Science.gov

Sample records for active microwave techniques

  1. Microwave techniques for physical property measurements

    NASA Technical Reports Server (NTRS)

    Barmatz, M.

    1993-01-01

    Industrial processing of metals and ceramics is now being streamlined by the development of theoretical models. High temperature thermophysical properties of these materials are required to successfully apply these theories. Unfortunately, there is insufficient experimental data available for many of these properties, particularly in the molten state. Microwave fields can be used to measure specific heat, thermal diffusivity, thermal conductivity and dielectric constants at high temperatures. We propose to (1) develop a microwave flash method (analogous to the laser flash technique) that can simultaneously measure the thermal diffusivity and specific heat of insulators and semiconductors at high temperatures, (2) an appropriate theory and experimental apparatus to demonstrate the measurement of the specific heat of a metal using a new microwave ac specific heat technique, and (3) experimental methods for noncontact measurement of the real and imaginary dielectric constants.

  2. Active microwave computed brain tomography: the response to a challenge.

    PubMed

    Almirall, H; Broquetas, A; Jofre, L

    1991-02-01

    The potential application of active microwave techniques to brain imaging is studied by numerical simulations and experimentally using a recently developed cylindrical microwave scanner. The potential advantages and limitations of this method in static and dynamic brain imaging are presented and compared with other imaging techniques. PMID:2062119

  3. Materials and techniques for controllable microwave surfaces

    NASA Astrophysics Data System (ADS)

    Barnes, Alan; Ford, Kenneth L.; Wright, Peter V.; Chambers, Barry; Smith, Christopher D.; Thompson, Denise A.; Pavri, Francis

    2000-08-01

    Discs and waveguide samples of polymeric mixed conductor nanocomposite materials comprising a conducting polymer and redox active switching agent in a polymer electrolyte have been prepared and studied. These novel materials have been shown to exhibit large, rapid and reversible changes in their microwave impedance when small d.c. electric fields are applied across them from the edges. The results of simultaneous cyclic voltammetry or potential square waves and microwave transmission measurements have shown that the changes are apparantly instantaneous with the application or removal of the applied field. Analysis of the microwave results has shown that the impedance of the materials changes by a factor of up to almost 50 with the imposition or removal of the fields. Nanocomposite materials having either poly(pyrrole) or poly(aniline) as the conducting polymer component and either silver/silver tetrafluoroborate or copper/copper(II) tetrafluoroborate as the redox active components have been investigated. The results of the nanocomposite materials are compared with those of microparticulate composities of similar composition. A new configuration of single layer tunable microwave absorber using only resistive control has been investigated and shown to exhibit wideband, low reflectivity performance combined with reduced thickness. A major advantage of the new topology is the requirement for only a 3:1 change in controllable resistance.

  4. Applications of active microwave imagery

    NASA Technical Reports Server (NTRS)

    Weber, F. P.; Childs, L. F.; Gilbert, R.; Harlan, J. C.; Hoffer, R. M.; Miller, J. M.; Parsons, J.; Polcyn, F.; Schardt, B. B.; Smith, J. L.

    1978-01-01

    The following topics were discussed in reference to active microwave applications: (1) Use of imaging radar to improve the data collection/analysis process; (2) Data collection tasks for radar that other systems will not perform; (3) Data reduction concepts; and (4) System and vehicle parameters: aircraft and spacecraft.

  5. Soil moisture sensing with microwave techniques

    NASA Technical Reports Server (NTRS)

    Schmugge, T.

    1980-01-01

    Microwave approaches for the remote sensing of soil moisture are discussed, with the advantages described as follows: (1) the all-weather capability, (2) the greater penetration depth into the soil and through vegetation than with optical or infrared sensors, and (3) the large changes in the dielectric properties of soil produced by changes in water content. Both active and passive microwave approaches are discussed. The dependence of the relationship between microwave response and soil moisture on such things as soil texture, surface roughness, vegetative cover and nonuniform moisture and temperature profiles is analyzed from both the experimental and theoretical viewpoints. The dielectric properties of the soil are analyzed quantitatively, as these control the reflective and emissive properties of the soil surface, and a model for estimating a soil's dielectric properties from its texture and moisture content is also presented. Emissivity is calculated using the Fresnel equation of electromagnetic theory, and reflectivity is shown to be decreased by surface roughness, while the backscatter coefficient increases. It is demonstrated, that microwave radiometers are sensitive to soil moisture for a wide range of surface conditions, and that the longer wavelengths are best for soil moisture sensing.

  6. Active microwave users working group program planning

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Bare, J.; Brown, W. E., Jr.; Childs, L. F.; Dellwig, L. F.; Heighway, J. E.; Joosten, R.; Lewis, A. J.; Linlor, W.; Lundien, J. R.

    1978-01-01

    A detailed programmatic and technical development plan for active microwave technology was examined in each of four user activities: (1) vegetation; (2) water resources and geologic applications, and (4) oceanographic applications. Major application areas were identified, and the impact of each application area in terms of social and economic gains were evaluated. The present state of knowledge of the applicability of active microwave remote sensing to each application area was summarized and its role relative to other remote sensing devices was examined. The analysis and data acquisition techniques needed to resolve the effects of interference factors were reviewed to establish an operational capability in each application area. Flow charts of accomplished and required activities in each application area that lead to operational capability were structured.

  7. Techniques for Characterizing Microwave Printed Antennas

    NASA Technical Reports Server (NTRS)

    Simons, Rainee; Lee, Richard Q.

    2003-01-01

    The combination of a de-embedding technique and a direct on-substrate measurement technique has been devised to enable measurement of the electrical characteristics (impedances, scattering parameters, and gains) of microwave printed antennas that may be formed integrally with feed networks that include slot lines, coplanar striplines, and/or coplanar waveguides. The combination of techniques eliminates the need for custom test fixtures, including transitions between (1) coaxial or waveguide feed lines in typical test equipment and (2) the planar waveguide structures of the printed circuits under test. The combination of techniques can be expected to be especially useful for rapid, inexpensive, and accurate characterization of antennas for miniature wireless communication units that operate at frequencies from a few to tens of gigahertz.

  8. Active microwave responses - An aid in improved crop classification

    NASA Technical Reports Server (NTRS)

    Rosenthal, W. D.; Blanchard, B. J.

    1984-01-01

    A study determined the feasibility of using visible, infrared, and active microwave data to classify agricultural crops such as corn, sorghum, alfalfa, wheat stubble, millet, shortgrass pasture and bare soil. Visible through microwave data were collected by instruments on board the NASA C-130 aircraft over 40 agricultural fields near Guymon, OK in 1978 and Dalhart, TX in 1980. Results from stepwise and discriminant analysis techniques indicated 4.75 GHz, 1.6 GHz, and 0.4 GHz cross-polarized microwave frequencies were the microwave frequencies most sensitive to crop type differences. Inclusion of microwave data in visible and infrared classification models improved classification accuracy from 73 percent to 92 percent. Despite the results, further studies are needed during different growth stages to validate the visible, infrared, and active microwave responses to vegetation.

  9. Microwave remote sensing: Active and passive. Volume 1 - Microwave remote sensing fundamentals and radiometry

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Moore, R. K.; Fung, A. K.

    1981-01-01

    The three components of microwave remote sensing (sensor-scene interaction, sensor design, and measurement techniques), and the applications to geoscience are examined. The history of active and passive microwave sensing is reviewed, along with fundamental principles of electromagnetic wave propagation, antennas, and microwave interaction with atmospheric constituents. Radiometric concepts are reviewed, particularly for measurement problems for atmospheric and terrestrial sources of natural radiation. Particular attention is given to the emission by atmospheric gases, clouds, and rain as described by the radiative transfer function. Finally, the operation and performance characteristics of radiometer receivers are discussed, particularly for measurement precision, calibration techniques, and imaging considerations.

  10. Microwave techniques for measuring complex permittivity and permeability of materials

    SciTech Connect

    Guillon, P.

    1995-08-01

    Different materials are of fundamental importance to the aerospace, microwave, electronics and communications industries, and include for example microwave absorbing materials, antennas lenses and radomes, substrates for MMIC and microwave components and antennaes. Basic measurements for the complex permittivity and permeability of those homogeneous solid materials in the microwave spectral region are described including hardware, instrumentation and analysis. Elevated temperature measurements as well as measurements intercomparisons, with a discussion of the strengths and weaknesses of each techniques are also presented.

  11. COBE differential microwave radiometers - Calibration techniques

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Smoot, G. F.; Janssen, M.; Gulkis, S.; Kogut, A.; Hinshaw, G.; Backus, C.; Hauser, M. G.; Mather, J. C.; Rokke, L.

    1992-01-01

    The COBE spacecraft was launched November 18, 1989 UT carrying three scientific instruments into earth orbit for studies of cosmology. One of these instruments, the Differential Microwave Radiometer (DMR), is designed to measure the large-angular-scale temperature anisotropy of the cosmic microwave background radiation at three frequencies (31.5, 53, and 90 GHz). This paper presents three methods used to calibrate the DMR. First, the signal difference between beam-filling hot and cold targets observed on the ground provides a primary calibration that is transferred to space by noise sources internal to the instrument. Second, the moon is used in flight as an external calibration source. Third, the signal arising from the Doppler effect due to the earth's motion around the barycenter of the solar system is used as an external calibration source. Preliminary analysis of the external source calibration techniques confirms the accuracy of the currently more precise ground-based calibration. Assuming the noise source behavior did not change from the ground-based calibration to flight, a 0.1-0.4 percent relative and 0.7-2.5 percent absolute calibration uncertainty is derived, depending on radiometer channel.

  12. Dopant activation in ion implanted silicon by microwave annealing

    SciTech Connect

    Alford, T. L.; Thompson, D. C.; Mayer, J. W.; Theodore, N. David

    2009-12-01

    Microwaves are used as a processing alternative for the electrical activation of ion implanted dopants and the repair of ion implant damage within silicon. Rutherford backscattering spectra demonstrate that microwave heating reduces the damage resulting from ion implantation of boron or arsenic into silicon. Cross-section transmission electron microscopy and selective area electron diffraction patterns demonstrate that the silicon lattice regains nearly all of its crystallinity after microwave processing of arsenic implanted silicon. Sheet resistance readings indicate the time required for boron or arsenic electrical activation within implanted silicon. Hall measurements demonstrate the extent of dopant activation after microwave heating of implanted silicon. Physical and electrical characterization determined that the mechanism of recrystallization in arsenic implanted silicon is solid phase epitaxial regrowth. The boron implanted silicon samples did not result in enough lattice damage to amorphize the silicon lattice and resulted in low boron activation during microwave annealing even though recrystallization of the Si lattice damage did take place. Despite low boron activation levels, the level of boron activation in this work was higher than that expected from traditional annealing techniques. The kinetics of microwave heating and its effects on implanted Si are also discussed.

  13. Microwave Diffraction Techniques from Macroscopic Crystal Models

    ERIC Educational Resources Information Center

    Murray, William Henry

    1974-01-01

    Discusses the construction of a diffractometer table and four microwave models which are built of styrofoam balls with implanted metallic reflecting spheres and designed to simulate the structures of carbon (graphite structure), sodium chloride, tin oxide, and palladium oxide. Included are samples of Bragg patterns and computer-analysis results.…

  14. LASER COOLING: 'Microwave' technique for atoms

    NASA Astrophysics Data System (ADS)

    Rivlin, Lev A.

    2008-12-01

    The mechanisms of the transport of cold atomic ensembles and transformation of their parameters in potential channels and wells treated by analogy of electromagnetic microwave waveguides and hollow resonators are considered. The possibility of performing various manipulations with such ensembles, in particular, the isothermal phase transition to a Bose—Einstein condensate is pointed out.

  15. Optical Techniques for Low Noise Microwave Frequency Sources

    NASA Technical Reports Server (NTRS)

    Maleki, Lute

    2005-01-01

    Optical techniques and mathematical models are described for low noise microwave frequency sources. The contents include: 1) Why Optical Techniques; 2) Wavemixing: Advantages and Disadvantages; 3) Wavemixing with Feedback: The OEO; 4) Feedback in both loops: COEO; and 5) State of the Art and Future Prospects.

  16. Extraordinary transmission technique for microwave antenna applications

    NASA Astrophysics Data System (ADS)

    Sarin, V. P.; Jayakrishnan, M. P.; Aanandan, C. K.; Mohanan, P.; Vasudevan, K.

    2016-05-01

    The extraordinary optical transmission (EOT) through an array of holes in a metal plate has been a constant source of inspiration for researchers for over a decade (Ebbesen et al 1998 Nature 391 667–9). In this paper, an EOT analogue is proposed in the microwave frequency range for enhancing the radiation performance of a stacked dipole antenna. It is observed that the back radiated power of the antenna is considerably reduced and the reason behind transmission enhancement is the excitation of Fabry–Pérot resonant modes on the slit loaded aperture. Computational analysis based on finite difference time domain is performed for identifying the true reason behind resonant transmission enhancement.

  17. Sintering of zirconia ceramics using microwave and spark heating techniques

    NASA Astrophysics Data System (ADS)

    Ivashutenko, A. S.; Frangulyan, T. S.; Ghyngazov, S. A.; Petrova, A. B.

    2016-02-01

    The paper presents the results of an complex study of structural and mechanical properties of zirconia ceramics sintered using different techniques. The samples were sintered via the conventional method of heating, in the field of microwave radiation and spark plasma. The experimental data indicates that a microwave field and spark plasma have a stimulating effect on zirconia ceramics sintering. In contrast to the microwave sintering, spark plasma sintering provides ceramics with improved properties at similar time-temperature annealing modes. Moreover, the properties of the ceramics under spark plasma sintering at T=1300 °C are similar to the properties of the ceramics sintered in a microwave field at T=1400 °C.

  18. Microwave spectroscopy of the active sun

    NASA Technical Reports Server (NTRS)

    Hurford, Gordon

    1992-01-01

    In studies of solar active regions and bursts, the ability to obtain spatially resolved radio spectra (brightness temperature spectra) opens a whole new range of possibilities for study of the solar corona. For active regions, two-dimensional maps of brightness temperature over a wide range of frequencies allows one to determine temperature, column density, and magnetic field strength over the entire region in a straightforward, unambiguous way. For flares, the time-dependent electron energy distribution, number of accelerated electrons, and magnetic field strength and direction can be found. In practice, obtaining complete radio images at a large number of frequencies is a significant technical challenge, especially while keeping costs down. Our instrument at Owens Valley Radio Observatory provided the starting point for a modest attempt at meeting this goal. We proposed to build three additional, very low-cost 2-m antennas which, when combined with our existing two 27-m dishes, expands the array to 5 elements. This modest increase in number of solar dedicated antennas, from 2 to 5, increases our maximum number of physical baselines from 1 to 10 and allows the instrument to do true imaging of solar microwave sources, both bursts and active regions. Combined with the technique of frequency synthesis, the new array has up to 450 effective baselines, giving imaging capability that approaches that of a sub-arrayed VLA. The prototype antenna design was finalized and the antenna was put into operation in Nov. 1989.

  19. Synthesis of (azelaic-co-dodecanedioic) polyanhydride by microwave technique

    NASA Astrophysics Data System (ADS)

    Gutiérrez, M.; Sierra, C.; Acevedo Morantes, M.; Herrera, A. P.

    2016-02-01

    A polyanhydride was synthesized through microwave radiation using azelaic acid and dodecanedioic dicarboxylic acid at concentrations of 75:25, 50:50, and 25:75%w/w with acetic anhydride as crosslinking agent. Polymerization was carried out during 3 and 5 minutes. The copolymer with the highest molecular weight was selected using the intrinsic viscometry technique and by Huggin/Kraemer and Solomon/Ciuta methods. Based on these measurements, the 50:50 copolymer was selected with a polymerization time of 3 minutes in the microwave. This sample displayed the highest intrinsic viscosity (41.82cm3/g), demonstrating the relevance of the microwave technique for the synthesis of biopolymers.

  20. Summary of the Active Microwave Workshop, chapter 1. [utilization in applications and aerospace programs

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An overview is given of the utility, feasibility, and advantages of active microwave sensors for a broad range of applications, including aerospace. In many instances, the material provides an in-depth examination of the applicability and/or the technology of microwave remote sensing, and considerable documentation is presented in support of these techniques. An assessment of the relative strengths and weaknesses of active microwave sensor data indicates that satisfactory data are obtainable for several significant applications.

  1. Microwave-assisted regeneration of activated carbon.

    PubMed

    Foo, K Y; Hameed, B H

    2012-09-01

    Microwave heating was used in the regeneration of methylene blue-loaded activated carbons produced from fibers (PFAC), empty fruit bunches (EFBAC) and shell (PSAC) of oil palm. The dye-loaded carbons were treated in a modified conventional microwave oven operated at 2450 MHz and irradiation time of 2, 3 and 5 min. The virgin properties of the origin and regenerated activated carbons were characterized by pore structural analysis and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement and determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue (MB). Microwave irradiation preserved the pore structure, original active sites and adsorption capacity of the regenerated activated carbons. The carbon yield and the monolayer adsorption capacities for MB were maintained at 68.35-82.84% and 154.65-195.22 mg/g, even after five adsorption-regeneration cycles. The findings revealed the potential of microwave heating for regeneration of spent activated carbons. PMID:22728787

  2. Technology advances in active and passive microwave sensing through 1985

    NASA Technical Reports Server (NTRS)

    Barath, F. T.

    1977-01-01

    As a result of a growing awareness by the remote sensing community of the unique capabilities of passive and active microwave sensors, these instruments are expected to grow in the next decade in numbers, versatility and complexity. The Nimbus-G and Seasat-A Scanning Multichannel Microwave Spectrometer (SMMR), the Seasat-A radar altimeter, scatterometer and synthetic aperture radar represent the first systematic attempt at exploring a wide variety of applications utilizing microwave sensing techniques and are indicators of the directions in which the pertinent technology is likely to evolve. The trend is toward high resolution multi-frequency imagers spanning wide frequency ranges and wide swaths requiring sophisticated receivers, real-time data processors and most importantly, complex antennas.

  3. Receiver techniques for microwave digital radio

    NASA Astrophysics Data System (ADS)

    Chamberlain, J. K.; Clayton, F. M.; Sari, H.; Vandamme, P.

    1986-11-01

    Adaptive receiver design features and operating techniques are described which have been devised to offset the deleterious effects of multipath fading in digital radio systems. Frequency-domain and time-domain circuitry are discussed for equalizing channel distortion, and attention is also given to carrier and symbol synchronization subsystems. Height and frequency diversity are summarized for safeguarding signals from destruction by propagation effects and methods for adaptive cancellation of cross-polarized interference are described.

  4. Microwave de-embedding techniques applied to acoustics.

    PubMed

    Jackson, Charles M

    2005-07-01

    This paper describes the use of the microwave techniques of time domain reflectometry (TDR) and de-embedding in an acoustical application. Two methods of calibrating the reflectometer are presented to evaluate the consistency of the method. Measured and modeled S-parameters of woodwind instruments are presented. The raw measured data is de-embedded to obtain an accurate measurement. The acoustic TDR setup is described. PMID:16212248

  5. Active-Passive Microwave Remote Sensing of Martian Permafrost and Subsurface Water

    NASA Technical Reports Server (NTRS)

    Raizer, V.; Linkin, V. M.; Ozorovich, Y. R.; Smythe, W. D.; Zoubkov, B.; Babkin, F.

    2000-01-01

    The investigation of permafrost formation global distribution and their appearance in h less than or equal 1 m thick subsurface layer would be investigated successfully by employment of active-passive microwave remote sensing techniques.

  6. Laser activated MTOS microwave device

    NASA Technical Reports Server (NTRS)

    Maserjian, J. (Inventor)

    1985-01-01

    A light-activated semiconductor device usable as an optoelectronic switch, pulse generator or optical detector is provided. A semiconductor device is disclosed which provides back-to-back metal-thin oxide-silicon (MTOS) capacitors. Each capacitor includes a thin, light-absorptive aluminum electrode which overlies a thin oxide layer and a lightly doped region implanted in an intrinsic silicon substrate.

  7. Reconstruction Techniques for Sparse Multistatic Linear Array Microwave Imaging

    SciTech Connect

    Sheen, David M.; Hall, Thomas E.

    2014-06-09

    Sequentially-switched linear arrays are an enabling technology for a number of near-field microwave imaging applications. Electronically sequencing along the array axis followed by mechanical scanning along an orthogonal axis allows dense sampling of a two-dimensional aperture in near real-time. In this paper, a sparse multi-static array technique will be described along with associated Fourier-Transform-based and back-projection-based image reconstruction algorithms. Simulated and measured imaging results are presented that show the effectiveness of the sparse array technique along with the merits and weaknesses of each image reconstruction approach.

  8. Discrete Random Media Techniques for Microwave Modeling of Vegetated Terrain

    NASA Technical Reports Server (NTRS)

    Lang, R. H.

    1984-01-01

    Microwave remote sensing of agricultural crops and forested regions is studied. Long term goals of the research involve modeling vegetation so that radar signatures can be used to infer the parameters which characterize the vegetation and underlying ground. Vegetation is modeled by discrete scatterers viz, leaves, stems, branches and trunks. These are replaced by glossy dielectric discs and cylinders. Rough surfaces are represented by their mean and spectral characteristics. Average scattered power is then calculated by employing discrete random media methodology such as the distorted Born approximation or transport theory. Both coherent and incoherent multiple scattering techniques are explored. Once direct methods are developed, inversion techniques can be investigated.

  9. Active cleaning technique device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1973-01-01

    The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.

  10. Physical techniques for delivering microwave energy to tissues.

    PubMed Central

    Hand, J. W.

    1982-01-01

    Some of the physical aspects of delivering microwave energy to tissues have been discussed. Effective penetration of a few cm may be achieved with external applicators whilst small coaxial or cylindrical devices can induce localized heating in sites accessible to catheters or to direct invasion. To heat deep tissue sites in general, systems of greater complexity involving a number of applicators with particular phase relationships between them are required. The problems of thermometry in the presence of electromagnetic fields fall outside the scope of this article. Their solution, however, is no less important to the future of clinical hyperthermia than the development of heating techniques. Finally, it should be remembered that physiological parameters such as blood flow have appreciable effects in determining the efficacy of the physical techniques described above. PMID:6950781

  11. AMISS - Active and passive MIcrowaves for Security and Subsurface imaging

    NASA Astrophysics Data System (ADS)

    Soldovieri, Francesco; Slob, Evert; Turk, Ahmet Serdar; Crocco, Lorenzo; Catapano, Ilaria; Di Matteo, Francesca

    2013-04-01

    The FP7-IRSES project AMISS - Active and passive MIcrowaves for Security and Subsurface imaging is based on a well-combined network among research institutions of EU, Associate and Third Countries (National Research Council of Italy - Italy, Technische Universiteit Delft - The Netherlands, Yildiz Technical University - Turkey, Bauman Moscow State Technical University - Russia, Usikov Institute for Radio-physics and Electronics and State Research Centre of Superconductive Radioelectronics "Iceberg" - Ukraine and University of Sao Paulo - Brazil) with the aims of achieving scientific advances in the framework of microwave and millimeter imaging systems and techniques for security and safety social issues. In particular, the involved partners are leaders in the scientific areas of passive and active imaging and are sharing their complementary knowledge to address two main research lines. The first one regards the design, characterization and performance evaluation of new passive and active microwave devices, sensors and measurement set-ups able to mitigate clutter and increase information content. The second line faces the requirements to make State-of-the-Art processing tools compliant with the instrumentations developed in the first line, suitable to work in electromagnetically complex scenarios and able to exploit the unexplored possibilities offered by new instrumentations. The main goals of the project are: 1) Development/improvement and characterization of new sensors and systems for active and passive microwave imaging; 2) Set up, analysis and validation of state of art/novel data processing approach for GPR in critical infrastructure and subsurface imaging; 3) Integration of state of art and novel imaging hardware and characterization approaches to tackle realistic situations in security, safety and subsurface prospecting applications; 4) Development and feasibility study of bio-radar technology (system and data processing) for vital signs detection and

  12. Efficient preparation of nanocrystalline anatase TiO{sub 2} and V/TiO{sub 2} thin layers using microwave drying and/or microwave calcination technique

    SciTech Connect

    Zabova, H.; Sobek, J.; Cirkva, V.; Solcova, O.; Kment, S.; Hajek, M.

    2009-12-15

    This study has demonstrated that the synthesis of TiO{sub 2} and V/TiO{sub 2} thin layers may be significantly improved and extended if microwave energy is employed during the drying and/or calcination step. Thin nanoparticulate titania layers were prepared via the sol-gel method using titanium n-butoxide as a precursor. As prepared films were then analyzed by means of various characterization techniques (Raman spectroscopy, UV/Vis, AFM, XPS) in order to determine their functional properties. The photocatalytic activities of prepared layers were quantified by the decoloring rate of Rhodamine B. All thermal treatments in microwave field were done in the same manner, by using an IR pyrometer in the microwave oven and monitoring the temperature of the heating. Nevertheless the microwave and thermally prepared materials were different. This in turn may lead to differences in their functional and also photocatalytic properties. - Graphical abstract: This study has demonstrated that the synthesis of thin layers may be improved and extended if microwave energy is employed during the preparation process. Microwave processing has the potential to reduce the time, cost and energy input for the production of thin layers.

  13. Reconstruction techniques for sparse multistatic linear array microwave imaging

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Hall, Thomas E.

    2014-06-01

    Sequentially-switched linear arrays are an enabling technology for a number of near-field microwave imaging applications. Electronically sequencing along the array axis followed by mechanical scanning along an orthogonal axis allows dense sampling of a two-dimensional aperture in near real-time. The Pacific Northwest National Laboratory (PNNL) has developed this technology for several applications including concealed weapon detection, groundpenetrating radar, and non-destructive inspection and evaluation. These techniques form three-dimensional images by scanning a diverging beam swept frequency transceiver over a two-dimensional aperture and mathematically focusing or reconstructing the data into three-dimensional images. Recently, a sparse multi-static array technology has been developed that reduces the number of antennas required to densely sample the linear array axis of the spatial aperture. This allows a significant reduction in cost and complexity of the linear-array-based imaging system. The sparse array has been specifically designed to be compatible with Fourier-Transform-based image reconstruction techniques; however, there are limitations to the use of these techniques, especially for extreme near-field operation. In the extreme near-field of the array, back-projection techniques have been developed that account for the exact location of each transmitter and receiver in the linear array and the 3-D image location. In this paper, the sparse array technique will be described along with associated Fourier-Transform-based and back-projection-based image reconstruction algorithms. Simulated imaging results are presented that show the effectiveness of the sparse array technique along with the merits and weaknesses of each image reconstruction approach.

  14. Comparison of Prostatic Tissue Processed by Microwave and Conventional Technique Using Morphometry

    PubMed Central

    Jain, Promil; Kumar, Sanjay; Arora, B; Singh, Sneh; Chabbra, Sonia; Sen, Rajeev

    2015-01-01

    Background and Objectives: Rapid processing of histopathological specimens and decreased turnaround time is important to fulfill the needs of clinicians treating sick patients, so the present study was conducted to compare the time taken and quality of sections in processing of prostatic tissue by rapid microwave and conventional techniques using morphometry. Methods: Four to five mm thick paired prostate tissue pieces of fifty cases of prostatectomy specimens were taken. One tissue piece of the pair was processed routinely overnight by conventional tissue processing and the other by microwave processing. Time taken for processing by both conventional technique and microwave technique was noted and compared. Then, both were stained with conventional method of hematoxylin and eosin staining and examined for histological typing and grading. Morphometric study was done on slides of prostatic tissue processed by both conventional and microwave technique. Result: The prostatectomy specimens included both benign (86%) and malignant (14%) prostatic lesions in the age range of 46-85 years. The time taken for steps of dehydration, clearing and impregnation in microwave technique was significantly less as compared to histoprocessing done by conventional technique. Morphology, staining patterns of prostatic tissue processed within minutes by microwave technique, whether benign or malignant, were comparable to those sections which were processed in days using standard technique. Conclusion: Domestic microwave oven can be used for histoprocessing to accelerate the processing with preservation of morphology and is cheaper than commercially available microwave ovens and processing time was considerably reduced from days to minutes. PMID:26516319

  15. An ultra-fast fabrication technique for anode support solid oxide fuel cells by microwave

    NASA Astrophysics Data System (ADS)

    Jiao, Zhenjun; Shikazono, Naoki; Kasagi, Nobuhide

    An effective and facile technique has been developed for high temperature anode-electrolyte co-sintering of anode support solid oxide fuel cells by using microwave activated sparking plasma. A high sintering temperature of 1600 °C can be achieved in a few minutes time by discharging effect. Anode support substrate pellet is uniaxially pressed, and then dip-coated with a 10 μm yttria stabilized zirconia electrolyte layer. After the microwave co-sintering, La 0.8Sr 0.2MnO x cathode is screen-printed onto electrolyte and sintered by conventional thermal method. The cell has stably operated in 3% humidified hydrogen for more than 130 h.

  16. Circular Bioassay Platforms for Applications in Microwave-Accelerated Techniques

    PubMed Central

    Mohammed, Muzaffer; Clement, Travis C.; Aslan, Kadir

    2014-01-01

    In this paper, we present the design of four different circular bioassay platforms, which are suitable for homogeneous microwave heating, using theoretical calculations (i.e., COMSOL™ multiphysics software). Circular bioassay platforms are constructed from poly(methyl methacrylate) (PMMA) for optical transparency between 400–800 nm, has multiple sample capacity (12, 16, 19 and 21 wells) and modified with silver nanoparticle films (SNFs) to be used in microwave-accelerated bioassays (MABs). In addition, a small monomode microwave cavity, which can be operated with an external microwave generator (100 W), for use with the bioassay platforms in MABs is also developed. Our design parameters for the circular bioassay platforms and monomode microwave cavity during microwave heating were: (i) temperature profiles, (ii) electric field distributions, (iii) location of the circular bioassay platforms inside the microwave cavity, and (iv) design and number of wells on the circular bioassay platforms. We have also carried out additional simulations to assess the use of circular bioassay platforms in a conventional kitchen microwave oven (e.g., 900 W). Our results show that the location of the circular bioassay platforms in the microwave cavity was predicted to have a significant effect on the homogeneous heating of these platforms. The 21-well circular bioassay platform design in our monomode microwave cavity was predicted to offer a homogeneous heating pattern, where inter-well temperature was observed to be in between 23.72–24.13°C and intra-well temperature difference was less than 0.21°C for 60 seconds of microwave heating, which was also verified experimentally. PMID:25568813

  17. Active/passive microwave sensor comparison of MIZ-ice concentration estimates. [Marginal Ice Zone (MIZ)

    NASA Technical Reports Server (NTRS)

    Burns, B. A.; Cavalieri, D. J.; Keller, M. R.

    1986-01-01

    Active and passive microwave data collected during the 1984 summer Marginal Ice Zone Experiment in the Fram Strait (MIZEX 84) are used to compare ice concentration estimates derived from synthetic aperture radar (SAR) data to those obtained from passive microwave imagery at several frequencies. The comparison is carried out to evaluate SAR performance against the more established passive microwave technique, and to investigate discrepancies in terms of how ice surface conditions, imaging geometry, and choice of algorithm parameters affect each sensor. Active and passive estimates of ice concentration agree on average to within 12%. Estimates from the multichannel passive microwave data show best agreement with the SAR estimates because the multichannel algorithm effectively accounts for the range in ice floe brightness temperatures observed in the MIZ.

  18. Solar Activity Studies using Microwave Imaging Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    We report on the status of solar cycle 24 based on polar prominence eruptions (PEs) and microwave brightness enhancement (MBE) information obtained by the Nobeyama radioheliograph. The north polar region of the Sun had near-zero field strength for more than three years (2012-2015) and ended only in September 2015 as indicated by the presence of polar PEs and the lack of MBE. The zero-polar-field condition in the south started only around 2013, but it ended by June 2014. Thus the asymmetry in the times of polarity reversal switched between cycle 23 and 24. The polar MBE is a good proxy for the polar magnetic field strength as indicated by the high degree of correlation between the two. The cross-correlation between the high- and low-latitude MBEs is significant for a lag of approximately 5.5 to 7.3 years, suggesting that the polar field of one cycle indicates the sunspot number of the next cycle in agreement with the Babcock-Leighton mechanism of solar cycles. The extended period of near-zero field in the north-polar region should result in a weak and delayed sunspot activity in the northern hemisphere in cycle 25.

  19. Microwave-induced thermogenetic activation of single cells

    SciTech Connect

    Safronov, N. A.; Fedotov, I. V.; Ermakova, Yu. G.; Matlashov, M. E.; Belousov, V. V.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Zheltikov, A. M.

    2015-04-20

    Exposure to a microwave field is shown to enable thermogenetic activation of individual cells in a culture of cell expressing thermosensitive ion channels. Integration of a microwave transmission line with an optical fiber and a diamond quantum thermometer has been shown to allow thermogenetic single-cell activation to be combined with accurate local online temperature measurements based on an optical detection of electron spin resonance in nitrogen–vacancy centers in diamond.

  20. A chemical/microwave technique for the measurement of bulk minority carrier lifetime in silicon wafers

    NASA Technical Reports Server (NTRS)

    Luke, Keung L.; Cheng, Li-Jen

    1988-01-01

    A chemical/microwave technique for the measurement of bulk minority carrier lifetime in silicon wafers is described. This method consists of a wet chemical treatment (surface cleaning, oxidation in solution, and measurement in HF solution) to passivate the silicon surfaces, a laser diode array for carrier excitation, and a microwave bridge measuring system which is more sensitive than the microwave systems used previously for lifetime measurement. Representative experimental data are presented to demonstrate this technique. The result reveals that this method is useful for the determination of bulk lifetime of commercial silicon wafers.

  1. Method and apparatus for measuring butterfat and protein content using microwave absorption techniques

    DOEpatents

    Fryer, Michael O.; Hills, Andrea J.; Morrison, John L.

    2000-01-01

    A self calibrating method and apparatus for measuring butterfat and protein content based on measuring the microwave absorption of a sample of milk at several microwave frequencies. A microwave energy source injects microwave energy into the resonant cavity for absorption and reflection by the sample undergoing evaluation. A sample tube is centrally located in the resonant cavity passing therethrough and exposing the sample to the microwave energy. A portion of the energy is absorbed by the sample while another portion of the microwave energy is reflected back to an evaluation device such as a network analyzer. The frequency at which the reflected radiation is at a minimum within the cavity is combined with the scatter coefficient S.sub.11 as well as a phase change to calculate the butterfat content in the sample. The protein located within the sample may also be calculated in a likewise manner using the frequency, S.sub.11 and phase variables. A differential technique using a second resonant cavity containing a reference standard as a sample will normalize the measurements from the unknown sample and thus be self-calibrating. A shuttered mechanism will switch the microwave excitation between the unknown and the reference cavities. An integrated apparatus for measuring the butterfat content in milk using microwave absorption techniques is also presented.

  2. COBE Differential Microwave Radiometer (DMR) data processing techniques

    NASA Technical Reports Server (NTRS)

    Jackson, P. D.; Smoot, G. F.; Bennett, C. L.; Aymon, J.; Backus, C.; Deamici, G.; Hinshaw, G.; Keegstra, P. B.; Kogut, A.; Lineweaver, C.

    1992-01-01

    The purpose of the Differential Microwave Radiometer (DMR) experiment on the Cosmic Background Explorer (COBE) satellite is to make whole-sky maps, at frequencies of 31.5, 53, and 90 GHz, of any departures of the Cosmic Microwave Background (CMB) from its mean value of 2.735 K. An elaborate software system is necessary to calibrate and invert the differential measurements, so as to make sky maps free from large scale systematic errors to levels less than a millionth of the CMB.

  3. Dynamic measurement of bulk modulus of dielectric materials using a microwave phase shift technique

    NASA Technical Reports Server (NTRS)

    Barker, B. J.; Strand, L. D.

    1972-01-01

    A microwave Doppler shift technique was developed for measuring the dynamic bulk modulus of dielectric materials such as solid propellants. The system has a demonstrated time resolution on the order of milliseconds and a theoretical spatial resolution of a few microns. Accuracy of the technique is dependent on an accurate knowledge of the wavelength of the microwave in the sample being tested. Such measurement techniques are discussed. Preliminary tests with two solid propellants, one non-aluminized and one containing 16% aluminum, yielded reasonable, reproducible results. It was concluded that with refinements the technique holds promise as a practical means for obtaining accurate dynamic bulk modulus data over a variety of transient conditions.

  4. An optical fiber sensing technique for temperature distribution measurements in microwave heating

    NASA Astrophysics Data System (ADS)

    Wada, Daichi; Sugiyama, Jun-ichi; Zushi, Hiroaki; Murayama, Hideaki

    2015-08-01

    We introduce an optical fiber sensing technique that can measure the temperature distributions along a fiber during microwave heating. We used a long-length fiber Bragg grating (FBG) as an electromagnetic-immune sensor and interrogated temperature distributions along the FBG by an optical frequency domain reflectometry. Water in a glass tube with a length of 820 mm was heated in a microwave oven, and its temperature distribution along the glass tube was measured using the sensing system. The temperature distribution was obtained in 5 mm intervals. Infrared radiometry was also used to compare the temperature measurement results. Time and spatial variations of the temperature distribution profiles were monitored for several microwave input powers. The results clearly depict inhomogeneous temperature profiles. The applicability and effectiveness of the optical fiber distributed measurement technique in microwave heating are demonstrated.

  5. Investigation of direct solar-to-microwave energy conversion techniques

    NASA Technical Reports Server (NTRS)

    Chatterton, N. E.; Mookherji, T. K.; Wunsch, P. K.

    1978-01-01

    Identification of alternative methods of producing microwave energy from solar radiation for purposes of directing power to the Earth from space is investigated. Specifically, methods of conversion of optical radiation into microwave radiation by the most direct means are investigated. Approaches based on demonstrated device functioning and basic phenomenologies are developed. There is no system concept developed, that is competitive with current baseline concepts. The most direct methods of conversion appear to require an initial step of production of coherent laser radiation. Other methods generally require production of electron streams for use in solid-state or cavity-oscillator systems. Further development is suggested to be worthwhile for suggested devices and on concepts utilizing a free-electron stream for the intraspace station power transport mechanism.

  6. Active microwave classification of sea ice

    NASA Technical Reports Server (NTRS)

    Onstott, Robert G.

    1989-01-01

    Radar backscatter studies of Arctic sea ice have been carried out over a number of years with the intent to acquire physical property information through the examination of microwave signatures. The breadth of these studies continues to expand; as an example, measurements are now conducted at frequencies from 500 MHz to about 100 GHz. One of the scientific goals of this work has been to develop an improved outstanding of the scattering processes at play. A second, equally important goal has been to apply the knowledge gained in examining the backscatter response of ice and snow made in conjunction with the detailed scene characterizations, the insight gained through theoretical modeling and parametric study, and the data entered into the radar signature library to develop procedures to convert microwave signal information (available in the very near future) into valuable data products. This should ultimately provide a better understanding of the environment. The author discusses what has been learned through the many efforts associated with the near-surface scatterometer measurement programs and how the knowledge gained is assisting in the development of future sea ice type satellite algorithms. The logic and mechanisms used in discriminating sea ice types are presented.

  7. Technique for Performing Dielectric Property Measurements at Microwave Frequencies

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Jackson, Henry W.

    2010-01-01

    A paper discusses the need to perform accurate dielectric property measurements on larger sized samples, particularly liquids at microwave frequencies. These types of measurements cannot be obtained using conventional cavity perturbation methods, particularly for liquids or powdered or granulated solids that require a surrounding container. To solve this problem, a model has been developed for the resonant frequency and quality factor of a cylindrical microwave cavity containing concentric cylindrical samples. This model can then be inverted to obtain the real and imaginary dielectric constants of the material of interest. This approach is based on using exact solutions to Maxwell s equations for the resonant properties of a cylindrical microwave cavity and also using the effective electrical conductivity of the cavity walls that is estimated from the measured empty cavity quality factor. This new approach calculates the complex resonant frequency and associated electromagnetic fields for a cylindrical microwave cavity with lossy walls that is loaded with concentric, axially aligned, lossy dielectric cylindrical samples. In this approach, the calculated complex resonant frequency, consisting of real and imaginary parts, is related to the experimentally measured quantities. Because this approach uses Maxwell's equations to determine the perturbed electromagnetic fields in the cavity with the material(s) inserted, one can calculate the expected wall losses using the fields for the loaded cavity rather than just depending on the value of the fields obtained from the empty cavity quality factor. These additional calculations provide a more accurate determination of the complex dielectric constant of the material being studied. The improved approach will be particularly important when working with larger samples or samples with larger dielectric constants that will further perturb the cavity electromagnetic fields. Also, this approach enables the ability to have a

  8. Active microwave remote sensing of oceans, chapter 3

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A rationale is developed for the use of active microwave sensing in future aerospace applications programs for the remote sensing of the world's oceans, lakes, and polar regions. Summaries pertaining to applications, local phenomena, and large-scale phenomena are given along with a discussion of orbital errors.

  9. Large area photodetector based on microwave cavity perturbation techniques

    SciTech Connect

    Braggio, C. Carugno, G.; Sirugudu, R. K.; Lombardi, A.; Ruoso, G.

    2014-07-28

    We present a preliminary study to develop a large area photodetector, based on a semiconductor crystal placed inside a superconducting resonant cavity. Laser pulses are detected through a variation of the cavity impedance, as a consequence of the conductivity change in the semiconductor. A novel method, whereby the designed photodetector is simulated by finite element analysis, makes it possible to perform pulse-height spectroscopy on the reflected microwave signals. We measure an energy sensitivity of 100 fJ in the average mode without the employment of low noise electronics and suggest possible ways to further reduce the single-shot detection threshold, based on the results of the described method.

  10. A new technique to pyrolyse biomass in a microwave system: effect of stirrer speed.

    PubMed

    Abubakar, Zubairu; Salema, Arshad Adam; Ani, Farid Nasir

    2013-01-01

    A new technique to pyrolyse biomass in microwave (MW) system is presented in this paper to solve the problem of bio-oil deposition. Pyrolysis of oil palm shell (OPS) biomass was conducted in 800 W and 2.45 GHz frequency MW system using an activated carbon as a MW absorber. The temperature profile, product yield and the properties of the products were found to depend on the stirrer speed and MW absorber percentage. The highest bio-oil yield of 28 wt.% was obtained at 25% MW absorber and 50 rpm stirrer speed. Bio-char showed highest calorific value of the 29.5 MJ/kg at 50% MW absorber and 100 rpm stirrer speed. Bio-oil from this study was rich in phenol with highest detected as 85 area% from the GC-MS results. Thus, OPS bio-oil can become potential alternative to petroleum-based chemicals in various phenolic based applications. PMID:23211483

  11. Assimilation of Passive and Active Microwave Soil Moisture Retrievals

    NASA Technical Reports Server (NTRS)

    Draper, C. S.; Reichle, R. H.; DeLannoy, G. J. M.; Liu, Q.

    2012-01-01

    Root-zone soil moisture is an important control over the partition of land surface energy and moisture, and the assimilation of remotely sensed near-surface soil moisture has been shown to improve model profile soil moisture [1]. To date, efforts to assimilate remotely sensed near-surface soil moisture at large scales have focused on soil moisture derived from the passive microwave Advanced Microwave Scanning Radiometer (AMSR-E) and the active Advanced Scatterometer (ASCAT; together with its predecessor on the European Remote Sensing satellites (ERS. The assimilation of passive and active microwave soil moisture observations has not yet been directly compared, and so this study compares the impact of assimilating ASCAT and AMSR-E soil moisture data, both separately and together. Since the soil moisture retrieval skill from active and passive microwave data is thought to differ according to surface characteristics [2], the impact of each assimilation on the model soil moisture skill is assessed according to land cover type, by comparison to in situ soil moisture observations.

  12. The research of ceramic materials for applications in the glass industry including microwave heating techniques

    NASA Astrophysics Data System (ADS)

    Kogut, K.; Kasprzyk, K.; Zboromirska-Wnukiewicz, B.; Ruziewicz, T.

    2016-02-01

    The melting of a glass is a very energy-intensive process. Selection of energy sources, the heating technique and the method of heating recovery are a fundamental issue from the furnace design point of view of and economic effectiveness of the process. In these processes the problem constitutes the lack of the appropriate ceramic materials that would meet the requirements. In this work the standard ceramic materials were examined and verified. The possibilities of application of microwave techniques were evaluated. In addition the requirements regarding the parameters of new ceramic materials applied for microwave technologies were determined.

  13. Estimation of soil hydraulic properties with microwave techniques

    NASA Technical Reports Server (NTRS)

    Oneill, P. E.; Gurney, R. J.; Camillo, P. J.

    1985-01-01

    Useful quantitative information about soil properties may be obtained by calibrating energy and moisture balance models with remotely sensed data. A soil physics model solves heat and moisture flux equations in the soil profile and is driven by the surface energy balance. Model generated surface temperature and soil moisture and temperature profiles are then used in a microwave emission model to predict the soil brightness temperature. The model hydraulic parameters are varied until the predicted temperatures agree with the remotely sensed values. This method is used to estimate values for saturated hydraulic conductivity, saturated matrix potential, and a soil texture parameter. The conductivity agreed well with a value measured with an infiltration ring and the other parameters agreed with values in the literature.

  14. Thickness characterisation of oil spills using active microwave sensors

    NASA Astrophysics Data System (ADS)

    True, Michael; Shuchman, Robert A.; Kletzli, D. W., Jr.; Johannessen, Johnny A.; Digranes, Gunar; Berg, Sverre; Dalland, Kjell

    1994-12-01

    Oil thickness is a crucial parameter in the characterization of oil spills for environmental impact. The feasibility of using active microwave sensors to measure thickness was addressed in a series of microwave scatterometer experiments performed by Simrad Marine A/S in a wave tank at the Nansen Environmental Remote Sensing Center. The thickness of the oil layer was maintained at levels similar to the thick part of an oil spill (0.1 - 1 mm). The measurements showed the capability of active microwave sensors to measure oil spill thickness when the oil type is known. In addition to thickness characterization, the experiment studied the effects of oil viscosity, incidence angle, wind speed, wind angle, microwave frequency, and polarization. The backscatter contrast was observed to be greater for lower incidence angles which indicates that the ERS-1 viewing geometry is optimum for the detection and measurement of thick oil slicks. A thickness-dependent backscatter model was developed which included the effects of oil viscosity, composite surface effects, and oil-water reflectivities. The model viscous effects saturated when the oil thickness was greater than the viscous boundary layer thickness. This explained the observed C-VV backscatter contrast saturation for low viscosity diesel oil at thicknesses greater than 0.15 mm. The model predicted contrast saturation at greater thicknesses for the higher viscosity oils. The data showed this trend but the measurements did not extend to thicknesses which tested the model completely.

  15. Validation of stratospheric temperature profiles from a ground-based microwave radiometer with other techniques

    NASA Astrophysics Data System (ADS)

    Navas, Francisco; Kämpfer, Niklaus; Haefele, Alexander; Keckhut, Philippe; Hauchecorne, Alain

    2016-04-01

    Vertical profiles of atmospheric temperature trends has become recognized as an important indicator of climate change, because different climate forcing mechanisms exhibit distinct vertical warming and cooling patterns. For example, the cooling of the stratosphere is an indicator for climate change as it provides evidence of natural and anthropogenic climate forcing just like surface warming. Despite its importance, our understanding of the observed stratospheric temperature trend and our ability to test simulations of the stratospheric response to emissions of greenhouse gases and ozone depleting substances remains limited. One of the main reason is because stratospheric long-term datasets are sparse and obtained trends differ from one another. Different techniques allow to measure stratospheric temperature profiles as radiosonde, lidar or satellite. The main advantage of microwave radiometers against these other instruments is a high temporal resolution with a reasonable good spatial resolution. Moreover, the measurement at a fixed location allows to observe local atmospheric dynamics over a long time period, which is crucial for climate research. This study presents an evaluation of the stratospheric temperature profiles from a newly ground-based microwave temperature radiometer (TEMPERA) which has been built and designed at the University of Bern. The measurements from TEMPERA are compared with the ones from other different techniques such as in-situ (radiosondes), active remote sensing (lidar) and passive remote sensing on board of Aura satellite (MLS) measurements. In addition a statistical analysis of the stratospheric temperature obtained from TEMPERA measurements during four years of data has been performed. This analysis evidenced the capability of TEMPERA radiometer to monitor the temperature in the stratosphere for a long-term. The detection of some singular sudden stratospheric warming (SSW) during the analyzed period shows the necessity of these

  16. Microwave-accelerated bioassay technique for rapid and quantitative detection of biological and environmental samples.

    PubMed

    Mohammed, Muzaffer; Syed, Maleeha F; Aslan, Kadir

    2016-01-15

    Quantitative detection of molecules of interest from biological and environmental samples in a rapid manner, particularly with a relevant concentration range, is imperative to the timely assessment of human diseases and environmental issues. In this work, we employed the microwave-accelerated bioassay (MAB) technique, which is based on the combined use of circular bioassay platforms and microwave heating, for rapid and quantitative detection of Glial Fibrillary Acidic Protein (GFAP) and Shiga like toxin (STX 1). The proof-of-principle use of the MAB technique with the circular bioassay platforms for the rapid detection of GFAP in buffer based on colorimetric and fluorescence readouts was demonstrated with a 900W kitchen microwave. We also employed the MAB technique with a new microwave system (called the iCrystal system) for the detection of GFAP from mice with brain injuries and STX 1 from a city water stream. Control bioassays included the commercially available gold standard bioassay kits run at room temperature. Our results show that the lower limit of detection (LLOD) of the colorimetric and fluorescence based bioassays for GFAP was decreased by ~1000 times using the MAB technique and our circular bioassay platforms as compared to the commercially available bioassay kits. The overall bioassay time for GFAP and STX 1 was reduced from 4h using commercially available bioassay kits to 10min using the MAB technique. PMID:26356762

  17. A Comparison between Lightning Activity and Passive Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Kevin, Driscoll T.; Hugh, Christian J.; Goodman, Steven J.

    1999-01-01

    A recent examination of data from the Lightning Imaging Sensor (LIS) and the TRMM Microwave Imager (TMI) suggests that storm with the highest frequency of lightning also possess the most pronounced microwave scattering signatures at 37 and 85 GHz. This study demonstrates a clear dependence between lightning and the passive microwave measurements, and accentuates how direct the relationship really is between cloud ice and lightning activity. In addition, the relationship between the quantity of ice content and the frequency of lightning (not just the presence of lightning) , is consistent throughout the seasons in a variety of regimes. Scatter plots will be presented which show the storm-averaged brightness temperatures as a function of the lightning density of the storms (L/Area) . In the 85 GHz and 37 GHz scatter plots, the brightness temperature is presented in the form Tb = k1 x log10(L/Area) + k2, where the slope of the regression, k1, is 58 for the 85 GHz relationship and 30.7 for the 37 GHz relationship. The regression for both these fits showed a correlation of 0.76 (r2 = 0.58), which is quite promising considering the simple procedure used to make the comparisons, which have not yet even been corrected for the view angle differences between the instruments, or the polarization corrections in the microwave imager.

  18. Medical applications of microwaves

    NASA Astrophysics Data System (ADS)

    Vrba, Jan; Lapes, M.

    2004-04-01

    Medical applications of microwaves (i.e. a possibility to use microwave energy and/or microwave technique and technology for therapeutical purposes) are a quite new and a very rapidly developing field. Microwave thermotherapy is being used in medicine for the cancer treatment and treatment of some other diseases since early eighties. In this contribution we would like to offer general overview of present activities in the Czech Republic, i.e. clinical applications and results, technical aspects of thermo therapeutic equipment and last but not least, prospective diagnostics based on microwave principals ant technology and instrumentation.

  19. Microwave resonance lamp absorption technique for measuring temperature and OH number density in combustion environments

    NASA Technical Reports Server (NTRS)

    Lempert, Walter R.

    1988-01-01

    A simple technique for simultaneous determination of temperature and OH number density is described, along with characteristic results obtained from measurements using a premixed, hydrogen air flat flame burner. The instrumentation is based upon absorption of resonant radiation from a flowing microwave discharge lamp, and is rugged, relatively inexpensive, and very simple to operate.

  20. Crystallization and activation of silicon by microwave rapid annealing

    NASA Astrophysics Data System (ADS)

    Kimura, Shunsuke; Ota, Kosuke; Hasumi, Masahiko; Suzuki, Ayuta; Ushijima, Mitsuru; Sameshima, Toshiyuki

    2016-07-01

    A combination of the carbon-powder absorber with microwave irradiation is proposed as a rapid heat method. 2-μm-diameter carbon powders with a packing density of 0.08 effectively absorbed 2.45 GHz 1000-W-microwave and heated themselves to 1163 °C for 26 s. The present heat treatment recrystallized n-type crystalline silicon surfaces implanted with 1.0 × 10^{15}hbox {-cm}^{-2}-boron and phosphorus atoms with crystalline volume ratios of 0.99 and 0.93, respectively, by microwave irradiation at 1000 W for 20 s. Activation and carrier generation were simultaneously achieved with a sheet resistivity of 62 Ω / hbox {sq}. A high photo-induced-carrier effective lifetime of 1.0 × 10^{-4} s was also achieved. Typical electrical current-rectified characteristic and solar cell characteristic with an efficiency of 12.1 % under 100-mW/cm2-air-mass-1.5 illumination were obtained. Moreover, heat treatment with microwave irradiation at 1000 W for 22 s successfully crystallized silicon thin films with thicknesses ranging from 2.4 to 50 nm formed on quartz substrates. Nano-crystalline cluster structure with a high volume ratio of 50 % was formed in the 1.8-nm (initial 2.4-nm)-thick silicon films. Photoluminescence around 1.77 eV was observed for the 1.8-nm-thick silicon films annealed at 260 °C in 1.3 × 106-Pa-H2O-vapor for 3 h after the microwave heating.

  1. Optimization technique for improved microwave transmission from multi-solar power satellites

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Kerwin, E. M.

    1982-01-01

    An optimization technique for generating antenna illumination tapers allows improved microwave transmission efficiencies from proposed solar power satellite (SPS) systems and minimizes sidelobe levels to meet preset environmental standards. The cumulative microwave power density levels from 50 optimized SPS systems are calculated at the centroids of each of the 3073 counties in the continental United States. These cumulative levels are compared with Environmental Protection Agency (EPA) measured levels of electromagnetic radiation in seven eastern cities. Effects of rectenna relocations upon the power levels/population exposure rates are also studied.

  2. Optimization technique for improved microwave transmission from multi-solar power satellites

    SciTech Connect

    Arndt, G.D.; Kerwin, E.M.

    1982-08-01

    An optimization technique for generating antenna illumination tapers allows improved microwave transmission efficiencies from proposed solar power satellite (SPS) systems and minimizes sidelobe levels to meet preset environmental standards. The cumulative microwave power density levels from 50 optimized SPS systems are calculated at the centroids of each of the 3073 counties in the continental United States. These cumulative levels are compared with Environmental Protection Agency (EPA) measured levels of electromagnetic radiation in seven eastern cities. Effects of rectenna relocations upon the power levels/population exposure rates are also studied.

  3. A microwave technique for mapping ice temperature in the Arctic seasonal sea ice zone

    SciTech Connect

    St. Germain, K.M.; Cavalieri, D.J.

    1997-07-01

    A technique for deriving ice temperature in the Arctic seasonal sea ice zone from passive microwave radiances has been developed. The algorithm operates on brightness temperatures derived from the Special Sensor Microwave/Imager (SSM/I) and uses ice concentration and type from a previously developed thin ice algorithm to estimate the surface emissivity. Comparisons of the microwave derived temperatures with estimates derived from infrared imagery of the Bering Strait yield a correlation coefficient of 0.93 and an RMS difference of 2.1 K when coastal and cloud contaminated pixels are removed. SSM/I temperatures were also compared with a time series of air temperature observations from Gambell on St. Lawrence Island and from Point Barrow, AK weather stations. These comparisons indicate that the relationship between the air temperature and the ice temperature depends on ice type.

  4. Determination of solid-propellant transient regression rates using a microwave Doppler shift technique

    NASA Technical Reports Server (NTRS)

    Strand, L. D.; Schultz, A. L.; Reedy, G. K.

    1972-01-01

    A microwave Doppler shift system, with increased resolution over earlier microwave techniques, was developed for the purpose of measuring the regression rates of solid propellants during rapid pressure transients. A continuous microwave beam is transmitted to the base of a burning propellant sample cast in a metal waveguide tube. A portion of the wave is reflected from the regressing propellant-flame zone interface. The phase angle difference between the incident and reflected signals and its time differential are continuously measured using a high resolution microwave network analyzer and related instrumentation. The apparent propellant regression rate is directly proportional to this latter differential measurement. Experiments were conducted to verify the (1) spatial and time resolution of the system, (2) effect of propellant surface irregularities and compressibility on the measurements, and (3) accuracy of the system for quasi-steady-state regression rate measurements. The microwave system was also used in two different transient combustion experiments: in a rapid depressurization bomb, and in the high-frequency acoustic pressure environment of a T-burner.

  5. Demonstration to characterize watershed runoff potential by microwave techniques

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J.

    1977-01-01

    Characteristics such as storage capacity of the soil, volume of storage in vegetative matter, and volume of storage available in local depressions are expressed in empirical watershed runoff equations as one or more coefficients. Conventional techniques for estimating coefficients representing the spatial distribution of these characteristics over a watershed drainage area are subjective and produce significant errors. Characteristics of the wear surface are described as a single coefficient called the curve number.

  6. Synthesis of Band Filters and Equalizers Using Microwav FIR Techniques

    SciTech Connect

    Deibele, C.; /Fermilab

    2000-01-01

    It is desired to design a passive bandpass filter with both a linear phase and flat magnitude response within the band and also has steep skirts. Using the properties of both coupled lines and elementary FIR (Finite Impulse Response) signal processing techniques can produce a filter of adequate phase response and magnitude control. The design procedure will first be described and then a sample filter will then be synthesized and results shown.

  7. The measurement of electrical properties of small particles using microwave Hall effect and absorption techniques

    SciTech Connect

    Walters, A.B.; Liu, C.C.; VAnnice, M.A.

    1995-12-01

    A microwave absorption technique based on cavity perturbation theory is applicable for electrical conductivity measurements of both small, single-crystal particles and finely divided powder samples when {sigma} values fall in either the low ({sigma}<0.1{Omega}{sup -1}cm{sup -1}) or the intermediate (0.1 <{sigma}<100{Omega}{sup -1}cm{sup -l}) conductivity region. If the skin depth of the material becomes significantly smaller than the sample dimension parallel to the E-field, an appreciable error can be introduced into the calculated conductivity values; however, this discrepancy is eliminated by correcting for the field attenuation associated with the penetration depth of the microwaves and accurate absolute values can be obtained. When combined with microwave Hall effect measurements of mobility, {mu}, carrier densities can be calculated, for electrons N{sub o}={sigma}/{rho}e{mu} where e is the electron charge and {sigma} is the density of the solid. This approach eliminates electrode contacts as well as errors due to charge transfer across grain boundaries and particle-particle contacts. The application of these microwave absorption techniques to small particles having high surface/volume ratios, such as catalyst supports and oxide catalysts, under controlled environments can provide fundamental information about absorption and catalytic processes on such semiconductor surfaces. Applications to ZnO, Li-promoted ZnO, and carbon black powders demonstrate this capability.

  8. LF, HF, and microwave techniques for studying superionic conductors

    SciTech Connect

    Orliukas, A.; Kezenis, A.; Mikucionis, V.; Vaitkus, R.

    1987-07-01

    Automated equipment was developed for determining the admittance of solid electrolytes over the frequency range from 10 to 10/sup 11/ Hz. A four-electrode technique was used at audio- and low radio-frequencies up to 10/sup 6/ Hz. At wavelengths in the meter and centimeter band, coaxial lines were used to determine the complex reflection coefficients. At wavelengths in the millimeter band, complex reflection coefficients were measured by determining the field strengths in a few points of the standing wave. The methods developed were used to determine the admittance and dielectric permittivities of solid electrolytes: Na/sub 2/O x 10Al/sub 2/O/sub 3/, Na/sub 3/Fe/sub 2/(PO/sub 4/)/sub 3/, and Ag/sub 4/RbI/sub 5/.

