Science.gov

Sample records for active microwave techniques

  1. Active microwaves

    NASA Technical Reports Server (NTRS)

    Evans, D.; Vidal-Madjar, D.

    1994-01-01

    Research on the use of active microwaves in remote sensing, presented during plenary and poster sessions, is summarized. The main highlights are: calibration techniques are well understood; innovative modeling approaches have been developed which increase active microwave applications (segmentation prior to model inversion, use of ERS-1 scatterometer, simulations); polarization angle and frequency diversity improves characterization of ice sheets, vegetation, and determination of soil moisture (X band sensor study); SAR (Synthetic Aperture Radar) interferometry potential is emerging; use of multiple sensors/extended spectral signatures is important (increase emphasis).

  2. Microwave techniques for physical property measurements

    NASA Technical Reports Server (NTRS)

    Barmatz, M.

    1993-01-01

    Industrial processing of metals and ceramics is now being streamlined by the development of theoretical models. High temperature thermophysical properties of these materials are required to successfully apply these theories. Unfortunately, there is insufficient experimental data available for many of these properties, particularly in the molten state. Microwave fields can be used to measure specific heat, thermal diffusivity, thermal conductivity and dielectric constants at high temperatures. We propose to (1) develop a microwave flash method (analogous to the laser flash technique) that can simultaneously measure the thermal diffusivity and specific heat of insulators and semiconductors at high temperatures, (2) an appropriate theory and experimental apparatus to demonstrate the measurement of the specific heat of a metal using a new microwave ac specific heat technique, and (3) experimental methods for noncontact measurement of the real and imaginary dielectric constants.

  3. Processing dentures using a microwave technique.

    PubMed

    Ilbay, S G; Güvener, S; Alkumru, H N

    1994-01-01

    In this research the technique of curing denture base acrylic resins by microwave energy was investigated with respect to polymerization method, hardness, mechanical and physical properties. Twenty-one different polymerization methods were used by varying radiation power and curing time. The Vickers hardness test was applied to the samples which were polymerized. The average value was found to be 22.46 VHN (Vicker hardness number), that is, almost the same as conventionally cured acrylic. The recommended polymerization method of curing acrylic was 3 min at 550 W in a microwave oven. Mechanical and physical tests were applied to the samples which were cured by the recommended polymerization method. The average transverse load to fracture value was found to be 7.6 kg, and the transverse deflection value was 1.5 mm at 3500 g, and 2.9 mm at 5000 g. Water sorption of acrylic resin cured by microwave energy was 0.72 mg cm-2 and the solubility rate in water was 0.038 mg cm-2. Results conformed with the ADA specification. The findings showed that acrylic resin cured by microwave energy is more resistant to mechanical failure than conventionally cured acrylic and this technique can safely be applied to the production of denture bases.

  4. Active microwave computed brain tomography: the response to a challenge.

    PubMed

    Almirall, H; Broquetas, A; Jofre, L

    1991-02-01

    The potential application of active microwave techniques to brain imaging is studied by numerical simulations and experimentally using a recently developed cylindrical microwave scanner. The potential advantages and limitations of this method in static and dynamic brain imaging are presented and compared with other imaging techniques. PMID:2062119

  5. [New techniques of tumor ablation (microwaves, electroporation)].

    PubMed

    de Baere, T

    2011-09-01

    Since the introduction of radiofrequency tumor ablation of liver tumors in the late 1990s, local destructive therapies have been applied to lung, renal and bone lesions. In addition, new techniques have been introduced to compensate for the limitations of radiofrequency ablation, namely the reduced rate of complete ablation for tumors larger than 3 cm and tumors near vessels larger than 3 mm. Microwave ablation is currently evolving rapidly. While it is a technique based on thermal ablation similar to radiofrequency ablation, there are significant differences between both techniques. Electroporation, of interest because of the non-thermal nature of the ablation process, also is under evaluation.

  6. Soil moisture sensing with microwave techniques

    NASA Technical Reports Server (NTRS)

    Schmugge, T.

    1980-01-01

    Microwave approaches for the remote sensing of soil moisture are discussed, with the advantages described as follows: (1) the all-weather capability, (2) the greater penetration depth into the soil and through vegetation than with optical or infrared sensors, and (3) the large changes in the dielectric properties of soil produced by changes in water content. Both active and passive microwave approaches are discussed. The dependence of the relationship between microwave response and soil moisture on such things as soil texture, surface roughness, vegetative cover and nonuniform moisture and temperature profiles is analyzed from both the experimental and theoretical viewpoints. The dielectric properties of the soil are analyzed quantitatively, as these control the reflective and emissive properties of the soil surface, and a model for estimating a soil's dielectric properties from its texture and moisture content is also presented. Emissivity is calculated using the Fresnel equation of electromagnetic theory, and reflectivity is shown to be decreased by surface roughness, while the backscatter coefficient increases. It is demonstrated, that microwave radiometers are sensitive to soil moisture for a wide range of surface conditions, and that the longer wavelengths are best for soil moisture sensing.

  7. Applications of active microwave imagery

    NASA Technical Reports Server (NTRS)

    Weber, F. P.; Childs, L. F.; Gilbert, R.; Harlan, J. C.; Hoffer, R. M.; Miller, J. M.; Parsons, J.; Polcyn, F.; Schardt, B. B.; Smith, J. L.

    1978-01-01

    The following topics were discussed in reference to active microwave applications: (1) Use of imaging radar to improve the data collection/analysis process; (2) Data collection tasks for radar that other systems will not perform; (3) Data reduction concepts; and (4) System and vehicle parameters: aircraft and spacecraft.

  8. Techniques for Characterizing Microwave Printed Antennas

    NASA Technical Reports Server (NTRS)

    Simons, Rainee; Lee, Richard Q.

    2003-01-01

    The combination of a de-embedding technique and a direct on-substrate measurement technique has been devised to enable measurement of the electrical characteristics (impedances, scattering parameters, and gains) of microwave printed antennas that may be formed integrally with feed networks that include slot lines, coplanar striplines, and/or coplanar waveguides. The combination of techniques eliminates the need for custom test fixtures, including transitions between (1) coaxial or waveguide feed lines in typical test equipment and (2) the planar waveguide structures of the printed circuits under test. The combination of techniques can be expected to be especially useful for rapid, inexpensive, and accurate characterization of antennas for miniature wireless communication units that operate at frequencies from a few to tens of gigahertz.

  9. Active microwave users working group program planning

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Bare, J.; Brown, W. E., Jr.; Childs, L. F.; Dellwig, L. F.; Heighway, J. E.; Joosten, R.; Lewis, A. J.; Linlor, W.; Lundien, J. R.

    1978-01-01

    A detailed programmatic and technical development plan for active microwave technology was examined in each of four user activities: (1) vegetation; (2) water resources and geologic applications, and (4) oceanographic applications. Major application areas were identified, and the impact of each application area in terms of social and economic gains were evaluated. The present state of knowledge of the applicability of active microwave remote sensing to each application area was summarized and its role relative to other remote sensing devices was examined. The analysis and data acquisition techniques needed to resolve the effects of interference factors were reviewed to establish an operational capability in each application area. Flow charts of accomplished and required activities in each application area that lead to operational capability were structured.

  10. Active microwave responses - An aid in improved crop classification

    NASA Technical Reports Server (NTRS)

    Rosenthal, W. D.; Blanchard, B. J.

    1984-01-01

    A study determined the feasibility of using visible, infrared, and active microwave data to classify agricultural crops such as corn, sorghum, alfalfa, wheat stubble, millet, shortgrass pasture and bare soil. Visible through microwave data were collected by instruments on board the NASA C-130 aircraft over 40 agricultural fields near Guymon, OK in 1978 and Dalhart, TX in 1980. Results from stepwise and discriminant analysis techniques indicated 4.75 GHz, 1.6 GHz, and 0.4 GHz cross-polarized microwave frequencies were the microwave frequencies most sensitive to crop type differences. Inclusion of microwave data in visible and infrared classification models improved classification accuracy from 73 percent to 92 percent. Despite the results, further studies are needed during different growth stages to validate the visible, infrared, and active microwave responses to vegetation.

  11. Microwave remote sensing: Active and passive. Volume 1 - Microwave remote sensing fundamentals and radiometry

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Moore, R. K.; Fung, A. K.

    1981-01-01

    The three components of microwave remote sensing (sensor-scene interaction, sensor design, and measurement techniques), and the applications to geoscience are examined. The history of active and passive microwave sensing is reviewed, along with fundamental principles of electromagnetic wave propagation, antennas, and microwave interaction with atmospheric constituents. Radiometric concepts are reviewed, particularly for measurement problems for atmospheric and terrestrial sources of natural radiation. Particular attention is given to the emission by atmospheric gases, clouds, and rain as described by the radiative transfer function. Finally, the operation and performance characteristics of radiometer receivers are discussed, particularly for measurement precision, calibration techniques, and imaging considerations.

  12. COBE differential microwave radiometers - Calibration techniques

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Smoot, G. F.; Janssen, M.; Gulkis, S.; Kogut, A.; Hinshaw, G.; Backus, C.; Hauser, M. G.; Mather, J. C.; Rokke, L.

    1992-01-01

    The COBE spacecraft was launched November 18, 1989 UT carrying three scientific instruments into earth orbit for studies of cosmology. One of these instruments, the Differential Microwave Radiometer (DMR), is designed to measure the large-angular-scale temperature anisotropy of the cosmic microwave background radiation at three frequencies (31.5, 53, and 90 GHz). This paper presents three methods used to calibrate the DMR. First, the signal difference between beam-filling hot and cold targets observed on the ground provides a primary calibration that is transferred to space by noise sources internal to the instrument. Second, the moon is used in flight as an external calibration source. Third, the signal arising from the Doppler effect due to the earth's motion around the barycenter of the solar system is used as an external calibration source. Preliminary analysis of the external source calibration techniques confirms the accuracy of the currently more precise ground-based calibration. Assuming the noise source behavior did not change from the ground-based calibration to flight, a 0.1-0.4 percent relative and 0.7-2.5 percent absolute calibration uncertainty is derived, depending on radiometer channel.

  13. Summary of the active microwave users workshop

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A coordinated microwave applications development program was initiated to improve the capability to: (1) identify, monitor, and assess the earth's resources; and (2) monitor the earth's environment and predict significant changes. The program consists of the scientific, technical, and programmatic activities required to develop microwave remote sensing into an operational tool for systematic earth observations.

  14. Microwave Diffraction Techniques from Macroscopic Crystal Models

    ERIC Educational Resources Information Center

    Murray, William Henry

    1974-01-01

    Discusses the construction of a diffractometer table and four microwave models which are built of styrofoam balls with implanted metallic reflecting spheres and designed to simulate the structures of carbon (graphite structure), sodium chloride, tin oxide, and palladium oxide. Included are samples of Bragg patterns and computer-analysis results.…

  15. Optical Techniques for Low Noise Microwave Frequency Sources

    NASA Technical Reports Server (NTRS)

    Maleki, Lute

    2005-01-01

    Optical techniques and mathematical models are described for low noise microwave frequency sources. The contents include: 1) Why Optical Techniques; 2) Wavemixing: Advantages and Disadvantages; 3) Wavemixing with Feedback: The OEO; 4) Feedback in both loops: COEO; and 5) State of the Art and Future Prospects.

  16. Sintering of zirconia ceramics using microwave and spark heating techniques

    NASA Astrophysics Data System (ADS)

    Ivashutenko, A. S.; Frangulyan, T. S.; Ghyngazov, S. A.; Petrova, A. B.

    2016-02-01

    The paper presents the results of an complex study of structural and mechanical properties of zirconia ceramics sintered using different techniques. The samples were sintered via the conventional method of heating, in the field of microwave radiation and spark plasma. The experimental data indicates that a microwave field and spark plasma have a stimulating effect on zirconia ceramics sintering. In contrast to the microwave sintering, spark plasma sintering provides ceramics with improved properties at similar time-temperature annealing modes. Moreover, the properties of the ceramics under spark plasma sintering at T=1300 °C are similar to the properties of the ceramics sintered in a microwave field at T=1400 °C.

  17. Synthesis of (azelaic-co-dodecanedioic) polyanhydride by microwave technique

    NASA Astrophysics Data System (ADS)

    Gutiérrez, M.; Sierra, C.; Acevedo Morantes, M.; Herrera, A. P.

    2016-02-01

    A polyanhydride was synthesized through microwave radiation using azelaic acid and dodecanedioic dicarboxylic acid at concentrations of 75:25, 50:50, and 25:75%w/w with acetic anhydride as crosslinking agent. Polymerization was carried out during 3 and 5 minutes. The copolymer with the highest molecular weight was selected using the intrinsic viscometry technique and by Huggin/Kraemer and Solomon/Ciuta methods. Based on these measurements, the 50:50 copolymer was selected with a polymerization time of 3 minutes in the microwave. This sample displayed the highest intrinsic viscosity (41.82cm3/g), demonstrating the relevance of the microwave technique for the synthesis of biopolymers.

  18. Active Microwave Properties of Vegetation Canopies

    NASA Technical Reports Server (NTRS)

    Paris, J. F. (Principal Investigator)

    1985-01-01

    Potential users of radar imagery need a better fundamental understanding of the capabilities of radar systems for vegetation studies than past studies provide. One approach is the use of theoretical models to predict observable active microwave properties of vegetation. This in turn requires accurate observations of backscattering coefficients and other active microwave properties in field research studies. The background document for the SRAEC program emphasizes the need to relate electromagnetic parameters to classical biophysical descriptors and to understand the role of polarization, especially cross-polarization. The broad goal of this study is to increase the understanding of the effects of canopy structure on the active microwave properties of vegetation canopies, with particular attention to polarization.

  19. Summary of the Active Microwave Workshop, chapter 1. [utilization in applications and aerospace programs

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An overview is given of the utility, feasibility, and advantages of active microwave sensors for a broad range of applications, including aerospace. In many instances, the material provides an in-depth examination of the applicability and/or the technology of microwave remote sensing, and considerable documentation is presented in support of these techniques. An assessment of the relative strengths and weaknesses of active microwave sensor data indicates that satisfactory data are obtainable for several significant applications.

  20. Microwave-assisted regeneration of activated carbon.

    PubMed

    Foo, K Y; Hameed, B H

    2012-09-01

    Microwave heating was used in the regeneration of methylene blue-loaded activated carbons produced from fibers (PFAC), empty fruit bunches (EFBAC) and shell (PSAC) of oil palm. The dye-loaded carbons were treated in a modified conventional microwave oven operated at 2450 MHz and irradiation time of 2, 3 and 5 min. The virgin properties of the origin and regenerated activated carbons were characterized by pore structural analysis and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement and determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue (MB). Microwave irradiation preserved the pore structure, original active sites and adsorption capacity of the regenerated activated carbons. The carbon yield and the monolayer adsorption capacities for MB were maintained at 68.35-82.84% and 154.65-195.22 mg/g, even after five adsorption-regeneration cycles. The findings revealed the potential of microwave heating for regeneration of spent activated carbons.

  1. Technology advances in active and passive microwave sensing through 1985

    NASA Technical Reports Server (NTRS)

    Barath, F. T.

    1977-01-01

    As a result of a growing awareness by the remote sensing community of the unique capabilities of passive and active microwave sensors, these instruments are expected to grow in the next decade in numbers, versatility and complexity. The Nimbus-G and Seasat-A Scanning Multichannel Microwave Spectrometer (SMMR), the Seasat-A radar altimeter, scatterometer and synthetic aperture radar represent the first systematic attempt at exploring a wide variety of applications utilizing microwave sensing techniques and are indicators of the directions in which the pertinent technology is likely to evolve. The trend is toward high resolution multi-frequency imagers spanning wide frequency ranges and wide swaths requiring sophisticated receivers, real-time data processors and most importantly, complex antennas.

  2. Killing activity of microwaves in milk.

    PubMed

    Kindle, G; Busse, A; Kampa, D; Meyer-König, U; Daschner, F D

    1996-08-01

    The killing activity of microwaves of 2450 MHz frequency and 600 W power on Pseudomonas aeruginosa, Escherichia coli, Enterobacter sakazakii, Klebsiella pneumoniae, Staphylococcus aureus, Candida albicans, Mycobacterium terrae and poliomyelitis vaccine-virus suspended in five infant formula preparations was investigated. The samples were brought to the boil (85-100 s depending on milk type). They had reached average temperatures of 82-93 degrees C at this point. Most of the vegetative organisms were killed. In those samples where growth was still detectable after microwave treatment, a significant reduction in viable micro-organisms (at least 5000-fold) was noted. We conclude that microwave beating to the boil is a convenient and fast method to reduce microbial contamination of infant feeds. However, care should be taken to ensure that milk is adequately cooled to the required temperature before it is fed to an infant. PMID:8864939

  3. Discrete random media techniques for microwave modeling of vegetated terrain

    NASA Technical Reports Server (NTRS)

    Lang, Roger H.

    1991-01-01

    Microwave remote sensing models of vegetated terrain are investigated. The problem is to determine canopy characteristics such as biomass, canopy height, and the moisture of the underlying soil. The report describes a discrete scatter model which has been employed to model backscatter in the active (radar) case and to model brightness temperature in the passive (radiometric) case. The acquisition of ground truth data is discussed, as well as the comparison of theory and experiment. The overall conclusion of the work has been that the discrete scatter model in conjunction with efficient scatter algorithms and the distorted Born approximation is a most appropriate methodology to use for modeling purposes in the microwave region.

  4. Microwave Cold-Testing Techniques for the NLC

    SciTech Connect

    Bowden, Gordon B

    2003-05-28

    The R & D program for the Next Linear Collider Test Accelerator (NLCTA) includes the development of microwave techniques for testing X-band accelerating structures at different stages of design, manufacturing and assembly. During the design phase, short stacks were built and tested to finalize dimensions. Cell by cell measurements were performed on the NLCTA injector cells as a microwave quality control (QC) after manufacturing. The two injector sections were tuned using a moveable plunger and tested using a semiautomated system of bead-pull. Using this perturbation technique, we were able to map the amplitude and phase of the electric field on the axis throughout the assembled structures under traveling-wave conditions.

  5. Microwave de-embedding techniques applied to acoustics.

    PubMed

    Jackson, Charles M

    2005-07-01

    This paper describes the use of the microwave techniques of time domain reflectometry (TDR) and de-embedding in an acoustical application. Two methods of calibrating the reflectometer are presented to evaluate the consistency of the method. Measured and modeled S-parameters of woodwind instruments are presented. The raw measured data is de-embedded to obtain an accurate measurement. The acoustic TDR setup is described. PMID:16212248

  6. Investigation of microwave hologram techniques for application to earth resources

    NASA Technical Reports Server (NTRS)

    Larson, R. W.; Bayma, R. W.; Evans, M. B.; Zelenka, J. S.; Doss, H. W.; Ferris, J. E.

    1974-01-01

    An investigation of microwave hologram techniques for application to earth resources was conducted during the period from June 1971 to November 1972. The objective of this investigation has been to verify the feasibility of an orbital microwave holographic radar experiment. The primary advantage of microwave hologram radar (MHR) over the side-looking airborne radar (SLAR) is that of aspect or viewing angle; the MHR has a viewing angle identical with that of photography and IR systems. The combination of these systems can thus extend the multispectral analysis concept to span optical through microwave wavelengths. Another advantage is the capacity of the MHR system to generate range contours by operating in a two-frequency mode. It should be clear that along-track resolution of an MHR can be comparable with SLAR systems, but cross-track resolution will be approximately an order of magnitude coarser than the range resolution achievable with an arbitrary SLAR system. An advantage of the MHR over the SLAR is that less average transmitter power is required. This reduction in power results from the much larger receiving apertures associated with MHR systems.

  7. Reconstruction Techniques for Sparse Multistatic Linear Array Microwave Imaging

    SciTech Connect

    Sheen, David M.; Hall, Thomas E.

    2014-06-09

    Sequentially-switched linear arrays are an enabling technology for a number of near-field microwave imaging applications. Electronically sequencing along the array axis followed by mechanical scanning along an orthogonal axis allows dense sampling of a two-dimensional aperture in near real-time. In this paper, a sparse multi-static array technique will be described along with associated Fourier-Transform-based and back-projection-based image reconstruction algorithms. Simulated and measured imaging results are presented that show the effectiveness of the sparse array technique along with the merits and weaknesses of each image reconstruction approach.

  8. Active cleaning technique device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1973-01-01

    The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.

  9. Automated Microwave Low Power Testing Techniques for NLC

    SciTech Connect

    Carter, H.; Finley, D.; Gonin, I.; Khabibullin, T.; Romanov, G.; Sun, D.; Adolphsen, C.; Wang, J.; /SLAC

    2005-07-08

    As part of the Next Linear Collider (NLC) collaboration, the NLC structures group at Fermilab has started an R&D program to fabricate NLC accelerator structures in cooperation with commercial companies in order to prepare for mass production of RF structures. To build the Next Linear Collider, thousands accelerator structures containing a million cells are needed. Our primary goal is to explore the feasibility of making these structures in an industrial environment. On the other hand the structure mass production requires ''industrialized''microwave quality control techniques to characterize these structures at different stages of production as efficiently as possible. We developed several automated set-ups based on different RF techniques that are mutually complementary address this problem.

  10. Utilization of active microwave roughness measurements to improve passive microwave soil moisture estimates over bare soils

    NASA Technical Reports Server (NTRS)

    Theis, S. W.; Blanchard, B. J.; Blanchard, A. J.

    1984-01-01

    Multisensor aircraft data were used to establish the potential of the active microwave sensor response to be used to compensate for roughness in the passive microwave sensor's response to soil moisture. Only bare fields were used. It is found that the L-band radiometer's capability to estimate soil moisture significantly improves when surface roughness is accounted for with the scatterometers.

  11. Utilization of active microwave roughness measurements to improve passive microwave soil moisture estimates over bare soils

    NASA Technical Reports Server (NTRS)

    Theis, S. W.; Blanchard, A. J.; Blanchard, B. J.

    1986-01-01

    Multisensor aircraft data were used to establish the potential of the active microwave sensor response to be used to compensate for roughness in the passive microwave sensor's response to soil moisture. Only bare fields were used. It is found that the L-band radiometer's capability to estimate soil moisture significantly improves when surface roughness is accounted for with the scatterometers.

  12. AMISS - Active and passive MIcrowaves for Security and Subsurface imaging

    NASA Astrophysics Data System (ADS)

    Soldovieri, Francesco; Slob, Evert; Turk, Ahmet Serdar; Crocco, Lorenzo; Catapano, Ilaria; Di Matteo, Francesca

    2013-04-01

    The FP7-IRSES project AMISS - Active and passive MIcrowaves for Security and Subsurface imaging is based on a well-combined network among research institutions of EU, Associate and Third Countries (National Research Council of Italy - Italy, Technische Universiteit Delft - The Netherlands, Yildiz Technical University - Turkey, Bauman Moscow State Technical University - Russia, Usikov Institute for Radio-physics and Electronics and State Research Centre of Superconductive Radioelectronics "Iceberg" - Ukraine and University of Sao Paulo - Brazil) with the aims of achieving scientific advances in the framework of microwave and millimeter imaging systems and techniques for security and safety social issues. In particular, the involved partners are leaders in the scientific areas of passive and active imaging and are sharing their complementary knowledge to address two main research lines. The first one regards the design, characterization and performance evaluation of new passive and active microwave devices, sensors and measurement set-ups able to mitigate clutter and increase information content. The second line faces the requirements to make State-of-the-Art processing tools compliant with the instrumentations developed in the first line, suitable to work in electromagnetically complex scenarios and able to exploit the unexplored possibilities offered by new instrumentations. The main goals of the project are: 1) Development/improvement and characterization of new sensors and systems for active and passive microwave imaging; 2) Set up, analysis and validation of state of art/novel data processing approach for GPR in critical infrastructure and subsurface imaging; 3) Integration of state of art and novel imaging hardware and characterization approaches to tackle realistic situations in security, safety and subsurface prospecting applications; 4) Development and feasibility study of bio-radar technology (system and data processing) for vital signs detection and

  13. Efficient preparation of nanocrystalline anatase TiO{sub 2} and V/TiO{sub 2} thin layers using microwave drying and/or microwave calcination technique

    SciTech Connect

    Zabova, H.; Sobek, J.; Cirkva, V.; Solcova, O.; Kment, S.; Hajek, M.

    2009-12-15

    This study has demonstrated that the synthesis of TiO{sub 2} and V/TiO{sub 2} thin layers may be significantly improved and extended if microwave energy is employed during the drying and/or calcination step. Thin nanoparticulate titania layers were prepared via the sol-gel method using titanium n-butoxide as a precursor. As prepared films were then analyzed by means of various characterization techniques (Raman spectroscopy, UV/Vis, AFM, XPS) in order to determine their functional properties. The photocatalytic activities of prepared layers were quantified by the decoloring rate of Rhodamine B. All thermal treatments in microwave field were done in the same manner, by using an IR pyrometer in the microwave oven and monitoring the temperature of the heating. Nevertheless the microwave and thermally prepared materials were different. This in turn may lead to differences in their functional and also photocatalytic properties. - Graphical abstract: This study has demonstrated that the synthesis of thin layers may be improved and extended if microwave energy is employed during the preparation process. Microwave processing has the potential to reduce the time, cost and energy input for the production of thin layers.

  14. Reconstruction techniques for sparse multistatic linear array microwave imaging

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Hall, Thomas E.

    2014-06-01

    Sequentially-switched linear arrays are an enabling technology for a number of near-field microwave imaging applications. Electronically sequencing along the array axis followed by mechanical scanning along an orthogonal axis allows dense sampling of a two-dimensional aperture in near real-time. The Pacific Northwest National Laboratory (PNNL) has developed this technology for several applications including concealed weapon detection, groundpenetrating radar, and non-destructive inspection and evaluation. These techniques form three-dimensional images by scanning a diverging beam swept frequency transceiver over a two-dimensional aperture and mathematically focusing or reconstructing the data into three-dimensional images. Recently, a sparse multi-static array technology has been developed that reduces the number of antennas required to densely sample the linear array axis of the spatial aperture. This allows a significant reduction in cost and complexity of the linear-array-based imaging system. The sparse array has been specifically designed to be compatible with Fourier-Transform-based image reconstruction techniques; however, there are limitations to the use of these techniques, especially for extreme near-field operation. In the extreme near-field of the array, back-projection techniques have been developed that account for the exact location of each transmitter and receiver in the linear array and the 3-D image location. In this paper, the sparse array technique will be described along with associated Fourier-Transform-based and back-projection-based image reconstruction algorithms. Simulated imaging results are presented that show the effectiveness of the sparse array technique along with the merits and weaknesses of each image reconstruction approach.

  15. Circular Bioassay Platforms for Applications in Microwave-Accelerated Techniques

    PubMed Central

    Mohammed, Muzaffer; Clement, Travis C.; Aslan, Kadir

    2014-01-01

    In this paper, we present the design of four different circular bioassay platforms, which are suitable for homogeneous microwave heating, using theoretical calculations (i.e., COMSOL™ multiphysics software). Circular bioassay platforms are constructed from poly(methyl methacrylate) (PMMA) for optical transparency between 400–800 nm, has multiple sample capacity (12, 16, 19 and 21 wells) and modified with silver nanoparticle films (SNFs) to be used in microwave-accelerated bioassays (MABs). In addition, a small monomode microwave cavity, which can be operated with an external microwave generator (100 W), for use with the bioassay platforms in MABs is also developed. Our design parameters for the circular bioassay platforms and monomode microwave cavity during microwave heating were: (i) temperature profiles, (ii) electric field distributions, (iii) location of the circular bioassay platforms inside the microwave cavity, and (iv) design and number of wells on the circular bioassay platforms. We have also carried out additional simulations to assess the use of circular bioassay platforms in a conventional kitchen microwave oven (e.g., 900 W). Our results show that the location of the circular bioassay platforms in the microwave cavity was predicted to have a significant effect on the homogeneous heating of these platforms. The 21-well circular bioassay platform design in our monomode microwave cavity was predicted to offer a homogeneous heating pattern, where inter-well temperature was observed to be in between 23.72–24.13°C and intra-well temperature difference was less than 0.21°C for 60 seconds of microwave heating, which was also verified experimentally. PMID:25568813

  16. Technology advances in active and passive microwave sensing through 1985. [microwave technology for the Seasat-A and Nimbus-G satellites

    NASA Technical Reports Server (NTRS)

    Barath, F. T.

    1977-01-01

    The capabilities of passive and active microwave sensors are discussed. The Nimbus-G and Seasat-A scanning multichannel microwave spectrometer, the Seasat-A radar altimeter, scatterometer and synthetic aperture radar represent the first systematic attempt at exploring a wide variety of applications utilizing microwave sensing techniques and are indicators of the directions in which the pertinent technology is likely to evolve. The trend is toward high resolution multi-frequency imagers spanning wide frequency ranges and wide swaths requiring sophisticated receivers, real-time data processors and most importantly, complex antennas.

  17. Solar Activity Studies using Microwave Imaging Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    We report on the status of solar cycle 24 based on polar prominence eruptions (PEs) and microwave brightness enhancement (MBE) information obtained by the Nobeyama radioheliograph. The north polar region of the Sun had near-zero field strength for more than three years (2012-2015) and ended only in September 2015 as indicated by the presence of polar PEs and the lack of MBE. The zero-polar-field condition in the south started only around 2013, but it ended by June 2014. Thus the asymmetry in the times of polarity reversal switched between cycle 23 and 24. The polar MBE is a good proxy for the polar magnetic field strength as indicated by the high degree of correlation between the two. The cross-correlation between the high- and low-latitude MBEs is significant for a lag of approximately 5.5 to 7.3 years, suggesting that the polar field of one cycle indicates the sunspot number of the next cycle in agreement with the Babcock-Leighton mechanism of solar cycles. The extended period of near-zero field in the north-polar region should result in a weak and delayed sunspot activity in the northern hemisphere in cycle 25.

  18. Active microwave sensing of the atmosphere, chapter 4

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The use of active microwave systems to study atmospheric phenomena is studied. Atmospheric pollution, weather prediction, climate and weather modification, weather danger and disaster warning, and atmospheric processes and interactions are covered.

  19. Microwave-induced thermogenetic activation of single cells

    SciTech Connect

    Safronov, N. A.; Fedotov, I. V.; Ermakova, Yu. G.; Matlashov, M. E.; Belousov, V. V.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Zheltikov, A. M.

    2015-04-20

    Exposure to a microwave field is shown to enable thermogenetic activation of individual cells in a culture of cell expressing thermosensitive ion channels. Integration of a microwave transmission line with an optical fiber and a diamond quantum thermometer has been shown to allow thermogenetic single-cell activation to be combined with accurate local online temperature measurements based on an optical detection of electron spin resonance in nitrogen–vacancy centers in diamond.

  20. Microwave pyrolysis of oily sludge with activated carbon.

    PubMed

    Chen, Yi-Rong

    2016-12-01

    The aim of this study is to explore catalytic microwave pyrolysis of crude oil storage tank sludge for fuels using granular activated carbon (GAC) as a catalyst. The effect of GAC loading on the yield of pyrolysis products was also investigated. Heating rate of oily sludge and yield of microwave pyrolysis products such as oil and fuel gas was found to depend on the ratio of GAC to oily sludge. The optimal GAC loading was found to be 10%, while much smaller and larger feed sizes adversely influenced production. During oily sludge pyrolysis, a maximum oil yield of 77.5% was achieved. Pyrolytic oils with high concentrations of diesel oil and gasoline (about 70 wt% in the pyrolytic oil) were obtained. The leaching of heavy metals, such as Cr, As and Pb, was also suppressed in the solid residue after pyrolysis. This technique provides advantages such as harmless treatment of oily sludge and substantial reduction in the consumption of energy, time and cost.

  1. A chemical/microwave technique for the measurement of bulk minority carrier lifetime in silicon wafers

    NASA Technical Reports Server (NTRS)

    Luke, Keung L.; Cheng, Li-Jen

    1988-01-01

    A chemical/microwave technique for the measurement of bulk minority carrier lifetime in silicon wafers is described. This method consists of a wet chemical treatment (surface cleaning, oxidation in solution, and measurement in HF solution) to passivate the silicon surfaces, a laser diode array for carrier excitation, and a microwave bridge measuring system which is more sensitive than the microwave systems used previously for lifetime measurement. Representative experimental data are presented to demonstrate this technique. The result reveals that this method is useful for the determination of bulk lifetime of commercial silicon wafers.

  2. Method and apparatus for measuring butterfat and protein content using microwave absorption techniques

    DOEpatents

    Fryer, Michael O.; Hills, Andrea J.; Morrison, John L.

    2000-01-01

    A self calibrating method and apparatus for measuring butterfat and protein content based on measuring the microwave absorption of a sample of milk at several microwave frequencies. A microwave energy source injects microwave energy into the resonant cavity for absorption and reflection by the sample undergoing evaluation. A sample tube is centrally located in the resonant cavity passing therethrough and exposing the sample to the microwave energy. A portion of the energy is absorbed by the sample while another portion of the microwave energy is reflected back to an evaluation device such as a network analyzer. The frequency at which the reflected radiation is at a minimum within the cavity is combined with the scatter coefficient S.sub.11 as well as a phase change to calculate the butterfat content in the sample. The protein located within the sample may also be calculated in a likewise manner using the frequency, S.sub.11 and phase variables. A differential technique using a second resonant cavity containing a reference standard as a sample will normalize the measurements from the unknown sample and thus be self-calibrating. A shuttered mechanism will switch the microwave excitation between the unknown and the reference cavities. An integrated apparatus for measuring the butterfat content in milk using microwave absorption techniques is also presented.

  3. An evaluation of microwave-assisted derivatization procedures using hyphenated mass spectrometric techniques.

    PubMed

    Damm, Markus; Rechberger, Gerald; Kollroser, Manfred; Kappe, C Oliver

    2009-07-31

    The potential of microwave-assisted derivatization techniques in systematic toxicological analysis using gas chromatography coupled with mass spectrometry (GC-MS) was evaluated. Special emphasis was placed on the use of dedicated microwave reactors incorporating online temperature and pressure control. The use of such equipment allowed a detailed analysis of several microwave-assisted derivatization protocols comparing the efficiency of microwave and conventional heating methods utilizing a combination of GC-MS and liquid chromatography coupled with mass detection (LC-MS and LC-MS/MS) techniques. These studies revealed that for standard derivatization protocols such as acetylation (exemplified for codeine and morphine), pentafluoropropionylation (for 6-monoacetylmorphine) and trimethylsilylation (for Delta9-tetrahydrocannabinol) a reaction time of 5 min at 100 degrees C in a microwave reactor was sufficient to allow for an effective derivatization. Control experiments using standard operating procedures (30 min at 60 degrees C conventional heating) indicated that the faster derivatization under microwave irradiation is a consequence of the higher reaction temperatures that can rapidly be attained in a sealed vessel and the more efficient heat transfer to the reaction mixture applying direct in core microwave dielectric heating. The results suggest that microwave derivatization procedures can significantly reduce the overall analysis time and increase sample throughput for GC-MS-based analytical methods.

  4. COBE Differential Microwave Radiometer (DMR) data processing techniques

    NASA Technical Reports Server (NTRS)

    Jackson, P. D.; Smoot, G. F.; Bennett, C. L.; Aymon, J.; Backus, C.; Deamici, G.; Hinshaw, G.; Keegstra, P. B.; Kogut, A.; Lineweaver, C.

    1992-01-01

    The purpose of the Differential Microwave Radiometer (DMR) experiment on the Cosmic Background Explorer (COBE) satellite is to make whole-sky maps, at frequencies of 31.5, 53, and 90 GHz, of any departures of the Cosmic Microwave Background (CMB) from its mean value of 2.735 K. An elaborate software system is necessary to calibrate and invert the differential measurements, so as to make sky maps free from large scale systematic errors to levels less than a millionth of the CMB.

  5. Microwave rotational spectroscopy: A physical technique for specific pollutant monitoring

    NASA Technical Reports Server (NTRS)

    Hrubesh, L. W.

    1973-01-01

    An attempt was made to present substantial evidence that microwave rotational spectroscopy can be developed for use in air pollution monitoring. Work with the diode-cavity spectrometer shows it to be capable to detecting small concentrations on NO2, SO2, H2,CO, and NH3 gas with very high specificity.

  6. Dynamic measurement of bulk modulus of dielectric materials using a microwave phase shift technique

    NASA Technical Reports Server (NTRS)

    Barker, B. J.; Strand, L. D.

    1972-01-01

    A microwave Doppler shift technique was developed for measuring the dynamic bulk modulus of dielectric materials such as solid propellants. The system has a demonstrated time resolution on the order of milliseconds and a theoretical spatial resolution of a few microns. Accuracy of the technique is dependent on an accurate knowledge of the wavelength of the microwave in the sample being tested. Such measurement techniques are discussed. Preliminary tests with two solid propellants, one non-aluminized and one containing 16% aluminum, yielded reasonable, reproducible results. It was concluded that with refinements the technique holds promise as a practical means for obtaining accurate dynamic bulk modulus data over a variety of transient conditions.

  7. Investigation of direct solar-to-microwave energy conversion techniques

    NASA Technical Reports Server (NTRS)

    Chatterton, N. E.; Mookherji, T. K.; Wunsch, P. K.

    1978-01-01

    Identification of alternative methods of producing microwave energy from solar radiation for purposes of directing power to the Earth from space is investigated. Specifically, methods of conversion of optical radiation into microwave radiation by the most direct means are investigated. Approaches based on demonstrated device functioning and basic phenomenologies are developed. There is no system concept developed, that is competitive with current baseline concepts. The most direct methods of conversion appear to require an initial step of production of coherent laser radiation. Other methods generally require production of electron streams for use in solid-state or cavity-oscillator systems. Further development is suggested to be worthwhile for suggested devices and on concepts utilizing a free-electron stream for the intraspace station power transport mechanism.

  8. Technique for Performing Dielectric Property Measurements at Microwave Frequencies

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Jackson, Henry W.

    2010-01-01

    A paper discusses the need to perform accurate dielectric property measurements on larger sized samples, particularly liquids at microwave frequencies. These types of measurements cannot be obtained using conventional cavity perturbation methods, particularly for liquids or powdered or granulated solids that require a surrounding container. To solve this problem, a model has been developed for the resonant frequency and quality factor of a cylindrical microwave cavity containing concentric cylindrical samples. This model can then be inverted to obtain the real and imaginary dielectric constants of the material of interest. This approach is based on using exact solutions to Maxwell s equations for the resonant properties of a cylindrical microwave cavity and also using the effective electrical conductivity of the cavity walls that is estimated from the measured empty cavity quality factor. This new approach calculates the complex resonant frequency and associated electromagnetic fields for a cylindrical microwave cavity with lossy walls that is loaded with concentric, axially aligned, lossy dielectric cylindrical samples. In this approach, the calculated complex resonant frequency, consisting of real and imaginary parts, is related to the experimentally measured quantities. Because this approach uses Maxwell's equations to determine the perturbed electromagnetic fields in the cavity with the material(s) inserted, one can calculate the expected wall losses using the fields for the loaded cavity rather than just depending on the value of the fields obtained from the empty cavity quality factor. These additional calculations provide a more accurate determination of the complex dielectric constant of the material being studied. The improved approach will be particularly important when working with larger samples or samples with larger dielectric constants that will further perturb the cavity electromagnetic fields. Also, this approach enables the ability to have a

  9. Water detection in fuel tanks using the microwave reflection technique

    NASA Astrophysics Data System (ADS)

    Khalid, Kaida; Valeriu Grozescu, Ionel; Keng Tiong, Lim; Teck Sim, Lee; Mohd, Roslim

    2003-11-01

    Water is often present in fuel tanks due to night and day temperature changes, resulting in a build-up of condensed water within the inner surface of the tank. The expectancy of water infiltration in fuel tanks is even higher in flooding prone areas. Water settlement at the bottom of the tank causes internal corrosion. In this work, a simple, low cost and accurate microwave reflection type system for detection of water in fuel tanks has been developed. A module consisting of a microwave generator and a detecting diode is used to measure the microwave reflection coefficient at various positions through the fuel tank. In the course of the study, a motion control and data acquisition system has been developed. Software written using the LabVIEW programming language is used to control the movement of the sensor and for the data acquisition. Theoretical and experimental results show the ability of the system to detect the presence of a water level down to approximately 1 mm. A simple theoretical model for power prediction of the reflected signal at various positions of the sensor in the tank is also presented.

  10. Large area photodetector based on microwave cavity perturbation techniques

    SciTech Connect

    Braggio, C. Carugno, G.; Sirugudu, R. K.; Lombardi, A.; Ruoso, G.

    2014-07-28

    We present a preliminary study to develop a large area photodetector, based on a semiconductor crystal placed inside a superconducting resonant cavity. Laser pulses are detected through a variation of the cavity impedance, as a consequence of the conductivity change in the semiconductor. A novel method, whereby the designed photodetector is simulated by finite element analysis, makes it possible to perform pulse-height spectroscopy on the reflected microwave signals. We measure an energy sensitivity of 100 fJ in the average mode without the employment of low noise electronics and suggest possible ways to further reduce the single-shot detection threshold, based on the results of the described method.

  11. Unified microwave moisture sensing technique for grain and seed

    NASA Astrophysics Data System (ADS)

    Trabelsi, Samir; Nelson, Stuart O.

    2007-04-01

    A unified method for moisture sensing in cereal grain and oilseed from a single calibration equation, which is obtained from measurement of dielectric properties at a single microwave frequency, is presented. The method is based on a complex permittivity calibration function that is independent of both bulk density and kind of material. Performance of the method was tested for soybeans, corn, wheat, sorghum, barley and oats at 7 GHz and about 23 °C. The standard error of calibration for moisture prediction from complex permittivity measurements was 0.8%.

  12. A new technique to pyrolyse biomass in a microwave system: effect of stirrer speed.

    PubMed

    Abubakar, Zubairu; Salema, Arshad Adam; Ani, Farid Nasir

    2013-01-01

    A new technique to pyrolyse biomass in microwave (MW) system is presented in this paper to solve the problem of bio-oil deposition. Pyrolysis of oil palm shell (OPS) biomass was conducted in 800 W and 2.45 GHz frequency MW system using an activated carbon as a MW absorber. The temperature profile, product yield and the properties of the products were found to depend on the stirrer speed and MW absorber percentage. The highest bio-oil yield of 28 wt.% was obtained at 25% MW absorber and 50 rpm stirrer speed. Bio-char showed highest calorific value of the 29.5 MJ/kg at 50% MW absorber and 100 rpm stirrer speed. Bio-oil from this study was rich in phenol with highest detected as 85 area% from the GC-MS results. Thus, OPS bio-oil can become potential alternative to petroleum-based chemicals in various phenolic based applications.

  13. A new technique to pyrolyse biomass in a microwave system: effect of stirrer speed.

    PubMed

    Abubakar, Zubairu; Salema, Arshad Adam; Ani, Farid Nasir

    2013-01-01

    A new technique to pyrolyse biomass in microwave (MW) system is presented in this paper to solve the problem of bio-oil deposition. Pyrolysis of oil palm shell (OPS) biomass was conducted in 800 W and 2.45 GHz frequency MW system using an activated carbon as a MW absorber. The temperature profile, product yield and the properties of the products were found to depend on the stirrer speed and MW absorber percentage. The highest bio-oil yield of 28 wt.% was obtained at 25% MW absorber and 50 rpm stirrer speed. Bio-char showed highest calorific value of the 29.5 MJ/kg at 50% MW absorber and 100 rpm stirrer speed. Bio-oil from this study was rich in phenol with highest detected as 85 area% from the GC-MS results. Thus, OPS bio-oil can become potential alternative to petroleum-based chemicals in various phenolic based applications. PMID:23211483

  14. Microwave noise field: active radiometry principles and applications

    NASA Astrophysics Data System (ADS)

    Polivka, Jiri

    2012-06-01

    Principles of Active Radiometry are presented. Noise radiators are used to generate the low-coherence microwave noise field, and radiometers to evaluate its intensity, polarization and coherence. Several types of noise radiators are described as well as radiometers and antennas. The following applications are introduced: Material evaluation where insertion loss and reflectivity of grainy, irregular and moving objects are preferable. Microwave Coherence Tomography allowing the depth irregularity to be detected in low-loss objects. Near-Field antenna testing, field coherence evaluation, and spatial combining of noise radiators.

  15. Active microwave remote sensing of oceans, chapter 3

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A rationale is developed for the use of active microwave sensing in future aerospace applications programs for the remote sensing of the world's oceans, lakes, and polar regions. Summaries pertaining to applications, local phenomena, and large-scale phenomena are given along with a discussion of orbital errors.

  16. Estimation of soil hydraulic properties with microwave techniques

    NASA Technical Reports Server (NTRS)

    Oneill, P. E.; Gurney, R. J.; Camillo, P. J.

    1985-01-01

    Useful quantitative information about soil properties may be obtained by calibrating energy and moisture balance models with remotely sensed data. A soil physics model solves heat and moisture flux equations in the soil profile and is driven by the surface energy balance. Model generated surface temperature and soil moisture and temperature profiles are then used in a microwave emission model to predict the soil brightness temperature. The model hydraulic parameters are varied until the predicted temperatures agree with the remotely sensed values. This method is used to estimate values for saturated hydraulic conductivity, saturated matrix potential, and a soil texture parameter. The conductivity agreed well with a value measured with an infiltration ring and the other parameters agreed with values in the literature.

  17. Assimilation of Passive and Active Microwave Soil Moisture Retrievals

    NASA Technical Reports Server (NTRS)

    Draper, C. S.; Reichle, R. H.; DeLannoy, G. J. M.; Liu, Q.

    2012-01-01

    Root-zone soil moisture is an important control over the partition of land surface energy and moisture, and the assimilation of remotely sensed near-surface soil moisture has been shown to improve model profile soil moisture [1]. To date, efforts to assimilate remotely sensed near-surface soil moisture at large scales have focused on soil moisture derived from the passive microwave Advanced Microwave Scanning Radiometer (AMSR-E) and the active Advanced Scatterometer (ASCAT; together with its predecessor on the European Remote Sensing satellites (ERS. The assimilation of passive and active microwave soil moisture observations has not yet been directly compared, and so this study compares the impact of assimilating ASCAT and AMSR-E soil moisture data, both separately and together. Since the soil moisture retrieval skill from active and passive microwave data is thought to differ according to surface characteristics [2], the impact of each assimilation on the model soil moisture skill is assessed according to land cover type, by comparison to in situ soil moisture observations.

  18. Validation of stratospheric temperature profiles from a ground-based microwave radiometer with other techniques

    NASA Astrophysics Data System (ADS)

    Navas, Francisco; Kämpfer, Niklaus; Haefele, Alexander; Keckhut, Philippe; Hauchecorne, Alain

    2016-04-01

    Vertical profiles of atmospheric temperature trends has become recognized as an important indicator of climate change, because different climate forcing mechanisms exhibit distinct vertical warming and cooling patterns. For example, the cooling of the stratosphere is an indicator for climate change as it provides evidence of natural and anthropogenic climate forcing just like surface warming. Despite its importance, our understanding of the observed stratospheric temperature trend and our ability to test simulations of the stratospheric response to emissions of greenhouse gases and ozone depleting substances remains limited. One of the main reason is because stratospheric long-term datasets are sparse and obtained trends differ from one another. Different techniques allow to measure stratospheric temperature profiles as radiosonde, lidar or satellite. The main advantage of microwave radiometers against these other instruments is a high temporal resolution with a reasonable good spatial resolution. Moreover, the measurement at a fixed location allows to observe local atmospheric dynamics over a long time period, which is crucial for climate research. This study presents an evaluation of the stratospheric temperature profiles from a newly ground-based microwave temperature radiometer (TEMPERA) which has been built and designed at the University of Bern. The measurements from TEMPERA are compared with the ones from other different techniques such as in-situ (radiosondes), active remote sensing (lidar) and passive remote sensing on board of Aura satellite (MLS) measurements. In addition a statistical analysis of the stratospheric temperature obtained from TEMPERA measurements during four years of data has been performed. This analysis evidenced the capability of TEMPERA radiometer to monitor the temperature in the stratosphere for a long-term. The detection of some singular sudden stratospheric warming (SSW) during the analyzed period shows the necessity of these

  19. Microwaving Blood as a Non-Destructive Technique for Haemoglobin Measurements on Microlitre Samples

    PubMed Central

    Basey-Fisher, Toby H.; Guerra, Nadia; Triulzi, Chiara; Gregory, Andrew; Hanham, Stephen M.; Stevens, Molly M.; Maier, Stefan A.; Klein, Norbert

    2016-01-01

    The non-destructive ex vivo determination of haemoglobin (Hgb) concentration offers the capability to conduct multiple red blood cell haematological measurements on a single sample, an advantage that current optical techniques are unable to offer. Here, a microwave method and device for the accurate and non-destructive determination of Hgb concentration in microlitre blood samples are described. Using broadband microwave spectroscopy, a relationship is established between the dielectric properties of murine blood and Hgb concentration that is utilized to create a technique for the determination of Hgb concentration. Subsequently, a microwave dielectric resonator-microfluidic system is implemented in the analysis of 52 murine samples with microlitre volumes and Hgb concentrations ranging from 0 to 17 g dL−1. Using the characterized relationship, independent and minimally invasive Hgb measurements are made on nine healthy mice as well as seven with mutations in the Adenomatous polyposis coli (APC) gene that leads to colorectal cancer and consequently anaemia. PMID:24002989

  20. Evaluation of the color stability of two techniques for reproducing artificial irides after microwave polymerization

    PubMed Central

    GOIATO, Marcelo Coelho; dos SANTOS, Daniela Micheline; MORENO, Amália; GENNARI-FILHO, Humberto; PELLIZZER, Eduardo Piza

    2011-01-01

    The use of ocular prostheses for ophthalmic patients aims to rebuild facial aesthetics and provide an artificial substitute to the visual organ. Natural intemperate conditions promote discoloration of artificial irides and many studies have attempted to produce irides with greater chromatic paint durability using different paint materials. Objectives The present study evaluated the color stability of artificial irides obtained with two techniques (oil painting and digital image) and submitted to microwave polymerization. Material and Methods Forty samples were fabricated simulating ocular prostheses. Each sample was constituted by one disc of acrylic resin N1 and one disc of colorless acrylic resin with the iris interposed between the discs. The irides in brown and blue color were obtained by oil painting or digital image. The color stability was determined by a reflection spectrophotometer and measurements were taken before and after microwave polymerization. Statistical analysis of the techniques for reproducing artificial irides was performed by applying the normal data distribution test followed by 2-way ANOVA and Tukey HSD test (α=.05). Results Chromatic alterations occurred in all specimens and statistically significant differences were observed between the oil-painted samples and those obtained by digital imaging. There was no statistical difference between the brown and blue colors. Independently of technique, all samples suffered color alterations after microwave polymerization. Conclusion The digital imaging technique for reproducing irides presented better color stability after microwave polymerization. PMID:21625733

  1. A Comparison between Lightning Activity and Passive Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Kevin, Driscoll T.; Hugh, Christian J.; Goodman, Steven J.

    1999-01-01

    A recent examination of data from the Lightning Imaging Sensor (LIS) and the TRMM Microwave Imager (TMI) suggests that storm with the highest frequency of lightning also possess the most pronounced microwave scattering signatures at 37 and 85 GHz. This study demonstrates a clear dependence between lightning and the passive microwave measurements, and accentuates how direct the relationship really is between cloud ice and lightning activity. In addition, the relationship between the quantity of ice content and the frequency of lightning (not just the presence of lightning) , is consistent throughout the seasons in a variety of regimes. Scatter plots will be presented which show the storm-averaged brightness temperatures as a function of the lightning density of the storms (L/Area) . In the 85 GHz and 37 GHz scatter plots, the brightness temperature is presented in the form Tb = k1 x log10(L/Area) + k2, where the slope of the regression, k1, is 58 for the 85 GHz relationship and 30.7 for the 37 GHz relationship. The regression for both these fits showed a correlation of 0.76 (r2 = 0.58), which is quite promising considering the simple procedure used to make the comparisons, which have not yet even been corrected for the view angle differences between the instruments, or the polarization corrections in the microwave imager.

  2. A microwave technique for mapping ice temperature in the Arctic seasonal sea ice zone

    SciTech Connect

    St. Germain, K.M.; Cavalieri, D.J.

    1997-07-01

    A technique for deriving ice temperature in the Arctic seasonal sea ice zone from passive microwave radiances has been developed. The algorithm operates on brightness temperatures derived from the Special Sensor Microwave/Imager (SSM/I) and uses ice concentration and type from a previously developed thin ice algorithm to estimate the surface emissivity. Comparisons of the microwave derived temperatures with estimates derived from infrared imagery of the Bering Strait yield a correlation coefficient of 0.93 and an RMS difference of 2.1 K when coastal and cloud contaminated pixels are removed. SSM/I temperatures were also compared with a time series of air temperature observations from Gambell on St. Lawrence Island and from Point Barrow, AK weather stations. These comparisons indicate that the relationship between the air temperature and the ice temperature depends on ice type.

  3. Crystallization and activation of silicon by microwave rapid annealing

    NASA Astrophysics Data System (ADS)

    Kimura, Shunsuke; Ota, Kosuke; Hasumi, Masahiko; Suzuki, Ayuta; Ushijima, Mitsuru; Sameshima, Toshiyuki

    2016-07-01

    A combination of the carbon-powder absorber with microwave irradiation is proposed as a rapid heat method. 2-μm-diameter carbon powders with a packing density of 0.08 effectively absorbed 2.45 GHz 1000-W-microwave and heated themselves to 1163 °C for 26 s. The present heat treatment recrystallized n-type crystalline silicon surfaces implanted with 1.0 × 10^{15}hbox {-cm}^{-2}-boron and phosphorus atoms with crystalline volume ratios of 0.99 and 0.93, respectively, by microwave irradiation at 1000 W for 20 s. Activation and carrier generation were simultaneously achieved with a sheet resistivity of 62 Ω / hbox {sq}. A high photo-induced-carrier effective lifetime of 1.0 × 10^{-4} s was also achieved. Typical electrical current-rectified characteristic and solar cell characteristic with an efficiency of 12.1 % under 100-mW/cm2-air-mass-1.5 illumination were obtained. Moreover, heat treatment with microwave irradiation at 1000 W for 22 s successfully crystallized silicon thin films with thicknesses ranging from 2.4 to 50 nm formed on quartz substrates. Nano-crystalline cluster structure with a high volume ratio of 50 % was formed in the 1.8-nm (initial 2.4-nm)-thick silicon films. Photoluminescence around 1.77 eV was observed for the 1.8-nm-thick silicon films annealed at 260 °C in 1.3 × 106-Pa-H2O-vapor for 3 h after the microwave heating.

  4. Determination of solid-propellant transient regression rates using a microwave Doppler shift technique

    NASA Technical Reports Server (NTRS)

    Strand, L. D.; Schultz, A. L.; Reedy, G. K.

    1972-01-01

    A microwave Doppler shift system, with increased resolution over earlier microwave techniques, was developed for the purpose of measuring the regression rates of solid propellants during rapid pressure transients. A continuous microwave beam is transmitted to the base of a burning propellant sample cast in a metal waveguide tube. A portion of the wave is reflected from the regressing propellant-flame zone interface. The phase angle difference between the incident and reflected signals and its time differential are continuously measured using a high resolution microwave network analyzer and related instrumentation. The apparent propellant regression rate is directly proportional to this latter differential measurement. Experiments were conducted to verify the (1) spatial and time resolution of the system, (2) effect of propellant surface irregularities and compressibility on the measurements, and (3) accuracy of the system for quasi-steady-state regression rate measurements. The microwave system was also used in two different transient combustion experiments: in a rapid depressurization bomb, and in the high-frequency acoustic pressure environment of a T-burner.

  5. Demonstration to characterize watershed runoff potential by microwave techniques

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J.

    1977-01-01

    Characteristics such as storage capacity of the soil, volume of storage in vegetative matter, and volume of storage available in local depressions are expressed in empirical watershed runoff equations as one or more coefficients. Conventional techniques for estimating coefficients representing the spatial distribution of these characteristics over a watershed drainage area are subjective and produce significant errors. Characteristics of the wear surface are described as a single coefficient called the curve number.

  6. Synthesis of Band Filters and Equalizers Using Microwav FIR Techniques

    SciTech Connect

    Deibele, C.; /Fermilab

    2000-01-01

    It is desired to design a passive bandpass filter with both a linear phase and flat magnitude response within the band and also has steep skirts. Using the properties of both coupled lines and elementary FIR (Finite Impulse Response) signal processing techniques can produce a filter of adequate phase response and magnitude control. The design procedure will first be described and then a sample filter will then be synthesized and results shown.

  7. Effective dopant activation via low temperature microwave annealing of ion implanted silicon

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; David Theodore, N.; Vemuri, Rajitha N. P.; Das, Sayantan; Lu, Wei; Lau, S. S.; Alford, T. L.

    2013-11-01

    Susceptor-assisted microwave annealing enables effective dopant activation, at low temperatures, in ion-implanted Si. Given similar thermal budgets for microwave annealing and rapid thermal annealing (RTA), sheet resistances of microwave annealed Si, with either B+ or P+ implants, are lower than the values obtained using RTA. The fraction of dopants activated is as high as 18% for B+ implants and 64% for P+ implants. Dopant diffusion is imperceptible after microwave annealing, but significant after RTA, for P+ implanted Si samples with the same dopant activation. Microwave annealing achieves such properties using shorter anneal times and lower peak temperatures compared to RTA.

  8. Assimilation of passive and active microwave soil moisture retrievals

    NASA Astrophysics Data System (ADS)

    Draper, C. S.; Reichle, R. H.; De Lannoy, G. J. M.; Liu, Q.

    2012-02-01

    Near-surface soil moisture observations from the active microwave ASCAT and the passive microwave AMSR-E satellite instruments are assimilated, both separately and together, into the NASA Catchment land surface model over 3.5 years using an ensemble Kalman filter. The impact of each assimilation is evaluated using in situ soil moisture observations from 85 sites in the US and Australia, in terms of the anomaly time series correlation-coefficient, R. The skill gained by assimilating either ASCAT or AMSR-E was very similar, even when separated by land cover type. Over all sites, the mean root-zone R was significantly increased from 0.45 for an open-loop, to 0.55, 0.54, and 0.56 by the assimilation of ASCAT, AMSR-E, and both, respectively. Each assimilation also had a positive impact over each land cover type sampled. For maximum accuracy and coverage it is recommended that active and passive microwave observations be assimilated together.

  9. Measurement of the Longitudinal Shift of Radiation at Total Internal Reflection by Microwave Techniques

    ERIC Educational Resources Information Center

    Akylas, Victor; And Others

    1976-01-01

    Describes a method to experimentally determine the longitudinal shift of a microwave beam at total internal reflection. Suggests that the activity be incorporated into an undergraduate laboratory program due to its ease in set-up and clarity of results. (CP)

  10. Microwave digestion techniques in the sequential extraction of calcium, iron, chromium, manganese, lead, and zinc in sediments

    SciTech Connect

    Mahan, K.I.; Foderaro, T.A.; Garza, T.L.; Martinez, R.M.; Maroney, G.A.; Trivisonno, M.R.; Willging, E.M.

    1987-04-01

    The sequential extraction scheme of Tessier partitions metals in sediments into exchangeable, carbonate bound iron-manganese oxide bound, organic bound, and residual binding fractions. Extraction rate experiments using conventional and microwave heating showed that microwave heating produces results comparable to the conventional procedure. Sequential microwave extraction procedures were established from the results of the extraction rate experiments. Recoveries of total metals from NBS SRM 1645 ranged from 76% to 120% for the conventional procedure and 62% to 120% for the microwave procedure. Recoveries of total metals using the microwave and conventional techniques were reasonably comparable except for iron (62% by microwave vs. 76% by conventional). Substitution of an aqua regia/HF extraction for total/residual metals results in essentially complete recovery of metals. Precision obtained from 31 replicate samples of the California Gulch, Colorado, sediment yielded about an average 11% relative standard deviation excluding the exchangeable fraction which was more variable.

  11. Separation of oil-water-sludge emulsions coming from palm oil mill process through microwave techniques.

    PubMed

    Pérez-Páez, Rocío; Catalá-Civera, José Manuel; García-Baños, Beatriz; Castillo, Edgar F; Bastos, Johanna M; Zambrano, Luz S

    2008-01-01

    The palm oil mills extraction process requires the separation of oil-water-sludge emulsions. For this purpose, the use of sedimentation and/or centrifugation techniques have been required until now. However, significant losses persist in different process flows and new methods are needed to further decrease them, such as methods based on electromagnetic waves application. In the study, emulsions obtained from two flow processes, namely press liquor stream (PL) and recovered stream of the centrifugal step (RC), were exposed to microwave radiation with different exposure times. In the case of the press liquor stream, different oil/water dilution ratios were also studied. The sedimentation speed and efficiency were studied for the irradiated samples and compared to those obtained for the same fluids with no radiation. Also, chromatographic tests were performed on the recovered oil to determine the effect on the oil quality after microwave radiation. The obtained results allow us to conclude that microwave exposure during periods below 1 minute lead to better sedimentation speed and efficiency. It was observed that microwaves facilitate the break of the charges and polarities balances in the emulsions at considerably lower temperatures than the corresponding in the conventional process, without affecting the recovered oil quality.

  12. Application of near-field microwave sensing techniques for segregation detection in concrete members

    NASA Astrophysics Data System (ADS)

    Bois, K. J.; Benally, A. D.; Zoughi, R.; Nowak, P. S.

    2000-05-01

    In this presentation, a simple, low-cost near-field microwave nondestructive inspection technique for segregation detection in concrete members is presented. This process employs information from the measured magnitude of reflection coefficient at the aperture of an open-ended rectangular waveguide sensor. These measurements, whose results will be presented, were conducted using a Hewlett-Packard HP8510B network analyzer. However, in practice a simple and relatively inexpensive inspection apparatus constructed from discrete microwave components can easily be employed. It is shown that the standard deviation of magnitude of reflection coefficient measurement is linearly correlated with the aggregate density in concrete. Furthermore, for concrete in which the aggregate has segregated, this measurable parameter will change as a function of vertical position of the microwave scan. Results correlating the microwave measurements to the actual aggregate density of a well consolidated concrete specimen and a specimen in which the aggregate has segregated will be presented. Finally, the simple and low cost application of this method for in situ detection of aggregate segregation in concrete structures will be discussed.

  13. Comparison of microwave and ultrasound-assisted extraction techniques for leaching of phenolic compounds from nettle.

    PubMed

    Ince, Alev Emine; Sahin, Serpil; Sumnu, Gulum

    2014-10-01

    In this study, extraction of phenolic compounds from nettle by microwave and ultrasound was studied. In both microwave and ultrasound-assisted extractions, effects of extraction time (5-20 min for microwave; 5-30 min for ultrasound) and solid to solvent ratio (1:10, 1:20, and 1:30 g/mL) on total phenolic content (TPC) were investigated. Effects of different powers (50 % and 80 %) were also studied for ultrasound-assisted extraction. In microwave-assisted extraction, the optimum TPC of the extracts (24.64 ± 2.36 mg GAE/g dry material) was obtained in 10 min and at 1:30 solid to solvent ratio. For ultrasound-assisted extraction, the condition that gave the highest TPC (23.86 ± 1.92 mg GAE/g dry material) was 30 min, 1:30 solid to solvent ratio, and 80 % power. Extracts obtained at the optimum conditions of microwave and ultrasound were compared in terms of TPC, antioxidant activity (AA) and concentration of phenolic acids with conventional extraction and maceration, respectively. Microwave reduced extraction time by 67 %. AA of extracts varied between 2.95 ± 0.01 and 4.48 ± 0.03 mg DPPH/g dry material among four methods. Major phenolic compounds were determined as naringenin and chlorogenic acid in nettle. PMID:25328225

  14. Active microwave remote sensing of earth/land, chapter 2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Geoscience applications of active microwave remote sensing systems are examined. Major application areas for the system include: (1) exploration of petroleum, mineral, and ground water resources, (2) mapping surface and structural features, (3) terrain analysis, both morphometric and genetic, (4) application in civil works, and (5) application in the areas of earthquake prediction and crustal movements. Although the success of radar surveys has not been widely publicized, they have been used as a prime reconnaissance data base for mineral exploration and land-use evaluation in areas where photography cannot be obtained.

