has been exploited to ignite combustion synthesis (CS) reactions of properly designed powders mixtures, in order to rapidly reach the joining between different kinds of materials, including metals (Titanium and Inconel) and ceramics (SiC). Beside the great advantage offered by CS itself, i.e., rapid and highly localized heat generation, the microwaves selectivity in being absorbed by micrometric metallic powders and not by bulk metallic components represents a further intriguing aspect in advanced materials joining applications, namely the possibility to avoid the exposition to high temperatures of the entire substrates to be joined. Moreover, in case of microwaves absorbing substrates, the competitive microwaves absorption by both substrates and powdered joining material, leads to the possibility of adhesion, interdiffusion and chemical bonding enhancements. In this study, both experimental and numerical simulation results are used to highlight the great potentialities of microwave ignited CS in the joining of advanced materials.

  13. Microwave techniques for electron density measurements in low pressure RF plasmas

    NASA Astrophysics Data System (ADS)

    Zheltukhin, Viktor; Gafarov, Ildar; Shemakhin, Alexander

    2016-09-01

    Results of the experimental studying of RF plasma jet at low pressure in the range of 10 - 300 Pa is presented. The electron density distribution both in inductive and in capacitive coupled RF discharges was measured at 1.76 MHz and 13.56 MHz consequently. We used three independent microwave diagnostic techniques such as free space (the ``two-frequency'' and ``on the cut-off signal'') and a resonator. It is found that the electron density in the RF plasma jets is by 1-2 orders of magnitude greater than in the decaying plasma jet, and by 1-2 orders of magnitude less than in the RF plasma torch. Thus the RF plasma jet is similar to the additional discharge between the electrodes or the coil and the vacuum chamber walls. As a consequence, the formation of the positive charge sheath near the specimen placed in plasma stream is observed. It is found that the maximum of ionization degree as well as more uniform electron density distribution across the stream is observed in the range of the gas flow rate Gg = 0 . 06 - 0 . 12 g/s and the discharge power Pd = 0 . 5 - 2 . 5 kW. The work was funded by RFBR, according to the research projects No. 16-31-60081 mol_a_dk.

  14. Microwave-Assisted Simultaneous Extraction of Luteolin and Apigenin from Tree Peony Pod and Evaluation of Its Antioxidant Activity

    PubMed Central

    Wang, Hongzheng; Yang, Lei; Zu, Yuangang; Zhao, Xiuhua

    2014-01-01

    An efficient microwave-assisted extraction (MAE) technique was employed in simultaneous extraction of luteolin and apigenin from tree peony pod. The MAE procedure was optimized using response surface methodology (RSM) and compared with other conventional extraction techniques of macerate extraction (ME) and heat reflux extraction (HRE). The optimal conditions of MAE were as follows: employing 70% ethanol volume fraction as solvent, soaking time of 4 h, liquid-solid ratio of 10 (mL/g), microwave irradiation power of 265 W, microwave irradiation time of 9.6 min, and 3 extraction cycles. Under the optimal conditions, 151 μg/g luteolin and 104 μg/g apigenin were extracted from the tree peony pod. Compared with ME and HRE, MAE gave the highest extraction efficiency. The antioxidant activities of the extracts obtained by MAE, ME, and HRE were evaluated using a 2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH) free radical-scavenging assay, a ferric reducing antioxidant power assay (FRAP), and a reducing power assay. Meanwhile, the structural changes of the unprocessed and processed tree peony pod samples were analyzed by scanning electron microscopy. PMID:25405227

  15. Retrieval of Precipitation Profiles from Multiresolution, Multifrequency, Active and Passive Microwave Observations

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Anagnostou, Emmanouil N.; Olson, William S.; Starr, David OC. (Technical Monitor)

    2002-01-01

    In this study, a technique for estimating vertical profiles of precipitation from multifrequency, multiresolution active and passive microwave observations is investigated using both simulated and airborne data. The technique is applicable to the Tropical Rainfall Measuring Mission (TRMM) satellite multi-frequency active and passive observations. These observations are characterized by various spatial and sampling resolutions. This makes the retrieval problem mathematically more difficult and ill-determined because the quality of information decreases with decreasing resolution. A model that, given reflectivity profiles and a small set of parameters (including the cloud water content, the intercept drop size distribution, and a variable describing the frozen hydrometeor properties), simulates high-resolution brightness temperatures is used. The high-resolution simulated brightness temperatures are convolved at the real sensor resolution. An optimal estimation procedure is used to minimize the differences between simulated and observed brightness temperatures. The retrieval technique is investigated using cloud model synthetic and airborne data from the Fourth Convection And Moisture Experiment. Simulated high-resolution brightness temperatures and reflectivities and airborne observation strong are convolved at the resolution of the TRMM instruments and retrievals are performed and analyzed relative to the reference data used in observations synthesis. An illustration of the possible use of the technique in satellite rainfall estimation is presented through an application to TRMM data. The study suggests improvements in combined active and passive retrievals even when the instruments resolutions are significantly different. Future work needs to better quantify the retrievals performance, especially in connection with satellite applications, and the uncertainty of the models used in retrieval.

  16. Preparation of high surface area activated carbon from coconut shells using microwave heating.

    PubMed

    Yang, Kunbin; Peng, Jinhui; Srinivasakannan, C; Zhang, Libo; Xia, Hongying; Duan, Xinhui

    2010-08-01

    The present study attempts to utilize coconut shell to prepare activated carbon using agents such as steam, CO(2) and a mixture of steam-CO(2) with microwave heating. Experimental results show that the BET surface area of activated carbons irrespective of the activation agent resulted in surface area in excess of 2000 m(2)/g. The activation time using microwave heating is very much shorter, while the yield of the activated carbon compares well with the conventional heating methods. The activated carbon prepared using CO(2) activation has the largest BET surface area, however the activation time is approximately 2.5 times higher than the activation using steam or mixture of steam-CO(2). The chemical structure of activated carbons examined using Fourier transformed infra-red spectra (FTIR) did not show any variation in the surface functional groups of the activated carbon prepared using different activation agents.

  17. Preparation of activated carbon by microwave heating of langsat (Lansium domesticum) empty fruit bunch waste.

    PubMed

    Foo, K Y; Hameed, B H

    2012-07-01

    The feasibility of langsat empty fruit bunch waste for preparation of activated carbon (EFBLAC) by microwave-induced activation was explored. Activation with NaOH at the IR ratio of 1.25, microwave power of 600 W for 6 min produced EFBLAC with a carbon yield of 81.31% and adsorption uptake for MB of 302.48 mg/g. Pore structural analysis, scanning electron microscopy and Fourier transform infrared spectroscopy demonstrated the physical and chemical characteristics of EFBLAC. Equilibrium data were best described by the Langmuir isotherm, with a monolayer adsorption capacity of 402.06 mg/g, and the adsorption kinetics was well fitted to the pseudo-second-order equation. The findings revealed the potential to prepare high quality activated carbon from langsat empty fruit bunch waste by microwave irradiation.

  18. Determination of multi-walled carbon nanotube bioaccumulation in earthworms measured by a microwave-based detection technique.

    PubMed

    Li, Shibin; Irin, Fahmida; Atore, Francis O; Green, Micah J; Cañas-Carrell, Jaclyn E

    2013-02-15

    Reliable quantification techniques for carbon nanotubes (CNTs) are limited. In this study, a new procedure was developed for quantifying multi-walled carbon nanotubes (MWNTs) in earthworms (Eisenia fetida) based on freeze drying and microwave-induced heating. Specifically, earthworms were first processed into a powder by freeze drying. Then, samples were measured by utilizing 10 s exposure to 30 W microwave power. This method showed the potential to quantitatively measure MWNTs in earthworms at low concentrations (~0.1 μg in 20 mg of earthworm). Also, a simple MWNT bioaccumulation study in earthworms indicated a low bioaccumulation factor of 0.015±0.004. With an appropriate sample processing method and instrumental parameters (power and exposure time), this technique has the potential to quantify MWNTs in a variety of sample types (plants, earthworms, human blood, etc.).

  19. Monitoring by Control Technique - Activated Carbon Adsorber

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about Activated Carbon Adsorber control techniques used to reduce pollutant emissions.

  20. Immunotropic influence of 900 MHz microwave GSM signal on human blood immune cells activated in vitro.

    PubMed

    Stankiewicz, Wanda; Dabrowski, Marek P; Kubacki, Roman; Sobiczewska, Elzbieta; Szmigielski, Stanisław

    2006-01-01

    In an earlier study we reported that G(o) phase peripheral blood mononulclear cells (PBMC) exposed to low-level (SAR = 0.18 W/kg) pulse-modulated 1300 MHz microwaves and subsequently cultured, demonstrate changed immune activity (Dabrowski et al., 2003). We investigated whether cultured immune cells induced into the active phases of cell cycle (G(1), S) and then exposed to microwaves will also be sensitive to electromagnetic field. An anechoic chamber of our design containing a microplate with cultured cells and an antenna emitting microwaves (900 MHz simulated GSM signal, 27 V/m, SAR 0.024 W/kg) was placed inside the ASSAB incubator. The microcultures of PBMC exposed to microwaves demonstrated significantly higher response to mitogens and higher immunogenic activity of monocytes (LM index) than control cultures. LM index, described in detail elsewhere (Dabrowski et al., 2001), represents the monokine influence on lymphocyte mitogenic response. The results suggest that immune activity of responding lymphocytes and monocytes can be additionally intensified by 900 MHz microwaves.

  1. Femtosecond laser fabricated multimode fiber sensors interrogated by optical-carrier-based microwave interferometry technique for distributed strain sensing

    NASA Astrophysics Data System (ADS)

    Hua, Liwei; Song, Yang; Huang, Jie; Cheng, Baokai; Zhu, Wenge; Xiao, Hai

    2016-03-01

    A multimode fiber (MMF) based cascaded intrinsic Fabry-Perot interferometers (IFPIs) system is presented and the distributed strain sensing has been experimentally demonstrated by using such system. The proposed 13 cascaded IFPIs have been formed by 14 cascaded reflectors that have been fabricated on a grade index MMF. Each reflector has been made by drawing a line on the center of the cross-section of the MMF through a femtosecond laser. The distance between any two adjacent reflectors is around 100 cm. The optical carrier based microwave interferometry (OCMI) technique has been used to interrogate the MMF based cascaded FPIs system by reading the optical interference information in the microwave domain. The location along with the shift of the interference fringe pattern for each FPI can be resolved though signal processing based on the microwave domain information. The multimode interference showed very little influence to the microwave domain signals. By using such system the strain of 10-4 for each FPI sensor and the spatial resolution of less than 5 cm for the system can be easily achieved.

  2. Role of modulation on the effect of microwaves on ornithine decarboxylase activity in L929 cells.

    PubMed

    Penafiel, L M; Litovitz, T; Krause, D; Desta, A; Mullins, J M

    1997-01-01

    The effect of 835 MHz microwaves on the activity of ornithine decarboxylase (ODC) in L929 murine cell was investigated at an SAR of approximately 2.5 W/kg. The results depended upon the type of modulation employed. AM frequencies of 16 Hz and 60 Hz produced a transient increase in ODC activity that reached a peak at 8 h of exposure and returned to control levels after 24 h of exposure. In this case, ODC was increased by a maximum of 90% relative to control levels. A 40% increase in ODC activity was also observed after 8 h of exposure with a typical signal from a TDMA digital cellular telephone operating in the middle of its transmission frequency range (approximately 840 MHz). This signal was burst modulated at 50 Hz, with approximately 30% duty cycle. By contrast, 8 h exposure with 835 MHz microwaves amplitude modulated with speech produced no significant change in ODC activity. Further investigations, with 8 h of exposure to AM microwaves, as a function of modulation frequency, revealed that the response is frequency dependent, decreasing sharply at 6 Hz an 600 Hz. Exposure with 835 MHz microwaves, frequency modulated with a 60 Hz sinusoid, yielded no significant enhancement in ODC activity for exposure times ranging between 2 and 24 h. Similarly, exposure with a typical signal from an AMPS analog cellular telephone, which uses a form of frequency modulation, produced no significant enhancement in ODC activity. Exposure with 835 MHz continuous wave microwaves produced no effects for exposure times between 2 and 24 h, except for a small but statistically significant enhancement in ODC activity after 6 h of exposure. Comparison of these results suggests that effects are much more robust when the modulation causes low-frequency periodic changes in the amplitude of the microwave carrier.

  3. Frequency-Temperature Compensation Techniques for High-Q Microwave Resonators

    NASA Astrophysics Data System (ADS)

    Hartnett, John G.; Tobar, Michael E.

    Low-noise high-stability resonator oscillators based on high-Q monolithic sapphire ``Whispering Gallery'' (WG)-mode resonators have become important devices for telecommunication, radar and metrological applications. The extremely high quality factor of sapphire, of 2 x10^5 at room temperature, 5 x10^7 at liquid nitrogen temperature and 5 x10^9 at liquid helium temperature has enabled the lowest phase noise and highly frequency-stable oscillators in the microwave regime to be constructed. To create an oscillator with exceptional frequency stability, the resonator must have its frequency-temperature dependence annulled at some temperature, as well as a high quality factor. The Temperature Coefficient of Permittivity (TCP) for sapphire is quite large, at 10-100parts per million/K above 77K. This mechanism allows temperature fluctuations to transform to resonator frequency fluctuations.A number of research groups worldwide have investigated various methods of compensating the TCP of a sapphire dielectric resonator at different temperatures. The usual electromagnetic technique of annulment involves the use of paramagnetic impurities contributing an opposite temperature coefficient of the magnetic susceptibility to the TCP. This technique has only been realized successfully in liquid helium environments. Near 4K the thermal expansion and permittivity effects are small and only small quantities of the paramagnetic ions are necessary to compensate the mode frequency. Compensation is due to impurity ions that were incidentally left over from the manufacturing process.Recently, there has been an effort to dispense with the need for liquid helium and make a compact flywheel oscillator for the new generation of primary frequency standards such as the cesium fountain at the Laboratoire Primaire du Temps et des Fréquences (LPTF), France. To achieve the stability limit imposed

  4. Active/Passive Remote Sensing of the Ocean Surface at Microwave Frequencies

    DTIC Science & Technology

    1999-09-30

    This report summarizes research activities and results obtained under grant N000l4-99-1-0627 "Active/Passive Remote Sensing of the Ocean Surface at...Measurements were completed during April 1999 by the Microwave Remote Sensing Laboratory at the University of Massachusetts.

  5. Microwave-assisted chemical insertion: a rapid technique for screening cathodes for Mg-ion batteries

    SciTech Connect

    Kaveevivitchai, Watchareeya; Huq, Ashfia; Manthiram, Arumugam

    2016-12-19

    We report an ultrafast microwave-assisted solvothermal method for chemical insertion of Mg2+ ions into host materials using magnesium acetate [Mg(CH3COO)2] as a metal-ion source and diethylene glycol (DEG) as a reducing agent. For instance, up to 3 Mg ions per formula unit of a microporous host framework Mo2.5+yVO9+z could be inserted in as little as 30 min at 170–195 °C in air. This process is superior to the traditional method which involves the use of organometallic reagents, such as di-n-butylmagnesium [(C4H9)2Mg] and magnesium bis(2,6-di-tert-butylphenoxide) [Mg-(O-2,6-But2C6H3)2], and requires an inert atmosphere with extremely long reaction times. Considering the lack of robust electrolytes for Mg-ion batteries, this facile approach can be readily used as a rapid screening technique to identify potential Mg-ion electrode hosts without the necessity of fabricating electrodes and assembling electrochemical cells. Due to the mild reaction conditions, the overall structure and morphology of the Mg-ion inserted products are maintained and the compounds can be used successfully as a cathode in Mg-ion batteries. The combined synchrotron X-ray and neutron diffraction Rietveld analysis reveals the structure of the Mg-inserted compounds and gives an insight into the interactions between the Mg ions and the open-tunnel host framework.

  6. Investigating Baseline, Alternative and Copula-based Algorithm for combining Airborne Active and Passive Microwave Observations in the SMAP Context

    NASA Astrophysics Data System (ADS)

    Montzka, C.; Lorenz, C.; Jagdhuber, T.; Laux, P.; Hajnsek, I.; Kunstmann, H.; Entekhabi, D.; Vereecken, H.

    2015-12-01

    The objective of the NASA Soil Moisture Active & Passive (SMAP) mission is to provide global measurements of soil moisture and freeze/thaw states. SMAP integrates L-band radar and radiometer instruments as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. Airborne instruments will be a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment, Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer (PLMR2) and the active L-band system F-SAR of DLR were flown simultaneously on the same platform on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e. all types of land cover and experimental monitoring sites with in situ sensors. Here, we used the obtained data sets as a test-bed for the analysis of three active-passive fusion techniques: A) The SMAP baseline algorithm: Disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture, B), the SMAP alternative algorithm: Estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter and C) Copula-based combination of active and passive microwave data. For method C empirical Copulas were generated and theoretical Copulas fitted both on the level of the raw products brightness temperature and backscatter as well as two soil moisture products. Results indicate that the regression parameters for method A and B are dependent on the radar vegetation index (RVI). Similarly, for method C the best performance was gained by generating separate Copulas for individual land use classes. For more in-depth analyses longer time series are necessary as can obtained by airborne campaigns, therefore, the methods will be applied to SMAP data.

  7. Connecting forest ecosystem and microwave backscatter models

    NASA Technical Reports Server (NTRS)

    Kasischke, Eric S.; Christensen, Norman L., Jr.

    1990-01-01

    A procedure is outlined to connect data obtained from active microwave remote sensing systems with forest ecosystem models. The hierarchy of forest ecosystem models is discussed, and the levels at which microwave remote sensing data can be used as inputs are identified. In addition, techniques to utilize forest ecosystem models to assist in the validation of theoretical microwave backscatter models are identified. Several examples to illustrate these connecting processes are presented.

  8. Investigation of the effects of summer melt on the calculation of sea ice concentration using active and passive microwave data

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.; Burns, Barbara A.; Onstott, Robert G.

    1990-01-01

    The effects of ice surface melt on microwave signatures and errors in the calculation of sea ice concentration are examined, using active and passive microwave data sets from the Marginal Ice Zone Experiment aircraft flights in the Fram Strait region. Consideration is given to the possibility of using SAR to supplement passive microwave data to unambiguously discriminate between open water areas and ponded floes. Coincident active multichannel microwave radiometer and SAR measurements of individual floes are used to describe the effects of surface melt on sea ice concentration calculations.

  9. Influence of Polarity and Activation Energy in Microwave-Assisted Organic Synthesis (MAOS).

    PubMed

    Rodríguez, Antonio M; Prieto, Pilar; de la Hoz, Antonio; Díaz-Ortiz, Ángel; Martín, D Raúl; García, José I

    2015-06-01

    The aim of this work was to determine the parameters that have decisive roles in microwave-assisted reactions and to develop a model, using computational chemistry, to predict a priori the type of reactions that can be improved under microwaves. For this purpose, a computational study was carried out on a variety of reactions, which have been reported to be improved under microwave irradiation. This comprises six types of reactions. The outcomes obtained in this study indicate that the most influential parameters are activation energy, enthalpy, and the polarity of all the species that participate. In addition to this, in most cases, slower reacting systems observe a much greater improvement under microwave irradiation. Furthermore, for these reactions, the presence of a polar component in the reaction (solvent, reagent, susceptor, etc.) is necessary for strong coupling with the electromagnetic radiation. We also quantified that an activation energy of 20-30 kcal mol(-1) and a polarity (μ) between 7-20 D of the species involved in the process is required to obtain significant improvements under microwave irradiation.

  10. Influence of microwave irradiation on boron concentrate activation with an emphasis on surface properties

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Zhang, Qiaoyi; Liu, Yajing; Xue, Xiangxin; Duan, Peining

    2016-11-01

    In this study, we employed microwave irradiation for activating boron concentrate, an abundant but low-grade boron mineral resource in China. The boron concentrate was pretreated by microwave irradiation based on TG-DTG-DSC analysis, and the influence of each parameter on processing efficiency was characterized using chemical analysis, XRD, SEM, FTIR and particle distribution analysis. Subsequently, the surface properties of boron concentrate and the mechanism of microwave irradiation was analyzed. Our results indicate that microwave irradiation decreased the processing temperature and shortened the roasting time by accelerating dehydroxylation and oxidation reactions in the boron concentrate, reducing the particle diameter and damaging the microstructure of the minerals, and it increased the B2O3 activity of boron from 64.68% to 86.73%, greater than the optimal conventional treatment. Compared with the simple thermal field, microwave roasting obviously increased ability of the boron concentrate to absorb OH- in the leachant and promoted boron leaching by expanding the contact area of the mineral exposed to leachant, boosting the amount of Mg2+ and Fe3+ on mineral surfaces, and increasing the hydrophilicity of the boron concentrate respectively. It enhanced the γSVLW and γSV- of boron concentrate from 29.15 mJ/m2 and 5.07 mJ/m2 to 37.07 mJ/m2 and 12.41 mJ/m2.

  11. Passive and Active Microwave Remote Sensing of Precipitation and Latent Heating Distributions in the Tropics from TRMM

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Haddad, Ziad S.; Tao, Wei-Kuo; Wang, Yansen; Lang, Stephen E.; Braun, Scott A.; Chiu, Christine; Wang, Jian-Jian

    2002-01-01

    Passive and active microwave remote sensing data are analyzed to identify signatures of precipitation and vertical motion in tropical convection. A database of cloud/radiative model simulations is used to quantify surface rain rates and latent heating profiles that are consistent with these signatures. At satellite footprint-scale (approximately 10 km), rain rate and latent heating estimates are subject to significant random errors, but by averaging the estimates in space and time, random errors are substantially reduced, Bias errors have been minimized by improving the microphysics in the supporting cloud/radiative model simulations, and by imposing a consistent definition of remotely-sensed and model-simulated convective/stratiform rain coverage. Remotely-sensed precipitation and latent heating distributions in the tropics are derived from Tropical Rainfall Measuring Mission (TRMM) and Special Sensor Microwave/ Imager (SSM/ I) sensor data. The prototype Version 6 TRMM passive microwave algorithm typically yields average heating profiles with maxima between 6 and 7 km altitude for organized mesoscale convective systems. Retrieved heating profiles for individual convective systems are compared to coincident estimates based upon a combination of dual-Doppler radar and rawinsonde data. Also, large-scale latent heating distributions are compared to estimates derived from a simpler technique that utilizes observations of surface rain rate and stratiform rain proportion to infer vertical heating structure. Results of these tests will be presented at the conference.

  12. Remediation of anionic dye from aqueous system using bio-adsorbent prepared by microwave activation.

    PubMed

    Sharma, Arush; Sharma, Gaurav; Naushad, Mu; Ghfar, Ayman A; Pathania, Deepak

    2017-04-07

    The present study was attempted to ascertain the possible application of activated carbon as cost effective and eco-friendly adsorbent prepared via microwave (MW) assisted chemical activation. The activated carbon was characterized using different techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and field-emission scanning electron microscope (FESEM). The various adsorption parameters have been optimized to examine the viability of activated carbon as a plausible sorbent for the remediation of Congo red (CR) dye from aquatic system. The adsorption equilibrium was interpreted using Langmuir, Freundlich and Tempkin isotherms. The equilibrium data adequately fitted to Langmuir isotherm with stronger R(2) (0.994). The maximum adsorption capacity (qm) of activated carbon was recorded to be 68.96 mg/g. Additionally, sorptional kinetic data were examined by reaction based and diffusion based models such as pseudo-first-order, pseudo-second-order, Elovich model and intra-particle diffusion, Dumwald-Wagner models, respectively. The experimental results indicated that pseudo-second-order equation and Elovich model better discuss the adsorption kinetics. The computed values of thermodynamic parameters such as free energy change (ΔG(0)), enthalpy change (ΔH(0)) and entropy change (ΔS(0)) were recorded as -3.63 kJ/mol, 42.47 kJ/mol, 152.07 J/mol K, respectively at 30°C, which accounted for favorable, spontaneous and endothermic process. The regeneration study emphasized that percentage uptake declined from 90.35 to 83.45% after 6cycles of testing. So, our findings implied that activated carbon produced from biomass must be cost-effectively used as an adsorbent for detoxifying the CR dye from industrial effluents.

  13. Role of modulation on the effect of microwaves on ornithine decarboxylase activity in L929 cells

    SciTech Connect

    Penafiel, L.M.; Litovitz, T.; Krause, D.; Desta, A.; Mullins, J.M.

    1997-05-01

    The effect of 835 MHz microwaves on the activity of ornithine decarboxylase (ODC) in L929 murine cells was investigated at an SAR of {approximately}2.5 W/kg. The results depended upon the type of modulation employed. AM frequencies of 16 Hz and 60 Hz produced a transient increase in ODC activity that reached a peak at 8 h of exposure and returned to control levels after 24 h of exposure. In this case, ODC was increased by a maximum of 90% relative to control levels. A 40% increase in ODC activity was also observed after 8 h of exposure with a typical signal from a TDMA digital cellular telephone operating in the middle of its transmission frequency range. This signal was burst modulated at 50 Hz, with approximately 30% duty cycle. By contrast, 8 h exposure with 835 MHz microwaves amplitude modulated with speech produced no significant change in ODC activity. Further investigations, with 8 h of exposure to AM microwaves, as a function of modulation frequency, revealed that the response is frequency dependent, decreasing sharply at 6 Hz and 600 Hz. Exposure with 835 MHz microwaves, frequency modulated with a 60 Hz sinusoid, yielded no significant enhancement in ODC activity for exposure times ranging between 2 and 24 h. Similarly, exposure with a typical signal from an AMPS analog cellular telephone, which uses a form of frequency modulation, produced no significant enhancement in ODC activity. Exposure with 835 MHz continuous wave microwaves produced no effects for exposure times between 2 and 24 h, except for a small but statistically significant enhancement in ODC activity after 6 h of exposure.

  14. Effects of microwave exposure on the hamster immune system. I. Natural killer cell activity

    SciTech Connect

    Yang, H.K.; Cain, C.A.; Lockwood, J.; Tompkins, W.A.

    1983-01-01

    Hamsters were exposed to repeated or single doses of microwave energy and monitored for changes in core body temperature, circulating leukocyte profiles, serum corticosteroid levels, and natural killer (NK) cell activity in various tissues. NK cytotoxicity was measured in a /sup 51/Cr-release assay employing baby hamster kidney (BHK) targets or BHK infected with herpes simplex virus. Repeated exposure of hamsters at 15 mW/cm2 for 60 min/day had no significant effect on natural levels of spleen-cell NK activity against BHK targets. Similarly, repeated exposure at 15 mW/cm2 over a 5-day period had no demonstrable effect on the induction of spleen NK activity by vaccinia virus immunization, that is, comparable levels of NK were induced in untreated and microwave-treated animals. In contrast, treatment of hamsters with a single 60-min microwave exposure at 25 mW/cm2 caused a significant suppression in induced spleen NK activity. A similar but less marked decrease in spleen NK activity was observed in sham-exposed animals. Moreover, the sham effects on NK activity were not predictable and appeared to represent large individual animal variations in the response to stress factors. Depressed spleen NK activity was evident as early as 4 h postmicrowave treatment and returned to normal levels by 8 h. Hamsters exposed at 25 mW/cm2 showed an elevated temperature of 3.0-3.5 degrees C that returned to normal within 60 min after termination of microwave exposure. These animals also showed a marked lymphopenia and neutrophilia by 1 h posttreatment that returned to normal by 8-10 h. Serum glucocorticosteroids were elevated between 1 aNd 8 h after microwave treatment. Sham-exposed animals did not demonstrate significant changes in core body temperature, peripheral blood leukocyte (PBL) profile, or glucocorticosteroid levels as compared to minimum-handling controls.

  15. Chronic exposure to GSM 1800-MHz microwaves reduces excitatory synaptic activity in cultured hippocampal neurons.

    PubMed

    Xu, Shujun; Ning, Wei; Xu, Zhengping; Zhou, Suya; Chiang, Huai; Luo, Jianhong

    2006-05-08

    The world wide proliferation of mobile phones raises the concern about the health effects of 1800-MHz microwaves on the brain. The present study assesses the effects of microwave exposure on the function of cultured hippocampal neurons of rats using whole cell patch-clamp analysis combined with immunocytochemistry. We showed that chronic exposure (15 min per day for 8 days) to Global System for Mobile Communication (GSM) 1800-MHz microwaves at specific absorption rate (SAR) of 2.4 W/kg induced a selective decrease in the amplitude of alpha-amino-3-hydroxy-5-methyl-4-soxazole propionic acid (AMPA) miniature excitatory postsynaptic currents (mEPSCs), whereas the frequency of AMPA mEPSCs and the amplitude of N-methyl-D-aspartate (NMDA) mEPSCs did not change. Furthermore, the GSM microwave treatment decreased the expression of postsynaptic density 95 (PSD95) in cultured neurons. Our results indicated that 2.4 W/kg GSM 1800-MHz microwaves may reduce excitatory synaptic activity and the number of excitatory synapses in cultured rat hippocampal neurons.

  16. Continuous microwave pasteurization of a vegetable smoothie improves its physical quality and hinders detrimental enzyme activity.

    PubMed

    Arjmandi, Mitra; Otón, Mariano; Artés, Francisco; Artés-Hernández, Francisco; Gómez, Perla A; Aguayo, Encarna

    2017-01-01

    The effect of a pasteurization treatment at 90 ± 2 ℃ for 35 s provided by continuous microwave under different doses (low power/long time and high power/short time) or conventional pasteurization on the quality of orange-colored smoothies and their changes throughout 45 days of storage at 5 ℃ was investigated. A better color retention of the microwave pasteurization- treated smoothie using high power/short time than in conventionally processed sample was evidenced by the stability of the hue angle. The continuous microwave heating increased the viscosity of the smoothie more than the conventional pasteurization in comparison with non-treated samples. Lower residual enzyme activities from peroxidase, pectin methylesterase and polygalacturonase were obtained under microwave heating, specifically due to the use of higher power/shorter time. For this kind of smoothie, polygalacturonase was the more thermo-resistant enzyme and could be used as an indicator of pasteurization efficiency. The use of a continuous semi-industrial microwave using higher power and shorter time, such as 1600 W/206 s and 3600 W/93 s, resulted in better quality smoothies and greater enzyme reduction than conventional thermal treatment.

  17. Synergistic use of active and passive microwave in soil moisture estimation

    NASA Technical Reports Server (NTRS)

    O'Neill, P.; Chauhan, N.; Jackson, T.; Saatchi, S.

    1992-01-01

    Data gathered during the MACHYDRO experiment in central Pennsylvania in July 1990 have been utilized to study the synergistic use of active and passive microwave systems for estimating soil moisture. These data sets were obtained during an eleven-day period with NASA's Airborne Synthetic Aperture Radar (AIRSAR) and Push-Broom Microwave Radiometer (PBMR) over an instrumented watershed which included agricultural fields with a number of different crop covers. Simultaneous ground truth measurements were also made in order to characterize the state of vegetation and soil moisture under a variety of meteorological conditions. A combination algorithm is presented as applied to a representative corn field in the MACHYDRO watershed.

  18. Assimilation of active and passive microwave observations for improved estimates of soil moisture and crop growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Ensemble Kalman Filter-based data assimilation framework that links a crop growth model with active and passive (AP) microwave models was developed to improve estimates of soil moisture (SM) and vegetation biomass over a growing season of soybean. Complementarities in AP observations were incorpo...

  19. Inhibitory effect of microwaved thinned nectarine extracts on polyphenol oxidase activity.

    PubMed

    Redondo, Diego; Venturini, María E; Oria, Rosa; Arias, Esther

    2016-04-15

    By-products from agricultural practices or from the fruit processing industry are a source of bioactive compounds that could be used in the food industry. Such by-products include thinned fruits, which are expected to contain high quantities of interesting compounds. One possible application of this fruits is the prevention of the enzymatic browning suffered by fruits and vegetables after minimal processing. The aim of this study is to determine the in vitro and in vivo activity of microwaved extracts obtained from thinned nectarines. It has been observed that in vitro the extracts obtained after the application of high microwave power levels (500, 1000 and 1500 W) are mixed type inhibitors of polyphenoloxidase enzyme, showing an irreversible inactivation. This inhibition could be attributed to the Maillard reaction products formed during the microwave treatment. In vivo, a solution of 2% of the extract obtained at 1500 W inhibited the enzymatic browning in minimally processed peaches for 8 days of storage.

  20. Microwave-induced formation of platinum nanostructured networks with superior electrochemical activity and stability.

    PubMed

    Jia, Falong; Wang, Fangfang; Lin, Yun; Zhang, Lizhi

    2011-12-16

    Platinum nanostructured networks (PNNs) can be synthesized through the chemical reduction of H(2)PtCl(6) by benzyl alcohol under microwave irradiation without the introduction of any surfactants, templates, or seeds. The synthesis route utilizes benzyl alcohol as both the reductant and the structure-directing agent, and thus, the process is particularly simple and highly repeatable. The formation of the PNN structure was ascribed to the collision-induced fusion of Pt nanocrystals owing to the cooperative functions of microwave irradiation and benzyl alcohol. Compared with a commercial Pt/C catalyst, the as-prepared PNNs possessed superior electrochemical activity and stability on the oxidation of methanol because of the unique 3D nanostructured networks and abundant defects formed during the assembly process. This study may provide a facile microwave-induced approach for the synthesis of other 3D nanostructured noble metals or their alloys.

  1. Microwave technique applied to the hydrothermal synthesis and sintering of calcia stabilized zirconia nanoparticles

    NASA Astrophysics Data System (ADS)

    Rizzuti, Antonino; Corradi, Anna; Leonelli, Cristina; Rosa, Roberto; Pielaszek, Roman; Lojkowski, Witold

    2010-01-01

    This study is focused on the synthesis of zirconia nanopowders stabilized by 6%mol calcia prepared under hydrothermal conditions using microwave technology. Sodium hydroxide-based hydrolysis of zirconyl chloride solution containing calcium nitrate followed by microwave irradiation at the temperature of 220 °C for 30 min was sufficient to obtain white powders of crystalline calcia stabilized zirconia. By means of X-ray diffraction and transmission electron microscopy, it was shown that tetragonal zirconia nanocrystallites with a size of ca 7 nm and diameter/standard deviation ratio of 0.10 were formed. The effects of the [Ca2+] and [NaOH] as well as temperature and time of microwave irradiation on the density and specific surface area were evaluated. Sintering test of the tetragonal nanopowders at 1,300 °C in air was performed in a monomode microwave applicator. The sample was sintered to the density of 95% and the grain size, analyzed by field emission scanning electron microscopy, was in the range from 90 to 170 nm.

  2. Error Characterisation and Merging of Active and Passive Microwave Soil Moisture Data Sets

    NASA Astrophysics Data System (ADS)

    Wagner, Wolfgang; Gruber, Alexander; de Jeu, Richard; Parinussa, Robert; Chung, Daniel; Dorigo, Wouter; Reimer, Christoph; Kidd, Richard

    2015-04-01

    the products is available, the estimate of the respective product is used, while on days where both active and passive sensors provide an estimate, their observations are averaged. REFERENCES Dorigo, W.A., A. Gruber, R. de Jeu, W. Wagner, T. Stacke, A. Löw, C. Albergel, L. Brocca, D. Chung, R. Parinussa, R. Kidd (2015) Evaluation of the ESA CCI soil moisture product using ground-based observations, Remote Sensing of Environment, in press. Wagner, W., W. Dorigo, R. de Jeu, D. Fernandez, J. Benveniste, E. Haas, M. Ertl (2012) Fusion of active and passive microwave observations to create an Essential Climate Variable data record on soil moisture, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Annals), Volume I-7, XXII ISPRS Congress, Melbourne, Australia, 25 August-1 September 2012, 315-321. Zwieback, S., K. Scipal, W. Dorigo, W. Wagner (2012) Structural and statistical properties of the collocation technique for error characterization, Nonlinear Processes in Geophysics, 19, 69-80.

  3. Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits.

    PubMed

    Wojdyło, Aneta; Figiel, Adam; Oszmiański, Jan

    2009-02-25

    The objective of this study was to evaluate the application of vacuum-microwave drying (240, 360, and 480 W) in the production process of dehydrated strawberry and to compare and contrast the quality of these dehydrated strawberries in terms of their polyphenol compounds, concentration of some heat liable components, and color to that of freeze-dried, convective, and vacuum-dried strawberry. Thus, the effect of vacuum-microwave drying and other drying methods on the antioxidant activity of berries was evaluated. Whole fresh and dried fruits were assessed for phenolics (anthocyanins, flavanols, hydroxycinnamic acids, and flavonols), ascorbic acid, and antioxidant activity (all parameters were calculated on a dry matter basis). Analysis of data shows that ellagic acid and flavanol changes were affected by drying techniques and cultivar. Drying destroyed anthocyanins, flavanols, and ascorbic acid, and there was a significant decrease in antioxidant activity. The most striking result was that conventional and vacuum drying decreased antioxidant activity in both cultivars, whereas contradictory results were found for vacuum-microwave processed strawberry. This study has demonstrated that vacuum-microwave drying, especially at 240 W, can produce high-quality products, with the additional advantage of reduced processing times, compared to other processes such as freeze-drying.

  4. A low cost technique for synthesis of gold nanoparticles using microwave heating and its application in signal amplification for detecting Escherichia Coli O157:H7 bacteria

    NASA Astrophysics Data System (ADS)

    Thanh Ngo, Vo Ke; Giang Nguyen, Dang; Phat Huynh, Trong; Lam, Quang Vinh

    2016-09-01

    In the present work a low cost technique for preparation of gold nanoparticles (AuNPs) using microwave heating was developed. The effect of different elements (precursor reagents, irradiation time, and microwave radiation power) on the final morphology of AuNPs obtained through the microwave assisted technique has been investigated. The characterization of the samples has been carried out by transmission electron microscopy, UV-vis absorption spectroscopy, Fourier transform infrared spectroscopy, and powder x-ray diffraction. The results showed that to some extent the above-mentioned characterizations influenced the size of synthetized nanoparticles and application of microwave heating has many advantages such as low cost, rapid preparation and highly uniform particles. As an application in quartz crystal microbalance (QCM) immunosensor, AuNPs are conjugated with the Escherichia coli (E.coli) O157:H7 antibodies for signal amplification to detect E.coli O157:H7 bacteria residual in QCM system.

  5. Active microwave measurements of Arctic sea ice under summer conditions

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.; Gogineni, S. P.

    1985-01-01

    Radar provides a valuable tool in the study of sea-ice conditions and the solution of sea-ice operational problems. For this reason, the U.S. and Canada have conducted studies to define a bilateral synthetic aperture radar (SAR) satellite program. The present paper is concerned with work which has been performed to explore the needs associated with the study of sea-ice-covered waters. The design of a suitable research or operational spaceborne SAR or real aperture radar must be based on an adequate knowledge of the backscatter coefficients of the ice features which are of interest. In order to obtain the needed information, studies involving the use of a helicopter were conducted. In these studies L-C-X-Ku-band calibrated radar data were acquired over areas of Arctic first-year and multiyear ice during the first half of the summer of 1982. The results show that the microwave response in the case of sea ice is greatly influenced by summer melt, which produces significant changes in the properties of the snowpack and ice sheet.

  6. Detection and Inspection of Steel Bars in Reinforced Concrete Structures Using Active Infrared Thermography with Microwave Excitation and Eddy Current Sensors

    PubMed Central

    Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah

    2016-01-01

    The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented. PMID:26891305

  7. Detection and Inspection of Steel Bars in Reinforced Concrete Structures Using Active Infrared Thermography with Microwave Excitation and Eddy Current Sensors.

    PubMed

    Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah

    2016-02-16

    The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented.

  8. Active and passvie microwave remote sensing of springtime near-surface soil that at mid-latitudes

    NASA Astrophysics Data System (ADS)

    Han, L.; Tsunekawa, A.; Tsubo, M.

    2010-12-01

    Springtime near-surface soil thaw event is important for understanding the near-surface earth system. Previous researches based on both active and passive microwave remote sensing technologies have paid scant attention, especially at mid-latitudes where the near-surface earth system has been changed substantially by climate change and human activities, and are characterized by more complex climate and land surface conditions than the permafrost areas. SSM/I brightness temperature and QuikSCAT Ku-band backscatter were applied in this study at a case study area of northern China and Mongolia in springtime. The soil freeze-thaw algorithm was employed for SSM/I data, and a random sampling technique was applied to determine the brightness temperature threshold for 37 GHz vertically polarized radiation: 258.2 and 260.1 K for the morning and evening satellite passes, respectively. A multi-step method was proposed for QuikSCAT Ku-band backscatter based on both field observed soil thaw events and the typical signature of radar backscatter time series when soil thaw event occurred. The method is mainly focuses on the estimated boundary of thaw events and detection of primary thaw date. Finally, based on those results, a theoretical method by applying both active and passive microwave remote sensing was proposed for understanding different types of frozen grounds and their specific characters (e.g. initial and end date of springtime soil freeze-thaw transition period) in mid-latitudes.

  9. Weight estimates and packaging techniques for the microwave radiometer spacecraft. [shuttle compatible design

    NASA Technical Reports Server (NTRS)

    Jensen, J. K.; Wright, R. L.

    1981-01-01

    Estimates of total spacecraft weight and packaging options were made for three conceptual designs of a microwave radiometer spacecraft. Erectable structures were found to be slightly lighter than deployable structures but could be packaged in one-tenth the volume. The tension rim concept, an unconventional design approach, was found to be the lightest and transportable to orbit in the least number of shuttle flights.

  10. Techniques for Microwave Near-Field Quantum Control of Trapped Ions

    DTIC Science & Technology

    2013-01-31

    the inputs to the feedthroughs, we measured the frequency noise of the signals at 1.6865 GHz and estimated a negligible effect on the observed fidelity...position will cause off-resonant carrier transitions and ac Zeeman shifts [21], both of which will inhibit precise control. Thus, the magnetic field...the three microwave currents to minimize ac Zeeman shifts imposed on the ion. The experimental sequence is shown in Fig. 6(a). The nulling procedure

  11. Biophysical Techniques for Examining Metabolic, Proliferative, and Genetic Effects of Microwave Radiation

    DTIC Science & Technology

    1991-09-01

    26 List of Tables Table No. 1 Cell Cycle Distribution of Heat-Treated 244B Calls ....... 13 2 Surface Marker Expression on 244B...requiring verification. Alternatively, if the effect had already been conclusively demonstrated, an investigation of its mechanism would be called for. In...simultaneous low dose rate X-ray exposure and microwave exposure calls for exposure times of 4 h. To study the effects of the exposure on membrane

  12. Chemical activation by mechanochemical mixing, microwave, and ultrasonic irradiation

    EPA Science Inventory

    The use of emerging MW-assisted chemistry techniques in conjunction with benign reaction media is dramatically reducing chemical waste ad reaction times in several organic syntheses and chemical transformations. This editorial comments on the recent developments in mechanochemica...

  13. Muscle Activation Patterns During Different Squat Techniques.

    PubMed

    Slater, Lindsay V; Hart, Joseph M

    2017-03-01

    Slater, LV, and Hart, JM. Muscle activation patterns during different squat techniques. J Strength Cond Res 31(3): 667-676, 2017-Bilateral squats are frequently used exercises in sport performance programs. Lower extremity muscle activation may change based on knee alignment during the performance of the exercise. The purpose of this study was to compare lower extremity muscle activation patterns during different squat techniques. Twenty-eight healthy, uninjured subjects (19 women, 9 men, 21.5 ± 3 years, 170 ± 8.4 cm, 65.7 ± 11.8 kg) volunteered. Electromyography (EMG) electrodes were placed on the vastus lateralis, vastus medialis, rectus femoris, biceps femoris, and the gastrocnemius of the dominant leg. Participants completed 5 squats while purposefully displacing the knee anteriorly (AP malaligned), 5 squats while purposefully displacing the knee medially (ML malaligned) and 5 squats with control alignment (control). Normalized EMG data (MVIC) were reduced to 100 points and represented as percentage of squat cycle with 50% representing peak knee flexion and 0 and 99% representing fully extended. Vastus lateralis, medialis, and rectus femoris activity decreased in the medio-lateral (ML) malaligned squat compared with the control squat. In the antero-posterior (AP) malaligned squat, the vastus lateralis, medialis, and rectus femoris activity decreased during initial descent and final ascent; however, vastus lateralis and rectus femoris activation increased during initial ascent compared with the control squat. The biceps femoris and gastrocnemius displayed increased activation during both malaligned squats compared with the control squat. In conclusion, participants had altered muscle activation patterns during squats with intentional frontal and sagittal malalignment as demonstrated by changes in quadriceps, biceps femoris, and gastrocnemius activation during the squat cycle.

  14. Active load control techniques for wind turbines.

    SciTech Connect

    van Dam, C.P.; Berg, Dale E.; Johnson, Scott J.

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  15. Eigenspace techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Liebst, Bradley S.; Farm, Jerome A.

    1987-01-01

    The use of eigenspace techniques for the design of an active flutter suppression system for a hypothetical research drone is discussed. One leading edge and two trailing edge aerodynamic control surfaces and four sensors (accelerometers) are available for each wing. Full state control laws are designed by selecting feedback gains which place closed loop eigenvalues and shape closed loop eigenvectors so as to stabilize wing flutter and reduce gust loads at the wing root while yielding accepatable robustness and satisfying constrains on rms control surface activity. These controllers are realized by state estimators designed using an eigenvalue placement/eigenvector shaping technique which results in recovery of the full state loop transfer characteristics. The resulting feedback compensators are shown to perform almost as well as the full state designs. They also exhibit acceptable performance in situations in which the failure of an actuator is simulated.

  16. Estimating Sea Surface Salinity and Wind Using Combined Passive and Active L-Band Microwave Observations

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Chaubell, Mario J.

    2012-01-01

    Several L-band microwave radiometer and radar missions have been, or will be, operating in space for land and ocean observations. These include the NASA Aquarius mission and the Soil Moisture Active Passive (SMAP) mission, both of which use combined passive/ active L-band instruments. Aquarius s passive/active L-band microwave sensor has been designed to map the salinity field at the surface of the ocean from space. SMAP s primary objectives are for soil moisture and freeze/thaw detection, but it will operate continuously over the ocean, and hence will have significant potential for ocean surface research. In this innovation, an algorithm has been developed to retrieve simultaneously ocean surface salinity and wind from combined passive/active L-band microwave observations of sea surfaces. The algorithm takes advantage of the differing response of brightness temperatures and radar backscatter to salinity, wind speed, and direction, thus minimizing the least squares error (LSE) measure, which signifies the difference between measurements and model functions of brightness temperatures and radar backscatter. The algorithm uses the conjugate gradient method to search for the local minima of the LSE. Three LSE measures with different measurement combinations have been tested. The first LSE measure uses passive microwave data only with retrieval errors reaching 1 to 2 psu (practical salinity units) for salinity, and 1 to 2 m/s for wind speed. The second LSE measure uses both passive and active microwave data for vertical and horizontal polarizations. The addition of active microwave data significantly improves the retrieval accuracy by about a factor of five. To mitigate the impact of Faraday rotation on satellite observations, the third LSE measure uses measurement combinations invariant under the Faraday rotation. For Aquarius, the expected RMS SSS (sea surface salinity) error will be less than about 0.2 psu for low winds, and increases to 0.3 psu at 25 m/s wind speed

  17. Oxidative degradation of trichloroethylene adsorbed on active carbons: Use of microwave energy

    SciTech Connect

    Varma, R.; Nandi, S.P.

    1991-01-01

    Chlorinated hydrocarbon compounds (CHCl), such as chlorinated alkanes/alkenes, benzene and biphenyl etc, represent an important fraction of the industrial hazardous wastes produced. Trichloroethylene (TCE) can be removed from waste streams by adsorption on active carbons. The primary objective of the present work was to study the detoxification in air-stream of TCE adsorbed on different types of active carbons using in situ microwave heating. A secondary objective was to examine the regeneration of used carbons from the effects of repeated cyclic operations (adsorption- detoxification). The experimental study has shown that trichloroethylene adsorbed on active carbon can be oxidatively degradated in presence of microwave radiation. Energy can be transferred efficiently to the reaction sites without losing heat to the surrounding vessel. One of the decomposition product of trichloroethylene is free chlorine which is held very strongly on active carbon. Hydrochloric acid on the other hand seems to be less strongly held and appears in large concentration in the exit gas. Production of free chlorine can be avoided by using chlorohydrocarbon mixed with sufficient internal hydrogen. This is also expected to minimize the problem of carbon regeneration encountered in this study. The results obtained from studies on the oxidative degradation of TCE under microwave radiation are promising in a number of respects: (1) the detoxification of TCE adsorbed on active carbon can be conducted at moderate (<400{degree}C) temperatures, and (2) the used carbon bed can be regenerated. A patent on the process has been issued. 9 refs., 2 figs., 2 tabs.

  18. Rapid Synthesis and Antiviral Activity of (Quinazolin-4-Ylamino)Methyl-Phosphonates Through Microwave Irradiation

    PubMed Central

    Luo, Hui; Hu, Deyu; Wu, Jian; He, Ming; Jin, Linhong; Yang, Song; Song, Baoan

    2012-01-01

    This study describes the simple synthesis of new (quinazolin-4-ylamino) methylphosphonates via microwave irradiation. Substituted-2-aminobenzonitrile reacted with 1,1-dimethoxy-N,N-dimethylmethanamine at a reflux condition to obtain N′-(substituted-2-cyanophenyl)-N,N-dimethylformamidine (1). The subsequent reaction of this intermediate product with α-aminophosphonate (2) in a solution containing glacial acetic acid in 2-propanol through microwave irradiation resulted in the formation of (quinazolin-4-ylamino)methyl-phosphonate derivatives 3a to 3x, which were unequivocally characterized by the spectral data and elemental analysis. The influence of the reaction conditions on the yield of 3a was investigated to optimize the synthetic conditions. The relative optimal conditions for the synthesis of 3a include a 1:1 molar ratio of N′-(2-cyanophenyl)-N,N-dimethylformamidine to diethyl amino(phenyl)methylphosphonate and a 4:1 volume ratio of isopropanol to HOAc in the solvent mixture, at a reaction temperature of 150 °C, with a microwave power of 100 W and a corresponding pressure of 150 psi for 20 min in the microwave synthesizer. The yield of 3a was approximately 79%, whereas those of 3b to 3x were approximately 77% to 86%. Some of the synthesized compounds displayed weak to good anti-Tobacco mosaic virus (TMV) activity. PMID:22837660

  19. Nitrogen-Doped Carbon Fiber Paper by Active Screen Plasma Nitriding and Its Microwave Heating Properties.

    PubMed

    Zhu, Naishu; Ma, Shining; Sun, Xiaofeng

    2016-12-28

    In this paper, active screen plasma nitriding (ASPN) treatment was performed on polyacrylonitrile carbon fiber papers. Electric resistivity and microwave loss factor of carbon fiber were described to establish the relationship between processing parameters and fiber's ability to absorb microwaves. The surface processing effect of carbon fiber could be characterized by dynamic thermal mechanical analyzer testing on composites made of carbon fiber. When the process temperature was at 175 °C, it was conducive to obtaining good performance of dynamical mechanical properties. The treatment provided a way to change microwave heating properties of carbon fiber paper by performing different treatment conditions, such as temperature and time parameters. Atomic force microscope, scanning electron microscope, and X-ray photoelectron spectroscopy analysis showed that, during the course of ASPN treatment on carbon fiber paper, nitrogen group was introduced and silicon group was removed. The treatment of nitrogen-doped carbon fiber paper represented an alternative promising candidate for microwave curing materials used in repairing and heating technology, furthermore, an efficient dielectric layer material for radar-absorbing structure composite in metamaterial technology.