  9. Microwave band on-chip coil technique for single electron spin resonance in a quantum dot.

    PubMed

    Obata, Toshiaki; Pioro-Ladrière, Michel; Kubo, Toshihiro; Yoshida, Katsuharu; Tokura, Yasuhiro; Tarucha, Seigo

    2007-10-01

    Microwave band on-chip microcoils are developed for the application to single electron spin resonance measurement with a single quantum dot. Basic properties such as characteristic impedance and electromagnetic field distribution are examined for various coil designs by means of experiment and simulation. The combined setup operates relevantly in the experiment at dilution temperature. The frequency responses of the return loss and Coulomb blockade current are examined. Capacitive coupling between a coil and a quantum dot causes photon assisted tunneling, whose signal can greatly overlap the electron spin resonance signal. To suppress the photon assisted tunneling effect, a technique for compensating for the microwave electric field is developed. Good performance of this technique is confirmed from measurement of Coulomb blockade oscillations. PMID:17979446

  10. Microwave oven-based technique for immunofluorescent staining of paraffin-embedded tissues

    PubMed Central

    Buggs, Colleen

    2011-01-01

    Immunohistochemical analysis of formalin-fixed paraffin-embedded tissues can be challenging due to potential modifications of protein structure by exposure to formalin. Heat-induced antigen retrieval techniques can reverse reactions between formalin and proteins that block antibody recognition. Interactions between antibodies and antigens are further enhanced by microwave irradiation, which has simplified immunohistochemical staining protocols. In this report, we modify a technique for antigen retrieval and immunofluorescent staining of formalin-fixed paraffin-embedded tissues by showing that it works well with several antibodies and buffers. This microwave-assisted method for antigen retrieval and immunofluorescent staining eliminates the need for blocking reagents and extended washes, which greatly simplifies the protocol allowing one to complete the analysis in less than 3 h. PMID:17653827

  11. Microwave digestion techniques in the sequential extraction of calcium, iron, chromium, manganese, lead, and zinc in sediments

    SciTech Connect

    Mahan, K.I.; Foderaro, T.A.; Garza, T.L.; Martinez, R.M.; Maroney, G.A.; Trivisonno, M.R.; Willging, E.M.

    1987-04-01

    The sequential extraction scheme of Tessier partitions metals in sediments into exchangeable, carbonate bound iron-manganese oxide bound, organic bound, and residual binding fractions. Extraction rate experiments using conventional and microwave heating showed that microwave heating produces results comparable to the conventional procedure. Sequential microwave extraction procedures were established from the results of the extraction rate experiments. Recoveries of total metals from NBS SRM 1645 ranged from 76% to 120% for the conventional procedure and 62% to 120% for the microwave procedure. Recoveries of total metals using the microwave and conventional techniques were reasonably comparable except for iron (62% by microwave vs. 76% by conventional). Substitution of an aqua regia/HF extraction for total/residual metals results in essentially complete recovery of metals. Precision obtained from 31 replicate samples of the California Gulch, Colorado, sediment yielded about an average 11% relative standard deviation excluding the exchangeable fraction which was more variable.

  12. Active microwave remote sensing of earth/land, chapter 2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Geoscience applications of active microwave remote sensing systems are examined. Major application areas for the system include: (1) exploration of petroleum, mineral, and ground water resources, (2) mapping surface and structural features, (3) terrain analysis, both morphometric and genetic, (4) application in civil works, and (5) application in the areas of earthquake prediction and crustal movements. Although the success of radar surveys has not been widely publicized, they have been used as a prime reconnaissance data base for mineral exploration and land-use evaluation in areas where photography cannot be obtained.

  13. Preparation and Characterization of SnO Nanoplatelets by Microwave Innovative Technique

    SciTech Connect

    Krishnakumar, T.; Perumal, K.; Jayaprakash, R.; Pinna, Nicola

    2008-04-23

    Tin oxide (SnO) nanoplatelets have been synthesized by a Microwave innovative technique with an operating frequency of 2.45 GHz in just few minutes. The crystalline size and structure was evaluated from XRD pattern. The SEM and TEM analysis showed the single crystal platelets together with many small particles attached to its surface. The FT-IR and the electrical conductivity of the samples have also been investigated.

  14. Application of near-field microwave sensing techniques for segregation detection in concrete members

    NASA Astrophysics Data System (ADS)

    Bois, K. J.; Benally, A. D.; Zoughi, R.; Nowak, P. S.

    2000-05-01

    In this presentation, a simple, low-cost near-field microwave nondestructive inspection technique for segregation detection in concrete members is presented. This process employs information from the measured magnitude of reflection coefficient at the aperture of an open-ended rectangular waveguide sensor. These measurements, whose results will be presented, were conducted using a Hewlett-Packard HP8510B network analyzer. However, in practice a simple and relatively inexpensive inspection apparatus constructed from discrete microwave components can easily be employed. It is shown that the standard deviation of magnitude of reflection coefficient measurement is linearly correlated with the aggregate density in concrete. Furthermore, for concrete in which the aggregate has segregated, this measurable parameter will change as a function of vertical position of the microwave scan. Results correlating the microwave measurements to the actual aggregate density of a well consolidated concrete specimen and a specimen in which the aggregate has segregated will be presented. Finally, the simple and low cost application of this method for in situ detection of aggregate segregation in concrete structures will be discussed.

  15. Degradation and dechlorination of pentachlorophenol by microwave-activated persulfate.

    PubMed

    Qi, Chengdu; Liu, Xitao; Zhao, Wei; Lin, Chunye; Ma, Jun; Shi, Wenxiao; Sun, Qu; Xiao, Hao

    2015-03-01

    The degradation performance of pentachlorophenol (PCP) by the microwave-activated persulfate (MW/PS) process was investigated in this study. The results indicated that degradation efficiency of PCP in the MW/PS process followed pseudo-first-order kinetics, and compared with conventional heating, microwave heating has a special effect of increasing the reaction rate and reducing the process time. A higher persulfate concentration and reaction temperature accelerated the PCP degradation rate. Meanwhile, increasing the pH value and ionic strength of the phosphate buffer slowed down the degradation rate. The addition of ethanol and tert-butyl alcohol as hydroxyl radical and sulfate radical scavengers proved that the sulfate radicals were the dominant active species in the MW/PS process. Gas chromatography-mass spectrometry (GC-MS) was employed to identify the intermediate products, and then a plausible degradation pathway involving dechlorination, hydrolysis, and mineralization was proposed. The acute toxicity of PCP, as tested with Photobacterium phosphoreum, Vibrio fischeri, and Vibrio qinghaiensis, was negated quickly during the MW/PS process, which was in agreement with the nearly complete mineralization of PCP. These results showed that the MW/PS process could achieve a high mineralization level in a short time, which provided an efficient way for PCP elimination from wastewater. PMID:25328098

  16. Determination of multi-walled carbon nanotube bioaccumulation in earthworms measured by a microwave-based detection technique

    EPA Science Inventory

    Reliable quantification techniques for carbon nanotubes (CNTs) are limited. In this study, a new procedure was developed for quantifying multi-walled carbon nanotubes (MWNTs) in earthworms (Eisenia fetida) based on freeze drying and microwave-induced heating. Specifically, earthw...

  17. Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques.

    PubMed

    Ricchiuti, Amelia Lavinia; Barrera, David; Sales, Salvador; Thevenaz, Luc; Capmany, José

    2013-11-18

    A novel technique for interrogating photonic sensors based on long fiber Bragg gratings (FBGs) is presented and experimentally demonstrated, dedicated to detect the presence and the precise location of several spot events. The principle of operation is based on a technique used to analyze microwave photonics (MWP) filters. The long FBGs are used as quasi-distributed sensors. Several hot-spots can be detected along the FBG with a spatial accuracy under 0.5 mm using a modulator and a photo-detector (PD) with a modest bandwidth of less than 1 GHz. The proposed interrogation system is intrinsically robust against environmental changes. PMID:24514329

  18. A low-power nitriding technique utilizing a microwave-excited radical flow

    NASA Astrophysics Data System (ADS)

    Itagaki, Hirotomo; Hirose, Shingo; Kim, Jaeho; Ogura, Mutsuo; Wang, Xuelun; Nonaka, Atsushi; Ogiso, Hisato; Sakakita, Hajime

    2016-06-01

    We report a novel low-power nitriding technique by utilizing a 2.45 GHz microwave-excited nitrogen radical flow system. Nitrogen plasma was produced at the nozzle with dimensions of 50 × 0.5 mm2 and blown onto the surface of a target substrate. A titanium substrate has been used as a target plate since it is easy to visualize a nitriding effect. The titanium substrate was treated under the conditions of 60 W microwave power, 20 Torr of nitrogen gas pressure, and a plate temperature of ∼800 °C. As a result, we have succeeded in nitriding of the titanium substrate in a quasi-atmospheric region of 20 Torr and of a very low power of 60 W with the hardness kept high, which is almost the same as the hardness processed by conventional nitriding methods.

  19. Simulation of microwave, conventional and hybrid ovens using a new thermal modeling technique.

    PubMed

    Haala, J; Wiesbeck, W

    2000-01-01

    This paper presents an efficient simulation tool and results for conventional, microwave and combined heating. A new thermal modeling technique for the simulation of conductive and radiant heat transfer is presented. The conductive heat transfer is modeled by a finite difference algorithm. A finite difference scheme is not applicable for the radiant heat transfer, as radiation from a material surface is not bounded to the immediate vicinity as is the conductive transfer. Therefore, ray optical methods are used. Rays connecting mutually visible surfaces are obtained by a new fast method. Some simplifications which are necessary to achieve fast computing are also included. The algorithms are combined with an electromagnetic FDTD program. Simulations are presented for an oven heated conventionally, with microwaves, or by a combination of both. PMID:10834187

  20. High-resolution fiber Bragg grating based transverse load sensor using microwave photonics filtering technique.

    PubMed

    Wang, Yiping; Wang, Ming; Xia, Wei; Ni, Xiaoqi

    2016-08-01

    In this paper, a new fiber Bragg grating (FBG) sensor exploiting microwave photonics filter technique for transverse load sensing is firstly proposed and experimentally demonstrated. A two-tap incoherent notch microwave photonics filter (MPF) based on a transverse loaded FBG, a polarization beam splitter (PBS), a tunable delay line (TDL) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the transverse load is studied. By detecting the resonance frequency shifts of the notch MPF, the transverse load can be determined. The theoretical and experimental results show that the proposed FBG sensor has a higher resolution than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 2.5 MHz/N for a sensing fiber with a length of 18mm. Moreover, the sensitivity can be easily adjusted. PMID:27505763

  1. Ultrasonic, microwave, and millimeter wave inspection techniques for adhesively bonded stacked open honeycomb core composites

    NASA Astrophysics Data System (ADS)

    Thomson, Clint D.; Cox, Ian; Ghasr, Mohammad Tayeb Ahmed; Ying, Kuang P.; Zoughi, Reza

    2015-03-01

    Honeycomb sandwich composites are used extensively in the aerospace industry to provide stiffness and thickness to lightweight structures. A common fabrication method for thick, curved sandwich structures is to stack and bond multiple honeycomb layers prior to machining core curvatures. Once bonded, each adhesive layer must be inspected for delaminations and the presence of unwanted foreign materials. From a manufacturing and cost standpoint, it can be advantageous to inspect the open core prior to face sheet closeout in order to reduce end-article scrap rates. However, by nature, these honeycomb sandwich composite structures are primarily manufactured from low permittivity and low loss materials making detection of delamination and some of the foreign materials (which also are low permittivity and low loss) quite challenging in the microwave and millimeter wave regime. Likewise, foreign materials such as release film in adhesive layers can be sufficiently thin as to not cause significant attenuation in through-transmission ultrasonic signals, making them difficult to detect. This paper presents a collaborative effort intended to explore the efficacy of different non-contact NDI techniques for detecting flaws in a stacked open fiberglass honeycomb core panel. These techniques primarily included air-coupled through-transmission ultrasonics, single-sided wideband synthetic aperture microwave and millimeter-wave imaging, and lens-focused technique. The goal of this investigation has been to not only evaluate the efficacy of these techniques, but also to determine their unique advantages and limitations for evaluating parameters such as flaw type, flaw size, and flaw depth.

  2. Observation of localized heating phenomena during microwave heating of mixed powders using in situ x-ray diffraction technique

    SciTech Connect

    Sabelström, N. Hayashi, M.; Watanabe, T.; Nagata, K.

    2014-10-28

    In materials processing research using microwave heating, there have been several observations of various phenomena occurring known as microwave effects. One significant example of such a phenomenon is increased reaction kinetics. It is believed that there is a possibility that this might be caused by localized heating, were some reactants would attain a higher than apparent temperature. To examine whether such thermal gradients are indeed possible, mixed powders of two microwave non-absorbers, alumina and magnesia, were mixed with graphite, a known absorber, and heated in a microwave furnace. During microwave irradiation, the local temperatures of the respective sample constituents were measured using an in situ x-ray diffraction technique. In the case of the alumina and graphite sample, a temperature difference of around 100 °C could be observed.

  3. Active and Passive Microwave Retrieval Algorithm for Hydrometeor Concentration Profiles: Application to the HAMP Instrument

    NASA Astrophysics Data System (ADS)

    Orlandi, E.; Mech, M.; Crewell, S.; Lammert, A.

    2012-12-01

    Clouds and precipitation play an important role in the atmospheric water cycle and radiation budget. Unfortunately, the understanding of the processes involved in cloud and precipitation formation and their description in global and regional models are still poor. To improve our understanding of these processes and to reduce model uncertainties, new observation and retrieval techniques are needed. The upcoming Global Precipitation Mission (GPM) provides a combination of a 36 GHz cloud radar and a suite of passive microwave instruments. In the retrieval development process for this and other upcoming missions, airborne platforms are a useful tool to test the algorithms exploiting the synergy of active and passive microwave instruments, and to validate satellite retrievals. In this respect HAMP (Microwave Package for HALO, the High Altitude Long Range aircraft), consisting of a 36 GHz Doppler cloud radar and a 26-channel radiometer, is an ideal test-bed. HAMP radiometers have frequencies along absorption lines (22, 60, 118 and 183 GHz) and in window regions, overlapping with those of AMSU A and B. HAMP will participate in early 2013 in the dedicated remote sensing HALO mission NARVAL (Next-generation Aircraft Remote-sensing for VALidation studies). During NARVAL, the HALO payload will include a water vapor lidar and drop sondes in addition to HAMP. The NARVAL campaign will thus be a excellent opportunity to test a newly developed retrieval algorithm, which exploits the synergy between passive and active microwave observations. In this work we present a Bayesian algorithm to retrieve precipitation rate, liquid and frozen hydrometeor concentration, as well as temperature and humidity profiles from the synergetic use of active and passive microwave nadir observations. Temperature and humidity are derived solely from passive radiometer measurements while the combined cloud radar and radiometer observations are used to retrieve hydrometeor concentration profiles. Lidar

  4. Soil Moisture Retrieval from Active/Passive Microwave Observation Synergy Using a Neural Network Approach

    NASA Astrophysics Data System (ADS)

    Kolassa, J.; Gentine, P.; Aires, F.; Prigent, C.

    2014-12-01

    In November 2014 NASA will launch the Soil Moisture Active/Passive (SMAP) mission carrying an L-band radiometer and radar sensor to observe surface soil moisture globally. This new type of instrument requires the development of innovative retrieval algorithms that are able to account for the different surface contributions to the satellite signal and at the same time can optimally exploit the synergy of active and passive microwave data. In this study, a neural network (NN) based retrieval algorithm has been developed using the example of active microwave observations from ASCAT and passive microwave observations from AMSR-E. In a first step, different preprocessing techniques, aiming to highlight the various contributions to the satellite signal, have been investigated. It was found that in particular for the passive microwave observations, the use of multiple frequencies and preprocessing steps could help the retrieval to disentangle the effects of soil moisture, vegetation and surface temperature. A spectral analysis investigated the temporal patterns in the satellite observations and thus assessed which soil moisture temporal variations could realistically be retrieved. The preprocessed data was then used in a NN based retrieval to estimate daily volumetric surface soil moisture at the global scale for the period 2002-2013. It could be shown that the synergy of data from the two sensors yielded a significant improvement of the retrieval performance demonstrating the benefit of multi-sensor approaches as proposed for SMAP. A comparison with a more traditional retrieval product merging approach furthermore showed that the NN technique is better able to exploit the complementarity of information provided by active and passive sensors. The soil moisture retrieval product was evaluated in the spatial, temporal and frequency domain against retrieved soil moisture from WACMOS and SMOS, modeled fields from ERA-interim/Land and in situ observations from the

  5. A Combined Infrared and Microwave Technique for Studying the Diurnal Variation of Rainfall over Amazonia

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Anagnostou, Emmanouil; Adler, Robert F.

    1999-01-01

    Over 10 years of continuous data from the Special Sensor microwave Imager (SSM/I) aboard a series of Defense Department satellites has made it possible to construct regional rainfall climatologies at high spatial resolution. Using the Goddard Profiling Algorithm (GPROF), monthly estimates of precipitation were made over the region of northern Brazil, including the Amazon Basin, for 1987 to 1998. GPROF is a physical approach to passive microwave precipitation retrieval, which uses the Goddard Cumulus Ensemble (cloud) model to establish prior probability densities of precipitation structures. Precipitation fields from GPROF were stratified into morning and evening satellite overpasses, and accumulated at monthly intervals at 0.5 degree spatial resolution. Important diurnal effects were noted in the analysis, the most pronounced being a land/sea breeze circulation along the northern coast of Brazil and a mountain/valley circulation along the Andes. There were also indications of morning rainfall maxima along the major rivers, and evening maxima between the rivers. The addition of simultaneous geosynchronous infrared (IR) data leads to the current technique, which takes advantage of the 30 minute sampling and 4 km spatial resolution of the infrared channel and the better physics of the microwave retrieval. The resultant IR method is subsequently used to derive the diurnal variability of rainfall over the Amazon basin, and further, to investigate the relative contribution from its convective and stratiform components.

  6. Microwave and Millimeter Wave Imaging Using Synthetic Aperture Focusing and Holographical Techniques

    NASA Technical Reports Server (NTRS)

    Case, Joseph Tobias

    2005-01-01

    Microwave and millimeter wave nondestructive testing and evaluation (NDT&E) methods have shown great potential for determining material composition in composite structures, determining material thickness or debond thickness between two layers, and determining the location and size of flaws, defects, and anomalies. The same testing methods have also shown great potential to produce relatively high-resolution images of voids inside Spray On Foam Insulation (SOFI) test panels using real focused methods employing lens antennas. An alternative to real focusing methods are synthetic focusing methods. The essence of synthetic focusing is to match the phase of the scattered signal to measured points spaced regularly on a plane. Many variations of synthetic focusing methods have already been developed for radars, ultrasonic testing applications, and microwave concealed weapon detection. Two synthetic focusing methods were investigated; namely, a) frequency-domain synthetic aperture focusing technique (FDSAFT), and b) wide-band microwave holography. These methods were applied towards materials whose defects were of low dielectric contrast like air void in SOFI. It is important to note that this investigation used relatively low frequencies from 8.2 GHz to 26.5 GHz that are not conducive for direct imaging of the SOFI. The ultimate goal of this work has been to demonstrate the capability of these methods before they are applied to much higher frequencies such as the millimeter wave frequency spectrum (e.g., 30-300 GHz).

  7. Monolithic microwave integrated circuit devices for active array antennas

    NASA Technical Reports Server (NTRS)

    Mittra, R.

    1984-01-01

    Two different aspects of active antenna array design were investigated. The transition between monolithic microwave integrated circuits and rectangular waveguides was studied along with crosstalk in multiconductor transmission lines. The boundary value problem associated with a discontinuity in a microstrip line is formulated. This entailed, as a first step, the derivation of the propagating as well as evanescent modes of a microstrip line. The solution is derived to a simple discontinuity problem: change in width of the center strip. As for the multiconductor transmission line problem. A computer algorithm was developed for computing the crosstalk noise from the signal to the sense lines. The computation is based on the assumption that these lines are terminated in passive loads.

  8. Kinetic activation-relaxation technique.

    PubMed

    Béland, Laurent Karim; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand

    2011-10-01

    We present a detailed description of the kinetic activation-relaxation technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe, and structural relaxation in a-Si (amorphous silicon). PMID:22181304

  9. A facile synthesis of ZnWO{sub 4} nanoparticles by microwave assisted technique and its application in photocatalysis

    SciTech Connect

    Garadkar, K.M.; Ghule, L.A.; Sapnar, K.B.; Dhole, S.D.

    2013-03-15

    Highlights: ► Nanocrystalline ZnWO{sub 4} particles were successfully prepared by a microwave method. ► Spherical morphology with a 10 nm size. ► The band is 3.4 eV. ► The photodegradation of RhB was 95% within 25 min. - Abstract: A simple microwave assisted technique has been successfully developed to synthesize ZnWO{sub 4} nanoparticles. The X-ray diffraction results indicated that the synthesized nanoparticles exhibited only wolframite structure. Structural, morphological and optical properties of ZnWO{sub 4} nanoparticles have been analyzed by XRD, SEM, TEM EDAX, UV–vis and FT-IR spectral measurements. The transmission electron microscopy (TEM) image revealed that particle size of ZnWO{sub 4} nanoparticles was found to be 10 nm, the band-gap of ZnWO{sub 4} nanoparticles was found to be 3.4 eV. The photocatalytic activities for aqueous Rhodamine B and Methylene Blue samples were investigated and observed that ZnWO{sub 4} nanoparticles exhibited highly enhanced photocatalytic activity towards RhB than MB.

  10. Microwave photonics filtering technique for interrogating long weak fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Ricchiuti, Amelia Lavinia; Barrera, David; Sales, Salvador; Thévenaz, Luc; Capmany, José

    2014-05-01

    A system to interrogate photonic sensors based on long weak fiber Bragg gratings (FBGs) is presented and experimentally demonstrated, dedicated to measure the precise location of several spot events. The principle of operation is based on a technique used to analyze microwave photonics (MWP) filters. The long weak FBGs are used as quasi-distributed sensors. Several events can be detected along the FBG device with a spatial accuracy under 1 mm using a modulator and a photo-detector (PD) with a modest bandwidth of less than 500 MHz. The simple proposed scheme is intrinsically robust against environmental changes and easy to reconfigure.

  11. Active Microwave Remote Sensing Observations of Weddell Sea Ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1997-01-01

    Since July 1991, the European Space Agency's ERS-1 and ERS-2 satellites have acquired radar data of the Weddell Sea, Antarctica. The Active Microwave Instrument on board ERS has two modes; SAR and Scatterometer. Two receiving stations enable direct downlink and recording of high bit-rate, high resolution SAR image data of this region. When not in an imaging mode, when direct SAR downlink is not possible, or when a receiving station is inoperable, the latter mode allows normalized radar cross-section data to be acquired. These low bit-rate ERS scatterometer data are tape recorded, downlinked and processed off-line. Recent advances in image generation from Scatterometer backscatter measurements enable complementary medium-scale resolution images to be made during periods when SAR images cannot be acquired. Together, these combined C-band microwave image data have for the first time enabled uninterrupted night and day coverage of the Weddell Sea region at both high (25 m) and medium-scale (-20 km) resolutions. C-band ERS-1 radar data are analyzed in conjunction with field data from two simultaneous field experiments in 1992. Satellite radar signature data are compared with shipborne radar data to extract a regional and seasonal signature database for recognition of ice types in the images. Performance of automated sea-ice tracking algorithms is tested on Antarctic data to evaluate their success. Examples demonstrate that both winter and summer ice can be effectively tracked. The kinematics of the main ice zones within the Weddell Sea are illustrated, together with the complementary time-dependencies in their radar signatures. Time-series of satellite images are used to illustrate the development of the Weddell Sea ice cover from its austral summer minimum (February) to its winter maximum (September). The combination of time-dependent microwave signatures and ice dynamics tracking enable various drift regimes to be defined which relate closely to the circulation of the

  12. New potentially active pyrazinamide derivatives synthesized under microwave conditions.

    PubMed

    Jandourek, Ondrej; Dolezal, Martin; Kunes, Jiri; Kubicek, Vladimir; Paterova, Pavla; Pesko, Matus; Buchta, Vladimir; Kralova, Katarina; Zitko, Jan

    2014-01-01

    A series of 18 N-alkyl substituted 3-aminopyrazine-2-carboxamides was prepared in this work according to previously experimentally set and proven conditions using microwave assisted synthesis methodology. This approach for the aminodehalogenation reaction was chosen due to higher yields and shorter reaction times compared to organic reactions with conventional heating. Antimycobacterial, antibacterial, antifungal and photosynthetic electron transport (PET) inhibiting in vitro activities of these compounds were investigated. Experiments for the determination of lipophilicity were also performed. Only a small number of substances with alicyclic side chain showed activity against fungi which was the same or higher than standards and the biological efficacy of the compounds increased with rising lipophilicity. Nine pyrazinamide derivatives also inhibited PET in spinach chloroplasts and the IC50 values of these compounds varied in the range from 14.3 to 1590.0 μmol/L. The inhibitory activity was connected not only with the lipophilicity, but also with the presence of secondary amine fragment bounded to the pyrazine ring. Structure-activity relationships are discussed as well. PMID:24995919

  13. Non-contact determination of parasympathetic activation induced by a full stomach using microwave radar.

    PubMed

    Gotoh, Shinji; Suzuki, Satoshi; Imuta, Hayato; Kagawa, Masayuki; Badarch, Zorig; Matsui, Takemi

    2009-09-01

    In order to evaluate parasympathetic activation which causes driving errors, without placing any burden on the monitored individuals, we conducted a non-contact parasympathetic activation monitoring through the back of a chair using a compact 24-GHz microwave-radar. We measured the high-frequency (HF, 0.15-0.4 Hz) power spectrum of heart rate variability (HRV) which reflects parasympathetic activation, induced by a full stomach. All participants had a large all-you-can-eat meal with beverages for lunch within 20 min. Before and after the large meals for durations of 10 min, the non-contact measurement was conducted for seven healthy male volunteers (mean age: 23 +/- 1-year-old). In both non-contact (microwave radar) and contact (ECG as a reference) measurement, HF shows similar variations before and after large meal. Large meal significantly (p < 0.05) increased non-contact-derived HF from 1,026 +/- 510 to 1,893 +/- 613 ms(2) (922 +/- 628 to 1,861 +/- 940 ms(2), p < 0.05). This technique allows parasympathetic activation monitoring for safety precautions. PMID:19579041

  14. Role of the conducting layer substrate on TiO2 nucleation when using microwave activated chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Zumeta, I.; Espinosa, R.; Ayllón, J. A.; Vigil, E.

    2002-12-01

    Nanostructured TiO2 is used in novel dye sensitized solar cells. Because of their interaction with light, thin TiO2 films are also used as coatings for self-cleaning glasses and tiles. Microwave activated chemical bath deposition represents a simple and cost-effective way to obtain nanostructured TiO2 films. It is important to study, in this technique, the role of the conducting layer used as the substrate. The influence of microwave-substrate interactions on TiO2 deposition is analysed using different substrate positions, employing substrates with different conductivities, and also using different microwave radiation powers for film deposition. We prove that a common domestic microwave oven with a large cavity and inhomogeneous radiation field can be used with equally satisfactory results. The transmittance spectra of the obtained films were studied and used to analyse film thickness and to obtain gap energy values. The results, regarding different indium-tin oxide resistivities and different substrate positions in the oven cavity, show that the interaction of the microwave field with the conducting layer is determinant in layer deposition. It has also been found that film thickness increases with the power of the applied radiation while the gap energies of the TiO2 films decrease approaching the 3.2 eV value reported for bulk anatase. This indicates that these films are not crystalline and it agrees with x-ray spectra that do not reveal any peak.

  15. Characterization of Terahertz Single-Photon-Sensitive Bolometric Detectors Using a Pulsed Microwave Technique

    SciTech Connect

    Santavicca, D. F.; Frunzio, L.; Prober, D. E.; Reulet, B.; Karasik, B. S.; Pereverzev, S. V.; Olaya, D.; Gershenson, M. E.

    2009-12-16

    We describe a technique for characterizing bolometric detectors that have sufficient sensitivity to count single terahertz photons. The device is isolated from infrared blackbody radiation and a single terahertz photon is simulated by a fast microwave pulse, where the absorbed energy of the pulse is equal to the photon energy. We have employed this technique to characterize bolometric detectors consisting of a superconducting titanium nanobridge with niobium contacts. Present devices have T{sub c} = 0.3 K and a measured intrinsic energy resolution of approximately 6 terahertz full-width at half-maximum, near the predicted value due to intrinsic thermal fluctuation noise, with a time constant of 2 {mu}s. An intrinsic energy resolution of 1 terahertz should be achievable by reducing the volume of the titanium nanobridge. Such a detector has important applications in future space-based terahertz astronomy missions.

  16. Novel techniques for the thermal management of space-based, high-power microwave tubes

    NASA Astrophysics Data System (ADS)

    Rose, M. F.; Hyder, Anthony K.; Askew, R. F.; Chow, L.; Gilmour, A. S., Jr.; Faghri, A.

    1991-10-01

    This work is based in part on a study by the authors to determine the applicability of several concepts to the cooling of high-power linear microwave tubes operating in space under a variety of conditions. The authors focus on: direct radiation to space, beam exit to space, thermal storage, secondary coolant loops/heat pipes, and the use of supercritical hydrogen as a coolant with subsequent ejection to space. Each of these techniques is evaluated within the framework of a neutral particle beam weapons system or other limited duty cycle device which might lay dormant for long periods of time, come to life, and function reliably for a specified time. System impact for each technique is estimated in terms of impact on weight, volume, spacecraft interaction, and ease of implementation.

  17. Measurements of ocean surface spectrum from an aircraft using the two-frequency microwave resonance technique

    NASA Technical Reports Server (NTRS)

    Johnson, J. W.; Weissman, D. E.; Jones, W. L.

    1982-01-01

    The present investigation is concerned with the results of a two-frequency (Delta k) microwave radar experiment conducted from an aircraft and aimed primarily at the development of remote sensing techniques to measure ocean surface wave spectral characteristics. The experiment was conducted as part of the Maritime Remote Sensing (MARSEN) project in the North Sea during the autumn of 1979. The objective was to demonstrate the feasibility of and study the performance of the Delta k technique from a higher altitude platform, at shallower incidence angles, and at higher Doppler velocities than earlier stationary platform experiments allowed. A quantitative engineering evaluation of the results of two comprehensive flights is provided, and the qualitative significance of the results is discussed from a geophysical point of view in terms of the existing theory.

  18. Towards a Soil Moisture Climate Record from Active and Passive Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Scipal, K.; de Jeu, R.; Dorigo, W.; Su, B.

    2009-04-01

    The latest IPCC assessment report identified soil moisture as an emerging essential climate variable and stressed the need to fosters activities to "assemble, quality check reprocess, and re-analyse" respective datasets "relevant to decadal prediction" Satellite remote sensing can be a powerful data source to fulfil those needs. Unfortunately, methodological problems, lack of validation and limitations in computing have frequently delayed the research process to retrieve soil moisture from space observations. But research in these fields evolved, resulting in several global soil moisture datasets. Today validated global soil moisture data sets are publicly available from active (ERS-1/2, METOP) and passive (SMMR, SSM/I, TMI, AMSR-E) microwave remote sensing instruments. These data sets reach back for more than 30 years. In addition, in the near future dedicated soil moisture sensors such as the SMOS mission will provide experimental soil moisture products in an unprecedented quality. The available data sets are based on different sensors and retrieval concepts. It is now the time to harmonize these different sets to create one long term consistent global soil moisture dataset. Within the ESA project WACMOS (Water Cycle Multi-mission Observation Strategy) respective activities are reinforced. More specifically the objective of the WACMOS soil moisture observatory is to establish a solid scientific basis for the development of long-term coherent soil moisture products. To this end we exploit the triple collocation error estimation technique to assess the error and systematic biases between the different data sets and use a cumulative distribution function matching approach to harmonise the observations. The proposed methodology has the advantage that it can easily be adapted to a new observation record such as observations of the SMOS mission. In this paper we will present first results based on data records from the ERS-1/2 and the AMSR-E missions. We will discuss

  19. Tunable coherence-free microwave photonic bandpass filter based on double cross gain modulation technique.

    PubMed

    Chan, Erwin H W

    2012-10-01

    A tunable, coherence-free, high-resolution microwave photonic bandpass filter, which is compatible to be inserted in a conventional fiber optic link, is presented. It is based on using two cross gain modulation based wavelength converters in a recursive loop. The double cross gain modulation technique solves the semiconductor optical amplifier facet reflection problem in the conventional recursive structure; hence the new microwave photonic signal processor has no coherent interference and no phase-induced intensity noise. It allows arbitrary narrow-linewidth telecommunication-type lasers to be used while enabling stable filter operation to be realized. The filter passband frequency can be tuned by using a wavelength tunable laser and a wavelength dependent time delay component. Experimental results demonstrate robust high-resolution bandpass filter operation with narrow-linewidth sources, no phase-induced intensity noise and a high signal-to-noise ratio performance. Tunable coherence-free operation of the high-resolution bandpass filter is also demonstrated. PMID:23188262

  20. Retrieval of Precipitation Profiles from Multiresolution, Multifrequency Active and Passive Microwave Observations.

    NASA Astrophysics Data System (ADS)

    Grecu, Mircea; Olson, William S.; Anagnostou, Emmanouil N.

    2004-04-01

    In this study, a technique for estimating vertical profiles of precipitation from multifrequency, multiresolution active and passive microwave observations is investigated. The technique is applicable to the Tropical Rainfall Measuring Mission (TRMM) observations, and it is based on models that simulate high-resolution brightness temperatures as functions of observed reflectivity profiles and a parameter related to the raindrop size distribution. The modeled high-resolution brightness temperatures are used to determine normalized brightness temperature polarizations at the microwave radiometer resolution. An optimal estimation procedure is employed to minimize the differences between the simulated and observed normalized polarizations by adjusting the drop size distribution parameter. The impact of other unknowns that are not independent variables in the optimal estimation, but affect the retrievals, is minimized through statistical parameterizations derived from cloud model simulations. The retrieval technique is investigated using TRMM observations collected during the Kwajalein Experiment (KWAJEX). These observations cover an area extending from 5° to 12°N latitude and from 166° to 172°E longitude from July to September 1999 and are coincident with various ground-based observations, facilitating a detailed analysis of the retrieved precipitation. Using the method developed in this study, precipitation estimates consistent with both the passive and active TRMM observations are obtained. Various parameters characterizing these estimates, that is, the rain rate, precipitation water content, drop size distribution intercept, and the mass- weighted mean drop diameter, are in good qualitative agreement with independent experimental and theoretical estimates. Combined rain estimates are, in general, higher than the official TRMM precipitation radar (PR)-only estimates for the area and the period considered in the study. Ground-based precipitation estimates, derived

  1. Microwave and Beam Activation of Nanostructured Catalysts for Environmentally Friendly, Energy Efficient Heavy Crude Oil Processing

    SciTech Connect

    2009-03-01

    This factsheet describes a study whose goal is initial evaluation and development of energy efficient processes which take advantage of the benefits offered by nanostructured catalysts which can be activated by microwave, RF, or radiation beams.

  2. Effects of microwave heating on porous structure of regenerated powdered activated carbon used in xylose.

    PubMed

    Li, Wei; Wang, Xinying; Peng, Jinhui

    2014-01-01

    The regeneration of spent powdered activated carbons used in xylose decolourization by microwave heating was investigated. Effects of microwave power and microwave heating time on the adsorption capacity of regenerated activated carbons were evaluated. The optimum conditions obtained are as follows: microwave power 800W; microwave heating time 30min. Regenerated activated carbon in this work has high adsorption capacities for the amount of methylene blue of 16 cm3/0.1 g and the iodine number of 1000.06mg/g. The specific surface areas of fresh commercial activated carbon, spent carbon and regenerated activated carbon were calculated according to the Brunauer, Emmett and Teller method, and the pore-size distributions of these carbons were characterized by non-local density functional theory (NLDFT). The results show that the specific surface area and the total pore volume of regenerated activated carbon are 1064 m2/g and 1.181 mL/g, respectively, indicating the feasibility of regeneration of spent powdered activated carbon used in xylose decolourization by microwave heating. The results of surface fractal dimensions also confirm the results of isotherms and NLDFT. PMID:24645431

  3. Microwave resonant technique in studies of photodielectric properties of bulk, thin film and nanoparticle materials

    NASA Astrophysics Data System (ADS)

    Pavlov, V. V.; Rakhmatullin, R. M.; Cefalas, A. C.; Semashko, V. V.

    2016-06-01

    An enhanced contactless microwave technique allows us to study the photoconductivity of materials. The transient response of the complex permittivity of matter (ε ={ε1}-j{ε2} ) under optical irradiation is measured with nanosecond time resolution. The main advantage of the novel methodology is the elimination of the polarization effect in evaluating photoconductivity. The potential of the methodology was demonstrated by photoconductivity measurements in Si [1 0 0] crystal, CeO2 nanocrystalline powder and Ce-doped LiYF4 single crystal. The variations of complex permittivity (δ {ε1} and δ {ε2} ) of Si [1 0 0] crystal, CeO2 nanocrystalline powder and Ce-doped LiYF4 single crystal under optical irradiation was measured and accurate values for crystalline band gaps were extracted. Finally, quantum confinement effects were observed in nano-size crystalline powders.

  4. Passive Microwave Algorithms for Sea Ice Concentration: A Comparison of Two Techniques

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Cavalieri, Donald J.; Parkinson, Claire L.; Gloersen, Per

    1997-01-01

    The most comprehensive large-scale characterization of the global sea ice cover so far has been provided by satellite passive microwave data. Accurate retrieval of ice concentrations from these data is important because of the sensitivity of surface flux(e.g. heat, salt, and water) calculations to small change in the amount of open water (leads and polynyas) within the polar ice packs. Two algorithms that have been used for deriving ice concentrations from multichannel data are compared. One is the NASA Team algorithm and the other is the Bootstrap algorithm, both of which were developed at NASA's Goddard Space Flight Center. The two algorithms use different channel combinations, reference brightness temperatures, weather filters, and techniques. Analyses are made to evaluate the sensitivity of algorithm results to variations of emissivity and temperature with space and time. To assess the difference in the performance of the two algorithms, analyses were performed with data from both hemispheres and for all seasons. The results show only small differences in the central Arctic in but larger disagreements in the seasonal regions and in summer. In some ares in the Antarctic, the Bootstrap technique show ice concentrations higher than those of the Team algorithm by as much as 25%; whereas, in other areas, it shows ice concentrations lower by as much as 30%. The The differences in the results are caused by temperature effects, emissivity effects, and tie point differences. The Team and the Bootstrap results were compared with available Landsat, advanced very high resolution radiometer (AVHRR) and synthetic aperture radar (SAR) data. AVHRR, Landsat, and SAR data sets all yield higher concentrations than the passive microwave algorithms. Inconsistencies among results suggest the need for further validation studies.

  5. Electrodeless measurement of charge carrier mobility in pentacene by microwave and optical spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Saeki, Akinori; Seki, Shu; Tagawa, Seiichi

    2006-07-01

    Photoinduced transient conductivity of pentacene thin films prepared by thermal vapor deposition is investigated using time-resolved microwave conductivity (TRMC) measurements, giving intrinsic charge carrier mobility in highly ordered structures without any electrode attached. The real and imaginary conductivity values are analyzed and compared with those predicted by molecular orbital calculations. The effects of substrate surface treatment by hexamethyldisilazane are discussed on the basis of kinetic traces of conductivity and morphology. A mobility of >0.7cm2/Vs was obtained from the TRMC measurements and analysis of transient absorption spectra. The measurement of field-effect-transistor mobility in single-crystal domains requires not only complicated fabrication techniques but also many assumptions on the carrier channels, density, injection, etc. The combination of TRMC and transient optical spectroscopy provides an approach for addressing this issue. The present technique is applicable to a wide variety of organic semiconducting materials. Moreover, it is the only technique revealing the intrinsic potentials of mobility in materials that is supported by complete experimental and quantitative procedures not based on any assumptions.

  6. Determination of halogens in coal after digestion using the microwave-induced combustion technique

    SciTech Connect

    Flores, E.M.M.; Mesko, M.F.; Moraes, D.P.; Pereira, J.S.F.; Mello, P.A.; Barin, J.S.; Knapp, G.

    2008-03-15

    The microwave-induced combustion (MIC) technique was applied for coal digestion and further determination of bromide, chloride, fluoride, and iodide by ion chromatography (IC). Samples (up to 500 mg) were combusted at 2 MPa of oxygen. Combustion was complete in less than 50 s, and analytes were absorbed in water or (NH{sub 4}){sub 2}CO{sub 3} solution. A reflux step was applied to improve analyte absorption. Accuracy was evaluated for Br, Cl, and F using certified reference coal and spiked samples for I. For Br, Cl, and F, the agreement was between 96 and 103% using 50 mmol L{sup -1} (NH{sub 4}){sub 2}CO{sub 3} as the absorbing solution and 5 min of reflux. With the use of the same conditions, the recoveries for I were better than 97%. Br, Cl, and I were also determined in MIC digests by inductively coupled plasma mass spectrometry, inductively coupled plasma optical emission spectrometry, and F was determined by an ion-selective electrode with agreement better than 95% to the values obtained using IC. Temperature during combustion was higher than 1350 {sup o}C, and the residual carbon content was lower than 1%. With the use of the MIC technique, up to eight samples could be processed simultaneously, and a single absorbing solution was suitable for all analytes and determination techniques (limit of detection by IC was better than 3 {mu} g g{sup -1} for all halogens).

  7. Microwave heating enhances antioxidant and emulsifying activities of ovalbumin glycated with glucose in solid-state.

    PubMed

    Tu, Zong-Cai; Hu, Yue-Ming; Wang, Hui; Huang, Xiao-Qin; Xia, Shi-Qi; Niu, Pei-Pei

    2015-03-01

    The aim of this study was to characterize the properties of ovalbumin (OVA) after glycated with glucose under microwave heating. For this purpose, microwave at 480 and 640 W power levels were used for heating the OVA-glucose system in solid-state for 0, 5, 10, 15, 20 and 25 min, respectively. The results indicated that the protein molecular weight was increased after glycated with glucose under microwave treatment, the pH of the system was decreased with the increase of microwave treatment power and time, while the UV absorbance, browning intensity, antioxidant activities as well as the emulsifying activity and emulsion stability of the Maillard reaction products (MRPs) were increased in according with the raise of microwave treatment power and time. The reaction time of microwave treatment is much shorter than those using traditional methods, suggesting that microwave irradiation is a novel and efficient approach to promote Maillard reaction (MR) in dry state and improve protein antioxidant and functional properties. PMID:25745213

  8. Volcanic eruption source parameters from active and passive microwave sensors

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario; Marzano, Frank S.; Cimini, Domenico; Mereu, Luigi

    2016-04-01

    It is well known, in the volcanology community, that precise information of the source parameters characterising an eruption are of predominant interest for the initialization of the Volcanic Transport and Dispersion Models (VTDM). Source parameters of main interest would be the top altitude of the volcanic plume, the flux of the mass ejected at the emission source, which is strictly related to the cloud top altitude, the distribution of volcanic mass concentration along the vertical column as well as the duration of the eruption and the erupted volume. Usually, the combination of a-posteriori field and numerical studies allow constraining the eruption source parameters for a given volcanic event thus making possible the forecast of ash dispersion and deposition from future volcanic eruptions. So far, remote sensors working at visible and infrared channels (cameras and radiometers) have been mainly used to detect, track and provide estimates of the concentration content and the prevailing size of the particles propagating within the ash clouds up to several thousand of kilometres far from the source as well as track back, a-posteriori, the accuracy of the VATDM outputs thus testing the initial choice made for the source parameters. Acoustic wave (infrasound) and microwave fixed scan radar (voldorad) were also used to infer source parameters. In this work we want to put our attention on the role of sensors operating at microwave wavelengths as complementary tools for the real time estimations of source parameters. Microwaves can benefit of the operability during night and day and a relatively negligible sensitivity to the presence of clouds (non precipitating weather clouds) at the cost of a limited coverage and larger spatial resolution when compared with infrared sensors. Thanks to the aforementioned advantages, the products from microwaves sensors are expected to be sensible mostly to the whole path traversed along the tephra cloud making microwaves particularly

  9. Theoretical study of thermally activated magnetization switching under microwave assistance: Switching paths and barrier height

    NASA Astrophysics Data System (ADS)

    Suto, H.; Kudo, K.; Nagasawa, T.; Kanao, T.; Mizushima, K.; Sato, R.; Okamoto, S.; Kikuchi, N.; Kitakami, O.

    2015-03-01

    Energy barrier height for magnetization switching is theoretically studied for a system with uniaxial anisotropy in a circularly polarized microwave magnetic field. A formulation of the Landau-Lifshitz-Gilbert equation in a rotating frame introduces an effective energy that includes the effects of both the microwave field and static field. This allows the effective-energy profiles to rigorously describe the switching paths and corresponding barrier height, which govern thermally activated magnetization switching under microwave assistance. We show that fixed points and limit cycles in the rotating frame lead to various switching paths and that under certain conditions, switching becomes a two-step process with an intermediate state.

  10. Characterization of Aroma-Active Compounds in Microwave Blanced Peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microwave blanching of peanuts has been explored as an alternative to conventional oven methods based on its speed of operation, energy savings, and efficiency of process control. Although processing times can be greatly reduced,the occurrence of stale/floral and ashy off-flavors has been reported a...

  11. Active and passive microwave measurements in Hurricane Allen

    NASA Technical Reports Server (NTRS)

    Delnore, V. E.; Bahn, G. S.; Grantham, W. L.; Harrington, R. F.; Jones, W. L.

    1985-01-01

    The NASA Langley Research Center analysis of the airborne microwave remote sensing measurements of Hurricane Allen obtained on August 5 and 8, 1980 is summarized. The instruments were the C-band stepped frequency microwave radiometer and the Ku-band airborne microwave scatterometer. They were carried aboard a NOAA aircraft making storm penetrations at an altitude of 3000 m and are sensitive to rain rate, surface wind speed, and surface wind vector. The wind speed is calculated from the increase in antenna brightness temperature above the estimated calm sea value. The rain rate is obtained from the difference between antenna temperature increases measured at two frequencies, and wind vector is determined from the sea surface normalized radar cross section measured at several azimuths. Comparison wind data were provided from the inertial navigation systems aboard both the C-130 aircraft at 3000 m and a second NOAA aircraft (a P-3) operating between 500 and 1500 m. Comparison rain rate data were obtained with a rain radar aboard the P-3. Evaluation of the surface winds obtained with the two microwave instruments was limited to comparisons with each other and with the flight level winds. Two important conclusions are drawn from these comparisons: (1) the radiometer is accurate when predicting flight level wind speeds and rain; and (2) the scatterometer produces well behaved and consistent wind vectors for the rain free periods.

  12. A multifrequency evaluation of active and passive microwave sensors for oil spill detection and assessment

    NASA Technical Reports Server (NTRS)

    Fenner, R. G.; Reid, S. C.; Solie, C. H.

    1980-01-01

    An evaluation is given of how active and passive microwave sensors can best be used in oil spill detection and assessment. Radar backscatter curves taken over oil spills are presented and their effect on synthetic aperture radar (SAR) imagery are discussed. Plots of microwave radiometric brightness variations over oil spills are presented and discussed. Recommendations as to how to select the best combination of frequency, viewing angle, and sensor type for evaluation of various aspects of oil spills are also discussed.

  13. Development and trial of microwave techniques for measurement of multiphase flow of oil, water and gas

    SciTech Connect

    Ashton, S.L.; Cutmore, N.G.; Roach, G.J.; Watt, J.S.; Zastawny, H.W.; McEwan, A.J.

    1994-12-31

    A prototype microwave and gamma-ray MFM has been developed for measurement of oil, water and gas flowrates on production pipelines and has been successfully trialed at the Thevenard island oil production facility. The microwave and gamma-ray MFM determined the oil and water flow rates with errors of 5.4 and 5.9% relative respectively for the wide range of wells and flow conditions during the trial period. A prototype non-intrusive microwave MFM is being developed for measurement of oil, water and gas flow rates on production pipelines. The microwave MFM will be trialed on the West Kingfish platform in Bass Strait in late 1994.

  14. Characterization technique of optical whispering gallery mode resonators in the microwave frequency domain for optoelectronic oscillators.

    PubMed

    Merrer, Pierre-Henri; Saleh, Khaldoun; Llopis, Olivier; Berneschi, Simone; Cosi, Franco; Conti, Gualtiero Nunzi

    2012-07-10

    Optical Q factor measurements are performed on a whispering gallery mode (WGM) disk resonator using a microwave frequency domain approach instead of using an optical domain approach. An absence of hysteretic behavior and a better linearity are obtained when performing linewidth measurements by using a microwave modulation for scanning the resonances instead of the piezoelectric-based frequency tuning capability of the laser. The WGM resonator is then used to stabilize a microwave optoelectronic oscillator. The microwave output of this system generates a 12.48 GHz signal with -94 dBc/Hz phase noise at 10 kHz offset. PMID:22781250

  15. Piroxicam loaded alginate beads obtained by prilling/microwave tandem technique: morphology and drug release.

    PubMed

    Aquino, Rita P; Auriemma, Giulia; d'Amore, Matteo; D'Ursi, Anna Maria; Mencherini, Teresa; Del Gaudio, Pasquale

    2012-07-01

    This paper presents a tandem technique, based on the combination of prilling and microwave (MW) assisted treatments, to produce biodegradable alginate carriers of piroxicam with different drug controlled release behaviours. Results showed that alginate/piroxicam beads demonstrated high encapsulation efficiency and very narrow dimensional distribution. Beads dried by MW retained shape and size distribution of the hydrated particles while drying rate was strongly increased compared to convective drying processes. Moreover, different MW irradiation regimes promoted interactions between the drug and alginate matrix, affected drug polymorphism as well as inner and surface matrix structure leading to different piroxicam release profiles. High level MW irradiation led to beads with highly porous and swellable matrix able to release piroxicam in few minutes in the intestine while convective drying produced gastro-resistant beads that exhibit sustained piroxicam release (total release in 5.5h) in intestinal environment. On these results the tandem technique prilling/MW irradiation appears to be promising to obtain alginate carrier with tailored NSAIDs release depending on drug characteristics and MW irradiation. PMID:24750857

  16. [INVITED] Cascade FBGs distributed sensors interrogation using microwave photonics filtering techniques

    NASA Astrophysics Data System (ADS)

    Ricchiuti, Amelia L.; Hervás, Javier; Sales, Salvador

    2016-03-01

    Systems to interrogate photonic sensors based on long fiber Bragg gratings (FBGs) are illustrated and experimentally validated. The FBGs-based devices are used as quasi-distributed sensors and have demonstrated their ability to detect and measure the precise location of several spot events. The principle of operation is based on a technique used to analyze microwave photonics (MWP) filters. The overall idea beyond this work has been borne out and demonstrated step by step starting from preliminary test that have led to the development of a very-long distributed sensor based on an array of 500 equal and weak FBGs. Firstly, we have demonstrated the feasibility of the MWP filtering technique to interrogate a 10 cm-long high reflectivity (≈99%) FBG. Then, a pair of low-reflectivity (<6%) FBGs has been employed as sensing device. The latter has laid the foundation for the development and implementation of a 5 m-long fiber optic sensor based on 500 very weak FBGs. Spot events have been detected with a good spatial accuracy of less than 1 mm using a modulator and a photo-detector (PD) with a modest bandwidth of only 500 MHz. The simple proposed schemes result cost effective, intrinsically robust against environmental changes and easy to reconfigure.

  17. Intercomparisons between passive and active microwave remote sensing, and hydrological modeling for soil moisture

    NASA Technical Reports Server (NTRS)

    Wood, E. F.; Lin, D.-S.; Mancini, M.; Thongs, D.; Troch, P. A.; Jackson, T. J.; Famiglietti, J. S.; Engman, E. T.

    1993-01-01

    Soil moisture estimations from a distributed hydrological model and two microwave sensors were compared with ground measurements collected during the MAC-HYDRO'90 experiment. The comparison was done with the purpose of evaluating the performance of the hydrological model and examining the limitations of remote sensing techniques used in soil moisture estimation. An image integration technique was used to integrate and analyze rainfall, soil properties, land cover, topography, and remote sensing imagery. Results indicate that the hydrological model and microwave sensors successfully picked up temporal variations of soil moisture and that the spatial soil moisture pattern may be remotely sensed with reasonable accuracy using existing algorithms.

  18. Development of "active correlation" technique

    NASA Astrophysics Data System (ADS)

    Tsyganov, Yu. S.

    2016-01-01

    With reaching to extremely high intensities of heavy-ion beams new requirements for the detection system of the Dubna Gas-Filled Recoil Separator (DGFRS) will definitely be set. One of the challenges is how to apply the "active correlations" method to suppress beam associated background products without significant losses in the whole long-term experiment efficiency value. Different scenarios and equations to develop the method according this requirement are under consideration in the present paper. The execution time to estimate the dead time parameter associated with the optimal choice of the life-time parameter is presented.

  19. Retrieval of Precipitation Profiles from Multiresolution, Multifrequency, Active and Passive Microwave Observations

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Anagnostou, Emmanouil N.; Olson, William S.; Starr, David OC. (Technical Monitor)

    2002-01-01

    In this study, a technique for estimating vertical profiles of precipitation from multifrequency, multiresolution active and passive microwave observations is investigated using both simulated and airborne data. The technique is applicable to the Tropical Rainfall Measuring Mission (TRMM) satellite multi-frequency active and passive observations. These observations are characterized by various spatial and sampling resolutions. This makes the retrieval problem mathematically more difficult and ill-determined because the quality of information decreases with decreasing resolution. A model that, given reflectivity profiles and a small set of parameters (including the cloud water content, the intercept drop size distribution, and a variable describing the frozen hydrometeor properties), simulates high-resolution brightness temperatures is used. The high-resolution simulated brightness temperatures are convolved at the real sensor resolution. An optimal estimation procedure is used to minimize the differences between simulated and observed brightness temperatures. The retrieval technique is investigated using cloud model synthetic and airborne data from the Fourth Convection And Moisture Experiment. Simulated high-resolution brightness temperatures and reflectivities and airborne observation strong are convolved at the resolution of the TRMM instruments and retrievals are performed and analyzed relative to the reference data used in observations synthesis. An illustration of the possible use of the technique in satellite rainfall estimation is presented through an application to TRMM data. The study suggests improvements in combined active and passive retrievals even when the instruments resolutions are significantly different. Future work needs to better quantify the retrievals performance, especially in connection with satellite applications, and the uncertainty of the models used in retrieval.

  20. Scanning near field microwave microscopy based on an active resonator

    NASA Astrophysics Data System (ADS)

    Qureshi, Naser; Kolokoltsev, Oleg; Ordonez-Romero, Cesar Leonardo

    2014-03-01

    A large number of recent implementations of near field scanning microwave microscopy (NFSMM) have been based on the perturbation of a resonant cavity connected to a sharp scanning probe. In this work we present results from an alternative approach: the perturbation of a microwave source connected to a scanning tip. Based on a yittrium iron garnet (YIG) cavity ring resonator this scanning probe system has a quality factor greater than 106, which allows us to detect very small frequency shifts, which translates to a very high sensitivity in sample impedance measurements. Using a selection of representative semiconductor, metal and biological samples we show how this approach leads to unusually high sensitivity and spatial resolution. Work supported by a grant from PAPIIT, UNAM 104513.

  1. Microwave-assisted activation for electroless nickel plating on PMMA microspheres

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Chung; Liu, Robert Lian-Huey; Chen, Xin-Liang; Shu, Hsiou-Jeng; Ger, Ming-Der

    2011-05-01

    A novel microwave-assisted activation method for electroless plating on PMMA microspheres is presented in this study. When the microwave irradiation was applied during the activation step, the amount of the Pd species adsorbed on PMMA surfaces was much higher than that of sample pretreated with a conventional activation process without microwave irradiation. With this activation method, it was also shown that the adsorbed Pd species with a size of 4-6 nm were uniformly distributed on the surfaces of the PMMA microspheres, thus a smooth and uniform nickel-phosphorus coating on the PMMA microspheres was obtained by subsequent electroless plating. The samples after each step were characterized by XPS, TEM, ICP and SEM.

  2. Microwave-Assisted Simultaneous Extraction of Luteolin and Apigenin from Tree Peony Pod and Evaluation of Its Antioxidant Activity

    PubMed Central

    Wang, Hongzheng; Yang, Lei; Zu, Yuangang; Zhao, Xiuhua

    2014-01-01

    An efficient microwave-assisted extraction (MAE) technique was employed in simultaneous extraction of luteolin and apigenin from tree peony pod. The MAE procedure was optimized using response surface methodology (RSM) and compared with other conventional extraction techniques of macerate extraction (ME) and heat reflux extraction (HRE). The optimal conditions of MAE were as follows: employing 70% ethanol volume fraction as solvent, soaking time of 4 h, liquid-solid ratio of 10 (mL/g), microwave irradiation power of 265 W, microwave irradiation time of 9.6 min, and 3 extraction cycles. Under the optimal conditions, 151 μg/g luteolin and 104 μg/g apigenin were extracted from the tree peony pod. Compared with ME and HRE, MAE gave the highest extraction efficiency. The antioxidant activities of the extracts obtained by MAE, ME, and HRE were evaluated using a 2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH) free radical-scavenging assay, a ferric reducing antioxidant power assay (FRAP), and a reducing power assay. Meanwhile, the structural changes of the unprocessed and processed tree peony pod samples were analyzed by scanning electron microscopy. PMID:25405227

  3. Dual-tunable multiferroic active ring filter for microwave photonic oscillators

    NASA Astrophysics Data System (ADS)

    Vitko, V. V.; Nikitin, A. A.; Ustinov, A. B.; Kalinikos, B. A.

    2015-12-01

    A theoretical model of a microwave active ring filter based on a ferrite-ferroelectric layered structure serving as a waveguide for spin-electromagnetic waves is developed. An experimental prototype of the device is fabricated and characterized. The device is implemented as an active-ring resonator with a microwave amplifier and a ferrite-ferroelectric delay line. The resonance properties of this system are studied theoretically and experimentally. The results show dual control of central frequency of the filter with magnetic and electric fields. An effective Q-factor of 50 000 and tuning by 5 MHz with an electric field are achieved at 8 GHz.

  4. A Instrument and Technique for Measuring the Anisotropy in the Cosmic Microwave Background Radiation

    NASA Astrophysics Data System (ADS)

    Wilson, Grant W.

    1997-09-01

    There is a wealth of information contained in the spatial temperature distribution of the Cosmic Microwave Background Radiation (CMB) >From the pioneering discovery of anisotropy by the COBE satellite to the latest balloon payloads and ground based observations, measurements of the CMB have become the cornerstone of our current understanding of the Universe. Currently, the second generation of CMB experiments are coming on-line. With improved detectors and novel observing strategies, these experiments are destined to make the transition from 'discovering' the anisotropy in the CMB to making precision measurements of the spatial correlation function. Herein I describe the most recent of these second generation experiments: the Medium Scale Anisotropy Measurement (MSAM II). MSAM II is a balloon-based telescope with a bolometric receiver cooled by an Adiabatic Demagnetization Refrigerator to 100 mK. MSAM II samples the sky with a 20 prime FWHM beam swept with a triangle wave at 2.5 Hz and will make a precision measurement of the spatial correlation function from 1 = 100 to 1 = 500. In addition to a comprehensive discussion of the fabrication and development of the cryogenic and optical systems of MSAM II, I present a novel method of estimating cosmological parameters from anisotropy measurements using a maximum Likelihood technique which employs the full covariance matrix of observations. This method has been used on the combined three years of MSAM I datasets to constrain the mass fraction of baryons in the universe, ΩB, as well as a number of other cosmological parameters.

  5. Microstructural evolution and dielectric properties of 1D AlN powders synthesized by microwave technique

    NASA Astrophysics Data System (ADS)

    VasanthiPillay, V.; Vijayalakshmi, K.

    2012-06-01

    Low temperature synthesis of Aluminum nitride (AlN) powders through NH4Cl assisted nitridation have been studied by microwave technique. The effect of processing time on the synthesis of AlN powders has been investigated. The optimum processing time was determined to be 120 min at 630 W, 200 °C. The powders were characterized by X-ray diffraction method (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray analyzer (EDS), Fourier transform infrared spectrometer (FTIR) and Impedance analyzer. XRD results revealed that the product has wurtzite phase of AlN. SEM micrographs show a 1D nanorod of AlN with a granular morphology. FTIR spectra exhibit A1 (TO) and E1 (LO) modes of wurtzite AlN. Dielectric properties of the powders were investigated by means of C-V and C-f and ɛ'-f characteristics. The reported results indicate a reasonable quality of the obtained AlN powders with high dielectric constant, suitable for application in the fabrication of specific electronic devices.

  6. Water vapor as an error source in microwave geodetic systems: Background and survey of calibration techniques. [very long base interferometry

    NASA Technical Reports Server (NTRS)

    Claflin, E. S.; Resch, G. M.

    1980-01-01

    Water vapor as an error source in radio interferometry systems is briefly examined. At microwave frequencies, the delay imposed by tropospheric water vapor becomes a limiting error source for high accuracy geodetic systems. The mapping of tropospheric induced errors into 'solved-for' parameters depends upon baseline length and observing strategy. Simulation analysis (and experience) indicates that in some cases, errors in estimating tropospheric delay can be magnified in their effect on baseline components. The various techniques by which tropospheric water can be estimated or measured are surveyed with particular consideration to their possible use as a calibration technique in support to very long baseline interferometry experiments. The method of remote sensing using a microwave radiometer seems to be the most effective way to provide an accurate estimate of water vapor delay.