  15. Determination of multi-walled carbon nanotube bioaccumulation in earthworms measured by a microwave-based detection technique

    EPA Science Inventory

    Reliable quantification techniques for carbon nanotubes (CNTs) are limited. In this study, a new procedure was developed for quantifying multi-walled carbon nanotubes (MWNTs) in earthworms (Eisenia fetida) based on freeze drying and microwave-induced heating. Specifically, earthw...

  16. Development of a Nondestructive Evaluation Technique for Degraded Thermal Barrier Coatings Using Microwave

    NASA Astrophysics Data System (ADS)

    Sayar, M.; Ogawa, K.; Shoji, T.

    2008-02-01

    Thermal barrier coatings have been widely used in gas turbine engines in order to protect substrate metal alloy against high temperature and to enhance turbine efficiency. Currently, there are no reliable nondestructive techniques available to monitor TBC integrity over lifetime of the coating. Hence, to detect top coating (TC) and TGO thicknesses, a microwave nondestructive technique that utilizes a rectangular waveguide was developed. The phase of the reflection coefficient at the interface of TC and waveguide varies for different TGO and TC thicknesses. Therefore, measuring the phase of the reflection coefficient enables us to accurately calculate these thicknesses. Finally, a theoretical analysis was used to evaluate the reliability of the experimental results.

  17. A low-power nitriding technique utilizing a microwave-excited radical flow

    NASA Astrophysics Data System (ADS)

    Itagaki, Hirotomo; Hirose, Shingo; Kim, Jaeho; Ogura, Mutsuo; Wang, Xuelun; Nonaka, Atsushi; Ogiso, Hisato; Sakakita, Hajime

    2016-06-01

    We report a novel low-power nitriding technique by utilizing a 2.45 GHz microwave-excited nitrogen radical flow system. Nitrogen plasma was produced at the nozzle with dimensions of 50 × 0.5 mm2 and blown onto the surface of a target substrate. A titanium substrate has been used as a target plate since it is easy to visualize a nitriding effect. The titanium substrate was treated under the conditions of 60 W microwave power, 20 Torr of nitrogen gas pressure, and a plate temperature of ∼800 °C. As a result, we have succeeded in nitriding of the titanium substrate in a quasi-atmospheric region of 20 Torr and of a very low power of 60 W with the hardness kept high, which is almost the same as the hardness processed by conventional nitriding methods.

  18. High-resolution fiber Bragg grating based transverse load sensor using microwave photonics filtering technique.

    PubMed

    Wang, Yiping; Wang, Ming; Xia, Wei; Ni, Xiaoqi

    2016-08-01

    In this paper, a new fiber Bragg grating (FBG) sensor exploiting microwave photonics filter technique for transverse load sensing is firstly proposed and experimentally demonstrated. A two-tap incoherent notch microwave photonics filter (MPF) based on a transverse loaded FBG, a polarization beam splitter (PBS), a tunable delay line (TDL) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the transverse load is studied. By detecting the resonance frequency shifts of the notch MPF, the transverse load can be determined. The theoretical and experimental results show that the proposed FBG sensor has a higher resolution than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 2.5 MHz/N for a sensing fiber with a length of 18mm. Moreover, the sensitivity can be easily adjusted. PMID:27505763

  19. Simulation of microwave, conventional and hybrid ovens using a new thermal modeling technique.

    PubMed

    Haala, J; Wiesbeck, W

    2000-01-01

    This paper presents an efficient simulation tool and results for conventional, microwave and combined heating. A new thermal modeling technique for the simulation of conductive and radiant heat transfer is presented. The conductive heat transfer is modeled by a finite difference algorithm. A finite difference scheme is not applicable for the radiant heat transfer, as radiation from a material surface is not bounded to the immediate vicinity as is the conductive transfer. Therefore, ray optical methods are used. Rays connecting mutually visible surfaces are obtained by a new fast method. Some simplifications which are necessary to achieve fast computing are also included. The algorithms are combined with an electromagnetic FDTD program. Simulations are presented for an oven heated conventionally, with microwaves, or by a combination of both. PMID:10834187

  20. Microwave hydrodiffusion and gravity, a new technique for extraction of essential oils.

    PubMed

    Vian, Maryline Abert; Fernandez, Xavier; Visinoni, Franco; Chemat, Farid

    2008-05-01

    A new process design and operation for the extraction of essential oils was developed. Microwave hydrodiffusion and gravity (MHG) is a combination of microwaves for hydrodiffusion of essential oils from the inside to the exterior of biological material and earth gravity to collect and separate. MHG is performed at atmospheric pressure without adding any solvent or water. MHG has been compared with a conventional technique, hydrodistillation (HD), for the extraction of essential oil from two aromatic herbs: spearmint (Mentha spicata L.) and pennyroyal (Mentha pulegium L.) belonging to the Labiatae family. The essential oils extracted by MHG for 15 min were quantitatively (yield) and qualitatively (aromatic profile) similar to those obtained by conventional hydrodistillation for 90 min. MHG also prevents pollution through potential 90% of energy saved which can lead to greenhouse gas emission benefits.

  1. Microwave hydrodiffusion and gravity, a new technique for extraction of essential oils.

    PubMed

    Vian, Maryline Abert; Fernandez, Xavier; Visinoni, Franco; Chemat, Farid

    2008-05-01

    A new process design and operation for the extraction of essential oils was developed. Microwave hydrodiffusion and gravity (MHG) is a combination of microwaves for hydrodiffusion of essential oils from the inside to the exterior of biological material and earth gravity to collect and separate. MHG is performed at atmospheric pressure without adding any solvent or water. MHG has been compared with a conventional technique, hydrodistillation (HD), for the extraction of essential oil from two aromatic herbs: spearmint (Mentha spicata L.) and pennyroyal (Mentha pulegium L.) belonging to the Labiatae family. The essential oils extracted by MHG for 15 min were quantitatively (yield) and qualitatively (aromatic profile) similar to those obtained by conventional hydrodistillation for 90 min. MHG also prevents pollution through potential 90% of energy saved which can lead to greenhouse gas emission benefits. PMID:18343393

  2. Low temperature regeneration of activated carbons using microwaves: revising conventional wisdom.

    PubMed

    Calışkan, E; Bermúdez, J M; Parra, J B; Menéndez, J A; Mahramanlıoğlu, M; Ania, C O

    2012-07-15

    The purpose of this work was to explore the application of microwaves for the low temperature regeneration of activated carbons saturated with a pharmaceutical compound (promethazine). Contrary to expectations, microwave-assisted regeneration did not lead to better results than those obtained under conventional electric heating. At low temperatures the regeneration was incomplete either under microwave and conventional heating, being this attributed to the insufficient input energy. At mild temperatures, a fall in the adsorption capacity upon cycling was obtained in both devices, although this was much more pronounced for the microwave. These results contrast with previous studies on the benefits of microwaves for the regeneration of carbon materials. The fall in the adsorption capacity after regeneration was due to the thermal cracking of the adsorbed molecules inside the carbon porous network, although this effect applies to both devices. When microwaves are used, along with the thermal heating of the carbon bed, a fraction of the microwave energy seemed to be directly used in the decomposition of promethazine through the excitation of the molecular bonds by microwaves (microwave-lysis). These results point out that the nature of the adsorbate and its ability to interact with microwave are key factors that control the application of microwaves for regeneration of exhausted activated carbons.

  3. Comparison of active and passive microwave signatures of Arctic sea ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, M. R.; Crawford, J. P.; Cavalieri, D. J.; Holt, B.; Carsey, F. D.

    1990-01-01

    In March 1988, overlapping active and passive microwave instrument data were acquired over Arctic sea ice using the NASA DC-8 aircraft equipped with multifrequency, variable polarization SAR and radiometer. Flights were conducted as a series of coordinated underflights of the DMSP SSM/I satellite radiometer in order to validate ice products derived from the SSM/I radiances. Subsequent flights by an NRL P-3 aircraft enabled overlapping high-resolution, single frequency image data to be acquired over the same regions using a Ka-band scanning microwave radiometer. In this paper, techniques are discussed for the accurate coregistration of the three aircraft datasets. Precise coregistration to an accuracy of 100 m plus or minus 25 m has, for the first time, enabled the detailed comparison of temporally and spatially coincident active and passive airborne microwave datasets. Preliminary results from the intercomparisons indicate that the SAR has highly frequency- and polarization-dependent signatures, which at 5.3 GHz (C-band) show an extremely high correlation with the 37 GHz radiometric temperatures.

  4. Improved detectability in medical microwave radio-thermometers as obtained by active antennas.

    PubMed

    Jacobsen, Svein; Klemetsen, Øystein

    2008-12-01

    Microwave radiometry is a spectral measurement technique for resolving blackbody radiation of heated matter above absolute zero. The emission levels vary with frequency and are at body temperatures maximized in the infrared spectral band. Medical radio-thermometers are mostly noninvasive short-range instruments that can provide temperature distributions in subcutaneous biological tissues when operated in the microwave region. However, a crucial limitation of the microwave radiometric observation principle is the extremely weak signal level of the thermal noise emitted by the lossy material (-174 dBm/Hz at normal body temperature). To improve the radiometer SNR, we propose to integrate a tiny, moderate gain, low-noise preamplifier (LNA) close to the antenna terminals as to obtain increased detectability of deep seated thermal gradients within the volume under investigation. The concept is verified experimentally in a lossy phantom medium by scanning an active antenna across a thermostatically controlled water phantom with a hot object embedded at 38 mm depth. Three different setups were investigated with decreasing temperature contrasts between the target and ambient medium. As a direct consequence of less ripple on the raw radiometric signal, statistical analysis shows a marked increase in signal-to-clutter ratio of the brightness temperature spatial scan profiles, when comparing active antenna operation with conventional passive setups.

  5. Observation of localized heating phenomena during microwave heating of mixed powders using in situ x-ray diffraction technique

    NASA Astrophysics Data System (ADS)

    Sabelström, N.; Hayashi, M.; Watanabe, T.; Nagata, K.

    2014-10-01

    In materials processing research using microwave heating, there have been several observations of various phenomena occurring known as microwave effects. One significant example of such a phenomenon is increased reaction kinetics. It is believed that there is a possibility that this might be caused by localized heating, were some reactants would attain a higher than apparent temperature. To examine whether such thermal gradients are indeed possible, mixed powders of two microwave non-absorbers, alumina and magnesia, were mixed with graphite, a known absorber, and heated in a microwave furnace. During microwave irradiation, the local temperatures of the respective sample constituents were measured using an in situ x-ray diffraction technique. In the case of the alumina and graphite sample, a temperature difference of around 100 °C could be observed.

  6. Observation of localized heating phenomena during microwave heating of mixed powders using in situ x-ray diffraction technique

    SciTech Connect

    Sabelström, N. Hayashi, M.; Watanabe, T.; Nagata, K.

    2014-10-28

    In materials processing research using microwave heating, there have been several observations of various phenomena occurring known as microwave effects. One significant example of such a phenomenon is increased reaction kinetics. It is believed that there is a possibility that this might be caused by localized heating, were some reactants would attain a higher than apparent temperature. To examine whether such thermal gradients are indeed possible, mixed powders of two microwave non-absorbers, alumina and magnesia, were mixed with graphite, a known absorber, and heated in a microwave furnace. During microwave irradiation, the local temperatures of the respective sample constituents were measured using an in situ x-ray diffraction technique. In the case of the alumina and graphite sample, a temperature difference of around 100 °C could be observed.

  7. Microwave photonic bandgap devices with active plasma elements

    NASA Astrophysics Data System (ADS)

    Wang, Benjamin; Colon Quinones, Roberto; Biggs, David; Underwood, Thomas; Lucca Fabris, Andrea; Cappelli, Mark; Stanford Plasma Physics Laboratory Team

    2015-09-01

    A 3-D alumina rod based microwave photonic crystal device with integrated gaseous plasma elements is designed and characterized. Modulation of the plasma density of the active plasma elements is shown to allow for high fidelity modulation of the output signal of the photonic crystal device. Finite difference time domain (FDTD) simulations of the device are presented, and the functional effects of the plasma electron density, plasma collision frequency, and plasma dimensions are studied. Experimental characterization of the transmission of the device shows active tunability through adjustments of plasma parameters, including discharge current and plasma size. Additional photonic crystal structures with integrated plasma elements are explored. Sponsored by the AFSOR MURI and DOD NDSEG.

  8. A Combined Infrared and Microwave Technique for Studying the Diurnal Variation of Rainfall over Amazonia

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Anagnostou, Emmanouil; Adler, Robert F.

    1999-01-01

    Over 10 years of continuous data from the Special Sensor microwave Imager (SSM/I) aboard a series of Defense Department satellites has made it possible to construct regional rainfall climatologies at high spatial resolution. Using the Goddard Profiling Algorithm (GPROF), monthly estimates of precipitation were made over the region of northern Brazil, including the Amazon Basin, for 1987 to 1998. GPROF is a physical approach to passive microwave precipitation retrieval, which uses the Goddard Cumulus Ensemble (cloud) model to establish prior probability densities of precipitation structures. Precipitation fields from GPROF were stratified into morning and evening satellite overpasses, and accumulated at monthly intervals at 0.5 degree spatial resolution. Important diurnal effects were noted in the analysis, the most pronounced being a land/sea breeze circulation along the northern coast of Brazil and a mountain/valley circulation along the Andes. There were also indications of morning rainfall maxima along the major rivers, and evening maxima between the rivers. The addition of simultaneous geosynchronous infrared (IR) data leads to the current technique, which takes advantage of the 30 minute sampling and 4 km spatial resolution of the infrared channel and the better physics of the microwave retrieval. The resultant IR method is subsequently used to derive the diurnal variability of rainfall over the Amazon basin, and further, to investigate the relative contribution from its convective and stratiform components.

  9. New Technique for Retrieving Liquid Water Path over Land using Satellite Microwave Observations

    SciTech Connect

    Deeter, M.N.; Vivekanandan, J.

    2005-03-18

    We present a new methodology for retrieving liquid water path over land using satellite microwave observations. As input, the technique exploits the Advanced Microwave Scanning Radiometer for earth observing plan (EOS) (AMSR-E) polarization-difference signals at 37 and 89 GHz. Regression analysis performed on model simulations indicates that over variable atmospheric and surface conditions the polarization-difference signals can be simply parameterized in terms of the surface emissivity polarization difference ({Delta}{var_epsilon}), surface temperature, liquid water path (LWP), and precipitable water vapor (PWV). The resulting polarization-difference parameterization (PDP) enables fast and direct (noniterative) retrievals of LWP with minimal requirements for ancillary data. Single- and dual-channel retrieval methods are described and demonstrated. Data gridding is used to reduce the effects of instrumental noise. The methodology is demonstrated using AMSR-E observations over the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site during a six day period in November and December, 2003. Single- and dual-channel retrieval results mostly agree with ground-based microwave retrievals of LWP to within approximately 0.04 mm.

  10. Microwave and Millimeter Wave Imaging Using Synthetic Aperture Focusing and Holographical Techniques

    NASA Technical Reports Server (NTRS)

    Case, Joseph Tobias

    2005-01-01

    Microwave and millimeter wave nondestructive testing and evaluation (NDT&E) methods have shown great potential for determining material composition in composite structures, determining material thickness or debond thickness between two layers, and determining the location and size of flaws, defects, and anomalies. The same testing methods have also shown great potential to produce relatively high-resolution images of voids inside Spray On Foam Insulation (SOFI) test panels using real focused methods employing lens antennas. An alternative to real focusing methods are synthetic focusing methods. The essence of synthetic focusing is to match the phase of the scattered signal to measured points spaced regularly on a plane. Many variations of synthetic focusing methods have already been developed for radars, ultrasonic testing applications, and microwave concealed weapon detection. Two synthetic focusing methods were investigated; namely, a) frequency-domain synthetic aperture focusing technique (FDSAFT), and b) wide-band microwave holography. These methods were applied towards materials whose defects were of low dielectric contrast like air void in SOFI. It is important to note that this investigation used relatively low frequencies from 8.2 GHz to 26.5 GHz that are not conducive for direct imaging of the SOFI. The ultimate goal of this work has been to demonstrate the capability of these methods before they are applied to much higher frequencies such as the millimeter wave frequency spectrum (e.g., 30-300 GHz).

  11. Active and passive microwave measurements of soil moisture in FIFE

    SciTech Connect

    Wang, J.R. ); Gogineni, S.P.; Ampe, J. )

    1992-11-30

    This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. This paper reports on the application of active and passive microwave measurement systems to the simultaneous determination of soil moisture. These systems have been tested on common targets very few times. Here C and X band scatterometer data from a helicopter base is compared with L band push broom microwave radiometer (PBMR) data taken from the NASA C-130 aircraft. The regions sampled over FIFE encompass areas with different surface treatments. The scatterometers proved to be sensitive to soil moisture over most of the areas studied, while the radiometer lost sensitivity in regions which had been unburned for years, and which thus had substantial dead organic accumulation. The correlation of soil moisture and backscattered signal was observed to increase with off normal angles.

  12. Microwave interferometry technique for obtaining gas interface velocity measurements in an expansion tube facility

    NASA Technical Reports Server (NTRS)

    Laney, C. C., Jr.

    1974-01-01

    A microwave interferometer technique to determine the front interface velocity of a high enthalpy gas flow, is described. The system is designed to excite a standing wave in an expansion tube, and to measure the shift in this standing wave as it is moved by the test gas front. Data, in the form of a varying sinusoidal signal, is recorded on a high-speed drum camera-oscilloscope combination. Measurements of average and incremental velocities in excess of 6,000 meters per second were made.

  13. A facile synthesis of ZnWO{sub 4} nanoparticles by microwave assisted technique and its application in photocatalysis

    SciTech Connect

    Garadkar, K.M.; Ghule, L.A.; Sapnar, K.B.; Dhole, S.D.

    2013-03-15

    Highlights: ► Nanocrystalline ZnWO{sub 4} particles were successfully prepared by a microwave method. ► Spherical morphology with a 10 nm size. ► The band is 3.4 eV. ► The photodegradation of RhB was 95% within 25 min. - Abstract: A simple microwave assisted technique has been successfully developed to synthesize ZnWO{sub 4} nanoparticles. The X-ray diffraction results indicated that the synthesized nanoparticles exhibited only wolframite structure. Structural, morphological and optical properties of ZnWO{sub 4} nanoparticles have been analyzed by XRD, SEM, TEM EDAX, UV–vis and FT-IR spectral measurements. The transmission electron microscopy (TEM) image revealed that particle size of ZnWO{sub 4} nanoparticles was found to be 10 nm, the band-gap of ZnWO{sub 4} nanoparticles was found to be 3.4 eV. The photocatalytic activities for aqueous Rhodamine B and Methylene Blue samples were investigated and observed that ZnWO{sub 4} nanoparticles exhibited highly enhanced photocatalytic activity towards RhB than MB.

  14. Kinetic activation-relaxation technique.

    PubMed

    Béland, Laurent Karim; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand

    2011-10-01

    We present a detailed description of the kinetic activation-relaxation technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe, and structural relaxation in a-Si (amorphous silicon).

  15. Monolithic microwave integrated circuit devices for active array antennas

    NASA Technical Reports Server (NTRS)

    Mittra, R.

    1984-01-01

    Two different aspects of active antenna array design were investigated. The transition between monolithic microwave integrated circuits and rectangular waveguides was studied along with crosstalk in multiconductor transmission lines. The boundary value problem associated with a discontinuity in a microstrip line is formulated. This entailed, as a first step, the derivation of the propagating as well as evanescent modes of a microstrip line. The solution is derived to a simple discontinuity problem: change in width of the center strip. As for the multiconductor transmission line problem. A computer algorithm was developed for computing the crosstalk noise from the signal to the sense lines. The computation is based on the assumption that these lines are terminated in passive loads.

  16. Active Microwave Remote Sensing Observations of Weddell Sea Ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1997-01-01

    Since July 1991, the European Space Agency's ERS-1 and ERS-2 satellites have acquired radar data of the Weddell Sea, Antarctica. The Active Microwave Instrument on board ERS has two modes; SAR and Scatterometer. Two receiving stations enable direct downlink and recording of high bit-rate, high resolution SAR image data of this region. When not in an imaging mode, when direct SAR downlink is not possible, or when a receiving station is inoperable, the latter mode allows normalized radar cross-section data to be acquired. These low bit-rate ERS scatterometer data are tape recorded, downlinked and processed off-line. Recent advances in image generation from Scatterometer backscatter measurements enable complementary medium-scale resolution images to be made during periods when SAR images cannot be acquired. Together, these combined C-band microwave image data have for the first time enabled uninterrupted night and day coverage of the Weddell Sea region at both high (25 m) and medium-scale (-20 km) resolutions. C-band ERS-1 radar data are analyzed in conjunction with field data from two simultaneous field experiments in 1992. Satellite radar signature data are compared with shipborne radar data to extract a regional and seasonal signature database for recognition of ice types in the images. Performance of automated sea-ice tracking algorithms is tested on Antarctic data to evaluate their success. Examples demonstrate that both winter and summer ice can be effectively tracked. The kinematics of the main ice zones within the Weddell Sea are illustrated, together with the complementary time-dependencies in their radar signatures. Time-series of satellite images are used to illustrate the development of the Weddell Sea ice cover from its austral summer minimum (February) to its winter maximum (September). The combination of time-dependent microwave signatures and ice dynamics tracking enable various drift regimes to be defined which relate closely to the circulation of the

  17. New potentially active pyrazinamide derivatives synthesized under microwave conditions.

    PubMed

    Jandourek, Ondrej; Dolezal, Martin; Kunes, Jiri; Kubicek, Vladimir; Paterova, Pavla; Pesko, Matus; Buchta, Vladimir; Kralova, Katarina; Zitko, Jan

    2014-01-01

    A series of 18 N-alkyl substituted 3-aminopyrazine-2-carboxamides was prepared in this work according to previously experimentally set and proven conditions using microwave assisted synthesis methodology. This approach for the aminodehalogenation reaction was chosen due to higher yields and shorter reaction times compared to organic reactions with conventional heating. Antimycobacterial, antibacterial, antifungal and photosynthetic electron transport (PET) inhibiting in vitro activities of these compounds were investigated. Experiments for the determination of lipophilicity were also performed. Only a small number of substances with alicyclic side chain showed activity against fungi which was the same or higher than standards and the biological efficacy of the compounds increased with rising lipophilicity. Nine pyrazinamide derivatives also inhibited PET in spinach chloroplasts and the IC50 values of these compounds varied in the range from 14.3 to 1590.0 μmol/L. The inhibitory activity was connected not only with the lipophilicity, but also with the presence of secondary amine fragment bounded to the pyrazine ring. Structure-activity relationships are discussed as well. PMID:24995919

  18. Progress in passive microwave remote sensing - Nonlinear retrieval techniques. [for meteorological parameters

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.

    1980-01-01

    A variety of nonlinear retrieval methods have been applied to passive microwave remote sensing problems. These problems can be characterized in part by the degree to which their underlying physics and statistics can be understood and characterized in a simple way. Four examples of varying complexity are considered here; the simplest problem requires only analytic expressions for retrievals, whereas the most complex problem has been handled only with pattern classification techniques. The four examples are: (1) Doppler measurements of winds at 70 to 100 km, (2) retrieval of atmospheric water vapor profiles using the opaque 183-GHz water vapor resonance, (3) retrieval of snow accumulation rate by means of combined theoretical and empirical procedures, and (4) classification of diverse polar terrain by means of pattern recognition techniques.

  19. Role of the conducting layer substrate on TiO2 nucleation when using microwave activated chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Zumeta, I.; Espinosa, R.; Ayllón, J. A.; Vigil, E.

    2002-12-01

    Nanostructured TiO2 is used in novel dye sensitized solar cells. Because of their interaction with light, thin TiO2 films are also used as coatings for self-cleaning glasses and tiles. Microwave activated chemical bath deposition represents a simple and cost-effective way to obtain nanostructured TiO2 films. It is important to study, in this technique, the role of the conducting layer used as the substrate. The influence of microwave-substrate interactions on TiO2 deposition is analysed using different substrate positions, employing substrates with different conductivities, and also using different microwave radiation powers for film deposition. We prove that a common domestic microwave oven with a large cavity and inhomogeneous radiation field can be used with equally satisfactory results. The transmittance spectra of the obtained films were studied and used to analyse film thickness and to obtain gap energy values. The results, regarding different indium-tin oxide resistivities and different substrate positions in the oven cavity, show that the interaction of the microwave field with the conducting layer is determinant in layer deposition. It has also been found that film thickness increases with the power of the applied radiation while the gap energies of the TiO2 films decrease approaching the 3.2 eV value reported for bulk anatase. This indicates that these films are not crystalline and it agrees with x-ray spectra that do not reveal any peak.

  20. Dimensional characterization of a quasispherical resonator by microwave and coordinate measurement techniques

    NASA Astrophysics Data System (ADS)

    Underwood, R.; Flack, D.; Morantz, P.; Sutton, G.; Shore, P.; de Podesta, M.

    2011-02-01

    We describe the dimensional characterization of copper quasisphere NPL-Cranfield 2. The quasisphere is assembled from two hemispheres such that the internal shape is a triaxial ellipsoid, the major axes of which have nominal radii 62.000 mm, 62.031 mm and 62.062 mm. The artefact has been manufactured using diamond-turning technology and shows a deviation from design form of less than ±1 µm over most of its surface. Our characterization involves both coordinate measuring machine (CMM) experiments and microwave resonance spectroscopy. We have sought to reduce the dimensional uncertainty below the maximum permissible error of the CMM by comparative measurements with silicon and Zerodur spheres of known volume. Using this technique we determined the equivalent radius with an uncertainty of u(k = 1) = 114 nm, a fractional uncertainty of 1.8 parts in 106. Due to anisotropy of the probe response, we could only determine the eccentricities of the quasihemispheres with a fractional uncertainty of approximately 2%. Our microwave characterization uses the TM11 to TM18 resonances. We find the equivalent radius inferred from analysis of these modes to be consistent within ±4 nm with an overall uncertainty u(k = 1) = 11 nm. We discuss corrections for surface conductivity, waveguide perturbations and dielectric surface layers. We find that the CMM radius estimates derived from each hemisphere cannot be used to accurately predict the equivalent radius of the assembled resonator for two reasons. Firstly, the equatorial flanges are flat only to within ±1 µm, leading to an equatorial 'gap' whose dimension cannot be reliably estimated. Secondly, the resonator undergoes significant elastic distortion when the bolts connecting the hemispheres are tightened. We provide CMM and microwave measurements to support these conclusions in addition to finite-element modelling. Finally, we consider the implications of this work on a forthcoming experiment to determine the Boltzmann constant

  1. A search in the infrared to microwave for astroengineering activity

    NASA Astrophysics Data System (ADS)

    Slysh, V. I.

    Huge space power plants (Dyson Spheres) utilizing most of a star's energy should be detectable as infrared or microwave sources. A recent far infrared all-sky survey has revealed many sources with a spectrum peaking on this region which is characteristic of the thermal emission of the hypothetical Dyson spheres. The possibility of confusing them with thick circumstellar dust shells around evolved red giant stars is discussed. Microwave detection of cool extended Dyson Spheres by all-sky surveys searching for microwave background fluctuations is also considered.

  2. Microwave resonant activation in hybrid single-gap/two-gap Josephson tunnel junctions

    NASA Astrophysics Data System (ADS)

    Carabello, Steven; Lambert, Joseph G.; Mlack, Jerome; Dai, Wenqing; Li, Qi; Chen, Ke; Cunnane, Daniel; Xi, X. X.; Ramos, Roberto C.

    2016-09-01

    Microwave resonant activation is a powerful, straightforward technique to study classical and quantum systems, experimentally realized in Josephson junction devices cooled to very low temperatures. These devices typically consist of two single-gap superconductors separated by a weak link. We report the results of the first resonant activation experiments on hybrid thin film Josephson junctions consisting of a multi-gap superconductor (MgB2) and a single-gap superconductor (Pb or Sn). We can interpret the plasma frequency in terms of theories both for conventional and hybrid junctions. Using these models, we determine the junction parameters including critical current, resistance, and capacitance and find moderately high quality factors of Q0˜ 100 for these junctions.

  3. Monitoring Precipitation Contents and Extinction By Using A Ground-based Passive Microwave Technique

    NASA Astrophysics Data System (ADS)

    Marzano, F. S.; Fionda, E.; Ciotti, P.; Consalvi, F.

    the forward models, by varying the model pa- rameters in a physically-based manner, it is derived a synthetic database made by the downwelling simulated brightness temperatures, the associated mean radiative tem- perature and the total path-attenuation. Non-linear inversion algorithms are developed for different sets of frequency channels, observation geometries, cloud types, and pre- cipitation intensities. Examined and compared inversion techniques are both statistical regression estimators and feed-forward neural networks. A special care is devoted to 1 set up robust estimators in presence of a random noise which can be attributed to various sources, first of all effects of possible water-films on the antenna reflector. A maximum a posteriori probability discrimination technique is applied to separate stratiform from convective raining clouds. Simulation results are shown to illustrate the potential of the proposed models by selecting, for this study, a wide range of fre- quencies from 13.0 to 50.2 GHz. As an experimental validation, rain events occurred in Central Italy and observed at the ground-station of ITALSAT geostationary satellite near Rome (Italy), are considered. The ITALSAT station is equipped with 3 satellite beacons at 19.7, 39.6, and 49.5 GHz together with a multichannel radiometer at 13.0, 23.8, and 31.6 GHz, a raingage and a meteorological instrumentation. Results in terms of comparison between measurements and predictions are finally discussed. References Marzano F.S., E. Fionda, and P. Ciotti, SSimulation of radiometric and & cedil;attenuation measurements along earth-satellite links in the 10- to 50- GHz band through horizontally-finite convective raincellsT, Radio Sci., vol. 34, pp. 841-858, 1999. Marzano F.S., E. Fionda, P. Ciotti, and A. Martellucci, SRainfall retrieval from & cedil;ground-based multichannel microwave radiometersT, in Microwave Radiometry and Remote Sensing of the Environment, P. Pampaloni Ed., VSP Intern. Sci. Publisher

  4. Some Signal Processing Techniques for Use in Broadband Time Domain Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cooke, S. A.

    2016-06-01

    At the present time, in the typical broadband, time domain microwave spectroscopy experiment each free induction decay (FID) collected is on the order of 10^6 data points in length with a sampling rate on the order of 10-12 seconds per point. Traditionally, the FID is processed using a fast Fourier transform algorithm (FFT) with the resulting power spectrum used in ensuing spectral analyses. For use with the FFT algorithm we have implemented some pre- and post-processing techniques to improve the signal quality. These techniques include the use of Lissajous plots to ensure phase stability in signal addition, novel windowing functions, and also automated broadband phase corrections which allow the absorption spectrum to be used as a more highly resolved version of the traditional power spectrum (see figure). We have also implemented alternatives to the FFT algorithm for time domain signal processing including Hankel singular valued decomposition, a maximum entropy method, and wavelet transformations. Although these techniques are unlikely to be used in place of a fast Fourier transform we will demonstrate how each of these techniques may be used to augment the traditional FFT algorithm in regards to spectral analysis.

  5. Microwave resonant technique in studies of photodielectric properties of bulk, thin film and nanoparticle materials

    NASA Astrophysics Data System (ADS)

    Pavlov, V. V.; Rakhmatullin, R. M.; Cefalas, A. C.; Semashko, V. V.

    2016-06-01

    An enhanced contactless microwave technique allows us to study the photoconductivity of materials. The transient response of the complex permittivity of matter (ε ={ε1}-j{ε2} ) under optical irradiation is measured with nanosecond time resolution. The main advantage of the novel methodology is the elimination of the polarization effect in evaluating photoconductivity. The potential of the methodology was demonstrated by photoconductivity measurements in Si [1 0 0] crystal, CeO2 nanocrystalline powder and Ce-doped LiYF4 single crystal. The variations of complex permittivity (δ {ε1} and δ {ε2} ) of Si [1 0 0] crystal, CeO2 nanocrystalline powder and Ce-doped LiYF4 single crystal under optical irradiation was measured and accurate values for crystalline band gaps were extracted. Finally, quantum confinement effects were observed in nano-size crystalline powders.

  6. Passive Microwave Algorithms for Sea Ice Concentration: A Comparison of Two Techniques

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Cavalieri, Donald J.; Parkinson, Claire L.; Gloersen, Per

    1997-01-01

    The most comprehensive large-scale characterization of the global sea ice cover so far has been provided by satellite passive microwave data. Accurate retrieval of ice concentrations from these data is important because of the sensitivity of surface flux(e.g. heat, salt, and water) calculations to small change in the amount of open water (leads and polynyas) within the polar ice packs. Two algorithms that have been used for deriving ice concentrations from multichannel data are compared. One is the NASA Team algorithm and the other is the Bootstrap algorithm, both of which were developed at NASA's Goddard Space Flight Center. The two algorithms use different channel combinations, reference brightness temperatures, weather filters, and techniques. Analyses are made to evaluate the sensitivity of algorithm results to variations of emissivity and temperature with space and time. To assess the difference in the performance of the two algorithms, analyses were performed with data from both hemispheres and for all seasons. The results show only small differences in the central Arctic in but larger disagreements in the seasonal regions and in summer. In some ares in the Antarctic, the Bootstrap technique show ice concentrations higher than those of the Team algorithm by as much as 25%; whereas, in other areas, it shows ice concentrations lower by as much as 30%. The The differences in the results are caused by temperature effects, emissivity effects, and tie point differences. The Team and the Bootstrap results were compared with available Landsat, advanced very high resolution radiometer (AVHRR) and synthetic aperture radar (SAR) data. AVHRR, Landsat, and SAR data sets all yield higher concentrations than the passive microwave algorithms. Inconsistencies among results suggest the need for further validation studies.

  7. Retrieval of Precipitation Profiles from Multiresolution, Multifrequency, Active and Passive Microwave Observations

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Olson, William S.; Anagnostou, Emmanouil N.

    2003-01-01

    In this study, a technique for estimating vertical profiles of precipitation from multifrequency, multiresolution active and passive microwave observations is investigated. The technique is applicable to the Tropical Rainfall Measuring Mission (TRMM) observations and it is based on models that simulate high-resolution brightness temperatures as functions of observed reflectivity profiles and a parameter related to the rain drop-size-distribution. The modeled high-resolution brightness temperatures are used to determine normalized brightness temperature polarizations at the microwave radiometer resolution. An optimal estimation procedure is employed to minimize the differences between the simulated and observed normalized polarizations by adjusting the drop-size-distribution parameter. The impact of other unknowns that are not independent variables in the optimal estimation but affect the retrievals is minimized through statistical parameterizations derived from cloud model simulations. The retrieval technique is investigated using TRMM observations collected during the Kwajalein Experiment (KWAJEX). These observations cover an area extending from 5 deg to deg N latitude and 166 deg to 172 deg E longitude from July to September 1999, and are coincident with various ground-based observations, facilitating a detailed analysis of the retrieved precipitation. Using the method developed in this study, precipitation estimates consistent with both the passive and active TRMM observations are obtained. Various parameters characterizing these estimates, i.e. the rain rate, the precipitation water content, the drop-size-distribution intercept, and the mass weighted mean drop diameter, are in good qualitative agreement with independent experimental and theoretical estimates. Combined rain estimates are in general higher than the official TRMM Precipitation Radar (PR) only estimates for the area and the period considered in the study. Ground-based precipitation estimates

  8. Retrieval of Precipitation Profiles from Multiresolution, Multifrequency Active and Passive Microwave Observations.

    NASA Astrophysics Data System (ADS)

    Grecu, Mircea; Olson, William S.; Anagnostou, Emmanouil N.

    2004-04-01

    In this study, a technique for estimating vertical profiles of precipitation from multifrequency, multiresolution active and passive microwave observations is investigated. The technique is applicable to the Tropical Rainfall Measuring Mission (TRMM) observations, and it is based on models that simulate high-resolution brightness temperatures as functions of observed reflectivity profiles and a parameter related to the raindrop size distribution. The modeled high-resolution brightness temperatures are used to determine normalized brightness temperature polarizations at the microwave radiometer resolution. An optimal estimation procedure is employed to minimize the differences between the simulated and observed normalized polarizations by adjusting the drop size distribution parameter. The impact of other unknowns that are not independent variables in the optimal estimation, but affect the retrievals, is minimized through statistical parameterizations derived from cloud model simulations. The retrieval technique is investigated using TRMM observations collected during the Kwajalein Experiment (KWAJEX). These observations cover an area extending from 5° to 12°N latitude and from 166° to 172°E longitude from July to September 1999 and are coincident with various ground-based observations, facilitating a detailed analysis of the retrieved precipitation. Using the method developed in this study, precipitation estimates consistent with both the passive and active TRMM observations are obtained. Various parameters characterizing these estimates, that is, the rain rate, precipitation water content, drop size distribution intercept, and the mass- weighted mean drop diameter, are in good qualitative agreement with independent experimental and theoretical estimates. Combined rain estimates are, in general, higher than the official TRMM precipitation radar (PR)-only estimates for the area and the period considered in the study. Ground-based precipitation estimates, derived

  9. Microwave and Beam Activation of Nanostructured Catalysts for Environmentally Friendly, Energy Efficient Heavy Crude Oil Processing

    SciTech Connect

    2009-03-01

    This factsheet describes a study whose goal is initial evaluation and development of energy efficient processes which take advantage of the benefits offered by nanostructured catalysts which can be activated by microwave, RF, or radiation beams.

  10. Imaging of Active Microwave Devices at Cryogenic Temperatures using Scanning Near-Field Microwave Microscopy

    NASA Astrophysics Data System (ADS)

    Thanawalla, Ashfaq S.; Dutta, S. K.; Vlahacos, C. P.; Steinhauer, D. E.; Feenstra, B. J.; Anlage, Steven M.; Wellstood, F. C.

    1998-03-01

    The ability to image electric fields in operating microwave devices is interesting both from the fundamental point of view and for diagnostic purposes. To that end we have constructed a scanning near-field microwave microscope which uses an open-ended coaxial probe and operates at cryogenic temperatures.(For related publications see: C. P. Vlahacos, R. C. Black, S. M. Anlage, A. Amar and F. C. Wellstood, Appl. Phys. Lett. 69), 3274 (1996) and S. M. Anlage, C. P. Vlahacos, Sudeep Dutta and F. C. Wellstood, IEEE Trans. Appl. Supercond. 7, 3686 (1997). Using this system we have imaged electric fields generated by both normal metal and superconducting microstrip resonators at temperatures ranging from 77 K to 300 K. We will present images and discuss our results including observations of clear standing wave patterns at the fundamental resonant frequency and an increased quality factor of the resonators at low temperatures.

  11. Effects of microwave heating on porous structure of regenerated powdered activated carbon used in xylose.

    PubMed

    Li, Wei; Wang, Xinying; Peng, Jinhui

    2014-01-01

    The regeneration of spent powdered activated carbons used in xylose decolourization by microwave heating was investigated. Effects of microwave power and microwave heating time on the adsorption capacity of regenerated activated carbons were evaluated. The optimum conditions obtained are as follows: microwave power 800W; microwave heating time 30min. Regenerated activated carbon in this work has high adsorption capacities for the amount of methylene blue of 16 cm3/0.1 g and the iodine number of 1000.06mg/g. The specific surface areas of fresh commercial activated carbon, spent carbon and regenerated activated carbon were calculated according to the Brunauer, Emmett and Teller method, and the pore-size distributions of these carbons were characterized by non-local density functional theory (NLDFT). The results show that the specific surface area and the total pore volume of regenerated activated carbon are 1064 m2/g and 1.181 mL/g, respectively, indicating the feasibility of regeneration of spent powdered activated carbon used in xylose decolourization by microwave heating. The results of surface fractal dimensions also confirm the results of isotherms and NLDFT.

  12. Effects of microwave heating on porous structure of regenerated powdered activated carbon used in xylose.

    PubMed

    Li, Wei; Wang, Xinying; Peng, Jinhui

    2014-01-01

    The regeneration of spent powdered activated carbons used in xylose decolourization by microwave heating was investigated. Effects of microwave power and microwave heating time on the adsorption capacity of regenerated activated carbons were evaluated. The optimum conditions obtained are as follows: microwave power 800W; microwave heating time 30min. Regenerated activated carbon in this work has high adsorption capacities for the amount of methylene blue of 16 cm3/0.1 g and the iodine number of 1000.06mg/g. The specific surface areas of fresh commercial activated carbon, spent carbon and regenerated activated carbon were calculated according to the Brunauer, Emmett and Teller method, and the pore-size distributions of these carbons were characterized by non-local density functional theory (NLDFT). The results show that the specific surface area and the total pore volume of regenerated activated carbon are 1064 m2/g and 1.181 mL/g, respectively, indicating the feasibility of regeneration of spent powdered activated carbon used in xylose decolourization by microwave heating. The results of surface fractal dimensions also confirm the results of isotherms and NLDFT. PMID:24645431

  13. Determination of halogens in coal after digestion using the microwave-induced combustion technique

    SciTech Connect

    Flores, E.M.M.; Mesko, M.F.; Moraes, D.P.; Pereira, J.S.F.; Mello, P.A.; Barin, J.S.; Knapp, G.

    2008-03-15

    The microwave-induced combustion (MIC) technique was applied for coal digestion and further determination of bromide, chloride, fluoride, and iodide by ion chromatography (IC). Samples (up to 500 mg) were combusted at 2 MPa of oxygen. Combustion was complete in less than 50 s, and analytes were absorbed in water or (NH{sub 4}){sub 2}CO{sub 3} solution. A reflux step was applied to improve analyte absorption. Accuracy was evaluated for Br, Cl, and F using certified reference coal and spiked samples for I. For Br, Cl, and F, the agreement was between 96 and 103% using 50 mmol L{sup -1} (NH{sub 4}){sub 2}CO{sub 3} as the absorbing solution and 5 min of reflux. With the use of the same conditions, the recoveries for I were better than 97%. Br, Cl, and I were also determined in MIC digests by inductively coupled plasma mass spectrometry, inductively coupled plasma optical emission spectrometry, and F was determined by an ion-selective electrode with agreement better than 95% to the values obtained using IC. Temperature during combustion was higher than 1350 {sup o}C, and the residual carbon content was lower than 1%. With the use of the MIC technique, up to eight samples could be processed simultaneously, and a single absorbing solution was suitable for all analytes and determination techniques (limit of detection by IC was better than 3 {mu} g g{sup -1} for all halogens).

  14. Effect of Microwave Heating Conditions on the Preparation of High Surface Area Activated Carbon from Waste Bamboo

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Hongying Xia; Zhang, Libo; Xia, Yi; Peng, Jinhui; Wang, Shixing; Zheng, Zhaoqiang; Zhang, Shengzhou

    2015-11-01

    The present study reports the effect of microwave power and microwave heating time on activated carbon adsorption ability. The waste bamboo was used to preparing high surface area activated carbon via microwave heating. The bamboo was carbonized for 2 h at 600°C to be used as the raw material. According to the results, microwave power and microwave heating time had a significant impact on the activating effect. The optimal KOH/C ratio of 4 was identified when microwave power and microwave heating time were 700 W and 15 min, respectively. Under the optimal conditions, surface area was estimated to be 3441 m2/g with pore volume of 2.093 ml/g and the significant proportion of activated carbon was microporous (62.3%). The results of Fourier transform infrared spectroscopy (FTIR) were illustrated that activated carbon surface had abundant functional groups. Additionally the pore structure is characterized using Scanning Electron Microscope (SEM).

  15. Advances on simultaneous desulfurization and denitrification using activated carbon irradiated by microwaves.

    PubMed

    Ma, Shuang-Chen; Gao, Li; Ma, Jing-Xiang; Jin, Xin; Yao, Juan-Juan; Zhao, Yi

    2012-06-01

    This paper describes the research background and chemistry of desulfurization and denitrification technology using microwave irradiation. Microwave-induced catalysis combined with activated carbon adsorption and reduction can reduce nitric oxide to nitrogen and sulfur dioxide to sulfur from flue gas effectively. This paper also highlights the main drawbacks of this technology and discusses future development trends. It is reported that the removal of sulfur dioxide and nitric oxide using microwave irradiation has broad prospects for development in the field of air pollution control.

  16. Volcanic eruption source parameters from active and passive microwave sensors

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario; Marzano, Frank S.; Cimini, Domenico; Mereu, Luigi

    2016-04-01

    It is well known, in the volcanology community, that precise information of the source parameters characterising an eruption are of predominant interest for the initialization of the Volcanic Transport and Dispersion Models (VTDM). Source parameters of main interest would be the top altitude of the volcanic plume, the flux of the mass ejected at the emission source, which is strictly related to the cloud top altitude, the distribution of volcanic mass concentration along the vertical column as well as the duration of the eruption and the erupted volume. Usually, the combination of a-posteriori field and numerical studies allow constraining the eruption source parameters for a given volcanic event thus making possible the forecast of ash dispersion and deposition from future volcanic eruptions. So far, remote sensors working at visible and infrared channels (cameras and radiometers) have been mainly used to detect, track and provide estimates of the concentration content and the prevailing size of the particles propagating within the ash clouds up to several thousand of kilometres far from the source as well as track back, a-posteriori, the accuracy of the VATDM outputs thus testing the initial choice made for the source parameters. Acoustic wave (infrasound) and microwave fixed scan radar (voldorad) were also used to infer source parameters. In this work we want to put our attention on the role of sensors operating at microwave wavelengths as complementary tools for the real time estimations of source parameters. Microwaves can benefit of the operability during night and day and a relatively negligible sensitivity to the presence of clouds (non precipitating weather clouds) at the cost of a limited coverage and larger spatial resolution when compared with infrared sensors. Thanks to the aforementioned advantages, the products from microwaves sensors are expected to be sensible mostly to the whole path traversed along the tephra cloud making microwaves particularly

  17. A multifrequency evaluation of active and passive microwave sensors for oil spill detection and assessment

    NASA Technical Reports Server (NTRS)

    Fenner, R. G.; Reid, S. C.; Solie, C. H.

    1980-01-01

    An evaluation is given of how active and passive microwave sensors can best be used in oil spill detection and assessment. Radar backscatter curves taken over oil spills are presented and their effect on synthetic aperture radar (SAR) imagery are discussed. Plots of microwave radiometric brightness variations over oil spills are presented and discussed. Recommendations as to how to select the best combination of frequency, viewing angle, and sensor type for evaluation of various aspects of oil spills are also discussed.

  18. High-Q active ring microwave resonators based on ferrite-ferroelectric layered structures

    NASA Astrophysics Data System (ADS)

    Ustinov, Alexey B.; Srinivasan, G.; Kalinikos, Boris A.

    2008-05-01

    An electric and magnetic field tunable (dual-tunable) microwave active ring resonator is designed and characterized. The device structure is implemented with a microwave amplifier and a ferrite-ferroelectric delay line in the feedback loop. At 8GHz, an effective Q factor of 50 000 and tuning by 5MHz with an electric field are achieved. The performance characteristics of the resonator are presented and discussed.

  19. Intercomparisons between passive and active microwave remote sensing, and hydrological modeling for soil moisture

    NASA Technical Reports Server (NTRS)

    Wood, E. F.; Lin, D.-S.; Mancini, M.; Thongs, D.; Troch, P. A.; Jackson, T. J.; Famiglietti, J. S.; Engman, E. T.

    1993-01-01

    Soil moisture estimations from a distributed hydrological model and two microwave sensors were compared with ground measurements collected during the MAC-HYDRO'90 experiment. The comparison was done with the purpose of evaluating the performance of the hydrological model and examining the limitations of remote sensing techniques used in soil moisture estimation. An image integration technique was used to integrate and analyze rainfall, soil properties, land cover, topography, and remote sensing imagery. Results indicate that the hydrological model and microwave sensors successfully picked up temporal variations of soil moisture and that the spatial soil moisture pattern may be remotely sensed with reasonable accuracy using existing algorithms.

  20. [Microwave thermal remediation of soil contaminated with crude oil enhanced by granular activated carbon].

    PubMed

    Li, Da-Wei; Zhang, Yao-Bin; Quan, Xie; Zhao, Ya-Zhi

    2009-02-15

    The advantage of rapid, selective and simultaneous heating of microwave heating technology was taken to remediate the crude oil-contaminated soil rapidly and to recover the oil contaminant efficiently. The contaminated soil was processed in the microwave field with addition of granular activated carbon (GAC), which was used as strong microwave absorber to enhance microwave heating of the soil mixture to remove the oil contaminant and recover it by a condensation system. The influences of some process parameters on the removal of the oil contaminant and the oil recovery in the remediation process were investigated. The results revealed that, under the condition of 10.0% GAC, 800 W microwave power, 0.08 MPa absolute pressure and 150 mL x min(-1) carrier gas (N2) flow-rate, more than 99% oil removal could be obtained within 15 min using this microwave thermal remediation enhanced by GAC; at the same time, about 91% of the oil contaminant could be recovered without significant changes in chemical composition. In addition, the experiment results showed that GAC can be reused in enhancing microwave heating of soil without changing its enhancement efficiency obviously.

  1. Microwave Ignited Combustion Synthesis as a Joining Technique for Dissimilar Materials

    NASA Astrophysics Data System (ADS)

    Rosa, Roberto; Colombini, Elena; Veronesi, Paolo; Poli, Giorgio; Leonelli, Cristina

    2012-05-01

    Microwave energy has been exploited to ignite combustion synthesis (CS) reactions of properly designed powders mixtures, in order to rapidly reach the joining between different kinds of materials, including metals (Titanium and Inconel) and ceramics (SiC). Beside the great advantage offered by CS itself, i.e., rapid and highly localized heat generation, the microwaves selectivity in being absorbed by micrometric metallic powders and not by bulk metallic components represents a further intriguing aspect in advanced materials joining applications, namely the possibility to avoid the exposition to high temperatures of the entire substrates to be joined. Moreover, in case of microwaves absorbing substrates, the competitive microwaves absorption by both substrates and powdered joining material, leads to the possibility of adhesion, interdiffusion and chemical bonding enhancements. In this study, both experimental and numerical simulation results are used to highlight the great potentialities of microwave ignited CS in the joining of advanced materials.

  2. Environmental remediation by an integrated microwave/UV illumination technique. 8. Fate of carboxylic acids, aldehydes, alkoxycarbonyl and phenolic substrates in a microwave radiation field in the presence of TiO2 particles under UV irradiation.

    PubMed

    Horikoshi, Satoshi; Hojo, Fukuyo; Hidaka, Hisao; Serpone, Nick

    2004-04-01

    Thermal and nonthermal effects originating when a system is subjected to a microwave radiation field in the TiO2-photocatalyzed transformation of model substances containing various functional groups (e.g., benzoic acid, phthalic acid, o-formylbenzoic acid, phthalaldehyde, succinic acid, dimethyl phthalate, diethyl phthalate, and phenol) have been examined under simultaneous irradiation by ultraviolet (UV) and microwave (MW) radiations. Characteristics of the microwave effects and the fate of each substrate during the microwave-assisted photocatalytic process were monitored by UV absorption spectroscopy, HPLC methods, total organic carbon assays, and identification of intermediates using electrospray mass spectral techniques. Microwave thermal and nonthermal effects were delineated by comparing results from MW-generated internal heat versus conventional external heating, and at constant ambient temperature under a microwave field. Factors involved in the nonthermal component of the microwave radiation were inferred for the initial adsorption of the substrate and its subsequent degradation occurring on the surface of TiO2 particles. Microwave effects bear on the mechanism through which a model substrate undergoes oxidative degradation. A characteristic feature of these effects was briefly examined by considering the behavior of polar (dipole moments) substrates in a microwave radiation field.

  3. Retrieval of Precipitation Profiles from Multiresolution, Multifrequency, Active and Passive Microwave Observations

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Anagnostou, Emmanouil N.; Olson, William S.; Starr, David OC. (Technical Monitor)

    2002-01-01

    In this study, a technique for estimating vertical profiles of precipitation from multifrequency, multiresolution active and passive microwave observations is investigated using both simulated and airborne data. The technique is applicable to the Tropical Rainfall Measuring Mission (TRMM) satellite multi-frequency active and passive observations. These observations are characterized by various spatial and sampling resolutions. This makes the retrieval problem mathematically more difficult and ill-determined because the quality of information decreases with decreasing resolution. A model that, given reflectivity profiles and a small set of parameters (including the cloud water content, the intercept drop size distribution, and a variable describing the frozen hydrometeor properties), simulates high-resolution brightness temperatures is used. The high-resolution simulated brightness temperatures are convolved at the real sensor resolution. An optimal estimation procedure is used to minimize the differences between simulated and observed brightness temperatures. The retrieval technique is investigated using cloud model synthetic and airborne data from the Fourth Convection And Moisture Experiment. Simulated high-resolution brightness temperatures and reflectivities and airborne observation strong are convolved at the resolution of the TRMM instruments and retrievals are performed and analyzed relative to the reference data used in observations synthesis. An illustration of the possible use of the technique in satellite rainfall estimation is presented through an application to TRMM data. The study suggests improvements in combined active and passive retrievals even when the instruments resolutions are significantly different. Future work needs to better quantify the retrievals performance, especially in connection with satellite applications, and the uncertainty of the models used in retrieval.

  4. Microwave-assisted simultaneous extraction of luteolin and apigenin from tree peony pod and evaluation of its antioxidant activity.

    PubMed

    Wang, Hongzheng; Yang, Lei; Zu, Yuangang; Zhao, Xiuhua

    2014-01-01

    An efficient microwave-assisted extraction (MAE) technique was employed in simultaneous extraction of luteolin and apigenin from tree peony pod. The MAE procedure was optimized using response surface methodology (RSM) and compared with other conventional extraction techniques of macerate extraction (ME) and heat reflux extraction (HRE). The optimal conditions of MAE were as follows: employing 70% ethanol volume fraction as solvent, soaking time of 4 h, liquid-solid ratio of 10 (mL/g), microwave irradiation power of 265 W, microwave irradiation time of 9.6 min, and 3 extraction cycles. Under the optimal conditions, 151 μg/g luteolin and 104 μg/g apigenin were extracted from the tree peony pod. Compared with ME and HRE, MAE gave the highest extraction efficiency. The antioxidant activities of the extracts obtained by MAE, ME, and HRE were evaluated using a 2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH) free radical-scavenging assay, a ferric reducing antioxidant power assay (FRAP), and a reducing power assay. Meanwhile, the structural changes of the unprocessed and processed tree peony pod samples were analyzed by scanning electron microscopy.

  5. Preparation of activated carbon by microwave heating of langsat (Lansium domesticum) empty fruit bunch waste.

    PubMed

    Foo, K Y; Hameed, B H

    2012-07-01

    The feasibility of langsat empty fruit bunch waste for preparation of activated carbon (EFBLAC) by microwave-induced activation was explored. Activation with NaOH at the IR ratio of 1.25, microwave power of 600 W for 6 min produced EFBLAC with a carbon yield of 81.31% and adsorption uptake for MB of 302.48 mg/g. Pore structural analysis, scanning electron microscopy and Fourier transform infrared spectroscopy demonstrated the physical and chemical characteristics of EFBLAC. Equilibrium data were best described by the Langmuir isotherm, with a monolayer adsorption capacity of 402.06 mg/g, and the adsorption kinetics was well fitted to the pseudo-second-order equation. The findings revealed the potential to prepare high quality activated carbon from langsat empty fruit bunch waste by microwave irradiation.

  6. Determination of multi-walled carbon nanotube bioaccumulation in earthworms measured by a microwave-based detection technique.

    PubMed

    Li, Shibin; Irin, Fahmida; Atore, Francis O; Green, Micah J; Cañas-Carrell, Jaclyn E

    2013-02-15

    Reliable quantification techniques for carbon nanotubes (CNTs) are limited. In this study, a new procedure was developed for quantifying multi-walled carbon nanotubes (MWNTs) in earthworms (Eisenia fetida) based on freeze drying and microwave-induced heating. Specifically, earthworms were first processed into a powder by freeze drying. Then, samples were measured by utilizing 10 s exposure to 30 W microwave power. This method showed the potential to quantitatively measure MWNTs in earthworms at low concentrations (~0.1 μg in 20 mg of earthworm). Also, a simple MWNT bioaccumulation study in earthworms indicated a low bioaccumulation factor of 0.015±0.004. With an appropriate sample processing method and instrumental parameters (power and exposure time), this technique has the potential to quantify MWNTs in a variety of sample types (plants, earthworms, human blood, etc.).

  7. Femtosecond laser fabricated multimode fiber sensors interrogated by optical-carrier-based microwave interferometry technique for distributed strain sensing

    NASA Astrophysics Data System (ADS)

    Hua, Liwei; Song, Yang; Huang, Jie; Cheng, Baokai; Zhu, Wenge; Xiao, Hai

    2016-03-01

    A multimode fiber (MMF) based cascaded intrinsic Fabry-Perot interferometers (IFPIs) system is presented and the distributed strain sensing has been experimentally demonstrated by using such system. The proposed 13 cascaded IFPIs have been formed by 14 cascaded reflectors that have been fabricated on a grade index MMF. Each reflector has been made by drawing a line on the center of the cross-section of the MMF through a femtosecond laser. The distance between any two adjacent reflectors is around 100 cm. The optical carrier based microwave interferometry (OCMI) technique has been used to interrogate the MMF based cascaded FPIs system by reading the optical interference information in the microwave domain. The location along with the shift of the interference fringe pattern for each FPI can be resolved though signal processing based on the microwave domain information. The multimode interference showed very little influence to the microwave domain signals. By using such system the strain of 10-4 for each FPI sensor and the spatial resolution of less than 5 cm for the system can be easily achieved.

  8. Frequency-Temperature Compensation Techniques for High-Q Microwave Resonators

    NASA Astrophysics Data System (ADS)

    Hartnett, John G.; Tobar, Michael E.

    Low-noise high-stability resonator oscillators based on high-Q monolithic sapphire ``Whispering Gallery'' (WG)-mode resonators have become important devices for telecommunication, radar and metrological applications. The extremely high quality factor of sapphire, of 2 x10^5 at room temperature, 5 x10^7 at liquid nitrogen temperature and 5 x10^9 at liquid helium temperature has enabled the lowest phase noise and highly frequency-stable oscillators in the microwave regime to be constructed. To create an oscillator with exceptional frequency stability, the resonator must have its frequency-temperature dependence annulled at some temperature, as well as a high quality factor. The Temperature Coefficient of Permittivity (TCP) for sapphire is quite large, at 10-100parts per million/K above 77K. This mechanism allows temperature fluctuations to transform to resonator frequency fluctuations.A number of research groups worldwide have investigated various methods of compensating the TCP of a sapphire dielectric resonator at different temperatures. The usual electromagnetic technique of annulment involves the use of paramagnetic impurities contributing an opposite temperature coefficient of the magnetic susceptibility to the TCP. This technique has only been realized successfully in liquid helium environments. Near 4K the thermal expansion and permittivity effects are small and only small quantities of the paramagnetic ions are necessary to compensate the mode frequency. Compensation is due to impurity ions that were incidentally left over from the manufacturing process.Recently, there has been an effort to dispense with the need for liquid helium and make a compact flywheel oscillator for the new generation of primary frequency standards such as the cesium fountain at the Laboratoire Primaire du Temps et des Fréquences (LPTF), France. To achieve the stability limit imposed

  9. Microwave annealing, a low-thermal-budget process for dopant activation in phosphorus-implanted MOSFET devices

    NASA Astrophysics Data System (ADS)

    Lim, Cheol-Min; Cho, Won-Ju

    2016-09-01

    In this work, we investigated a low-thermal-budget dopant activation process based on microwave annealing (MWA) of phosphorus ions implanted by plasma doping and compared the proposed technique with the conventional furnace annealing and the rapid thermal annealing processes. We fabricated p-n junction diodes and metal-oxide-semiconductor field-effect transistors (MOSFETs) on silicon and silicon-on-insulator substrates, respectively, in order to examine the dopant activation resulting from MWA. The investigated low-thermal-budget MWA technique proved effective for implanted dopant atom activation and diffusion suppression. In addition, a good interface property between the gate oxide and the silicon channel was achieved. Thus, low-thermal-budget MWA is a promising and effective method for the fabrication of highly-integrated semiconductor devices.

  10. Investigating Baseline, Alternative and Copula-based Algorithm for combining Airborne Active and Passive Microwave Observations in the SMAP Context

    NASA Astrophysics Data System (ADS)

    Montzka, C.; Lorenz, C.; Jagdhuber, T.; Laux, P.; Hajnsek, I.; Kunstmann, H.; Entekhabi, D.; Vereecken, H.

    2015-12-01

    The objective of the NASA Soil Moisture Active & Passive (SMAP) mission is to provide global measurements of soil moisture and freeze/thaw states. SMAP integrates L-band radar and radiometer instruments as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. Airborne instruments will be a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment, Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer (PLMR2) and the active L-band system F-SAR of DLR were flown simultaneously on the same platform on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e. all types of land cover and experimental monitoring sites with in situ sensors. Here, we used the obtained data sets as a test-bed for the analysis of three active-passive fusion techniques: A) The SMAP baseline algorithm: Disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture, B), the SMAP alternative algorithm: Estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter and C) Copula-based combination of active and passive microwave data. For method C empirical Copulas were generated and theoretical Copulas fitted both on the level of the raw products brightness temperature and backscatter as well as two soil moisture products. Results indicate that the regression parameters for method A and B are dependent on the radar vegetation index (RVI). Similarly, for method C the best performance was gained by generating separate Copulas for individual land use classes. For more in-depth analyses longer time series are necessary as can obtained by airborne campaigns, therefore, the methods will be applied to SMAP data.

  11. Soil moisture estimation by airborne active and passive microwave remote sensing: A test-bed for SMAP fusion algorithms

    NASA Astrophysics Data System (ADS)

    Montzka, Carsten; Bogena, Heye; Jagdhuber, Thomas; Hajnsek, Irena; Horn, Ralf; Reigber, Andreas; Hasan, Sayeh; Rüdiger, Christoph; Jaeger, Marc; Vereecken, Harry

    2014-05-01

    The objective of the NASA Soil Moisture Active & Passive (SMAP) mission is to provide global measurements of soil moisture and its freeze/thaw state. The SMAP launch is currently planned for 2014-2015. The SMAP measurement approach is to integrate L-band radar and L-band radiometer as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. The radar and radiometer measurements can be effectively combined to derive soil moisture maps that approach the accuracy of radiometer-only retrievals, but with a higher resolution (being able to approach the radar resolution under some conditions). Aircraft and tower-based instruments will be a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment in Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer (PLMR2) and the active L-band system DLR F-SAR were flown on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e. all types of land cover and experimental monitoring sites. These data are used as a test-bed for the analysis of existing and development of new active-passive fusion techniques. A synergistic use of the two signals can help to decouple soil moisture effects from the effects of vegetation (or roughness) in a better way than in the case of a single instrument. In this study, we present and evaluate three approaches for the fusion of active and passive microwave records for an enhanced representation of the soil moisture status: i) estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter data, ii) disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture, and iii) fusion of two single-source soil moisture products from radar and radiometer.

  12. Influence of Polarity and Activation Energy in Microwave-Assisted Organic Synthesis (MAOS).

    PubMed

    Rodríguez, Antonio M; Prieto, Pilar; de la Hoz, Antonio; Díaz-Ortiz, Ángel; Martín, D Raúl; García, José I

    2015-06-01

    The aim of this work was to determine the parameters that have decisive roles in microwave-assisted reactions and to develop a model, using computational chemistry, to predict a priori the type of reactions that can be improved under microwaves. For this purpose, a computational study was carried out on a variety of reactions, which have been reported to be improved under microwave irradiation. This comprises six types of reactions. The outcomes obtained in this study indicate that the most influential parameters are activation energy, enthalpy, and the polarity of all the species that participate. In addition to this, in most cases, slower reacting systems observe a much greater improvement under microwave irradiation. Furthermore, for these reactions, the presence of a polar component in the reaction (solvent, reagent, susceptor, etc.) is necessary for strong coupling with the electromagnetic radiation. We also quantified that an activation energy of 20-30 kcal mol(-1) and a polarity (μ) between 7-20 D of the species involved in the process is required to obtain significant improvements under microwave irradiation.