  20. Potential of jackfruit peel as precursor for activated carbon prepared by microwave induced NaOH activation.

    PubMed

    Foo, K Y; Hameed, B H

    2012-05-01

    The feasibility of preparing activated carbon (JPAC) from jackfruit peel, an industrial residue abundantly available from food manufacturing plants via microwave-assisted NaOH activation was explored. The influences of chemical impregnation ratio, microwave power and radiation time on the properties of activated carbon were investigated. JPAC was examined by pore structural analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption isotherm, elemental analysis, surface acidity/basicity and zeta potential measurements. The adsorptive behavior of JPAC was quantified using methylene blue as model dye compound. The best conditions resulted in JPAC with a monolayer adsorption capacity of 400.06 mg/g and carbon yield of 80.82%. The adsorption data was best fitted to the pseudo-second-order equation, while the adsorption mechanism was well described by the intraparticle diffusion model. The findings revealed the versatility of jackfruit peels as good precursor for preparation of high quality activated carbon.

  1. Preliminary microwave irradiation of water solutions changes their channel-modifying activity.

    PubMed

    Fesenko, E E; Geletyuk, V I; Kazachenko, V N; Chemeris, N K

    1995-06-05

    Earlier we have shown that millimetre microwaves (42.25 GHz) of non-thermal power, upon direct admittance into an experiment bath, greatly influence activation characteristics of single Ca(2+)-dependent K+ channels (in particular, the channel open state probability, Po). Here we present new data showing that similar changes in Po arise due to the substitution of a control bath solution for a preliminary microwave irradiated one of the same composition (100 mmol/l KCl with Ca2+ added), with irradiation time being 20-30 min. Therefore, due to the exposure to the field the solution acquires some new properties that are important for the channel activity. The irradiation terminated, the solution retains a new state for at least 10-20 min (solution memory). The data suggest that the effects of the field on the channels are mediated, at least partially, by changes in the solution properties.

  2. Renewable phenols production by catalytic microwave pyrolysis of Douglas fir sawdust pellets with activated carbon catalysts.

    PubMed

    Bu, Quan; Lei, Hanwu; Wang, Lu; Wei, Yi; Zhu, Lei; Liu, Yupeng; Liang, Jing; Tang, Juming

    2013-08-01

    The effects of different activated carbon (AC) catalysts based on various carbon sources on products yield and chemical compositions of upgraded pyrolysis oils were investigated using microwave pyrolysis of Douglas fir sawdust pellets. Results showed that high amounts of phenols were obtained (74.61% and 74.77% in the upgraded bio-oils by DARCO MRX (wood based) and DARCO 830 (lignite coal based) activated carbons, respectively). The catalysts recycling test of the selected catalysts indicated that the carbon catalysts can be reused for at least 3-4 times and produced high concentrations of phenol and phenolic compounds. The chemical reaction mechanism for phenolics production during microwave pyrolysis of biomass was analyzed.

  3. Investigation of frequency response of microwave active ring resonator based on ferrite film

    NASA Astrophysics Data System (ADS)

    Martynov, M. I.; Nikitin, A. A.; Ustinov, A. B.; Kalinikos, B. A.

    2016-11-01

    The complex transmission coefficient of active ring resonators based on ferrite-film delay lines was investigated both theoretically and experimentally. Influence of the parameters of the delay line on the transmission coefficients was investigated. It was shown that the resonant frequencies of the ring depend on the ferrite film thickness and the distance between spin-wave antennae. These dependences give possibility to control the shape of the transmission coefficient that in combination with magnetic tuning provide flexibility for microwave applications.

  4. Active microwave investigation of snowpacks: Experimental documentation, Colorado 1979-1980

    NASA Technical Reports Server (NTRS)

    Stiles, W. H.; Ulaby, F. T.; Aslam, A.; Abdelrazik, M.

    1981-01-01

    During the winter of 1979-1980, the University of Kansas Microwave Active Spectrometer systems measured the backscattering properties of snowpacks under varying conditions at four test sites in Colorado. In addition to the radar data over 1-35 GHz, ground-truth measurements of the atmospheric, snow, and soil characteristics were obtained for each radar data set. The test sites, data acquisition procedures, and data that were acquired in this experiment are presented and described.

  5. Measuring Humidity in Methane and Natural Gas with a Microwave Technique

    NASA Astrophysics Data System (ADS)

    Gavioso, R. M.; Madonna Ripa, D.; Benyon, R.; Gallegos, J. G.; Perez-Sanz, F.; Corbellini, S.; Avila, S.; Benito, A. M.

    2014-04-01

    The results of microwave measurements with a quasi-spherical resonator in humid methane samples realized under laboratory conditions at the Istituto Nazionale di Ricerca Metrologica (INRiM) and under industrial conditions in a natural gas sample made available at the facilities of the Technical Manager of the Spanish Gas System and main supplier of natural gas in Spain (ENAGAS) are reported. Measurements at INRiM included vapor phase and condensation tests on methane samples prepared with amount fractions of water between 600 ppm and 5000 ppm at temperatures between 273 K and 295 K and pressures between 150 kPa and 1 MPa. ENAGAS measurements were performed at ambient temperature, 750 kPa on natural gas sampled from the pipeline and successively humidified at amount fractions of water between 140 ppm and 250 ppm for completeness of the comparison with several humidity sensors and instrumentation based on different technologies. To enhance the sensitivity of the microwave method at low humidity, an experimental procedure based on the relative comparison of the dielectric permittivity of the humid gas sample before and after being subject to a chemical drying process was conceived and implemented. The uncertainty budget and the final sensitivity of this procedure are discussed.

  6. Microwave-assisted extraction of polysaccharides from Yupingfeng powder and their antioxidant activity

    PubMed Central

    Wang, Dan; Zhang, Bi-Bo; Qu, Xiao-Xia; Gao, Feng; Yuan, Min-Yong

    2015-01-01

    Background: Microwave-assisted reflux extraction of polysaccharides YPF-P from the famous Chinese traditional drug, Yupingfeng powder, optimization of extracting conditions and evaluation of their antioxidant activity were conducted in this study. Results: Single factor effect trends were achieved through yields and contends of YPF-P obtained from different extracting conditions. Then through a three-level, four-variable Box-Behnken design of response surface methodology adopting yield as response, the optimal conditions were determined as follows: Material/solvent ratio 1:23.37, microwave power 560 W, Extraction temperature 64°C, and extraction time 9.62 min. Under the optimal conditions, the YPF-P extraction yield was 3.23%, and its content was detected as 38.52%. In antioxidant assays, the YPF-P was tested to possess 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities with an IC50 value of 0.262 mg/ml. In addition, YPF-P was also proved to have relatively low ferric reducing antioxidant power (FRAP), compared to Vc, through FRAP assay. Conclusion: In the microwave assisted reflux extraction research, good YPF-P yield was achieved from materials with relatively low YPF-P content. And for the first time, both DPPH and FRAP assays were conducted on YPF-P, which proved that the antioxidant activity of YPF-P contributed to the functions of this medicine. PMID:26246730

  7. A Next-Generation Space Geodetic Technique: Profiling of Greenhouse Gases and Climate by Microwave and Infrared-Laser Occultation

    NASA Astrophysics Data System (ADS)

    Kirchengast, G.; Schweitzer, S.; Proschek, V.

    2012-04-01

    Since the pioneering GNSS radio occultation (GRO) mission GPS/Met in the mid-1990ties, and fostered by many missions since then such as CHAMP, Formosat-3/COSMIC and others, the GRO method was firmly established as a leading space geodetic technique. GRO provides vital contributions to meteorology and climate applications, like numerical weather prediction and climate change monitoring, and a range of those are covered in this session. Building on this success, further advanced techniques for future missions and science applications emerge beyond GRO. In particular, next-generation occultation between Low Earth Orbit satellites (LEO-LEO) uses GNSS-type coherent signals beyond the GRO decimeter waves at centimeter, millimeter, and micrometer wavelengths. This new technique, termed LEO-LEO microwave and infrared-laser occultation (LMIO), enables to vastly expand from the GRO refractivity-based sounding of the thermodynamic structure to a complete set of weather and climate variables, including thermodynamic ones (pressure, temperature, water vapor), greenhouse gases, wind speed, and others (Kirchengast and Schweitzer, GRL, 38, L13701, 2011; www.agu.org/pubs/crossref/2011/2011GL047617.shtml). LMIO combines microwave occultation signals at cm and mm wavelengths (within 8-25 GHz and 175-200 GHz) for thermodynamic state profiling with infrared-laser occultation signals within 2 to 2.5 μm for greenhouse gas and line-of-sight wind profiling; greenhouse gases include water vapor (H2O), the three key long-lived ones (CO2, CH4, N2O) and others. We present the fundamentals and discuss the estimated performance of LMIO-based thermodynamic state and greenhouse gas profiling, including from quasi-realistic end-to-end performance simulations considering also clouds and aerosols. To indicate the performance, we found monthly-mean temperature and greenhouse gas profiles, assuming 30 to 40 native profiles averaged per climatological "grid cell" per month, accurate to

  8. Conformers of β-aminoisobutyric acid probed by jet-cooled microwave and matrix isolation infrared spectroscopic techniques.

    PubMed

    Kuş, N; Sharma, A; Peña, I; Bermúdez, M C; Cabezas, C; Alonso, J L; Fausto, R

    2013-04-14

    β-aminoisobutyric acid (BAIBA) has been studied in isolation conditions: in the gas phase and trapped into a cryogenic N2 matrix. A solid sample of the compound was vaporized by laser ablation and investigated through their rotational spectra in a supersonic expansion using two different spectroscopic techniques: broadband chirped pulse Fourier transform microwave spectroscopy and conventional molecular beam Fourier transform microwave spectroscopy. Four conformers with structures of two types could be successfully identified by comparison of the experimental rotational and (14)N nuclear quadruple coupling constants with those predicted theoretically: type A, bearing an OH⋯N intramolecular hydrogen bond and its carboxylic group in the trans geometry (H-O-C=O dihedral ∼180°), and type B, having an NH⋯O bond and the cis arrangement of the carboxylic group. These two types of conformers could also be trapped from the gas phase into a cryogenic N2 matrix and probed by Fourier transform infrared (IR) spectroscopy. In situ irradiation of BAIBA isolated in N2 matrix of type B conformers using near-IR radiation tuned at the frequency of the O-H stretching 1st overtone (∼6930 cm(-1)) of these forms allowed to selectively convert them into type A conformers and into a new type of conformers of higher energy (type D) bearing an NH⋯O=C bond and a O-H "free" trans carboxylic group.

  9. Conformers of β-aminoisobutyric acid probed by jet-cooled microwave and matrix isolation infrared spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Kuş, N.; Sharma, A.; Peña, I.; Bermúdez, M. C.; Cabezas, C.; Alonso, J. L.; Fausto, R.

    2013-04-01

    β-aminoisobutyric acid (BAIBA) has been studied in isolation conditions: in the gas phase and trapped into a cryogenic N2 matrix. A solid sample of the compound was vaporized by laser ablation and investigated through their rotational spectra in a supersonic expansion using two different spectroscopic techniques: broadband chirped pulse Fourier transform microwave spectroscopy and conventional molecular beam Fourier transform microwave spectroscopy. Four conformers with structures of two types could be successfully identified by comparison of the experimental rotational and 14N nuclear quadruple coupling constants with those predicted theoretically: type A, bearing an OH⋯N intramolecular hydrogen bond and its carboxylic group in the trans geometry (H-O-C=O dihedral ˜180°), and type B, having an NH⋯O bond and the cis arrangement of the carboxylic group. These two types of conformers could also be trapped from the gas phase into a cryogenic N2 matrix and probed by Fourier transform infrared (IR) spectroscopy. In situ irradiation of BAIBA isolated in N2 matrix of type B conformers using near-IR radiation tuned at the frequency of the O-H stretching 1st overtone (˜6930 cm-1) of these forms allowed to selectively convert them into type A conformers and into a new type of conformers of higher energy (type D) bearing an NH⋯O=C bond and a O-H "free" trans carboxylic group.

  10. Synergism of active and passive microwave data for estimating bare surface soil moisture

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.; Njoku, Eni G.; Wegmueller, Urs

    1993-01-01

    Active and passive microwave sensors were applied effectively to the problem of estimating the surface soil moisture in a variety of environmental conditions. Research to date has shown that both types of sensors are also sensitive to the surface roughness and the vegetation cover. In estimating the soil moisture, the effect of the vegetation and roughness are often corrected either by acquiring multi-configuration (frequency and polarization) data or by adjusting the surface parameters in order to match the model predictions to the measured data. Due to the limitations on multi-configuration spaceborne data and the lack of a priori knowledge of the surface characteristics for parameter adjustments, it was suggested that the synergistic use of the sensors may improve the estimation of the soil moisture over the extreme range of naturally occurring soil and vegetation conditions. To investigate this problem, the backscattering and emission from a bare soil surface using the classical rough surface scattering theory were modeled. The model combines the small perturbation and the Kirchhoff approximations in conjunction with the Peak formulation to cover a wide range of surface roughness parameters with respect to frequency for both active and passive measurements. In this approach, the same analytical method was used to calculate the backscattering and emissivity. Therefore, the active and passive simulations can be combined at various polarizations and frequencies in order to estimate the soil moisture more actively. As a result, it is shown that (1) the emissivity is less dependent on the surface correlation length, (2) the ratio of the backscattering coefficient (HH) over the surface reflectivity (H) is almost independent of the soil moisture for a wide range of surface roughness, and (3) this ratio can be approximated as a linear function of the surface rms height. The results were compared with the data obtained by a multi-frequency radiometer

  11. Backscattering characteristics Analyses of winter wheat covered area and Drought Monitoring Based on active microwave

    NASA Astrophysics Data System (ADS)

    Zhang, C., Sr.; Li, L.

    2015-12-01

    The advantage of active microwave remote sensing on the sensitivity of polarization characteristic, backscatter intensity and phase characteristics to soil moisture demonstrates its potential to map and monitor relative soil moisture changes and drought information with high spatial resolution. However, the existence of soil surface condition and vegetation effects confounds the retrieval of soil moisture from active microwave, and therefore limits its applications on soil moisture retrieval and drought monitoring. To research how to reduce the effect of soil roughness and wheat cover with multi- incident angles and multi polarization active microwave remote sensing data, MIMICS and AIEM models were used to simulate the backscattering coefficient of winter wheat covered field. The interaction between winter wheat at main growth stages and microwave was analyzed. The effects of surface roughness and physical parameters of wheat on the backscattering characteristics and the variation of different incident angles and different polarization conditions are simulated and analyzed emphatically. Then scattering coefficient information of winter wheat covered area at different wheat growth stage was measured with a C band ground-based scattering meter. At the same time, biomass, leaf area index and soil rough degree, soil water content and other related parameters are collected. After comparing and analyzing the measured data and the simulated data at different incident angles and different polarization modes, we propose an approach of using multi polarization and multi angle data to eliminate the soil roughness and wheat vegetation effects and performing the inversion of soil moisture. Using the Radarsat2 satellite SAR data and ground-based scatter data gotten at the same period in 2012, soil moisture information of greater area is obtained, and then the drought information is obtained, which is consistent with the measured results.

  12. Active Microwave Delay Line Based on Dipole-Exchange Spin Waves

    NASA Astrophysics Data System (ADS)

    Slavin, Andrei; Kobljanskyj, Yuri; Melkov, Gennadiy; Tyberkevych, Vasil; Vasyuchka, Vitaliy

    2003-03-01

    An active microwave signal processor based on the interaction of relatively long (k 100 1/cm ) dipolar spin waves (or magnetostatic waves (MSW)) with localized electromagnetic pumping in an yttrium-iron garnet (YIG) film has been developed in [1]. The processor performs operations of controlled time delay, amplification, phase conjugation, compression, and convolution of pulsed microwave signals, but due to a relatively large group velocity of MSW pulses has a maximum delay time not exceeding 300 ns . In the current paper we develop theoretically and realize experimentally an active microwave delay line based on the excitation of relatively short-wavelength ( k 10000 1/cm ) dipole-exchange spin waves (DESW) that have considerably smaller dissipation parameter and much smaller group velocity than the MSW. The new DESW delay line has a single wire antenna (width of the order of several micrometers to allow the excitation of short-wavelength DESW) and a pumping dielectric resonator situated nearby. The input (signal) pulse excites in the YIG film both DESW and MSW. The pumping pulse, supplied to the resonator after a time interval t , performs a front reversal of all the excited waves and after a time interval T 2t a delayed output signal produced by both DESW and MSW is received at the antenna. With the increase of t due to the substantially smaller dissipation of DESW the larger and larger portion of the output signal is created by the DESW. As a result, a controlled time delay of an input microwave pulse of more than 1200 ns with insertion loss of 0.04 dB/ns was achieved . The developed microwave delay line is also capable of performing other signal processing operations like convolution and compression of delayed input pulses and might find applications in the modern radar technology [1]. G.A. Melkov, Yu.V. Kobljanskyj, A.A. Serga, V.S. Tiberkevich, and A.N. Slavin, Proceedings of the 8th International Symposium on Microwave and Optical Technology (ISMOT'01), p

  13. Uniform staining of Cyclospora oocysts in fecal smears by a modified safranin technique with microwave heating.

    PubMed

    Visvesvara, G S; Moura, H; Kovacs-Nace, E; Wallace, S; Eberhard, M L

    1997-03-01

    Cyclospora, a coccidian protist, is increasingly being identified as an important, newly emerging parasite that causes diarrhea, flatulence, fatigue, and abdominal pain leading to weight loss in immunocompetent persons with or without a recent travel history as well as in patients with AIDS. Modified Kinyoun's acid-fast stain is the most commonly used stain to identify the oocyst of this parasite in fecal smears. Oocysts of Cyclospora stain variably by the modified acid-fast procedure, resulting in the possible misidentification of this parasite. We examined fecal smears stained by six different procedures that included Giemsa, trichrome, chromotrope, Gram-chromotrope, acid-fast, and safranin stains. We report on safranin-based stain that uniformly stains oocysts of Cyclospora a brilliant reddish orange, provided that the fecal smears are heated in a microwave oven prior to staining. This staining procedure, besides being superior to acid-fast staining, is fast, reliable, and easy to perform in most clinical laboratories.

  14. Novel materials, fabrication techniques and algorithms for microwave and THz components, systems and applications

    NASA Astrophysics Data System (ADS)

    Liang, Min

    This dissertation presents the investigation of several additive manufactured components in RF and THz frequency, as well as the applications of gradient index lens based direction of arrival (DOA) estimation system and broadband electronically beam scanning system. Also, a polymer matrix composite method to achieve artificially controlled effective dielectric properties for 3D printing material is studied. Moreover, the characterization of carbon based nano-materials at microwave and THz frequency, photoconductive antenna array based Terahertz time-domain spectroscopy (THz-TDS) near field imaging system, and a compressive sensing based microwave imaging system is discussed in this dissertation. First, the design, fabrication and characterization of several 3D printed components in microwave and THz frequency are presented. These components include 3D printed broadband Luneburg lens, 3D printed patch antenna, 3D printed multilayer microstrip line structure with vertical transition, THz all-dielectric EMXT waveguide to planar microstrip transition structure and 3D printed dielectric reflectarrays. Second, the additive manufactured 3D Luneburg Lens is employed for DOA estimation application. Using the special property of a Luneburg lens that every point on the surface of the Lens is the focal point of a plane wave incident from the opposite side, 36 detectors are mounted around the surface of the lens to estimate the direction of arrival (DOA) of a microwave signal. The direction finding results using a correlation algorithm show that the averaged error is smaller than 1º for all 360 degree incident angles. Third, a novel broadband electronic scanning system based on Luneburg lens phased array structure is reported. The radiation elements of the phased array are mounted around the surface of a Luneburg lens. By controlling the phase and amplitude of only a few adjacent elements, electronic beam scanning with various radiation patterns can be easily achieved

  15. Optimized Shielding and Fabrication Techniques for TiN and Al Microwave Resonators

    NASA Astrophysics Data System (ADS)

    Kreikebaum, John Mark; Kim, Eunseong; Livingston, William; Dove, Allison; Calusine, Gregory; Hover, David; Rosenberg, Danna; Oliver, William; Siddiqi, Irfan

    We present a systematic study of the effects of shielding and packaging on the internal quality factor (Qi) of Al and TiN microwave resonators designed for use in qubit readout. Surprisingly, Qi =1.3x106 TiN samples investigated at 100 mK exhibited no significant changes in linewidth when operated without magnetic shielding and in an open cryo-package. In contrast, Al resonators showed systematic improvement in Qi with each successive shield. Measurements were performed in an adiabatic demagnetization refrigerator, where typical ambient fields of 0.2 mT are present at the sample stage. We discuss the effect of 100 mK and 500 mK Cu radiation shields and cryoperm magnetic shielding on resonator Q as a function of temperature and input power in samples prepared with a variety of surface treatments, fabrication recipes, and embedding circuits. This research was supported by the ARO and IARPA.

  16. NASA Activities as they Relate to Microwave Technology for Aerospace Communications Systems

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2011-01-01

    This presentation discusses current NASA activities and plans as they relate to microwave technology for aerospace communications. The presentations discusses some examples of the aforementioned technology within the context of the existing and future communications architectures and technology development roadmaps. Examples of the evolution of key technology from idea to deployment are provided as well as the challenges that lay ahead regarding advancing microwave technology to ensure that future NASA missions are not constrained by lack of communication or navigation capabilities. The presentation closes with some examples of emerging ongoing opportunities for establishing collaborative efforts between NASA, Industry, and Academia to encourage the development, demonstration and insertion of communications technology in pertinent aerospace systems.

  17. Antioxidant Activity and Phenolic Content of Microwave-Assisted Solanum melongena Extracts

    PubMed Central

    Modica, Maria N.; Pittalà, Valeria; Siracusa, Maria A.; Sorrenti, Valeria; Acquaviva, Rosaria

    2014-01-01

    Eggplant fruit is a very rich source of polyphenol compounds endowed with antioxidant properties. The aim of this study was to extract polyphenols from eggplant entire fruit, pulp, or skin, both fresh and dry, and compare results between conventional extraction and microwave-assisted extraction (MAE). The effects of time exposure (15, 30, 60, and 90 min) and solvent (water 100% or ethanol/water 50%) were also evaluated. The highest amount of polyphenols was found in the extract obtained from dry peeled skin treated with 50% aqueous ethanol, irradiated with microwave; this extract contained also high quantity of flavonoids and showed good antioxidant activity expressed by its capacity to scavenge superoxide anion and to inhibit lipid peroxidation. PMID:24683354

  18. Slow potentials and spike unit activity of the cerebral cortex of rabbits exposed to microwaves

    SciTech Connect

    Chizhenkova, R.A.

    1988-01-01

    Unanesthetized rabbits exposed to 12.5-cm microwaves at a field intensity of 40 mW/cm/sup 2/ in the region of the head showed an increase in the number of slow waves and spindle-shaped firings in the EEG and a change in the discharge frequency of neurons in the visual cortex in 41-52% of the cases. An enhancement of the evoked response of visual cortex neurons to light was observed in 61% of the cases and a facilitation of the driving response in 80% of all cases. It is concluded that the evoked response is a more sensitive indicator of the microwave effect than background activity. The effects of the fields were most distinctly observed with the driving response.

  19. Antioxidant activity and phenolic content of microwave-assisted Solanum melongena extracts.

    PubMed

    Salerno, Loredana; Modica, Maria N; Pittalà, Valeria; Romeo, Giuseppe; Siracusa, Maria A; Di Giacomo, Claudia; Sorrenti, Valeria; Acquaviva, Rosaria

    2014-01-01

    Eggplant fruit is a very rich source of polyphenol compounds endowed with antioxidant properties. The aim of this study was to extract polyphenols from eggplant entire fruit, pulp, or skin, both fresh and dry, and compare results between conventional extraction and microwave-assisted extraction (MAE). The effects of time exposure (15, 30, 60, and 90 min) and solvent (water 100% or ethanol/water 50%) were also evaluated. The highest amount of polyphenols was found in the extract obtained from dry peeled skin treated with 50% aqueous ethanol, irradiated with microwave; this extract contained also high quantity of flavonoids and showed good antioxidant activity expressed by its capacity to scavenge superoxide anion and to inhibit lipid peroxidation.

  20. Dual effects of microwaves on single Ca(2+)-activated K+ channels in cultured kidney cells Vero.

    PubMed

    Geletyuk, V I; Kazachenko, V N; Chemeris, N K; Fesenko, E E

    1995-02-06

    Using the patch voltage-clamp method, possible effects of millimetre microwaves (42.25 GHz) on single Ca(2+)-activated K+ channels in cultured kidney cells (Vero) were investigated. It was found that exposure to the field of non-thermal power (about 100 microW/cm2) for 20-30 min greatly modifies both the Hill coefficient and an apparent affinity of the channels for Ca2+(i). The data suggest that the field alters both cooperativity and binding characteristics of the channel activation by internal Ca2+. The effects depend on initial sensitivity of the channels to Ca2+ and the Ca2+ concentration applied.

  1. A novel technique for active fibre production

    NASA Astrophysics Data System (ADS)

    Renner-Erny, Ruth; Di Labio, Loredana; Lüthy, Willy

    2007-04-01

    Active fibre devices are conventionally manufactured using MCVD technique. Recently it has been shown that nearly equivalent results can also be obtained with sol-gel technology. Now we present a novel technique allowing simplification of the manufacturing process even more. The required constituents are mixed in the form of dry micro- and nano-sized particles. A silica glass tube forming the future core region of a fibre preform is filled with a powder mix of SiO 2, 1% Nd (as Nd 2O 3) and 10% Al (as Al 2O 3). This tube is mounted in the centre of a larger tube forming the future cladding. The empty space between the two tubes is filled with SiO 2 powder. After preheating, the evacuated preform is drawn to a fibre. A length of 45 cm, cladding-pumped with a diode laser at 808 nm as well as a core-pumped fibre of 5.1 cm length showed laser action between 1.05 and 1.1 μm.

  2. Microwave synthesis and photocatalytic activities of ZnO bipods with different aspect ratios

    SciTech Connect

    Sun, Fazhe; Zhao, Zengdian; Qiao, Xueliang; Tan, Fatang; Wang, Wei

    2016-02-15

    Highlights: • We synthesized linked ZnO nanorods by a facile microwave method. • The effect of reaction parameters on ZnO was investigated. • ZnO bipods with different aspect ratios were prepared. • The photocatalytic performance of ZnO bipods was evaluated. - Abstract: Linked ZnO nanorods have been successfully prepared via a facile microwave method without any post-synthesis treatment. The X-ray diffraction (XRD) patterns indicated the precursor had completely transformed into the pure ZnO crystal. The images of field emitting scanning electron microscope (FESEM) and transmission electron microscope (TEM) showed that linked ZnO nanorods consisted predominantly of ZnO bipods. The formation process of the ZnO bipods was clearly discussed. ZnO bipods with different aspect ratios have been obtained by tuning the concentrations of reagents and microwave power. Moreover, the photocatalytic performance of ZnO bipods with different aspect ratios for degradation of methylene blue was systematically evaluated. The results of photocatalytic experiments showed that the photocatalytic activity increased with the aspect ratios of ZnO bipods increased. The reason is that ZnO bipods with larger aspect ratio have higher surface area, which can absorb more MB molecules to react with ·OH radicals.

  3. Microwave-assisted preparation and adsorption performance of activated carbon from biodiesel industry solid reside: influence of operational parameters.

    PubMed

    Foo, K Y; Hameed, B H

    2012-01-01

    Preparation of activated carbon has been attempted using KOH as activating agent by microwave heating from biodiesel industry solid residue, oil palm empty fruit bunch (EFBAC). The significance of chemical impregnation ratio (IR), microwave power and activation time on the properties of activated carbon were investigated. The optimum condition has been identified at the IR of 1.0, microwave power of 600 W and activation time of 7 min. EFBAC was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement, determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue as dye model compound. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 395.30 mg/g and carbon yield of 73.78%, while the BET surface area and total pore volume were corresponding to 1372 m2/g and 0.76 cm3/g, respectively.

  4. Digital communications: Microwave applications

    NASA Astrophysics Data System (ADS)

    Feher, K.

    Transmission concepts and techniques of digital systems are presented; and practical state-of-the-art implementation of digital communications systems by line-of-sight microwaves is described. Particular consideration is given to statistical methods in digital transmission systems analysis, digital modulation methods, microwave amplifiers, system gain, m-ary and QAM microwave systems, correlative techniques and applications to digital radio systems, hybrid systems, digital microwave systems design, diversity and protection switching techniques, measurement techniques, and research and development trends and unsolved problems.

  5. Sensitivity of Active and Passive Microwave Observations to Soil Moisture during Growing Corn

    NASA Astrophysics Data System (ADS)

    Judge, J.; Monsivais-Huertero, A.; Liu, P.; De Roo, R. D.; England, A. W.; Nagarajan, K.

    2011-12-01

    Soil moisture (SM) in the root zone is a key factor governing water and energy fluxes at the land surface and its accurate knowledge is critical to predictions of weather and near-term climate, nutrient cycles, crop-yield, and ecosystem productivity. Microwave observations, such as those at L-band, are highly sensitive to soil moisture in the upper few centimeters (near-surface). The two satellite-based missions dedicated to soil moisture estimation include, the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission and the planned NASA Soil Moisture Active/Passive (SMAP) [4] mission. The SMAP mission will include active and passive sensors at L-band to provide global observations of SM, with a repeat coverage of every 2-3 days. These observations can significantly improve root zone soil moisture estimates through data assimilation into land surface models (LSMs). Both the active (radar) and passive (radiometer) microwave sensors measure radiation quantities that are functions of soil dielectric constant and exhibit similar sensitivities to SM. In addition to the SM sensitivity, radar backscatter is highly sensitive to roughness of soil surface and scattering within the vegetation. These effects may produce a much larger dynamic range in backscatter than that produced due to SM changes alone. In this study, we discuss the field observations of active and passive signatures of growing corn at L-band from several seasons during the tenth Microwave, Water and Energy Balance Experiment (MicroWEX-10) conducted in North Central Florida, and to understand the sensitivity of these signatures to soil moisture under dynamic vegetation conditions. The MicroWEXs are a series of season-long field experiments conducted during the growing seasons of sweet corn, cotton, and energy cane over the past six years (for example, [22]). The corn was planted on July 5 and harvested on September 23, 2011 during MicroWEX-10. The size of the field was 0.04 km2 and the soils

  6. Remote sensing of atmospheric water vapor, liquid water, and wind speed at the ocean surface by passive microwave techniques from the Nimbus 5 satellite

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Wilheit, T. T.

    1979-01-01

    The microwave brightness temperature measurements for Nimbus 5 electrically scanned microwave radiometer (ESMR) and Nimbus-E microwave spectrometer (NEMS) are used to retrieve the atmospheric water vapor, liquid water, and wind speed by a quasi-statistical retrieval technique. It is shown that the brightness temperature can be utilized to yield these parameters under various weather conditions. Observations at 19.35, 22.235, and 31.4 GHz were input to the regression equations. The retrieved values of these parameters for portions of two Nimbus 5 orbits are presented. Then comparison between the retrieved parameters and the available observations on the total water vapor content and the surface wind speed are made.

  7. Remote sensing of atmospheric water vapor, liquid water and wind speed at the ocean surface by passive microwave techniques from the Nimbus-5 satellite

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Wilheit, T. T.

    1977-01-01

    The microwave brightness temperature measurements for Nimbus-5 electrically scanned microwave radiometer and Nimbus E microwave spectrometer are used to retrieve the atmospheric water vapor, liquid water and wind speed by a quasi-statistical retrieval technique. It is shown that the brightness temperature can be utilized to yield these parameters under various weather conditions. Observations at 19.35 GHz, 22.235 GHz and 31.4 GHz were input to the regression equations. The retrieved values of these parameters for portions of two Nimbus-5 orbits are presented. Then comparison between the retrieved parameters and the available observations on the total water vapor content and the surface wind speed are made. The estimated errors for retrieval are approximately 0.15 g/sq cm for water vapor content, 6.5 mg/sq cm for liquid water content and 6.6 m/sec for surface wind speed.

  8. Lung radiofrequency and microwave ablation: a review of indications, techniques and post-procedural imaging appearances.

    PubMed

    Smith, S L; Jennings, P E

    2015-02-01

    Lung ablation can be used to treat both primary and secondary thoracic malignancies. Evidence to support its use, particularly for metastases from colonic primary tumours, is now strong, with survival data in selected cases approaching that seen after surgery. Because of this, the use of ablative techniques (particularly thermal ablation) is growing and the Royal College of Radiologists predict that the number of patients who could benefit from such treatment may reach in excess of 5000 per year in the UK. Treatment is often limited to larger regional centres, and general radiologists often have limited awareness of the current indications and the techniques involved. Furthermore, radiologists without any prior experience are frequently expected to interpret post-treatment imaging, often performed in the context of acute complications, which have occurred after discharge. This review aims to provide an overview of the current indications for pulmonary ablation, together with the techniques involved and the range of post-procedural appearances.

  9. Lung radiofrequency and microwave ablation: a review of indications, techniques and post-procedural imaging appearances

    PubMed Central

    Jennings, P E

    2015-01-01

    Lung ablation can be used to treat both primary and secondary thoracic malignancies. Evidence to support its use, particularly for metastases from colonic primary tumours, is now strong, with survival data in selected cases approaching that seen after surgery. Because of this, the use of ablative techniques (particularly thermal ablation) is growing and the Royal College of Radiologists predict that the number of patients who could benefit from such treatment may reach in excess of 5000 per year in the UK. Treatment is often limited to larger regional centres, and general radiologists often have limited awareness of the current indications and the techniques involved. Furthermore, radiologists without any prior experience are frequently expected to interpret post-treatment imaging, often performed in the context of acute complications, which have occurred after discharge. This review aims to provide an overview of the current indications for pulmonary ablation, together with the techniques involved and the range of post-procedural appearances. PMID:25465192

  10. Microwave-assisted synthesis and antifungal activity of novel fused Osthole derivatives.

    PubMed

    Zhang, Ming-Zhi; Zhang, Rong-Rong; Wang, Jia-Qun; Yu, Xiang; Zhang, Ya-Ling; Wang, Qing-Qing; Zhang, Wei-Hua

    2016-11-29

    Based on the microwave-assisted synthetic protocol developed in our previous work, we have synthesized a series of novel furo[3,2-c]coumarins as fused Osthole derivatives, via the reaction of 4-hydroxycoumarins and β-ketoesters catalyzed by DMAP. All the target compounds were evaluated in vitro for their antifungal activity against six phytopathogenic fungi, some compounds exhibited potential activity in the primary assays. Especially compounds 6c, 7b, 8b and 8c (shown in Fig. 1) were the most active ones, EC50 values of these four compounds against Colletotrichum capsica, Botrytis cinerea and Rhizoctonia solani were further investigated. 6c was identified as the most promising candidate with the EC50 value at 0.110 μM against Botrytis cinerea and 0.040 μM against Colletotrichum capsica, respectively, representing better antifungal activity than that of the commonly used fungicide Azoxystrobin.

  11. Application of artificial neural networks for the soil moisture retrieval from active and passive microwave spaceborne sensors

    NASA Astrophysics Data System (ADS)

    Santi, Emanuele; Paloscia, Simonetta; Pettinato, Simone; Fontanelli, Giacomo

    2016-06-01

    Among the algorithms used for the retrieval of SMC from microwave sensors (both active, such as Synthetic Aperture Radar-SAR, and passive, radiometers), the artificial neural networks (ANN) represent the best compromise between accuracy and computation speed. ANN based algorithms have been developed at IFAC, and adapted to several radar and radiometric satellite sensors, in order to generate SMC products at a resolution varying from hundreds of meters to tens of kilometers according to the spatial scale of each sensor. These algorithms, which are based on the ANN techniques for inverting theoretical and semi-empirical models, have been adapted to the C- to Ka- band acquisitions from spaceborne radiometers (AMSR-E/AMSR2), SAR (Envisat/ASAR, Cosmo-SkyMed) and real aperture radar (MetOP ASCAT). Large datasets of co-located satellite acquisitions and direct SMC measurements on several test sites worldwide have been used along with simulations derived from forward electromagnetic models for setting up, training and validating these algorithms. An overall quality assessment of the obtained results in terms of accuracy and computational cost was carried out, and the main advantages and limitations for an operational use of these algorithms were evaluated. This technique allowed the retrieval of SMC from both active and passive satellite systems, with accuracy values of about 0.05 m3/m3 of SMC or better, thus making these applications compliant with the usual accuracy requirements for SMC products from space.

  12. Migration testing of plastics and microwave-active materials for high-temperature food-use applications.

    PubMed

    Castle, L; Jickells, S M; Gilbert, J; Harrison, N

    1990-01-01

    Temperatures have been measured using a fluoro-optic probe at the food/container or food/packaging interfaces as appropriate, for a range of foods heated in either a microwave or a conventional oven. Reheating ready-prepared foods packaged in plastics pouches, trays or dishes in the microwave oven, according to the manufacturers' instructions, resulted in temperatures in the range 61-121 degrees C. Microwave-active materials (susceptors) in contact with ready-prepared foods frequently reached local spot temperatures above 200 degrees C. For foods cooked in a microwave oven according to published recipes, temperatures from 91 degrees C to 200 degrees C were recorded, whilst similar temperatures (92-194 degrees C) were attained in a conventional oven, but over longer periods of time. These measurements form the basis for examining compliance with specific and overall migration limits for plastics materials. The testing conditions proposed depend on the intended use of the plastic - for microwave oven use for aqueous foods, for all lidding materials, and for reheating of foods, testing would only be required with aqueous simulants for 1 h at 100 degrees C; for unspecified microwave oven use, testing with olive oil would be required for 30 min at 150 degrees C; and for unspecified use in a conventional oven testing with olive oil would be required for 2 h at 175 degrees C. For microwave-active materials, it is proposed that testing is carried out in the microwave oven using a novel semi-solid simulant comprising olive oil and water absorbed onto an inert support of diatomaceous earth. The testing in this instance is carried out with the simulant instead of food in a package and heating in the microwave oven at 600 W for 4 min for every 100 g of simulant employed. There is an option in every case to test for migration using real foods rather than simulants if it can be demonstrated that results using simulants are unrepresentative of those for foods. The proposed

  13. Statistical Analysis of the Correlation between Microwave Emission Anomalies and Seismic Activity Based on AMSR-E Satellite Data

    NASA Astrophysics Data System (ADS)

    qin, kai; Wu, Lixin; De Santis, Angelo; Zhang, Bin

    2016-04-01

    Pre-seismic thermal IR anomalies and ionosphere disturbances have been widely reported by using the Earth observation system (EOS). To investigate the possible physical mechanisms, a series of detecting experiments on rock loaded to fracturing were conducted. Some experiments studies have demonstrated that microwave radiation energy will increase under the loaded rock in specific frequency and the feature of radiation property can reflect the deformation process of rock fracture. This experimental result indicates the possibility that microwaves are emitted before earthquakes. Such microwaves signals are recently found to be detectable before some earthquake cases from the brightness temperature data obtained by the microwave-radiometer Advanced Microwave-Scanning Radiometer for the EOS (AMSR-E) aboard the satellite Aqua. This suggested that AMSR-E with vertical- and horizontal-polarization capability for six frequency bands (6.925, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz) would be feasible to detect an earthquake which is associated with rock crash or plate slip. However, the statistical analysis of the correlation between satellite-observed microwave emission anomalies and seismic activity are firstly required. Here, we focus on the Kamchatka peninsula to carry out a statistical study, considering its high seismicity activity and the dense orbits covering of AMSR-E in high latitudes. 8-years (2003-2010) AMSR-E microwave brightness temperature data were used to reveal the spatio-temporal association between microwave emission anomalies and 17 earthquake events (M>5). Firstly, obvious spatial difference of microwave brightness temperatures between the seismic zone at the eastern side and the non-seismic zone the western side within the Kamchatka peninsula are found. Secondly, using both vertical- and horizontal-polarization to extract the temporal association, it is found that abnormal changes of microwave brightness temperatures appear generally 2 months before the

  14. Low temperature recombination and trapping analysis in high purity gallium arsenide by microwave photodielectric techniques

    NASA Technical Reports Server (NTRS)

    Khambaty, M. B.; Hartwig, W. H.

    1972-01-01

    Some physical theories pertinent to the measurement properties of gallium arsenide are presented and experimental data are analyzed. A model for explaining recombination and trapping high purity gallium arsenide, valid below 77 K is assembled from points made at various places and an appraisal is given of photodielectric techniques for material property studies.

  15. A Combined Infrared and Microwave Technique for Studying the Diurnal Variation of Rainfall Over Amazonia

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Xu, L.; Adler, R. F.; Anagnostou, E.; Rickenbach, T. M.

    1999-01-01

    In this paper we present results from the application of a satellite infrared (IR) technique for estimating rainfall over northern South America. Our main objectives are to examine the diurnal variability of rainfall and to investigate the relative contributions from the convective and stratiform components. Additional information is contained in the original.

  16. Activation of VEGF/Flk-1-ERK Pathway Induced Blood-Brain Barrier Injury After Microwave Exposure.

    PubMed

    Wang, Li-Feng; Li, Xiang; Gao, Ya-Bing; Wang, Shui-Ming; Zhao, Li; Dong, Ji; Yao, Bin-Wei; Xu, Xin-Ping; Chang, Gong-Min; Zhou, Hong-Mei; Hu, Xiang-Jun; Peng, Rui-Yun

    2015-08-01

    Microwaves have been suggested to induce neuronal injury and increase permeability of the blood-brain barrier (BBB), but the mechanism remains unknown. The role of the vascular endothelial growth factor (VEGF)/Flk-1-Raf/MAPK kinase (MEK)/extracellular-regulated protein kinase (ERK) pathway in structural and functional injury of the blood-brain barrier (BBB) following microwave exposure was examined. An in vitro BBB model composed of the ECV304 cell line and primary rat cerebral astrocytes was exposed to microwave radiation (50 mW/cm(2), 5 min). The structure was observed by scanning electron microscopy (SEM) and the permeability was assessed by measuring transendothelial electrical resistance (TEER) and horseradish peroxidase (HRP) transmission. Activity and expression of VEGF/Flk-1-ERK pathway components and occludin also were examined. Our results showed that microwave radiation caused intercellular tight junctions to broaden and fracture with decreased TEER values and increased HRP permeability. After microwave exposure, activation of the VEGF/Flk-1-ERK pathway and Tyr phosphorylation of occludin were observed, along with down-regulated expression and interaction of occludin with zonula occludens-1 (ZO-1). After Flk-1 (SU5416) and MEK1/2 (U0126) inhibitors were used, the structure and function of the BBB were recovered. The increase in expression of ERK signal transduction molecules was muted, while the expression and the activity of occludin were accelerated, as well as the interactions of occludin with p-ERK and ZO-1 following microwave radiation. Thus, microwave radiation may induce BBB damage by activating the VEGF/Flk-1-ERK pathway, enhancing Tyr phosphorylation of occludin, while partially inhibiting expression and interaction of occludin with ZO-1.

  17. Spanish activities (research and industrial applications) in the field of microwave material treatment

    SciTech Connect

    Catala Civera, J.M.; Reyes Davo, E.R. de los

    1996-12-31

    The GCM (Microwave Heating Group) within the Communications Department at the Technical University of Valencia is dedicated to the study of microwaves and their use in the current industrial processes in the Valencian Community and in Spain. To this end, a microwave heating laboratory has been developed and the benefits of incorporating microwave technologies into current industrial processes have been demonstrated. In this paper some of the industrial applications which are being investigated are presented.

  18. Microwave Processing of Materials

    DTIC Science & Technology

    1994-01-01

    of peak output power of 100 megawatts at 10 GHz. Microwave Fundamentals 11 RESONANT HELIX TWT STO KLYSTRON CTf C 0 Grid oShadow Grid PPM FOCUS SPACE C...Rather, broadband and high-temperature measurement techniques that have been used in conjunction with microwave processing of materials-specifically... Broadband Dielectric Properties Measurement Techniques. Pp. 527-539 in Materials Research Society Symposium Proceedings, Vol. 269, Microwave Processing

  19. Efficient Catalytic Activity BiFeO3 Nanoparticles Prepared by Novel Microwave-Assisted Synthesis.

    PubMed

    Zou, Jing; Gong, Wanyun; Ma, Jinai; Li, Lu; Jiang, Jizhou

    2015-02-01

    A novel microwave-assisted sol-gel method was applied to the synthesis of the single-phase perovskite bismuth ferrite nanoparticles (BFO NPs) with the mean diameter ca. 73.7 nm. The morphology was characterized by scanning electron microscope (SEM). The X-ray diffraction (XRD) revealed the rhombohedral phase with R3c space group. The weak ferromagnetic behavior at room temperature was affirmed by the vibrating sample magnetometer (VSM). According to the UV-vis diffuse reflectance spectrum (UV-DSR), the band gap energy of BFO NPs was determined to be 2.18 eV. The electrochemical activity was evaluated by BFO NPs-chitosan-glassy carbon electrode (BFO-CS-GCE) sensor for detection of p-nitrophenol contaminants. The material showed an efficient oxidation catalytic activity by degrading methylene blue (MB). It was found that the degradation efficiency of 10 mg L-1 MB at pH 6.0 was above 90.9% after ultrasound- and microwave-combined-assisted (US-MW) irradiation for 15 min with BFO NPs as catalyst and H202 as oxidant. A possible reaction mechanism of degradation of MB was also proposed.

  20. Microwave-assisted extraction of polysaccharides from Cyphomandra betacea and its biological activities.

    PubMed

    C, Senthil Kumar; M, Sivakumar; K, Ruckmani

    2016-11-01

    Response Surface Methodology (RSM) was used to optimize the parameters for microwave-assisted extraction of polysaccharides from Cyphomandra betacea. The results showed a good fit with a second-order polynomial equation that was statistically acceptable at P<0.05. Optimal conditions for the extraction of polysaccharides were: extraction time, 2h; microwave power, 400W; extraction temperature, 60°C; and ratio of raw material to water 1:40 (g/mL). Under the optimized conditions, the yield of polysaccharides was found to be relatively high (about 36.52%). The in vitro biological activities of antioxidant and antitumor were evaluated. The IC50 value of polysaccharides was found to be 3mg/mL. The percentage of Cell viability was determined by MTT assay. Our results showed that polysaccharides inhibited proliferation of MCF-7 (Breast carcinoma), A549 (Human lung carcinoma) and HepG2 (Liver carcinoma) with an IC50 of 0.23mg/mL, 0.17mg/mL and 0.62mg/mL respectively after 48h incubation. Polysaccharides were shown to promote apoptosis as seen in the nuclear morphological examination study using acridine orange (AO) and ethidium bromide (EB) staining. This is the first report on the effects of polysaccharides extracted from Cyphomandra betacea which exhibited stronger antioxidant and antitumor activities.

  1. Degradation of Active Brilliant Red X-3B by a microwave discharge electrodeless lamp in the presence of activated carbon.

    PubMed

    Fu, Jie; Wen, Teng; Wang, Qing; Zhang, Xue-Wei; Zeng, Qing-Fu; An, Shu-Qing; Zhu, Hai-Liang

    2010-06-01

    Degradation of Active Brilliant Red X-3B (X-3B) in aqueous solution by a microwave discharge electrodeless lamp (MDEL) in the presence of activated carbon was investigated. The preliminary results proved this method could effectively degrade X-3B in aqueous solution. The removal percentages of colour and chemical oxygen demand were up to approximately 99% and 66%, respectively, at the conditions of 0.8 g/L dye concentration, 20 g/L activated carbon, pH 7.0 and 8 min microwave irradiation time. The degradation basically belonged to first-order reaction kinetics and its rate constant was 0.42 min(-1). No aromatic organics were detected in the final treated solution, indicating that the mineralization was relatively complete. By studying the change in solution properties, it could be concluded that MDEL-assisted oxidation was the dominant reaction mechanism. In addition, the influence of operational parameters and reuse of activated carbon were also discussed.

  2. 1990 MTT-S International Microwave Symposium and Exhibition and Microwave and Millimeter-Wave Monolithic IC Symposium, Dallas, TX, May 7-10, 1990, Proceedings

    NASA Astrophysics Data System (ADS)

    McQuiddy, David N., Jr.; Sokolov, Vladimir

    1990-12-01

    The present conference discusses microwave filters, lightwave technology for microwave antennas, planar and quasi-planar guides, mixers and VCOs, cavity filters, discontinuity and coupling effects, control circuits, power dividers and phase shifters, microwave ICs, biological effects and medical applications, CAD and modeling for MMICs, directional couplers, MMIC design trends, microwave packaging and manufacturing, monolithic ICs, and solid-state devices and circuits. Also discussed are microwave and mm-wave superconducting technology, MICs for communication systems, the merging of optical and microwave technologies, microwave power transistors, ferrite devices, network measurements, advanced transmission-line structures, FET devices and circuits, field theory of IC discontinuities, active quasi-optical techniques, phased-array techniques and circuits, nonlinear CAD, sub-mm wave devices, and high power devices.

  3. Formation and microwave absorption of barium and strontium ferrite prepared by sol-gel technique

    NASA Astrophysics Data System (ADS)

    Sürig, C.; Hempel, K. A.; Bonnenberg, D.

    1993-11-01

    Ba and Sr ferrites are prepared by sol-gel technique with different Fe/Ba(Sr) ratios in the starting materials. Magnetization, coercive, and anisotropy field strength are determined depending on the heat treatment of the gel and the iron/barium(strontium) ratio in the starting material. A two-step heat treatment is used to prepare single-domain powders with high magnetization. These powders prepared by sol-gel technique show single-domain behavior with specific magnetization σS=649 A cm2/g and coercive field strength HcM=402 kA/m in the case of Ba ferrite and σS=695 A cm2/g and HcM=416 kA/m for Sr the ferrite. Al-substituted ferrites with high anisotropy field strengths are prepared additionally. Ferromagnetic resonance absorption is used to determine the anisotropy field strength and to investigate the formation process of the hexaferrite phase during the heat treatment. The beginning of hexaferrite formation occurs at annealing temperatures below 700 °C.

  4. Microwave sensors for earth resource observations in the 1980's

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr.; Harnage, M. J., Jr.

    1980-01-01

    Future trends in microwave sensing are identified with reference to the workshops organized by the Active Microwave Remote Sensing Research Program. The workshops demonstrated that (1) microwave techniques have great potential for earth observations of renewable and nonrenewable resources and (2) existing research does not adequately assess microwave sensor measurement capabilities. The need for synoptic information includes such areas as cloud-free, surface-roughness and electrical-properties data. Attention is given to applications including all-weather imaging, sensitivity to vegetation and soil-moisture conditions. Research tasks to be accomplished during the next five years are discussed.