  7. Combined effect of microwave and activated carbon on the remediation of polychlorinated biphenyl-contaminated soil.

    PubMed

    Liu, Xitao; Yu, Gang

    2006-04-01

    The application of microwave and activated carbon for the treatment of polychlorinated biphenyl (PCB) contaminated soil was explored in this study with a model compound of 2,4,5-trichlorobiphenyl (PCB29). PCB-contaminated soil was treated in a quartz reactor by microwave irradiation at 2450MHz with the addition of granular activated carbon (GAC). In this procedure, GAC acted as microwave absorbent for reaching high temperature and reductant for dechlorination. A sheltered type-K thermocouple was applied to record the temperature rising courses. It was shown that the addition of GAC could effectively promote the temperature rising courses. The determination of PCB residues in soil by gas chromatography (GC) revealed that rates of PCB removal were highly dependent on microwave power, soil moisture content, and the amount of GAC added. GC with mass spectrum (MS) detector and ion chromatography were employed for the analysis of degradation intermediates and chlorine ions, respectively. It was suggested that microwave irradiation with the assistance of activated carbon might be a potential technology for the remediation of PCB-contaminated soil. PMID:16213557

  8. Error characterisation of global active and passive microwave soil moisture datasets

    NASA Astrophysics Data System (ADS)

    Dorigo, W. A.; Scipal, K.; Parinussa, R. M.; Liu, Y. Y.; Wagner, W.; de Jeu, R. A. M.; Naeimi, V.

    2010-12-01

    Understanding the error structures of remotely sensed soil moisture observations is essential for correctly interpreting observed variations and trends in the data or assimilating them in hydrological or numerical weather prediction models. Nevertheless, a spatially coherent assessment of the quality of the various globally available datasets is often hampered by the limited availability over space and time of reliable in-situ measurements. As an alternative, this study explores the triple collocation error estimation technique for assessing the relative quality of several globally available soil moisture products from active (ASCAT) and passive (AMSR-E and SSM/I) microwave sensors. The triple collocation is a powerful statistical tool to estimate the root mean square error while simultaneously solving for systematic differences in the climatologies of a set of three linearly related data sources with independent error structures. Prerequisite for this technique is the availability of a sufficiently large number of timely corresponding observations. In addition to the active and passive satellite-based datasets, we used the ERA-Interim and GLDAS-NOAH reanalysis soil moisture datasets as a third, independent reference. The prime objective is to reveal trends in uncertainty related to different observation principles (passive versus active), the use of different frequencies (C-, X-, and Ku-band) for passive microwave observations, and the choice of the independent reference dataset (ERA-Interim versus GLDAS-NOAH). The results suggest that the triple collocation method provides realistic error estimates. Observed spatial trends agree well with the existing theory and studies on the performance of different observation principles and frequencies with respect to land cover and vegetation density. In addition, if all theoretical prerequisites are fulfilled (e.g. a sufficiently large number of common observations is available and errors of the different datasets are

  9. Investigating Baseline, Alternative and Copula-based Algorithm for combining Airborne Active and Passive Microwave Observations in the SMAP Context

    NASA Astrophysics Data System (ADS)

    Montzka, C.; Lorenz, C.; Jagdhuber, T.; Laux, P.; Hajnsek, I.; Kunstmann, H.; Entekhabi, D.; Vereecken, H.

    2015-12-01

    The objective of the NASA Soil Moisture Active & Passive (SMAP) mission is to provide global measurements of soil moisture and freeze/thaw states. SMAP integrates L-band radar and radiometer instruments as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. Airborne instruments will be a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment, Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer (PLMR2) and the active L-band system F-SAR of DLR were flown simultaneously on the same platform on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e. all types of land cover and experimental monitoring sites with in situ sensors. Here, we used the obtained data sets as a test-bed for the analysis of three active-passive fusion techniques: A) The SMAP baseline algorithm: Disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture, B), the SMAP alternative algorithm: Estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter and C) Copula-based combination of active and passive microwave data. For method C empirical Copulas were generated and theoretical Copulas fitted both on the level of the raw products brightness temperature and backscatter as well as two soil moisture products. Results indicate that the regression parameters for method A and B are dependent on the radar vegetation index (RVI). Similarly, for method C the best performance was gained by generating separate Copulas for individual land use classes. For more in-depth analyses longer time series are necessary as can obtained by airborne campaigns, therefore, the methods will be applied to SMAP data.

  10. Intercomparisons between passive and active microwave remote sensing, and hydrological modeling for soil moisture

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Lin, D.-S.; Mancini, M.; Thongs, D.; Troch, P. A.; Jackson, T. J.; Famiglietti, J. S.; Engman, E. T.

    1993-05-01

    Soil moisture estimates from a distributed hydrological model and two microwave remote sensors (Push Broom Microwave Radiometer and Synthetic Aperture Radar) were compared with the ground measurements collected during the MAC-HYDRO'90 experiment over a 7.4-km2 watershed in central Pennsylvania. Various information, including rainfall, soil properties, land cover, topography and remote sensing imagery, were integrated and analyzed using an image integration technique. It is found that the hydrological model and both microwave sensors successfully pick up the temporal variation of soil moisture. Results also indicate the spatial soil moisture pattern can be remotely sensed within reasonable accuracy using existing algorithms. Watershed averaged soil moisture estimates from the hydrological model are wetter than remotely sensed data. It is difficult to conclude which instrument yield better performance for the studied case. The choice will be based on the intended applications and information that is available.

  11. New synthetic routes to catalytically active manganite, K-OMS-2 and K-OMS-2/silicon dioxide and a preliminary study on the use of a continuous flow microwave technique in the synthesis of nanosized manganese and cerium oxides and cobalt and iron oxyhydroxides

    NASA Astrophysics Data System (ADS)

    Crisostomo, Vincent Mark B.

    done. Lowering the amount of catalyst and increasing the substrate used in the reaction significantly improved conversion and turnover frequency. Conversions of up to 81% and 19 h-1 TOF were achieved. These were the highest reports of conversion and TOF thus far for styrene oxidation using undoped OMS-2 and 24 hours reaction time. Selectivity towards the more valuable product, styrene oxide, significantly improved when OMS-2 was supported on SiO2. The weight % OMS-2 or dispersion of OMS-2 on the SiO2 support may be a key in optimizing OMS-2/SiO2 catalysts. The free-radical pathway is indeed involved in the oxidation of styrene and SiO2 contributes to the generation of epoxide-producing radicals as shown by kinetic and radical trapping experiments. Furthermore, the oxo-metal pathway may favor the production of benzaldehyde. Finally, a preliminary study on the use of a continuous flow microwave (MW) technique to obtain inorganic nanomaterials is also presented in this thesis. Nanosized epsilon-MnO2, OMS-2, CeO2, CoOOH, and FeOOH were synthesized using the said microwave technique. Nanoplates and nanofibers of epsilon-MnO2 were obtained while mainly nanoplates of OMS-2 resulted in the use of the continuous flow MW technique. The obtained OMS-2 product was not pure. This OMS-2 was obtained with some epsilon-MnO 2. epsilon-MnO2 cannot be used as a precursor to OMS-2. Microspheres of epsilon-MnO2 can be obtained by using shorter reactors and more concentrated reactant solutions. Product yields of up to 24% were obtained in using the continuous flow MW reactor, which indicates that there are still some parameters that need to be further optimized to achieve a viable industrial process using the technique reported here. These parameters include reactor geometry, MW power, reactant concentrations, and the use of a carrier gas to alleviate clogging of the reactor. Lower product yields were obtained when the MW oven was replaced with a conventional one.

  12. Frequency-Temperature Compensation Techniques for High-Q Microwave Resonators

    NASA Astrophysics Data System (ADS)

    Hartnett, John G.; Tobar, Michael E.

    Low-noise high-stability resonator oscillators based on high-Q monolithic sapphire ``Whispering Gallery'' (WG)-mode resonators have become important devices for telecommunication, radar and metrological applications. The extremely high quality factor of sapphire, of 2 x10^5 at room temperature, 5 x10^7 at liquid nitrogen temperature and 5 x10^9 at liquid helium temperature has enabled the lowest phase noise and highly frequency-stable oscillators in the microwave regime to be constructed. To create an oscillator with exceptional frequency stability, the resonator must have its frequency-temperature dependence annulled at some temperature, as well as a high quality factor. The Temperature Coefficient of Permittivity (TCP) for sapphire is quite large, at 10-100parts per million/K above 77K. This mechanism allows temperature fluctuations to transform to resonator frequency fluctuations.A number of research groups worldwide have investigated various methods of compensating the TCP of a sapphire dielectric resonator at different temperatures. The usual electromagnetic technique of annulment involves the use of paramagnetic impurities contributing an opposite temperature coefficient of the magnetic susceptibility to the TCP. This technique has only been realized successfully in liquid helium environments. Near 4K the thermal expansion and permittivity effects are small and only small quantities of the paramagnetic ions are necessary to compensate the mode frequency. Compensation is due to impurity ions that were incidentally left over from the manufacturing process.Recently, there has been an effort to dispense with the need for liquid helium and make a compact flywheel oscillator for the new generation of primary frequency standards such as the cesium fountain at the Laboratoire Primaire du Temps et des Fréquences (LPTF), France. To achieve the stability limit imposed

  13. Investigation of the effects of summer melt on the calculation of sea ice concentration using active and passive microwave data

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.; Burns, Barbara A.; Onstott, Robert G.

    1990-01-01

    The effects of ice surface melt on microwave signatures and errors in the calculation of sea ice concentration are examined, using active and passive microwave data sets from the Marginal Ice Zone Experiment aircraft flights in the Fram Strait region. Consideration is given to the possibility of using SAR to supplement passive microwave data to unambiguously discriminate between open water areas and ponded floes. Coincident active multichannel microwave radiometer and SAR measurements of individual floes are used to describe the effects of surface melt on sea ice concentration calculations.

  14. Passive and Active Microwave Remote Sensing of Precipitation and Latent Heating Distributions in the Tropics from TRMM

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Haddad, Ziad S.; Tao, Wei-Kuo; Wang, Yansen; Lang, Stephen E.; Braun, Scott A.; Chiu, Christine; Wang, Jian-Jian

    2002-01-01

    Passive and active microwave remote sensing data are analyzed to identify signatures of precipitation and vertical motion in tropical convection. A database of cloud/radiative model simulations is used to quantify surface rain rates and latent heating profiles that are consistent with these signatures. At satellite footprint-scale (approximately 10 km), rain rate and latent heating estimates are subject to significant random errors, but by averaging the estimates in space and time, random errors are substantially reduced, Bias errors have been minimized by improving the microphysics in the supporting cloud/radiative model simulations, and by imposing a consistent definition of remotely-sensed and model-simulated convective/stratiform rain coverage. Remotely-sensed precipitation and latent heating distributions in the tropics are derived from Tropical Rainfall Measuring Mission (TRMM) and Special Sensor Microwave/ Imager (SSM/ I) sensor data. The prototype Version 6 TRMM passive microwave algorithm typically yields average heating profiles with maxima between 6 and 7 km altitude for organized mesoscale convective systems. Retrieved heating profiles for individual convective systems are compared to coincident estimates based upon a combination of dual-Doppler radar and rawinsonde data. Also, large-scale latent heating distributions are compared to estimates derived from a simpler technique that utilizes observations of surface rain rate and stratiform rain proportion to infer vertical heating structure. Results of these tests will be presented at the conference.

  15. Error characterisation of global active and passive microwave soil moisture data sets

    NASA Astrophysics Data System (ADS)

    Dorigo, W. A.; Scipal, K.; Parinussa, R. M.; Liu, Y. Y.; Wagner, W.; de Jeu, R. A. M.; Naeimi, V.

    2010-08-01

    Understanding the error structures of remotely sensed soil moisture products is essential for correctly interpreting observed variations and trends in the data or assimilating them in hydrological or numerical weather prediction models. Nevertheless, a spatially coherent assessment of the quality of the various globally available data sets is often hampered by the limited availability over space and time of reliable in-situ measurements. This study explores the triple collocation error estimation technique for assessing the relative quality of several globally available soil moisture products from active (ASCAT) and passive (AMSR-E and SSM/I) microwave sensors. The triple collocation technique is a powerful tool to estimate the root mean square error while simultaneously solving for systematic differences in the climatologies of a set of three independent data sources. In addition to the scatterometer and radiometer data sets, we used the ERA-Interim and GLDAS-NOAH reanalysis soil moisture data sets as a third, independent reference. The prime objective is to reveal trends in uncertainty related to different observation principles (passive versus active), the use of different frequencies (C-, X-, and Ku-band) for passive microwave observations, and the choice of the independent reference data set (ERA-Interim versus GLDAS-NOAH). The results suggest that the triple collocation method provides realistic error estimates. Observed spatial trends agree well with the existing theory and studies on the performance of different observation principles and frequencies with respect to land cover and vegetation density. In addition, if all theoretical prerequisites are fulfilled (e.g. a sufficiently large number of common observations is available and errors of the different data sets are uncorrelated) the errors estimated for the remote sensing products are hardly influenced by the choice of the third independent data set. The results obtained in this study can help us in

  16. Connecting forest ecosystem and microwave backscatter models

    NASA Technical Reports Server (NTRS)

    Kasischke, Eric S.; Christensen, Norman L., Jr.

    1990-01-01

    A procedure is outlined to connect data obtained from active microwave remote sensing systems with forest ecosystem models. The hierarchy of forest ecosystem models is discussed, and the levels at which microwave remote sensing data can be used as inputs are identified. In addition, techniques to utilize forest ecosystem models to assist in the validation of theoretical microwave backscatter models are identified. Several examples to illustrate these connecting processes are presented.

  17. Soil Moisture Active and Passive Microwave Products: Intercomparison and Evaluation over a Sahelian Site

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presents a comparison and an evaluation of five soil moisture products based on satellite-based passive and active microwave measurements. Products are evaluated for 2005-2006 against ground measurements obtained from the soil moisture network deployed in Mali (Sahel) in the framework of ...

  18. Microwave-Assisted Copper-Catalyzed Oxidative Cyclization of Acrylamides with Non-Activated Ketones.

    PubMed

    Zhao, Yaping; Sharma, Nandini; Sharma, Upendra K; Li, Zhenghua; Song, Gonghua; Van der Eycken, Erik V

    2016-04-18

    An operationally simple and efficient microwave-assisted protocol for the oxidative cyclization of acrylamide derivatives with non-activated ketones to generate 3,3-disubstituted oxindoles is described. The reaction proceeds by a copper-catalyzed tandem radical addition/cyclization strategy and tolerates a series of functional groups with moderate to excellent yields. PMID:26868308

  19. Assimilation of active and passive microwave observations for improved estimates of soil moisture and crop growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Ensemble Kalman Filter-based data assimilation framework that links a crop growth model with active and passive (AP) microwave models was developed to improve estimates of soil moisture (SM) and vegetation biomass over a growing season of soybean. Complementarities in AP observations were incorpo...

  20. Inhibitory effect of microwaved thinned nectarine extracts on polyphenol oxidase activity.

    PubMed

    Redondo, Diego; Venturini, María E; Oria, Rosa; Arias, Esther

    2016-04-15

    By-products from agricultural practices or from the fruit processing industry are a source of bioactive compounds that could be used in the food industry. Such by-products include thinned fruits, which are expected to contain high quantities of interesting compounds. One possible application of this fruits is the prevention of the enzymatic browning suffered by fruits and vegetables after minimal processing. The aim of this study is to determine the in vitro and in vivo activity of microwaved extracts obtained from thinned nectarines. It has been observed that in vitro the extracts obtained after the application of high microwave power levels (500, 1000 and 1500 W) are mixed type inhibitors of polyphenoloxidase enzyme, showing an irreversible inactivation. This inhibition could be attributed to the Maillard reaction products formed during the microwave treatment. In vivo, a solution of 2% of the extract obtained at 1500 W inhibited the enzymatic browning in minimally processed peaches for 8 days of storage. PMID:26616994

  1. Microwave-assisted silica coating and photocatalytic activities of ZnO nanoparticles

    SciTech Connect

    Siddiquey, Iqbal Ahmed; Furusawa, Takeshi; Sato, Masahide; Suzuki, Noboru

    2008-12-01

    A new and rapid method for silica coating of ZnO nanoparticles by the simple microwave irradiation technique is reported. Silica-coated ZnO nanoparticles were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HR-TEM), CHN elemental analysis and zeta potential measurements. The FT-IR spectra and XPS clearly confirmed the silica coating on ZnO nanoparticles. The results of XPS analysis showed that the elements in the coating at the surface of the ZnO nanoparticles were Zn, O and Si. HR-TEM micrographs revealed a continuous and uniform dense silica coating layer of about 3 nm in thickness on the surface of ZnO nanoparticles. In addition, the silica coating on the ZnO nanoparticles was confirmed by the agreement in the zeta potential of the silica-coated ZnO nanoparticles with that of SiO{sub 2}. The results of the photocatalytic degradation of methylene blue (MB) in aqueous solution showed that silica coating effectively reduced the photocatalytic activity of ZnO nanoparticles. Silica-coated ZnO nanoparticles showed excellent UV shielding ability and visible light transparency.

  2. Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits.

    PubMed

    Wojdyło, Aneta; Figiel, Adam; Oszmiański, Jan

    2009-02-25

    The objective of this study was to evaluate the application of vacuum-microwave drying (240, 360, and 480 W) in the production process of dehydrated strawberry and to compare and contrast the quality of these dehydrated strawberries in terms of their polyphenol compounds, concentration of some heat liable components, and color to that of freeze-dried, convective, and vacuum-dried strawberry. Thus, the effect of vacuum-microwave drying and other drying methods on the antioxidant activity of berries was evaluated. Whole fresh and dried fruits were assessed for phenolics (anthocyanins, flavanols, hydroxycinnamic acids, and flavonols), ascorbic acid, and antioxidant activity (all parameters were calculated on a dry matter basis). Analysis of data shows that ellagic acid and flavanol changes were affected by drying techniques and cultivar. Drying destroyed anthocyanins, flavanols, and ascorbic acid, and there was a significant decrease in antioxidant activity. The most striking result was that conventional and vacuum drying decreased antioxidant activity in both cultivars, whereas contradictory results were found for vacuum-microwave processed strawberry. This study has demonstrated that vacuum-microwave drying, especially at 240 W, can produce high-quality products, with the additional advantage of reduced processing times, compared to other processes such as freeze-drying. PMID:19170638

  3. Chemical activation by mechanochemical mixing, microwave, and ultrasonic irradiation

    EPA Science Inventory

    The use of emerging MW-assisted chemistry techniques in conjunction with benign reaction media is dramatically reducing chemical waste ad reaction times in several organic syntheses and chemical transformations. This editorial comments on the recent developments in mechanochemica...

  4. Detection and Inspection of Steel Bars in Reinforced Concrete Structures Using Active Infrared Thermography with Microwave Excitation and Eddy Current Sensors

    PubMed Central

    Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah

    2016-01-01

    The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented. PMID:26891305

  5. Detection and Inspection of Steel Bars in Reinforced Concrete Structures Using Active Infrared Thermography with Microwave Excitation and Eddy Current Sensors.

    PubMed

    Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah

    2016-01-01

    The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented. PMID:26891305

  6. Estimating Sea Surface Salinity and Wind Using Combined Passive and Active L-Band Microwave Observations

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Chaubell, Mario J.

    2012-01-01

    Several L-band microwave radiometer and radar missions have been, or will be, operating in space for land and ocean observations. These include the NASA Aquarius mission and the Soil Moisture Active Passive (SMAP) mission, both of which use combined passive/ active L-band instruments. Aquarius s passive/active L-band microwave sensor has been designed to map the salinity field at the surface of the ocean from space. SMAP s primary objectives are for soil moisture and freeze/thaw detection, but it will operate continuously over the ocean, and hence will have significant potential for ocean surface research. In this innovation, an algorithm has been developed to retrieve simultaneously ocean surface salinity and wind from combined passive/active L-band microwave observations of sea surfaces. The algorithm takes advantage of the differing response of brightness temperatures and radar backscatter to salinity, wind speed, and direction, thus minimizing the least squares error (LSE) measure, which signifies the difference between measurements and model functions of brightness temperatures and radar backscatter. The algorithm uses the conjugate gradient method to search for the local minima of the LSE. Three LSE measures with different measurement combinations have been tested. The first LSE measure uses passive microwave data only with retrieval errors reaching 1 to 2 psu (practical salinity units) for salinity, and 1 to 2 m/s for wind speed. The second LSE measure uses both passive and active microwave data for vertical and horizontal polarizations. The addition of active microwave data significantly improves the retrieval accuracy by about a factor of five. To mitigate the impact of Faraday rotation on satellite observations, the third LSE measure uses measurement combinations invariant under the Faraday rotation. For Aquarius, the expected RMS SSS (sea surface salinity) error will be less than about 0.2 psu for low winds, and increases to 0.3 psu at 25 m/s wind speed

  7. Eigenspace techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Liebst, Bradley S.; Farm, Jerome A.

    1987-01-01

    The use of eigenspace techniques for the design of an active flutter suppression system for a hypothetical research drone is discussed. One leading edge and two trailing edge aerodynamic control surfaces and four sensors (accelerometers) are available for each wing. Full state control laws are designed by selecting feedback gains which place closed loop eigenvalues and shape closed loop eigenvectors so as to stabilize wing flutter and reduce gust loads at the wing root while yielding accepatable robustness and satisfying constrains on rms control surface activity. These controllers are realized by state estimators designed using an eigenvalue placement/eigenvector shaping technique which results in recovery of the full state loop transfer characteristics. The resulting feedback compensators are shown to perform almost as well as the full state designs. They also exhibit acceptable performance in situations in which the failure of an actuator is simulated.

  8. Active load control techniques for wind turbines.

    SciTech Connect

    van Dam, C.P.; Berg, Dale E.; Johnson, Scott J.

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  9. A low cost technique for synthesis of gold nanoparticles using microwave heating and its application in signal amplification for detecting Escherichia Coli O157:H7 bacteria

    NASA Astrophysics Data System (ADS)

    Thanh Ngo, Vo Ke; Giang Nguyen, Dang; Phat Huynh, Trong; Lam, Quang Vinh

    2016-09-01

    In the present work a low cost technique for preparation of gold nanoparticles (AuNPs) using microwave heating was developed. The effect of different elements (precursor reagents, irradiation time, and microwave radiation power) on the final morphology of AuNPs obtained through the microwave assisted technique has been investigated. The characterization of the samples has been carried out by transmission electron microscopy, UV–vis absorption spectroscopy, Fourier transform infrared spectroscopy, and powder x-ray diffraction. The results showed that to some extent the above-mentioned characterizations influenced the size of synthetized nanoparticles and application of microwave heating has many advantages such as low cost, rapid preparation and highly uniform particles. As an application in quartz crystal microbalance (QCM) immunosensor, AuNPs are conjugated with the Escherichia coli (E.coli) O157:H7 antibodies for signal amplification to detect E.coli O157:H7 bacteria residual in QCM system.

  10. A new technique for transmitting two high quality video signals over a single terrestrial microwave channel

    NASA Astrophysics Data System (ADS)

    Kaplan, G. S.

    1980-09-01

    A new video transmission system recently installed on RCA Americom's terrestrial microwave link between New York City and a satellite transmission facility in New Jersey is analyzed. Here, two video channels are conveyed within the frequency allocation assigned to a single microwave channel, thereby doubling the capacity of the video transmission facilities without a concomitant increase in frequency allocations. Various considerations relevant to the design of the system are discussed, and the performance of the system is evaluated. This performance in turn is related to overall end-to-end performance, including the satellite link in tandem with the terrestrial link. It is noted that tests on the system involved extensive objective and subjective observations for both signal-to-noise and video distortion effects.

  11. Studying photonuclear reactions using the activation technique

    NASA Astrophysics Data System (ADS)

    Belyshev, S. S.; Ermakov, A. N.; Ishkhanov, B. S.; Khankin, V. V.; Kurilik, A. S.; Kuznetsov, A. A.; Shvedunov, V. I.; Stopani, K. A.

    2014-05-01

    The experimental setup that is used at the Skobeltsyn Institute of Nuclear Physics of the Moscow State University to study photonuclear reactions using the activation technique is described. The system is based on two modern compact race track microtrons with maximum energy of electrons of up to 55 and 67.7 MeV. A low-background HPGe detector is used to measure the induced gamma activity. The data acquisition and analysis system, used to process the measured spectra, is described. The described system is used to study multiparticle photonuclear reactions and production of nuclei far from the beta stability region.

  12. Weight estimates and packaging techniques for the microwave radiometer spacecraft. [shuttle compatible design

    NASA Technical Reports Server (NTRS)

    Jensen, J. K.; Wright, R. L.

    1981-01-01

    Estimates of total spacecraft weight and packaging options were made for three conceptual designs of a microwave radiometer spacecraft. Erectable structures were found to be slightly lighter than deployable structures but could be packaged in one-tenth the volume. The tension rim concept, an unconventional design approach, was found to be the lightest and transportable to orbit in the least number of shuttle flights.

  13. Microwave Quantitative NDE Technique for Dielectric Slab Thickness Estimation Using the Music Algorithm

    NASA Astrophysics Data System (ADS)

    Abou-Khousa, M. A.; Zoughi, R.

    2007-03-01

    Non-invasive monitoring of dielectric slab thickness is of great interest in various industrial applications. This paper focuses on estimating the thickness of dielectric slabs, and consequently monitoring their variations, utilizing wideband microwave signals and the MUtiple SIgnal Characterization (MUSIC) algorithm. The performance of the proposed approach is assessed by validating simulation results with laboratory experiments. The results clearly indicate the utility of this overall approach for accurate dielectric slab thickness evaluation.

  14. Rapid Synthesis and Antiviral Activity of (Quinazolin-4-Ylamino)Methyl-Phosphonates Through Microwave Irradiation

    PubMed Central

    Luo, Hui; Hu, Deyu; Wu, Jian; He, Ming; Jin, Linhong; Yang, Song; Song, Baoan

    2012-01-01

    This study describes the simple synthesis of new (quinazolin-4-ylamino) methylphosphonates via microwave irradiation. Substituted-2-aminobenzonitrile reacted with 1,1-dimethoxy-N,N-dimethylmethanamine at a reflux condition to obtain N′-(substituted-2-cyanophenyl)-N,N-dimethylformamidine (1). The subsequent reaction of this intermediate product with α-aminophosphonate (2) in a solution containing glacial acetic acid in 2-propanol through microwave irradiation resulted in the formation of (quinazolin-4-ylamino)methyl-phosphonate derivatives 3a to 3x, which were unequivocally characterized by the spectral data and elemental analysis. The influence of the reaction conditions on the yield of 3a was investigated to optimize the synthetic conditions. The relative optimal conditions for the synthesis of 3a include a 1:1 molar ratio of N′-(2-cyanophenyl)-N,N-dimethylformamidine to diethyl amino(phenyl)methylphosphonate and a 4:1 volume ratio of isopropanol to HOAc in the solvent mixture, at a reaction temperature of 150 °C, with a microwave power of 100 W and a corresponding pressure of 150 psi for 20 min in the microwave synthesizer. The yield of 3a was approximately 79%, whereas those of 3b to 3x were approximately 77% to 86%. Some of the synthesized compounds displayed weak to good anti-Tobacco mosaic virus (TMV) activity. PMID:22837660

  15. Remote-Sensing of Precipitation Characteristics Using Multi-frequency Microwave Links and Polarimetric Radar Techniques

    NASA Astrophysics Data System (ADS)

    Eastment, J. D.; Bradford, W. J.; Goddard, J. W.; Willis, M. J.

    2002-05-01

    The Radio Communications Research Unit at Rutherford Appleton Laboratory (RAL) currently operates two separate experimental studies aimed at characterising the properties of rainfall using microwave remote-sensing. The first study involves the use of dual-frequency microwave measurements of precipitation-induced attenuation on a number of radio paths spanning a river catchment area to estimate path-integrated rainfall rate. This data is of interest for hydrological research connected with urban drainage, river level management and flood forecasting. Dual-frequency attenuation measurements have been employed because theoretical modelling showed them to be far less sensitive to rainfall drop-size distribution effects than single-frequency data. The experimental network comprises 9 microwave links spanning the frequency range 13 to 38 GHz installed on 5 different paths covering the catchment area of the rivers Croal and Irwell near Bolton in North-West England. For each transmitter-receiver link, excess path attenuation relative to the clear-air value is determined from measurements of received signal power level at a rate of 1 Hz. These data are logged by local computers at each receiver site, and periodically downloaded by modem to RAL for archiving and quality control. Analysis by colleagues at the Universities of Essex and Salford has shown that, due to the path-integrated nature of the attenuation measurements and the wide area-coverage obtained by a suitable choice of the multiple-path geometry, a small number of dual-frequency links can provide comparable hydrological data to that obtained from the more conventional dense network of rain-gauges. The second study employs a scanning polarimetric Doppler radar developed by RAL to measure the spatial distribution of hydrometeors along various operational microwave and mm-wave communication links within a 50 km radius of the University of St. Andrews in South-East Scotland. The UK Radiocommunications Agency and

  16. Renewable phenols production by catalytic microwave pyrolysis of Douglas fir sawdust pellets with activated carbon catalysts.

    PubMed

    Bu, Quan; Lei, Hanwu; Wang, Lu; Wei, Yi; Zhu, Lei; Liu, Yupeng; Liang, Jing; Tang, Juming

    2013-08-01

    The effects of different activated carbon (AC) catalysts based on various carbon sources on products yield and chemical compositions of upgraded pyrolysis oils were investigated using microwave pyrolysis of Douglas fir sawdust pellets. Results showed that high amounts of phenols were obtained (74.61% and 74.77% in the upgraded bio-oils by DARCO MRX (wood based) and DARCO 830 (lignite coal based) activated carbons, respectively). The catalysts recycling test of the selected catalysts indicated that the carbon catalysts can be reused for at least 3-4 times and produced high concentrations of phenol and phenolic compounds. The chemical reaction mechanism for phenolics production during microwave pyrolysis of biomass was analyzed. PMID:23765005

  17. Facile synthesis of lead iodide nanostructures by microwave irradiation technique and their structural, morphological, photoluminescence and dielectric studies

    NASA Astrophysics Data System (ADS)

    Shkir, Mohd.; Yahia, I. S.; AlFaify, S.; Abutalib, M. M.; Muhammad, Shabbir

    2016-04-01

    Lead iodide (PbI2) nanostructures have been synthesized by co-precipitation, hydrothermal and rapidly by microwave irradiation techniques. SEM analysis indicated the formation of well aligned nanocrystals and nanorods of average diameter between 100 nm and 400 nm. The powder X-ray diffraction and FT-Raman spectroscopic analysis confirms the formation of a 2H-PbI2 polytypic predominantly. These studies also show that there is no extra phase due to impurity in the synthesized nanostructures. The optical energy band gap of nanostructures prepared by co-precipitation, hydrothermal and microwave irradiation techniques were found to be 2.283, 2.493, 2.542 eV and 2.331. 2.350, 2.375 eV calculated from UV-Vis absorption and diffuse reflectance data, respectively, which shows a clear blue shift in the wavelength due to confinement effect. Photoluminescence spectrum was recorded at different excitation wavelengths and shows clear blue shift in the emission peak which is due to the recombination of free excitons with band to band type transition and also may be due to confinement effect. Further the dielectric studies have been performed and a good enhancement in the dielectric constant has been observed due to small size of the fabricated nanostructures in comparison to bulk material.

  18. Active microwave investigation of snowpacks: Experimental documentation, Colorado 1979-1980

    NASA Technical Reports Server (NTRS)

    Stiles, W. H.; Ulaby, F. T.; Aslam, A.; Abdelrazik, M.

    1981-01-01

    During the winter of 1979-1980, the University of Kansas Microwave Active Spectrometer systems measured the backscattering properties of snowpacks under varying conditions at four test sites in Colorado. In addition to the radar data over 1-35 GHz, ground-truth measurements of the atmospheric, snow, and soil characteristics were obtained for each radar data set. The test sites, data acquisition procedures, and data that were acquired in this experiment are presented and described.

  19. Microwave-assisted extraction of polysaccharides from Yupingfeng powder and their antioxidant activity

    PubMed Central

    Wang, Dan; Zhang, Bi-Bo; Qu, Xiao-Xia; Gao, Feng; Yuan, Min-Yong

    2015-01-01

    Background: Microwave-assisted reflux extraction of polysaccharides YPF-P from the famous Chinese traditional drug, Yupingfeng powder, optimization of extracting conditions and evaluation of their antioxidant activity were conducted in this study. Results: Single factor effect trends were achieved through yields and contends of YPF-P obtained from different extracting conditions. Then through a three-level, four-variable Box-Behnken design of response surface methodology adopting yield as response, the optimal conditions were determined as follows: Material/solvent ratio 1:23.37, microwave power 560 W, Extraction temperature 64°C, and extraction time 9.62 min. Under the optimal conditions, the YPF-P extraction yield was 3.23%, and its content was detected as 38.52%. In antioxidant assays, the YPF-P was tested to possess 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities with an IC50 value of 0.262 mg/ml. In addition, YPF-P was also proved to have relatively low ferric reducing antioxidant power (FRAP), compared to Vc, through FRAP assay. Conclusion: In the microwave assisted reflux extraction research, good YPF-P yield was achieved from materials with relatively low YPF-P content. And for the first time, both DPPH and FRAP assays were conducted on YPF-P, which proved that the antioxidant activity of YPF-P contributed to the functions of this medicine. PMID:26246730

  20. Peroxide-assisted microwave activation of pyrolysis char for adsorption of dyes from wastewater.

    PubMed

    Nair, Vaishakh; Vinu, R

    2016-09-01

    In this study, mesoporous activated biochar with high surface area and controlled pore size was prepared from char obtained as a by-product of pyrolysis of Prosopis juliflora biomass. The activation was carried out by a simple process that involved H2O2 treatment followed by microwave pyrolysis. H2O2 impregnation time and microwave power were optimized to obtain biochar with high specific surface area and high adsorption capacity for commercial dyes such as Remazol Brilliant Blue and Methylene Blue. Adsorption parameters such as initial pH of the dye solution and adsorbent dosage were also optimized. Pore size distribution, surface morphology and elemental composition of activated biochar were thoroughly characterized. H2O2 impregnation time of 24h and microwave power of 600W produced nanostructured biochar with narrow and deep pores of 357m(2)g(-1) specific surface area. Langmuir and Langmuir-Freundlich isotherms described the adsorption equilibrium, while pseudo second order model described the kinetics of adsorption. PMID:27268436

  1. [Application of FTIR technique in microwave-hydrothermal synthesis of saponite].

    PubMed

    Yao, Ming; Liu, Zi-yang; Wang, Kai-xiong; Zhu, Miao-qin; Sun, Hong-jie

    2005-06-01

    FTIR was employed in the structure analysis of the saponites with an ideal chermical formula [Si6.5Al1.5]IV [Mg6]VI O20(OH)4 the starting gel synthesized by microwave-hydrothermally under different pressures (1 x 10(5), 5 x 10(5), 1.5 x 10(6), 2.5 x 10(6) and .5 x 10(6) Pa). It was found that low frequency absorption region in infrared spectrum was sensitive to the crystallization of the product and the amorphous materials produced in synthesis of saponite under the radiation of microwave. The absorptions belong to amorphous materials were decreased with increasing pressure. Saponite synthesized at 3.5 x 10(6) Pa showed no amorphous absorptions (1240, 90-602 cm(-1)), indicating the purity and quality of the synthetic mineral. It was worthy to note that Si(AI)-O stretching vibration infrared absorption could be regarded as an index in assessing the quality of synthetic 2:1 trioctahedral smectite sample with the same chemical compositions. With the increasing pressure, this strong vibration shifted to low frequency (1022, 1020, 1016, 1016, 1005 cm(-1)) in the medium frequency of the whole infrared spectrum. Since the sensitivity, easiness and simplicity, this infrared index would be meaningful in practical saponite-related minerals analysis. In addition, powder X-ray diffraction and scanning electronic microscopy were employed in charactering the saponite synthesized by microwave-hydrothermal method in this work. PMID:16201360

  2. Synergism of active and passive microwave data for estimating bare surface soil moisture

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.; Njoku, Eni G.; Wegmueller, Urs

    1993-01-01

    Active and passive microwave sensors were applied effectively to the problem of estimating the surface soil moisture in a variety of environmental conditions. Research to date has shown that both types of sensors are also sensitive to the surface roughness and the vegetation cover. In estimating the soil moisture, the effect of the vegetation and roughness are often corrected either by acquiring multi-configuration (frequency and polarization) data or by adjusting the surface parameters in order to match the model predictions to the measured data. Due to the limitations on multi-configuration spaceborne data and the lack of a priori knowledge of the surface characteristics for parameter adjustments, it was suggested that the synergistic use of the sensors may improve the estimation of the soil moisture over the extreme range of naturally occurring soil and vegetation conditions. To investigate this problem, the backscattering and emission from a bare soil surface using the classical rough surface scattering theory were modeled. The model combines the small perturbation and the Kirchhoff approximations in conjunction with the Peak formulation to cover a wide range of surface roughness parameters with respect to frequency for both active and passive measurements. In this approach, the same analytical method was used to calculate the backscattering and emissivity. Therefore, the active and passive simulations can be combined at various polarizations and frequencies in order to estimate the soil moisture more actively. As a result, it is shown that (1) the emissivity is less dependent on the surface correlation length, (2) the ratio of the backscattering coefficient (HH) over the surface reflectivity (H) is almost independent of the soil moisture for a wide range of surface roughness, and (3) this ratio can be approximated as a linear function of the surface rms height. The results were compared with the data obtained by a multi-frequency radiometer

  3. Sideband generation technique for optical phase locking for coherent optical/microwave applications

    NASA Astrophysics Data System (ADS)

    Vallestero, Neil John

    2000-12-01

    The goal of this research is to build a prototype frequency agile optical millimeter wave generator. The generator output consists of a pair of optical signals on the slow axis of a polarization maintaining optical fiber. The signals then produce a low phase noise electrical modulation when interfered on the active area of a photodiode. One advantage of our approach is that it does not require high speed electronics-unlike the optical phase lock loop approach, which requires signal processing at the millimeter wave frequency. Specifically, we use an optical sideband filtering technique, in which two lines of a comb spectrum are selected and interfered to produce a radio-frequency optical power modulation. The comb spectrum is generated using a phase modulator, and fiber Bragg grating optical filters are used to block all but the two desired sidebands. This technique can meet the mm-wave generator specifications without the need to develop wideband frequency or phase locking loops, reducing risk and the generator cost.

  4. Measuring Humidity in Methane and Natural Gas with a Microwave Technique

    NASA Astrophysics Data System (ADS)

    Gavioso, R. M.; Madonna Ripa, D.; Benyon, R.; Gallegos, J. G.; Perez-Sanz, F.; Corbellini, S.; Avila, S.; Benito, A. M.

    2014-04-01

    The results of microwave measurements with a quasi-spherical resonator in humid methane samples realized under laboratory conditions at the Istituto Nazionale di Ricerca Metrologica (INRiM) and under industrial conditions in a natural gas sample made available at the facilities of the Technical Manager of the Spanish Gas System and main supplier of natural gas in Spain (ENAGAS) are reported. Measurements at INRiM included vapor phase and condensation tests on methane samples prepared with amount fractions of water between 600 ppm and 5000 ppm at temperatures between 273 K and 295 K and pressures between 150 kPa and 1 MPa. ENAGAS measurements were performed at ambient temperature, 750 kPa on natural gas sampled from the pipeline and successively humidified at amount fractions of water between 140 ppm and 250 ppm for completeness of the comparison with several humidity sensors and instrumentation based on different technologies. To enhance the sensitivity of the microwave method at low humidity, an experimental procedure based on the relative comparison of the dielectric permittivity of the humid gas sample before and after being subject to a chemical drying process was conceived and implemented. The uncertainty budget and the final sensitivity of this procedure are discussed.

  5. Polyphenolic contents and antioxidant activities of Lawsonia inermis leaf extracts obtained by microwave-assisted hydrothermal method.

    PubMed

    Zohourian, Tayyebeh Haleh; Quitain, Armando T; Sasaki, Mitsuru; Goto, Motonobu

    2011-01-01

    Extracts obtained by microwave-assisted hydrothermal extraction of Lawsonia inermis leaves were evaluated for the presence of polyphenolic compounds and antioxidant activities. Extraction experiments were performed in temperature-controlled mode at a range of 100 to 200 degrees C, and extraction time of 5 to 30 min, and microwave-controlled mode at a power from 300-700 W, in irradiation time of 30 to 120 s. Polyphenolic contents were measured using Folin-Ciocalteau method, while antioxidant properties were analyzed using DPPH radical scavenging activities (RSA) expressed in BHA equivalents. Results showed that best values of RSA were obtained at mild temperature range of 100-120 degrees C. Controlling microwave power at short irradiation time gave better results than temperature-controlled treatment as well. Furthermore, comparison with the result obtained at room temperature confirmed that the use of microwave was more effective for extracting polar components that normally possess higher antioxidant activities. PMID:24428109

  6. Influence of microwave parameters and water activity on radical generation in rice starch.

    PubMed

    Fan, Daming; Liu, Yixiao; Hu, Bo; Lin, Lufen; Huang, Luelue; Wang, Liyun; Zhao, Jianxin; Zhang, Hao; Chen, Wei

    2016-04-01

    Radical generation in rice starch under microwave treatment as well as the related chemical bond changes were investigated by electron paramagnetic resonance (EPR) and Raman spectroscopy. Samples with water activity of 0.4 and 0.7 have been treated and analyzed. It was found that microwave power level and water content could influence the amount of radicals along with the radical components and their contribution. Raman spectra showed corresponding changes in vibrational features of chemical bonds. During storage the signal intensity started to drop after a short period of increase. Rice starch radicals were relatively stable and could exist a long time in room temperature. Through signal simulation, 3 main components were separated from the original spectra and the evolving process was investigated. The main component was the radical located on C1 position in the glucose ring. PMID:26593462

  7. Slow potentials and spike unit activity of the cerebral cortex of rabbits exposed to microwaves

    SciTech Connect

    Chizhenkova, R.A.

    1988-01-01

    Unanesthetized rabbits exposed to 12.5-cm microwaves at a field intensity of 40 mW/cm/sup 2/ in the region of the head showed an increase in the number of slow waves and spindle-shaped firings in the EEG and a change in the discharge frequency of neurons in the visual cortex in 41-52% of the cases. An enhancement of the evoked response of visual cortex neurons to light was observed in 61% of the cases and a facilitation of the driving response in 80% of all cases. It is concluded that the evoked response is a more sensitive indicator of the microwave effect than background activity. The effects of the fields were most distinctly observed with the driving response.

  8. NASA Activities as they Relate to Microwave Technology for Aerospace Communications Systems

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2011-01-01

    This presentation discusses current NASA activities and plans as they relate to microwave technology for aerospace communications. The presentations discusses some examples of the aforementioned technology within the context of the existing and future communications architectures and technology development roadmaps. Examples of the evolution of key technology from idea to deployment are provided as well as the challenges that lay ahead regarding advancing microwave technology to ensure that future NASA missions are not constrained by lack of communication or navigation capabilities. The presentation closes with some examples of emerging ongoing opportunities for establishing collaborative efforts between NASA, Industry, and Academia to encourage the development, demonstration and insertion of communications technology in pertinent aerospace systems.

  9. Active region studies with coordinated SOHO, microwave, and magnetograph observations

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    1992-01-01

    The scientific justification for an observing campaign to study the quantitative magnetic and plasma properties of coronal loops in active regions is presented. The SOHO (Solar and Heliospheric Observatory) instruments of primary relevance are CDS (Coronal Diagnostic Spectrometer), EIT, SUMER (Solar Ultraviolet Measurement of Emitted Radiation), and MDI. The primary ground based instruments would be the VLA (Very Large Array), the Owens Valley Radio Observatory, and vector and longitudinal field magnetographs. Similar campaigns have successfully been carried out with the Solar Maximum Mission x-ray polychromator and the Soft X-ray Imaging Sounding Rocket Payload (CoMStOC '87), the Goddard Solar EUV Rocket Telescope and Spectrograph, the Lockheed Solar Plasma Diagnostics Experiment rocket payload, and the Soft X-ray Telescope in Yohkoh (CoMStoc '92). The scientific payoff from such a campaign is discussed in light of the results from these previous campaigns.

  10. Optimized Shielding and Fabrication Techniques for TiN and Al Microwave Resonators

    NASA Astrophysics Data System (ADS)

    Kreikebaum, John Mark; Kim, Eunseong; Livingston, William; Dove, Allison; Calusine, Gregory; Hover, David; Rosenberg, Danna; Oliver, William; Siddiqi, Irfan

    We present a systematic study of the effects of shielding and packaging on the internal quality factor (Qi) of Al and TiN microwave resonators designed for use in qubit readout. Surprisingly, Qi =1.3x106 TiN samples investigated at 100 mK exhibited no significant changes in linewidth when operated without magnetic shielding and in an open cryo-package. In contrast, Al resonators showed systematic improvement in Qi with each successive shield. Measurements were performed in an adiabatic demagnetization refrigerator, where typical ambient fields of 0.2 mT are present at the sample stage. We discuss the effect of 100 mK and 500 mK Cu radiation shields and cryoperm magnetic shielding on resonator Q as a function of temperature and input power in samples prepared with a variety of surface treatments, fabrication recipes, and embedding circuits. This research was supported by the ARO and IARPA.

  11. Novel materials, fabrication techniques and algorithms for microwave and THz components, systems and applications

    NASA Astrophysics Data System (ADS)

    Liang, Min

    This dissertation presents the investigation of several additive manufactured components in RF and THz frequency, as well as the applications of gradient index lens based direction of arrival (DOA) estimation system and broadband electronically beam scanning system. Also, a polymer matrix composite method to achieve artificially controlled effective dielectric properties for 3D printing material is studied. Moreover, the characterization of carbon based nano-materials at microwave and THz frequency, photoconductive antenna array based Terahertz time-domain spectroscopy (THz-TDS) near field imaging system, and a compressive sensing based microwave imaging system is discussed in this dissertation. First, the design, fabrication and characterization of several 3D printed components in microwave and THz frequency are presented. These components include 3D printed broadband Luneburg lens, 3D printed patch antenna, 3D printed multilayer microstrip line structure with vertical transition, THz all-dielectric EMXT waveguide to planar microstrip transition structure and 3D printed dielectric reflectarrays. Second, the additive manufactured 3D Luneburg Lens is employed for DOA estimation application. Using the special property of a Luneburg lens that every point on the surface of the Lens is the focal point of a plane wave incident from the opposite side, 36 detectors are mounted around the surface of the lens to estimate the direction of arrival (DOA) of a microwave signal. The direction finding results using a correlation algorithm show that the averaged error is smaller than 1º for all 360 degree incident angles. Third, a novel broadband electronic scanning system based on Luneburg lens phased array structure is reported. The radiation elements of the phased array are mounted around the surface of a Luneburg lens. By controlling the phase and amplitude of only a few adjacent elements, electronic beam scanning with various radiation patterns can be easily achieved

  12. Superficial heat reduction technique for a hybrid microwave-optical device.

    PubMed

    Al-Armaghany, A; Tong, K; Leung, T S

    2013-01-01

    Microwave applicator in the form of a circularly polarized microstrip patch antenna is proposed to provide localized deep heating in biological tissue, which causes blood vessels to dilate leading to changes in tissue oxygenation. These changes are monitored by an integrated optical system for studying thermoregulation in different parts of the human body. Using computer simulations, this paper compares circularly and linearly polarized antennas in terms of the efficiency of depositing electromagnetic (EM) energy and the heating patterns. The biological model composes of the skin, fat and muscle layers with appropriate dielectric and thermal properties. The results show that for the same specific absorption rate (SAR) in the muscle, the circularly polarized antenna results in a lower SAR in the skin-fat interface than the linearly polarized antenna. The thermal distribution is also presented based on the biological heat equation. The proposed circularly polarized antenna shows heat reduction in the superficial layers in comparison to the linearly polarized antenna. PMID:24110546

  13. Microwave discharge electrodeless lamps (MDEL). Part IV. Novel self-ignition system incorporating metallic microwave condensing cones to activate MDELs in photochemical reactions.

    PubMed

    Horikoshi, Satoshi; Tsuchida, Akihiro; Sakai, Hideki; Abe, Masahiko; Sato, Susumu; Serpone, Nick

    2009-11-01

    A metallic condensing cone that concentrates microwave radiation (equivalent to an optical lens) has been developed and used as part of a system to activate a microwave discharge electrodeless lamp (MDEL) in the oxidative treatment of wastewaters by aiding the novel self-ignition of the lamp on irradiation at low microwave power levels. This approach to self-ignition can potentially lead to considerable energy savings in such treatments. System performance was examined for the ignition power of microwaves of such MDEL devices in water, whose usefulness was assessed by investigating the photolytic transformation of aqueous solutions of representatives of three classes of contaminants: chlorinated phenols, herbicides and endocrine disruptors, specifically 4-chlorophenol (4-CP), 2,4-dichlorophenoxyacetic acid (2,4-D) and 4,4'-isopropylidenediphenol (bisphenol-A; BPA), respectively, taken as model wastewaters in air-equilibrated, in oxygen-saturated and in TiO2-containing aqueous media. The results are discussed in terms of the dynamics of the photo-induced degradation processes. PMID:19862422

  14. Microwave Sintering and Optical Properties of Sm3+-Activated KSrPO4 Phosphors

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Sen; Lin, Bor-Tsuen; Jean, Ming-Der

    2014-02-01

    The microwave sintering and photoluminescence properties of KSr1- x PO4: xSm3+ phosphors have been investigated. KSrPO4 phosphates activated by various concentrations of Sm3+ ions ( x = 0.007, 0.009, 0.01, 0.03) were microwave sintered at 1200°C for 3 h under air atmosphere. x-Ray diffraction patterns showed that all phosphor samples exhibited a single phase without any extraneous phases. Scanning electron microscopy images showed that the particle size increased with the Sm3+ concentration and that the particle morphology was fine and uniform. The photoluminescence results showed that a concentration quenching effect occurred when the concentration of Sm3+ ions reached x = 0.01. Decay time measurement results showed that the lifetime decreased gradually from 3.12 ms to 2.34 ms as the Sm3+ concentration increased. All the chromaticity ( x, y) values of the microwave-sintered KSrPO4:Sm3+ phosphors were located in the red region (0.57, 0.41).

  15. Active Correlation Technique: Status and Development

    SciTech Connect

    Tsyganov, Yury

    2010-04-30

    During the recent years, at the FLNR (JINR) a successful cycle of experiments has been accomplished on the synthesis of the superheavy elements with Z = 112-118 with {sup 48}Ca beam. From the viewpoint of the detection of rare decays and background suppression, this success was achieved due to the application of a new radical technique--the method of active correlations. The method employs search in a real-time mode for a pointer to a probable correlation like recoil-alpha for switching the beam off. In the case of detection in the same detector strip an additional alpha-decay event, of 'beam OFF' time interval is prolonged automatically.

  16. Effective dopant activation by susceptor-assisted microwave annealing of low energy boron implanted and phosphorus implanted silicon

    SciTech Connect

    Zhao, Zhao; Vemuri, Rajitha N. P.; Alford, T. L.; David Theodore, N.; Lu, Wei; Lau, S. S.; Lanz, A.

    2013-12-28

    Rapid processing and reduced end-of-range diffusion result from susceptor-assisted microwave (MW) annealing, making this technique an efficient processing alternative for electrically activating dopants within ion-implanted semiconductors. Sheet resistance and Hall measurements provide evidence of electrical activation. Susceptor-assisted MW annealing, of ion-implanted Si, enables more effective dopant activation and at lower temperatures than required for rapid thermal annealing (RTA). Raman spectroscopy and ion channeling analyses are used to monitor the extent of ion implantation damage and recrystallization. The presence and behavior of extended defects are monitored by cross-section transmission electron microscopy. Phosphorus implanted Si samples experience effective electrical activation upon MW annealing. On the other hand, when boron implanted Si is MW annealed, the growth of extended defects results in reduced crystalline quality that hinders the electrical activation process. Further comparison of dopant diffusion resulting from MW annealing and rapid thermal annealing is performed using secondary ion mass spectroscopy. MW annealed ion implanted samples show less end-of-range diffusion when compared to RTA samples. In particular, MW annealed P{sup +} implanted samples achieve no visible diffusion and equivalent electrical activation at a lower temperature and with a shorter time-duration of annealing compared to RTA. In this study, the peak temperature attained during annealing does not depend on the dopant species or dose, for susceptor-assisted MW annealing of ion-implanted Si.

  17. Microwave hydrothermal synthesis of AgInS{sub 2} with visible light photocatalytic activity

    SciTech Connect

    Zhang, Wenjuan; Li, Danzhen; Chen, Zhixin; Sun, Meng; Li, Wenjuan; Lin, Qiang; Fu, Xianzhi

    2011-07-15

    Highlights: {yields} AgInS{sub 2} nanoparticles were synthesized by a microwave hydrothermal method. {yields} This method involves no organic solvents, catalysts, or surfactants. {yields} AgInS{sub 2} showed higher activity for photocatalytic degradation MO than TiO{sub 2-x}N{sub x}. {yields} Holes, O{sub 2}{center_dot}{sup -}, and H{sub 2}O{sub 2} played an important role in the photocatalytic process. -- Abstract: AgInS{sub 2} nanoparticles with superior visible light photocatalytic activity were successfully synthesized by a microwave hydrothermal method. This method is a highly efficient and rapid route that involves no organic solvents, catalysts, or surfactants. The photocatalytic activity of AgInS{sub 2} nanoparticles was investigated through the degradation of dyes under visible light irradiation. Compared with TiO{sub 2-x}N{sub x}, AgInS{sub 2} has exhibited a superior activity for photocatalytic degradation MO under the same condition. The experiment results showed that superoxide radicals (O{sub 2}{center_dot}{sup -}), hydrogen peroxides (H{sub 2}O{sub 2}) and holes (h{sup +}) were the mainly active species for the degradation of organic pollutants over AgInS{sub 2}. Through the determination of flat band potential, the energy band structure of the sample was obtained. A possible mechanism for the degradation of organic pollutant over AgInS{sub 2} was proposed.

  18. Novel materials, fabrication techniques and algorithms for microwave and THz components, systems and applications

    NASA Astrophysics Data System (ADS)

    Liang, Min

    This dissertation presents the investigation of several additive manufactured components in RF and THz frequency, as well as the applications of gradient index lens based direction of arrival (DOA) estimation system and broadband electronically beam scanning system. Also, a polymer matrix composite method to achieve artificially controlled effective dielectric properties for 3D printing material is studied. Moreover, the characterization of carbon based nano-materials at microwave and THz frequency, photoconductive antenna array based Terahertz time-domain spectroscopy (THz-TDS) near field imaging system, and a compressive sensing based microwave imaging system is discussed in this dissertation. First, the design, fabrication and characterization of several 3D printed components in microwave and THz frequency are presented. These components include 3D printed broadband Luneburg lens, 3D printed patch antenna, 3D printed multilayer microstrip line structure with vertical transition, THz all-dielectric EMXT waveguide to planar microstrip transition structure and 3D printed dielectric reflectarrays. Second, the additive manufactured 3D Luneburg Lens is employed for DOA estimation application. Using the special property of a Luneburg lens that every point on the surface of the Lens is the focal point of a plane wave incident from the opposite side, 36 detectors are mounted around the surface of the lens to estimate the direction of arrival (DOA) of a microwave signal. The direction finding results using a correlation algorithm show that the averaged error is smaller than 1º for all 360 degree incident angles. Third, a novel broadband electronic scanning system based on Luneburg lens phased array structure is reported. The radiation elements of the phased array are mounted around the surface of a Luneburg lens. By controlling the phase and amplitude of only a few adjacent elements, electronic beam scanning with various radiation patterns can be easily achieved

  19. A combined technique based on prilling and microwave assisted treatments for the production of ketoprofen controlled release dosage forms.

    PubMed

    Auriemma, Giulia; Del Gaudio, Pasquale; Barba, Anna Angela; d'Amore, Matteo; Aquino, Rita P

    2011-08-30

    In this study the feasibility of joining prilling and microwave (MW) assisted treatments as combined technique to produce controlled release alginate beads was tested. Beads were produced by prilling (laminar jet break-up) using different polymer concentrations and loaded with ketoprofen, a slightly soluble non-steroidal anti-inflammatory BCS class II drug characterized by low melting point. MW assisted treatments applied using different irradiating conditions were performed as drying/curing step. The effect of formulation conditions and process variables on drying kinetics, particle micromeritics, shape, surface and inner characteristics of the matrix as well as drug loading and drug release behaviour was studied (USP pH change method). The properties of MW dried particles were compared to those dehydrated by convective methods (room conditions and tray oven 105°C). Results showed that MW dried ketoprofen loaded beads were obtained in a very narrow dimensional range retaining shape and size distribution of the hydrates particles. Compared to the traditional drying methods, MW treatments were able to strongly increase drying rate of the hydrated beads achieving faster and controllable dehydration kinetics. Moreover, different regimes of irradiation affected structural properties of the particles such as matrix porosity as well as the solid state of the loaded drug. DSC, X-ray and FTIR analyses indicated complex chemical interactions between the drug and polymer matrix induced by MW, related with the regime of irradiation, that contributes to the differences in release profiles. In fact, MW treatments under different time and irradiating regimes are able to modulate drug release from alginate beads; high levels of irradiation led to beads suitable for immediate release oral dosage forms whereas the lowest regime of irradiation led to beads that achieved a prolonged/sustained release of the drug till 8h in simulated intestinal medium. This study showed that prilling

  20. Further evidence for low intensity of the geomagnetic field during the early Cretaceous time: using the modified Shaw method and microwave technique

    NASA Astrophysics Data System (ADS)

    Pan, Yongxin; Hill, Mimi. J.; Zhu, Rixiang; Shaw, John

    2004-05-01

    We report new absolute palaeointensity estimates using basalts from northeastern China (K/Ar age, 125-120 Ma) using the modified Shaw method in conjunction with the microwave technique. Samples for the palaeointensity experiments were selected mainly based on their good reversibility of thermomagnetic curves and single primary magnetization characteristics. Using the modified Shaw method, 28 out of 45 measured samples from 10 cooling units give a virtual dipole moment of (3.1 +/- 1.0) × 1022 Am2, and the microwave technique using 14 acceptable determinations (out of 20 measured) give an average value of (2.9 +/- 0.9) × 1022 Am2. Results using both the modified Shaw method and the microwave technique demonstrate that the geomagnetic field strength recorded by these lavas was low. This is in agreement with previous results of the same time interval obtained by the Thellier method with partial thermal remanence (p-TRM) checks. The fact that different techniques give qualitatively compatible low palaeointensity results provides greater confidence that the weak field features seen just prior to the Cretaceous normal superchron (CNS) are the result of the actual field recorded by the basalts as opposed to artefacts of the method/analysis. This study also demonstrates that the microwave technique can be used for very old basalts.

  1. Microwave, ultrasound, thermal treatments, and bead milling as intensification techniques for extraction of lipids from oleaginous Yarrowia lipolytica yeast for a biojetfuel application.

    PubMed

    Meullemiestre, Alice; Breil, Cassandra; Abert-Vian, Maryline; Chemat, Farid

    2016-07-01

    In the present work, two different ways of lipids extraction from Yarrowia lipolytica yeast were investigated in order to maximize the extraction yield. Firstly, various modern techniques of extraction including ultrasound, microwave, and bead milling were tested to intensify the efficiency of lipid recovery. Secondly, several pretreatments such as freezing/defrosting, cold drying, bead milling, and microwave prior two washing of mixture solvent of chloroform:methanol (1:2, v/v) were study to evaluate the impact on lipid recovery. All these treatments were compared to conventional maceration, in terms of lipids extraction yield and lipid composition analysis. The main result of this study is the large difference of lipid recovery among treatments and the alteration of lipids profile after microwave and ultrasound techniques. PMID:27017129

  2. Microwave Assisted Synthesis, Antifungal Activity, and DFT Study of Some Novel Triazolinone Derivatives

    PubMed Central

    Sun, Na-Bo; Jin, Jian-Zhong; He, Fang-Yue

    2015-01-01

    A series of some novel 1,2,4-triazol-5(4H)-one derivatives were designed and synthesized under microwave irradiation via multistep reaction. The structures of 1,2,4-triazoles were confirmed by 1H NMR, MS, FTIR, and elemental analysis. The antifungal activities of 1,2,4-triazoles were determined. The antifungal activity results indicated that the compounds 5c, 5f, and 5h exhibited good activity against Pythium ultimum, and the compounds 5b and 5c displayed good activity against Corynespora cassiicola. Theoretical calculation of the compound 5c was carried out with B3LYP/6-31G (d). The full geometry optimization was carried out using 6-31G(d) basis set, and the frontier orbital energy and electrostatic potential were discussed, and the structure-activity relationship was also studied. PMID:25861651

  3. Sensitivity of Active and Passive Microwave Observations to Soil Moisture during Growing Corn

    NASA Astrophysics Data System (ADS)

    Judge, J.; Monsivais-Huertero, A.; Liu, P.; De Roo, R. D.; England, A. W.; Nagarajan, K.