  13. Influence of microwave irradiation on boron concentrate activation with an emphasis on surface properties

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Zhang, Qiaoyi; Liu, Yajing; Xue, Xiangxin; Duan, Peining

    2016-11-01

    In this study, we employed microwave irradiation for activating boron concentrate, an abundant but low-grade boron mineral resource in China. The boron concentrate was pretreated by microwave irradiation based on TG-DTG-DSC analysis, and the influence of each parameter on processing efficiency was characterized using chemical analysis, XRD, SEM, FTIR and particle distribution analysis. Subsequently, the surface properties of boron concentrate and the mechanism of microwave irradiation was analyzed. Our results indicate that microwave irradiation decreased the processing temperature and shortened the roasting time by accelerating dehydroxylation and oxidation reactions in the boron concentrate, reducing the particle diameter and damaging the microstructure of the minerals, and it increased the B2O3 activity of boron from 64.68% to 86.73%, greater than the optimal conventional treatment. Compared with the simple thermal field, microwave roasting obviously increased ability of the boron concentrate to absorb OH- in the leachant and promoted boron leaching by expanding the contact area of the mineral exposed to leachant, boosting the amount of Mg2+ and Fe3+ on mineral surfaces, and increasing the hydrophilicity of the boron concentrate respectively. It enhanced the γSVLW and γSV- of boron concentrate from 29.15 mJ/m2 and 5.07 mJ/m2 to 37.07 mJ/m2 and 12.41 mJ/m2.

  14. Passive and Active Microwave Remote Sensing of Precipitation and Latent Heating Distributions in the Tropics from TRMM

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Haddad, Ziad S.; Tao, Wei-Kuo; Wang, Yansen; Lang, Stephen E.; Braun, Scott A.; Chiu, Christine; Wang, Jian-Jian

    2002-01-01

    Passive and active microwave remote sensing data are analyzed to identify signatures of precipitation and vertical motion in tropical convection. A database of cloud/radiative model simulations is used to quantify surface rain rates and latent heating profiles that are consistent with these signatures. At satellite footprint-scale (approximately 10 km), rain rate and latent heating estimates are subject to significant random errors, but by averaging the estimates in space and time, random errors are substantially reduced, Bias errors have been minimized by improving the microphysics in the supporting cloud/radiative model simulations, and by imposing a consistent definition of remotely-sensed and model-simulated convective/stratiform rain coverage. Remotely-sensed precipitation and latent heating distributions in the tropics are derived from Tropical Rainfall Measuring Mission (TRMM) and Special Sensor Microwave/ Imager (SSM/ I) sensor data. The prototype Version 6 TRMM passive microwave algorithm typically yields average heating profiles with maxima between 6 and 7 km altitude for organized mesoscale convective systems. Retrieved heating profiles for individual convective systems are compared to coincident estimates based upon a combination of dual-Doppler radar and rawinsonde data. Also, large-scale latent heating distributions are compared to estimates derived from a simpler technique that utilizes observations of surface rain rate and stratiform rain proportion to infer vertical heating structure. Results of these tests will be presented at the conference.

  15. Coherent demodulation of microwave signals by using optical heterodyne technique with applications to point to point indoor wireless communications systems

    NASA Astrophysics Data System (ADS)

    García-Juárez, A.; Zaldívar-Huerta, I. E.; Aguayo-Rodríguez, G.; Rodríguez-Asomoza, J.; Gómez-Colín, M. R.; Rojas-Hernández, A. G.

    2011-01-01

    An optical communications system using a couple microstrip antennas for distributing point to point analog TV with coherent demodulation based on optical heterodyne in close vicinity is reported in this paper. In the proposed experimental setup, two optical waves at different wavelengths are mixed and applied to a photodetector. Then a beat signal with a frequency equivalent to the spacing of the two wavelengths is obtained at the output of the photodetector. This signal corresponds to a microwave signal located at 1.25 GHz, which it is used as a microwave carrier in the transmitter and as a local oscillator in the receiver of our optical communication system. The feasibility of this technique is demonstrated transmitting a TV signal of 66-72MHz.

  16. Effects of microwave exposure on the hamster immune system. I. Natural killer cell activity

    SciTech Connect

    Yang, H.K.; Cain, C.A.; Lockwood, J.; Tompkins, W.A.

    1983-01-01

    Hamsters were exposed to repeated or single doses of microwave energy and monitored for changes in core body temperature, circulating leukocyte profiles, serum corticosteroid levels, and natural killer (NK) cell activity in various tissues. NK cytotoxicity was measured in a /sup 51/Cr-release assay employing baby hamster kidney (BHK) targets or BHK infected with herpes simplex virus. Repeated exposure of hamsters at 15 mW/cm2 for 60 min/day had no significant effect on natural levels of spleen-cell NK activity against BHK targets. Similarly, repeated exposure at 15 mW/cm2 over a 5-day period had no demonstrable effect on the induction of spleen NK activity by vaccinia virus immunization, that is, comparable levels of NK were induced in untreated and microwave-treated animals. In contrast, treatment of hamsters with a single 60-min microwave exposure at 25 mW/cm2 caused a significant suppression in induced spleen NK activity. A similar but less marked decrease in spleen NK activity was observed in sham-exposed animals. Moreover, the sham effects on NK activity were not predictable and appeared to represent large individual animal variations in the response to stress factors. Depressed spleen NK activity was evident as early as 4 h postmicrowave treatment and returned to normal levels by 8 h. Hamsters exposed at 25 mW/cm2 showed an elevated temperature of 3.0-3.5 degrees C that returned to normal within 60 min after termination of microwave exposure. These animals also showed a marked lymphopenia and neutrophilia by 1 h posttreatment that returned to normal by 8-10 h. Serum glucocorticosteroids were elevated between 1 aNd 8 h after microwave treatment. Sham-exposed animals did not demonstrate significant changes in core body temperature, peripheral blood leukocyte (PBL) profile, or glucocorticosteroid levels as compared to minimum-handling controls.

  17. Synergistic use of active and passive microwave in soil moisture estimation

    NASA Technical Reports Server (NTRS)

    O'Neill, P.; Chauhan, N.; Jackson, T.; Saatchi, S.

    1992-01-01

    Data gathered during the MACHYDRO experiment in central Pennsylvania in July 1990 have been utilized to study the synergistic use of active and passive microwave systems for estimating soil moisture. These data sets were obtained during an eleven-day period with NASA's Airborne Synthetic Aperture Radar (AIRSAR) and Push-Broom Microwave Radiometer (PBMR) over an instrumented watershed which included agricultural fields with a number of different crop covers. Simultaneous ground truth measurements were also made in order to characterize the state of vegetation and soil moisture under a variety of meteorological conditions. A combination algorithm is presented as applied to a representative corn field in the MACHYDRO watershed.

  18. [The activity of prooxidant-antioxidant system in loach embryos under the action of microwave radiation].

    PubMed

    Iaremchuk, M M; Dyka, M V; Sanahurs'kyĭ, D I

    2014-01-01

    Electromagnetic radiation (EMR) affects biological organisms, primarily on the cellular level. However, the effects of EMR at low-intensity exposure on animals and state of metabolic systems are not fully defined yet. Thus, research of microwave radiation influence on the processes of lipid peroxidation and antioxidant protection system is important for understanding the mechanisms of EMR action on the cell, in particular, and organism development on the whole. The content of lipid peroxidation products--lipid hydroperoxides, thiobarbituric acid reactive substances and the activity of antioxidant enzymes--superoxide dismutase, glutathione peroxidase and catalase in loach embryos under the action of microwave radiation (GSM-900 MHz, SAR = 1.1 Vt/kg) lasting 1; 5; 10 and 20 min during early embryogenesis were studied. It has been found that content of lipid peroxidation products in germ cells undergoes significant changes under the action of low-intensity EMR. The effect of microwave radiation (1, 5, 10 min) leads to the increase of superoxide dismutase activity, nevertheless, 20 min exposure decreased this index to the level of control values as it is shown. It has been established that EMR at frequencies used for mobile communications reduce the activity of antioxidant protection system components, especially catalase and glutathione peroxidase. The growth of catalase activity at the 10-cell stage of blastomere division (P < 0.05) is an exception. The results of two-way analysis of variance attest that microwave radiation factor causes the large part of all observable modifications. PMID:25816598

  19. [The activity of prooxidant-antioxidant system in loach embryos under the action of microwave radiation].

    PubMed

    Iaremchuk, M M; Dyka, M V; Sanahurs'kyĭ, D I

    2014-01-01

    Electromagnetic radiation (EMR) affects biological organisms, primarily on the cellular level. However, the effects of EMR at low-intensity exposure on animals and state of metabolic systems are not fully defined yet. Thus, research of microwave radiation influence on the processes of lipid peroxidation and antioxidant protection system is important for understanding the mechanisms of EMR action on the cell, in particular, and organism development on the whole. The content of lipid peroxidation products--lipid hydroperoxides, thiobarbituric acid reactive substances and the activity of antioxidant enzymes--superoxide dismutase, glutathione peroxidase and catalase in loach embryos under the action of microwave radiation (GSM-900 MHz, SAR = 1.1 Vt/kg) lasting 1; 5; 10 and 20 min during early embryogenesis were studied. It has been found that content of lipid peroxidation products in germ cells undergoes significant changes under the action of low-intensity EMR. The effect of microwave radiation (1, 5, 10 min) leads to the increase of superoxide dismutase activity, nevertheless, 20 min exposure decreased this index to the level of control values as it is shown. It has been established that EMR at frequencies used for mobile communications reduce the activity of antioxidant protection system components, especially catalase and glutathione peroxidase. The growth of catalase activity at the 10-cell stage of blastomere division (P < 0.05) is an exception. The results of two-way analysis of variance attest that microwave radiation factor causes the large part of all observable modifications.

  20. Assimilation of active and passive microwave observations for improved estimates of soil moisture and crop growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Ensemble Kalman Filter-based data assimilation framework that links a crop growth model with active and passive (AP) microwave models was developed to improve estimates of soil moisture (SM) and vegetation biomass over a growing season of soybean. Complementarities in AP observations were incorpo...

  1. Inhibitory effect of microwaved thinned nectarine extracts on polyphenol oxidase activity.

    PubMed

    Redondo, Diego; Venturini, María E; Oria, Rosa; Arias, Esther

    2016-04-15

    By-products from agricultural practices or from the fruit processing industry are a source of bioactive compounds that could be used in the food industry. Such by-products include thinned fruits, which are expected to contain high quantities of interesting compounds. One possible application of this fruits is the prevention of the enzymatic browning suffered by fruits and vegetables after minimal processing. The aim of this study is to determine the in vitro and in vivo activity of microwaved extracts obtained from thinned nectarines. It has been observed that in vitro the extracts obtained after the application of high microwave power levels (500, 1000 and 1500 W) are mixed type inhibitors of polyphenoloxidase enzyme, showing an irreversible inactivation. This inhibition could be attributed to the Maillard reaction products formed during the microwave treatment. In vivo, a solution of 2% of the extract obtained at 1500 W inhibited the enzymatic browning in minimally processed peaches for 8 days of storage.

  2. Inhibitory effect of microwaved thinned nectarine extracts on polyphenol oxidase activity.

    PubMed

    Redondo, Diego; Venturini, María E; Oria, Rosa; Arias, Esther

    2016-04-15

    By-products from agricultural practices or from the fruit processing industry are a source of bioactive compounds that could be used in the food industry. Such by-products include thinned fruits, which are expected to contain high quantities of interesting compounds. One possible application of this fruits is the prevention of the enzymatic browning suffered by fruits and vegetables after minimal processing. The aim of this study is to determine the in vitro and in vivo activity of microwaved extracts obtained from thinned nectarines. It has been observed that in vitro the extracts obtained after the application of high microwave power levels (500, 1000 and 1500 W) are mixed type inhibitors of polyphenoloxidase enzyme, showing an irreversible inactivation. This inhibition could be attributed to the Maillard reaction products formed during the microwave treatment. In vivo, a solution of 2% of the extract obtained at 1500 W inhibited the enzymatic browning in minimally processed peaches for 8 days of storage. PMID:26616994

  3. High dopant activation of phosphorus in Ge crystal with high-temperature implantation and two-step microwave annealing

    NASA Astrophysics Data System (ADS)

    Shih, Tzu-Lang; Su, Yin-Hsien; Lee, Wen-Hsi

    2016-09-01

    In this letter, high-temperature ion implantation and low-temperature microwave annealing were employed to achieve high n-type active concentrations, approaching the solid solubility limit, in germanium. To use the characteristics of microwave annealing more effectively, a two-step microwave annealing process was employed. In the first annealing step, a high-power (1200 W; 425 °C) microwave was used to achieve solid-state epitaxial regrowth and to enhance microwave absorption. In the second annealing step, contrary to the usual process of thermal annealing with higher temperature, a lower-power (900 W; 375 °C) microwave process was used to achieve a low sheet resistance, 78Ω/◻, and a high carrier concentration, 1.025 × 1020 P/cm3, which is close to the solid solubility limit of 2 × 1020 P/cm3.

  4. Error Characterisation and Merging of Active and Passive Microwave Soil Moisture Data Sets

    NASA Astrophysics Data System (ADS)

    Wagner, Wolfgang; Gruber, Alexander; de Jeu, Richard; Parinussa, Robert; Chung, Daniel; Dorigo, Wouter; Reimer, Christoph; Kidd, Richard

    2015-04-01

    the products is available, the estimate of the respective product is used, while on days where both active and passive sensors provide an estimate, their observations are averaged. REFERENCES Dorigo, W.A., A. Gruber, R. de Jeu, W. Wagner, T. Stacke, A. Löw, C. Albergel, L. Brocca, D. Chung, R. Parinussa, R. Kidd (2015) Evaluation of the ESA CCI soil moisture product using ground-based observations, Remote Sensing of Environment, in press. Wagner, W., W. Dorigo, R. de Jeu, D. Fernandez, J. Benveniste, E. Haas, M. Ertl (2012) Fusion of active and passive microwave observations to create an Essential Climate Variable data record on soil moisture, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Annals), Volume I-7, XXII ISPRS Congress, Melbourne, Australia, 25 August-1 September 2012, 315-321. Zwieback, S., K. Scipal, W. Dorigo, W. Wagner (2012) Structural and statistical properties of the collocation technique for error characterization, Nonlinear Processes in Geophysics, 19, 69-80.

  5. Enhanced activity in ethanol oxidation of Pt3Sn electrocatalysts synthesized by microwave irradiation

    NASA Astrophysics Data System (ADS)

    Stevanović, S.; Tripković, D.; Rogan, J.; Minić, D.; Gavrilović, A.; Tripković, A.; Jovanović, V. M.

    2011-12-01

    High surface area carbon supported Pt and Pt3Sn catalysts were synthesized by microwave irradiation and investigated in the ethanol electro-oxidation reaction. The catalysts were obtained using a modified polyol method in an ethylene glycol solution and were characterized in terms of structure, morphology and composition by employing XRD, STM and EDX techniques. The diffraction peaks of Pt3Sn/C catalyst in XRD patterns are shifted to lower 2θ values with respect to the corresponding peaks at Pt/C catalyst as a consequence of alloy formation between Pt and Sn. Particle size analysis from STM and XRD shows that Pt and Pt3Sn clusters are of a small diameter (˜2 nm) with a narrow size distribution. Pt3Sn/C catalyst is highly active in ethanol oxidation with the onset potential shifted for ˜150 mV to more negative values and with ˜2 times higher currents in comparison to Pt/C.

  6. Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits.

    PubMed

    Wojdyło, Aneta; Figiel, Adam; Oszmiański, Jan

    2009-02-25

    The objective of this study was to evaluate the application of vacuum-microwave drying (240, 360, and 480 W) in the production process of dehydrated strawberry and to compare and contrast the quality of these dehydrated strawberries in terms of their polyphenol compounds, concentration of some heat liable components, and color to that of freeze-dried, convective, and vacuum-dried strawberry. Thus, the effect of vacuum-microwave drying and other drying methods on the antioxidant activity of berries was evaluated. Whole fresh and dried fruits were assessed for phenolics (anthocyanins, flavanols, hydroxycinnamic acids, and flavonols), ascorbic acid, and antioxidant activity (all parameters were calculated on a dry matter basis). Analysis of data shows that ellagic acid and flavanol changes were affected by drying techniques and cultivar. Drying destroyed anthocyanins, flavanols, and ascorbic acid, and there was a significant decrease in antioxidant activity. The most striking result was that conventional and vacuum drying decreased antioxidant activity in both cultivars, whereas contradictory results were found for vacuum-microwave processed strawberry. This study has demonstrated that vacuum-microwave drying, especially at 240 W, can produce high-quality products, with the additional advantage of reduced processing times, compared to other processes such as freeze-drying.

  7. Cavity perturbation techniques for measurement of the microwave conductivity and dielectric constant of a bulk semiconductor material.

    NASA Technical Reports Server (NTRS)

    Eldumiati, I. I.; Haddad, G. I.

    1972-01-01

    Cavity perturbation techniques offer a very sensitive and highly versatile means for studying the complex microwave conductivity of a bulk material. A knowledge of the cavity coupling factor in the absence of perturbation, together with the change in the reflected power and the cavity resonance frequency shift, are adequate for the determination of the material properties. This eliminates the need to determine the Q-factor change with perturbation which may lead to appreciable error, especially in the presence of mismatch loss. The measurement accuracy can also be improved by a proper choice of the cavity coupling factor prior to the perturbation.

  8. Detection and Inspection of Steel Bars in Reinforced Concrete Structures Using Active Infrared Thermography with Microwave Excitation and Eddy Current Sensors.

    PubMed

    Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah

    2016-02-16

    The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented.

  9. Detection and Inspection of Steel Bars in Reinforced Concrete Structures Using Active Infrared Thermography with Microwave Excitation and Eddy Current Sensors

    PubMed Central

    Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah

    2016-01-01

    The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented. PMID:26891305

  10. A low cost technique for synthesis of gold nanoparticles using microwave heating and its application in signal amplification for detecting Escherichia Coli O157:H7 bacteria

    NASA Astrophysics Data System (ADS)

    Thanh Ngo, Vo Ke; Giang Nguyen, Dang; Phat Huynh, Trong; Lam, Quang Vinh

    2016-09-01

    In the present work a low cost technique for preparation of gold nanoparticles (AuNPs) using microwave heating was developed. The effect of different elements (precursor reagents, irradiation time, and microwave radiation power) on the final morphology of AuNPs obtained through the microwave assisted technique has been investigated. The characterization of the samples has been carried out by transmission electron microscopy, UV–vis absorption spectroscopy, Fourier transform infrared spectroscopy, and powder x-ray diffraction. The results showed that to some extent the above-mentioned characterizations influenced the size of synthetized nanoparticles and application of microwave heating has many advantages such as low cost, rapid preparation and highly uniform particles. As an application in quartz crystal microbalance (QCM) immunosensor, AuNPs are conjugated with the Escherichia coli (E.coli) O157:H7 antibodies for signal amplification to detect E.coli O157:H7 bacteria residual in QCM system.

  11. A low cost technique for synthesis of gold nanoparticles using microwave heating and its application in signal amplification for detecting Escherichia Coli O157:H7 bacteria

    NASA Astrophysics Data System (ADS)

    Thanh Ngo, Vo Ke; Giang Nguyen, Dang; Phat Huynh, Trong; Lam, Quang Vinh

    2016-09-01

    In the present work a low cost technique for preparation of gold nanoparticles (AuNPs) using microwave heating was developed. The effect of different elements (precursor reagents, irradiation time, and microwave radiation power) on the final morphology of AuNPs obtained through the microwave assisted technique has been investigated. The characterization of the samples has been carried out by transmission electron microscopy, UV-vis absorption spectroscopy, Fourier transform infrared spectroscopy, and powder x-ray diffraction. The results showed that to some extent the above-mentioned characterizations influenced the size of synthetized nanoparticles and application of microwave heating has many advantages such as low cost, rapid preparation and highly uniform particles. As an application in quartz crystal microbalance (QCM) immunosensor, AuNPs are conjugated with the Escherichia coli (E.coli) O157:H7 antibodies for signal amplification to detect E.coli O157:H7 bacteria residual in QCM system.

  12. Microstrip ring resonator technique for measuring microwave attenuation in high-Tc superconducting thin films

    NASA Astrophysics Data System (ADS)

    Takemoto, June H.; Oshita, Floyd K.; Fetterman, Harold R.; Kobrin, Paul; Sovero, Emilio

    1989-10-01

    Microwave attenuation of high-Tc superconducting (HTS) films sputtered on MgO and ZrO2 were measured using a microstrip ring resonator circuit. The results for Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O resonators were compared to those for gold-plated resonators of identical design. The losses of superconducting and gold-plated films were determined from unloaded Q-factor measurements. The attenuation of Y-Ba-Cu-O film on an MgO substrate is approximately 31 percent lower than that of gold films at 6.6 GHz and 33 percent lower at 19.2 GHz for temperatures below 50 K. The approach of using microstrips to characterize microwave losses shows the usefulness of HTS films in integrated circuit technology.

  13. Determination of added fat in meat paste using microwave and millimetre wave techniques.

    PubMed

    Ng, Sing K; Ainsworth, Paul; Plunkett, Andrew; Haigh, Arthur D; Gibson, Andrew A P; Parkinson, Graham; Jacobs, George

    2008-08-01

    By evaluating the sensitivity of measurement parameters such as dielectric constant and microwave loss to fat content, several microwave and millimetre methods were compared to identify optimal frequency measurement bands. The results showed that the optimum frequency range lay between 8 and 20GHz where these parameters vary linearly, by up to a factor of 8, as fat is increased to 50% volume. A narrowband waveguide sensor cell was designed and constructed for this optimum range. The imaginary part (ε'') of the complex permittivity demonstrated a better measurements resolution for determining fat content than the real part (ε'). The waveguide method has excellent repeatability as indicated by low relative standard deviation (RSD<4.88%). Temperature and sample density had minimal impact on the accuracy, repeatability and robustness of the final measurement system. A method of mixtures model for complex permittivity was shown to be a useful predictor of fat content. PMID:22063039

  14. Chemical activation by mechanochemical mixing, microwave, and ultrasonic irradiation

    EPA Science Inventory

    The use of emerging MW-assisted chemistry techniques in conjunction with benign reaction media is dramatically reducing chemical waste ad reaction times in several organic syntheses and chemical transformations. This editorial comments on the recent developments in mechanochemica...

  15. Weight estimates and packaging techniques for the microwave radiometer spacecraft. [shuttle compatible design

    NASA Technical Reports Server (NTRS)

    Jensen, J. K.; Wright, R. L.

    1981-01-01

    Estimates of total spacecraft weight and packaging options were made for three conceptual designs of a microwave radiometer spacecraft. Erectable structures were found to be slightly lighter than deployable structures but could be packaged in one-tenth the volume. The tension rim concept, an unconventional design approach, was found to be the lightest and transportable to orbit in the least number of shuttle flights.

  16. Active load control techniques for wind turbines.

    SciTech Connect

    van Dam, C.P.; Berg, Dale E.; Johnson, Scott J.

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  17. Eigenspace techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Liebst, Bradley S.; Farm, Jerome A.

    1987-01-01

    The use of eigenspace techniques for the design of an active flutter suppression system for a hypothetical research drone is discussed. One leading edge and two trailing edge aerodynamic control surfaces and four sensors (accelerometers) are available for each wing. Full state control laws are designed by selecting feedback gains which place closed loop eigenvalues and shape closed loop eigenvectors so as to stabilize wing flutter and reduce gust loads at the wing root while yielding accepatable robustness and satisfying constrains on rms control surface activity. These controllers are realized by state estimators designed using an eigenvalue placement/eigenvector shaping technique which results in recovery of the full state loop transfer characteristics. The resulting feedback compensators are shown to perform almost as well as the full state designs. They also exhibit acceptable performance in situations in which the failure of an actuator is simulated.

  18. Estimating Sea Surface Salinity and Wind Using Combined Passive and Active L-Band Microwave Observations

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Chaubell, Mario J.

    2012-01-01

    Several L-band microwave radiometer and radar missions have been, or will be, operating in space for land and ocean observations. These include the NASA Aquarius mission and the Soil Moisture Active Passive (SMAP) mission, both of which use combined passive/ active L-band instruments. Aquarius s passive/active L-band microwave sensor has been designed to map the salinity field at the surface of the ocean from space. SMAP s primary objectives are for soil moisture and freeze/thaw detection, but it will operate continuously over the ocean, and hence will have significant potential for ocean surface research. In this innovation, an algorithm has been developed to retrieve simultaneously ocean surface salinity and wind from combined passive/active L-band microwave observations of sea surfaces. The algorithm takes advantage of the differing response of brightness temperatures and radar backscatter to salinity, wind speed, and direction, thus minimizing the least squares error (LSE) measure, which signifies the difference between measurements and model functions of brightness temperatures and radar backscatter. The algorithm uses the conjugate gradient method to search for the local minima of the LSE. Three LSE measures with different measurement combinations have been tested. The first LSE measure uses passive microwave data only with retrieval errors reaching 1 to 2 psu (practical salinity units) for salinity, and 1 to 2 m/s for wind speed. The second LSE measure uses both passive and active microwave data for vertical and horizontal polarizations. The addition of active microwave data significantly improves the retrieval accuracy by about a factor of five. To mitigate the impact of Faraday rotation on satellite observations, the third LSE measure uses measurement combinations invariant under the Faraday rotation. For Aquarius, the expected RMS SSS (sea surface salinity) error will be less than about 0.2 psu for low winds, and increases to 0.3 psu at 25 m/s wind speed

  19. The microwave cavity perturbation technique for contact-free and in situ electrical conductivity measurements in catalysis and materials science.

    PubMed

    Eichelbaum, Maik; Stösser, Reinhard; Karpov, Andrey; Dobner, Cornelia-Katharina; Rosowski, Frank; Trunschke, Annette; Schlögl, Robert

    2012-01-21

    We have developed a noncontact method to probe the electrical conductivity and complex permittivity of single and polycrystalline samples in a flow-through reactor in the temperature range of 20-500 °C and in various gas atmospheres. The method is based on the microwave cavity perturbation technique and allows the simultaneous measurement of microwave conductivity, permittivity and of the catalytic performance of heterogeneous catalysts without any need for contacting the sample with electrodes. The sensitivity of the method towards changes in bulk properties was proven by the investigation of characteristic first-order phase transitions of the ionic conductor rubidium nitrate in the temperature range between 20 and 320 °C, and by studying the temperature dependence of the complex permittivity and conductivity of a niobium(V)-doped vanadium-phosphorous-oxide catalyst for the selective oxidation of n-butane to maleic anhydride. Simultaneously, the catalytic performance was probed by on line GC analysis of evolving product gases making the technique a real in situ method enabling the noninvasive investigation of electronic structure-function relationships.

  20. Potential of jackfruit peel as precursor for activated carbon prepared by microwave induced NaOH activation.

    PubMed

    Foo, K Y; Hameed, B H

    2012-05-01

    The feasibility of preparing activated carbon (JPAC) from jackfruit peel, an industrial residue abundantly available from food manufacturing plants via microwave-assisted NaOH activation was explored. The influences of chemical impregnation ratio, microwave power and radiation time on the properties of activated carbon were investigated. JPAC was examined by pore structural analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption isotherm, elemental analysis, surface acidity/basicity and zeta potential measurements. The adsorptive behavior of JPAC was quantified using methylene blue as model dye compound. The best conditions resulted in JPAC with a monolayer adsorption capacity of 400.06 mg/g and carbon yield of 80.82%. The adsorption data was best fitted to the pseudo-second-order equation, while the adsorption mechanism was well described by the intraparticle diffusion model. The findings revealed the versatility of jackfruit peels as good precursor for preparation of high quality activated carbon.

  1. Renewable phenols production by catalytic microwave pyrolysis of Douglas fir sawdust pellets with activated carbon catalysts.

    PubMed

    Bu, Quan; Lei, Hanwu; Wang, Lu; Wei, Yi; Zhu, Lei; Liu, Yupeng; Liang, Jing; Tang, Juming

    2013-08-01

    The effects of different activated carbon (AC) catalysts based on various carbon sources on products yield and chemical compositions of upgraded pyrolysis oils were investigated using microwave pyrolysis of Douglas fir sawdust pellets. Results showed that high amounts of phenols were obtained (74.61% and 74.77% in the upgraded bio-oils by DARCO MRX (wood based) and DARCO 830 (lignite coal based) activated carbons, respectively). The catalysts recycling test of the selected catalysts indicated that the carbon catalysts can be reused for at least 3-4 times and produced high concentrations of phenol and phenolic compounds. The chemical reaction mechanism for phenolics production during microwave pyrolysis of biomass was analyzed. PMID:23765005

  2. Renewable phenols production by catalytic microwave pyrolysis of Douglas fir sawdust pellets with activated carbon catalysts.

    PubMed

    Bu, Quan; Lei, Hanwu; Wang, Lu; Wei, Yi; Zhu, Lei; Liu, Yupeng; Liang, Jing; Tang, Juming

    2013-08-01

    The effects of different activated carbon (AC) catalysts based on various carbon sources on products yield and chemical compositions of upgraded pyrolysis oils were investigated using microwave pyrolysis of Douglas fir sawdust pellets. Results showed that high amounts of phenols were obtained (74.61% and 74.77% in the upgraded bio-oils by DARCO MRX (wood based) and DARCO 830 (lignite coal based) activated carbons, respectively). The catalysts recycling test of the selected catalysts indicated that the carbon catalysts can be reused for at least 3-4 times and produced high concentrations of phenol and phenolic compounds. The chemical reaction mechanism for phenolics production during microwave pyrolysis of biomass was analyzed.

  3. Microwave annealing

    NASA Astrophysics Data System (ADS)

    Lee, Yao-Jen; Cho, T.-C.; Chuang, S.-S.; Hsueh, F.-K.; Lu, Y.-L.; Sung, P.-J.; Chen, S.-J.; Lo, C.-H.; Lai, C.-H.; Current, Michael I.; Tseng, T.-Y.; Chao, T.-S.; Yang, F.-L.

    2012-11-01

    Microwave annealing of dopants in Si has been reported to produce highly activated junctions at temperatures far below those needed for comparable results using conventional thermal processes. However the details of the kinetics and mechanisms for microwave annealing are far from well understood. Comparisons between MWA and RTA of dopants in implanted Si has been investigated to produce highly activated junctions. First, As, 31P, and BF 2 implants in Si substrate were annealed by MWA at temperatures below 550 °C.

  4. Active microwave investigation of snowpacks: Experimental documentation, Colorado 1979-1980

    NASA Technical Reports Server (NTRS)

    Stiles, W. H.; Ulaby, F. T.; Aslam, A.; Abdelrazik, M.

    1981-01-01

    During the winter of 1979-1980, the University of Kansas Microwave Active Spectrometer systems measured the backscattering properties of snowpacks under varying conditions at four test sites in Colorado. In addition to the radar data over 1-35 GHz, ground-truth measurements of the atmospheric, snow, and soil characteristics were obtained for each radar data set. The test sites, data acquisition procedures, and data that were acquired in this experiment are presented and described.

  5. Microwave-assisted preparation of azachalcones and their N-alkyl derivatives with antimicrobial activities.

    PubMed

    Usta, Asu; Öztürk, Elif; Beriş, Fatih Ş

    2014-01-01

    Two new azachalcones were prepared by both Claisen-Schmidt condensation and a simple environmentally trendy microwave-assisted method. Ten new N-alkyl (C6,8,10,12,14)-substituted azachalconium bromides (3a-e, 4a-e) were prepared from compounds 1 and 2 with corresponding alkyl halides. The antimicrobial activities of all the compounds were tested against Enterococcus faecalis, Yersinia pseudotuberculosis, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus micro-organisms. PMID:24571646

  6. Microwave-assisted extraction of polysaccharides from Yupingfeng powder and their antioxidant activity

    PubMed Central

    Wang, Dan; Zhang, Bi-Bo; Qu, Xiao-Xia; Gao, Feng; Yuan, Min-Yong

    2015-01-01

    Background: Microwave-assisted reflux extraction of polysaccharides YPF-P from the famous Chinese traditional drug, Yupingfeng powder, optimization of extracting conditions and evaluation of their antioxidant activity were conducted in this study. Results: Single factor effect trends were achieved through yields and contends of YPF-P obtained from different extracting conditions. Then through a three-level, four-variable Box-Behnken design of response surface methodology adopting yield as response, the optimal conditions were determined as follows: Material/solvent ratio 1:23.37, microwave power 560 W, Extraction temperature 64°C, and extraction time 9.62 min. Under the optimal conditions, the YPF-P extraction yield was 3.23%, and its content was detected as 38.52%. In antioxidant assays, the YPF-P was tested to possess 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities with an IC50 value of 0.262 mg/ml. In addition, YPF-P was also proved to have relatively low ferric reducing antioxidant power (FRAP), compared to Vc, through FRAP assay. Conclusion: In the microwave assisted reflux extraction research, good YPF-P yield was achieved from materials with relatively low YPF-P content. And for the first time, both DPPH and FRAP assays were conducted on YPF-P, which proved that the antioxidant activity of YPF-P contributed to the functions of this medicine. PMID:26246730

  7. Preparation and characterization of activated carbon from sunflower seed oil residue via microwave assisted K2CO3 activation.

    PubMed

    Foo, K Y; Hameed, B H

    2011-10-01

    Sunflower seed oil residue, a by-product of sunflower seed oil refining, was utilized as a feedstock for preparation of activated carbon (SSHAC) via microwave induced K(2)CO(3) chemical activation. SSHAC was characterized by Fourier transform infrared spectroscopy, nitrogen adsorption-desorption and elemental analysis. Surface acidity/basicity was examined with acid-base titration, while the adsorptive properties of SSHAC were quantified using methylene blue (MB) and acid blue 15 (AB). The monolayer adsorption capacities of MB and AB were 473.44 and 430.37 mg/g, while the Brunauer-Emmett-Teller surface area, Langmuir surface area and total pore volume were 1411.55 m(2)/g, 2137.72 m(2)/g and 0.836 cm(3)/g, respectively. The findings revealed the potential to prepare high surface area activated carbon from sunflower seed oil residue by microwave irradiation.

  8. Synergism of active and passive microwave data for estimating bare surface soil moisture

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.; Njoku, Eni G.; Wegmueller, Urs

    1993-01-01

    Active and passive microwave sensors were applied effectively to the problem of estimating the surface soil moisture in a variety of environmental conditions. Research to date has shown that both types of sensors are also sensitive to the surface roughness and the vegetation cover. In estimating the soil moisture, the effect of the vegetation and roughness are often corrected either by acquiring multi-configuration (frequency and polarization) data or by adjusting the surface parameters in order to match the model predictions to the measured data. Due to the limitations on multi-configuration spaceborne data and the lack of a priori knowledge of the surface characteristics for parameter adjustments, it was suggested that the synergistic use of the sensors may improve the estimation of the soil moisture over the extreme range of naturally occurring soil and vegetation conditions. To investigate this problem, the backscattering and emission from a bare soil surface using the classical rough surface scattering theory were modeled. The model combines the small perturbation and the Kirchhoff approximations in conjunction with the Peak formulation to cover a wide range of surface roughness parameters with respect to frequency for both active and passive measurements. In this approach, the same analytical method was used to calculate the backscattering and emissivity. Therefore, the active and passive simulations can be combined at various polarizations and frequencies in order to estimate the soil moisture more actively. As a result, it is shown that (1) the emissivity is less dependent on the surface correlation length, (2) the ratio of the backscattering coefficient (HH) over the surface reflectivity (H) is almost independent of the soil moisture for a wide range of surface roughness, and (3) this ratio can be approximated as a linear function of the surface rms height. The results were compared with the data obtained by a multi-frequency radiometer

  9. Microwave activation of electrochemical processes: enhanced electrodehalogenation in organic solvent media.

    PubMed

    Tsai, Yu-Chen; Coles, Barry A; Compton, Richard G; Marken, Frank

    2002-08-21

    The effect of high-intensity microwave radiation focused into a "hot spot" region in the vicinity of an electrode on electrochemical processes with and without coupled chemical reaction steps has been investigated in organic solvent media. First, the electrochemically reversible oxidation of ferrocene in acetonitrile and DMF is shown to be affected by microwave-induced thermal activation, resulting in increased currents and voltammetric wave shape effects. A FIDAP simulation investigation allows quantitative insight into the temperature distribution and concentration gradients at the electrode / solution interface. Next, the effect of intense microwave radiation on electroorganic reactions is considered for the case of ECE processes. Experimental data for the reduction of p-bromonitrobenzene, o-bromonitrobenzene, and m-iodonitrobenzene in DMF and acetonitrile are analyzed in terms of an electron transfer (E), followed by a chemical dehalogenation step (C), and finally followed by another electron-transfer step (E). The presence of the "hot spot" in the solution phase favors processes with high activation barriers.

  10. Influence of microwave parameters and water activity on radical generation in rice starch.

    PubMed

    Fan, Daming; Liu, Yixiao; Hu, Bo; Lin, Lufen; Huang, Luelue; Wang, Liyun; Zhao, Jianxin; Zhang, Hao; Chen, Wei

    2016-04-01

    Radical generation in rice starch under microwave treatment as well as the related chemical bond changes were investigated by electron paramagnetic resonance (EPR) and Raman spectroscopy. Samples with water activity of 0.4 and 0.7 have been treated and analyzed. It was found that microwave power level and water content could influence the amount of radicals along with the radical components and their contribution. Raman spectra showed corresponding changes in vibrational features of chemical bonds. During storage the signal intensity started to drop after a short period of increase. Rice starch radicals were relatively stable and could exist a long time in room temperature. Through signal simulation, 3 main components were separated from the original spectra and the evolving process was investigated. The main component was the radical located on C1 position in the glucose ring. PMID:26593462

  11. Antioxidant Activity and Phenolic Content of Microwave-Assisted Solanum melongena Extracts

    PubMed Central

    Modica, Maria N.; Pittalà, Valeria; Siracusa, Maria A.; Sorrenti, Valeria; Acquaviva, Rosaria

    2014-01-01

    Eggplant fruit is a very rich source of polyphenol compounds endowed with antioxidant properties. The aim of this study was to extract polyphenols from eggplant entire fruit, pulp, or skin, both fresh and dry, and compare results between conventional extraction and microwave-assisted extraction (MAE). The effects of time exposure (15, 30, 60, and 90 min) and solvent (water 100% or ethanol/water 50%) were also evaluated. The highest amount of polyphenols was found in the extract obtained from dry peeled skin treated with 50% aqueous ethanol, irradiated with microwave; this extract contained also high quantity of flavonoids and showed good antioxidant activity expressed by its capacity to scavenge superoxide anion and to inhibit lipid peroxidation. PMID:24683354

  12. NASA Activities as they Relate to Microwave Technology for Aerospace Communications Systems

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2011-01-01

    This presentation discusses current NASA activities and plans as they relate to microwave technology for aerospace communications. The presentations discusses some examples of the aforementioned technology within the context of the existing and future communications architectures and technology development roadmaps. Examples of the evolution of key technology from idea to deployment are provided as well as the challenges that lay ahead regarding advancing microwave technology to ensure that future NASA missions are not constrained by lack of communication or navigation capabilities. The presentation closes with some examples of emerging ongoing opportunities for establishing collaborative efforts between NASA, Industry, and Academia to encourage the development, demonstration and insertion of communications technology in pertinent aerospace systems.

  13. Slow potentials and spike unit activity of the cerebral cortex of rabbits exposed to microwaves

    SciTech Connect

    Chizhenkova, R.A.

    1988-01-01

    Unanesthetized rabbits exposed to 12.5-cm microwaves at a field intensity of 40 mW/cm/sup 2/ in the region of the head showed an increase in the number of slow waves and spindle-shaped firings in the EEG and a change in the discharge frequency of neurons in the visual cortex in 41-52% of the cases. An enhancement of the evoked response of visual cortex neurons to light was observed in 61% of the cases and a facilitation of the driving response in 80% of all cases. It is concluded that the evoked response is a more sensitive indicator of the microwave effect than background activity. The effects of the fields were most distinctly observed with the driving response.

  14. Antioxidant activity and phenolic content of microwave-assisted Solanum melongena extracts.

    PubMed

    Salerno, Loredana; Modica, Maria N; Pittalà, Valeria; Romeo, Giuseppe; Siracusa, Maria A; Di Giacomo, Claudia; Sorrenti, Valeria; Acquaviva, Rosaria

    2014-01-01

    Eggplant fruit is a very rich source of polyphenol compounds endowed with antioxidant properties. The aim of this study was to extract polyphenols from eggplant entire fruit, pulp, or skin, both fresh and dry, and compare results between conventional extraction and microwave-assisted extraction (MAE). The effects of time exposure (15, 30, 60, and 90 min) and solvent (water 100% or ethanol/water 50%) were also evaluated. The highest amount of polyphenols was found in the extract obtained from dry peeled skin treated with 50% aqueous ethanol, irradiated with microwave; this extract contained also high quantity of flavonoids and showed good antioxidant activity expressed by its capacity to scavenge superoxide anion and to inhibit lipid peroxidation.

  15. Influence of microwave parameters and water activity on radical generation in rice starch.

    PubMed

    Fan, Daming; Liu, Yixiao; Hu, Bo; Lin, Lufen; Huang, Luelue; Wang, Liyun; Zhao, Jianxin; Zhang, Hao; Chen, Wei

    2016-04-01

    Radical generation in rice starch under microwave treatment as well as the related chemical bond changes were investigated by electron paramagnetic resonance (EPR) and Raman spectroscopy. Samples with water activity of 0.4 and 0.7 have been treated and analyzed. It was found that microwave power level and water content could influence the amount of radicals along with the radical components and their contribution. Raman spectra showed corresponding changes in vibrational features of chemical bonds. During storage the signal intensity started to drop after a short period of increase. Rice starch radicals were relatively stable and could exist a long time in room temperature. Through signal simulation, 3 main components were separated from the original spectra and the evolving process was investigated. The main component was the radical located on C1 position in the glucose ring.

  16. Superficial heat reduction technique for a hybrid microwave-optical device.

    PubMed

    Al-Armaghany, A; Tong, K; Leung, T S

    2013-01-01

    Microwave applicator in the form of a circularly polarized microstrip patch antenna is proposed to provide localized deep heating in biological tissue, which causes blood vessels to dilate leading to changes in tissue oxygenation. These changes are monitored by an integrated optical system for studying thermoregulation in different parts of the human body. Using computer simulations, this paper compares circularly and linearly polarized antennas in terms of the efficiency of depositing electromagnetic (EM) energy and the heating patterns. The biological model composes of the skin, fat and muscle layers with appropriate dielectric and thermal properties. The results show that for the same specific absorption rate (SAR) in the muscle, the circularly polarized antenna results in a lower SAR in the skin-fat interface than the linearly polarized antenna. The thermal distribution is also presented based on the biological heat equation. The proposed circularly polarized antenna shows heat reduction in the superficial layers in comparison to the linearly polarized antenna.

  17. Measurement of density fluctuations in the PDX tokamak using microwave scattering techniques

    SciTech Connect

    Crowley, T.

    1984-01-01

    Density fluctuations in the PDX tokamak were analyzed with the scattering of 2 mm microwaves. The primary focus of the study was the low frequency (

  18. Novel materials, fabrication techniques and algorithms for microwave and THz components, systems and applications

    NASA Astrophysics Data System (ADS)

    Liang, Min

    This dissertation presents the investigation of several additive manufactured components in RF and THz frequency, as well as the applications of gradient index lens based direction of arrival (DOA) estimation system and broadband electronically beam scanning system. Also, a polymer matrix composite method to achieve artificially controlled effective dielectric properties for 3D printing material is studied. Moreover, the characterization of carbon based nano-materials at microwave and THz frequency, photoconductive antenna array based Terahertz time-domain spectroscopy (THz-TDS) near field imaging system, and a compressive sensing based microwave imaging system is discussed in this dissertation. First, the design, fabrication and characterization of several 3D printed components in microwave and THz frequency are presented. These components include 3D printed broadband Luneburg lens, 3D printed patch antenna, 3D printed multilayer microstrip line structure with vertical transition, THz all-dielectric EMXT waveguide to planar microstrip transition structure and 3D printed dielectric reflectarrays. Second, the additive manufactured 3D Luneburg Lens is employed for DOA estimation application. Using the special property of a Luneburg lens that every point on the surface of the Lens is the focal point of a plane wave incident from the opposite side, 36 detectors are mounted around the surface of the lens to estimate the direction of arrival (DOA) of a microwave signal. The direction finding results using a correlation algorithm show that the averaged error is smaller than 1º for all 360 degree incident angles. Third, a novel broadband electronic scanning system based on Luneburg lens phased array structure is reported. The radiation elements of the phased array are mounted around the surface of a Luneburg lens. By controlling the phase and amplitude of only a few adjacent elements, electronic beam scanning with various radiation patterns can be easily achieved

  19. Superficial heat reduction technique for a hybrid microwave-optical device.

    PubMed

    Al-Armaghany, A; Tong, K; Leung, T S

    2013-01-01

    Microwave applicator in the form of a circularly polarized microstrip patch antenna is proposed to provide localized deep heating in biological tissue, which causes blood vessels to dilate leading to changes in tissue oxygenation. These changes are monitored by an integrated optical system for studying thermoregulation in different parts of the human body. Using computer simulations, this paper compares circularly and linearly polarized antennas in terms of the efficiency of depositing electromagnetic (EM) energy and the heating patterns. The biological model composes of the skin, fat and muscle layers with appropriate dielectric and thermal properties. The results show that for the same specific absorption rate (SAR) in the muscle, the circularly polarized antenna results in a lower SAR in the skin-fat interface than the linearly polarized antenna. The thermal distribution is also presented based on the biological heat equation. The proposed circularly polarized antenna shows heat reduction in the superficial layers in comparison to the linearly polarized antenna. PMID:24110546

  20. Active microwave remote sensing of an anisotropic random medium layer

    NASA Technical Reports Server (NTRS)

    Lee, J. K.; Kong, J. A.

    1985-01-01

    A two-layer anisotropic random medium model has been developed to study the active remote sensing of the earth. The dyadic Green's function for a two-layer anisotropic medium is developed and used in conjunction with the first-order Born approximation to calculate the backscattering coefficients. It is shown that strong cross-polarization occurs in the single scattering process and is indispensable in the interpretation of radar measurements of sea ice at different frequencies, polarizations, and viewing angles. The effects of anisotropy on the angular responses of backscattering coefficients are also illustrated.

  1. Structure and polarization of active region microwave emission

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Alissandrakis, C. E.

    1984-01-01

    Active region radio emission observations made at 6.16 cm wavelength during May 20-27, 1980, are the bases of maps of total intensity and circular polarization presented for the three regions whose Hale numbers are 16850, 16863, and 16864. A detailed comparison is made between these maps and on- and off-band H-alpha pictures and magnetograms. The neutral lines with which the strongest sources were associated have their two opposite polarities close to each other, implying a high magnetic field gradient, and are also associated with arch filament systems. A detailed analysis is undertaken of observations of the circular polarization sense inversion in region 16863. The large scale structure of the magnetic field can be approximated by a dipole with its axis inclined by 11 deg with respect to the photosphere, and with a dipole moment of about 2 x 10 to the 31 power cgs units.

  2. Further evidence for low intensity of the geomagnetic field during the early Cretaceous time: using the modified Shaw method and microwave technique

    NASA Astrophysics Data System (ADS)

    Pan, Yongxin; Hill, Mimi. J.; Zhu, Rixiang; Shaw, John

    2004-05-01

    We report new absolute palaeointensity estimates using basalts from northeastern China (K/Ar age, 125-120 Ma) using the modified Shaw method in conjunction with the microwave technique. Samples for the palaeointensity experiments were selected mainly based on their good reversibility of thermomagnetic curves and single primary magnetization characteristics. Using the modified Shaw method, 28 out of 45 measured samples from 10 cooling units give a virtual dipole moment of (3.1 +/- 1.0) × 1022 Am2, and the microwave technique using 14 acceptable determinations (out of 20 measured) give an average value of (2.9 +/- 0.9) × 1022 Am2. Results using both the modified Shaw method and the microwave technique demonstrate that the geomagnetic field strength recorded by these lavas was low. This is in agreement with previous results of the same time interval obtained by the Thellier method with partial thermal remanence (p-TRM) checks. The fact that different techniques give qualitatively compatible low palaeointensity results provides greater confidence that the weak field features seen just prior to the Cretaceous normal superchron (CNS) are the result of the actual field recorded by the basalts as opposed to artefacts of the method/analysis. This study also demonstrates that the microwave technique can be used for very old basalts.

  3. Microwave, ultrasound, thermal treatments, and bead milling as intensification techniques for extraction of lipids from oleaginous Yarrowia lipolytica yeast for a biojetfuel application.

    PubMed

    Meullemiestre, Alice; Breil, Cassandra; Abert-Vian, Maryline; Chemat, Farid

    2016-07-01

    In the present work, two different ways of lipids extraction from Yarrowia lipolytica yeast were investigated in order to maximize the extraction yield. Firstly, various modern techniques of extraction including ultrasound, microwave, and bead milling were tested to intensify the efficiency of lipid recovery. Secondly, several pretreatments such as freezing/defrosting, cold drying, bead milling, and microwave prior two washing of mixture solvent of chloroform:methanol (1:2, v/v) were study to evaluate the impact on lipid recovery. All these treatments were compared to conventional maceration, in terms of lipids extraction yield and lipid composition analysis. The main result of this study is the large difference of lipid recovery among treatments and the alteration of lipids profile after microwave and ultrasound techniques.

  4. Novel materials, fabrication techniques and algorithms for microwave and THz components, systems and applications

    NASA Astrophysics Data System (ADS)

    Liang, Min

    This dissertation presents the investigation of several additive manufactured components in RF and THz frequency, as well as the applications of gradient index lens based direction of arrival (DOA) estimation system and broadband electronically beam scanning system. Also, a polymer matrix composite method to achieve artificially controlled effective dielectric properties for 3D printing material is studied. Moreover, the characterization of carbon based nano-materials at microwave and THz frequency, photoconductive antenna array based Terahertz time-domain spectroscopy (THz-TDS) near field imaging system, and a compressive sensing based microwave imaging system is discussed in this dissertation. First, the design, fabrication and characterization of several 3D printed components in microwave and THz frequency are presented. These components include 3D printed broadband Luneburg lens, 3D printed patch antenna, 3D printed multilayer microstrip line structure with vertical transition, THz all-dielectric EMXT waveguide to planar microstrip transition structure and 3D printed dielectric reflectarrays. Second, the additive manufactured 3D Luneburg Lens is employed for DOA estimation application. Using the special property of a Luneburg lens that every point on the surface of the Lens is the focal point of a plane wave incident from the opposite side, 36 detectors are mounted around the surface of the lens to estimate the direction of arrival (DOA) of a microwave signal. The direction finding results using a correlation algorithm show that the averaged error is smaller than 1º for all 360 degree incident angles. Third, a novel broadband electronic scanning system based on Luneburg lens phased array structure is reported. The radiation elements of the phased array are mounted around the surface of a Luneburg lens. By controlling the phase and amplitude of only a few adjacent elements, electronic beam scanning with various radiation patterns can be easily achieved

  5. Effective dopant activation by susceptor-assisted microwave annealing of low energy boron implanted and phosphorus implanted silicon

    SciTech Connect

    Zhao, Zhao; Vemuri, Rajitha N. P.; Alford, T. L.; David Theodore, N.; Lu, Wei; Lau, S. S.; Lanz, A.

    2013-12-28

    Rapid processing and reduced end-of-range diffusion result from susceptor-assisted microwave (MW) annealing, making this technique an efficient processing alternative for electrically activating dopants within ion-implanted semiconductors. Sheet resistance and Hall measurements provide evidence of electrical activation. Susceptor-assisted MW annealing, of ion-implanted Si, enables more effective dopant activation and at lower temperatures than required for rapid thermal annealing (RTA). Raman spectroscopy and ion channeling analyses are used to monitor the extent of ion implantation damage and recrystallization. The presence and behavior of extended defects are monitored by cross-section transmission electron microscopy. Phosphorus implanted Si samples experience effective electrical activation upon MW annealing. On the other hand, when boron implanted Si is MW annealed, the growth of extended defects results in reduced crystalline quality that hinders the electrical activation process. Further comparison of dopant diffusion resulting from MW annealing and rapid thermal annealing is performed using secondary ion mass spectroscopy. MW annealed ion implanted samples show less end-of-range diffusion when compared to RTA samples. In particular, MW annealed P{sup +} implanted samples achieve no visible diffusion and equivalent electrical activation at a lower temperature and with a shorter time-duration of annealing compared to RTA. In this study, the peak temperature attained during annealing does not depend on the dopant species or dose, for susceptor-assisted MW annealing of ion-implanted Si.

  6. Effective dopant activation by susceptor-assisted microwave annealing of low energy boron implanted and phosphorus implanted silicon

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; David Theodore, N.; Vemuri, Rajitha N. P.; Lu, Wei; Lau, S. S.; Lanz, A.; Alford, T. L.

    2013-12-01

    Rapid processing and reduced end-of-range diffusion result from susceptor-assisted microwave (MW) annealing, making this technique an efficient processing alternative for electrically activating dopants within ion-implanted semiconductors. Sheet resistance and Hall measurements provide evidence of electrical activation. Susceptor-assisted MW annealing, of ion-implanted Si, enables more effective dopant activation and at lower temperatures than required for rapid thermal annealing (RTA). Raman spectroscopy and ion channeling analyses are used to monitor the extent of ion implantation damage and recrystallization. The presence and behavior of extended defects are monitored by cross-section transmission electron microscopy. Phosphorus implanted Si samples experience effective electrical activation upon MW annealing. On the other hand, when boron implanted Si is MW annealed, the growth of extended defects results in reduced crystalline quality that hinders the electrical activation process. Further comparison of dopant diffusion resulting from MW annealing and rapid thermal annealing is performed using secondary ion mass spectroscopy. MW annealed ion implanted samples show less end-of-range diffusion when compared to RTA samples. In particular, MW annealed P+ implanted samples achieve no visible diffusion and equivalent electrical activation at a lower temperature and with a shorter time-duration of annealing compared to RTA. In this study, the peak temperature attained during annealing does not depend on the dopant species or dose, for susceptor-assisted MW annealing of ion-implanted Si.

  7. Microwave-assisted preparation and adsorption performance of activated carbon from biodiesel industry solid reside: influence of operational parameters.

    PubMed

    Foo, K Y; Hameed, B H

    2012-01-01

    Preparation of activated carbon has been attempted using KOH as activating agent by microwave heating from biodiesel industry solid residue, oil palm empty fruit bunch (EFBAC). The significance of chemical impregnation ratio (IR), microwave power and activation time on the properties of activated carbon were investigated. The optimum condition has been identified at the IR of 1.0, microwave power of 600 W and activation time of 7 min. EFBAC was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement, determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue as dye model compound. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 395.30 mg/g and carbon yield of 73.78%, while the BET surface area and total pore volume were corresponding to 1372 m2/g and 0.76 cm3/g, respectively.

  8. Advanced noise reduction techniques for ultra-low phase noise optical-to-microwave division with femtosecond fiber combs.

    PubMed

    Zhang, Wei; Xu, Zhenyu; Lours, Michel; Boudot, Rodolphe; Kersalé, Yann; Luiten, Andre N; Le Coq, Yann; Santarelli, Giorgio

    2011-05-01

    We report what we believe to be the lowest phase noise optical-to-microwave frequency division using fiber-based femtosecond optical frequency combs: a residual phase noise of -120 dBc/Hz at 1 Hz offset from an 11.55 GHz carrier frequency. Furthermore, we report a detailed investigation into the fundamental noise sources which affect the division process itself. Two frequency combs with quasi-identical configurations are referenced to a common ultrastable cavity laser source. To identify each of the limiting effects, we implement an ultra-low noise carrier-suppression measurement system, which avoids the detection and amplification noise of more conventional techniques. This technique suppresses these unwanted sources of noise to very low levels. In the Fourier frequency range of ∼200 Hz to 100 kHz, a feed-forward technique based on a voltage-controlled phase shifter delivers a further noise reduction of 10 dB. For lower Fourier frequencies, optical power stabilization is implemented to reduce the relative intensity noise which causes unwanted phase noise through power-to-phase conversion in the detector. We implement and compare two possible control schemes based on an acousto-optical modulator and comb pump current. We also present wideband measurements of the relative intensity noise of the fiber comb. PMID:21622045

  9. Microwave hydrothermal synthesis of AgInS{sub 2} with visible light photocatalytic activity

    SciTech Connect

    Zhang, Wenjuan; Li, Danzhen; Chen, Zhixin; Sun, Meng; Li, Wenjuan; Lin, Qiang; Fu, Xianzhi

    2011-07-15

    Highlights: {yields} AgInS{sub 2} nanoparticles were synthesized by a microwave hydrothermal method. {yields} This method involves no organic solvents, catalysts, or surfactants. {yields} AgInS{sub 2} showed higher activity for photocatalytic degradation MO than TiO{sub 2-x}N{sub x}. {yields} Holes, O{sub 2}{center_dot}{sup -}, and H{sub 2}O{sub 2} played an important role in the photocatalytic process. -- Abstract: AgInS{sub 2} nanoparticles with superior visible light photocatalytic activity were successfully synthesized by a microwave hydrothermal method. This method is a highly efficient and rapid route that involves no organic solvents, catalysts, or surfactants. The photocatalytic activity of AgInS{sub 2} nanoparticles was investigated through the degradation of dyes under visible light irradiation. Compared with TiO{sub 2-x}N{sub x}, AgInS{sub 2} has exhibited a superior activity for photocatalytic degradation MO under the same condition. The experiment results showed that superoxide radicals (O{sub 2}{center_dot}{sup -}), hydrogen peroxides (H{sub 2}O{sub 2}) and holes (h{sup +}) were the mainly active species for the degradation of organic pollutants over AgInS{sub 2}. Through the determination of flat band potential, the energy band structure of the sample was obtained. A possible mechanism for the degradation of organic pollutant over AgInS{sub 2} was proposed.

  10. Microwave assisted synthesis, antifungal activity, and DFT study of some novel triazolinone derivatives.

    PubMed

    Sun, Na-Bo; Jin, Jian-Zhong; He, Fang-Yue

    2015-01-01

    A series of some novel 1,2,4-triazol-5(4H)-one derivatives were designed and synthesized under microwave irradiation via multistep reaction. The structures of 1,2,4-triazoles were confirmed by (1)H NMR, MS, FTIR, and elemental analysis. The antifungal activities of 1,2,4-triazoles were determined. The antifungal activity results indicated that the compounds 5c, 5f, and 5h exhibited good activity against Pythium ultimum, and the compounds 5b and 5c displayed good activity against Corynespora cassiicola. Theoretical calculation of the compound 5c was carried out with B3LYP/6-31G (d). The full geometry optimization was carried out using 6-31G(d) basis set, and the frontier orbital energy and electrostatic potential were discussed, and the structure-activity relationship was also studied. PMID:25861651

  11. Sensitivity of Active and Passive Microwave Observations to Soil Moisture during Growing Corn

    NASA Astrophysics Data System (ADS)

    Judge, J.; Monsivais-Huertero, A.; Liu, P.; De Roo, R. D.; England, A. W.; Nagarajan, K.

    2011-12-01

    Soil moisture (SM) in the root zone is a key factor governing water and energy fluxes at the land surface and its accurate knowledge is critical to predictions of weather and near-term climate, nutrient cycles, crop-yield, and ecosystem productivity. Microwave observations, such as those at L-band, are highly sensitive to soil moisture in the upper few centimeters (near-surface). The two satellite-based missions dedicated to soil moisture estimation include, the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission and the planned NASA Soil Moisture Active/Passive (SMAP) [4] mission. The SMAP mission will include active and passive sensors at L-band to provide global observations of SM, with a repeat coverage of every 2-3 days. These observations can significantly improve root zone soil moisture estimates through data assimilation into land surface models (LSMs). Both the active (radar) and passive (radiometer) microwave sensors measure radiation quantities that are functions of soil dielectric constant and exhibit similar sensitivities to SM. In addition to the SM sensitivity, radar backscatter is highly sensitive to roughness of soil surface and scattering within the vegetation. These effects may produce a much larger dynamic range in backscatter than that produced due to SM changes alone. In this study, we discuss the field observations of active and passive signatures of growing corn at L-band from several seasons during the tenth Microwave, Water and Energy Balance Experiment (MicroWEX-10) conducted in North Central Florida, and to understand the sensitivity of these signatures to soil moisture under dynamic vegetation conditions. The MicroWEXs are a series of season-long field experiments conducted during the growing seasons of sweet corn, cotton, and energy cane over the past six years (for example, [22]). The corn was planted on July 5 and harvested on September 23, 2011 during MicroWEX-10. The size of the field was 0.04 km2 and the soils

  12. Planar microwave and millimeter-wave lumped elements and coupled-line filters using micro-machining techniques

    NASA Astrophysics Data System (ADS)

    Chi, Chen-Yu; Rebeiz, Gabriel M.

    1995-04-01

    Planar microwave and millimeter-wave inductors and capacitors have been fabricated on high-resistivity silicon substrates using micromachining techniques. The inductors and capacitors are suspended on a thin dielectric membrane to reduce the parasitic capacitance to ground. The resonant frequencies of a 1.2 nH and a 1.7-nH inductor have been increased from 22 GHz and 17 GHz to around 70 GHz and 50 GHz, respectively. We also report on the design and measurement of a new class of stripline filters suspended on a thin dielectric membrane. Interdigitated filters with 43% and 5% bandwidth have been fabricated and exhibit a port-to-port 0.7 dB and 2.0 dB loss, respectively, at 14-15 GHz. The micromachining fabrication technique can be used with silicon and GaAs substrates in microstrip or coplanar-waveguide configurations to result in planar low-loss lumped elements and filters suitable for monolithic integration or surface mount devices up to 100 GHz.

  13. A passive microwave technique for estimating rainfall and vertical structure information from space. Part 1: Algorithm description

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Giglio, Louis

    1994-01-01

    This paper describes a multichannel physical approach for retrieving rainfall and vertical structure information from satellite-based passive microwave observations. The algorithm makes use of statistical inversion techniques based upon theoretically calculated relations between rainfall rates and brightness temperatures. Potential errors introduced into the theoretical calculations by the unknown vertical distribution of hydrometeors are overcome by explicity accounting for diverse hydrometeor profiles. This is accomplished by allowing for a number of different vertical distributions in the theoretical brightness temperature calculations and requiring consistency between the observed and calculated brightness temperatures. This paper will focus primarily on the theoretical aspects of the retrieval algorithm, which includes a procedure used to account for inhomogeneities of the rainfall within the satellite field of view as well as a detailed description of the algorithm as it is applied over both ocean and land surfaces. The residual error between observed and calculated brightness temperatures is found to be an important quantity in assessing the uniqueness of the solution. It is further found that the residual error is a meaningful quantity that can be used to derive expected accuracies from this retrieval technique. Examples comparing the retrieved results as well as the detailed analysis of the algorithm performance under various circumstances are the subject of a companion paper.

  14. Remote sensing of atmospheric water vapor, liquid water and wind speed at the ocean surface by passive microwave techniques from the Nimbus-5 satellite

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Wilheit, T. T.

    1977-01-01

    The microwave brightness temperature measurements for Nimbus-5 electrically scanned microwave radiometer and Nimbus E microwave spectrometer are used to retrieve the atmospheric water vapor, liquid water and wind speed by a quasi-statistical retrieval technique. It is shown that the brightness temperature can be utilized to yield these parameters under various weather conditions. Observations at 19.35 GHz, 22.235 GHz and 31.4 GHz were input to the regression equations. The retrieved values of these parameters for portions of two Nimbus-5 orbits are presented. Then comparison between the retrieved parameters and the available observations on the total water vapor content and the surface wind speed are made. The estimated errors for retrieval are approximately 0.15 g/sq cm for water vapor content, 6.5 mg/sq cm for liquid water content and 6.6 m/sec for surface wind speed.