  5. Validation of a microwave radar system for the monitoring of locomotor activity in mice

    PubMed Central

    Pasquali, Vittorio; Scannapieco, Eugenio; Renzi, Paolo

    2006-01-01

    Background The general or spontaneous motor activity of animals is a useful parameter in chronobiology. Modified motion detectors can be used to monitor locomotor activity rhythms. We modified a commercial microwave-based detection device and validated the device by recording circadian and ultradian rhythms. Methods Movements were detected by microwave radar based on the Doppler effect. The equipment was designed to detect and record simultaneously 12 animals in separate cages. Radars were positioned at the bottom of aluminium bulkheads. Animal cages were positioned above the bulkheads. The radars were connected to a computer through a digital I/O board. Results The apparatus was evaluated by several tests. The first test showed the ability of the apparatus to detect the exact frequency of the standard moving object. The second test demonstrated the stability over time of the sensitivity of the radars. The third was performed by simultaneous observations of video-recording of a mouse and radar signals. We found that the radars are particularly sensitive to activities that involve a displacement of the whole body, as compared to movement of only a part of the body. In the fourth test, we recorded the locomotor activity of Balb/c mice. The results were in agreement with published studies. Conclusion Radar detectors can provide automatic monitoring of an animal's locomotor activity in its home cage without perturbing the pattern of its normal behaviour or initiating the spurt of exploration occasioned by transfer to a novel environment. Recording inside breeding cages enables long-term studies with uninterrupted monitoring. The use of electromagnetic waves allows contactless detection and freedom from interference of external stimuli. PMID:16674816

  6. [Analysis of pulsed bioelectric activity of rabbit cerebral cortex in response to low-intensity microwave radiation].

    PubMed

    Luk'ianova, S N; Monseeva, N V

    1998-01-01

    In experiments on 22 rabbits the influence of a pulse microwave irradiation on extracellular activity of separate nervous cells of sensorimotori and occipital areas of a cortex brain is shown. The reaction could consist in activation or in braking frequency of the discharges, that was connected to frequency impulsation in an initial background. The researched mode of a microwave irradiation (1.5 GHz, duration of a pulsed-0.4 microsecond, frequency of their recurrence 1000 Hz, DFEpulsed-300 microW/sm2) had a corrigizing action.

  7. Electronic properties of superconductors studied using photo induced activation of microwave absorption (PIAMA)

    SciTech Connect

    Feenstra, B.J.; Schooveld, W.A.; Bos, C.

    1995-12-31

    Electronic properties of superconductors are contemporarily being studied using many different experimental techniques, among which infrared spectrometry, photoelectron spectroscopy and microwave cavity techniques play an important role. The data analysis, however, is complicated by the fact that in these materials the phonon-frequency range overlaps with the one in which the energy gap is expected. This problem can be circumvented by making use of two different sources, one to induce the excitations (the Free Electron Laser in Nieuwegein, The Netherlands, FELIX), and one to study the behavior of these excitations (i.e. quasiparticles). In our case the latter source is monochromatic microwave radiation, transmitted through a thin superconducting film. We measured both a conventional superconductor (NbN, T{sub c} = 17 K) and a high T{sub c} superconductor (SmBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, T{sub c} = 92 K). For NbN we observed a positive change in transmission, followed by a relaxation to a transmission smaller than the original value, after which the starting situation was restored within {approximately} 100 {mu}s. In case of SmBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, the changes persisted above T{sub c}. At very low temperatures we observed slow oscillations ({approximately} 4kHz) in the induced signal, which were absent in NbN. The long time scales can possibly be explained by the so-called bottleneck, i.e. quasiparticles excited with a lot of excess energy lose part of their energy by exciting other quasiparticles. In this case the quasiparticle lifetime is enhanced considerably. The oscillations point towards an intrinsic difference of the low energy excitations, i.e. the symmetry of the pairing.

  8. ESA activities in the use of microwaves for the remote sensing of the Earth

    NASA Technical Reports Server (NTRS)

    Maccoll, D.

    1984-01-01

    The program of activities under way in the European Space Agency (ESA) directed towards Remote Sensing of the oceans and troposphere is discussed. The initial project is the launch of a satellite named ERS-1 with a primary payload of microwave values in theee C- and Ku-bands. This payload is discussed in depth. The secondary payload includes precision location experiments and an instrument to measure sea surface temperature, which are described. The important topic of calibration is extensively discussed, and a review of activities directed towards improvements to the instruments for future satellites is presented. Some discussion of the impact of the instrument payload on the spacecraft design follows and the commitment of ESA to the provision of a service of value to the ultimate user is emphasized.

  9. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities

    PubMed Central

    Velusamy, Palaniyandi; Su, Chia-Hung; Venkat Kumar, Govindarajan; Adhikary, Shritama; Pandian, Kannaiyan; Gopinath, Subash C. B.; Chen, Yeng; Anbu, Periasamy

    2016-01-01

    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications. PMID:27304672

  10. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities.

    PubMed

    Velusamy, Palaniyandi; Su, Chia-Hung; Venkat Kumar, Govindarajan; Adhikary, Shritama; Pandian, Kannaiyan; Gopinath, Subash C B; Chen, Yeng; Anbu, Periasamy

    2016-01-01

    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications.

  11. Optimal spatial sampling techniques for ground truth data in microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Rao, R. G. S.; Ulaby, F. T.

    1977-01-01

    The paper examines optimal sampling techniques for obtaining accurate spatial averages of soil moisture, at various depths and for cell sizes in the range 2.5-40 acres, with a minimum number of samples. Both simple random sampling and stratified sampling procedures are used to reach a set of recommended sample sizes for each depth and for each cell size. Major conclusions from statistical sampling test results are that (1) the number of samples required decreases with increasing depth; (2) when the total number of samples cannot be prespecified or the moisture in only one single layer is of interest, then a simple random sample procedure should be used which is based on the observed mean and SD for data from a single field; (3) when the total number of samples can be prespecified and the objective is to measure the soil moisture profile with depth, then stratified random sampling based on optimal allocation should be used; and (4) decreasing the sensor resolution cell size leads to fairly large decreases in samples sizes with stratified sampling procedures, whereas only a moderate decrease is obtained in simple random sampling procedures.

  12. Class of backpropagation techniques for limited-angle reconstruction in microwave tomography

    SciTech Connect

    Paladhi, P. Roy; Tayebi, A.; Udpa, L.; Udpa, S.; Sinha, A.

    2015-03-31

    Filtered backpropagation (FBPP) is a well-known technique used in Diffraction Tomography (DT). For accurate reconstruction using FBPP, full 360° angular coverage is necessary. However, it has been shown that using some inherent redundancies in the projection data in a tomographic setup, accurate reconstruction is still possible with 270° coverage which is called the minimal-scan angle range. This can be done by applying weighing functions (or filters) on projection data of the object to eliminate the redundancies and accurately reconstruct the image from 270° coverage. This paper demonstrates procedures to generate many general classes of these weighing filters. These are all equivalent at 270° coverage but vary in performance at lower angular coverages and in presence of noise. This paper does a comparative analysis of different filters when angular coverage is lower than minimal-scan angle of 270°. Simulation studies have been done to find optimum weight filters for sub-minimal angular coverage (<270°)

  13. MICROWAVE TECHNOLOGY CHEMICAL SYNTHESIS APPLICATIONS

    EPA Science Inventory

    Microwave-accelerated chemical syntheses in various solvents as well as under solvent-free conditions have witnessed an explosive growth. The technique has found widespread application predominantly exploiting the inexpensive unmodified household microwave (MW) ovens although th...

  14. Research and Development on Advanced Silicon Carbide Thin Film Growth Techniques and Fabrication of High Power and Microwave Frequency Silicon Carbide-Based Device Structures

    DTIC Science & Technology

    1990-12-01

    0W " -Annual Letter Report- N,4 Research and Developmen. on Advanced Silicon Carbide Thin Film Growth Techniques and Fabrication of High Power and...Microwave Frequency Silicon Carbide -Based Device Structures Supported under Grant #N00014-88-K-0341/P00002 Office of the Chief of Naval Research Report...SUBTITLE Research and Development on Advanced S. FUNDING NUMBERS Silicon Carbide Thin Filn.Growth Technl.ques and R&T:212k003---03 Fabrication of High

  15. Effects of low power microwave radiation on biological activity of Collagenase enzyme and growth rate of S. Cerevisiae yeast

    NASA Astrophysics Data System (ADS)

    Alsuhaim, Hamad S.; Vojisavljevic, Vuk; Pirogova, E.

    2013-12-01

    Recently, microwave radiation, a type/subset of non-ionizing electromagnetic radiation (EMR) has been widely used in industry, medicine, as well as food technology and mobile communication. Use of mobile phones is rapidly growing. Four years from now, 5.1 billion people will be mobile phone users around the globe - almost 1 billion more mobile users than the 4.3 billion people worldwide using them now. Consequently, exposure to weak radiofrequency/microwave radiation generated by these devices is markedly increasing. Accordingly, public concern about potential hazards on human health is mounting [1]. Thermal effects of radiofrequency/microwave radiation are very well-known and extensively studied. Of particular interest are non-thermal effects of microwave exposures on biological systems. Nonthermal effects are described as changes in cellular metabolism caused by both resonance absorption and induced EMR and are often accompanied by a specific biological response. Non-thermal biological effects are measurable changes in biological systems that may or may not be associated with adverse health effects. In this study we studied non-thermal effects of low power microwave exposures on kinetics of L-lactate dehydrogenase enzyme and growth rate of yeast Saccharomyces Cerevisiae strains type II. The selected model systems were continuously exposed to microwave radiation at the frequency of 968MHz and power of 10dBm using the designed and constructed (custom made) Transverse Electro-Magnetic (TEM) cell [2]. The findings reveal that microwave radiation at 968MHz and power of 10dBm inhibits L-lactate dehydrogenase enzyme activity by 26% and increases significantly (15%) the proliferation rate of yeast cells.

  16. Aerospace Education Workshop Techniques and Activities

    ERIC Educational Resources Information Center

    Frizzell, Helen J.

    1977-01-01

    Outlines procedures and lists hints for planning successful workshops in aerospace education; included are possible locations, resources, orientation activities, brochures, speakers, and follow-up activities for various combinations of participants (parents, elementary school and secondary school teachers, vocational-technical oriented students,…

  17. Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation--application in methylene blue adsorption from aqueous solution.

    PubMed

    Deng, Hui; Yang, Le; Tao, Guanghui; Dai, Jiulei

    2009-07-30

    The activated carbon prepared from cotton stalk with ZnCl(2) as activation was investigated under microwave radiation. Effects on the yield and adsorption capacities of activated carbon were evaluated then, such as, microwave power, microwave radiation time and the impregnation ratio of ZnCl(2). It indicated that the optimum conditions were as follows: microwave power of 560 W, microwave radiation time of 9 min and the impregnation ratio of ZnCl(2) was 1.6g/g. Iodine number, amount of methylene blue adsorption and the yield of activated carbon prepared under optimum conditions were 972.92 mg/g, 193.50mg/g and 37.92%, respectively. Laboratory prepared activated carbons were characterized by pH(ZPC), SEM, FT-IR, S(BET) and pore structural parameters. Then they were used as adsorbent for the removal of methylene blue from aqueous solutions under varying conditions of initial concentration, carbon dosage and pH. It indicated that Langmuir isotherm was fitter than Freundlich isotherm and Temkin isotherm.

  18. Microwave permittivity and dielectric relaxation of a high surface area activated carbon

    NASA Astrophysics Data System (ADS)

    Atwater, J. E.; Wheeler, R. R., Jr.

    Carbonaceous materials are amenable to microwave heating to varying degrees. The primary indicator of susceptibility is the complex permittivity (ɛ*), of which, the real component correlates with polarization, and the imaginary term represents dielectric loss. For a given material, the complex permittivity is dependent upon both frequency and temperature. Here we report the complex permittivity of a high surface area coconut shell activated carbon which is commonly used in analytical chemistry and a wide variety of industrial separations. Associated polarization-relaxation phenomena are also characterized. Broadband measurements were made using a high temperature compatible open-ended coaxial dielectric probe at frequencies between 0.2 and 26 GHz, and across the temperature region between 24 °C and 191 °C.

  19. NASA's Potential Contributions to Avalanche Forecasting Using Active and Passive Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir

    2007-01-01

    This Candidate Solution is based on using active and passive microwave measurements acquired from NASA satellites to improve USDA (U.S. Department of Agriculture) Forest Service forecasting of avalanche danger. Regional Avalanche Centers prepare avalanche forecasts using ground measurements of snowpack and mountain weather conditions. In this Solution, range of the in situ observations is extended by adding remote sensing measurements of snow depth, snow water equivalent, and snowfall rate acquired by satellite missions that include Aqua, CloudSat, future GPM (Global Precipitation Measurement), and the proposed SCLP (Snow and Cold Land Processes). Measurements of snowpack conditions and time evolution are improved by combining the in situ and satellite observations with a snow model. Recurring snow observations from NASA satellites increase accuracy of avalanche forecasting, which helps the public and the managers of public facilities make better avalanche safety decisions.

  20. Bio-based phenols and fuel production from catalytic microwave pyrolysis of lignin by activated carbons.

    PubMed

    Bu, Quan; Lei, Hanwu; Wang, Lu; Wei, Yi; Zhu, Lei; Zhang, Xuesong; Liu, Yupeng; Yadavalli, Gayatri; Tang, Juming

    2014-06-01

    The aim of this study is to explore catalytic microwave pyrolysis of lignin for renewable phenols and fuels using activated carbon (AC) as a catalyst. A central composite experimental design (CCD) was used to optimize the reaction condition. The effects of reaction temperature and weight hourly space velocity (WHSV, h(-1)) on product yields were investigated. GC/MS analysis showed that the main chemical compounds of bio-oils were phenols, guaiacols, hydrocarbons and esters, most of which were ranged from 71% to 87% of the bio-oils depending on different reaction conditions. Bio-oils with high concentrations of phenol (45% in the bio-oil) were obtained. The calorific value analysis revealed that the high heating values (HHV) of the lignin-derived biochars were from 20.4 to 24.5 MJ/kg in comparison with raw lignin (19 MJ/kg). The reaction mechanism of this process was analyzed.

  1. Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity.

    PubMed

    Yuan, Yuan; Macquarrie, Duncan

    2015-09-20

    Sulfated polysaccharides (fucoidan) from brown seaweed Ascophyllum nodosum were extracted by microwave assisted extraction (MAE) technology. Different conditions of temperature (90-150°C), extraction time (5-30 min) were evaluated and optimal fucoidan yield was 16.08%, obtained from 120°C for 15 min's extraction. Compositional analysis, GPC, HPAEC and IR analysis were employed for characterization of extracted sulfated polysaccharides. Fucose was the main monosaccharide of fucoidan extracted at 90°C while glucuronic acid was the main monosaccharide of fucoidan extracted at 150°C. Both the molecular weight and sulfate content of extracted fucoidan increased with decreasing extraction temperature. All fucoidans exhibited antioxidant activities as measured by DPPH scavenging and reducing power, among which fucoidan extracted at 90°C was highest. This study shows that MAE is an efficient technology to extract sulfated polysaccharides from seaweed and Ascophyllum nodosum could potentially be a resource for natural antioxidants.

  2. Activation of Al2O3 passivation layers on silicon by microwave annealing

    NASA Astrophysics Data System (ADS)

    Ziegler, Johannes; Otto, Martin; Sprafke, Alexander N.; Wehrspohn, Ralf B.

    2013-11-01

    Thin aluminum oxide layers deposited on silicon by thermal atomic layer deposition can be used to reduce the electronic recombination losses by passivating the silicon surfaces. To activate the full passivation ability of such layers, a post-deposition annealing step at moderate temperatures (≈400 ∘C, duration≈30 min) is required. Such an annealing step is commonly done in an oven in air, nitrogen, or forming gas atmosphere. In this work, we investigate the ability to reduce the duration of the annealing step by heating the silicon wafer with a microwave source. The annealing time is significantly reduced to durations below 1 min while achieving effective minority carrier lifetimes similar or higher to that of conventionally oven-annealed samples.

  3. Microwave acid digestion and preconcentration neutron activation analysis of biological and diet samples for iodine.

    PubMed

    Rao, R R; Chatt, A

    1991-07-01

    A simple preconcentration neutron activation analysis (PNAA) method has been developed for the determination of low levels of iodine in biological and nutritional materials. The method involves dissolution of the samples by microwave digestion in the presence of acids in closed Teflon bombs and preconcentration of total iodine, after reduction to iodide with hydrazine sulfate, by coprecipitation with bismuth sulfide. The effects of different factors such as acidity, time for complete precipitation, and concentrations of bismuth, sulfide, and diverse ions on the quantitative recovery of iodide have been studied. The absolute detection limit of the PNAA method is 5 ng of iodine. Precision of measurement, expressed in terms of relative standard deviation, is about 5% at 100 ppb and 10% at 20 ppb levels of iodine. The PNAA method has been applied to several biological reference materials and total diet samples.

  4. A Colloquial Approach: An Active Learning Technique.

    ERIC Educational Resources Information Center

    Arce, Pedro

    1994-01-01

    Addresses the problem of the effectiveness of teaching methodologies on fundamental engineering courses such as transport phenomena. Recommends the colloquial approach, an active learning strategy, to increase student involvement in the learning process. (ZWH)

  5. Phenolic Content and Antioxidant Activity of Extracts from Whole Buckwheat (Fagopyrum esculentum Moench) With or Without Microwave Irradiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to evaluate the effectiveness of extracting phenolic compounds and antioxidant activity from buckwheat with water, 50% aqueous ethanol, or 100% ethanol using microwave irradiation or a water bath for 15 min at various temperatures (23 – 150 °C). The phenolic content of...

  6. Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics

    SciTech Connect

    Shevchenko, Vladimir F.; Freethy, Simon J.; Huang, Billy K.

    2014-08-21

    A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post-processing mode. SAMI can scan over 16 pre-programmed frequencies in the range of 10-35GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a 'passive' imaging of plasma emission and also an 'active' imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structures. Both modes of operation show good performance in fusion plasma experiments on Mega Amp Spherical Tokamak (MAST). We have obtained the first ever 2-D images of BXO mode conversion windows. With active probing, first ever turbulence velocity maps have been obtained. We present an overview of the diagnostic and discuss recent results. In contrast to quasi-optical microwave imaging systems SAMI requires neither big aperture viewing ports nor large 2-D detector arrays to achieve the desired imaging resolution. The number of effective 'pixels' of the synthesized image is proportional to the number of receiving antennas squared. Thus only a small number of optimised antennas is sufficient for the majority of applications. Possible implementation of SAMI on ITERand DEMO is discussed.

  7. Preparation of activated carbon from sugarcane bagasse by microwave assisted activation for the remediation of semi-aerobic landfill leachate.

    PubMed

    Foo, K Y; Lee, L K; Hameed, B H

    2013-04-01

    This study evaluates the sugarcane bagasse derived activated carbon (SBAC) prepared by microwave heating for the adsorptive removal of ammonical nitrogen and orthophosphate from the semi-aerobic landfill leachate. The physical and chemical properties of SBAC were examined by pore structural analysis, scanning electron microscopy, Fourier transform infrared spectroscopy and elemental analysis. The effects of adsorbent dosage, contact time and solution pH on the adsorption performance were investigated in a batch mode study at 30°C. Equilibrium data were favorably described by the Langmuir isotherm model, with a maximum monolayer adsorption capacity for ammonical nitrogen and orthophosphate of 138.46 and 12.81 mg/g, respectively, while the adsorption kinetic was best fitted to the pseudo-second-order kinetic model. The results illustrated the potential of sugarcane bagasse derived activated carbon for the adsorptive treatment of semi-aerobic landfill leachate.

  8. Application of microwave 3D SAR imaging technique for evaluation of corrosion in steel rebars embedded in cement-based structures

    NASA Astrophysics Data System (ADS)

    Kharkovsky, S.; Case, J. T.; Ghasr, M. T.; Zoughi, R.; Bae, S. W.; Belarbi, A.

    2012-05-01

    This paper presents and discusses the attributes and results of using wideband microwave 3D SAR-based imaging technique for evaluation of reinforced cement-based structures. The technique was used to detect corrosion and thinning of reinforcing steel bars and its potential was demonstrated through experiments for different bar sizes, depth of rebar locations, and spacing between rebars. The results of a limited and preliminary investigation in which thinning of rebars with and without rust in two mortar samples were obtained at three frequency bands covering the frequency range from 8.2 GHz-26.5 GHz.

  9. Research and Development on Advanced Silicon Carbide Thin Film Growth Techniques and Fabrication of High Power and Microwave Frequency Silicon Carbide-Based Device Structures

    DTIC Science & Technology

    1991-12-01

    AD-A243 531IIII!IIHUHllAlll| DTIC Annual Letter Report EL Vr DECA S C Research and Development on Advanced Silicon Carbide Thin Film Growth...Techniques and Fabrication of High Power and Microwave Frequency Silicon Carbide -Based Device Structures Supported under Grant #N00014-88-K-0341/P00002 Office...Letter l/,1- 2 3 lj9 l 4. TITLE AND SUBTITLE Research and Develp~nt on Advanced S. FUNDING NUMBERS Silicon Carbide Thin Film .Growth Techniques and R&T

  10. 1800MHz Microwave Induces p53 and p53-Mediated Caspase-3 Activation Leading to Cell Apoptosis In Vitro

    PubMed Central

    Xing, Fuqiang; Zhan, Qiuqiang; He, Yiduo; Cui, Jiesheng; He, Sailing; Wang, Guanyu

    2016-01-01

    Recent studies have reported that exposure of mammalian cells to microwave radiation may have adverse effects such as induction of cell apoptosis. However, the molecular mechanisms underlying microwave induced mammalian cell apoptosis are not fully understood. Here, we report a novel mechanism: exposure to 1800MHz microwave radiation induces p53-dependent cell apoptosis through cytochrome c-mediated caspase-3 activation pathway. We first measured intensity of microwave radiation from several electronic devices with an irradiation detector. Mouse NIH/3T3 and human U-87 MG cells were then used as receivers of 1800MHz electromagnetic radiation (EMR) at a power density of 1209 mW/m2. Following EMR exposure, cells were analyzed for viability, intracellular reactive oxygen species (ROS) generation, DNA damage, p53 expression, and caspase-3 activity. Our analysis revealed that EMR exposure significantly decreased viability of NIH/3T3 and U-87 MG cells, and increased caspase-3 activity. ROS burst was observed at 6 h and 48 h in NIH/3T3 cells, while at 3 h in U-87 MG cells. Hoechst 33258 staining and in situ TUNEL assay detected that EMR exposure increased DNA damage, which was significantly restrained in the presence of N-acetyl-L-cysteine (NAC, an antioxidant). Moreover, EMR exposure increased the levels of p53 protein and p53 target gene expression, promoted cytochrome c release from mitochondrion, and increased caspase-3 activity. These events were inhibited by pretreatment with NAC, pifithrin-α (a p53 inhibitor) and caspase inhibitor. Collectively, our findings demonstrate, for the first time, that 1800MHz EMR induces apoptosis-related events such as ROS burst and more oxidative DNA damage, which in turn promote p53-dependent caspase-3 activation through release of cytochrome c from mitochondrion. These findings thus provide new insights into physiological mechanisms underlying microwave-induced cell apoptosis. PMID:27689798

  11. 1800MHz Microwave Induces p53 and p53-Mediated Caspase-3 Activation Leading to Cell Apoptosis In Vitro.

    PubMed

    Xing, Fuqiang; Zhan, Qiuqiang; He, Yiduo; Cui, Jiesheng; He, Sailing; Wang, Guanyu

    Recent studies have reported that exposure of mammalian cells to microwave radiation may have adverse effects such as induction of cell apoptosis. However, the molecular mechanisms underlying microwave induced mammalian cell apoptosis are not fully understood. Here, we report a novel mechanism: exposure to 1800MHz microwave radiation induces p53-dependent cell apoptosis through cytochrome c-mediated caspase-3 activation pathway. We first measured intensity of microwave radiation from several electronic devices with an irradiation detector. Mouse NIH/3T3 and human U-87 MG cells were then used as receivers of 1800MHz electromagnetic radiation (EMR) at a power density of 1209 mW/m2. Following EMR exposure, cells were analyzed for viability, intracellular reactive oxygen species (ROS) generation, DNA damage, p53 expression, and caspase-3 activity. Our analysis revealed that EMR exposure significantly decreased viability of NIH/3T3 and U-87 MG cells, and increased caspase-3 activity. ROS burst was observed at 6 h and 48 h in NIH/3T3 cells, while at 3 h in U-87 MG cells. Hoechst 33258 staining and in situ TUNEL assay detected that EMR exposure increased DNA damage, which was significantly restrained in the presence of N-acetyl-L-cysteine (NAC, an antioxidant). Moreover, EMR exposure increased the levels of p53 protein and p53 target gene expression, promoted cytochrome c release from mitochondrion, and increased caspase-3 activity. These events were inhibited by pretreatment with NAC, pifithrin-α (a p53 inhibitor) and caspase inhibitor. Collectively, our findings demonstrate, for the first time, that 1800MHz EMR induces apoptosis-related events such as ROS burst and more oxidative DNA damage, which in turn promote p53-dependent caspase-3 activation through release of cytochrome c from mitochondrion. These findings thus provide new insights into physiological mechanisms underlying microwave-induced cell apoptosis.

  12. Aircraft active and passive microwave validation of sea ice concentration from the Defense Meteorological Satellite Program special sensor microwave imager

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Crawford, J. P.; Drinkwater, M. R.; Eppler, D. T.; Farmer, L. D.; Jentz, R. R.; Wackerman, C. C.

    1991-01-01

    Results are presented of a series of coordinate special sensor microwave imager (SSM/I) underflights that were carried out during March 1988 with NASA and Navy aircraft over portions of the Bering, Beaufort, and Chukchi seas. NASA DC-8 AMMR data from Bering Sea ice edge crossings were used to verify that the ice edge location, defined as the position of the initial ice bands encountered by the aircraft, corresponds to an SSM/I ice concentration of 15 percent. Direct comparison of SSM/I and aircraft ice concentrations for regions having at least 80 percent aircraft coverage reveals that the SSM/I total ice concentration is lower on average by 2.4 +/-2.4 percent. For multiyear ice, NASA and Navy flights across the Beaufort and Chukchi seas show that the SSM/I algorithm correctly maps the large-scale distribution of multiyear ice: the zone of first-year ice off the Alaskan coast, the large areas of mixed first-year and multiyear ice, and the region of predominantly multiyear ice north of the Canadian archipelago.

  13. Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW.

    PubMed

    Li, Wei; Peng, Jinhui; Zhang, Libo; Yang, Kunbin; Xia, Hongying; Zhang, Shimin; Guo, Sheng-hui

    2009-02-01

    Experiments to prepare activated carbon by microwave heating indicated that microwave energy can decrease reaction temperature, save the energy and shorten processing time remarkably compared to conventional heating, owing to its internal and volumetric heating effects. The above results were based on the laboratory-scale experiments. It is desirable to develop a pilot-scale microwave heating equipment and investigate the parameters with the aim of technological industrialization. In the present study, the components and features of the self-invented equipment were introduced. The temperature rise curves of the chars were obtained. Iodine numbers of the activated carbons all exceed the state standard of China under the following conditions: 25 kg/h charging rate, 0.42 rev/min turning rate of ceramic tube, flow rate of steam at pressure of 0.01 MPa and 40 kW microwave heating power after 60 kW pre-activation for 30 min. Pore structure of the sample obtained at a time point of 46 h, which contained BET surface area, and pore size distributions of micropores and total pores, was tested by nitrogen adsorption at 77K.

  14. Using microwave heating to improve the desorption efficiency of high molecular weight VOC from beaded activated carbon.

    PubMed

    Fayaz, Mohammadreza; Shariaty, Pooya; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2015-04-07

    Incomplete regeneration of activated carbon loaded with organic compounds results in heel build-up that reduces the useful life of the adsorbent. In this study, microwave heating was tested as a regeneration method for beaded activated carbon (BAC) loaded with n-dodecane, a high molecular weight volatile organic compound. Energy consumption and desorption efficiency for microwave-heating regeneration were compared with conductive-heating regeneration. The minimum energy needed to completely regenerate the adsorbent (100% desorption efficiency) using microwave regeneration was 6% of that needed with conductive heating regeneration, owing to more rapid heating rates and lower heat loss. Analyses of adsorbent pore size distribution and surface chemistry confirmed that neither heating method altered the physical/chemical properties of the BAC. Additionally, gas chromatography (with flame ionization detector) confirmed that neither regeneration method detectably altered the adsorbate composition during desorption. By demonstrating improvements in energy consumption and desorption efficiency and showing stable adsorbate and adsorbent properties, this paper suggests that microwave heating is an attractive method for activated carbon regeneration particularly when high-affinity VOC adsorbates are present.

  15. Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW

    SciTech Connect

    Li Wei; Peng Jinhui Zhang Libo; Yang Kunbin; Xia Hongying; Zhang Shimin; Guo Shenghui

    2009-02-15

    Experiments to prepare activated carbon by microwave heating indicated that microwave energy can decrease reaction temperature, save the energy and shorten processing time remarkably compared to conventional heating, owing to its internal and volumetric heating effects. The above results were based on the laboratory-scale experiments. It is desirable to develop a pilot-scale microwave heating equipment and investigate the parameters with the aim of technological industrialization. In the present study, the components and features of the self-invented equipment were introduced. The temperature rise curves of the chars were obtained. Iodine numbers of the activated carbons all exceed the state standard of China under the following conditions: 25 kg/h charging rate, 0.42 rev/min turning rate of ceramic tube, flow rate of steam at pressure of 0.01 MPa and 40 kW microwave heating power after 60 kW pre-activation for 30 min. Pore structure of the sample obtained at a time point of 46 h, which contained BET surface area, and pore size distributions of micropores and total pores, was tested by nitrogen adsorption at 77 K.

  16. Effect of Activating Agent on the Preparation of Bamboo-Based High Surface Area Activated Carbon by Microwave Heating

    NASA Astrophysics Data System (ADS)

    Xia, Hongying; Wu, Jian; Srinivasakannan, Chandrasekar; Peng, Jinhui; Zhang, Libo

    2016-06-01

    The present work attempts to convert bamboo into a high surface area activated carbon via microwave heating. Different chemical activating agents such as KOH, NaOH, K2CO3 and Na2CO3 were utilized to identify a most suitable activating agent. Among the activating agents tested KOH was found to generate carbon with the highest porosity and surface area. The effect of KOH/C ratio on the porous nature of the activated carbon has been assessed. An optimal KOH/C ratio of 4 was identified, beyond which the surface area as well as the pore volume were found to decrease. At the optimized KOH/C ratio the surface area and the pore volume were estimated to be 3,441 m2/g and 2.093 ml/g, respectively, with the significant proportion of which being microporous (62.3%). Activated carbon prepared under the optimum conditions was further characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Activated carbons with so high surface area and pore volume are very rarely reported, which could be owed to the nature of the precursor and the optimal conditions of mixture ratio adopted in the present work.

  17. Opportunities to Create Active Learning Techniques in the Classroom

    ERIC Educational Resources Information Center

    Camacho, Danielle J.; Legare, Jill M.

    2015-01-01

    The purpose of this article is to contribute to the growing body of research that focuses on active learning techniques. Active learning techniques require students to consider a given set of information, analyze, process, and prepare to restate what has been learned--all strategies are confirmed to improve higher order thinking skills. Active…

  18. Antioxidant activity in barley (Hordeum Vulgare L.) grains roasted in a microwave oven under conditions optimized using response surface methodology.

    PubMed

    Omwamba, Mary; Hu, Qiuhui

    2010-01-01

    Microwave processing and cooking of foods is a recent development that is gaining momentum in household as well as large-scale food applications. Barley contains phenol compounds which possess antioxidant activity. In this study the microwave oven roasting condition was optimized to obtain grains with high antioxidant activity measured as the ability to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical. Antioxidant activity of grains roasted under optimum conditions was assessed based on DPPH radical scavenging activity, reducing power and inhibition of oxidation in linoleic acid system. The optimum condition for obtaining roasted barley with high antioxidant activity (90.5% DPPH inhibition) was found to be at 600 W microwave power, 8.5 min roasting time, and 61.5 g or 2 layers of grains. The roasting condition influenced antioxidant activity both individually and interactively. Statistical analysis showed that the model was significant (P < 0.0001). The acetone extract had significantly high inhibition of lipid peroxidation and DPPH radical scavenging activity compared to the aqueous extract and alpha-tocopherol. The reducing power of acetone extracts was not significantly different from alpha-tocopherol. The acetone extract had twice the amount of phenol content compared to the aqueous extract indicating its high extraction efficiency. GC-MS analysis revealed the presence of phenol acids, amino phenols, and quinones. The aqueous extract did not contain 3,4-dihydroxybenzaldehyde and 4-hydroxycinnamic acid which are phenol compounds reported to contribute to antioxidant activity in barley grain.

  19. Estimation of oceanic rainfall using passive and active measurements from SeaWinds spaceborne microwave sensor

    NASA Astrophysics Data System (ADS)

    Ahmad, Khalil Ali

    The Ku band microwave remote sensor, SeaWinds, was developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Two identical SeaWinds instruments were launched into space. The first was flown onboard NASA QuikSCAT satellite which has been orbiting the Earth since June 1999, and the second instrument flew onboard the Japanese Advanced Earth Observing Satellite II (ADEOS-II) from December 2002 till October 2003 when an irrecoverable solar panel failure caused a premature end to the ADEOS-II satellite mission. SeaWinds operates at a frequency of 13.4 GHz, and was originally designed to measure the speed and direction of the ocean surface wind vector by relating the normalized radar backscatter measurements to the near surface wind vector through a geophysical model function (GMF). In addition to the backscatter measurement capability, SeaWinds simultaneously measures the polarized radiometric emission from the surface and atmosphere, utilizing a ground signal processing algorithm known as the QuikSCAT/ SeaWinds Radiometer (QRad/SRad). This dissertation presents the development and validation of a mathematical inversion algorithm that combines the simultaneous active radar backscatter and the passive microwave brightness temperatures observed by the SeaWinds sensor to retrieve the oceanic rainfall. The retrieval algorithm is statistically based, and has been developed using collocated measurements from SeaWinds, the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) rain rates, and Numerical Weather Prediction (NWP) wind fields from the National Centers for Environmental Prediction (NCEP). The oceanic rain is retrieved on a spacecraft wind vector cell (WVC) measurement grid that has a spatial resolution of 25 km. To evaluate the accuracy of the retrievals, examples of the passive-only, as well as the combined active/passive rain estimates from SeaWinds are presented, and comparisons are made with the standard

  20. Flow cytometric allergy diagnosis: basophil activation techniques.

    PubMed

    Bridts, Chris H; Sabato, Vito; Mertens, Christel; Hagendorens, Margo M; De Clerck, Luc S; Ebo, Didier G

    2014-01-01

    The basis of flow cytometric allergy diagnosis is quantification of changes in expression of basophilic surface membrane markers (Ebo et al., Clin Exp Allergy 34: 332-339, 2004). Upon encountering specific allergens recognized by surface receptor FcεRI-bound IgE, basophils not only secrete and generate quantifiable bioactive mediators but also up-regulate the expression of different markers (e.g., CD63, CD203c) which can be detected by multicolor flow cytometry using specific monoclonal antibodies (Ebo et al., Cytometry B Clin Cytom 74: 201-210, 2008). Here, we describe two flow cytometry-based protocols which allow detection of surface marker activation (Method 1) and changes in intragranular histamine (Method 2), both reflecting different facets of basophil activation.

  1. Technique for surface oxidation of activated carbon

    SciTech Connect

    Sircar, S.; Golden, T.C.

    1987-10-27

    A method of activating a carbon adsorbent is described, which comprises oxidizing the surface of the carbon adsorbent with a mild oxidizing acid in the presence of a metal oxidation catalyst at an elevated temperature and boiling the mixture of the carbon adsorbent, mild oxidizing acid and metal oxidation catalyst to dryness. Then rinse the surface oxidizing carbon adsorbent with water; and dry the rinsed surface oxidized carbon adsorbent. In a process for the removal of water or carbon dioxide from a gas stream containing water or carbon dioxide of the type wherein the gas stream containing water or carbon dioxide is contacted with a solid phase adsorbent under pressure-swing adsorption or thermal-swing adsorption processing conditions, the improvement is described comprising utilizing an adsorbent produced by the activation of a carbon adsorbent. The activation comprises oxidizing the surface of the carbon adsorbent with a mold oxidizing acid in the presence of a metal oxidation catalyst at an elevated temperature and boiling the mixture of the carbon adsorbent, mild oxidizing acid and metal oxidation catalyst to dryness. Then rinse the surface oxidized carbon adsorbent with water; and dry the rinsed surface oxidized carbon adsorbent.

  2. Microwave and Millimeter Wave Imaging of the Space Shuttle External Fuel Tank Spray on Foam Insulation (SOFI) Using Synthetic Aperture Focusing Techniques (SAFT)

    NASA Astrophysics Data System (ADS)

    Case, J. T.; Robbins, J.; Kharkovsky, S.; Hepburn, F.; Zoughi, R.

    2006-03-01

    The Space Shuttle Columbia's catastrophic failure is thought to have been caused by a dislodged piece of external tank spray on foam insulation (SOFI) striking the left wing of the orbiter causing significant damage to some of the reinforced carbon/carbon leading edge wing panels. Microwave and millimeter wave nondestructive evaluation methods have shown great potential for inspecting SOFI for the purpose of detecting anomalies such as small air voids that may cause separation of the SOFI from the external tank during a launch. These methods are capable of producing relatively high-resolution images of the interior of SOFI particularly when advanced imaging algorithms are incorporated into the overall system. To this end, synthetic aperture focusing techniques (SAFT) are being developed. This paper presents some of the preliminary results of this investigation using SAFT-based methods and microwave holography at relatively low frequencies illustrating their potential capabilities for operation at millimeter wave frequencies.

  3. Microwave and Millimeter Wave Imaging of the Space Shuttle External Fuel Tank Spray on Foam Insulation (SOFI) using Synthetic Aperture Focusing Techniques (SAFT}

    NASA Technical Reports Server (NTRS)

    Case, J. T.; Robbins, J.; Kharkivskiy, S.; Hepburn, F.; Zoughi, R.

    2005-01-01

    The Space Shuttle Columbia s catastrophic failure is thought to have been caused by a dislodged piece of external tank spray on foam insulation (SOFI) striking the left wing of the orbiter causing significant damage to some of the reinforced carbodcarbon leading edge wing panels. Microwave and millimeter wave nondestructive evaluation methods have shown great potential for inspecting SOFI for the purpose of detecting anomalies such as small air voids that may cause separation of the SOFI from the external tank during a launch. These methods are capable of producing relatively high-resolution images of the interior of SOFI particularly when advanced imaging algorithms are incorporated into the overall system. To this end, synthetic aperture focusing techniques (SAFT) are being developed. This paper presents some of the preliminary results of this investigation using SAFT-based methods and microwave holography at relatively low frequencies illustrating their potential capabilities for operation at millimeter wave frequencies.

  4. Quaternized Carboxymethyl Chitosan-Based Silver Nanoparticles Hybrid: Microwave-Assisted Synthesis, Characterization and Antibacterial Activity

    PubMed Central

    Huang, Siqi; Wang, Jing; Zhang, Yang; Yu, Zhiming; Qi, Chusheng

    2016-01-01

    A facile, efficient, and eco-friendly approach for the preparation of uniform silver nanoparticles (Ag NPs) was developed. The synthesis was conducted in an aqueous medium exposed to microwave irradiation for 8 min, using laboratory-prepared, water-soluble quaternized carboxymethyl chitosan (QCMC) as a chemical reducer and stabilizer and silver nitrate as the silver source. The structure of the prepared QCMC was characterized using Fourier transform infrared (FT-IR) and 1H nuclear magnetic resonance (NMR). The formation, size distribution, and dispersion of the Ag NPs in the QCMC matrix were determined using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-Vis), transmission electron microscopy (TEM), and field emission scanning electron microscope (FESEM) analysis, and the thermal stability and antibacterial properties of the synthesized QCMC-based Ag NPs composite (QCMC-Ag) were also explored. The results revealed that (1) QCMC was successfully prepared by grafting quaternary ammonium groups onto carboxymethyl chitosan (CMC) chains under microwave irradiation in water for 90 min and this substitution appeared to have occurred at -NH2 sites on C2 position of the pyranoid ring; (2) uniform and stable spherical Ag NPs could be synthesized when QCMC was used as the reducing and stabilizing agent; (3) Ag NPs were well dispersed in the QCMC matrix with a narrow size distribiution in the range of 17–31 nm without aggregation; and (4) due to the presence of Ag NPs, the thermal stability and antibacterial activity of QCMC-Ag were dramatically improved relative to QCMC. PMID:28335246

  5. Wave Correlation Effects in Active Microwave Remote Sensing of the Environment.

    NASA Astrophysics Data System (ADS)

    Khadr, Nagi Mahmoud

    This study examines the wave correlation effects that arise in active microwave remote sensing of the environment. These correlation effects, or coherent interference effects, are not accounted for by the regular phenomenological transport and radar equations, in which intensities, as a rule, are added incoherently. In particular, two types of correlation effects are examined: those associated with the medium and those associated with the source. The study method is the analytical wave approach to propagation and scattering from random media. This entails using Maxwell's equations to arrive at expressions for the first and second moments of the field. Unlike previous studies, however, in which plane wave incidence is assumed, here the radar is directly incorporated into the analytical wave formulation, and the antenna fields replaced via their plane wave representations. In this way, analysis of both the medium and source correlation effects on a per plane wave basis becomes a straightforward matter. The medium correlation effects are responsible for backscatter enhancement. Although the enhancement effect has been studied before on numerous occasions, careful characterization of the enhancement for microwave scattering from environmental scenes, such as vegetation canopies, has been lacking. The study at hand therefore fills this void and, in addition, quantifies the influence of this enhancement on phase difference statistics, a new and potentially important environmental remote sensing tool. The source correlation effects arise as a result of both the nature of the source and the geometry of the particular problem. By including these effects, a more general expression than the radar equation is obtained analytically. Quantitative examples show that, under certain circumstances, the results of this general expression deviate substantially from the results provided by the radar equation. This finding verifies the importance of considering source correlation

  6. Directional spectra of ocean waves from microwave backscatter: A physical optics solution with application to the short-pulse and two-frequency measurement techniques

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1979-01-01

    Two simple microwave radar techniques that are potentially capable of providing routine satellite measurements of the directional spectrum of ocean waves were developed. One technique, the short pulse technique, makes use of very short pulses to resolve ocean surface wave contrast features in the range direction; the other technique, the two frequency correlation technique makes use of coherency in the transmitted waveform to detect the large ocean wave contrast modulation as a beat or mixing frequency in the power backscattered at two closely separated microwave frequencies. A frequency domain analysis of the short pulse and two frequency systems shows that the two measurement systems are essentially duals; they each operate on the generalized (three frequency) fourth-order statistical moment of the surface transfer function in different, but symmetrical ways, and they both measure the same directional contrast modulation spectrum. A three dimensional physical optics solution for the fourth-order moment was obtained for backscatter in the near vertical, specular regime, assuming Gaussian surface statistics.

  7. Techniques for Microwave Imaging.

    DTIC Science & Technology

    1981-01-18

    Synthetic Aperture Forming Process ...... ............... .3-17 3-14. Geometry for Sampling Received Field Along a Circular Aperture .... ......... 3-19 iv...CONTENTS (Continued) Page FIGURES (Continued) 3-15. Circular Aperture Focused at Object Center ...... ................ 3-21 3-16. Geometry of Synthetic...irradiation. This allows the synthesis of a circular aperture which surrounds the object and results in a high degree of resolution. The process

  8. Design of Controlled Release Non-erodible Polymeric Matrix Tablet Using Microwave Oven-assisted Sintering Technique.

    PubMed

    Patel, Dm; Patel, Bk; Patel, Ha; Patel, Cn

    2011-07-01

    The objective of the present study was to evaluate the effect of sintering condition on matrix formation and subsequent drug release from polymer matrix tablet for controlled release. The present study highlights the use of a microwave oven for the sintering process in order to achieve more uniform heat distribution with reduction in time required for sintering. We could achieve effective sintering within 8 min which is very less compared to conventional hot air oven sintering. The tablets containing the drug (propranolol hydrochloride) and sintering polymer (eudragit S-100) were prepared and kept in a microwave oven at 540 watt, 720 watt and 900 watt power for different time periods for sintering. The sintered tablets were evaluated for various tablet characteristics including dissolution study. Tablets sintered at 900 watt power for 8 min gave better dissolution profile compared to others. We conclude that microwave oven sintering is better than conventional hot air oven sintering process in preparation of controlled release tablets.

  9. Improving the biogas production performance of municipal waste activated sludge via disperser induced microwave disintegration.

    PubMed

    Kavitha, S; Rajesh Banu, J; Vinoth Kumar, J; Rajkumar, M

    2016-10-01

    In this study, the influence of disperser induced microwave pretreatment was investigated to analyze the proficiency of floc disruption on subsequent disintegration and biodegradability process. Initially, the flocs in the sludge was disrupted through disperser at a specific energy input of 25.3kJ/kgTS. The upshot of the microwave disintegration presents that the solids reduction and solubilization of floc disrupted (disperser induced microwave pretreated) sludge was found to be 17.33% and 22% relatively greater than that achieved in microwave pretreated (9.3% and 16%) sludge alone. The biodegradability analysis, affords an evaluation of parameter confidence and correlation determination. The eventual biodegradability of microwave pretreated, and floc disrupted sludges were computed to be 0.15(gCOD/gCOD) and 0.28(gCOD/gCOD), respectively. An economic assessment of this study offers a positive net profit of about 104.8USD/ton of sludge in floc disrupted sample.

  10. Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method.

    PubMed

    Hong, Xuesen; Wen, Junjie; Xiong, Xuhua; Hu, Yongyou

    2016-03-01

    Silver nanoparticles (AgNPs) are used as sustained-release bactericidal agents for water treatment. Among the physicochemical characteristics of AgNPs, shape is an important parameter relevant to the antibacterial activity. Three typically shaped AgNPs, nanocubes, nanospheres, and nanowires, were prepared via a microwave-assisted method and characterized by TEM, UV-vis, and XRD. The antibacterial activity of AgNPs was determined by OD growth curves tests, MIC tests, and cell viability assay against Escherichia coli. The interaction between AgNPs and bacterial cells was observed by TEM. The results showed that the three differently shaped AgNPs were nanoscale, 55 ± 10 nm in edge length for nanocubes, 60 ± 15 nm in diameter for nanospheres, 60 ± 10 nm in diameter and 2-4 μm in length for nanowires. At the bacterial concentration of 10(4) CFU/mL, the MIC of nanocubes, nanospheres, and nanowires were 37.5, 75, and 100 μg/mL, respectively. Due to the worst contact with bacteria, silver nanowires exhibited the weakest antibacterial activity compared with silver nanocubes and silver nanospheres. Besides, silver nanocubes mainly covered by {100} facets showed stronger antibacterial activity than silver nanospheres covered by {111} facets. It suggests that the shape effect on the antibacterial activity of AgNPs is attributed to the specific surface areas and facets reactivity; AgNPs with larger effective contact areas and higher reactive facets exhibit stronger antibacterial activity.

  11. Design of a microwave calorimeter for the microwave tokamak experiment

    SciTech Connect

    Marinak, M. )

    1988-10-07

    The initial design of a microwave calorimeter for the Microwave Tokamak Experiment is presented. The design is optimized to measure the refraction and absorption of millimeter rf microwaves as they traverse the toroidal plasma of the Alcator C tokamak. Techniques utilized can be adapted for use in measuring high intensity pulsed output from a microwave device in an environment of ultra high vacuum, intense fields of ionizing and non-ionizing radiation and intense magnetic fields. 16 refs.

  12. Solvent-free microwave extraction of essential oil from Dryopteris fragrans and evaluation of antioxidant activity.

    PubMed

    Li, Xiao-Juan; Wang, Wei; Luo, Meng; Li, Chun-Ying; Zu, Yuan-Gang; Mu, Pan-Song; Fu, Yu-Jie

    2012-07-15

    Solvent-free microwave extraction (SFME) of the essential oil from Dryopteris fragrans and its antioxidant activity were investigated. A central composite design combined with response surface methodology was applied to study the influences of extraction time, irradiation power and humidity (proportion of water pretreatment). A maximal extraction yield of 0.33% was achieved under optimal conditions of extraction time 34 min, irradiation power 520 W and humidity 51%. Sixteen compounds, representing 89.65% of the oil, were identified, of which the major ones, (1R,4S,11R)-4,6,6,11-tetramethyltricyclo[5.4.0.0(4,8)]undecan-1-ol (30.49%), 1R,4S,7S,11R-2,2,4,8-tetramethyltricyclo[5.3.1.0(4,11)]undec-8-ene (22.91%) and, 1,4,4a,5,6,7,8,8a-octahydro-2,5,5,8a-tetramethyl-1-naphthalenemethanol (15.11%), accounted for 68.51% of the oil. The antioxidant activity of the essential oil was assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH), β-carotene/linoleic acid, and reducing power assay, the IC50 values were 0.19, 0.09 and 0.18 mg/mL, respectively. All these results suggest that SFME represents an excellent alternative protocol for production of essential oils from plant materials.

  13. Enhanced photocatalytic activity of ZnO-graphene nanocomposites prepared by microwave synthesis

    NASA Astrophysics Data System (ADS)

    Herring, Natalie P.; Almahoudi, Serial H.; Olson, Chelsea R.; El-Shall, M. Samy

    2012-12-01

    This work reports a simple one-step synthesis of ZnO nanopyramids supported on reduced graphene oxide (RGO) nanosheets using microwave irradiation (MWI) of zinc acetate and GO in the presence of a mixture of oleic acid and oleylamine. The rapid decomposition of zinc acetate by MWI in the presence of the mixture of oleic acid and oleylamine results in the formation of hexagonal ZnO nanopyramids. GO has a high affinity for absorbing MWI, which results in a high local heating effect around the GO nanosheets and facilitates the reduction of GO by the oleylamine. The RGO nanosheets act as heterogeneous surface sites for the nucleation and growth of the ZnO nanopyramids. Using ligand exchange, the ZnO-RGO nanocomposites can be dispersed in an aqueous medium, thus allowing their use as photocatalysts for the degradation of the malachite green dye in water. The ZnO-RGO nanocomposites show enhanced photocatalytic activity for the degradation of the dye over the unsupported ZnO nanopyramids. The enhanced activity is attributed to efficient charge transfer of the photogenerated electrons in the conduction band of ZnO to graphene. This enhances the oxidative pathway of the holes generated in the valence band of ZnO which can effectively lead to the degradation and mineralization of the malachite green. The ZnO nanopyramids supported on RGO could have improved performance in other photocatalytic reactions and also in solar energy conversion.

  14. Classification methods for monitoring Arctic sea ice using OKEAN passive/active two-channel microwave data

    USGS Publications Warehouse

    Belchansky, Gennady I.; Douglas, David C.

    2000-01-01

    This paper presents methods for classifying Arctic sea ice using both passive and active (2-channel) microwave imagery acquired by the Russian OKEAN 01 polar-orbiting satellite series. Methods and results are compared to sea ice classifications derived from nearly coincident Special Sensor Microwave Imager (SSM/I) and Advanced Very High Resolution Radiometer (AVHRR) image data of the Barents, Kara, and Laptev Seas. The Russian OKEAN 01 satellite data were collected over weekly intervals during October 1995 through December 1997. Methods are presented for calibrating, georeferencing and classifying the raw active radar and passive microwave OKEAN 01 data, and for correcting the OKEAN 01 microwave radiometer calibration wedge based on concurrent 37 GHz horizontal polarization SSM/I brightness temperature data. Sea ice type and ice concentration algorithms utilized OKEAN's two-channel radar and passive microwave data in a linear mixture model based on the measured values of brightness temperature and radar backscatter, together with a priori knowledge about the scattering parameters and natural emissivities of basic sea ice types. OKEAN 01 data and algorithms tended to classify lower concentrations of young or first-year sea ice when concentrations were less than 60%, and to produce higher concentrations of multi-year sea ice when concentrations were greater than 40%, when compared to estimates produced from SSM/I data. Overall, total sea ice concentration maps derived independently from OKEAN 01, SSM/I, and AVHRR satellite imagery were all highly correlated, with uniform biases, and mean differences in total ice concentration of less than four percent (sd<15%).