    2011-12-01

    Soil moisture (SM) in the root zone is a key factor governing water and energy fluxes at the land surface and its accurate knowledge is critical to predictions of weather and near-term climate, nutrient cycles, crop-yield, and ecosystem productivity. Microwave observations, such as those at L-band, are highly sensitive to soil moisture in the upper few centimeters (near-surface). The two satellite-based missions dedicated to soil moisture estimation include, the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission and the planned NASA Soil Moisture Active/Passive (SMAP) [4] mission. The SMAP mission will include active and passive sensors at L-band to provide global observations of SM, with a repeat coverage of every 2-3 days. These observations can significantly improve root zone soil moisture estimates through data assimilation into land surface models (LSMs). Both the active (radar) and passive (radiometer) microwave sensors measure radiation quantities that are functions of soil dielectric constant and exhibit similar sensitivities to SM. In addition to the SM sensitivity, radar backscatter is highly sensitive to roughness of soil surface and scattering within the vegetation. These effects may produce a much larger dynamic range in backscatter than that produced due to SM changes alone. In this study, we discuss the field observations of active and passive signatures of growing corn at L-band from several seasons during the tenth Microwave, Water and Energy Balance Experiment (MicroWEX-10) conducted in North Central Florida, and to understand the sensitivity of these signatures to soil moisture under dynamic vegetation conditions. The MicroWEXs are a series of season-long field experiments conducted during the growing seasons of sweet corn, cotton, and energy cane over the past six years (for example, [22]). The corn was planted on July 5 and harvested on September 23, 2011 during MicroWEX-10. The size of the field was 0.04 km2 and the soils

  4. Advanced noise reduction techniques for ultra-low phase noise optical-to-microwave division with femtosecond fiber combs.

    PubMed

    Zhang, Wei; Xu, Zhenyu; Lours, Michel; Boudot, Rodolphe; Kersalé, Yann; Luiten, Andre N; Le Coq, Yann; Santarelli, Giorgio

    2011-05-01

    We report what we believe to be the lowest phase noise optical-to-microwave frequency division using fiber-based femtosecond optical frequency combs: a residual phase noise of -120 dBc/Hz at 1 Hz offset from an 11.55 GHz carrier frequency. Furthermore, we report a detailed investigation into the fundamental noise sources which affect the division process itself. Two frequency combs with quasi-identical configurations are referenced to a common ultrastable cavity laser source. To identify each of the limiting effects, we implement an ultra-low noise carrier-suppression measurement system, which avoids the detection and amplification noise of more conventional techniques. This technique suppresses these unwanted sources of noise to very low levels. In the Fourier frequency range of ∼200 Hz to 100 kHz, a feed-forward technique based on a voltage-controlled phase shifter delivers a further noise reduction of 10 dB. For lower Fourier frequencies, optical power stabilization is implemented to reduce the relative intensity noise which causes unwanted phase noise through power-to-phase conversion in the detector. We implement and compare two possible control schemes based on an acousto-optical modulator and comb pump current. We also present wideband measurements of the relative intensity noise of the fiber comb. PMID:21622045

  5. Active Microwave Pulse Compressor Using an Electron-Beam Triggered Switch

    NASA Astrophysics Data System (ADS)

    Ivanov, O. A.; Lobaev, M. A.; Vikharev, A. L.; Gorbachev, A. M.; Isaev, V. A.; Hirshfield, J. L.; Gold, S. H.; Kinkead, A. K.

    2013-03-01

    A high-power active microwave pulse compressor is described that operates by modulating the quality factor of an energy storage cavity by means of mode conversion controlled by a triggered electron-beam discharge across a switch cavity. This Letter describes the principle of operation, the design of the switch cavity, the configuration used for the tests, and the experimental results. The pulse compressor produced output pulses with 140-165 MW peak power, record peak power gains of 16∶1-20∶1, and FWHM pulse duration of 16-20 ns at a frequency of 11.43 GHz.

  6. Active microwave pulse compressor using an electron-beam triggered switch.

    PubMed

    Ivanov, O A; Lobaev, M A; Vikharev, A L; Gorbachev, A M; Isaev, V A; Hirshfield, J L; Gold, S H; Kinkead, A K

    2013-03-15

    A high-power active microwave pulse compressor is described that operates by modulating the quality factor of an energy storage cavity by means of mode conversion controlled by a triggered electron-beam discharge across a switch cavity. This Letter describes the principle of operation, the design of the switch cavity, the configuration used for the tests, and the experimental results. The pulse compressor produced output pulses with 140-165 MW peak power, record peak power gains of 16∶1-20∶1, and FWHM pulse duration of 16-20 ns at a frequency of 11.43 GHz. PMID:25166547

  7. Passive/Active Microwave Soil Moisture Disaggregation Using SMAPVEX12 Data

    NASA Astrophysics Data System (ADS)

    Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T. J.; Colliander, A.

    2015-12-01

    The SMAPVEX12 experiment was conducted during June-July 2012 in Manitoba, Canada with the goal of collecting remote sensing data and ground measurements for the development and testing of soil moisture retrieval algorithms under different vegetation and soil conditions for the SMAP (Soil Moisture Active Passive) satellite launched in January 2015. The aircraft based soil moisture data provided by the passive/active microwave sensor PALS (Passive and Active L and S band System) has a nominal spatial resolution of 1500 m. In this study, a change detection algorithm is used for disaggregation of coarse passive microwave soil moisture retrievals with radar backscatter coefficients obtained with the higher spatial resolution UAVSAR (Unmanned Air Vehicle Synthetic Aperture Radar). The accuracy of the disaggregated change in soil moisture was evaluated using ground based soil moisture measurements. Results show that the disaggregation products are well correlated to in situ measurements. Based on the R2, the highest resolution disaggregated product at 5 m exhibits soil moisture heterogeneity that reflects the distribution of the crops. The difference of spatial standard deviation between the disaggregated and in situ soil moisture ranges from <0.001-0.131 m3/m3 also proves the spatial capability of the change detection algorithm at 5 m scale.

  8. A data assimilation technique to account for the nonlinear dependence of scattering microwave observations of precipitation

    NASA Astrophysics Data System (ADS)

    Haddad, Z. S.; Steward, J. L.; Tseng, H.-C.; Vukicevic, T.; Chen, S.-H.; Hristova-Veleva, S.

    2015-06-01

    Satellite microwave observations of rain, whether from radar or passive radiometers, depend in a very crucial way on the vertical distribution of the condensed water mass and on the types and sizes of the hydrometeors in the volume resolved by the instrument. This crucial dependence is nonlinear, with different types and orders of nonlinearity that are due to differences in the absorption/emission and scattering signatures at the different instrument frequencies. Because it is not monotone as a function of the underlying condensed water mass, the nonlinearity requires great care in its representation in the observation operator, as the inevitable uncertainties in the numerous precipitation variables are not directly convertible into an additive white uncertainty in the forward calculated observations. In particular, when attempting to assimilate such data into a cloud-permitting model, special care needs to be applied to describe and quantify the expected uncertainty in the observations operator in order not to turn the implicit white additive uncertainty on the input values into complicated biases in the calculated radiances. One approach would be to calculate the means and covariances of the nonlinearly calculated radiances given an a priori joint distribution for the input variables. This would be a very resource-intensive proposal if performed in real time. We propose a representation of the observation operator based on performing this moment calculation off line, with a dimensionality reduction step to allow for the effective calculation of the observation operator and the associated covariance in real time during the assimilation. The approach is applicable to other remotely sensed observations that depend nonlinearly on model variables, including wind vector fields. The approach has been successfully applied to the case of tropical cyclones, where the organization of the system helps in identifying the dimensionality-reducing variables.

  9. Synthesis of PbMoO4 nanoparticles by microwave-assisted hydrothermal process and their photocatalytic activity.

    PubMed

    Song, Young In; Lim, Kwon Taek; Lee, Gun Dae; Lee, Man Sig; Hong, Seong-Soo

    2014-11-01

    Lead molybdate (PbMoO4) was successfully synthesized using a microwave-assisted method and characterized by XRD, Raman spectroscopy, SEM, PL and DRS. We also investigated the photocatalytic activity of these materials for the decomposition of Rhodamin B under UV-light irradiation. The XRD and Raman results revealed the successful synthesis of 42-52 nm, well-crystallized PbMoO4 crystals with the microwave-assisted hydrothermal method. The PbMoO4 catalysts prepared using the microwave-assisted process enhanced the photocatalytic activity compared to that prepared by hydrothermal method and the catalysts prepared at a solution pH = 11 and temperature of 105 degrees C showed the highest photocatalytic activity. The PL peaks appeared at about 540 nm for all catalysts and the excitonic PL signal was proportional to the photocatalytic activity for the decomposition of Rhodamin B. PMID:25958553

  10. Short term prediction of dynamic hydra precipitation activity using a microwave radiometer over Eastern Himalaya, India

    NASA Astrophysics Data System (ADS)

    Singh, S.

    2015-12-01

    First ever study of the feasibility of ground based radiometric study to predict a very short term based rain precipitation study has been conducted in eastern Himalaya, Darjeeling (27.01°N, 88.15°E, 2200 masl). Short term prediction or nowcasting relates to forecasting convective precipitation for time periods less than a few hours to avoid its effect on agriculture, aviation and lifestyle. Theoretical models involving radiometric predictions are not well understood and lack in temporal and spatial resolution. In this study specific utilization of a microwave Radiometer (Radiometrics Corporation, USA) for online monitoring of precipitable rainfall activity has been observed repeatability of data has been established. Previous few studies have shown the increase of water vapour and corresponding Brightness Temperature, but in mountain climatic conditions over Darjeeling, due to presence of fog 90 % of the year, water vapour monitoring related predictions can lead to false alarms. The measurement of blackbody emission noise in the bands of 23.8 GHz and 31.4 GHz, using a quadratic regression retrieval algorithm is converted to atmospheric parameters like integrated water vapour and liquid water content. It has been found in our study that the liquid water shows significant activity prior to precipitation events even for mild and stratiform rainfall. The alarm can be generated well 20 mins before the commencement of actual rain events even in the upper atmosphere of 6 Kms, measured by a rain radar also operating in 24 Ghz microwave band. Although few rain events were found and reported which do not respond in the microwave liquid water channel. Efforts to identify such rain events and their possible explanation is going on and shall be reported in near future. Such studies are important to predict flash flooding in the Himalayas. Darjeeling owing to its geographical conditions experiences mild to very heavy rain. Such studies help improve aspects of Himalayas as

  11. Application of artificial neural networks for the soil moisture retrieval from active and passive microwave spaceborne sensors

    NASA Astrophysics Data System (ADS)

    Santi, Emanuele; Paloscia, Simonetta; Pettinato, Simone; Fontanelli, Giacomo

    2016-06-01

    Among the algorithms used for the retrieval of SMC from microwave sensors (both active, such as Synthetic Aperture Radar-SAR, and passive, radiometers), the artificial neural networks (ANN) represent the best compromise between accuracy and computation speed. ANN based algorithms have been developed at IFAC, and adapted to several radar and radiometric satellite sensors, in order to generate SMC products at a resolution varying from hundreds of meters to tens of kilometers according to the spatial scale of each sensor. These algorithms, which are based on the ANN techniques for inverting theoretical and semi-empirical models, have been adapted to the C- to Ka- band acquisitions from spaceborne radiometers (AMSR-E/AMSR2), SAR (Envisat/ASAR, Cosmo-SkyMed) and real aperture radar (MetOP ASCAT). Large datasets of co-located satellite acquisitions and direct SMC measurements on several test sites worldwide have been used along with simulations derived from forward electromagnetic models for setting up, training and validating these algorithms. An overall quality assessment of the obtained results in terms of accuracy and computational cost was carried out, and the main advantages and limitations for an operational use of these algorithms were evaluated. This technique allowed the retrieval of SMC from both active and passive satellite systems, with accuracy values of about 0.05 m3/m3 of SMC or better, thus making these applications compliant with the usual accuracy requirements for SMC products from space.

  12. Statistical Analysis of the Correlation between Microwave Emission Anomalies and Seismic Activity Based on AMSR-E Satellite Data

    NASA Astrophysics Data System (ADS)

    qin, kai; Wu, Lixin; De Santis, Angelo; Zhang, Bin

    2016-04-01

    Pre-seismic thermal IR anomalies and ionosphere disturbances have been widely reported by using the Earth observation system (EOS). To investigate the possible physical mechanisms, a series of detecting experiments on rock loaded to fracturing were conducted. Some experiments studies have demonstrated that microwave radiation energy will increase under the loaded rock in specific frequency and the feature of radiation property can reflect the deformation process of rock fracture. This experimental result indicates the possibility that microwaves are emitted before earthquakes. Such microwaves signals are recently found to be detectable before some earthquake cases from the brightness temperature data obtained by the microwave-radiometer Advanced Microwave-Scanning Radiometer for the EOS (AMSR-E) aboard the satellite Aqua. This suggested that AMSR-E with vertical- and horizontal-polarization capability for six frequency bands (6.925, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz) would be feasible to detect an earthquake which is associated with rock crash or plate slip. However, the statistical analysis of the correlation between satellite-observed microwave emission anomalies and seismic activity are firstly required. Here, we focus on the Kamchatka peninsula to carry out a statistical study, considering its high seismicity activity and the dense orbits covering of AMSR-E in high latitudes. 8-years (2003-2010) AMSR-E microwave brightness temperature data were used to reveal the spatio-temporal association between microwave emission anomalies and 17 earthquake events (M>5). Firstly, obvious spatial difference of microwave brightness temperatures between the seismic zone at the eastern side and the non-seismic zone the western side within the Kamchatka peninsula are found. Secondly, using both vertical- and horizontal-polarization to extract the temporal association, it is found that abnormal changes of microwave brightness temperatures appear generally 2 months before the

  13. Fusion of satellite active and passive microwave data for sea ice type concentration estimates

    SciTech Connect

    Beaven, S.G.; Gogineni, S.; Carsey, F.D.

    1996-09-01

    Young first-year sea ice is nearly as important as open water in modulating heat flux between the ocean and atmosphere in the Arctic. Just after the onset of freeze-up, first-year ice is in the early stages of growth and will consist of young first-year and thin ice. The distribution of sea ice in this thickness range impacts heat transfer in the Arctic. Therefore, improving the estimates of ice concentrations in this thickness range is significant. NASA Team Algorithm (NTA) for passive microwave data inaccurately classifies sea ice during the melt and freeze-up seasons because it misclassifies multiyear ice as first-year ice. The authors developed a hybrid fusion technique for incorporating multiyear ice information derived form synthetic aperture radar (SAR) images into a passive microwave algorithm to improve ice type concentration estimates. First, they classified SAR images using a dynamic thresholding technique and estimated the multiyear ice concentration. Then they used the SAR-derived multiyear ice concentration constrain the NTA and obtained an improved first-year ice concentration estimate. They computed multiyear and first-year ice concentration estimates over a region in the eastern-central Arctic in which field observations of ice and in situ radar backscatter measurements were performed. With the NTA alone, the first-year ice concentration in the study area varied between 0.11 and 0.40, while the multiyear ice concentration varied form 0.63 to 0.39. With the hybrid fusion technique, the first-year ice concentration varied between 0.08 and 0.23 and the multiyear ice concentration was between 0.62 and 0.66. The fused estimates of first-year and multiyear ice concentration appear to be more accurate than NTA, based on ice observations that were logged aboard the US Coast Guard icebreaker Polar Star in the study area during 1991.

  14. Lung radiofrequency and microwave ablation: a review of indications, techniques and post-procedural imaging appearances

    PubMed Central

    Jennings, P E

    2015-01-01

    Lung ablation can be used to treat both primary and secondary thoracic malignancies. Evidence to support its use, particularly for metastases from colonic primary tumours, is now strong, with survival data in selected cases approaching that seen after surgery. Because of this, the use of ablative techniques (particularly thermal ablation) is growing and the Royal College of Radiologists predict that the number of patients who could benefit from such treatment may reach in excess of 5000 per year in the UK. Treatment is often limited to larger regional centres, and general radiologists often have limited awareness of the current indications and the techniques involved. Furthermore, radiologists without any prior experience are frequently expected to interpret post-treatment imaging, often performed in the context of acute complications, which have occurred after discharge. This review aims to provide an overview of the current indications for pulmonary ablation, together with the techniques involved and the range of post-procedural appearances. PMID:25465192

  15. Degradation of Active Brilliant Red X-3B by a microwave discharge electrodeless lamp in the presence of activated carbon.

    PubMed

    Fu, Jie; Wen, Teng; Wang, Qing; Zhang, Xue-Wei; Zeng, Qing-Fu; An, Shu-Qing; Zhu, Hai-Liang

    2010-06-01

    Degradation of Active Brilliant Red X-3B (X-3B) in aqueous solution by a microwave discharge electrodeless lamp (MDEL) in the presence of activated carbon was investigated. The preliminary results proved this method could effectively degrade X-3B in aqueous solution. The removal percentages of colour and chemical oxygen demand were up to approximately 99% and 66%, respectively, at the conditions of 0.8 g/L dye concentration, 20 g/L activated carbon, pH 7.0 and 8 min microwave irradiation time. The degradation basically belonged to first-order reaction kinetics and its rate constant was 0.42 min(-1). No aromatic organics were detected in the final treated solution, indicating that the mineralization was relatively complete. By studying the change in solution properties, it could be concluded that MDEL-assisted oxidation was the dominant reaction mechanism. In addition, the influence of operational parameters and reuse of activated carbon were also discussed. PMID:20586239

  16. Development and evaluation of techniques for using combined microwave and optical image data for vegetation studies

    NASA Technical Reports Server (NTRS)

    Paris, J. F.; Rock, B. N.; Hsu, S. Y.

    1984-01-01

    Techniques for using combined image data from the Shuttle Imaging Radar (SIR-B) and the LANDSAT Thematic Mapper (TM) or Multispectral Scanner (MSS) for studies of irrigated crops, and boreal and deciduous forests are developed and evaluated. The effects of the structure and composition of crop canopies and soil surfaces on multiangle L-band HH (Horizontal polarization for transmission and reception) backscattering and on optical reflectance (in TM or MSS bands viewed at the nadir) are investigated. The relative accuracy of digital, calibrated SIR-B image data and LANDSAT TM or MSS image data is evaluated. Textural information extraction-techniques are developed for radar and optical image analysis.

  17. Spanish activities (research and industrial applications) in the field of microwave material treatment

    SciTech Connect

    Catala Civera, J.M.; Reyes Davo, E.R. de los

    1996-12-31

    The GCM (Microwave Heating Group) within the Communications Department at the Technical University of Valencia is dedicated to the study of microwaves and their use in the current industrial processes in the Valencian Community and in Spain. To this end, a microwave heating laboratory has been developed and the benefits of incorporating microwave technologies into current industrial processes have been demonstrated. In this paper some of the industrial applications which are being investigated are presented.

  18. Efficient Catalytic Activity BiFeO3 Nanoparticles Prepared by Novel Microwave-Assisted Synthesis.

    PubMed

    Zou, Jing; Gong, Wanyun; Ma, Jinai; Li, Lu; Jiang, Jizhou

    2015-02-01

    A novel microwave-assisted sol-gel method was applied to the synthesis of the single-phase perovskite bismuth ferrite nanoparticles (BFO NPs) with the mean diameter ca. 73.7 nm. The morphology was characterized by scanning electron microscope (SEM). The X-ray diffraction (XRD) revealed the rhombohedral phase with R3c space group. The weak ferromagnetic behavior at room temperature was affirmed by the vibrating sample magnetometer (VSM). According to the UV-vis diffuse reflectance spectrum (UV-DSR), the band gap energy of BFO NPs was determined to be 2.18 eV. The electrochemical activity was evaluated by BFO NPs-chitosan-glassy carbon electrode (BFO-CS-GCE) sensor for detection of p-nitrophenol contaminants. The material showed an efficient oxidation catalytic activity by degrading methylene blue (MB). It was found that the degradation efficiency of 10 mg L-1 MB at pH 6.0 was above 90.9% after ultrasound- and microwave-combined-assisted (US-MW) irradiation for 15 min with BFO NPs as catalyst and H202 as oxidant. A possible reaction mechanism of degradation of MB was also proposed. PMID:26353647

  19. Low-level microwave irradiation and central cholinergic activity: a dose-response study

    SciTech Connect

    Lai, H.; Carino, M.A.; Horita, A.; Guy, A.W.

    1989-01-01

    Rats were irradiated with circularly polarized, 2,450-MHz pulsed microwaves (2-microseconds pulses, 500 pulses per second (pps)) for 45 min in the cylindrical waveguide system of Guy et al. Immediately after exposure, sodium-dependent high-affinity choline uptake, an indicator of cholinergic activity in neural tissue, was measured in the striatum, frontal cortex, hippocampus, and hypothalamus. The power density was set to give average whole-body specific absorption rates (SAR) of 0.3, 0.45, 0.6, 0.75, 0.9, or 1.2 W/kg to study the dose-response relationship between the rate of microwave energy absorption and cholinergic activity in the different areas of the brain. Decrease in choline uptake was observed in the striatum at a SAR of 0.75 W/kg and above, whereas for the frontal cortex and hippocampus, decreases in choline uptake were observed at a SAR of 0.45 W/kg and above. No significant effect was observed in the hypothalamus at the irradiation power densities studied. The probit analysis was used to determine the SAR50 in each brain area, i.e., the SAR at which 50% of maximum response was elicited. SAR50 values for the striatum, frontal cortex, and hippocampus were 0.65, 0.38, and 0.44 W/kg, respectively.

  20. Remote sensing of atmospheric water vapor, liquid water and wind speed at the ocean surface by passive microwave techniques from the Nimbus-5 satellite

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Wilheit, T. T.

    1977-01-01

    The microwave brightness temperature measurements for Nimbus-5 electrically scanned microwave radiometer and Nimbus E microwave spectrometer are used to retrieve the atmospheric water vapor, liquid water and wind speed by a quasi-statistical retrieval technique. It is shown that the brightness temperature can be utilized to yield these parameters under various weather conditions. Observations at 19.35 GHz, 22.235 GHz and 31.4 GHz were input to the regression equations. The retrieved values of these parameters for portions of two Nimbus-5 orbits are presented. Then comparison between the retrieved parameters and the available observations on the total water vapor content and the surface wind speed are made. The estimated errors for retrieval are approximately 0.15 g/sq cm for water vapor content, 6.5 mg/sq cm for liquid water content and 6.6 m/sec for surface wind speed.

  1. Fault tolerance analysis and applications to microwave modules and MMIC's

    NASA Astrophysics Data System (ADS)

    Boggan, Garry H.

    A project whose objective was to provide an overview of built-in-test (BIT) considerations applicable to microwave systems, modules, and MMICs (monolithic microwave integrated circuits) is discussed. Available analytical techniques and software for assessing system failure characteristics were researched, and the resulting investigation provides a review of two techniques which have applicability to microwave systems design. A system-level approach to fault tolerance and redundancy management is presented in its relationship to the subsystem/element design. An overview of the microwave BIT focus from the Air Force Integrated Diagnostics program is presented. The technical reports prepared by the GIMADS team were reviewed for applicability to microwave modules and components. A review of MIMIC (millimeter and microwave integrated circuit) program activities relative to BIT/BITE is given.

  2. Low temperature recombination and trapping analysis in high purity gallium arsenide by microwave photodielectric techniques

    NASA Technical Reports Server (NTRS)

    Khambaty, M. B.; Hartwig, W. H.

    1972-01-01

    Some physical theories pertinent to the measurement properties of gallium arsenide are presented and experimental data are analyzed. A model for explaining recombination and trapping high purity gallium arsenide, valid below 77 K is assembled from points made at various places and an appraisal is given of photodielectric techniques for material property studies.

  3. A Combined Infrared and Microwave Technique for Studying the Diurnal Variation of Rainfall Over Amazonia

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Xu, L.; Adler, R. F.; Anagnostou, E.; Rickenbach, T. M.

    1999-01-01

    In this paper we present results from the application of a satellite infrared (IR) technique for estimating rainfall over northern South America. Our main objectives are to examine the diurnal variability of rainfall and to investigate the relative contributions from the convective and stratiform components. Additional information is contained in the original.

  4. Earth Observing System/Advanced Microwave SoundingUnit-A (EOS/AMSU-A): Acquisition activities plan

    NASA Technical Reports Server (NTRS)

    Schwantje, Robert

    1994-01-01

    This is the acquisition activities plan for the software to be used in the Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) system. This document is submitted in response to Contract NAS5-323 14 as CDRL 508. The procurement activities required to acquire software for the EOS/AMSU-A program are defined.

  5. NORSEX 1979 microwave remote sensing data report

    NASA Technical Reports Server (NTRS)

    Hennigar, H. F.; Schaffner, S. K.

    1982-01-01

    Airborne microwave remote sensing measurements obtained by NASA Langley Research Center in support of the 1979 Norwegian Remote Sensing Experiment (NORSEX) are summarized. The objectives of NORSEX were to investigate the capabilities of an active/passive microwave system to measure ice concentration and type in the vicinity of the marginal ice zone near Svalbard, Norway and to apply microwave techniques to the investigation of a thermal oceanic front near Bear Island, Norway. The instruments used during NORSEX include the stepped frequency microwave radiometer, airborne microwave scatterometer, precision radiation thermometer and metric aerial photography. The data are inventoried, summarized, and presented in a user-friendly format. Data summaries are presented as time-history plots which indicate when and where data were obtained as well as the sensor configuration. All data are available on nine-track computer tapes in card-image format upon request to the NASA Langley Technical Library.

  6. Neutron Activation Analysis: Techniques and Applications

    SciTech Connect

    MacLellan, Ryan

    2011-04-27

    The role of neutron activation analysis in low-energy low-background experimentsis discussed in terms of comparible methods. Radiochemical neutron activation analysis is introduce. The procedure of instrumental neutron activation analysis is detailed especially with respect to the measurement of trace amounts of natural radioactivity. The determination of reactor neutron spectrum parameters required for neutron activation analysis is also presented.

  7. Electronic properties of superconductors studied using photo induced activation of microwave absorption (PIAMA)

    SciTech Connect

    Feenstra, B.J.; Schooveld, W.A.; Bos, C.

    1995-12-31

    Electronic properties of superconductors are contemporarily being studied using many different experimental techniques, among which infrared spectrometry, photoelectron spectroscopy and microwave cavity techniques play an important role. The data analysis, however, is complicated by the fact that in these materials the phonon-frequency range overlaps with the one in which the energy gap is expected. This problem can be circumvented by making use of two different sources, one to induce the excitations (the Free Electron Laser in Nieuwegein, The Netherlands, FELIX), and one to study the behavior of these excitations (i.e. quasiparticles). In our case the latter source is monochromatic microwave radiation, transmitted through a thin superconducting film. We measured both a conventional superconductor (NbN, T{sub c} = 17 K) and a high T{sub c} superconductor (SmBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, T{sub c} = 92 K). For NbN we observed a positive change in transmission, followed by a relaxation to a transmission smaller than the original value, after which the starting situation was restored within {approximately} 100 {mu}s. In case of SmBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, the changes persisted above T{sub c}. At very low temperatures we observed slow oscillations ({approximately} 4kHz) in the induced signal, which were absent in NbN. The long time scales can possibly be explained by the so-called bottleneck, i.e. quasiparticles excited with a lot of excess energy lose part of their energy by exciting other quasiparticles. In this case the quasiparticle lifetime is enhanced considerably. The oscillations point towards an intrinsic difference of the low energy excitations, i.e. the symmetry of the pairing.

  8. Active adjoint modeling method in microwave induced thermoacoustic tomography for breast tumor.

    PubMed

    Zhu, Xiaozhang; Zhao, Zhiqin; Wang, Jinguo; Chen, Guoping; Liu, Qing Huo

    2014-07-01

    To improve the model-based inversion performance of microwave induced thermoacoustic tomography for breast tumor imaging, an active adjoint modeling (AAM) method is proposed. It aims to provide a more realistic breast acoustic model used for tumor inversion as the background by actively measuring and reconstructing the structural heterogeneity of human breast environment. It utilizes the reciprocity of acoustic sensors, and adapts the adjoint tomography method from seismic exploration. With the reconstructed acoustic model of breast environment, the performance of model-based inversion method such as time reversal mirror is improved significantly both in contrast and accuracy. To prove the advantage of AAM, a checkerboard pattern model and anatomical realistic breast models have been used in full wave numerical simulations. PMID:24956614

  9. Microwave-assisted, one-pot syntheses and fungicidal activity of polyfluorinated 2-benzylthiobenzothiazoles.

    PubMed

    Huang, Wei; Yang, Guang-Fu

    2006-12-15

    Polyfluorinated 2-benzylthiobenzothiazoles 3a-l are prepared via a microwave-assisted, one-pot procedure. The advantages, such as good to excellent yields, shorter reaction time (14-21min), readily available starting material, and simple purification procedure, distinguish the present protocol from other existing methods used for the synthesis of 2-benzylthiobenzothiazoles. Bioassay indicated that most of the compounds showed significant fungicidal activity against Rhizoctonia solani, Botrytis cinereapers, and Dothiorella gregaria at a dosage of 50microg/mL. Interestingly, compared to the control of commercial fungicide, triadimefon, compound 3c exhibited much higher activities against R. solani, B. cinereapers, and D. gregaria, which showed that the polyfluorinated 2-benzylthiobenzothiazoles can be used as lead compound for developing novel fungicides. PMID:17008103

  10. ESA activities in the use of microwaves for the remote sensing of the Earth

    NASA Technical Reports Server (NTRS)

    Maccoll, D.

    1984-01-01

    The program of activities under way in the European Space Agency (ESA) directed towards Remote Sensing of the oceans and troposphere is discussed. The initial project is the launch of a satellite named ERS-1 with a primary payload of microwave values in theee C- and Ku-bands. This payload is discussed in depth. The secondary payload includes precision location experiments and an instrument to measure sea surface temperature, which are described. The important topic of calibration is extensively discussed, and a review of activities directed towards improvements to the instruments for future satellites is presented. Some discussion of the impact of the instrument payload on the spacecraft design follows and the commitment of ESA to the provision of a service of value to the ultimate user is emphasized.

  11. Fe-, Co-, and Ni-Loaded Porous Activated Carbon Balls as Lightweight Microwave Absorbents.

    PubMed

    Li, Guomin; Wang, Liancheng; Li, Wanxi; Xu, Yao

    2015-11-16

    Porous activated carbon ball (PACB) composites impregnated with iron, cobalt, nickel and/or their oxides were synthesized through a wet chemistry method involving PACBs as the carrier to load Fe(3+), Co(2+), and Ni(2+) ions and a subsequent carbothermal reduction at different annealing temperatures. The results show that the pyrolysis products of nitrates and/or the products from the carbothermal reduction are embedded in the pores of the PACBs, with different distributions, resulting in different crystalline phases. The as-prepared PACB composites possessed high specific surface areas of 791.2-901.5 m(2)  g(-1) and low densities of 1.1-1.3 g cm(-3). Minimum reflection loss (RL) values of -50.1, -20.6, and -20.4 dB were achieved for Fe-PACB (annealed at 500 °C), Co-PACB (annealed at 800 °C), and Ni-PACB (annealed at 800 °C) composites, respectively. Moreover, the influence of the amount of the magnetic components in the PACB composites on the microwave-absorbing performances was investigated, further confirming that the dielectric loss was the primary contributor to microwave absorption. PMID:26373310

  12. Cellulose/CaCO3 nanocomposites: microwave ionic liquid synthesis, characterization, and biological activity.

    PubMed

    Ma, Ming-Guo; Dong, Yan-Yan; Fu, Lian-Hua; Li, Shu-Ming; Sun, Run-Cang

    2013-02-15

    The purposes of this article are to synthesize the biomass-based hybrid nanocomposites using green method in green solvent and evaluate its biological activity. In this paper, microwave-assisted ionic liquid method is applied to the preparation of cellulose/CaCO(3) hybrid nanocomposites in the alkali extraction cellulose using CaCl(2) and Na(2)CO(3) as starting reactants. The ionic liquid acts as the excellent solvent for absorbing microwave and the dissolution of cellulose, and the synthesis of cellulose/CaCO(3) nanocomposites. The influences of reaction parameters such as the cellulose concentration and the types of solvent on the products were investigated. The increasing cellulose concentration favored the growth of CaCO(3). The morphologies of CaCO(3) changed from polyhedral to cube to particle with increasing cellulose concentration. Moreover, the solvents had an effect on the shape and dispersion of CaCO(3). Cytotoxicity experiments demonstrated that the cellulose/CaCO(3) nanocomposites had good biocompatibility and could be a candidate for the biomedical applications. PMID:23399205

  13. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities

    PubMed Central

    Velusamy, Palaniyandi; Su, Chia-Hung; Venkat Kumar, Govindarajan; Adhikary, Shritama; Pandian, Kannaiyan; Gopinath, Subash C. B.; Chen, Yeng; Anbu, Periasamy

    2016-01-01

    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications. PMID:27304672

  14. The killing activity of microwaves on some non-sporogenic and sporogenic medically important bacterial strains.

    PubMed

    Najdovski, L; Dragas, A Z; Kotnik, V

    1991-12-01

    The killing activity of microwaves of 2450 MHz frequency and 325 W, 650 W and 1400 W power on some bacterial strains was investigated. Vegetative strains of Staphylococcus aureus, Streptococcus pyogenes Group A, Escherichia coli, Pseudomonas aeruginosa and Enterococcus faecalis and spores of Bacillus subtilis and Bacillis stearothermophilus in aqueous suspensions were exposed to 325 W and 650 W waves for different lengths of time. Enterococcus faecalis and spores of B. subtilis and B. stearothermophilus were exposed additionally to 1400 W waves in aqueous and 'dried' suspensions. Vegetative bacteria were promptly killed in 5 min or less, E. faecalis being slightly more resistant. Bacterial spores were only killed in aqueous suspension when a 1400 W setting was used for 10 to 20 min. Bacterial spores adhering to the tube walls after the aqueous suspension was poured out were reduced in number. We assume that the conventional microwave ovens available on the market may be used for a high level of disinfection but not for sterilization, and only then if sufficient water is present. PMID:1686036

  15. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities.

    PubMed

    Velusamy, Palaniyandi; Su, Chia-Hung; Venkat Kumar, Govindarajan; Adhikary, Shritama; Pandian, Kannaiyan; Gopinath, Subash C B; Chen, Yeng; Anbu, Periasamy

    2016-01-01

    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications. PMID:27304672

  16. Effects of microwave irradiation on dewaterability and extracellular polymeric substances of waste activated sludge.

    PubMed

    Peng, Ge; Ye, Fenxia; Ye, Yangfang

    2013-03-01

    The effects of microwave irradiation on filterability and dewaterability of waste activated sludge measured by capillary suction time (CST) and dry solids in sludge cake were investigated. The results showed that the optimum irradiation time improved filterability, but that further increase of the time was detrimental. Dewaterability was enhanced significantly and increased with microwave time. Filterability and dewaterability were improved 25 to 28% and 1.3 times at the optimum times of 30 and 90 seconds for the sludge of 5 g total suspended solids (TSS)/L and 7 g TSS/L, respectively. The floc size decreased slightly. Loosely bound extracellular polymeric substances (LB-EPS) decreased under optimum time, but tightly bound extracellular polymeric substances did not change significantly after short irradiation time. The results implied that LB-EPS played a more important role in the observed changes of filterability and dewaterability and that the double-layered extracellular polymeric substances extraction method showed marked implications to dewaterability. PMID:23581243

  17. Synthesis of n-way active topology for wide-band RF/microwave applications

    NASA Astrophysics Data System (ADS)

    Ravelo, Blaise

    2012-05-01

    A novel architecture of n-way active topology for RF/microwave module applications is developed. This architecture is based on the use of active cell composed of a field effect transistor (FET) in cascade with shunt resistor. A theoretic analysis illustrating the S-parameters calculation was established. The expressions of the n-way power divider output gains were demonstrated. A synthesis method of active power-splitter or/and 180° balun in function of the considered FET stage number constituting each outer branch was proposed. A simple active power-splitter was designed using an even number of FET between the input-output branches. In addition, a variable gain active power-splitter was simulated. The FETs are biased at Vds = 6 V and Ids = 25 mA. So, insertion losses above -1.5 dB, return losses better than -15 dB and excellent isolation below -30 dB at all three ports were obtained from 0.5 to 5.5 GHz. Using odd number of FET stage, an active balun was realised. Then, simulations of active balun showing a perfectly constant differential out-phase (180° ± 5°), insertion losses above -1.5 dB and an excellent isolation below -30 dB for all three ports, from 0.3 to 4.5 GHz were performed.

  18. Retrieval of data from ground-based microwave sensing of the middle atmosphere: Comparison of two inversion techniques

    SciTech Connect

    Jarchow, C.; Hartogh, P.

    1995-12-31

    Since the discovery of the ozone hole over Antarctica the interest in measuring atmospheric trace gas distributions has greatly increased. First of all scientists are interested in monitoring the long term behavior of the ozone layer over the Antarctic and also over the Arctic region, but in addition one is also interested in measuring and monitoring not so well known trace gases which are assumed to play a central role in ozone depletion. In microwave remote sensing of atmospheric trace gases a retrieval technique has been widely adopted during the last years. The authors found some difficulties in applying this method to the analysis of long term ground-based observations due to the large variability of the tropospheric transmission. The corresponding changes of the data quality and the weight of the apriori profile in the inversion algorithm can lead to an artificial correlation between the retrieved profiles and the transmission. In addition an assessment of the inversion only from the error bars of the profile is impossible since they don`t respond linearly to the errors of the spectra. It is shown that an inversion algorithm according to Backus-Gilbert`s philosophy will avoid these difficulties.

  19. Effects of low power microwave radiation on biological activity of Collagenase enzyme and growth rate of S. Cerevisiae yeast

    NASA Astrophysics Data System (ADS)

    Alsuhaim, Hamad S.; Vojisavljevic, Vuk; Pirogova, E.

    2013-12-01

    Recently, microwave radiation, a type/subset of non-ionizing electromagnetic radiation (EMR) has been widely used in industry, medicine, as well as food technology and mobile communication. Use of mobile phones is rapidly growing. Four years from now, 5.1 billion people will be mobile phone users around the globe - almost 1 billion more mobile users than the 4.3 billion people worldwide using them now. Consequently, exposure to weak radiofrequency/microwave radiation generated by these devices is markedly increasing. Accordingly, public concern about potential hazards on human health is mounting [1]. Thermal effects of radiofrequency/microwave radiation are very well-known and extensively studied. Of particular interest are non-thermal effects of microwave exposures on biological systems. Nonthermal effects are described as changes in cellular metabolism caused by both resonance absorption and induced EMR and are often accompanied by a specific biological response. Non-thermal biological effects are measurable changes in biological systems that may or may not be associated with adverse health effects. In this study we studied non-thermal effects of low power microwave exposures on kinetics of L-lactate dehydrogenase enzyme and growth rate of yeast Saccharomyces Cerevisiae strains type II. The selected model systems were continuously exposed to microwave radiation at the frequency of 968MHz and power of 10dBm using the designed and constructed (custom made) Transverse Electro-Magnetic (TEM) cell [2]. The findings reveal that microwave radiation at 968MHz and power of 10dBm inhibits L-lactate dehydrogenase enzyme activity by 26% and increases significantly (15%) the proliferation rate of yeast cells.

  20. Class of backpropagation techniques for limited-angle reconstruction in microwave tomography

    SciTech Connect

    Paladhi, P. Roy; Tayebi, A.; Udpa, L.; Udpa, S.; Sinha, A.

    2015-03-31

    Filtered backpropagation (FBPP) is a well-known technique used in Diffraction Tomography (DT). For accurate reconstruction using FBPP, full 360° angular coverage is necessary. However, it has been shown that using some inherent redundancies in the projection data in a tomographic setup, accurate reconstruction is still possible with 270° coverage which is called the minimal-scan angle range. This can be done by applying weighing functions (or filters) on projection data of the object to eliminate the redundancies and accurately reconstruct the image from 270° coverage. This paper demonstrates procedures to generate many general classes of these weighing filters. These are all equivalent at 270° coverage but vary in performance at lower angular coverages and in presence of noise. This paper does a comparative analysis of different filters when angular coverage is lower than minimal-scan angle of 270°. Simulation studies have been done to find optimum weight filters for sub-minimal angular coverage (<270°)

  1. Optimal spatial sampling techniques for ground truth data in microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Rao, R. G. S.; Ulaby, F. T.

    1977-01-01

    The paper examines optimal sampling techniques for obtaining accurate spatial averages of soil moisture, at various depths and for cell sizes in the range 2.5-40 acres, with a minimum number of samples. Both simple random sampling and stratified sampling procedures are used to reach a set of recommended sample sizes for each depth and for each cell size. Major conclusions from statistical sampling test results are that (1) the number of samples required decreases with increasing depth; (2) when the total number of samples cannot be prespecified or the moisture in only one single layer is of interest, then a simple random sample procedure should be used which is based on the observed mean and SD for data from a single field; (3) when the total number of samples can be prespecified and the objective is to measure the soil moisture profile with depth, then stratified random sampling based on optimal allocation should be used; and (4) decreasing the sensor resolution cell size leads to fairly large decreases in samples sizes with stratified sampling procedures, whereas only a moderate decrease is obtained in simple random sampling procedures.

  2. Microwave acid digestion and preconcentration neutron activation analysis of biological and diet samples for iodine.

    PubMed

    Rao, R R; Chatt, A

    1991-07-01

    A simple preconcentration neutron activation analysis (PNAA) method has been developed for the determination of low levels of iodine in biological and nutritional materials. The method involves dissolution of the samples by microwave digestion in the presence of acids in closed Teflon bombs and preconcentration of total iodine, after reduction to iodide with hydrazine sulfate, by coprecipitation with bismuth sulfide. The effects of different factors such as acidity, time for complete precipitation, and concentrations of bismuth, sulfide, and diverse ions on the quantitative recovery of iodide have been studied. The absolute detection limit of the PNAA method is 5 ng of iodine. Precision of measurement, expressed in terms of relative standard deviation, is about 5% at 100 ppb and 10% at 20 ppb levels of iodine. The PNAA method has been applied to several biological reference materials and total diet samples. PMID:1897721

  3. NASA's Potential Contributions to Avalanche Forecasting Using Active and Passive Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir

    2007-01-01

    This Candidate Solution is based on using active and passive microwave measurements acquired from NASA satellites to improve USDA (U.S. Department of Agriculture) Forest Service forecasting of avalanche danger. Regional Avalanche Centers prepare avalanche forecasts using ground measurements of snowpack and mountain weather conditions. In this Solution, range of the in situ observations is extended by adding remote sensing measurements of snow depth, snow water equivalent, and snowfall rate acquired by satellite missions that include Aqua, CloudSat, future GPM (Global Precipitation Measurement), and the proposed SCLP (Snow and Cold Land Processes). Measurements of snowpack conditions and time evolution are improved by combining the in situ and satellite observations with a snow model. Recurring snow observations from NASA satellites increase accuracy of avalanche forecasting, which helps the public and the managers of public facilities make better avalanche safety decisions.

  4. Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Shevchenko, Vladimir F.; Freethy, Simon J.; Huang, Billy K.; Vann, Roddy G. L.

    2014-08-01

    A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post-processing mode. SAMI can scan over 16 pre-programmed frequencies in the range of 10-35GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a 'passive' imaging of plasma emission and also an 'active' imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structures. Both modes of operation show good performance in fusion plasma experiments on Mega Amp Spherical Tokamak (MAST). We have obtained the first ever 2-D images of BXO mode conversion windows. With active probing, first ever turbulence velocity maps have been obtained. We present an overview of the diagnostic and discuss recent results. In contrast to quasi-optical microwave imaging systems SAMI requires neither big aperture viewing ports nor large 2-D detector arrays to achieve the desired imaging resolution. The number of effective 'pixels' of the synthesized image is proportional to the number of receiving antennas squared. Thus only a small number of optimised antennas is sufficient for the majority of applications. Possible implementation of SAMI on ITERand DEMO is discussed.

  5. Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics

    SciTech Connect

    Shevchenko, Vladimir F.; Freethy, Simon J.; Huang, Billy K.

    2014-08-21

    A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post-processing mode. SAMI can scan over 16 pre-programmed frequencies in the range of 10-35GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a 'passive' imaging of plasma emission and also an 'active' imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structures. Both modes of operation show good performance in fusion plasma experiments on Mega Amp Spherical Tokamak (MAST). We have obtained the first ever 2-D images of BXO mode conversion windows. With active probing, first ever turbulence velocity maps have been obtained. We present an overview of the diagnostic and discuss recent results. In contrast to quasi-optical microwave imaging systems SAMI requires neither big aperture viewing ports nor large 2-D detector arrays to achieve the desired imaging resolution. The number of effective 'pixels' of the synthesized image is proportional to the number of receiving antennas squared. Thus only a small number of optimised antennas is sufficient for the majority of applications. Possible implementation of SAMI on ITERand DEMO is discussed.

  6. Phenolic Content and Antioxidant Activity of Extracts from Whole Buckwheat (Fagopyrum esculentum Moench) With or Without Microwave Irradiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to evaluate the effectiveness of extracting phenolic compounds and antioxidant activity from buckwheat with water, 50% aqueous ethanol, or 100% ethanol using microwave irradiation or a water bath for 15 min at various temperatures (23 – 150 °C). The phenolic content of...

  7. MICROWAVE TECHNOLOGY CHEMICAL SYNTHESIS APPLICATIONS

    EPA Science Inventory

    Microwave-accelerated chemical syntheses in various solvents as well as under solvent-free conditions have witnessed an explosive growth. The technique has found widespread application predominantly exploiting the inexpensive unmodified household microwave (MW) ovens although th...

  8. Aircraft active and passive microwave validation of sea ice concentration from the Defense Meteorological Satellite Program special sensor microwave imager

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Crawford, J. P.; Drinkwater, M. R.; Eppler, D. T.; Farmer, L. D.; Jentz, R. R.; Wackerman, C. C.

    1991-01-01

    Results are presented of a series of coordinate special sensor microwave imager (SSM/I) underflights that were carried out during March 1988 with NASA and Navy aircraft over portions of the Bering, Beaufort, and Chukchi seas. NASA DC-8 AMMR data from Bering Sea ice edge crossings were used to verify that the ice edge location, defined as the position of the initial ice bands encountered by the aircraft, corresponds to an SSM/I ice concentration of 15 percent. Direct comparison of SSM/I and aircraft ice concentrations for regions having at least 80 percent aircraft coverage reveals that the SSM/I total ice concentration is lower on average by 2.4 +/-2.4 percent. For multiyear ice, NASA and Navy flights across the Beaufort and Chukchi seas show that the SSM/I algorithm correctly maps the large-scale distribution of multiyear ice: the zone of first-year ice off the Alaskan coast, the large areas of mixed first-year and multiyear ice, and the region of predominantly multiyear ice north of the Canadian archipelago.

  9. Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW

    SciTech Connect

    Li Wei; Peng Jinhui Zhang Libo; Yang Kunbin; Xia Hongying; Zhang Shimin; Guo Shenghui

    2009-02-15

    Experiments to prepare activated carbon by microwave heating indicated that microwave energy can decrease reaction temperature, save the energy and shorten processing time remarkably compared to conventional heating, owing to its internal and volumetric heating effects. The above results were based on the laboratory-scale experiments. It is desirable to develop a pilot-scale microwave heating equipment and investigate the parameters with the aim of technological industrialization. In the present study, the components and features of the self-invented equipment were introduced. The temperature rise curves of the chars were obtained. Iodine numbers of the activated carbons all exceed the state standard of China under the following conditions: 25 kg/h charging rate, 0.42 rev/min turning rate of ceramic tube, flow rate of steam at pressure of 0.01 MPa and 40 kW microwave heating power after 60 kW pre-activation for 30 min. Pore structure of the sample obtained at a time point of 46 h, which contained BET surface area, and pore size distributions of micropores and total pores, was tested by nitrogen adsorption at 77 K.

  10. Experimental study on removal of NO using adsorption of activated carbon/reduction decomposition of microwave heating.

    PubMed

    Shuang-Chen, Ma; Yao, Juan-Juan; Gao, Li

    2012-01-01

    Experimental studies were carried out on flue gas denitrification using activated carbon irradiated by microwave. The effects of microwave irradiation power (reaction temperature), the flow rate of flue gas, the concentration of NO and the flue gas coexisting compositions on the adsorption property of activated carbon and denitrification efficiency were investigated. The results show that: the higher of microwave power, the higher of denitrification efficiency; denitrification efficiency would be greater than 99% and adsorption capacity of NO is relatively stable after seven times regeneration if the microwave power is more than 420 W; adsorption capacity of NO in activated carbon bed is 33.24 mg/g when the space velocity reaches 980 per hour; adsorption capacity declines with increasing of the flow rate of flue gas; the change in denitrification efficiency is not obvious with increasing oxygen content in the flue gas; and the maximum adsorption capacity of NO was observed when moisture in flue gas was about 5.88%. However, the removal efficiency of NO reduces with increasing moisture, and adsorption capacity and removal efficiency of NO reduce with increasing of SO2 concentration in the flue gas. PMID:22988643

  11. Optimal control techniques for active noise suppression

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Keeling, S. L.; Silcox, R. J.

    1988-01-01

    Active suppression of noise in a bounded enclosure is considered within the framework of optimal control theory. A sinusoidal pressure field due to exterior offending noise sources is assumed to be known in a neighborhood of interior sensors. The pressure field due to interior controlling sources is assumed to be governed by a nonhomogeneous wave equation within the enclosure and by a special boundary condition designed to accommodate frequency-dependent reflection properties of the enclosure boundary. The form of the controlling sources is determined by considering the steady-state behavior of the system, and it is established that the control strategy proposed is stable and asymptotically optimal.

  12. Acute low-level microwave exposure and central cholinergic activity: studies on irradiation parameters

    SciTech Connect

    Lai, H.; Horita, A.; Guy, A.W.

    1988-01-01

    Sodium-dependent high-affinity choline uptake was measured in the striatum, frontal cortex, hippocampus, and hypothalamus of rats after acute exposure (45 min) to pulsed (2 microseconds, 500 pps) or continuous-wave 2,450-MHz microwaves in cylindrical waveguides or miniature anechoic chambers. In all exposure conditions, the average whole-body specific absorption rate was at 0.6 W/kg. Decrease in choline uptake was observed in the frontal cortex after microwave exposure in all of the above irradiation conditions. Regardless of the exposure system used, hippocampal choline uptake was decreased after exposure to pulsed but not continuous-wave microwaves. Striatal choline uptake was decreased after exposure to either pulsed or continuous-wave microwaves in the miniature anechoic chamber. No significant change in hypothalamic choline uptake was observed under any of the exposure conditions studied. We conclude that depending on the parameters of the radiation, microwaves can elicit specific and generalized biological effects.

  13. Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method.

    PubMed

    Hong, Xuesen; Wen, Junjie; Xiong, Xuhua; Hu, Yongyou

    2016-03-01

    Silver nanoparticles (AgNPs) are used as sustained-release bactericidal agents for water treatment. Among the physicochemical characteristics of AgNPs, shape is an important parameter relevant to the antibacterial activity. Three typically shaped AgNPs, nanocubes, nanospheres, and nanowires, were prepared via a microwave-assisted method and characterized by TEM, UV-vis, and XRD. The antibacterial activity of AgNPs was determined by OD growth curves tests, MIC tests, and cell viability assay against Escherichia coli. The interaction between AgNPs and bacterial cells was observed by TEM. The results showed that the three differently shaped AgNPs were nanoscale, 55 ± 10 nm in edge length for nanocubes, 60 ± 15 nm in diameter for nanospheres, 60 ± 10 nm in diameter and 2-4 μm in length for nanowires. At the bacterial concentration of 10(4) CFU/mL, the MIC of nanocubes, nanospheres, and nanowires were 37.5, 75, and 100 μg/mL, respectively. Due to the worst contact with bacteria, silver nanowires exhibited the weakest antibacterial activity compared with silver nanocubes and silver nanospheres. Besides, silver nanocubes mainly covered by {100} facets showed stronger antibacterial activity than silver nanospheres covered by {111} facets. It suggests that the shape effect on the antibacterial activity of AgNPs is attributed to the specific surface areas and facets reactivity; AgNPs with larger effective contact areas and higher reactive facets exhibit stronger antibacterial activity. PMID:26511259

  14. Microwave-assisted preparation and adsorption performance of activated carbon from biodiesel industry solid reside: influence of operational parameters.

    PubMed

    Foo, K Y; Hameed, B H

    2012-01-01

    Preparation of activated carbon has been attempted using KOH as activating agent by microwave heating from biodiesel industry solid residue, oil palm empty fruit bunch (EFBAC). The significance of chemical impregnation ratio (IR), microwave power and activation time on the properties of activated carbon were investigated. The optimum condition has been identified at the IR of 1.0, microwave power of 600 W and activation time of 7 min. EFBAC was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement, determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue as dye model compound. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 395.30 mg/g and carbon yield of 73.78%, while the BET surface area and total pore volume were corresponding to 1372 m2/g and 0.76 cm3/g, respectively. PMID:22050840

  15. Microwave and Millimeter Wave Imaging of the Space Shuttle External Fuel Tank Spray on Foam Insulation (SOFI) using Synthetic Aperture Focusing Techniques (SAFT}

    NASA Technical Reports Server (NTRS)

    Case, J. T.; Robbins, J.; Kharkivskiy, S.; Hepburn, F.; Zoughi, R.

    2005-01-01

    The Space Shuttle Columbia s catastrophic failure is thought to have been caused by a dislodged piece of external tank spray on foam insulation (SOFI) striking the left wing of the orbiter causing significant damage to some of the reinforced carbodcarbon leading edge wing panels. Microwave and millimeter wave nondestructive evaluation methods have shown great potential for inspecting SOFI for the purpose of detecting anomalies such as small air voids that may cause separation of the SOFI from the external tank during a launch. These methods are capable of producing relatively high-resolution images of the interior of SOFI particularly when advanced imaging algorithms are incorporated into the overall system. To this end, synthetic aperture focusing techniques (SAFT) are being developed. This paper presents some of the preliminary results of this investigation using SAFT-based methods and microwave holography at relatively low frequencies illustrating their potential capabilities for operation at millimeter wave frequencies.

  16. Directional spectra of ocean waves from microwave backscatter: A physical optics solution with application to the short-pulse and two-frequency measurement techniques

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1979-01-01

    Two simple microwave radar techniques that are potentially capable of providing routine satellite measurements of the directional spectrum of ocean waves were developed. One technique, the short pulse technique, makes use of very short pulses to resolve ocean surface wave contrast features in the range direction; the other technique, the two frequency correlation technique makes use of coherency in the transmitted waveform to detect the large ocean wave contrast modulation as a beat or mixing frequency in the power backscattered at two closely separated microwave frequencies. A frequency domain analysis of the short pulse and two frequency systems shows that the two measurement systems are essentially duals; they each operate on the generalized (three frequency) fourth-order statistical moment of the surface transfer function in different, but symmetrical ways, and they both measure the same directional contrast modulation spectrum. A three dimensional physical optics solution for the fourth-order moment was obtained for backscatter in the near vertical, specular regime, assuming Gaussian surface statistics.

  17. Microwave-assisted synthesis of 4'-azaflavones and their N-alkyl derivatives with biological activities.

    PubMed

    Yaşar, Ahmet; Akpinar, Kurtuluş; Burnaz, Nesibe Arslan; Küçük, Murat; Karaoğlu, Sengül Alpay; Doğan, Neşe; Yayli, Nurettin

    2008-05-01

    4'-Azaflavone (=2-(pyridin-4-yl)-4H-1-benzopyran-4-one; 4) and 3-[(pyridin-4-yl)methyl]-4'-azaflavone (5) were synthesized by a simple environmentally friendly microwave-assisted one-pot method through the cyclization of 3-hydroxy-1-(2-hydroxyphenyl)-3-(pyridin-4-yl)propan-1-one (1), (E)-2'-hydroxy-4-azachalcone (2; chalcone=1,3-diphenylprop-2-en-1-one), and 2'-hydroxy-2-[(hydroxy)(pyridin-4-yl)methyl]-4''-azachalcone (3) under solventless conditions using silica-supported NaHSO(4), followed by treatment with base. In addition, N-alkyl-substituted 4'-azaflavonium bromides 6 and 7 were prepared from compounds 4 and 5, respectively. The antimicrobial and antioxidant activities of compounds 1-7 were tested. The N-alkyl-substituted 4'-azaflavonium bromides 6 and 7 showed high antimicrobial activity against the Gram-positive bacteria and the fungus tested, with MIC values close to those of reference antimicrobials ampicilline and fluconazole. The alkylated compounds 6 and 7 also showed a good antioxidant character in the two antioxidant methods, DPPH (=1,1-diphenyl-2-picrylhydrazyl) radical-scavenging and ferric reducing/antioxidant power (FRAP) tests. PMID:18493968

  18. Microwave plasma doping: Arsenic activation and transport in germanium and silicon

    NASA Astrophysics Data System (ADS)

    Miyoshi, Hidenori; Oka, Masahiro; Ueda, Hirokazu; Ventzek, Peter L. G.; Sugimoto, Yasuhiro; Kobayashi, Yuuki; Nakamura, Genji; Hirota, Yoshihiro; Kaitsuka, Takanobu; Kawakami, Satoru

    2016-04-01

    Microwave RLSA™ plasma doping technology has enabled conformal doping of non-planar semiconductor device structures. An important attribute of RLSA™ plasma doping is that it does not impart physical damage during processing. In this work, carrier activation measurements for AsH3 based plasma doping into silicon (Si) and germanium (Ge) using rapid thermal annealing are presented. The highest carrier concentrations are 3.6 × 1020 and 4.3 × 1018 cm-3 for Si and Ge, respectively. Secondary ion mass spectrometry depth profiles of arsenic in Ge show that intrinsic dopant diffusion for plasma doping followed by post activation anneal is much slower than for conventional ion implantation. This is indicative of an absence of defects. The comparison is based on a comparison of diffusion times at identical annealing temperatures. The absence of defects, like those generated in conventional ion implantation, in RLSA™ based doping processes makes RLSA™ doping technology useful for damage free conformal doping of topographic structures.

  19. Microwave synthesis and photocatalytic activity of Tb(3+) doped BiVO4 microcrystals.

    PubMed

    Wang, Ying; Liu, Fuyang; Hua, Yingjie; Wang, Chongtai; Zhao, Xudong; Liu, Xiaoyang; Li, Hongdong

    2016-12-01

    Tb(3+) doped BiVO4 has been successfully synthesized by a simple microwave-assisted hydrothermal method at 140°C for 30min. The structure, morphology and optical property of the Tb(3+) doped BiVO4 products have been systematically investigated. This study indicates that the incorporation of Tb(3+) could induce the conversion of structure from monoclinic to tetragonal for BiVO4. Furthermore, the as-obtained Tb(3+) doped BiVO4 samples showed an obvious morphological change: the hollow square rod-like BiVO4 crystal gradually changed to spindle-like crystal. The Tb(3+) doped BiVO4 products exhibited extraordinary photocatalytic activity for Methylene Blue (MB) degradation under visible light irradiation. The doped BiVO4 at a molar ratio of 2at% (Tb and Bi) with a mixture of monoclinic and tetragonal phases showed and prominent photocatalytic degradation rate, which reached 99.9% in 120min. The results suggest that the differences in the photocatalytic activity of these BiVO4 crystals with different Tb(3+) doping concentrations can be attributed to the change of crystalline phases, and the coexistence of the monoclinic/tetragonal phases in BiVO4 products, which improve the efficient charge separation and transportation. PMID:27565962

  20. Classification methods for monitoring Arctic sea ice using OKEAN passive/active two-channel microwave data

    USGS Publications Warehouse

    Belchansky, Gennady I.; Douglas, David C.

    2000-01-01

    This paper presents methods for classifying Arctic sea ice using both passive and active (2-channel) microwave imagery acquired by the Russian OKEAN 01 polar-orbiting satellite series. Methods and results are compared to sea ice classifications derived from nearly coincident Special Sensor Microwave Imager (SSM/I) and Advanced Very High Resolution Radiometer (AVHRR) image data of the Barents, Kara, and Laptev Seas. The Russian OKEAN 01 satellite data were collected over weekly intervals during October 1995 through December 1997. Methods are presented for calibrating, georeferencing and classifying the raw active radar and passive microwave OKEAN 01 data, and for correcting the OKEAN 01 microwave radiometer calibration wedge based on concurrent 37 GHz horizontal polarization SSM/I brightness temperature data. Sea ice type and ice concentration algorithms utilized OKEAN's two-channel radar and passive microwave data in a linear mixture model based on the measured values of brightness temperature and radar backscatter, together with a priori knowledge about the scattering parameters and natural emissivities of basic sea ice types. OKEAN 01 data and algorithms tended to classify lower concentrations of young or first-year sea ice when concentrations were less than 60%, and to produce higher concentrations of multi-year sea ice when concentrations were greater than 40%, when compared to estimates produced from SSM/I data. Overall, total sea ice concentration maps derived independently from OKEAN 01, SSM/I, and AVHRR satellite imagery were all highly correlated, with uniform biases, and mean differences in total ice concentration of less than four percent (sd<15%).