  15. Lung radiofrequency and microwave ablation: a review of indications, techniques and post-procedural imaging appearances

    PubMed Central

    Jennings, P E

    2015-01-01

    Lung ablation can be used to treat both primary and secondary thoracic malignancies. Evidence to support its use, particularly for metastases from colonic primary tumours, is now strong, with survival data in selected cases approaching that seen after surgery. Because of this, the use of ablative techniques (particularly thermal ablation) is growing and the Royal College of Radiologists predict that the number of patients who could benefit from such treatment may reach in excess of 5000 per year in the UK. Treatment is often limited to larger regional centres, and general radiologists often have limited awareness of the current indications and the techniques involved. Furthermore, radiologists without any prior experience are frequently expected to interpret post-treatment imaging, often performed in the context of acute complications, which have occurred after discharge. This review aims to provide an overview of the current indications for pulmonary ablation, together with the techniques involved and the range of post-procedural appearances. PMID:25465192

  16. Passive/Active Microwave Soil Moisture Disaggregation Using SMAPVEX12 Data

    NASA Astrophysics Data System (ADS)

    Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T. J.; Colliander, A.

    2015-12-01

    The SMAPVEX12 experiment was conducted during June-July 2012 in Manitoba, Canada with the goal of collecting remote sensing data and ground measurements for the development and testing of soil moisture retrieval algorithms under different vegetation and soil conditions for the SMAP (Soil Moisture Active Passive) satellite launched in January 2015. The aircraft based soil moisture data provided by the passive/active microwave sensor PALS (Passive and Active L and S band System) has a nominal spatial resolution of 1500 m. In this study, a change detection algorithm is used for disaggregation of coarse passive microwave soil moisture retrievals with radar backscatter coefficients obtained with the higher spatial resolution UAVSAR (Unmanned Air Vehicle Synthetic Aperture Radar). The accuracy of the disaggregated change in soil moisture was evaluated using ground based soil moisture measurements. Results show that the disaggregation products are well correlated to in situ measurements. Based on the R2, the highest resolution disaggregated product at 5 m exhibits soil moisture heterogeneity that reflects the distribution of the crops. The difference of spatial standard deviation between the disaggregated and in situ soil moisture ranges from <0.001-0.131 m3/m3 also proves the spatial capability of the change detection algorithm at 5 m scale.

  17. Application of artificial neural networks for the soil moisture retrieval from active and passive microwave spaceborne sensors

    NASA Astrophysics Data System (ADS)

    Santi, Emanuele; Paloscia, Simonetta; Pettinato, Simone; Fontanelli, Giacomo

    2016-06-01

    Among the algorithms used for the retrieval of SMC from microwave sensors (both active, such as Synthetic Aperture Radar-SAR, and passive, radiometers), the artificial neural networks (ANN) represent the best compromise between accuracy and computation speed. ANN based algorithms have been developed at IFAC, and adapted to several radar and radiometric satellite sensors, in order to generate SMC products at a resolution varying from hundreds of meters to tens of kilometers according to the spatial scale of each sensor. These algorithms, which are based on the ANN techniques for inverting theoretical and semi-empirical models, have been adapted to the C- to Ka- band acquisitions from spaceborne radiometers (AMSR-E/AMSR2), SAR (Envisat/ASAR, Cosmo-SkyMed) and real aperture radar (MetOP ASCAT). Large datasets of co-located satellite acquisitions and direct SMC measurements on several test sites worldwide have been used along with simulations derived from forward electromagnetic models for setting up, training and validating these algorithms. An overall quality assessment of the obtained results in terms of accuracy and computational cost was carried out, and the main advantages and limitations for an operational use of these algorithms were evaluated. This technique allowed the retrieval of SMC from both active and passive satellite systems, with accuracy values of about 0.05 m3/m3 of SMC or better, thus making these applications compliant with the usual accuracy requirements for SMC products from space.

  18. Measurements of Density Fluctuations in the Pdx Tokamak Using Microwave Scattering Techniques.

    NASA Astrophysics Data System (ADS)

    Crowley, Thomas

    Density fluctuations in the PDX tokamak have been analyzed with the scattering of 2 mm microwaves. The primary focus of the study has been the low frequency (< 1MHz), broad band spectrum fluctuations which are ubiquitous in tokamaks and have the characteristics of drift wave turbulence. The fluctuations typically have frequencies and wavelengths characterized by (DELTA)(omega) (TURN) (omega) (TURN) (omega)(,*(,e)) and K(,(PERP))(rho)(,i) of order 1, where (omega)(,*(,e)) is the electron diamagnetic drift frequency and (rho)(,i) is the ion Larmor radius. In PDX, the mean observed frequencies are about 50-100 kHz and the mean wavenumbers are k(,(PERP)) (TURN) 3 cm('-1). It is believed that these waves are a possible cause of the anomalous heat transport in tokamaks. Density fluctuations with a narrow frequency spectrum have also been observed. The latter include the quasi-coherent fluctuation observed in H-mode plasmas. Several scaling studies of the broad band turbulence have been carried out. The frequency spectra, k(,(PERP)) spectra, and magnitude of the fluctuations have been measured and their variation with toroidal field, neutral beam heating power, plasma current, position, and confinement regime in PDX has been documented. Since the turbulence is a possible cause of anomalous heat transport in PDX and other tokamaks, the scaling of the turbulence has been compared with energy confinement scalings. In many cases, increased fluctuation level correlates with decreased energy confinement. In another case, the fluctuation level does not change as the confinement properties of the plasma change. The scaling of the experimental fluctuation levels has also been compared with various drift wave parameters. The fluctuation level scales as the mixing length limit, n/n (TURN) 1/k(,(PERP))L(,n), in some sets of data, but not in other sets. In addition to the broad band frequency spectrum present on all shots, density fluctuations with a narrow frequency spectrum ((DELTA

  19. Short term prediction of dynamic hydra precipitation activity using a microwave radiometer over Eastern Himalaya, India

    NASA Astrophysics Data System (ADS)

    Singh, S.

    2015-12-01

    First ever study of the feasibility of ground based radiometric study to predict a very short term based rain precipitation study has been conducted in eastern Himalaya, Darjeeling (27.01°N, 88.15°E, 2200 masl). Short term prediction or nowcasting relates to forecasting convective precipitation for time periods less than a few hours to avoid its effect on agriculture, aviation and lifestyle. Theoretical models involving radiometric predictions are not well understood and lack in temporal and spatial resolution. In this study specific utilization of a microwave Radiometer (Radiometrics Corporation, USA) for online monitoring of precipitable rainfall activity has been observed repeatability of data has been established. Previous few studies have shown the increase of water vapour and corresponding Brightness Temperature, but in mountain climatic conditions over Darjeeling, due to presence of fog 90 % of the year, water vapour monitoring related predictions can lead to false alarms. The measurement of blackbody emission noise in the bands of 23.8 GHz and 31.4 GHz, using a quadratic regression retrieval algorithm is converted to atmospheric parameters like integrated water vapour and liquid water content. It has been found in our study that the liquid water shows significant activity prior to precipitation events even for mild and stratiform rainfall. The alarm can be generated well 20 mins before the commencement of actual rain events even in the upper atmosphere of 6 Kms, measured by a rain radar also operating in 24 Ghz microwave band. Although few rain events were found and reported which do not respond in the microwave liquid water channel. Efforts to identify such rain events and their possible explanation is going on and shall be reported in near future. Such studies are important to predict flash flooding in the Himalayas. Darjeeling owing to its geographical conditions experiences mild to very heavy rain. Such studies help improve aspects of Himalayas as

  20. Statistical Analysis of the Correlation between Microwave Emission Anomalies and Seismic Activity Based on AMSR-E Satellite Data

    NASA Astrophysics Data System (ADS)

    qin, kai; Wu, Lixin; De Santis, Angelo; Zhang, Bin

    2016-04-01

    Pre-seismic thermal IR anomalies and ionosphere disturbances have been widely reported by using the Earth observation system (EOS). To investigate the possible physical mechanisms, a series of detecting experiments on rock loaded to fracturing were conducted. Some experiments studies have demonstrated that microwave radiation energy will increase under the loaded rock in specific frequency and the feature of radiation property can reflect the deformation process of rock fracture. This experimental result indicates the possibility that microwaves are emitted before earthquakes. Such microwaves signals are recently found to be detectable before some earthquake cases from the brightness temperature data obtained by the microwave-radiometer Advanced Microwave-Scanning Radiometer for the EOS (AMSR-E) aboard the satellite Aqua. This suggested that AMSR-E with vertical- and horizontal-polarization capability for six frequency bands (6.925, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz) would be feasible to detect an earthquake which is associated with rock crash or plate slip. However, the statistical analysis of the correlation between satellite-observed microwave emission anomalies and seismic activity are firstly required. Here, we focus on the Kamchatka peninsula to carry out a statistical study, considering its high seismicity activity and the dense orbits covering of AMSR-E in high latitudes. 8-years (2003-2010) AMSR-E microwave brightness temperature data were used to reveal the spatio-temporal association between microwave emission anomalies and 17 earthquake events (M>5). Firstly, obvious spatial difference of microwave brightness temperatures between the seismic zone at the eastern side and the non-seismic zone the western side within the Kamchatka peninsula are found. Secondly, using both vertical- and horizontal-polarization to extract the temporal association, it is found that abnormal changes of microwave brightness temperatures appear generally 2 months before the

  1. Migration testing of plastics and microwave-active materials for high-temperature food-use applications.

    PubMed

    Castle, L; Jickells, S M; Gilbert, J; Harrison, N

    1990-01-01

    Temperatures have been measured using a fluoro-optic probe at the food/container or food/packaging interfaces as appropriate, for a range of foods heated in either a microwave or a conventional oven. Reheating ready-prepared foods packaged in plastics pouches, trays or dishes in the microwave oven, according to the manufacturers' instructions, resulted in temperatures in the range 61-121 degrees C. Microwave-active materials (susceptors) in contact with ready-prepared foods frequently reached local spot temperatures above 200 degrees C. For foods cooked in a microwave oven according to published recipes, temperatures from 91 degrees C to 200 degrees C were recorded, whilst similar temperatures (92-194 degrees C) were attained in a conventional oven, but over longer periods of time. These measurements form the basis for examining compliance with specific and overall migration limits for plastics materials. The testing conditions proposed depend on the intended use of the plastic - for microwave oven use for aqueous foods, for all lidding materials, and for reheating of foods, testing would only be required with aqueous simulants for 1 h at 100 degrees C; for unspecified microwave oven use, testing with olive oil would be required for 30 min at 150 degrees C; and for unspecified use in a conventional oven testing with olive oil would be required for 2 h at 175 degrees C. For microwave-active materials, it is proposed that testing is carried out in the microwave oven using a novel semi-solid simulant comprising olive oil and water absorbed onto an inert support of diatomaceous earth. The testing in this instance is carried out with the simulant instead of food in a package and heating in the microwave oven at 600 W for 4 min for every 100 g of simulant employed. There is an option in every case to test for migration using real foods rather than simulants if it can be demonstrated that results using simulants are unrepresentative of those for foods. The proposed

  2. Low temperature recombination and trapping analysis in high purity gallium arsenide by microwave photodielectric techniques

    NASA Technical Reports Server (NTRS)

    Khambaty, M. B.; Hartwig, W. H.

    1972-01-01

    Some physical theories pertinent to the measurement properties of gallium arsenide are presented and experimental data are analyzed. A model for explaining recombination and trapping high purity gallium arsenide, valid below 77 K is assembled from points made at various places and an appraisal is given of photodielectric techniques for material property studies.

  3. A Combined Infrared and Microwave Technique for Studying the Diurnal Variation of Rainfall Over Amazonia

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Xu, L.; Adler, R. F.; Anagnostou, E.; Rickenbach, T. M.

    1999-01-01

    In this paper we present results from the application of a satellite infrared (IR) technique for estimating rainfall over northern South America. Our main objectives are to examine the diurnal variability of rainfall and to investigate the relative contributions from the convective and stratiform components. Additional information is contained in the original.

  4. Activation of VEGF/Flk-1-ERK Pathway Induced Blood-Brain Barrier Injury After Microwave Exposure.

    PubMed

    Wang, Li-Feng; Li, Xiang; Gao, Ya-Bing; Wang, Shui-Ming; Zhao, Li; Dong, Ji; Yao, Bin-Wei; Xu, Xin-Ping; Chang, Gong-Min; Zhou, Hong-Mei; Hu, Xiang-Jun; Peng, Rui-Yun

    2015-08-01

    Microwaves have been suggested to induce neuronal injury and increase permeability of the blood-brain barrier (BBB), but the mechanism remains unknown. The role of the vascular endothelial growth factor (VEGF)/Flk-1-Raf/MAPK kinase (MEK)/extracellular-regulated protein kinase (ERK) pathway in structural and functional injury of the blood-brain barrier (BBB) following microwave exposure was examined. An in vitro BBB model composed of the ECV304 cell line and primary rat cerebral astrocytes was exposed to microwave radiation (50 mW/cm(2), 5 min). The structure was observed by scanning electron microscopy (SEM) and the permeability was assessed by measuring transendothelial electrical resistance (TEER) and horseradish peroxidase (HRP) transmission. Activity and expression of VEGF/Flk-1-ERK pathway components and occludin also were examined. Our results showed that microwave radiation caused intercellular tight junctions to broaden and fracture with decreased TEER values and increased HRP permeability. After microwave exposure, activation of the VEGF/Flk-1-ERK pathway and Tyr phosphorylation of occludin were observed, along with down-regulated expression and interaction of occludin with zonula occludens-1 (ZO-1). After Flk-1 (SU5416) and MEK1/2 (U0126) inhibitors were used, the structure and function of the BBB were recovered. The increase in expression of ERK signal transduction molecules was muted, while the expression and the activity of occludin were accelerated, as well as the interactions of occludin with p-ERK and ZO-1 following microwave radiation. Thus, microwave radiation may induce BBB damage by activating the VEGF/Flk-1-ERK pathway, enhancing Tyr phosphorylation of occludin, while partially inhibiting expression and interaction of occludin with ZO-1.

  5. NORSEX 1979 microwave remote sensing data report

    NASA Technical Reports Server (NTRS)

    Hennigar, H. F.; Schaffner, S. K.

    1982-01-01

    Airborne microwave remote sensing measurements obtained by NASA Langley Research Center in support of the 1979 Norwegian Remote Sensing Experiment (NORSEX) are summarized. The objectives of NORSEX were to investigate the capabilities of an active/passive microwave system to measure ice concentration and type in the vicinity of the marginal ice zone near Svalbard, Norway and to apply microwave techniques to the investigation of a thermal oceanic front near Bear Island, Norway. The instruments used during NORSEX include the stepped frequency microwave radiometer, airborne microwave scatterometer, precision radiation thermometer and metric aerial photography. The data are inventoried, summarized, and presented in a user-friendly format. Data summaries are presented as time-history plots which indicate when and where data were obtained as well as the sensor configuration. All data are available on nine-track computer tapes in card-image format upon request to the NASA Langley Technical Library.

  6. Fusion of satellite active and passive microwave data for sea ice type concentration estimates

    SciTech Connect

    Beaven, S.G.; Gogineni, S.; Carsey, F.D.

    1996-09-01

    Young first-year sea ice is nearly as important as open water in modulating heat flux between the ocean and atmosphere in the Arctic. Just after the onset of freeze-up, first-year ice is in the early stages of growth and will consist of young first-year and thin ice. The distribution of sea ice in this thickness range impacts heat transfer in the Arctic. Therefore, improving the estimates of ice concentrations in this thickness range is significant. NASA Team Algorithm (NTA) for passive microwave data inaccurately classifies sea ice during the melt and freeze-up seasons because it misclassifies multiyear ice as first-year ice. The authors developed a hybrid fusion technique for incorporating multiyear ice information derived form synthetic aperture radar (SAR) images into a passive microwave algorithm to improve ice type concentration estimates. First, they classified SAR images using a dynamic thresholding technique and estimated the multiyear ice concentration. Then they used the SAR-derived multiyear ice concentration constrain the NTA and obtained an improved first-year ice concentration estimate. They computed multiyear and first-year ice concentration estimates over a region in the eastern-central Arctic in which field observations of ice and in situ radar backscatter measurements were performed. With the NTA alone, the first-year ice concentration in the study area varied between 0.11 and 0.40, while the multiyear ice concentration varied form 0.63 to 0.39. With the hybrid fusion technique, the first-year ice concentration varied between 0.08 and 0.23 and the multiyear ice concentration was between 0.62 and 0.66. The fused estimates of first-year and multiyear ice concentration appear to be more accurate than NTA, based on ice observations that were logged aboard the US Coast Guard icebreaker Polar Star in the study area during 1991.

  7. Spanish activities (research and industrial applications) in the field of microwave material treatment

    SciTech Connect

    Catala Civera, J.M.; Reyes Davo, E.R. de los

    1996-12-31

    The GCM (Microwave Heating Group) within the Communications Department at the Technical University of Valencia is dedicated to the study of microwaves and their use in the current industrial processes in the Valencian Community and in Spain. To this end, a microwave heating laboratory has been developed and the benefits of incorporating microwave technologies into current industrial processes have been demonstrated. In this paper some of the industrial applications which are being investigated are presented.

  8. Evaluation of non-thermal effects by microwave irradiation in hydrolysis of waste-activated sludge.

    PubMed

    Byun, I G; Lee, J H; Lee, J M; Lim, J S; Park, T J

    2014-01-01

    The activation energy (Ea) for waste-activated sludge (WAS) hydrolysis was compared between microwave irradiation (MW) and conventional heating (CH) methods to evaluate the non-thermal effect of MW. The microwave-assisted hydrolysis of WAS was assumed to follow the first-order kinetics on the basis of volatile suspended solids (VSS) conversion to soluble chemical oxygen demand (SCOD) for different initial VSS concentrations. By comparing the VSS decrement and the SCOD increment between MW and CH at different absolute temperatures of 323, 348 and 373 K, the average ratio of VSS conversion to SCOD was determined to range from 1.42 to 1.64 g SCOD/g VSS. These results corresponded to the theoretical value of 1.69 g SCOD/g VSS based on the assumption that the molecular formula of sludge was C10H19O3N. Consequently, the Ea of the MW-assisted WAS hydrolysis was much lower than that of CH for the same temperature conditions. The non-thermal effect of MW in the hydrolysis of WAS could be identified with the lower Ea than that of CH. PMID:25116507

  9. Efficient Catalytic Activity BiFeO3 Nanoparticles Prepared by Novel Microwave-Assisted Synthesis.

    PubMed

    Zou, Jing; Gong, Wanyun; Ma, Jinai; Li, Lu; Jiang, Jizhou

    2015-02-01

    A novel microwave-assisted sol-gel method was applied to the synthesis of the single-phase perovskite bismuth ferrite nanoparticles (BFO NPs) with the mean diameter ca. 73.7 nm. The morphology was characterized by scanning electron microscope (SEM). The X-ray diffraction (XRD) revealed the rhombohedral phase with R3c space group. The weak ferromagnetic behavior at room temperature was affirmed by the vibrating sample magnetometer (VSM). According to the UV-vis diffuse reflectance spectrum (UV-DSR), the band gap energy of BFO NPs was determined to be 2.18 eV. The electrochemical activity was evaluated by BFO NPs-chitosan-glassy carbon electrode (BFO-CS-GCE) sensor for detection of p-nitrophenol contaminants. The material showed an efficient oxidation catalytic activity by degrading methylene blue (MB). It was found that the degradation efficiency of 10 mg L-1 MB at pH 6.0 was above 90.9% after ultrasound- and microwave-combined-assisted (US-MW) irradiation for 15 min with BFO NPs as catalyst and H202 as oxidant. A possible reaction mechanism of degradation of MB was also proposed.

  10. Low-level microwave irradiation and central cholinergic activity: a dose-response study

    SciTech Connect

    Lai, H.; Carino, M.A.; Horita, A.; Guy, A.W.

    1989-01-01

    Rats were irradiated with circularly polarized, 2,450-MHz pulsed microwaves (2-microseconds pulses, 500 pulses per second (pps)) for 45 min in the cylindrical waveguide system of Guy et al. Immediately after exposure, sodium-dependent high-affinity choline uptake, an indicator of cholinergic activity in neural tissue, was measured in the striatum, frontal cortex, hippocampus, and hypothalamus. The power density was set to give average whole-body specific absorption rates (SAR) of 0.3, 0.45, 0.6, 0.75, 0.9, or 1.2 W/kg to study the dose-response relationship between the rate of microwave energy absorption and cholinergic activity in the different areas of the brain. Decrease in choline uptake was observed in the striatum at a SAR of 0.75 W/kg and above, whereas for the frontal cortex and hippocampus, decreases in choline uptake were observed at a SAR of 0.45 W/kg and above. No significant effect was observed in the hypothalamus at the irradiation power densities studied. The probit analysis was used to determine the SAR50 in each brain area, i.e., the SAR at which 50% of maximum response was elicited. SAR50 values for the striatum, frontal cortex, and hippocampus were 0.65, 0.38, and 0.44 W/kg, respectively.

  11. Evaluation of non-thermal effects by microwave irradiation in hydrolysis of waste-activated sludge.

    PubMed

    Byun, I G; Lee, J H; Lee, J M; Lim, J S; Park, T J

    2014-01-01

    The activation energy (Ea) for waste-activated sludge (WAS) hydrolysis was compared between microwave irradiation (MW) and conventional heating (CH) methods to evaluate the non-thermal effect of MW. The microwave-assisted hydrolysis of WAS was assumed to follow the first-order kinetics on the basis of volatile suspended solids (VSS) conversion to soluble chemical oxygen demand (SCOD) for different initial VSS concentrations. By comparing the VSS decrement and the SCOD increment between MW and CH at different absolute temperatures of 323, 348 and 373 K, the average ratio of VSS conversion to SCOD was determined to range from 1.42 to 1.64 g SCOD/g VSS. These results corresponded to the theoretical value of 1.69 g SCOD/g VSS based on the assumption that the molecular formula of sludge was C10H19O3N. Consequently, the Ea of the MW-assisted WAS hydrolysis was much lower than that of CH for the same temperature conditions. The non-thermal effect of MW in the hydrolysis of WAS could be identified with the lower Ea than that of CH.

  12. Efficient Catalytic Activity BiFeO3 Nanoparticles Prepared by Novel Microwave-Assisted Synthesis.

    PubMed

    Zou, Jing; Gong, Wanyun; Ma, Jinai; Li, Lu; Jiang, Jizhou

    2015-02-01

    A novel microwave-assisted sol-gel method was applied to the synthesis of the single-phase perovskite bismuth ferrite nanoparticles (BFO NPs) with the mean diameter ca. 73.7 nm. The morphology was characterized by scanning electron microscope (SEM). The X-ray diffraction (XRD) revealed the rhombohedral phase with R3c space group. The weak ferromagnetic behavior at room temperature was affirmed by the vibrating sample magnetometer (VSM). According to the UV-vis diffuse reflectance spectrum (UV-DSR), the band gap energy of BFO NPs was determined to be 2.18 eV. The electrochemical activity was evaluated by BFO NPs-chitosan-glassy carbon electrode (BFO-CS-GCE) sensor for detection of p-nitrophenol contaminants. The material showed an efficient oxidation catalytic activity by degrading methylene blue (MB). It was found that the degradation efficiency of 10 mg L-1 MB at pH 6.0 was above 90.9% after ultrasound- and microwave-combined-assisted (US-MW) irradiation for 15 min with BFO NPs as catalyst and H202 as oxidant. A possible reaction mechanism of degradation of MB was also proposed. PMID:26353647

  13. Earth Observing System/Advanced Microwave SoundingUnit-A (EOS/AMSU-A): Acquisition activities plan

    NASA Technical Reports Server (NTRS)

    Schwantje, Robert

    1994-01-01

    This is the acquisition activities plan for the software to be used in the Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) system. This document is submitted in response to Contract NAS5-323 14 as CDRL 508. The procurement activities required to acquire software for the EOS/AMSU-A program are defined.

  14. Neutron Activation Analysis: Techniques and Applications

    NASA Astrophysics Data System (ADS)

    MacLellan, Ryan

    2011-04-01

    The role of neutron activation analysis in low-energy low-background experimentsis discussed in terms of comparible methods. Radiochemical neutron activation analysis is introduce. The procedure of instrumental neutron activation analysis is detailed especially with respect to the measurement of trace amounts of natural radioactivity. The determination of reactor neutron spectrum parameters required for neutron activation analysis is also presented.

  15. Neutron Activation Analysis: Techniques and Applications

    SciTech Connect

    MacLellan, Ryan

    2011-04-27

    The role of neutron activation analysis in low-energy low-background experimentsis discussed in terms of comparible methods. Radiochemical neutron activation analysis is introduce. The procedure of instrumental neutron activation analysis is detailed especially with respect to the measurement of trace amounts of natural radioactivity. The determination of reactor neutron spectrum parameters required for neutron activation analysis is also presented.

  16. Electronic properties of superconductors studied using photo induced activation of microwave absorption (PIAMA)

    SciTech Connect

    Feenstra, B.J.; Schooveld, W.A.; Bos, C.

    1995-12-31

    Electronic properties of superconductors are contemporarily being studied using many different experimental techniques, among which infrared spectrometry, photoelectron spectroscopy and microwave cavity techniques play an important role. The data analysis, however, is complicated by the fact that in these materials the phonon-frequency range overlaps with the one in which the energy gap is expected. This problem can be circumvented by making use of two different sources, one to induce the excitations (the Free Electron Laser in Nieuwegein, The Netherlands, FELIX), and one to study the behavior of these excitations (i.e. quasiparticles). In our case the latter source is monochromatic microwave radiation, transmitted through a thin superconducting film. We measured both a conventional superconductor (NbN, T{sub c} = 17 K) and a high T{sub c} superconductor (SmBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, T{sub c} = 92 K). For NbN we observed a positive change in transmission, followed by a relaxation to a transmission smaller than the original value, after which the starting situation was restored within {approximately} 100 {mu}s. In case of SmBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, the changes persisted above T{sub c}. At very low temperatures we observed slow oscillations ({approximately} 4kHz) in the induced signal, which were absent in NbN. The long time scales can possibly be explained by the so-called bottleneck, i.e. quasiparticles excited with a lot of excess energy lose part of their energy by exciting other quasiparticles. In this case the quasiparticle lifetime is enhanced considerably. The oscillations point towards an intrinsic difference of the low energy excitations, i.e. the symmetry of the pairing.

  17. ESA activities in the use of microwaves for the remote sensing of the Earth

    NASA Technical Reports Server (NTRS)

    Maccoll, D.

    1984-01-01

    The program of activities under way in the European Space Agency (ESA) directed towards Remote Sensing of the oceans and troposphere is discussed. The initial project is the launch of a satellite named ERS-1 with a primary payload of microwave values in theee C- and Ku-bands. This payload is discussed in depth. The secondary payload includes precision location experiments and an instrument to measure sea surface temperature, which are described. The important topic of calibration is extensively discussed, and a review of activities directed towards improvements to the instruments for future satellites is presented. Some discussion of the impact of the instrument payload on the spacecraft design follows and the commitment of ESA to the provision of a service of value to the ultimate user is emphasized.

  18. Microwave sensors for earth resource observations in the 1980's

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr.; Harnage, M. J., Jr.

    1980-01-01

    Future trends in microwave sensing are identified with reference to the workshops organized by the Active Microwave Remote Sensing Research Program. The workshops demonstrated that (1) microwave techniques have great potential for earth observations of renewable and nonrenewable resources and (2) existing research does not adequately assess microwave sensor measurement capabilities. The need for synoptic information includes such areas as cloud-free, surface-roughness and electrical-properties data. Attention is given to applications including all-weather imaging, sensitivity to vegetation and soil-moisture conditions. Research tasks to be accomplished during the next five years are discussed.

  19. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities.

    PubMed

    Velusamy, Palaniyandi; Su, Chia-Hung; Venkat Kumar, Govindarajan; Adhikary, Shritama; Pandian, Kannaiyan; Gopinath, Subash C B; Chen, Yeng; Anbu, Periasamy

    2016-01-01

    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications. PMID:27304672

  20. Fe-, Co-, and Ni-Loaded Porous Activated Carbon Balls as Lightweight Microwave Absorbents.

    PubMed

    Li, Guomin; Wang, Liancheng; Li, Wanxi; Xu, Yao

    2015-11-16

    Porous activated carbon ball (PACB) composites impregnated with iron, cobalt, nickel and/or their oxides were synthesized through a wet chemistry method involving PACBs as the carrier to load Fe(3+), Co(2+), and Ni(2+) ions and a subsequent carbothermal reduction at different annealing temperatures. The results show that the pyrolysis products of nitrates and/or the products from the carbothermal reduction are embedded in the pores of the PACBs, with different distributions, resulting in different crystalline phases. The as-prepared PACB composites possessed high specific surface areas of 791.2-901.5 m(2)  g(-1) and low densities of 1.1-1.3 g cm(-3). Minimum reflection loss (RL) values of -50.1, -20.6, and -20.4 dB were achieved for Fe-PACB (annealed at 500 °C), Co-PACB (annealed at 800 °C), and Ni-PACB (annealed at 800 °C) composites, respectively. Moreover, the influence of the amount of the magnetic components in the PACB composites on the microwave-absorbing performances was investigated, further confirming that the dielectric loss was the primary contributor to microwave absorption. PMID:26373310

  1. Cellulose/CaCO3 nanocomposites: microwave ionic liquid synthesis, characterization, and biological activity.

    PubMed

    Ma, Ming-Guo; Dong, Yan-Yan; Fu, Lian-Hua; Li, Shu-Ming; Sun, Run-Cang

    2013-02-15

    The purposes of this article are to synthesize the biomass-based hybrid nanocomposites using green method in green solvent and evaluate its biological activity. In this paper, microwave-assisted ionic liquid method is applied to the preparation of cellulose/CaCO(3) hybrid nanocomposites in the alkali extraction cellulose using CaCl(2) and Na(2)CO(3) as starting reactants. The ionic liquid acts as the excellent solvent for absorbing microwave and the dissolution of cellulose, and the synthesis of cellulose/CaCO(3) nanocomposites. The influences of reaction parameters such as the cellulose concentration and the types of solvent on the products were investigated. The increasing cellulose concentration favored the growth of CaCO(3). The morphologies of CaCO(3) changed from polyhedral to cube to particle with increasing cellulose concentration. Moreover, the solvents had an effect on the shape and dispersion of CaCO(3). Cytotoxicity experiments demonstrated that the cellulose/CaCO(3) nanocomposites had good biocompatibility and could be a candidate for the biomedical applications. PMID:23399205

  2. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities

    PubMed Central

    Velusamy, Palaniyandi; Su, Chia-Hung; Venkat Kumar, Govindarajan; Adhikary, Shritama; Pandian, Kannaiyan; Gopinath, Subash C. B.; Chen, Yeng; Anbu, Periasamy

    2016-01-01

    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications. PMID:27304672

  3. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities.

    PubMed

    Velusamy, Palaniyandi; Su, Chia-Hung; Venkat Kumar, Govindarajan; Adhikary, Shritama; Pandian, Kannaiyan; Gopinath, Subash C B; Chen, Yeng; Anbu, Periasamy

    2016-01-01

    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications.

  4. Thin film silicon by a microwave plasma deposition technique: Growth and devices, and, interface effects in amorphous silicon/crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Jagannathan, Basanth

    Thin film silicon (Si) was deposited by a microwave plasma CVD technique, employing double dilution of silane, for the growth of low hydrogen content Si films with a controllable microstructure on amorphous substrates at low temperatures (<400sp°C). The double dilution was achieved by using a Ar (He) carrier for silane and its subsequent dilution by Hsb2. Structural and electrical properties of the films have been investigated over a wide growth space (temperature, power, pressure and dilution). Amorphous Si films deposited by silane diluted in He showed a compact nature and a hydrogen content of ˜8 at.% with a photo/dark conductivity ratio of 10sp4. Thin film transistors (W/L = 500/25) fabricated on these films, showed an on/off ratio of ˜10sp6 and a low threshold voltage of 2.92 volts. Microcrystalline Si films with a high crystalline content (˜80%) were also prepared by this technique. Such films showed a dark conductivity ˜10sp{-6} S/cm, with a conduction activation energy of 0.49 eV. Film growth and properties have been compared for deposition in Ar and He carrier systems and growth models have been proposed. Low temperature junction formation by undoped thin film silicon was examined through a thin film silicon/p-type crystalline silicon heterojunctions. The thin film silicon layers were deposited by rf glow discharge, dc magnetron sputtering and microwave plasma CVD. The hetero-interface was identified by current transport analysis and high frequency capacitance methods as the key parameter controlling the photovoltaic (PV) response. The effect of the interface on the device properties (PV, junction, and carrier transport) was examined with respect to modifications created by chemical treatment, type of plasma species, their energy and film microstructure interacting with the substrate. Thermally stimulated capacitance was used to determine the interfacial trap parameters. Plasma deposition of thin film silicon on chemically clean c-Si created electron

  5. Optimal spatial sampling techniques for ground truth data in microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Rao, R. G. S.; Ulaby, F. T.

    1977-01-01

    The paper examines optimal sampling techniques for obtaining accurate spatial averages of soil moisture, at various depths and for cell sizes in the range 2.5-40 acres, with a minimum number of samples. Both simple random sampling and stratified sampling procedures are used to reach a set of recommended sample sizes for each depth and for each cell size. Major conclusions from statistical sampling test results are that (1) the number of samples required decreases with increasing depth; (2) when the total number of samples cannot be prespecified or the moisture in only one single layer is of interest, then a simple random sample procedure should be used which is based on the observed mean and SD for data from a single field; (3) when the total number of samples can be prespecified and the objective is to measure the soil moisture profile with depth, then stratified random sampling based on optimal allocation should be used; and (4) decreasing the sensor resolution cell size leads to fairly large decreases in samples sizes with stratified sampling procedures, whereas only a moderate decrease is obtained in simple random sampling procedures.

  6. Class of backpropagation techniques for limited-angle reconstruction in microwave tomography

    SciTech Connect

    Paladhi, P. Roy; Tayebi, A.; Udpa, L.; Udpa, S.; Sinha, A.

    2015-03-31

    Filtered backpropagation (FBPP) is a well-known technique used in Diffraction Tomography (DT). For accurate reconstruction using FBPP, full 360° angular coverage is necessary. However, it has been shown that using some inherent redundancies in the projection data in a tomographic setup, accurate reconstruction is still possible with 270° coverage which is called the minimal-scan angle range. This can be done by applying weighing functions (or filters) on projection data of the object to eliminate the redundancies and accurately reconstruct the image from 270° coverage. This paper demonstrates procedures to generate many general classes of these weighing filters. These are all equivalent at 270° coverage but vary in performance at lower angular coverages and in presence of noise. This paper does a comparative analysis of different filters when angular coverage is lower than minimal-scan angle of 270°. Simulation studies have been done to find optimum weight filters for sub-minimal angular coverage (<270°)

  7. Effects of low power microwave radiation on biological activity of Collagenase enzyme and growth rate of S. Cerevisiae yeast

    NASA Astrophysics Data System (ADS)

    Alsuhaim, Hamad S.; Vojisavljevic, Vuk; Pirogova, E.

    2013-12-01

    Recently, microwave radiation, a type/subset of non-ionizing electromagnetic radiation (EMR) has been widely used in industry, medicine, as well as food technology and mobile communication. Use of mobile phones is rapidly growing. Four years from now, 5.1 billion people will be mobile phone users around the globe - almost 1 billion more mobile users than the 4.3 billion people worldwide using them now. Consequently, exposure to weak radiofrequency/microwave radiation generated by these devices is markedly increasing. Accordingly, public concern about potential hazards on human health is mounting [1]. Thermal effects of radiofrequency/microwave radiation are very well-known and extensively studied. Of particular interest are non-thermal effects of microwave exposures on biological systems. Nonthermal effects are described as changes in cellular metabolism caused by both resonance absorption and induced EMR and are often accompanied by a specific biological response. Non-thermal biological effects are measurable changes in biological systems that may or may not be associated with adverse health effects. In this study we studied non-thermal effects of low power microwave exposures on kinetics of L-lactate dehydrogenase enzyme and growth rate of yeast Saccharomyces Cerevisiae strains type II. The selected model systems were continuously exposed to microwave radiation at the frequency of 968MHz and power of 10dBm using the designed and constructed (custom made) Transverse Electro-Magnetic (TEM) cell [2]. The findings reveal that microwave radiation at 968MHz and power of 10dBm inhibits L-lactate dehydrogenase enzyme activity by 26% and increases significantly (15%) the proliferation rate of yeast cells.

  8. MICROWAVE TECHNOLOGY CHEMICAL SYNTHESIS APPLICATIONS

    EPA Science Inventory

    Microwave-accelerated chemical syntheses in various solvents as well as under solvent-free conditions have witnessed an explosive growth. The technique has found widespread application predominantly exploiting the inexpensive unmodified household microwave (MW) ovens although th...

  9. Measurements of electron density and temperature in a miniature microwave discharge ion thruster using laser Thomson scattering technique

    NASA Astrophysics Data System (ADS)

    Yamamoto, N.; Tomita, K.; Yamasaki, N.; Tsuru, T.; Ezaki, T.; Kotani, Y.; Uchino, K.; Nakashima, H.

    2010-08-01

    In order to improve the thrust performance of a miniature microwave discharge ion thruster, the relationship between electron number density/temperature and operational conditions, mass flow rate, incident microwave power and magnetic field strength were measured by means of laser Thomson scattering. A photon counting method and a triple grating spectrometer were used against a small Thomson scattering signal and a strong stray laser light. Electron number density increased with incident microwave power and was saturated at critical incident microwave power; it was about 1.2 × 1018 m-3 at incident microwave power >8 W. In addition, electron number density increased with mass flow rate and became saturated; it was about 1.7 × 1018 m-3 at mass flow rate > 0.04 mg s-1. The electron number density gradually increased with an increase in the number of magnets, i.e. magnetic field strength. There was a sudden jump at thirteen magnets, although the thruster failed to ignite at fourteen magnets. This is because there is an optimum distance between the antenna and the electron cyclotron resonance layer. These results suggest that future improvement in thrust efficiency in miniature microwave discharge ion thrusters may come from the fine adjustment of the magnetic field configuration inside the discharge chamber.

  10. Bio-based phenols and fuel production from catalytic microwave pyrolysis of lignin by activated carbons.

    PubMed

    Bu, Quan; Lei, Hanwu; Wang, Lu; Wei, Yi; Zhu, Lei; Zhang, Xuesong; Liu, Yupeng; Yadavalli, Gayatri; Tang, Juming

    2014-06-01

    The aim of this study is to explore catalytic microwave pyrolysis of lignin for renewable phenols and fuels using activated carbon (AC) as a catalyst. A central composite experimental design (CCD) was used to optimize the reaction condition. The effects of reaction temperature and weight hourly space velocity (WHSV, h(-1)) on product yields were investigated. GC/MS analysis showed that the main chemical compounds of bio-oils were phenols, guaiacols, hydrocarbons and esters, most of which were ranged from 71% to 87% of the bio-oils depending on different reaction conditions. Bio-oils with high concentrations of phenol (45% in the bio-oil) were obtained. The calorific value analysis revealed that the high heating values (HHV) of the lignin-derived biochars were from 20.4 to 24.5 MJ/kg in comparison with raw lignin (19 MJ/kg). The reaction mechanism of this process was analyzed. PMID:24747393

  11. Fast and efficient benign oxidation of native wheat starch by acidic bromate under microwave activation.

    PubMed

    Komulainen, Sanna; Diaz, Estibaliz; Pursiainen, Jouni; Lajunen, Marja

    2013-02-15

    A simple oxidation of starch in water by bromate was substantially improved by microwave activation. In the oxidation of native wheat starch its advantages were the highly reduced need of oxidant from 1.05 to 0.1-0.25 equiv, shortened reaction time from 2 to 5.5h to 10 min, and moderate or high yields of oxidation content (degree of oxidation 0.22-0.55) of water-soluble products. Acidic treatment before the oxidation reaction promoted the carbonyl formation yielding higher contents of oxidized products (degree of oxidation 0.43-0.55) than without it (degree of oxidation 0.22-0.28). The pretreatment did not have similar effect on the amount of carboxyl groups. The oxidation route of acidic bromate oxidation of starch is discussed.

  12. Microwave acid digestion and preconcentration neutron activation analysis of biological and diet samples for iodine.

    PubMed

    Rao, R R; Chatt, A

    1991-07-01

    A simple preconcentration neutron activation analysis (PNAA) method has been developed for the determination of low levels of iodine in biological and nutritional materials. The method involves dissolution of the samples by microwave digestion in the presence of acids in closed Teflon bombs and preconcentration of total iodine, after reduction to iodide with hydrazine sulfate, by coprecipitation with bismuth sulfide. The effects of different factors such as acidity, time for complete precipitation, and concentrations of bismuth, sulfide, and diverse ions on the quantitative recovery of iodide have been studied. The absolute detection limit of the PNAA method is 5 ng of iodine. Precision of measurement, expressed in terms of relative standard deviation, is about 5% at 100 ppb and 10% at 20 ppb levels of iodine. The PNAA method has been applied to several biological reference materials and total diet samples. PMID:1897721

  13. Snowfall estimation from space-borne active and passive microwave observations

    NASA Astrophysics Data System (ADS)

    Grecu, M.

    2006-12-01

    In this study, an algorithm to estimate snowfall from passive and active microwave observations is formulated and analyzed using both simulated and real observations. A high resolution cloud resolving model (CRM) is used to simulate a snowfall event and space-borne radar and radiometer observations similar to those of the future Global Precipitation Mission (GPM) are synthesized from the CRM data. Then a combined radar- radiometer similar to that of Grecu et al. (2004) is applied to the synthetic data. It is found that in spite of dual-frequency radar and millimeter-wave radiometer observations, snow retrievals from GPM-like observations are subject to various uncertainties. Simple parameterizations are devised to minimize these uncertainties. The combined radar-radiometer, modified to account for differences between the instruments deployed in Wakasa Bay Experiment and the GPM instruments, is applied to real data from the Wakasa Bay Experiment. Results show the algorithm's feasibility.

  14. Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity.

    PubMed

    Yuan, Yuan; Macquarrie, Duncan

    2015-09-20

    Sulfated polysaccharides (fucoidan) from brown seaweed Ascophyllum nodosum were extracted by microwave assisted extraction (MAE) technology. Different conditions of temperature (90-150°C), extraction time (5-30 min) were evaluated and optimal fucoidan yield was 16.08%, obtained from 120°C for 15 min's extraction. Compositional analysis, GPC, HPAEC and IR analysis were employed for characterization of extracted sulfated polysaccharides. Fucose was the main monosaccharide of fucoidan extracted at 90°C while glucuronic acid was the main monosaccharide of fucoidan extracted at 150°C. Both the molecular weight and sulfate content of extracted fucoidan increased with decreasing extraction temperature. All fucoidans exhibited antioxidant activities as measured by DPPH scavenging and reducing power, among which fucoidan extracted at 90°C was highest. This study shows that MAE is an efficient technology to extract sulfated polysaccharides from seaweed and Ascophyllum nodosum could potentially be a resource for natural antioxidants. PMID:26050894

  15. Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity.

    PubMed

    Yuan, Yuan; Macquarrie, Duncan

    2015-09-20

    Sulfated polysaccharides (fucoidan) from brown seaweed Ascophyllum nodosum were extracted by microwave assisted extraction (MAE) technology. Different conditions of temperature (90-150°C), extraction time (5-30 min) were evaluated and optimal fucoidan yield was 16.08%, obtained from 120°C for 15 min's extraction. Compositional analysis, GPC, HPAEC and IR analysis were employed for characterization of extracted sulfated polysaccharides. Fucose was the main monosaccharide of fucoidan extracted at 90°C while glucuronic acid was the main monosaccharide of fucoidan extracted at 150°C. Both the molecular weight and sulfate content of extracted fucoidan increased with decreasing extraction temperature. All fucoidans exhibited antioxidant activities as measured by DPPH scavenging and reducing power, among which fucoidan extracted at 90°C was highest. This study shows that MAE is an efficient technology to extract sulfated polysaccharides from seaweed and Ascophyllum nodosum could potentially be a resource for natural antioxidants.

  16. Microwave acid digestion and preconcentration neutron activation analysis of biological and diet samples for iodine.

    PubMed

    Rao, R R; Chatt, A

    1991-07-01

    A simple preconcentration neutron activation analysis (PNAA) method has been developed for the determination of low levels of iodine in biological and nutritional materials. The method involves dissolution of the samples by microwave digestion in the presence of acids in closed Teflon bombs and preconcentration of total iodine, after reduction to iodide with hydrazine sulfate, by coprecipitation with bismuth sulfide. The effects of different factors such as acidity, time for complete precipitation, and concentrations of bismuth, sulfide, and diverse ions on the quantitative recovery of iodide have been studied. The absolute detection limit of the PNAA method is 5 ng of iodine. Precision of measurement, expressed in terms of relative standard deviation, is about 5% at 100 ppb and 10% at 20 ppb levels of iodine. The PNAA method has been applied to several biological reference materials and total diet samples.

  17. NASA's Potential Contributions to Avalanche Forecasting Using Active and Passive Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir

    2007-01-01

    This Candidate Solution is based on using active and passive microwave measurements acquired from NASA satellites to improve USDA (U.S. Department of Agriculture) Forest Service forecasting of avalanche danger. Regional Avalanche Centers prepare avalanche forecasts using ground measurements of snowpack and mountain weather conditions. In this Solution, range of the in situ observations is extended by adding remote sensing measurements of snow depth, snow water equivalent, and snowfall rate acquired by satellite missions that include Aqua, CloudSat, future GPM (Global Precipitation Measurement), and the proposed SCLP (Snow and Cold Land Processes). Measurements of snowpack conditions and time evolution are improved by combining the in situ and satellite observations with a snow model. Recurring snow observations from NASA satellites increase accuracy of avalanche forecasting, which helps the public and the managers of public facilities make better avalanche safety decisions.

  18. Phenolic Content and Antioxidant Activity of Extracts from Whole Buckwheat (Fagopyrum esculentum Moench) With or Without Microwave Irradiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to evaluate the effectiveness of extracting phenolic compounds and antioxidant activity from buckwheat with water, 50% aqueous ethanol, or 100% ethanol using microwave irradiation or a water bath for 15 min at various temperatures (23 – 150 °C). The phenolic content of...

  19. Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics

    SciTech Connect

    Shevchenko, Vladimir F.; Freethy, Simon J.; Huang, Billy K.

    2014-08-21

    A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post-processing mode. SAMI can scan over 16 pre-programmed frequencies in the range of 10-35GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a 'passive' imaging of plasma emission and also an 'active' imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structures. Both modes of operation show good performance in fusion plasma experiments on Mega Amp Spherical Tokamak (MAST). We have obtained the first ever 2-D images of BXO mode conversion windows. With active probing, first ever turbulence velocity maps have been obtained. We present an overview of the diagnostic and discuss recent results. In contrast to quasi-optical microwave imaging systems SAMI requires neither big aperture viewing ports nor large 2-D detector arrays to achieve the desired imaging resolution. The number of effective 'pixels' of the synthesized image is proportional to the number of receiving antennas squared. Thus only a small number of optimised antennas is sufficient for the majority of applications. Possible implementation of SAMI on ITERand DEMO is discussed.

  20. Learning by Doing: An Empirical Study of Active Teaching Techniques

    ERIC Educational Resources Information Center

    Hackathorn, Jana; Solomon, Erin D.; Blankmeyer, Kate L.; Tennial, Rachel E.; Garczynski, Amy M.

    2011-01-01

    The current study sought to examine the effectiveness of four teaching techniques (lecture, demonstrations, discussions, and in-class activities) in the classroom. As each technique offers different benefits to the instructor and students, each technique was expected to aid in a different depth of learning. The current findings indicated that each…

  1. Handwashing Technique. Instructor's Packet. Learning Activity Package.

    ERIC Educational Resources Information Center

    Stark, Pamela

    This instructor's packet accompanies the learning activity package (LAP) on handwashing. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, a student performance checklist, an additional resources list, and student completion cards to issue to…

  2. 1800MHz Microwave Induces p53 and p53-Mediated Caspase-3 Activation Leading to Cell Apoptosis In Vitro

    PubMed Central

    Xing, Fuqiang; Zhan, Qiuqiang; He, Yiduo; Cui, Jiesheng; He, Sailing; Wang, Guanyu

    2016-01-01

    Recent studies have reported that exposure of mammalian cells to microwave radiation may have adverse effects such as induction of cell apoptosis. However, the molecular mechanisms underlying microwave induced mammalian cell apoptosis are not fully understood. Here, we report a novel mechanism: exposure to 1800MHz microwave radiation induces p53-dependent cell apoptosis through cytochrome c-mediated caspase-3 activation pathway. We first measured intensity of microwave radiation from several electronic devices with an irradiation detector. Mouse NIH/3T3 and human U-87 MG cells were then used as receivers of 1800MHz electromagnetic radiation (EMR) at a power density of 1209 mW/m2. Following EMR exposure, cells were analyzed for viability, intracellular reactive oxygen species (ROS) generation, DNA damage, p53 expression, and caspase-3 activity. Our analysis revealed that EMR exposure significantly decreased viability of NIH/3T3 and U-87 MG cells, and increased caspase-3 activity. ROS burst was observed at 6 h and 48 h in NIH/3T3 cells, while at 3 h in U-87 MG cells. Hoechst 33258 staining and in situ TUNEL assay detected that EMR exposure increased DNA damage, which was significantly restrained in the presence of N-acetyl-L-cysteine (NAC, an antioxidant). Moreover, EMR exposure increased the levels of p53 protein and p53 target gene expression, promoted cytochrome c release from mitochondrion, and increased caspase-3 activity. These events were inhibited by pretreatment with NAC, pifithrin-α (a p53 inhibitor) and caspase inhibitor. Collectively, our findings demonstrate, for the first time, that 1800MHz EMR induces apoptosis-related events such as ROS burst and more oxidative DNA damage, which in turn promote p53-dependent caspase-3 activation through release of cytochrome c from mitochondrion. These findings thus provide new insights into physiological mechanisms underlying microwave-induced cell apoptosis. PMID:27689798

  3. Effect of Activating Agent on the Preparation of Bamboo-Based High Surface Area Activated Carbon by Microwave Heating

    NASA Astrophysics Data System (ADS)

    Xia, Hongying; Wu, Jian; Srinivasakannan, Chandrasekar; Peng, Jinhui; Zhang, Libo

    2016-06-01

    The present work attempts to convert bamboo into a high surface area activated carbon via microwave heating. Different chemical activating agents such as KOH, NaOH, K2CO3 and Na2CO3 were utilized to identify a most suitable activating agent. Among the activating agents tested KOH was found to generate carbon with the highest porosity and surface area. The effect of KOH/C ratio on the porous nature of the activated carbon has been assessed. An optimal KOH/C ratio of 4 was identified, beyond which the surface area as well as the pore volume were found to decrease. At the optimized KOH/C ratio the surface area and the pore volume were estimated to be 3,441 m2/g and 2.093 ml/g, respectively, with the significant proportion of which being microporous (62.3%). Activated carbon prepared under the optimum conditions was further characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Activated carbons with so high surface area and pore volume are very rarely reported, which could be owed to the nature of the precursor and the optimal conditions of mixture ratio adopted in the present work.

  4. Using microwave heating to improve the desorption efficiency of high molecular weight VOC from beaded activated carbon.

    PubMed

    Fayaz, Mohammadreza; Shariaty, Pooya; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2015-04-01

    Incomplete regeneration of activated carbon loaded with organic compounds results in heel build-up that reduces the useful life of the adsorbent. In this study, microwave heating was tested as a regeneration method for beaded activated carbon (BAC) loaded with n-dodecane, a high molecular weight volatile organic compound. Energy consumption and desorption efficiency for microwave-heating regeneration were compared with conductive-heating regeneration. The minimum energy needed to completely regenerate the adsorbent (100% desorption efficiency) using microwave regeneration was 6% of that needed with conductive heating regeneration, owing to more rapid heating rates and lower heat loss. Analyses of adsorbent pore size distribution and surface chemistry confirmed that neither heating method altered the physical/chemical properties of the BAC. Additionally, gas chromatography (with flame ionization detector) confirmed that neither regeneration method detectably altered the adsorbate composition during desorption. By demonstrating improvements in energy consumption and desorption efficiency and showing stable adsorbate and adsorbent properties, this paper suggests that microwave heating is an attractive method for activated carbon regeneration particularly when high-affinity VOC adsorbates are present.

  5. Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW

    SciTech Connect

    Li Wei; Peng Jinhui Zhang Libo; Yang Kunbin; Xia Hongying; Zhang Shimin; Guo Shenghui

    2009-02-15

    Experiments to prepare activated carbon by microwave heating indicated that microwave energy can decrease reaction temperature, save the energy and shorten processing time remarkably compared to conventional heating, owing to its internal and volumetric heating effects. The above results were based on the laboratory-scale experiments. It is desirable to develop a pilot-scale microwave heating equipment and investigate the parameters with the aim of technological industrialization. In the present study, the components and features of the self-invented equipment were introduced. The temperature rise curves of the chars were obtained. Iodine numbers of the activated carbons all exceed the state standard of China under the following conditions: 25 kg/h charging rate, 0.42 rev/min turning rate of ceramic tube, flow rate of steam at pressure of 0.01 MPa and 40 kW microwave heating power after 60 kW pre-activation for 30 min. Pore structure of the sample obtained at a time point of 46 h, which contained BET surface area, and pore size distributions of micropores and total pores, was tested by nitrogen adsorption at 77 K.

  6. Control techniques for millimeter-wave active arrays

    SciTech Connect

    Sjogren, L.B.; Liu, H.L.; Liu, T.; Wang, F.; Domier, C.W.; Luhmann, N.C. Jr. )

    1993-06-01

    Control techniques for millimeter-wave active arrays are considered. In addition to voltage control, optical and quasi-optical approaches are discussed as analog control techniques. Digital control techniques discussed include on/off switching arrays and designs with superimposed device and/or grid structures for multi-bit capability. A quasi-optical Q switch, capable of high peak power pulse generation, is discussed as an example application of these techniques. 31 refs., 7 figs.

  7. Microwave and Millimeter Wave Imaging of the Space Shuttle External Fuel Tank Spray on Foam Insulation (SOFI) using Synthetic Aperture Focusing Techniques (SAFT}

    NASA Technical Reports Server (NTRS)

    Case, J. T.; Robbins, J.; Kharkivskiy, S.; Hepburn, F.; Zoughi, R.

    2005-01-01

    The Space Shuttle Columbia s catastrophic failure is thought to have been caused by a dislodged piece of external tank spray on foam insulation (SOFI) striking the left wing of the orbiter causing significant damage to some of the reinforced carbodcarbon leading edge wing panels. Microwave and millimeter wave nondestructive evaluation methods have shown great potential for inspecting SOFI for the purpose of detecting anomalies such as small air voids that may cause separation of the SOFI from the external tank during a launch. These methods are capable of producing relatively high-resolution images of the interior of SOFI particularly when advanced imaging algorithms are incorporated into the overall system. To this end, synthetic aperture focusing techniques (SAFT) are being developed. This paper presents some of the preliminary results of this investigation using SAFT-based methods and microwave holography at relatively low frequencies illustrating their potential capabilities for operation at millimeter wave frequencies.

  8. Directional spectra of ocean waves from microwave backscatter: A physical optics solution with application to the short-pulse and two-frequency measurement techniques

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1979-01-01

    Two simple microwave radar techniques that are potentially capable of providing routine satellite measurements of the directional spectrum of ocean waves were developed. One technique, the short pulse technique, makes use of very short pulses to resolve ocean surface wave contrast features in the range direction; the other technique, the two frequency correlation technique makes use of coherency in the transmitted waveform to detect the large ocean wave contrast modulation as a beat or mixing frequency in the power backscattered at two closely separated microwave frequencies. A frequency domain analysis of the short pulse and two frequency systems shows that the two measurement systems are essentially duals; they each operate on the generalized (three frequency) fourth-order statistical moment of the surface transfer function in different, but symmetrical ways, and they both measure the same directional contrast modulation spectrum. A three dimensional physical optics solution for the fourth-order moment was obtained for backscatter in the near vertical, specular regime, assuming Gaussian surface statistics.

  9. Design of Controlled Release Non-erodible Polymeric Matrix Tablet Using Microwave Oven-assisted Sintering Technique.

    PubMed

    Patel, Dm; Patel, Bk; Patel, Ha; Patel, Cn

    2011-07-01

    The objective of the present study was to evaluate the effect of sintering condition on matrix formation and subsequent drug release from polymer matrix tablet for controlled release. The present study highlights the use of a microwave oven for the sintering process in order to achieve more uniform heat distribution with reduction in time required for sintering. We could achieve effective sintering within 8 min which is very less compared to conventional hot air oven sintering. The tablets containing the drug (propranolol hydrochloride) and sintering polymer (eudragit S-100) were prepared and kept in a microwave oven at 540 watt, 720 watt and 900 watt power for different time periods for sintering. The sintered tablets were evaluated for various tablet characteristics including dissolution study. Tablets sintered at 900 watt power for 8 min gave better dissolution profile compared to others. We conclude that microwave oven sintering is better than conventional hot air oven sintering process in preparation of controlled release tablets. PMID:21897655

  10. Acute low-level microwave exposure and central cholinergic activity: studies on irradiation parameters

    SciTech Connect

    Lai, H.; Horita, A.; Guy, A.W.

    1988-01-01

    Sodium-dependent high-affinity choline uptake was measured in the striatum, frontal cortex, hippocampus, and hypothalamus of rats after acute exposure (45 min) to pulsed (2 microseconds, 500 pps) or continuous-wave 2,450-MHz microwaves in cylindrical waveguides or miniature anechoic chambers. In all exposure conditions, the average whole-body specific absorption rate was at 0.6 W/kg. Decrease in choline uptake was observed in the frontal cortex after microwave exposure in all of the above irradiation conditions. Regardless of the exposure system used, hippocampal choline uptake was decreased after exposure to pulsed but not continuous-wave microwaves. Striatal choline uptake was decreased after exposure to either pulsed or continuous-wave microwaves in the miniature anechoic chamber. No significant change in hypothalamic choline uptake was observed under any of the exposure conditions studied. We conclude that depending on the parameters of the radiation, microwaves can elicit specific and generalized biological effects.

  11. Microwave assisted synthesis, cholinesterase enzymes inhibitory activities and molecular docking studies of new pyridopyrimidine derivatives.

    PubMed

    Basiri, Alireza; Murugaiyah, Vikneswaran; Osman, Hasnah; Kumar, Raju Suresh; Kia, Yalda; Ali, Mohamed Ashraf

    2013-06-01

    A series of hitherto unreported pyrido-pyrimidine-2-ones/pyrimidine-2-thiones were synthesized under microwave assisted solvent free reaction conditions in excellent yields and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibitory activity. Among the pyridopyrimidine derivatives, 7e and 7l displayed 2.5- and 1.5-fold higher enzyme inhibitory activities against AChE as compared to standard drug, galanthamine, with IC50 of 0.80 and 1.37 μM, respectively. Interestingly, all the compounds except 6k, 7j and 7k displayed higher inhibitory potential against BChE enzyme in comparison to standard with IC50 ranging from 1.18 to 18.90 μM. Molecular modeling simulations of 7e and 7l was performed using three-dimensional structure of Torpedo californica AChE (TcAChE) and human butyrylcholinesterase (hBChE) enzymes to disclose binding interaction and orientation of these molecule into the active site gorge of respective receptors.

  12. Comparison of a coupled snow thermodynamic and radiative transfer model with in situ active microwave signatures of snow-covered smooth first-year sea ice

    NASA Astrophysics Data System (ADS)

    Fuller, M. C.; Geldsetzer, T.; Yackel, J.; Gill, J. P. S.

    2015-11-01

    Within the context of developing data inversion and assimilation techniques for C-band backscatter over sea ice, snow physical models may be used to drive backscatter models for comparison and optimization with satellite observations. Such modeling has the potential to enhance understanding of snow on sea-ice properties required for unambiguous interpretation of active microwave imagery. An end-to-end modeling suite is introduced, incorporating regional reanalysis data (NARR), a snow model (SNTHERM89.rev4), and a multilayer snow and ice active microwave backscatter model (MSIB). This modeling suite is assessed against measured snow on sea-ice geophysical properties and against measured active microwave backscatter. NARR data were input to the SNTHERM snow thermodynamic model in order to drive the MSIB model for comparison to detailed geophysical measurements and surface-based observations of C-band backscatter of snow on first-year sea ice. The NARR variables were correlated to available in situ measurements with the exception of long-wave incoming radiation and relative humidity, which impacted SNTHERM simulations of snow temperature. SNTHERM snow grain size and density were comparable to observations. The first assessment of the forward assimilation technique developed in this work required the application of in situ salinity profiles to one SNTHERM snow profile, which resulted in simulated backscatter close to that driven by in situ snow properties. In other test cases, the simulated backscatter remained 4-6 dB below observed for higher incidence angles and when compared to an average simulated backscatter of in situ end-member snow covers. Development of C-band inversion and assimilation schemes employing SNTHERM89.rev4 should consider sensitivity of the model to bias in incoming long-wave radiation, the effects of brine, and the inability of SNTHERM89.Rev4 to simulate water accumulation and refreezing at the bottom and mid-layers of the snowpack. These impact

  13. Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method.

    PubMed

    Hong, Xuesen; Wen, Junjie; Xiong, Xuhua; Hu, Yongyou

    2016-03-01

    Silver nanoparticles (AgNPs) are used as sustained-release bactericidal agents for water treatment. Among the physicochemical characteristics of AgNPs, shape is an important parameter relevant to the antibacterial activity. Three typically shaped AgNPs, nanocubes, nanospheres, and nanowires, were prepared via a microwave-assisted method and characterized by TEM, UV-vis, and XRD. The antibacterial activity of AgNPs was determined by OD growth curves tests, MIC tests, and cell viability assay against Escherichia coli. The interaction between AgNPs and bacterial cells was observed by TEM. The results showed that the three differently shaped AgNPs were nanoscale, 55 ± 10 nm in edge length for nanocubes, 60 ± 15 nm in diameter for nanospheres, 60 ± 10 nm in diameter and 2-4 μm in length for nanowires. At the bacterial concentration of 10(4) CFU/mL, the MIC of nanocubes, nanospheres, and nanowires were 37.5, 75, and 100 μg/mL, respectively. Due to the worst contact with bacteria, silver nanowires exhibited the weakest antibacterial activity compared with silver nanocubes and silver nanospheres. Besides, silver nanocubes mainly covered by {100} facets showed stronger antibacterial activity than silver nanospheres covered by {111} facets. It suggests that the shape effect on the antibacterial activity of AgNPs is attributed to the specific surface areas and facets reactivity; AgNPs with larger effective contact areas and higher reactive facets exhibit stronger antibacterial activity.

  14. Effects of microwave exposure and Gemcitabine treatment on apoptotic activity in Burkitt's lymphoma (Raji) cells.

    PubMed

    Canseven, Ayşe G; Esmekaya, Meric Arda; Kayhan, Handan; Tuysuz, Mehmet Zahid; Seyhan, Nesrin

    2015-01-01

    We investigated the effects of 1.8 MHz Global System for Mobile Communications (GSM)-modulated microwave (MW) radiation on apoptotic level and cell viability of Burkitt's lymphoma (Raji) cells with or without Gemcitabine, which exhibits cell phase specificity, primarily killing cells undergoing DNA synthesis (S-phase). Raji cells were exposed to 1.8 GHz GSM-modulated MW radiation at a specific absorption rate (SAR) of 0.350 W/kg in a CO2 incubator. The duration of the exposure was 24 h. The amount of apoptotic cells was analyzed using Annexin V-FITC and propidium iodide (PI) staining with flow cytometer. The apoptotic activity of MW exposed Raji cells was increased significantly. In addition, cell viability of exposed samples was significantly decreased. Combined exposure of MW and Gemcitabine increased the amount of apoptotic cells than MW radiation alone. Moreover, viability of MW + Gemcitabine exposed cells was lower than that of cells exposed only to MW. These results demonstrated that MW radiation exposure and Gemcitabine treatment have a synergistic effect on apoptotic activity of Raji cells.