  15. Effect of ultrasonic and microwave disintegration on physico-chemical and biodegradation characteristics of waste-activated sludge.

    PubMed

    Doğruel, Serdar; Özgen, Aslı Sedem

    2017-04-01

    The purpose of this study was to investigate the effect of ultrasonic and microwave disintegration on physico-chemical and biodegradability properties of waste-activated sludge (WAS) from a municipal wastewater treatment plant. Another aim was to carry out particle size distribution (PSD) analysis as an integral component of sludge characterization to highlight the transformation mechanisms involved in pretreatment processes and better understand the biodegradation patterns of sonicated and irradiated WAS liquids examined by means of respirometric measurements. Various combinations of sonication and microwave irradiation parameters were applied to optimize operating conditions. The optimum ultrasonic density was determined as 1.5 W/mL, and energy dosages lower than 30,000 kJ/kg TS resulted in a fairly linear increase in the soluble chemical oxygen demand (SCOD) release. An irradiation time of 10 min and a temperature of 175°C were selected as the optimum microwave pretreatment conditions for sludge liquefaction. The most apparent impact of ultrasonication on the PSD of COD was the shifting of the peak at the particulate fraction (>1600 nm) toward the lowest size range (<2 nm). Microwave heating at the selected experimental conditions and ultrasonic pretreatment at 30,000 kJ/kg TS exhibited comparable size distribution and biodegradation characteristics to those of domestic sewage.

  16. Microwave-swing adsorption to capture and recover vapors from air streams with activated carbon fiber cloth.

    PubMed

    Hashisho, Zaher; Rood, Mark; Botich, Leon

    2005-09-01

    Adsorption with regeneration is a desirable means to control the emissions of organic vapors such as hazardous air pollutants (HAPs) and volatile organic compounds (VOCs) from air streams as it allows for capture, recovery, and reuse of those VOCs/HAPS. Integration of activated-carbon fiber-cloth (ACFC) adsorbent with microwave regeneration provides promise as a new adsorption/ regeneration technology. This research investigates the feasibility of using microwaves to regenerate ACFC as part of a process for capture and recovery of organic vapors from gas streams. A bench-scale fixed-bed microwave-swing adsorption (MSA) system was built and tested for adsorption of water vapor, methyl ethyl ketone (MEK), and tetrachloroethylene (PERC) from an airstream and then recovery of those vapors with microwave regeneration. The electromagnetic heating behavior of dry and vapor-saturated ACFC was also characterized. The MSA system successfully adsorbed organic vapors from the airstreams, allowed for rapid regeneration of the ACFC cartridge, and recovered the water and organic vapors as liquids.

  17. Microwave Ovens

    MedlinePlus

    ... Emitting Products Radiation-Emitting Products and Procedures Home, Business, and Entertainment Products Microwave ... for Consumers Laws, Regulations & Standards Industry Guidance Other Resources Description Microwave ...

  18. Microwave-assisted digestion using nitric acid for heavy metals and sulfated ash testing in active pharmaceutical ingredients.

    PubMed

    Pluhácek, T; Hanzal, J; Hendrych, J; Milde, D

    2016-04-01

    The monitoring of inorganic impurities in active pharmaceutical ingredients plays a crucial role in the quality control of the pharmaceutical production. The heavy metals and residue on ignition/sulfated ash methods employing microwave-assisted digestion with concentrated nitric acid have been demonstrated as alternatives to inappropriate compendial methods recommended in United States Pharmacopoeia (USP) and European Pharmacopoeia (Ph. Eur.). The recoveries using the heavy metals method ranged between 89% and 122% for nearly all USP and Ph. Eur. restricted elements as well as the recoveries of sodium sulfate spikes were around 100% in all tested matrices. The proposed microwave-assisted digestion method allowed simultaneous decomposition of 15 different active pharmaceutical ingredients with sample weigh up to 1 g. The heavy metals and sulfated ash procedures were successfully applied to the determination of heavy metals and residue on ignition/sulfated ash content in mycophenolate mofetil, nicergoline and silymarin.

  19. Microwave-assisted synthesis and characterization of optically active poly (ester-imide)s incorporating L-alanine.

    PubMed

    Zahmatkesh, Saeed; Hajipour, Abdol R

    2010-04-01

    Pyromellitic dianhydride (1) was reacted with L-alanine (2) to result [N,N'-(pyromellitoyl)-bis-L-alanine diacid] (3). This compound (3) was converted to N,N'-(pyromellitoyl)-bis-L-alanine diacyl chloride (4) by reaction with thionyl chloride. The microwave-assisted polycondensation of this diacyl chloride (4) with polyethyleneglycol-diol (PEG-200) and/or three synthetic aromatic diols furnish a series of new PEIs and Co-PEIs in a laboratory microwave oven (Milestone). The resulting polymers and copolymers have inherent viscosities in the range of 0.31-0.53 dl g(-1). These polymers are optically active, thermally stable and soluble in polar aprotic solvents such as DMF, DMSO, NMP, DMAc, and sulfuric acid. All of the above polymers were fully characterized by IR spectroscopy, (1)H NMR spectroscopy, elemental analyses, specific rotation and thermal analyses. Some structural characterizations and physical properties of these optically active PEIs and Co-PEIs have been reported.

  20. P-doped TiO2 with superior visible-light activity prepared by rapid microwave hydrothermal method

    NASA Astrophysics Data System (ADS)

    Niu, Jinfen; Lu, Pan; Kang, Mei; Deng, Kunfa; Yao, Binghua; Yu, Xiaojiao; Zhang, Qian

    2014-11-01

    Phosphorous-doped anatase TiO2 powders (P-TiO2) were prepared by rapid microwave hydrothermal method. The resulting materials were characterized by XRD, SEM, XPS, DRS and N2 adsorption. P-doping decreased the band gap and enlarged the surface area of P-doped samples than that of undoped TiO2 samples. Therefore, the photocatalytic degradation of methyl blue (MB) and tetracycline hydrochloride (Tc) experiments showed that the P-TiO2 catalysts, especially the two-steps-controlling products P-TiO2-2, exhibited higher degradation efficiency than the undoped TiO2 and commercial P25 under visible-light irradiation. Hydroxyl radicals (rad OH) have been confirmed to be the active species during the photocatalytic oxidation reaction. The microwave hydrothermal method confirms to be very suitable for the synthesis of superior visible-light activity P-doped samples.

  1. Active microwave measurements of sea ice under fall conditions: The RADARSAT/FIREX fall experiment. [in the Canadian Arctic

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.; Kim, Y. S.; Moore, R. K.

    1984-01-01

    A series of measurements of the active microwave properties of sea ice under fall growing conditions was conducted. Ice in the inland waters of Mould Bay, Crozier Channel, and intrepid inlet and ice in the Arctic Ocean near Hardinge Bay was investigated. Active microwave data were acquired using a helicopter borne scatterometer. Results show that multiyear ice frozen in grey or first year ice is easily detected under cold fall conditions. Multiyear ice returns were dynamic due to response to two of its scene constituents. Floe boundaries between thick and thin ice are well defined. Multiyear pressure ridge returns are similar in level to background ice returns. Backscatter from homogeneous first year ice is seen to be primarily due to surface scattering. Operation at 9.6 GHz is more sensitive to the detailed changes in scene roughness, while operation at 5.6 GHz seems to track roughness changes less ably.

  2. Assessing quality parameters in dry-cured ham using microwave spectroscopy.

    PubMed

    Bjarnadottir, S G; Lunde, K; Alvseike, O; Mason, A; Al-Shamma'a, A I

    2015-10-01

    Microwave spectroscopy has been applied in numerous non-food industry applications, and recently also in the food industry, for non-destructive measurements. In this study, a dry-cured ham model was designed and chemical analyses were performed for determining water activity, water content and salt content (sodium chloride) for all samples. These chemical parameters were also measured using microwave spectroscopy, with a rectangular microwave cavity resonator. Results indicate that microwave spectroscopy may be a promising technique for determination of water activity, salt content and water content in dry-cured ham using either reflected or transmitted signals.

  3. Pulse activity of populations of cortical neurons under microwave exposures of different intensity.

    PubMed

    Chizhenkova, R A

    2004-06-01

    In rabbit pulse flows of populations of cortical neurons were investigated prior to, during, and after 1-min microwave irradiation (wavelength 37.5 cm, power density 0.2-40 mW/cm2). It was found that the microwave irradiation produced shifts in mean values of interspike intervals and in the number of spike bursts. Peculiarities of rearrangements of pulse flows of cortical neurons were conditioned by an intensity of exposures.

  4. Soil Moisture Retrieval Through Changing Corn Using Active/Passive Microwave Remote Sensing

    NASA Technical Reports Server (NTRS)

    ONeill, P. E.; Joseph, A.; DeLannoy, G.; Lang, R.; Utku, C.; Kim, E.; Houser, P.; Gish, T.

    2003-01-01

    An extensive field experiment was conducted from May-early October, 2002 at the heavily instrumented USDA-ARS (U.S. Dept. of Agriculture-Agricultural Research Service) OPE3 (Optimizing Production Inputs for Economic and Environmental Enhancement) test site in Beltsville, MD to acquire data needed to address active/passive microwave algorithm, modeling, and ground validation issues for accurate soil moisture retrieval. During the experiment, a tower-mounted 1.4 GHz radiometer (Lrad) and a truck-mounted dual-frequency (1.6 and 4.75 GHz) radar system were deployed on the northern edge of the site. The soil in this portion of the field is a sandy loam (silt 23.5%, sand 60.3%, clay 16.1%) with a measured bulk density of 1.253 g/cu cm. Vegetation cover in the experiment consisted of a corn crop which was measured from just after planting on April 17, 2002 through senescence and harvesting on October 2. Although drought conditions prevailed during the summer, the corn yield was near average, with peak biomass reached in late July.

  5. Monitoring of Surface Wetness from active microwave satellite data in permafrost regions

    NASA Astrophysics Data System (ADS)

    Bartsch, A.; Boike, J.; Sabel, D.; Wagner, W.

    2008-12-01

    Soil moisture content impacts land surface energy dynamics, regional runoff dynamics and vegetation productivity. Coarse to medium resolution data from active microwave instruments onboard satellites which are currently in space are able to provide such valuable information for operational use. Scatterometer (ERS, Metop ASCAT) can be applied on regional to global scale. ScanSAR systems are suitable for regional to continental monitoring and for the investigation of scaling issues. The original approach which was developed for scatterometer data (Wagner et al. 1999) has been transferred to ScanSAR data within the framework of the ESA Tiger innovator project SHARE (www.ipf.tuwien.ac.at/radar/share). Data from the ENVISAT ASAR instrument operating in Global Mode (1km resolution) have not only been used over the southern African subcontinent, but also over entire Australia and within other regional studies. Current research focuses on the validation and investigation of scaling issues of satellite derived surface wetness in permafrost environment. A comparison to soil moisture measurements has been carried out over the Lena- Delta, Russia. Measurements are from a site on Samoylov Island, which is characterized by polygonal tundra. Best aggreement of the 1km resolution satellit data was found for polygon centres, with a Pearson correlation of 0.72. Timeseries analyses from this and other sites in Siberia will be presented.

  6. Impact of active ingredients on the swelling properties of orally disintegrating tablets prepared by microwave treatment.

    PubMed

    Sano, Syusuke; Iwao, Yasunori; Kimura, Susumu; Noguchi, Shuji; Itai, Shigeru

    2014-07-01

    The impact of different active pharmaceutical ingredients (APIs) loading on the properties of orally disintegrating tablets (ODTs) prepared according to our previously reported microwave (MW) treatment process was evaluated using famotidine (FAM), acetaminophen (AAP), and ibuprofen (IBU). None of the APIs interrupted the tablet swelling during the MW treatment and the tablet hardness were improved by more than 20 N. MW treatment, however, led to a significant increase in the disintegration time of the ODTs containing IBU, but it had no impact on that of the ODTs containing FAM or AAP. This increased disintegration time of the ODTs containing IBU was attributed to the relatively low melting point of IBU (Tm=76 °C), with the IBU particles melting during the MW treatment to form agglomerates, which interrupted the penetration of water into the tablets and delayed their disintegration. The effects of the MW treatment on the chemical stability and dissolution properties of ODTs were also evaluated. The results revealed that MW treatment did not promote the degradations of FAM and AAP or delay their release from the ODTs, while dissolution of the ODTs containing IBU delayed by MW treatment. Based on these results, the MW method would be applicable to the preparation of ODTs containing APIs with melting points higher than 110 °C.

  7. Preparation of Granular Red Mud Adsorbent using Different Binders by Microwave Pore - Making and Activation Method

    NASA Astrophysics Data System (ADS)

    Le, Thiquynhxuan; Wang, Hanrui; Ju, Shaohua; Peng, Jinhui; Zhou, Liexing; Wang, Shixing; Yin, Shaohua; Liu, Chao

    2016-04-01

    In this work, microwave energy is used for preparing a granular red mud (GRM) adsorbent made of red mud with different binders, such as starch, sodium silicate and cement. The effects of the preparation parameters, such as binder type, binder addition ratio, microwave heating temperature, microwave power and holding time, on the absorption property of GRM are investigated. The BET surface area, strength, pore structure, XRD and SEM of the GRM absorbent are analyzed. The results show that the microwave roasting has a good effect on pore-making of GRM, especially when using organic binder. Both the BET surface area and the strength of GRM obtained by microwave heating are significantly higher than that by conventional heating. The optimum conditions are obtained as follows: 6:100 (w/w) of starch to red mud ratio, microwave roasting with a power of 2.6 kW at 500℃ for holding time of 30 min. The BET surface area, pore volume and average pore diameter of GRM prepared at the optimum conditions are 15.58 m2/g, 0.0337 cm3/g and 3.1693 A0, respectively.

  8. ALTERNATIVE ROUTES FOR CATALYST PREPARATION: USE OF ULTRASOUND AND MICROWAVE IRRADIATION FOR THE PREPARATION OF VANADIUM PHOSPHORUS OXIDE CATALYST AND THEIR ACTIVITY FOR HYDROCARBON OXIDATION

    EPA Science Inventory

    Vanadium phosphorus oxide (VPO) has been prepared using ultrasound and microwave irradiation methods and compared with the catalyst prepared by conventional method for both the phase composition and activity for hydrocarbon oxidation. It is found that ultrasound irradiation metho...

  9. Microwave radiation absorption: behavioral effects.

    PubMed

    D'Andrea, J A

    1991-07-01

    The literature contains much evidence that absorption of microwave energy will lead to behavioral changes in man and laboratory animals. The changes include simple perturbations or outright stoppage of ongoing behavior. On one extreme, intense microwave absorption can result in seizures followed by death. On the other extreme, man and animals can hear microwave pulses at very low rates of absorption. Under certain conditions of exposure, animals will avoid microwaves, while under other conditions, they will actively work to obtain warmth produced by microwaves. Some research has shown behavioral effects during chronic exposure to low-level microwaves. The specific absorption rates that produce behavioral effects seem to depend on microwave frequency, but controversy exists over thresholds and mechanism of action. In all cases, however, the behavioral disruptions cease when chronic microwave exposure is terminated. Thermal changes in man and animals during microwave exposure appear to account for all reported behavioral effects.

  10. The present situation and forecasts of semiconductor elements performance within the microwave range, 1970-1985

    NASA Technical Reports Server (NTRS)

    Peterson, B.

    1978-01-01

    The present situation and possible developments over the period 1970-1985 for active semiconductor elements in the microwave range are outlined. After a short historical survey of FT techniques, the following are discussed: Generation, power amplification, amplification of small signals, frequency conversion, detection, electronic signal control and integrated microwave circuits.

  11. Microwave accelerated synthesis of zinc oxide nanoplates and their enhanced photocatalytic activity under UV and solar illuminations

    NASA Astrophysics Data System (ADS)

    Anas, S.; Rahul, S.; Babitha, K. B.; Mangalaraja, R. V.; Ananthakumar, S.

    2015-11-01

    Photoactive zinc based nanoplates were developed through a rapid microwave synthesis. A low temperature thermolysis reaction in a surfactant medium was initially performed for producing microwave active zinc based polar precursors. Using these precursors, the zinc oxide nanopowder having platelet morphologies were prepared. The nanoplatelets exhibited random growth with non-polar (1 0 1) surface as the major growth plane. The structural and functional features of the resultant zinc oxide samples were monitored using XRD, FTIR, TEM and PL. The photocatalytic activities of the samples were investigated through the standard photoreduction kinetics using the methylene blue dye. The catalytic efficiencies of the samples were checked both under UV and sunlight. A comparative study was also performed with the standard TiO2 sample. The analyses revealed that the microwave derived zinc oxide have higher catalytic efficiency, than the standard titania samples, both under UV and sunlight illuminations. The unique nature of the zinc oxide non-polar surfaces can be attributed due to the presence of more active two dimensional open surfaces and the higher content of oxygen defect concentrations.

  12. Effects of activated carbon characteristics on the electrosorption capacity of titanium dioxide/activated carbon composite electrode materials prepared by a microwave-assisted ionothermal synthesis method.

    PubMed

    Liu, Po-I; Chung, Li-Ching; Ho, Chia-Hua; Shao, Hsin; Liang, Teh-Ming; Horng, Ren-Yang; Chang, Min-Chao; Ma, Chen-Chi M

    2015-05-15

    Titanium dioxide (TiO2)/ activated carbon (AC) composite materials, as capacitive deionization electrodes, were prepared by a two-step microwave-assisted ionothermal synthesis method. The electrosorption capacity of the composite electrodes was studied and the effects of AC characteristics were explored. These effects were investigated by multiple analytical techniques, including X-ray photoelectron spectroscopy, thermogravimetry analysis and electrochemical impedance spectroscopy, etc. The experimental results indicated that the electrosorption capacity of the TiO2/AC composite electrode is dependent on the characteristics of AC including the pore structure and the surface property. An enhancement in electrosorption capacity was observed for the TiO2/AC composite electrode prepared from the AC with higher mesopore content and less hydrophilic surface. This enhancement is due to the deposition of anatase TiO2 with suitable amount of Ti-OH. On the other hand, a decline in electrosorption capacity was observed for the TiO2/AC composite electrode prepared from the AC with higher micropore content and highly hydrophilic surface. High content of hydrogen bond complex formed between the functional group on hydrophilic surface with H2O, which will slow down the TiO2 precursor-H2O reaction. In such situation, the effect of TiO2 becomes unfavorable as the loading amount of TiO2 is less and the micropore can also be blocked.

  13. Comparative research on activation technique for GaAs photocathodes

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Qian, Yunsheng; Chang, Benkang; Chen, Xinlong; Yang, Rui

    2012-03-01

    The properties of GaAs photocathodes mainly depend on the material design and activation technique. In early researches, high-low temperature two-step activation has been proved to get more quantum efficiency than high-temperature single-step activation. But the variations of surface barriers for two activation techniques have not been well studied, thus the best activation temperature, best Cs-O ratio and best activation time for two-step activation technique have not been well found. Because the surface photovoltage spectroscopy (SPS) before activation is only in connection with the body parameters for GaAs photocathode such as electron diffusion length and the spectral response current (SRC) after activation is in connection with not only body parameters but also surface barriers, thus the surface escape probability (SEP) can be well fitted through the comparative research between SPS before activation and SEP after activation. Through deduction for the tunneling process of surface barriers by Schrödinger equation, the width and height for surface barrier I and II can be well fitted through the curves of SEP. The fitting results were well proved and analyzed by quantitative analysis of angle-dependent X-ray photoelectron spectroscopy (ADXPS) which can also study the surface chemical compositions, atomic concentration percentage and layer thickness for GaAs photocathodes. This comparative research method for fitting parameters of surface barriers through SPS before activation and SRC after activation shows a better real-time in system method for the researches of activation techniques.

  14. Upregulation of HIF-1α via activation of ERK and PI3K pathway mediated protective response to microwave-induced mitochondrial injury in neuron-like cells.

    PubMed

    Zhao, Li; Yang, Yue-Feng; Gao, Ya-Bing; Wang, Shui-Ming; Wang, Li-Feng; Zuo, Hong-Yan; Dong, Ji; Xu, Xin-Ping; Su, Zhen-Tao; Zhou, Hong-Mei; Zhu, Ling-Ling; Peng, Rui-Yun

    2014-12-01

    Microwave-induced learning and memory deficits in animal models have been gaining attention in recent years, largely because of increasing public concerns on growing environmental influences. The data from our group and others have showed that the injury of mitochondria, the major source of cellular adenosine triphosphate (ATP) in primary neurons, could be detected in the neuron cells of microwave-exposed rats. In this study, we provided some insights into the cellular and molecular mechanisms behind mitochondrial injury in PC12 cell-derived neuron-like cells. PC12 cell-derived neuron-like cells were exposed to 30 mW/cm(2) microwave for 5 min, and damages of mitochondrial ultrastructure could be observed by using transmission electron microscopy. Impairments of mitochondrial function, indicated by decrease of ATP content, reduction of succinate dehydrogenase (SDH) and cytochrome c oxidase (COX) activities, decrease of mitochondrial membrane potential (MMP), and increase of reactive oxygen species (ROS) production, could be detected. We also found that hypoxia-inducible factor-1 (HIF-1α), a key regulator responsible for hypoxic response of the mammalian cells, was upregulated in microwave-exposed neuron-like cells. Furthermore, HIF-1α overexpression protected mitochondria from injury by increasing the ATP contents and MMP, while HIF-1α silence promoted microwave-induced mitochondrial damage. Finally, we demonstrated that both ERK and PI3K signaling activation are required in microwave-induced HIF-1α activation and protective response. In conclusion, we elucidated a regulatory connection between impairments of mitochondrial function and HIF-1α activation in microwave-exposed neuron-like cells. By modulating mitochondrial function and protecting neuron-like cells against microwave-induced mitochondrial injury, HIF-1α represents a promising therapeutic target for microwave radiation injury.

  15. Incorporating Active Learning Techniques into a Genetics Class

    ERIC Educational Resources Information Center

    Lee, W. Theodore; Jabot, Michael E.

    2011-01-01

    We revised a sophomore-level genetics class to more actively engage the students in their learning. The students worked in groups on quizzes using the Immediate Feedback Assessment Technique (IF-AT) and active-learning projects. The IF-AT quizzes allowed students to discuss key concepts in small groups and learn the correct answers in class. The…

  16. Alternative energy input: Mechanochemical, microwave and ultrasound-assisted organic synthesis

    EPA Science Inventory

    Microwave, ultrasound, sunlight and mechanochemical mixing can be used to augment conventional laboratory techniques. By applying these alternative means of activation, a number of chemical transformations have been achieved thereby improving many existing protocols with superi...

  17. Determination of lead, cadmium and mercury in microwave-digested foodstuffs by RP-HPLC with an on-line enrichment technique.

    PubMed

    Huang, Zhangjie; Yang, Guangyu; Hu, Qiufen; Yin, Jiayuan

    2003-02-01

    A new method for the simultaneous determination of lead, cadmium and mercury ions in microwave-digested foodstuffs by reversed-phase high-performance liquid chromatography combined with on-line enrichment technique has been developed. The foodstuff samples were digested by microwave digestion. The lead, cadmium and mercury ions can be precolumn derivatized with 5,10,15,20-tetrakis(3-aminophenyl)porphine (T3APP) to form color chelates; then, the Hg-T3APP, Cd-T3APP and Pb-T3APP chelates can be enriched and separated on a valve switching HPLC system combined with on-line enrichment technique. The linearity ranges are 0.01-120 microg/l for each metal ion. The detection limits (S/N = 3) of lead, cadmium and mercury are 1.2 ng/l, 0.5 ng/l and 0.8 ng/l, respectively. This method was applied to the determination of lead, cadmium and mercury in foodstuffs with good results.

  18. Effects of moisture content in cigar tobacco on nicotine extraction. Similarity between soxhlet and focused open-vessel microwave-assisted techniques.

    PubMed

    Ng, Lay-Keow; Hupé, Michel

    2003-09-05

    The effects of tobacco moisture on nicotine yield were investigated in this study. Soxhlet and microwave-assisted techniques were used to extract nicotine from cigar fillers of varying moisture contents (5-20%), using a polar (methanol) and a non-polar (isooctane) solvent. The extracts were analyzed by a gas chromatograph equipped with a flame-ionization detector. For both extraction techniques, higher nicotine yields were consistently obtained with methanol than with isooctane from the same samples. Solubility of nicotine salts in methanol but not in isooctane is the major cause of this observation. Moreover, pronounced effects of the tobacco moisture content on extraction efficiency were observed with isooctane but not with methanol. For microwave assisted extraction (MAE) with isooctane, nicotine yield increased from 3 to 70% as the moisture level in tobacco was raised from 3 to 13%, and leveled off thereafter. Similar observations were made with Soxhlet extraction. While MAE results were rationalized by the known cell-rupture process, a mechanism based on the interaction between the solvents and the structural components of the plant cells has been proposed to account for the observations made with Soxhlet extraction.

  19. Large-scale structure and microwave-background anisotropies in cosmological models and stellar photometry techniques with wide-field/planetary camera of the Hubble space telescope

    SciTech Connect

    Holtzman, J.A.

    1989-01-01

    This dissertation consists of two separate parts. The first presents calculations of microwave background anisotropies at various angular scales and of expected large scale bulk velocities and mass correlation functions for a variety of models which include baryons, radiation, cold dark matter (CDM), and massive and massless neutrinos. Free parameters include {Omega}, H{sub 0}, the mass fractions of each component, and the initial conditions; nearly 100 different models are considered. Open and flat models with blot adiabatic and isocurvature initial conditions are calculated for models without massive neutrinos. A set of flat models with both massive neutrinos and CDM with adiabatic initial conditions is also considered. Fitting functions for the mass transfer function and small angle radiation correlation function are provided for all of the models. A discussion of the evolution of the perturbations is presented. Results are compared with some recent observations of large scale velocities and limits on microwave background anisotropies. CDM and baryon models have difficulty satisfying observational limits, although they are not completely ruled out. Hybrid models with massive neutrinos and CDM satisfy current observational data. The second part of the dissertation is a discussion with the Wide Field/Planetary Camer (WF/PC) of the Hubble Space Telescope (HST). Detailed simulations are used to determine optimum techniques to use and to assess the expected accuracy of such techniques.

  20. Analogies between the measurement of acoustic impedance via the reaction on the source method and the automatic microwave vector network analyzer technique

    NASA Astrophysics Data System (ADS)

    McLean, James; Sutton, Robert; Post, John

    2003-10-01

    One useful method of acoustic impedance measurement involves the measurement of the electrical impedance ``looking into'' the electrical port of a reciprocal electroacoustic transducer. This reaction on the source method greatly facilitates the measurement of acoustic impedance by borrowing highly refined techniques to measure electrical impedance. It is also well suited for in situ acoustic impedance measurements. In order to accurately determine acoustic impedance from the measured electrical impedance, the characteristics of the transducer must be accurately known, i.e., the characteristics of the transducer must be ``removed'' completely from the data. The measurement of acoustic impedance via the measurement of the reaction on the source is analogous to modern microwave measurements made with an automatic vector network analyzer. The action of the analyzer is described as de-embedding the desired data (such as acoustic impedance) from the raw data. Such measurements are fundamentally substitution measurements in that the transducer's characteristics are determined by measuring a set of reference standards. The reaction on the source method is extended to take advantage of improvements in microwave measurement techniques which allow calibration via imperfect standard loads. This removes one of the principal weaknesses of the method in that the requirement of high-quality reference standards is relaxed.

  1. Comparison of the Coe Thellier Thellier and microwave palaeointensity techniques using high-titanium titanomagnetites: results from a Tertiary basaltic intrusion from the Sydney Basin, New South Wales

    NASA Astrophysics Data System (ADS)

    Thomas, D. Neil; Hill, Mimi J.; Garcia, Alexander S.

    2004-12-01

    Conventional Thellier and microwave (MW) palaeointensity experiments, accompanied by rock magnetic tests, were conducted on samples from an early Tertiary (ca. 49 Ma) basaltic intrusion [the Peats Ridge (PR) basalt] from the Sydney Basin. Thermomagnetic and low-temperature susceptibility measurements suggest that the dominant magnetic mineral is Ti-enriched titanomagnetite (˜TM65-TM50) and hysteresis results indicate that the majority of samples exhibit PSD-like behaviour. Some samples show evidence of alteration, during laboratory heating, but only at temperatures in excess of 400 °C. No alteration is observed in the dominant temperature range (~70-300 °C) used for calculation of palaeointensities. Stepwise thermal demagnetisation studies reveal single component (after removal of a small viscous), reverse polarity magnetisations in all samples, with a mean characteristic remanence (ChRM) direction of D/I=197°/+60° ( α95=5°, k=62). Coe-Thellier-Thellier (CTT) experiments yielded a high success rate, with 68% of samples conforming to standard acceptance criteria. Microwave (MW) palaeointensity experiments, predominantly using the perpendicular applied field technique, produced a greater success rate of 82%. Mean palaeointensities of 27.1±4.4 μT ( N=21) and 27.4±4.0 μT ( N=28) were obtained from the CTT and MW techniques, respectively. These means could not be distinguished statistically, and the respective quality indicators were similar. These results suggest that the new microwave technique for calculating palaeointensities is, in this case, equivalent to the well-established CTT technique. This is an intuitive outcome, given that rock magnetic analyses suggest that alteration does not occur below the Curie temperature of the samples. Our results therefore provide a positive test for the equivalence of the MW and CTT techniques. The Virtual Dipole Moment (VDM) value for the intrusion is 4.7±0.7×10 22 Am 2, suggesting that the dipole field was

  2. The heat-shock factor is not activated in mammalian cells exposed to cellular phone frequency microwaves.

    PubMed

    Laszlo, Andrei; Moros, Eduardo G; Davidson, Teri; Bradbury, Matt; Straube, William; Roti Roti, Joseph

    2005-08-01

    There has been considerable interest in the biological effects of exposure to radiofrequency electromagnetic radiation, given the explosive growth of cellular telephone use, with the possible induction of malignancy being a significant concern. Thus the determination of whether nonthermal effects of radiofrequency electromagnetic radiation contribute to the process leading to malignancy is an important task. One proposed pathway to malignancy involves the induction of the stress response by exposures to cell phone frequency microwaves. The first step in the induction of the stress response is the activation of the DNA-binding activity of the specific transcription factor involved in this response, the heat-shock factor (HSF). The DNA-binding activity of HSF in hamster, mouse and human cells was determined after acute and continuous exposures to frequency domain multiple access (FDMA)- or code domain multiple access (CDMA)-modulated microwaves at low (0.6 W/kg) or high (approximately 5 W/kg) SARs at frequencies used for mobile communication. The DNA-binding activity of HSF was monitored using a gel shift assay; the calibration of this assay indicated that an increase of approximately 10% in the activation of the DNA-binding activity of HSF after a 1 degrees C increase in temperature could be detected. We failed to detect any increase in the DNA-binding ability of HSF in cultured mammalian cells as a consequence of any exposure tested, within the sensitivity of our assay. Our results do not support the notion that the stress response is activated as a consequence of exposure to microwaves of frequencies associated with mobile communication devices.

  3. A clinical study of thermal monitoring techniques of ultrasound-guided microwave ablation for hepatocellular carcinoma in high-risk locations

    PubMed Central

    Zhi-yu, Han; Ping, Liang; Xiao-ling, Yu; Zhi-gang, Cheng; Fang-yi, Liu; Jie, Yu

    2017-01-01

    To confirm the safety and effectiveness of the minimally invasive thermal monitor technique on percutaneous ultrasound-guided microwave ablation (MWA) for hepatocellular carcinoma (HCC) in high-risk locations, a total of 189 patients with 226 HCC nodules in high-risk locations were treated with MWA. The real-time temperature of the tissue between the lesion margin and the vital structures was monitored by inserting a 21G thermal monitoring needle. The major indexes of technical success, technique effectiveness, local tumour progression and complications were observed during the follow-up period. Technical success was acquired in all patients. Technique effectiveness was achieved with one session in 119 lesions based on contrast-enhanced ultrasound (CEUS) 3–5 days after treatment. An additional 95 lesions achieved technique effectiveness at the second session. Within the follow–up period of 6–58 months (median 38 months), the 1-, 2-, 3-, and 4-year local tumour progression rate was 11.1%, 18.1%, 19.1%, and 19.9%, respectively. There were no major complications in all the patients except for the common side effects. These results indicate that the thermal monitor technique can be applied to prevent major complications in vulnerable structures and allow percutaneous MWA to achieve satisfactory technique effectiveness in the treatment of HCC in high-risk locations. PMID:28112263

  4. Microwave thermography: a non-invasive technique for investigation of injury of the superficial digital flexor tendon in the horse.

    PubMed

    Marr, C M

    1992-07-01

    Microwave thermographs were recorded from 77 normal horses. In 51% the lowest temperature was recorded in the mid-metacarpal region, and in 41% it was in the distal metacarpal region. The mean temperature of the normal limbs ranged from 25.04 to 37.4 degrees C. Maximum temperature differences between symmetrical points in both forelimbs ranged from 0 to 5.33 degrees C and differences in mean limb temperatures between both forelimbs ranged from 0 to 2.91 degrees C. In 48 horses with acute (less than 4 weeks' duration) injury of the superficial digital flexor tendon (SDFT) (36 unilateral, 12 bilateral) and 12 horses with acute injury of the soft tissues of the palmar metacarpal region other than the SDFT (all unilateral) 66% of forelimbs had acute SDFT injury, and 50% of those with other soft tissue injuries, had elevations of the temperature in the mid- or distal metacarpal region. Abnormal values for mean limb temperature, difference in mean limb temperature and maximum temperature difference between locations in opposite forelimbs were detected in 75% of the horses with SDFT injury and in only 16% of the horses with other soft tissue injury. The sensitivity of microwave thermography for the detection of SDFT injury was 81% and the specificity 74%. When 30 horses in National Hunt training were examined weekly for 5 weeks, 2 horses sustained SDFT injury during that period. The microwave thermographs recorded from these 2 horses, at 1 and 2 weeks before the onset of clinical signs, were abnormal. However, 16 horses which did not develop tendon injury also displayed thermographic abnormalities.

  5. Optimization of preparation of activated carbon from cotton stalk by microwave assisted phosphoric acid-chemical activation.

    PubMed

    Deng, Hui; Zhang, Genlin; Xu, Xiaolin; Tao, Guanghui; Dai, Jiulei

    2010-10-15

    The preparation of activated carbon (AC) from cotton stalk was investigated in this paper. Orthogonal array experimental design method was used to optimize the preparation of AC using microwave assisted phosphoric acid. Optimized parameters were radiation power of 400 W, radiation time of 8 min, concentration of phosphoric acid of 50% by volume and impregnation time of 20 h, respectively. The surface characteristics of the AC prepared under optimized condition were examined by pore structure analysis, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Pore structure analysis shows that mecropores constitute more of the porosity of the prepared AC. Compared to cotton stalk, different functionalities and morphology on the carbon surfaces were formed in the prepared process. The adsorption capacity of the AC was also investigated by removing methylene blue (MB) in aqueous solution. The equilibrium data of the adsorption was well fitted to the Langmuir isotherm. The maximum adsorption capacity of MB on the prepared AC is 245.70 mg/g. The adsorption process follows the pseudo-second-order kinetic model.

  6. Microwave ECR Ion Thruster Development Activities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2002-01-01

    Outer solar system missions will have propulsion system lifetime requirements well in excess of that which can be satisfied by ion thrusters utilizing conventional hollow cathode technology. To satisfy such mission requirements, other technologies must be investigated. One possible approach is to utilize electrodeless plasma production schemes. Such an approach has seen low power application less than 1 kW on earth-space spacecraft such as ARTEMIS which uses the rf thruster the RIT 10 and deep space missions such as MUSES-C which will use a microwave ion thruster. Microwave and rf thruster technologies are compared. A microwave-based ion thruster is investigated for potential high power ion thruster systems requiring very long lifetimes.

  7. The conservative treatment of Trigger Thumb using Graston Techniques and Active Release Techniques®

    PubMed Central

    Howitt, Scott; Wong, Jerome; Zabukovec, Sonja

    2006-01-01

    Objective To detail the progress of a patient with unresolved symptoms of Trigger thumb who underwent a treatment plan featuring Active Release Technique (ART) and Graston Technique. Clinical Features The most important feature is painful snapping or restriction of movement, most notably in actively extending or flexing the digit. The cause of this flexor tendinopathy is believed to be multi-factorial including anatomical variations of the pulley system and biomechanical etiologies such as exposure to shear forces and unaccustomed activity. Conventional treatment aims at decreasing inflammation through corticosteroid injection or surgically removing imposing tissue. Intervention and Outcome The conservative treatment approach utilized in this case involved Active Release Technique (ART®) and Graston Technique (GT). An activity specific rehabilitation protocol was employed to re-establish thumb extensor strength and ice was used to control pain and any residual inflammation. Outcome measures included subjective pain ratings with range of motion and motion palpation of the first right phalangeal joint. Objective measures were made by assessing range of motion. Conclusion A patient with trigger thumb appeared to be relieved of his pain and disability after a treatment plan of GT and ART. PMID:17549185

  8. Microwave remote sensing laboratory design

    NASA Technical Reports Server (NTRS)

    Friedman, E.

    1979-01-01

    Application of active and passive microwave remote sensing to the study of ocean pollution is discussed. Previous research efforts, both in the field and in the laboratory were surveyed to derive guidance for the design of a laboratory program of research. The essential issues include: choice of radar or radiometry as the observational technique; choice of laboratory or field as the research site; choice of operating frequency; tank sizes and material; techniques for wave generation and appropriate wavelength spectrum; methods for controlling and disposing of pollutants used in the research; and pollutants other than oil which could or should be studied.

  9. Microwave-Hydrothermal Synthesis of SnO2-CNTs Hybrid Nanocomposites with Visible Light Photocatalytic Activity

    PubMed Central

    Wu, Shuisheng; Dai, Weili

    2017-01-01

    SnO2 nanoparticles coated on carbon nanotubes (CNTs) were prepared via a simple microwave-hydrothermal route. The as-obtained SnO2-CNTs composites were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The photocatalytic activity of as-prepared SnO2-CNTs for degradation of Rhodamine B under visible light irradiation was investigated. The results show that SnO2-CNTs nanocomposites have a higher photocatalytic activity than pure SnO2 due to the rapid transferring of electrons and the effective separation of holes and electrons on SnO2-CNTs. PMID:28336888

  10. Microwave-Hydrothermal Synthesis of SnO2-CNTs Hybrid Nanocomposites with Visible Light Photocatalytic Activity.

    PubMed

    Wu, Shuisheng; Dai, Weili

    2017-03-03

    SnO2 nanoparticles coated on carbon nanotubes (CNTs) were prepared via a simple microwave-hydrothermal route. The as-obtained SnO2-CNTs composites were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The photocatalytic activity of as-prepared SnO2-CNTs for degradation of Rhodamine B under visible light irradiation was investigated. The results show that SnO2-CNTs nanocomposites have a higher photocatalytic activity than pure SnO2 due to the rapid transferring of electrons and the effective separation of holes and electrons on SnO2-CNTs.

  11. Microwave Treatment for Cardiac Arrhythmias

    NASA Technical Reports Server (NTRS)

    Hernandez-Moya, Sonia

    2009-01-01

    NASA seeks to transfer the NASA developed microwave ablation technology, designed for the treatment of ventricular tachycardia (irregular heart beat), to industry. After a heart attack, many cells surrounding the resulting scar continue to live but are abnormal electrically; they may conduct impulses unusually slowly or fire when they would typically be silent. These diseased areas might disturb smooth signaling by forming a reentrant circuit in the muscle. The objective of microwave ablation is to heat and kill these diseased cells to restore appropriate electrical activity in the heart. This technology is a method and apparatus that provides for propagating microwave energy into heart tissues to produce a desired temperature profile therein at tissue depths sufficient for thermally ablating arrhythmogenic cardiac tissue while preventing excessive heating of surrounding tissues, organs, and blood. A wide bandwidth double-disk antenna is effective for this purpose over a bandwidth of about six gigahertz. A computer simulation provides initial screening capabilities for an antenna such as antenna, frequency, power level, and power application duration. The simulation also allows optimization of techniques for specific patients or conditions. In comparison with other methods that involve direct-current pulses or radio frequencies below 1 GHz, this method may prove more effective in treating ventricular tachycardia. This is because the present method provides for greater control of the location, cross-sectional area, and depth of a lesion via selection of the location and design of the antenna and the choice of microwave power and frequency.

  12. Rapid adsorption of toxic Pb(II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique.

    PubMed

    Mubarak, Nabisab Mujawar; Sahu, Jaya Narayan; Abdullah, Ezzat Chan; Jayakumar, Natesan Subramanian

    2016-07-01

    Multiwall carbon nanotubes (MWCNTs) were synthesized using a tubular microwave chemical vapor deposition technique, using acetylene and hydrogen as the precursor gases and ferrocene as catalyst. The novel MWCNT samples were tested for their performance in terms of Pb(II) binding. The synthesized MWCNT samples were characterized using Fourier Transform Infrared (FT-IR), Brunauer, Emmett and Teller (BET), Field Emission Scanning Electron Microscopy (FESEM) analysis, and the adsorption of Pb(II) was studied as a function of pH, initial Pb(II) concentration, MWCNT dosage, agitation speed, and adsorption time, and process parameters were optimized. The adsorption data followed both Freundlich and Langmuir isotherms. On the basis of the Langmuir model, Qmax was calculated to be 104.2mg/g for the microwave-synthesized MWCNTs. In order to investigate the dynamic behavior of MWCNTs as an adsorbent, the kinetic data were modeled using pseudo first-order and pseudo second-order equations. Different thermodynamic parameters, viz., ∆H(0), ∆S(0) and ∆G(0) were evaluated and it was found that the adsorption was feasible, spontaneous and endothermic in nature. The statistical analysis revealed that the optimum conditions for the highest removal (99.9%) of Pb(II) are at pH5, MWCNT dosage 0.1g, agitation speed 160r/min and time of 22.5min with the initial concentration of 10mg/L. Our results proved that microwave-synthesized MWCNTs can be used as an effective Pb(II) adsorbent due to their high adsorption capacity as well as the short adsorption time needed to achieve equilibrium.

  13. Properties of Ba(Mg1/3Ta2/3)O3 thin films prepared by metalorganic solution deposition technique for microwave applications

    NASA Astrophysics Data System (ADS)

    Joshi, P. C.; Desu, S. B.

    1998-08-01

    We report on the properties of Ba(Mg1/3Ta2/3)O3 thin films prepared by the metalorganic solution deposition technique. Bulk Ba(Mg1/3Ta2/3)O3 ceramics have shown excellent dielectric properties at microwave frequencies; however, the high sintering temperature of bulk material is the major obstacle in their use as dielectric resonators to miniaturize microwave circuits. It was possible to obtain an ordered-perovskite phase of 0.3-μm-thick Ba(Mg1/3Ta2/3)O3 films with trigonal symmetry at an annealing temperature of 700 °C, which is much lower than the bulk sintering temperatures. The electrical measurements were conducted on Pt/Ba(Mg1/3Ta2/3)O3/Pt capacitors. The typical measured small signal dielectric constant and dissipation factor at 100 kHz were 22.2 and 0.009, respectively. The dielectric constant of thin films was comparable to the typical values (ɛr˜23.5-25) reported for bulk ceramics. The temperature coefficient of capacitance was -145 ppm/°C in the measured temperature range of 25-125 °C. The leakage current density was lower than 10-7 A/cm2 at an applied electric field of 0.5 MV/cm. The high dielectric constant, which is comparable to bulk, low dielectric loss, and good temperature and bias stability suggest the suitability of Ba(Mg1/3Ta2/3)O3 thin films for microwave communications and integrated capacitor applications.

  14. Extraction of bioactives from Orthosiphon stamineus using microwave and ultrasound-assisted techniques: Process optimization and scale up.

    PubMed

    Chan, Chung-Hung; See, Tiam-You; Yusoff, Rozita; Ngoh, Gek-Cheng; Kow, Kien-Woh

    2017-04-15

    This work demonstrated the optimization and scale up of microwave-assisted extraction (MAE) and ultrasonic-assisted extraction (UAE) of bioactive compounds from Orthosiphon stamineus using energy-based parameters such as absorbed power density and absorbed energy density (APD-AED) and response surface methodology (RSM). The intensive optimum conditions of MAE obtained at 80% EtOH, 50mL/g, APD of 0.35W/mL, AED of 250J/mL can be used to determine the optimum conditions of the scale-dependent parameters i.e. microwave power and treatment time at various extraction scales (100-300mL solvent loading). The yields of the up scaled conditions were consistent with less than 8% discrepancy and they were about 91-98% of the Soxhlet extraction yield. By adapting APD-AED method in the case of UAE, the intensive optimum conditions of the extraction, i.e. 70% EtOH, 30mL/g, APD of 0.22W/mL, AED of 450J/mL are able to achieve similar scale up results.

  15. A microwave imaging-based technique to localize an in-body RF source for biomedical applications.

    PubMed

    Chandra, Rohit; Johansson, Anders J; Gustafsson, Mats; Tufvesson, Fredrik

    2015-05-01

    In some biomedical applications such as wireless capsule endoscopy, the localization of an in-body radio-frequency (RF) source is important for the positioning of any abnormality inside the gastrointestinal tract. With knowledge of the location, therapeutic operations can be performed precisely at the position of the abnormality. Electrical properties (relative permittivity and conductivity) of the tissues and their distribution are utilized to estimate the position. This paper presents a method for the localization of an in-body RF source based on microwave imaging. The electrical properties of the tissues and their distribution at 403.5 MHz are found from microwave imaging and the position of an RF source is then estimated based on the image. The method is applied on synthetic noisy data, obtained after the addition of white Gaussian noise to simulated data of a simple circular phantom, and a realistic phantom in a 2-D case. The root-mean-square of the error distance between the actual and the estimated position is found to be within 10 and 4 mm for the circular and the realistic phantom, respectively, showing the capability of the proposed algorithm to work with a good accuracy even in the presence of noise for the localization of the in-body RF source.

  16. Simulation of Melting Ice-Phase Precipitation Hydrometeors for Use in Passive and Active Microwave Remote-Sensing Algorithms

    NASA Astrophysics Data System (ADS)

    Johnson, B. T.

    2014-12-01

    The Global Precipitation Measurement (GPM) mission, with active and passive microwave remote-sensing instruments, was designed to be sensitive to precipitation-sized particles. The shape of these particles naturally influences the distribution of scattered microwaves. Therefore, we seek to simulate ice-phase precipitation using accurate models of the physical properties of individual snowflakes and aggregate ice crystals, similar to those observed in precipitating clouds. A number of researchers have examined the single-scattering properties of individual ice crystals and aggregates, but only a few have started to look at the properties of melting these particles. One of the key difficulties, from a simulation perspective, is characterizing the distribution of melt-water on a melting particle. Previous studies by the author and others have shown that even for spherical particles, the relative distribution of liquid water on an ice-particle can have significant effects on the computed scattering and absorption properties in the microwave regime. This, in turn, strongly influences forward model simulations of passive microwave TBs, radar reflectivities, and path-integrated attenuation. The present study examines the sensitivity of the single scattering properties of melting ice-crystals and aggregates to variations in the volume fraction of melt water, and the distribution of meltwater. We make some simple simulations 1-D vertical profiles having melting layers, and compute the radar reflectivities consistent with the GPM DPR at Ku- and Ka-band. We also compute the top-of-the-atmosphere brightness temperatures at GPM GMI channels for the same vertical profiles, and discuss the sensitivities to variances in the aforementioned physical properties.

  17. Design of an L-Band Microwave Radiometer with Active Mitigation of Interference

    NASA Technical Reports Server (NTRS)

    Ellingson, Steven W.; Hampson, G. A.; Johnson, J. T.

    2003-01-01

    For increased sensitivity in L-band radiometry, bandwidths on the order of 100 MHz are desirable. This will likely require active countermeasures to mitigate RFI. In this paper, we describe a new radiometer which coherently samples 100 MHz of spectrum and applies real-time RFI mitigation techniques using FPGAs. A field test of an interim version of this design in a radio astronomy observation corrupted by radar pulses is described.

  18. Determination of Activated Carbon Residual Life using a Microwave Cavity Resonator

    NASA Astrophysics Data System (ADS)

    Mason, A.; Wylie, S.; Shaw, A.; Al-Shamma'a, A. I.; Thomas, A.; Keele, H.

    2011-08-01

    This paper presents the continuation of work conducted jointly between Dstl and LJMU. This unique body of work has been, largely, concerned with detecting the residual life of high performance filter materials using electromagnetic (EM) waves within a resonant cavity. Past work has considered both HEPA [1] and ASZM-TEDA[2] activated carbon filter materials. This paper continues the later work, considering the response of ASZM-TEDA activated carbon through the co-ageing of two distinct batches of the material. The paper briefly introduces activated carbon, discusses theory relevant to the work and the methodology used for investigation. A comprehensive set of results is included which seek to validate this technique for determining the residual lifespan of activated carbon.

  19. Microwave and Millimeter Wave Imaging of the Space Shuttle External Fuel Tank Spray on Foam Insulation (SOFI) Using Synthetic Aperture Focusing Techniques (SAFT)

    NASA Technical Reports Server (NTRS)

    Case, J. T.; Robbins, J.; Kharkovshy, S.; Hepburn, F. L.; Zoughi, R.

    2005-01-01

    The Space Shuttle Columbia's catastrophic failure is thought to have been caused by a dislodged piece of external tank SOFI (Spray On Foam Insulation) striking the left wing of the orbiter causing significant damage to some of the reinforced carbodcarbon leading edge wing panels. Microwave and millimeter wave nondestructive evaluation methods, have shown great potential for inspecting the SOFI for the purpose of detecting anomalies such as small voids that may cause separation of the foam from the external tank during the launch. These methods are capable of producing relatively high-resolution images of the interior of SOH particularly when advanced imaging algorithms are incorporated into the overall system. To this end, synthetic aperture focusing techniques are being deveioped for this purpose. These iechniqiies pradiice high-resolution images that are independent of the distance of the imaging probe to the SOFI with spatial resolution in the order of the half size of imaging probe aperture. At microwave and millimeter wave frequencies these apertures are inherently small resulting in high-resolution images. This paper provides the results of this investigation using 2D and 3D SAF based methods and holography. The attributes of these methods and a full discussion of the results will also be provided.

  20. Robust control design techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Ozbay, Hitay; Bachmann, Glen R.

    1994-01-01

    In this paper, an active flutter suppression problem is studied for a thin airfoil in unsteady aerodynamics. The mathematical model of this system is infinite dimensional because of Theodorsen's function which is irrational. Several second order approximations of Theodorsen's function are compared. A finite dimensional model is obtained from such an approximation. We use H infinity control techniques to find a robustly stabilizing controller for active flutter suppression.