  1. Techniques for Promoting Active Learning. The Cross Papers.

    ERIC Educational Resources Information Center

    Cross, K. Patricia

    This guide offers suggestions for implementing active learning techniques in the community college classroom. The author argues that, although much of the literature on active learning emphasizes collaboration and small-group learning, active learning does not always involve interaction. It must also involve reflection and self-monitoring of both…

  2. ANALYSIS OF FLAVOR COMPOUNDS FROM MICROWAVE POPCORN USING SUPERCRITICAL FLUID CO2 FOLLOWED BY DYNAMIC/STATIC HEADSPACE TECHNIQUES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dynamic headspace purge (DHP) analysis was used to observe volatile compounds from freshly popped commercial flavored and non-flavored microwave popcorn. The obtained results were compared with supercritical fluid extraction (SFE) followed by DHP. The sensitivity of the latter method (SFE-DHP), in...

  3. Design of a microwave calorimeter for the microwave tokamak experiment

    SciTech Connect

    Marinak, M. )

    1988-10-07

    The initial design of a microwave calorimeter for the Microwave Tokamak Experiment is presented. The design is optimized to measure the refraction and absorption of millimeter rf microwaves as they traverse the toroidal plasma of the Alcator C tokamak. Techniques utilized can be adapted for use in measuring high intensity pulsed output from a microwave device in an environment of ultra high vacuum, intense fields of ionizing and non-ionizing radiation and intense magnetic fields. 16 refs.

  4. Comparison of sea surface winds derived from active and passive microwaves instruments on the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    De Biasio, Francesco; Zecchetto, Stefano

    2013-04-01

    In order to characterize the energy and momentum fluxes at the air-sea interface, the surface wind vector must be known with adequate spatial and temporal coverages. Satellite-borne active and passive microwaves instruments perform such measurements. In the Mediterranean Sea, and in general in enclosed or semi-enclosed basins, an adequate coverage is yet more difficult to achieve than in open sea, because of the presence of vast coastal areas and elevated orography near the coastline. This study aims to compare the performance of three of such instruments (two actives and one passive) over several years of activity over the Mediterranean Sea, in order to delve into the possibility of using the three data-sets as a common reference for marine meteorology investigations, dramatically improving the availability of surface wind data in the Mediterranean Sea. They are the METOP-A ASCAT scatterometer, the QuikSCAT SeaWinds scatterometer and the Coriolis WindSat radiometer. ASCAT and QuikSCAT data are freely available for download, at spatial resolution of 25 km by 25 km and 12.5 km by 12.5 km, from the Physical Oceanography Distributed Active Archive Center PO.DAAC (http://podaac.jpl.nasa.gov). ASCAT near real time data have 2 hours latency. The time span covered by these data is March 2007-present for ASCAT, July 1999-November 2009 for QuikSCAT. In the Mediterranean Sea the nominal temporal coverage is less then 2 hit per point per day for both. WindSat data have spatial resolution of 25 km by 25 km, cover the period February 2003-present, and are freely available for download from Remote Sensing Systems (http://www.ssmi.com). They are available as delayed datasets covering one day at a time. The two collocated datasets cover the period February 2003 - November 2009 (WindSat - QuikSCAT) and March 2009 - November 2010 (WindSat - ASCAT), and offer the means to perform: - a comparison of the performances of active and passive microwaves instruments; - a very long

  5. Microwave-assisted digestion using nitric acid for heavy metals and sulfated ash testing in active pharmaceutical ingredients.

    PubMed

    Pluhácek, T; Hanzal, J; Hendrych, J; Milde, D

    2016-04-01

    The monitoring of inorganic impurities in active pharmaceutical ingredients plays a crucial role in the quality control of the pharmaceutical production. The heavy metals and residue on ignition/sulfated ash methods employing microwave-assisted digestion with concentrated nitric acid have been demonstrated as alternatives to inappropriate compendial methods recommended in United States Pharmacopoeia (USP) and European Pharmacopoeia (Ph. Eur.). The recoveries using the heavy metals method ranged between 89% and 122% for nearly all USP and Ph. Eur. restricted elements as well as the recoveries of sodium sulfate spikes were around 100% in all tested matrices. The proposed microwave-assisted digestion method allowed simultaneous decomposition of 15 different active pharmaceutical ingredients with sample weigh up to 1 g. The heavy metals and sulfated ash procedures were successfully applied to the determination of heavy metals and residue on ignition/sulfated ash content in mycophenolate mofetil, nicergoline and silymarin. PMID:27209695

  6. P-doped TiO2 with superior visible-light activity prepared by rapid microwave hydrothermal method

    NASA Astrophysics Data System (ADS)

    Niu, Jinfen; Lu, Pan; Kang, Mei; Deng, Kunfa; Yao, Binghua; Yu, Xiaojiao; Zhang, Qian

    2014-11-01

    Phosphorous-doped anatase TiO2 powders (P-TiO2) were prepared by rapid microwave hydrothermal method. The resulting materials were characterized by XRD, SEM, XPS, DRS and N2 adsorption. P-doping decreased the band gap and enlarged the surface area of P-doped samples than that of undoped TiO2 samples. Therefore, the photocatalytic degradation of methyl blue (MB) and tetracycline hydrochloride (Tc) experiments showed that the P-TiO2 catalysts, especially the two-steps-controlling products P-TiO2-2, exhibited higher degradation efficiency than the undoped TiO2 and commercial P25 under visible-light irradiation. Hydroxyl radicals (rad OH) have been confirmed to be the active species during the photocatalytic oxidation reaction. The microwave hydrothermal method confirms to be very suitable for the synthesis of superior visible-light activity P-doped samples.

  7. Active microwave measurements of sea ice under fall conditions: The RADARSAT/FIREX fall experiment. [in the Canadian Arctic

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.; Kim, Y. S.; Moore, R. K.

    1984-01-01

    A series of measurements of the active microwave properties of sea ice under fall growing conditions was conducted. Ice in the inland waters of Mould Bay, Crozier Channel, and intrepid inlet and ice in the Arctic Ocean near Hardinge Bay was investigated. Active microwave data were acquired using a helicopter borne scatterometer. Results show that multiyear ice frozen in grey or first year ice is easily detected under cold fall conditions. Multiyear ice returns were dynamic due to response to two of its scene constituents. Floe boundaries between thick and thin ice are well defined. Multiyear pressure ridge returns are similar in level to background ice returns. Backscatter from homogeneous first year ice is seen to be primarily due to surface scattering. Operation at 9.6 GHz is more sensitive to the detailed changes in scene roughness, while operation at 5.6 GHz seems to track roughness changes less ably.

  8. Soil Moisture Retrieval Through Changing Corn Using Active/Passive Microwave Remote Sensing

    NASA Technical Reports Server (NTRS)

    ONeill, P. E.; Joseph, A.; DeLannoy, G.; Lang, R.; Utku, C.; Kim, E.; Houser, P.; Gish, T.

    2003-01-01

    An extensive field experiment was conducted from May-early October, 2002 at the heavily instrumented USDA-ARS (U.S. Dept. of Agriculture-Agricultural Research Service) OPE3 (Optimizing Production Inputs for Economic and Environmental Enhancement) test site in Beltsville, MD to acquire data needed to address active/passive microwave algorithm, modeling, and ground validation issues for accurate soil moisture retrieval. During the experiment, a tower-mounted 1.4 GHz radiometer (Lrad) and a truck-mounted dual-frequency (1.6 and 4.75 GHz) radar system were deployed on the northern edge of the site. The soil in this portion of the field is a sandy loam (silt 23.5%, sand 60.3%, clay 16.1%) with a measured bulk density of 1.253 g/cu cm. Vegetation cover in the experiment consisted of a corn crop which was measured from just after planting on April 17, 2002 through senescence and harvesting on October 2. Although drought conditions prevailed during the summer, the corn yield was near average, with peak biomass reached in late July.

  9. Preparation of Granular Red Mud Adsorbent using Different Binders by Microwave Pore - Making and Activation Method

    NASA Astrophysics Data System (ADS)

    Le, Thiquynhxuan; Wang, Hanrui; Ju, Shaohua; Peng, Jinhui; Zhou, Liexing; Wang, Shixing; Yin, Shaohua; Liu, Chao

    2016-04-01

    In this work, microwave energy is used for preparing a granular red mud (GRM) adsorbent made of red mud with different binders, such as starch, sodium silicate and cement. The effects of the preparation parameters, such as binder type, binder addition ratio, microwave heating temperature, microwave power and holding time, on the absorption property of GRM are investigated. The BET surface area, strength, pore structure, XRD and SEM of the GRM absorbent are analyzed. The results show that the microwave roasting has a good effect on pore-making of GRM, especially when using organic binder. Both the BET surface area and the strength of GRM obtained by microwave heating are significantly higher than that by conventional heating. The optimum conditions are obtained as follows: 6:100 (w/w) of starch to red mud ratio, microwave roasting with a power of 2.6 kW at 500℃ for holding time of 30 min. The BET surface area, pore volume and average pore diameter of GRM prepared at the optimum conditions are 15.58 m2/g, 0.0337 cm3/g and 3.1693 A0, respectively.

  10. Microwave accelerated synthesis of zinc oxide nanoplates and their enhanced photocatalytic activity under UV and solar illuminations

    NASA Astrophysics Data System (ADS)

    Anas, S.; Rahul, S.; Babitha, K. B.; Mangalaraja, R. V.; Ananthakumar, S.

    2015-11-01

    Photoactive zinc based nanoplates were developed through a rapid microwave synthesis. A low temperature thermolysis reaction in a surfactant medium was initially performed for producing microwave active zinc based polar precursors. Using these precursors, the zinc oxide nanopowder having platelet morphologies were prepared. The nanoplatelets exhibited random growth with non-polar (1 0 1) surface as the major growth plane. The structural and functional features of the resultant zinc oxide samples were monitored using XRD, FTIR, TEM and PL. The photocatalytic activities of the samples were investigated through the standard photoreduction kinetics using the methylene blue dye. The catalytic efficiencies of the samples were checked both under UV and sunlight. A comparative study was also performed with the standard TiO2 sample. The analyses revealed that the microwave derived zinc oxide have higher catalytic efficiency, than the standard titania samples, both under UV and sunlight illuminations. The unique nature of the zinc oxide non-polar surfaces can be attributed due to the presence of more active two dimensional open surfaces and the higher content of oxygen defect concentrations.

  11. Effects of activated carbon characteristics on the electrosorption capacity of titanium dioxide/activated carbon composite electrode materials prepared by a microwave-assisted ionothermal synthesis method.

    PubMed

    Liu, Po-I; Chung, Li-Ching; Ho, Chia-Hua; Shao, Hsin; Liang, Teh-Ming; Horng, Ren-Yang; Chang, Min-Chao; Ma, Chen-Chi M

    2015-05-15

    Titanium dioxide (TiO2)/ activated carbon (AC) composite materials, as capacitive deionization electrodes, were prepared by a two-step microwave-assisted ionothermal synthesis method. The electrosorption capacity of the composite electrodes was studied and the effects of AC characteristics were explored. These effects were investigated by multiple analytical techniques, including X-ray photoelectron spectroscopy, thermogravimetry analysis and electrochemical impedance spectroscopy, etc. The experimental results indicated that the electrosorption capacity of the TiO2/AC composite electrode is dependent on the characteristics of AC including the pore structure and the surface property. An enhancement in electrosorption capacity was observed for the TiO2/AC composite electrode prepared from the AC with higher mesopore content and less hydrophilic surface. This enhancement is due to the deposition of anatase TiO2 with suitable amount of Ti-OH. On the other hand, a decline in electrosorption capacity was observed for the TiO2/AC composite electrode prepared from the AC with higher micropore content and highly hydrophilic surface. High content of hydrogen bond complex formed between the functional group on hydrophilic surface with H2O, which will slow down the TiO2 precursor-H2O reaction. In such situation, the effect of TiO2 becomes unfavorable as the loading amount of TiO2 is less and the micropore can also be blocked. PMID:25576198

  12. Microwave-assisted Synthesis and antifungal activity of coumarin[8,7-e][1,3]oxazine derivatives.

    PubMed

    Zhang, Ming-Zhi; Zhang, Rong-Rong; Yin, Wen-Zheng; Yu, Xiang; Zhang, Ya-Ling; Liu, Pin; Gu, Yu-Cheng; Zhang, Wei-Hua

    2016-08-01

    The synthesis of novel coumarin[8,7-e][1,3]oxazine derivatives through a microwave-assisted three-component one-pot Mannich reaction is described in this study. All the target compounds were evaluated in vitro for their antifungal activity against Botrytis cinerea, Colletotrichum capsici, Alternaria solani, Gibberella zeae, Rhizoctonia solani, and Alternaria mali. The preliminary bioassays showed that 5e, 5m, and 5s exhibited good antifungal activity and the most active compound was 5m with an [Formula: see text] value as low as 2.1 nM against Botrytis cinerea. PMID:26880591

  13. Identifying the Influence of Variable Ice Types on Passive and Active Microwave Measurements for the Purpose of SWE Retrieval

    NASA Astrophysics Data System (ADS)

    Gunn, G. E.; Duguay, C. R.; Derksen, C.

    2010-12-01

    Dual polarized airborne passive microwave (PM) brightness temperatures (Tbs) at 6.9, 19 and 37 GHz H/V and satellite X-band (9.65 GHz VV/VH) active microwave backscatter measurements were combined with coincident in-situ measurements of snow and ice characteristics to determine the potential of unique emission/interaction caused by variable ice properties. Algorithms designed to estimate snow water equivalent (SWE) using the common brightness temperature difference approach (37GHz - 19 GHz) continually underestimate in-situ levels when applied to pure-ice pixels in the Canadian subarctic. Ice thickness measurements were positively correlated with 19 GHz vertically polarised (V pol) passive microwave emissions (R= 0.67), and negatively with 19 GHz horizontally polarised (H pol) emissions (R = -0.79), indicating that surface conditions at the ice/snow interface affect the emissivity at H pol. This study examines the effect of ice types on coincident passive and active microwave measurements for free-floating ice in two lakes (Sitidgi, Husky Lakes). Ice types are delineated using the SAR segmentation program MAGIC (MAp Guided Ice Classification) that has previously been used to characterize sea ice types. Based on output ice types produced by MAGIC, the relationship between active and passive microwave measurements is examined. Output ice classes corresponded well to those measured at coincident in-situ sampling sites. Emissions at 19 GHz H and cross-polarised X-band backscatter (9.65 GHz) increase coincident to ice types that exhibit more scattering potential. Clear ice exhibits the lowest return, followed by a transition zone between clear ice and grey ice. Grey ice exhibits higher returns as a result of the inclusion of spherical air bubbles, followed by rafted ice, which exhibits an excess of scattering potential. Concurrently, transects of dual polarized 6.9 and 19 GHz PM Tbs exhibited a positive relationship with cross-polarized active microwave backscatter (VH

  14. Improved Large Signal Analysis of the Dual-Wavelength Linearization Technique of Optically Phase-Modulated Analog Microwave Signals

    NASA Astrophysics Data System (ADS)

    Taher Abuelma'Atti, Muhammad

    2009-10-01

    This paper presents simple closed-form expressions, in terms of the ordinary Bessel functions, for the amplitudes of the third- and fifth-order intermodulation products of the dual-wavelength linearized phase modulated link for any scenario of the microwave driving voltage. The results obtained for a microwave driving voltage comprising equal-amplitude two- and three-tones show that the third-order intermodulation can be minimized for values of phase modulation depth less than 0.2 over a relatively wide range of the ratio between the powers in the TM and TE waves of the link. Using these results it is possible to adjust the phase modulation depth and/or the ratio between the powers of the TM and TE waves to achieve a dual-wavelength linearized phase modulated link with a predetermined intermodulation performance.

  15. Microwave Radiation Detector

    NASA Technical Reports Server (NTRS)

    Lesh, J. R.

    1984-01-01

    Direct photon detector responds to microwave frequencies. Method based on trapped-ion frequency-generation standards proposed to detect radio-frequency (RF) radiation at 40.5 GHz. Technique used for directdetection (RF) communication, radar, and radio astronomy.

  16. Assessing quality parameters in dry-cured ham using microwave spectroscopy.

    PubMed

    Bjarnadottir, S G; Lunde, K; Alvseike, O; Mason, A; Al-Shamma'a, A I

    2015-10-01

    Microwave spectroscopy has been applied in numerous non-food industry applications, and recently also in the food industry, for non-destructive measurements. In this study, a dry-cured ham model was designed and chemical analyses were performed for determining water activity, water content and salt content (sodium chloride) for all samples. These chemical parameters were also measured using microwave spectroscopy, with a rectangular microwave cavity resonator. Results indicate that microwave spectroscopy may be a promising technique for determination of water activity, salt content and water content in dry-cured ham using either reflected or transmitted signals. PMID:26086346

  17. Incorporating Active Learning Techniques into a Genetics Class

    ERIC Educational Resources Information Center

    Lee, W. Theodore; Jabot, Michael E.

    2011-01-01

    We revised a sophomore-level genetics class to more actively engage the students in their learning. The students worked in groups on quizzes using the Immediate Feedback Assessment Technique (IF-AT) and active-learning projects. The IF-AT quizzes allowed students to discuss key concepts in small groups and learn the correct answers in class. The…

  18. Improving the biogas production performance of municipal waste activated sludge via disperser induced microwave disintegration.

    PubMed

    Kavitha, S; Rajesh Banu, J; Vinoth Kumar, J; Rajkumar, M

    2016-10-01

    In this study, the influence of disperser induced microwave pretreatment was investigated to analyze the proficiency of floc disruption on subsequent disintegration and biodegradability process. Initially, the flocs in the sludge was disrupted through disperser at a specific energy input of 25.3kJ/kgTS. The upshot of the microwave disintegration presents that the solids reduction and solubilization of floc disrupted (disperser induced microwave pretreated) sludge was found to be 17.33% and 22% relatively greater than that achieved in microwave pretreated (9.3% and 16%) sludge alone. The biodegradability analysis, affords an evaluation of parameter confidence and correlation determination. The eventual biodegradability of microwave pretreated, and floc disrupted sludges were computed to be 0.15(gCOD/gCOD) and 0.28(gCOD/gCOD), respectively. An economic assessment of this study offers a positive net profit of about 104.8USD/ton of sludge in floc disrupted sample. PMID:26897472

  19. The present situation and forecasts of semiconductor elements performance within the microwave range, 1970-1985

    NASA Technical Reports Server (NTRS)

    Peterson, B.

    1978-01-01

    The present situation and possible developments over the period 1970-1985 for active semiconductor elements in the microwave range are outlined. After a short historical survey of FT techniques, the following are discussed: Generation, power amplification, amplification of small signals, frequency conversion, detection, electronic signal control and integrated microwave circuits.

  20. Microwave ECR Ion Thruster Development Activities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2002-01-01

    Outer solar system missions will have propulsion system lifetime requirements well in excess of that which can be satisfied by ion thrusters utilizing conventional hollow cathode technology. To satisfy such mission requirements, other technologies must be investigated. One possible approach is to utilize electrodeless plasma production schemes. Such an approach has seen low power application less than 1 kW on earth-space spacecraft such as ARTEMIS which uses the rf thruster the RIT 10 and deep space missions such as MUSES-C which will use a microwave ion thruster. Microwave and rf thruster technologies are compared. A microwave-based ion thruster is investigated for potential high power ion thruster systems requiring very long lifetimes.

  1. Alternative energy input: Mechanochemical, microwave and ultrasound-assisted organic synthesis

    EPA Science Inventory

    Microwave, ultrasound, sunlight and mechanochemical mixing can be used to augment conventional laboratory techniques. By applying these alternative means of activation, a number of chemical transformations have been achieved thereby improving many existing protocols with superi...

  2. Effects of moisture content in cigar tobacco on nicotine extraction. Similarity between soxhlet and focused open-vessel microwave-assisted techniques.

    PubMed

    Ng, Lay-Keow; Hupé, Michel

    2003-09-01

    The effects of tobacco moisture on nicotine yield were investigated in this study. Soxhlet and microwave-assisted techniques were used to extract nicotine from cigar fillers of varying moisture contents (5-20%), using a polar (methanol) and a non-polar (isooctane) solvent. The extracts were analyzed by a gas chromatograph equipped with a flame-ionization detector. For both extraction techniques, higher nicotine yields were consistently obtained with methanol than with isooctane from the same samples. Solubility of nicotine salts in methanol but not in isooctane is the major cause of this observation. Moreover, pronounced effects of the tobacco moisture content on extraction efficiency were observed with isooctane but not with methanol. For microwave assisted extraction (MAE) with isooctane, nicotine yield increased from 3 to 70% as the moisture level in tobacco was raised from 3 to 13%, and leveled off thereafter. Similar observations were made with Soxhlet extraction. While MAE results were rationalized by the known cell-rupture process, a mechanism based on the interaction between the solvents and the structural components of the plant cells has been proposed to account for the observations made with Soxhlet extraction. PMID:14518778

  3. Imaging techniques for assaying lymphocyte activation in action

    PubMed Central

    Balagopalan, Lakshmi; Sherman, Eilon; Barr, Valarie A.; Samelson, Lawrence E.

    2012-01-01

    Imaging techniques have greatly improved our understanding of lymphocyte activation. Technical advances in spatial and temporal resolution and new labelling tools have enabled researchers to directly observe the activation process. Consequently, research using imaging approaches to study lymphocyte activation has expanded, providing an unprecedented level of cellular and molecular detail in the field. As a result, certain models of lymphocyte activation have been verified, others have been revised and yet others have been replaced with new concepts. In this article, we review the current imaging techniques that are used to assess lymphocyte activation in different contexts, from whole animals to single molecules, and discuss the advantages and potential limitations of these methods. PMID:21179118

  4. Design of an L-Band Microwave Radiometer with Active Mitigation of Interference

    NASA Technical Reports Server (NTRS)

    Ellingson, Steven W.; Hampson, G. A.; Johnson, J. T.

    2003-01-01

    For increased sensitivity in L-band radiometry, bandwidths on the order of 100 MHz are desirable. This will likely require active countermeasures to mitigate RFI. In this paper, we describe a new radiometer which coherently samples 100 MHz of spectrum and applies real-time RFI mitigation techniques using FPGAs. A field test of an interim version of this design in a radio astronomy observation corrupted by radar pulses is described.

  5. Microwave NDE for Reinforced Concrete

    NASA Astrophysics Data System (ADS)

    Arunachalam, Kavitha; Melapudi, Vikram R.; Rothwell, Edward J.; Udpa, Lalita; Udpa, Satish S.

    2006-03-01

    Nondestructive assessment of the integrity of civil structures is of paramount importance for ensuring safety. In concrete imaging, radiography, ground penetrating radar and infrared thermography are some of the widely used techniques for health monitoring. Other emerging technologies that are gaining impetus for detecting and locating flaws in steel reinforcement bar include radioactive computed tomography, microwave holography, microwave and acoustic tomography. Of all the emerging techniques, microwave NDT is a promising imaging modality largely due to their ability to penetrate thick concrete structures, contrast between steel rebar and concrete and their non-radioactive nature. This paper investigates the feasibility of a far field microwave NDE technique for reinforced concrete structures.

  6. Changes of antioxidant activity and formation of 5-hydroxymethylfurfural in honey during thermal and microwave processing.

    PubMed

    Kowalski, Stanisław

    2013-11-15

    The paper presents the results of microwave irradiation and conventional heating of honey. These two kinds of thermal treatment result in the formation of 5-hydroxymethyl-2-furfural (HMF), and changes in the antioxidant potential of honeys, which were studied as well. Four types of honey (honeydew, lime, acacia, buckwheat) were analyzed. Honey samples were subjected to conventional heating in a water bath (WB) at 90°C up to 60min or to the action of a microwave field (MW) with constant power of 1.26W/g of the sample up to 6min. Changes in the antioxidant capacity of honeys were measured as a percentage of free radical (ABTS(+)and DPPH) scavenging ability. Changes in the total polyphenols content (TPC) (equivalents of gallic acid mg/100g of honey) were also determined. Formation of HMF in honey treated with a microwave field was faster in comparison with the conventional process. Changes in the antioxidant properties of honey subjected to thermal or microwave processing might have been botanical origin dependent. PMID:23790927

  7. Microwave remote sensing laboratory design

    NASA Technical Reports Server (NTRS)

    Friedman, E.

    1979-01-01

    Application of active and passive microwave remote sensing to the study of ocean pollution is discussed. Previous research efforts, both in the field and in the laboratory were surveyed to derive guidance for the design of a laboratory program of research. The essential issues include: choice of radar or radiometry as the observational technique; choice of laboratory or field as the research site; choice of operating frequency; tank sizes and material; techniques for wave generation and appropriate wavelength spectrum; methods for controlling and disposing of pollutants used in the research; and pollutants other than oil which could or should be studied.

  8. Microwave Treatment for Cardiac Arrhythmias

    NASA Technical Reports Server (NTRS)

    Hernandez-Moya, Sonia

    2009-01-01

    NASA seeks to transfer the NASA developed microwave ablation technology, designed for the treatment of ventricular tachycardia (irregular heart beat), to industry. After a heart attack, many cells surrounding the resulting scar continue to live but are abnormal electrically; they may conduct impulses unusually slowly or fire when they would typically be silent. These diseased areas might disturb smooth signaling by forming a reentrant circuit in the muscle. The objective of microwave ablation is to heat and kill these diseased cells to restore appropriate electrical activity in the heart. This technology is a method and apparatus that provides for propagating microwave energy into heart tissues to produce a desired temperature profile therein at tissue depths sufficient for thermally ablating arrhythmogenic cardiac tissue while preventing excessive heating of surrounding tissues, organs, and blood. A wide bandwidth double-disk antenna is effective for this purpose over a bandwidth of about six gigahertz. A computer simulation provides initial screening capabilities for an antenna such as antenna, frequency, power level, and power application duration. The simulation also allows optimization of techniques for specific patients or conditions. In comparison with other methods that involve direct-current pulses or radio frequencies below 1 GHz, this method may prove more effective in treating ventricular tachycardia. This is because the present method provides for greater control of the location, cross-sectional area, and depth of a lesion via selection of the location and design of the antenna and the choice of microwave power and frequency.

  9. A microwave imaging-based technique to localize an in-body RF source for biomedical applications.

    PubMed

    Chandra, Rohit; Johansson, Anders J; Gustafsson, Mats; Tufvesson, Fredrik

    2015-05-01

    In some biomedical applications such as wireless capsule endoscopy, the localization of an in-body radio-frequency (RF) source is important for the positioning of any abnormality inside the gastrointestinal tract. With knowledge of the location, therapeutic operations can be performed precisely at the position of the abnormality. Electrical properties (relative permittivity and conductivity) of the tissues and their distribution are utilized to estimate the position. This paper presents a method for the localization of an in-body RF source based on microwave imaging. The electrical properties of the tissues and their distribution at 403.5 MHz are found from microwave imaging and the position of an RF source is then estimated based on the image. The method is applied on synthetic noisy data, obtained after the addition of white Gaussian noise to simulated data of a simple circular phantom, and a realistic phantom in a 2-D case. The root-mean-square of the error distance between the actual and the estimated position is found to be within 10 and 4 mm for the circular and the realistic phantom, respectively, showing the capability of the proposed algorithm to work with a good accuracy even in the presence of noise for the localization of the in-body RF source. PMID:25376034

  10. Rapid adsorption of toxic Pb(II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique.

    PubMed

    Mubarak, Nabisab Mujawar; Sahu, Jaya Narayan; Abdullah, Ezzat Chan; Jayakumar, Natesan Subramanian

    2016-07-01

    Multiwall carbon nanotubes (MWCNTs) were synthesized using a tubular microwave chemical vapor deposition technique, using acetylene and hydrogen as the precursor gases and ferrocene as catalyst. The novel MWCNT samples were tested for their performance in terms of Pb(II) binding. The synthesized MWCNT samples were characterized using Fourier Transform Infrared (FT-IR), Brunauer, Emmett and Teller (BET), Field Emission Scanning Electron Microscopy (FESEM) analysis, and the adsorption of Pb(II) was studied as a function of pH, initial Pb(II) concentration, MWCNT dosage, agitation speed, and adsorption time, and process parameters were optimized. The adsorption data followed both Freundlich and Langmuir isotherms. On the basis of the Langmuir model, Qmax was calculated to be 104.2mg/g for the microwave-synthesized MWCNTs. In order to investigate the dynamic behavior of MWCNTs as an adsorbent, the kinetic data were modeled using pseudo first-order and pseudo second-order equations. Different thermodynamic parameters, viz., ∆H(0), ∆S(0) and ∆G(0) were evaluated and it was found that the adsorption was feasible, spontaneous and endothermic in nature. The statistical analysis revealed that the optimum conditions for the highest removal (99.9%) of Pb(II) are at pH5, MWCNT dosage 0.1g, agitation speed 160r/min and time of 22.5min with the initial concentration of 10mg/L. Our results proved that microwave-synthesized MWCNTs can be used as an effective Pb(II) adsorbent due to their high adsorption capacity as well as the short adsorption time needed to achieve equilibrium. PMID:27372128

  11. Robust control design techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Ozbay, Hitay; Bachmann, Glen R.

    1994-01-01

    In this paper, an active flutter suppression problem is studied for a thin airfoil in unsteady aerodynamics. The mathematical model of this system is infinite dimensional because of Theodorsen's function which is irrational. Several second order approximations of Theodorsen's function are compared. A finite dimensional model is obtained from such an approximation. We use H infinity control techniques to find a robustly stabilizing controller for active flutter suppression.

  12. Molten salt-supported polycondensation of optically active diacid monomers with an aromatic thiazole-bearing diamine using microwave irradiation

    PubMed Central

    Mallakpour, Shadpour; Zadehnazari, Amin

    2013-01-01

    Microwave heating was used to prepare optically active thiazole-bearing poly(amide-imide)s. Polymerization reactions were carried out in the molten tetrabutylammonium bromide as a green molten salt medium and triphenyl phosphite as the homogenizer. Structural elucidation of the compounds was performed by Fourier transform infrared and NMR spectroscopic data and elemental analysis results. The polymeric samples were readily soluble in various organic solvents, forming low-colored and flexible thin films via solution casting. They showed high thermal stability with decomposition temperature being above 360 °C. They were assembled randomly in a nanoscale size. PMID:25685498

  13. Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique

    PubMed Central

    Shea, Jacob D.; Kosmas, Panagiotis; Hagness, Susan C.; Van Veen, Barry D.

    2010-01-01

    Purpose: Breast density measurement has the potential to play an important role in individualized breast cancer risk assessment and prevention decisions. Routine evaluation of breast density will require the availability of a low-cost, nonionizing, three-dimensional (3-D) tomographic imaging modality that exploits a strong properties contrast between dense fibroglandular tissue and less dense adipose tissue. The purpose of this computational study is to investigate the performance of 3-D tomography using low-power microwaves to reconstruct the spatial distribution of breast tissue dielectric properties and to evaluate the modality for application to breast density characterization. Methods: State-of-the-art 3-D numerical breast phantoms that are realistic in both structural and dielectric properties are employed. The test phantoms include one sample from each of four classes of mammographic breast density. Since the properties of these phantoms are known exactly, these testbeds serve as a rigorous benchmark for the imaging results. The distorted Born iterative imaging method is applied to simulated array measurements of the numerical phantoms. The forward solver in the imaging algorithm employs the finite-difference time-domain method of solving the time-domain Maxwell’s equations, and the dielectric profiles are estimated using an integral equation form of the Helmholtz wave equation. A multiple-frequency, bound-constrained, vector field inverse scattering solution is implemented that enables practical inversion of the large-scale 3-D problem. Knowledge of the frequency-dependent characteristic of breast tissues at microwave frequencies is exploited to obtain a parametric reconstruction of the dispersive dielectric profile of the interior of the breast. Imaging is performed on a high-resolution voxel basis and the solution is bounded by a known range of dielectric properties of the constituent breast tissues. The imaging method is validated using a breast

  14. Microwave and Millimeter Wave Imaging of the Space Shuttle External Fuel Tank Spray on Foam Insulation (SOFI) Using Synthetic Aperture Focusing Techniques (SAFT)

    NASA Technical Reports Server (NTRS)

    Case, J. T.; Robbins, J.; Kharkovshy, S.; Hepburn, F. L.; Zoughi, R.

    2005-01-01

    The Space Shuttle Columbia's catastrophic failure is thought to have been caused by a dislodged piece of external tank SOFI (Spray On Foam Insulation) striking the left wing of the orbiter causing significant damage to some of the reinforced carbodcarbon leading edge wing panels. Microwave and millimeter wave nondestructive evaluation methods, have shown great potential for inspecting the SOFI for the purpose of detecting anomalies such as small voids that may cause separation of the foam from the external tank during the launch. These methods are capable of producing relatively high-resolution images of the interior of SOH particularly when advanced imaging algorithms are incorporated into the overall system. To this end, synthetic aperture focusing techniques are being deveioped for this purpose. These iechniqiies pradiice high-resolution images that are independent of the distance of the imaging probe to the SOFI with spatial resolution in the order of the half size of imaging probe aperture. At microwave and millimeter wave frequencies these apertures are inherently small resulting in high-resolution images. This paper provides the results of this investigation using 2D and 3D SAF based methods and holography. The attributes of these methods and a full discussion of the results will also be provided.

  15. Cu2ZnSnS4 nanoflakes prepared by one step microwave irradiation technique: Effect of Cu concentration

    NASA Astrophysics Data System (ADS)

    Kandare, S. P.; Dhole, S. D.; Bhoraskar, V. N.; Dahiwale, S. S.

    2016-05-01

    Cu2ZnSnS4 (CZTS) nanoflakes were synthesized in one step by microwave irradiation method. Controlling the secondary phases in Copper Zinc Tin Sulfide (CZTS) material is critical, but it is necessary to control secondary phases in order to achieve the high efficiency solar cells made from CZTS. In the recent years, CZTS has shown its growing importance in thin film photovoltaic application because of its favorable optical and electrical properties. In this work, a systematic study has been carried out by properly controlling the copper concentration to get the pure phase of CZTS. X-ray diffraction shows the CZTS kesterite structure. Optical band gap estimated from UV-Visible spectroscopy was around 1.37eV. Systematic Raman study reveals the suppression of Cu2S peak with variation in copper concentration which otherwise was not clear from XRD and UV-visible data.

  16. Microwave dielectric properties of BNT-BT0.08 thin films prepared by sol-gel technique

    NASA Astrophysics Data System (ADS)

    Huitema, L.; Cernea, M.; Crunteanu, A.; Trupina, L.; Nedelcu, L.; Banciu, M. G.; Ghalem, A.; Rammal, M.; Madrangeas, V.; Passerieux, D.; Dutheil, P.; Dumas-Bouchiat, F.; Marchet, P.; Champeaux, C.

    2016-04-01

    We report for the first time the microwave characterization of 0.92(Bi0.5Na0.5)TiO3-0.08BaTiO3 (BNT-BT0.08) ferroelectric thin films fabricated by the sol-gel method and integrated in both planar and out-of-plane tunable capacitors for agile high-frequency applications and particularly on the WiFi frequency band from 2.4 GHz to 2.49 GHz. The permittivity and loss tangent of the realized BNT-BT0.08 layers have been first measured by a resonant cavity method working at 12.5 GHz. Then, we integrated the ferroelectric material in planar inter-digitated capacitors (IDC) and in out-of-plane metal-insulator-metal (MIM) devices and investigated their specific properties (dielectric tunability and losses) on the whole 100 MHz-15 GHz frequency domain. The 3D finite-elements electromagnetic simulations of the IDC capacitances are fitting very well with their measured responses and confirm the dielectric properties determined with the cavity method. While IDCs are not exhibiting an optimal tunability, the MIM capacitor devices with optimized Ir/MgO(100) bottom electrodes demonstrate a high dielectric tunability, of 30% at 2.45 GHz under applied voltages as low as 10 V, and it is reaching 50% under 20 V voltage bias at the same frequency. These high-frequency properties of the MIM devices integrating the BNT-BT0.08 films, combining a high tunability under low applied voltages indicate a wide integration potential for tunable devices in the microwave domain and particularly at 2.45 GHz, corresponding to the widely used industrial, scientific, and medical frequency band.

  17. Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge

    SciTech Connect

    Uma Rani, R.; Adish Kumar, S.; Kaliappan, S.; Yeom, IckTae; Rajesh Banu, J.

    2013-05-15

    Highlights: ► Microwave pretreatment of dairy WAS was studied. ► MW pretreatment at 70% intensity for 12 min, COD solubilization was 18.6%. ► Biogas production and SS reduction was 35% and 14% higher than control. ► In digester at 15 days SRT with medium OLR, SS and VS reduction was 67% and 64%. ► Biogas and methane production was 57% and 49% higher than control, in digesters. - Abstract: Microwave (MW) irradiation is one of the new and possible methods used for pretreating the sludge. Following its use in different fields, this MW irradiation method has proved to be more appropriate in the field of environmental research. In this paper, we focused on the effects of MW irradiation at different intensities on solubilization, biodegradation and anaerobic digestion of sludge from the dairy sludge. The changes in the soluble fractions of the organic matter, the biogas yield, the methane content in the biogas were used as control parameters for evaluating the efficiency of the MW pretreatment. Additionally, the energetic efficiency was also examined. In terms of an energetic aspect, the most economical pretreatment of sludge was at 70% intensity for 12 min irradiation time. At this, COD solubilization, SS reduction and biogas production were found to be 18.6%, 14% and 35% higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein and carbohydrate hydrolysis was also performed successfully by this microwave pretreatment even at low irradiation energy input. Also, experiments were carried out in semi continuous anaerobic digesters, with 3.5 L working volume. Combining microwave pretreatment with anaerobic digestion led to 67%, 64% and 57% of SS reduction, VS reduction and biogas production higher than the control, respectively.

  18. Microwave-activated nanodroplet vaporization for highly efficient tumor ablation with real-time monitoring performance.

    PubMed

    Xu, Jinshun; Chen, Yu; Deng, Liming; Liu, Jianxin; Cao, Yang; Li, Pan; Ran, Haitao; Zheng, Yuanyi; Wang, Zhigang

    2016-11-01

    The fast development of nanotechnology has provided a new efficient strategy for enhancing the therapeutic efficiency of various treatment modalities against cancer. However, the improvement of minimally invasive microwave therapy based on nanomaterials has not been realized. In this work, we successfully designed and synthesized a novel folate-targeted nanodroplet (TPN) with a composite mixture of perfluorocarbons as the core and lipid as the shell, which exerts the distinctive dual functions as the adjuvant for highly efficient percutaneous ultrasound imaging-guided microwave ablation (MWA) of tumors. Based on the unique phase-changeable performance of TPN nanosystem, a novel microwave-droplet vaporization (MWDV) strategy was proposed, for the first time, to overcome the critical issues of traditional acoustic-droplet vaporization (ADV) and optical-droplet vaporization (ODV) for cancer theranostics. Especially, the elaborately designed TPN can overcome the challenges of indistinct imaging of ablation margin and the limited ablation zone of MWA modality against cancer. The high efficiency of this new MWDV strategy has been systematically elucidated in vitro, ex vivo and in vivo. Therefore, such a successful demonstration of the role of nanomaterials (TPN in this case) in ultrasound imaging-guided MWA therapy against cancer provides a highly feasible strategy to effectively enhance the MWA outcome with the specific features of high efficiency and biosafety. PMID:27573134

  19. Microwave Ovens

    MedlinePlus

    ... Required Reports for the Microwave Oven Manufacturers or Industry Exemption from Certain Reporting and Recordkeeping Requirements for ... Microwave Ovens (PDF) (PDF - 2.5MB) FDA eSubmitter Industry Guidance - Documents of Interest Notifications to Industry (PDF ...

  20. Microwave emissions from snow

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.

    1984-01-01

    The radiation emitted from dry and wet snowpack in the microwave region (1 to 100 GHz) is discussed and related to ground observations. Results from theoretical model calculations match the brightness temperatures obtained by truck mounted, airborne and spaceborne microwave sensor systems. Snow wetness and internal layer structure complicate the snow parameter retrieval algorithm. Further understanding of electromagnetic interaction with snowpack may eventually provide a technique to probe the internal snow properties

  1. Microwave Oven Observations.

    ERIC Educational Resources Information Center

    Sumrall, William J.; Richardson, Denise; Yan, Yuan

    1998-01-01

    Explains a series of laboratory activities which employ a microwave oven to help students understand word problems that relate to states of matter, collect data, and calculate and compare electrical costs to heat energy costs. (DDR)

  2. Quantification of cellulase activity using the quartz crystal microbalance technique.

    PubMed

    Hu, Gang; Heitmann, John A; Rojas, Orlando J

    2009-03-01

    The development of more efficient utilization of biomass has received increased attention in recent years. Cellulases play an important role in processing biomass through advanced biotechnological approaches. Both the development and the application of cellulases require an understanding of the activities of these enzymes. A new method to determine the activity of cellulase has been developed using a quartz crystal microbalance (QCM) technique. We compare the results from this technique with those from the IUPAC (International Union of Pure and Applied Chemistry) dinitrosalicylic acid (DNS) standard method and also from biccinchoninic acid and ion chromatography methods. It is shown that the QCM technique provides results closer to those obtained by measuring the actual reducing sugars. The elimination of the use of color development in the standard redox methods makes the QCM platform easier to implement; it also allows more flexibility in terms of the nature of the substrate. Finally, validation of the proposed method was carried out by relating the crystallinity of different substrates to the cellulase activity. Numerical values of cellulase activities measured with the QCM method showed that celluloses with higher crystallinity indices were hydrolyzed slower and to a lower extent than those of lower crystallinity indices for the cellulase mixtures examined. PMID:19203287

  3. Passive Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Njoku, Eni G.; Entekhabi, Dara

    1994-01-01

    Microwave remote sensing provides a unique capability for direct observation of soil moisture... This Paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods.

  4. ORGANIC SYNTHESES USING MICROWAVES AND SUPPORTED REAGENTS

    EPA Science Inventory

    Microwave-accelerated chemical syntheses under solvent-free conditions have witnessed an explosive growth. The technique has found widespread application predominantly exploiting the inexpensive unmodified household microwave (MW) ovens although the use of dedicated MW equipment...

  5. Microwave induced fast pyrolysis of scrap rubber tires

    NASA Astrophysics Data System (ADS)

    Ani, Farid Nasir; Mat Nor, Nor Syarizan

    2012-06-01

    Pyrolysis is the thermal degradation of carbonaceous solid by heat in the absence of oxygen. The feedstocks, such as biomass or solid wastes are heated to a temperature between 400 and 600°C, without introducing oxygen to support the reaction. The reaction produces three products: gas, pyro-fuel oil and char. This paper presents the techniques of producing pyro-oil from waste tires, as well as investigation of the fuel properties suitable for diesel engine applications. In this study, microwave heating technique is employed to pyrolyse the used rubber tires into pyro-oil. Thermal treatment of as received used rubber tires is carried out in a modified domestic microwave heated fixed bed technology. It has been found that, rubber tires, previously used by various researchers, are poor microwave absorbers. Studies have shown that an appropriate microwave-absorbing material, such as biomass char or activated carbon, could be added to enhance the pyrolysis process; thus producing the pyro-oil. The characteristics of pyro-oil, as well as the effect of microwave absorber on its yield, are briefly described in this paper. The temperature profiles during the microwave heating process are also illustratively emphasized. The study provides a means of converting scrap tires into pyro-oil and pyrolytic carbon black production. The proposed microwave thermal conversion process therefore has the potentials of substantially saving time and energy.

  6. A new polarimetric active radar calibrator and calibration technique

    NASA Astrophysics Data System (ADS)

    Tang, Jianguo; Xu, Xiaojian

    2015-10-01

    Polarimetric active radar calibrator (PARC) is one of the most important calibrators with high radar cross section (RCS) for polarimetry measurement. In this paper, a new double-antenna polarimetric active radar calibrator (DPARC) is proposed, which consists of two rotatable antennas with wideband electromagnetic polarization filters (EMPF) to achieve lower cross-polarization for transmission and reception. With two antennas which are rotatable around the radar line of sight (LOS), the DPARC provides a variety of standard polarimetric scattering matrices (PSM) through the rotation combination of receiving and transmitting polarization, which are useful for polarimatric calibration in different applications. In addition, a technique based on Fourier analysis is proposed for calibration processing. Numerical simulation results are presented to demonstrate the superior performance of the proposed DPARC and processing technique.

  7. Active vibration control techniques for flexible space structures

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Jayasuriya, Suhada

    1990-01-01

    Two proposed control system design techniques for active vibration control in flexible space structures are detailed. Control issues relevant only to flexible-body dynamics are addressed, whereas no attempt was made to integrate the flexible and rigid-body spacecraft dynamics. Both of the proposed approaches revealed encouraging results; however, further investigation of the interaction of the flexible and rigid-body dynamics is warranted.

  8. Prompt gamma activation analysis: An old technique made new

    SciTech Connect

    English, Jerry; Firestone, Richard; Perry, Dale; Leung, Ka-Ngo; Reijonen, Jani; Garabedian, Glenn; Bandong, Bryan; Molnar, Gabor; Revay, Zsolt

    2002-12-01

    The long list of contributors to the prompt gamma activation analysis (PGAA) project is important because it highlights the broad cast of active PGAA researchers from various facilities and backgrounds. PGAA is basically a simple process in principle that was traditionally difficult in application. It is an old technique that has for years been tied to and associated exclusively with nuclear reactor facilities, which has limited its acceptance as a general, analytical tool for identifying and quantifying elements or, more precisely, isotopes, whether radioactive or nonradioactive. Field use was not a viable option.

  9. Total synthesis of protosappanin A and its derivatives via palladium catalyzed ortho C-H activation/C-C cyclization under microwave irradiation.

    PubMed

    Liu, Jiaqi; Zhou, Xuan; Wang, Chenglong; Fu, Wanyong; Chu, Wenyi; Sun, Zhizhong

    2016-04-14

    A total synthesis method for protosappanin A, which is a complex natural product with many biological activities, was developed with 6 linear steps. Dibenzo[b,d]oxepinones as the key intermediates of the synthetic route were prepared by a palladium-catalyzed ortho C-H activation/C-C cyclization under microwave irradiation. 25 derivatives of protosappanin A were obtained. PMID:26997503

  10. The influence of microwave-assisted drying techniques on the rehydration behavior of blueberries (Vaccinium corymbosum L.).

    PubMed

    Zielinska, Magdalena; Markowski, Marek

    2016-04-01

    The aim of this study was to determine the effect of: (a) different drying methods, (b) hot air temperature in a convection oven, and (c) the moisture content of fruits dehydrated by multi-stage drying which involves a transition between different stages of drying, on the rehydration kinetics of dry blueberries. Models describing rehydration kinetics were also studied. Blueberries dehydrated by multi-stage microwave-assisted drying, which involved a hot air pre-drying step at 80 °C until the achievement of a moisture content of 1.95 kg H2O kg(-1)DM, were characterized by significantly higher rates of initial and successive rehydration as well as smaller initial loss of soluble solids in comparison with the samples dried by other methods. The highest initial rehydration rate and the smallest loss of soluble solids after 30 min of soaking were determined at 0.46 min(-1) and 0.29 kg DM kg(-1)DM, respectively. The Peleg model and the first-order-kinetic model fit the experimental data well. PMID:26593606

  11. High quality Y-type hexaferrite thick films for microwave applications by an economical and environmentally benign crystal growth technique

    SciTech Connect

    Hu, Bolin; Chen, Yajie Gillette, Scott; Su, Zhijuan; Harris, Vincent G.; Wolf, Jason; McHenry, Michael E.

    2014-02-17

    Thick barium hexaferrite Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} (i.e., Zn{sub 2}Y) films having thicknesses of ∼100 μm were epitaxially grown on MgO (111) substrates using an environmentally benign ferrite-salt mixture by vaporizing the salt. X-ray diffraction pole figure analyses showed (00l) crystallographic alignment with little in plane dispersion confirming epitaxial growth. Saturation magnetization, 4πM{sub s}, was measured for as-grown films to be 2.51 ± 0.1 kG with an out of plane magnetic anisotropy field H{sub A} of 8.9 ± 0.1 kOe. Ferromagnetic resonance linewidth, as the peak-to-peak power absorption derivative at 9.6 GHz, was measured to be 62 Oe. These properties demonstrate a rapid, convenient, cost-effective, and nontoxic method of growing high quality thick crystalline ferrite films which could be used widely for microwave device applications.

  12. Microwave radiation hazards around large microwave antenna.

    NASA Technical Reports Server (NTRS)

    Klascius, A.

    1973-01-01

    The microwave radiation hazards associated with the use of large antennas become increasingly more dangerous to personnel as the transmitters go to ever higher powers. The near-field area is of the greatest concern. It has spill over from subreflector and reflections from nearby objects. Centimeter waves meeting in phase will reinforce each other and create hot spots of microwave energy. This has been measured in front of and around several 26-meter antennas. Hot spots have been found and are going to be the determining factor in delineating safe areas for personnel to work. Better techniques and instruments to measure these fields are needed for the evaluation of hazard areas.

  13. Microwave-assisted synthesis of CdO-ZnO nanocomposite and its antibacterial activity against human pathogens.

    PubMed

    Karthik, K; Dhanuskodi, S; Gobinath, C; Sivaramakrishnan, S

    2015-03-15

    CdO-ZnO nanocomposite was prepared by microwave-assisted method and characterized by X-ray crystallography (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FT-IR). It exhibits hexagonal cubic structure with an average crystallite size of 27 nm. From the UV-Vis spectra, the bandgap is estimated as 2.92 eV. The fluorescence spectrum shows a near band edge emission at 422 nm. In addition the antibacterial activity of CdO-ZnO nanocomposite was carried out in-vitro against two kinds of bacteria: gram negative bacteria (G -ve) i.e. Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and gram positive bacteria (G +ve): Staphylococcus aureus, Proteus vulgaris and Bacillus spp. This study indicates the zone of inhibition of 40 mm has high antibacterial activity towards the gram positive bacterium S. aureus. PMID:25546491

  14. Microwave-assisted synthesis of CdO-ZnO nanocomposite and its antibacterial activity against human pathogens

    NASA Astrophysics Data System (ADS)

    Karthik, K.; Dhanuskodi, S.; Gobinath, C.; Sivaramakrishnan, S.

    2015-03-01

    CdO-ZnO nanocomposite was prepared by microwave-assisted method and characterized by X-ray crystallography (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FT-IR). It exhibits hexagonal cubic structure with an average crystallite size of 27 nm. From the UV-Vis spectra, the bandgap is estimated as 2.92 eV. The fluorescence spectrum shows a near band edge emission at 422 nm. In addition the antibacterial activity of CdO-ZnO nanocomposite was carried out in-vitro against two kinds of bacteria: gram negative bacteria (G -ve) i.e. Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and gram positive bacteria (G +ve): Staphylococcus aureus, Proteus vulgaris and Bacillus spp. This study indicates the zone of inhibition of 40 mm has high antibacterial activity towards the gram positive bacterium S. aureus.

  15. Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques.

    PubMed

    Benoit-Bird, Kelly J; Lawson, Gareth L

    2016-01-01

    Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function. PMID:26515810

  16. Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques

    NASA Astrophysics Data System (ADS)

    Benoit-Bird, Kelly J.; Lawson, Gareth L.

    2016-01-01

    Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function.

  17. Microwave assisted synthesis of sheet-like Cu/BiVO{sub 4} and its activities of various photocatalytic conditions

    SciTech Connect

    Chen, Xi; Li, Li; Yi, Tingting; Zhang, WenZhi; Zhang, Xiuli; Wang, Lili

    2015-09-15

    The Cu/BiVO{sub 4} photocatalyst with visible-light responsivity was prepared by the microwave-assisted hydrothermal method. The phase structures, chemical composition and surface physicochemical properties were well-characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance absorption (UV–vis/DRS), scanning electron microscopy (SEM), and N{sub 2} adsorption–desorption tests. Results indicate that the crystal structure of synthetic composite materials is mainly monoclinic scheelite BiVO{sub 4}, which is not changed with the increasing doping amount of Cu. In addition, the presence of Cu not only enlarges the range of the composite materials under the visible-light response, but also increases the BET value significantly. Compared to pure BiVO{sub 4}, 1% Cu/BiVO{sub 4}-160 performs the highest photocatalytic activity to degrade methylene blue under the irradiation of ultraviolet, visible and simulated sunlight. In addition, the capture experiments prove that the main active species was superoxide radicals during photocatalytic reaction. Moreover, the 1% Cu/BiVO{sub 4}-160 composite shows good photocatalytic stability after three times of recycling. - Graphical abstract: A series of BiVO{sub 4} with different amounts of Cu doping were prepared by the microwave-assisted method, moreover, which performed the high photocatalytic activities to degrade methylene blue under multi-mode. - Highlights: • A series of Cu/BiVO{sub 4} with different amounts of Cu doping were prepared by microwave-assisted synthesis. • The morphologies of as-samples were different with the amount of Cu doping increased. • Compared with pure BiVO{sub 4}, as-Cu/BiVO{sub 4} showed stronger absorption in the visible light region obviously. • 1% Cu/BiVO{sub 4}-160 performed the high photocatalytic activities to degrade methylene blue under multi-mode. • OH{sup •} and h{sup +} both play important roles in the photocatalytic reaction.

  18. Active and Passive Microwave Determination of the Circulation and Characteristics of Weddell and Ross Sea Ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.; Liu, Xiang

    2000-01-01

    A combination of satellite microwave data sets are used in conjunction with ECMWF (Medium Range Weather Forecasts) and NCEP (National Center for Environment Prediction) meteorological analysis fields to investigate seasonal variability in the circulation and sea-ice dynamics of the Weddell and Ross Seas. Results of sea-ice tracking using SSM/I (Special Sensor Microwave Imager), Scatterometer and SAR images are combined with in-situ data derived from Argos buoys and GPS drifters to validate observed drift patterns. Seasonal 3-month climatologies of ice motion and drift speed variance illustrate the response of the sea-ice system to seasonal forcing. A melt-detection algorithm is used to track the onset of seasonal melt, and to determine the extent and duration of atmospherically-led surface melting during austral summer. Results show that wind-driven drift regulates the seasonal distribution and characteristics of sea-ice and the intensity of the cyclonic Gyre circulation in these two regions.

  19. Microwave quantum illumination.

    PubMed

    Barzanjeh, Shabir; Guha, Saikat; Weedbrook, Christian; Vitali, David; Shapiro, Jeffrey H; Pirandola, Stefano

    2015-02-27

    Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background. Here, we describe and analyze a system for applying this technique at microwave frequencies, a more appropriate spectral region for target detection than the optical, due to the naturally occurring bright thermal background in the microwave regime. We use an electro-optomechanical converter to entangle microwave signal and optical idler fields, with the former being sent to probe the target region and the latter being retained at the source. The microwave radiation collected from the target region is then phase conjugated and upconverted into an optical field that is combined with the retained idler in a joint-detection quantum measurement. The error probability of this microwave quantum-illumination system, or quantum radar, is shown to be superior to that of any classical microwave radar of equal transmitted energy. PMID:25768743

  20. Comparison of essential oil composition and antimicrobial activity of Coriandrum sativum L. extracted by hydrodistillation and microwave-assisted hydrodistillation.

    PubMed

    Sourmaghi, Mohammad Hossein Salehi; Kiaee, Gita; Golfakhrabadi, Fereshteh; Jamalifar, Hossein; Khanavi, Mahnaz

    2015-04-01

    Coriander (Coriandrum sativum L.), is an annual herb in the Apiaceae family which disperses in Mediterranean and Middle Eastern regions. The Coriander essential oil has been used in food products, perfumes, cosmetics and pharmaceutical industries for its flavor and odor. In Iran, fruits of Coriander used in pickle, curry powders, sausages, cakes, pastries, biscuits and buns. The aim of this study was to investigate microwave radiation effects on quality, quantity and antimicrobial activity of essential oil of Coriander fruits. The essential oils were obtained from the Coriander fruits by hydrodistillation (HD) and Microwave-assisted hydrodistillation (MAHD) then, the oils were analyzed by GC and GC-MS. Antimicrobial activities of essential oils were evaluated against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans by microdilution method. The results indicated that the HD and MAHD essential oils (EO) were dominated by monoterpenoids such as linalool, geranyl acetate and γ-terpinene. The major compound in both EO was linalool which its amount in HD and MAHD was 63 % and 66 %, respectively. The total amount of monoterpenes hydrocarbons in HD EO differ significantly with the amount in MAHD EO (12.56 % compare to 1.82 %). HD EO showed greater activity against Staphylococcus aureus and Candida albicans than MAHD EO. Moreover, their activities against Ecoli and P. aeruginosa were the same with Minimum Inhibitory Concentration (MIC) 0.781 and 6.25 μL mL(-1), respectively. By using MAHD method, it was superior in terms of saving energy and extraction time, although the oil yield and total composition decrease by using this method. PMID:25829632

  1. Removal of Pb(II) from water by the activated carbon modified by nitric acid under microwave heating.

    PubMed

    Yao, Shuheng; Zhang, Jiajun; Shen, Dekui; Xiao, Rui; Gu, Sai; Zhao, Ming; Liang, Junyu

    2016-02-01

    The rice husk based activated carbon (RH-AC) was treated by nitric acid under microwave heating, in order to improve its capability for the removal of heavy metal ions from water. The optimal conditions for the modification of RH-AC (M-RH-AC) were determined by means of orthogonal array experimental design, giving those as the concentration of nitric acid of 8mol/L, modification time of 15min, modification temperature of 130°C and microwave power of 800W. The characteristics of the M-RH-AC and RH-AC were examined by BET, XRD, Raman spectrum, pH titration, zeta potential, Boehm titration and FTIR analysis. The M-RH-AC has lower pore surface area, smaller crystallite, lower pHIEP and more oxygen-containing functional groups than the RH-AC. Removal capacity of Pb(II) ions by the M-RH-AC and RH-AC from water solution was estimated concerning the influence of contact time, pH value, and initial concentration. The equilibrium time of Pb(II) removal was found to be around 90min after modification process. Two kinetic models are adopted to describe the possible Pb(II) adsorption mechanism, finding that the adsorption rate of Pb(II) ions by the M-RH-AC is larger than that of RH-AC. PMID:26520818

  2. A comparative study on the effect of conventional thermal pasteurisation, microwave and ultrasound treatments on the antioxidant activity of five fruit juices.

    PubMed

    Saikia, Sangeeta; Mahnot, Nikhil Kumar; Mahanta, Charu Lata

    2016-06-01

    A comparative study on the effect of conventional thermal pasteurisation, microwave and ultrasound treatments on the phytochemical and antioxidant activities of juices from carambola (Averrhoa carambola L.), black jamun (Syzygium cumuni L.Skeels.), watermelon (Citrullus lanatus var lanatus), pineapple (Ananas comosus L. Merr) and litchi (Litchi chinensis Sonn.) was carried out. Depending on the type of fruit sample and treatment, increase or decrease in phytochemical values was observed. Overall, sonication had a positive effect on the total flavonoid content in all the juice samples followed by microwave treatment with exceptions in some cases. High-performance liquid chromatography study showed the presence of different phenolic acids depending on the sample type. The phenolic acids in some processed carambola juice samples showed decrease or complete destruction, while in some cases, an increase or appearance of newer phenolic acid originally not detected in the fresh juice was observed as seen in conventional thermal pasteurisation, microwaved at 600 W and sonicated juices. Both microwaved and sonicated samples were found to have positive effect on the phenolic content and antioxidant activity with exceptions in some cases. Therefore, microwave and sonication treatment could be used in place of thermal pasteurisation depending on the sample requirements. PMID:26190045

  3. A technique for measuring vertically and horizontally polarized microwave brightness temperatures using electronic polarization-basis rotation

    NASA Technical Reports Server (NTRS)

    Gasiewski, Albin J.

    1992-01-01

    This technique for electronically rotating the polarization basis of an orthogonal-linear polarization radiometer is based on the measurement of the first three feedhorn Stokes parameters, along with the subsequent transformation of this measured Stokes vector into a rotated coordinate frame. The technique requires an accurate measurement of the cross-correlation between the two orthogonal feedhorn modes, for which an innovative polarized calibration load was developed. The experimental portion of this investigation consisted of a proof of concept demonstration of the technique of electronic polarization basis rotation (EPBR) using a ground based 90-GHz dual orthogonal-linear polarization radiometer. Practical calibration algorithms for ground-, aircraft-, and space-based instruments were identified and tested. The theoretical effort consisted of radiative transfer modeling using the planar-stratified numerical model described in Gasiewski and Staelin (1990).

  4. The effect of microwave-frequency discharge-activated oxygen on the microscale structure of low-temperature water ice films

    NASA Astrophysics Data System (ADS)

    Doering, Skye R.; Strobush, Kirsten M.; Marschall, Jochen; Boulter, James E.