  15. Microwave plasma doping: Arsenic activation and transport in germanium and silicon

    NASA Astrophysics Data System (ADS)

    Miyoshi, Hidenori; Oka, Masahiro; Ueda, Hirokazu; Ventzek, Peter L. G.; Sugimoto, Yasuhiro; Kobayashi, Yuuki; Nakamura, Genji; Hirota, Yoshihiro; Kaitsuka, Takanobu; Kawakami, Satoru

    2016-04-01

    Microwave RLSA™ plasma doping technology has enabled conformal doping of non-planar semiconductor device structures. An important attribute of RLSA™ plasma doping is that it does not impart physical damage during processing. In this work, carrier activation measurements for AsH3 based plasma doping into silicon (Si) and germanium (Ge) using rapid thermal annealing are presented. The highest carrier concentrations are 3.6 × 1020 and 4.3 × 1018 cm-3 for Si and Ge, respectively. Secondary ion mass spectrometry depth profiles of arsenic in Ge show that intrinsic dopant diffusion for plasma doping followed by post activation anneal is much slower than for conventional ion implantation. This is indicative of an absence of defects. The comparison is based on a comparison of diffusion times at identical annealing temperatures. The absence of defects, like those generated in conventional ion implantation, in RLSA™ based doping processes makes RLSA™ doping technology useful for damage free conformal doping of topographic structures.

  16. Microwave synthesis and photocatalytic activity of Tb(3+) doped BiVO4 microcrystals.

    PubMed

    Wang, Ying; Liu, Fuyang; Hua, Yingjie; Wang, Chongtai; Zhao, Xudong; Liu, Xiaoyang; Li, Hongdong

    2016-12-01

    Tb(3+) doped BiVO4 has been successfully synthesized by a simple microwave-assisted hydrothermal method at 140°C for 30min. The structure, morphology and optical property of the Tb(3+) doped BiVO4 products have been systematically investigated. This study indicates that the incorporation of Tb(3+) could induce the conversion of structure from monoclinic to tetragonal for BiVO4. Furthermore, the as-obtained Tb(3+) doped BiVO4 samples showed an obvious morphological change: the hollow square rod-like BiVO4 crystal gradually changed to spindle-like crystal. The Tb(3+) doped BiVO4 products exhibited extraordinary photocatalytic activity for Methylene Blue (MB) degradation under visible light irradiation. The doped BiVO4 at a molar ratio of 2at% (Tb and Bi) with a mixture of monoclinic and tetragonal phases showed and prominent photocatalytic degradation rate, which reached 99.9% in 120min. The results suggest that the differences in the photocatalytic activity of these BiVO4 crystals with different Tb(3+) doping concentrations can be attributed to the change of crystalline phases, and the coexistence of the monoclinic/tetragonal phases in BiVO4 products, which improve the efficient charge separation and transportation. PMID:27565962

  17. Classification methods for monitoring Arctic sea ice using OKEAN passive/active two-channel microwave data

    USGS Publications Warehouse

    Belchansky, Gennady I.; Douglas, David C.

    2000-01-01

    This paper presents methods for classifying Arctic sea ice using both passive and active (2-channel) microwave imagery acquired by the Russian OKEAN 01 polar-orbiting satellite series. Methods and results are compared to sea ice classifications derived from nearly coincident Special Sensor Microwave Imager (SSM/I) and Advanced Very High Resolution Radiometer (AVHRR) image data of the Barents, Kara, and Laptev Seas. The Russian OKEAN 01 satellite data were collected over weekly intervals during October 1995 through December 1997. Methods are presented for calibrating, georeferencing and classifying the raw active radar and passive microwave OKEAN 01 data, and for correcting the OKEAN 01 microwave radiometer calibration wedge based on concurrent 37 GHz horizontal polarization SSM/I brightness temperature data. Sea ice type and ice concentration algorithms utilized OKEAN's two-channel radar and passive microwave data in a linear mixture model based on the measured values of brightness temperature and radar backscatter, together with a priori knowledge about the scattering parameters and natural emissivities of basic sea ice types. OKEAN 01 data and algorithms tended to classify lower concentrations of young or first-year sea ice when concentrations were less than 60%, and to produce higher concentrations of multi-year sea ice when concentrations were greater than 40%, when compared to estimates produced from SSM/I data. Overall, total sea ice concentration maps derived independently from OKEAN 01, SSM/I, and AVHRR satellite imagery were all highly correlated, with uniform biases, and mean differences in total ice concentration of less than four percent (sd<15%).

  18. The transcendental meditation technique, adrenocortical activity, and implications for stress.

    PubMed

    Jevning, R; Wilson, A F; Smith, W R

    1978-05-15

    The practice of the transcendental meditation technique in subjects eliciting this state regularly for 3--5 years is correlated with acute decline of adrenocortical activity not associated with sleep during the practice.

  19. Microwave-assisted digestion using nitric acid for heavy metals and sulfated ash testing in active pharmaceutical ingredients.

    PubMed

    Pluhácek, T; Hanzal, J; Hendrych, J; Milde, D

    2016-04-01

    The monitoring of inorganic impurities in active pharmaceutical ingredients plays a crucial role in the quality control of the pharmaceutical production. The heavy metals and residue on ignition/sulfated ash methods employing microwave-assisted digestion with concentrated nitric acid have been demonstrated as alternatives to inappropriate compendial methods recommended in United States Pharmacopoeia (USP) and European Pharmacopoeia (Ph. Eur.). The recoveries using the heavy metals method ranged between 89% and 122% for nearly all USP and Ph. Eur. restricted elements as well as the recoveries of sodium sulfate spikes were around 100% in all tested matrices. The proposed microwave-assisted digestion method allowed simultaneous decomposition of 15 different active pharmaceutical ingredients with sample weigh up to 1 g. The heavy metals and sulfated ash procedures were successfully applied to the determination of heavy metals and residue on ignition/sulfated ash content in mycophenolate mofetil, nicergoline and silymarin. PMID:27209695

  20. Active microwave measurements of sea ice under fall conditions: The RADARSAT/FIREX fall experiment. [in the Canadian Arctic

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.; Kim, Y. S.; Moore, R. K.

    1984-01-01

    A series of measurements of the active microwave properties of sea ice under fall growing conditions was conducted. Ice in the inland waters of Mould Bay, Crozier Channel, and intrepid inlet and ice in the Arctic Ocean near Hardinge Bay was investigated. Active microwave data were acquired using a helicopter borne scatterometer. Results show that multiyear ice frozen in grey or first year ice is easily detected under cold fall conditions. Multiyear ice returns were dynamic due to response to two of its scene constituents. Floe boundaries between thick and thin ice are well defined. Multiyear pressure ridge returns are similar in level to background ice returns. Backscatter from homogeneous first year ice is seen to be primarily due to surface scattering. Operation at 9.6 GHz is more sensitive to the detailed changes in scene roughness, while operation at 5.6 GHz seems to track roughness changes less ably.

  1. Impact of active ingredients on the swelling properties of orally disintegrating tablets prepared by microwave treatment.

    PubMed

    Sano, Syusuke; Iwao, Yasunori; Kimura, Susumu; Noguchi, Shuji; Itai, Shigeru

    2014-07-01

    The impact of different active pharmaceutical ingredients (APIs) loading on the properties of orally disintegrating tablets (ODTs) prepared according to our previously reported microwave (MW) treatment process was evaluated using famotidine (FAM), acetaminophen (AAP), and ibuprofen (IBU). None of the APIs interrupted the tablet swelling during the MW treatment and the tablet hardness were improved by more than 20 N. MW treatment, however, led to a significant increase in the disintegration time of the ODTs containing IBU, but it had no impact on that of the ODTs containing FAM or AAP. This increased disintegration time of the ODTs containing IBU was attributed to the relatively low melting point of IBU (Tm=76 °C), with the IBU particles melting during the MW treatment to form agglomerates, which interrupted the penetration of water into the tablets and delayed their disintegration. The effects of the MW treatment on the chemical stability and dissolution properties of ODTs were also evaluated. The results revealed that MW treatment did not promote the degradations of FAM and AAP or delay their release from the ODTs, while dissolution of the ODTs containing IBU delayed by MW treatment. Based on these results, the MW method would be applicable to the preparation of ODTs containing APIs with melting points higher than 110 °C.

  2. Soil Moisture Retrieval Through Changing Corn Using Active/Passive Microwave Remote Sensing

    NASA Technical Reports Server (NTRS)

    ONeill, P. E.; Joseph, A.; DeLannoy, G.; Lang, R.; Utku, C.; Kim, E.; Houser, P.; Gish, T.

    2003-01-01

    An extensive field experiment was conducted from May-early October, 2002 at the heavily instrumented USDA-ARS (U.S. Dept. of Agriculture-Agricultural Research Service) OPE3 (Optimizing Production Inputs for Economic and Environmental Enhancement) test site in Beltsville, MD to acquire data needed to address active/passive microwave algorithm, modeling, and ground validation issues for accurate soil moisture retrieval. During the experiment, a tower-mounted 1.4 GHz radiometer (Lrad) and a truck-mounted dual-frequency (1.6 and 4.75 GHz) radar system were deployed on the northern edge of the site. The soil in this portion of the field is a sandy loam (silt 23.5%, sand 60.3%, clay 16.1%) with a measured bulk density of 1.253 g/cu cm. Vegetation cover in the experiment consisted of a corn crop which was measured from just after planting on April 17, 2002 through senescence and harvesting on October 2. Although drought conditions prevailed during the summer, the corn yield was near average, with peak biomass reached in late July.

  3. Preparation of Granular Red Mud Adsorbent using Different Binders by Microwave Pore - Making and Activation Method

    NASA Astrophysics Data System (ADS)

    Le, Thiquynhxuan; Wang, Hanrui; Ju, Shaohua; Peng, Jinhui; Zhou, Liexing; Wang, Shixing; Yin, Shaohua; Liu, Chao

    2016-04-01

    In this work, microwave energy is used for preparing a granular red mud (GRM) adsorbent made of red mud with different binders, such as starch, sodium silicate and cement. The effects of the preparation parameters, such as binder type, binder addition ratio, microwave heating temperature, microwave power and holding time, on the absorption property of GRM are investigated. The BET surface area, strength, pore structure, XRD and SEM of the GRM absorbent are analyzed. The results show that the microwave roasting has a good effect on pore-making of GRM, especially when using organic binder. Both the BET surface area and the strength of GRM obtained by microwave heating are significantly higher than that by conventional heating. The optimum conditions are obtained as follows: 6:100 (w/w) of starch to red mud ratio, microwave roasting with a power of 2.6 kW at 500℃ for holding time of 30 min. The BET surface area, pore volume and average pore diameter of GRM prepared at the optimum conditions are 15.58 m2/g, 0.0337 cm3/g and 3.1693 A0, respectively.

  4. ALTERNATIVE ROUTES FOR CATALYST PREPARATION: USE OF ULTRASOUND AND MICROWAVE IRRADIATION FOR THE PREPARATION OF VANADIUM PHOSPHORUS OXIDE CATALYST AND THEIR ACTIVITY FOR HYDROCARBON OXIDATION

    EPA Science Inventory

    Vanadium phosphorus oxide (VPO) has been prepared using ultrasound and microwave irradiation methods and compared with the catalyst prepared by conventional method for both the phase composition and activity for hydrocarbon oxidation. It is found that ultrasound irradiation metho...

  5. Assessing quality parameters in dry-cured ham using microwave spectroscopy.

    PubMed

    Bjarnadottir, S G; Lunde, K; Alvseike, O; Mason, A; Al-Shamma'a, A I

    2015-10-01

    Microwave spectroscopy has been applied in numerous non-food industry applications, and recently also in the food industry, for non-destructive measurements. In this study, a dry-cured ham model was designed and chemical analyses were performed for determining water activity, water content and salt content (sodium chloride) for all samples. These chemical parameters were also measured using microwave spectroscopy, with a rectangular microwave cavity resonator. Results indicate that microwave spectroscopy may be a promising technique for determination of water activity, salt content and water content in dry-cured ham using either reflected or transmitted signals.

  6. Spectral signatures of soil, snow and sea ice as observed by passive microwave and thermal infrared techniques

    NASA Technical Reports Server (NTRS)

    Schmugge, T.

    1984-01-01

    There have been many passive microwave observations of soil, snow, and sea ice surfaces made during the past several years. These measurements have been from tower, aircraft, and spacecraft platforms covering the wavelength range from 0.8 cm to 50 cm. Based on these data it can be concluded that the longer wavelengths (greater than 5 cm) are more effective for soil moisture observations because of a greater capability to penetrate vegetation, while the shorter wavelengths (1 to 3 cm) are best for snow and sea ice observations since the dominant process is volume scattering by the ice grains in the snow and the brine cells in sea ice. Because it is the intensity of a thermal emission process that is being measured, thermal infrared measurements are necessary to separate the emissivity and temperature effects in the microwave emission.

  7. Microwave Radiation Detector

    NASA Technical Reports Server (NTRS)

    Lesh, J. R.

    1984-01-01

    Direct photon detector responds to microwave frequencies. Method based on trapped-ion frequency-generation standards proposed to detect radio-frequency (RF) radiation at 40.5 GHz. Technique used for directdetection (RF) communication, radar, and radio astronomy.

  8. The present situation and forecasts of semiconductor elements performance within the microwave range, 1970-1985

    NASA Technical Reports Server (NTRS)

    Peterson, B.

    1978-01-01

    The present situation and possible developments over the period 1970-1985 for active semiconductor elements in the microwave range are outlined. After a short historical survey of FT techniques, the following are discussed: Generation, power amplification, amplification of small signals, frequency conversion, detection, electronic signal control and integrated microwave circuits.

  9. Microwave-assisted Synthesis and antifungal activity of coumarin[8,7-e][1,3]oxazine derivatives.

    PubMed

    Zhang, Ming-Zhi; Zhang, Rong-Rong; Yin, Wen-Zheng; Yu, Xiang; Zhang, Ya-Ling; Liu, Pin; Gu, Yu-Cheng; Zhang, Wei-Hua

    2016-08-01

    The synthesis of novel coumarin[8,7-e][1,3]oxazine derivatives through a microwave-assisted three-component one-pot Mannich reaction is described in this study. All the target compounds were evaluated in vitro for their antifungal activity against Botrytis cinerea, Colletotrichum capsici, Alternaria solani, Gibberella zeae, Rhizoctonia solani, and Alternaria mali. The preliminary bioassays showed that 5e, 5m, and 5s exhibited good antifungal activity and the most active compound was 5m with an [Formula: see text] value as low as 2.1 nM against Botrytis cinerea. PMID:26880591

  10. Incorporating Active Learning Techniques into a Genetics Class

    ERIC Educational Resources Information Center

    Lee, W. Theodore; Jabot, Michael E.

    2011-01-01

    We revised a sophomore-level genetics class to more actively engage the students in their learning. The students worked in groups on quizzes using the Immediate Feedback Assessment Technique (IF-AT) and active-learning projects. The IF-AT quizzes allowed students to discuss key concepts in small groups and learn the correct answers in class. The…

  11. Upregulation of HIF-1α via activation of ERK and PI3K pathway mediated protective response to microwave-induced mitochondrial injury in neuron-like cells.

    PubMed

    Zhao, Li; Yang, Yue-Feng; Gao, Ya-Bing; Wang, Shui-Ming; Wang, Li-Feng; Zuo, Hong-Yan; Dong, Ji; Xu, Xin-Ping; Su, Zhen-Tao; Zhou, Hong-Mei; Zhu, Ling-Ling; Peng, Rui-Yun

    2014-12-01

    Microwave-induced learning and memory deficits in animal models have been gaining attention in recent years, largely because of increasing public concerns on growing environmental influences. The data from our group and others have showed that the injury of mitochondria, the major source of cellular adenosine triphosphate (ATP) in primary neurons, could be detected in the neuron cells of microwave-exposed rats. In this study, we provided some insights into the cellular and molecular mechanisms behind mitochondrial injury in PC12 cell-derived neuron-like cells. PC12 cell-derived neuron-like cells were exposed to 30 mW/cm(2) microwave for 5 min, and damages of mitochondrial ultrastructure could be observed by using transmission electron microscopy. Impairments of mitochondrial function, indicated by decrease of ATP content, reduction of succinate dehydrogenase (SDH) and cytochrome c oxidase (COX) activities, decrease of mitochondrial membrane potential (MMP), and increase of reactive oxygen species (ROS) production, could be detected. We also found that hypoxia-inducible factor-1 (HIF-1α), a key regulator responsible for hypoxic response of the mammalian cells, was upregulated in microwave-exposed neuron-like cells. Furthermore, HIF-1α overexpression protected mitochondria from injury by increasing the ATP contents and MMP, while HIF-1α silence promoted microwave-induced mitochondrial damage. Finally, we demonstrated that both ERK and PI3K signaling activation are required in microwave-induced HIF-1α activation and protective response. In conclusion, we elucidated a regulatory connection between impairments of mitochondrial function and HIF-1α activation in microwave-exposed neuron-like cells. By modulating mitochondrial function and protecting neuron-like cells against microwave-induced mitochondrial injury, HIF-1α represents a promising therapeutic target for microwave radiation injury.

  12. Utilization of oil palm biodiesel solid residue as renewable sources for preparation of granular activated carbon by microwave induced KOH activation.

    PubMed

    Foo, K Y; Hameed, B H

    2013-02-01

    In this work, preparation of granular activated carbon from oil palm biodiesel solid residue, oil palm shell (PSAC) by microwave assisted KOH activation has been attempted. The physical and chemical properties of PSAC were characterized using scanning electron microscopy, volumetric adsorption analyzer and elemental analysis. The adsorption behavior was examined by performing batch adsorption experiments using methylene blue as dye model compound. Equilibrium data were simulated using the Langmuir, Freundlich and Temkin isotherm models. Kinetic modeling was fitted to the pseudo-first-order, pseudo-second-order and Elovich kinetic models, while the adsorption mechanism was determined using the intraparticle diffusion and Boyd equations. The result was satisfactory fitted to the Langmuir isotherm model with a monolayer adsorption capacity of 343.94mg/g at 30°C. The findings support the potential of oil palm shell for preparation of high surface area activated carbon by microwave assisted KOH activation.

  13. Identifying the Influence of Variable Ice Types on Passive and Active Microwave Measurements for the Purpose of SWE Retrieval

    NASA Astrophysics Data System (ADS)

    Gunn, G. E.; Duguay, C. R.; Derksen, C.

    2010-12-01

    Dual polarized airborne passive microwave (PM) brightness temperatures (Tbs) at 6.9, 19 and 37 GHz H/V and satellite X-band (9.65 GHz VV/VH) active microwave backscatter measurements were combined with coincident in-situ measurements of snow and ice characteristics to determine the potential of unique emission/interaction caused by variable ice properties. Algorithms designed to estimate snow water equivalent (SWE) using the common brightness temperature difference approach (37GHz - 19 GHz) continually underestimate in-situ levels when applied to pure-ice pixels in the Canadian subarctic. Ice thickness measurements were positively correlated with 19 GHz vertically polarised (V pol) passive microwave emissions (R= 0.67), and negatively with 19 GHz horizontally polarised (H pol) emissions (R = -0.79), indicating that surface conditions at the ice/snow interface affect the emissivity at H pol. This study examines the effect of ice types on coincident passive and active microwave measurements for free-floating ice in two lakes (Sitidgi, Husky Lakes). Ice types are delineated using the SAR segmentation program MAGIC (MAp Guided Ice Classification) that has previously been used to characterize sea ice types. Based on output ice types produced by MAGIC, the relationship between active and passive microwave measurements is examined. Output ice classes corresponded well to those measured at coincident in-situ sampling sites. Emissions at 19 GHz H and cross-polarised X-band backscatter (9.65 GHz) increase coincident to ice types that exhibit more scattering potential. Clear ice exhibits the lowest return, followed by a transition zone between clear ice and grey ice. Grey ice exhibits higher returns as a result of the inclusion of spherical air bubbles, followed by rafted ice, which exhibits an excess of scattering potential. Concurrently, transects of dual polarized 6.9 and 19 GHz PM Tbs exhibited a positive relationship with cross-polarized active microwave backscatter (VH

  14. A facile route of microwave to fabricate PVA-coating Ag nanofilm used as NIR-SERS active substrate

    NASA Astrophysics Data System (ADS)

    Liu, Renming; Feng, Mingjun; Zhang, Deqing; Su, Yongbo; Cai, Chenbo; Si, Minzhen

    2013-04-01

    Surface-enhanced Raman spectroscopy (SERS) is a very sensitive and selective technique for detecting surface species. Recently, SERS has been increasingly employed in the study of biological macromolecules, from DNA and peptides to whole proteins, and cells. However, visible laser sources usually employed in SERS detections always lead to photochemical reactions as well as intensive fluorescence emission from the biological samples. A way to avoid these questions is the employment of near infrared (NIR) laser excitation; thus, it demands the appropriate designs of NIR-SERS substrates in order to obtain the maximum enhancement of the Raman signals from biological analytes. In this work, we demonstrate the fabrication of a new NIR-SERS substrate of polyvinyl alcohol (PVA) coating Ag nanofilms (PVA-coating Ag nanofilm) using a simple and low-cost microwave strategy. The experimental data show that, the plasmon resonance band of the PVA-coating Ag nanofilm is in the region of 400-900 nm, and the maximum center is at ∼780 nm, which matches well with the 785 nm laser excitation employed in this work. With the NIR-SERS detections of hematin and hemoglobin molecules adsorbed on this PVA-coating Ag nanofilm, one can see that the NIR-SERS activity and spectroscopy reproducibility of this NIR-SERS substrate are all perfect. By using of the tested molecule of hematin, the PVA-coating Ag nanofilm shows a high enhancement factor (EF) of ∼107. As the fabrication process of this NIR-SERS substrate is very simple and inexpensive, this method may be used in large-scale preparation of SERS substrates that have been widely applied in Raman analysis. Especially, this PVA-coating Ag nanofilm can also be served as a novel NIR-SERS substrate in biochemical analysis due to its good NIR characteristics.

  15. Negative pressure cavitation-microwave assisted preparation of extract of Pyrola incarnata Fisch. rich in hyperin, 2'-O-galloylhyperin and chimaphilin and evaluation of its antioxidant activity.

    PubMed

    Yao, Xiao-Hui; Zhang, Dong-Yang; Luo, Meng; Jin, Shuang; Zu, Yuan-Gang; Efferth, Thomas; Fu, Yu-Jie

    2015-02-15

    A novel and effective extraction method, namely negative pressure cavitation-microwave assisted extraction technique (NMAE), was developed for the preparation of extracts of Pyrola incarnata Fisch., which are rich in the main constituents hyperin, 2'-O-galloylhyperin and chimaphilin. Single factor experiments and Box-Behnken design (BBD) were combined with a response surface methodology to examine factors affecting extraction. Maximum extraction yields of hyperin, 2'-O-galloylhyperin and chimaphilin (1.339±0.029, 4.831±0.117 and 0.329±0.011mg/g, respectively) were achieved under the following optimised conditions: 700W microwave power, 50°C extraction temperature, 30:1mL/g liquid-solid ratio, -0.05MPa negative pressure, 55% ethanol concentration and 12min extraction time. First-order kinetics equation demonstrated that NMAE offered significant savings in extraction time, and enhancing extraction efficiency. Furthermore, NMAE extracts yielded excellent antioxidant activity (IC50 0.121mg/mL for DPPH 2.896mmol FeSO4/g DW FRAP).

  16. Microwave irradiation as a versatile tool for increasing reaction rates and yields in synthesis of optically active polyamides containing flexible L-leucine amino acid.

    PubMed

    Mallakpour, Shadpour; Zadehnazari, Amin

    2010-05-01

    In this investigation, a series of thermally stable and optically active polyamides (PA)s containing bulky pendant chiral functionality from polymerization of a diacid monomer containing rigid phthalimide and flexible L-leucine groups, (2S)-5-[4-(4-methyl-2-phthalimidylpentanoylamino)benzoylamino]isophthalic acid with several aromatic and aliphatic diisocyanates such as 4,4'-methylenebis(phenyl isocyanate), toluylene-2,4-diisocyanate, isophorone diisocyanate, and hexamethylene diisocyanate under gradual heating method were prepared and compared with microwave-assisted polycondensation method. The polymerization reactions occurred rapidly under microwave irradiation and produced a series of PAs with good yields and moderate inherent viscosities of 0.26-0.68 dL/g. All of the new PAs showed good solubility and were readily dissolved in aprotic organic solvents. The resulting polymers were characterized by FT-IR, (1)H NMR spectroscopy, and elemental analysis technique. Thermal stability and thermal properties of PAs were evaluated by thermogravimetric analysis and differential scanning calorimetry. The interpretation of kinetic parameters (E, Delta H, Delta S, and Delta G) of thermal decomposition stages have been evaluated using Coats-Redfern equations. PMID:19756941

  17. Accessory muscle activation during the superimposed burst technique.

    PubMed

    Roberts, Devin; Kuenze, Christopher; Saliba, Susan; Hart, Joseph M

    2012-08-01

    Quadriceps muscle activation is assessed using the superimposed burst technique. This technique involves percutaneous muscle stimulation superimposed during maximal isometric volitional knee extension. It is unknown whether accessory muscle activation during maximal knee extension influences estimates of quadriceps muscle activation. Our aim was to compare accessory muscle activation while performing the superimposed burst technique using investigator delivered verbal instruction to constrain the system (CS) and a participant preferred (PP) technique. Twenty five healthy, active individuals (13M/12F, age=23.8 ± 3.35, height=72.73 ± 14.51 cm, and weight=175.29 ± 9.59 kg) were recruited for this study. All participants performed superimposed burst testing with (CS) and without (PP) verbal instruction to encourage isolated quadriceps activation during maximal isometric knee extension. The main outcome variables measured were knee extension torque, quadriceps central activation ratio and mean EMG of vastus lateralis, biceps femoris, and lumbar paraspinal muscles. There were significant differences in knee extension torque (CS=2.87 ± 0.93 Nm/kg, PP=3.40 ± 1.12 Nm/kg, p<0.001), superimposed burst torque (CS=3.40 ±0.98 Nm/kg, PP=3.75 ± 1.11 Nm/kg, p=0.002) and quadriceps CAR (CS=84.1 ± 12.0%, PP=90.2 ± 9.9%, p<0.001) between the techniques. There was also a significant difference in lumbar paraspinal EMG (CS=6.40 ± 8.52%, PP=11.86 ± 14.89%, p=0.043) between the techniques however vastus lateralis EMG was not significantly different. Patient instruction via verbal instruction to constrain proximal structures may help patient minimize confounders to knee extension torque generation while maximizing quadriceps activation.

  18. Effects of microwave, ultrasonic and enzymatic treatment on chemical and physical properties of waste-activated sludge.

    PubMed

    Yi, Wei G; Lo, Kwang V; Mavinic, Donald S

    2014-01-01

    The effects of microwave irradiation, microwave enhanced advanced oxidation process (MW/H2O2-AOP), ultrasonic and/or protease enzymatic treatments on chemical and physical properties of waste-activated sludge were studied. The different treatment mechanisms resulted in various degrees of biomass cell destruction and nutrient release, as evidenced by transformation of chemical constituents, particle size distribution, and scanning electron microscopic imaging. The microwave irradiation and the MW/H2O2-AOP resulted in higher soluble protein concentrations, but lower amino acids. High concentrations of soluble polysaccharide and deoxyribonucleic acid were also obtained in solution. The particle size distribution profile, after treatments, remained similar to that of waste-activated sludge; however, the distribution shifted toward smaller particle sizes. Ultrasonic treatment resulted in a high concentration of amino acids and overall protein disintegration/hydrolysis. Protease enzymatic treatment, after ultrasonic disintegration, further enhanced protein degradation. The particle size distribution profile for ultrasonic treatment was altered to a further nonuniform distribution. The ultrasonic plus protease treatment yielded the best results, in terms of cell wall destruction.

  19. Overview of Microwave and Millimeter Wave Testing Activities for the Inspection of the Space Shuttle SOH and Heat Tiles

    NASA Technical Reports Server (NTRS)

    Zoughi, R.

    2005-01-01

    Microwave and millimeter wave nondestructive testing and evaluation methods, have shown great potential for inspecting the Space Shuttle s external tank spray on foam insulation (SOFI) and acreage heat tiles. These methods are capable of producing high-resolution images of et interior of these structures. To this end, several different microwave and millimeter wave nondestructive testing methods have been investigated for this purpose. These methods have included near-field as well as focused approaches ranging in frequency from 10 GHz to beyond 100 GHz. Additionally, synthetic aperture focusing methods have also been developed in this regime for obtaining high-resolution images of the interior of these critical structures. These methods possess the potential for producing 3D images of these structures in a relatively short amount of time. This paper presents a summary of these activities in addition to providing examples of images produced using these diverse methods.

  20. Alternative energy input: Mechanochemical, microwave and ultrasound-assisted organic synthesis

    EPA Science Inventory

    Microwave, ultrasound, sunlight and mechanochemical mixing can be used to augment conventional laboratory techniques. By applying these alternative means of activation, a number of chemical transformations have been achieved thereby improving many existing protocols with superi...

  1. Polynomial optimization techniques for activity scheduling. Optimization based prototype scheduler

    NASA Technical Reports Server (NTRS)

    Reddy, Surender

    1991-01-01

    Polynomial optimization techniques for activity scheduling (optimization based prototype scheduler) are presented in the form of the viewgraphs. The following subject areas are covered: agenda; need and viability of polynomial time techniques for SNC (Space Network Control); an intrinsic characteristic of SN scheduling problem; expected characteristics of the schedule; optimization based scheduling approach; single resource algorithms; decomposition of multiple resource problems; prototype capabilities, characteristics, and test results; computational characteristics; some features of prototyped algorithms; and some related GSFC references.

  2. Microwave ECR Ion Thruster Development Activities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2002-01-01

    Outer solar system missions will have propulsion system lifetime requirements well in excess of that which can be satisfied by ion thrusters utilizing conventional hollow cathode technology. To satisfy such mission requirements, other technologies must be investigated. One possible approach is to utilize electrodeless plasma production schemes. Such an approach has seen low power application less than 1 kW on earth-space spacecraft such as ARTEMIS which uses the rf thruster the RIT 10 and deep space missions such as MUSES-C which will use a microwave ion thruster. Microwave and rf thruster technologies are compared. A microwave-based ion thruster is investigated for potential high power ion thruster systems requiring very long lifetimes.

  3. Microwave NDE for Reinforced Concrete

    NASA Astrophysics Data System (ADS)

    Arunachalam, Kavitha; Melapudi, Vikram R.; Rothwell, Edward J.; Udpa, Lalita; Udpa, Satish S.

    2006-03-01

    Nondestructive assessment of the integrity of civil structures is of paramount importance for ensuring safety. In concrete imaging, radiography, ground penetrating radar and infrared thermography are some of the widely used techniques for health monitoring. Other emerging technologies that are gaining impetus for detecting and locating flaws in steel reinforcement bar include radioactive computed tomography, microwave holography, microwave and acoustic tomography. Of all the emerging techniques, microwave NDT is a promising imaging modality largely due to their ability to penetrate thick concrete structures, contrast between steel rebar and concrete and their non-radioactive nature. This paper investigates the feasibility of a far field microwave NDE technique for reinforced concrete structures.

  4. A facile synthesis of arylazonicotinates for dyeing polyester fabrics under microwave irradiation and their biological activity profiles.

    PubMed

    Al-Mousawi, Saleh M; El-Apasery, Morsy A; Mahmoud, Huda M

    2012-09-27

    A as textile dyes and the fastness properties of the dyed samples were measured. Most of the dyed fabrics tested displayed very good washing and perspiration fastness and series of 2-hydroxy- and 2-amino-6-substituted-5-arylazonicotinate monoazo compounds 7a-e and 9a-c were prepared via condensation of 3-oxo-3-substituted-2-arylhydrazonals 2a-e with active methylene nitriles 3a-d using microwave irradiation as an energy source. These substances were then tested moderate light fastness. Finally, the biological activity of the synthesized compounds against gram positive bacteria, gram negative bacteria and yeast were evaluated.

  5. Microwave remote sensing laboratory design

    NASA Technical Reports Server (NTRS)

    Friedman, E.

    1979-01-01

    Application of active and passive microwave remote sensing to the study of ocean pollution is discussed. Previous research efforts, both in the field and in the laboratory were surveyed to derive guidance for the design of a laboratory program of research. The essential issues include: choice of radar or radiometry as the observational technique; choice of laboratory or field as the research site; choice of operating frequency; tank sizes and material; techniques for wave generation and appropriate wavelength spectrum; methods for controlling and disposing of pollutants used in the research; and pollutants other than oil which could or should be studied.

  6. Properties of Ba(Mg1/3Ta2/3)O3 thin films prepared by metalorganic solution deposition technique for microwave applications

    NASA Astrophysics Data System (ADS)

    Joshi, P. C.; Desu, S. B.

    1998-08-01

    We report on the properties of Ba(Mg1/3Ta2/3)O3 thin films prepared by the metalorganic solution deposition technique. Bulk Ba(Mg1/3Ta2/3)O3 ceramics have shown excellent dielectric properties at microwave frequencies; however, the high sintering temperature of bulk material is the major obstacle in their use as dielectric resonators to miniaturize microwave circuits. It was possible to obtain an ordered-perovskite phase of 0.3-μm-thick Ba(Mg1/3Ta2/3)O3 films with trigonal symmetry at an annealing temperature of 700 °C, which is much lower than the bulk sintering temperatures. The electrical measurements were conducted on Pt/Ba(Mg1/3Ta2/3)O3/Pt capacitors. The typical measured small signal dielectric constant and dissipation factor at 100 kHz were 22.2 and 0.009, respectively. The dielectric constant of thin films was comparable to the typical values (ɛr˜23.5-25) reported for bulk ceramics. The temperature coefficient of capacitance was -145 ppm/°C in the measured temperature range of 25-125 °C. The leakage current density was lower than 10-7 A/cm2 at an applied electric field of 0.5 MV/cm. The high dielectric constant, which is comparable to bulk, low dielectric loss, and good temperature and bias stability suggest the suitability of Ba(Mg1/3Ta2/3)O3 thin films for microwave communications and integrated capacitor applications.

  7. Rapid adsorption of toxic Pb(II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique.

    PubMed

    Mubarak, Nabisab Mujawar; Sahu, Jaya Narayan; Abdullah, Ezzat Chan; Jayakumar, Natesan Subramanian

    2016-07-01

    Multiwall carbon nanotubes (MWCNTs) were synthesized using a tubular microwave chemical vapor deposition technique, using acetylene and hydrogen as the precursor gases and ferrocene as catalyst. The novel MWCNT samples were tested for their performance in terms of Pb(II) binding. The synthesized MWCNT samples were characterized using Fourier Transform Infrared (FT-IR), Brunauer, Emmett and Teller (BET), Field Emission Scanning Electron Microscopy (FESEM) analysis, and the adsorption of Pb(II) was studied as a function of pH, initial Pb(II) concentration, MWCNT dosage, agitation speed, and adsorption time, and process parameters were optimized. The adsorption data followed both Freundlich and Langmuir isotherms. On the basis of the Langmuir model, Qmax was calculated to be 104.2mg/g for the microwave-synthesized MWCNTs. In order to investigate the dynamic behavior of MWCNTs as an adsorbent, the kinetic data were modeled using pseudo first-order and pseudo second-order equations. Different thermodynamic parameters, viz., ∆H(0), ∆S(0) and ∆G(0) were evaluated and it was found that the adsorption was feasible, spontaneous and endothermic in nature. The statistical analysis revealed that the optimum conditions for the highest removal (99.9%) of Pb(II) are at pH5, MWCNT dosage 0.1g, agitation speed 160r/min and time of 22.5min with the initial concentration of 10mg/L. Our results proved that microwave-synthesized MWCNTs can be used as an effective Pb(II) adsorbent due to their high adsorption capacity as well as the short adsorption time needed to achieve equilibrium. PMID:27372128

  8. Microwave Treatment for Cardiac Arrhythmias

    NASA Technical Reports Server (NTRS)

    Hernandez-Moya, Sonia

    2009-01-01

    NASA seeks to transfer the NASA developed microwave ablation technology, designed for the treatment of ventricular tachycardia (irregular heart beat), to industry. After a heart attack, many cells surrounding the resulting scar continue to live but are abnormal electrically; they may conduct impulses unusually slowly or fire when they would typically be silent. These diseased areas might disturb smooth signaling by forming a reentrant circuit in the muscle. The objective of microwave ablation is to heat and kill these diseased cells to restore appropriate electrical activity in the heart. This technology is a method and apparatus that provides for propagating microwave energy into heart tissues to produce a desired temperature profile therein at tissue depths sufficient for thermally ablating arrhythmogenic cardiac tissue while preventing excessive heating of surrounding tissues, organs, and blood. A wide bandwidth double-disk antenna is effective for this purpose over a bandwidth of about six gigahertz. A computer simulation provides initial screening capabilities for an antenna such as antenna, frequency, power level, and power application duration. The simulation also allows optimization of techniques for specific patients or conditions. In comparison with other methods that involve direct-current pulses or radio frequencies below 1 GHz, this method may prove more effective in treating ventricular tachycardia. This is because the present method provides for greater control of the location, cross-sectional area, and depth of a lesion via selection of the location and design of the antenna and the choice of microwave power and frequency.

  9. A microwave imaging-based technique to localize an in-body RF source for biomedical applications.

    PubMed

    Chandra, Rohit; Johansson, Anders J; Gustafsson, Mats; Tufvesson, Fredrik

    2015-05-01

    In some biomedical applications such as wireless capsule endoscopy, the localization of an in-body radio-frequency (RF) source is important for the positioning of any abnormality inside the gastrointestinal tract. With knowledge of the location, therapeutic operations can be performed precisely at the position of the abnormality. Electrical properties (relative permittivity and conductivity) of the tissues and their distribution are utilized to estimate the position. This paper presents a method for the localization of an in-body RF source based on microwave imaging. The electrical properties of the tissues and their distribution at 403.5 MHz are found from microwave imaging and the position of an RF source is then estimated based on the image. The method is applied on synthetic noisy data, obtained after the addition of white Gaussian noise to simulated data of a simple circular phantom, and a realistic phantom in a 2-D case. The root-mean-square of the error distance between the actual and the estimated position is found to be within 10 and 4 mm for the circular and the realistic phantom, respectively, showing the capability of the proposed algorithm to work with a good accuracy even in the presence of noise for the localization of the in-body RF source.

  10. Determination of Activated Carbon Residual Life using a Microwave Cavity Resonator

    NASA Astrophysics Data System (ADS)

    Mason, A.; Wylie, S.; Shaw, A.; Al-Shamma'a, A. I.; Thomas, A.; Keele, H.

    2011-08-01

    This paper presents the continuation of work conducted jointly between Dstl and LJMU. This unique body of work has been, largely, concerned with detecting the residual life of high performance filter materials using electromagnetic (EM) waves within a resonant cavity. Past work has considered both HEPA [1] and ASZM-TEDA[2] activated carbon filter materials. This paper continues the later work, considering the response of ASZM-TEDA activated carbon through the co-ageing of two distinct batches of the material. The paper briefly introduces activated carbon, discusses theory relevant to the work and the methodology used for investigation. A comprehensive set of results is included which seek to validate this technique for determining the residual lifespan of activated carbon.

  11. Robust control design techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Ozbay, Hitay; Bachmann, Glen R.

    1994-01-01

    In this paper, an active flutter suppression problem is studied for a thin airfoil in unsteady aerodynamics. The mathematical model of this system is infinite dimensional because of Theodorsen's function which is irrational. Several second order approximations of Theodorsen's function are compared. A finite dimensional model is obtained from such an approximation. We use H infinity control techniques to find a robustly stabilizing controller for active flutter suppression.

  12. Bonding techniques for hybrid active pixel sensors (HAPS)

    NASA Astrophysics Data System (ADS)

    Bigas, M.; Cabruja, E.; Lozano, M.

    2007-05-01

    A hybrid active pixel sensor (HAPS) consists of an array of sensing elements which is connected to an electronic read-out unit. The most used way to connect these two different devices is bump bonding. This interconnection technique is very suitable for these systems because it allows a very fine pitch and a high number of I/Os. However, there are other interconnection techniques available such as direct bonding. This paper, as a continuation of a review [M. Lozano, E. Cabruja, A. Collado, J. Santander, M. Ullan, Nucl. Instr. and Meth. A 473 (1-2) (2001) 95-101] published in 2001, presents an update of the different advanced bonding techniques available for manufacturing a hybrid active pixel detector.

  13. First fusion proton measurements in TEXTOR plasmas using activation technique

    SciTech Connect

    Bonheure, G.; Wassenhove, G. Van; Mlynar, J.; Hult, M.; Gonzalez de Orduna, R.; Lutter, G.; Vermaercke, P.; Huber, A.; Schweer, B.; Esser, G.; Biel, W.

    2012-10-15

    MeV particle loss measurements from fusion plasmas, in particular alpha particles, remain difficult in large fusion devices and further R and D is needed for ITER. This paper describes the first attempt to measure 3 MeV escaping fusion protons emitted from TEXTOR tokamak plasmas using activation technique. This technique was successfully demonstrated, initially, in 2006 on the JET tokamak. An ion camera equipped with a collimator and several types of activation detectors was installed inside the TEXTOR vacuum vessel to perform these measurements. After irradiation, the detectors were analyzed using ultra low level gamma-ray spectrometry at the HADES underground laboratory. 3 MeV escaping fusion protons were detected in larger number -{approx}6 times more - compared to earlier measurements using this technique on JET. Another major progress was the reduction of the cooling time by a factor of 50, which made possible to detect radionuclides with half-life of less than 90 min.

  14. Microwave and Millimeter Wave Imaging of the Space Shuttle External Fuel Tank Spray on Foam Insulation (SOFI) Using Synthetic Aperture Focusing Techniques (SAFT)

    NASA Technical Reports Server (NTRS)

    Case, J. T.; Robbins, J.; Kharkovshy, S.; Hepburn, F. L.; Zoughi, R.

    2005-01-01

    The Space Shuttle Columbia's catastrophic failure is thought to have been caused by a dislodged piece of external tank SOFI (Spray On Foam Insulation) striking the left wing of the orbiter causing significant damage to some of the reinforced carbodcarbon leading edge wing panels. Microwave and millimeter wave nondestructive evaluation methods, have shown great potential for inspecting the SOFI for the purpose of detecting anomalies such as small voids that may cause separation of the foam from the external tank during the launch. These methods are capable of producing relatively high-resolution images of the interior of SOH particularly when advanced imaging algorithms are incorporated into the overall system. To this end, synthetic aperture focusing techniques are being deveioped for this purpose. These iechniqiies pradiice high-resolution images that are independent of the distance of the imaging probe to the SOFI with spatial resolution in the order of the half size of imaging probe aperture. At microwave and millimeter wave frequencies these apertures are inherently small resulting in high-resolution images. This paper provides the results of this investigation using 2D and 3D SAF based methods and holography. The attributes of these methods and a full discussion of the results will also be provided.

  15. Effect of microwave radiation on hydroxy propyl methyl cellulose polymer films and HPMC/poly(vinylpyrrolidone) polymer blend films using the wide-angle X-ray technique

    NASA Astrophysics Data System (ADS)

    Somashekarappa, H.; Prakash, Y.; Mahadevaiah; Demappa, T.; Somashekar, R.

    2013-12-01

    The changes in the microstructural parameters of microwave-irradiated hydroxy propyl methyl cellulose (HPMC) and HPMC/PVP (poly(vinylpyrrolidone)) blend films have been studied using the Wide Angle X-Ray Scattering Technique (WAXS) method. The crystal imperfection parameters, such as lattice strain (g%), the average number of unit cells ⟨ N ⟩ counted in a direction perpendicular to Bragg's plane (hkl), spacing of (hkl planes dhkl, crystallite size ⟨ Ds ⟩, distortion width, standard deviation, stacking faults, twin faults, were computed by the whole pattern fitting method. The obtained results were quantified in terms of the radiation dosage given to the samples. X-ray analysis reveals that there is a decrease in the crystallite size with the increase in the radiation dosage. Fourier transform Infra-Red (FTIR) analysis has been also carried out for both the unirradiated and irradiated films to study the effect of microwave radiation on HPMC and HPMC/PVP polymer blend films. The scanning electron microscope study is also carried out to know the surface morphology of these blend films.

  16. New prospects in pretreatment of cotton fabrics using microwave heating.

    PubMed

    Hashem, M; Taleb, M Abou; El-Shall, F N; Haggag, K

    2014-03-15

    As microwaves are known to give fast and rapid volume heating, the present study is undertaken to investigate the use of microwave heating for pretreatment cotton fabrics to reduce the pretreatment time, chemicals and water. The onset of the microwave heating technique on the physicochemical and performance properties of desized, scoured and bleached cotton fabric is elucidated and compared with those obtained on using conventional thermal heating. Combined one-step process for desizing, scouring and bleaching of cotton fabric under microwave heating was also investigated. The dual effect of adding urea, (as microwave absorber and hydrogen peroxide activator) has been exploiting to accelerate the pretreatment reaction of cotton fabric. DSC, FT-IR and SEM have been used to investigate the onset of microwave on the morphological and chemical change of cotton cellulose after pretreatment and bleaching under microwave heating. Results obtained show that, a complete fabric preparation was obtained in just 5 min on using microwave in pretreatments process and the fabric properties were comparable to those obtained in traditional pretreatment process which requires 2.5-3h for completion.

  17. New prospects in pretreatment of cotton fabrics using microwave heating.

    PubMed

    Hashem, M; Taleb, M Abou; El-Shall, F N; Haggag, K

    2014-03-15

    As microwaves are known to give fast and rapid volume heating, the present study is undertaken to investigate the use of microwave heating for pretreatment cotton fabrics to reduce the pretreatment time, chemicals and water. The onset of the microwave heating technique on the physicochemical and performance properties of desized, scoured and bleached cotton fabric is elucidated and compared with those obtained on using conventional thermal heating. Combined one-step process for desizing, scouring and bleaching of cotton fabric under microwave heating was also investigated. The dual effect of adding urea, (as microwave absorber and hydrogen peroxide activator) has been exploiting to accelerate the pretreatment reaction of cotton fabric. DSC, FT-IR and SEM have been used to investigate the onset of microwave on the morphological and chemical change of cotton cellulose after pretreatment and bleaching under microwave heating. Results obtained show that, a complete fabric preparation was obtained in just 5 min on using microwave in pretreatments process and the fabric properties were comparable to those obtained in traditional pretreatment process which requires 2.5-3h for completion. PMID:24528744

  18. Cu2ZnSnS4 nanoflakes prepared by one step microwave irradiation technique: Effect of Cu concentration

    NASA Astrophysics Data System (ADS)

    Kandare, S. P.; Dhole, S. D.; Bhoraskar, V. N.; Dahiwale, S. S.

    2016-05-01

    Cu2ZnSnS4 (CZTS) nanoflakes were synthesized in one step by microwave irradiation method. Controlling the secondary phases in Copper Zinc Tin Sulfide (CZTS) material is critical, but it is necessary to control secondary phases in order to achieve the high efficiency solar cells made from CZTS. In the recent years, CZTS has shown its growing importance in thin film photovoltaic application because of its favorable optical and electrical properties. In this work, a systematic study has been carried out by properly controlling the copper concentration to get the pure phase of CZTS. X-ray diffraction shows the CZTS kesterite structure. Optical band gap estimated from UV-Visible spectroscopy was around 1.37eV. Systematic Raman study reveals the suppression of Cu2S peak with variation in copper concentration which otherwise was not clear from XRD and UV-visible data.

  19. A single source microwave photonic filter using a novel single-mode fiber to multimode fiber coupling technique.

    PubMed

    Chang, John; Fok, Mable P; Meister, James; Prucnal, Paul R

    2013-03-11

    In this paper we present a fully tunable and reconfigurable single-laser multi-tap microwave photonic FIR filter that utilizes a special SM-to-MM combiner to sum the taps. The filter requires only a single laser source for all the taps and a passive component, a SM-to-MM combiner, for incoherent summing of signal. The SM-to-MM combiner does not produce optical interference during signal merging and is phase-insensitive. We experimentally demonstrate an eight-tap filter with both positive and negative programmable coefficients with excellent correspondence between predicted and measured values. The magnitude response shows a clean and accurate function across the entire bandwidth, and proves successful operation of the FIR filter using a SM-to-MM combiner.

  20. Monolithic microwave integrated circuits

    NASA Astrophysics Data System (ADS)

    Pucel, R. A.

    Monolithic microwave integrated circuits (MMICs), a new microwave technology which is expected to exert a profound influence on microwave circuit designs for future military systems as well as for the commercial and consumer markets, is discussed. The book contains an historical discussion followed by a comprehensive review presenting the current status in the field. The general topics of the volume are: design considerations, materials and processing considerations, monolithic circuit applications, and CAD, measurement, and packaging techniques. All phases of MMIC technology are covered, from design to testing.

  1. Microwave dielectric properties of BNT-BT0.08 thin films prepared by sol-gel technique

    NASA Astrophysics Data System (ADS)

    Huitema, L.; Cernea, M.; Crunteanu, A.; Trupina, L.; Nedelcu, L.; Banciu, M. G.; Ghalem, A.; Rammal, M.; Madrangeas, V.; Passerieux, D.; Dutheil, P.; Dumas-Bouchiat, F.; Marchet, P.; Champeaux, C.

    2016-04-01

    We report for the first time the microwave characterization of 0.92(Bi0.5Na0.5)TiO3-0.08BaTiO3 (BNT-BT0.08) ferroelectric thin films fabricated by the sol-gel method and integrated in both planar and out-of-plane tunable capacitors for agile high-frequency applications and particularly on the WiFi frequency band from 2.4 GHz to 2.49 GHz. The permittivity and loss tangent of the realized BNT-BT0.08 layers have been first measured by a resonant cavity method working at 12.5 GHz. Then, we integrated the ferroelectric material in planar inter-digitated capacitors (IDC) and in out-of-plane metal-insulator-metal (MIM) devices and investigated their specific properties (dielectric tunability and losses) on the whole 100 MHz-15 GHz frequency domain. The 3D finite-elements electromagnetic simulations of the IDC capacitances are fitting very well with their measured responses and confirm the dielectric properties determined with the cavity method. While IDCs are not exhibiting an optimal tunability, the MIM capacitor devices with optimized Ir/MgO(100) bottom electrodes demonstrate a high dielectric tunability, of 30% at 2.45 GHz under applied voltages as low as 10 V, and it is reaching 50% under 20 V voltage bias at the same frequency. These high-frequency properties of the MIM devices integrating the BNT-BT0.08 films, combining a high tunability under low applied voltages indicate a wide integration potential for tunable devices in the microwave domain and particularly at 2.45 GHz, corresponding to the widely used industrial, scientific, and medical frequency band.

  2. ORGANIC SYNTHESES USING MICROWAVES AND SUPPORTED REAGENTS

    EPA Science Inventory

    Microwave-accelerated chemical syntheses under solvent-free conditions have witnessed an explosive growth. The technique has found widespread application predominantly exploiting the inexpensive unmodified household microwave (MW) ovens although the use of dedicated MW equipment...

  3. Passive Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Njoku, Eni G.; Entekhabi, Dara

    1994-01-01

    Microwave remote sensing provides a unique capability for direct observation of soil moisture... This Paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods.

  4. Molten salt-supported polycondensation of optically active diacid monomers with an aromatic thiazole-bearing diamine using microwave irradiation.

    PubMed

    Mallakpour, Shadpour; Zadehnazari, Amin

    2014-05-01

    Microwave heating was used to prepare optically active thiazole-bearing poly(amide-imide)s. Polymerization reactions were carried out in the molten tetrabutylammonium bromide as a green molten salt medium and triphenyl phosphite as the homogenizer. Structural elucidation of the compounds was performed by Fourier transform infrared and NMR spectroscopic data and elemental analysis results. The polymeric samples were readily soluble in various organic solvents, forming low-colored and flexible thin films via solution casting. They showed high thermal stability with decomposition temperature being above 360 °C. They were assembled randomly in a nanoscale size.

  5. Molten salt-supported polycondensation of optically active diacid monomers with an aromatic thiazole-bearing diamine using microwave irradiation

    PubMed Central

    Mallakpour, Shadpour; Zadehnazari, Amin

    2013-01-01

    Microwave heating was used to prepare optically active thiazole-bearing poly(amide-imide)s. Polymerization reactions were carried out in the molten tetrabutylammonium bromide as a green molten salt medium and triphenyl phosphite as the homogenizer. Structural elucidation of the compounds was performed by Fourier transform infrared and NMR spectroscopic data and elemental analysis results. The polymeric samples were readily soluble in various organic solvents, forming low-colored and flexible thin films via solution casting. They showed high thermal stability with decomposition temperature being above 360 °C. They were assembled randomly in a nanoscale size. PMID:25685498

  6. Microwave emissions from snow

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.

    1984-01-01

    The radiation emitted from dry and wet snowpack in the microwave region (1 to 100 GHz) is discussed and related to ground observations. Results from theoretical model calculations match the brightness temperatures obtained by truck mounted, airborne and spaceborne microwave sensor systems. Snow wetness and internal layer structure complicate the snow parameter retrieval algorithm. Further understanding of electromagnetic interaction with snowpack may eventually provide a technique to probe the internal snow properties

  7. Microwave Ovens

    MedlinePlus

    ... Required Reports for the Microwave Oven Manufacturers or Industry Exemption from Certain Reporting and Recordkeeping Requirements for ... Microwave Ovens (PDF) (PDF - 2.5MB) FDA eSubmitter Industry Guidance - Documents of Interest Notifications to Industry (PDF ...

  8. Passive/active microwave soil moisture retrieval disaggregation using SMAPVEX12 data

    NASA Astrophysics Data System (ADS)

    Fang, Bin; Lakshmi, Venkat

    2014-11-01

    SMAPVEX12 is a pre-launch field campaign for evaluating and testing the soil moisture retrievals retrieved from the SMAP project. During this experiment, airborne microwave observations from PALS radiometer and radar: brightness temperature and radar backscatter, as well as ground measurements were acquired. In this study, the remote sensing soil moisture was retrieved from SMAPVEX12 PALS radiometer L-band (6GHz) brightness temperature at high altitude flight. The PALS soil moisture was then aggregated and compared with PALS radar backscatter coefficient to generate high spatial resolution microwave soil moisture in change. The R2 values of PALS soil moisture retrieval validation range from 0.407-0.881, indicating good accuracy of soil moisture retrieval. The R2 values of comparison between aggregated PALS Δ and PALS Δ range from 0.492-0.805, while the downscaled Δ validation range from 0.128- 0.383.

  9. Microwave Oven Observations.

    ERIC Educational Resources Information Center

    Sumrall, William J.; Richardson, Denise; Yan, Yuan

    1998-01-01

    Explains a series of laboratory activities which employ a microwave oven to help students understand word problems that relate to states of matter, collect data, and calculate and compare electrical costs to heat energy costs. (DDR)

  10. Preparation of Pt supported on WO 3-C with enhanced catalytic activity by microwave-pyrolysis method

    NASA Astrophysics Data System (ADS)

    Ye, Jilei; Liu, Jianguo; Zou, Zhigang; Gu, Jun; Yu, Tao

    The WO 3-C hybrid materials are prepared by intermittently microwave-pyrolysis using ammonium tungstate as the precursor, and then Pt nano-particles are deposited by microwave-assited polyol process on WO 3-C. The TEM images show the dispersion of ∼10 nm WO 3 particles size supported on carbon and ∼3 nm Pt metal crystallites supported on WO 3-C. XRD results illustrate that WO 3 presented as monoclinic phase and the content of WO 3 in WO 3/C and Pt/WO 3-C catalysts is further characterized by EDAX. Furthermore, XPS characterizations indicate that the interaction between Pt and WO 3 is dramatically enhanced after heat treatment at 200 °C. The activities of Pt/WO 3-C for the electrochemical oxidation of methanol are compared with Pt/C in acid solution by cyclic voltammetry, CO-stripping and chronoaperometry. Pt/WO 3-C catalyst calcined at 200 °C exhibits the highest activity per electrochemical active surface area for methanol oxidation and is 60 mV more negative for CO electro-oxidation than that of Pt/C and Pt/WO 3-C without heat treatment. The great enhancement of electrochemical performance may be due to the improvement of the synergistic effect between Pt and WO 3 in Pt/WO 3-C catalyst after heat treatment.

  11. Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge

    SciTech Connect

    Uma Rani, R.; Adish Kumar, S.; Kaliappan, S.; Yeom, IckTae; Rajesh Banu, J.

    2013-05-15

    Highlights: ► Microwave pretreatment of dairy WAS was studied. ► MW pretreatment at 70% intensity for 12 min, COD solubilization was 18.6%. ► Biogas production and SS reduction was 35% and 14% higher than control. ► In digester at 15 days SRT with medium OLR, SS and VS reduction was 67% and 64%. ► Biogas and methane production was 57% and 49% higher than control, in digesters. - Abstract: Microwave (MW) irradiation is one of the new and possible methods used for pretreating the sludge. Following its use in different fields, this MW irradiation method has proved to be more appropriate in the field of environmental research. In this paper, we focused on the effects of MW irradiation at different intensities on solubilization, biodegradation and anaerobic digestion of sludge from the dairy sludge. The changes in the soluble fractions of the organic matter, the biogas yield, the methane content in the biogas were used as control parameters for evaluating the efficiency of the MW pretreatment. Additionally, the energetic efficiency was also examined. In terms of an energetic aspect, the most economical pretreatment of sludge was at 70% intensity for 12 min irradiation time. At this, COD solubilization, SS reduction and biogas production were found to be 18.6%, 14% and 35% higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein and carbohydrate hydrolysis was also performed successfully by this microwave pretreatment even at low irradiation energy input. Also, experiments were carried out in semi continuous anaerobic digesters, with 3.5 L working volume. Combining microwave pretreatment with anaerobic digestion led to 67%, 64% and 57% of SS reduction, VS reduction and biogas production higher than the control, respectively.

  12. The analysis of animal bioelectric brain activity influenced by microwaves or by the introduction of strychnine.

    PubMed

    Sidorenko, A V

    1999-02-01

    The widespread impact made by technology has raised concerns about the safety of human exposure to electromagnetic radiation in the environment. The brain is especially sensitive to the influence of microwaves. The most effective method for estimation of the organism's functional states is an analysis of electroencephalograms. The statistical and spectral methods are usually used for analysis of animal electrocorticograms. The information obtained in such way is the integrated character and it is sometimes insufficient for identification of the brain state charging caused by various factors, especially microwaves altering the ecological situation. The nonlinear dynamics method is used in our work concurrent with the spectral correlation method for animal electrocorticogram processing. The correlation dimensionality represents a numerical criterion allowing for comparative investigation of various dynamic states of the system. In the process of investigation, it has been found that the nonlinear dynamics method may be used to analyze the electrocorticograms of experimental animal in different functional states being confirmed by increasing parameter of the correlation dimensionality in electrocorticograms of animal irradiated by microwaves or subjected to the introduction of strychnine.

  13. Microwave-activated nanodroplet vaporization for highly efficient tumor ablation with real-time monitoring performance.

    PubMed

    Xu, Jinshun; Chen, Yu; Deng, Liming; Liu, Jianxin; Cao, Yang; Li, Pan; Ran, Haitao; Zheng, Yuanyi; Wang, Zhigang

    2016-11-01

    The fast development of nanotechnology has provided a new efficient strategy for enhancing the therapeutic efficiency of various treatment modalities against cancer. However, the improvement of minimally invasive microwave therapy based on nanomaterials has not been realized. In this work, we successfully designed and synthesized a novel folate-targeted nanodroplet (TPN) with a composite mixture of perfluorocarbons as the core and lipid as the shell, which exerts the distinctive dual functions as the adjuvant for highly efficient percutaneous ultrasound imaging-guided microwave ablation (MWA) of tumors. Based on the unique phase-changeable performance of TPN nanosystem, a novel microwave-droplet vaporization (MWDV) strategy was proposed, for the first time, to overcome the critical issues of traditional acoustic-droplet vaporization (ADV) and optical-droplet vaporization (ODV) for cancer theranostics. Especially, the elaborately designed TPN can overcome the challenges of indistinct imaging of ablation margin and the limited ablation zone of MWA modality against cancer. The high efficiency of this new MWDV strategy has been systematically elucidated in vitro, ex vivo and in vivo. Therefore, such a successful demonstration of the role of nanomaterials (TPN in this case) in ultrasound imaging-guided MWA therapy against cancer provides a highly feasible strategy to effectively enhance the MWA outcome with the specific features of high efficiency and biosafety. PMID:27573134

  14. A new polarimetric active radar calibrator and calibration technique

    NASA Astrophysics Data System (ADS)

    Tang, Jianguo; Xu, Xiaojian

    2015-10-01

    Polarimetric active radar calibrator (PARC) is one of the most important calibrators with high radar cross section (RCS) for polarimetry measurement. In this paper, a new double-antenna polarimetric active radar calibrator (DPARC) is proposed, which consists of two rotatable antennas with wideband electromagnetic polarization filters (EMPF) to achieve lower cross-polarization for transmission and reception. With two antennas which are rotatable around the radar line of sight (LOS), the DPARC provides a variety of standard polarimetric scattering matrices (PSM) through the rotation combination of receiving and transmitting polarization, which are useful for polarimatric calibration in different applications. In addition, a technique based on Fourier analysis is proposed for calibration processing. Numerical simulation results are presented to demonstrate the superior performance of the proposed DPARC and processing technique.

  15. Active vibration control techniques for flexible space structures

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Jayasuriya, Suhada

    1990-01-01

    Two proposed control system design techniques for active vibration control in flexible space structures are detailed. Control issues relevant only to flexible-body dynamics are addressed, whereas no attempt was made to integrate the flexible and rigid-body spacecraft dynamics. Both of the proposed approaches revealed encouraging results; however, further investigation of the interaction of the flexible and rigid-body dynamics is warranted.

  16. The influence of microwave-assisted drying techniques on the rehydration behavior of blueberries (Vaccinium corymbosum L.).

    PubMed

    Zielinska, Magdalena; Markowski, Marek

    2016-04-01

    The aim of this study was to determine the effect of: (a) different drying methods, (b) hot air temperature in a convection oven, and (c) the moisture content of fruits dehydrated by multi-stage drying which involves a transition between different stages of drying, on the rehydration kinetics of dry blueberries. Models describing rehydration kinetics were also studied. Blueberries dehydrated by multi-stage microwave-assisted drying, which involved a hot air pre-drying step at 80 °C until the achievement of a moisture content of 1.95 kg H2O kg(-1)DM, were characterized by significantly higher rates of initial and successive rehydration as well as smaller initial loss of soluble solids in comparison with the samples dried by other methods. The highest initial rehydration rate and the smallest loss of soluble solids after 30 min of soaking were determined at 0.46 min(-1) and 0.29 kg DM kg(-1)DM, respectively. The Peleg model and the first-order-kinetic model fit the experimental data well.

  17. The influence of microwave-assisted drying techniques on the rehydration behavior of blueberries (Vaccinium corymbosum L.).

    PubMed

    Zielinska, Magdalena; Markowski, Marek

    2016-04-01

    The aim of this study was to determine the effect of: (a) different drying methods, (b) hot air temperature in a convection oven, and (c) the moisture content of fruits dehydrated by multi-stage drying which involves a transition between different stages of drying, on the rehydration kinetics of dry blueberries. Models describing rehydration kinetics were also studied. Blueberries dehydrated by multi-stage microwave-assisted drying, which involved a hot air pre-drying step at 80 °C until the achievement of a moisture content of 1.95 kg H2O kg(-1)DM, were characterized by significantly higher rates of initial and successive rehydration as well as smaller initial loss of soluble solids in comparison with the samples dried by other methods. The highest initial rehydration rate and the smallest loss of soluble solids after 30 min of soaking were determined at 0.46 min(-1) and 0.29 kg DM kg(-1)DM, respectively. The Peleg model and the first-order-kinetic model fit the experimental data well. PMID:26593606

  18. High quality Y-type hexaferrite thick films for microwave applications by an economical and environmentally benign crystal growth technique

    SciTech Connect

    Hu, Bolin; Chen, Yajie Gillette, Scott; Su, Zhijuan; Harris, Vincent G.; Wolf, Jason; McHenry, Michael E.