  1. New prospects in pretreatment of cotton fabrics using microwave heating.

    PubMed

    Hashem, M; Taleb, M Abou; El-Shall, F N; Haggag, K

    2014-03-15

    As microwaves are known to give fast and rapid volume heating, the present study is undertaken to investigate the use of microwave heating for pretreatment cotton fabrics to reduce the pretreatment time, chemicals and water. The onset of the microwave heating technique on the physicochemical and performance properties of desized, scoured and bleached cotton fabric is elucidated and compared with those obtained on using conventional thermal heating. Combined one-step process for desizing, scouring and bleaching of cotton fabric under microwave heating was also investigated. The dual effect of adding urea, (as microwave absorber and hydrogen peroxide activator) has been exploiting to accelerate the pretreatment reaction of cotton fabric. DSC, FT-IR and SEM have been used to investigate the onset of microwave on the morphological and chemical change of cotton cellulose after pretreatment and bleaching under microwave heating. Results obtained show that, a complete fabric preparation was obtained in just 5 min on using microwave in pretreatments process and the fabric properties were comparable to those obtained in traditional pretreatment process which requires 2.5-3h for completion.

  2. First fusion proton measurements in TEXTOR plasmas using activation technique

    SciTech Connect

    Bonheure, G.; Wassenhove, G. Van; Mlynar, J.; Hult, M.; Gonzalez de Orduna, R.; Lutter, G.; Vermaercke, P.; Huber, A.; Schweer, B.; Esser, G.; Biel, W.

    2012-10-15

    MeV particle loss measurements from fusion plasmas, in particular alpha particles, remain difficult in large fusion devices and further R and D is needed for ITER. This paper describes the first attempt to measure 3 MeV escaping fusion protons emitted from TEXTOR tokamak plasmas using activation technique. This technique was successfully demonstrated, initially, in 2006 on the JET tokamak. An ion camera equipped with a collimator and several types of activation detectors was installed inside the TEXTOR vacuum vessel to perform these measurements. After irradiation, the detectors were analyzed using ultra low level gamma-ray spectrometry at the HADES underground laboratory. 3 MeV escaping fusion protons were detected in larger number -{approx}6 times more - compared to earlier measurements using this technique on JET. Another major progress was the reduction of the cooling time by a factor of 50, which made possible to detect radionuclides with half-life of less than 90 min.

  3. First fusion proton measurements in TEXTOR plasmas using activation technique.

    PubMed

    Bonheure, G; Mlynar, J; Van Wassenhove, G; Hult, M; González de Orduña, R; Lutter, G; Vermaercke, P; Huber, A; Schweer, B; Esser, G; Biel, W

    2012-10-01

    MeV particle loss measurements from fusion plasmas, in particular alpha particles, remain difficult in large fusion devices and further R&D is needed for ITER. This paper describes the first attempt to measure 3 MeV escaping fusion protons emitted from TEXTOR tokamak plasmas using activation technique. This technique was successfully demonstrated, initially, in 2006 on the JET tokamak. An ion camera equipped with a collimator and several types of activation detectors was installed inside the TEXTOR vacuum vessel to perform these measurements. After irradiation, the detectors were analyzed using ultra low level gamma-ray spectrometry at the HADES underground laboratory. 3 MeV escaping fusion protons were detected in larger number -~6 times more--compared to earlier measurements using this technique on JET. Another major progress was the reduction of the cooling time by a factor of 50, which made possible to detect radionuclides with half-life of less than 90 min.

  4. Innovative Perceptual Motor Activities: Programing Techniques That Work.

    ERIC Educational Resources Information Center

    Sorrell, Howard M.

    1978-01-01

    A circuit approach and station techniques are used to depict perceptual motor games for handicapped and nonhandicapped children. Twenty activities are described in terms of objectives, materials, and procedures, and their focus on visual tracking, visual discrimination and copying of forms, spatial body perception, fine motor coordination, tactile…

  5. Monolithic microwave integrated circuits

    NASA Astrophysics Data System (ADS)

    Pucel, R. A.

    Monolithic microwave integrated circuits (MMICs), a new microwave technology which is expected to exert a profound influence on microwave circuit designs for future military systems as well as for the commercial and consumer markets, is discussed. The book contains an historical discussion followed by a comprehensive review presenting the current status in the field. The general topics of the volume are: design considerations, materials and processing considerations, monolithic circuit applications, and CAD, measurement, and packaging techniques. All phases of MMIC technology are covered, from design to testing.

  6. A single source microwave photonic filter using a novel single-mode fiber to multimode fiber coupling technique.

    PubMed

    Chang, John; Fok, Mable P; Meister, James; Prucnal, Paul R

    2013-03-11

    In this paper we present a fully tunable and reconfigurable single-laser multi-tap microwave photonic FIR filter that utilizes a special SM-to-MM combiner to sum the taps. The filter requires only a single laser source for all the taps and a passive component, a SM-to-MM combiner, for incoherent summing of signal. The SM-to-MM combiner does not produce optical interference during signal merging and is phase-insensitive. We experimentally demonstrate an eight-tap filter with both positive and negative programmable coefficients with excellent correspondence between predicted and measured values. The magnitude response shows a clean and accurate function across the entire bandwidth, and proves successful operation of the FIR filter using a SM-to-MM combiner.

  7. Cu2ZnSnS4 nanoflakes prepared by one step microwave irradiation technique: Effect of Cu concentration

    NASA Astrophysics Data System (ADS)

    Kandare, S. P.; Dhole, S. D.; Bhoraskar, V. N.; Dahiwale, S. S.

    2016-05-01

    Cu2ZnSnS4 (CZTS) nanoflakes were synthesized in one step by microwave irradiation method. Controlling the secondary phases in Copper Zinc Tin Sulfide (CZTS) material is critical, but it is necessary to control secondary phases in order to achieve the high efficiency solar cells made from CZTS. In the recent years, CZTS has shown its growing importance in thin film photovoltaic application because of its favorable optical and electrical properties. In this work, a systematic study has been carried out by properly controlling the copper concentration to get the pure phase of CZTS. X-ray diffraction shows the CZTS kesterite structure. Optical band gap estimated from UV-Visible spectroscopy was around 1.37eV. Systematic Raman study reveals the suppression of Cu2S peak with variation in copper concentration which otherwise was not clear from XRD and UV-visible data.

  8. ORGANIC SYNTHESES USING MICROWAVES AND SUPPORTED REAGENTS

    EPA Science Inventory

    Microwave-accelerated chemical syntheses under solvent-free conditions have witnessed an explosive growth. The technique has found widespread application predominantly exploiting the inexpensive unmodified household microwave (MW) ovens although the use of dedicated MW equipment...

  9. Microwave dielectric properties of BNT-BT0.08 thin films prepared by sol-gel technique

    NASA Astrophysics Data System (ADS)

    Huitema, L.; Cernea, M.; Crunteanu, A.; Trupina, L.; Nedelcu, L.; Banciu, M. G.; Ghalem, A.; Rammal, M.; Madrangeas, V.; Passerieux, D.; Dutheil, P.; Dumas-Bouchiat, F.; Marchet, P.; Champeaux, C.

    2016-04-01

    We report for the first time the microwave characterization of 0.92(Bi0.5Na0.5)TiO3-0.08BaTiO3 (BNT-BT0.08) ferroelectric thin films fabricated by the sol-gel method and integrated in both planar and out-of-plane tunable capacitors for agile high-frequency applications and particularly on the WiFi frequency band from 2.4 GHz to 2.49 GHz. The permittivity and loss tangent of the realized BNT-BT0.08 layers have been first measured by a resonant cavity method working at 12.5 GHz. Then, we integrated the ferroelectric material in planar inter-digitated capacitors (IDC) and in out-of-plane metal-insulator-metal (MIM) devices and investigated their specific properties (dielectric tunability and losses) on the whole 100 MHz-15 GHz frequency domain. The 3D finite-elements electromagnetic simulations of the IDC capacitances are fitting very well with their measured responses and confirm the dielectric properties determined with the cavity method. While IDCs are not exhibiting an optimal tunability, the MIM capacitor devices with optimized Ir/MgO(100) bottom electrodes demonstrate a high dielectric tunability, of 30% at 2.45 GHz under applied voltages as low as 10 V, and it is reaching 50% under 20 V voltage bias at the same frequency. These high-frequency properties of the MIM devices integrating the BNT-BT0.08 films, combining a high tunability under low applied voltages indicate a wide integration potential for tunable devices in the microwave domain and particularly at 2.45 GHz, corresponding to the widely used industrial, scientific, and medical frequency band.

  10. Microwave induced fast pyrolysis of scrap rubber tires

    NASA Astrophysics Data System (ADS)

    Ani, Farid Nasir; Mat Nor, Nor Syarizan

    2012-06-01

    Pyrolysis is the thermal degradation of carbonaceous solid by heat in the absence of oxygen. The feedstocks, such as biomass or solid wastes are heated to a temperature between 400 and 600°C, without introducing oxygen to support the reaction. The reaction produces three products: gas, pyro-fuel oil and char. This paper presents the techniques of producing pyro-oil from waste tires, as well as investigation of the fuel properties suitable for diesel engine applications. In this study, microwave heating technique is employed to pyrolyse the used rubber tires into pyro-oil. Thermal treatment of as received used rubber tires is carried out in a modified domestic microwave heated fixed bed technology. It has been found that, rubber tires, previously used by various researchers, are poor microwave absorbers. Studies have shown that an appropriate microwave-absorbing material, such as biomass char or activated carbon, could be added to enhance the pyrolysis process; thus producing the pyro-oil. The characteristics of pyro-oil, as well as the effect of microwave absorber on its yield, are briefly described in this paper. The temperature profiles during the microwave heating process are also illustratively emphasized. The study provides a means of converting scrap tires into pyro-oil and pyrolytic carbon black production. The proposed microwave thermal conversion process therefore has the potentials of substantially saving time and energy.

  11. Microwave emissions from snow

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.

    1984-01-01

    The radiation emitted from dry and wet snowpack in the microwave region (1 to 100 GHz) is discussed and related to ground observations. Results from theoretical model calculations match the brightness temperatures obtained by truck mounted, airborne and spaceborne microwave sensor systems. Snow wetness and internal layer structure complicate the snow parameter retrieval algorithm. Further understanding of electromagnetic interaction with snowpack may eventually provide a technique to probe the internal snow properties

  12. Automatic Microwave Network Analysis.

    DTIC Science & Technology

    A program and procedure are developed for the automatic measurement of microwave networks using a Hewlett-Packard network analyzer and programmable calculator . The program and procedure are used in the measurement of a simple microwave two port network. These measurements are evaluated by comparing with measurements on the same network using other techniques. The programs...in the programmable calculator are listed in Appendix 1. The step by step procedure used is listed in Appendix 2. (Author)

  13. Assessing voluntary muscle activation with the twitch interpolation technique.

    PubMed

    Shield, Anthony; Zhou, Shi

    2004-01-01

    The twitch interpolation technique is commonly employed to assess the completeness of skeletal muscle activation during voluntary contractions. Early applications of twitch interpolation suggested that healthy human subjects could fully activate most of the skeletal muscles to which the technique had been applied. More recently, however, highly sensitive twitch interpolation has revealed that even healthy adults routinely fail to fully activate a number of skeletal muscles despite apparently maximal effort. Unfortunately, some disagreement exists as to how the results of twitch interpolation should be employed to quantify voluntary activation. The negative linear relationship between evoked twitch force and voluntary force that has been observed by some researchers implies that voluntary activation can be quantified by scaling a single interpolated twitch to a control twitch evoked in relaxed muscle. Observations of non-linear evoked-voluntary force relationships have lead to the suggestion that the single interpolated twitch ratio can not accurately estimate voluntary activation. Instead, it has been proposed that muscle activation is better determined by extrapolating the relationship between evoked and voluntary force to provide an estimate of true maximum force. However, criticism of the single interpolated twitch ratio typically fails to take into account the reasons for the non-linearity of the evoked-voluntary force relationship. When these reasons are examined, it appears that most are even more challenging to the validity of extrapolation than they are to the linear equation. Furthermore, several factors that contribute to the observed non-linearity can be minimised or even eliminated with appropriate experimental technique. The detection of small activation deficits requires high resolution measurement of force and careful consideration of numerous experimental details such as the site of stimulation, stimulation intensity and the number of interpolated

  14. Molten salt-supported polycondensation of optically active diacid monomers with an aromatic thiazole-bearing diamine using microwave irradiation

    PubMed Central

    Mallakpour, Shadpour; Zadehnazari, Amin

    2013-01-01

    Microwave heating was used to prepare optically active thiazole-bearing poly(amide-imide)s. Polymerization reactions were carried out in the molten tetrabutylammonium bromide as a green molten salt medium and triphenyl phosphite as the homogenizer. Structural elucidation of the compounds was performed by Fourier transform infrared and NMR spectroscopic data and elemental analysis results. The polymeric samples were readily soluble in various organic solvents, forming low-colored and flexible thin films via solution casting. They showed high thermal stability with decomposition temperature being above 360 °C. They were assembled randomly in a nanoscale size. PMID:25685498

  15. Microwave Oven Observations.

    ERIC Educational Resources Information Center

    Sumrall, William J.; Richardson, Denise; Yan, Yuan

    1998-01-01

    Explains a series of laboratory activities which employ a microwave oven to help students understand word problems that relate to states of matter, collect data, and calculate and compare electrical costs to heat energy costs. (DDR)

  16. Practical applications of activation analysis and other nuclear techniques

    SciTech Connect

    Lyon, W S

    1982-01-01

    Neeutron activation analysis (NAA) is a versatile, sensitive multielement, usually nondestructive analytical technique used to determine elemental concentrations in a variety of materials. Samples are irradiated with neutrons in a nuclear reactor, removed, and for the nondestructive technique, the induced radioactivity measured. This measurement of ..gamma.. rays emitted from specific radionuclides makes possible the quantitative determination of elements present. The method is described, advantages and disadvantages listed and a number of examples of its use given. Two other nuclear methods, particle induced x-ray emission and synchrotron produced x-ray fluorescence are also briefly discussed.

  17. Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge

    SciTech Connect

    Uma Rani, R.; Adish Kumar, S.; Kaliappan, S.; Yeom, IckTae; Rajesh Banu, J.

    2013-05-15

    Highlights: ► Microwave pretreatment of dairy WAS was studied. ► MW pretreatment at 70% intensity for 12 min, COD solubilization was 18.6%. ► Biogas production and SS reduction was 35% and 14% higher than control. ► In digester at 15 days SRT with medium OLR, SS and VS reduction was 67% and 64%. ► Biogas and methane production was 57% and 49% higher than control, in digesters. - Abstract: Microwave (MW) irradiation is one of the new and possible methods used for pretreating the sludge. Following its use in different fields, this MW irradiation method has proved to be more appropriate in the field of environmental research. In this paper, we focused on the effects of MW irradiation at different intensities on solubilization, biodegradation and anaerobic digestion of sludge from the dairy sludge. The changes in the soluble fractions of the organic matter, the biogas yield, the methane content in the biogas were used as control parameters for evaluating the efficiency of the MW pretreatment. Additionally, the energetic efficiency was also examined. In terms of an energetic aspect, the most economical pretreatment of sludge was at 70% intensity for 12 min irradiation time. At this, COD solubilization, SS reduction and biogas production were found to be 18.6%, 14% and 35% higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein and carbohydrate hydrolysis was also performed successfully by this microwave pretreatment even at low irradiation energy input. Also, experiments were carried out in semi continuous anaerobic digesters, with 3.5 L working volume. Combining microwave pretreatment with anaerobic digestion led to 67%, 64% and 57% of SS reduction, VS reduction and biogas production higher than the control, respectively.

  18. Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge.

    PubMed

    Uma Rani, R; Adish Kumar, S; Kaliappan, S; Yeom, Icktae; Rajesh Banu, J

    2013-05-01

    Microwave (MW) irradiation is one of the new and possible methods used for pretreating the sludge. Following its use in different fields, this MW irradiation method has proved to be more appropriate in the field of environmental research. In this paper, we focused on the effects of MW irradiation at different intensities on solubilization, biodegradation and anaerobic digestion of sludge from the dairy sludge. The changes in the soluble fractions of the organic matter, the biogas yield, the methane content in the biogas were used as control parameters for evaluating the efficiency of the MW pretreatment. Additionally, the energetic efficiency was also examined. In terms of an energetic aspect, the most economical pretreatment of sludge was at 70% intensity for 12 min irradiation time. At this, COD solubilization, SS reduction and biogas production were found to be 18.6%, 14% and 35% higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein and carbohydrate hydrolysis was also performed successfully by this microwave pretreatment even at low irradiation energy input. Also, experiments were carried out in semi continuous anaerobic digesters, with 3.5L working volume. Combining microwave pretreatment with anaerobic digestion led to 67%, 64% and 57% of SS reduction, VS reduction and biogas production higher than the control, respectively.

  19. The analysis of animal bioelectric brain activity influenced by microwaves or by the introduction of strychnine.

    PubMed

    Sidorenko, A V

    1999-02-01

    The widespread impact made by technology has raised concerns about the safety of human exposure to electromagnetic radiation in the environment. The brain is especially sensitive to the influence of microwaves. The most effective method for estimation of the organism's functional states is an analysis of electroencephalograms. The statistical and spectral methods are usually used for analysis of animal electrocorticograms. The information obtained in such way is the integrated character and it is sometimes insufficient for identification of the brain state charging caused by various factors, especially microwaves altering the ecological situation. The nonlinear dynamics method is used in our work concurrent with the spectral correlation method for animal electrocorticogram processing. The correlation dimensionality represents a numerical criterion allowing for comparative investigation of various dynamic states of the system. In the process of investigation, it has been found that the nonlinear dynamics method may be used to analyze the electrocorticograms of experimental animal in different functional states being confirmed by increasing parameter of the correlation dimensionality in electrocorticograms of animal irradiated by microwaves or subjected to the introduction of strychnine.

  20. Application of Active Learning Techniques to an Advanced Course

    NASA Astrophysics Data System (ADS)

    Knop, R. A.

    2004-05-01

    The New Faculty Workshop provided a wealth of techniques as well as an overriding philosophy for the teaching of undergraduate Physics and Astronomy courses. The focus of the workshop was active learning, summarized in ``Learner-Centered Astronomy Teaching" by Slater & Adams: it's not what you do in class that matters, it's what the students do. Much of the specific focus of the New Faculty Workshop is on teaching the large, introductory Physics classes that many of the faculty present are sure to teach, both algebra-based and calculus-based. Many of these techniques apply directly and with little modification to introductory Astronomy courses. However, little direct attention is given to upper-division undergraduate, or even graduate, courses. In this presentation, I will share my experience in attempting to apply some of the techniques discussed at the New Faculty Workshop to an upper-division course in Galactic Astrophysics at Vanderbilt University during the Spring semester of 2004.

  1. A new polarimetric active radar calibrator and calibration technique

    NASA Astrophysics Data System (ADS)

    Tang, Jianguo; Xu, Xiaojian

    2015-10-01

    Polarimetric active radar calibrator (PARC) is one of the most important calibrators with high radar cross section (RCS) for polarimetry measurement. In this paper, a new double-antenna polarimetric active radar calibrator (DPARC) is proposed, which consists of two rotatable antennas with wideband electromagnetic polarization filters (EMPF) to achieve lower cross-polarization for transmission and reception. With two antennas which are rotatable around the radar line of sight (LOS), the DPARC provides a variety of standard polarimetric scattering matrices (PSM) through the rotation combination of receiving and transmitting polarization, which are useful for polarimatric calibration in different applications. In addition, a technique based on Fourier analysis is proposed for calibration processing. Numerical simulation results are presented to demonstrate the superior performance of the proposed DPARC and processing technique.

  2. Gold Nanoparticle Microwave Synthesis

    SciTech Connect

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin; Washington, II, Aaron L.; Murph, Simona H.

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  3. The influence of microwave-assisted drying techniques on the rehydration behavior of blueberries (Vaccinium corymbosum L.).

    PubMed

    Zielinska, Magdalena; Markowski, Marek

    2016-04-01

    The aim of this study was to determine the effect of: (a) different drying methods, (b) hot air temperature in a convection oven, and (c) the moisture content of fruits dehydrated by multi-stage drying which involves a transition between different stages of drying, on the rehydration kinetics of dry blueberries. Models describing rehydration kinetics were also studied. Blueberries dehydrated by multi-stage microwave-assisted drying, which involved a hot air pre-drying step at 80 °C until the achievement of a moisture content of 1.95 kg H2O kg(-1)DM, were characterized by significantly higher rates of initial and successive rehydration as well as smaller initial loss of soluble solids in comparison with the samples dried by other methods. The highest initial rehydration rate and the smallest loss of soluble solids after 30 min of soaking were determined at 0.46 min(-1) and 0.29 kg DM kg(-1)DM, respectively. The Peleg model and the first-order-kinetic model fit the experimental data well.

  4. High quality Y-type hexaferrite thick films for microwave applications by an economical and environmentally benign crystal growth technique

    SciTech Connect

    Hu, Bolin; Chen, Yajie Gillette, Scott; Su, Zhijuan; Harris, Vincent G.; Wolf, Jason; McHenry, Michael E.

    2014-02-17

    Thick barium hexaferrite Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} (i.e., Zn{sub 2}Y) films having thicknesses of ∼100 μm were epitaxially grown on MgO (111) substrates using an environmentally benign ferrite-salt mixture by vaporizing the salt. X-ray diffraction pole figure analyses showed (00l) crystallographic alignment with little in plane dispersion confirming epitaxial growth. Saturation magnetization, 4πM{sub s}, was measured for as-grown films to be 2.51 ± 0.1 kG with an out of plane magnetic anisotropy field H{sub A} of 8.9 ± 0.1 kOe. Ferromagnetic resonance linewidth, as the peak-to-peak power absorption derivative at 9.6 GHz, was measured to be 62 Oe. These properties demonstrate a rapid, convenient, cost-effective, and nontoxic method of growing high quality thick crystalline ferrite films which could be used widely for microwave device applications.

  5. Active vibration control techniques for flexible space structures

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Jayasuriya, Suhada

    1990-01-01

    Two proposed control system design techniques for active vibration control in flexible space structures are detailed. Control issues relevant only to flexible-body dynamics are addressed, whereas no attempt was made to integrate the flexible and rigid-body spacecraft dynamics. Both of the proposed approaches revealed encouraging results; however, further investigation of the interaction of the flexible and rigid-body dynamics is warranted.

  6. Microbial short-chain fatty acid production and extracellular enzymes activities during in vitro fermentation of polysaccharides from the seeds of Plantago asiatica L. treated with microwave irradiation.

    PubMed

    Hu, Jie-Lun; Nie, Shao-Ping; Li, Chang; Fu, Zhi-Hong; Xie, Ming-Yong

    2013-06-26

    Effects of microwave irradiation on microbial short-chain fatty acid production and the activites of extracellular enzymes during in vitro fermentation of the polysaccharide from Plantago asiatica L. were investigated in this study. It was found that the apparent viscosity, average molecular weight, and particle size of the polysaccharide decreased after microwave irradiation. Reducing sugar amount increased with molecular weight decrease, suggesting the degradation may derive from glycosidic bond rupture. The polysaccharide surface topography was changed from large flakelike structure to smaller chips. FT-IR showed that microwave irradiation did not alter the primary functional groups in the polysaccharide. However, short-chain fatty acid productions of the polysaccharide during in vitro fermentation significantly increased after microwave irradiation. Activities of microbial extracellular enzymes xylanase, arabinofuranosidase, xylosidase, and glucuronidase in fermentation cultures supplemented with microwave irradiation treated polysaccharide were also generally higher than those of untreated polysaccharide. This showed that microwave irradiation could be a promising degradation method for the production of value-added polysaccharides.

  7. Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents.

    PubMed

    Saucier, Caroline; Adebayo, Matthew A; Lima, Eder C; Cataluña, Renato; Thue, Pascal S; Prola, Lizie D T; Puchana-Rosero, M J; Machado, Fernando M; Pavan, Flavio A; Dotto, G L

    2015-05-30

    Microwave-induced chemical activation process was used to prepare an activated carbon from cocoa shell for efficient removal of two anti-inflammatories, sodium diclofenac (DFC) and nimesulide (NM), from aqueous solutions. A paste was obtained from a mixture of cocoa shell and inorganic components; with a ratio of inorganic: organic of 1 (CSC-1.0). The mixture was pyrolyzed in a microwave oven in less than 10 min. The CSC-1.0 was acidified with a 6 mol L(-1) HCl under reflux to produce MWCS-1.0. The CSC-1.0 and MWCS-1.0 were characterized using FTIR, SEM, N2 adsorption/desorption curves, X-ray diffraction, and point of zero charge (pHpzc). Experimental variables such as initial pH of the adsorbate solutions and contact time were optimized for adsorptive characteristics of MWCS-1.0. The optimum pH for removal of anti-inflammatories ranged between 7.0 and 8.0. The kinetic of adsorption was investigated using general order, pseudo first-order and pseu do-second order kinetic models. The maximum amounts of DCF and NM adsorbed onto MWCS-1.0 at 25 °C are 63.47 and 74.81 mg g(-1), respectively. The adsorbent was tested on two simulated hospital effluents. MWCS-1.0 is capable of efficient removal of DCF and NM from a medium that contains high sugar and salt concentrations.

  8. Investigating Coincidence Techniques in Biomedical Applications of Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Chowdhury, P.; Gramer, R.; Tandel, S. K.; Reinhardt, C. J.

    2004-05-01

    While neutron activation analysis has been widely used in biomedical applications for some time, the use of non-radioactive tracer techniques, to monitor, for example, organ blood flow, is more recent. In these studies, pre-clinical animal models are injected with micro-spheres labeled with stable isotopes of elements that have a high neutron absorption cross-section. Subsequently, samples of blood and/or tissue from different locations in the body are subjected to neutron activation analysis to measure the propagation of the labeled micro-spheres through the body. Following irradiation, the counting (with high-resolution Ge detectors) is typically delayed by a few days to dissipate short-lived activity in the samples and improve signal-to-noise for the peaks of interest in the activation spectrum. The aim of the present study was to investigate whether coincidence techniques (for isotopes which decay via two-photon cascades) could improve signal-to-noise and turn-around times. The samples were irradiated at the 1 MW research reactor at the UMass Lowell Radiation Laboratory. The analysis of the multi-parameter coincidence data recorded in event-mode will be presented and compared with the standard method of recording singles spectra.

  9. Chemical variability and biological activities of Brassica rapa var. rapifera parts essential oils depending on geographic variation and extraction technique.

    PubMed

    Saka, Boualem; Djouahri, Abderrahmane; Djerrad, Zineb; Souhila, Terfi; Aberrane, Sihem; Sabaou, Nasserdine; Baaliouamer, Aoumeur; Boudarene, Lynda

    2017-02-01

    In the present work, the Brassica rapa var. rapifera parts essential oils and their antioxidant and antimicrobial activities were investigated for the first time depending on geographic origin and extraction technique. GC and GC-MS analyses showed several constituents, including alcohols, aldehydes, esters, ketones, norisoprenoids, terpenic, nitrogen and sulphur compounds, totalizing 38 and 41 compounds in leaves and root essential oils, respectively. Nitrogen compounds were the main volatiles in leaves essential oils and sulphur compounds were the main volatiles in root essential oils. Qualitative and quantitative differences were found among B. rapa var. rapifera parts essential oils collected from different locations and extracted by hydrodistillation (HD) and microwave-assisted hydrodistillation (MAHD) techniques. Furthermore, our findings showed a high variability for both antioxidant and antimicrobial activities. The highlighted variability reflects the high impact of plant part, geographic variation and extraction technique on chemical composition and biological activities, which led to conclude that we should select essential oils to be investigated carefully depending on these factors, in order to isolate the bioactive components or to have the best quality of essential oil in terms of biological activities and preventive effects in food. This article is protected by copyright. All rights reserved.

  10. Soil Moisture Active Passive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration

    NASA Technical Reports Server (NTRS)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; Misra, Sidharth; Dinnat, Emmanuel P.; Hudson, Derek; Le Vine, David M.; De Amici, Giovanni; Mohammed, Priscilla N.; Yueh, Simon H.; Meissner, Thomas

    2016-01-01

    The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earth's surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements.

  11. Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques

    NASA Astrophysics Data System (ADS)

    Benoit-Bird, Kelly J.; Lawson, Gareth L.

    2016-01-01

    Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function.

  12. Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques.

    PubMed

    Benoit-Bird, Kelly J; Lawson, Gareth L

    2016-01-01

    Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function.

  13. Structural and kinetic effects of mobile phone microwaves on acetylcholinesterase activity.

    PubMed

    Barteri, Mario; Pala, Alessandro; Rotella, Simona

    2005-03-01

    The present study provides evidence that "in vitro" simple exposure of an aqueous solution of electric eel acetylcholinesterase (EeAChE; EC 3.1.1.7.) to cellular phone emission alters its enzymatic activity. This paper demonstrates, by combining different experimental techniques, that radio frequency (RF) radiations irreversibly affect the structural and biochemical characteristics of an important CNS enzyme. These results were obtained by using a commercial cellular phone to reproduce the reality of the human exposition. This experimental procedure provided surprising effects collected practically without experimental errors because they were obtained comparing native and irradiated sample of the same enzyme solution. Although these results cannot be used to conclude whether exposure to RF during the use of cellular phone can lead to any hazardous health effect, they may be a significant first step towards further verification of these effects on other "ex vivo" or "in vivo" biological systems.

  14. Microwave-assisted synthesis of CdO-ZnO nanocomposite and its antibacterial activity against human pathogens

    NASA Astrophysics Data System (ADS)

    Karthik, K.; Dhanuskodi, S.; Gobinath, C.; Sivaramakrishnan, S.

    2015-03-01

    CdO-ZnO nanocomposite was prepared by microwave-assisted method and characterized by X-ray crystallography (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FT-IR). It exhibits hexagonal cubic structure with an average crystallite size of 27 nm. From the UV-Vis spectra, the bandgap is estimated as 2.92 eV. The fluorescence spectrum shows a near band edge emission at 422 nm. In addition the antibacterial activity of CdO-ZnO nanocomposite was carried out in-vitro against two kinds of bacteria: gram negative bacteria (G -ve) i.e. Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and gram positive bacteria (G +ve): Staphylococcus aureus, Proteus vulgaris and Bacillus spp. This study indicates the zone of inhibition of 40 mm has high antibacterial activity towards the gram positive bacterium S. aureus.

  15. Microwave-assisted synthesis of CdO-ZnO nanocomposite and its antibacterial activity against human pathogens.

    PubMed

    Karthik, K; Dhanuskodi, S; Gobinath, C; Sivaramakrishnan, S

    2015-03-15

    CdO-ZnO nanocomposite was prepared by microwave-assisted method and characterized by X-ray crystallography (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FT-IR). It exhibits hexagonal cubic structure with an average crystallite size of 27 nm. From the UV-Vis spectra, the bandgap is estimated as 2.92 eV. The fluorescence spectrum shows a near band edge emission at 422 nm. In addition the antibacterial activity of CdO-ZnO nanocomposite was carried out in-vitro against two kinds of bacteria: gram negative bacteria (G -ve) i.e. Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and gram positive bacteria (G +ve): Staphylococcus aureus, Proteus vulgaris and Bacillus spp. This study indicates the zone of inhibition of 40 mm has high antibacterial activity towards the gram positive bacterium S. aureus.

  16. Microwave-assisted synthesis, characterization and biological activities of organotin (IV) complexes with some thio Schiff bases

    NASA Astrophysics Data System (ADS)

    Singh, Ran Vir; Chaudhary, Pratibha; Chauhan, Shikha; Swami, Monika

    2009-03-01

    Microwave-assisted synthesis and characterization of the organotin (IV) complexes are reported. Trigonal bipyramidal and octahedral complexes of tin (IV) have been synthesized by the reaction of dimethyltin (IV) dichloride with 4-nitrobenzanilide- S-benzyldithiocarbazate (L 1H), 4-chlorobenzanilide- S-benzyldithiocarbazate (L 2H), 4-nitrobenzanilidebenzothiazoline (L 3H) and 4-chlorobenzanilidebenzothiazoline (L 4H). The complexes so formed were characterized by elemental analysis, conductance measurements, molecular weight determinations and spectral data viz. IR, UV-Visible, 1H and 13C NMR. The anti-microbial activities of the ligands and their corresponding organotin (IV) complexes have been screened against various strains of bacteria and fungi. Antifertility activity against male albino rats has also been reported.

  17. Macroalga Padina pavonica water extracts obtained by pressurized liquid extraction and microwave-assisted extraction inhibit hyaluronidase activity as shown by capillary electrophoresis.

    PubMed

    Fayad, Syntia; Nehmé, Reine; Tannoury, Mona; Lesellier, Eric; Pichon, Chantal; Morin, Philippe

    2017-03-20

    Hyaluronidase degrades hyaluronic acid, the principal component of the extracellular matrix. Inhibition of this enzyme is thus expected to hinder skin aging. Brown alga Padina pavonica activity toward hyaluronidase was evaluated using capillary electrophoresis (CE)-based enzymatic assays. This green technique allows evaluation of the biological activity of the natural material in an economic manner. Pressurized liquid extraction (PLE), microwave assisted extraction (MAE), supercritical fluid extraction and electroporation extraction techniques were used. Extraction conditions were optimized to obtain cosmetically acceptable Padina pavonica extracts with the best inhibition activity. CE-based assays were conducted using only a few nanoliters of reactants, a capillary of 60cm total length and of 50μm internal diameter, +20kV voltage for separation in 50mM ammonium acetate buffer (pH 9.0) and 200nm wavelength for detection. The reaction mixture was incubated for 1h and CE analysis time was about 11min. A novel online CE-assay using transverse diffusion of laminar flow profiles for in-capillary reactant mixing allowed efficient monitoring of hyaluronidase kinetics with Km and Vmax equal to 0.46±0.04mgmL(-1) and 137.1±0.3nMs(-1) (r(2)=0.99; n=3), respectively. These values compared well with literature, which validates the assay. Water extracts obtained by PLE (60°C; 2 cycles) and MAE (60°C; 1000W; 2min) presented the highest anti-hyaluronidase activity. The half maximal effective concentration (IC50) of water PLE extract was 0.04±0.01mgmL(-1) (r(2)=0.99; n=3). This value is comparable to the one obtained for Einsenia bicyclis phlorotannin fractions (IC50=0.03mgmL(-1)), which makes Padina pavonica bioactivity very promising.

  18. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    PubMed

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  19. Removal of Pb(II) from water by the activated carbon modified by nitric acid under microwave heating.

    PubMed

    Yao, Shuheng; Zhang, Jiajun; Shen, Dekui; Xiao, Rui; Gu, Sai; Zhao, Ming; Liang, Junyu

    2016-02-01

    The rice husk based activated carbon (RH-AC) was treated by nitric acid under microwave heating, in order to improve its capability for the removal of heavy metal ions from water. The optimal conditions for the modification of RH-AC (M-RH-AC) were determined by means of orthogonal array experimental design, giving those as the concentration of nitric acid of 8mol/L, modification time of 15min, modification temperature of 130°C and microwave power of 800W. The characteristics of the M-RH-AC and RH-AC were examined by BET, XRD, Raman spectrum, pH titration, zeta potential, Boehm titration and FTIR analysis. The M-RH-AC has lower pore surface area, smaller crystallite, lower pHIEP and more oxygen-containing functional groups than the RH-AC. Removal capacity of Pb(II) ions by the M-RH-AC and RH-AC from water solution was estimated concerning the influence of contact time, pH value, and initial concentration. The equilibrium time of Pb(II) removal was found to be around 90min after modification process. Two kinetic models are adopted to describe the possible Pb(II) adsorption mechanism, finding that the adsorption rate of Pb(II) ions by the M-RH-AC is larger than that of RH-AC.

  20. Fusion of Active and Passive Microwave Observations to Create AN Essential Climate Variable Data Record on Soil Moisture

    NASA Astrophysics Data System (ADS)

    Wagner, W.; Dorigo, W.; de Jeu, R.; Fernandez, D.; Benveniste, J.; Haas, E.; Ertl, M.

    2012-07-01

    Soil moisture was recently included in the list of Essential Climate Variables (ECVs) that are deemed essential for IPCC (Intergovernmental Panel on Climate Change) and UNFCCC (United Nations Framework Convention on Climate Change) needs and considered feasible for global observation. ECVs data records should be as long, complete and consistent as possible, and in the case of soil moisture this means that the data record shall be based on multiple data sources, including but not limited to active (scatterometer) and passive (radiometer) microwave observations acquired preferably in the low-frequency microwave range. Among the list of sensors that can be used for this task are the C-band scatterometers on board of the ERS and METOP satellites and the multi-frequency radiometers SMMR, SSM/I, TMI, AMSR-E, and Windsat. Together, these sensors already cover a time period of more than 30 years and the question is how can observations acquired by these sensors be merged to create one consistent data record? This paper discusses on a high-level possible approaches for fusing the individual satellite data. It is argued that the best possible approach for the fusion of the different satellite data sets is to merge Level 2 soil moisture data derived from the individual satellite data records. This approach has already been demonstrated within the WACMOS project (http://wacmos.itc.nl/) funded by European Space Agency (ESA) and will be further improved within the Climate Change Initiative (CCI) programme of ESA (http://www.esa-cci.org/).

  1. Microwave applications range from under the soil to the stratosphere

    NASA Astrophysics Data System (ADS)

    Bierman, Howard

    1990-11-01

    While the current cutback in defense spending had a negative impact on the microwave industry, microwave technology is now being applied to improve mankind's health, to clean up the environment, and provide more food. The paper concentrates on solutions for traffic jams and collision avoidance, the application of microwave hyperthermia to detect and destroy cancer cells, applications for controlling ozone-layer depletion, for investigating iceberg activity and ocean-current patterns in the Arctic, and for measuring soil-moisture content to improve crop efficiency. An experimental 60-GHz communication system for maintaining contact with up to 30 vehicles is described, along with dielectric-loaded lens and multimicrostrip hyperthermia applicators, and microwave equipment for NASA's upper-atmosphere research satellite and ESA's remote-sensing satellite. Stripline techniques to monitor process control on semiconductor wafer and paper production lines are also outlined.

  2. A technique for measuring vertically and horizontally polarized microwave brightness temperatures using electronic polarization-basis rotation

    NASA Technical Reports Server (NTRS)

    Gasiewski, Albin J.

    1992-01-01

    This technique for electronically rotating the polarization basis of an orthogonal-linear polarization radiometer is based on the measurement of the first three feedhorn Stokes parameters, along with the subsequent transformation of this measured Stokes vector into a rotated coordinate frame. The technique requires an accurate measurement of the cross-correlation between the two orthogonal feedhorn modes, for which an innovative polarized calibration load was developed. The experimental portion of this investigation consisted of a proof of concept demonstration of the technique of electronic polarization basis rotation (EPBR) using a ground based 90-GHz dual orthogonal-linear polarization radiometer. Practical calibration algorithms for ground-, aircraft-, and space-based instruments were identified and tested. The theoretical effort consisted of radiative transfer modeling using the planar-stratified numerical model described in Gasiewski and Staelin (1990).

  3. Microwave assisted synthesis of sheet-like Cu/BiVO{sub 4} and its activities of various photocatalytic conditions

    SciTech Connect

    Chen, Xi; Li, Li; Yi, Tingting; Zhang, WenZhi; Zhang, Xiuli; Wang, Lili

    2015-09-15

    The Cu/BiVO{sub 4} photocatalyst with visible-light responsivity was prepared by the microwave-assisted hydrothermal method. The phase structures, chemical composition and surface physicochemical properties were well-characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance absorption (UV–vis/DRS), scanning electron microscopy (SEM), and N{sub 2} adsorption–desorption tests. Results indicate that the crystal structure of synthetic composite materials is mainly monoclinic scheelite BiVO{sub 4}, which is not changed with the increasing doping amount of Cu. In addition, the presence of Cu not only enlarges the range of the composite materials under the visible-light response, but also increases the BET value significantly. Compared to pure BiVO{sub 4}, 1% Cu/BiVO{sub 4}-160 performs the highest photocatalytic activity to degrade methylene blue under the irradiation of ultraviolet, visible and simulated sunlight. In addition, the capture experiments prove that the main active species was superoxide radicals during photocatalytic reaction. Moreover, the 1% Cu/BiVO{sub 4}-160 composite shows good photocatalytic stability after three times of recycling. - Graphical abstract: A series of BiVO{sub 4} with different amounts of Cu doping were prepared by the microwave-assisted method, moreover, which performed the high photocatalytic activities to degrade methylene blue under multi-mode. - Highlights: • A series of Cu/BiVO{sub 4} with different amounts of Cu doping were prepared by microwave-assisted synthesis. • The morphologies of as-samples were different with the amount of Cu doping increased. • Compared with pure BiVO{sub 4}, as-Cu/BiVO{sub 4} showed stronger absorption in the visible light region obviously. • 1% Cu/BiVO{sub 4}-160 performed the high photocatalytic activities to degrade methylene blue under multi-mode. • OH{sup •} and h{sup +} both play important roles in the photocatalytic reaction.

  4. Comparison of essential oil composition and antimicrobial activity of Coriandrum sativum L. extracted by hydrodistillation and microwave-assisted hydrodistillation.

    PubMed

    Sourmaghi, Mohammad Hossein Salehi; Kiaee, Gita; Golfakhrabadi, Fereshteh; Jamalifar, Hossein; Khanavi, Mahnaz

    2015-04-01

    Coriander (Coriandrum sativum L.), is an annual herb in the Apiaceae family which disperses in Mediterranean and Middle Eastern regions. The Coriander essential oil has been used in food products, perfumes, cosmetics and pharmaceutical industries for its flavor and odor. In Iran, fruits of Coriander used in pickle, curry powders, sausages, cakes, pastries, biscuits and buns. The aim of this study was to investigate microwave radiation effects on quality, quantity and antimicrobial activity of essential oil of Coriander fruits. The essential oils were obtained from the Coriander fruits by hydrodistillation (HD) and Microwave-assisted hydrodistillation (MAHD) then, the oils were analyzed by GC and GC-MS. Antimicrobial activities of essential oils were evaluated against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans by microdilution method. The results indicated that the HD and MAHD essential oils (EO) were dominated by monoterpenoids such as linalool, geranyl acetate and γ-terpinene. The major compound in both EO was linalool which its amount in HD and MAHD was 63 % and 66 %, respectively. The total amount of monoterpenes hydrocarbons in HD EO differ significantly with the amount in MAHD EO (12.56 % compare to 1.82 %). HD EO showed greater activity against Staphylococcus aureus and Candida albicans than MAHD EO. Moreover, their activities against Ecoli and P. aeruginosa were the same with Minimum Inhibitory Concentration (MIC) 0.781 and 6.25 μL mL(-1), respectively. By using MAHD method, it was superior in terms of saving energy and extraction time, although the oil yield and total composition decrease by using this method.

  5. A comparative study on the effect of conventional thermal pasteurisation, microwave and ultrasound treatments on the antioxidant activity of five fruit juices.

    PubMed

    Saikia, Sangeeta; Mahnot, Nikhil Kumar; Mahanta, Charu Lata

    2016-06-01

    A comparative study on the effect of conventional thermal pasteurisation, microwave and ultrasound treatments on the phytochemical and antioxidant activities of juices from carambola (Averrhoa carambola L.), black jamun (Syzygium cumuni L.Skeels.), watermelon (Citrullus lanatus var lanatus), pineapple (Ananas comosus L. Merr) and litchi (Litchi chinensis Sonn.) was carried out. Depending on the type of fruit sample and treatment, increase or decrease in phytochemical values was observed. Overall, sonication had a positive effect on the total flavonoid content in all the juice samples followed by microwave treatment with exceptions in some cases. High-performance liquid chromatography study showed the presence of different phenolic acids depending on the sample type. The phenolic acids in some processed carambola juice samples showed decrease or complete destruction, while in some cases, an increase or appearance of newer phenolic acid originally not detected in the fresh juice was observed as seen in conventional thermal pasteurisation, microwaved at 600 W and sonicated juices. Both microwaved and sonicated samples were found to have positive effect on the phenolic content and antioxidant activity with exceptions in some cases. Therefore, microwave and sonication treatment could be used in place of thermal pasteurisation depending on the sample requirements.

  6. Active and Passive Microwave Determination of the Circulation and Characteristics of Weddell and Ross Sea Ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.; Liu, Xiang

    2000-01-01

    A combination of satellite microwave data sets are used in conjunction with ECMWF (Medium Range Weather Forecasts) and NCEP (National Center for Environment Prediction) meteorological analysis fields to investigate seasonal variability in the circulation and sea-ice dynamics of the Weddell and Ross Seas. Results of sea-ice tracking using SSM/I (Special Sensor Microwave Imager), Scatterometer and SAR images are combined with in-situ data derived from Argos buoys and GPS drifters to validate observed drift patterns. Seasonal 3-month climatologies of ice motion and drift speed variance illustrate the response of the sea-ice system to seasonal forcing. A melt-detection algorithm is used to track the onset of seasonal melt, and to determine the extent and duration of atmospherically-led surface melting during austral summer. Results show that wind-driven drift regulates the seasonal distribution and characteristics of sea-ice and the intensity of the cyclonic Gyre circulation in these two regions.

  7. A Numerical Study on Microwave Coagulation Therapy

    DTIC Science & Technology

    2013-01-01

    improvement of therapeutic effect. References [1] P. Prakash, “Theoretical Modeling for Hepatic Microwave Ablation ,” The Open Biomedical...A Numerical Study on Microwave Coagulation Therapy Amy J. Liu † , Hong Zhou * and Wei Kang * Department of Applied Mathematics Naval...is properly cited. Abstract Microwave coagulation therapy is a clinical technique for treating hepatocellular carcinoma (small size liver

  8. Pulsed neutron generator for use with pulsed neutron activation techniques

    SciTech Connect

    Rochau, G.E.

    1980-01-01

    A high-output, transportable, pulsed neutron generator has been developed by Sandia National Laboratories for use with Pulsed Neutron Activation (PNA) techniques. The PNA neutron generator generates > 10/sup 10/ 14 MeV D-T neutrons in a 1.2 millisecond pulse. Each operation of the unit will produce a nominal total neutron output of 1.2 x 10/sup 10/ neutrons. The generator has been designed to be easily repaired and modified. The unit requires no additional equipment for operation or measurement of output.

  9. Thermoelectric and Magnetic Properties of Sn1- x O2:Mn0.5 x Co0.5 x Nanoparticles Produced by the Microwave Technique

    NASA Astrophysics Data System (ADS)

    Salah, Numan; Habib, Sami; Azam, Ameer

    2017-02-01

    Nanoparticles (NPs) of Sn1- x O2:Mn0.5 x Co0.5 x with x = 0.02, 0.04, 0.06, 0.08 and 0.1 were synthesized by the microwave-assisted route and characterized for their thermoelectric and magnetic properties. As a result of Mn and Co co-doping, a considerable increase in the values of energy band gap and lattice constant c of Sn1- x O2:Mn0.5 x Co0.5 x NPs was observed. The x-ray photoelectron spectroscopy spectra revealed that Mn and Co ions were incorporated in their 4+ and 2+ states, respectively. The resistivity and calculated activation energy of these NPs were found to decrease by increasing the Mn and Co contents. A negative Seebeck coefficient was observed, whose value was found to be significantly increased by increasing the value of x. The magnetic measurement results revealed that all the microwave-synthesized Sn1- x O2:Mn0.5 x Co0.5 x NPs including the pure SnO2 have distinctly wide hysteresis loops. This indicates that samples have room-temperature ferromagnetism. The optimum value for x to have maximum saturation magnetism was observed to be 0.04. Diamagnetic contributions from the core of these NPs were noticed at higher magnetic fields. The observed magnetism was attributed to the presence of defects at the NPs' interfacing sites, grain boundaries, atom vacancies and an optimum level of Mn and Co co-dopants. The observed wide hysteresis loops in these NPs might be useful for producing nanoscale magnets and magnetic memory devices. Moreover, the observed thermoelectric properties, i.e. Seebeck coefficient and power factor in these NPs, might be useful for the development of thermoelectric devices.

  10. Microwave detector

    DOEpatents

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  11. Microwave detector

    DOEpatents

    Meldner, Heiner W.; Cusson, Ronald Y.; Johnson, Ray M.

    1986-01-01

    A microwave detector (10) is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite (26, 28) produces a magnetization field flux that links a B-dot loop (16, 20). The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means (18, 22) are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  12. Morphology control of open-framework zinc phosphate Zn{sub 4}(H{sub 3}O)(NH{sub 4}){sub 3}(PO{sub 4}){sub 4} via microwave-assisted technique

    SciTech Connect

    Ding, Ling; Song, Yu; Yang, Wei; Xue, Run-Miao; Zhai, Shang-Ru; An, Qing-Da

    2013-08-15

    Open-framework zinc phosphates were synthesized by microwave-assisted technique, and it was shown that the morphology of as-prepared materials could be easily tailored by changing synthesis temperature, reaction time and pH value. During the synthesis, when the reaction temperature increases from 130 °C to 220 °C, the products transformed from hexagonal prisms to polyhedron along with the disappearance of the hexagonal prisms vertical plane. Simultaneously, both the reaction time and pH value could promote the nucleation and growth of crystal particles. More interestingly, the target products with different morphologies could be obtained by varying the usage of NaOH or NH{sub 3}·H{sub 2}O at 130 °C during the microwave synthesis process. - Graphical abstract: Zinc phosphates with variable morphologies can be obtained by simply tuning the microwave-heating temperatures. Display Omitted - Highlights: • Synthesis of open-framework Zn{sub 4} (H{sub 3}O) (NH{sub 4}){sub 3}(PO{sub 4}){sub 4} compounds employing microwave technique. • Dependence of morphology on the reaction conditions. • Morphology transformation from hexagonal prisms to polyhedron was observed.

  13. Ensemble data assimilation using passive and active microwave observations of precipitation in mountainous regions

    NASA Astrophysics Data System (ADS)

    zhang, S. Q.; Lin, X.; Hou, A. Y.; Barros, A. P.

    2013-12-01

    The Goddard WRF ensemble data assimilation system has been developed to assimilate precipitation information into WRF model to improve QPF and QPE at high resolution. The flow-dependent forecast error covariance estimated in the assimilation procedure aims to capture the large temporal and spatial variability of precipitation and clouds. The microphysics at cloud-resolving scales and all-sky radiative transfer simulator serve as non-linear observation operators to link observables with model states. We present results of assimilating precipitation-affected microwave radiance and precipitation radar reflectivity from a pre-GPM constellation overland in the southeast US region. Observational bias correction for all-sky radiance is developed based on innovation statistics and a situation-dependent bias estimation model. The data impact is assessed with independent ground-based precipitation observations and evaluated in applications to dynamical downscaling and hydrological prediction.

  14. Microwave backscattering theory and active remote sensing of the ocean surface

    NASA Technical Reports Server (NTRS)

    Brown, G. S.; Miller, L. S.

    1977-01-01

    The status is reviewed of electromagnetic scattering theory relative to the interpretation of microwave remote sensing data acquired from spaceborne platforms over the ocean surface. Particular emphasis is given to the assumptions which are either implicit or explicit in the theory. The multiple scale scattering theory developed during this investigation is extended to non-Gaussian surface statistics. It is shown that the important statistic for the case is the probability density function of the small scale heights conditioned on the large scale slopes; this dependence may explain the anisotropic scattering measurements recently obtained with the AAFE Radscat. It is noted that present surface measurements are inadequate to verify or reject the existing scattering theories. Surface measurements are recommended for qualifying sensor data from radar altimeters and scatterometers. Additional scattering investigations are suggested for imaging type radars employing synthetically generated apertures.