    2009-12-01

    Low-temperature, amorphous water ice films grown by vapor deposition under high-vacuum are exposed to microwave-frequency discharge-activated oxygen in order to investigate its effect on the ice surface. Adsorption of methane is used to probe alterations to microscale structures and surface morphology. Films are interrogated throughout the experiment by grazing-angle Fourier-transform infrared reflection-absorption spectroscopy, and after the experiment by temperature-programmed desorption mass spectrometry. Multilayer Fresnel thin-film optics simulations aid in the interpretation of absorbance spectra. Using these techniques, structural alterations are observed over a range of spatial and time scales. At first, spectral absorbance features arising from incompletely coordinated water molecules disappear. The density of high-energy methane adsorption sites is reduced, lowering the equilibrium amount of adsorbed methane. At longer exposure times, this is manifested in a narrowing of the width of the primary methane desorption peak, indicating a narrower range of methane adsorption energies on the ice surface. Together these observations indicate restructuring of micropores resulting in an increase in the structural homogeneity of the film. Enhancement of small, higher-temperature methane desorption features associated with methane encapsulation during thermal annealing indicates alterations to larger pore structures by the same restructuring process. Attribution of these effects to various energetic species in active oxygen is discussed. Based on their abundance, O(P3) and O2(aΔ1g) are the most likely candidates; other trace atomic and molecular species may also contribute.

  5. Microwave backscattering theory and active remote sensing of the ocean surface

    NASA Technical Reports Server (NTRS)

    Brown, G. S.; Miller, L. S.

    1977-01-01

    The status is reviewed of electromagnetic scattering theory relative to the interpretation of microwave remote sensing data acquired from spaceborne platforms over the ocean surface. Particular emphasis is given to the assumptions which are either implicit or explicit in the theory. The multiple scale scattering theory developed during this investigation is extended to non-Gaussian surface statistics. It is shown that the important statistic for the case is the probability density function of the small scale heights conditioned on the large scale slopes; this dependence may explain the anisotropic scattering measurements recently obtained with the AAFE Radscat. It is noted that present surface measurements are inadequate to verify or reject the existing scattering theories. Surface measurements are recommended for qualifying sensor data from radar altimeters and scatterometers. Additional scattering investigations are suggested for imaging type radars employing synthetically generated apertures.

  6. Effects of microwave radiation on neuronal activity. Final report, 1 Sep 89-31 Jan 91

    SciTech Connect

    Armstrong, D.L.; Denny, J.B.; Nash, P.; Singh, S.

    1991-10-01

    A microwave radiation device was designed and constructed for exposure of fetal rat neurons during microscopic observation. The device exposed growing neurons to 400 MHz radiation amplitude modulated at 16 Hz. Continuous exposure to radio-frequency radiation for 4 consecutive days led to the development of cell number density gradient. The greater number of cells occurred in the center of the culture plate which was directly in the field as opposed to the more peripheral areas of the plate which were outside of the field. Nonirradiated control cultures did not display this gradient. This finding was replicated under various exposure periods. The gradient was formed within 20 min of placing the plates on the antenna.

  7. Evaluation of continuous mesophilic, thermophilic and temperature phased anaerobic digestion of microwaved activated sludge.

    PubMed

    Coelho, Nuno Miguel Gabriel; Droste, Ronald L; Kennedy, Kevin J

    2011-04-01

    The effects of microwave (MW) pretreatment, staging and digestion temperature on anaerobic digestion were investigated in a setup of ten reactors. A mesophilic reactor was used as a control. Its performance was compared to single-stage mesophilic and thermophilic reactors treating pretreated and non-pretreated sludge, temperature-phased (TPAD) thermophilic-mesophilic reactors treating pretreated and non-pretreated sludge and thermophilic-thermophilic reactors also treating pretreated and non-pretreated sludge. Four different sludge retention times (SRTs) (20, 15, 10 and 5 d) were tested for all reactors. Two-stage thermo-thermo reactors treating pretreated sludge produced more biogas than all other reactors and removed more volatile solids. Maximum volatile solids (VS) removal was 53.1% at an SRT of 15 d and maximum biogas increase relative to control was 106% at the shortest SRT tested. Both the maximum VS removal and biogas relative increase were measured for a system with thermophilic acidogenic reactor and thermophilic methanogenic reactor. All the two-stage systems treating microwaved sludge produced sludge free of pathogen indicator bacteria, at all tested conditions even at a total system SRT of only 5 d. MW pretreatment and staging reactors allowed the application of very short SRT (5 d) with no significant decrease in performance in terms of VS removal in comparison with the control reactor. MW pretreatment caused the solubilization of organic material in sludge but also allowed more extensive hydrolysis of organic material in downstream reactors. The association of MW pretreatment and thermophilic operation improves dewaterability of digested sludge. PMID:21470653

  8. Detection of uranium enrichment activities using environmental monitoring techniques

    SciTech Connect

    Belew, W.L.; Carter, J.A.; Smith, D.H.; Walker, R.L.

    1993-03-30

    Uranium enrichment processes have the capability of producing weapons-grade material in the form of highly enriched uranium. Thus, detection of undeclared uranium enrichment activities is an international safeguards concern. The uranium separation technologies currently in use employ UF{sub 6} gas as a separation medium, and trace quantities of enriched uranium are inevitably released to the environment from these facilities. The isotopic content of uranium in the vegetation, soil, and water near the plant site will be altered by these releases and can provide a signature for detecting the presence of enriched uranium activities. This paper discusses environmental sampling and analytical procedures that have been used for the detection of uranium enrichment facilities and possible safeguards applications of these techniques.

  9. Sensing vegetation growth and senescence with reflected GPS signals: Active microwave detection of western North America phenology

    NASA Astrophysics Data System (ADS)

    Evans, Sarah Grace

    We explore a new technique to estimate vegetation growth and senescence using reflected GPS signals (multipath) measured by geodetic-quality GPS stations. The operational GPS-IR statistic Normalized Microwave Reflection Index (NMRI), a measure of multipath scattering, exhibits a clear seasonal cycle as is expected for vegetation growth and senescence. The sensing footprint is ˜1000 m 2, larger than that provided by typical in situ observations but smaller than that from space-based products. Since GPS satellites transmit L-band signals, the vegetation estimates derived from GPS reflections provide global phenology monitoring that is sensitive to changes in vegetation canopy water content and biomass. However, GPS reflections are insensitive to plant greenness, clouds, atmosphere, and solar illumination constraints that adversely affect optical-infrared remote sensing vegetation indices like Normalized Difference Vegetation Index (NDVI). Temporal and spatial diffuse scattering of microwave GPS-IR index NMRI and MODIS-based NDVI is documented at both the site-by-site and regional scale at 184 sites over the western United States. We derive NMRI and NDVI range, correlation between NMRI and NDVI signals, and phenology parameters including: start of season, season length, and peak day of year of vegetation growth. These phenology indexes are compared over a five water-year time series (2008 to 2012) to gauge spatial and temporal offsets. Average correlations (R 2=0.527) were found with NMRI variations lagging NDVI by approximately 21 days. This is consistent with the idea that greenup precedes plant growth. Phenology metrics extracted by microwave NMRI record a later start of season, later peak day of year, and shorter season length than determined by optical NDVI. Metrics are offset spatially with the largest offsets along Pacific Ocean coastline, decreasing inland and subdivided by region, supporting that plant growth cycles are controlled by regional climates. This

  10. Microwave applications range from under the soil to the stratosphere

    NASA Astrophysics Data System (ADS)

    Bierman, Howard

    1990-11-01

    While the current cutback in defense spending had a negative impact on the microwave industry, microwave technology is now being applied to improve mankind's health, to clean up the environment, and provide more food. The paper concentrates on solutions for traffic jams and collision avoidance, the application of microwave hyperthermia to detect and destroy cancer cells, applications for controlling ozone-layer depletion, for investigating iceberg activity and ocean-current patterns in the Arctic, and for measuring soil-moisture content to improve crop efficiency. An experimental 60-GHz communication system for maintaining contact with up to 30 vehicles is described, along with dielectric-loaded lens and multimicrostrip hyperthermia applicators, and microwave equipment for NASA's upper-atmosphere research satellite and ESA's remote-sensing satellite. Stripline techniques to monitor process control on semiconductor wafer and paper production lines are also outlined.

  11. Highly efficient full-wave electromagnetic analysis of 3-D arbitrarily shaped waveguide microwave devices using an integral equation technique

    NASA Astrophysics Data System (ADS)

    Vidal, A.; San-Blas, A. A.; Quesada-Pereira, F. D.; Pérez-Soler, J.; Gil, J.; Vicente, C.; Gimeno, B.; Boria, V. E.

    2015-07-01

    A novel technique for the full-wave analysis of 3-D complex waveguide devices is presented. This new formulation, based on the Boundary Integral-Resonant Mode Expansion (BI-RME) method, allows the rigorous full-wave electromagnetic characterization of 3-D arbitrarily shaped metallic structures making use of extremely low CPU resources (both time and memory). The unknown electric current density on the surface of the metallic elements is represented by means of Rao-Wilton-Glisson basis functions, and an algebraic procedure based on a singular value decomposition is applied to transform such functions into the classical solenoidal and nonsolenoidal basis functions needed by the original BI-RME technique. The developed tool also provides an accurate computation of the electromagnetic fields at an arbitrary observation point of the considered device, so it can be used for predicting high-power breakdown phenomena. In order to validate the accuracy and efficiency of this novel approach, several new designs of band-pass waveguides filters are presented. The obtained results (S-parameters and electromagnetic fields) are successfully compared both to experimental data and to numerical simulations provided by a commercial software based on the finite element technique. The results obtained show that the new technique is specially suitable for the efficient full-wave analysis of complex waveguide devices considering an integrated coaxial excitation, where the coaxial probes may be in contact with the metallic insets of the component.

  12. Microwave detector

    DOEpatents

    Meldner, Heiner W.; Cusson, Ronald Y.; Johnson, Ray M.

    1986-01-01

    A microwave detector (10) is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite (26, 28) produces a magnetization field flux that links a B-dot loop (16, 20). The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means (18, 22) are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  13. Microwave detector

    DOEpatents

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  14. Frequency-tunable optoelectronic oscillator using a dual-mode amplified feedback laser as an electrically controlled active microwave photonic filter.

    PubMed

    Lu, Dan; Pan, Biwei; Chen, Haibo; Zhao, Lingjuan

    2015-09-15

    A widely tunable optoelectronic oscillator (OEO) based on a self-injection-locked monolithic dual-mode amplified feedback laser (DM-AFL) is proposed and experimentally demonstrated. In the proposed OEO structure, the DM-AFL functions as an active tunable microwave photonic filter (MPF). By tuning the injection current applied on the amplifier section of the AFL, tunable microwave outputs ranging from 32 to 41 GHz and single sideband phase noises below -97  dBc/Hz at 10 kHz offset from the carriers were realized. PMID:26371931

  15. Microwave-assisted combustion synthesis of nano iron oxide/iron-coated activated carbon, anthracite, cellulose fiber, and silica, with arsenic adsorption studies

    EPA Science Inventory

    Combustion synthesis of iron oxide/iron coated carbons such as activated carbon, anthracite, cellulose fiber and silica is described. The reactions were carried out in alumina crucibles using a Panasonic kitchen microwave with inverter technology, and the reaction process was com...

  16. PHENOLIC CONTENT AND ANTIOXIDANT ACTIVITY OF SUPERCRITICAL CARBON DIOXIDE-TREATED AND AIR-CLASSIFIED OAT BRAN CONCENTRATE MICROWAVE-IRRADIATED IN WATER OR ETHANOL AT VARYING TEMPERATURES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oat bran concentrate (OBC) was defatted with supercritical carbon dioxide (SCD), then microwave-irradiated at 50, 100 or 150 deg C for 10 min in water, 50% or 100% ethanol, and extract pH, soluble solids, phenolic content and antioxidant activity were analyzed. OBC was air-classified into five frac...

  17. Synthesis and biological activity of novel 5'-arylamino-nucleosides by microwave-assisted one-pot tandem Staudinger/aza-Wittig/reduction.

    PubMed

    Chen, Hua; Zhao, Jianpeng; Li, Yanan; Shen, Fengjuan; Li, Xiaoliu; Yin, Qingmei; Qin, Zhanbin; Yan, Xinhao; Wang, Yanfei; Zhang, Pingzhu; Zhang, Jinchao

    2011-01-01

    Novel pseudonucleosides with benzylamino group on 5'-position (4) were synthesized by using the microwave-assisted one-pot tandem Staudinger/aza-Wittig/reduction reaction in good yields of 55.2-71.7%. The deacetylation of 4 afforded compounds 5. HIV-1 reverse transcriptase (RT) inhibitory and antitumor activities were preliminarily evaluated with 5. The results showed that the new pseudonucleosides (5) could effectively inhibit HIV-1 RT activity, but no antitumor activity. PMID:21095125

  18. Synthesis of nanostructured and microstructured ZnO and Zn(OH)2 on activated carbon cloth by hydrothermal and microwave-assisted chemical bath deposition methods

    NASA Astrophysics Data System (ADS)

    Mosayebi, Elham; Azizian, Saeid; Hajian, Ali

    2015-05-01

    Nanostructured and microstructured ZnO and Zn(OH)2 loaded on activated carbon cloth were synthesized by microwave-assisted chemical bath deposition and hydrothermal methods. By hydrothermal method the deposited sample on carbon fiber is pure ZnO with dandelion-like nanostructures. By microwave-assisted chemical bath method the structure and composition of deposited sample depends on solution pH. At pH = 9.8 the deposited sample on carbon fiber is pure ZnO with flower-like microstructure; but at pH = 10.8 the sample is a mixture of ZnO and Zn(OH)2 with flower-like and rhombic microstructures, respectively. The mechanism of crystal grow by microwave-assisted chemical bath method was investigated by SEM method at both pH.

  19. Microwave sensing from orbit

    NASA Technical Reports Server (NTRS)

    Kritikos, H. N.; Shiue, J.

    1979-01-01

    Microwave sensors, used in conjunction with the traditional sensors of visible and infrared light to extend present capabilities of global weather forecasts and local storm watches, are discussed. The great advantage of these sensors is that they can penetrate or 'see' through cloud formations to monitor temperature, humidity and wind fields below the clouds. Other uses are that they can penetrate the earth deeper than optical and IR systems; they can control their own angle of incidence; they can detect oil spills; and they can enhance the studies of the upper atmosphere through measurement of temperature, water vapor and other gaseous species. Two types of microwave sensors, active and passive, are examined. Special attention is given to the study of the microwave radiometer and the corresponding temperature resolution as detected by the antenna. It is determined that not only will the microwave remote sensors save lives by allowing close monitoring of developing storms, but also save approximately $172 million/year.

  20. Measuring Shapes Of Reflectors By Microwave Holography

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Y.

    1989-01-01

    Pair of reports discusses theoretical foundation and recent theoretical and practical developments in use of microwave holography to measure surfaces of microwave antennas. (Second report abbreviated version of first report.) Microwave holographic measurements provide acceptable accuracy and are more convenient and less time consuming than optical and mechanical measurements, especially where measurements repeated. Microwave holographyic metrology of lare reflectors, first reported in 1976, improved into accurate technique with potential industrial applications.

  1. Morphology control of open-framework zinc phosphate Zn{sub 4}(H{sub 3}O)(NH{sub 4}){sub 3}(PO{sub 4}){sub 4} via microwave-assisted technique

    SciTech Connect

    Ding, Ling; Song, Yu; Yang, Wei; Xue, Run-Miao; Zhai, Shang-Ru; An, Qing-Da

    2013-08-15

    Open-framework zinc phosphates were synthesized by microwave-assisted technique, and it was shown that the morphology of as-prepared materials could be easily tailored by changing synthesis temperature, reaction time and pH value. During the synthesis, when the reaction temperature increases from 130 °C to 220 °C, the products transformed from hexagonal prisms to polyhedron along with the disappearance of the hexagonal prisms vertical plane. Simultaneously, both the reaction time and pH value could promote the nucleation and growth of crystal particles. More interestingly, the target products with different morphologies could be obtained by varying the usage of NaOH or NH{sub 3}·H{sub 2}O at 130 °C during the microwave synthesis process. - Graphical abstract: Zinc phosphates with variable morphologies can be obtained by simply tuning the microwave-heating temperatures. Display Omitted - Highlights: • Synthesis of open-framework Zn{sub 4} (H{sub 3}O) (NH{sub 4}){sub 3}(PO{sub 4}){sub 4} compounds employing microwave technique. • Dependence of morphology on the reaction conditions. • Morphology transformation from hexagonal prisms to polyhedron was observed.

  2. Comparison of four kinds of extraction techniques and kinetics of microwave-assisted extraction of vanillin from Vanilla planifolia Andrews.

    PubMed

    Dong, Zhizhe; Gu, Fenglin; Xu, Fei; Wang, Qinghuang

    2014-04-15

    Vanillin yield, microscopic structure, antioxidant activity and overall odour of vanilla extracts obtained by different treatments were investigated. MAE showed the strongest extraction power, shortest time and highest antioxidant activity. Maceration gave higher vanillin yields than UAE and PAE, similar antioxidant activity with UAE, but longer times than UAE and PAE. Overall odour intensity of different vanilla extracts obtained by UAE, PAE and MAE were similar, while higher than maceration extracts. Then, powered vanilla bean with a sample/solvent ratio of 4 g/100 mL was selected as the optimum condition for MAE. Next, compared with other three equations, two-site kinetic equation with lowest RMSD and highest R²(adj) was shown to be more suitable in describing the kinetics of vanillin extraction. By fitting the parameters C(eq), k₁, k₂, and f, a kinetics model was constructed to describe vanillin extraction in terms of irradiation power, ethanol concentration, and extraction time. PMID:24295676

  3. An active microwave imaging system for reconstruction of 2-D electrical property distributions.

    PubMed

    Meaney, P M; Paulsen, K D; Hartov, A; Crane, R K

    1995-10-01

    The goal of this work is to develop a microwave-based imaging system for hyperthermia treatment monitoring and assessment. Toward this end, a four transmit channel and four receive channel hardware device and concomitant image reconstruction algorithm have been realized. The hardware is designed to measure electric fields (i.e., amplitude and phase) at various locations in a phantom tank with and without the presence of various heterogeneities using standard heterodyning principles. Particular attention has been paid to designing a receiver with better than 115 dB of linear dynamic range which is necessary for imaging biological tissue which often has very high conductivity, especially for tissues with high water content. A calibration procedure has been developed to compensate for signal loss due to three-dimensional radiation in the measured data, since the reconstruction process is only two-dimensional at the present time. Results are shown which demonstrate the stability and accuracy of the measurement system, the extent to which the forward computational model agrees with the measured field distribution when the electrical properties are known, and image reconstructions of electrically unknown targets of varying diameter. In the latter case, images of both the reactive and resistive component of the electrical property distribution have been recoverable. Quantitative information on object location, size, and electrical properties results when the target is approximately one-half wavelength in size. Images of smaller objects lack the same level of quantitative information, but remain qualitatively correct. PMID:8582719

  4. Active Learning Techniques Applied to an Interdisciplinary Mineral Resources Course.

    NASA Astrophysics Data System (ADS)

    Aird, H. M.

    2015-12-01

    An interdisciplinary active learning course was introduced at the University of Puget Sound entitled 'Mineral Resources and the Environment'. Various formative assessment and active learning techniques that have been effective in other courses were adapted and implemented to improve student learning, increase retention and broaden knowledge and understanding of course material. This was an elective course targeted towards upper-level undergraduate geology and environmental majors. The course provided an introduction to the mineral resources industry, discussing geological, environmental, societal and economic aspects, legislation and the processes involved in exploration, extraction, processing, reclamation/remediation and recycling of products. Lectures and associated weekly labs were linked in subject matter; relevant readings from the recent scientific literature were assigned and discussed in the second lecture of the week. Peer-based learning was facilitated through weekly reading assignments with peer-led discussions and through group research projects, in addition to in-class exercises such as debates. Writing and research skills were developed through student groups designing, carrying out and reporting on their own semester-long research projects around the lasting effects of the historical Ruston Smelter on the biology and water systems of Tacoma. The writing of their mini grant proposals and final project reports was carried out in stages to allow for feedback before the deadline. Speakers from industry were invited to share their specialist knowledge as guest lecturers, and students were encouraged to interact with them, with a view to employment opportunities. Formative assessment techniques included jigsaw exercises, gallery walks, placemat surveys, think pair share and take-home point summaries. Summative assessment included discussion leadership, exams, homeworks, group projects, in-class exercises, field trips, and pre-discussion reading exercises

  5. Active control technique of fractional-order chaotic complex systems

    NASA Astrophysics Data System (ADS)

    Mahmoud, Gamal M.; Ahmed, Mansour E.; Abed-Elhameed, Tarek M.

    2016-06-01

    Several kinds of synchronization of fractional-order chaotic complex systems are challenging research topics of current interest since they appear in many applications in applied sciences. Our main goal in this paper is to introduce the definition of modified projective combination-combination synchronization (MPCCS) of some fractional-order chaotic complex systems. We show that our systems are chaotic by calculating their Lyapunov exponents. The fractional Lyapunov dimension of the chaotic solutions of these systems is computed. A scheme is introduced to calculate MPCCS of four different (or identical) chaotic complex systems using the active control technique. Special cases of this type, which are projective and anti C-C synchronization, are discussed. Some figures are plotted to show that MPCCS is achieved and its errors approach zero.

  6. Activation studies of NEG coatings by surface techniques

    SciTech Connect

    Sharma, R. K.; Jagannath,; Bhushan, K. G.; Gadkari, S. C.; Mukund, R.; Gupta, S. K.

    2013-02-05

    NEG (Non Evaporable Getters)materials in the form of ternary alloy coatings have many benefits compare to traditional bare surfaces such as Extreme high vacuum(XHV), lower secondary electron yield(SEY), low photon desorption cofficient. The extreme high vacuum (pressure > 10{sup -10} mbar) is very useful to the study of surfaces of the material, for high energy particle accelerators(LHC, Photon Factories), synchrotrons (ESRF, Ellectra) etc. Low secondary electron yield leads to better beam life time. In LHC the pressure in the interaction region of the two beams is something of the order of 10{sup -12} mbar. In this paper preparation of the coatings and their characterization to get the Activation temperature by using the surface techniques XPS, SEM and SIMS has been shown.

  7. Preparation of AgInS2 nanoparticles by a facile microwave heating technique; study of effective parameters, optical and photovoltaic characteristics

    NASA Astrophysics Data System (ADS)

    Tadjarodi, Azadeh; Cheshmekhavar, Amir Hossein; Imani, Mina

    2012-12-01

    In this work, AgInS2 (AIS) semiconductor nanoparticles were synthesized by an efficient and facile microwave heating technique using several sulfur sources and solvents in the different reaction times. The SEM images presented the particle morphology for all of the obtained products in the arranged reaction conditions. The particle size of 70 nm was obtained using thioacetamide (TAA), ethylene glycol (EG) as the sulfur source and solvent, respectively at the reaction time of 5 min. It was found that the change of the mentioned parameters lead to alter on the particle size of the resulting products. The average particle size was estimated using a microstructure measurement program and Minitab statistical software. The optical band gap energy of 1.96 eV for the synthesized AIS nanoparticles was determined by the diffuse reflectance spectroscopy (DRS). AgInS2/CdS/CuInSe2 heterojunction solar cell was constructed and photovoltaic parameters, i.e., open-circuit voltage (Voc), short-circuit current (Jsc) and fill factor (FF) were estimated by photocurrent-voltage (I-V) curve. The calculated fill factor of 30% and energy conversion efficiency of 1.58% revealed the capability of AIS nanoparticles to use in the solar cell devices.

  8. Determination of mercury species by the diffusive gradient in thin film technique and liquid chromatography--atomic fluorescence spectrometry after microwave extraction.

    PubMed

    Pelcová, Pavlína; Dočekalová, Hana; Kleckerová, Andrea

    2015-03-25

    A diffusive gradient in thin films technique (DGT) was combined with liquid chromatography (LC) and cold vapor atomic fluorescence spectrometry (CV-AFS) for the simultaneous quantification of four mercury species (Hg(2+), CH3Hg(+), C2H5Hg(+), and C6H5Hg(+)). After diffusion through an agarose diffusive layer, the mercury species were accumulated in resin gels containing thiol-functionalized ion-exchange resins (Duolite GT73, and Ambersep GT74). A microwave-assisted extraction (MAE) in the presence of 6M HCl and 5 M HCl (55 °C, 15 min) was used for isolation of mercury species from Ambersep and Duolite resin gels, respectively. The extraction efficiency was higher than 95.0% (RSD 3.5%). The mercury species were separated with a mobile phase containing 6.2% methanol+0.05% 2-mercaptoethanol+0.02 M ammonium acetate with a stepwise increase of methanol content up to 80% in the 16th min on a Zorbax C18 reverse phase column. The LODs of DGT-MAE-LC-CV-AFS method were 38 ng L(-1) for CH3Hg(+), 13 ng L(-1) for Hg(2+), 34 ng L(-1) for C2H5Hg(+) and 30 ng L(-1) for C6H5Hg(+) for 24 h DGT accumulation at 25 °C. PMID:25732689

  9. Visible light responsive Ag/TiO2/MCM-41 nanocomposite films synthesized by a microwave assisted sol-gel technique

    NASA Astrophysics Data System (ADS)

    Tongon, W.; Chawengkijwanich, C.; Chiarakorn, S.

    2014-05-01

    A convenient and inexpensive method for the preparation of visible light responsive nanocomposite film was introduced in this study. Silver doped TiO2 was incorporated into as-synthesized MCM-41, via a microwave assisted sol-gel technique. The nanocomposite film was formed by dip coating on a glass substrate. The characterization results displayed high adsorbability and photocatalytic properties of the Ag and MCM-41 enhanced TiO2 photocatalyst. Performance of the nanocomposite film was tested by photocatalytic decolorization of MB dye, under UV and visible light irradiation. Ag/Ti/Si (0.1/1/2) exhibited the highest photocatalytic decolorization of methylene blue, with an efficiency of 81% under UV, and 30% under visible light irradiation. The kinetic rate constant of MB dye on the composite films followed pseudo first-order reaction law (R2 > 0.9), arranged in the order of Ag/Ti/Si (0.1/1/2) > Ag/Ti/Si (0.1/1/1) > Ag/Ti/Si (0.1/1/0.5) > Ag/Ti/Si (0.1/1/0) > TiO2.

  10. Microwave-assisted aqueous enzymatic extraction of oil from pumpkin seeds and evaluation of its physicochemical properties, fatty acid compositions and antioxidant activities.

    PubMed

    Jiao, Jiao; Li, Zhu-Gang; Gai, Qing-Yan; Li, Xiao-Juan; Wei, Fu-Yao; Fu, Yu-Jie; Ma, Wei

    2014-03-15

    Microwave-assisted aqueous enzymatic extraction (MAAEE) of pumpkin seed oil was performed in this study. An enzyme cocktail comprised of cellulase, pectinase and proteinase (w/w/w) was found to be the most effective in releasing oils. The highest oil recovery of 64.17% was achieved under optimal conditions of enzyme concentration (1.4%, w/w), temperature (44°C), time (66 min) and irradiation power (419W). Moreover, there were no significant variations in physicochemical properties of MAAEE-extracted oil (MAAEEO) and Soxhlet-extracted oil (SEO), but MAAEEO exhibited better oxidation stability. Additionally, MAAEEO had a higher content of linoleic acid (57.33%) than SEO (53.72%), and it showed stronger antioxidant activities with the IC50 values 123.93 and 152.84, mg/mL, according to DPPH radical scavenging assay and β-carotene/linoleic acid bleaching test. SEM results illustrated the destruction of cell walls and membranes by MAAEE. MAAEE is, therefore, a promising and environmental-friendly technique for oil extraction in the food industry. PMID:24206680

  11. Mechanism of Enhanced Electrochemical Oxidation of 2,4-dichlorophenoxyacetic Acid with in situ Microwave Activated Boron-doped Diamond and Platinum Anodes

    NASA Astrophysics Data System (ADS)

    Gao, Junxia; Zhao, Guohua; Liu, Meichuan; Li, Dongming

    2009-09-01

    Remarkable enhancement in degradation effect is achieved at in situ activated boron-doped diamond (BDD) and Pt anodes with different extent through electrochemical oxidation (EC) of 2,4-dichlorophenoxyacetic acid (2,4-D) with microwave (MW) radiation in a flow system. Results show that when EC is activated with MW radiation, the complete mineralization time of 2,4-D at the BDD is reduced quickly from 10 to 4 h while Chemical oxygen demand (COD) removal at Pt is increased from 37.7 to 58.3% at 10 h; the initial current efficiency is both improved about 1.5 times while the pseudo-first-order rate constant is increased by 153 and 119% at the BDD and Pt, respectively. To gain insight into the higher efficiency in microwave activated EC, the mechanism has therefore been systematically evaluated from the essence of electrochemical reaction and the accumulated hydroxyl radical concentration. 2,4-Dichlorophenol, catechol, benquinone, and maleic and oxalic acids are the main intermediates on the Pt anode measured by high performance liquid chromatography (HPLC), while the intermediates on the BDD electrode include 2,4-dichlorophenol, hydroquinone, and maleic and oxalic acids. The reaction pathway with microwave radiation is the same as that in a conventional electrochemical oxidation on both electrodes. While less and lower aromatic intermediates produce at the BDD with MW, which suggests the higher ring-open ratio and the faster oxidation of carboxylic acids. With microwave radiation, the ring-open ratio at the BDD is increased to 98.8% from 85.6%; the value at Pt is increased to 67.3% from 35.9%. So microwave radiation can activate the electrochemical oxidation, which leads to the higher efficiency. This promotion is mainly due to the higher accumulated hydroxyl radical concentration and the effects by microwave radiation. All the results prove that the BDD electrode presents much better mineralization performance with MW. To the best of our knowledge, it is the first

  12. Impacts of Different Assimilation Methodologies on Crop Yield Estimates Using Active and Passive Microwave Dataset at L-Band

    NASA Astrophysics Data System (ADS)

    Liu, P.; Bongiovanni, T. E.; Monsivais-Huertero, A.; Bindlish, R.; Judge, J.

    2013-12-01

    Accurate estimates of crop yield are important for managing agricultural production and food security. Although the crop growth models, such as the Decision Support System Agrotechnology Transfer (DSSAT), have been used to simulate crop growth and development, the crop yield estimates still diverge from the reality due to different sources of errors in the models and computation. Auxiliary observations may be incorporated into such dynamic models to improve predictions using data assimilation. Active and passive (AP) microwave observations at L-band (1-2 GHz) are sensitive to dielectric and geometric properties of soil and vegetation, including soil moisture (SM), vegetation water content (VWC), surface roughness, and vegetation structure. Because SM and VWC are one of the governing factors in estimating crop yield, microwave observations may be used to improve crop yield estimates. Current studies have shown that active observations are more sensitive to the surface roughness of soil and vegetation structure during the growing season, while the passive observations are more sensitive to the SM. Backscatter and emission models linked with the DSSAT model (DSSAT-A-P) allow assimilation of microwave observations of backscattering coefficient (σ0) and brightness temperature (TB) may provide biophysically realistic estimates of model states and parameters. The present ESA Soil Moisture Ocean Salinity (SMOS) mission provides passive observations at 1.41 GHz at 25 km every 2-3 days, and the NASA/CNDAE Aquarius mission provides L-band AP observations at spatial resolution of 150 km with a repeat coverage of 7 days for global SM products. In 2014, the planned NASA Soil Moisture Active Passive mission will provide AP observations at 1.26 and 1.41 GHz at the spatial resolutions of 3 and 30 km, respectively, with a repeat coverage of 2-3 days. The goal of this study is to understand the impacts of assimilation of asynchronous and synchronous AP observations on crop yield

  13. Microwave enhanced alcoholysis of non-edible (algal, jatropha and pongamia) oils using chemically activated egg shell derived CaO as heterogeneous catalyst.

    PubMed

    Joshi, Girdhar; Rawat, Devendra S; Sharma, Amit Kumar; Pandey, Jitendra K

    2016-11-01

    Microwave enhanced fast and efficient alcoholysis (methanolysis and ethanolysis) of non-edible oils (algal, jatropha and pongamia) is achieved using chemically activated waste egg shell derived CaO (i.e. CaO(cesp)) as heterogeneous catalyst. CaO(cesp) was extracted from waste chicken egg shell and further activated chemically by supporting transition metal oxide. The maximum conversion was achieved using 3wt% catalysts under 700W microwave irradiation and 10:1 alcohol/oil ratio in 6min. Alcoholysis using ZnO activated CaO(cesp) catalyst has shown higher reaction yields in comparison to other modified catalysts. Methanolysis has shown better biodiesel conversion in comparison to ethanolysis. The catalyst has shown longer lifetime and sustained activity after being used for four cycles. Due to more saturated fatty acid content; algal biodiesel has shown improved fuel properties in comparison to other biodiesels. PMID:27521785

  14. Microwave Cooking: Knowledge, Attitudes, and Practices of California Foods Teachers.

    ERIC Educational Resources Information Center

    Stalder, Laura D.; And Others

    1990-01-01

    A survey of 500 California secondary foods teachers (172 responses) indicated their understanding of microwave cooking principles and techniques and positive attitudes toward microwave cooking and safety. A majority used microwave instruction in their classrooms, although many indicated a need for ovens and microwave educational materials. (SK)

  15. Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay.

    PubMed

    Motshekga, Sarah C; Ray, Suprakas S; Onyango, Maurice S; Momba, Maggie N B

    2013-11-15

    Composites of silver-zinc oxide nanoparticles supported on bentonite clay were synthesized by the microwave-assisted synthesis method for use as an antibacterial material. Silver nitrate was used as the precursor of silver nanoparticles while zinc oxide nanoparticles were commercially sourced. The composites were characterized by powder X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared (FTIR) and BET surface area measurements. XRD spectra showed peaks of silver confirming the formation of the silver and not of the silver nitrate or any other impurity of the metal. Meanwhile TEM confirmed the formation of silver and zinc oxide nanoparticles on the clay layers, with particle sizes ranging from 9-30 nm and 15-70 nm, respectively. The antibacterial activities of the composites were evaluated against Gram negative Escherichia coli bacteria and Gram positive Enterococcus faecalis bacteria by the disc diffusion method. Whereas both composites of Ag-clay and ZnO-clay showed good antibacterial activity against bacteria, a better antibacterial activity was observed with Ag/ZnO-clay composite. The results therefore reveal that Ag/ZnO-clay composite is a promising bactericide that can be used for deactivating microbes in water. PMID:24076479

  16. Urban rainfall estimation employing commercial microwave links

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko; ten Veldhuis, Marie-claire

    2015-04-01

    Urban areas often lack rainfall information. To increase the number of rainfall observations in cities, microwave links from operational cellular telecommunication networks may be employed. Although this new potential source of rainfall information has been shown to be promising, its quality needs to be demonstrated more extensively. In the Rain Sense kickstart project of the Amsterdam Institute for Advanced Metropolitan Solutions (AMS), sensors and citizens are preparing Amsterdam for future weather. Part of this project is rainfall estimation using new measurement techniques. Innovative sensing techniques will be utilized such as rainfall estimation from microwave links, umbrellas for weather sensing, low-cost sensors at lamp posts and in drainage pipes for water level observation. These will be combined with information provided by citizens in an active way through smartphone apps and in a passive way through social media posts (Twitter, Flickr etc.). Sensor information will be integrated, visualized and made accessible to citizens to help raise citizen awareness of urban water management challenges and promote resilience by providing information on how citizens can contribute in addressing these. Moreover, citizens and businesses can benefit from reliable weather information in planning their social and commercial activities. In the end city-wide high-resolution rainfall maps will be derived, blending rainfall information from microwave links and weather radars. This information will be used for urban water management. This presentation focuses on rainfall estimation from commercial microwave links. Received signal levels from tens of microwave links within the Amsterdam region (roughly 1 million inhabitants) in the Netherlands are utilized to estimate rainfall with high spatial and temporal resolution. Rainfall maps will be presented and compared to a gauge-adjusted radar rainfall data set. Rainfall time series from gauge(s), radars and links will be compared.

  17. Optimization of ultrasonic/microwave assisted extraction (UMAE) of polysaccharides from Inonotus obliquus and evaluation of its anti-tumor activities.

    PubMed

    Chen, Yiyong; Gu, Xiaohong; Huang, Sheng-quan; Li, Jinwei; Wang, Xin; Tang, Jian

    2010-05-01

    Recently, the use of ultrasonic and microwave has attracted considerable interest as an alternative approach to the traditional extraction methods. In this paper, in order to maximize the yield and purity of polysaccharides from Inonotus obliquus, response surface methodology (RSM) was employed to optimize the ultrasonic/microwave assisted extraction (UMAE) conditions. The results indicated that the optimal conditions for UMAE were 90W microwave power, 50W ultrasonic power together with 40kHz ultrasonic frequency, solid/water ratio was 1:20 (W/V) and the extracting time was 19min, respectively. Under the optimal conditions, the yield and purity of polysaccharides were 3.25% and 73.16%, respectively, which are above that of traditional hot water extraction and close to the predicted value (3.07% and 72.54%, respectively). These results confirmed that ultrasonic/microwave assisted extraction (UMAE) of polysaccharides had great potential and efficiency compared with traditional hot water extraction. At the same time, the anti-tumor activities of the polysaccharides from I. obliquus with UMAE were evaluated. The results suggested that polysaccharides from I. obliquus exhibited obvious anti-tumor activities. PMID:20149817

  18. Microwave Tomography Using Deformable Mirrors

    NASA Astrophysics Data System (ADS)

    Arunachalam, Kavitha; Udpa, Lalita; Udpa, Satish S.

    2008-09-01

    Microwave tomography aims to reconstruct the spatial distribution of the electrical property of penetrable objects using field measurements acquired from multiple views at single or multiple frequencies. This paper presents a novel microwave tomography technique to image penetrable scatterers using deformable mirrors. The deformable mirror consists of a continuum of radiating elements that yields multi-view field measurements for noninvasive characterization of the spatial dielectric property of the scatterer in the microwave regime. Computational feasibility of the proposed technique is presented for heterogeneous two dimensional dielectric scatterers.

  19. Antifungal, anti-inflammatory and cytotoxicity activities of three varieties of labisia pumila benth: from microwave obtained extracts

    PubMed Central

    2013-01-01

    Background Labisia pumila, locally known as Kacip Fatimah, is a forest-floor plant that has tremendous potential in the herbal industry. It is one of the five herbal plants identified by the government as one of the national key economic areas to be developed for commercial purposes. There are three varieties of L. pumila namely, L. pumila var. pumila, L. pumila var. alata and L. pumila var. lanceolata and each has its own use. Methods The leaves and roots of the three varieties of L. pumila Benth. were extracted using microwave assisted extraction (MAE). Antifungal activity of all plant extracts were characterized against Fusarium sp., Candida sp. and Mucor using the agar diffusion disc. Anti-inflammatory assays were performed using NO production by macrophage RAW 264.7 cell lines induced by LPS/IFN-g and cytotoxic activity was determined using several cancer cell lines and one normal cell line. Results The overall result demonstrated that leaf and root extracts of all three varieties of L. pumila exhibited moderate to appreciable antifungal activity against Fusarium sp., Candida sp. and Mucor compared to streptomycin used as positive control. Leaf and root extracts of all varieties significantly decreased NO release. However, the root extracts showed higher activity compared to the leaf extracts. Cytotoxic activity against MCF-7, MDA-MB-231 and Chang cell lines were observed with all extracts. Conclusions These findings suggest the potential use of L. pumila Benth. as a natural medicine and indicated the possible application of this medicinal plant such anti inflammatory activity and cytotoxic agents. PMID:23347830

  20. Microwave Amplitude Modulation Technique to Measure Spin-Lattice (T 1) and Spin-Spin (T 2) Relaxation Times

    NASA Astrophysics Data System (ADS)

    Misra, Sushil K.

    The measurement of very short spin-lattice, or longitudinal, relaxation (SLR) times (i.e., 10-10 < T 1 < 10-6 s) is of great importance today for the study of relaxation processes. Recent case studies include, for example, glasses doped with paramagnetic ions (Vergnoux et al., 1996; Zinsou et al., 1996), amorphous Si (dangling bonds) and copper-chromium-tin spinel (Cr3+) (Misra, 1998), and polymer resins doped with rare-earth ions (Pescia et al., 1999a; Pescia et al. 1999b). The ability to measure such fast SLR data on amorphous Si and copper-chromium-tin spinel led to an understanding of the role of exchange interaction in affecting spin-lattice relaxation, while the data on polymer resins doped with rare-earth ions provided evidence of spin-fracton relaxation (Pescia et al., 1999a, b). But such fast SLR times are not measurable by the most commonly used techniques of saturation- and inversion-recovery (Poole, 1982; Alger, 1968), which only measure spin-lattice relaxation times longer than 10-6 s. A summary of relevant experimental data is presented in Table 1.

  1. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  2. Non-invasive near-field measurement setup based on modulated scatterer technique applied to microwave tomography

    NASA Astrophysics Data System (ADS)

    Memarzadeh-Tehran, Hamidreza

    The main focus of this thesis is to address the design and development of a near-field (NF) imaging setup based on the modulated scatterer technique (MST). MST is a well-known approach used in applications where accurate and perturbation-free measurement results are necessary. Of the possible implementations available for making an MST probe, including electrical, optical and mechanical, the optically modulated scatterer OMS was considered in order to provide nearly perturbation-free measurement due to the invisibility of optical fiber to the radio-frequency electromagnetic fields. The OMS probe consists of a commercial, off-the-shelf (COTS) photodiode chip (nonlinear device), a short-dipole antenna acting as a scatterer and a matching network (passive circuit). The latter improves the scattering properties and also increases the sensitivity of the OMS probe within the frequency range in which the matching network is optimized. The radiation characteristics of the probe, including cross-polarization response and omnidirectional sensitivity, were both theoretically and experimentally investigated. Finally, the performance and reliability of the probe was studied by comparing measured near-field distributions on a known field distribution with simulations. Increased imaging speed was obtained using an array of OMS probes, which reduces mechanical movements. Mutual-coupling, switching time and shadowing effect, which all may affect the performance of the array, were investigated. Then, the results obtained by the array were validated in a NF imager by measuring the E-field distribution of an antenna under test (AUT) and comparing it with a simulation. Calibration and data averaging were applied to raw data to compensate the probes for uncertainties in fabrication and interaction between array/AUT and array/receiving antenna. Dynamic range and linearity of the developed NF imager was improved by adding a carrier canceller circuit to the front-end of the receiver. The

  3. Microwave and ultrasound pre-treatments influence microbial community structure and digester performance in anaerobic digestion of waste activated sludge.

    PubMed

    Westerholm, Maria; Crauwels, Sam; Van Geel, Maarten; Dewil, Raf; Lievens, Bart; Appels, Lise

    2016-06-01

    Comparative analyses of bacterial and archaeal community structures and dynamics in three biogas digesters during start-up and subsequent operation using microwaved, ultrasonicated or untreated waste activated sludge were performed based on 454 pyrosequencing datasets of part of 16S ribosomal RNA sequences and quantitative PCR. The pre-treatment increased the solubility, and thus the availability of the substrate for microbial degradation and significantly affected the succession of the anaerobic community structure over the course of the digestion. Bacteroidetes, Proteobacteria and Firmicutes were the dominant phyla in all digesters throughout operation. Proteobacteria decreased in relative abundance from 23-26 % to 11-13 % in association with enhanced substrate availability. Negative correlations between relative abundance of Alpha-, Beta- and Gammaproteobacteria and the substrate availability and/or biogas production were disclosed in statistical analyses. Clostridiales was the dominant order in Firmicutes, and Clostridiales, Clostridia and Firmicutes relative abundance and richness were shown to positively correlate with substrate availability and biogas generation. Methanogenic communities had a fairly restricted structure, highly dominated by Methanosaeta and Methanobrevibacter phylotypes. A gradual decline in Methanobrevibacter and increased representation of Methanosaeta concilii over time were particularly apparent in the digester receiving untreated waste activated sludge, whereas more diversified archaeal communities were maintained in the pre-treatment digesters. The quantitative PCR analyses revealed a methanogenic community distribution that coincided with the 454 pyrosequencing data. PMID:26816092

  4. Microwave assisted synthesis of sheet-like Cu/BiVO4 and its activities of various photocatalytic conditions

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Li, Li; Yi, Tingting; Zhang, WenZhi; Zhang, Xiuli; Wang, Lili

    2015-09-01

    The Cu/BiVO4 photocatalyst with visible-light responsivity was prepared by the microwave-assisted hydrothermal method. The phase structures, chemical composition and surface physicochemical properties were well-characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance absorption (UV-vis/DRS), scanning electron microscopy (SEM), and N2 adsorption-desorption tests. Results indicate that the crystal structure of synthetic composite materials is mainly monoclinic scheelite BiVO4, which is not changed with the increasing doping amount of Cu. In addition, the presence of Cu not only enlarges the range of the composite materials under the visible-light response, but also increases the BET value significantly. Compared to pure BiVO4, 1% Cu/BiVO4-160 performs the highest photocatalytic activity to degrade methylene blue under the irradiation of ultraviolet, visible and simulated sunlight. In addition, the capture experiments prove that the main active species was superoxide radicals during photocatalytic reaction. Moreover, the 1% Cu/BiVO4-160 composite shows good photocatalytic stability after three times of recycling.

  5. Microwave and gamma radiation observations of soil moisture

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Njoku, E. G.; Peck, E.; Ulaby, F. T.

    1979-01-01

    The unique dielectric properties of water at microwave wavelengths afford the possibility for remotely sensing the moisture content in the surface layer of the soil. The surface emissivity and reflectivity for the soils at these wavelengths are strong functions of its moisture content. The changes in emissivity can be observed by passive microwave techniques (radiometry) and the change in reflectivity can be observed by active microwave techniques (radar). The difference in the natural terrestrial gamma ray flux measured for wet and dry soil may be used to determine soil moisture. The presence of water moisture in the soil causes an effective increase in soil density, resulting in an increased attenuation of the gamma flux for wet soil and a corresponding lower flux above the ground surface.

  6. Recent glacier surface snowpack melt in Novaya Zemlya and Severnaya Zemlya derived from active and passive microwave remote sensing data

    NASA Astrophysics Data System (ADS)

    Zhao, Meng

    The warming rate in the Russian High Arctic (RHA) (36˜158°E, 73˜82°N) is outpacing the pan-Arctic average, and its effect on the small glaciers across this region needs further examination. The temporal variation and spatial distribution of surface melt onset date (MOD) and total melt days (TMD) throughout the Novaya Zemlya (NovZ) and Severnaya Zemlya (SevZ) archipelagoes serve as good indicators of ice mass ablation and glacier response to regional climate change in the RHA. However, due to the harsh environment, long-term glaciological observations are limited, necessitating the application of remotely sensed data to study the surface melt dynamics. The high sensitivity to liquid water and the ability to work without solar illumination and penetrate non-precipitating clouds make microwave remote sensing an ideal tool to detect melt in this region. This work extracts resolution-enhanced passive and active microwave data from different periods and retrieves a decadal melt record for NovZ and SevZ. The high correlation among passive and active data sets instills confidence in the results. The mean MOD is June 20th on SevZ and June 10th on NovZ during the period of 1992-2012. The average TMDs are 47 and 67 days on SevZ and NovZ from 1995 to 2011, respectively. NovZ had large interannual variability in the MOD, but its TMD generally increased. SevZ MOD is found to be positively correlated to local June reanalysis air temperature at 850hPa geopotential height and occurs significantly earlier (˜0.73 days/year, p-value < 0.01) from 1992 to 2011. SevZ also experienced a longer TMD trend (˜0.75 days/year, p-value < 0.05) from 1995 to 2011. Annual mean TMD on both islands are positively correlated with regional summer mean reanalysis air temperature and negatively correlated to local sea ice extent. These strong correlations might suggest that the Russian High Arctic glaciers are vulnerable to the continuously diminishing sea ice extent, the associated air temperature

  7. Optomechanics with microwave light

    NASA Astrophysics Data System (ADS)

    Lehnert, Konrad

    2009-03-01

    Recently, superconducting circuits resonant at microwave frequencies have revolutionized the measurement of astrophysical detectors [1] and superconducting qubits [2]. In this talk, I will describe how we extend this technique to measuring and manipulating nanomechanical oscillators. By strongly coupling the motion of a nanomechanical oscillator to the resonance of the microwave circuit we create structures where the dominant dissipative force acting on the oscillator is the radiation pressure of microwave ``light'' [3]. These devices are ultrasensitive force detectors and they allow us to cool the oscillator towards its motional ground state. [4pt] [1] P. K. Day et al., Nature 425, 817 (2003).[0pt] [2] A. Wallraff et al., Nature 431, 162 (2004).[0pt] [3] J. D. Teufel, J. W. Harlow, C. A. Regal and K. W. Lehnert, Phys. Rev. Lett., 101, 197203 (2008).

  8. Active sampling technique to enhance chemical signature of buried explosives

    NASA Astrophysics Data System (ADS)

    Lovell, John S.; French, Patrick D.

    2004-09-01

    Deminers and dismounted countermine engineers commonly use metal detectors, ground penetrating radar and probes to locate mines. Many modern landmines have a very low metal content, which severely limits the effectiveness of metal detectors. Canines have also been used for landmine detection for decades. Experiments have shown that canines smell the explosives which are known to leak from most types of landmines. The fact that dogs can detect landmines indicates that vapor sensing is a viable approach to landmine detection. Several groups are currently developing systems to detect landmines by "sniffing" for the ultra-trace explosive vapors above the soil. The amount of material that is available to passive vapor sensing systems is limited to no more than the vapor in equilibrium with the explosive related chemicals (ERCs) distributed in the surface soils over and near the landmine. The low equilibrium vapor pressure of TNT in the soil/atmosphere boundary layer and the limited volume of the boundary layer air imply that passive chemical vapor sensing systems require sensitivities in the picogram range, or lower. ADA is working to overcome many of the limitations of passive sampling methods, by the use of an active sampling method that employs a high-powered (1,200+ joules) strobe lamp to create a highly amplified plume of vapor and/or ERC-bearing fine particulates. Initial investigations have demonstrated that this approach can amplify the detectability of TNT by two or three orders of magnitude. This new active sampling technique could be used with any suitable explosive sensor.

  9. Improved mesh based photon sampling techniques for neutron activation analysis

    SciTech Connect

    Relson, E.; Wilson, P. P. H.; Biondo, E. D.

    2013-07-01

    The design of fusion power systems requires analysis of neutron activation of large, complex volumes, and the resulting particles emitted from these volumes. Structured mesh-based discretization of these problems allows for improved modeling in these activation analysis problems. Finer discretization of these problems results in large computational costs, which drives the investigation of more efficient methods. Within an ad hoc subroutine of the Monte Carlo transport code MCNP, we implement sampling of voxels and photon energies for volumetric sources using the alias method. The alias method enables efficient sampling of a discrete probability distribution, and operates in 0(1) time, whereas the simpler direct discrete method requires 0(log(n)) time. By using the alias method, voxel sampling becomes a viable alternative to sampling space with the 0(1) approach of uniformly sampling the problem volume. Additionally, with voxel sampling it is straightforward to introduce biasing of volumetric sources, and we implement this biasing of voxels as an additional variance reduction technique that can be applied. We verify our implementation and compare the alias method, with and without biasing, to direct discrete sampling of voxels, and to uniform sampling. We study the behavior of source biasing in a second set of tests and find trends between improvements and source shape, material, and material density. Overall, however, the magnitude of improvements from source biasing appears to be limited. Future work will benefit from the implementation of efficient voxel sampling - particularly with conformal unstructured meshes where the uniform sampling approach cannot be applied. (authors)

  10. The virtual microphone technique in active sound field control systems

    NASA Astrophysics Data System (ADS)

    Lampropoulos, Iraklis E.; Shimizu, Yasushi

    2003-04-01

    Active Sound Field Control (AFC) has been proven very useful in reverberation enhancement applications in large rooms. However, feedback control is required in order to eliminate peaks in the frequency response of the system. The present research closely follows the studies of Shimizu in AFC, in which smoothing of the rooms transfer function is achieved by averaging the impulse responses of multiple microphones. ``The virtual or rotating microphone technique'' reduces the number of microphones in the aforementioned AFC technology, while still achieving the same acoustical effects in the room. After the impulse responses at previously specified pairs of microphone positions are measured, the ratio of transfer functions for every pair is calculated, thus yielding a constant K. Next, microphones are removed and their impulse responses are reproduced by processing the incoming signal of each pair through a convolver, where the computed K constants have been previously stored. Band limiting, windowing and time variance effects are critical factors, in order to reduce incoherence effects and yield reliable approximations of inverse filters and consequently calculations of K. The project is implemented in a church lacking low frequency reverberation for music and makes use of 2 physical and 2 virtual microphones.

  11. Residual matrix from different separation techniques impacts exosome biological activity

    PubMed Central

    Paolini, Lucia; Zendrini, Andrea; Noto, Giuseppe Di; Busatto, Sara; Lottini, Elisabetta; Radeghieri, Annalisa; Dossi, Alessandra; Caneschi, Andrea; Ricotta, Doris; Bergese, Paolo

    2016-01-01

    Exosomes are gaining a prominent role in research due to their intriguing biology and several therapeutic opportunities. However, their accurate purification from body fluids and detailed physicochemical characterization remain open issues. We isolated exosomes from serum of patients with Multiple Myeloma by four of the most popular purification methods and assessed the presence of residual contaminants in the preparations through an ad hoc combination of biochemical and biophysical techniques - including Western Blot, colloidal nanoplasmonics, atomic force microscopy (AFM) and scanning helium ion microscopy (HIM). The preparations obtained by iodixanol and sucrose gradients were highly pure. To the contrary, those achieved with limited processing (serial centrifugation or one step precipitation kit) resulted contaminated by a residual matrix, embedding the exosomes. The contaminated preparations showed lower ability to induce NfkB nuclear translocation in endothelial cells with respect to the pure ones, probably because the matrix prevents the interaction and fusion of the exosomes with the cell membrane. These findings suggest that exosome preparation purity must be carefully assessed since it may interfere with exosome biological activity. Contaminants can be reliably probed only by an integrated characterization approach aimed at both the molecular and the colloidal length scales. PMID:27009329

  12. Microwave generator

    SciTech Connect

    Kwan, T.J.T.; Snell, C.M.

    1987-03-31

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

  13. Techniques for measuring vitamin A activity from β-carotene.

    PubMed

    Tang, Guangwen

    2012-11-01

    Dietary β-carotene is the most important precursor of vitamin A. However, the determination of the efficiency of in vivo conversion of β-carotene to vitamin A requires sensitive and safe techniques. It presents the following challenges: 1) circulating β-carotene concentration cannot be altered by eating a meal containing ≤6 mg β-carotene; 2) because retinol concentrations are homeostatically controlled, the conversion of β-carotene into vitamin A cannot be estimated accurately in well-nourished humans by assessing changes in serum retinol after supplementation with β-carotene. In the past half-century, techniques using radioisotopes of β-carotene and vitamin A, depletion-repletion with vitamin A and β-carotene supplements, measurement of postprandial chylomicron fractions after consumption of a β-carotene dose, and finally, stable isotopes as tracers to follow the absorption and conversion of β-carotene in humans have been developed. The reported values for β-carotene to vitamin A conversion showed a wide variation from 2 μg β-carotene to 1 μg retinol (for synthetic pure β-carotene in oil) and 28 μg β-carotene to 1 μg retinol (for β-carotene from vegetables). In recent years, a stable isotope reference method (IRM) was developed that used labeled synthetic β-carotene. The IRM method provided evidence that the conversion of β-carotene to vitamin A is likely dose dependent. With the development of intrinsically labeled plant foods harvested from a hydroponic system with heavy water, vitamin A activity of stable isotope-labeled biosynthetic β-carotene from various foods consumed by humans was studied. The efficacy of plant foods rich in β-carotene, such as natural (spinach, carrots, spirulina), hybrid (high-β-carotene yellow maize), and bioengineered (Golden Rice) foods, to provide vitamin A has shown promising results. The results from these studies will be of practical importance in recommendations for the use of pure β-carotene and foods

  14. A neutron activation technique for manganese measurements in humans.

    PubMed

    Bhatia, C; Byun, S H; Chettle, D R; Inskip, M J; Prestwich, W V

    2015-01-01

    Manganese (Mn) is an essential element for humans, animals, and plants and is required for growth, development, and maintenance of health. Studies show that Mn metabolism is similar to that of iron, therefore, increased Mn levels in humans could interfere with the absorption of dietary iron leading to anemia. Also, excess exposure to Mn dust, leads to nervous system disorders similar to Parkinson's disease. Higher exposure to Mn is essentially related to industrial pollution. Thus, there is a benefit in developing a clean non-invasive technique for monitoring such increased levels of Mn in order to understand the risk of disease and development of appropriate treatments. To this end, the feasibility of Mn measurements with their minimum detection limits (MDL) has been reported earlier from the McMaster group. This work presents improvement to Mn assessment using an upgraded system and optimized times of irradiation and counting for induced gamma activity of Mn. The technique utilizes the high proton current Tandetron accelerator producing neutrons via the (7)Li(p,n)(7)Be reaction at McMaster University and an array of nine NaI (Tl) detectors in a 4 π geometry for delayed counting of gamma rays. The neutron irradiation of a set of phantoms was performed with protocols having different proton energy, current and time of irradiation. The improved MDLs estimated using the upgraded set up and constrained timings are reported as 0.67 μgMn/gCa for 2.3 MeV protons and 0.71 μgMn/gCa for 2.0 MeV protons. These are a factor of about 2.3 times better than previous measurements done at McMaster University using the in vivo set-up. Also, because of lower dose-equivalent and a relatively close MDL, the combination of: 2.0 MeV; 300 μA; 3 min protocol is recommended as compared to 2.3 MeV; 400 μA; 45 s protocol for further measurements of Mn in vivo. PMID:25169978

  15. Microwave-antenna induced in situ synthesis of Cu nanowire threaded ZIF-8 with enhanced catalytic activity in H2 production

    NASA Astrophysics Data System (ADS)

    Zhang, Dieqing; Liu, Peijue; Xiao, Shuning; Qian, Xufang; Zhang, Hui; Wen, Meicheng; Kuwahara, Yasutaka; Mori, Kohsuke; Li, Hexing; Yamashita, Hiromi

    2016-03-01

    A microwave-antenna strategy was developed for the in situ synthesis of Cu nanowire (CuNW) threaded ZIF-8. The CuNWs acted as microwave-antennas to generate surface ``super hot'' dots. The high temperature of ``super hot'' dots induced adsorption and coordination of metal ions and organic ligands, followed by in situ assembly and crystal-growth along the CuNWs. This catalyst exhibited high activity and stability in H2 production via NH3BH3 hydrolysis owing to the synergetic effect. The CuNWs supplied a rapid electron transfer channel while ZIF-8 assembled on the CuNWs offered a large capacity for adsorbing reactants and channels for rapidly transferring H-/H+ ions toward Cu active sites. Other one-dimensional threaded MOFs, including CuNW threaded MOF-5 and UIO-66, or carbon nanotube threaded ZIF-8 and ZIF-67 could also be prepared using the microwave-antenna strategy.A microwave-antenna strategy was developed for the in situ synthesis of Cu nanowire (CuNW) threaded ZIF-8. The CuNWs acted as microwave-antennas to generate surface ``super hot'' dots. The high temperature of ``super hot'' dots induced adsorption and coordination of metal ions and organic ligands, followed by in situ assembly and crystal-growth along the CuNWs. This catalyst exhibited high activity and stability in H2 production via NH3BH3 hydrolysis owing to the synergetic effect. The CuNWs supplied a rapid electron transfer channel while ZIF-8 assembled on the CuNWs offered a large capacity for adsorbing reactants and channels for rapidly transferring H-/H+ ions toward Cu active sites. Other one-dimensional threaded MOFs, including CuNW threaded MOF-5 and UIO-66, or carbon nanotube threaded ZIF-8 and ZIF-67 could also be prepared using the microwave-antenna strategy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07505j

  16. Microwave-Assisted Synthesis of Bio-Active Heterocycles and Fine Chemicals in Aqueous Media

    EPA Science Inventory

    Human health, especially in the aging population, mostly depends on various medicines, and researchers are combating against emerging diseases by new drug discovery. Heterocyclic compounds hold a special place among pharmaceutically active natural products as well as synthetic co...

  17. MICROWAVE-ASSISTED GREENER SYNTHESIS OF PHARMACEUTICALLY ACTIVE HETEROCYCLES UNDER BENIGN CONDITIONS

    EPA Science Inventory

    Green chemistry is a rapidly developing new field that provides us a proactive avenue for the sustainable development of future science and technologies. Environmentally benign protocols have been developed for the synthesis of various pharmaceutically active heterocycles namely ...

  18. Feasibility of simultaneous operation of passive remote microwave sensors and active services occupying adjacent frequency bands

    NASA Technical Reports Server (NTRS)

    Sue, M. K.

    1982-01-01

    To ensure proper sensor operations, it is necessary to understand the situation of potential interference to sensors due to active equipment sharing common frequency bands as well as equipment occupying adjacent bands. The feasibility of sharing common frequency bands between passive sensors and other active services was analyzed. Potential interference to sensors due to equipment in bands adjacent to sensor frequency bands is examined and criteria to avoid interference is developed.

  19. Sea Surface Salinity and Wind Retrieval Algorithm Using Combined Passive-Active L-Band Microwave Data

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Chaubell, Mario J.