    2014-02-17

    Thick barium hexaferrite Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} (i.e., Zn{sub 2}Y) films having thicknesses of ∼100 μm were epitaxially grown on MgO (111) substrates using an environmentally benign ferrite-salt mixture by vaporizing the salt. X-ray diffraction pole figure analyses showed (00l) crystallographic alignment with little in plane dispersion confirming epitaxial growth. Saturation magnetization, 4πM{sub s}, was measured for as-grown films to be 2.51 ± 0.1 kG with an out of plane magnetic anisotropy field H{sub A} of 8.9 ± 0.1 kOe. Ferromagnetic resonance linewidth, as the peak-to-peak power absorption derivative at 9.6 GHz, was measured to be 62 Oe. These properties demonstrate a rapid, convenient, cost-effective, and nontoxic method of growing high quality thick crystalline ferrite films which could be used widely for microwave device applications.

  19. Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents.

    PubMed

    Saucier, Caroline; Adebayo, Matthew A; Lima, Eder C; Cataluña, Renato; Thue, Pascal S; Prola, Lizie D T; Puchana-Rosero, M J; Machado, Fernando M; Pavan, Flavio A; Dotto, G L

    2015-05-30

    Microwave-induced chemical activation process was used to prepare an activated carbon from cocoa shell for efficient removal of two anti-inflammatories, sodium diclofenac (DFC) and nimesulide (NM), from aqueous solutions. A paste was obtained from a mixture of cocoa shell and inorganic components; with a ratio of inorganic: organic of 1 (CSC-1.0). The mixture was pyrolyzed in a microwave oven in less than 10 min. The CSC-1.0 was acidified with a 6 mol L(-1) HCl under reflux to produce MWCS-1.0. The CSC-1.0 and MWCS-1.0 were characterized using FTIR, SEM, N2 adsorption/desorption curves, X-ray diffraction, and point of zero charge (pHpzc). Experimental variables such as initial pH of the adsorbate solutions and contact time were optimized for adsorptive characteristics of MWCS-1.0. The optimum pH for removal of anti-inflammatories ranged between 7.0 and 8.0. The kinetic of adsorption was investigated using general order, pseudo first-order and pseu do-second order kinetic models. The maximum amounts of DCF and NM adsorbed onto MWCS-1.0 at 25 °C are 63.47 and 74.81 mg g(-1), respectively. The adsorbent was tested on two simulated hospital effluents. MWCS-1.0 is capable of efficient removal of DCF and NM from a medium that contains high sugar and salt concentrations.

  20. Total synthesis of protosappanin A and its derivatives via palladium catalyzed ortho C-H activation/C-C cyclization under microwave irradiation.

    PubMed

    Liu, Jiaqi; Zhou, Xuan; Wang, Chenglong; Fu, Wanyong; Chu, Wenyi; Sun, Zhizhong

    2016-04-14

    A total synthesis method for protosappanin A, which is a complex natural product with many biological activities, was developed with 6 linear steps. Dibenzo[b,d]oxepinones as the key intermediates of the synthetic route were prepared by a palladium-catalyzed ortho C-H activation/C-C cyclization under microwave irradiation. 25 derivatives of protosappanin A were obtained. PMID:26997503

  1. Microwave radiation hazards around large microwave antenna.

    NASA Technical Reports Server (NTRS)

    Klascius, A.

    1973-01-01

    The microwave radiation hazards associated with the use of large antennas become increasingly more dangerous to personnel as the transmitters go to ever higher powers. The near-field area is of the greatest concern. It has spill over from subreflector and reflections from nearby objects. Centimeter waves meeting in phase will reinforce each other and create hot spots of microwave energy. This has been measured in front of and around several 26-meter antennas. Hot spots have been found and are going to be the determining factor in delineating safe areas for personnel to work. Better techniques and instruments to measure these fields are needed for the evaluation of hazard areas.

  2. Microwave quantum illumination.

    PubMed

    Barzanjeh, Shabir; Guha, Saikat; Weedbrook, Christian; Vitali, David; Shapiro, Jeffrey H; Pirandola, Stefano

    2015-02-27

    Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background. Here, we describe and analyze a system for applying this technique at microwave frequencies, a more appropriate spectral region for target detection than the optical, due to the naturally occurring bright thermal background in the microwave regime. We use an electro-optomechanical converter to entangle microwave signal and optical idler fields, with the former being sent to probe the target region and the latter being retained at the source. The microwave radiation collected from the target region is then phase conjugated and upconverted into an optical field that is combined with the retained idler in a joint-detection quantum measurement. The error probability of this microwave quantum-illumination system, or quantum radar, is shown to be superior to that of any classical microwave radar of equal transmitted energy.

  3. Microwave quantum illumination.

    PubMed

    Barzanjeh, Shabir; Guha, Saikat; Weedbrook, Christian; Vitali, David; Shapiro, Jeffrey H; Pirandola, Stefano

    2015-02-27

    Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background. Here, we describe and analyze a system for applying this technique at microwave frequencies, a more appropriate spectral region for target detection than the optical, due to the naturally occurring bright thermal background in the microwave regime. We use an electro-optomechanical converter to entangle microwave signal and optical idler fields, with the former being sent to probe the target region and the latter being retained at the source. The microwave radiation collected from the target region is then phase conjugated and upconverted into an optical field that is combined with the retained idler in a joint-detection quantum measurement. The error probability of this microwave quantum-illumination system, or quantum radar, is shown to be superior to that of any classical microwave radar of equal transmitted energy. PMID:25768743

  4. Microwave Nonlinear Modeling and Active Frequency Multiplier Design for High Power Silicon-Carbide and Gallium-Nitride Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Yuk, Kelvin Shing-Tak

    Wide bandgap silicon-carbide (SiC) and gallium-nitride (GaN) FETs are the premier microwave solid-state power technology and are presently being deployed in a variety of commercial applications. However, performance-degrading self-heating and charge-trapping effects create new challenges for characterization and modeling of these devices. Accurate nonlinear models capable of predicting these effects are necessary to maximally exploit the benefits of this emerging, high power density technology. An empirical modeling methodology for the SiC MESFET and GaN HEMT using high power dynamic IV measurements to exploit and characterize self-heating and charge-trapping is applied over a vast range of electrothermal operating conditions. Nonlinear diode modeling and multibias, small-signal techniques are performed to create complete nonlinear models for SiC and GaN FETs, which are capable of predicting DC, pulsed, small- and large-signal RF behavior over a wide range of bias and frequency. The presented models are valid for drain currents beyond 2A, drain voltages greater than 50V and up to 10W at RF. These harmonically-accurate models permit the new application of CAD-based active frequency multiplier design for wide bandgap devices. Frequency doublers and triplers are demonstrated in SiC MESFET and GaN HEMT technology, producing some of the highest power, single-transistor microwave frequency multipliers to date. This work reports SiC- and GaN-based C-band frequency doublers with >5W output power and a GaN-based X-band frequency tripler with 1W output power.

  5. Soil Moisture Active Passive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration

    NASA Technical Reports Server (NTRS)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; Misra, Sidharth; Dinnat, Emmanuel P.; Hudson, Derek; Le Vine, David M.; De Amici, Giovanni; Mohammed, Priscilla N.; Yueh, Simon H.; Meissner, Thomas

    2016-01-01

    The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earth's surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements.

  6. Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques

    NASA Astrophysics Data System (ADS)

    Benoit-Bird, Kelly J.; Lawson, Gareth L.

    2016-01-01

    Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function.

  7. Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques.

    PubMed

    Benoit-Bird, Kelly J; Lawson, Gareth L

    2016-01-01

    Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function.

  8. Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques.

    PubMed

    Benoit-Bird, Kelly J; Lawson, Gareth L

    2016-01-01

    Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function. PMID:26515810

  9. Microwave-assisted synthesis of novel 2H-chromene derivatives bearing phenylthiazolidinones and their biological activity assessment.

    PubMed

    El Azab, Islam H; Youssef, Mohamed M; Amin, Mahmoud A

    2014-01-01

    6-Hydroxy-2-oxo-2H-chromene-4-carbaldehyde (2), 6-chloro-2-oxo-2H-chromene-4-carbaldehyde (3) and 6-hydrazinyl-4-methyl-2H-chromen-2-one (5) were prepared as single-pharmacophore motif key intermediates. Compounds 2, 3 and 5 were incorporated in a series of multicomponent reactions (MCRs), under microwave assistance as well as conventional chemical synthesis processes, to afford a series of three and/or four-pharmacophoric-motif conjugates 8a,b, 11, 13, 16, 17, 19 and 20 in good yields. The newly synthesized compounds were characterized by IR, NMR, 13C-NMR, MS and elemental analyses. Finally the synthesized compounds have been screened for their biological activity whereupon they exhibited remarkable antimicrobial activity on different classes of bacteria and the fungus. PMID:25432014

  10. Microwave-assisted synthesis of CdO-ZnO nanocomposite and its antibacterial activity against human pathogens

    NASA Astrophysics Data System (ADS)

    Karthik, K.; Dhanuskodi, S.; Gobinath, C.; Sivaramakrishnan, S.

    2015-03-01

    CdO-ZnO nanocomposite was prepared by microwave-assisted method and characterized by X-ray crystallography (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FT-IR). It exhibits hexagonal cubic structure with an average crystallite size of 27 nm. From the UV-Vis spectra, the bandgap is estimated as 2.92 eV. The fluorescence spectrum shows a near band edge emission at 422 nm. In addition the antibacterial activity of CdO-ZnO nanocomposite was carried out in-vitro against two kinds of bacteria: gram negative bacteria (G -ve) i.e. Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and gram positive bacteria (G +ve): Staphylococcus aureus, Proteus vulgaris and Bacillus spp. This study indicates the zone of inhibition of 40 mm has high antibacterial activity towards the gram positive bacterium S. aureus.

  11. Microwave-assisted synthesis, characterization and biological activities of organotin (IV) complexes with some thio Schiff bases

    NASA Astrophysics Data System (ADS)

    Singh, Ran Vir; Chaudhary, Pratibha; Chauhan, Shikha; Swami, Monika

    2009-03-01

    Microwave-assisted synthesis and characterization of the organotin (IV) complexes are reported. Trigonal bipyramidal and octahedral complexes of tin (IV) have been synthesized by the reaction of dimethyltin (IV) dichloride with 4-nitrobenzanilide- S-benzyldithiocarbazate (L 1H), 4-chlorobenzanilide- S-benzyldithiocarbazate (L 2H), 4-nitrobenzanilidebenzothiazoline (L 3H) and 4-chlorobenzanilidebenzothiazoline (L 4H). The complexes so formed were characterized by elemental analysis, conductance measurements, molecular weight determinations and spectral data viz. IR, UV-Visible, 1H and 13C NMR. The anti-microbial activities of the ligands and their corresponding organotin (IV) complexes have been screened against various strains of bacteria and fungi. Antifertility activity against male albino rats has also been reported.

  12. Microwave photocatalytic degradation of Rhodamine B using TiO2 supported on activated carbon: mechanism implication.

    PubMed

    He, Zhong; Yang, Shaogui; Ju, Yongming; Sun, Cheng

    2009-01-01

    The photocatalytic degradation of Rhodamine B (RhB) was carried out using TiO2 supported on activated carbon (TiO2-AC) under microwave irradiation. Composite catalyst TiO2-AC was prepared and characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET). In the process of microwave-enhanced photocatalysis (MPC), RhB (30 mg/L) was almost completely decoloured in 10 min, and the mineralization efficiency was 96.0% in 20 min. The reaction rate constant of RhB in MPC using TiO2-AC by pseudo first-order reaction kinetics was 4.16 times of that using Degussa P25. Additionally, according to gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) identification, the major intermediates of RhB in MPC included two kinds of N-de-ethylation intermediates (N,N-diethyl-N'-ethyl-rhodamine (DER)), oxalic acid, malonic acid, succinic acid, and phthalic acid, maleic acid, 3-nitrobenzoic acid, and so on. The degradation of RhB in MPC was mainly attributed to the destruction of the conjugated structure, and then the intermediates transformed to acid molecules which were mineralized to water and carbon dioxide.

  13. Removal of Pb(II) from water by the activated carbon modified by nitric acid under microwave heating.

    PubMed

    Yao, Shuheng; Zhang, Jiajun; Shen, Dekui; Xiao, Rui; Gu, Sai; Zhao, Ming; Liang, Junyu

    2016-02-01

    The rice husk based activated carbon (RH-AC) was treated by nitric acid under microwave heating, in order to improve its capability for the removal of heavy metal ions from water. The optimal conditions for the modification of RH-AC (M-RH-AC) were determined by means of orthogonal array experimental design, giving those as the concentration of nitric acid of 8mol/L, modification time of 15min, modification temperature of 130°C and microwave power of 800W. The characteristics of the M-RH-AC and RH-AC were examined by BET, XRD, Raman spectrum, pH titration, zeta potential, Boehm titration and FTIR analysis. The M-RH-AC has lower pore surface area, smaller crystallite, lower pHIEP and more oxygen-containing functional groups than the RH-AC. Removal capacity of Pb(II) ions by the M-RH-AC and RH-AC from water solution was estimated concerning the influence of contact time, pH value, and initial concentration. The equilibrium time of Pb(II) removal was found to be around 90min after modification process. Two kinetic models are adopted to describe the possible Pb(II) adsorption mechanism, finding that the adsorption rate of Pb(II) ions by the M-RH-AC is larger than that of RH-AC. PMID:26520818

  14. Microwave assisted synthesis of sheet-like Cu/BiVO{sub 4} and its activities of various photocatalytic conditions

    SciTech Connect

    Chen, Xi; Li, Li; Yi, Tingting; Zhang, WenZhi; Zhang, Xiuli; Wang, Lili

    2015-09-15

    The Cu/BiVO{sub 4} photocatalyst with visible-light responsivity was prepared by the microwave-assisted hydrothermal method. The phase structures, chemical composition and surface physicochemical properties were well-characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance absorption (UV–vis/DRS), scanning electron microscopy (SEM), and N{sub 2} adsorption–desorption tests. Results indicate that the crystal structure of synthetic composite materials is mainly monoclinic scheelite BiVO{sub 4}, which is not changed with the increasing doping amount of Cu. In addition, the presence of Cu not only enlarges the range of the composite materials under the visible-light response, but also increases the BET value significantly. Compared to pure BiVO{sub 4}, 1% Cu/BiVO{sub 4}-160 performs the highest photocatalytic activity to degrade methylene blue under the irradiation of ultraviolet, visible and simulated sunlight. In addition, the capture experiments prove that the main active species was superoxide radicals during photocatalytic reaction. Moreover, the 1% Cu/BiVO{sub 4}-160 composite shows good photocatalytic stability after three times of recycling. - Graphical abstract: A series of BiVO{sub 4} with different amounts of Cu doping were prepared by the microwave-assisted method, moreover, which performed the high photocatalytic activities to degrade methylene blue under multi-mode. - Highlights: • A series of Cu/BiVO{sub 4} with different amounts of Cu doping were prepared by microwave-assisted synthesis. • The morphologies of as-samples were different with the amount of Cu doping increased. • Compared with pure BiVO{sub 4}, as-Cu/BiVO{sub 4} showed stronger absorption in the visible light region obviously. • 1% Cu/BiVO{sub 4}-160 performed the high photocatalytic activities to degrade methylene blue under multi-mode. • OH{sup •} and h{sup +} both play important roles in the photocatalytic reaction.

  15. Active and Passive Microwave Determination of the Circulation and Characteristics of Weddell and Ross Sea Ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.; Liu, Xiang

    2000-01-01

    A combination of satellite microwave data sets are used in conjunction with ECMWF (Medium Range Weather Forecasts) and NCEP (National Center for Environment Prediction) meteorological analysis fields to investigate seasonal variability in the circulation and sea-ice dynamics of the Weddell and Ross Seas. Results of sea-ice tracking using SSM/I (Special Sensor Microwave Imager), Scatterometer and SAR images are combined with in-situ data derived from Argos buoys and GPS drifters to validate observed drift patterns. Seasonal 3-month climatologies of ice motion and drift speed variance illustrate the response of the sea-ice system to seasonal forcing. A melt-detection algorithm is used to track the onset of seasonal melt, and to determine the extent and duration of atmospherically-led surface melting during austral summer. Results show that wind-driven drift regulates the seasonal distribution and characteristics of sea-ice and the intensity of the cyclonic Gyre circulation in these two regions.

  16. Comparison of essential oil composition and antimicrobial activity of Coriandrum sativum L. extracted by hydrodistillation and microwave-assisted hydrodistillation.

    PubMed

    Sourmaghi, Mohammad Hossein Salehi; Kiaee, Gita; Golfakhrabadi, Fereshteh; Jamalifar, Hossein; Khanavi, Mahnaz

    2015-04-01

    Coriander (Coriandrum sativum L.), is an annual herb in the Apiaceae family which disperses in Mediterranean and Middle Eastern regions. The Coriander essential oil has been used in food products, perfumes, cosmetics and pharmaceutical industries for its flavor and odor. In Iran, fruits of Coriander used in pickle, curry powders, sausages, cakes, pastries, biscuits and buns. The aim of this study was to investigate microwave radiation effects on quality, quantity and antimicrobial activity of essential oil of Coriander fruits. The essential oils were obtained from the Coriander fruits by hydrodistillation (HD) and Microwave-assisted hydrodistillation (MAHD) then, the oils were analyzed by GC and GC-MS. Antimicrobial activities of essential oils were evaluated against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans by microdilution method. The results indicated that the HD and MAHD essential oils (EO) were dominated by monoterpenoids such as linalool, geranyl acetate and γ-terpinene. The major compound in both EO was linalool which its amount in HD and MAHD was 63 % and 66 %, respectively. The total amount of monoterpenes hydrocarbons in HD EO differ significantly with the amount in MAHD EO (12.56 % compare to 1.82 %). HD EO showed greater activity against Staphylococcus aureus and Candida albicans than MAHD EO. Moreover, their activities against Ecoli and P. aeruginosa were the same with Minimum Inhibitory Concentration (MIC) 0.781 and 6.25 μL mL(-1), respectively. By using MAHD method, it was superior in terms of saving energy and extraction time, although the oil yield and total composition decrease by using this method.

  17. Comparison of essential oil composition and antimicrobial activity of Coriandrum sativum L. extracted by hydrodistillation and microwave-assisted hydrodistillation.

    PubMed

    Sourmaghi, Mohammad Hossein Salehi; Kiaee, Gita; Golfakhrabadi, Fereshteh; Jamalifar, Hossein; Khanavi, Mahnaz

    2015-04-01

    Coriander (Coriandrum sativum L.), is an annual herb in the Apiaceae family which disperses in Mediterranean and Middle Eastern regions. The Coriander essential oil has been used in food products, perfumes, cosmetics and pharmaceutical industries for its flavor and odor. In Iran, fruits of Coriander used in pickle, curry powders, sausages, cakes, pastries, biscuits and buns. The aim of this study was to investigate microwave radiation effects on quality, quantity and antimicrobial activity of essential oil of Coriander fruits. The essential oils were obtained from the Coriander fruits by hydrodistillation (HD) and Microwave-assisted hydrodistillation (MAHD) then, the oils were analyzed by GC and GC-MS. Antimicrobial activities of essential oils were evaluated against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans by microdilution method. The results indicated that the HD and MAHD essential oils (EO) were dominated by monoterpenoids such as linalool, geranyl acetate and γ-terpinene. The major compound in both EO was linalool which its amount in HD and MAHD was 63 % and 66 %, respectively. The total amount of monoterpenes hydrocarbons in HD EO differ significantly with the amount in MAHD EO (12.56 % compare to 1.82 %). HD EO showed greater activity against Staphylococcus aureus and Candida albicans than MAHD EO. Moreover, their activities against Ecoli and P. aeruginosa were the same with Minimum Inhibitory Concentration (MIC) 0.781 and 6.25 μL mL(-1), respectively. By using MAHD method, it was superior in terms of saving energy and extraction time, although the oil yield and total composition decrease by using this method. PMID:25829632

  18. A technique for measuring vertically and horizontally polarized microwave brightness temperatures using electronic polarization-basis rotation

    NASA Technical Reports Server (NTRS)

    Gasiewski, Albin J.

    1992-01-01

    This technique for electronically rotating the polarization basis of an orthogonal-linear polarization radiometer is based on the measurement of the first three feedhorn Stokes parameters, along with the subsequent transformation of this measured Stokes vector into a rotated coordinate frame. The technique requires an accurate measurement of the cross-correlation between the two orthogonal feedhorn modes, for which an innovative polarized calibration load was developed. The experimental portion of this investigation consisted of a proof of concept demonstration of the technique of electronic polarization basis rotation (EPBR) using a ground based 90-GHz dual orthogonal-linear polarization radiometer. Practical calibration algorithms for ground-, aircraft-, and space-based instruments were identified and tested. The theoretical effort consisted of radiative transfer modeling using the planar-stratified numerical model described in Gasiewski and Staelin (1990).

  19. A comparative study on the effect of conventional thermal pasteurisation, microwave and ultrasound treatments on the antioxidant activity of five fruit juices.

    PubMed

    Saikia, Sangeeta; Mahnot, Nikhil Kumar; Mahanta, Charu Lata

    2016-06-01

    A comparative study on the effect of conventional thermal pasteurisation, microwave and ultrasound treatments on the phytochemical and antioxidant activities of juices from carambola (Averrhoa carambola L.), black jamun (Syzygium cumuni L.Skeels.), watermelon (Citrullus lanatus var lanatus), pineapple (Ananas comosus L. Merr) and litchi (Litchi chinensis Sonn.) was carried out. Depending on the type of fruit sample and treatment, increase or decrease in phytochemical values was observed. Overall, sonication had a positive effect on the total flavonoid content in all the juice samples followed by microwave treatment with exceptions in some cases. High-performance liquid chromatography study showed the presence of different phenolic acids depending on the sample type. The phenolic acids in some processed carambola juice samples showed decrease or complete destruction, while in some cases, an increase or appearance of newer phenolic acid originally not detected in the fresh juice was observed as seen in conventional thermal pasteurisation, microwaved at 600 W and sonicated juices. Both microwaved and sonicated samples were found to have positive effect on the phenolic content and antioxidant activity with exceptions in some cases. Therefore, microwave and sonication treatment could be used in place of thermal pasteurisation depending on the sample requirements.

  20. A comparative study on the effect of conventional thermal pasteurisation, microwave and ultrasound treatments on the antioxidant activity of five fruit juices.

    PubMed

    Saikia, Sangeeta; Mahnot, Nikhil Kumar; Mahanta, Charu Lata

    2016-06-01

    A comparative study on the effect of conventional thermal pasteurisation, microwave and ultrasound treatments on the phytochemical and antioxidant activities of juices from carambola (Averrhoa carambola L.), black jamun (Syzygium cumuni L.Skeels.), watermelon (Citrullus lanatus var lanatus), pineapple (Ananas comosus L. Merr) and litchi (Litchi chinensis Sonn.) was carried out. Depending on the type of fruit sample and treatment, increase or decrease in phytochemical values was observed. Overall, sonication had a positive effect on the total flavonoid content in all the juice samples followed by microwave treatment with exceptions in some cases. High-performance liquid chromatography study showed the presence of different phenolic acids depending on the sample type. The phenolic acids in some processed carambola juice samples showed decrease or complete destruction, while in some cases, an increase or appearance of newer phenolic acid originally not detected in the fresh juice was observed as seen in conventional thermal pasteurisation, microwaved at 600 W and sonicated juices. Both microwaved and sonicated samples were found to have positive effect on the phenolic content and antioxidant activity with exceptions in some cases. Therefore, microwave and sonication treatment could be used in place of thermal pasteurisation depending on the sample requirements. PMID:26190045

  1. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    PubMed

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  2. Microwave detector

    DOEpatents

    Meldner, Heiner W.; Cusson, Ronald Y.; Johnson, Ray M.

    1986-01-01

    A microwave detector (10) is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite (26, 28) produces a magnetization field flux that links a B-dot loop (16, 20). The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means (18, 22) are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  3. Microwave detector

    DOEpatents

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  4. Microwave backscattering theory and active remote sensing of the ocean surface

    NASA Technical Reports Server (NTRS)

    Brown, G. S.; Miller, L. S.

    1977-01-01

    The status is reviewed of electromagnetic scattering theory relative to the interpretation of microwave remote sensing data acquired from spaceborne platforms over the ocean surface. Particular emphasis is given to the assumptions which are either implicit or explicit in the theory. The multiple scale scattering theory developed during this investigation is extended to non-Gaussian surface statistics. It is shown that the important statistic for the case is the probability density function of the small scale heights conditioned on the large scale slopes; this dependence may explain the anisotropic scattering measurements recently obtained with the AAFE Radscat. It is noted that present surface measurements are inadequate to verify or reject the existing scattering theories. Surface measurements are recommended for qualifying sensor data from radar altimeters and scatterometers. Additional scattering investigations are suggested for imaging type radars employing synthetically generated apertures.

  5. Microwave-assisted synthesis of 3,5-disubstituted isoxazoles and evaluation of their anti-ageing activity.

    PubMed

    Koufaki, Maria; Fotopoulou, Theano; Kapetanou, Marianna; Heropoulos, Georgios A; Gonos, Efstathios S; Chondrogianni, Niki

    2014-08-18

    One-pot uncatalysed microwave-assisted 1,3-dipolar cycloaddition reactions between in situ generated nitrile oxides and alkynes bearing protected antioxidant substituents, were regioselectively afforded 3,5-disubstituted isoxazoles. The yields were moderate, based on the starting aldehydes, while the reaction times were in general shorter than those reported in the literature. The cytoprotective and anti-ageing effect of the final deprotected compounds was evaluated in vitro, on cellular survival following oxidative challenge and in vivo, on organismal longevity using the nematode Caenorhabditis elegans. The activity of the isoxazole analogues depends on the nature and the number of the antioxidant substituents. Analogue 17 bearing a phenolic group and a 6-OH-chroman group is a promising anti-ageing agent, since it increased survival of human primary fibroblasts following treatment with H2O2 and extended C. elegans lifespan. PMID:24996137

  6. Morphology control of open-framework zinc phosphate Zn{sub 4}(H{sub 3}O)(NH{sub 4}){sub 3}(PO{sub 4}){sub 4} via microwave-assisted technique

    SciTech Connect

    Ding, Ling; Song, Yu; Yang, Wei; Xue, Run-Miao; Zhai, Shang-Ru; An, Qing-Da

    2013-08-15

    Open-framework zinc phosphates were synthesized by microwave-assisted technique, and it was shown that the morphology of as-prepared materials could be easily tailored by changing synthesis temperature, reaction time and pH value. During the synthesis, when the reaction temperature increases from 130 °C to 220 °C, the products transformed from hexagonal prisms to polyhedron along with the disappearance of the hexagonal prisms vertical plane. Simultaneously, both the reaction time and pH value could promote the nucleation and growth of crystal particles. More interestingly, the target products with different morphologies could be obtained by varying the usage of NaOH or NH{sub 3}·H{sub 2}O at 130 °C during the microwave synthesis process. - Graphical abstract: Zinc phosphates with variable morphologies can be obtained by simply tuning the microwave-heating temperatures. Display Omitted - Highlights: • Synthesis of open-framework Zn{sub 4} (H{sub 3}O) (NH{sub 4}){sub 3}(PO{sub 4}){sub 4} compounds employing microwave technique. • Dependence of morphology on the reaction conditions. • Morphology transformation from hexagonal prisms to polyhedron was observed.

  7. Microwave sensing from orbit

    NASA Technical Reports Server (NTRS)

    Kritikos, H. N.; Shiue, J.

    1979-01-01

    Microwave sensors, used in conjunction with the traditional sensors of visible and infrared light to extend present capabilities of global weather forecasts and local storm watches, are discussed. The great advantage of these sensors is that they can penetrate or 'see' through cloud formations to monitor temperature, humidity and wind fields below the clouds. Other uses are that they can penetrate the earth deeper than optical and IR systems; they can control their own angle of incidence; they can detect oil spills; and they can enhance the studies of the upper atmosphere through measurement of temperature, water vapor and other gaseous species. Two types of microwave sensors, active and passive, are examined. Special attention is given to the study of the microwave radiometer and the corresponding temperature resolution as detected by the antenna. It is determined that not only will the microwave remote sensors save lives by allowing close monitoring of developing storms, but also save approximately $172 million/year.

  8. Microwave-assisted combustion synthesis of nano iron oxide/iron-coated activated carbon, anthracite, cellulose fiber, and silica, with arsenic adsorption studies

    EPA Science Inventory

    Combustion synthesis of iron oxide/iron coated carbons such as activated carbon, anthracite, cellulose fiber and silica is described. The reactions were carried out in alumina crucibles using a Panasonic kitchen microwave with inverter technology, and the reaction process was com...

  9. Synthesis of nanostructured and microstructured ZnO and Zn(OH)2 on activated carbon cloth by hydrothermal and microwave-assisted chemical bath deposition methods

    NASA Astrophysics Data System (ADS)

    Mosayebi, Elham; Azizian, Saeid; Hajian, Ali

    2015-05-01

    Nanostructured and microstructured ZnO and Zn(OH)2 loaded on activated carbon cloth were synthesized by microwave-assisted chemical bath deposition and hydrothermal methods. By hydrothermal method the deposited sample on carbon fiber is pure ZnO with dandelion-like nanostructures. By microwave-assisted chemical bath method the structure and composition of deposited sample depends on solution pH. At pH = 9.8 the deposited sample on carbon fiber is pure ZnO with flower-like microstructure; but at pH = 10.8 the sample is a mixture of ZnO and Zn(OH)2 with flower-like and rhombic microstructures, respectively. The mechanism of crystal grow by microwave-assisted chemical bath method was investigated by SEM method at both pH.

  10. Remote detection and ecological monitoring of the industrial and natural nuclei activity of radioactive elements based on passive microwave radiometry

    NASA Astrophysics Data System (ADS)

    Chistyakova, Liliya K.; Chistyakov, Vyacheslav Y.; Losev, Dmitry V.; Penin, Sergei T.; Tarabrin, Yurij K.; Yakubov, Vladimir P.; Yurjev, Igor A.

    1998-12-01

    The passive remote method of microwave radiometry and its instrumental realization for express diagnostics of radioactive elements in the atmosphere have been discussed. Analysis of the microwave radiation due to ionization and dissociation of atmospheric components interacting with radioactive elements is carried out. The photochemical processes resulting in background microwave radiation power have been discussed. As an example, the results of natural experiment of detecting the atomic hydrogen radiation in the plume of emissions of nuclear cycle processing plants have been presented.

  11. Comparison of four kinds of extraction techniques and kinetics of microwave-assisted extraction of vanillin from Vanilla planifolia Andrews.

    PubMed

    Dong, Zhizhe; Gu, Fenglin; Xu, Fei; Wang, Qinghuang

    2014-04-15

    Vanillin yield, microscopic structure, antioxidant activity and overall odour of vanilla extracts obtained by different treatments were investigated. MAE showed the strongest extraction power, shortest time and highest antioxidant activity. Maceration gave higher vanillin yields than UAE and PAE, similar antioxidant activity with UAE, but longer times than UAE and PAE. Overall odour intensity of different vanilla extracts obtained by UAE, PAE and MAE were similar, while higher than maceration extracts. Then, powered vanilla bean with a sample/solvent ratio of 4 g/100 mL was selected as the optimum condition for MAE. Next, compared with other three equations, two-site kinetic equation with lowest RMSD and highest R²(adj) was shown to be more suitable in describing the kinetics of vanillin extraction. By fitting the parameters C(eq), k₁, k₂, and f, a kinetics model was constructed to describe vanillin extraction in terms of irradiation power, ethanol concentration, and extraction time.

  12. Preparation of AgInS2 nanoparticles by a facile microwave heating technique; study of effective parameters, optical and photovoltaic characteristics

    NASA Astrophysics Data System (ADS)

    Tadjarodi, Azadeh; Cheshmekhavar, Amir Hossein; Imani, Mina

    2012-12-01

    In this work, AgInS2 (AIS) semiconductor nanoparticles were synthesized by an efficient and facile microwave heating technique using several sulfur sources and solvents in the different reaction times. The SEM images presented the particle morphology for all of the obtained products in the arranged reaction conditions. The particle size of 70 nm was obtained using thioacetamide (TAA), ethylene glycol (EG) as the sulfur source and solvent, respectively at the reaction time of 5 min. It was found that the change of the mentioned parameters lead to alter on the particle size of the resulting products. The average particle size was estimated using a microstructure measurement program and Minitab statistical software. The optical band gap energy of 1.96 eV for the synthesized AIS nanoparticles was determined by the diffuse reflectance spectroscopy (DRS). AgInS2/CdS/CuInSe2 heterojunction solar cell was constructed and photovoltaic parameters, i.e., open-circuit voltage (Voc), short-circuit current (Jsc) and fill factor (FF) were estimated by photocurrent-voltage (I-V) curve. The calculated fill factor of 30% and energy conversion efficiency of 1.58% revealed the capability of AIS nanoparticles to use in the solar cell devices.

  13. Determination of mercury species by the diffusive gradient in thin film technique and liquid chromatography--atomic fluorescence spectrometry after microwave extraction.

    PubMed

    Pelcová, Pavlína; Dočekalová, Hana; Kleckerová, Andrea

    2015-03-25

    A diffusive gradient in thin films technique (DGT) was combined with liquid chromatography (LC) and cold vapor atomic fluorescence spectrometry (CV-AFS) for the simultaneous quantification of four mercury species (Hg(2+), CH3Hg(+), C2H5Hg(+), and C6H5Hg(+)). After diffusion through an agarose diffusive layer, the mercury species were accumulated in resin gels containing thiol-functionalized ion-exchange resins (Duolite GT73, and Ambersep GT74). A microwave-assisted extraction (MAE) in the presence of 6M HCl and 5 M HCl (55 °C, 15 min) was used for isolation of mercury species from Ambersep and Duolite resin gels, respectively. The extraction efficiency was higher than 95.0% (RSD 3.5%). The mercury species were separated with a mobile phase containing 6.2% methanol+0.05% 2-mercaptoethanol+0.02 M ammonium acetate with a stepwise increase of methanol content up to 80% in the 16th min on a Zorbax C18 reverse phase column. The LODs of DGT-MAE-LC-CV-AFS method were 38 ng L(-1) for CH3Hg(+), 13 ng L(-1) for Hg(2+), 34 ng L(-1) for C2H5Hg(+) and 30 ng L(-1) for C6H5Hg(+) for 24 h DGT accumulation at 25 °C.

  14. Visible light responsive Ag/TiO2/MCM-41 nanocomposite films synthesized by a microwave assisted sol-gel technique

    NASA Astrophysics Data System (ADS)

    Tongon, W.; Chawengkijwanich, C.; Chiarakorn, S.

    2014-05-01

    A convenient and inexpensive method for the preparation of visible light responsive nanocomposite film was introduced in this study. Silver doped TiO2 was incorporated into as-synthesized MCM-41, via a microwave assisted sol-gel technique. The nanocomposite film was formed by dip coating on a glass substrate. The characterization results displayed high adsorbability and photocatalytic properties of the Ag and MCM-41 enhanced TiO2 photocatalyst. Performance of the nanocomposite film was tested by photocatalytic decolorization of MB dye, under UV and visible light irradiation. Ag/Ti/Si (0.1/1/2) exhibited the highest photocatalytic decolorization of methylene blue, with an efficiency of 81% under UV, and 30% under visible light irradiation. The kinetic rate constant of MB dye on the composite films followed pseudo first-order reaction law (R2 > 0.9), arranged in the order of Ag/Ti/Si (0.1/1/2) > Ag/Ti/Si (0.1/1/1) > Ag/Ti/Si (0.1/1/0.5) > Ag/Ti/Si (0.1/1/0) > TiO2.

  15. Microwave Cooking: Knowledge, Attitudes, and Practices of California Foods Teachers.

    ERIC Educational Resources Information Center

    Stalder, Laura D.; And Others

    1990-01-01

    A survey of 500 California secondary foods teachers (172 responses) indicated their understanding of microwave cooking principles and techniques and positive attitudes toward microwave cooking and safety. A majority used microwave instruction in their classrooms, although many indicated a need for ovens and microwave educational materials. (SK)

  16. Active Learning Techniques Applied to an Interdisciplinary Mineral Resources Course.

    NASA Astrophysics Data System (ADS)

    Aird, H. M.

    2015-12-01

    An interdisciplinary active learning course was introduced at the University of Puget Sound entitled 'Mineral Resources and the Environment'. Various formative assessment and active learning techniques that have been effective in other courses were adapted and implemented to improve student learning, increase retention and broaden knowledge and understanding of course material. This was an elective course targeted towards upper-level undergraduate geology and environmental majors. The course provided an introduction to the mineral resources industry, discussing geological, environmental, societal and economic aspects, legislation and the processes involved in exploration, extraction, processing, reclamation/remediation and recycling of products. Lectures and associated weekly labs were linked in subject matter; relevant readings from the recent scientific literature were assigned and discussed in the second lecture of the week. Peer-based learning was facilitated through weekly reading assignments with peer-led discussions and through group research projects, in addition to in-class exercises such as debates. Writing and research skills were developed through student groups designing, carrying out and reporting on their own semester-long research projects around the lasting effects of the historical Ruston Smelter on the biology and water systems of Tacoma. The writing of their mini grant proposals and final project reports was carried out in stages to allow for feedback before the deadline. Speakers from industry were invited to share their specialist knowledge as guest lecturers, and students were encouraged to interact with them, with a view to employment opportunities. Formative assessment techniques included jigsaw exercises, gallery walks, placemat surveys, think pair share and take-home point summaries. Summative assessment included discussion leadership, exams, homeworks, group projects, in-class exercises, field trips, and pre-discussion reading exercises

  17. Active control technique of fractional-order chaotic complex systems

    NASA Astrophysics Data System (ADS)

    Mahmoud, Gamal M.; Ahmed, Mansour E.; Abed-Elhameed, Tarek M.

    2016-06-01

    Several kinds of synchronization of fractional-order chaotic complex systems are challenging research topics of current interest since they appear in many applications in applied sciences. Our main goal in this paper is to introduce the definition of modified projective combination-combination synchronization (MPCCS) of some fractional-order chaotic complex systems. We show that our systems are chaotic by calculating their Lyapunov exponents. The fractional Lyapunov dimension of the chaotic solutions of these systems is computed. A scheme is introduced to calculate MPCCS of four different (or identical) chaotic complex systems using the active control technique. Special cases of this type, which are projective and anti C-C synchronization, are discussed. Some figures are plotted to show that MPCCS is achieved and its errors approach zero.

  18. Activation studies of NEG coatings by surface techniques

    SciTech Connect

    Sharma, R. K.; Jagannath,; Bhushan, K. G.; Gadkari, S. C.; Mukund, R.; Gupta, S. K.

    2013-02-05

    NEG (Non Evaporable Getters)materials in the form of ternary alloy coatings have many benefits compare to traditional bare surfaces such as Extreme high vacuum(XHV), lower secondary electron yield(SEY), low photon desorption cofficient. The extreme high vacuum (pressure > 10{sup -10} mbar) is very useful to the study of surfaces of the material, for high energy particle accelerators(LHC, Photon Factories), synchrotrons (ESRF, Ellectra) etc. Low secondary electron yield leads to better beam life time. In LHC the pressure in the interaction region of the two beams is something of the order of 10{sup -12} mbar. In this paper preparation of the coatings and their characterization to get the Activation temperature by using the surface techniques XPS, SEM and SIMS has been shown.

  19. Microwave-assisted aqueous enzymatic extraction of oil from pumpkin seeds and evaluation of its physicochemical properties, fatty acid compositions and antioxidant activities.

    PubMed

    Jiao, Jiao; Li, Zhu-Gang; Gai, Qing-Yan; Li, Xiao-Juan; Wei, Fu-Yao; Fu, Yu-Jie; Ma, Wei

    2014-03-15

    Microwave-assisted aqueous enzymatic extraction (MAAEE) of pumpkin seed oil was performed in this study. An enzyme cocktail comprised of cellulase, pectinase and proteinase (w/w/w) was found to be the most effective in releasing oils. The highest oil recovery of 64.17% was achieved under optimal conditions of enzyme concentration (1.4%, w/w), temperature (44°C), time (66 min) and irradiation power (419W). Moreover, there were no significant variations in physicochemical properties of MAAEE-extracted oil (MAAEEO) and Soxhlet-extracted oil (SEO), but MAAEEO exhibited better oxidation stability. Additionally, MAAEEO had a higher content of linoleic acid (57.33%) than SEO (53.72%), and it showed stronger antioxidant activities with the IC50 values 123.93 and 152.84, mg/mL, according to DPPH radical scavenging assay and β-carotene/linoleic acid bleaching test. SEM results illustrated the destruction of cell walls and membranes by MAAEE. MAAEE is, therefore, a promising and environmental-friendly technique for oil extraction in the food industry.

  20. Urban rainfall estimation employing commercial microwave links

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko; ten Veldhuis, Marie-claire

    2015-04-01

    Urban areas often lack rainfall information. To increase the number of rainfall observations in cities, microwave links from operational cellular telecommunication networks may be employed. Although this new potential source of rainfall information has been shown to be promising, its quality needs to be demonstrated more extensively. In the Rain Sense kickstart project of the Amsterdam Institute for Advanced Metropolitan Solutions (AMS), sensors and citizens are preparing Amsterdam for future weather. Part of this project is rainfall estimation using new measurement techniques. Innovative sensing techniques will be utilized such as rainfall estimation from microwave links, umbrellas for weather sensing, low-cost sensors at lamp posts and in drainage pipes for water level observation. These will be combined with information provided by citizens in an active way through smartphone apps and in a passive way through social media posts (Twitter, Flickr etc.). Sensor information will be integrated, visualized and made accessible to citizens to help raise citizen awareness of urban water management challenges and promote resilience by providing information on how citizens can contribute in addressing these. Moreover, citizens and businesses can benefit from reliable weather information in planning their social and commercial activities. In the end city-wide high-resolution rainfall maps will be derived, blending rainfall information from microwave links and weather radars. This information will be used for urban water management. This presentation focuses on rainfall estimation from commercial microwave links. Received signal levels from tens of microwave links within the Amsterdam region (roughly 1 million inhabitants) in the Netherlands are utilized to estimate rainfall with high spatial and temporal resolution. Rainfall maps will be presented and compared to a gauge-adjusted radar rainfall data set. Rainfall time series from gauge(s), radars and links will be compared.

  1. Mechanism of Enhanced Electrochemical Oxidation of 2,4-dichlorophenoxyacetic Acid with in situ Microwave Activated Boron-doped Diamond and Platinum Anodes

    NASA Astrophysics Data System (ADS)

    Gao, Junxia; Zhao, Guohua; Liu, Meichuan; Li, Dongming

    2009-09-01

    Remarkable enhancement in degradation effect is achieved at in situ activated boron-doped diamond (BDD) and Pt anodes with different extent through electrochemical oxidation (EC) of 2,4-dichlorophenoxyacetic acid (2,4-D) with microwave (MW) radiation in a flow system. Results show that when EC is activated with MW radiation, the complete mineralization time of 2,4-D at the BDD is reduced quickly from 10 to 4 h while Chemical oxygen demand (COD) removal at Pt is increased from 37.7 to 58.3% at 10 h; the initial current efficiency is both improved about 1.5 times while the pseudo-first-order rate constant is increased by 153 and 119% at the BDD and Pt, respectively. To gain insight into the higher efficiency in microwave activated EC, the mechanism has therefore been systematically evaluated from the essence of electrochemical reaction and the accumulated hydroxyl radical concentration. 2,4-Dichlorophenol, catechol, benquinone, and maleic and oxalic acids are the main intermediates on the Pt anode measured by high performance liquid chromatography (HPLC), while the intermediates on the BDD electrode include 2,4-dichlorophenol, hydroquinone, and maleic and oxalic acids. The reaction pathway with microwave radiation is the same as that in a conventional electrochemical oxidation on both electrodes. While less and lower aromatic intermediates produce at the BDD with MW, which suggests the higher ring-open ratio and the faster oxidation of carboxylic acids. With microwave radiation, the ring-open ratio at the BDD is increased to 98.8% from 85.6%; the value at Pt is increased to 67.3% from 35.9%. So microwave radiation can activate the electrochemical oxidation, which leads to the higher efficiency. This promotion is mainly due to the higher accumulated hydroxyl radical concentration and the effects by microwave radiation. All the results prove that the BDD electrode presents much better mineralization performance with MW. To the best of our knowledge, it is the first

  2. Microwave enhanced alcoholysis of non-edible (algal, jatropha and pongamia) oils using chemically activated egg shell derived CaO as heterogeneous catalyst.

    PubMed

    Joshi, Girdhar; Rawat, Devendra S; Sharma, Amit Kumar; Pandey, Jitendra K

    2016-11-01

    Microwave enhanced fast and efficient alcoholysis (methanolysis and ethanolysis) of non-edible oils (algal, jatropha and pongamia) is achieved using chemically activated waste egg shell derived CaO (i.e. CaO(cesp)) as heterogeneous catalyst. CaO(cesp) was extracted from waste chicken egg shell and further activated chemically by supporting transition metal oxide. The maximum conversion was achieved using 3wt% catalysts under 700W microwave irradiation and 10:1 alcohol/oil ratio in 6min. Alcoholysis using ZnO activated CaO(cesp) catalyst has shown higher reaction yields in comparison to other modified catalysts. Methanolysis has shown better biodiesel conversion in comparison to ethanolysis. The catalyst has shown longer lifetime and sustained activity after being used for four cycles. Due to more saturated fatty acid content; algal biodiesel has shown improved fuel properties in comparison to other biodiesels. PMID:27521785

  3. Microwave enhanced alcoholysis of non-edible (algal, jatropha and pongamia) oils using chemically activated egg shell derived CaO as heterogeneous catalyst.

    PubMed

    Joshi, Girdhar; Rawat, Devendra S; Sharma, Amit Kumar; Pandey, Jitendra K

    2016-11-01

    Microwave enhanced fast and efficient alcoholysis (methanolysis and ethanolysis) of non-edible oils (algal, jatropha and pongamia) is achieved using chemically activated waste egg shell derived CaO (i.e. CaO(cesp)) as heterogeneous catalyst. CaO(cesp) was extracted from waste chicken egg shell and further activated chemically by supporting transition metal oxide. The maximum conversion was achieved using 3wt% catalysts under 700W microwave irradiation and 10:1 alcohol/oil ratio in 6min. Alcoholysis using ZnO activated CaO(cesp) catalyst has shown higher reaction yields in comparison to other modified catalysts. Methanolysis has shown better biodiesel conversion in comparison to ethanolysis. The catalyst has shown longer lifetime and sustained activity after being used for four cycles. Due to more saturated fatty acid content; algal biodiesel has shown improved fuel properties in comparison to other biodiesels.

  4. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  5. Impacts of Different Assimilation Methodologies on Crop Yield Estimates Using Active and Passive Microwave Dataset at L-Band

    NASA Astrophysics Data System (ADS)

    Liu, P.; Bongiovanni, T. E.; Monsivais-Huertero, A.; Bindlish, R.; Judge, J.

    2013-12-01

    Accurate estimates of crop yield are important for managing agricultural production and food security. Although the crop growth models, such as the Decision Support System Agrotechnology Transfer (DSSAT), have been used to simulate crop growth and development, the crop yield estimates still diverge from the reality due to different sources of errors in the models and computation. Auxiliary observations may be incorporated into such dynamic models to improve predictions using data assimilation. Active and passive (AP) microwave observations at L-band (1-2 GHz) are sensitive to dielectric and geometric properties of soil and vegetation, including soil moisture (SM), vegetation water content (VWC), surface roughness, and vegetation structure. Because SM and VWC are one of the governing factors in estimating crop yield, microwave observations may be used to improve crop yield estimates. Current studies have shown that active observations are more sensitive to the surface roughness of soil and vegetation structure during the growing season, while the passive observations are more sensitive to the SM. Backscatter and emission models linked with the DSSAT model (DSSAT-A-P) allow assimilation of microwave observations of backscattering coefficient (σ0) and brightness temperature (TB) may provide biophysically realistic estimates of model states and parameters. The present ESA Soil Moisture Ocean Salinity (SMOS) mission provides passive observations at 1.41 GHz at 25 km every 2-3 days, and the NASA/CNDAE Aquarius mission provides L-band AP observations at spatial resolution of 150 km with a repeat coverage of 7 days for global SM products. In 2014, the planned NASA Soil Moisture Active Passive mission will provide AP observations at 1.26 and 1.41 GHz at the spatial resolutions of 3 and 30 km, respectively, with a repeat coverage of 2-3 days. The goal of this study is to understand the impacts of assimilation of asynchronous and synchronous AP observations on crop yield

  6. Anti-Inflammatory Activity of Pinus koraiensis Cone Bark Extracts Prepared by Micro-Wave Assisted Extraction

    PubMed Central

    Kang, Sun-Ae; Kim, Dong-Hee; Hong, Shin-Hyub; Park, Hye-Jin; Kim, Na-Hyun; Ahn, Dong-Hyun; An, Bong-Jeun; Kwon, Joong-Ho; Cho, Young-Je

    2016-01-01

    In this study, we compared the anti-inflammatory activity of Pinus koraiensis cone bark extracts prepared by conventional extraction and microwave-assisted extraction (MAE). Water extracts and 50% ethanol extracts prepared using MAE were applied to RAW 264.7 cell at 5, 10, 25, and 50 μg/mL of concentrations, and tested for cytoxicity. The group treated with 50 μg/mL of 50% ethanol extracts showed toxicity. In order to investigate the inhibition of nitric oxide (NO) production in RAW 264.7 cells, extracts of water and ethanol were treated with 5, 10, and 25 μg/mL concentrations. The inhibitory activity of water and 50% ethanol extracts groups were determined as 40% and 60% at 25 μg/mL concentration, respectively. We found concentration dependent decreases on inducible NO synthase. The inhibitory effect against forming inflammatory cytokines, prostaglandin E2, tumor necrosis factor-α, interleukin (IL)-6, and IL-1β, was also superior in the 25 μg/mL treated group than the control group. According to these results, the water extracts and 50% ethanol extracts both inhibited inflammatory mediators by reducing the inflammatory response. Therefore, The MAE extracts of P. koraiensis cone bark can be developed as a functional ingredient with anti-inflammatory activity. PMID:27752500

  7. Microwave and gamma radiation observations of soil moisture

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Njoku, E. G.; Peck, E.; Ulaby, F. T.

    1979-01-01

    The unique dielectric properties of water at microwave wavelengths afford the possibility for remotely sensing the moisture content in the surface layer of the soil. The surface emissivity and reflectivity for the soils at these wavelengths are strong functions of its moisture content. The changes in emissivity can be observed by passive microwave techniques (radiometry) and the change in reflectivity can be observed by active microwave techniques (radar). The difference in the natural terrestrial gamma ray flux measured for wet and dry soil may be used to determine soil moisture. The presence of water moisture in the soil causes an effective increase in soil density, resulting in an increased attenuation of the gamma flux for wet soil and a corresponding lower flux above the ground surface.

  8. Susceptor Assisted Microwave Annealing Of Ion Implanted Silicon

    NASA Astrophysics Data System (ADS)

    Vemuri, Rajitha

    This thesis discusses the use of low temperature microwave anneal as an alternative technique to recrystallize materials damaged or amorphized due to implantation techniques. The work focuses on the annealing of high- Z doped Si wafers that are incapable of attaining high temperatures required for recrystallizing the damaged implanted layers by microwave absorption The increasing necessity for quicker and more efficient processing techniques motivates study of the use of a single frequency applicator microwave cavity along with a Fe2O3 infused SiC-alumina susceptor/applicator as an alternative post implantation process. Arsenic implanted Si samples of different dopant concentrations and implantation energies were studied pre and post microwave annealing. A set of as-implanted Si samples were also used to assess the effect of inactive dopants against presence of electrically active dopants on the recrystallization mechanisms. The extent of damage repair and Si recrystallization of the damage caused by arsenic and Si implantation of Si is determined by cross-section transmission electron microscopy and Raman spectroscopy. Dopant activation is evaluated for the As implanted Si by sheet resistance measurements. For the same, secondary ion mass spectroscopy analysis is used to compare the extent of diffusion that results from such microwave annealing with that experienced when using conventional rapid thermal annealing (RTA). Results show that compared to susceptor assisted microwave annealing, RTA caused undesired dopant diffusion. The SiC-alumina susceptor plays a predominant role in supplying heat to the Si substrate, and acts as an assistor that helps a high-Z dopant like arsenic to absorb the microwave energy using a microwave loss mechanism which is a combination of ionic and dipole losses. Comparisons of annealing of the samples were done with and without the use of the susceptor, and confirm the role played by the susceptor, since the samples donot recrystallize

  9. A Geomagnetic Precursor Technique for Predicting the Solar Activity Cycle

    NASA Astrophysics Data System (ADS)

    Sobel, E. I.; Rabin, D. M.

    2015-12-01

    The Western hemisphere has been recording sunspot numbers since Galileo discovered sunspots in the early 17th century, and the roughly 11-year solar cycle has been recognized since the 19th century. However, predicting the strength of any particular cycle remains a relatively imprecise task. This project's aim was to update and improve a forecasting technique based on geomagnetic precursors of future solar activity The model is a refinement of R. J. Thompson's 1993 paper that relates the number of geomagnetically disturbed days, as defined by the aa and Ap indices, to the sum of the sunspot number in the current and the previous cycle, Rn + Rn-1.[1] The method exploits the fact that two cycles coexist for some period on the Sun near solar minimum and therefore that the number of sunspots and disturbed days during the declining phase of one cycle gives an indication of the following cycle's strength. We wrote and updated IDL software procedures to define disturbed days with varying threshold values and graphed Rn + Rn-1 against them. The aa threshold was derived from the Ap threshold. After comparing the graphs for Ap values from 20 to 50, an Ap threshold of 30 and the corresponding aa threshold of 44 were chosen as yielding the best correlation. Confidence regions were computed to provide a quantitative uncertainty on future predictions. The 80% confidence region gives a range of ±40 in sunspot number. [1] Thompson, R. J. (1993). A technique for predicting the amplitude of the solar cycle. Solar Physics, 148, 2, 383-388.

  10. Antifungal, anti-inflammatory and cytotoxicity activities of three varieties of labisia pumila benth: from microwave obtained extracts

    PubMed Central

    2013-01-01

    Background Labisia pumila, locally known as Kacip Fatimah, is a forest-floor plant that has tremendous potential in the herbal industry. It is one of the five herbal plants identified by the government as one of the national key economic areas to be developed for commercial purposes. There are three varieties of L. pumila namely, L. pumila var. pumila, L. pumila var. alata and L. pumila var. lanceolata and each has its own use. Methods The leaves and roots of the three varieties of L. pumila Benth. were extracted using microwave assisted extraction (MAE). Antifungal activity of all plant extracts were characterized against Fusarium sp., Candida sp. and Mucor using the agar diffusion disc. Anti-inflammatory assays were performed using NO production by macrophage RAW 264.7 cell lines induced by LPS/IFN-g and cytotoxic activity was determined using several cancer cell lines and one normal cell line. Results The overall result demonstrated that leaf and root extracts of all three varieties of L. pumila exhibited moderate to appreciable antifungal activity against Fusarium sp., Candida sp. and Mucor compared to streptomycin used as positive control. Leaf and root extracts of all varieties significantly decreased NO release. However, the root extracts showed higher activity compared to the leaf extracts. Cytotoxic activity against MCF-7, MDA-MB-231 and Chang cell lines were observed with all extracts. Conclusions These findings suggest the potential use of L. pumila Benth. as a natural medicine and indicated the possible application of this medicinal plant such anti inflammatory activity and cytotoxic agents. PMID:23347830

  11. Microwave detector

    SciTech Connect

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1986-12-02

    A detector is described for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations, the detector comprising: a B-dot loop linking the magnetic field of the microwave pulse; a biased ferrite, that produces a magnetization field flux that links the B-dot loop. The ferrite is positioned within the B-dot loop so that the magnetic field of the microwave pulse interacts with the ferrite and thereby participates in the formation of the magnetization field flux; and high-frequency insensitive means for measuring electric voltage or current induced in the B-dot loop.

  12. Optomechanics with microwave light

    NASA Astrophysics Data System (ADS)

    Lehnert, Konrad

    2009-03-01

    Recently, superconducting circuits resonant at microwave frequencies have revolutionized the measurement of astrophysical detectors [1] and superconducting qubits [2]. In this talk, I will describe how we extend this technique to measuring and manipulating nanomechanical oscillators. By strongly coupling the motion of a nanomechanical oscillator to the resonance of the microwave circuit we create structures where the dominant dissipative force acting on the oscillator is the radiation pressure of microwave ``light'' [3]. These devices are ultrasensitive force detectors and they allow us to cool the oscillator towards its motional ground state. [4pt] [1] P. K. Day et al., Nature 425, 817 (2003).[0pt] [2] A. Wallraff et al., Nature 431, 162 (2004).[0pt] [3] J. D. Teufel, J. W. Harlow, C. A. Regal and K. W. Lehnert, Phys. Rev. Lett., 101, 197203 (2008).

  13. Microwave-assisted sintering of non-stoichiometric strontium bismuth niobate ceramic: Structural and dielectric properties

    NASA Astrophysics Data System (ADS)

    Singh, Rajveer; Luthra, Vandna; Tandon, R. P.

    2016-11-01

    In recent years the microwave sintering has been utilized for the synthesis of materials in enhancement of the properties. In this paper strontium bismuth niobate (Sr0.8Bi2.2Nb2O9:SBN) bulk ceramic has been synthesized by microwave reactive sintering and conventional heating techniques. A relative density of 99.6% has been achieved for microwave sintered SBN, which is higher than that of (98.81%) conventionally sintered SBN. The phase formation of SBN synthesized by both processes has been confirmed by X-ray diffraction (XRD). The surface morphology of SBN was observed by scanning electron microscopy (SEM). The microstructure was found to be more uniform in case of SBN sintered by microwave sintering. The dielectric properties of SBN were studied as a function of frequency in the temperature range of 30-500 °C. Both the samples synthesized by two different processes were found to follow Curie-Weiss law above the transition temperature. The Curie temperature was found to be higher for microwave sintered SBN. The dielectric constant and the transition temperature were observed to be higher for SBN ceramic synthesized by microwave sintering technique. The ac and dc activation energy values were also found to be higher for microwave sintered SBN as compared to conventional sintering technique.

  14. Improved mesh based photon sampling techniques for neutron activation analysis

    SciTech Connect

    Relson, E.; Wilson, P. P. H.; Biondo, E. D.

    2013-07-01

    The design of fusion power systems requires analysis of neutron activation of large, complex volumes, and the resulting particles emitted from these volumes. Structured mesh-based discretization of these problems allows for improved modeling in these activation analysis problems. Finer discretization of these problems results in large computational costs, which drives the investigation of more efficient methods. Within an ad hoc subroutine of the Monte Carlo transport code MCNP, we implement sampling of voxels and photon energies for volumetric sources using the alias method. The alias method enables efficient sampling of a discrete probability distribution, and operates in 0(1) time, whereas the simpler direct discrete method requires 0(log(n)) time. By using the alias method, voxel sampling becomes a viable alternative to sampling space with the 0(1) approach of uniformly sampling the problem volume. Additionally, with voxel sampling it is straightforward to introduce biasing of volumetric sources, and we implement this biasing of voxels as an additional variance reduction technique that can be applied. We verify our implementation and compare the alias method, with and without biasing, to direct discrete sampling of voxels, and to uniform sampling. We study the behavior of source biasing in a second set of tests and find trends between improvements and source shape, material, and material density. Overall, however, the magnitude of improvements from source biasing appears to be limited. Future work will benefit from the implementation of efficient voxel sampling - particularly with conformal unstructured meshes where the uniform sampling approach cannot be applied. (authors)

  15. Active sampling technique to enhance chemical signature of buried explosives

    NASA Astrophysics Data System (ADS)

    Lovell, John S.; French, Patrick D.

    2004-09-01

    Deminers and dismounted countermine engineers commonly use metal detectors, ground penetrating radar and probes to locate mines. Many modern landmines have a very low metal content, which severely limits the effectiveness of metal detectors. Canines have also been used for landmine detection for decades. Experiments have shown that canines smell the explosives which are known to leak from most types of landmines. The fact that dogs can detect landmines indicates that vapor sensing is a viable approach to landmine detection. Several groups are currently developing systems to detect landmines by "sniffing" for the ultra-trace explosive vapors above the soil. The amount of material that is available to passive vapor sensing systems is limited to no more than the vapor in equilibrium with the explosive related chemicals (ERCs) distributed in the surface soils over and near the landmine. The low equilibrium vapor pressure of TNT in the soil/atmosphere boundary layer and the limited volume of the boundary layer air imply that passive chemical vapor sensing systems require sensitivities in the picogram range, or lower. ADA is working to overcome many of the limitations of passive sampling methods, by the use of an active sampling method that employs a high-powered (1,200+ joules) strobe lamp to create a highly amplified plume of vapor and/or ERC-bearing fine particulates. Initial investigations have demonstrated that this approach can amplify the detectability of TNT by two or three orders of magnitude. This new active sampling technique could be used with any suitable explosive sensor.

  16. In vitro and in vivo performance of bioactive Ti6Al4V/TiC/HA implants fabricated by a rapid microwave sintering technique.

    PubMed

    Choy, Man Tik; Tang, Chak Yin; Chen, Ling; Wong, Chi Tak; Tsui, Chi Pong

    2014-09-01

    Failure of the bone-implant interface in a joint prosthesis is a main cause of implant loosening. The introduction of a bioactive substance, hydroxyapatite (HA), to a metallic bone-implant may enhance its fixation on human bone by encouraging direct bone bonding. Ti6Al4V/TiC/HA composites with a reproducible porous structure (porosity of 27% and pore size of 6-89 μm) were successfully fabricated by a rapid microwave sintering technique. This method allows the biocomposites to be fabricated in a short period of time under ambient conditions. Ti6Al4V/TiC/HA composites exhibited a compressive strength of 93 MPa, compressive modulus of 2.9 GPa and microhardness of 556 HV which are close to those of the human cortical bone. The in vitro preosteoblast MC3T3-E1 cells cultured on the Ti6Al4V/TiC/HA composite showed that the composite surface could provide a biocompatible environment for cell adhesion, proliferation and differentiation without any cytotoxic effects. This is among the first attempts to study the in vivo performance of load-bearing Ti6Al4V/TiC and Ti6Al4V/TiC/HA composites in a live rabbit. The results indicated that the Ti6Al4V/TiC/HA composite had a better bone-implant interface compared with the Ti6Al4V/TiC implant. Based on the microstructural features, the mechanical properties, and the in vitro and in vivo test results from this study, the Ti6Al4V/TiC/HA composites have the potential to be employed in load-bearing orthopedic applications.

  17. Microwave assisted synthesis of sheet-like Cu/BiVO4 and its activities of various photocatalytic conditions

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Li, Li; Yi, Tingting; Zhang, WenZhi; Zhang, Xiuli; Wang, Lili

    2015-09-01

    The Cu/BiVO4 photocatalyst with visible-light responsivity was prepared by the microwave-assisted hydrothermal method. The phase structures, chemical composition and surface physicochemical properties were well-characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance absorption (UV-vis/DRS), scanning electron microscopy (SEM), and N2 adsorption-desorption tests. Results indicate that the crystal structure of synthetic composite materials is mainly monoclinic scheelite BiVO4, which is not changed with the increasing doping amount of Cu. In addition, the presence of Cu not only enlarges the range of the composite materials under the visible-light response, but also increases the BET value significantly. Compared to pure BiVO4, 1% Cu/BiVO4-160 performs the highest photocatalytic activity to degrade methylene blue under the irradiation of ultraviolet, visible and simulated sunlight. In addition, the capture experiments prove that the main active species was superoxide radicals during photocatalytic reaction. Moreover, the 1% Cu/BiVO4-160 composite shows good photocatalytic stability after three times of recycling.

  18. Characterization of the active site of chloroperoxidase using physical techniques

    SciTech Connect

    Hall, K.S.