  15. Microwave-assisted synthesis of ZnO and its photocatalytic activity in degradation of CTAB

    NASA Astrophysics Data System (ADS)

    Song, Hua; Zhu, Kenan; Liu, Yanxiu; Zhai, Xiaoqing

    2017-01-01

    Nanosized zinc oxide (nano-ZnO) was prepared by a microwave irradiation method using zinc nitrate and triethanolamine as starting materials and distilled water as a solvent. The as-prepared powder was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic degradation of cetyltrimethylammonium bromide (CTAB) using the prepared material under UV irradiation was studied.The effects of ZnO dosage and initial pH on the photodegradation of CTAB were investigated. As the ZnO load increased, the CTAB degradation first increased and then decreased. The optimum ZnO dosage was 3 g L-1. Photodegradation of CTAB is more efficient in slightly alkaline media (pH 9).

  16. Soil Moisture ActivePassive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration

    NASA Technical Reports Server (NTRS)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; Misra, Sidharth; Dinnat, Emmanuel P.; Hudson, Derek; Le Vine, David M.; De Amici, Giovanni; Mohammed, Priscilla N.; Yueh, Simon H.; Meissner, Thomas

    2016-01-01

    The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earth’s surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements.

  17. Hydrothermal microwave processing of microalgae as a pre-treatment and extraction technique for bio-fuels and bio-products.

    PubMed

    Biller, Patrick; Friedman, Cerri; Ross, Andrew B

    2013-05-01

    Microalgae are regarded as a promising source of lipids for bio-diesel production and bio-products. The current paper investigates the processing of microalgal slurries under controlled microwave irradiation. Microwave power was applied to reach temperatures of 80, 100, 120 and 140 °C at a constant residence time of 12 min. Microwave irradiation led to disruption of the algal cell walls which facilitated lipid extraction. The influence of inorganic material on microwave heating was assessed for three strains including, Nannochloropsis occulata, Chlorogloeopsis fritschii and Pseudochoricystis ellipsoidea. Mass balances were calculated and showed that the amount of carbon, nitrogen and total mass recovered in the residue was highly dependent on process conditions and algae strain. Hydrothermal microwave processing (HMP) was found to be an effective pre-treatment for hydrothermal liquefaction and extraction of lipids and phytochemicals.

  18. Microwave assisted synthesis of some new fused 1,2,4-triazines bearing thiophene moieties with expected pharmacological activity.

    PubMed

    Saad, Hosam A; Youssef, Mohamed M; Mosselhi, Mosselhi A

    2011-06-15

    Rapid and efficient solvent-free synthesis of 4-amino-3-mercapto-6-[2-(2-thienyl)vinyl]-1,2,4-triazin-5(4H)-one 1 under microwave irradiation is described. Some new fused heterobicyclic nitrogen systems such as 1,2,4-triazino[3,4-b][1,3,4]thiadiazinones, 1,3,4-thiadiazolo[2,3-c][1,2,4]triazinone and pyrazolo[5,1-c]-[1,2,4]triazine-7-carbonitrile, have been synthesized by treatment of 1 with bifunctional oxygen and halogen compounds, CS₂/KOH and malononitrile via heterocyclization reactions, in addition to some uncondensed triazines. Structures of the products have been deduced from their elemental analysis and spectral data (IR, ¹H-NMR, ¹³C-NMR). Select new synthesized compounds were screened as anticancer agents, with some showing activity as cytotoxic agents against different cancer cell lines.

  19. Publicly Available Numerical Codes for Modeling the X-ray and Microwave Emissions from Solar and Stellar Activity

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Mariska, John T.; McTiernan, James M.; Ofman, Leon; Petrosian, Vahe; Ramaty, Reuven; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We have posted numerical codes on the Web for modeling the bremsstrahlung x-ray emission and the a gyrosynchrotron radio emission from solar and stellar activity. In addition to radiation codes, steady-state and time-dependent Fokker-Planck codes are provided for computing the distribution and evolution of accelerated electrons. A 1-D hydrodynamics code computes the response of the stellar atmosphere (chromospheric evaporation). A code for modeling gamma-ray line spectra is also available. On-line documentation is provided for each code. These codes have been developed for modeling results from the High Energy Solar Spectroscopic Imager (HESSI) along related microwave observations of solar flares. Comprehensive codes for modeling images and spectra of solar flares are under development. The posted codes can be obtained on NASA/Goddard's HESSI Web Site at http://hesperia.gsfc.nasa.gov/hessi/modelware.htm. This work is supported in part by the NASA Sun-Earth Connection Program.

  20. Microwave-assisted synthesis of 3,5-disubstituted isoxazoles and evaluation of their anti-ageing activity.

    PubMed

    Koufaki, Maria; Fotopoulou, Theano; Kapetanou, Marianna; Heropoulos, Georgios A; Gonos, Efstathios S; Chondrogianni, Niki

    2014-08-18

    One-pot uncatalysed microwave-assisted 1,3-dipolar cycloaddition reactions between in situ generated nitrile oxides and alkynes bearing protected antioxidant substituents, were regioselectively afforded 3,5-disubstituted isoxazoles. The yields were moderate, based on the starting aldehydes, while the reaction times were in general shorter than those reported in the literature. The cytoprotective and anti-ageing effect of the final deprotected compounds was evaluated in vitro, on cellular survival following oxidative challenge and in vivo, on organismal longevity using the nematode Caenorhabditis elegans. The activity of the isoxazole analogues depends on the nature and the number of the antioxidant substituents. Analogue 17 bearing a phenolic group and a 6-OH-chroman group is a promising anti-ageing agent, since it increased survival of human primary fibroblasts following treatment with H2O2 and extended C. elegans lifespan.

  1. Microwave-assisted combustion synthesis of nano iron oxide/iron-coated activated carbon, anthracite, cellulose fiber, and silica, with arsenic adsorption studies

    EPA Science Inventory

    Combustion synthesis of iron oxide/iron coated carbons such as activated carbon, anthracite, cellulose fiber and silica is described. The reactions were carried out in alumina crucibles using a Panasonic kitchen microwave with inverter technology, and the reaction process was com...

  2. Microwave Cooking: Knowledge, Attitudes, and Practices of California Foods Teachers.

    ERIC Educational Resources Information Center

    Stalder, Laura D.; And Others

    1990-01-01

    A survey of 500 California secondary foods teachers (172 responses) indicated their understanding of microwave cooking principles and techniques and positive attitudes toward microwave cooking and safety. A majority used microwave instruction in their classrooms, although many indicated a need for ovens and microwave educational materials. (SK)

  3. Enhanced oxidation stability of quasi core-shell alloyed CdSeS quantum dots prepared through aqueous microwave synthesis technique.

    PubMed

    Zhan, Hong-Ju; Zhou, Pei-Jiang; Ma, Rong; Liu, Xi-Jing; He, Yu-Ning; Zhou, Chuan-Yun

    2014-01-01

    Quasi core shell alloyed CdSeS quantum dots (QDs) have been prepared through a facile aqueous-phase route employing microwave irradiation technique. The optical spectroscopy and structure characterization evidenced the quasi core shell alloyed structures of CdSeS QDs. The X-ray diffraction patterns of the obtained CdSeS QDs displayed peak positions very close to those of bulk cubic CdS crystal structures and the result of X-ray photoelectron spectroscopy data re-confirmed the thick CdS shell on the CdSe core. The TEM images and HRTEM images of the CdSeS QDs ascertained the well-defined spherical particles and a relatively narrow size distribution. On the basis, the stability of the obtained QDs in an oxidative environment was also discussed using etching reaction by H2O2. The experiments result showed the as-prepared QDs present high tolerance towards H2O2, obviously superior to the commonly used CdTe QDs and core-shell CdTe/CdS QDs, which was attributed to the unique quasi core-shell CdSeS crystal structure and the small lattice mismatch between CdSe and CdS semiconductor materials. This assay provided insight to obtain high stable crystal structured semiconductor nanocrystals in the design and synthesis process.

  4. Visible light responsive Ag/TiO2/MCM-41 nanocomposite films synthesized by a microwave assisted sol-gel technique

    NASA Astrophysics Data System (ADS)

    Tongon, W.; Chawengkijwanich, C.; Chiarakorn, S.

    2014-05-01

    A convenient and inexpensive method for the preparation of visible light responsive nanocomposite film was introduced in this study. Silver doped TiO2 was incorporated into as-synthesized MCM-41, via a microwave assisted sol-gel technique. The nanocomposite film was formed by dip coating on a glass substrate. The characterization results displayed high adsorbability and photocatalytic properties of the Ag and MCM-41 enhanced TiO2 photocatalyst. Performance of the nanocomposite film was tested by photocatalytic decolorization of MB dye, under UV and visible light irradiation. Ag/Ti/Si (0.1/1/2) exhibited the highest photocatalytic decolorization of methylene blue, with an efficiency of 81% under UV, and 30% under visible light irradiation. The kinetic rate constant of MB dye on the composite films followed pseudo first-order reaction law (R2 > 0.9), arranged in the order of Ag/Ti/Si (0.1/1/2) > Ag/Ti/Si (0.1/1/1) > Ag/Ti/Si (0.1/1/0.5) > Ag/Ti/Si (0.1/1/0) > TiO2.

  5. Comparison of four kinds of extraction techniques and kinetics of microwave-assisted extraction of vanillin from Vanilla planifolia Andrews.

    PubMed

    Dong, Zhizhe; Gu, Fenglin; Xu, Fei; Wang, Qinghuang

    2014-04-15

    Vanillin yield, microscopic structure, antioxidant activity and overall odour of vanilla extracts obtained by different treatments were investigated. MAE showed the strongest extraction power, shortest time and highest antioxidant activity. Maceration gave higher vanillin yields than UAE and PAE, similar antioxidant activity with UAE, but longer times than UAE and PAE. Overall odour intensity of different vanilla extracts obtained by UAE, PAE and MAE were similar, while higher than maceration extracts. Then, powered vanilla bean with a sample/solvent ratio of 4 g/100 mL was selected as the optimum condition for MAE. Next, compared with other three equations, two-site kinetic equation with lowest RMSD and highest R²(adj) was shown to be more suitable in describing the kinetics of vanillin extraction. By fitting the parameters C(eq), k₁, k₂, and f, a kinetics model was constructed to describe vanillin extraction in terms of irradiation power, ethanol concentration, and extraction time.

  6. The thin film microwave iris

    NASA Technical Reports Server (NTRS)

    Ramey, R. L.; Landes, H. S.; Manus, E. A.

    1972-01-01

    Development of waveguide iris for microwave coupling applications using thin film techniques is discussed. Production process and installation of iris are described. Iris improves power transmission properties of waveguide window.

  7. Urban rainfall estimation employing commercial microwave links

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko; ten Veldhuis, Marie-claire

    2015-04-01

    Urban areas often lack rainfall information. To increase the number of rainfall observations in cities, microwave links from operational cellular telecommunication networks may be employed. Although this new potential source of rainfall information has been shown to be promising, its quality needs to be demonstrated more extensively. In the Rain Sense kickstart project of the Amsterdam Institute for Advanced Metropolitan Solutions (AMS), sensors and citizens are preparing Amsterdam for future weather. Part of this project is rainfall estimation using new measurement techniques. Innovative sensing techniques will be utilized such as rainfall estimation from microwave links, umbrellas for weather sensing, low-cost sensors at lamp posts and in drainage pipes for water level observation. These will be combined with information provided by citizens in an active way through smartphone apps and in a passive way through social media posts (Twitter, Flickr etc.). Sensor information will be integrated, visualized and made accessible to citizens to help raise citizen awareness of urban water management challenges and promote resilience by providing information on how citizens can contribute in addressing these. Moreover, citizens and businesses can benefit from reliable weather information in planning their social and commercial activities. In the end city-wide high-resolution rainfall maps will be derived, blending rainfall information from microwave links and weather radars. This information will be used for urban water management. This presentation focuses on rainfall estimation from commercial microwave links. Received signal levels from tens of microwave links within the Amsterdam region (roughly 1 million inhabitants) in the Netherlands are utilized to estimate rainfall with high spatial and temporal resolution. Rainfall maps will be presented and compared to a gauge-adjusted radar rainfall data set. Rainfall time series from gauge(s), radars and links will be compared.

  8. Activation studies of NEG coatings by surface techniques

    SciTech Connect

    Sharma, R. K.; Jagannath,; Bhushan, K. G.; Gadkari, S. C.; Mukund, R.; Gupta, S. K.

    2013-02-05

    NEG (Non Evaporable Getters)materials in the form of ternary alloy coatings have many benefits compare to traditional bare surfaces such as Extreme high vacuum(XHV), lower secondary electron yield(SEY), low photon desorption cofficient. The extreme high vacuum (pressure > 10{sup -10} mbar) is very useful to the study of surfaces of the material, for high energy particle accelerators(LHC, Photon Factories), synchrotrons (ESRF, Ellectra) etc. Low secondary electron yield leads to better beam life time. In LHC the pressure in the interaction region of the two beams is something of the order of 10{sup -12} mbar. In this paper preparation of the coatings and their characterization to get the Activation temperature by using the surface techniques XPS, SEM and SIMS has been shown.

  9. Active Learning Techniques Applied to an Interdisciplinary Mineral Resources Course.

    NASA Astrophysics Data System (ADS)

    Aird, H. M.

    2015-12-01

    An interdisciplinary active learning course was introduced at the University of Puget Sound entitled 'Mineral Resources and the Environment'. Various formative assessment and active learning techniques that have been effective in other courses were adapted and implemented to improve student learning, increase retention and broaden knowledge and understanding of course material. This was an elective course targeted towards upper-level undergraduate geology and environmental majors. The course provided an introduction to the mineral resources industry, discussing geological, environmental, societal and economic aspects, legislation and the processes involved in exploration, extraction, processing, reclamation/remediation and recycling of products. Lectures and associated weekly labs were linked in subject matter; relevant readings from the recent scientific literature were assigned and discussed in the second lecture of the week. Peer-based learning was facilitated through weekly reading assignments with peer-led discussions and through group research projects, in addition to in-class exercises such as debates. Writing and research skills were developed through student groups designing, carrying out and reporting on their own semester-long research projects around the lasting effects of the historical Ruston Smelter on the biology and water systems of Tacoma. The writing of their mini grant proposals and final project reports was carried out in stages to allow for feedback before the deadline. Speakers from industry were invited to share their specialist knowledge as guest lecturers, and students were encouraged to interact with them, with a view to employment opportunities. Formative assessment techniques included jigsaw exercises, gallery walks, placemat surveys, think pair share and take-home point summaries. Summative assessment included discussion leadership, exams, homeworks, group projects, in-class exercises, field trips, and pre-discussion reading exercises

  10. Microwave-assisted aqueous enzymatic extraction of oil from pumpkin seeds and evaluation of its physicochemical properties, fatty acid compositions and antioxidant activities.

    PubMed

    Jiao, Jiao; Li, Zhu-Gang; Gai, Qing-Yan; Li, Xiao-Juan; Wei, Fu-Yao; Fu, Yu-Jie; Ma, Wei

    2014-03-15

    Microwave-assisted aqueous enzymatic extraction (MAAEE) of pumpkin seed oil was performed in this study. An enzyme cocktail comprised of cellulase, pectinase and proteinase (w/w/w) was found to be the most effective in releasing oils. The highest oil recovery of 64.17% was achieved under optimal conditions of enzyme concentration (1.4%, w/w), temperature (44°C), time (66 min) and irradiation power (419W). Moreover, there were no significant variations in physicochemical properties of MAAEE-extracted oil (MAAEEO) and Soxhlet-extracted oil (SEO), but MAAEEO exhibited better oxidation stability. Additionally, MAAEEO had a higher content of linoleic acid (57.33%) than SEO (53.72%), and it showed stronger antioxidant activities with the IC50 values 123.93 and 152.84, mg/mL, according to DPPH radical scavenging assay and β-carotene/linoleic acid bleaching test. SEM results illustrated the destruction of cell walls and membranes by MAAEE. MAAEE is, therefore, a promising and environmental-friendly technique for oil extraction in the food industry.

  11. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  12. Microwave enhanced alcoholysis of non-edible (algal, jatropha and pongamia) oils using chemically activated egg shell derived CaO as heterogeneous catalyst.

    PubMed

    Joshi, Girdhar; Rawat, Devendra S; Sharma, Amit Kumar; Pandey, Jitendra K

    2016-11-01

    Microwave enhanced fast and efficient alcoholysis (methanolysis and ethanolysis) of non-edible oils (algal, jatropha and pongamia) is achieved using chemically activated waste egg shell derived CaO (i.e. CaO(cesp)) as heterogeneous catalyst. CaO(cesp) was extracted from waste chicken egg shell and further activated chemically by supporting transition metal oxide. The maximum conversion was achieved using 3wt% catalysts under 700W microwave irradiation and 10:1 alcohol/oil ratio in 6min. Alcoholysis using ZnO activated CaO(cesp) catalyst has shown higher reaction yields in comparison to other modified catalysts. Methanolysis has shown better biodiesel conversion in comparison to ethanolysis. The catalyst has shown longer lifetime and sustained activity after being used for four cycles. Due to more saturated fatty acid content; algal biodiesel has shown improved fuel properties in comparison to other biodiesels.

  13. Impacts of Different Assimilation Methodologies on Crop Yield Estimates Using Active and Passive Microwave Dataset at L-Band

    NASA Astrophysics Data System (ADS)

    Liu, P.; Bongiovanni, T. E.; Monsivais-Huertero, A.; Bindlish, R.; Judge, J.

    2013-12-01

    Accurate estimates of crop yield are important for managing agricultural production and food security. Although the crop growth models, such as the Decision Support System Agrotechnology Transfer (DSSAT), have been used to simulate crop growth and development, the crop yield estimates still diverge from the reality due to different sources of errors in the models and computation. Auxiliary observations may be incorporated into such dynamic models to improve predictions using data assimilation. Active and passive (AP) microwave observations at L-band (1-2 GHz) are sensitive to dielectric and geometric properties of soil and vegetation, including soil moisture (SM), vegetation water content (VWC), surface roughness, and vegetation structure. Because SM and VWC are one of the governing factors in estimating crop yield, microwave observations may be used to improve crop yield estimates. Current studies have shown that active observations are more sensitive to the surface roughness of soil and vegetation structure during the growing season, while the passive observations are more sensitive to the SM. Backscatter and emission models linked with the DSSAT model (DSSAT-A-P) allow assimilation of microwave observations of backscattering coefficient (σ0) and brightness temperature (TB) may provide biophysically realistic estimates of model states and parameters. The present ESA Soil Moisture Ocean Salinity (SMOS) mission provides passive observations at 1.41 GHz at 25 km every 2-3 days, and the NASA/CNDAE Aquarius mission provides L-band AP observations at spatial resolution of 150 km with a repeat coverage of 7 days for global SM products. In 2014, the planned NASA Soil Moisture Active Passive mission will provide AP observations at 1.26 and 1.41 GHz at the spatial resolutions of 3 and 30 km, respectively, with a repeat coverage of 2-3 days. The goal of this study is to understand the impacts of assimilation of asynchronous and synchronous AP observations on crop yield

  14. Anti-Inflammatory Activity of Pinus koraiensis Cone Bark Extracts Prepared by Micro-Wave Assisted Extraction

    PubMed Central

    Kang, Sun-Ae; Kim, Dong-Hee; Hong, Shin-Hyub; Park, Hye-Jin; Kim, Na-Hyun; Ahn, Dong-Hyun; An, Bong-Jeun; Kwon, Joong-Ho; Cho, Young-Je

    2016-01-01

    In this study, we compared the anti-inflammatory activity of Pinus koraiensis cone bark extracts prepared by conventional extraction and microwave-assisted extraction (MAE). Water extracts and 50% ethanol extracts prepared using MAE were applied to RAW 264.7 cell at 5, 10, 25, and 50 μg/mL of concentrations, and tested for cytoxicity. The group treated with 50 μg/mL of 50% ethanol extracts showed toxicity. In order to investigate the inhibition of nitric oxide (NO) production in RAW 264.7 cells, extracts of water and ethanol were treated with 5, 10, and 25 μg/mL concentrations. The inhibitory activity of water and 50% ethanol extracts groups were determined as 40% and 60% at 25 μg/mL concentration, respectively. We found concentration dependent decreases on inducible NO synthase. The inhibitory effect against forming inflammatory cytokines, prostaglandin E2, tumor necrosis factor-α, interleukin (IL)-6, and IL-1β, was also superior in the 25 μg/mL treated group than the control group. According to these results, the water extracts and 50% ethanol extracts both inhibited inflammatory mediators by reducing the inflammatory response. Therefore, The MAE extracts of P. koraiensis cone bark can be developed as a functional ingredient with anti-inflammatory activity. PMID:27752500

  15. Anti-Inflammatory Activity of Pinus koraiensis Cone Bark Extracts Prepared by Micro-Wave Assisted Extraction.

    PubMed

    Kang, Sun-Ae; Kim, Dong-Hee; Hong, Shin-Hyub; Park, Hye-Jin; Kim, Na-Hyun; Ahn, Dong-Hyun; An, Bong-Jeun; Kwon, Joong-Ho; Cho, Young-Je

    2016-09-01

    In this study, we compared the anti-inflammatory activity of Pinus koraiensis cone bark extracts prepared by conventional extraction and microwave-assisted extraction (MAE). Water extracts and 50% ethanol extracts prepared using MAE were applied to RAW 264.7 cell at 5, 10, 25, and 50 μg/mL of concentrations, and tested for cytoxicity. The group treated with 50 μg/mL of 50% ethanol extracts showed toxicity. In order to investigate the inhibition of nitric oxide (NO) production in RAW 264.7 cells, extracts of water and ethanol were treated with 5, 10, and 25 μg/mL concentrations. The inhibitory activity of water and 50% ethanol extracts groups were determined as 40% and 60% at 25 μg/mL concentration, respectively. We found concentration dependent decreases on inducible NO synthase. The inhibitory effect against forming inflammatory cytokines, prostaglandin E2, tumor necrosis factor-α, interleukin (IL)-6, and IL-1β, was also superior in the 25 μg/mL treated group than the control group. According to these results, the water extracts and 50% ethanol extracts both inhibited inflammatory mediators by reducing the inflammatory response. Therefore, The MAE extracts of P. koraiensis cone bark can be developed as a functional ingredient with anti-inflammatory activity.

  16. Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay.

    PubMed

    Motshekga, Sarah C; Ray, Suprakas S; Onyango, Maurice S; Momba, Maggie N B

    2013-11-15

    Composites of silver-zinc oxide nanoparticles supported on bentonite clay were synthesized by the microwave-assisted synthesis method for use as an antibacterial material. Silver nitrate was used as the precursor of silver nanoparticles while zinc oxide nanoparticles were commercially sourced. The composites were characterized by powder X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared (FTIR) and BET surface area measurements. XRD spectra showed peaks of silver confirming the formation of the silver and not of the silver nitrate or any other impurity of the metal. Meanwhile TEM confirmed the formation of silver and zinc oxide nanoparticles on the clay layers, with particle sizes ranging from 9-30 nm and 15-70 nm, respectively. The antibacterial activities of the composites were evaluated against Gram negative Escherichia coli bacteria and Gram positive Enterococcus faecalis bacteria by the disc diffusion method. Whereas both composites of Ag-clay and ZnO-clay showed good antibacterial activity against bacteria, a better antibacterial activity was observed with Ag/ZnO-clay composite. The results therefore reveal that Ag/ZnO-clay composite is a promising bactericide that can be used for deactivating microbes in water.

  17. Microwave detector

    SciTech Connect

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1986-12-02

    A detector is described for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations, the detector comprising: a B-dot loop linking the magnetic field of the microwave pulse; a biased ferrite, that produces a magnetization field flux that links the B-dot loop. The ferrite is positioned within the B-dot loop so that the magnetic field of the microwave pulse interacts with the ferrite and thereby participates in the formation of the magnetization field flux; and high-frequency insensitive means for measuring electric voltage or current induced in the B-dot loop.

  18. In vitro and in vivo performance of bioactive Ti6Al4V/TiC/HA implants fabricated by a rapid microwave sintering technique.

    PubMed

    Choy, Man Tik; Tang, Chak Yin; Chen, Ling; Wong, Chi Tak; Tsui, Chi Pong

    2014-09-01

    Failure of the bone-implant interface in a joint prosthesis is a main cause of implant loosening. The introduction of a bioactive substance, hydroxyapatite (HA), to a metallic bone-implant may enhance its fixation on human bone by encouraging direct bone bonding. Ti6Al4V/TiC/HA composites with a reproducible porous structure (porosity of 27% and pore size of 6-89 μm) were successfully fabricated by a rapid microwave sintering technique. This method allows the biocomposites to be fabricated in a short period of time under ambient conditions. Ti6Al4V/TiC/HA composites exhibited a compressive strength of 93 MPa, compressive modulus of 2.9 GPa and microhardness of 556 HV which are close to those of the human cortical bone. The in vitro preosteoblast MC3T3-E1 cells cultured on the Ti6Al4V/TiC/HA composite showed that the composite surface could provide a biocompatible environment for cell adhesion, proliferation and differentiation without any cytotoxic effects. This is among the first attempts to study the in vivo performance of load-bearing Ti6Al4V/TiC and Ti6Al4V/TiC/HA composites in a live rabbit. The results indicated that the Ti6Al4V/TiC/HA composite had a better bone-implant interface compared with the Ti6Al4V/TiC implant. Based on the microstructural features, the mechanical properties, and the in vitro and in vivo test results from this study, the Ti6Al4V/TiC/HA composites have the potential to be employed in load-bearing orthopedic applications.

  19. Active sampling technique to enhance chemical signature of buried explosives

    NASA Astrophysics Data System (ADS)

    Lovell, John S.; French, Patrick D.

    2004-09-01

    Deminers and dismounted countermine engineers commonly use metal detectors, ground penetrating radar and probes to locate mines. Many modern landmines have a very low metal content, which severely limits the effectiveness of metal detectors. Canines have also been used for landmine detection for decades. Experiments have shown that canines smell the explosives which are known to leak from most types of landmines. The fact that dogs can detect landmines indicates that vapor sensing is a viable approach to landmine detection. Several groups are currently developing systems to detect landmines by "sniffing" for the ultra-trace explosive vapors above the soil. The amount of material that is available to passive vapor sensing systems is limited to no more than the vapor in equilibrium with the explosive related chemicals (ERCs) distributed in the surface soils over and near the landmine. The low equilibrium vapor pressure of TNT in the soil/atmosphere boundary layer and the limited volume of the boundary layer air imply that passive chemical vapor sensing systems require sensitivities in the picogram range, or lower. ADA is working to overcome many of the limitations of passive sampling methods, by the use of an active sampling method that employs a high-powered (1,200+ joules) strobe lamp to create a highly amplified plume of vapor and/or ERC-bearing fine particulates. Initial investigations have demonstrated that this approach can amplify the detectability of TNT by two or three orders of magnitude. This new active sampling technique could be used with any suitable explosive sensor.

  20. Microwave and ultrasound pre-treatments influence microbial community structure and digester performance in anaerobic digestion of waste activated sludge.

    PubMed

    Westerholm, Maria; Crauwels, Sam; Van Geel, Maarten; Dewil, Raf; Lievens, Bart; Appels, Lise

    2016-06-01

    Comparative analyses of bacterial and archaeal community structures and dynamics in three biogas digesters during start-up and subsequent operation using microwaved, ultrasonicated or untreated waste activated sludge were performed based on 454 pyrosequencing datasets of part of 16S ribosomal RNA sequences and quantitative PCR. The pre-treatment increased the solubility, and thus the availability of the substrate for microbial degradation and significantly affected the succession of the anaerobic community structure over the course of the digestion. Bacteroidetes, Proteobacteria and Firmicutes were the dominant phyla in all digesters throughout operation. Proteobacteria decreased in relative abundance from 23-26 % to 11-13 % in association with enhanced substrate availability. Negative correlations between relative abundance of Alpha-, Beta- and Gammaproteobacteria and the substrate availability and/or biogas production were disclosed in statistical analyses. Clostridiales was the dominant order in Firmicutes, and Clostridiales, Clostridia and Firmicutes relative abundance and richness were shown to positively correlate with substrate availability and biogas generation. Methanogenic communities had a fairly restricted structure, highly dominated by Methanosaeta and Methanobrevibacter phylotypes. A gradual decline in Methanobrevibacter and increased representation of Methanosaeta concilii over time were particularly apparent in the digester receiving untreated waste activated sludge, whereas more diversified archaeal communities were maintained in the pre-treatment digesters. The quantitative PCR analyses revealed a methanogenic community distribution that coincided with the 454 pyrosequencing data.

  1. Improving the electrical catalytic activity of Pt/TiO2 nanocomposites by a combination of electrospinning and microwave irradiation

    NASA Astrophysics Data System (ADS)

    Long, Qi; Cai, Mei; Li, Jinru; Rong, Huilin; Jiang, Long

    2011-04-01

    One of the greatest challenges in preparing TiO2-based oxygen electrodes for PEM fuel cells is increasing the electrical catalytic activity of Pt nanoparticle/TiO2 composites by improving the dispersion of Pt. This article describes a new way for improving the dispersion of Pt nanoparticles by depositing them on TiO2 fibers and using microwave irradiation. The Pt nanoparticles used in this experiment is about 5 nm in diameter and the diameter of TiO2 fibers could be controlled ranging from 30 to 60 nm and Pt nanoparticles still keep their size when the deposition amount is increased on the surface of TiO2 fibers. The Pt nanoparticles were highly dispersed without agglomeration even at a weight percentage of composites as high as 40%. The position of Pt nanoparticles located in the fiber and the composition of Pt/TiO2, which had great influence on the electric conductivity and electrical catalytic activity of the composite, could be easily controlled.

  2. Pretreatment of old-age landfill leachate by microwave-assisted catalytic oxidation in the presence of activated carbon.

    PubMed

    Xu, Xiao-Chun; Zhang, Hong-Tao; Dong, Zhi-Yong; Fan, Yu-Feng

    2013-01-01

    Landfill leachate is posing an ever-greater environmental hazard. Recently, a process for purification combining activated carbon, microwave (MW) and Fenton oxidation has drawn much attention. In this study, the effectiveness of this process for the pretreatment of an old-age landfill leachate was tested. The effects of various parameters were investigated and the optimal condition included as follows: MW energy density, 6 W/mL; MW power, 300 W; radiation time, 8 min; H2O2 dosage, 0.1 mol/L; Fe(2+)-EDTA dosage, 0.02 mol/L; granular activated carbon (GAC) dosage, 6 g/L. Within the present experimental condition applied, the chemical oxygen demand (COD) removal reached 56.5%, and the ratio of 5-day biochemical oxygen demand to chemical oxygen demand (BOD5/COD) was enhanced from 0.122 to 0.462. Comparing with GAC, MW and Fenton alone or the combinations of any two of them, MW/Fenton/GAC displayed superior treatment efficiency. The MW/Fenton/GAC process is believed to be a promising pretreatment technology for biorefractory old-age landfill leachate.

  3. Microwave generator

    DOEpatents

    Kwan, T.J.T.; Snell, C.M.

    1987-03-31

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

  4. Residual matrix from different separation techniques impacts exosome biological activity

    PubMed Central

    Paolini, Lucia; Zendrini, Andrea; Noto, Giuseppe Di; Busatto, Sara; Lottini, Elisabetta; Radeghieri, Annalisa; Dossi, Alessandra; Caneschi, Andrea; Ricotta, Doris; Bergese, Paolo

    2016-01-01

    Exosomes are gaining a prominent role in research due to their intriguing biology and several therapeutic opportunities. However, their accurate purification from body fluids and detailed physicochemical characterization remain open issues. We isolated exosomes from serum of patients with Multiple Myeloma by four of the most popular purification methods and assessed the presence of residual contaminants in the preparations through an ad hoc combination of biochemical and biophysical techniques - including Western Blot, colloidal nanoplasmonics, atomic force microscopy (AFM) and scanning helium ion microscopy (HIM). The preparations obtained by iodixanol and sucrose gradients were highly pure. To the contrary, those achieved with limited processing (serial centrifugation or one step precipitation kit) resulted contaminated by a residual matrix, embedding the exosomes. The contaminated preparations showed lower ability to induce NfkB nuclear translocation in endothelial cells with respect to the pure ones, probably because the matrix prevents the interaction and fusion of the exosomes with the cell membrane. These findings suggest that exosome preparation purity must be carefully assessed since it may interfere with exosome biological activity. Contaminants can be reliably probed only by an integrated characterization approach aimed at both the molecular and the colloidal length scales. PMID:27009329

  5. Bio-refinery of orange peels waste: a new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin.

    PubMed

    Boukroufa, Meryem; Boutekedjiret, Chahrazed; Petigny, Loïc; Rakotomanomana, Njara; Chemat, Farid

    2015-05-01

    In this study, extraction of essential oil, polyphenols and pectin from orange peel has been optimized using microwave and ultrasound technology without adding any solvent but only "in situ" water which was recycled and used as solvent. The essential oil extraction performed by Microwave Hydrodiffusion and Gravity (MHG) was optimized and compared to steam distillation extraction (SD). No significant changes in yield were noticed: 4.22 ± 0.03% and 4.16 ± 0.05% for MHG and SD, respectively. After extraction of essential oil, residual water of plant obtained after MHG extraction was used as solvent for polyphenols and pectin extraction from MHG residues. Polyphenols extraction was performed by ultrasound-assisted extraction (UAE) and conventional extraction (CE). Response surface methodology (RSM) using central composite designs (CCD) approach was launched to investigate the influence of process variables on the ultrasound-assisted extraction (UAE). The statistical analysis revealed that the optimized conditions of ultrasound power and temperature were 0.956 W/cm(2) and 59.83°C giving a polyphenol yield of 50.02 mgGA/100 g dm. Compared with the conventional extraction (CE), the UAE gave an increase of 30% in TPC yield. Pectin was extracted by conventional and microwave assisted extraction. This technique gives a maximal yield of 24.2% for microwave power of 500 W in only 3 min whereas conventional extraction gives 18.32% in 120 min. Combination of microwave, ultrasound and the recycled "in situ" water of citrus peels allow us to obtain high added values compounds in shorter time and managed to make a closed loop using only natural resources provided by the plant which makes the whole process intensified in term of time and energy saving, cleanliness and reduced waste water.

  6. Microwave Plasma-Activated Chemical Vapor Deposition of Nitrogen-Doped Diamond. II: CH4/N2/H2 Plasmas

    PubMed Central

    2016-01-01

    We report a combined experimental and modeling study of microwave-activated dilute CH4/N2/H2 plasmas, as used for chemical vapor deposition (CVD) of diamond, under very similar conditions to previous studies of CH4/H2, CH4/H2/Ar, and N2/H2 gas mixtures. Using cavity ring-down spectroscopy, absolute column densities of CH(X, v = 0), CN(X, v = 0), and NH(X, v = 0) radicals in the hot plasma have been determined as functions of height, z, source gas mixing ratio, total gas pressure, p, and input power, P. Optical emission spectroscopy has been used to investigate, with respect to the same variables, the relative number densities of electronically excited species, namely, H atoms, CH, C2, CN, and NH radicals and triplet N2 molecules. The measurements have been reproduced and rationalized from first-principles by 2-D (r, z) coupled kinetic and transport modeling, and comparison between experiment and simulation has afforded a detailed understanding of C/N/H plasma-chemical reactivity and variations with process conditions and with location within the reactor. The experimentally validated simulations have been extended to much lower N2 input fractions and higher microwave powers than were probed experimentally, providing predictions for the gas-phase chemistry adjacent to the diamond surface and its variation across a wide range of conditions employed in practical diamond-growing CVD processes. The strongly bound N2 molecule is very resistant to dissociation at the input MW powers and pressures prevailing in typical diamond CVD reactors, but its chemical reactivity is boosted through energy pooling in its lowest-lying (metastable) triplet state and subsequent reactions with H atoms. For a CH4 input mole fraction of 4%, with N2 present at 1–6000 ppm, at pressure p = 150 Torr, and with applied microwave power P = 1.5 kW, the near-substrate gas-phase N atom concentration, [N]ns, scales linearly with the N2 input mole fraction and exceeds the concentrations [NH]ns, [NH2]ns

  7. Integrated Pan-Arctic Melt Onset Detection From Satellite Active/Passive Microwave Measurements, 2000-2009

    NASA Astrophysics Data System (ADS)

    Wang, L.; Wolken, G. J.; Sharp, M. J.; Howell, S.; Derksen, C.; Brown, R. D.; Markus, T.; Cole, J. N.

    2011-12-01

    An integrated pan-Arctic melt onset dataset is generated for the first time by combining active and passive microwave satellite derived estimates from algorithms developed for northern high latitude land surface, ice caps, large lakes, and sea ice. The dataset yields new insights into the spatial and temporal patterns of mean melt onset date (MMOD) and the associated geographic and topographic controls. For example, in the terrestrial Arctic, tree fraction and latitude explain more than 60% of the variance in MMOD with the former exerting a stronger influence on MMOD than the latter. Elevation is also found to be an important factor controlling MMOD with most of the Arctic exhibiting significant positive relationships between MMOD and elevation, with a mean value of 24.5 m.day-1. Melt onset progresses fastest over land areas of uniform cover and/or elevation (40 - 80 km.day-1), and slows down in mountainous areas, on ice caps, and in the forest-tundra ecotones. Over sea ice, melt onset advances very slowly in the marginal seas, while in the central Arctic the rate of advance can exceed 100 km.day-1. Comparison of the observed MMOD with simulated values from the third version of the Canadian Coupled Global Climate Model showed good agreement over land areas, but weaker agreement over sea ice, particularly in the central Arctic, where simulated MMOD is about 2-3 weeks later than observed due to a cold bias in simulated surface air temperatures over sea ice.

  8. Sewage sludge pretreatment by microwave irradiation combined with activated carbon fibre at alkaline pH for anaerobic digestion.

    PubMed

    Sun, Dedong; Guo, Sixiao; Ma, Nina; Wang, Guowen; Ma, Chun; Hao, Jun; Xue, Mang; Zhang, Xinxin

    2016-01-01

    This research focuses on the effects of microwave-assisted activated carbon fibre (ACF) (MW-ACF) treatment on sewage sludge at alkaline pH. The disintegration and biodegradability of sewage sludge were studied. It was found that the MW-ACF process at alkaline pH provided a rapid and efficient process to disrupt the microbial cells in the sludge. The results suggested that when irradiated at 800 W MW for 110 s with a dose of 1.0 g ACF/g solid concentration (SS) at pH 10.5, the MW-ACF pretreatment achieved 55% SS disintegration, 23% greater than the value of MW alone (32%). The concentration of total nitrogen, total phosphorus, supernatant soluble chemical oxygen demand, protein, and polysaccharide increased by 60%, 144%, 145%, 74%, and 77%, respectively. An increase in biogas production by 63.7% was achieved after 20 days of anaerobic digestion (AD), compared to the control. The results indicated that the MW-ACF pretreatment process at alkaline pH provides novel sludge management options in disintegration of sewage sludge for further AD.

  9. Soil Moisture Active Passive (SMAP) Microwave Radiometer Radio-Frequency Interference (RFI) Mitigation: Initial On-Orbit Results

    NASA Technical Reports Server (NTRS)

    Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Johnson, Joel T.; Aksoy, Mustafa; Bringer, Alexandra

    2015-01-01

    The Soil Moisture Active Passive (SMAP) mission, launched in January 2015, provides global measurements of soil moisture using a microwave radiometer. SMAPs radiometer passband lies within the passive frequency allocation. However, both unauthorized in-band transmitters as well as out-of-band emissions from transmitters operating at frequencies adjacent to this allocated spectrum have been documented as sources of radio frequency interference (RFI) to the L-band radiometers on SMOS and Aquarius. The spectral environment consists of high RFI levels as well as significant occurrences of low level RFI equivalent to 0.1 to 10 K. The SMAP ground processor reports the antenna temperature both before and after RFI mitigation is applied. The difference between these quantities represents the detected RFI level. The presentation will review the SMAP RFI detection and mitigation procedure and discuss early on-orbit RFI measurements from the SMAP radiometer. Assessments of global RFI properties and source types will be provided, as well as the implications of these results for SMAP soil moisture measurements.

  10. Sea Surface Salinity and Wind Retrieval Algorithm Using Combined Passive-Active L-Band Microwave Data

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Chaubell, Mario J.

    2011-01-01

    Aquarius is a combined passive/active L-band microwave instrument developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, the global water cycle, and climate. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 kilometers and a retrieval accuracy of 0.2 practical salinity units globally on a monthly basis. The measurement principle is based on the response of the L-band (1.413 gigahertz) sea surface brightness temperatures (T (sub B)) to sea surface salinity. To achieve the required 0.2 practical salinity units accuracy, the impact of sea surface roughness (e.g. wind-generated ripples and waves) along with several factors on the observed brightness temperature has to be corrected to better than a few tenths of a degree Kelvin. To the end, Aquarius includes a scatterometer to help correct for this surface roughness effect.

  11. Degradation kinetics and mechanism of trace nitrobenzene by granular activated carbon enhanced microwave/hydrogen peroxide system.

    PubMed

    Tan, Dina; Zeng, Honghu; Liu, Jie; Yu, Xiaozhang; Liang, Yanpeng; Lu, Lanjing

    2013-07-01

    The kinetics of the degradation of trace nitrobenzene (NB) by a granular activated carbon (GAC) enhanced microwave (MW)/hydrogen peroxide (H202) system was studied. Effects of pH, NB initial concentration and tert-butyl alcohol on the removal efficiency were examined. It was found that the reaction rate fits well to first-order reaction kinetics in the MW/GAC/H202 process. Moreover, GAC greatly enhanced the degradation rate of NB in water. Under a given condition (MW power 300 W, H202 dosage 10 mg/L, pH 6.85 and temperature (60 +/- 5)degrees C), the degradation rate of NB was 0.05214 min-1when 4 g/L GAC was added. In general, alkaline pH was better for NB degradation; however, the optimum pH was 8.0 in the tested pH value range of 4.0-12.0. At H202 dosage of 10 mg/L and GAC dosage of 4 g/L, the removal of NB was decreased with increasing initial concentrations of NB, indicating that a low initial concentration was beneficial for the degradation of NB. These results indicated that the MW/GAC/H202 process was effective for trace NB degradation in water. Gas chromatography-mass spectrometry analysis indicated that a hydroxyl radical addition reaction and dehydrogenation reaction enhanced NB degradation.

  12. Degradation of p-nitrophenol in aqueous solution by microwave assisted oxidation process through a granular activated carbon fixed bed.

    PubMed

    Bo, Longli; Quan, Xie; Chen, Shuo; Zhao, Huimin; Zhao, Yazhi

    2006-09-01

    A microwave (MW) assisted oxidation process was investigated for degradation of p-nitrophenol (PNP) from aqueous solution. The process consisted of a granular activated carbon (GAC) fixed bed reactor, a MW source, solution and air supply system, and a heat exchanger. The process was operated in continuous flow mode. Air was applied for oxygen supply. GAC acted as a MW energy absorption material as well as the catalyst for PNP degradation. MW power, air flow, GAC dose, and influent flow proved to be major factors which influenced PNP degradation. The results showed that PNP was degraded effectively by this new process. Under a given condition (PNP concentration 1330mg/L, MW power 500 W, influent flow 6.4 mL/min, air flow 100 mL/min), PNP removed 90%, corresponding to 80% of TOC removal. The pathway of PNP degradation was deduced based on GC-MS identification of course products. PNP experienced sequential oxidation steps and mineralized ultimately. Nitro-group of PNP converted to nitrite and nitrate. Biodegradability of the solution was improved apparently after treatment by MW assisted oxidation process, which benefit to further treatment of the solution using biochemical method.

  13. Microwave-Assisted Condensation Reactions of Acetophenone Derivatives and Activated Methylene Compounds with Aldehydes Catalyzed by Boric Acid under Solvent-Free Conditions.

    PubMed

    Brun, Elodie; Safer, Abdelmounaim; Carreaux, François; Bourahla, Khadidja; L'helgoua'ch, Jean-Martial; Bazureau, Jean-Pierre; Villalgordo, Jose Manuel

    2015-06-23

    We here disclosed a new protocol for the condensation of acetophenone derivatives and active methylene compounds with aldehydes in the presence of boric acid under microwave conditions. Implementation of the reaction is simple, healthy and environmentally friendly owing to the use of a non-toxic catalyst coupled to a solvent-free procedure. A large variety of known or novel compounds have thus been prepared, including with substrates bearing acid or base-sensitive functional groups.

  14. Handbook of microwave testing

    NASA Astrophysics Data System (ADS)

    Laverghetta, T. S.

    A description of microwave test equipment is presented, taking into account signal generators, signal detection/indicating devices, auxiliary testing devices, and microwave systems. Low power, medium power, high power, and peak power measurements are considered along with noise measurements, spectrum analyzer measurements, active testing, antenna measurements, and automatic testing. Attention is given to phase noise, Q measurements, the Time Domain Reflectometry (TDR) measurement, swept impedance, noise sources, noise meters, manual noise measurements, automatic noise figure measurements, gain, gain compression, intermodulation, the third order intercept, and questions of spectral purity.

  15. Comparative Kinetic Study and Microwaves Non-Thermal Effects on the Formation of Poly(amic acid) 4,4′-(Hexafluoroisopropylidene)diphthalic Anhydride (6FDA) and 4,4′-(Hexafluoroisopropylidene)bis(p-phenyleneoxy)dianiline (BAPHF). Reaction Activated by Microwave, Ultrasound and Conventional Heating

    PubMed Central

    Tellez, Hugo Mendoza; Alquisira, Joaquín Palacios; Alonso, Carlos Rius; Cortés, José Guadalupe López; Toledano, Cecilio Alvarez

    2011-01-01

    Green chemistry is the design of chemical processes that reduce or eliminate negative environmental impacts. The use and production of chemicals involve the reduction of waste products, non-toxic components, and improved efficiency. Green chemistry applies innovative scientific solutions in the use of new reagents, catalysts and non-classical modes of activation such as ultrasounds or microwaves. Kinetic behavior and non-thermal effect of poly(amic acid) synthesized from (6FDA) dianhydride and (BAPHF) diamine in a low microwave absorbing p-dioxane solvent at low temperature of 30, 50, 70 °C were studied, under conventional heating (CH), microwave (MW) and ultrasound irradiation (US). Results show that the polycondensation rate decreases (MW > US > CH) and that the increased rates observed with US and MW are due to decreased activation energies of the Arrhenius equation. Rate constant for a chemical process activated by conventional heating declines proportionally as the induction time increases, however, this behavior is not observed under microwave and ultrasound activation. We can say that in addition to the thermal microwave effect, a non-thermal microwave effect is present in the system. PMID:22072913

  16. Comparative kinetic study and microwaves non-thermal effects on the formation of poly(amic acid) 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 4,4'-(hexafluoroisopropylidene)bis(p-phenyleneoxy)dianiline (BAPHF). Reaction activated by microwave, ultrasound and conventional heating.

    PubMed

    Tellez, Hugo Mendoza; Alquisira, Joaquín Palacios; Alonso, Carlos Rius; Cortés, José Guadalupe López; Toledano, Cecilio Alvarez

    2011-01-01

    Green chemistry is the design of chemical processes that reduce or eliminate negative environmental impacts. The use and production of chemicals involve the reduction of waste products, non-toxic components, and improved efficiency. Green chemistry applies innovative scientific solutions in the use of new reagents, catalysts and non-classical modes of activation such as ultrasounds or microwaves. Kinetic behavior and non-thermal effect of poly(amic acid) synthesized from (6FDA) dianhydride and (BAPHF) diamine in a low microwave absorbing p-dioxane solvent at low temperature of 30, 50, 70 °C were studied, under conventional heating (CH), microwave (MW) and ultrasound irradiation (US). Results show that the polycondensation rate decreases (MW > US > CH) and that the increased rates observed with US and MW are due to decreased activation energies of the Arrhenius equation. Rate constant for a chemical process activated by conventional heating declines proportionally as the induction time increases, however, this behavior is not observed under microwave and ultrasound activation. We can say that in addition to the thermal microwave effect, a non-thermal microwave effect is present in the system.

  17. MICROWAVE-ASSISTED GREENER SYNTHESIS OF PHARMACEUTICALLY ACTIVE HETEROCYCLES UNDER BENIGN CONDITIONS

    EPA Science Inventory

    Green chemistry is a rapidly developing new field that provides us a proactive avenue for the sustainable development of future science and technologies. Environmentally benign protocols have been developed for the synthesis of various pharmaceutically active heterocycles namely ...

  18. Microwave-Assisted Synthesis of Bio-Active Heterocycles and Fine Chemicals in Aqueous Media

    EPA Science Inventory

    Human health, especially in the aging population, mostly depends on various medicines, and researchers are combating against emerging diseases by new drug discovery. Heterocyclic compounds hold a special place among pharmaceutically active natural products as well as synthetic co...

  19. Effect of microwave drying and oven drying on the water activity, color, phenolic compounds content and antioxidant activity of coconut husk (Cocos nucifera L.).

    PubMed

    Valadez-Carmona, Lourdes; Cortez-García, Rosa María; Plazola-Jacinto, Carla Patricia; Necoechea-Mondragón, Hugo; Ortiz-Moreno, Alicia

    2016-09-01

    The coconut (Cocos nucifera L.) husk is basically composed by fiber and pith material and remained under-utilized. This is an important source of phenolic compounds that could be used as functional ingredients. The aim of this study was to determine the effect of: oven-drying (OD) and microwave drying (MD), on the water activity, color, phenolic compound content and antioxidant activity of coconut husk. The OD was performed at 60 °C for 12 h and MD was performed at 900 W for 10 min. The total phenolic content (TPC) in fresh coconut husk was 64.2 mg GAE/g dry wt and significant higher than observed after OD and MD of 35.8 and 45.5 mg GAE/g dry wt, respectively. Ten phenols were identified in fresh and dehydrated coconut husks. The husk MD showed an increase in the content of gallic, 4-hydroxybenzoic, ferulic and syringic acids and epicatechin compared with the fresh; while coconut husk OD and MD, showed a decrease in the content of vanillic acid, vanillin, catequin and kaempferol. The antioxidant activity decreased after both OD and MD. However, MD resulted in a better antioxidant activity in husk than OD. MD of husk resulted into better retention of preserved color, TPC and TFC than OD.

  20. Microwave furnace having microwave compatible dilatometer

    DOEpatents

    Kimrey, H.D. Jr.; Janney, M.A.; Ferber, M.K.

    1992-03-24

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy. 2 figs.

  1. Microwave furnace having microwave compatible dilatometer

    DOEpatents

    Kimrey, Jr., Harold D.; Janney, Mark A.; Ferber, Mattison K.

    1992-01-01

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy.

  2. Enhanced adsorption of chromium onto activated carbon by microwave-assisted H(3)PO(4) mixed with Fe/Al/Mn activation.

    PubMed

    Sun, Yuanyuan; Yue, Qinyan; Mao, Yanpeng; Gao, Baoyu; Gao, Yuan; Huang, Lihui

    2014-01-30

    FeCl3, AlCl3 and MnCl2 were used as the assisted activation agent in activated carbon preparation by H3PO4 activation using microwave heating method. The physico-chemical properties of activated carbons were investigated by scanning electron microscope (SEM), N2 adsorption/desorption, Boehm's titration, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). To investigate the adsorption performances of chromium onto these newly developed activated carbons, a batch of experiments were performed under different adsorption conditions: solution pH, initial Cr(VI) ion concentration, contact time and co-existing ions. The results suggested that carbon with MnCl2 as assisted activation agent displayed the highest BET surface area (1332m(2)/g) and the highest pore volume (1.060cm(3)/g). FeCl3, AlCl3 and MnCl2 had successfully improved Cr(VI) adsorption and activated carbon with FeCl3 as assisted activation agent exhibited the best uptake capacity. To study the transformation of Cr(VI) in adsorption process, total chromium in the aqueous solution was also recorded. The ratio of the amount of Cr(VI) to Cr(III) on each adsorbent was explained by XPS analysis results. Both the co-existing salts (Na2SO4 and NaNO3) demonstrated promoted effects on Cr(VI) removal by four carbons. The pseudo-second-order model and Freundlich equation displayed a good correlation with adsorption data.