    2011-01-01

    Aquarius is a combined passive/active L-band microwave instrument developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, the global water cycle, and climate. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 kilometers and a retrieval accuracy of 0.2 practical salinity units globally on a monthly basis. The measurement principle is based on the response of the L-band (1.413 gigahertz) sea surface brightness temperatures (T (sub B)) to sea surface salinity. To achieve the required 0.2 practical salinity units accuracy, the impact of sea surface roughness (e.g. wind-generated ripples and waves) along with several factors on the observed brightness temperature has to be corrected to better than a few tenths of a degree Kelvin. To the end, Aquarius includes a scatterometer to help correct for this surface roughness effect.

  20. Synthesis of solar active nanocrystalline ferrite, MFe 2O 4 (M: Ca, Zn, Mg) photocatalyst by microwave irradiation

    NASA Astrophysics Data System (ADS)

    Dom, Rekha; Subasri, R.; Radha, K.; Borse, Pramod H.

    2011-03-01

    For the first time, nanocrystalline photocatalysts of spinel MgFe2O4, ZnFe2O4 and orthorhombic CaFe2O4 oxides were synthesized (at low temperature ˜973 K) by microwave sintering, in one sixtieth of the time required to that of the conventional method. A significantly improved crystallinity was obtained for the samples irradiated for longer duration of time (˜10-100 min). The theoretically computed electronic structure of the MFe2O4 (M: Ca, Zn, Mg) systems was respectively correlated with the experimental results obtained from their structural and photocatalytic characterization. The photocatalytic performance was found to be affected by surface area and crystallinity of the photocatalyst. The density functional theory (DFT) calculations of MFe2O4 lattices revealed that M-ion controllably affects the density of sates of the Fe-d orbitals near the Fermi level. Consequently they play an important role in determining the band-energetics and thus the visible light photocatalytic activity for methylene blue degradation.

  1. Soil Moisture Active Passive (SMAP) Microwave Radiometer Radio-Frequency Interference (RFI) Mitigation: Initial On-Orbit Results

    NASA Technical Reports Server (NTRS)

    Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Johnson, Joel T.; Aksoy, Mustafa; Bringer, Alexandra

    2015-01-01

    The Soil Moisture Active Passive (SMAP) mission, launched in January 2015, provides global measurements of soil moisture using a microwave radiometer. SMAPs radiometer passband lies within the passive frequency allocation. However, both unauthorized in-band transmitters as well as out-of-band emissions from transmitters operating at frequencies adjacent to this allocated spectrum have been documented as sources of radio frequency interference (RFI) to the L-band radiometers on SMOS and Aquarius. The spectral environment consists of high RFI levels as well as significant occurrences of low level RFI equivalent to 0.1 to 10 K. The SMAP ground processor reports the antenna temperature both before and after RFI mitigation is applied. The difference between these quantities represents the detected RFI level. The presentation will review the SMAP RFI detection and mitigation procedure and discuss early on-orbit RFI measurements from the SMAP radiometer. Assessments of global RFI properties and source types will be provided, as well as the implications of these results for SMAP soil moisture measurements.

  2. Sewage sludge pretreatment by microwave irradiation combined with activated carbon fibre at alkaline pH for anaerobic digestion.

    PubMed

    Sun, Dedong; Guo, Sixiao; Ma, Nina; Wang, Guowen; Ma, Chun; Hao, Jun; Xue, Mang; Zhang, Xinxin

    2016-01-01

    This research focuses on the effects of microwave-assisted activated carbon fibre (ACF) (MW-ACF) treatment on sewage sludge at alkaline pH. The disintegration and biodegradability of sewage sludge were studied. It was found that the MW-ACF process at alkaline pH provided a rapid and efficient process to disrupt the microbial cells in the sludge. The results suggested that when irradiated at 800 W MW for 110 s with a dose of 1.0 g ACF/g solid concentration (SS) at pH 10.5, the MW-ACF pretreatment achieved 55% SS disintegration, 23% greater than the value of MW alone (32%). The concentration of total nitrogen, total phosphorus, supernatant soluble chemical oxygen demand, protein, and polysaccharide increased by 60%, 144%, 145%, 74%, and 77%, respectively. An increase in biogas production by 63.7% was achieved after 20 days of anaerobic digestion (AD), compared to the control. The results indicated that the MW-ACF pretreatment process at alkaline pH provides novel sludge management options in disintegration of sewage sludge for further AD. PMID:27332832

  3. Degradation kinetics and mechanism of trace nitrobenzene by granular activated carbon enhanced microwave/hydrogen peroxide system.

    PubMed

    Tan, Dina; Zeng, Honghu; Liu, Jie; Yu, Xiaozhang; Liang, Yanpeng; Lu, Lanjing

    2013-07-01

    The kinetics of the degradation of trace nitrobenzene (NB) by a granular activated carbon (GAC) enhanced microwave (MW)/hydrogen peroxide (H202) system was studied. Effects of pH, NB initial concentration and tert-butyl alcohol on the removal efficiency were examined. It was found that the reaction rate fits well to first-order reaction kinetics in the MW/GAC/H202 process. Moreover, GAC greatly enhanced the degradation rate of NB in water. Under a given condition (MW power 300 W, H202 dosage 10 mg/L, pH 6.85 and temperature (60 +/- 5)degrees C), the degradation rate of NB was 0.05214 min-1when 4 g/L GAC was added. In general, alkaline pH was better for NB degradation; however, the optimum pH was 8.0 in the tested pH value range of 4.0-12.0. At H202 dosage of 10 mg/L and GAC dosage of 4 g/L, the removal of NB was decreased with increasing initial concentrations of NB, indicating that a low initial concentration was beneficial for the degradation of NB. These results indicated that the MW/GAC/H202 process was effective for trace NB degradation in water. Gas chromatography-mass spectrometry analysis indicated that a hydroxyl radical addition reaction and dehydrogenation reaction enhanced NB degradation. PMID:24218864

  4. Bio-refinery of orange peels waste: a new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin.

    PubMed

    Boukroufa, Meryem; Boutekedjiret, Chahrazed; Petigny, Loïc; Rakotomanomana, Njara; Chemat, Farid

    2015-05-01

    In this study, extraction of essential oil, polyphenols and pectin from orange peel has been optimized using microwave and ultrasound technology without adding any solvent but only "in situ" water which was recycled and used as solvent. The essential oil extraction performed by Microwave Hydrodiffusion and Gravity (MHG) was optimized and compared to steam distillation extraction (SD). No significant changes in yield were noticed: 4.22 ± 0.03% and 4.16 ± 0.05% for MHG and SD, respectively. After extraction of essential oil, residual water of plant obtained after MHG extraction was used as solvent for polyphenols and pectin extraction from MHG residues. Polyphenols extraction was performed by ultrasound-assisted extraction (UAE) and conventional extraction (CE). Response surface methodology (RSM) using central composite designs (CCD) approach was launched to investigate the influence of process variables on the ultrasound-assisted extraction (UAE). The statistical analysis revealed that the optimized conditions of ultrasound power and temperature were 0.956 W/cm(2) and 59.83°C giving a polyphenol yield of 50.02 mgGA/100 g dm. Compared with the conventional extraction (CE), the UAE gave an increase of 30% in TPC yield. Pectin was extracted by conventional and microwave assisted extraction. This technique gives a maximal yield of 24.2% for microwave power of 500 W in only 3 min whereas conventional extraction gives 18.32% in 120 min. Combination of microwave, ultrasound and the recycled "in situ" water of citrus peels allow us to obtain high added values compounds in shorter time and managed to make a closed loop using only natural resources provided by the plant which makes the whole process intensified in term of time and energy saving, cleanliness and reduced waste water. PMID:25435398

  5. Microwave-Assisted Condensation Reactions of Acetophenone Derivatives and Activated Methylene Compounds with Aldehydes Catalyzed by Boric Acid under Solvent-Free Conditions.

    PubMed

    Brun, Elodie; Safer, Abdelmounaim; Carreaux, François; Bourahla, Khadidja; L'helgoua'ch, Jean-Martial; Bazureau, Jean-Pierre; Villalgordo, Jose Manuel

    2015-01-01

    We here disclosed a new protocol for the condensation of acetophenone derivatives and active methylene compounds with aldehydes in the presence of boric acid under microwave conditions. Implementation of the reaction is simple, healthy and environmentally friendly owing to the use of a non-toxic catalyst coupled to a solvent-free procedure. A large variety of known or novel compounds have thus been prepared, including with substrates bearing acid or base-sensitive functional groups. PMID:26111185

  6. Synthesis of Ketones through Microwave Irradiation Promoted Metal-Free Alkylation of Aldehydes by Activation of C(sp(3))-H Bond.

    PubMed

    Zhang, Xinying; Wang, Zhangxin; Fan, Xuesen; Wang, Jianji

    2015-11-01

    In this paper, a novel methodology for the synthesis of ketones via microwave irradiation promoted direct alkylation of aldehydes by activation of the inert C(sp(3))-H bond has been developed. Notably, the reactions were accomplished under metal-free conditions and used commercially available aldehydes and cycloalkanes as substrates without prefunctionalization. By using this novel method, an alternative synthetic approach toward the key intermediates for the preparation of the pharmaceutically valuable oxaspiroketone derivatives was successfully established. PMID:26457376

  7. A novel tunable cascaded IIR microwave photonic filter

    NASA Astrophysics Data System (ADS)

    Zhou, Lina; Zhang, Xinliang; Xu, Enming; Yu, Yuan; Li, Xiang; Huang, Dexiu

    2010-07-01

    A new tunable cascaded infinite impulse response (IIR) microwave photonic filter is presented, based on a novel configuration in which a semiconductor optical amplifier (SOA) is inserted between two active recirculating delay line (RDL) loops. Due to wavelength conversion with cross-gain modulation (XGM) in SOA, interferences between light beams traveling different paths are canceled, ensuring a stable transmission. By employing this configuration, a cascaded IIR microwave photonic filter is firstly achieved. The free spectral range (FSR) and the Q factor are both increased significantly by adopting "vernier effect" technique in the IIR filter. The structure is also tunable by adjusting the length of one RDL loop.

  8. Comparative Kinetic Study and Microwaves Non-Thermal Effects on the Formation of Poly(amic acid) 4,4′-(Hexafluoroisopropylidene)diphthalic Anhydride (6FDA) and 4,4′-(Hexafluoroisopropylidene)bis(p-phenyleneoxy)dianiline (BAPHF). Reaction Activated by Microwave, Ultrasound and Conventional Heating

    PubMed Central

    Tellez, Hugo Mendoza; Alquisira, Joaquín Palacios; Alonso, Carlos Rius; Cortés, José Guadalupe López; Toledano, Cecilio Alvarez

    2011-01-01

    Green chemistry is the design of chemical processes that reduce or eliminate negative environmental impacts. The use and production of chemicals involve the reduction of waste products, non-toxic components, and improved efficiency. Green chemistry applies innovative scientific solutions in the use of new reagents, catalysts and non-classical modes of activation such as ultrasounds or microwaves. Kinetic behavior and non-thermal effect of poly(amic acid) synthesized from (6FDA) dianhydride and (BAPHF) diamine in a low microwave absorbing p-dioxane solvent at low temperature of 30, 50, 70 °C were studied, under conventional heating (CH), microwave (MW) and ultrasound irradiation (US). Results show that the polycondensation rate decreases (MW > US > CH) and that the increased rates observed with US and MW are due to decreased activation energies of the Arrhenius equation. Rate constant for a chemical process activated by conventional heating declines proportionally as the induction time increases, however, this behavior is not observed under microwave and ultrasound activation. We can say that in addition to the thermal microwave effect, a non-thermal microwave effect is present in the system. PMID:22072913

  9. Software safety analysis activities during software development phases of the Microwave Limb Sounder (MLS)

    NASA Technical Reports Server (NTRS)

    Shaw, Hui-Yin; Sherif, Joseph S.

    2004-01-01

    This paper describes the MLS software safety analysis activities and documents the SSA results. The scope of this software safety effort is consistent with the MLS system safety definition and is concentrated on the software faults and hazards that may have impact on the personnel safety and the environment safety.

  10. 78 FR 7939 - Energy Conservation Program: Test Procedures for Microwave Ovens (Active Mode)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    .... 75 FR 42579, 42581. In addition, in comments received in response to a separate test procedure notice... referred to as the June 2012 NODA). 77 FR 33106. In the June 2012 NODA, DOE presented test results from... single compartment. 78 FR 4015, 4018 (Jan. 18, 2013). For the purpose of this active mode test...

  11. Irradiation, microwave and alternative energy-based treatments for low water activity foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is an increasing recognition of low water activity foods as vectors for human pathogens. Partially or fully dried agricultural commodities, along with modern formulated dried food products, are complex, and designed to meet a variety of nutritional, sensory, and market-oriented goal. This comp...

  12. Handbook of microwave testing

    NASA Astrophysics Data System (ADS)

    Laverghetta, T. S.

    A description of microwave test equipment is presented, taking into account signal generators, signal detection/indicating devices, auxiliary testing devices, and microwave systems. Low power, medium power, high power, and peak power measurements are considered along with noise measurements, spectrum analyzer measurements, active testing, antenna measurements, and automatic testing. Attention is given to phase noise, Q measurements, the Time Domain Reflectometry (TDR) measurement, swept impedance, noise sources, noise meters, manual noise measurements, automatic noise figure measurements, gain, gain compression, intermodulation, the third order intercept, and questions of spectral purity.

  13. Hybrid Microwave Technology

    SciTech Connect

    Wicks, G.G.

    2001-03-07

    A team associated with a Federal Laboratory, academia, and industry has been actively developing new microwave technology for treatment and remediation of a variety of potentially hazardous materials for almost a decade. This collaboration has resulted in unique equipment and processes with potential applicability to many fields, including disposition of electronic circuitry and components, medical wastes, radioactive materials and recycling of used tires.

  14. The Correlation of Active and Passive Microwave Outputs for the Skylab S-193 Sensor

    NASA Technical Reports Server (NTRS)

    Krishen, K.

    1976-01-01

    This paper presents the results of the correlation analysis of the Skylab S-193 13.9 GHz Radiometer/Scatterometer data. Computer analysis of the S-193 data shows more than 50 percent of the radiometer and scatterometer data are uncorrelated. The correlation coefficients computed for the data gathered over various ground scenes indicates the desirability of using both active and passive sensors for the determination of various Earth phenomena.

  15. The correlation of active and passive microwave data for the Skylab S-193 sensor

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar

    1993-01-01

    This paper presents the results of the correlation analysis of the Skylab S-193 13.9 GHz Radiometer/Scatterometer data. Computer analysis of the S-193 data shows more than 50 percent of the radiometer and scatterometer data are uncorrelated. The correlation coefficients computed for the data gathered over various ground scenes indicates the desirability of using both active and passive sensors for the determination of various Earth phenomena.

  16. Microwave furnace having microwave compatible dilatometer

    DOEpatents

    Kimrey, Jr., Harold D.; Janney, Mark A.; Ferber, Mattison K.

    1992-01-01

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy.

  17. Microwave furnace having microwave compatible dilatometer

    DOEpatents

    Kimrey, H.D. Jr.; Janney, M.A.; Ferber, M.K.

    1992-03-24

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy. 2 figs.

  18. Successful Application of Active Learning Techniques to Introductory Microbiology.

    ERIC Educational Resources Information Center

    Hoffman, Elizabeth A.

    2001-01-01

    Points out the low student achievement in microbiology courses and presents an active learning method applied in an introductory microbiology course which features daily quizzes, cooperative learning activities, and group projects. (Contains 30 references.) (YDS)

  19. Preparation of highly photocatalytic active CdS/TiO2 nanocomposites by combining chemical bath deposition and microwave-assisted hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Li, Li; Wang, Lili; Hu, Tianyu; Zhang, Wenzhi; Zhang, Xiuli; Chen, Xi

    2014-10-01

    CdS/TiO2 nanocomposites were prepared from Cd and Ti (1:1 M ratio) using cetyltrimethylammonium bromide by a two-step chemical bath deposition (CBD) and microwave-assisted hydrothermal synthesis (MAHS) method. A series of nanocomposites with different morphologies and activities were prepared by varying the reaction time in the MAHS (2, 4, and 6 h). The crystal structure, morphology, and surface physicochemical properties of the nanocomposites were characterized by X-ray diffraction, UV-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N2 adsorption-desorption measurements. The results show that the CdS/TiO2 nanocomposites were composed of anatase TiO2 and hexagonal CdS phases with strong absorption in the visible region. The surface morphologies changed slightly with increasing microwave irradiation time, while the Brunauer-Emmett-Teller surface area increased remarkably. The photocatalytic degradation of methyl orange (MO) was investigated under UV light and simulated sunlight irradiation. The photocatalytic activity of the CdS/TiO2 (6 h) composites prepared by the MAHS method was higher than those of CdS, P25, and other CdS/TiO2 nanocomposites. The CdS/TiO2 (6 h) nanocomposites significantly affected the UV and microwave-assisted photocatalytic degradation of different dyes. To elucidate the photocatalytic reaction mechanism for the CdS/TiO2 nanocomposites, controlled experiments were performed by adding different radical scavengers.

  20. Microwave-antenna induced in situ synthesis of Cu nanowire threaded ZIF-8 with enhanced catalytic activity in H2 production.

    PubMed

    Zhang, Dieqing; Liu, Peijue; Xiao, Shuning; Qian, Xufang; Zhang, Hui; Wen, Meicheng; Kuwahara, Yasutaka; Mori, Kohsuke; Li, Hexing; Yamashita, Hiromi

    2016-04-14

    A microwave-antenna strategy was developed for the in situ synthesis of Cu nanowire (CuNW) threaded ZIF-8. The CuNWs acted as microwave-antennas to generate surface "super hot" dots. The high temperature of "super hot" dots induced adsorption and coordination of metal ions and organic ligands, followed by in situ assembly and crystal-growth along the CuNWs. This catalyst exhibited high activity and stability in H2 production via NH3BH3 hydrolysis owing to the synergetic effect. The CuNWs supplied a rapid electron transfer channel while ZIF-8 assembled on the CuNWs offered a large capacity for adsorbing reactants and channels for rapidly transferring H(-)/H(+) ions toward Cu active sites. Other one-dimensional threaded MOFs, including CuNW threaded MOF-5 and UIO-66, or carbon nanotube threaded ZIF-8 and ZIF-67 could also be prepared using the microwave-antenna strategy. PMID:27001205

  1. Coronal Magnetography of a Simulated Solar Active Region from Microwave Imaging Spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Wang, Zhitao; Gary, Dale E.; Fleishman, Gregory D.; White, Stephen M.

    2015-06-01

    We have simulated the Expanded Owens Valley Solar Array (EOVSA) radio images generated at multiple frequencies from a model solar active region, embedded in a realistic solar disk model, and explored the resulting data cube for different spectral analysis schemes to evaluate the potential for realizing one of EOVSA’s most important scientific goals—coronal magnetography. In this paper, we focus on modeling the gyroresonance and free-free emission from an on-disk solar active region model with realistic complexities in electron density, temperature and magnetic field distribution. We compare the magnetic field parameters extrapolated from the image data cube along each line of sight after folding through the EOVSA instrumental profile with the original (unfolded) parameters used in the model. We find that even the most easily automated, image-based analysis approach (Level-0) provides reasonable quantitative results, although they are affected by systematic effects due to finite sampling in the Fourier (UV) plane. Finally, we note the potential for errors due to misidentified harmonics of the gyrofrequency, and discuss the prospects for applying a more sophisticated spectrally based analysis scheme (Level-1) to resolve the issue in cases where improved UV coverage and spatial resolution are available.

  2. Microwave systems analysis, solar power satellite. [alignment of the antenna array

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Various alternative active approaches to achieving aand maintaining flatness for the microwave power transmission system (MPTS) were studied. A baseline active alignment scheme was developed which includes subarray attachment mechanisms, height and tilting adjustments, service corridors, a rotating laser beam reference system, monopulse pointing techniques, and the design of a beam-centering photoconductive sensor.

  3. Design of an L-band Microwave Radiometer with Active Mitigation of Interference

    NASA Technical Reports Server (NTRS)

    Ellingson, S. W.; Johnson, J. T.

    2003-01-01

    Radio frequency interference (RFI) impairs L-band radiometry outside the protected 20 MHz frequency band around 1413 MHz. However, bandwidths of 100 MHz or more are desired for certain remote sensing applications as well as certain astronomy applications. Because much of the RFI in this band is from radars with pulse lengths on the order of microseconds, traditional radiometers (i.e., those which directly measure total power or power spectral density integrated over time scales of milliseconds or greater) are poorly-suited to this task. Simply reducing integration time and discarding contaminated outputs may not be a practical answer due to the wide variety of modulations and pulse lengths observed in L-band RFI signals, the dynamic and complex nature of the associated propagation channels, and the logistical effort associated with post-measurement data editing. This motivates the design and development of radiometers capable of coherent sampling and adaptive, real-time mitigation of interference. Such a radiometer will be described in this presentation. This design is capable of coherently-sampling up to 100 MHz bandwidth at L-band. RFI mitigation is implemented in FPGA components so that real-time suppression is achieved. The system currently uses a cascade of basic time- and frequency- domain detection and blanking techniques; more advanced algorithms are un- der consideration. The modular FPGA-based architecture provides other benefits, such as the ability to implement extremely stable digital filters and the ability to reconfigure the system "on the fly". An overview of the basic design along with on-the-air results from an initial implementation will be provided in the presentation. Related L-band RFI surveys will be described to illustrate the relevance of this approach in a variety of operating conditions.

  4. Design of an L-band Microwave Radiometer with Active Mitigation of Interference

    NASA Technical Reports Server (NTRS)

    Hampson, G. A.; Ellingson, S. W.; Johnson, J. T.

    2003-01-01

    Radio frequency interference (RFI) impairs L-band radiometry outside the protected 20 MHz frequency band around 1413 MHz. However, bandwidths of 100 MHz or more are desired for certain remote sensing applications as well as certain astronomy applications. Because much of the RFI in this band is from radars with pulse lengths on the order of microseconds, traditional radiometers (i.e., those which directly measure total power or power spectral density integrated over time scales of milliseconds or greater) are poorly-suited to this task. Simply reducing integration time and discarding contaminated outputs may not be a practical answer due to the wide variety of modulations and pulse lengths observed in L-band RFI signals, the dynamic and complex nature of the associated propagation channels, and the logistical effort associated with post-measurement data editing. This motivates the design and development of radiometers capable of coherent sampling and adaptive, real-time mitigation of interference. Such a radiometer will be described in this presentation. This design is capable of coherently-sampling up to 100 MHz bandwidth at L-band. RFI mitigation is implemented in FPGA components so that real-time suppression is achieved. The system currently uses a cascade of basic time- and frequency-domain detection and blanking techniques; more advanced algorithms are under consideration. The modular FPGA-based architecture provides other benefits, such as the ability to implement extremely stable digital filters and the ability to reconfigure the system "on the fly". An overview of the basic design along with on-the-air results from an initial implementation will be provided in the presentation. Related L-band RFI surveys will be described to illustrate the relevance of this approach in a variety of operating conditions.

  5. Frequency translating phase conjugation circuit for active retrodirective antenna array. [microwave transmission

    NASA Technical Reports Server (NTRS)

    Chernoff, R. (Inventor)

    1980-01-01

    An active retrodirective antenna array which has central phasing from a reference antenna element through a "tree" structured network of transmission lines utilizes a number of phase conjugate circuits (PCCs) at each node and a phase reference regeneration circuit (PRR) at each node except the initial node. Each node virtually coincides with an element of the array. A PCC generates the exact conjugate phase of an incident signal using a phase locked loop which combines the phases in an up converter, divides the sum by 2 and mixes the result with the phase in a down converter for phase detection. The PRR extracts the phase from the conjugate phase. Both the PCC and the PRR are not only exact but also free from mixer degeneracy.

  6. EDITORIAL: Microwave Moisture Measurements

    NASA Astrophysics Data System (ADS)

    Kaatze, Udo; Kupfer, Klaus; Hübner, Christof

    2007-04-01

    Microwave moisture measurements refer to a methodology by which the water content of materials is non-invasively determined using electromagnetic fields of radio and microwave frequencies. Being the omnipresent liquid on our planet, water occurs as a component in most materials and often exercises a significant influence on their properties. Precise measurements of the water content are thus extremely useful in pure sciences, particularly in biochemistry and biophysics. They are likewise important in many agricultural, technical and industrial fields. Applications are broad and diverse, and include the quality assessment of foodstuffs, the determination of water content in paper, cardboard and textile production, the monitoring of moisture in sands, gravels, soils and constructions, as well as the measurement of water admixtures to coal and crude oil in reservoirs and in pipelines. Microwave moisture measurements and evaluations require insights in various disciplines, such as materials science, dielectrics, the physical chemistry of water, electrodynamics and microwave techniques. The cooperation of experts from the different fields of science is thus necessary for the efficient development of this complex discipline. In order to advance cooperation the Workshop on Electromagnetic Wave Interaction with Water and Moist Substances was held in 1993 in Atlanta. It initiated a series of international conferences, of which the last one was held in 2005 in Weimar. The meeting brought together 130 scientists and engineers from all over the world. This special issue presents a collection of some selected papers that were given at the event. The papers cover most topics of the conference, featuring dielectric properties of aqueous materials, electromagnetic wave interactions, measurement methods and sensors, and various applications. The special issue is dedicated to Dr Andrzej W Kraszewski, who died in July 2006 after a distinguished career of 48 years in the research of

  7. Microwave-assisted hydrothermal synthesis of marigold-like ZnIn{sub 2}S{sub 4} microspheres and their visible light photocatalytic activity

    SciTech Connect

    Chen Zhixin; Li Danzhen; Xiao Guangcan; He Yunhui; Xu Yijun

    2012-02-15

    Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a microwave-assisted hydrothermal method with the temperature ranging from 80 to 195 Degree-Sign C. X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen sorption analysis, UV-visible spectroscopy, scanning electron microscopy and transmission electron microscopy were used to characterize the products. It was found that the crystallographic structure and optical property of the products synthesized at different temperatures were almost the same. The degradation of methyl orange (MO) under the visible light irradiation has been used as a probe reaction to investigate the photocatalytic activity of as-prepared ZnIn{sub 2}S{sub 4}, which shows that the ZnIn{sub 2}S{sub 4} sample synthesized at 195 Degree-Sign C shows the best photocatalytic activity for MO degradation. In addition, the photocatalytic activities of all the samples prepared by the microwave-assisted hydrothermal method are better than those prepared by a normal hydrothermal method, which could be attributed to the formation of more defect sites during the microwave-assisted hydrothermal treatment. - Graphical abstract: Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a fast microwave-assisted hydrothermal method at 80-195 Degree-Sign C with a very short reaction time of 10 min. The as-prepared ZnIn{sub 2}S{sub 4} sample can be used as visible light photocatalyst for degradation of organic dyes. Highlights: Black-Right-Pointing-Pointer ZnIn{sub 2}S{sub 4} microspheres were synthesized by microwave-assisted hydrothermal method. Black-Right-Pointing-Pointer The crystal structure and optical property of the products were almost the same. Black-Right-Pointing-Pointer Increment of the temperature renders high surface area due to the bubbling effect. Black-Right-Pointing-Pointer The ZnIn{sub 2}S{sub 4} synthesized at 195 Degree-Sign C shows the best visible catalytic activity for MO.

  8. The roles of active species in photo-decomposition of organic compounds by microwave powered electrodeless discharge lamps.

    PubMed

    Hong, Jun; Han, Bo; Yuan, Nannan; Gu, Jingli

    2015-07-01

    Knowledge of the effective radiation spectrum irradiating substrates from microwave powered electrodeless discharge lamps (MEDLs), and the active species that directly oxidize substrates in the photolytic process, is fragmentary and unclear. In this work, we conducted a comparative study using MEDLs made with quartz envelopes (MEDL-quartz) and with borosilicate Pyrex envelopes (MEDL-Pyrex) targeting the degradation of Rhodamine B (RhB) via radical-extinguishing tests. We found that UVC/UVB radiation is essential to generate •OH and H2O2 in the MEDL-quartz system. The degradation of RhB mostly originates from •OH species, which account for a contribution of 53.8%, while the remaining contribution is attributed to oxidation by H2O2 and direct photolysis. This degradation is influenced by several parameters. Acidic and neutral pHs, but not extreme alkaline pH, benefit the degradation. To ensure a high intensity of UVC/UVB, the optimum ratio of the MEDL volume to the aqueous solution volume (VL/VS) is 0.4. Concentrations of 0.15-0.20 mmol/L of RhB are suitable to obtain an effective quantum absorbance in the MEDL-quartz system, showing a high decomposition rate of 5.6×10(-3) (mmol/L) min(-1). Moreover, two other substrates, Reactive Brilliant Red X-3B and Safranine T, were tested and found to be efficiently degraded in the MEDL-quartz system. PMID:26141878

  9. Structure and Catalytic Activity of Cr-Doped BaTiO3 Nanocatalysts Synthesized by Conventional Oxalate and Microwave Assisted Hydrothermal Methods.

    PubMed

    Srilakshmi, Chilukoti; Saraf, Rohit; Prashanth, V; Rao, G Mohan; Shivakumara, C

    2016-05-16

    In the present study synthesis of BaTi1-xCrxO3 nanocatalysts (x = 0.0 ≤ x ≤ 0.05) by conventional oxalate and microwave assisted hydrothermal synthesis methods was carried out to investigate the effect of synthesis methods on the physicochemical and catalytic properties of nanocatalysts. These catalysts were thoroughly characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), N2 physisortion, and total acidity by pyridine adsorption method. Their catalytic performance was evaluated for the reduction of nitrobenzene using hydrazine hydrate as the hydrogen source. Structural parameters refined by Rietveld analysis using XRD powder data indicate that BaTi1-xCrxO3 conventional catalysts were crystallized in the tetragonal BaTiO3 structure with space group P4mm, and microwave catalysts crystallized in pure cubic BaTiO3 structure with space group Pm3̅m. TEM analysis of the catalysts reveal spherical morphology of the particles, and these are uniformly dispersed in microwave catalysts whereas agglomeration of the particles was observed in conventional catalysts. Particle size of the microwave catalysts is found to be 20-35 nm compared to conventional catalysts (30-48 nm). XPS studies reveal that Cr is present in the 3+ and 6+ mixed valence state in all the catalysts. Microwave synthesized catalysts showed a 4-10-fold increase in surface area and pore volume compared to conventional catalysts. Acidity of the BaTiO3 catalysts improved with Cr dopant in the catalysts, and this could be due to an increase in the number of Lewis acid sites with an increase in Cr content of all the catalysts. Catalytic reduction of nitrobenzene to aniline studies reveals that BaTiO3 synthesized by microwave is very active and showed 99.3% nitrobenzene conversion with 98.2% aniline yield. The presence of Cr in the catalysts facilitates a faster reduction reaction in all the

  10. X-ray/microwave relation of different types of active stars

    NASA Technical Reports Server (NTRS)

    Guedel, Manuel; Benz, Arnold O.

    1993-01-01

    Coronal active stars of seven classes between spectral types F and M, single and double, are compared in their quiescent radio and X-ray luminosities L(R) and L(X). We find, largely independent of stellar class, log L(X) is less than about log L(R) + 15.5. This general relation points to an intimate connection between the nonthermal, energetic electrons causing the radio emission and the bulk plasma of the corona responsible for thermal X-rays. The relation, observed over six orders of magnitude, suggests that the heating mechanism necessarily involves particle acceleration. We derive requirements for simple models based on optically thin gyrosynchrotron emission of mildly relativistic electrons and thermal X-rays from the bulk plasma. We discuss the possibility that a portion of the accelerated particles heats the ambient plasma by collisions. More likely, plasma heating and particle acceleration may occur in parallel and in the same process, but at a fixed ratio.

  11. Facile microwave-assisted aqueous synthesis of CdS nanocrystals with their photocatalytic activities under visible lighting

    SciTech Connect

    Deng, Chonghai; Tian, Xiaobo

    2013-10-15

    Graphical abstract: - Highlights: • Three kinds of CdS nanostructures have been controllably synthesized. • Ethanediamine acts as a phase and morphology controlling reagent. • Three CdS nanostructures display high visible light photocatalytic activities. • Cubic CdS-3 shows superior photocatalytic activity to the other hexagonal CdS. • The growth processes for fabrication of CdS nanocrystals are also discussed. - Abstract: Three kinds of CdS nanostructures, that is, hexagonal nanospheres (CdS-1), hierarchical caterpillar-fungus-like hexagonal nanorods (CdS-2) and hierarchical cubic microspheres (CdS-3), were controllably synthesized by a facile and one-pot microwave-assisted aqueous chemical method using ethanediamine as a phase and morphology controlling reagent. The as-prepared products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectra (DRS) and photoluminescence (PL) spectra. The results show that CdS-1 is mainly composed of monodispersed hexagonal nanospheres with average diameters of about 100 nm; hexagonal CdS-2 has lengths in the range of 600–800 nm and diameters of 40–60 nm, assembled by nanoparticles about 20 nm in diameter; and CdS-3 is pure cubic microspheres with diameters in the range of 0.8–1.3 μm, aggregated by tiny nanograins with size of 5.8 nm. The band gap energies of CdS products were calculated to be 2.30, 2.31 and 2.24 eV observed from UV–vis DRS for CdS-1, CdS-2 and CdS-3, respectively. PL spectra of CdS samples showed that sphalerite CdS-3 possesses a very weak fluorescence, while wurtzite CdS-2 has a strongest green near-band edge emission (NBE) at 550 nm. The visible light photodegradation of methylene blue and rhodamine B in the presence of CdS photocatalysts illustrates that all of them display high photocatalytic activities. Significantly, the cubic CdS-3 exhibits more excellent photocatalytic

  12. Microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Shiue, J. C.; Wang, J. R.

    1988-01-01

    Knowledge of soil moisture is important to many disciplines, such as agriculture, hydrology, and meteorology. Soil moisture distribution of vast regions can be measured efficiently only with remote sensing techniques from airborne or satellite platforms. At low microwave frequencies, water has a much larger dielectric constant than dry soil. This difference manifests itself in surface emissivity (or reflectivity) change between dry and wet soils, and can be measured by a microwave radiometer or radar. The Microwave Sensors and Data Communications Branch is developing microwave remote sensing techniques using both radar and radiometry, but primarily with microwave radiometry. The efforts in these areas range from developing algorithms for data interpretation to conducting feasibility studies for space systems, with a primary goal of developing a microwave radiometer for soil moisture measurement from satellites, such as EOS or the Space Station. These efforts are listed.

  13. The regeneration of polluted activated carbon by radiation techniques

    NASA Astrophysics Data System (ADS)

    Minghong, Wu; Borong, Bao; Ruimin, Zhou; Jinliang, Zhu; Longxin, Hu

    1998-10-01

    In this paper, the regeneration of used activated carbon from monosodium glutamate factory was experimented using radiation and acid-alkali chemical cleaning method. Results showed that the activated carbon saturated with pollutants can be wash away easily by flushing with chemical solution prior irradiation. DSC was used to monitor the change of carbon adsorption

  14. The Liverpool Microwave Palaeointensity System

    NASA Astrophysics Data System (ADS)

    Hill, Mimi; Biggin, Andrew; Hawkins, Louise; Hodgson, Emma; Hurst, Elliot

    2016-04-01

    The motivation for the group at Liverpool in the 1990s (led by John Shaw and Derek Walton) to start experimenting with using microwaves to demagnetise and remagnetise palaeomagnetic samples, rather than heating using conventional ovens, was to reduce laboratory induced alteration in absolute palaeointensity experiments. As with other methods, the non-ideal effects of grain size and naturally altered remanence must still be addressed. From humble beginnings using a domestic microwave oven the current 4th generation microwave system (MWS) has developed in to an integrated combined 14 GHz microwave resonant cavity and SQUID magnetometer system. The MWS is designed to investigate one 5 mm diameter sample at a time with microwave exposure (the equivalent of a heating step in conventional experiments) ranging from a few seconds up to around a minute. Each experiment (protocol, checks, direction and strength of applied field, number of steps etc) can be tailored to the behaviour of each individual sample. There have been many published studies demonstrating the equivalence of conventional thermal (Thellier) and microwave techniques using both artificial and natural remanence and also that the microwave method can indeed reduce laboratory induced alteration. Here an overview of the present MWS including a discussion of the physical processes occurring will be given. Examples of current projects (both archaeological and geological) utilising the method will also be described. Finally, future developments and applications of the method will be discussed.

  15. Activated sampling in complex materials at finite temperature: The properly obeying probability activation-relaxation technique

    NASA Astrophysics Data System (ADS)

    Vocks, Henk; Chubynsky, M. V.; Barkema, G. T.; Mousseau, Normand

    2005-12-01

    While the dynamics of many complex systems is dominated by activated events, there are very few simulation methods that take advantage of this fact. Most of these procedures are restricted to relatively simple systems or, as with the activation-relaxation technique (ART), sample the conformation space efficiently at the cost of a correct thermodynamical description. We present here an extension of ART, the properly obeying probability ART (POP-ART), that obeys detailed balance and samples correctly the thermodynamic ensemble. Testing POP-ART on two model systems, a vacancy and an interstitial in crystalline silicon, we show that this method recovers the proper thermodynamical weights associated with the various accessible states and is significantly faster than molecular dynamics in the simulations of a vacancy below 700 K.

  16. Activated sampling in complex materials at finite temperature: the properly obeying probability activation-relaxation technique.

    PubMed

    Vocks, Henk; Chubynsky, M V; Barkema, G T; Mousseau, Normand

    2005-12-22

    While the dynamics of many complex systems is dominated by activated events, there are very few simulation methods that take advantage of this fact. Most of these procedures are restricted to relatively simple systems or, as with the activation-relaxation technique (ART), sample the conformation space efficiently at the cost of a correct thermodynamical description. We present here an extension of ART, the properly obeying probability ART (POP-ART), that obeys detailed balance and samples correctly the thermodynamic ensemble. Testing POP-ART on two model systems, a vacancy and an interstitial in crystalline silicon, we show that this method recovers the proper thermodynamical weights associated with the various accessible states and is significantly faster than molecular dynamics in the simulations of a vacancy below 700 K. PMID:16396563

  17. Rapid microwave-assisted sol-gel preparation of Pd-substituted LnFeO3 (Ln = Y, La): phase formation and catalytic activity

    SciTech Connect

    Misch, Lauren M.; Birkel, Alexander; Figg, C. Adrian; Fors, Brett P.; Hawker, Craig J.; Stucky, Galen D.; Seshadri, Ram

    2014-02-13

    We present a rapid microwave-assisted sol–gel approach to Pd-substituted LnFeO3 (Ln = Y, La) for applications in C–C coupling reactions. These materials could be prepared in household microwave ovens in less than 15 minutes of reaction time with the final materials displaying well-defined structure and morphology. Phase evolution was studied using time-dependent microwave heatings and then compared with the results obtained from thermogravimetric analyses. Materials were confirmed to be phase pure by laboratory and synchrotron X-ray diffraction. Substituted Pd is ionic as shown by the binding energy shift from X-ray photoelectron spectroscopy. The short heating periods required for phase purity allow these materials less time for sintering as compared to conventional solid state preparation methods, making relatively high surface areas achievable. These materials have been successfully used as catalyst precursor materials for C–C coupling reactions in which the active species is Pd0. Pd-substituted LnFeO3 (Ln = Y, La) provides Pd0 in solution which can be complexed by the ligand SPhos, allowing for aryl chloride coupling.

  18. Changes in phytochemicals, anti-nutrients and antioxidant activity in leafy vegetables by microwave boiling with normal and 5% NaCl solution.

    PubMed

    Singh, Shrawan; Swain, S; Singh, D R; Salim, K M; Nayak, Dipak; Roy, S Dam

    2015-06-01

    The present study investigated the changes in phytochemicals and antioxidant activities in 25 leafy vegetables with two common boiling practices viz., with 5% NaCl solution (BSW) and normal water (BNW) in a domestic microwave oven. Fresh samples (100g) were rich in polyphenols (58.8-296.9mg), tannin (402.0-519.4mg), flavonoids (148.9-614.4mg), carotenoids (69.0-786.3mg), anthocyanin (11.7-493.7mg) and ascorbic acid (245.0-314.2mg). Microwave boiling significantly (p<0.05) decreased/increased phytochemicals but none of the compounds followed same trend in all vegetables. Boiling process reduced anti-nutrients from fresh samples (FS) as observed for nitrate (4.5-73.6% by BSW and 22.5-98.8% by BNW); phytate (6.2-69.7% by BSW and 10.6-57.3% by BNW) and oxalate (14.7-88.9% by BSW and 14.5-87.3% by BNW) but saponin increased in 18 vegetables by BNW while 8 vegetables by BSW. The study revealed differential pattern of change in phytochemical matrix and anti-nutrients in vegetables by microwave boiling which will help in devising efficient cooking practices and contribute in health and nutritional security. PMID:25624230

  19. Application of thermal analysis techniques in activated carbon production

    USGS Publications Warehouse

    Donnals, G.L.; DeBarr, J.A.; Rostam-Abadi, M.; Lizzio, A.A.; Brady, T.A.

    1996-01-01

    Thermal analysis techniques have been used at the ISGS as an aid in the development and characterization of carbon adsorbents. Promising adsorbents from fly ash, tires, and Illinois coals have been produced for various applications. Process conditions determined in the preparation of gram quantities of carbons were used as guides in the preparation of larger samples. TG techniques developed to characterize the carbon adsorbents included the measurement of the kinetics of SO2 adsorption, the performance of rapid proximate analyses, and the determination of equilibrium methane adsorption capacities. Thermal regeneration of carbons was assessed by TG to predict the life cycle of carbon adsorbents in different applications. TPD was used to determine the nature of surface functional groups and their effect on a carbon's adsorption properties.

  20. Mathematical analysis techniques for modeling the space network activities

    NASA Technical Reports Server (NTRS)

    Foster, Lisa M.

    1992-01-01

    The objective of the present work was to explore and identify mathematical analysis techniques, and in particular, the use of linear programming. This topic was then applied to the Tracking and Data Relay Satellite System (TDRSS) in order to understand the space network better. Finally, a small scale version of the system was modeled, variables were identified, data was gathered, and comparisons were made between actual and theoretical data.

  1. Quantifying the Nucleation and Growth Kinetics of Microwave Nanochemistry Enabled by in Situ High-Energy X-ray Scattering.

    PubMed

    Liu, Qi; Gao, Min-Rui; Liu, Yuzi; Okasinski, John S; Ren, Yang; Sun, Yugang

    2016-01-13

    The fast reaction kinetics presented in the microwave synthesis of colloidal silver nanoparticles was quantitatively studied, for the first time, by integrating a microwave reactor with in situ X-ray diffraction at a high-energy synchrotron beamline. Comprehensive data analysis reveals two different types of reaction kinetics corresponding to the nucleation and growth of the Ag nanoparticles. The formation of seeds (nucleation) follows typical first-order reaction kinetics with activation energy of 20.34 kJ/mol, while the growth of seeds (growth) follows typical self-catalytic reaction kinetics. Varying the synthesis conditions indicates that the microwave colloidal chemistry is independent of concentration of surfactant. These discoveries reveal that the microwave synthesis of Ag nanoparticles proceeds with reaction kinetics significantly different from the synthesis present in conventional oil bath heating. The in situ X-ray diffraction technique reported in this work is promising to enable further understanding of crystalline nanomaterials formed through microwave synthesis. PMID:26625184

  2. The influence of curricular and extracurricular learning activities on students' choice of chiropractic technique

    PubMed Central

    Sikorski, David M.; KizhakkeVeettil, Anupama; Tobias, Gene S.

    2016-01-01

    Objective: Surveys for the National Board of Chiropractic Examiners indicate that diversified chiropractic technique is the most commonly used chiropractic manipulation method. The study objective was to investigate the influences of our diversified core technique curriculum, a technique survey course, and extracurricular technique activities on students' future practice technique preferences. Methods: We conducted an anonymous, voluntary survey of 1st, 2nd, and 3rd year chiropractic students at our institution. Surveys were pretested for face validity, and data were analyzed using descriptive and inferential statistics. Results: We had 164 students (78% response rate) participate in the survey. Diversified was the most preferred technique for future practice by students, and more than half who completed the chiropractic technique survey course reported changing their future practice technique choice as a result. The students surveyed agreed that the chiropractic technique curriculum and their experiences with chiropractic practitioners were the two greatest bases for their current practice technique preference, and that their participation in extracurricular technique clubs and seminars was less influential. Conclusions: Students appear to have the same practice technique preferences as practicing chiropractors. The chiropractic technique curriculum and the students' experience with chiropractic practitioners seem to have the greatest influence on their choice of chiropractic technique for future practice. Extracurricular activities, including technique clubs and seminars, although well attended, showed a lesser influence on students' practice technique preferences. PMID:26655282

  3. Preparation of highly photocatalytic active CdS/TiO{sub 2} nanocomposites by combining chemical bath deposition and microwave-assisted hydrothermal synthesis

    SciTech Connect

    Li, Li; Wang, Lili; Hu, Tianyu; Zhang, Wenzhi; Zhang, Xiuli; Chen, Xi

    2014-10-15

    CdS/TiO{sub 2} nanocomposites were prepared from Cd and Ti (1:1 M ratio) using cetyltrimethylammonium bromide by a two-step chemical bath deposition (CBD) and microwave-assisted hydrothermal synthesis (MAHS) method. A series of nanocomposites with different morphologies and activities were prepared by varying the reaction time in the MAHS (2, 4, and 6 h). The crystal structure, morphology, and surface physicochemical properties of the nanocomposites were characterized by X-ray diffraction, UV–visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N{sub 2} adsorption–desorption measurements. The results show that the CdS/TiO{sub 2} nanocomposites were composed of anatase TiO{sub 2} and hexagonal CdS phases with strong absorption in the visible region. The surface morphologies changed slightly with increasing microwave irradiation time, while the Brunauer–Emmett–Teller surface area increased remarkably. The photocatalytic degradation of methyl orange (MO) was investigated under UV light and simulated sunlight irradiation. The photocatalytic activity of the CdS/TiO{sub 2} (6 h) composites prepared by the MAHS method was higher than those of CdS, P25, and other CdS/TiO{sub 2} nanocomposites. The CdS/TiO{sub 2} (6 h) nanocomposites significantly affected the UV and microwave-assisted photocatalytic degradation of different dyes. To elucidate the photocatalytic reaction mechanism for the CdS/TiO{sub 2} nanocomposites, controlled experiments were performed by adding different radical scavengers. - Graphical abstract: CdS/TiO{sub 2} nanocomposites were prepared using CTAB by CBD combined with MAHS method. In addition, with increasing microwave irradiation time, the morphology of CdS/TiO{sub 2} changed from popcorn-like to wedge-like structure. - Highlights: • The CdS/TiO{sub 2} was prepared by CBD combined with MAHS two-step method under CTAB. • The morphologies of as-samples were different with the time of

  4. Ray Tracing Technique for Modeling of Power Deposition into Electron Cyclotron Resonance Discharge of a Simple Mirror Trap with Longitudinal Launch of Microwave Radiation

    SciTech Connect

    Gospodchikov, E.D.; Smolyakova, O.B.; Suvorov, E.V.

    2005-01-15

    The ray-tracing procedure for modeling the power deposition into electron cyclotron resonance (ECR) discharge in an axisymmetric mirror trap with longitudinal launch of microwave power is presented. To deal with cyclotron absorption for normal waves of magnetized plasma propagating nearly along the magnetic field in the vicinity of electron cyclotron frequency approximate dispersion relation has been derived using Stix components for microwave electric field. Calculations have been performed for parameters corresponding to ECR multicharge ion (MCI) source (IAP RAS) as example. It is shown that the efficient power deposition into ECR discharge within single pass of radiation through the plasma column may be provided under conditions that parasitic cyclotron resonance (before the plug) is outside the plasma volume and the electron density in the vicinity of the main resonance is undercritical. This is in a qualitative agreement with experimental results.

  5. New concepts for microwave sensing

    NASA Astrophysics Data System (ADS)

    Bolomey, Jean-Charles

    1994-09-01

    For a long time, microwaves have been considered as a possible sensing agent for nondestructive testing/evaluation purposes. This trend has still been reinforced these last years with the advent of new microwave penetrable materials, such as composites. Inspection of materials via a mechanically scanned probe has proven to offer a convenient, but time consuming, way to measure local reflexion or transmission coefficients and, hence, to evaluate defects, faults, etc... High speed measurements are now possible by using arrays of fixed probes, resulting in attractive imaging equipments. Indeed, the availability of amplitude/phase data allows us to consider different processing techniques, the complexity of which can be selected according to the required performances in terms of contrast, spatial and time resolutions. This paper reviews some of the most promising approaches, such as non-linear inverse scattering techniques and neural networks. Prospective considerations are devoted to the future of such sophisticated microwave sensing techniques.

  6. Preparation of Orally Disintegrating Tablets Containing Powdered Tea Leaves with Enriched Levels of Bioactive Compounds by Means of Microwave Irradiation Technique.

    PubMed

    Tanaka, Hironori; Iwao, Yasunori; Izumikawa, Masahiro; Sano, Syusuke; Ishida, Hitoshi; Noguchi, Shuji; Itai, Shigeru

    2016-01-01

    In the present study, a microwave treatment process has been applied to prepare orally disintegrating tablets (ODTs) containing powdered tea leaves with enriched levels of the anti-inflammatory compounds such as chafuroside A (CFA) and chafuroside B (CFB). The use of distilled water as the adsorbed and granulation solvents in this preparation process afforded tablets with a long disintegration time (more than 120 s). The CFA and CFB contents of these tablets did not also change after 4 min of microwave irradiation due to the tablet temperature, which only increased to 100°C. In contrast, the tablet temperature increased up to 140°C after 3 min of microwave irradiation when a 1.68 M Na2HPO4 solution instead of distilled water. Notably, the disintegration time of these tablets was considerably improved (less than 20 s) compared with the microwave-untreated tablets, and there were 7- and 11-fold increases in their CFA and CFB contents. In addition, the operational conditions for the preparation of the tablets were optimized by face-centered composite design based on the following criteria: tablet hardness greater than 13 N, disintegration time less than 30 s and friability less than 0.5%. The requirements translated into X1 (the amount of granulation solvent), X2 (tableting pressure) and X3 (content of the powdered tea leaves) values of 45%, 0.43 kN and 32%, respectively, and the ODTs containing powdered tea leaves prepared under these optimized conditions were found to show excellent tablet properties and contain enriched levels of CFA and CFB. PMID:27581633

  7. Investigations on the effect of frequency and noise in a localization technique based on microwave imaging for an in-body RF source

    NASA Astrophysics Data System (ADS)

    Chandra, Rohit; Balasingham, Ilangko

    2015-05-01

    Localization of a wireless capsule endoscope finds many clinical applications from diagnostics to therapy. There are potentially two approaches of the electromagnetic waves based localization: a) signal propagation model based localization using a priori information about the persons dielectric channels, and b) recently developed microwave imaging based localization without using any a priori information about the persons dielectric channels. In this paper, we study the second approach in terms of a variety of frequencies and signal-to-noise ratios for localization accuracy. To this end, we select a 2-D anatomically realistic numerical phantom for microwave imaging at different frequencies. The selected frequencies are 13:56 MHz, 431:5 MHz, 920 MHz, and 2380 MHz that are typically considered for medical applications. Microwave imaging of a phantom will provide us with an electromagnetic model with electrical properties (relative permittivity and conductivity) of the internal parts of the body and can be useful as a foundation for localization of an in-body RF source. Low frequency imaging at 13:56 MHz provides a low resolution image with high contrast in the dielectric properties. However, at high frequencies, the imaging algorithm is able to image only the outer boundaries of the tissues due to low penetration depth as higher frequency means higher attenuation. Furthermore, recently developed localization method based on microwave imaging is used for estimating the localization accuracy at different frequencies and signal-to-noise ratios. Statistical evaluation of the localization error is performed using the cumulative distribution function (CDF). Based on our results, we conclude that the localization accuracy is minimally affected by the frequency or the noise. However, the choice of the frequency will become critical if the purpose of the method is to image the internal parts of the body for tumor and/or cancer detection.

  8. GEO Sounding Using Microwave Instruments

    NASA Technical Reports Server (NTRS)

    Shiue, James; Krimchansky, Sergey; Susskind, Joel; Krimchansky, Alexander; Chu, Donald; Davis, Martin

    2004-01-01

    There are several microwave instruments in low Earth orbit (LEO) that are used for atmospheric temperature and humidity sounding in conjunction with companion IR sounders as well as by themselves. These instruments have achieved a certain degree of maturity and undergoing a redesign to minimize their size, mass, and power from the previous generation instruments. An example of these instruments is the AMSU-A series, now flying on POES and AQUA spacecraft with the IR sounders HIRS and AIRS. These older microwave instruments are going to be replaced by the ATMS instruments that will fly on NPP and NPOESS satellites with the CrIS sounder. A number of techniques learned from the ATMS project in instrument hardware design and data processing are directly applicable to a similar microwave sounder on a geosynchronous platform. These techniques can significantly simplify the design of a Geostationary orbit (GEO) microwave instrument, avoiding costly development and minimizing the risk of not being able to meet the scientific requirements. In fact, some of the 'enabling' technology, such as the use of MMIC microwave components (which is the basis for the ATMS' much reduced volume) can be directly applied to a GEO sounder. The benefits of microwave sounders are well known; for example, they penetrate non-precipitating cloud cover and allow for use of colocated IR observations in up to 80% cloud cover. The key advantages of a microwave instrument in GEO will be the ability to provide high temporal resolution as well as uniform spatial resolution and extend the utility of a colocated advanced IR sounder to cases in which partial cloud cover exists. A footprint of the order of 100 km by 100 km resolution with hemispherical coverage within one hour can be easily achieved for sounding channels in the 50 to 59 GHz range. A GEO microwave sounder will also allow mesoscale sampling of select regions.

  9. Total Participation Techniques: Making Every Student an Active Learner

    ERIC Educational Resources Information Center

    Himmele, Persida; Himmele, William

    2011-01-01

    Yes, there are easy-to-use and incredibly effective alternatives to the "stand and deliver" approach to teaching that causes so many students to tune out--or even drop out. Here's your opportunity to explore dozens of ways to engage K-12 students in active learning and allow them to demonstrate the depth of their knowledge and understanding. The…

  10. Application of activation techniques to biological analysis. [813 references

    SciTech Connect

    Bowen, H.J.M.

    1981-12-01

    Applications of activation analysis in the biological sciences are reviewed for the period of 1970 to 1979. The stages and characteristics of activation analysis are described, and its advantages and disadvantages enumerated. Most applications involve activation by thermal neutrons followed by either radiochemical or instrumental determination. Relatively little use has been made of activation by fast neutrons, photons, or charged particles. In vivo analyses are included, but those based on prompt gamma or x-ray emission are not. Major applications include studies of reference materials, and the elemental analysis of plants, marine biota, animal and human tissues, diets, and excreta. Relatively little use of it has been made in biochemistry, microbiology, and entomology, but it has become important in toxicology and environmental science. The elements most often determined are Ag, As, Au, Br, Ca, Cd, Cl, Co, Cr, Cs, Cu, Fe, Hg, I, K, Mn, Mo, Na, Rb, Sb, Sc, Se, and Zn, while few or no determinations of B, Be, Bi, Ga, Gd, Ge, H, In, Ir, Li, Nd, Os, Pd, Pr, Pt, Re, Rh, Ru, Te, Tl, or Y have been made in biological materials.

  11. Neutron spectrum measurements in DT discharges using activation techniques

    NASA Astrophysics Data System (ADS)

    Esposito, B.; Bertalot, L.; Loughlin, M.; Roquemore, A. L.

    1999-01-01

    The JET activation system has eight irradiation ends where samples may be irradiated in the neutron flux from the plasma. There is one end, re-entrant into the top of the vessel, for which there is little intervening material between it and the plasma; the other ends, including two beneath the divertor coils, have increasingly larger amounts of intervening structure. The local neutron spectrum at each irradiation end was measured by simultaneously activating several elemental foils (Al, Au, Co, Fe, In, Mg, Nb, Ni, Ti, Zr). There were 15 activation reactions in the energy range of 0.5-16 MeV which were used as input to the SNL-SAND-II code to determine the neutron energy spectrum. The results are compared with neutron transport calculations both from the MCNP and FURNACE codes: the average standard deviation between measured to SNL-SAND-II calculated activity ratios was as low as 5%. The results demonstrate the reliability of the neutronics calculations and have implications for the design of diagnostics and blankets for the next generation of large tokamaks such as ITER. The 377.9 keV line of the 54Fe(n,2n)53Fe reaction (threshold ˜13.9 MeV, not a dosimetric standard) has also been measured in different plasma conditions. The ratio of the saturated activity from this reaction to that from the 56Fe(n,p)56Mn reaction (threshold ˜4.5 MeV) provides information on the broadening of the 14 MeV fusion peak.

  12. Techniques for active embodiment of participants in virtual environments

    SciTech Connect

    Hightower, R.; Stansfield, S.

    1996-03-01

    This paper presents preliminary work in the development of an avatar driver. An avatar is the graphical embodiment of a user in a virtual world. In applications such as small team, close quarters training and mission planning and rehearsal, it is important that the user`s avatar reproduce his or her motions naturally and with high fidelity. This paper presents a set of special purpose algorithms for driving the motion of the avatar with minimal information about the posture and position of the user. These algorithms utilize information about natural human motion and posture to produce solutions quickly and accurately without the need for complex general-purpose kinematics algorithms. Several examples illustrating the successful applications of these techniques are included.

  13. Active-contour-based image segmentation using machine learning techniques.

    PubMed

    Etyngier, Patrick; Ségonne, Florent; Keriven, Renaud

    2007-01-01

    We introduce a non-linear shape prior for the deformable model framework that we learn from a set of shape samples using recent manifold learning techniques. We model a category of shapes as a finite dimensional manifold which we approximate using Diffusion maps. Our method computes a Delaunay triangulation of the reduced space, considered as Euclidean, and uses the resulting space partition to identify the closest neighbors of any given shape based on its Nyström extension. We derive a non-linear shape prior term designed to attract a shape towards the shape prior manifold at given constant embedding. Results on shapes of ventricle nuclei demonstrate the potential of our method for segmentation tasks. PMID:18051143

  14. The classical microwave frequency standards

    NASA Technical Reports Server (NTRS)

    Busca, Giovanni; Thomann, Pierre; Laurent-Guy, Bernier; Willemin, Philippe; Schweda, Hartmut S.

    1990-01-01

    Some key problems are presented encountered in the classical microwave frequency standards which are still not solved today. The point of view expressed benefits from the experience gained both in the industry and in the research lab, on the following classical microwave frequency standards: active and passive H, conventional and laser pumped Cs beam tube, small conventional and laser pumped Rubidium. The accent is put on the Rubidium standard.

  15. Successful Application of Active Learning Techniques to Introductory Microbiology

    PubMed Central

    HOFFMAN, ELIZABETH A.

    2001-01-01

    While the traditional lecture format may be a successful way to teach microbiology to both medical and nursing students, it was not an effective means of learning for many prenursing and preprofessional students enrolled in either of the introductory microbiology courses at Ashland Community College, an open enrollment institution. The structure of both Medical Microbiology and Principles of Microbiology was redesigned to allow students to address the material in an active manner. Daily quizzes, student group discussions, scrapbooks, lab project presentations and papers, and extra credit projects were all added in order to allow students maximum exposure to the course material in a manner compatible with various methods of learning. Student knowledge, course evaluations, and student success rates have all improved with the active learning format. PMID:23653538

  16. Aerial monitoring in active mud volcano by UAV technique

    NASA Astrophysics Data System (ADS)

    Pisciotta, Antonino; Capasso, Giorgio; Madonia, Paolo

    2016-04-01

    UAV photogrammetry opens various new applications in the close range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives to the classical manned aerial photogrammetry. Between 2014 and 2015 tree aerial surveys have been carried out. Using a quadrotor drone, equipped with a compact camera, it was possible to generate high resolution elevation models and orthoimages of The "Salinelle", an active mud volcanoes area, located in territory of Paternò (South Italy). The main risks are related to the damages produced by paroxysmal events. Mud volcanoes show different cyclic phases of activity, including catastrophic events and periods of relative quiescence characterized by moderate activity. Ejected materials often are a mud slurry of fine solids suspended in liquids which may include water and hydrocarbon fluids, the bulk of released gases are carbon dioxide, with some methane and nitrogen, usually pond-shaped of variable dimension (from centimeters to meters in diameter). The scope of the presented work is the performance evaluation of a UAV system that was built to rapidly and autonomously acquire mobile three-dimensional (3D) mapping data in a volcanic monitoring scenario.

  17. Figure Analysis: A Teaching Technique to Promote Visual Literacy and Active Learning

    ERIC Educational Resources Information Center

    Wiles, Amy M.

    2016-01-01

    Learning often improves when active learning techniques are used in place of traditional lectures. For many of these techniques, however, students are expected to apply concepts that they have already grasped. A challenge, therefore, is how to incorporate active learning into the classroom of courses with heavy content, such as molecular-based…

  18. The Effectiveness of Active and Traditional Teaching Techniques in the Orthopedic Assessment Laboratory

    ERIC Educational Resources Information Center

    Nottingham, Sara; Verscheure, Susan

    2010-01-01

    Active learning is a teaching methodology with a focus on student-centered learning that engages students in the educational process. This study implemented active learning techniques in an orthopedic assessment laboratory, and the effects of these teaching techniques. Mean scores from written exams, practical exams, and final course evaluations…

  19. Microwave Radiometric Studies of Composition and Structure

    NASA Technical Reports Server (NTRS)

    Olivero, J. J.