    1986-01-01

    Chloroperoxidase (CPO) and Cytochrome P-450, two very different hemeproteins, have been shown to have similar active sites by several techniques. Recent work has demonstrated thiolate ligation from a cysteine residue to the iron in P-450. A major portion of this research has been devoted to obtaining direct evidence that CPO also has a thiolate 5th ligand from a cysteine residue. This information will provide the framework for a detailed analysis of the structure-function relationships between peroxidases, catalase and cytochrome P-450 hemeproteins. To determine whether the 5th ligand is a cysteine, methionine or a unique amino acid, specific isotope enrichment experiments were used. Preliminary /sup 1/H-NMR studies show that the carbon monoxide-CPO complex has a peak in the upfield region corresponding to alpha-protons of a thiolate amino acid. C. fumago was grown on 95% D/sub 2/O media with a small amount of /sup 1/H-cysteine added. Under these conditions C. fumago slows down the biosynthesis of cysteine by at least 50% and utilizes the exogenous cysteine in the media. GC-MS was able to show that the methylene protons next to the sulfur atom in cysteine are 80-90% protonated while these positions in methionine are approximately 73% deuterated. Comparison of the /sup 1/H-NMR spectra of CO-CPO and CO-CPO indicate the presence of a cysteine ligand in chloroperoxidase.

  19. Residual matrix from different separation techniques impacts exosome biological activity

    PubMed Central

    Paolini, Lucia; Zendrini, Andrea; Noto, Giuseppe Di; Busatto, Sara; Lottini, Elisabetta; Radeghieri, Annalisa; Dossi, Alessandra; Caneschi, Andrea; Ricotta, Doris; Bergese, Paolo

    2016-01-01

    Exosomes are gaining a prominent role in research due to their intriguing biology and several therapeutic opportunities. However, their accurate purification from body fluids and detailed physicochemical characterization remain open issues. We isolated exosomes from serum of patients with Multiple Myeloma by four of the most popular purification methods and assessed the presence of residual contaminants in the preparations through an ad hoc combination of biochemical and biophysical techniques - including Western Blot, colloidal nanoplasmonics, atomic force microscopy (AFM) and scanning helium ion microscopy (HIM). The preparations obtained by iodixanol and sucrose gradients were highly pure. To the contrary, those achieved with limited processing (serial centrifugation or one step precipitation kit) resulted contaminated by a residual matrix, embedding the exosomes. The contaminated preparations showed lower ability to induce NfkB nuclear translocation in endothelial cells with respect to the pure ones, probably because the matrix prevents the interaction and fusion of the exosomes with the cell membrane. These findings suggest that exosome preparation purity must be carefully assessed since it may interfere with exosome biological activity. Contaminants can be reliably probed only by an integrated characterization approach aimed at both the molecular and the colloidal length scales. PMID:27009329

  20. Microwave generator

    DOEpatents

    Kwan, T.J.T.; Snell, C.M.

    1987-03-31

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

  1. Recent glacier surface snowpack melt in Novaya Zemlya and Severnaya Zemlya derived from active and passive microwave remote sensing data

    NASA Astrophysics Data System (ADS)

    Zhao, Meng

    The warming rate in the Russian High Arctic (RHA) (36˜158°E, 73˜82°N) is outpacing the pan-Arctic average, and its effect on the small glaciers across this region needs further examination. The temporal variation and spatial distribution of surface melt onset date (MOD) and total melt days (TMD) throughout the Novaya Zemlya (NovZ) and Severnaya Zemlya (SevZ) archipelagoes serve as good indicators of ice mass ablation and glacier response to regional climate change in the RHA. However, due to the harsh environment, long-term glaciological observations are limited, necessitating the application of remotely sensed data to study the surface melt dynamics. The high sensitivity to liquid water and the ability to work without solar illumination and penetrate non-precipitating clouds make microwave remote sensing an ideal tool to detect melt in this region. This work extracts resolution-enhanced passive and active microwave data from different periods and retrieves a decadal melt record for NovZ and SevZ. The high correlation among passive and active data sets instills confidence in the results. The mean MOD is June 20th on SevZ and June 10th on NovZ during the period of 1992-2012. The average TMDs are 47 and 67 days on SevZ and NovZ from 1995 to 2011, respectively. NovZ had large interannual variability in the MOD, but its TMD generally increased. SevZ MOD is found to be positively correlated to local June reanalysis air temperature at 850hPa geopotential height and occurs significantly earlier (˜0.73 days/year, p-value < 0.01) from 1992 to 2011. SevZ also experienced a longer TMD trend (˜0.75 days/year, p-value < 0.05) from 1995 to 2011. Annual mean TMD on both islands are positively correlated with regional summer mean reanalysis air temperature and negatively correlated to local sea ice extent. These strong correlations might suggest that the Russian High Arctic glaciers are vulnerable to the continuously diminishing sea ice extent, the associated air temperature

  2. Bio-refinery of orange peels waste: a new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin.

    PubMed

    Boukroufa, Meryem; Boutekedjiret, Chahrazed; Petigny, Loïc; Rakotomanomana, Njara; Chemat, Farid

    2015-05-01

    In this study, extraction of essential oil, polyphenols and pectin from orange peel has been optimized using microwave and ultrasound technology without adding any solvent but only "in situ" water which was recycled and used as solvent. The essential oil extraction performed by Microwave Hydrodiffusion and Gravity (MHG) was optimized and compared to steam distillation extraction (SD). No significant changes in yield were noticed: 4.22 ± 0.03% and 4.16 ± 0.05% for MHG and SD, respectively. After extraction of essential oil, residual water of plant obtained after MHG extraction was used as solvent for polyphenols and pectin extraction from MHG residues. Polyphenols extraction was performed by ultrasound-assisted extraction (UAE) and conventional extraction (CE). Response surface methodology (RSM) using central composite designs (CCD) approach was launched to investigate the influence of process variables on the ultrasound-assisted extraction (UAE). The statistical analysis revealed that the optimized conditions of ultrasound power and temperature were 0.956 W/cm(2) and 59.83°C giving a polyphenol yield of 50.02 mgGA/100 g dm. Compared with the conventional extraction (CE), the UAE gave an increase of 30% in TPC yield. Pectin was extracted by conventional and microwave assisted extraction. This technique gives a maximal yield of 24.2% for microwave power of 500 W in only 3 min whereas conventional extraction gives 18.32% in 120 min. Combination of microwave, ultrasound and the recycled "in situ" water of citrus peels allow us to obtain high added values compounds in shorter time and managed to make a closed loop using only natural resources provided by the plant which makes the whole process intensified in term of time and energy saving, cleanliness and reduced waste water.

  3. Bio-refinery of orange peels waste: a new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin.

    PubMed

    Boukroufa, Meryem; Boutekedjiret, Chahrazed; Petigny, Loïc; Rakotomanomana, Njara; Chemat, Farid

    2015-05-01

    In this study, extraction of essential oil, polyphenols and pectin from orange peel has been optimized using microwave and ultrasound technology without adding any solvent but only "in situ" water which was recycled and used as solvent. The essential oil extraction performed by Microwave Hydrodiffusion and Gravity (MHG) was optimized and compared to steam distillation extraction (SD). No significant changes in yield were noticed: 4.22 ± 0.03% and 4.16 ± 0.05% for MHG and SD, respectively. After extraction of essential oil, residual water of plant obtained after MHG extraction was used as solvent for polyphenols and pectin extraction from MHG residues. Polyphenols extraction was performed by ultrasound-assisted extraction (UAE) and conventional extraction (CE). Response surface methodology (RSM) using central composite designs (CCD) approach was launched to investigate the influence of process variables on the ultrasound-assisted extraction (UAE). The statistical analysis revealed that the optimized conditions of ultrasound power and temperature were 0.956 W/cm(2) and 59.83°C giving a polyphenol yield of 50.02 mgGA/100 g dm. Compared with the conventional extraction (CE), the UAE gave an increase of 30% in TPC yield. Pectin was extracted by conventional and microwave assisted extraction. This technique gives a maximal yield of 24.2% for microwave power of 500 W in only 3 min whereas conventional extraction gives 18.32% in 120 min. Combination of microwave, ultrasound and the recycled "in situ" water of citrus peels allow us to obtain high added values compounds in shorter time and managed to make a closed loop using only natural resources provided by the plant which makes the whole process intensified in term of time and energy saving, cleanliness and reduced waste water. PMID:25435398

  4. A neutron activation technique for manganese measurements in humans.

    PubMed

    Bhatia, C; Byun, S H; Chettle, D R; Inskip, M J; Prestwich, W V

    2015-01-01

    Manganese (Mn) is an essential element for humans, animals, and plants and is required for growth, development, and maintenance of health. Studies show that Mn metabolism is similar to that of iron, therefore, increased Mn levels in humans could interfere with the absorption of dietary iron leading to anemia. Also, excess exposure to Mn dust, leads to nervous system disorders similar to Parkinson's disease. Higher exposure to Mn is essentially related to industrial pollution. Thus, there is a benefit in developing a clean non-invasive technique for monitoring such increased levels of Mn in order to understand the risk of disease and development of appropriate treatments. To this end, the feasibility of Mn measurements with their minimum detection limits (MDL) has been reported earlier from the McMaster group. This work presents improvement to Mn assessment using an upgraded system and optimized times of irradiation and counting for induced gamma activity of Mn. The technique utilizes the high proton current Tandetron accelerator producing neutrons via the (7)Li(p,n)(7)Be reaction at McMaster University and an array of nine NaI (Tl) detectors in a 4 π geometry for delayed counting of gamma rays. The neutron irradiation of a set of phantoms was performed with protocols having different proton energy, current and time of irradiation. The improved MDLs estimated using the upgraded set up and constrained timings are reported as 0.67 μgMn/gCa for 2.3 MeV protons and 0.71 μgMn/gCa for 2.0 MeV protons. These are a factor of about 2.3 times better than previous measurements done at McMaster University using the in vivo set-up. Also, because of lower dose-equivalent and a relatively close MDL, the combination of: 2.0 MeV; 300 μA; 3 min protocol is recommended as compared to 2.3 MeV; 400 μA; 45 s protocol for further measurements of Mn in vivo. PMID:25169978

  5. Degradation kinetics and mechanism of trace nitrobenzene by granular activated carbon enhanced microwave/hydrogen peroxide system.

    PubMed

    Tan, Dina; Zeng, Honghu; Liu, Jie; Yu, Xiaozhang; Liang, Yanpeng; Lu, Lanjing

    2013-07-01

    The kinetics of the degradation of trace nitrobenzene (NB) by a granular activated carbon (GAC) enhanced microwave (MW)/hydrogen peroxide (H202) system was studied. Effects of pH, NB initial concentration and tert-butyl alcohol on the removal efficiency were examined. It was found that the reaction rate fits well to first-order reaction kinetics in the MW/GAC/H202 process. Moreover, GAC greatly enhanced the degradation rate of NB in water. Under a given condition (MW power 300 W, H202 dosage 10 mg/L, pH 6.85 and temperature (60 +/- 5)degrees C), the degradation rate of NB was 0.05214 min-1when 4 g/L GAC was added. In general, alkaline pH was better for NB degradation; however, the optimum pH was 8.0 in the tested pH value range of 4.0-12.0. At H202 dosage of 10 mg/L and GAC dosage of 4 g/L, the removal of NB was decreased with increasing initial concentrations of NB, indicating that a low initial concentration was beneficial for the degradation of NB. These results indicated that the MW/GAC/H202 process was effective for trace NB degradation in water. Gas chromatography-mass spectrometry analysis indicated that a hydroxyl radical addition reaction and dehydrogenation reaction enhanced NB degradation. PMID:24218864

  6. Sewage sludge pretreatment by microwave irradiation combined with activated carbon fibre at alkaline pH for anaerobic digestion.

    PubMed

    Sun, Dedong; Guo, Sixiao; Ma, Nina; Wang, Guowen; Ma, Chun; Hao, Jun; Xue, Mang; Zhang, Xinxin

    2016-01-01

    This research focuses on the effects of microwave-assisted activated carbon fibre (ACF) (MW-ACF) treatment on sewage sludge at alkaline pH. The disintegration and biodegradability of sewage sludge were studied. It was found that the MW-ACF process at alkaline pH provided a rapid and efficient process to disrupt the microbial cells in the sludge. The results suggested that when irradiated at 800 W MW for 110 s with a dose of 1.0 g ACF/g solid concentration (SS) at pH 10.5, the MW-ACF pretreatment achieved 55% SS disintegration, 23% greater than the value of MW alone (32%). The concentration of total nitrogen, total phosphorus, supernatant soluble chemical oxygen demand, protein, and polysaccharide increased by 60%, 144%, 145%, 74%, and 77%, respectively. An increase in biogas production by 63.7% was achieved after 20 days of anaerobic digestion (AD), compared to the control. The results indicated that the MW-ACF pretreatment process at alkaline pH provides novel sludge management options in disintegration of sewage sludge for further AD.

  7. Sea Surface Salinity and Wind Retrieval Algorithm Using Combined Passive-Active L-Band Microwave Data

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Chaubell, Mario J.

    2011-01-01

    Aquarius is a combined passive/active L-band microwave instrument developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, the global water cycle, and climate. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 kilometers and a retrieval accuracy of 0.2 practical salinity units globally on a monthly basis. The measurement principle is based on the response of the L-band (1.413 gigahertz) sea surface brightness temperatures (T (sub B)) to sea surface salinity. To achieve the required 0.2 practical salinity units accuracy, the impact of sea surface roughness (e.g. wind-generated ripples and waves) along with several factors on the observed brightness temperature has to be corrected to better than a few tenths of a degree Kelvin. To the end, Aquarius includes a scatterometer to help correct for this surface roughness effect.

  8. Soil Moisture Active Passive (SMAP) Microwave Radiometer Radio-Frequency Interference (RFI) Mitigation: Initial On-Orbit Results

    NASA Technical Reports Server (NTRS)

    Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Johnson, Joel T.; Aksoy, Mustafa; Bringer, Alexandra

    2015-01-01

    The Soil Moisture Active Passive (SMAP) mission, launched in January 2015, provides global measurements of soil moisture using a microwave radiometer. SMAPs radiometer passband lies within the passive frequency allocation. However, both unauthorized in-band transmitters as well as out-of-band emissions from transmitters operating at frequencies adjacent to this allocated spectrum have been documented as sources of radio frequency interference (RFI) to the L-band radiometers on SMOS and Aquarius. The spectral environment consists of high RFI levels as well as significant occurrences of low level RFI equivalent to 0.1 to 10 K. The SMAP ground processor reports the antenna temperature both before and after RFI mitigation is applied. The difference between these quantities represents the detected RFI level. The presentation will review the SMAP RFI detection and mitigation procedure and discuss early on-orbit RFI measurements from the SMAP radiometer. Assessments of global RFI properties and source types will be provided, as well as the implications of these results for SMAP soil moisture measurements.

  9. Sewage sludge pretreatment by microwave irradiation combined with activated carbon fibre at alkaline pH for anaerobic digestion.

    PubMed

    Sun, Dedong; Guo, Sixiao; Ma, Nina; Wang, Guowen; Ma, Chun; Hao, Jun; Xue, Mang; Zhang, Xinxin

    2016-01-01

    This research focuses on the effects of microwave-assisted activated carbon fibre (ACF) (MW-ACF) treatment on sewage sludge at alkaline pH. The disintegration and biodegradability of sewage sludge were studied. It was found that the MW-ACF process at alkaline pH provided a rapid and efficient process to disrupt the microbial cells in the sludge. The results suggested that when irradiated at 800 W MW for 110 s with a dose of 1.0 g ACF/g solid concentration (SS) at pH 10.5, the MW-ACF pretreatment achieved 55% SS disintegration, 23% greater than the value of MW alone (32%). The concentration of total nitrogen, total phosphorus, supernatant soluble chemical oxygen demand, protein, and polysaccharide increased by 60%, 144%, 145%, 74%, and 77%, respectively. An increase in biogas production by 63.7% was achieved after 20 days of anaerobic digestion (AD), compared to the control. The results indicated that the MW-ACF pretreatment process at alkaline pH provides novel sludge management options in disintegration of sewage sludge for further AD. PMID:27332832

  10. Microwave-Assisted Synthesis of Bio-Active Heterocycles and Fine Chemicals in Aqueous Media

    EPA Science Inventory

    Human health, especially in the aging population, mostly depends on various medicines, and researchers are combating against emerging diseases by new drug discovery. Heterocyclic compounds hold a special place among pharmaceutically active natural products as well as synthetic co...

  11. Microwave-Assisted Condensation Reactions of Acetophenone Derivatives and Activated Methylene Compounds with Aldehydes Catalyzed by Boric Acid under Solvent-Free Conditions.

    PubMed

    Brun, Elodie; Safer, Abdelmounaim; Carreaux, François; Bourahla, Khadidja; L'helgoua'ch, Jean-Martial; Bazureau, Jean-Pierre; Villalgordo, Jose Manuel

    2015-06-23

    We here disclosed a new protocol for the condensation of acetophenone derivatives and active methylene compounds with aldehydes in the presence of boric acid under microwave conditions. Implementation of the reaction is simple, healthy and environmentally friendly owing to the use of a non-toxic catalyst coupled to a solvent-free procedure. A large variety of known or novel compounds have thus been prepared, including with substrates bearing acid or base-sensitive functional groups.

  12. Comparative kinetic study and microwaves non-thermal effects on the formation of poly(amic acid) 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 4,4'-(hexafluoroisopropylidene)bis(p-phenyleneoxy)dianiline (BAPHF). Reaction activated by microwave, ultrasound and conventional heating.

    PubMed

    Tellez, Hugo Mendoza; Alquisira, Joaquín Palacios; Alonso, Carlos Rius; Cortés, José Guadalupe López; Toledano, Cecilio Alvarez

    2011-01-01

    Green chemistry is the design of chemical processes that reduce or eliminate negative environmental impacts. The use and production of chemicals involve the reduction of waste products, non-toxic components, and improved efficiency. Green chemistry applies innovative scientific solutions in the use of new reagents, catalysts and non-classical modes of activation such as ultrasounds or microwaves. Kinetic behavior and non-thermal effect of poly(amic acid) synthesized from (6FDA) dianhydride and (BAPHF) diamine in a low microwave absorbing p-dioxane solvent at low temperature of 30, 50, 70 °C were studied, under conventional heating (CH), microwave (MW) and ultrasound irradiation (US). Results show that the polycondensation rate decreases (MW > US > CH) and that the increased rates observed with US and MW are due to decreased activation energies of the Arrhenius equation. Rate constant for a chemical process activated by conventional heating declines proportionally as the induction time increases, however, this behavior is not observed under microwave and ultrasound activation. We can say that in addition to the thermal microwave effect, a non-thermal microwave effect is present in the system.

  13. Microwave-assisted hydrothermal synthesis of marigold-like ZnIn2S4 microspheres and their visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Chen, Zhixin; Li, Danzhen; Xiao, Guangcan; He, Yunhui; Xu, Yi-Jun

    2012-02-01

    Marigold-like ZnIn2S4 microspheres were synthesized by a microwave-assisted hydrothermal method with the temperature ranging from 80 to 195 °C. X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen sorption analysis, UV-visible spectroscopy, scanning electron microscopy and transmission electron microscopy were used to characterize the products. It was found that the crystallographic structure and optical property of the products synthesized at different temperatures were almost the same. The degradation of methyl orange (MO) under the visible light irradiation has been used as a probe reaction to investigate the photocatalytic activity of as-prepared ZnIn2S4, which shows that the ZnIn2S4 sample synthesized at 195 °C shows the best photocatalytic activity for MO degradation. In addition, the photocatalytic activities of all the samples prepared by the microwave-assisted hydrothermal method are better than those prepared by a normal hydrothermal method, which could be attributed to the formation of more defect sites during the microwave-assisted hydrothermal treatment.

  14. Microwave detection of cosmic ray showers at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Facal, Pedro

    2012-03-01

    Microwave emission from the electromagnetic cascade induced in the atmosphere by ultra-high energy cosmic rays (UHECR) may allow for a novel detection technique, which combines the advantages of the well-established fluorescence technique - the reconstruction of the shower profile - with a 100% duty cycle, minimal atmospheric attenuation and the use of low-cost commercial equipment. Two complementary techniques are currently being pursued at the Pierre Auger Observatory. AMBER (Air-shower Microwave Bremsstrahlung Experimental Radiometer), MIDAS (Microwave Detection of Air Showers) and FDWave are prototypes for a large imaging dish antenna. In EASIER (Extensive Air Shower Identification using Electron Radiometer), the microwave emission is detected by antenna horns located on each surface detector of the Auger Observatory. MIDAS is a self-triggering system while AMBER, FDWave, and EASIER use the trigger from the Auger detectors to record the emission. The coincident detection of UHECR by the microwave prototype detectors and the fluorescence and surface detectors will prove the viability of this novel technique. The status of microwave R&D activities at the Pierre Auger Observatory will be reported.

  15. Microwave furnace having microwave compatible dilatometer

    DOEpatents

    Kimrey, Jr., Harold D.; Janney, Mark A.; Ferber, Mattison K.

    1992-01-01

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy.

  16. Microwave furnace having microwave compatible dilatometer

    DOEpatents

    Kimrey, H.D. Jr.; Janney, M.A.; Ferber, M.K.

    1992-03-24

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy. 2 figs.

  17. Soil decontamination via microwave and radio frequency co-volatilization

    SciTech Connect

    George, C.E.; Lightsey, G.R.; Jun, I.; Fan, J. )

    1992-08-01

    Microwave and radio frequency heating techniques have proven to be suitable on the laboratory scale and for small scale field studies as energy sources for thermal processing of solvent-contaminated hazardous waste and contaminated soils. The process described here is a technique that could be used to remove contaminates from soils or sludges on-site, collect the contaminate in an activated carbon absorption tower, and move the activated carbon off site for regeneration. The data presented show that destruction and removal efficiencies (DRE) of near 100% can be achieved for phenanthrene in simulated API separator sludge and 60% for pentachlorophenol in contaminated soil. A technique to enhance microwave absorption by the addition of carbon particles to the soil or sludge sample to be treated is discussed. 9 refs., 5 figs.

  18. Microwave-assisted synthesis and anti-bacterial activity of some 2-amino-6-aryl-4-(2-thienyl)pyrimidines.

    PubMed

    Chandrasekaran, S; Nagarajan, S

    2005-04-01

    Some novel 2-amino-6-aryl-4-(2-thienyl)pyrimidines were synthesized from 3-aryl-1-thien-2-ylprop-2-en-1-ones and guanidine hydrochloride in presence of alkali by conventional heating in alcoholic medium and microwave heating in solvent-free conditions. The compounds were evaluated for in vitro anti-bacterial activity. The anti-bacterial data revealed that compounds 5a-e had better activity against tested gram-positive organisms than the reference ciprofloxacin and norfloxacin. However, the compounds were nearly inactive against gram-negative bacteria. Compounds 5c and e were the most active compounds against gram-positive bacteria. PMID:15848201

  19. Software safety analysis activities during software development phases of the Microwave Limb Sounder (MLS)

    NASA Technical Reports Server (NTRS)

    Shaw, Hui-Yin; Sherif, Joseph S.

    2004-01-01

    This paper describes the MLS software safety analysis activities and documents the SSA results. The scope of this software safety effort is consistent with the MLS system safety definition and is concentrated on the software faults and hazards that may have impact on the personnel safety and the environment safety.

  20. Irradiation, microwave and alternative energy-based treatments for low water activity foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is an increasing recognition of low water activity foods as vectors for human pathogens. Partially or fully dried agricultural commodities, along with modern formulated dried food products, are complex, and designed to meet a variety of nutritional, sensory, and market-oriented goal. This comp...

  1. Microwave systems analysis, solar power satellite. [alignment of the antenna array

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Various alternative active approaches to achieving aand maintaining flatness for the microwave power transmission system (MPTS) were studied. A baseline active alignment scheme was developed which includes subarray attachment mechanisms, height and tilting adjustments, service corridors, a rotating laser beam reference system, monopulse pointing techniques, and the design of a beam-centering photoconductive sensor.

  2. Successful Application of Active Learning Techniques to Introductory Microbiology.

    ERIC Educational Resources Information Center

    Hoffman, Elizabeth A.

    2001-01-01

    Points out the low student achievement in microbiology courses and presents an active learning method applied in an introductory microbiology course which features daily quizzes, cooperative learning activities, and group projects. (Contains 30 references.) (YDS)

  3. The correlation of active and passive microwave data for the Skylab S-193 sensor

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar

    1993-01-01

    This paper presents the results of the correlation analysis of the Skylab S-193 13.9 GHz Radiometer/Scatterometer data. Computer analysis of the S-193 data shows more than 50 percent of the radiometer and scatterometer data are uncorrelated. The correlation coefficients computed for the data gathered over various ground scenes indicates the desirability of using both active and passive sensors for the determination of various Earth phenomena.

  4. The Correlation of Active and Passive Microwave Outputs for the Skylab S-193 Sensor

    NASA Technical Reports Server (NTRS)

    Krishen, K.

    1976-01-01

    This paper presents the results of the correlation analysis of the Skylab S-193 13.9 GHz Radiometer/Scatterometer data. Computer analysis of the S-193 data shows more than 50 percent of the radiometer and scatterometer data are uncorrelated. The correlation coefficients computed for the data gathered over various ground scenes indicates the desirability of using both active and passive sensors for the determination of various Earth phenomena.

  5. Preparation of highly photocatalytic active CdS/TiO2 nanocomposites by combining chemical bath deposition and microwave-assisted hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Li, Li; Wang, Lili; Hu, Tianyu; Zhang, Wenzhi; Zhang, Xiuli; Chen, Xi

    2014-10-01

    CdS/TiO2 nanocomposites were prepared from Cd and Ti (1:1 M ratio) using cetyltrimethylammonium bromide by a two-step chemical bath deposition (CBD) and microwave-assisted hydrothermal synthesis (MAHS) method. A series of nanocomposites with different morphologies and activities were prepared by varying the reaction time in the MAHS (2, 4, and 6 h). The crystal structure, morphology, and surface physicochemical properties of the nanocomposites were characterized by X-ray diffraction, UV-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N2 adsorption-desorption measurements. The results show that the CdS/TiO2 nanocomposites were composed of anatase TiO2 and hexagonal CdS phases with strong absorption in the visible region. The surface morphologies changed slightly with increasing microwave irradiation time, while the Brunauer-Emmett-Teller surface area increased remarkably. The photocatalytic degradation of methyl orange (MO) was investigated under UV light and simulated sunlight irradiation. The photocatalytic activity of the CdS/TiO2 (6 h) composites prepared by the MAHS method was higher than those of CdS, P25, and other CdS/TiO2 nanocomposites. The CdS/TiO2 (6 h) nanocomposites significantly affected the UV and microwave-assisted photocatalytic degradation of different dyes. To elucidate the photocatalytic reaction mechanism for the CdS/TiO2 nanocomposites, controlled experiments were performed by adding different radical scavengers.

  6. Enzyme inactivation analysis for industrial blanching applications: comparison of microwave, conventional, and combination heat treatments on mushroom polyphenoloxidase activity.

    PubMed

    Devece, C; Rodríguez-López, J N; Fenoll, L G; Tudela, J; Catalá, J M; de Los Reyes, E; García-Cánovas, F

    1999-11-01

    Browning reactions in fruits and vegetables are a serious problem for the food industry. In mushrooms, the principal enzyme responsible for the browning reaction is polyphenoloxidase (PPO). Microwaves have recently been introduced as an alternative for the industrial blanching of mushrooms. However, the direct application of microwave energy to entire mushrooms is limited by the important temperature gradients generated within the samples during heating, which can produce internal water vaporization and associated damage to the mushrooms texture. A microwave applicator has been developed, whereby irradiation conditions can be regulated and the heating process monitored. Whole edible mushrooms (Agaricus bisporus) were blanched by conventional, microwave, and combined heating methods to optimize the rate of PPO inactivation. A combined microwave and hot-water bath treatment has achieved complete PPO inactivation in a short time. Both the loss of antioxidant content and the increase of browning were minor in the samples treated with this combined method when compared to the control. This reduction in processing time also decreased mushroom weight loss and shrinkage.

  7. Microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Shiue, J. C.; Wang, J. R.

    1988-01-01

    Knowledge of soil moisture is important to many disciplines, such as agriculture, hydrology, and meteorology. Soil moisture distribution of vast regions can be measured efficiently only with remote sensing techniques from airborne or satellite platforms. At low microwave frequencies, water has a much larger dielectric constant than dry soil. This difference manifests itself in surface emissivity (or reflectivity) change between dry and wet soils, and can be measured by a microwave radiometer or radar. The Microwave Sensors and Data Communications Branch is developing microwave remote sensing techniques using both radar and radiometry, but primarily with microwave radiometry. The efforts in these areas range from developing algorithms for data interpretation to conducting feasibility studies for space systems, with a primary goal of developing a microwave radiometer for soil moisture measurement from satellites, such as EOS or the Space Station. These efforts are listed.

  8. Microwave plasma activation of a polyvinylidene fluoride surface for protein immobilization

    NASA Astrophysics Data System (ADS)

    Vasile, C.; Baican, M. C.; Tibirna, C. M.; Tuchilus, C.; Debarnot, D.; Pâslaru, E.; Poncin-Epaillard, F.

    2011-11-01

    Polyvinylidene fluoride (PVDF) was modified by CO2, N2 or N2/H2 plasmas, which permitted the attachment of short carboxyl or amino groups. A variation of the discharge parameters was performed, for their optimization, as well as for minimizing degradation in favour of acidic, amphiphilic or basic functionalization, respectively. The optimum parameters of discharge for CO2, N2 or N2/H2 plasmas were P = 50 W, gas flow rate Q = 16 × 10-8 m3 s-1, exposure time t = 30-60 s, d = 0.1 m, pressure 15 Pa. The new surfaces were characterized by wettability measurements, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) methods. In a second step, the proteins (triglycine (TG) and protein A) were adsorbed or chemically grafted onto the carboxyl or amino functionalized surface, after EDC/NHS (1-ethyl-3-(-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide) activation of proteins. ATR-FTIR, XPS and AFM investigations confirmed the presence of protein on the surface. The XPS C1s core levels at 286.3 eV (C-N), 288 eV (amide bond) and 298 eV (carboxylic acid), together with variation of the O1s and N1s signals, illustrated the immobilization of proteins. It was established that TG was better attached on surfaces activated with N2/H2 plasma, while protein A was more tightly anchored on CO2, N2 plasma-activated surfaces. The former procedure allowed higher surface densities, while the latter permitted a better chemical control. The results proved that plasma-treated PVDF is a good substrate for protein coating, which can be further used for microorganisms' detection, as evidenced by the immunoassay test.

  9. CORONAL MAGNETOGRAPHY OF A SIMULATED SOLAR ACTIVE REGION FROM MICROWAVE IMAGING SPECTROPOLARIMETRY

    SciTech Connect

    Wang, Zhitao; Gary, Dale E.; Fleishman, Gregory D.; White, Stephen M.

    2015-06-01

    We have simulated the Expanded Owens Valley Solar Array (EOVSA) radio images generated at multiple frequencies from a model solar active region, embedded in a realistic solar disk model, and explored the resulting data cube for different spectral analysis schemes to evaluate the potential for realizing one of EOVSA’s most important scientific goals—coronal magnetography. In this paper, we focus on modeling the gyroresonance and free–free emission from an on-disk solar active region model with realistic complexities in electron density, temperature and magnetic field distribution. We compare the magnetic field parameters extrapolated from the image data cube along each line of sight after folding through the EOVSA instrumental profile with the original (unfolded) parameters used in the model. We find that even the most easily automated, image-based analysis approach (Level-0) provides reasonable quantitative results, although they are affected by systematic effects due to finite sampling in the Fourier (UV) plane. Finally, we note the potential for errors due to misidentified harmonics of the gyrofrequency, and discuss the prospects for applying a more sophisticated spectrally based analysis scheme (Level-1) to resolve the issue in cases where improved UV coverage and spatial resolution are available.

  10. Microwave-assisted hydrothermal synthesis of marigold-like ZnIn{sub 2}S{sub 4} microspheres and their visible light photocatalytic activity

    SciTech Connect

    Chen Zhixin; Li Danzhen; Xiao Guangcan; He Yunhui; Xu Yijun

    2012-02-15

    Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a microwave-assisted hydrothermal method with the temperature ranging from 80 to 195 Degree-Sign C. X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen sorption analysis, UV-visible spectroscopy, scanning electron microscopy and transmission electron microscopy were used to characterize the products. It was found that the crystallographic structure and optical property of the products synthesized at different temperatures were almost the same. The degradation of methyl orange (MO) under the visible light irradiation has been used as a probe reaction to investigate the photocatalytic activity of as-prepared ZnIn{sub 2}S{sub 4}, which shows that the ZnIn{sub 2}S{sub 4} sample synthesized at 195 Degree-Sign C shows the best photocatalytic activity for MO degradation. In addition, the photocatalytic activities of all the samples prepared by the microwave-assisted hydrothermal method are better than those prepared by a normal hydrothermal method, which could be attributed to the formation of more defect sites during the microwave-assisted hydrothermal treatment. - Graphical abstract: Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a fast microwave-assisted hydrothermal method at 80-195 Degree-Sign C with a very short reaction time of 10 min. The as-prepared ZnIn{sub 2}S{sub 4} sample can be used as visible light photocatalyst for degradation of organic dyes. Highlights: Black-Right-Pointing-Pointer ZnIn{sub 2}S{sub 4} microspheres were synthesized by microwave-assisted hydrothermal method. Black-Right-Pointing-Pointer The crystal structure and optical property of the products were almost the same. Black-Right-Pointing-Pointer Increment of the temperature renders high surface area due to the bubbling effect. Black-Right-Pointing-Pointer The ZnIn{sub 2}S{sub 4} synthesized at 195 Degree-Sign C shows the best visible catalytic activity for MO.

  11. The Liverpool Microwave Palaeointensity System

    NASA Astrophysics Data System (ADS)

    Hill, Mimi; Biggin, Andrew; Hawkins, Louise; Hodgson, Emma; Hurst, Elliot

    2016-04-01

    The motivation for the group at Liverpool in the 1990s (led by John Shaw and Derek Walton) to start experimenting with using microwaves to demagnetise and remagnetise palaeomagnetic samples, rather than heating using conventional ovens, was to reduce laboratory induced alteration in absolute palaeointensity experiments. As with other methods, the non-ideal effects of grain size and naturally altered remanence must still be addressed. From humble beginnings using a domestic microwave oven the current 4th generation microwave system (MWS) has developed in to an integrated combined 14 GHz microwave resonant cavity and SQUID magnetometer system. The MWS is designed to investigate one 5 mm diameter sample at a time with microwave exposure (the equivalent of a heating step in conventional experiments) ranging from a few seconds up to around a minute. Each experiment (protocol, checks, direction and strength of applied field, number of steps etc) can be tailored to the behaviour of each individual sample. There have been many published studies demonstrating the equivalence of conventional thermal (Thellier) and microwave techniques using both artificial and natural remanence and also that the microwave method can indeed reduce laboratory induced alteration. Here an overview of the present MWS including a discussion of the physical processes occurring will be given. Examples of current projects (both archaeological and geological) utilising the method will also be described. Finally, future developments and applications of the method will be discussed.

  12. Frequency translating phase conjugation circuit for active retrodirective antenna array. [microwave transmission

    NASA Technical Reports Server (NTRS)

    Chernoff, R. (Inventor)

    1980-01-01

    An active retrodirective antenna array which has central phasing from a reference antenna element through a "tree" structured network of transmission lines utilizes a number of phase conjugate circuits (PCCs) at each node and a phase reference regeneration circuit (PRR) at each node except the initial node. Each node virtually coincides with an element of the array. A PCC generates the exact conjugate phase of an incident signal using a phase locked loop which combines the phases in an up converter, divides the sum by 2 and mixes the result with the phase in a down converter for phase detection. The PRR extracts the phase from the conjugate phase. Both the PCC and the PRR are not only exact but also free from mixer degeneracy.

  13. Precursors of the solar X flare on march 29, 2014, in the active region NOAA 12017 based on microwave radiation and magnetographic data

    NASA Astrophysics Data System (ADS)

    Abramov-Maximov, V. E.; Borovik, V. N.; Opeikina, L. V.; Tlatov, A. G.

    2015-12-01

    Precursors of the strong solar flare X1.0 (according to the Geostationary Operational Environmental Satellite (GOES) classification) recorded on March 29, 2014, in the active region (AR) 12017 are investigated. The precursors manifested themselves in the AR microwave radiation and its magnetographic characteristics. This work was carried out as part of the development of an observational database of precursors of large flares (those more powerful than class M5 according to the GOES classification) in different ARs based on an analysis of the microwave radiation and magnetographic characteristics of ARs. Further generalization and systematization of the identified precursors of strong solar flares makes it possible to move on to the development of methods for their forecasting. According to data from Solar Dynamics Observatory Helioseismic and Magnetic Imager (SDO/HMI), two days before the X flare a new magnetic flux emerged in the analyzed AR 12017 near the main spot of the group with a magnetic field sign opposite that of main spot field (formation of the δ configuration). The study of the evolution of the magnetic field gradient in the AR showed a sharp increase before the X flare, which reached its peak 8 h before the flare with a subsequent decrease before the flare. Analysis of the AR microwave radiation, which was carried out based on the results of multiwavelength multiazimuth (31 daily observations for 4 h with 8-minute intervals) spectral polarization observations of the Sun by the RATAN-600 in the range 1.65-6.0 cm for a few days before the flare, revealed the emergence and development of a microwave source over the region with the δ configuration two days before the X flare. The parameters of the radio-frequency radiation of this source make it possible to classify it as a "peculiar" microwave source that was discovered earlier by the RATAN-600 in a number of eruptive events 1-2 days before large X flares. It was found for the first time that the time

  14. The roles of active species in photo-decomposition of organic compounds by microwave powered electrodeless discharge lamps.

    PubMed

    Hong, Jun; Han, Bo; Yuan, Nannan; Gu, Jingli

    2015-07-01

    Knowledge of the effective radiation spectrum irradiating substrates from microwave powered electrodeless discharge lamps (MEDLs), and the active species that directly oxidize substrates in the photolytic process, is fragmentary and unclear. In this work, we conducted a comparative study using MEDLs made with quartz envelopes (MEDL-quartz) and with borosilicate Pyrex envelopes (MEDL-Pyrex) targeting the degradation of Rhodamine B (RhB) via radical-extinguishing tests. We found that UVC/UVB radiation is essential to generate •OH and H2O2 in the MEDL-quartz system. The degradation of RhB mostly originates from •OH species, which account for a contribution of 53.8%, while the remaining contribution is attributed to oxidation by H2O2 and direct photolysis. This degradation is influenced by several parameters. Acidic and neutral pHs, but not extreme alkaline pH, benefit the degradation. To ensure a high intensity of UVC/UVB, the optimum ratio of the MEDL volume to the aqueous solution volume (VL/VS) is 0.4. Concentrations of 0.15-0.20 mmol/L of RhB are suitable to obtain an effective quantum absorbance in the MEDL-quartz system, showing a high decomposition rate of 5.6×10(-3) (mmol/L) min(-1). Moreover, two other substrates, Reactive Brilliant Red X-3B and Safranine T, were tested and found to be efficiently degraded in the MEDL-quartz system.

  15. [Application of microwave irradiation technology to the field of pharmaceutics].

    PubMed

    Zhang, Xue-Bing; Shi, Nian-Qiu; Yang, Zhi-Qiang; Wang, Xing-Lin

    2014-03-01

    Microwaves can be directly transformed into heat inside materials because of their ability of penetrating into any substance. The degree that materials are heated depends on their dielectric properties. Materials with high dielectric loss are more easily to reach a resonant state by microwaves field, then microwaves can be absorbed efficiently. Microwave irradiation technique with the unique heating mechanisms could induce drug-polymer interaction and change the properties of dissolution. Many benefits such as improving product quality, increasing energy efficiency and reducing times can be obtained by microwaves. This paper summarized characteristics of the microwave irradiation technique, new preparation techniques and formulation process in pharmaceutical industry by microwave irradiation technology. The microwave technology provides a new clue for heating and drying in the field of pharmaceutics.

  16. Quantifying the Nucleation and Growth Kinetics of Microwave Nanochemistry Enabled by in Situ High-Energy X-ray Scattering.

    PubMed

    Liu, Qi; Gao, Min-Rui; Liu, Yuzi; Okasinski, John S; Ren, Yang; Sun, Yugang

    2016-01-13

    The fast reaction kinetics presented in the microwave synthesis of colloidal silver nanoparticles was quantitatively studied, for the first time, by integrating a microwave reactor with in situ X-ray diffraction at a high-energy synchrotron beamline. Comprehensive data analysis reveals two different types of reaction kinetics corresponding to the nucleation and growth of the Ag nanoparticles. The formation of seeds (nucleation) follows typical first-order reaction kinetics with activation energy of 20.34 kJ/mol, while the growth of seeds (growth) follows typical self-catalytic reaction kinetics. Varying the synthesis conditions indicates that the microwave colloidal chemistry is independent of concentration of surfactant. These discoveries reveal that the microwave synthesis of Ag nanoparticles proceeds with reaction kinetics significantly different from the synthesis present in conventional oil bath heating. The in situ X-ray diffraction technique reported in this work is promising to enable further understanding of crystalline nanomaterials formed through microwave synthesis.

  17. Application of thermal analysis techniques in activated carbon production

    USGS Publications Warehouse

    Donnals, G.L.; DeBarr, J.A.; Rostam-Abadi, M.; Lizzio, A.A.; Brady, T.A.

    1996-01-01

    Thermal analysis techniques have been used at the ISGS as an aid in the development and characterization of carbon adsorbents. Promising adsorbents from fly ash, tires, and Illinois coals have been produced for various applications. Process conditions determined in the preparation of gram quantities of carbons were used as guides in the preparation of larger samples. TG techniques developed to characterize the carbon adsorbents included the measurement of the kinetics of SO2 adsorption, the performance of rapid proximate analyses, and the determination of equilibrium methane adsorption capacities. Thermal regeneration of carbons was assessed by TG to predict the life cycle of carbon adsorbents in different applications. TPD was used to determine the nature of surface functional groups and their effect on a carbon's adsorption properties.

  18. Facile microwave-assisted aqueous synthesis of CdS nanocrystals with their photocatalytic activities under visible lighting

    SciTech Connect

    Deng, Chonghai; Tian, Xiaobo

    2013-10-15

    Graphical abstract: - Highlights: • Three kinds of CdS nanostructures have been controllably synthesized. • Ethanediamine acts as a phase and morphology controlling reagent. • Three CdS nanostructures display high visible light photocatalytic activities. • Cubic CdS-3 shows superior photocatalytic activity to the other hexagonal CdS. • The growth processes for fabrication of CdS nanocrystals are also discussed. - Abstract: Three kinds of CdS nanostructures, that is, hexagonal nanospheres (CdS-1), hierarchical caterpillar-fungus-like hexagonal nanorods (CdS-2) and hierarchical cubic microspheres (CdS-3), were controllably synthesized by a facile and one-pot microwave-assisted aqueous chemical method using ethanediamine as a phase and morphology controlling reagent. The as-prepared products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectra (DRS) and photoluminescence (PL) spectra. The results show that CdS-1 is mainly composed of monodispersed hexagonal nanospheres with average diameters of about 100 nm; hexagonal CdS-2 has lengths in the range of 600–800 nm and diameters of 40–60 nm, assembled by nanoparticles about 20 nm in diameter; and CdS-3 is pure cubic microspheres with diameters in the range of 0.8–1.3 μm, aggregated by tiny nanograins with size of 5.8 nm. The band gap energies of CdS products were calculated to be 2.30, 2.31 and 2.24 eV observed from UV–vis DRS for CdS-1, CdS-2 and CdS-3, respectively. PL spectra of CdS samples showed that sphalerite CdS-3 possesses a very weak fluorescence, while wurtzite CdS-2 has a strongest green near-band edge emission (NBE) at 550 nm. The visible light photodegradation of methylene blue and rhodamine B in the presence of CdS photocatalysts illustrates that all of them display high photocatalytic activities. Significantly, the cubic CdS-3 exhibits more excellent photocatalytic

  19. X-ray/microwave relation of different types of active stars

    NASA Technical Reports Server (NTRS)

    Guedel, Manuel; Benz, Arnold O.

    1993-01-01

    Coronal active stars of seven classes between spectral types F and M, single and double, are compared in their quiescent radio and X-ray luminosities L(R) and L(X). We find, largely independent of stellar class, log L(X) is less than about log L(R) + 15.5. This general relation points to an intimate connection between the nonthermal, energetic electrons causing the radio emission and the bulk plasma of the corona responsible for thermal X-rays. The relation, observed over six orders of magnitude, suggests that the heating mechanism necessarily involves particle acceleration. We derive requirements for simple models based on optically thin gyrosynchrotron emission of mildly relativistic electrons and thermal X-rays from the bulk plasma. We discuss the possibility that a portion of the accelerated particles heats the ambient plasma by collisions. More likely, plasma heating and particle acceleration may occur in parallel and in the same process, but at a fixed ratio.

  20. Mathematical analysis techniques for modeling the space network activities

    NASA Technical Reports Server (NTRS)

    Foster, Lisa M.

    1992-01-01

    The objective of the present work was to explore and identify mathematical analysis techniques, and in particular, the use of linear programming. This topic was then applied to the Tracking and Data Relay Satellite System (TDRSS) in order to understand the space network better. Finally, a small scale version of the system was modeled, variables were identified, data was gathered, and comparisons were made between actual and theoretical data.

  1. Changes in phytochemicals, anti-nutrients and antioxidant activity in leafy vegetables by microwave boiling with normal and 5% NaCl solution.

    PubMed

    Singh, Shrawan; Swain, S; Singh, D R; Salim, K M; Nayak, Dipak; Roy, S Dam

    2015-06-01

    The present study investigated the changes in phytochemicals and antioxidant activities in 25 leafy vegetables with two common boiling practices viz., with 5% NaCl solution (BSW) and normal water (BNW) in a domestic microwave oven. Fresh samples (100g) were rich in polyphenols (58.8-296.9mg), tannin (402.0-519.4mg), flavonoids (148.9-614.4mg), carotenoids (69.0-786.3mg), anthocyanin (11.7-493.7mg) and ascorbic acid (245.0-314.2mg). Microwave boiling significantly (p<0.05) decreased/increased phytochemicals but none of the compounds followed same trend in all vegetables. Boiling process reduced anti-nutrients from fresh samples (FS) as observed for nitrate (4.5-73.6% by BSW and 22.5-98.8% by BNW); phytate (6.2-69.7% by BSW and 10.6-57.3% by BNW) and oxalate (14.7-88.9% by BSW and 14.5-87.3% by BNW) but saponin increased in 18 vegetables by BNW while 8 vegetables by BSW. The study revealed differential pattern of change in phytochemical matrix and anti-nutrients in vegetables by microwave boiling which will help in devising efficient cooking practices and contribute in health and nutritional security.

  2. Rapid microwave-assisted sol-gel preparation of Pd-substituted LnFeO3 (Ln = Y, La): phase formation and catalytic activity

    SciTech Connect

    Misch, Lauren M.; Birkel, Alexander; Figg, C. Adrian; Fors, Brett P.; Hawker, Craig J.; Stucky, Galen D.; Seshadri, Ram

    2014-02-13

    We present a rapid microwave-assisted sol–gel approach to Pd-substituted LnFeO3 (Ln = Y, La) for applications in C–C coupling reactions. These materials could be prepared in household microwave ovens in less than 15 minutes of reaction time with the final materials displaying well-defined structure and morphology. Phase evolution was studied using time-dependent microwave heatings and then compared with the results obtained from thermogravimetric analyses. Materials were confirmed to be phase pure by laboratory and synchrotron X-ray diffraction. Substituted Pd is ionic as shown by the binding energy shift from X-ray photoelectron spectroscopy. The short heating periods required for phase purity allow these materials less time for sintering as compared to conventional solid state preparation methods, making relatively high surface areas achievable. These materials have been successfully used as catalyst precursor materials for C–C coupling reactions in which the active species is Pd0. Pd-substituted LnFeO3 (Ln = Y, La) provides Pd0 in solution which can be complexed by the ligand SPhos, allowing for aryl chloride coupling.

  3. Rapid microwave-assisted sol-gel preparation of Pd-substituted LnFeO3 (Ln = Y, La): phase formation and catalytic activity.

    PubMed

    Misch, Lauren M; Birkel, Alexander; Figg, C Adrian; Fors, Brett P; Hawker, Craig J; Stucky, Galen D; Seshadri, Ram

    2014-02-01

    We present a rapid microwave-assisted sol-gel approach to Pd-substituted LnFeO3 (Ln = Y, La) for applications in C-C coupling reactions. These materials could be prepared in household microwave ovens in less than 15 minutes of reaction time with the final materials displaying well-defined structure and morphology. Phase evolution was studied using time-dependent microwave heatings and then compared with the results obtained from thermogravimetric analyses. Materials were confirmed to be phase pure by laboratory and synchrotron X-ray diffraction. Substituted Pd is ionic as shown by the binding energy shift from X-ray photoelectron spectroscopy. The short heating periods required for phase purity allow these materials less time for sintering as compared to conventional solid state preparation methods, making relatively high surface areas achievable. These materials have been successfully used as catalyst precursor materials for C-C coupling reactions in which the active species is Pd(0). Pd-substituted LnFeO3 (Ln = Y, La) provides Pd(0) in solution which can be complexed by the ligand SPhos, allowing for aryl chloride coupling. PMID:24280775

  4. Effect of microwave pre-treatment of thickened waste activated sludge on biogas production from co-digestion of organic fraction of municipal solid waste, thickened waste activated sludge and municipal sludge.

    PubMed

    Ara, E; Sartaj, M; Kennedy, K

    2014-12-01

    Anaerobic co-digestion of organic fraction of municipal solid waste, with thickened waste activated sludge and primary sludge has the potential to enhance biodegradation of solid waste, increase longevity of existing landfills and lead to more sustainable development by improving waste to energy production. This study reports on mesophilic batch and continuous studies using different concentrations and combinations (ratios) of organic fraction of municipal solid waste, thickened waste activated sludge (microwave pre-treated and untreated) and primary sludge to assess the potential for improved biodegradability and specific biogas production. Improvements in specific biogas production for batch assays, with concomitant improvements in total chemical oxygen demand and volatile solid removal, were obtained with organic fraction of municipal solid waste:thickened waste activated sludge:primary sludge mixtures at a ratio of 50:25:25 (with and without thickened waste activated sludge microwave pre-treatment). This combination was used for continuous digester studies. At 15 d hydraulic retention times, the co-digestion of organic fraction of municipal solid waste:organic fraction of municipal solid waste:primary sludge and organic fraction of municipal solid waste:thickened waste activated sludge microwave:primary sludge resulted in a 1.38- and 1.46-fold increase in biogas production and concomitant waste stabilisation when compared with thickened waste activated sludge:primary sludge (50:50) and thickened waste activated sludge microwave:primary sludge (50:50) digestion at the same hydraulic retention times and volumetric volatile solid loading rate, respectively. The digestion of organic fraction of municipal solid waste with primary sludge and thickened waste activated sludge provides beneficial effects that could be implemented at municipal wastewater treatment plants that are operating at loading rates of less than design capacity. PMID:25398411

  5. Effect of microwave pre-treatment of thickened waste activated sludge on biogas production from co-digestion of organic fraction of municipal solid waste, thickened waste activated sludge and municipal sludge.

    PubMed

    Ara, E; Sartaj, M; Kennedy, K

    2014-12-01

    Anaerobic co-digestion of organic fraction of municipal solid waste, with thickened waste activated sludge and primary sludge has the potential to enhance biodegradation of solid waste, increase longevity of existing landfills and lead to more sustainable development by improving waste to energy production. This study reports on mesophilic batch and continuous studies using different concentrations and combinations (ratios) of organic fraction of municipal solid waste, thickened waste activated sludge (microwave pre-treated and untreated) and primary sludge to assess the potential for improved biodegradability and specific biogas production. Improvements in specific biogas production for batch assays, with concomitant improvements in total chemical oxygen demand and volatile solid removal, were obtained with organic fraction of municipal solid waste:thickened waste activated sludge:primary sludge mixtures at a ratio of 50:25:25 (with and without thickened waste activated sludge microwave pre-treatment). This combination was used for continuous digester studies. At 15 d hydraulic retention times, the co-digestion of organic fraction of municipal solid waste:organic fraction of municipal solid waste:primary sludge and organic fraction of municipal solid waste:thickened waste activated sludge microwave:primary sludge resulted in a 1.38- and 1.46-fold increase in biogas production and concomitant waste stabilisation when compared with thickened waste activated sludge:primary sludge (50:50) and thickened waste activated sludge microwave:primary sludge (50:50) digestion at the same hydraulic retention times and volumetric volatile solid loading rate, respectively. The digestion of organic fraction of municipal solid waste with primary sludge and thickened waste activated sludge provides beneficial effects that could be implemented at municipal wastewater treatment plants that are operating at loading rates of less than design capacity.

  6. Investigations on the effect of frequency and noise in a localization technique based on microwave imaging for an in-body RF source

    NASA Astrophysics Data System (ADS)

    Chandra, Rohit; Balasingham, Ilangko

    2015-05-01

    Localization of a wireless capsule endoscope finds many clinical applications from diagnostics to therapy. There are potentially two approaches of the electromagnetic waves based localization: a) signal propagation model based localization using a priori information about the persons dielectric channels, and b) recently developed microwave imaging based localization without using any a priori information about the persons dielectric channels. In this paper, we study the second approach in terms of a variety of frequencies and signal-to-noise ratios for localization accuracy. To this end, we select a 2-D anatomically realistic numerical phantom for microwave imaging at different frequencies. The selected frequencies are 13:56 MHz, 431:5 MHz, 920 MHz, and 2380 MHz that are typically considered for medical applications. Microwave imaging of a phantom will provide us with an electromagnetic model with electrical properties (relative permittivity and conductivity) of the internal parts of the body and can be useful as a foundation for localization of an in-body RF source. Low frequency imaging at 13:56 MHz provides a low resolution image with high contrast in the dielectric properties. However, at high frequencies, the imaging algorithm is able to image only the outer boundaries of the tissues due to low penetration depth as higher frequency means higher attenuation. Furthermore, recently developed localization method based on microwave imaging is used for estimating the localization accuracy at different frequencies and signal-to-noise ratios. Statistical evaluation of the localization error is performed using the cumulative distribution function (CDF). Based on our results, we conclude that the localization accuracy is minimally affected by the frequency or the noise. However, the choice of the frequency will become critical if the purpose of the method is to image the internal parts of the body for tumor and/or cancer detection.

  7. Preparation of Orally Disintegrating Tablets Containing Powdered Tea Leaves with Enriched Levels of Bioactive Compounds by Means of Microwave Irradiation Technique.

    PubMed

    Tanaka, Hironori; Iwao, Yasunori; Izumikawa, Masahiro; Sano, Syusuke; Ishida, Hitoshi; Noguchi, Shuji; Itai, Shigeru

    2016-01-01

    In the present study, a microwave treatment process has been applied to prepare orally disintegrating tablets (ODTs) containing powdered tea leaves with enriched levels of the anti-inflammatory compounds such as chafuroside A (CFA) and chafuroside B (CFB). The use of distilled water as the adsorbed and granulation solvents in this preparation process afforded tablets with a long disintegration time (more than 120 s). The CFA and CFB contents of these tablets did not also change after 4 min of microwave irradiation due to the tablet temperature, which only increased to 100°C. In contrast, the tablet temperature increased up to 140°C after 3 min of microwave irradiation when a 1.68 M Na2HPO4 solution instead of distilled water. Notably, the disintegration time of these tablets was considerably improved (less than 20 s) compared with the microwave-untreated tablets, and there were 7- and 11-fold increases in their CFA and CFB contents. In addition, the operational conditions for the preparation of the tablets were optimized by face-centered composite design based on the following criteria: tablet hardness greater than 13 N, disintegration time less than 30 s and friability less than 0.5%. The requirements translated into X1 (the amount of granulation solvent), X2 (tableting pressure) and X3 (content of the powdered tea leaves) values of 45%, 0.43 kN and 32%, respectively, and the ODTs containing powdered tea leaves prepared under these optimized conditions were found to show excellent tablet properties and contain enriched levels of CFA and CFB. PMID:27581633

  8. GEO Sounding Using Microwave Instruments

    NASA Technical Reports Server (NTRS)

    Shiue, James; Krimchansky, Sergey; Susskind, Joel; Krimchansky, Alexander; Chu, Donald; Davis, Martin

    2004-01-01

    There are several microwave instruments in low Earth orbit (LEO) that are used for atmospheric temperature and humidity sounding in conjunction with companion IR sounders as well as by themselves. These instruments have achieved a certain degree of maturity and undergoing a redesign to minimize their size, mass, and power from the previous generation instruments. An example of these instruments is the AMSU-A series, now flying on POES and AQUA spacecraft with the IR sounders HIRS and AIRS. These older microwave instruments are going to be replaced by the ATMS instruments that will fly on NPP and NPOESS satellites with the CrIS sounder. A number of techniques learned from the ATMS project in instrument hardware design and data processing are directly applicable to a similar microwave sounder on a geosynchronous platform. These techniques can significantly simplify the design of a Geostationary orbit (GEO) microwave instrument, avoiding costly development and minimizing the risk of not being able to meet the scientific requirements. In fact, some of the 'enabling' technology, such as the use of MMIC microwave components (which is the basis for the ATMS' much reduced volume) can be directly applied to a GEO sounder. The benefits of microwave sounders are well known; for example, they penetrate non-precipitating cloud cover and allow for use of colocated IR observations in up to 80% cloud cover. The key advantages of a microwave instrument in GEO will be the ability to provide high temporal resolution as well as uniform spatial resolution and extend the utility of a colocated advanced IR sounder to cases in which partial cloud cover exists. A footprint of the order of 100 km by 100 km resolution with hemispherical coverage within one hour can be easily achieved for sounding channels in the 50 to 59 GHz range. A GEO microwave sounder will also allow mesoscale sampling of select regions.

  9. Cosmic microwave background images

    NASA Astrophysics Data System (ADS)

    Herranz, D.; Vielva, P.

    2010-01-01

    Cosmology concerns itself with the fundamental questions about the formation, structure, and evolution of the Universe as a whole. Cosmic microwave background (CMB) radiation is one of the foremost pillars of physical cosmology. Joint analyses of CMB and other astronomical observations are able to determine with ever increasing precision the value of the fundamental cosmological parameters and to provide us with valuable insight about the dynamics of the Universe in evolution. The CMB radiation is a relic of the hot and dense first moments of the Universe: a extraordinarily homogeneous and isotropic blackbody radiation, which shows small temperature anisotropies that are the key for understanding the conditions of the primitive Universe, testing cosmological models and probing fundamental physics at the very dawn of time. CMB observations are obtained by imaging of the sky at microwave wavelengths. However, the CMB signal is mixed with other astrophysical signals of both Galactic and extragalactic origin. To properly exploit the cosmological information contained in CMB images, they must be cleansed of these other astrophysical emissions first. Blind source separation (BSS) has been a very active field in the last few years. Conversely, the term "compact sources" is often used in the CMB literature referring to spatially bounded, small features in the images, such as galaxies and galaxy clusters. Compact sources and diffuse sources are usually treated separately in CMB image processing. We devote this tutorial to the case of compact sources. Many of the compact source-detection techniques that are widespread inmost fields of astronomy are not easily applicable to CMB images. In this tutorial, we present an overview of the fundamentals of compact object detection theory keeping in mind at every moment these particularities. Throughout the article, we briefly consider Bayesian object detection, model selection, optimal linear filtering, nonlinear filtering, and

  10. Preparation of highly photocatalytic active CdS/TiO{sub 2} nanocomposites by combining chemical bath deposition and microwave-assisted hydrothermal synthesis

    SciTech Connect

    Li, Li; Wang, Lili; Hu, Tianyu; Zhang, Wenzhi; Zhang, Xiuli; Chen, Xi

    2014-10-15

    CdS/TiO{sub 2} nanocomposites were prepared from Cd and Ti (1:1 M ratio) using cetyltrimethylammonium bromide by a two-step chemical bath deposition (CBD) and microwave-assisted hydrothermal synthesis (MAHS) method. A series of nanocomposites with different morphologies and activities were prepared by varying the reaction time in the MAHS (2, 4, and 6 h). The crystal structure, morphology, and surface physicochemical properties of the nanocomposites were characterized by X-ray diffraction, UV–visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N{sub 2} adsorption–desorption measurements. The results show that the CdS/TiO{sub 2} nanocomposites were composed of anatase TiO{sub 2} and hexagonal CdS phases with strong absorption in the visible region. The surface morphologies changed slightly with increasing microwave irradiation time, while the Brunauer–Emmett–Teller surface area increased remarkably. The photocatalytic degradation of methyl orange (MO) was investigated under UV light and simulated sunlight irradiation. The photocatalytic activity of the CdS/TiO{sub 2} (6 h) composites prepared by the MAHS method was higher than those of CdS, P25, and other CdS/TiO{sub 2} nanocomposites. The CdS/TiO{sub 2} (6 h) nanocomposites significantly affected the UV and microwave-assisted photocatalytic degradation of different dyes. To elucidate the photocatalytic reaction mechanism for the CdS/TiO{sub 2} nanocomposites, controlled experiments were performed by adding different radical scavengers. - Graphical abstract: CdS/TiO{sub 2} nanocomposites were prepared using CTAB by CBD combined with MAHS method. In addition, with increasing microwave irradiation time, the morphology of CdS/TiO{sub 2} changed from popcorn-like to wedge-like structure. - Highlights: • The CdS/TiO{sub 2} was prepared by CBD combined with MAHS two-step method under CTAB. • The morphologies of as-samples were different with the time of

  11. Total Participation Techniques: Making Every Student an Active Learner

    ERIC Educational Resources Information Center

    Himmele, Persida; Himmele, William

    2011-01-01

    Yes, there are easy-to-use and incredibly effective alternatives to the "stand and deliver" approach to teaching that causes so many students to tune out--or even drop out. Here's your opportunity to explore dozens of ways to engage K-12 students in active learning and allow them to demonstrate the depth of their knowledge and understanding. The…

  12. Application of activation techniques to biological analysis. [813 references

    SciTech Connect

    Bowen, H.J.M.

    1981-12-01

    Applications of activation analysis in the biological sciences are reviewed for the period of 1970 to 1979. The stages and characteristics of activation analysis are described, and its advantages and disadvantages enumerated. Most applications involve activation by thermal neutrons followed by either radiochemical or instrumental determination. Relatively little use has been made of activation by fast neutrons, photons, or charged particles. In vivo analyses are included, but those based on prompt gamma or x-ray emission are not. Major applications include studies of reference materials, and the elemental analysis of plants, marine biota, animal and human tissues, diets, and excreta. Relatively little use of it has been made in biochemistry, microbiology, and entomology, but it has become important in toxicology and environmental science. The elements most often determined are Ag, As, Au, Br, Ca, Cd, Cl, Co, Cr, Cs, Cu, Fe, Hg, I, K, Mn, Mo, Na, Rb, Sb, Sc, Se, and Zn, while few or no determinations of B, Be, Bi, Ga, Gd, Ge, H, In, Ir, Li, Nd, Os, Pd, Pr, Pt, Re, Rh, Ru, Te, Tl, or Y have been made in biological materials.

  13. Embedded solution for a microwave moisture meter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, the conversion of a PC or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter is based on the free-space transmission measurement technique and uses low-intensity microwaves to measure the attenuation and p...

  14. The classical microwave frequency standards

    NASA Technical Reports Server (NTRS)

    Busca, Giovanni; Thomann, Pierre; Laurent-Guy, Bernier; Willemin, Philippe; Schweda, Hartmut S.

    1990-01-01

    Some key problems are presented encountered in the classical microwave frequency standards which are still not solved today. The point of view expressed benefits from the experience gained both in the industry and in the research lab, on the following classical microwave frequency standards: active and passive H, conventional and laser pumped Cs beam tube, small conventional and laser pumped Rubidium. The accent is put on the Rubidium standard.

  15. Techniques for active embodiment of participants in virtual environments

    SciTech Connect

    Hightower, R.; Stansfield, S.

    1996-03-01

    This paper presents preliminary work in the development of an avatar driver. An avatar is the graphical embodiment of a user in a virtual world. In applications such as small team, close quarters training and mission planning and rehearsal, it is important that the user`s avatar reproduce his or her motions naturally and with high fidelity. This paper presents a set of special purpose algorithms for driving the motion of the avatar with minimal information about the posture and position of the user. These algorithms utilize information about natural human motion and posture to produce solutions quickly and accurately without the need for complex general-purpose kinematics algorithms. Several examples illustrating the successful applications of these techniques are included.