  3. Microwave systems analysis, solar power satellite. [alignment of the antenna array

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Various alternative active approaches to achieving aand maintaining flatness for the microwave power transmission system (MPTS) were studied. A baseline active alignment scheme was developed which includes subarray attachment mechanisms, height and tilting adjustments, service corridors, a rotating laser beam reference system, monopulse pointing techniques, and the design of a beam-centering photoconductive sensor.

  4. Active and passive techniques for tiltrotor aeroelastic stability augmentation

    NASA Astrophysics Data System (ADS)

    Hathaway, Eric L.

    Tiltrotors are susceptible to whirl flutter, an aeroelastic instability characterized by a coupling of rotor-generated aerodynamic forces and elastic wing modes in high speed airplane-mode flight. The conventional approach to ensuring adequate whirl flutter stability will not scale easily to larger tiltrotor designs. This study constitutes an investigation of several alternatives for improving tiltrotor aerolastic stability. A whirl flutter stability analysis is developed that does not rely on more complex models to determine the variations in crucial input parameters with flight condition. Variation of blade flap and lag frequency, and pitch-flap, pitch-lag, and flap-lag couplings, are calculated from physical parameters, such as blade structural flap and lag stiffness distribution (inboard or outboard of pitch bearing), collective pitch, and precone. The analysis is used to perform a study of the influence of various design parameters on whirl flutter stability. While previous studies have investigated the individual influence of various design parameters, the present investigation uses formal optimization techniques to determine a unique combination of parameters that maximizes whirl flutter stability. The optimal designs require only modest changes in the key rotor and wing design parameters to significantly increase flutter speed. When constraints on design parameters are relaxed, optimized configurations are obtained that allow large values of kinematic pitch-flap (delta3) coupling without degrading aeroelastic stability. Larger values of delta3 may be desirable for advanced tiltrotor configurations. An investigation of active control of wing flaperons for stability augmentation is also conducted. Both stiff- and soft-inplane tiltrotor configurations are examined. Control systems that increase flutter speed and wing mode sub-critical damping are designed while observing realistic limits on flaperon deflection. The flaperon is shown to be particularly

  5. Compact sources of suprathermal microwave emission detected in quiescent active regions during lunar occultations

    NASA Astrophysics Data System (ADS)

    Correia, E.; Kaufmann, P.; Strauss, F. M.

    1992-04-01

    Solar quiescent active regions are known to exhibit radio emission from discrete structures. The knowledge of their dimensions and brightness temperatures is essential for understanding the physics of quiescent, confined plasma regions. Solar eclipses of 10 August, 1980 and 26 January, 1990, observed with high sensitivity and high time resolution at 22 GHz, allowed an unprecedented opportunity to identify Fresnel diffraction effects during lunar occultations of active regions. The results indicate the presence of quiescent discrete sources smaller than one arcsec in one dimension. Assuming symmetrical sources, their brightness temperatures were larger than 2 x 10 exp 7 K and 8 x 10 exp 7 K, for the 1980 and 1990 observations, respectively.

  6. Irradiation, microwave and alternative energy-based treatments for low water activity foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is an increasing recognition of low water activity foods as vectors for human pathogens. Partially or fully dried agricultural commodities, along with modern formulated dried food products, are complex, and designed to meet a variety of nutritional, sensory, and market-oriented goal. This comp...

  7. EDITORIAL: Microwave Moisture Measurements

    NASA Astrophysics Data System (ADS)

    Kaatze, Udo; Kupfer, Klaus; Hübner, Christof

    2007-04-01

    Microwave moisture measurements refer to a methodology by which the water content of materials is non-invasively determined using electromagnetic fields of radio and microwave frequencies. Being the omnipresent liquid on our planet, water occurs as a component in most materials and often exercises a significant influence on their properties. Precise measurements of the water content are thus extremely useful in pure sciences, particularly in biochemistry and biophysics. They are likewise important in many agricultural, technical and industrial fields. Applications are broad and diverse, and include the quality assessment of foodstuffs, the determination of water content in paper, cardboard and textile production, the monitoring of moisture in sands, gravels, soils and constructions, as well as the measurement of water admixtures to coal and crude oil in reservoirs and in pipelines. Microwave moisture measurements and evaluations require insights in various disciplines, such as materials science, dielectrics, the physical chemistry of water, electrodynamics and microwave techniques. The cooperation of experts from the different fields of science is thus necessary for the efficient development of this complex discipline. In order to advance cooperation the Workshop on Electromagnetic Wave Interaction with Water and Moist Substances was held in 1993 in Atlanta. It initiated a series of international conferences, of which the last one was held in 2005 in Weimar. The meeting brought together 130 scientists and engineers from all over the world. This special issue presents a collection of some selected papers that were given at the event. The papers cover most topics of the conference, featuring dielectric properties of aqueous materials, electromagnetic wave interactions, measurement methods and sensors, and various applications. The special issue is dedicated to Dr Andrzej W Kraszewski, who died in July 2006 after a distinguished career of 48 years in the research of

  8. Microwave chemistry for inorganic nanomaterials synthesis.

    PubMed

    Bilecka, Idalia; Niederberger, Markus

    2010-08-01

    This Feature Article gives an overview of microwave-assisted liquid phase routes to inorganic nanomaterials. Whereas microwave chemistry is a well-established technique in organic synthesis, its use in inorganic nanomaterials' synthesis is still at the beginning and far away from having reached its full potential. However, the rapidly growing number of publications in this field suggests that microwave chemistry will play an outstanding role in the broad field of Nanoscience and Nanotechnology. This article is not meant to give an exhaustive overview of all nanomaterials synthesized by the microwave technique, but to discuss the new opportunities that arise as a result of the unique features of microwave chemistry. Principles, advantages and limitations of microwave chemistry are introduced, its application in the synthesis of different classes of functional nanomaterials is discussed, and finally expected benefits for nanomaterials' synthesis are elaborated.

  9. Microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Shiue, J. C.; Wang, J. R.

    1988-01-01

    Knowledge of soil moisture is important to many disciplines, such as agriculture, hydrology, and meteorology. Soil moisture distribution of vast regions can be measured efficiently only with remote sensing techniques from airborne or satellite platforms. At low microwave frequencies, water has a much larger dielectric constant than dry soil. This difference manifests itself in surface emissivity (or reflectivity) change between dry and wet soils, and can be measured by a microwave radiometer or radar. The Microwave Sensors and Data Communications Branch is developing microwave remote sensing techniques using both radar and radiometry, but primarily with microwave radiometry. The efforts in these areas range from developing algorithms for data interpretation to conducting feasibility studies for space systems, with a primary goal of developing a microwave radiometer for soil moisture measurement from satellites, such as EOS or the Space Station. These efforts are listed.

  10. Successful Application of Active Learning Techniques to Introductory Microbiology.

    ERIC Educational Resources Information Center

    Hoffman, Elizabeth A.

    2001-01-01

    Points out the low student achievement in microbiology courses and presents an active learning method applied in an introductory microbiology course which features daily quizzes, cooperative learning activities, and group projects. (Contains 30 references.) (YDS)

  11. New insights into selective heterogeneous nucleation of metal nanoparticles on oxides by microwave-assisted reduction: rapid synthesis of high-activity supported catalysts.

    PubMed

    Anumol, Erumpukuthickal Ashok; Kundu, Paromita; Deshpande, Parag Arvind; Madras, Giridhar; Ravishankar, Narayanan

    2011-10-25

    Microwave-based methods are widely employed to synthesize metal nanoparticles on various substrates. However, the detailed mechanism of formation of such hybrids has not been addressed. In this paper, we describe the thermodynamic and kinetic aspects of reduction of metal salts by ethylene glycol under microwave heating conditions. On the basis of this analysis, we identify the temperatures above which the reduction of the metal salt is thermodynamically favorable and temperatures above which the rates of homogeneous nucleation of the metal and the heterogeneous nucleation of the metal on supports are favored. We delineate different conditions which favor the heterogeneous nucleation of the metal on the supports over homogeneous nucleation in the solvent medium based on the dielectric loss parameters of the solvent and the support and the metal/solvent and metal/support interfacial energies. Contrary to current understanding, we show that metal particles can be selectively formed on the substrate even under situations where the temperature of the substrate is lower than that of the surrounding medium. The catalytic activity of the Pt/CeO(2) and Pt/TiO(2) hybrids synthesized by this method for H(2) combustion reaction shows that complete conversion is achieved at temperatures as low as 100 °C with Pt-CeO(2) catalyst and at 50 °C with Pt-TiO(2) catalyst. Our method thus opens up possibilities for rational synthesis of high-activity supported catalysts using a fast microwave-based reduction method.

  12. The Correlation of Active and Passive Microwave Outputs for the Skylab S-193 Sensor

    NASA Technical Reports Server (NTRS)

    Krishen, K.

    1976-01-01

    This paper presents the results of the correlation analysis of the Skylab S-193 13.9 GHz Radiometer/Scatterometer data. Computer analysis of the S-193 data shows more than 50 percent of the radiometer and scatterometer data are uncorrelated. The correlation coefficients computed for the data gathered over various ground scenes indicates the desirability of using both active and passive sensors for the determination of various Earth phenomena.

  13. The Liverpool Microwave Palaeointensity System

    NASA Astrophysics Data System (ADS)

    Hill, Mimi; Biggin, Andrew; Hawkins, Louise; Hodgson, Emma; Hurst, Elliot

    2016-04-01

    The motivation for the group at Liverpool in the 1990s (led by John Shaw and Derek Walton) to start experimenting with using microwaves to demagnetise and remagnetise palaeomagnetic samples, rather than heating using conventional ovens, was to reduce laboratory induced alteration in absolute palaeointensity experiments. As with other methods, the non-ideal effects of grain size and naturally altered remanence must still be addressed. From humble beginnings using a domestic microwave oven the current 4th generation microwave system (MWS) has developed in to an integrated combined 14 GHz microwave resonant cavity and SQUID magnetometer system. The MWS is designed to investigate one 5 mm diameter sample at a time with microwave exposure (the equivalent of a heating step in conventional experiments) ranging from a few seconds up to around a minute. Each experiment (protocol, checks, direction and strength of applied field, number of steps etc) can be tailored to the behaviour of each individual sample. There have been many published studies demonstrating the equivalence of conventional thermal (Thellier) and microwave techniques using both artificial and natural remanence and also that the microwave method can indeed reduce laboratory induced alteration. Here an overview of the present MWS including a discussion of the physical processes occurring will be given. Examples of current projects (both archaeological and geological) utilising the method will also be described. Finally, future developments and applications of the method will be discussed.

  14. [Application of microwave irradiation technology to the field of pharmaceutics].

    PubMed

    Zhang, Xue-Bing; Shi, Nian-Qiu; Yang, Zhi-Qiang; Wang, Xing-Lin

    2014-03-01

    Microwaves can be directly transformed into heat inside materials because of their ability of penetrating into any substance. The degree that materials are heated depends on their dielectric properties. Materials with high dielectric loss are more easily to reach a resonant state by microwaves field, then microwaves can be absorbed efficiently. Microwave irradiation technique with the unique heating mechanisms could induce drug-polymer interaction and change the properties of dissolution. Many benefits such as improving product quality, increasing energy efficiency and reducing times can be obtained by microwaves. This paper summarized characteristics of the microwave irradiation technique, new preparation techniques and formulation process in pharmaceutical industry by microwave irradiation technology. The microwave technology provides a new clue for heating and drying in the field of pharmaceutics.

  15. Quantifying the Nucleation and Growth Kinetics of Microwave Nanochemistry Enabled by in Situ High-Energy X-ray Scattering.

    PubMed

    Liu, Qi; Gao, Min-Rui; Liu, Yuzi; Okasinski, John S; Ren, Yang; Sun, Yugang

    2016-01-13

    The fast reaction kinetics presented in the microwave synthesis of colloidal silver nanoparticles was quantitatively studied, for the first time, by integrating a microwave reactor with in situ X-ray diffraction at a high-energy synchrotron beamline. Comprehensive data analysis reveals two different types of reaction kinetics corresponding to the nucleation and growth of the Ag nanoparticles. The formation of seeds (nucleation) follows typical first-order reaction kinetics with activation energy of 20.34 kJ/mol, while the growth of seeds (growth) follows typical self-catalytic reaction kinetics. Varying the synthesis conditions indicates that the microwave colloidal chemistry is independent of concentration of surfactant. These discoveries reveal that the microwave synthesis of Ag nanoparticles proceeds with reaction kinetics significantly different from the synthesis present in conventional oil bath heating. The in situ X-ray diffraction technique reported in this work is promising to enable further understanding of crystalline nanomaterials formed through microwave synthesis.

  16. Introducing Social Stratification and Inequality: An Active Learning Technique.

    ERIC Educational Resources Information Center

    McCammon, Lucy

    1999-01-01

    Summarizes literature on techniques for teaching social stratification. Describes the three parts of an exercise that enables students to understand economic and political inequality: students are given a family scenario, create household budgets, and finally rework the national budget with their family scenario groups. Discusses student…

  17. CORONAL MAGNETOGRAPHY OF A SIMULATED SOLAR ACTIVE REGION FROM MICROWAVE IMAGING SPECTROPOLARIMETRY

    SciTech Connect

    Wang, Zhitao; Gary, Dale E.; Fleishman, Gregory D.; White, Stephen M.

    2015-06-01

    We have simulated the Expanded Owens Valley Solar Array (EOVSA) radio images generated at multiple frequencies from a model solar active region, embedded in a realistic solar disk model, and explored the resulting data cube for different spectral analysis schemes to evaluate the potential for realizing one of EOVSA’s most important scientific goals—coronal magnetography. In this paper, we focus on modeling the gyroresonance and free–free emission from an on-disk solar active region model with realistic complexities in electron density, temperature and magnetic field distribution. We compare the magnetic field parameters extrapolated from the image data cube along each line of sight after folding through the EOVSA instrumental profile with the original (unfolded) parameters used in the model. We find that even the most easily automated, image-based analysis approach (Level-0) provides reasonable quantitative results, although they are affected by systematic effects due to finite sampling in the Fourier (UV) plane. Finally, we note the potential for errors due to misidentified harmonics of the gyrofrequency, and discuss the prospects for applying a more sophisticated spectrally based analysis scheme (Level-1) to resolve the issue in cases where improved UV coverage and spatial resolution are available.

  18. Structure and Catalytic Activity of Cr-Doped BaTiO3 Nanocatalysts Synthesized by Conventional Oxalate and Microwave Assisted Hydrothermal Methods.

    PubMed

    Srilakshmi, Chilukoti; Saraf, Rohit; Prashanth, V; Rao, G Mohan; Shivakumara, C

    2016-05-16

    In the present study synthesis of BaTi1-xCrxO3 nanocatalysts (x = 0.0 ≤ x ≤ 0.05) by conventional oxalate and microwave assisted hydrothermal synthesis methods was carried out to investigate the effect of synthesis methods on the physicochemical and catalytic properties of nanocatalysts. These catalysts were thoroughly characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), N2 physisortion, and total acidity by pyridine adsorption method. Their catalytic performance was evaluated for the reduction of nitrobenzene using hydrazine hydrate as the hydrogen source. Structural parameters refined by Rietveld analysis using XRD powder data indicate that BaTi1-xCrxO3 conventional catalysts were crystallized in the tetragonal BaTiO3 structure with space group P4mm, and microwave catalysts crystallized in pure cubic BaTiO3 structure with space group Pm3̅m. TEM analysis of the catalysts reveal spherical morphology of the particles, and these are uniformly dispersed in microwave catalysts whereas agglomeration of the particles was observed in conventional catalysts. Particle size of the microwave catalysts is found to be 20-35 nm compared to conventional catalysts (30-48 nm). XPS studies reveal that Cr is present in the 3+ and 6+ mixed valence state in all the catalysts. Microwave synthesized catalysts showed a 4-10-fold increase in surface area and pore volume compared to conventional catalysts. Acidity of the BaTiO3 catalysts improved with Cr dopant in the catalysts, and this could be due to an increase in the number of Lewis acid sites with an increase in Cr content of all the catalysts. Catalytic reduction of nitrobenzene to aniline studies reveals that BaTiO3 synthesized by microwave is very active and showed 99.3% nitrobenzene conversion with 98.2% aniline yield. The presence of Cr in the catalysts facilitates a faster reduction reaction in all the

  19. Technique for inferring sizes of stellar-active regions

    SciTech Connect

    Dobson-Hockey, A.K.; Radick, R.R.

    1986-01-01

    Inspection of spectroheliograms showing large, well-developed active regions generally show the sunspots to lead the associated plage, in the sense of the solar rotation. Measurements have been made from spectroheliograms of spot-plage offsets and compared with nearly contemporaneous integrated disk observations. Larger active regions generally show larger spot leads; however, information regarding active-region sizes and spot-plage offsets is not readily obtainable form stellar-type observations of the Sun.

  20. Integrated pan-Arctic melt onset detection from satellite active and passive microwave measurements, 2000-2009

    NASA Astrophysics Data System (ADS)

    Wang, L.; Wolken, G. J.; Sharp, M. J.; Howell, S. E. L.; Derksen, C.; Brown, R. D.; Markus, T.; Cole, J.

    2011-11-01

    An integrated pan-Arctic melt onset data set is generated for the first time by combining estimates derived from active and passive microwave satellite data using algorithms developed for the northern high-latitude land surface, ice caps, large lakes, and sea ice. The data set yields new insights into the spatial and temporal patterns of mean melt onset date (MMOD) and the associated geographic and topographic controls. For example, in the terrestrial Arctic, tree fraction and latitude explain more than 60% of the variance in MMOD, with the former exerting a stronger influence on MMOD than the latter. Elevation is also found to be an important factor controlling MMOD, with most of the Arctic exhibiting significant positive relationships between MMOD and elevation, with a mean value of 24.5 m d-1. Melt onset progresses fastest over land areas of uniform cover or elevation (40-80 km d-1) or both and slows down in mountainous areas, on ice caps, and in the forest-tundra ecotones. Over sea ice, melt onset advances very slowly in the marginal seas, while in the central Arctic the rate of advance can exceed 100 km d-1. Comparison of the observed MMOD with simulated values from the third version of the Canadian Coupled Global Climate Model showed good agreement over land areas but weaker agreement over sea ice, particularly in the central Arctic, where simulated MMOD is about 2-3 weeks later than observed because of a cold bias in simulated surface air temperatures over sea ice.

  1. The roles of active species in photo-decomposition of organic compounds by microwave powered electrodeless discharge lamps.

    PubMed

    Hong, Jun; Han, Bo; Yuan, Nannan; Gu, Jingli

    2015-07-01

    Knowledge of the effective radiation spectrum irradiating substrates from microwave powered electrodeless discharge lamps (MEDLs), and the active species that directly oxidize substrates in the photolytic process, is fragmentary and unclear. In this work, we conducted a comparative study using MEDLs made with quartz envelopes (MEDL-quartz) and with borosilicate Pyrex envelopes (MEDL-Pyrex) targeting the degradation of Rhodamine B (RhB) via radical-extinguishing tests. We found that UVC/UVB radiation is essential to generate •OH and H2O2 in the MEDL-quartz system. The degradation of RhB mostly originates from •OH species, which account for a contribution of 53.8%, while the remaining contribution is attributed to oxidation by H2O2 and direct photolysis. This degradation is influenced by several parameters. Acidic and neutral pHs, but not extreme alkaline pH, benefit the degradation. To ensure a high intensity of UVC/UVB, the optimum ratio of the MEDL volume to the aqueous solution volume (VL/VS) is 0.4. Concentrations of 0.15-0.20 mmol/L of RhB are suitable to obtain an effective quantum absorbance in the MEDL-quartz system, showing a high decomposition rate of 5.6×10(-3) (mmol/L) min(-1). Moreover, two other substrates, Reactive Brilliant Red X-3B and Safranine T, were tested and found to be efficiently degraded in the MEDL-quartz system.

  2. Frequency translating phase conjugation circuit for active retrodirective antenna array. [microwave transmission

    NASA Technical Reports Server (NTRS)

    Chernoff, R. (Inventor)

    1980-01-01

    An active retrodirective antenna array which has central phasing from a reference antenna element through a "tree" structured network of transmission lines utilizes a number of phase conjugate circuits (PCCs) at each node and a phase reference regeneration circuit (PRR) at each node except the initial node. Each node virtually coincides with an element of the array. A PCC generates the exact conjugate phase of an incident signal using a phase locked loop which combines the phases in an up converter, divides the sum by 2 and mixes the result with the phase in a down converter for phase detection. The PRR extracts the phase from the conjugate phase. Both the PCC and the PRR are not only exact but also free from mixer degeneracy.

  3. Evaluation of scheduling techniques for payload activity planning

    NASA Technical Reports Server (NTRS)

    Bullington, Stanley F.

    1991-01-01

    Two tasks related to payload activity planning and scheduling were performed. The first task involved making a comparison of space mission activity scheduling problems with production scheduling problems. The second task consisted of a statistical analysis of the output of runs of the Experiment Scheduling Program (ESP). Details of the work which was performed on these two tasks are presented.

  4. Application of thermal analysis techniques in activated carbon production

    USGS Publications Warehouse

    Donnals, G.L.; DeBarr, J.A.; Rostam-Abadi, M.; Lizzio, A.A.; Brady, T.A.

    1996-01-01

    Thermal analysis techniques have been used at the ISGS as an aid in the development and characterization of carbon adsorbents. Promising adsorbents from fly ash, tires, and Illinois coals have been produced for various applications. Process conditions determined in the preparation of gram quantities of carbons were used as guides in the preparation of larger samples. TG techniques developed to characterize the carbon adsorbents included the measurement of the kinetics of SO2 adsorption, the performance of rapid proximate analyses, and the determination of equilibrium methane adsorption capacities. Thermal regeneration of carbons was assessed by TG to predict the life cycle of carbon adsorbents in different applications. TPD was used to determine the nature of surface functional groups and their effect on a carbon's adsorption properties.

  5. Facile microwave-assisted aqueous synthesis of CdS nanocrystals with their photocatalytic activities under visible lighting

    SciTech Connect

    Deng, Chonghai; Tian, Xiaobo

    2013-10-15

    Graphical abstract: - Highlights: • Three kinds of CdS nanostructures have been controllably synthesized. • Ethanediamine acts as a phase and morphology controlling reagent. • Three CdS nanostructures display high visible light photocatalytic activities. • Cubic CdS-3 shows superior photocatalytic activity to the other hexagonal CdS. • The growth processes for fabrication of CdS nanocrystals are also discussed. - Abstract: Three kinds of CdS nanostructures, that is, hexagonal nanospheres (CdS-1), hierarchical caterpillar-fungus-like hexagonal nanorods (CdS-2) and hierarchical cubic microspheres (CdS-3), were controllably synthesized by a facile and one-pot microwave-assisted aqueous chemical method using ethanediamine as a phase and morphology controlling reagent. The as-prepared products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectra (DRS) and photoluminescence (PL) spectra. The results show that CdS-1 is mainly composed of monodispersed hexagonal nanospheres with average diameters of about 100 nm; hexagonal CdS-2 has lengths in the range of 600–800 nm and diameters of 40–60 nm, assembled by nanoparticles about 20 nm in diameter; and CdS-3 is pure cubic microspheres with diameters in the range of 0.8–1.3 μm, aggregated by tiny nanograins with size of 5.8 nm. The band gap energies of CdS products were calculated to be 2.30, 2.31 and 2.24 eV observed from UV–vis DRS for CdS-1, CdS-2 and CdS-3, respectively. PL spectra of CdS samples showed that sphalerite CdS-3 possesses a very weak fluorescence, while wurtzite CdS-2 has a strongest green near-band edge emission (NBE) at 550 nm. The visible light photodegradation of methylene blue and rhodamine B in the presence of CdS photocatalysts illustrates that all of them display high photocatalytic activities. Significantly, the cubic CdS-3 exhibits more excellent photocatalytic

  6. X-ray/microwave relation of different types of active stars

    NASA Technical Reports Server (NTRS)

    Guedel, Manuel; Benz, Arnold O.

    1993-01-01

    Coronal active stars of seven classes between spectral types F and M, single and double, are compared in their quiescent radio and X-ray luminosities L(R) and L(X). We find, largely independent of stellar class, log L(X) is less than about log L(R) + 15.5. This general relation points to an intimate connection between the nonthermal, energetic electrons causing the radio emission and the bulk plasma of the corona responsible for thermal X-rays. The relation, observed over six orders of magnitude, suggests that the heating mechanism necessarily involves particle acceleration. We derive requirements for simple models based on optically thin gyrosynchrotron emission of mildly relativistic electrons and thermal X-rays from the bulk plasma. We discuss the possibility that a portion of the accelerated particles heats the ambient plasma by collisions. More likely, plasma heating and particle acceleration may occur in parallel and in the same process, but at a fixed ratio.

  7. The influence of curricular and extracurricular learning activities on students' choice of chiropractic technique

    PubMed Central

    Sikorski, David M.; KizhakkeVeettil, Anupama; Tobias, Gene S.

    2016-01-01

    Objective: Surveys for the National Board of Chiropractic Examiners indicate that diversified chiropractic technique is the most commonly used chiropractic manipulation method. The study objective was to investigate the influences of our diversified core technique curriculum, a technique survey course, and extracurricular technique activities on students' future practice technique preferences. Methods: We conducted an anonymous, voluntary survey of 1st, 2nd, and 3rd year chiropractic students at our institution. Surveys were pretested for face validity, and data were analyzed using descriptive and inferential statistics. Results: We had 164 students (78% response rate) participate in the survey. Diversified was the most preferred technique for future practice by students, and more than half who completed the chiropractic technique survey course reported changing their future practice technique choice as a result. The students surveyed agreed that the chiropractic technique curriculum and their experiences with chiropractic practitioners were the two greatest bases for their current practice technique preference, and that their participation in extracurricular technique clubs and seminars was less influential. Conclusions: Students appear to have the same practice technique preferences as practicing chiropractors. The chiropractic technique curriculum and the students' experience with chiropractic practitioners seem to have the greatest influence on their choice of chiropractic technique for future practice. Extracurricular activities, including technique clubs and seminars, although well attended, showed a lesser influence on students' practice technique preferences. PMID:26655282

  8. Changes in phytochemicals, anti-nutrients and antioxidant activity in leafy vegetables by microwave boiling with normal and 5% NaCl solution.

    PubMed

    Singh, Shrawan; Swain, S; Singh, D R; Salim, K M; Nayak, Dipak; Roy, S Dam

    2015-06-01

    The present study investigated the changes in phytochemicals and antioxidant activities in 25 leafy vegetables with two common boiling practices viz., with 5% NaCl solution (BSW) and normal water (BNW) in a domestic microwave oven. Fresh samples (100g) were rich in polyphenols (58.8-296.9mg), tannin (402.0-519.4mg), flavonoids (148.9-614.4mg), carotenoids (69.0-786.3mg), anthocyanin (11.7-493.7mg) and ascorbic acid (245.0-314.2mg). Microwave boiling significantly (p<0.05) decreased/increased phytochemicals but none of the compounds followed same trend in all vegetables. Boiling process reduced anti-nutrients from fresh samples (FS) as observed for nitrate (4.5-73.6% by BSW and 22.5-98.8% by BNW); phytate (6.2-69.7% by BSW and 10.6-57.3% by BNW) and oxalate (14.7-88.9% by BSW and 14.5-87.3% by BNW) but saponin increased in 18 vegetables by BNW while 8 vegetables by BSW. The study revealed differential pattern of change in phytochemical matrix and anti-nutrients in vegetables by microwave boiling which will help in devising efficient cooking practices and contribute in health and nutritional security.

  9. Investigations on the effect of frequency and noise in a localization technique based on microwave imaging for an in-body RF source

    NASA Astrophysics Data System (ADS)

    Chandra, Rohit; Balasingham, Ilangko

    2015-05-01

    Localization of a wireless capsule endoscope finds many clinical applications from diagnostics to therapy. There are potentially two approaches of the electromagnetic waves based localization: a) signal propagation model based localization using a priori information about the persons dielectric channels, and b) recently developed microwave imaging based localization without using any a priori information about the persons dielectric channels. In this paper, we study the second approach in terms of a variety of frequencies and signal-to-noise ratios for localization accuracy. To this end, we select a 2-D anatomically realistic numerical phantom for microwave imaging at different frequencies. The selected frequencies are 13:56 MHz, 431:5 MHz, 920 MHz, and 2380 MHz that are typically considered for medical applications. Microwave imaging of a phantom will provide us with an electromagnetic model with electrical properties (relative permittivity and conductivity) of the internal parts of the body and can be useful as a foundation for localization of an in-body RF source. Low frequency imaging at 13:56 MHz provides a low resolution image with high contrast in the dielectric properties. However, at high frequencies, the imaging algorithm is able to image only the outer boundaries of the tissues due to low penetration depth as higher frequency means higher attenuation. Furthermore, recently developed localization method based on microwave imaging is used for estimating the localization accuracy at different frequencies and signal-to-noise ratios. Statistical evaluation of the localization error is performed using the cumulative distribution function (CDF). Based on our results, we conclude that the localization accuracy is minimally affected by the frequency or the noise. However, the choice of the frequency will become critical if the purpose of the method is to image the internal parts of the body for tumor and/or cancer detection.

  10. Preparation of Orally Disintegrating Tablets Containing Powdered Tea Leaves with Enriched Levels of Bioactive Compounds by Means of Microwave Irradiation Technique.

    PubMed

    Tanaka, Hironori; Iwao, Yasunori; Izumikawa, Masahiro; Sano, Syusuke; Ishida, Hitoshi; Noguchi, Shuji; Itai, Shigeru

    2016-01-01

    In the present study, a microwave treatment process has been applied to prepare orally disintegrating tablets (ODTs) containing powdered tea leaves with enriched levels of the anti-inflammatory compounds such as chafuroside A (CFA) and chafuroside B (CFB). The use of distilled water as the adsorbed and granulation solvents in this preparation process afforded tablets with a long disintegration time (more than 120 s). The CFA and CFB contents of these tablets did not also change after 4 min of microwave irradiation due to the tablet temperature, which only increased to 100°C. In contrast, the tablet temperature increased up to 140°C after 3 min of microwave irradiation when a 1.68 M Na2HPO4 solution instead of distilled water. Notably, the disintegration time of these tablets was considerably improved (less than 20 s) compared with the microwave-untreated tablets, and there were 7- and 11-fold increases in their CFA and CFB contents. In addition, the operational conditions for the preparation of the tablets were optimized by face-centered composite design based on the following criteria: tablet hardness greater than 13 N, disintegration time less than 30 s and friability less than 0.5%. The requirements translated into X1 (the amount of granulation solvent), X2 (tableting pressure) and X3 (content of the powdered tea leaves) values of 45%, 0.43 kN and 32%, respectively, and the ODTs containing powdered tea leaves prepared under these optimized conditions were found to show excellent tablet properties and contain enriched levels of CFA and CFB.

  11. Effect of microwave pre-treatment of thickened waste activated sludge on biogas production from co-digestion of organic fraction of municipal solid waste, thickened waste activated sludge and municipal sludge.

    PubMed

    Ara, E; Sartaj, M; Kennedy, K

    2014-12-01

    Anaerobic co-digestion of organic fraction of municipal solid waste, with thickened waste activated sludge and primary sludge has the potential to enhance biodegradation of solid waste, increase longevity of existing landfills and lead to more sustainable development by improving waste to energy production. This study reports on mesophilic batch and continuous studies using different concentrations and combinations (ratios) of organic fraction of municipal solid waste, thickened waste activated sludge (microwave pre-treated and untreated) and primary sludge to assess the potential for improved biodegradability and specific biogas production. Improvements in specific biogas production for batch assays, with concomitant improvements in total chemical oxygen demand and volatile solid removal, were obtained with organic fraction of municipal solid waste:thickened waste activated sludge:primary sludge mixtures at a ratio of 50:25:25 (with and without thickened waste activated sludge microwave pre-treatment). This combination was used for continuous digester studies. At 15 d hydraulic retention times, the co-digestion of organic fraction of municipal solid waste:organic fraction of municipal solid waste:primary sludge and organic fraction of municipal solid waste:thickened waste activated sludge microwave:primary sludge resulted in a 1.38- and 1.46-fold increase in biogas production and concomitant waste stabilisation when compared with thickened waste activated sludge:primary sludge (50:50) and thickened waste activated sludge microwave:primary sludge (50:50) digestion at the same hydraulic retention times and volumetric volatile solid loading rate, respectively. The digestion of organic fraction of municipal solid waste with primary sludge and thickened waste activated sludge provides beneficial effects that could be implemented at municipal wastewater treatment plants that are operating at loading rates of less than design capacity.

  12. GEO Sounding Using Microwave Instruments

    NASA Technical Reports Server (NTRS)

    Shiue, James; Krimchansky, Sergey; Susskind, Joel; Krimchansky, Alexander; Chu, Donald; Davis, Martin

    2004-01-01

    There are several microwave instruments in low Earth orbit (LEO) that are used for atmospheric temperature and humidity sounding in conjunction with companion IR sounders as well as by themselves. These instruments have achieved a certain degree of maturity and undergoing a redesign to minimize their size, mass, and power from the previous generation instruments. An example of these instruments is the AMSU-A series, now flying on POES and AQUA spacecraft with the IR sounders HIRS and AIRS. These older microwave instruments are going to be replaced by the ATMS instruments that will fly on NPP and NPOESS satellites with the CrIS sounder. A number of techniques learned from the ATMS project in instrument hardware design and data processing are directly applicable to a similar microwave sounder on a geosynchronous platform. These techniques can significantly simplify the design of a Geostationary orbit (GEO) microwave instrument, avoiding costly development and minimizing the risk of not being able to meet the scientific requirements. In fact, some of the 'enabling' technology, such as the use of MMIC microwave components (which is the basis for the ATMS' much reduced volume) can be directly applied to a GEO sounder. The benefits of microwave sounders are well known; for example, they penetrate non-precipitating cloud cover and allow for use of colocated IR observations in up to 80% cloud cover. The key advantages of a microwave instrument in GEO will be the ability to provide high temporal resolution as well as uniform spatial resolution and extend the utility of a colocated advanced IR sounder to cases in which partial cloud cover exists. A footprint of the order of 100 km by 100 km resolution with hemispherical coverage within one hour can be easily achieved for sounding channels in the 50 to 59 GHz range. A GEO microwave sounder will also allow mesoscale sampling of select regions.

  13. Biomagnetic Techniques for Assessing Gastric and Small Bowel Electrical Activity

    NASA Astrophysics Data System (ADS)

    Bradshaw, L. Alan

    2004-09-01

    Recent advances in electrophysiology of the gastrointestinal tract have emphasized the need for methods of noninvasive assessment of gastric and small intestinal electrical activity (GEA and IEA). While the cutaneous electrogastrogram (EGG) may reveal the frequency dynamics of gastric electrical activity, other parameters important for characterizing the propagating electrical activity are not available from EGG recordings. Recent studies on the electroenterogram (EENG) are promising, but low-conductivity abdominal layers have complicated the identification of small intestinal electrical rhythms in cutaneous recordings. The magnetogastrogram (MGG) and magnetoenterogram (MENG) are able to characterize gastric and intestinal electrical activity noninvasively in terms of its frequency, power and characteristics of its propagation. Superconducting QUantum Interference Device (SQUID) magnetometers are used to detect the minute magnetic fields associated with electrical activity of the gastrointestinal syncytium formed by interstitial cells of Cajal and smooth muscle networks. Changes in GEA and IEA that occur in response to disease or abnormal conditions are reflected in MGG and MENG signals. Magnetic methods for assessing the electrical activity of the stomach and small bowel thus show great clinical promise.

  14. Preparation of highly photocatalytic active CdS/TiO{sub 2} nanocomposites by combining chemical bath deposition and microwave-assisted hydrothermal synthesis

    SciTech Connect

    Li, Li; Wang, Lili; Hu, Tianyu; Zhang, Wenzhi; Zhang, Xiuli; Chen, Xi

    2014-10-15

    CdS/TiO{sub 2} nanocomposites were prepared from Cd and Ti (1:1 M ratio) using cetyltrimethylammonium bromide by a two-step chemical bath deposition (CBD) and microwave-assisted hydrothermal synthesis (MAHS) method. A series of nanocomposites with different morphologies and activities were prepared by varying the reaction time in the MAHS (2, 4, and 6 h). The crystal structure, morphology, and surface physicochemical properties of the nanocomposites were characterized by X-ray diffraction, UV–visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N{sub 2} adsorption–desorption measurements. The results show that the CdS/TiO{sub 2} nanocomposites were composed of anatase TiO{sub 2} and hexagonal CdS phases with strong absorption in the visible region. The surface morphologies changed slightly with increasing microwave irradiation time, while the Brunauer–Emmett–Teller surface area increased remarkably. The photocatalytic degradation of methyl orange (MO) was investigated under UV light and simulated sunlight irradiation. The photocatalytic activity of the CdS/TiO{sub 2} (6 h) composites prepared by the MAHS method was higher than those of CdS, P25, and other CdS/TiO{sub 2} nanocomposites. The CdS/TiO{sub 2} (6 h) nanocomposites significantly affected the UV and microwave-assisted photocatalytic degradation of different dyes. To elucidate the photocatalytic reaction mechanism for the CdS/TiO{sub 2} nanocomposites, controlled experiments were performed by adding different radical scavengers. - Graphical abstract: CdS/TiO{sub 2} nanocomposites were prepared using CTAB by CBD combined with MAHS method. In addition, with increasing microwave irradiation time, the morphology of CdS/TiO{sub 2} changed from popcorn-like to wedge-like structure. - Highlights: • The CdS/TiO{sub 2} was prepared by CBD combined with MAHS two-step method under CTAB. • The morphologies of as-samples were different with the time of

  15. Surface-crack detection by microwave methods

    NASA Technical Reports Server (NTRS)

    Feinstein, L.; Hruby, R.

    1967-01-01

    Microwave surface-crack detection system examines metallic surfaces with a noncontacting probe. The change in the microwave signal reflected from the surface under investigation is an indication of the existence of surface flaws. This technique can detect flaws and scratches as small as 100 microinches.

  16. Embedded solution for a microwave moisture meter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, the conversion of a PC or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter is based on the free-space transmission measurement technique and uses low-intensity microwaves to measure the attenuation and p...

  17. 47 CFR 101.141 - Microwave modulation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., Sept. 27, 2011. (a) Microwave transmitters employing digital modulation techniques and operating below... 47 Telecommunication 5 2011-10-01 2011-10-01 false Microwave modulation. 101.141 Section 101.141 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED...

  18. 47 CFR 101.141 - Microwave modulation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., Sept. 5, 2012. (a) Microwave transmitters employing digital modulation techniques and operating below... 47 Telecommunication 5 2012-10-01 2012-10-01 false Microwave modulation. 101.141 Section 101.141 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED...

  19. Waste minimization through high-pressure microwave digestion of soils for gross {alpha}/{beta} analyses

    SciTech Connect

    Yaeger, J.S.; Smith, L.L.

    1995-04-01

    As a result of the U.S. Department of Energy`s (DOE) environmental restoration and waste management activities, laboratories receive numerous analytical requests for gross {alpha}/{beta} analyses. Traditional sample preparation methods for gross {alpha}/{beta} analysis of environmental and mixed waste samples require repetitive leaching, which is time consuming and generates large volumes of secondary wastes. An alternative to leaching is microwave digestion. In the past. microwave technology has had limited application in the radiochemical laboratory because of restrictions on sample size resulting from vessel pressure limitations. However, new microwave vessel designs allow for pressures on the order of 11 MPa (1500 psi). A procedure is described in which microwave digestion is used to prepare environmental soil samples for gross {alpha}/{beta} analysis. Results indicate that the described procedure meets performance requirements for several soil types and is equivalent to traditional digestion techniques. No statistical differences at the 95% confidence interval exist between the measurement on samples prepared from the hot plate and microwave digestion procedures for those soils tested. Moreover, microwave digestion allows samples to be prepared in a fraction of the time with significantly less acid and with lower potential of cross-contamination. In comparison to the traditional hot plate method, the waste volumes required for the microwave procedure are a factor of 10 lower, while the analyst time for sample processing is at least a factor of three lower.

  20. Assessment of platelet activation in myeloproliferative disorders with complementary techniques.

    PubMed

    Bermejo, Emilse; Alberto, Maria F; Meschengieser, Susana S; Lazzari, Maria A

    2004-04-01

    Bleeding and thrombosis in myeloproliferative disorders (MPD) are common events, sometimes both are present in the same patient during the course of the disease. Platelet activation in patients with MPD is often suggested. The present study analyses the presence of circulating activated platelets, using simultaneously flow cytometry and aggregometric studies in MPD. We studied 28 patients: 13 with polycythaemia vera, seven with essential thrombocythaemia, and eight chronic myeloid leukaemia. We performed functional tests, aggregation and adenosine triphosphate (ATP) release and flow cytometric assays (mepacrine staining and platelet activation markers CD62, CD63 and fibrinogen binding (B-FG)). Twenty-one MPD samples (75%) had reduced aggregation and ATP release. Acquired delta-SPD was detected in 11 of 28 MPD patients (39%), and we found no association between reduced mepacrine labelling and abnormal ATP release. High levels of activation markers were obtained: CD62 in 19 of 28 patients (68%), CD63 in 13 of 28 patients (46%) and B-FG in 19 of 28 patients (68%). The most prevalent abnormality was a reduced aggregation and ATP release. The lack of association between ATP release and mepacrine labelling suggests that other mechanisms, besides the deficit of intraplatelet ATP/adenosine diphosphate, might occur. High levels of activation markers were also observed. We conclude that both tests are complementary and necessary to understand the functional status of platelets in MPD.

  1. Utilizing commercial microwave for rapid and effective immunostaining.

    PubMed

    Owens, Katrina; Park, Ji H; Kristian, Tibor

    2013-09-30

    There is an accumulating literature demonstrating the application of microwaves across a wide spectrum of histological techniques. Although exposure to microwaves for short periods resulted in substantial acceleration of all procedures this technique still is not adopted widely. In part, this may be due to concerns over solutions that will avoid induction of thermal damage to the tissue when using standard microwave. Here, we offer a cooling setup that can be used with conventional microwave ovens. We utilized dry ice for effective cooling during microwave irradiation of tissue samples. To prevent overheating, the cups with tissue during exposure to microwaves were surrounded with powdered dry ice. Since the dry ice does not touch the walls of the cups, freezing is prevented. Overheating is avoided by alternating the microwave treatment with 1-2 min time periods when the cups are cooled outside of the microwave oven. This technique was used on mouse brain sections that were immunostained with microglia-specific CD68 antiserum and astrocyte labeling GFAP antibody. Both standard and microwave-assisted immonolabeling gave comparable results visualizing cells with fine processes and low background signal. Short incubation time in the microwave requires high concentrations of antibody for tissue immunostaining. We show that by prolonging the microwaving procedure we were able to reduce the antibody concentration to the levels used in standard immunostaining protocol. In summary, our technique gives a possibility to use a conventional microwave for rapid and effective immunolabeling resulting in reduced amount of antibody required for satisfactory immunostaining.

  2. Microwave remote sensing of the snow and ice cover: The Russian experience

    NASA Astrophysics Data System (ADS)

    Kondratyev, K. Ya.; Melentyev, V. V.

    Microwave remote sensing techniques are useful for deriving properties of snow and ice. There has been substantial Russian research in developing such techniques, as well as their scientific application. The main centers of such activities are described, and results of fundamental research are summarized. Results from selected case studies are presented and compared with those from western research. Included are results on retrieving ice concentration, ice type, ice thickness, and ice state during the melt period. These airborne microwave remote sensing investigations provide information on the ice cover in several regions in the eastern Arctic.

  3. The Protest as a Teaching Technique for Promoting Feminist Activism.

    ERIC Educational Resources Information Center

    Rose, Suzanna

    An assignment about protesting was given to students in an upper-level undergraduate women's studies course to provide them with experience and skills in political protesting and to promote feminist activism. The students selected for their assignments: (1) a letter writing campaign against Robert Bork's Supreme Court nomination; (2) a picket…

  4. Application of activation techniques to biological analysis. [813 references

    SciTech Connect

    Bowen, H.J.M.

    1981-12-01

    Applications of activation analysis in the biological sciences are reviewed for the period of 1970 to 1979. The stages and characteristics of activation analysis are described, and its advantages and disadvantages enumerated. Most applications involve activation by thermal neutrons followed by either radiochemical or instrumental determination. Relatively little use has been made of activation by fast neutrons, photons, or charged particles. In vivo analyses are included, but those based on prompt gamma or x-ray emission are not. Major applications include studies of reference materials, and the elemental analysis of plants, marine biota, animal and human tissues, diets, and excreta. Relatively little use of it has been made in biochemistry, microbiology, and entomology, but it has become important in toxicology and environmental science. The elements most often determined are Ag, As, Au, Br, Ca, Cd, Cl, Co, Cr, Cs, Cu, Fe, Hg, I, K, Mn, Mo, Na, Rb, Sb, Sc, Se, and Zn, while few or no determinations of B, Be, Bi, Ga, Gd, Ge, H, In, Ir, Li, Nd, Os, Pd, Pr, Pt, Re, Rh, Ru, Te, Tl, or Y have been made in biological materials.

  5. Microwave processing of ceramic oxide filaments

    SciTech Connect

    Vogt, G.J.; Katz, J.D.

    1995-05-01

    The objective of the microwave filament processing project is to develop microwave techniques at 2.45 GHZ to manufacture continuous ceramic oxide filaments. Microwave processing uses the volumetric absorption of microwave power in oxide filament tows to drive off process solvents, to burn out organic binders, and to sinter the dried fibers to produce flexible, high-strength ceramic filaments. The technical goal is to advance filament processing technology by microwave heating more rapidly with less energy and at a lower cost than conventional processing, but with the same quality as conventional processing. The manufacturing goal is to collaborate with the 3M Company, a US manufacturer of ceramic oxide filaments, to evaluate the technology using a prototype filament system and to transfer the microwave technology to the 3M Company.

  6. Ceramic matrix composites by microwave assisted CVI

    SciTech Connect

    Currier, R.P.; Devlin, D.J.

    1993-05-01

    Chemical vapor infiltration (CVI) processes for producing continuously reinforced ceramic composites are reviewed. The potential advantages of microwave assisted CVI are noted. Recent numerical studies of microwave assisted CVI are then reviewed. These studies predict inverted thermal gradients in fibrous ceramic preforms subjected to microwave radiation and suggest processing strategies for achieving uniformly dense composites. Comparisons are made to experimental results obtained using silicon based composite systems. The importance of microwave-material interactions is stressed. In particular, emphasis is placed on the role played by the relative ability of fiber and matrix to dissipate microwave energy. Results suggest that microwave induced inverted gradients can in fact be exploited using the CVI technique to promote inside-out densification.

  7. Ceramic matrix composites by microwave assisted CVI

    SciTech Connect

    Currier, R.P.; Devlin, D.J.

    1993-01-01

    Chemical vapor infiltration (CVI) processes for producing continuously reinforced ceramic composites are reviewed. The potential advantages of microwave assisted CVI are noted. Recent numerical studies of microwave assisted CVI are then reviewed. These studies predict inverted thermal gradients in fibrous ceramic preforms subjected to microwave radiation and suggest processing strategies for achieving uniformly dense composites. Comparisons are made to experimental results obtained using silicon based composite systems. The importance of microwave-material interactions is stressed. In particular, emphasis is placed on the role played by the relative ability of fiber and matrix to dissipate microwave energy. Results suggest that microwave induced inverted gradients can in fact be exploited using the CVI technique to promote inside-out densification.

  8. Synthesis and Characterization of Iron-impregnated Pre-oxidized Activated Carbon Prepared by Microwave Radiation for As(V) Removal from Water

    NASA Astrophysics Data System (ADS)

    Yurum, Yuda; Yurum, Alp; Ozlem Kocabas, Zuleyha; Semiat, Raphael

    2013-04-01

    One of the most efficient ways to treat water is probably by adsorption and catalytic oxidation. Surely, for such a process to be economical, the catalyst and the adsorber should have a high catalytic activity and adsorption capacity, and be inexpensive. One of these materials is iron oxide, which is studied and used in areas like catalysis and environmental applications. It is known that synthesizing iron oxides in nano size enhances the catalytic activity. Pre-oxidized activated carbons impregnated with iron-based nanoparticles are prepared in a single step under hydrothermal conditions with microwave radiation. The hydrothermal treatment provides an important advantage by forming fine particles that can easily impregnate deep in to the porous support by the help of water. Their efficiency for the removal of As(V) from water was compared with the pure pre-oxidized activated carbon and iron oxide nanoparticles impregnated without microwave radiation. The synthesized nanomaterials with different iron oxide loadings were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analyzer. Iron loadings were calculated using flame atomic absorbance. Microwave radiation provided much faster iron impregnation on the active carbon surface. At the first stage of microwave radiation iron oxide impregnation is low but after 6 minutes, iron oxide nanoparticles of 100 nm size started to cover the surface homogeneously. Further treatment with microwave increased the size of particles and the amount of surface coverage. Additionally, with microwave hydrothermal treatment, relatively higher iron oxide loadings were achieved within 10 minutes. From the XRD characterization it was seen that at the first stage of radiation, iron deposited in the form of β-FeOOH, but after the first stage the structure became Fe2O3. While radiation increased the surface area of the material during the first stages, at the last stage

  9. Techniques for active embodiment of participants in virtual environments

    SciTech Connect

    Hightower, R.; Stansfield, S.

    1996-03-01

    This paper presents preliminary work in the development of an avatar driver. An avatar is the graphical embodiment of a user in a virtual world. In applications such as small team, close quarters training and mission planning and rehearsal, it is important that the user`s avatar reproduce his or her motions naturally and with high fidelity. This paper presents a set of special purpose algorithms for driving the motion of the avatar with minimal information about the posture and position of the user. These algorithms utilize information about natural human motion and posture to produce solutions quickly and accurately without the need for complex general-purpose kinematics algorithms. Several examples illustrating the successful applications of these techniques are included.

  10. The Effectiveness of Active and Traditional Teaching Techniques in the Orthopedic Assessment Laboratory

    ERIC Educational Resources Information Center

    Nottingham, Sara; Verscheure, Susan

    2010-01-01

    Active learning is a teaching methodology with a focus on student-centered learning that engages students in the educational process. This study implemented active learning techniques in an orthopedic assessment laboratory, and the effects of these teaching techniques. Mean scores from written exams, practical exams, and final course evaluations…

  11. Figure Analysis: A Teaching Technique to Promote Visual Literacy and Active Learning

    ERIC Educational Resources Information Center

    Wiles, Amy M.

    2016-01-01

    Learning often improves when active learning techniques are used in place of traditional lectures. For many of these techniques, however, students are expected to apply concepts that they have already grasped. A challenge, therefore, is how to incorporate active learning into the classroom of courses with heavy content, such as molecular-based…

  12. Successful Application of Active Learning Techniques to Introductory Microbiology

    PubMed Central

    HOFFMAN, ELIZABETH A.

    2001-01-01

    While the traditional lecture format may be a successful way to teach microbiology to both medical and nursing students, it was not an effective means of learning for many prenursing and preprofessional students enrolled in either of the introductory microbiology courses at Ashland Community College, an open enrollment institution. The structure of both Medical Microbiology and Principles of Microbiology was redesigned to allow students to address the material in an active manner. Daily quizzes, student group discussions, scrapbooks, lab project presentations and papers, and extra credit projects were all added in order to allow students maximum exposure to the course material in a manner compatible with various methods of learning. Student knowledge, course evaluations, and student success rates have all improved with the active learning format. PMID:23653538

  13. Aerial monitoring in active mud volcano by UAV technique

    NASA Astrophysics Data System (ADS)

    Pisciotta, Antonino; Capasso, Giorgio; Madonia, Paolo

    2016-04-01

    UAV photogrammetry opens various new applications in the close range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives to the classical manned aerial photogrammetry. Between 2014 and 2015 tree aerial surveys have been carried out. Using a quadrotor drone, equipped with a compact camera, it was possible to generate high resolution elevation models and orthoimages of The "Salinelle", an active mud volcanoes area, located in territory of Paternò (South Italy). The main risks are related to the damages produced by paroxysmal events. Mud volcanoes show different cyclic phases of activity, including catastrophic events and periods of relative quiescence characterized by moderate activity. Ejected materials often are a mud slurry of fine solids suspended in liquids which may include water and hydrocarbon fluids, the bulk of released gases are carbon dioxide, with some methane and nitrogen, usually pond-shaped of variable dimension (from centimeters to meters in diameter). The scope of the presented work is the performance evaluation of a UAV system that was built to rapidly and autonomously acquire mobile three-dimensional (3D) mapping data in a volcanic monitoring scenario.

  14. Microwave processing of ceramics

    SciTech Connect

    Katz, J.D.

    1989-01-01

    This paper discusses the following topics on microwave processing of ceramics: Microwave-material interactions; anticipated advantage of microwave sintering; ceramic sintering; and ceramic joining. 24 refs., 4 figs. (LSP)

  15. CoFe2O4 and/or Co3Fe7 loaded porous activated carbon balls as a lightweight microwave absorbent.

    PubMed

    Li, Guomin; Wang, Liancheng; Li, Wanxi; Ding, Ruimin; Xu, Yao

    2014-06-28

    In order to prepare a lightweight and efficient microwave absorbent, porous activated carbon balls (PACB) were used to load Fe(3+) and Co(2+) ions, because the PACB carrier has a high specific surface area of 800 m(2) g(-1) and abundant pores, including micropores and macropores. The loaded Fe(3+) and Co(2+) ions in the PACB composite were transformed into magnetic CoFe2O4 and/or Co3Fe7 particles during subsequent heat-treatment under an Ar atmosphere. According to the XRD and SEM results, the magnetic particles were embedded in the PACB macropores and showed different crystalline phases and morphologies after heat-treatment. CoFe2O4 flakes with spinel structure were obtained at approximately 450 °C, and were then transformed into loose quasi-spheres between 500 °C and 600 °C, where CoFe2O4 and Co3Fe7 coexisted because of the partial reduction of CoFe2O4. Co3Fe7 microspheres appeared above 700 °C. The density of the magnetic PACB composites was in the range of 2.2-2.3 g cm(-3). The as-synthesized PACB composites exhibited excellent microwave absorbability, which was mainly attributed to the magnetism of CoFe2O4 and Co3Fe7, as well as the presence of graphitized carbon. The minimum reflection loss value of the CoFe2O4-Co3Fe7-PACB composite reached -32 dB at 15.6 GHz, and the frequency of microwave absorption obeyed the quarter-wavelength matching model, showing a good match between dielectric loss and magnetic loss. The microwave reflection loss (RL) value could be modulated by adjusting the composition and thickness of the PACB composite absorbent. PACB composites with CoFe2O4-Co3Fe7 are a promising candidate for lightweight microwave absorption materials.

  16. Characterization of Deep Tunneling Activity through Remote-Sensing Techniques

    SciTech Connect

    R. G. Best, P. J. Etzler, and J. D. Bloom

    1997-10-01

    This work is a case study demonstrating the uses of multispectral and multi-temporal imagery to characterize deep tunneling activity. A drainage tunnel excavation in Quincy, MA is the case locality. Data used are aerial photographs (digitized) and Daedalus 3600 MSS image data that were collected in July and October of 1994. Analysis of the data includes thermal characterization, spectral characterization, multi-temporal analysis, and volume estimation using digital DEM generation. The results demonstrate the type of information that could be generated by multispectral, multi-temporal data if the study locality were a clandestine excavation site with restricted surface access.

  17. Microwave Assistant Synthesis, Antifungal Activity and DFT Theoretical Study of Some Novel 1,2,4-Triazole Derivatives Containing Pyridine Moiety

    PubMed Central

    Sun, Guo-Xiang; Yang, Ming-Yan; Shi, Yan-Xia; Sun, Zhao-Hui; Liu, Xing-Hai; Wu, Hong-Ke; Li, Bao-Ju; Zhang, Yong-Gang

    2014-01-01

    In order to investigate the biological activity of novel 1,2,4-triazole compounds, seventeen novel 1,2,4-triazole derivatives containing pyridine moiety were synthesized under microwave assistant condition by multi-step reactions. The structures were characterized by 1H NMR, MS and elemental analyses. The target compounds were evaluated for their fungicidal activities against Stemphylium lycopersici (Enjoji) Yamamoto, Fusarium oxysporum. sp. cucumebrium, and Botrytis cinerea in vivo, and the results indicated that some of the title compounds displayed excellent fungicidal activities. Theoretical calculation of the title compound was carried out with B3LYP/6-31G (d,p). The full geometry optimization was carried out using 6-31G (d,p) basis set, and the frontier orbital energy, atomic net charges were discussed, and the structure-activity relationship was also studied. PMID:24815069

  18. Smart actuators: a novel technique for active damping

    NASA Astrophysics Data System (ADS)

    Muth, Michael; Moldovan, Klaus; Goetz, Bernt

    1995-05-01

    Sensors are important components for any automatic process. Their function is to measure physical variables, and thus to allow automatic actions in a technical process, for example in a manufacturing sequence or a measurement. Selecting a sensor for a process, it is mostly overlooked that actuators used in a process also have sensory properties. The reactions of actuators to the state of a process give the possibility to extract relevant information out of the process with actuators. In using the sensory properties of actuators the costs for additional sensors can be saved. Even more important, under some circumstances it may not even be possible to place a special sensor directly at the location of interest: In that case the information about the physical variable is only accessible by analyzing the return signal of the actuator. An example of such a smart actuator combining active and sensory properties is demonstrated in a simple experiment. This experiment shows a steel ball supported as a pendulum. The steel ball can be pushed off, and on swinging back it can be caught in a single pass without any bounce. The actuator uses the piezoelectric effect which shows the underlying principle most clearly: Application of the reversibility of physical effects. In this case mechanical energy can either be produced or absorbed. This experiment is means as a demonstration model for students. It is also used for preliminary investigations developing a fast, actively damped tipping mechanism (optical scanner).

  19. Active Flow Control: Instrumentation Automation and Experimental Technique

    NASA Technical Reports Server (NTRS)

    Gimbert, N. Wes

    1995-01-01

    In investigating the potential of a new actuator for use in an active flow control system, several objectives had to be accomplished, the largest of which was the experimental setup. The work was conducted at the NASA Langley 20x28 Shear Flow Control Tunnel. The actuator named Thunder, is a high deflection piezo device recently developed at Langley Research Center. This research involved setting up the instrumentation, the lighting, the smoke, and the recording devices. The instrumentation was automated by means of a Power Macintosh running LabVIEW, a graphical instrumentation package developed by National Instruments. Routines were written to allow the tunnel conditions to be determined at a given instant at the push of a button. This included determination of tunnel pressures, speed, density, temperature, and viscosity. Other aspects of the experimental equipment included the set up of a CCD video camera with a video frame grabber, monitor, and VCR to capture the motion. A strobe light was used to highlight the smoke that was used to visualize the flow. Additional effort was put into creating a scale drawing of another tunnel on site and a limited literature search in the area of active flow control.

  20. Experimental techniques for screening of antiosteoporotic activity in postmenopausal osteoporosis.

    PubMed

    Satpathy, Swaha; Patra, Arjun; Ahirwar, Bharti

    2015-12-01

    Postmenopausal osteoporosis, a silent epidemic, has become a major health hazard, afflicting about 50% of postmenopausal women worldwide and is thought to be a disease with one of the highest incidences in senile people. It is a chronic, progressive condition associated with micro-architectural deterioration of bone tissue that results in low bone mass, decreased bone strength that predisposes to an increased risk of fracture. Women are more likely to develop osteoporosis than men due to reduction in estrogen during menopause which leads to decline in bone formation and increase in bone resorption activity. Estrogen is able to suppress the production of proinflammatory cytokines like interleukin (IL)-1, IL-6, IL-7 and tumor necrosis factor (TNF-α). This is why these cytokines are elevated in postmenopausal women. In this review article we have made an attempt to collate the various methods and parameters most frequently used for screening of antiosteoporotic activity in postmenopausal osteoporosis. Pertaining to ovariectomized animal model, this is the most appropriate model for studying the efficacy of different drugs to prevent bone loss in postmenopausal osteoporosis.

  1. Visible light-induced photocatalytic activity of Bi2O3 prepared via microwave-assisted method.

    PubMed

    Liu, Xinjuan; Pan, Likun; Li, Jinliang; Yu, Kai; Sun, Zhuo

    2013-07-01

    Bi2O3 was successfully synthesized via microwave-assisted reaction of Bi2O3 precursor in aqueous solution using a microwave system. Their morphologies, structures and photocatalytic performances in the degradation of methylene blue (MB) were characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction spectroscopy, photoluminescence spectroscopy and UV-vis absorption spectroscopy, respectively. The results show that Bi2O3 synthesized at pH value of 7 exhibits an optimal photocatalytic performance with the MB degradation rate of 76% at 240 min under visible light irradiation due to its higher visible light absorption and comparatively low electron-hole pair recombination.

  2. A microwave-induced plasma based on microstrip technology and its use for the atomic emission spectrometric determination of mercury with the aid of the cold-vapor technique.

    PubMed

    Engel, U; Bilgiç, A M; Haase, O; Voges, E; Broekaert, J A

    2000-01-01

    A new low-power, small-scale 2.45 GHz microwave plasma source at atmospheric pressure for atomic emission spectrometry based on microstrip technology is described. The MicroStrip Plasma (MSP) source was produced in microstrip technology on a fused-silica wafer and designed as an element-selective detector for miniaturized analytical applications. The electrodeless microwave-induced plasma (MIP) operates at microwave input power of 10-40 W and gas flows of 50-1000 mL.min-1 of Ar. Rotational (OH) and excitation (Fe) temperatures were found to be 650 and 8000 K, respectively. Spatially resolved measurements of the Hg I 253.7-nm atomic emission line with an electronic slitless spectrograph (ESS) showed that a cylindrically symmetric plasma with a diameter of about 1 mm is obtained. With the MSP, Hg could be determined by applying the flow injection cold vapor (FI-CV) technique with a detection limit of 50 pg.ml-1. In terms of the relative standard deviation, a time stability of < 1.4% for 45 replicates within 80 min can be realized at a concentration level of 10 ng.ml-1 of Hg. Hg could be determined in the leachate of a certified standard reference soil (STSD-4) obtained by treatment with aqua regia at the 930 +/- 76 ng.g-1 level. Results obtained by calibration with aqueous solutions of Hg and with standard addition were found to be in good agreement with those of cold-vapor atomic absorption spectrometry.

  3. Monolithic active pixel radiation detector with shielding techniques

    DOEpatents

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  4. Activated mechanisms in proteins: a multiple-temperature activation-relaxation technique study

    NASA Astrophysics Data System (ADS)

    Malek, Rachid; Mousseau, Normand; Derreumaux, Philippe

    2001-03-01

    The low-temperature dynamics of proteins is controlled by a complex activated dynamics taking place over long time-scales compared with the period of thermal oscillations. In view of the range of relevant time scales, the numerical study of these processes remains a challenge and numerous methods have been introduced to address this problem. We introduce here a mixture of two algorithms, the activation-relaxation technique (ART)^1,2 coupled with the parallel tempering method, and use it to study the structure of the energy landscape around the native state of a 38-residue polypeptide. While ART samples rapidly the local energy landscape, the parallel tempering, which sets up exchanges of configuration between simultaneous runs at multiple temperatures, generates a very efficient sampling of energy basins separated by high barriers^(3). Results show the nature of the barriers and local minima surrounding the native state of this 38-residue peptide, modeled with off-lattice OPEP-like interactions^4. (1) G.T. Barkema and N. Mousseau, PRL 77, 4358 (1996) (2) N. Mousseau and G.T. Barkema, PRE 57, 2419 (1998) (3) E. Marinari and G. Parisi, Europhys. Lett., 19 (6), 451 (1992) (4) Ph. Derreumaux, J. Chem. Phys. 111, 2301 (1999); PRB 85, 206 (2000)

  5. An Investigation into Techniques for the Determination of Moisture Content on Activated Carbon

    DTIC Science & Technology

    1991-09-01

    Activated carbon (or charcoal ) is a universal adsorbent for the removal of a variety of organic/inorganic contaminants, in both gaseous and aqueous phase...AD-A245 938 i * *~fl Nadoni Waren AN INVESTIGATION INTO TECHNIQUES FOR THE DETERMNATION OF MOISTURE CONTENT ON ACTIVATED CARBON (U) by L.E. Cameron...INVESTIGATION INTO TECHNIQUES FOR THE DETERMINATION OF MOISTURE CONTENT ON ACTIVATED CARBON (U) by L.E. Cameron and S.H.C. Liang Chemical Protecti

  6. Effect of extraction technique on the content and antioxidant activity of crude extract of Anacyclus clavatus flowers and their essential oil composition.

    PubMed

    Aliboudhar, Hamza; Tigrine-Kordjani, Nacéra

    2014-01-01

    Anacyclus clavatus is a plant used as food and remedy. The objective of this work was to study the effect of extraction technique on the antioxidant property, total phenol and flavonoid contents of crude extracts from A. clavatus flowers and their essential oil composition. 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, ferric-reducing power, β-carotene and total antioxidant capacity assays have demonstrated the significant antioxidant ability of different crude extracts obtained by using the following extraction methods: Soxhlet, microwave heating, heat reflux (HRE) and maceration. The activity of the extract obtained by HRE was the highest (112.06 ± 2.89 μg/mL) evaluated by the DPPH assay. Extraction of essential oil was performed by microwave-assisted hydro-distillation (MAHD) and by hydro-distillation (HD). A significant difference was observed in both essential oils, despite the common main family and major constituents, such as artemisia ketone (10.0 ± 0.8% for MAHD vs. 6.5 ± 0.5 for HD) and pinocarvone (4.1 ± 0.4% for MAHD vs. 1.1 ± 0.1% for HD).

  7. Innovative techniques to analyze time series of geomagnetic activity indices

    NASA Astrophysics Data System (ADS)

    Balasis, Georgios; Papadimitriou, Constantinos; Daglis, Ioannis A.; Potirakis, Stelios M.; Eftaxias, Konstantinos

    2016-04-01

    Magnetic storms are undoubtedly among the most important phenomena in space physics and also a central subject of space weather. The non-extensive Tsallis entropy has been recently introduced, as an effective complexity measure for the analysis of the geomagnetic activity Dst index. The Tsallis entropy sensitively shows the complexity dissimilarity among different "physiological" (normal) and "pathological" states (intense magnetic storms). More precisely, the Tsallis entropy implies the emergence of two distinct patterns: (i) a pattern associated with the intense magnetic storms, which is characterized by a higher degree of organization, and (ii) a pattern associated with normal periods, which is characterized by a lower degree of organization. Other entropy measures such as Block Entropy, T-Complexity, Approximate Entropy, Sample Entropy and Fuzzy Entropy verify the above mentioned result. Importantly, the wavelet spectral analysis in terms of Hurst exponent, H, also shows the existence of two different patterns: (i) a pattern associated with the intense magnetic storms, which is characterized by a fractional Brownian persistent behavior (ii) a pattern associated with normal periods, which is characterized by a fractional Brownian anti-persistent behavior. Finally, we observe universality in the magnetic storm and earthquake dynamics, on a basis of a modified form of the Gutenberg-Richter law for the Tsallis statistics. This finding suggests a common approach to the interpretation of both phenomena in terms of the same driving physical mechanism. Signatures of discrete scale invariance in Dst time series further supports the aforementioned proposal.

  8. Microwave heating of porous media

    SciTech Connect

    Gori, F.; Martini, L. ); Gentili, G.B. )

    1987-05-01

    The technique actually used for recycling in place asphaltic concrete pavements is the following: heating of the surface layer of the pavement with special infrared lamps (gas-fed); hot removal and remixing in place of the materials with the addition of new binder; in-line reconstruction of the pavement layer with rolling. Such a technique is highly efficient and economic but it suffers an important disadvantage: The low thermal conductivity of the asphalt causes a strong temperature decrease with depth. Further on, the infrared radiation produces carbonization of the pavement skin with possible modification of the rheological properties of the bitumen. The technology of microwave generators (Magnetron, Klystron, and Amplitron) has registered some recent advances. It is now possible, and in some cases convenient, to use microwave energy for industrial heating of low-thermal-conductivity materials. Actually the microwaves are employed for drying wood, paper, and textiles, and for freeze-drying, cooking, and defrosting foods. One of the most interesting features of the microwave process is the rate and uniformity of the heating inside the material. Some preliminary experiments have been carried out for recycling in place asphaltic concrete pavements. The goal of the present paper is to propose a theoretical model capable of describing the phenomena occurring in a soil during a microwave heating process.

  9. Comparing the influence of low power ultrasonic and microwave pre-treatments on the solubilisation and semi-continuous anaerobic digestion of waste activated sludge.

    PubMed

    Houtmeyers, Sofie; Degrève, Jan; Willems, Kris; Dewil, Raf; Appels, Lise

    2014-11-01

    Anaerobic digestion is a well-known technique for the recovery of energy from waste sludge. Pre-treatment methods are useful tools to improve the biodegradability of the sludge and to enhance the digestion efficiency. In this study, an ultrasound (US) and a microwave (MW) pre-treatment were compared in a long-term digestion experiment, using 3 small pilot scale semi-continuous digesters (SRT=20 days). A specific energy of 96 kJ/kg sludge was applied, hence enabling to compare the effectiveness of both pre-treatment methods towards sludge solubilisation and biogas production enhancement. Total and volatile solids (TS and VS), COD, carbohydrates and proteins were monitored throughout the digestion experiment. It was seen that US was most effective in COD solubilisation. The average biogas increment was 20% for the microwave pre-treatment and 27% for the ultrasonic pre-treatment. However, this additional biogas production did not outweigh the energy consumed by the pre-treatment, leading to a negative energy balance.

  10. Microwave assisted synthesis and characterisation of a zinc oxide/tobacco mosaic virus hybrid material. An active hybrid semiconductor in a field-effect transistor device.

    PubMed

    Sanctis, Shawn; Hoffmann, Rudolf C; Eiben, Sabine; Schneider, Jörg J

    2015-01-01

    Tobacco mosaic virus (TMV) has been employed as a robust functional template for the fabrication of a TMV/zinc oxide field effect transistor (FET). A microwave based approach, under mild conditions was employed to synthesize stable zinc oxide (ZnO) nanoparticles, employing a molecular precursor. Insightful studies of the decomposition of the precursor were done using NMR spectroscopy and material characterization of the hybrid material derived from the decomposition was achieved using dynamic light scattering (DLS), transmission electron microscopy (TEM), grazing incidence X-ray diffractometry (GI-XRD) and atomic force microscopy (AFM). TEM and DLS data confirm the formation of crystalline ZnO nanoparticles tethered on top of the virus template. GI-XRD investigations exhibit an orientated nature of the deposited ZnO film along the c-axis. FET devices fabricated using the zinc oxide mineralized virus template material demonstrates an operational transistor performance which was achieved without any high-temperature post-processing steps. Moreover, a further improvement in FET performance was observed by adjusting an optimal layer thickness of the deposited ZnO on top of the TMV. Such a bio-inorganic nanocomposite semiconductor material accessible using a mild and straightforward microwave processing technique could open up new future avenues within the field of bio-electronics.

  11. Rapid Nanoparticle Synthesis by Magnetic and Microwave Heating

    PubMed Central

    Chikan, Viktor; McLaurin, Emily J.

    2016-01-01

    Traditional hot-injection (HI) syntheses of colloidal nanoparticles (NPs) allows good separation of the nucleation and growth stages of the reaction, a key limitation in obtaining monodisperse NPs, but with limited scalability. Here, two methods are presented for obtaining NPs via rapid heating: magnetic and microwave-assisted. Both of these techniques provide improved engineering control over the separation of nucleation and growth stages of nanomaterial synthesis when the reaction is initiated from room temperature. The advantages of these techniques with preliminary data are presented in this prospective article. It is shown here that microwave assisted heating could possibly provide some selectivity in activating the nanomaterial precursor materials, while magnetic heating can produce very tiny particles in a very short time (even on the millisecond timescale), which is important for scalability. The fast magnetic heating also allows for synthesizing larger particles with improved size distribution, therefore impacting, not only the quantity, but the quality of the nanomaterials. PMID:28335212

  12. Microwave-assisted combustion synthesis of Ag/ZnO nanocomposites and their photocatalytic activities under ultraviolet and visible-light irradiation

    SciTech Connect

    Zhang, Dafeng; Pu, Xipeng; Li, Huaiyong; Yu, Young Moon; Shim, Jae Jeong; Cai, Peiqing; Kim, Sun Il; Seo, Hyo Jin

    2015-01-15

    Highlights: • Ag/ZnO nanocomposites were synthesized by a microwave-assisted combustion method. • Ag/ZnO nanocomposites exhibited improved photocatalytic activities under UV irradiation. • Poorer photocatalytic performances were obtained under visible-light irradiation. - Abstract: Ag/ZnO nanocomposites were synthesized by a rapid one-step microwave-assisted combustion method. The as-synthesized samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, photoluminescence and ultraviolet–visible spectrophotometry. XRD results showed that hexagonal ZnO and cubic Ag were obtained. Ag nanoparticles were chemically attached on the surface of ZnO. The decrease in the energy band gap of Ag/ZnO nanocomposites and the photoluminescence quenching were observed while the Ag content was increased. Furthermore, the introduction of Ag nanoparticles leads to significantly improved photocatalytic activities in the case of ultraviolet irradiation, but in the case of visible-light irradiation opposite results were obtained. The corresponding mechanism was discussed in detail.

  13. A Review of Emerging Analytical Techniques for Objective Physical Activity Measurement in Humans.

    PubMed

    Clark, Cain C T; Barnes, Claire M; Stratton, Gareth; McNarry, Melitta A; Mackintosh, Kelly A; Summers, Huw D

    2017-03-01

    Physical inactivity is one of the most prevalent risk factors for non-communicable diseases in the world. A fundamental barrier to enhancing physical activity levels and decreasing sedentary behavior is limited by our understanding of associated measurement and analytical techniques. The number of analytical techniques for physical activity measurement has grown significantly, and although emerging techniques may advance analyses, little consensus is presently available and further synthesis is therefore required. The objective of this review was to identify the accuracy of emerging analytical techniques used for physical activity measurement in humans. We conducted a search of electronic databases using Web of Science, PubMed, and Google Scholar. This review included studies written in English and published between January 2010 and December 2014 that assessed physical activity using emerging analytical techniques and reported technique accuracy. A total of 2064 papers were initially retrieved from three databases. After duplicates were removed and remaining articles screened, 50 full-text articles were reviewed, resulting in the inclusion of 11 articles that met the eligibility criteria. Despite the diverse nature and the range in accuracy associated with some of the analytic techniques, the rapid development of analytics has demonstrated that more sensitive information about physical activity may be attained. However, further refinement of these techniques is needed.

  14. Technique for Radiometer and Antenna Array Calibration with a Radiated Noise Diode

    NASA Technical Reports Server (NTRS)

    Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul

    2009-01-01

    This paper presents a new technique to calibrate a microwave radiometer and antenna array system. This calibration technique uses a radiated noise source in addition to two calibration sources internal to the radiometer. The method accurately calibrates antenna arrays with embedded active devices (such as amplifiers) which are used extensively in active phased array antennas.

  15. Study of federal microwave standards

    SciTech Connect

    David, L.

    1980-08-01

    Present and future federal regulatory processes which may impact the permissible levels of microwave radiation emitted by the SPS Microwave Power Transmission (MPTS) were studied. An historical development of US occupational and public microwave standards includes an overview of Western and East European philosophies of environmental protection and neurophysiology which have led to the current widely differing maximum permissible exposure limits to microwaves. The possible convergence of microwave standards is characterized by a lowering of Western exposure levels while Eastern countries consider standard relaxation. A trend toward stricter controls on activities perceived as harmful to public health is under way as is interest in improving the federal regulatory process. Particularly relevant to SPS is the initiation of long-term, low-level microwave exposure programs. Coupled with new developments in instrumentation and dosimetry, the results from chronic exposure program and population exposure studies could be expected within the next five to ten years. Also discussed is the increasing public concern that rf energy is yet another hazardous environmental agent.

  16. Determination of exchange and rotational anisotropies in IrMn /Fe(t)/IrMn exchange coupled structures using dynamic and static techniques: Application to microwave devices

    NASA Astrophysics Data System (ADS)

    Kuanr, Bijoy K.; Maat, Stefan; Chandrashekariaih, S.; Veerakumar, V.; Camley, R. E.; Celinski, Z.

    2008-04-01

    We determined the exchange anisotropy and rotational anisotropy of IrMn(7 nm)/Fe(t=3-20 nm)/IrMn(7 nm) exchange-biased structures using conventional ferromagnetic resonance (FMR) and network analyzer FMR (NA-FMR). Compared to single Fe layer films of identical thickness, we observe an isotropic downward shift and an angular variation of the FMR resonance field in the multilayer structures. The isotropic shift originates from the rotational anisotropy, while the angular variation originates from the exchange anisotropy. Both exchange anisotropy and rotational anisotropy increase with decreasing Fe thickness in the exchange-biased structures. The isotropic downward shift of the resonance field translates to an upward shift of the resonance frequency, and can be used to boost the operational frequency of microwave devices (bandpass/stop filters) by several gigahertz.

  17. Neural Detection of Malicious Network Activities Using a New Direct Parsing and Feature Extraction Technique

    DTIC Science & Technology

    2015-09-01

    NETWORK ACTIVITIES USING A NEW DIRECT PARSING AND FEATURE EXTRACTION TECHNIQUE by Cheng Hong Low September 2015 Thesis Advisor: Phillip Pace Co...FEATURE EXTRACTION TECHNIQUE 5. FUNDING NUMBERS 6. AUTHOR(S) Low, Cheng Hong 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Center for...FEATURE EXTRACTION TECHNIQUE Cheng Hong Low Civlian, ST Aerospace, Singapore M.Sc., National University of Singapore, 2012 Submitted in

  18. Fast preparation of Bi{sub 2}GeO{sub 5} nanoflakes via a microwave-hydrothermal process and enhanced photocatalytic activity after loading with Ag nanoparticles

    SciTech Connect

    Li, Zhao-Qian; Lin, Xin-Shan; Zhang, Lei; Chen, Xue-Tai; Xue, Zi-Ling

    2012-09-15

    Highlights: ► Bi{sub 2}GeO{sub 5} nanoflakes were successfully synthesized via a microwave-assisted solution-phase approach. ► Ag nanoparticles were deposited on the Bi{sub 2}GeO{sub 5} nanoflakes by a photoreduction procedure. ► Catalytic activity of the Ag/Bi{sub 2}GeO{sub 5} nanocomposite in the photo-degradation of rhodamine B (RhB) was much higher than that of pure Bi{sub 2}GeO{sub 5}. -- Abstract: In this work, a facile and rapid microwave-assisted hydrothermal route has been developed to prepare Bi{sub 2}GeO{sub 5} nanoflakes. Ag nanoparticles were subsequently deposited on the Bi{sub 2}GeO{sub 5} nanoflakes by a photoreduction procedure. The phases and morphologies of the products were characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV–vis diffuse reflectance spectroscopy. Photocatalytic experiments indicate that such Ag/Bi{sub 2}GeO{sub 5} nanocomposite possesses higher photocatalytic activity for RhB degradation under UV light irradiation in comparison to pure Bi{sub 2}GeO{sub 5}. The amount of Ag in the nanocomposite affects the catalytic activity, and 3 wt% Ag showed the highest photodegradation efficiency. Moreover, the catalyst remains active after four consecutive tests. The present study provides a new strategy to design composite materials with enhanced photocatalytic activity.

  19. A three-dimensional muscle activity imaging technique for assessing pelvic muscle function

    NASA Astrophysics Data System (ADS)

    Zhang, Yingchun; Wang, Dan; Timm, Gerald W.

    2010-11-01

    A novel multi-channel surface electromyography (EMG)-based three-dimensional muscle activity imaging (MAI) technique has been developed by combining the bioelectrical source reconstruction approach and subject-specific finite element modeling approach. Internal muscle activities are modeled by a current density distribution and estimated from the intra-vaginal surface EMG signals with the aid of a weighted minimum norm estimation algorithm. The MAI technique was employed to minimally invasively reconstruct electrical activity in the pelvic floor muscles and urethral sphincter from multi-channel intra-vaginal surface EMG recordings. A series of computer simulations were conducted to evaluate the performance of the present MAI technique. With appropriate numerical modeling and inverse estimation techniques, we have demonstrated the capability of the MAI technique to accurately reconstruct internal muscle activities from surface EMG recordings. This MAI technique combined with traditional EMG signal analysis techniques is being used to study etiologic factors associated with stress urinary incontinence in women by correlating functional status of muscles characterized from the intra-vaginal surface EMG measurements with the specific pelvic muscle groups that generated these signals. The developed MAI technique described herein holds promise for eliminating the need to place needle electrodes into muscles to obtain accurate EMG recordings in some clinical applications.

  20. SYSTEMATIC SCANNING ELECTRON MICROSCOPY TECHNIQUE FOR EVALUATING COMBINED BIOLOIGCAL/GRANULAR ACTIVATED CARBON TREATMENT PROCESSES

    EPA Science Inventory

    A systematic scanning election microscope analytical technique has been developed to examine granular activated carbon used a a medium for biomass attachment in liquid waste treatment. The procedure allows for the objective monitoring, comparing, and trouble shooting of combined ...

  1. Electro-catalytic activity of multiwall carbon nanotube-metal (Pt or Pd) nanohybrid materials synthesized using microwave-induced reactions and their possible use in fuel cells

    PubMed Central

    V, Lakshman Kumar; Ntim, Susana Addo; Sae-Khow, Ornthida; Janardhana, Chelli; Lakshminarayanan, V.; Mitra, Somenath

    2012-01-01

    Microwave induced reactions for immobilizing platinum and palladium nanoparticles on multiwall carbon nanotubes are presented. The resulting hybrid materials were used as catalysts for direct methanol, ethanol and formic acid oxidation in acidic as well as alkaline media. The electrodes are formed by simply mixing the hybrids with graphite paste, thus using a relatively small quantity of the precious metal. We report Tafel slopes and apparent activation energies at different potentials and temperatures. Ethanol electro-oxidation with the palladium hybrid showed an activation energy of 7.64 kJmol−1 which is lower than those observed for other systems. This system is economically attractive because Pd is significantly less expensive than Pt and ethanol is fast evolving as a commercial biofuel. PMID:23118490

  2. Bonding PMMA microfluidics using commercial microwave ovens

    NASA Astrophysics Data System (ADS)

    Toossi, A.; Moghadas, H.; Daneshmand, M.; Sameoto, D.

    2015-08-01

    In this paper, a novel low-cost, rapid substrate-bonding technique is successfully applied to polymethyl methacrylate (PMMA) microfluidics bonding for the first time. This technique uses a thin intermediate metallic microwave susceptor layer at the interface of the bonding site (microchannels) which produces localized heating required for bonding during microwave irradiation. The metallic susceptor pattern is designed using a multiphysics simulation model developed in ANSYS Multiphysics software (high-frequency structural simulation (HFSS) coupled with ANSYS-Thermal). In our experiments, the required microwave energy for bonding is delivered using a relatively inexpensive, widely accessible commercial microwave oven. Using this technique, simple PMMA microfluidics prototypes are successfully bonded and sealed in less than 35 seconds with a minimum measured bond strength of 1.375 MPa.

  3. Antioxidant activity measurement and potential antioxidant peptides exploration from hydrolysates of novel continuous microwave-assisted enzymolysis of the Scomberomorus niphonius protein.

    PubMed

    Huang, Yipeng; Ruan, Guihua; Qin, Zhijun; Li, Haiyun; Zheng, Yanjie

    2017-05-15

    A novel continuous microwave-assisted enzymatic digestion (cMAED) method is proposed for the digestion of protein from Scomberomorus niphonius to obtain potential antioxidant peptides. In this study, bromelain was found to have a high capacity for the digestion of the Scomberomorus niphonius protein. The following cMAED conditions were investigated: protease species, microwave power, temperature, bromelain content, acidity of the substrate solution, and incubation time. At 400W, 40°C, 1500U·g(-1) bromelain, 20% substrate concentration, pH 6.0 and 5min incubation, the degree of hydrolysis and total antioxidant activity of the hydrolysates were 15.86% and 131.49μg·mL(-1), respectively. The peptide analyses showed that eight of the potential antioxidant peptide sequences, which ranged from 502.32 to 1080.55Da with 4-10 amino acid residues, had features typical of well-known antioxidant proteins. Thus, the new cMAED method can be useful to obtain potential antioxidant peptides from protein sources, such as Scomberomorus niphonius.

  4. Microwave and Pulsed Power

    SciTech Connect

    Freytag, E.K.

    1993-03-01

    The goals of the Microwave and Pulsed Power thrust area are to identify realizable research and development efforts and to conduct high-quality research in those pulse power and microwave technologies that support existing and emerging programmatic requirements at Lawrence Livermore National Laboratory (LLNL). Our main objective is to work on nationally important problems while enhancing our basic understanding of enabling technologies such as component design and testing, compact systems packaging, exploratory physics experiments, and advanced systems integration and performance. During FY-92, we concentrated our research efforts on the six project areas described in this report. (1) We are investigating the superior electronic and thermal properties of diamond that may make it an ideal material for a high-power, solid-state switch. (2) We are studying the feasibility of using advanced Ground Penetrating Imaging Radar technology for reliable non-destructive evaluation of bridges and other high-value concrete structures. These studies include conceptual designs, modeling, experimental verifications, and image reconstruction of simulated radar data. (3) We are exploring the efficiency of pulsed plasma processing techniques used for the removal of NO{sub x} from various effluent sources. (4) We have finished the investigation of the properties of a magnetically delayed low-pressure gas switch, which was designed here at LLNL. (5) We are applying statistical electromagnetic theory techniques to help assess microwave effects on electronic subsystems, by using a mode stirred chamber as our measurement tool. (6) We are investigating the generation of perfluoroisobutylene (PFIB) in proposed CFC replacement fluids when they are subjected to high electrical stresses and breakdown environments.

  5. Microwave and pulsed power

    NASA Astrophysics Data System (ADS)

    Freytag, E. K.

    1993-03-01

    The goals of the Microwave and Pulsed Power thrust area are to identify realizable research and development efforts and to conduct high-quality research in those pulse power and microwave technologies that support existing and emerging programmatic requirements at Lawrence Livermore National Laboratory (LLNL). Our main objective is to work on nationally important problems while enhancing our basic understanding of enabling technologies such as component design and testing, compact systems packaging, exploratory physics experiments, and advanced systems integration and performance. During FY-92, we concentrated our research efforts on the six project areas described in this report. We are investigating the superior electronic and thermal properties of diamond that may make it an ideal material for a high-power, solid-state switch. We are studying the feasibility of using advanced Ground Penetrating Imaging Radar technology for reliable non-destructive evaluation of bridges and other high-value concrete structures. These studies include conceptual designs, modeling, experimental verifications, and image reconstruction of simulated radar data. We are exploring the efficiency of pulsed plasma processing techniques used for the removal of NO(x) from various effluent sources. We have finished the investigation of the properties of a magnetically delayed low-pressure gas switch, which was designed here at LLNL. We are applying statistical electromagnetic theory techniques to help assess microwave effects on electronic subsystems, by using a mode stirred chamber as our measurement tool. We are investigating the generation of perfluoroisobutylene (PFIB) in proposed CFC replacement fluids when they are subjected to high electrical stresses and breakdown environments.

  6. Gas chromatographic-mass spectrometric analysis of volatiles obtained by four different techniques from Salvia rosifolia Sm., and evaluation for biological activity.

    PubMed

    Ozek, Gulmira; Demirci, Fatih; Ozek, Temel; Tabanca, Nurhayat; Wedge, David E; Khan, Shabana I; Başer, Kemal Hüsnü Can; Duran, Ahmet; Hamzaoglu, Ergin

    2010-01-29

    Four different isolation techniques, conventional hydrodistillation (HD), microwave-assisted hydrodistillation (MWHD), microdistillation (MD) and micro-steam distillation-solid-phase microextraction (MSD-SPME), have been used to analyze the volatile constituents from the aerial parts of Salvia rosifolia Sm. by gas chromatography and gas chromatography coupled to mass spectrometry. HD and MWHD techniques produced quantitatively (yield, 0.39% and 0.40%) and qualitatively (aromatic profile) similar essential oils. alpha-Pinene (15.7-34.8%), 1,8-cineole (16.6-25.1%), beta-pinene (6.7-13.5%), beta-caryophyllene (1.4-5.0%) and caryophyllene oxide (1.4-4.4%) were identified as major constituents of this Turkish endemic species. Besides, the hydrodistilled oil of S. rosifolia was evaluated for antibacterial, antifungal, anticancer, antioxidant and cytotoxic activities. The hydrodistilled oil of S. rosifolia showed antibacterial activity against Methicillin-resistant Staphylococcus aureus (MRSA) with a MIC value of 125microg/mL. Other human pathogenic microorganisms (Escherichia coli, Pseudomonas aeruginosa, Enterobacter aerogenes, Salmonella typhimurium, Staphylococcus epidermidis, Candida albicans) were also inhibited within a moderate range (MIC=125-1000microg/mL). Antifungal activity of the oil was also observed against the strawberry anthracnose-causing fungal plant pathogens Colletotrichum acutatum, C. fragariae and C. gloeosporioides. No cytotoxicity was observed for S. rosifolia oil up to 25mg/mL against malignant melanoma, epidermal, ductal and ovary carcinoma.

  7. Coupling output of multichannel high power microwaves

    SciTech Connect

    Li Guolin; Shu Ting; Yuan Chengwei; Zhang Jun; Yang Jianhua; Jin Zhenxing; Yin Yi; Wu Dapeng; Zhu Jun; Ren Heming; Yang Jie

    2010-12-15

    The coupling output of multichannel high power microwaves is a promising technique for the development of high power microwave technologies, as it can enhance the output capacities of presently studied devices. According to the investigations on the spatial filtering method and waveguide filtering method, the hybrid filtering method is proposed for the coupling output of multichannel high power microwaves. As an example, a specific structure is designed for the coupling output of S/X/X band three-channel high power microwaves and investigated with the hybrid filtering method. In the experiments, a pulse of 4 GW X band beat waves and a pulse of 1.8 GW S band microwave are obtained.

  8. Microwave induced pyrolysis of oil palm biomass.

    PubMed

    Salema, Arshad Adam; Ani, Farid Nasir

    2011-02-01

    The purpose of this paper was to carry out microwave induced pyrolysis of oil palm biomass (shell and fibers) with the help of char as microwave absorber (MA). Rapid heating and yield of microwave pyrolysis products such as bio-oil, char, and gas was found to depend on the ratio of biomass to microwave absorber. Temperature profiles revealed the heating characteristics of the biomass materials which can rapidly heat-up to high temperature within seconds in presence of MA. Some characterization of pyrolysis products was also presented. The advantage of this technique includes substantial reduction in consumption of energy, time and cost in order to produce bio-oil from biomass materials. Large biomass particle size can be used directly in microwave heating, thus saving grinding as well as moisture removal cost. A synergistic effect was found in using MA with oil palm biomass.

  9. Phase Transformation of VO2 Nanoparticles Assisted by Microwave Heating

    PubMed Central

    Sikong, Lek.

    2014-01-01

    The microwave assisted synthesis nowadays attracts a great deal of attention. Monoclinic phase VO2 (M) was prepared from NH4VO3 and H2C2O4 · 2H2O by a rapid microwave assisted technique. The synthesis parameters, microwave irradiation time, microwave power, and calcinations temperature were systematically varied and their influences on the structure and morphology were evaluated. The microwave power level has been carried out in range 180–600 W. TEM analysis demonstrated nanosized samples. The structural and morphological properties were measured using XRD, TEM, and thermal analyses. The variations of vanadium phase led to thermochromic properties. PMID:24688438

  10. Microwave properties of high transition temperature superconducting thin films

    NASA Technical Reports Server (NTRS)

    Gordon, W. L.

    1991-01-01

    Extensive studies of the interaction of microwaves with YBa2Cu3O(7-delta), Bi-based, and Tl-based superconducting thin films deposited in several microwave substrates were performed. The data were obtained by measuring the microwave power transmitted through the film in the normal and the superconducting state and by resonant cavity techniques. The main motives were to qualify and understand the physical parameters such as the magnetic penetration depth, the complex conductivity, and the surface impedance, of high temperature superconducting (HTS) materials at microwave frequencies. Based on these parameters, the suitability of these HTS thin films is discussed for microwave applications.

  11. Optimized ECR plasma apparatus with varied microwave window thickness

    DOEpatents

    Berry, Lee A.

    1995-01-01

    The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design.

  12. Optimized ECR plasma apparatus with varied microwave window thickness

    DOEpatents

    Berry, L.A.

    1995-11-14

    The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design. 9 figs.

  13. Simultaneous determination of bromine and iodine in milk powder for adult and infant nutrition by plasma based techniques after digestion using microwave-induced combustion

    NASA Astrophysics Data System (ADS)

    Picoloto, Rochele S.; Doneda, Morgana; Flores, Eder L. M.; Mesko, Marcia F.; Flores, Erico M. M.; Mello, Paola A.

    2015-05-01

    In this work, bromine and iodine determination in milk powder for adult and infant nutrition was performed by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES) after digestion by microwave-induced combustion (MIC). Contrarily to previous works using MIC, a higher sample mass was digested (700 mg). Water and ammonium hydroxide (10 to 100 mmol L- 1) were investigated as absorbing solutions and accurate results were achieved using a 25 mmol L- 1 NH4OH solution. Moreover, the high stability of analytes after digestion (up to 30 days) using this solution was observed. The accuracy of the proposed MIC method was evaluated using certified and reference materials of milk powder (NIST 1549 and NIST 8435). No statistical difference was observed between results obtained by MIC-ICP-MS and reference values. Results for samples were also compared with those obtained by ICP-OES and no statistical difference was observed. Microwave-assisted alkaline extraction (MW-AE) was also evaluated for milk powder using NH4OH and tetramethylammonium hydroxide solutions. Solutions obtained after digestion by MIC (whole milk powder) presented low carbon content in digests (< 25 mg L- 1) while solutions obtained after alkaline extraction presented up to 10,000 mg L- 1 of C. MIC method was preferable in view of the possibility of obtaining solutions with low carbon content even using a relatively high sample mass (up to 700 mg) avoiding additional dilution prior to ICP-MS analysis, thus allowing better detection limits. Limits of detection obtained by MIC-ICP-MS were 0.007 and 0.003 μg g- 1 for Br and I, respectively, while for MW-AE were 0.1 and 0.05 μg g- 1 respectively for Br and I. Among the main advantages of the proposed method are the use of diluted alkaline solutions that is in agreement with green analytical chemistry recommendations, the high stability of analytes in solution and the suitability of digests for

  14. Preliminary experiments on apparatus for in situ studies of microwave-driven reactions by small angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Whittaker, A. G.; Harrison, A.; Oakley, G. S.; Youngson, I. D.; Heenan, R. K.; King, S. M.

    2001-01-01

    In this article we describe apparatus for the study of the microwave-driven growth of particles in solution by in situ small angle neutron scattering (SANS). This apparatus has enabled the first preliminary experiments using microwave-activated in situ diffraction. We take iron oxide as the prototype system, but the technique may be extended to a wide variety of chemical reactions that deposit solids from solution. The key features of the apparatus are a microwave cavity with a modular construction that may be adapted to the geometric constraints of the diffractometer, and a computer-controlled microwave generator that may be set to maintain either constant pressure or temperature in the reaction vessel. In this particular piece of equipment the reaction vessel is adapted so that part of the sample fills a cell of identical construction to those commonly used in SANS measurements for optimal transmission of the neutron beam.

  15. Biophysical techniques for examining metabolic, proliferative, and genetic effects of microwave radiation. Final report, 1 Oct 89-30 Aug 90

    SciTech Connect

    Meltz, M.L.

    1991-09-01

    This project was undertaken to prepare for a comprehensive research effort examining metabolic, proliferative, and genetic effects of microwave radiation. To accomplish this task, preliminary studies have been performed with 4 cells systems; Chinese hamster ovary (CHO) cells, AS52 Chinese hamster cells (heterozygous at the xanthine-guanine phosphoribosyl transferase (XGPRT) locus), 244B proliferating human lymphoblastoid cells, and freshly isolated peripheral lymphocytes. The thermal response of the 244B cells has been carefully examined, and an initial characterization of the membrane markers, membrane permeability, and cell cycle distribution of these cells undertaken. The absence of the induction of chromosome aberrations in CHO cells, after exposure to 850 MHz pulsed wave (PW), 18mW/cm2 (specific absorption rate (SAR) 14.4 W/kg) radiofrequency radiation (RFR), or after exposure to 1,200 MHz PW (220 W -300 W) net forward power; SAR 24.33 W/kg RFR, is reported. The survival response of the AS52 cells, after simultaneous treatment at 37 C or 40 C, with and without mitomycin or adriamycin, is described. The survival of the AS52 cells after X-ray exposure at low and high dose rates is also described.

  16. Extraction of polycyclic aromatic hydrocarbons and organochlorine pesticides from soils: a comparison between Soxhlet extraction, microwave-assisted extraction and accelerated solvent extraction techniques.

    PubMed

    Wang, Wentao; Meng, Bingjun; Lu, Xiaoxia; Liu, Yu; Tao, Shu

    2007-10-29

    The methods of simultaneous extraction of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) from soils using Soxhlet extraction, microwave-assisted extraction (MAE) and accelerated solvent extraction (ASE) were established, and the extraction efficiencies using the three methods were systemically compared from procedural blank, limits of detection and quantification, method recovery and reproducibility, method chromatogram and other factors. In addition, soils with different total organic carbon contents were used to test the extraction efficiencies of the three methods. The results showed that the values obtained in this study were comparable with the values reported by other studies. In some respects such as method recovery and reproducibility, there were no significant differences among the three methods for the extraction of PAHs and OCPs. In some respects such as procedural blank and limits of detection and quantification, there were significant differences among the three methods. Overall, ASE had the best extraction efficiency compared to MAE and Soxhlet extraction, and the extraction efficiencies of MAE and Soxhlet extraction were comparable to each other depending on the property such as TOC content of the studied soil. Considering other factors such as solvent consumption and extraction time, ASE and MAE are preferable to Soxhlet extraction.

  17. Volumetric pattern analysis of fuselage-mounted airborne antennas. Ph.D. Thesis; [prediction analysis techniques for antenna radiation patterns of microwave antennas on commercial aircraft

    NASA Technical Reports Server (NTRS)

    Yu, C. L.

    1976-01-01

    A volumetric pattern analysis of fuselage-mounted airborne antennas at high frequencies was investigated. The primary goal of the investigation was to develop a numerical solution for predicting radiation patterns of airborne antennas in an accurate and efficient manner. An analytical study of airborne antenna pattern problems is presented in which the antenna is mounted on the fuselage near the top or bottom. Since this is a study of general-type commercial aircraft, the aircraft was modeled in its most basic form. The fuselage was assumed to be an infinitely long perfectly conducting elliptic cylinder in its cross-section and a composite elliptic cylinder in its elevation profile. The wing, cockpit, stabilizers (horizontal and vertical) and landing gear are modeled by "N" sided bent or flat plates which can be arbitrarily attached to the fuselage. The volumetric solution developed utilizes two elliptic cylinders, namely, the roll plane and elevation plane models to approximate the principal surface profile (longitudinal and transverse) at the antenna location. With the belt concept and the aid of appropriate coordinate system transformations the solution can be used to predict the volumetric patterns of airborne antennas in an accurate and efficient manner. Applications of this solution to various airborne antenna problems show good agreement with scale model measurements. Extensive data are presented for a microwave landing antenna system.

  18. A Melting Layer Model for Passive/Active Microwave Remote Sensing Applications. Part 1; Model Formulation and Comparison with Observations

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Bauer, Peter; Viltard, Nicolas F.; Johnson, Daniel E.; Tao, Wei-Kuo

    2000-01-01

    In this study, a 1-D steady-state microphysical model which describes the vertical distribution of melting precipitation particles is developed. The model is driven by the ice-phase precipitation distributions just above the freezing level at applicable gridpoints of "parent" 3-D cloud-resolving model (CRM) simulations. It extends these simulations by providing the number density and meltwater fraction of each particle in finely separated size categories through the melting layer. The depth of the modeled melting layer is primarily determined by the initial material density of the ice-phase precipitation. The radiative properties of melting precipitation at microwave frequencies are calculated based upon different methods for describing the dielectric properties of mixed phase particles. Particle absorption and scattering efficiencies at the Tropical Rainfall Measuring Mission Microwave Imager frequencies (10.65 to 85.5 GHz) are enhanced greatly for relatively small (approx. 0.1) meltwater fractions. The relatively large number of partially-melted particles just below the freezing level in stratiform regions leads to significant microwave absorption, well-exceeding the absorption by rain at the base of the melting layer. Calculated precipitation backscatter efficiencies at the Precipitation Radar frequency (13.8 GHz) increase in proportion to the particle meltwater fraction, leading to a "bright-band" of enhanced radar reflectivities in agreement with previous studies. The radiative properties of the melting layer are determined by the choice of dielectric models and the initial water contents and material densities of the "seeding" ice-phase precipitation particles. Simulated melting layer profiles based upon snow described by the Fabry-Szyrmer core-shell dielectric model and graupel described by the Maxwell-Garnett water matrix dielectric model lead to reasonable agreement with radar-derived melting layer optical depth distributions. Moreover, control profiles

  19. Theatre Techniques for Language Learning: Assumptions and Suggested Progression of Activities.

    ERIC Educational Resources Information Center

    Anderson, Martha L.

    A discussion of the use of drama activities in Second Language instruction looks at the rationale for using such techniques in the language classroom, describes a progression of drama activities used for an intensive course in intermediate English as a Second Language, and examines other considerations in the use of drama in language teaching.…

  20. Teaching Tip: Using Activity Diagrams to Model Systems Analysis Techniques: Teaching What We Preach

    ERIC Educational Resources Information Center

    Lending, Diane; May, Jeffrey

    2013-01-01

    Activity diagrams are used in Systems Analysis and Design classes as a visual tool to model the business processes of "as-is" and "to-be" systems. This paper presents the idea of using these same activity diagrams in the classroom to model the actual processes (practices and techniques) of Systems Analysis and Design. This tip…