  16. Microwave and optical saturable absorption in graphene.

    PubMed

    Zheng, Zhiwei; Zhao, Chujun; Lu, Shunbin; Chen, Yu; Li, Ying; Zhang, Han; Wen, Shuangchun

    2012-10-01

    We report on the first experiments on saturable absorption in graphene at microwave frequency band. Almost independent of the incident frequency, microwave absorbance of graphene always decreases with increasing the power and reaches at a constant level for power larger than 80 µW, evidencing the microwave saturable absorption property of graphene. Optical saturable absorption of the same graphene sample was also experimentally confirmed by an open-aperture Z-scan technique by one laser at telecommunication band and another pico-second laser at 1053 nm, respectively. Herein, we are able to conclude that graphene is indeed a broadband saturable absorber that can operate at both microwave and optical band.

  17. Waste minimization through high-pressure microwave digestion of soils for gross {alpha}/{beta} analyses

    SciTech Connect

    Yaeger, J.S.; Smith, L.L.

    1995-04-01

    As a result of the U.S. Department of Energy`s (DOE) environmental restoration and waste management activities, laboratories receive numerous analytical requests for gross {alpha}/{beta} analyses. Traditional sample preparation methods for gross {alpha}/{beta} analysis of environmental and mixed waste samples require repetitive leaching, which is time consuming and generates large volumes of secondary wastes. An alternative to leaching is microwave digestion. In the past. microwave technology has had limited application in the radiochemical laboratory because of restrictions on sample size resulting from vessel pressure limitations. However, new microwave vessel designs allow for pressures on the order of 11 MPa (1500 psi). A procedure is described in which microwave digestion is used to prepare environmental soil samples for gross {alpha}/{beta} analysis. Results indicate that the described procedure meets performance requirements for several soil types and is equivalent to traditional digestion techniques. No statistical differences at the 95% confidence interval exist between the measurement on samples prepared from the hot plate and microwave digestion procedures for those soils tested. Moreover, microwave digestion allows samples to be prepared in a fraction of the time with significantly less acid and with lower potential of cross-contamination. In comparison to the traditional hot plate method, the waste volumes required for the microwave procedure are a factor of 10 lower, while the analyst time for sample processing is at least a factor of three lower.

  18. Synthesis and Characterization of Iron-impregnated Pre-oxidized Activated Carbon Prepared by Microwave Radiation for As(V) Removal from Water

    NASA Astrophysics Data System (ADS)

    Yurum, Yuda; Yurum, Alp; Ozlem Kocabas, Zuleyha; Semiat, Raphael

    2013-04-01

    One of the most efficient ways to treat water is probably by adsorption and catalytic oxidation. Surely, for such a process to be economical, the catalyst and the adsorber should have a high catalytic activity and adsorption capacity, and be inexpensive. One of these materials is iron oxide, which is studied and used in areas like catalysis and environmental applications. It is known that synthesizing iron oxides in nano size enhances the catalytic activity. Pre-oxidized activated carbons impregnated with iron-based nanoparticles are prepared in a single step under hydrothermal conditions with microwave radiation. The hydrothermal treatment provides an important advantage by forming fine particles that can easily impregnate deep in to the porous support by the help of water. Their efficiency for the removal of As(V) from water was compared with the pure pre-oxidized activated carbon and iron oxide nanoparticles impregnated without microwave radiation. The synthesized nanomaterials with different iron oxide loadings were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analyzer. Iron loadings were calculated using flame atomic absorbance. Microwave radiation provided much faster iron impregnation on the active carbon surface. At the first stage of microwave radiation iron oxide impregnation is low but after 6 minutes, iron oxide nanoparticles of 100 nm size started to cover the surface homogeneously. Further treatment with microwave increased the size of particles and the amount of surface coverage. Additionally, with microwave hydrothermal treatment, relatively higher iron oxide loadings were achieved within 10 minutes. From the XRD characterization it was seen that at the first stage of radiation, iron deposited in the form of β-FeOOH, but after the first stage the structure became Fe2O3. While radiation increased the surface area of the material during the first stages, at the last stage

  19. Successful Application of Active Learning Techniques to Introductory Microbiology

    PubMed Central

    HOFFMAN, ELIZABETH A.

    2001-01-01

    While the traditional lecture format may be a successful way to teach microbiology to both medical and nursing students, it was not an effective means of learning for many prenursing and preprofessional students enrolled in either of the introductory microbiology courses at Ashland Community College, an open enrollment institution. The structure of both Medical Microbiology and Principles of Microbiology was redesigned to allow students to address the material in an active manner. Daily quizzes, student group discussions, scrapbooks, lab project presentations and papers, and extra credit projects were all added in order to allow students maximum exposure to the course material in a manner compatible with various methods of learning. Student knowledge, course evaluations, and student success rates have all improved with the active learning format. PMID:23653538

  20. The Effectiveness of Active and Traditional Teaching Techniques in the Orthopedic Assessment Laboratory

    ERIC Educational Resources Information Center

    Nottingham, Sara; Verscheure, Susan

    2010-01-01

    Active learning is a teaching methodology with a focus on student-centered learning that engages students in the educational process. This study implemented active learning techniques in an orthopedic assessment laboratory, and the effects of these teaching techniques. Mean scores from written exams, practical exams, and final course evaluations…

  1. Figure Analysis: A Teaching Technique to Promote Visual Literacy and Active Learning

    ERIC Educational Resources Information Center

    Wiles, Amy M.

    2016-01-01

    Learning often improves when active learning techniques are used in place of traditional lectures. For many of these techniques, however, students are expected to apply concepts that they have already grasped. A challenge, therefore, is how to incorporate active learning into the classroom of courses with heavy content, such as molecular-based…

  2. New trends in the development of "active correlations" technique

    NASA Astrophysics Data System (ADS)

    Tsyganov, Yu. S.

    2016-09-01

    With reaching extremely high intensities of heavy-ion beams, new requirements for the detection system of the Dubna Gas-Filled Recoil Separator (DGFRS) will definitely be set. One of the challenges is how to apply the "active correlations" method [1-6] to suppress beam associated background products without significant losses in the whole long-term experiment efficiency value. Different scenarios and equations for the development of a method according to this requirement are under consideration in the present paper.

  3. Aerial monitoring in active mud volcano by UAV technique

    NASA Astrophysics Data System (ADS)

    Pisciotta, Antonino; Capasso, Giorgio; Madonia, Paolo

    2016-04-01

    UAV photogrammetry opens various new applications in the close range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives to the classical manned aerial photogrammetry. Between 2014 and 2015 tree aerial surveys have been carried out. Using a quadrotor drone, equipped with a compact camera, it was possible to generate high resolution elevation models and orthoimages of The "Salinelle", an active mud volcanoes area, located in territory of Paternò (South Italy). The main risks are related to the damages produced by paroxysmal events. Mud volcanoes show different cyclic phases of activity, including catastrophic events and periods of relative quiescence characterized by moderate activity. Ejected materials often are a mud slurry of fine solids suspended in liquids which may include water and hydrocarbon fluids, the bulk of released gases are carbon dioxide, with some methane and nitrogen, usually pond-shaped of variable dimension (from centimeters to meters in diameter). The scope of the presented work is the performance evaluation of a UAV system that was built to rapidly and autonomously acquire mobile three-dimensional (3D) mapping data in a volcanic monitoring scenario.

  4. Microwave processing of ceramic oxide filaments

    SciTech Connect

    Vogt, G.J.; Katz, J.D.

    1995-05-01

    The objective of the microwave filament processing project is to develop microwave techniques at 2.45 GHZ to manufacture continuous ceramic oxide filaments. Microwave processing uses the volumetric absorption of microwave power in oxide filament tows to drive off process solvents, to burn out organic binders, and to sinter the dried fibers to produce flexible, high-strength ceramic filaments. The technical goal is to advance filament processing technology by microwave heating more rapidly with less energy and at a lower cost than conventional processing, but with the same quality as conventional processing. The manufacturing goal is to collaborate with the 3M Company, a US manufacturer of ceramic oxide filaments, to evaluate the technology using a prototype filament system and to transfer the microwave technology to the 3M Company.

  5. Characterization of Deep Tunneling Activity through Remote-Sensing Techniques

    SciTech Connect

    R. G. Best, P. J. Etzler, and J. D. Bloom

    1997-10-01

    This work is a case study demonstrating the uses of multispectral and multi-temporal imagery to characterize deep tunneling activity. A drainage tunnel excavation in Quincy, MA is the case locality. Data used are aerial photographs (digitized) and Daedalus 3600 MSS image data that were collected in July and October of 1994. Analysis of the data includes thermal characterization, spectral characterization, multi-temporal analysis, and volume estimation using digital DEM generation. The results demonstrate the type of information that could be generated by multispectral, multi-temporal data if the study locality were a clandestine excavation site with restricted surface access.

  6. Active Flow Control: Instrumentation Automation and Experimental Technique

    NASA Technical Reports Server (NTRS)

    Gimbert, N. Wes

    1995-01-01

    In investigating the potential of a new actuator for use in an active flow control system, several objectives had to be accomplished, the largest of which was the experimental setup. The work was conducted at the NASA Langley 20x28 Shear Flow Control Tunnel. The actuator named Thunder, is a high deflection piezo device recently developed at Langley Research Center. This research involved setting up the instrumentation, the lighting, the smoke, and the recording devices. The instrumentation was automated by means of a Power Macintosh running LabVIEW, a graphical instrumentation package developed by National Instruments. Routines were written to allow the tunnel conditions to be determined at a given instant at the push of a button. This included determination of tunnel pressures, speed, density, temperature, and viscosity. Other aspects of the experimental equipment included the set up of a CCD video camera with a video frame grabber, monitor, and VCR to capture the motion. A strobe light was used to highlight the smoke that was used to visualize the flow. Additional effort was put into creating a scale drawing of another tunnel on site and a limited literature search in the area of active flow control.

  7. Apollo Mission Techniques Lunar Orbit Activities - Part 1a

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael A.

    2009-01-01

    This slide presentation reviews the planned sequence of events and the rationale for all lunar missions, and the flight experiences and lessons learned for the lunar orbit activities from a trajectory perspective. Shown are trajectories which include the moon's position at the various stages in the complete trip from launch, to the return and reentry. Included in the presentation are objectives and the sequence of events,for the Apollo 8, and Apollo 10. This is followed by a discussion of Apollo 11, including: the primary mission objective, the sequence of events, and the flight experience. The next mission discussed was Apollo 12. It reviews the objectives, the ground tracking, procedure changes, and the sequence of events. The aborted Apollo 13 mission is reviewed, including the objectives, and the sequence of events. Brief summaries of the flight experiences for Apollo 14-16 are reviewed. The flight sequence of events of Apollo 17 are discussed. In summary each mission consistently performing precision landings required that Apollo lunar orbit activities devote considerable attention to: (1) Improving fidelity of lunar gravity models, (2) Maximizing availability of ground tracking, (3) Minimizing perturbations on the trajectory, (4) Maximizing LM propellant reserves for hover time. Also the use of radial separation maneuvers (1) allows passive re-rendezvous after each rev, but ... (2) sensitive to small dispersions in initial sep direction

  8. Experimental techniques for screening of antiosteoporotic activity in postmenopausal osteoporosis.

    PubMed

    Satpathy, Swaha; Patra, Arjun; Ahirwar, Bharti

    2015-12-01

    Postmenopausal osteoporosis, a silent epidemic, has become a major health hazard, afflicting about 50% of postmenopausal women worldwide and is thought to be a disease with one of the highest incidences in senile people. It is a chronic, progressive condition associated with micro-architectural deterioration of bone tissue that results in low bone mass, decreased bone strength that predisposes to an increased risk of fracture. Women are more likely to develop osteoporosis than men due to reduction in estrogen during menopause which leads to decline in bone formation and increase in bone resorption activity. Estrogen is able to suppress the production of proinflammatory cytokines like interleukin (IL)-1, IL-6, IL-7 and tumor necrosis factor (TNF-α). This is why these cytokines are elevated in postmenopausal women. In this review article we have made an attempt to collate the various methods and parameters most frequently used for screening of antiosteoporotic activity in postmenopausal osteoporosis. Pertaining to ovariectomized animal model, this is the most appropriate model for studying the efficacy of different drugs to prevent bone loss in postmenopausal osteoporosis.

  9. Microwave assistant synthesis, antifungal activity and DFT theoretical study of some novel 1,2,4-triazole derivatives containing pyridine moiety.

    PubMed

    Sun, Guo-Xiang; Yang, Ming-Yan; Shi, Yan-Xia; Sun, Zhao-Hui; Liu, Xing-Hai; Wu, Hong-Ke; Li, Bao-Ju; Zhang, Yong-Gang

    2014-01-01

    In order to investigate the biological activity of novel 1,2,4-triazole compounds, seventeen novel 1,2,4-triazole derivatives containing pyridine moiety were synthesized under microwave assistant condition by multi-step reactions. The structures were characterized by 1H NMR, MS and elemental analyses. The target compounds were evaluated for their fungicidal activities against Stemphylium lycopersici (Enjoji) Yamamoto, Fusarium oxysporum. sp. cucumebrium, and Botrytis cinerea in vivo, and the results indicated that some of the title compounds displayed excellent fungicidal activities. Theoretical calculation of the title compound was carried out with B3LYP/6-31G (d,p). The full geometry optimization was carried out using 6-31G (d,p) basis set, and the frontier orbital energy, atomic net charges were discussed, and the structure-activity relationship was also studied. PMID:24815069

  10. Microwave Antennas: Design. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the design of microwave antennas. Topics include a discussion of the recent developments in microwave antennas, and in design techniques such as computer-aided design (CAD). Various types of antenna configurations are covered, including rectangular, elliptical, and reflectarray microstrip antennas, multibeam, circular-disc, Yagi-Uda, and horn reflectors. Applications include microwave antennas for satellite communication systems, telemetry links, and solid state microwave power transmission systems.

  11. Monolithic active pixel radiation detector with shielding techniques

    DOEpatents

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  12. Phase diversity and polarization augmented techniques for active imaging

    NASA Astrophysics Data System (ADS)

    Johnson, Peter M.

    A firm understanding of the space environment is necessary to defend US access to space-based systems. Conventional imaging systems have been developed to gather information on space-based objects, but they are incapable of imaging objects in the earth's shadow. In order close this gap in imaging-system coverage, an active-illumination based approach must be used. To facilitate this, a multi-frame active phase diversity imaging (APDI) algorithm is derived and demonstrated for the statistics of coherent light. In addition to conventional focal-plane and diversity-plane data, a statistical description for the pupil plane intensity distribution is formed and included in the derivation. The algorithm is implemented and characterized using a Monte Carlo approach. Analysis shows that the algorithm is robust, that the effect of system configuration on optimal algorithm parameters is minimal, that the algorithm is insensitive to detection noise for SNR ≥ 7, and that it performs well for SNRs as low as 2. Furthermore, it's shown that introduction of pupil-plane data on average results in a 60% better image reconstruction from dynamically aberrated data than is obtained using only focal-plane and diversity-plane data. Both an Expectation-Maximization algorithm and a lensless-APDI approach are presented for generating imagery directly from pupil-plane polarization measurements. Shortfalls of these methods and areas worthy of further consideration are identified. The use of pupil-plane polarization state measurements in place of pupil-plane intensity measurements in the APDI algorithm is explored. A framework for including polarization measurements into the APDI algorithm is demonstrated, and an initial statistical model and results are presented. Under the developed implementation, introduction of the polarization data doesn't result in better performance. Areas that may result in better reconstructions are discussed.

  13. Innovative techniques to analyze time series of geomagnetic activity indices

    NASA Astrophysics Data System (ADS)

    Balasis, Georgios; Papadimitriou, Constantinos; Daglis, Ioannis A.; Potirakis, Stelios M.; Eftaxias, Konstantinos

    2016-04-01

    Magnetic storms are undoubtedly among the most important phenomena in space physics and also a central subject of space weather. The non-extensive Tsallis entropy has been recently introduced, as an effective complexity measure for the analysis of the geomagnetic activity Dst index. The Tsallis entropy sensitively shows the complexity dissimilarity among different "physiological" (normal) and "pathological" states (intense magnetic storms). More precisely, the Tsallis entropy implies the emergence of two distinct patterns: (i) a pattern associated with the intense magnetic storms, which is characterized by a higher degree of organization, and (ii) a pattern associated with normal periods, which is characterized by a lower degree of organization. Other entropy measures such as Block Entropy, T-Complexity, Approximate Entropy, Sample Entropy and Fuzzy Entropy verify the above mentioned result. Importantly, the wavelet spectral analysis in terms of Hurst exponent, H, also shows the existence of two different patterns: (i) a pattern associated with the intense magnetic storms, which is characterized by a fractional Brownian persistent behavior (ii) a pattern associated with normal periods, which is characterized by a fractional Brownian anti-persistent behavior. Finally, we observe universality in the magnetic storm and earthquake dynamics, on a basis of a modified form of the Gutenberg-Richter law for the Tsallis statistics. This finding suggests a common approach to the interpretation of both phenomena in terms of the same driving physical mechanism. Signatures of discrete scale invariance in Dst time series further supports the aforementioned proposal.

  14. Determining cleanup levels in bioremediation: Quantitative structure activity relationship techniques

    SciTech Connect

    Arulgnanendran, V.R.J.; Nirmalakhandan, N.

    1995-12-31

    An important feature in the process of planning and initiating bioremediation is the quantification of the toxicity of either an individual chemical or a group of chemicals when multiple chemicals are involved. A laboratory protocol was developed to test the toxicity of single chemicals and mixtures of organic chemicals in a soil medium. Portions of these chemicals are used as a training set to develop Quantitative Structure Activity Relationship (QSAR) models. These predictive models are tested using the chemicals in the testing set, i.e., the remaining chemicals. Moreover mixtures with 10 contaminants in each mixture are tested experimentally to determine joint toxicity for mixtures of chemicals. Using the concepts of Toxic Units, Additivity Index, and Mixture Toxicity Index, the laboratory results are tested for additive, synergistic, or antagonistic effects of the contaminants. These concepts are further validated on mixtures containing eight chemicals that are tested in the laboratory. In addition to the use of the predictive models in evaluating cleanup levels for hazardous waste locations, they are useful to predict microbial toxicity in soils of new chemicals from a congeneric group acting by the same mode of toxicity. These models are applicable when the contaminants act singly or jointly in a mixture.

  15. Microwave assisted synthesis and characterisation of a zinc oxide/tobacco mosaic virus hybrid material. An active hybrid semiconductor in a field-effect transistor device.

    PubMed

    Sanctis, Shawn; Hoffmann, Rudolf C; Eiben, Sabine; Schneider, Jörg J

    2015-01-01

    Tobacco mosaic virus (TMV) has been employed as a robust functional template for the fabrication of a TMV/zinc oxide field effect transistor (FET). A microwave based approach, under mild conditions was employed to synthesize stable zinc oxide (ZnO) nanoparticles, employing a molecular precursor. Insightful studies of the decomposition of the precursor were done using NMR spectroscopy and material characterization of the hybrid material derived from the decomposition was achieved using dynamic light scattering (DLS), transmission electron microscopy (TEM), grazing incidence X-ray diffractometry (GI-XRD) and atomic force microscopy (AFM). TEM and DLS data confirm the formation of crystalline ZnO nanoparticles tethered on top of the virus template. GI-XRD investigations exhibit an orientated nature of the deposited ZnO film along the c-axis. FET devices fabricated using the zinc oxide mineralized virus template material demonstrates an operational transistor performance which was achieved without any high-temperature post-processing steps. Moreover, a further improvement in FET performance was observed by adjusting an optimal layer thickness of the deposited ZnO on top of the TMV. Such a bio-inorganic nanocomposite semiconductor material accessible using a mild and straightforward microwave processing technique could open up new future avenues within the field of bio-electronics.

  16. Microwave heating of porous media

    SciTech Connect

    Gori, F.; Martini, L. ); Gentili, G.B. )

    1987-05-01

    The technique actually used for recycling in place asphaltic concrete pavements is the following: heating of the surface layer of the pavement with special infrared lamps (gas-fed); hot removal and remixing in place of the materials with the addition of new binder; in-line reconstruction of the pavement layer with rolling. Such a technique is highly efficient and economic but it suffers an important disadvantage: The low thermal conductivity of the asphalt causes a strong temperature decrease with depth. Further on, the infrared radiation produces carbonization of the pavement skin with possible modification of the rheological properties of the bitumen. The technology of microwave generators (Magnetron, Klystron, and Amplitron) has registered some recent advances. It is now possible, and in some cases convenient, to use microwave energy for industrial heating of low-thermal-conductivity materials. Actually the microwaves are employed for drying wood, paper, and textiles, and for freeze-drying, cooking, and defrosting foods. One of the most interesting features of the microwave process is the rate and uniformity of the heating inside the material. Some preliminary experiments have been carried out for recycling in place asphaltic concrete pavements. The goal of the present paper is to propose a theoretical model capable of describing the phenomena occurring in a soil during a microwave heating process.

  17. Microwave-assisted synthesis and antifungal activity of novel coumarin derivatives: Pyrano[3,2-c]chromene-2,5-diones.

    PubMed

    Zhang, Rong-Rong; Liu, Jia; Zhang, Yu; Hou, Meng-Qing; Zhang, Ming-Zhi; Zhou, Fenger; Zhang, Wei-Hua

    2016-06-30

    A series of novel fused coumarin analogues pyrano[3,2-c]chromene-2,5-diones have been synthesized through an optimized microwave-assisted protocol. All target compounds were tested and evaluated for their antifungal activity against Botrytis cinerea, Colletotrichum copsica, Alternaria solani, Gibberella zeae and Rhizoctorzia solani. The bioassay results indicated that some of the compounds exhibited potent antifungal activities at concentration less than 50 ppm. For the compounds 5d, 6c and 7b, EC50 values against B. cinerea were as low as 0.141, 0.082 and 0.091 μM, respectively, which represents better antifungal activity than that of the commonly used fungicide Azoxystrobin. Compounds 5d (57%) and 6c (55%) also exhibited more effective control than Azoxystrobin (44%) against Colletotrichum capsica. PMID:27060759

  18. Microwave-assisted combustion synthesis of Ag/ZnO nanocomposites and their photocatalytic activities under ultraviolet and visible-light irradiation

    SciTech Connect

    Zhang, Dafeng; Pu, Xipeng; Li, Huaiyong; Yu, Young Moon; Shim, Jae Jeong; Cai, Peiqing; Kim, Sun Il; Seo, Hyo Jin

    2015-01-15

    Highlights: • Ag/ZnO nanocomposites were synthesized by a microwave-assisted combustion method. • Ag/ZnO nanocomposites exhibited improved photocatalytic activities under UV irradiation. • Poorer photocatalytic performances were obtained under visible-light irradiation. - Abstract: Ag/ZnO nanocomposites were synthesized by a rapid one-step microwave-assisted combustion method. The as-synthesized samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, photoluminescence and ultraviolet–visible spectrophotometry. XRD results showed that hexagonal ZnO and cubic Ag were obtained. Ag nanoparticles were chemically attached on the surface of ZnO. The decrease in the energy band gap of Ag/ZnO nanocomposites and the photoluminescence quenching were observed while the Ag content was increased. Furthermore, the introduction of Ag nanoparticles leads to significantly improved photocatalytic activities in the case of ultraviolet irradiation, but in the case of visible-light irradiation opposite results were obtained. The corresponding mechanism was discussed in detail.

  19. Microwave Levitation Of Small Objects

    NASA Technical Reports Server (NTRS)

    Watkins, John L.; Jackson, Henry W.

    1991-01-01

    Microwave radiation in resonant cavities used to levitate small objects, according to proposal. Feedback control and atmosphere not needed. Technique conceived for use in experiments on processing of materials in low gravitation of outer space, also used in normal Earth gravitation, albeit under some limitations.

  20. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    PubMed

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same. PMID:26348227

  1. Characterization of Soils Using Microwave Radiation

    SciTech Connect

    Aziz, M. F. A.; Senin, H. B.; Jaafar, M. S.; Hashim, S. A.

    2008-05-20

    The aim of this study is to characterize of soils using microwave radiation by the reflection techniques. The sample of soils was collected in Northern Peninsular of Malaysia. There are six types of soil have been indentified, which, sand, clay, loam, silty clay loam, silty loam and clay loam. We use the transmission of microwave using Gunn Diode Transmitter with frequency of 10.525 GHz and the pipette method. The result shows that, the soil type can be indentified using intensity values based on the percentages of the clay. The proposed technique also can be used to characterize soils using by microwave radiation.

  2. Interaction of microwaves and germinating seeds

    SciTech Connect

    Shafer, F.L.

    1987-01-01

    The preliminary investigation measured the internal metabolic process by ATP production. Leakage of ions and organic material from germinating seeds indicated that membranes are a target of microwaves and heat. Electron photo-micrographs showed an increase in damage to membranes as heat and microwave treatments were increased. The second phase of this investigation was concerned with determining some of the biological activity at the initiation of germination of wheat seed, Triticum aestivum L., using a resonating microwave cavity oscillating at 9.3 GHz as a probe. Direct current conductivity measurements were also made on the seeds as a means of confirming the observations made with the microwave cavity.

  3. Study of federal microwave standards

    SciTech Connect

    David, L.

    1980-08-01

    Present and future federal regulatory processes which may impact the permissible levels of microwave radiation emitted by the SPS Microwave Power Transmission (MPTS) were studied. An historical development of US occupational and public microwave standards includes an overview of Western and East European philosophies of environmental protection and neurophysiology which have led to the current widely differing maximum permissible exposure limits to microwaves. The possible convergence of microwave standards is characterized by a lowering of Western exposure levels while Eastern countries consider standard relaxation. A trend toward stricter controls on activities perceived as harmful to public health is under way as is interest in improving the federal regulatory process. Particularly relevant to SPS is the initiation of long-term, low-level microwave exposure programs. Coupled with new developments in instrumentation and dosimetry, the results from chronic exposure program and population exposure studies could be expected within the next five to ten years. Also discussed is the increasing public concern that rf energy is yet another hazardous environmental agent.

  4. Microwave remote sensing from space

    NASA Technical Reports Server (NTRS)

    Carver, K. R.; Elachi, C.; Ulaby, F. T.

    1985-01-01

    Spaceborne microwave remote sensors provide perspectives of the earth surface and atmosphere which are of unique value in scientific studies of geomorphology, oceanic waves and topography, atmospheric water vapor and temperatures, vegetation classification and stress, ice types and dynamics, and hydrological characteristics. Microwave radars and radiometers offer enhanced sensitivities to the geometrical characteristics of the earth's surface and its cover, to water in all its forms - soil and vegetation moisture, ice, wetlands, oceans, and atmospheric water vapor, and can provide high-resolution imagery of the earth's surface independent of cloud cover or sun angle. A brief review of the historical development and principles of active and passive microwave remote sensing is presented, with emphasis on the unique characteristics of the information obtainable in the microwave spectrum and the value of this information to global geoscientific studies. Various spaceborne microwave remote sensors are described, with applications to geology, planetology, oceanography, glaciology, land biology, meteorology, and hydrology. A discussion of future microwave remote sensor technological developments and challenges is presented, along with a summary of future missions being planned by several countries.

  5. Technique for Radiometer and Antenna Array Calibration with a Radiated Noise Diode

    NASA Technical Reports Server (NTRS)

    Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul

    2009-01-01

    This paper presents a new technique to calibrate a microwave radiometer and antenna array system. This calibration technique uses a radiated noise source in addition to two calibration sources internal to the radiometer. The method accurately calibrates antenna arrays with embedded active devices (such as amplifiers) which are used extensively in active phased array antennas.

  6. Fast preparation of Bi{sub 2}GeO{sub 5} nanoflakes via a microwave-hydrothermal process and enhanced photocatalytic activity after loading with Ag nanoparticles

    SciTech Connect

    Li, Zhao-Qian; Lin, Xin-Shan; Zhang, Lei; Chen, Xue-Tai; Xue, Zi-Ling

    2012-09-15

    Highlights: ► Bi{sub 2}GeO{sub 5} nanoflakes were successfully synthesized via a microwave-assisted solution-phase approach. ► Ag nanoparticles were deposited on the Bi{sub 2}GeO{sub 5} nanoflakes by a photoreduction procedure. ► Catalytic activity of the Ag/Bi{sub 2}GeO{sub 5} nanocomposite in the photo-degradation of rhodamine B (RhB) was much higher than that of pure Bi{sub 2}GeO{sub 5}. -- Abstract: In this work, a facile and rapid microwave-assisted hydrothermal route has been developed to prepare Bi{sub 2}GeO{sub 5} nanoflakes. Ag nanoparticles were subsequently deposited on the Bi{sub 2}GeO{sub 5} nanoflakes by a photoreduction procedure. The phases and morphologies of the products were characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV–vis diffuse reflectance spectroscopy. Photocatalytic experiments indicate that such Ag/Bi{sub 2}GeO{sub 5} nanocomposite possesses higher photocatalytic activity for RhB degradation under UV light irradiation in comparison to pure Bi{sub 2}GeO{sub 5}. The amount of Ag in the nanocomposite affects the catalytic activity, and 3 wt% Ag showed the highest photodegradation efficiency. Moreover, the catalyst remains active after four consecutive tests. The present study provides a new strategy to design composite materials with enhanced photocatalytic activity.

  7. A three-dimensional muscle activity imaging technique for assessing pelvic muscle function

    NASA Astrophysics Data System (ADS)

    Zhang, Yingchun; Wang, Dan; Timm, Gerald W.

    2010-11-01

    A novel multi-channel surface electromyography (EMG)-based three-dimensional muscle activity imaging (MAI) technique has been developed by combining the bioelectrical source reconstruction approach and subject-specific finite element modeling approach. Internal muscle activities are modeled by a current density distribution and estimated from the intra-vaginal surface EMG signals with the aid of a weighted minimum norm estimation algorithm. The MAI technique was employed to minimally invasively reconstruct electrical activity in the pelvic floor muscles and urethral sphincter from multi-channel intra-vaginal surface EMG recordings. A series of computer simulations were conducted to evaluate the performance of the present MAI technique. With appropriate numerical modeling and inverse estimation techniques, we have demonstrated the capability of the MAI technique to accurately reconstruct internal muscle activities from surface EMG recordings. This MAI technique combined with traditional EMG signal analysis techniques is being used to study etiologic factors associated with stress urinary incontinence in women by correlating functional status of muscles characterized from the intra-vaginal surface EMG measurements with the specific pelvic muscle groups that generated these signals. The developed MAI technique described herein holds promise for eliminating the need to place needle electrodes into muscles to obtain accurate EMG recordings in some clinical applications.

  8. Exploring Undergraduates' Perceptions of the Use of Active Learning Techniques in Science Lectures

    ERIC Educational Resources Information Center

    Welsh, Ashley J.

    2012-01-01

    This paper examines students' mixed perceptions of the use of active learning techniques in undergraduate science lectures. Written comments from over 250 students offered an in-depth view of why students perceive these techniques as helping or hindering their learning and experience. Fourth- and fifth-year students were more likely to view…

  9. SYSTEMATIC SCANNING ELECTRON MICROSCOPY TECHNIQUE FOR EVALUATING COMBINED BIOLOIGCAL/GRANULAR ACTIVATED CARBON TREATMENT PROCESSES

    EPA Science Inventory

    A systematic scanning election microscope analytical technique has been developed to examine granular activated carbon used a a medium for biomass attachment in liquid waste treatment. The procedure allows for the objective monitoring, comparing, and trouble shooting of combined ...

  10. Microwave alcohol fuel sensor

    SciTech Connect

    Kimura, K.; Endo, A.; Morozumi, H.; Shibata, T.

    1984-06-05

    A microwave alcohol fuel sensor comprises a microwave oscillator, a microwave receiver, and a microwave transmission circuit connected to the oscillator and the receiver. The microwave transmission circuit comprises a dielectric substrate and, a strip line mounted on the substrate so that microwaves leak from the substrate to an alcohol gasoline fuel, and the microwaves attenuate by alcohol dielectric loss, whereby output voltage from the receiver corresponds to alcohol content rate. The dielectric substrate is formed tubular so that a constant amount of the fuel is fed the sensor.

  11. Electro-catalytic activity of multiwall carbon nanotube-metal (Pt or Pd) nanohybrid materials synthesized using microwave-induced reactions and their possible use in fuel cells

    PubMed Central

    V, Lakshman Kumar; Ntim, Susana Addo; Sae-Khow, Ornthida; Janardhana, Chelli; Lakshminarayanan, V.; Mitra, Somenath

    2012-01-01

    Microwave induced reactions for immobilizing platinum and palladium nanoparticles on multiwall carbon nanotubes are presented. The resulting hybrid materials were used as catalysts for direct methanol, ethanol and formic acid oxidation in acidic as well as alkaline media. The electrodes are formed by simply mixing the hybrids with graphite paste, thus using a relatively small quantity of the precious metal. We report Tafel slopes and apparent activation energies at different potentials and temperatures. Ethanol electro-oxidation with the palladium hybrid showed an activation energy of 7.64 kJmol−1 which is lower than those observed for other systems. This system is economically attractive because Pd is significantly less expensive than Pt and ethanol is fast evolving as a commercial biofuel. PMID:23118490

  12. Electro-catalytic activity of multiwall carbon nanotube-metal (Pt or Pd) nanohybrid materials synthesized using microwave-induced reactions and their possible use in fuel cells.

    PubMed

    V, Lakshman Kumar; Ntim, Susana Addo; Sae-Khow, Ornthida; Janardhana, Chelli; Lakshminarayanan, V; Mitra, Somenath

    2012-11-30

    Microwave induced reactions for immobilizing platinum and palladium nanoparticles on multiwall carbon nanotubes are presented. The resulting hybrid materials were used as catalysts for direct methanol, ethanol and formic acid oxidation in acidic as well as alkaline media. The electrodes are formed by simply mixing the hybrids with graphite paste, thus using a relatively small quantity of the precious metal. We report Tafel slopes and apparent activation energies at different potentials and temperatures. Ethanol electro-oxidation with the palladium hybrid showed an activation energy of 7.64 kJmol(-1) which is lower than those observed for other systems. This system is economically attractive because Pd is significantly less expensive than Pt and ethanol is fast evolving as a commercial biofuel.

  13. Microwave-assisted extraction and purification of chlorogenic acid from by-products of Eucommia Ulmoides Oliver and its potential anti-tumor activity.

    PubMed

    Shao, P; Zhang, J F; Chen, X X; Sun, P L

    2015-08-01

    An efficient method for the rapid extraction, separation and purification of chlorogenic acid (CGA) from by-products of Eucommia Ulmoides Oliver (E. ulmoides) by microwave-assisted extraction (MAE) coupled with high-speed counter-current chromatography (HSCCC) was developed. The optimal MAE parameters were evaluated by response surface methodology (RSM), and they were extraction time of 12 min, microwave power of 420 W, ethanol concentration of 75 %, solvent/sample ratio of 30:1 (mL/g), yield of CGA reached 3.59 %. The crude extract was separated and purified directly by HSCCC using ethyl acetate-butyl alcohol-water (3:1:4, v/v) as the two-phase solvent system. The 14.5 mg of CGA with the purity of 98.7 % was obtained in one-step separation from 400 mg of crude extract. The chemical structure of CGA was verified with IR, ESI-MS analysis. Meanwhile, the purified CGA extract was evaluated by MTT assay and results indicate that CGA extract exhibited potential anti-tumor activity for AGS gastric cancer cell.

  14. Weak solar flares with a detectable flux of hard X rays: Specific features of microwave radiation in the corresponding active regions

    NASA Astrophysics Data System (ADS)

    Grigor'eva, I. Yu.; Livshits, M. A.

    2014-12-01

    The emission of very weak flares was registered at the Suzaku X-ray observatory in 2005-2009. The photon power spectrum in the 50-110 keV range for a number of these phenomena shows that some electrons accelerate to energies higher than 100 keV. The corresponding flares originate in active regions (ARs) with pronounced sunspots. As in the case of AR 10933 in January 2007 analyzed by us previously (Grigor'eva et al., 2013), the thoroughly studied weak flares in May 2007 are related to the emergence of a new magnetic field in the AR and to the currents that originate in this case. A comparison of the Suzaku data with the RATAN-600 microwave observations indicates that a new polarized source of microwave radiation develops in the AR (or the previously existing source intensifies) one-two days before a weak flare in the emerging flux regions. Arguments in favor of recent views that fields are force-free in the AR corona are put forward. The development of weak flares is related to the fact that the free energy of the currents that flow above the field neutral line at altitudes reaching several thousand kilometers is accumulated and subsequently released.

  15. Microwave and Pulsed Power

    SciTech Connect

    Freytag, E.K.

    1993-03-01

    The goals of the Microwave and Pulsed Power thrust area are to identify realizable research and development efforts and to conduct high-quality research in those pulse power and microwave technologies that support existing and emerging programmatic requirements at Lawrence Livermore National Laboratory (LLNL). Our main objective is to work on nationally important problems while enhancing our basic understanding of enabling technologies such as component design and testing, compact systems packaging, exploratory physics experiments, and advanced systems integration and performance. During FY-92, we concentrated our research efforts on the six project areas described in this report. (1) We are investigating the superior electronic and thermal properties of diamond that may make it an ideal material for a high-power, solid-state switch. (2) We are studying the feasibility of using advanced Ground Penetrating Imaging Radar technology for reliable non-destructive evaluation of bridges and other high-value concrete structures. These studies include conceptual designs, modeling, experimental verifications, and image reconstruction of simulated radar data. (3) We are exploring the efficiency of pulsed plasma processing techniques used for the removal of NO{sub x} from various effluent sources. (4) We have finished the investigation of the properties of a magnetically delayed low-pressure gas switch, which was designed here at LLNL. (5) We are applying statistical electromagnetic theory techniques to help assess microwave effects on electronic subsystems, by using a mode stirred chamber as our measurement tool. (6) We are investigating the generation of perfluoroisobutylene (PFIB) in proposed CFC replacement fluids when they are subjected to high electrical stresses and breakdown environments.

  16. Retrieval techniques and information content analysis to improve remote sensing of atmospheric water vapor, liquid water and temperature from ground-based microwave radiometer measurements

    NASA Astrophysics Data System (ADS)

    Sahoo, Swaroop

    Observation of profiles of temperature, humidity and winds with sufficient accuracy and fine vertical and temporal resolution are needed to improve mesoscale weather prediction, track conditions in the lower to mid-troposphere, predict winds for renewable energy, inform the public of severe weather and improve transportation safety. In comparing these thermodynamic variables, the absolute atmospheric temperature varies only by 15%; in contrast, total water vapor may change by up to 50% over several hours. In addition, numerical weather prediction (NWP) models are initialized using water vapor profile information, so improvements in their accuracy and resolution tend to improve the accuracy of NWP. Current water vapor profile observation systems are expensive and have insufficient spatial coverage to observe humidity in the lower to mid-troposphere. To address this important scientific need, the principal objective of this dissertation is to improve the accuracy, vertical resolution and revisit time of tropospheric water vapor profiles retrieved from microwave and millimeter-wave brightness temperature measurements. This dissertation advances the state of knowledge of retrieval of atmospheric water vapor from microwave brightness temperature measurements. It focuses on optimizing two information sources of interest for water vapor profile retrieval, i.e. independent measurements and background data set size. From a theoretical perspective, it determines sets of frequencies in the ranges of 20-23, 85-90 and 165-200 GHz that are optimal for water vapor retrieval from each of ground-based and airborne radiometers. The maximum number of degrees of freedom for the selected frequencies for ground-based radiometers is 5-6, while the optimum vertical resolution is 0.5 to 1.5 km. On the other hand, the maximum number of degrees of freedom for airborne radiometers is 8-9, while the optimum vertical resolution is 0.2 to 0.5 km. From an experimental perspective, brightness

  17. Temperature measurement during microwave cooking.

    PubMed

    Mullin, J; Bows, J

    1993-01-01

    Product development of microwavable foods originally suffered from a high degree of non-uniform heating which is generic in microwave heating. Typically, foods have suffered from either overheated edges or under heated centres. This was compounded by short reheat times which allowed little opportunity for temperature equilibration. A crucial step in overcoming this problem has been the understanding provided from time-temperature data. Conventional temperature measurements by thermocouple, etc. are inappropriate in microwave cooking due to the high electric fields which are present (ca 15 kV/m). The result is either very significant interference, or even failure of the sensor. Therefore, alternative methods were developed to meet the need, some of which are discussed in this paper. One such measurement system is the now commonplace fibre optic probe, originally from Luxtron. The discrete data provided from this system are compared with the surface imaging data delivered by thermal imaging. These techniques are discussed in the context of microwave packaging materials heated in situ in a microwave oven and the need for temperature data as a basis for establishing testing regimes.

  18. Simultaneous determination of bromine and iodine in milk powder for adult and infant nutrition by plasma based techniques after digestion using microwave-induced combustion

    NASA Astrophysics Data System (ADS)

    Picoloto, Rochele S.; Doneda, Morgana; Flores, Eder L. M.; Mesko, Marcia F.; Flores, Erico M. M.; Mello, Paola A.

    2015-05-01

    In this work, bromine and iodine determination in milk powder for adult and infant nutrition was performed by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES) after digestion by microwave-induced combustion (MIC). Contrarily to previous works using MIC, a higher sample mass was digested (700 mg). Water and ammonium hydroxide (10 to 100 mmol L- 1) were investigated as absorbing solutions and accurate results were achieved using a 25 mmol L- 1 NH4OH solution. Moreover, the high stability of analytes after digestion (up to 30 days) using this solution was observed. The accuracy of the proposed MIC method was evaluated using certified and reference materials of milk powder (NIST 1549 and NIST 8435). No statistical difference was observed between results obtained by MIC-ICP-MS and reference values. Results for samples were also compared with those obtained by ICP-OES and no statistical difference was observed. Microwave-assisted alkaline extraction (MW-AE) was also evaluated for milk powder using NH4OH and tetramethylammonium hydroxide solutions. Solutions obtained after digestion by MIC (whole milk powder) presented low carbon content in digests (< 25 mg L- 1) while solutions obtained after alkaline extraction presented up to 10,000 mg L- 1 of C. MIC method was preferable in view of the possibility of obtaining solutions with low carbon content even using a relatively high sample mass (up to 700 mg) avoiding additional dilution prior to ICP-MS analysis, thus allowing better detection limits. Limits of detection obtained by MIC-ICP-MS were 0.007 and 0.003 μg g- 1 for Br and I, respectively, while for MW-AE were 0.1 and 0.05 μg g- 1 respectively for Br and I. Among the main advantages of the proposed method are the use of diluted alkaline solutions that is in agreement with green analytical chemistry recommendations, the high stability of analytes in solution and the suitability of digests for

  19. A microwave detection way by electromagnetic and elastic resonance: Breaking the bottleneck of spatial resolution in microwave imaging

    NASA Astrophysics Data System (ADS)

    Ji, Zhong; Lou, Cunguang; Shi, Yujiao; Ding, Wenzheng; Yang, Sihua; Xing, Da

    2015-10-01

    The spatial resolution of microwave imaging depends on the geometrical size of the detector. The existing techniques mainly focus on optimizing the antenna design to achieve high detection sensitivity. However, since the optimal antenna size is closely related to the wavelength to be measured, and the miniaturization of the geometrical size is challenging, this limits the spatial resolution of microwave imaging. In this letter, a microwave detection technique based on the electromagnetic-elastic resonance effect is proposed. The piezoelectric materials can produce mechanical responses under microwave excitation, and the amplitude of the microwave can be detected by measuring these responses. In contrast to conventional microwave detection method, the proposed method has distinct advantages in terms of high sensitivity and wide spectral response. Most importantly, it overcomes the limitation of detector size, thus, significantly improving the detection resolution. Therefore, the proposed method has potential for microwave imaging in biomedical applications.

  20. Microwave induced pyrolysis of oil palm biomass.

    PubMed

    Salema, Arshad Adam; Ani, Farid Nasir

    2011-02-01

    The purpose of this paper was to carry out microwave induced pyrolysis of oil palm biomass (shell and fibers) with the help of char as microwave absorber (MA). Rapid heating and yield of microwave pyrolysis products such as bio-oil, char, and gas was found to depend on the ratio of biomass to microwave absorber. Temperature profiles revealed the heating characteristics of the biomass materials which can rapidly heat-up to high temperature within seconds in presence of MA. Some characterization of pyrolysis products was also presented. The advantage of this technique includes substantial reduction in consumption of energy, time and cost in order to produce bio-oil from biomass materials. Large biomass particle size can be used directly in microwave heating, thus saving grinding as well as moisture removal cost. A synergistic effect was found in using MA with oil palm biomass.

  1. Coupling output of multichannel high power microwaves

    SciTech Connect

    Li Guolin; Shu Ting; Yuan Chengwei; Zhang Jun; Yang Jianhua; Jin Zhenxing; Yin Yi; Wu Dapeng; Zhu Jun; Ren Heming; Yang Jie

    2010-12-15

    The coupling output of multichannel high power microwaves is a promising technique for the development of high power microwave technologies, as it can enhance the output capacities of presently studied devices. According to the investigations on the spatial filtering method and waveguide filtering method, the hybrid filtering method is proposed for the coupling output of multichannel high power microwaves. As an example, a specific structure is designed for the coupling output of S/X/X band three-channel high power microwaves and investigated with the hybrid filtering method. In the experiments, a pulse of 4 GW X band beat waves and a pulse of 1.8 GW S band microwave are obtained.

  2. Coupling output of multichannel high power microwaves

    NASA Astrophysics Data System (ADS)

    Li, Guolin; Shu, Ting; Yuan, Chengwei; Zhang, Jun; Yang, Jianhua; Jin, Zhenxing; Yin, Yi; Wu, Dapeng; Zhu, Jun; Ren, Heming; Yang, Jie

    2010-12-01

    The coupling output of multichannel high power microwaves is a promising technique for the development of high power microwave technologies, as it can enhance the output capacities of presently studied devices. According to the investigations on the spatial filtering method and waveguide filtering method, the hybrid filtering method is proposed for the coupling output of multichannel high power microwaves. As an example, a specific structure is designed for the coupling output of S/X/X band three-channel high power microwaves and investigated with the hybrid filtering method. In the experiments, a pulse of 4 GW X band beat waves and a pulse of 1.8 GW S band microwave are obtained.

  3. Microwave properties of high transition temperature superconducting thin films

    NASA Technical Reports Server (NTRS)

    Gordon, W. L.

    1991-01-01

    Extensive studies of the interaction of microwaves with YBa2Cu3O(7-delta), Bi-based, and Tl-based superconducting thin films deposited in several microwave substrates were performed. The data were obtained by measuring the microwave power transmitted through the film in the normal and the superconducting state and by resonant cavity techniques. The main motives were to qualify and understand the physical parameters such as the magnetic penetration depth, the complex conductivity, and the surface impedance, of high temperature superconducting (HTS) materials at microwave frequencies. Based on these parameters, the suitability of these HTS thin films is discussed for microwave applications.

  4. Optimized ECR plasma apparatus with varied microwave window thickness

    DOEpatents

    Berry, Lee A.

    1995-01-01

    The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design.

  5. Optimized ECR plasma apparatus with varied microwave window thickness

    DOEpatents

    Berry, L.A.

    1995-11-14

    The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design. 9 figs.

  6. A Melting Layer Model for Passive/Active Microwave Remote Sensing Applications. Part 1; Model Formulation and Comparison with Observations

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Bauer, Peter; Viltard, Nicolas F.; Johnson, Daniel E.; Tao, Wei-Kuo

    2000-01-01

    In this study, a 1-D steady-state microphysical model which describes the vertical distribution of melting precipitation particles is developed. The model is driven by the ice-phase precipitation distributions just above the freezing level at applicable gridpoints of "parent" 3-D cloud-resolving model (CRM) simulations. It extends these simulations by providing the number density and meltwater fraction of each particle in finely separated size categories through the melting layer. The depth of the modeled melting layer is primarily determined by the initial material density of the ice-phase precipitation. The radiative properties of melting precipitation at microwave frequencies are calculated based upon different methods for describing the dielectric properties of mixed phase particles. Particle absorption and scattering efficiencies at the Tropical Rainfall Measuring Mission Microwave Imager frequencies (10.65 to 85.5 GHz) are enhanced greatly for relatively small (approx. 0.1) meltwater fractions. The relatively large number of partially-melted particles just below the freezing level in stratiform regions leads to significant microwave absorption, well-exceeding the absorption by rain at the base of the melting layer. Calculated precipitation backscatter efficiencies at the Precipitation Radar frequency (13.8 GHz) increase in proportion to the particle meltwater fraction, leading to a "bright-band" of enhanced radar reflectivities in agreement with previous studies. The radiative properties of the melting layer are determined by the choice of dielectric models and the initial water contents and material densities of the "seeding" ice-phase precipitation particles. Simulated melting layer profiles based upon snow described by the Fabry-Szyrmer core-shell dielectric model and graupel described by the Maxwell-Garnett water matrix dielectric model lead to reasonable agreement with radar-derived melting layer optical depth distributions. Moreover, control profiles

  7. Comparing Computer-Supported Dynamic Modeling and "Paper & Pencil" Concept Mapping Technique in Students' Collaborative Activity

    ERIC Educational Resources Information Center

    Komis, Vassilis; Ergazaki, Marida; Zogza, Vassiliki

    2007-01-01

    This study aims at highlighting the collaborative activity of two high school students (age 14) in the cases of modeling the complex biological process of plant growth with two different tools: the "paper & pencil" concept mapping technique and the computer-supported educational environment "ModelsCreator". Students' shared activity in both cases…

  8. Teaching Tip: Using Activity Diagrams to Model Systems Analysis Techniques: Teaching What We Preach

    ERIC Educational Resources Information Center

    Lending, Diane; May, Jeffrey

    2013-01-01

    Activity diagrams are used in Systems Analysis and Design classes as a visual tool to model the business processes of "as-is" and "to-be" systems. This paper presents the idea of using these same activity diagrams in the classroom to model the actual processes (practices and techniques) of Systems Analysis and Design. This tip…

  9. Volumetric pattern analysis of fuselage-mounted airborne antennas. Ph.D. Thesis; [prediction analysis techniques for antenna radiation patterns of microwave antennas on commercial aircraft

    NASA Technical Reports Server (NTRS)

    Yu, C. L.

    1976-01-01

    A volumetric pattern analysis of fuselage-mounted airborne antennas at high frequencies was investigated. The primary goal of the investigation was to develop a numerical solution for predicting radiation patterns of airborne antennas in an accurate and efficient manner. An analytical study of airborne antenna pattern problems is presented in which the antenna is mounted on the fuselage near the top or bottom. Since this is a study of general-type commercial aircraft, the aircraft was modeled in its most basic form. The fuselage was assumed to be an infinitely long perfectly conducting elliptic cylinder in its cross-section and a composite elliptic cylinder in its elevation profile. The wing, cockpit, stabilizers (horizontal and vertical) and landing gear are modeled by "N" sided bent or flat plates which can be arbitrarily attached to the fuselage. The volumetric solution developed utilizes two elliptic cylinders, namely, the roll plane and elevation plane models to approximate the principal surface profile (longitudinal and transverse) at the antenna location. With the belt concept and the aid of appropriate coordinate system transformations the solution can be used to predict the volumetric patterns of airborne antennas in an accurate and efficient manner. Applications of this solution to various airborne antenna problems show good agreement with scale model measurements. Extensive data are presented for a microwave landing antenna system.

  10. Microwave palaeointensity determination, does it work?

    NASA Astrophysics Data System (ADS)

    Shaw, J.

    2003-04-01

    In Palaeomagnetism, thermal demagnetisation is the use of heat to generate phonons (lattice vibrations) in a sample. These phonons raise the energy level in the magnetic system by generating spin waves. The spin waves disrupt the magnetic ordering and the sample demagnetises. Microwave demagnetisation is the use of ferromagnetic resonance to directly generate spin waves in magnetic minerals instead of using heat (Walton et al 1993). As far as the magnetisation of the sample is concerned it is the same mechanism as heating the sample. The main differences being that the microwave generated spin wave density is not measured in temperature units although there is clear evidence that low (high) microwave power density generates a similar spin wave density as low (high) temperature thermal demagnetisation (Hill et al, 2002). As far as the sample is concerned the main difference is that microwave demagnetisation does not directly heat the sample although some energy is transferred from the magnetic system and sample temperatures can rise a little (Hill and Shaw, 2002). An automated system using a microwave cavity and a SQUID magnetometer has been used to determine palaeointensities from a variety of materials and ages. Typically the total time for a 12 step microwave palaeointensity determination using 2 samples (one for demagnetisation and determination of the primary component and the other for palaeointensity analysis) takes 60 minutes. Success rates are generally over 90% for samples with isolated primary NRM's. Comparison will be made between Microwave palaeointensities and conventional heating palaeointensities from the same samples. Walton, D., Share, J. A., Rolph, T. C. and Shaw, J., 1993. Microwave magnetisation, Geophys. Res. Lett., 20, 109-111. Hill, M. J., Gratton, M.N., &Shaw, J., 2002, A comparison of thermal and microwave palaeomagnetic techniques using lava containing laboratory induced remanence Geophys. J. Int. 150, 1 7 Hill, M. J., &Shaw, J., 2000

  11. Microwave-Assisted Synthesis of Novel Pyrazolo[3,4-g][1,8]naphthyridin-5-amine with Potential Antifungal and Antitumor Activity.

    PubMed

    Acosta, Paola; Butassi, Estefanía; Insuasty, Braulio; Ortiz, Alejandro; Abonia, Rodrigo; Zacchino, Susana A; Quiroga, Jairo

    2015-05-12

    The microwave assisted reaction between heterocyclic o-aminonitriles 1 and cyclic ketones 2 catalyzed by zinc chloride led to new series of pyrazolo[3,4-b] [1,8]naphthyridin-5-amines 3 in good yields. This procedure provides several advantages such as being environmentally friendly, high yields, simple work-up procedure, broad scope of applicability and the protocol provides an alternative for the synthesis of pyrazolonaphthyridines. The whole series showed antifungal activities against Candida albicans and Cryptococcus neoformans standardized strains, being compounds with a 4-p-tolyl substituent of the naphthyridin scheleton (3a, 3d and 3g), the most active ones mainly against C. albicans, which appear to be related to their comparative hydrophobicity. Among them, 3d, containing a cyclohexyl fused ring, showed the best activity. The anti-Candida activity was corroborated by testing the three most active compounds against clinical isolates of albicans and non-albicans Candida strains. These compounds were also screened by the US National Cancer Institute (NCI) for their ability to inhibit 60 different human tumor cell lines. Compounds 3a and 3e showed remarkable antitumor activity against cancer cell lines, with the most important GI50 values ranging from 0.62 to 2.18 μM.

  12. The antibacterial activity of a microwave argon plasma jet at atmospheric pressure relies mainly on UV-C radiations

    NASA Astrophysics Data System (ADS)

    Judée, F.; Wattieaux, G.; Merbahi, N.; Mansour, M.; Castanié-Cornet, M. P.

    2014-10-01

    The main bactericidal sources produced by a microwave induced cold argon plasma jet in open air are identified and their relative proportion in the biocide efficiency of the jet is assessed on planktonic Gram-negative bacteria (wild-type strains and deletion mutants of Escherichia coli) diluted in water. In these conditions ultraviolet light (UV) most probably in the UV-C region of the electromagnetic spectrum, is responsible for 86.7 ± 3.2% of the observed bactericidal efficiency of the jet whereas hydrogen peroxide represents 9.9 ± 5.5% of it. The exposition level of the bacteria to UV-C radiations is estimated at 20 mJ cm-2 using a specific photodiode and the influence of the initial bacteria concentration on the apparent antibacterial efficiency of the jet is highlighted.

  13. MAG4 Versus Alternative Techniques for Forecasting Active-Region Flare Productivity

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2014-01-01

    MAG4 is a technique of forecasting an active region's rate of production of major flares in the coming few days from a free-magnetic-energy proxy. We present a statistical method of measuring the difference in performance between MAG4 and comparable alternative techniques that forecast an active region's major-flare productivity from alternative observed aspects of the active region. We demonstrate the method by measuring the difference in performance between the "Present MAG4" technique and each of three alternative techniques, called "McIntosh Active-Region Class," "Total Magnetic Flux," and "Next MAG4." We do this by using (1) the MAG4 database of magnetograms and major-flare histories of sunspot active regions, (2) the NOAA table of the major-flare productivity of each of 60 McIntosh active-region classes of sunspot active regions, and (3) five technique-performance metrics (Heidke Skill Score, True Skill Score, Percent Correct, Probability of Detection, and False Alarm Rate) evaluated from 2000 random two-by-two contingency tables obtained from the databases. We find that (1) Present MAG4 far outperforms both McIntosh Active-Region Class and Total Magnetic Flux, (2) Next MAG4 significantly outperforms Present MAG4, (3) the performance of Next MAG4 is insensitive to the forward and backward temporal windows used, in the range of one to a few days, and (4) forecasting from the free-energy proxy in combination with either any broad category of McIntosh active-region classes or any Mount Wilson active-region class gives no significant performance improvement over forecasting from the free-energy proxy alone (Present MAG4).

  14. Microwave-assisted synthesis of sec/tert-butyl 2-arylbenzimidazoles and their unexpected antiproliferative activity towards ER negative breast cancer cells.

    PubMed

    Abdul Rahim, Aisyah Saad; Salhimi, Salizawati Muhamad; Arumugam, Natarajan; Pin, Lim Chung; Yee, Ng Shy; Muttiah, Nithya Niranjini; Keat, Wong Boon; Abd Hamid, Shafida; Osman, Hasnah; Mat, Ishak b

    2013-12-01

    A new series of N-sec/tert-butyl 2-arylbenzimidazole derivatives was synthesised in 85-96% yields within 2-3.5 min by condensing ethyl 3-amino-4-butylamino benzoate with various substituted metabisulfite adducts of benzaldehyde under focused microwave irradiation. The benzimidazole analogues were characterised using (1)H NMR, (13)C NMR, high resolution MS and melting points. Evaluation of antiproliferative activity of the benzimidazole analogues against MCF-7 and MDA-MB-231 revealed several compounds with unexpected selective inhibitions of MDA-MB-231 in micromolar range. All analogues were found inactive towards MCF-7. The most potent inhibition against MDA-MB-231 human breast cancer cell line came from the unsubstituted 2-phenylbenzimidazole 10a.

  15. Comparative evaluation of passive, active, and passive-active distraction techniques on pain perception during local anesthesia administration in children.

    PubMed

    Abdelmoniem, Soad A; Mahmoud, Sara A

    2016-05-01

    Local anesthesia forms the backbone of pain control techniques and is necessary for a painless dental procedure. Nevertheless, administering a local anesthetic injection is among the most anxiety-provoking procedures to children. This study was performed to compare the efficacy of different distraction techniques (passive, active, and passive-active) on children's pain perception during local anesthesia administration. A total of 90 children aged four to nine years, requiring inferior alveolar nerve block for primary molar extraction, were included in this study and randomly divided into three groups according to the distraction technique employed during local anesthesia administration. Passive distraction group: the children were instructed to listen to a song on headphones; Active distraction group: the children were instructed to move their legs up and down alternatively; and Passive-active distraction group: this was a combination between both techniques. Pain perception during local anesthesia administration was evaluated by the Sounds, Eyes, and Motor (SEM) scale and Wong Baker FACES® Pain Rating Scale. There was an insignificant difference between the three groups for SEM scale and Wong Baker FACES Pain Rating Scale at P = 0.743 and P = 0.112 respectively. The examined distraction techniques showed comparable results in reducing pain perception during local anesthesia administration.

  16. Comparative evaluation of passive, active, and passive-active distraction techniques on pain perception during local anesthesia administration in children

    PubMed Central

    Abdelmoniem, Soad A.; Mahmoud, Sara A.

    2015-01-01

    Local anesthesia forms the backbone of pain control techniques and is necessary for a painless dental procedure. Nevertheless, administering a local anesthetic injection is among the most anxiety-provoking procedures to children. This study was performed to compare the efficacy of different distraction techniques (passive, active, and passive-active) on children’s pain perception during local anesthesia administration. A total of 90 children aged four to nine years, requiring inferior alveolar nerve block for primary molar extraction, were included in this study and randomly divided into three groups according to the distraction technique employed during local anesthesia administration. Passive distraction group: the children were instructed to listen to a song on headphones; Active distraction group: the children were instructed to move their legs up and down alternatively; and Passive-active distraction group: this was a combination between both techniques. Pain perception during local anesthesia administration was evaluated by the Sounds, Eyes, and Motor (SEM) scale and Wong Baker FACES® Pain Rating Scale. There was an insignificant difference between the three groups for SEM scale and Wong Baker FACES Pain Rating Scale at P = 0.743 and P = 0.112 respectively. The examined distraction techniques showed comparable results in reducing pain perception during local anesthesia administration. PMID:27222759

  17. Super-resolution analysis for passive microwave images using FIPOCS

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Wu, Jin; Wang, Jin; Adjouadi, Malek

    2013-03-01

    improve application of passive microwave imaging for object detection. In this study, we propose the FIPOCS (Fractal interpolation with Improved Projection onto Convex Sets) technique to enhance resolution. The experimental result shows that the resolution of passive microwave image is improved when utilizing the fractal interpolation to the LR image before applying the IPOCS technique.

  18. Technique for Radiometer and Antenna Array Calibration with Two Antenna Noise Diodes

    NASA Technical Reports Server (NTRS)

    Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul

    2011-01-01

    This paper presents a new technique to calibrate a microwave radiometer and phased array antenna system. This calibration technique uses a radiated noise source in addition to an injected noise sources for calibration. The plane of reference for this calibration technique is the face of the antenna and therefore can effectively calibration the gain fluctuations in the active phased array antennas. This paper gives the mathematical formulation for the technique and discusses the improvements brought by the method over the existing calibration techniques.

  19. Microwave PASER Experiment

    SciTech Connect

    Schoessow, P.; Kanareykin, A.; Antipov, S.; Poluektov, O.; Jing, C.

    2009-01-22

    The PASER (Particle Acceleration by Stimulated Emission of Radiation) concept for particle acceleration entails the direct transfer of energy from an active medium to a charged particle beam. The PASER was originally formulated for optical (laser) media; we are planning a PASER demonstration experiment based on an optically pumped X-band paramagnetic medium consisting of porphyrin or fullerene (C{sub 60}) derivatives in a toluene solution or polystyrene matrix. We discuss the background of this project and report on the status of the experiment to measure the acceleration of electrons using the microwave PASER.

  20. Transdental photo-activation technique: hardness and marginal adaptation of composite restorations using different light sources.

    PubMed

    Alves, Eliane Bemerguy; Alonso, Roberta Caroline Bruschi; Correr, Gisele Maria; Correr, Américo Bortolazzo; de Moraes, Rafael Ratto; Sinhoreti, Mário Alexandre Coelho; Correr-Sobrinho, Lourenço

    2008-01-01

    This study investigated the influence of different light sources associated with a transdental photoactivation technique on the marginal adaptation and hardness of composite restorations. Cavities (3 mm wide x 3 mm long x 1.5 mm in deep) were prepared on flattened bovine dentin and filled with Z250 composite (3M ESPE). Nine groups (n=10) were defined according to the curing technique (direct; transdental--photo-activation through 1 mm of enamel and 2 mm of dentin; mixed--transdental + direct) and light source (QTH XL2500, 3M ESPE; PAC Apollo 95E, DMD; LED Ultrablue Is, DMC) combination. Marginal adaptation was evaluated using a dye staining method, and the percentage of stained margins was recorded. Knoop Hardness readings were made across the transversal section of the fillings. Data were submitted to two-way ANOVA and Tukey's test (p< or =0.05). For margin analysis, although none of the curing conditions provided perfect adaptation, the mixed technique showed lower gap formation. No significant differences were detected between the transdental and other techniques, and no significant differences were detected among the light sources. For hardness, the direct technique showed slightly greater hardness than the mixed technique. Also, the mixed technique yielded greater hardness than the transdental technique. Among the light sources, the LED showed greater hardness than the PAC; whereas, no significant differences between the QTH and other sources were detected. The mixed technique might improve the marginal adaptation of restorations, while not being detrimental to composite hardness.