    1984-01-01

    In the past decade the use of ground-based microwave radiometry has grown as a useful measurement technique. Microwave radiometry is the precise measurement of small amounts of electromagnetic radiation at quite short wavelengths (submillimeter to centimeter). Growth in this field was carefully nutured by the radio astronomy community. Future growth was also discussed.

  20. Embedded solution for a microwave moisture meter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, the conversion of a PC or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter is based on the free-space transmission measurement technique and uses low-intensity microwaves to measure the attenuation and p...

  1. Surface-crack detection by microwave methods

    NASA Technical Reports Server (NTRS)

    Feinstein, L.; Hruby, R.

    1967-01-01

    Microwave surface-crack detection system examines metallic surfaces with a noncontacting probe. The change in the microwave signal reflected from the surface under investigation is an indication of the existence of surface flaws. This technique can detect flaws and scratches as small as 100 microinches.

  2. Microwave Assistant Synthesis, Antifungal Activity and DFT Theoretical Study of Some Novel 1,2,4-Triazole Derivatives Containing Pyridine Moiety

    PubMed Central

    Sun, Guo-Xiang; Yang, Ming-Yan; Shi, Yan-Xia; Sun, Zhao-Hui; Liu, Xing-Hai; Wu, Hong-Ke; Li, Bao-Ju; Zhang, Yong-Gang

    2014-01-01

    In order to investigate the biological activity of novel 1,2,4-triazole compounds, seventeen novel 1,2,4-triazole derivatives containing pyridine moiety were synthesized under microwave assistant condition by multi-step reactions. The structures were characterized by 1H NMR, MS and elemental analyses. The target compounds were evaluated for their fungicidal activities against Stemphylium lycopersici (Enjoji) Yamamoto, Fusarium oxysporum. sp. cucumebrium, and Botrytis cinerea in vivo, and the results indicated that some of the title compounds displayed excellent fungicidal activities. Theoretical calculation of the title compound was carried out with B3LYP/6-31G (d,p). The full geometry optimization was carried out using 6-31G (d,p) basis set, and the frontier orbital energy, atomic net charges were discussed, and the structure-activity relationship was also studied. PMID:24815069

  3. Nonuniformly-spaced photonic microwave delayline filter.

    PubMed

    Dai, Yitang; Yao, Jianping

    2008-03-31

    A new technique to implement a photonic microwave delay-line filter based on nonuniform tap spacing with arbitrary bandpass response is proposed and experimentally demonstrated. Being different from a regular photonic microwave delay-line filter where the taps are uniformly spaced, the proposed filter in this paper has nonuniformly-spaced taps. The key feature of this technique is that a photonics microwave delay-line filter with arbitrary bandpass response can be realized with only positive taps via nonuniform tap spacing. The use of the proposed technique to implement a flat-top bandpass filter is experimentally demonstrated. PMID:18542568

  4. Characterization of Deep Tunneling Activity through Remote-Sensing Techniques

    SciTech Connect

    R. G. Best, P. J. Etzler, and J. D. Bloom

    1997-10-01

    This work is a case study demonstrating the uses of multispectral and multi-temporal imagery to characterize deep tunneling activity. A drainage tunnel excavation in Quincy, MA is the case locality. Data used are aerial photographs (digitized) and Daedalus 3600 MSS image data that were collected in July and October of 1994. Analysis of the data includes thermal characterization, spectral characterization, multi-temporal analysis, and volume estimation using digital DEM generation. The results demonstrate the type of information that could be generated by multispectral, multi-temporal data if the study locality were a clandestine excavation site with restricted surface access.

  5. Ceramic matrix composites by microwave assisted CVI

    SciTech Connect

    Currier, R.P.; Devlin, D.J.

    1993-05-01

    Chemical vapor infiltration (CVI) processes for producing continuously reinforced ceramic composites are reviewed. The potential advantages of microwave assisted CVI are noted. Recent numerical studies of microwave assisted CVI are then reviewed. These studies predict inverted thermal gradients in fibrous ceramic preforms subjected to microwave radiation and suggest processing strategies for achieving uniformly dense composites. Comparisons are made to experimental results obtained using silicon based composite systems. The importance of microwave-material interactions is stressed. In particular, emphasis is placed on the role played by the relative ability of fiber and matrix to dissipate microwave energy. Results suggest that microwave induced inverted gradients can in fact be exploited using the CVI technique to promote inside-out densification.

  6. Ceramic matrix composites by microwave assisted CVI

    SciTech Connect

    Currier, R.P.; Devlin, D.J.

    1993-01-01

    Chemical vapor infiltration (CVI) processes for producing continuously reinforced ceramic composites are reviewed. The potential advantages of microwave assisted CVI are noted. Recent numerical studies of microwave assisted CVI are then reviewed. These studies predict inverted thermal gradients in fibrous ceramic preforms subjected to microwave radiation and suggest processing strategies for achieving uniformly dense composites. Comparisons are made to experimental results obtained using silicon based composite systems. The importance of microwave-material interactions is stressed. In particular, emphasis is placed on the role played by the relative ability of fiber and matrix to dissipate microwave energy. Results suggest that microwave induced inverted gradients can in fact be exploited using the CVI technique to promote inside-out densification.

  7. Microwave processing of ceramic oxide filaments

    SciTech Connect

    Vogt, G.J.; Katz, J.D.

    1995-05-01

    The objective of the microwave filament processing project is to develop microwave techniques at 2.45 GHZ to manufacture continuous ceramic oxide filaments. Microwave processing uses the volumetric absorption of microwave power in oxide filament tows to drive off process solvents, to burn out organic binders, and to sinter the dried fibers to produce flexible, high-strength ceramic filaments. The technical goal is to advance filament processing technology by microwave heating more rapidly with less energy and at a lower cost than conventional processing, but with the same quality as conventional processing. The manufacturing goal is to collaborate with the 3M Company, a US manufacturer of ceramic oxide filaments, to evaluate the technology using a prototype filament system and to transfer the microwave technology to the 3M Company.

  8. Apollo Mission Techniques Lunar Orbit Activities - Part 1a

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael A.

    2009-01-01

    This slide presentation reviews the planned sequence of events and the rationale for all lunar missions, and the flight experiences and lessons learned for the lunar orbit activities from a trajectory perspective. Shown are trajectories which include the moon's position at the various stages in the complete trip from launch, to the return and reentry. Included in the presentation are objectives and the sequence of events,for the Apollo 8, and Apollo 10. This is followed by a discussion of Apollo 11, including: the primary mission objective, the sequence of events, and the flight experience. The next mission discussed was Apollo 12. It reviews the objectives, the ground tracking, procedure changes, and the sequence of events. The aborted Apollo 13 mission is reviewed, including the objectives, and the sequence of events. Brief summaries of the flight experiences for Apollo 14-16 are reviewed. The flight sequence of events of Apollo 17 are discussed. In summary each mission consistently performing precision landings required that Apollo lunar orbit activities devote considerable attention to: (1) Improving fidelity of lunar gravity models, (2) Maximizing availability of ground tracking, (3) Minimizing perturbations on the trajectory, (4) Maximizing LM propellant reserves for hover time. Also the use of radial separation maneuvers (1) allows passive re-rendezvous after each rev, but ... (2) sensitive to small dispersions in initial sep direction

  9. Active Flow Control: Instrumentation Automation and Experimental Technique

    NASA Technical Reports Server (NTRS)

    Gimbert, N. Wes

    1995-01-01

    In investigating the potential of a new actuator for use in an active flow control system, several objectives had to be accomplished, the largest of which was the experimental setup. The work was conducted at the NASA Langley 20x28 Shear Flow Control Tunnel. The actuator named Thunder, is a high deflection piezo device recently developed at Langley Research Center. This research involved setting up the instrumentation, the lighting, the smoke, and the recording devices. The instrumentation was automated by means of a Power Macintosh running LabVIEW, a graphical instrumentation package developed by National Instruments. Routines were written to allow the tunnel conditions to be determined at a given instant at the push of a button. This included determination of tunnel pressures, speed, density, temperature, and viscosity. Other aspects of the experimental equipment included the set up of a CCD video camera with a video frame grabber, monitor, and VCR to capture the motion. A strobe light was used to highlight the smoke that was used to visualize the flow. Additional effort was put into creating a scale drawing of another tunnel on site and a limited literature search in the area of active flow control.

  10. Microwave processing of ceramics

    SciTech Connect

    Katz, J.D.

    1989-01-01

    This paper discusses the following topics on microwave processing of ceramics: Microwave-material interactions; anticipated advantage of microwave sintering; ceramic sintering; and ceramic joining. 24 refs., 4 figs. (LSP)

  11. Monolithic active pixel radiation detector with shielding techniques

    DOEpatents

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  12. Innovative techniques to analyze time series of geomagnetic activity indices

    NASA Astrophysics Data System (ADS)

    Balasis, Georgios; Papadimitriou, Constantinos; Daglis, Ioannis A.; Potirakis, Stelios M.; Eftaxias, Konstantinos

    2016-04-01

    Magnetic storms are undoubtedly among the most important phenomena in space physics and also a central subject of space weather. The non-extensive Tsallis entropy has been recently introduced, as an effective complexity measure for the analysis of the geomagnetic activity Dst index. The Tsallis entropy sensitively shows the complexity dissimilarity among different "physiological" (normal) and "pathological" states (intense magnetic storms). More precisely, the Tsallis entropy implies the emergence of two distinct patterns: (i) a pattern associated with the intense magnetic storms, which is characterized by a higher degree of organization, and (ii) a pattern associated with normal periods, which is characterized by a lower degree of organization. Other entropy measures such as Block Entropy, T-Complexity, Approximate Entropy, Sample Entropy and Fuzzy Entropy verify the above mentioned result. Importantly, the wavelet spectral analysis in terms of Hurst exponent, H, also shows the existence of two different patterns: (i) a pattern associated with the intense magnetic storms, which is characterized by a fractional Brownian persistent behavior (ii) a pattern associated with normal periods, which is characterized by a fractional Brownian anti-persistent behavior. Finally, we observe universality in the magnetic storm and earthquake dynamics, on a basis of a modified form of the Gutenberg-Richter law for the Tsallis statistics. This finding suggests a common approach to the interpretation of both phenomena in terms of the same driving physical mechanism. Signatures of discrete scale invariance in Dst time series further supports the aforementioned proposal.

  13. Microwave Antennas: Design. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the design of microwave antennas. Topics include a discussion of the recent developments in microwave antennas, and in design techniques such as computer-aided design (CAD). Various types of antenna configurations are covered, including rectangular, elliptical, and reflectarray microstrip antennas, multibeam, circular-disc, Yagi-Uda, and horn reflectors. Applications include microwave antennas for satellite communication systems, telemetry links, and solid state microwave power transmission systems.

  14. Microwave assisted synthesis and characterisation of a zinc oxide/tobacco mosaic virus hybrid material. An active hybrid semiconductor in a field-effect transistor device

    PubMed Central

    Sanctis, Shawn; Hoffmann, Rudolf C; Eiben, Sabine

    2015-01-01

    Summary Tobacco mosaic virus (TMV) has been employed as a robust functional template for the fabrication of a TMV/zinc oxide field effect transistor (FET). A microwave based approach, under mild conditions was employed to synthesize stable zinc oxide (ZnO) nanoparticles, employing a molecular precursor. Insightful studies of the decomposition of the precursor were done using NMR spectroscopy and material characterization of the hybrid material derived from the decomposition was achieved using dynamic light scattering (DLS), transmission electron microscopy (TEM), grazing incidence X-ray diffractometry (GI-XRD) and atomic force microscopy (AFM). TEM and DLS data confirm the formation of crystalline ZnO nanoparticles tethered on top of the virus template. GI-XRD investigations exhibit an orientated nature of the deposited ZnO film along the c-axis. FET devices fabricated using the zinc oxide mineralized virus template material demonstrates an operational transistor performance which was achieved without any high-temperature post-processing steps. Moreover, a further improvement in FET performance was observed by adjusting an optimal layer thickness of the deposited ZnO on top of the TMV. Such a bio-inorganic nanocomposite semiconductor material accessible using a mild and straightforward microwave processing technique could open up new future avenues within the field of bio-electronics. PMID:25977849

  15. Microwave-assisted synthesis and antifungal activity of novel coumarin derivatives: Pyrano[3,2-c]chromene-2,5-diones.

    PubMed

    Zhang, Rong-Rong; Liu, Jia; Zhang, Yu; Hou, Meng-Qing; Zhang, Ming-Zhi; Zhou, Fenger; Zhang, Wei-Hua

    2016-06-30

    A series of novel fused coumarin analogues pyrano[3,2-c]chromene-2,5-diones have been synthesized through an optimized microwave-assisted protocol. All target compounds were tested and evaluated for their antifungal activity against Botrytis cinerea, Colletotrichum copsica, Alternaria solani, Gibberella zeae and Rhizoctorzia solani. The bioassay results indicated that some of the compounds exhibited potent antifungal activities at concentration less than 50 ppm. For the compounds 5d, 6c and 7b, EC50 values against B. cinerea were as low as 0.141, 0.082 and 0.091 μM, respectively, which represents better antifungal activity than that of the commonly used fungicide Azoxystrobin. Compounds 5d (57%) and 6c (55%) also exhibited more effective control than Azoxystrobin (44%) against Colletotrichum capsica. PMID:27060759

  16. Conventional and microwave assisted synthesis of some new N-[(4-oxo-2-substituted aryl -1, 3-thiazolidine)-acetamidyl]-5-nitroindazoles and its antimicrobial activity.

    PubMed

    Upadhyay, Apoorva; Srivastava, S K; Srivastava, S D

    2010-09-01

    Several new N-[(4-oxo-2-substituted aryl-1, 3-thiazolidine)-acetamidyl]-5-nitroindazoles (4a-l) were synthesized from N-(arylidene amino acetamidyl)-5-nitroindazoles (3a-l). The reactions were carried out by both conventional as well as microwave method. The structures of these compounds were confirmed by IR, (1)H NMR, (13)C NMR, FAB-mass spectra and also by microanalytical data. The newly synthesized compounds were evaluated for their antimicrobial activity against variety of bacterial and fungal strains. The compounds 4 g and 4 h showed the maximum antibacterial activity (MIC 11 and 10 microg/mL) against Escherichia coli and antifungal activity (MIC 9 and 8 microg/mL) against Fusarium oxysporum. PMID:20570024

  17. Passive Microwave Radiometry of Land:Contributions of Tom Schmugge and Anatoli Shutko

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent advances and the state of the art of land surface remote sensing using passive microwave techniques owes its heritage to the contributions of Tom Schmugge and Anatolij Shutko over the last 30 years. These contributions cover a range of activities including fundamental theory, controlled condi...

  18. Microwave-assisted combustion synthesis of Ag/ZnO nanocomposites and their photocatalytic activities under ultraviolet and visible-light irradiation

    SciTech Connect

    Zhang, Dafeng; Pu, Xipeng; Li, Huaiyong; Yu, Young Moon; Shim, Jae Jeong; Cai, Peiqing; Kim, Sun Il; Seo, Hyo Jin

    2015-01-15

    Highlights: • Ag/ZnO nanocomposites were synthesized by a microwave-assisted combustion method. • Ag/ZnO nanocomposites exhibited improved photocatalytic activities under UV irradiation. • Poorer photocatalytic performances were obtained under visible-light irradiation. - Abstract: Ag/ZnO nanocomposites were synthesized by a rapid one-step microwave-assisted combustion method. The as-synthesized samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, photoluminescence and ultraviolet–visible spectrophotometry. XRD results showed that hexagonal ZnO and cubic Ag were obtained. Ag nanoparticles were chemically attached on the surface of ZnO. The decrease in the energy band gap of Ag/ZnO nanocomposites and the photoluminescence quenching were observed while the Ag content was increased. Furthermore, the introduction of Ag nanoparticles leads to significantly improved photocatalytic activities in the case of ultraviolet irradiation, but in the case of visible-light irradiation opposite results were obtained. The corresponding mechanism was discussed in detail.

  19. Effect of extraction technique on the content and antioxidant activity of crude extract of Anacyclus clavatus flowers and their essential oil composition.

    PubMed

    Aliboudhar, Hamza; Tigrine-Kordjani, Nacéra

    2014-01-01

    Anacyclus clavatus is a plant used as food and remedy. The objective of this work was to study the effect of extraction technique on the antioxidant property, total phenol and flavonoid contents of crude extracts from A. clavatus flowers and their essential oil composition. 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, ferric-reducing power, β-carotene and total antioxidant capacity assays have demonstrated the significant antioxidant ability of different crude extracts obtained by using the following extraction methods: Soxhlet, microwave heating, heat reflux (HRE) and maceration. The activity of the extract obtained by HRE was the highest (112.06 ± 2.89 μg/mL) evaluated by the DPPH assay. Extraction of essential oil was performed by microwave-assisted hydro-distillation (MAHD) and by hydro-distillation (HD). A significant difference was observed in both essential oils, despite the common main family and major constituents, such as artemisia ketone (10.0 ± 0.8% for MAHD vs. 6.5 ± 0.5 for HD) and pinocarvone (4.1 ± 0.4% for MAHD vs. 1.1 ± 0.1% for HD). PMID:25115624

  20. Fast preparation of Bi{sub 2}GeO{sub 5} nanoflakes via a microwave-hydrothermal process and enhanced photocatalytic activity after loading with Ag nanoparticles

    SciTech Connect

    Li, Zhao-Qian; Lin, Xin-Shan; Zhang, Lei; Chen, Xue-Tai; Xue, Zi-Ling

    2012-09-15

    Highlights: ► Bi{sub 2}GeO{sub 5} nanoflakes were successfully synthesized via a microwave-assisted solution-phase approach. ► Ag nanoparticles were deposited on the Bi{sub 2}GeO{sub 5} nanoflakes by a photoreduction procedure. ► Catalytic activity of the Ag/Bi{sub 2}GeO{sub 5} nanocomposite in the photo-degradation of rhodamine B (RhB) was much higher than that of pure Bi{sub 2}GeO{sub 5}. -- Abstract: In this work, a facile and rapid microwave-assisted hydrothermal route has been developed to prepare Bi{sub 2}GeO{sub 5} nanoflakes. Ag nanoparticles were subsequently deposited on the Bi{sub 2}GeO{sub 5} nanoflakes by a photoreduction procedure. The phases and morphologies of the products were characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV–vis diffuse reflectance spectroscopy. Photocatalytic experiments indicate that such Ag/Bi{sub 2}GeO{sub 5} nanocomposite possesses higher photocatalytic activity for RhB degradation under UV light irradiation in comparison to pure Bi{sub 2}GeO{sub 5}. The amount of Ag in the nanocomposite affects the catalytic activity, and 3 wt% Ag showed the highest photodegradation efficiency. Moreover, the catalyst remains active after four consecutive tests. The present study provides a new strategy to design composite materials with enhanced photocatalytic activity.

  1. Microwave Levitation Of Small Objects

    NASA Technical Reports Server (NTRS)

    Watkins, John L.; Jackson, Henry W.

    1991-01-01

    Microwave radiation in resonant cavities used to levitate small objects, according to proposal. Feedback control and atmosphere not needed. Technique conceived for use in experiments on processing of materials in low gravitation of outer space, also used in normal Earth gravitation, albeit under some limitations.

  2. Microwave synthesis of zirconia nanoparticles.

    PubMed

    Hembram, K P S S; Rao, G Mohan

    2008-08-01

    Zirconia nanoparticles were prepared by microwave synthesis from zirconium acetate hydroxide. The samples were characterized by various techniques like X-ray diffraction (XRD), Scanning Electron microscopy (SEM), Transmission Electron microscopy (TEM), Raman Spectroscopy (RS). By XRD the average crystallite size is obtained around 10 nm and which is comparable to observation by SEM and TEM. PMID:19049194

  3. Interaction of microwaves and germinating seeds

    SciTech Connect

    Shafer, F.L.

    1987-01-01

    The preliminary investigation measured the internal metabolic process by ATP production. Leakage of ions and organic material from germinating seeds indicated that membranes are a target of microwaves and heat. Electron photo-micrographs showed an increase in damage to membranes as heat and microwave treatments were increased. The second phase of this investigation was concerned with determining some of the biological activity at the initiation of germination of wheat seed, Triticum aestivum L., using a resonating microwave cavity oscillating at 9.3 GHz as a probe. Direct current conductivity measurements were also made on the seeds as a means of confirming the observations made with the microwave cavity.

  4. Controlled Microwave Heating Accelerates Rolling Circle Amplification

    PubMed Central

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same. PMID:26348227

  5. Study of federal microwave standards

    SciTech Connect

    David, L.

    1980-08-01

    Present and future federal regulatory processes which may impact the permissible levels of microwave radiation emitted by the SPS Microwave Power Transmission (MPTS) were studied. An historical development of US occupational and public microwave standards includes an overview of Western and East European philosophies of environmental protection and neurophysiology which have led to the current widely differing maximum permissible exposure limits to microwaves. The possible convergence of microwave standards is characterized by a lowering of Western exposure levels while Eastern countries consider standard relaxation. A trend toward stricter controls on activities perceived as harmful to public health is under way as is interest in improving the federal regulatory process. Particularly relevant to SPS is the initiation of long-term, low-level microwave exposure programs. Coupled with new developments in instrumentation and dosimetry, the results from chronic exposure program and population exposure studies could be expected within the next five to ten years. Also discussed is the increasing public concern that rf energy is yet another hazardous environmental agent.

  6. Electro-catalytic activity of multiwall carbon nanotube-metal (Pt or Pd) nanohybrid materials synthesized using microwave-induced reactions and their possible use in fuel cells

    PubMed Central

    V, Lakshman Kumar; Ntim, Susana Addo; Sae-Khow, Ornthida; Janardhana, Chelli; Lakshminarayanan, V.; Mitra, Somenath

    2012-01-01

    Microwave induced reactions for immobilizing platinum and palladium nanoparticles on multiwall carbon nanotubes are presented. The resulting hybrid materials were used as catalysts for direct methanol, ethanol and formic acid oxidation in acidic as well as alkaline media. The electrodes are formed by simply mixing the hybrids with graphite paste, thus using a relatively small quantity of the precious metal. We report Tafel slopes and apparent activation energies at different potentials and temperatures. Ethanol electro-oxidation with the palladium hybrid showed an activation energy of 7.64 kJmol−1 which is lower than those observed for other systems. This system is economically attractive because Pd is significantly less expensive than Pt and ethanol is fast evolving as a commercial biofuel. PMID:23118490

  7. Characterization of Soils Using Microwave Radiation

    SciTech Connect

    Aziz, M. F. A.; Senin, H. B.; Jaafar, M. S.; Hashim, S. A.

    2008-05-20

    The aim of this study is to characterize of soils using microwave radiation by the reflection techniques. The sample of soils was collected in Northern Peninsular of Malaysia. There are six types of soil have been indentified, which, sand, clay, loam, silty clay loam, silty loam and clay loam. We use the transmission of microwave using Gunn Diode Transmitter with frequency of 10.525 GHz and the pipette method. The result shows that, the soil type can be indentified using intensity values based on the percentages of the clay. The proposed technique also can be used to characterize soils using by microwave radiation.

  8. SYSTEMATIC SCANNING ELECTRON MICROSCOPY TECHNIQUE FOR EVALUATING COMBINED BIOLOIGCAL/GRANULAR ACTIVATED CARBON TREATMENT PROCESSES

    EPA Science Inventory

    A systematic scanning election microscope analytical technique has been developed to examine granular activated carbon used a a medium for biomass attachment in liquid waste treatment. The procedure allows for the objective monitoring, comparing, and trouble shooting of combined ...

  9. Exploring Undergraduates' Perceptions of the Use of Active Learning Techniques in Science Lectures

    ERIC Educational Resources Information Center

    Welsh, Ashley J.

    2012-01-01

    This paper examines students' mixed perceptions of the use of active learning techniques in undergraduate science lectures. Written comments from over 250 students offered an in-depth view of why students perceive these techniques as helping or hindering their learning and experience. Fourth- and fifth-year students were more likely to view…

  10. A three-dimensional muscle activity imaging technique for assessing pelvic muscle function

    NASA Astrophysics Data System (ADS)

    Zhang, Yingchun; Wang, Dan; Timm, Gerald W.

    2010-11-01

    A novel multi-channel surface electromyography (EMG)-based three-dimensional muscle activity imaging (MAI) technique has been developed by combining the bioelectrical source reconstruction approach and subject-specific finite element modeling approach. Internal muscle activities are modeled by a current density distribution and estimated from the intra-vaginal surface EMG signals with the aid of a weighted minimum norm estimation algorithm. The MAI technique was employed to minimally invasively reconstruct electrical activity in the pelvic floor muscles and urethral sphincter from multi-channel intra-vaginal surface EMG recordings. A series of computer simulations were conducted to evaluate the performance of the present MAI technique. With appropriate numerical modeling and inverse estimation techniques, we have demonstrated the capability of the MAI technique to accurately reconstruct internal muscle activities from surface EMG recordings. This MAI technique combined with traditional EMG signal analysis techniques is being used to study etiologic factors associated with stress urinary incontinence in women by correlating functional status of muscles characterized from the intra-vaginal surface EMG measurements with the specific pelvic muscle groups that generated these signals. The developed MAI technique described herein holds promise for eliminating the need to place needle electrodes into muscles to obtain accurate EMG recordings in some clinical applications.

  11. Intra-molecular mobility of charge carriers along oligogermane backbones studied by flash photolysis time-resolved microwave conductivity and transient optical spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Seki, Shu; Saeki, Akinori; Acharya, Anjali; Koizumi, Yoshiko; Tagawa, Seiichi; Mochida, Kunio

    2008-10-01

    Time-resolved microwave conductivity (TRMC) measurement has been performed for fullerene-doped thin films of oligo (dimethylgermane) at different excitation energies to evaluate the intra-molecular mobility of holes along their Ge backbones. Photo-induced electron transfer reaction between oligogermane and fullerene has been observed in the solution with a variety of solvent polarity using transient optical spectroscopy (TOS). The transient spectrum at 391 nm can be attributed to the radical cation of the oligomer under an excitation at 532-nm light, whereas the same spectrum (391 nm) is the overlapping of absorptions of radical cations and neutral radicals of oligogermanes upon exposure of 355-nm light in polar solvent. A combined TRMC and TOS experiments on the solutions of oligomer confirms the conductive transients originate from the radical cations on the backbone chains.

  12. Coupling sol-gel synthesis and microwave-assisted techniques: a new route from amorphous to crystalline high-surface-area aluminium fluoride.

    PubMed

    Dambournet, Damien; Eltanamy, Gehan; Vimont, Alexandre; Lavalley, Jean-Claude; Goupil, Jean-Michel; Demourgues, Alain; Durand, Etienne; Majimel, Jérôme; Rudiger, Stephan; Kemnitz, Erhard; Winfield, John M; Tressaud, Alain

    2008-01-01

    A non-aqueous sol-gel Al-based fluoride has been subjected to the microwave solvothermal process. The final material depends on the temperature heat treatment used. Three types of material have been prepared: 1) for low temperature heat treatment (90 degrees C) X-ray amorphous alkoxy fluoride was obtained; 2) for the highest temperature used (200 degrees C) the metastable form beta-AlF3 was obtained with a very large surface area of 125 m2 g(-1). The mechanism of the amorphous=crystalline transformation has been rationalised by the occurrence of a decomposition reaction of the gel fluoride induced by the microwave irradiation. 3) Finally, at intermediate temperature (180 degrees C) a multi-component material mixture exhibiting a huge surface area of 525 m2 g(-1) has been obtained and further investigated after mild post-treatment fluorination using F2 gas. The resulting aluminium-based fluoride still possesses a high-surface-area of 330 m2 g(-1). HRTEM revealed that the solid is built from large particles (50 nm) identified as alpha-AlF3, and small ones (10 nm), relative to an unidentified phase. This new high-surface-area material exhibits strong Lewis acidity as revealed by pyridine adsorption and catalytic tests. By comparison with other materials, it has been shown that whatever the composition/structure of the Al-based fluoride materials, the number of strong Lewis acid sites is related to the surface area, highlighting the role of surface reconstruction occurring on a nanoscopic scale on the formation of the strongest Lewis acid sites. PMID:18491305

  13. Weak solar flares with a detectable flux of hard X rays: Specific features of microwave radiation in the corresponding active regions

    NASA Astrophysics Data System (ADS)

    Grigor'eva, I. Yu.; Livshits, M. A.

    2014-12-01

    The emission of very weak flares was registered at the Suzaku X-ray observatory in 2005-2009. The photon power spectrum in the 50-110 keV range for a number of these phenomena shows that some electrons accelerate to energies higher than 100 keV. The corresponding flares originate in active regions (ARs) with pronounced sunspots. As in the case of AR 10933 in January 2007 analyzed by us previously (Grigor'eva et al., 2013), the thoroughly studied weak flares in May 2007 are related to the emergence of a new magnetic field in the AR and to the currents that originate in this case. A comparison of the Suzaku data with the RATAN-600 microwave observations indicates that a new polarized source of microwave radiation develops in the AR (or the previously existing source intensifies) one-two days before a weak flare in the emerging flux regions. Arguments in favor of recent views that fields are force-free in the AR corona are put forward. The development of weak flares is related to the fact that the free energy of the currents that flow above the field neutral line at altitudes reaching several thousand kilometers is accumulated and subsequently released.

  14. Technique for Radiometer and Antenna Array Calibration with a Radiated Noise Diode

    NASA Technical Reports Server (NTRS)

    Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul

    2009-01-01

    This paper presents a new technique to calibrate a microwave radiometer and antenna array system. This calibration technique uses a radiated noise source in addition to two calibration sources internal to the radiometer. The method accurately calibrates antenna arrays with embedded active devices (such as amplifiers) which are used extensively in active phased array antennas.

  15. Microwave and Pulsed Power

    SciTech Connect

    Freytag, E.K.

    1993-03-01

    The goals of the Microwave and Pulsed Power thrust area are to identify realizable research and development efforts and to conduct high-quality research in those pulse power and microwave technologies that support existing and emerging programmatic requirements at Lawrence Livermore National Laboratory (LLNL). Our main objective is to work on nationally important problems while enhancing our basic understanding of enabling technologies such as component design and testing, compact systems packaging, exploratory physics experiments, and advanced systems integration and performance. During FY-92, we concentrated our research efforts on the six project areas described in this report. (1) We are investigating the superior electronic and thermal properties of diamond that may make it an ideal material for a high-power, solid-state switch. (2) We are studying the feasibility of using advanced Ground Penetrating Imaging Radar technology for reliable non-destructive evaluation of bridges and other high-value concrete structures. These studies include conceptual designs, modeling, experimental verifications, and image reconstruction of simulated radar data. (3) We are exploring the efficiency of pulsed plasma processing techniques used for the removal of NO{sub x} from various effluent sources. (4) We have finished the investigation of the properties of a magnetically delayed low-pressure gas switch, which was designed here at LLNL. (5) We are applying statistical electromagnetic theory techniques to help assess microwave effects on electronic subsystems, by using a mode stirred chamber as our measurement tool. (6) We are investigating the generation of perfluoroisobutylene (PFIB) in proposed CFC replacement fluids when they are subjected to high electrical stresses and breakdown environments.

  16. A Melting Layer Model for Passive/Active Microwave Remote Sensing Applications. Part 1; Model Formulation and Comparison with Observations

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Bauer, Peter; Viltard, Nicolas F.; Johnson, Daniel E.; Tao, Wei-Kuo

    2000-01-01

    In this study, a 1-D steady-state microphysical model which describes the vertical distribution of melting precipitation particles is developed. The model is driven by the ice-phase precipitation distributions just above the freezing level at applicable gridpoints of "parent" 3-D cloud-resolving model (CRM) simulations. It extends these simulations by providing the number density and meltwater fraction of each particle in finely separated size categories through the melting layer. The depth of the modeled melting layer is primarily determined by the initial material density of the ice-phase precipitation. The radiative properties of melting precipitation at microwave frequencies are calculated based upon different methods for describing the dielectric properties of mixed phase particles. Particle absorption and scattering efficiencies at the Tropical Rainfall Measuring Mission Microwave Imager frequencies (10.65 to 85.5 GHz) are enhanced greatly for relatively small (approx. 0.1) meltwater fractions. The relatively large number of partially-melted particles just below the freezing level in stratiform regions leads to significant microwave absorption, well-exceeding the absorption by rain at the base of the melting layer. Calculated precipitation backscatter efficiencies at the Precipitation Radar frequency (13.8 GHz) increase in proportion to the particle meltwater fraction, leading to a "bright-band" of enhanced radar reflectivities in agreement with previous studies. The radiative properties of the melting layer are determined by the choice of dielectric models and the initial water contents and material densities of the "seeding" ice-phase precipitation particles. Simulated melting layer profiles based upon snow described by the Fabry-Szyrmer core-shell dielectric model and graupel described by the Maxwell-Garnett water matrix dielectric model lead to reasonable agreement with radar-derived melting layer optical depth distributions. Moreover, control profiles

  17. Gas chromatographic-mass spectrometric analysis of volatiles obtained by four different techniques from Salvia rosifolia Sm., and evaluation for biological activity.

    PubMed

    Ozek, Gulmira; Demirci, Fatih; Ozek, Temel; Tabanca, Nurhayat; Wedge, David E; Khan, Shabana I; Başer, Kemal Hüsnü Can; Duran, Ahmet; Hamzaoglu, Ergin

    2010-01-29

    Four different isolation techniques, conventional hydrodistillation (HD), microwave-assisted hydrodistillation (MWHD), microdistillation (MD) and micro-steam distillation-solid-phase microextraction (MSD-SPME), have been used to analyze the volatile constituents from the aerial parts of Salvia rosifolia Sm. by gas chromatography and gas chromatography coupled to mass spectrometry. HD and MWHD techniques produced quantitatively (yield, 0.39% and 0.40%) and qualitatively (aromatic profile) similar essential oils. alpha-Pinene (15.7-34.8%), 1,8-cineole (16.6-25.1%), beta-pinene (6.7-13.5%), beta-caryophyllene (1.4-5.0%) and caryophyllene oxide (1.4-4.4%) were identified as major constituents of this Turkish endemic species. Besides, the hydrodistilled oil of S. rosifolia was evaluated for antibacterial, antifungal, anticancer, antioxidant and cytotoxic activities. The hydrodistilled oil of S. rosifolia showed antibacterial activity against Methicillin-resistant Staphylococcus aureus (MRSA) with a MIC value of 125microg/mL. Other human pathogenic microorganisms (Escherichia coli, Pseudomonas aeruginosa, Enterobacter aerogenes, Salmonella typhimurium, Staphylococcus epidermidis, Candida albicans) were also inhibited within a moderate range (MIC=125-1000microg/mL). Antifungal activity of the oil was also observed against the strawberry anthracnose-causing fungal plant pathogens Colletotrichum acutatum, C. fragariae and C. gloeosporioides. No cytotoxicity was observed for S. rosifolia oil up to 25mg/mL against malignant melanoma, epidermal, ductal and ovary carcinoma. PMID:20015509

  18. Bonding PMMA microfluidics using commercial microwave ovens

    NASA Astrophysics Data System (ADS)

    Toossi, A.; Moghadas, H.; Daneshmand, M.; Sameoto, D.

    2015-08-01

    In this paper, a novel low-cost, rapid substrate-bonding technique is successfully applied to polymethyl methacrylate (PMMA) microfluidics bonding for the first time. This technique uses a thin intermediate metallic microwave susceptor layer at the interface of the bonding site (microchannels) which produces localized heating required for bonding during microwave irradiation. The metallic susceptor pattern is designed using a multiphysics simulation model developed in ANSYS Multiphysics software (high-frequency structural simulation (HFSS) coupled with ANSYS-Thermal). In our experiments, the required microwave energy for bonding is delivered using a relatively inexpensive, widely accessible commercial microwave oven. Using this technique, simple PMMA microfluidics prototypes are successfully bonded and sealed in less than 35 seconds with a minimum measured bond strength of 1.375 MPa.

  19. Retrieval techniques and information content analysis to improve remote sensing of atmospheric water vapor, liquid water and temperature from ground-based microwave radiometer measurements

    NASA Astrophysics Data System (ADS)

    Sahoo, Swaroop

    Observation of profiles of temperature, humidity and winds with sufficient accuracy and fine vertical and temporal resolution are needed to improve mesoscale weather prediction, track conditions in the lower to mid-troposphere, predict winds for renewable energy, inform the public of severe weather and improve transportation safety. In comparing these thermodynamic variables, the absolute atmospheric temperature varies only by 15%; in contrast, total water vapor may change by up to 50% over several hours. In addition, numerical weather prediction (NWP) models are initialized using water vapor profile information, so improvements in their accuracy and resolution tend to improve the accuracy of NWP. Current water vapor profile observation systems are expensive and have insufficient spatial coverage to observe humidity in the lower to mid-troposphere. To address this important scientific need, the principal objective of this dissertation is to improve the accuracy, vertical resolution and revisit time of tropospheric water vapor profiles retrieved from microwave and millimeter-wave brightness temperature measurements. This dissertation advances the state of knowledge of retrieval of atmospheric water vapor from microwave brightness temperature measurements. It focuses on optimizing two information sources of interest for water vapor profile retrieval, i.e. independent measurements and background data set size. From a theoretical perspective, it determines sets of frequencies in the ranges of 20-23, 85-90 and 165-200 GHz that are optimal for water vapor retrieval from each of ground-based and airborne radiometers. The maximum number of degrees of freedom for the selected frequencies for ground-based radiometers is 5-6, while the optimum vertical resolution is 0.5 to 1.5 km. On the other hand, the maximum number of degrees of freedom for airborne radiometers is 8-9, while the optimum vertical resolution is 0.2 to 0.5 km. From an experimental perspective, brightness

  20. Ocean waves. [remote sensing microwave measurement methods

    NASA Technical Reports Server (NTRS)

    Bartsch, N.; Vogel, M.; Kjelaas, A. G.; Parr, H.; Thomas, J.; Valenzuela, G.; Williams, P. D. L.; Shemdin, O. H.

    1978-01-01

    Ocean wave data can be obtained from such active microwave probe techniques as monostatic HF and VHF, bistatic HF, HF synthetic aperture radar, altimeters, satellite and airborne synthetic aperture radar, carrier wave or pulsed dual-frequency radars, and coastal surveillance radar. Approaches to texture analysis of ocean wave imagery are discussed, with attention given to transform techniques or spatial frequency analysis, and the analysis of second-order gray level statistics. In addition, recommendations are made for further work on the modulation of short gravity waves by longer waves as a function of wind speed and wave direction, and the derivation of transfer functions for the ocean response of dual-frequency radars.

  1. Simultaneous determination of bromine and iodine in milk powder for adult and infant nutrition by plasma based techniques after digestion using microwave-induced combustion

    NASA Astrophysics Data System (ADS)

    Picoloto, Rochele S.; Doneda, Morgana; Flores, Eder L. M.; Mesko, Marcia F.; Flores, Erico M. M.; Mello, Paola A.

    2015-05-01

    In this work, bromine and iodine determination in milk powder for adult and infant nutrition was performed by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES) after digestion by microwave-induced combustion (MIC). Contrarily to previous works using MIC, a higher sample mass was digested (700 mg). Water and ammonium hydroxide (10 to 100 mmol L- 1) were investigated as absorbing solutions and accurate results were achieved using a 25 mmol L- 1 NH4OH solution. Moreover, the high stability of analytes after digestion (up to 30 days) using this solution was observed. The accuracy of the proposed MIC method was evaluated using certified and reference materials of milk powder (NIST 1549 and NIST 8435). No statistical difference was observed between results obtained by MIC-ICP-MS and reference values. Results for samples were also compared with those obtained by ICP-OES and no statistical difference was observed. Microwave-assisted alkaline extraction (MW-AE) was also evaluated for milk powder using NH4OH and tetramethylammonium hydroxide solutions. Solutions obtained after digestion by MIC (whole milk powder) presented low carbon content in digests (< 25 mg L- 1) while solutions obtained after alkaline extraction presented up to 10,000 mg L- 1 of C. MIC method was preferable in view of the possibility of obtaining solutions with low carbon content even using a relatively high sample mass (up to 700 mg) avoiding additional dilution prior to ICP-MS analysis, thus allowing better detection limits. Limits of detection obtained by MIC-ICP-MS were 0.007 and 0.003 μg g- 1 for Br and I, respectively, while for MW-AE were 0.1 and 0.05 μg g- 1 respectively for Br and I. Among the main advantages of the proposed method are the use of diluted alkaline solutions that is in agreement with green analytical chemistry recommendations, the high stability of analytes in solution and the suitability of digests for

  2. Comparing Computer-Supported Dynamic Modeling and "Paper & Pencil" Concept Mapping Technique in Students' Collaborative Activity

    ERIC Educational Resources Information Center

    Komis, Vassilis; Ergazaki, Marida; Zogza, Vassiliki

    2007-01-01

    This study aims at highlighting the collaborative activity of two high school students (age 14) in the cases of modeling the complex biological process of plant growth with two different tools: the "paper & pencil" concept mapping technique and the computer-supported educational environment "ModelsCreator". Students' shared activity in both cases…

  3. Role Play Simulations: The Assessment of an Active Learning Technique and Comparisons with Traditional Lectures.

    ERIC Educational Resources Information Center

    DeNeve, Kristina; Heppner, Mary J.

    1997-01-01

    Use of active learning techniques of role-playing and simulation in an industrial psychology course (n=29 students) is described and assessed. Subjective reports and objective assessments of knowledge retention indicate the approach was effective. The differential importance of active learning and passive learning (lecture) in the college…

  4. Teaching Tip: Using Activity Diagrams to Model Systems Analysis Techniques: Teaching What We Preach

    ERIC Educational Resources Information Center

    Lending, Diane; May, Jeffrey

    2013-01-01

    Activity diagrams are used in Systems Analysis and Design classes as a visual tool to model the business processes of "as-is" and "to-be" systems. This paper presents the idea of using these same activity diagrams in the classroom to model the actual processes (practices and techniques) of Systems Analysis and Design. This tip…

  5. Microwave induced pyrolysis of oil palm biomass.

    PubMed

    Salema, Arshad Adam; Ani, Farid Nasir

    2011-02-01

    The purpose of this paper was to carry out microwave induced pyrolysis of oil palm biomass (shell and fibers) with the help of char as microwave absorber (MA). Rapid heating and yield of microwave pyrolysis products such as bio-oil, char, and gas was found to depend on the ratio of biomass to microwave absorber. Temperature profiles revealed the heating characteristics of the biomass materials which can rapidly heat-up to high temperature within seconds in presence of MA. Some characterization of pyrolysis products was also presented. The advantage of this technique includes substantial reduction in consumption of energy, time and cost in order to produce bio-oil from biomass materials. Large biomass particle size can be used directly in microwave heating, thus saving grinding as well as moisture removal cost. A synergistic effect was found in using MA with oil palm biomass. PMID:20970995

  6. Coupling output of multichannel high power microwaves

    SciTech Connect

    Li Guolin; Shu Ting; Yuan Chengwei; Zhang Jun; Yang Jianhua; Jin Zhenxing; Yin Yi; Wu Dapeng; Zhu Jun; Ren Heming; Yang Jie

    2010-12-15

    The coupling output of multichannel high power microwaves is a promising technique for the development of high power microwave technologies, as it can enhance the output capacities of presently studied devices. According to the investigations on the spatial filtering method and waveguide filtering method, the hybrid filtering method is proposed for the coupling output of multichannel high power microwaves. As an example, a specific structure is designed for the coupling output of S/X/X band three-channel high power microwaves and investigated with the hybrid filtering method. In the experiments, a pulse of 4 GW X band beat waves and a pulse of 1.8 GW S band microwave are obtained.

  7. Microwave drying of ferric oxide pellets

    SciTech Connect

    Pickles, C.A.; Xia, D.K.

    1997-12-31

    The application of microwave energy for the drying of ferric oxide pellets has been investigated and evaluated. It is shown that the microwave drying rates are much higher than those observed in the conventional process. Also there is some potential for improved quality of the product. As a stand-alone technology it is unlikely that microwave drying would be economical for pellets due to the low cost of conventional fuels. However, based on an understanding of the drying mechanisms in the conventional process and in the microwave process, it is shown that microwave-assisted drying offers considerable potential. In this hybrid process, the advantages of the two drying techniques are combined to provide an improved drying process.

  8. Microwave-assisted synthesis of sec/tert-butyl 2-arylbenzimidazoles and their unexpected antiproliferative activity towards ER negative breast cancer cells.

    PubMed

    Abdul Rahim, Aisyah Saad; Salhimi, Salizawati Muhamad; Arumugam, Natarajan; Pin, Lim Chung; Yee, Ng Shy; Muttiah, Nithya Niranjini; Keat, Wong Boon; Abd Hamid, Shafida; Osman, Hasnah; Mat, Ishak b

    2013-12-01

    A new series of N-sec/tert-butyl 2-arylbenzimidazole derivatives was synthesised in 85-96% yields within 2-3.5 min by condensing ethyl 3-amino-4-butylamino benzoate with various substituted metabisulfite adducts of benzaldehyde under focused microwave irradiation. The benzimidazole analogues were characterised using (1)H NMR, (13)C NMR, high resolution MS and melting points. Evaluation of antiproliferative activity of the benzimidazole analogues against MCF-7 and MDA-MB-231 revealed several compounds with unexpected selective inhibitions of MDA-MB-231 in micromolar range. All analogues were found inactive towards MCF-7. The most potent inhibition against MDA-MB-231 human breast cancer cell line came from the unsubstituted 2-phenylbenzimidazole 10a. PMID:23061895

  9. Phase Transformation of VO2 Nanoparticles Assisted by Microwave Heating

    PubMed Central

    Sikong, Lek.

    2014-01-01

    The microwave assisted synthesis nowadays attracts a great deal of attention. Monoclinic phase VO2 (M) was prepared from NH4VO3 and H2C2O4 · 2H2O by a rapid microwave assisted technique. The synthesis parameters, microwave irradiation time, microwave power, and calcinations temperature were systematically varied and their influences on the structure and morphology were evaluated. The microwave power level has been carried out in range 180–600 W. TEM analysis demonstrated nanosized samples. The structural and morphological properties were measured using XRD, TEM, and thermal analyses. The variations of vanadium phase led to thermochromic properties. PMID:24688438

  10. Optimized ECR plasma apparatus with varied microwave window thickness

    DOEpatents

    Berry, L.A.

    1995-11-14

    The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design. 9 figs.

  11. Optimized ECR plasma apparatus with varied microwave window thickness

    DOEpatents

    Berry, Lee A.

    1995-01-01

    The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design.

  12. Microwave properties of high transition temperature superconducting thin films

    NASA Technical Reports Server (NTRS)

    Gordon, W. L.

    1991-01-01

    Extensive studies of the interaction of microwaves with YBa2Cu3O(7-delta), Bi-based, and Tl-based superconducting thin films deposited in several microwave substrates were performed. The data were obtained by measuring the microwave power transmitted through the film in the normal and the superconducting state and by resonant cavity techniques. The main motives were to qualify and understand the physical parameters such as the magnetic penetration depth, the complex conductivity, and the surface impedance, of high temperature superconducting (HTS) materials at microwave frequencies. Based on these parameters, the suitability of these HTS thin films is discussed for microwave applications.

  13. Volumetric pattern analysis of fuselage-mounted airborne antennas. Ph.D. Thesis; [prediction analysis techniques for antenna radiation patterns of microwave antennas on commercial aircraft

    NASA Technical Reports Server (NTRS)

    Yu, C. L.

    1976-01-01

    A volumetric pattern analysis of fuselage-mounted airborne antennas at high frequencies was investigated. The primary goal of the investigation was to develop a numerical solution for predicting radiation patterns of airborne antennas in an accurate and efficient manner. An analytical study of airborne antenna pattern problems is presented in which the antenna is mounted on the fuselage near the top or bottom. Since this is a study of general-type commercial aircraft, the aircraft was modeled in its most basic form. The fuselage was assumed to be an infinitely long perfectly conducting elliptic cylinder in its cross-section and a composite elliptic cylinder in its elevation profile. The wing, cockpit, stabilizers (horizontal and vertical) and landing gear are modeled by "N" sided bent or flat plates which can be arbitrarily attached to the fuselage. The volumetric solution developed utilizes two elliptic cylinders, namely, the roll plane and elevation plane models to approximate the principal surface profile (longitudinal and transverse) at the antenna location. With the belt concept and the aid of appropriate coordinate system transformations the solution can be used to predict the volumetric patterns of airborne antennas in an accurate and efficient manner. Applications of this solution to various airborne antenna problems show good agreement with scale model measurements. Extensive data are presented for a microwave landing antenna system.

  14. Biophysical techniques for examining metabolic, proliferative, and genetic effects of microwave radiation. Final report, 1 Oct 89-30 Aug 90

    SciTech Connect

    Meltz, M.L.

    1991-09-01

    This project was undertaken to prepare for a comprehensive research effort examining metabolic, proliferative, and genetic effects of microwave radiation. To accomplish this task, preliminary studies have been performed with 4 cells systems; Chinese hamster ovary (CHO) cells, AS52 Chinese hamster cells (heterozygous at the xanthine-guanine phosphoribosyl transferase (XGPRT) locus), 244B proliferating human lymphoblastoid cells, and freshly isolated peripheral lymphocytes. The thermal response of the 244B cells has been carefully examined, and an initial characterization of the membrane markers, membrane permeability, and cell cycle distribution of these cells undertaken. The absence of the induction of chromosome aberrations in CHO cells, after exposure to 850 MHz pulsed wave (PW), 18mW/cm2 (specific absorption rate (SAR) 14.4 W/kg) radiofrequency radiation (RFR), or after exposure to 1,200 MHz PW (220 W -300 W) net forward power; SAR 24.33 W/kg RFR, is reported. The survival response of the AS52 cells, after simultaneous treatment at 37 C or 40 C, with and without mitomycin or adriamycin, is described. The survival of the AS52 cells after X-ray exposure at low and high dose rates is also described.

  15. MAG4 Versus Alternative Techniques for Forecasting Active-Region Flare Productivity

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2014-01-01

    MAG4 is a technique of forecasting an active region's rate of production of major flares in the coming few days from a free-magnetic-energy proxy. We present a statistical method of measuring the difference in performance between MAG4 and comparable alternative techniques that forecast an active region's major-flare productivity from alternative observed aspects of the active region. We demonstrate the method by measuring the difference in performance between the "Present MAG4" technique and each of three alternative techniques, called "McIntosh Active-Region Class," "Total Magnetic Flux," and "Next MAG4." We do this by using (1) the MAG4 database of magnetograms and major-flare histories of sunspot active regions, (2) the NOAA table of the major-flare productivity of each of 60 McIntosh active-region classes of sunspot active regions, and (3) five technique-performance metrics (Heidke Skill Score, True Skill Score, Percent Correct, Probability of Detection, and False Alarm Rate) evaluated from 2000 random two-by-two contingency tables obtained from the databases. We find that (1) Present MAG4 far outperforms both McIntosh Active-Region Class and Total Magnetic Flux, (2) Next MAG4 significantly outperforms Present MAG4, (3) the performance of Next MAG4 is insensitive to the forward and backward temporal windows used, in the range of one to a few days, and (4) forecasting from the free-energy proxy in combination with either any broad category of McIntosh active-region classes or any Mount Wilson active-region class gives no significant performance improvement over forecasting from the free-energy proxy alone (Present MAG4).

  16. Comparative evaluation of passive, active, and passive-active distraction techniques on pain perception during local anesthesia administration in children

    PubMed Central

    Abdelmoniem, Soad A.; Mahmoud, Sara A.

    2015-01-01

    Local anesthesia forms the backbone of pain control techniques and is necessary for a painless dental procedure. Nevertheless, administering a local anesthetic injection is among the most anxiety-provoking procedures to children. This study was performed to compare the efficacy of different distraction techniques (passive, active, and passive-active) on children’s pain perception during local anesthesia administration. A total of 90 children aged four to nine years, requiring inferior alveolar nerve block for primary molar extraction, were included in this study and randomly divided into three groups according to the distraction technique employed during local anesthesia administration. Passive distraction group: the children were instructed to listen to a song on headphones; Active distraction group: the children were instructed to move their legs up and down alternatively; and Passive-active distraction group: this was a combination between both techniques. Pain perception during local anesthesia administration was evaluated by the Sounds, Eyes, and Motor (SEM) scale and Wong Baker FACES® Pain Rating Scale. There was an insignificant difference between the three groups for SEM scale and Wong Baker FACES Pain Rating Scale at P = 0.743 and P = 0.112 respectively. The examined distraction techniques showed comparable results in reducing pain perception during local anesthesia administration. PMID:27222759

  17. Microwave PASER Experiment

    SciTech Connect

    Schoessow, P.; Kanareykin, A.; Antipov, S.; Poluektov, O.; Jing, C.

    2009-01-22

    The PASER (Particle Acceleration by Stimulated Emission of Radiation) concept for particle acceleration entails the direct transfer of energy from an active medium to a charged particle beam. The PASER was originally formulated for optical (laser) media; we are planning a PASER demonstration experiment based on an optically pumped X-band paramagnetic medium consisting of porphyrin or fullerene (C{sub 60}) derivatives in a toluene solution or polystyrene matrix. We discuss the background of this project and report on the status of the experiment to measure the acceleration of electrons using the microwave PASER.

  18. RF Testing Of Microwave Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Ponchak, G. E.; Shalkhauser, K. A.; Bhasin, K. B.

    1988-01-01

    Fixtures and techniques are undergoing development. Four test fixtures and two advanced techniques developed in continuing efforts to improve RF characterization of MMIC's. Finline/waveguide test fixture developed to test submodules of 30-GHz monolithic receiver. Universal commercially-manufactured coaxial test fixture modified to enable characterization of various microwave solid-state devices in frequency range of 26.5 to 40 GHz. Probe/waveguide fixture is compact, simple, and designed for non destructive testing of large number of MMIC's. Nondestructive-testing fixture includes cosine-tapered ridge, to match impedance wavequide to microstrip. Advanced technique is microwave-wafer probing. Second advanced technique is electro-optical sampling.

  19. AC Josephson effect applications in microwave systems

    NASA Astrophysics Data System (ADS)

    Larkin, Serguey Y.

    1996-12-01

    analysis allow to get the picture of temperature distribution along the plasma cord diameter in accordance with dynamics of thermonuclear process development. Modem raclioastronomic research gives scientists the unique information on the world tructure. It is also necessary to analyze Space microwave radiation providing exclusive sensitivity of the equipment. In both cases equipment is required to be superwide band, to have high sensitivity and ability to operate at more than 300 GHz frequencies. Today all these requirements are met by the devices using the ac Josephson effect. The Josephson junctions are used as an active transforming element in such devices. At the end of 20 century the sphere of their utilization embraces medicine, communications, radiophysics, space exploration, ecology, military use, etc. The State Research Center "Fonon" ( SRC "Fonon") of the State Committee on Science and Technology of Ukraine was founded in 1991. The main aim of its creation was to concentrate the scientific and financial efforts for development and production of unique devices based on the results of fundamental study in physics of high T superconductivity. First of all we were interested in technological research on the obtaining of low impedance Josephson junctions out of the High T thin films. Using such junctions in combination with our original techniques developed in our Center we have succeed in creating the following new generation equipment: industrial set-up of the frequency meter in the range of 60 ... 600 GHz; experimental set-up of the spectrum analyzer operating in the range of 50 250 GHz; experimental model of radiometric receiver in 180...260 GHz range. All the above devices are based on the using ac Josephson effect for the receiving and processing mm- and submm- microwave signals.

  20. Investigating real-time activation of adenosine receptors by bioluminescence resonance energy transfer technique

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Yang, Hongqin; Zheng, Liqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2013-02-01

    Adenosine receptors play important roles in many physiological and pathological processes, for example regulating myocardial oxygen consumption and the release of neurotransmitters. The activations of adenosine receptors have been studied by some kinds of techniques, such as western blot, immunohistochemistry, etc. However, these techniques cannot reveal the dynamical response of adenosine receptors under stimulation. In this paper, bioluminescence resonance energy transfer technique was introduced to study the real-time activation of adenosine receptors by monitoring the dynamics of cyclic adenosine monophosphate (cAMP) level. The results showed that there were significant differences between adenosine receptors on real-time responses under stimulation. Moreover, the dynamics of cAMP level demonstrated that competition between adenosine receptors existed. Taken together, our study indicates that monitoring the dynamics of cAMP level using bioluminescence resonance energy transfer technique could be one potential approach to investigate the mechanism of competitions between adenosine receptors.

  1. Microwave Accelerated Green Synthesis of Stable Silver Nanoparticles with Eucalyptus globulus Leaf Extract and Their Antibacterial and Antibiofilm Activity on Clinical Isolates

    PubMed Central

    Ali, Khursheed; Ahmed, Bilal; Dwivedi, Sourabh; Saquib, Quaiser; Al-Khedhairy, Abdulaziz A.; Musarrat, Javed

    2015-01-01

    A simple and rapid microwave assisted method of green synthesis of silver nanoparticles (AgNPs) was developed using aqueous leaf extract of Eucalyptus globulus(ELE), and their antibacterial and antibiofilm potential investigated. With this aim, the aqueous solutions of ELE and AgNO3(1 mM) were mixed (1:4 v/v), and microwave irradiated at 2450 Mhz, for 30 sec. The instant color change of the ELE-AgNO3 mixture from pale yellow to dark brown indicated ELE-AgNPs synthesis. The intensity of peak at 428 nm in UV-Vis spectra, due to the surface plasmon resonance of AgNPs, varied with the amount of ELE, AgNO3 concentration, pH and time of incubation. The biosynthesized ELE-AgNPs were characterized by UV-visible spectroscopy, XRD, TEM, SEM-EDX, FTIR and TGA analyses. The size of ELE-AgNPs was determined to be in range of 1.9–4.3 nm and 5-25 nm, with and without microwave treatment, respectively. SEM exhibited the capping of AgNPs with the ELE constituents, and validated by FTIR analysis. The FTIR data revealed the presence of plant organic constituents and metabolites bound to ELE-AgNPs, which contributes for their stability. The antimicrobial activity of ELE-AgNPs was assessed by growth and biofilm inhibition of extended spectrum β-lactamase (ESBL) producing Pseudomonas aeruginosa, Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA) clinical bacterial isolates. The results demonstrated that S. aureus were more sensitive to ELE-AgNPs than E. coli and P. aeruginosa. MRSA exhibited higher sensitive than MSSA, whereas P. aeruginosa were more sensitive than E. coli to ELE-AgNPs treatment. Also, significant (83 ± 3% and 84 ± 5%) biofilm inhibition was observed in case of S. aureus and P. aeruginosa, respectively. The results elucidated environmentally friendly, economical and quick method for production of colloidal bio-functionalized ELE-AgNPs, for effectual clinical applications, as broad spectrum

  2. Microwave Accelerated Green Synthesis of Stable Silver Nanoparticles with Eucalyptus globulus Leaf Extract and Their Antibacterial and Antibiofilm Activity on Clinical Isolates.

    PubMed

    Ali, Khursheed; Ahmed, Bilal; Dwivedi, Sourabh; Saquib, Quaiser; Al-Khedhairy, Abdulaziz A; Musarrat, Javed

    2015-01-01

    A simple and rapid microwave assisted method of green synthesis of silver nanoparticles (AgNPs) was developed using aqueous leaf extract of Eucalyptus globulus(ELE), and their antibacterial and antibiofilm potential investigated. With this aim, the aqueous solutions of ELE and AgNO3(1 mM) were mixed (1:4 v/v), and microwave irradiated at 2450 Mhz, for 30 sec. The instant color change of the ELE-AgNO3 mixture from pale yellow to dark brown indicated ELE-AgNPs synthesis. The intensity of peak at 428 nm in UV-Vis spectra, due to the surface plasmon resonance of AgNPs, varied with the amount of ELE, AgNO3 concentration, pH and time of incubation. The biosynthesized ELE-AgNPs were characterized by UV-visible spectroscopy, XRD, TEM, SEM-EDX, FTIR and TGA analyses. The size of ELE-AgNPs was determined to be in range of 1.9-4.3 nm and 5-25 nm, with and without microwave treatment, respectively. SEM exhibited the capping of AgNPs with the ELE constituents, and validated by FTIR analysis. The FTIR data revealed the presence of plant organic constituents and metabolites bound to ELE-AgNPs, which contributes for their stability. The antimicrobial activity of ELE-AgNPs was assessed by growth and biofilm inhibition of extended spectrum β-lactamase (ESBL) producing Pseudomonas aeruginosa, Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA) clinical bacterial isolates. The results demonstrated that S. aureus were more sensitive to ELE-AgNPs than E. coli and P. aeruginosa. MRSA exhibited higher sensitive than MSSA, whereas P. aeruginosa were more sensitive than E. coli to ELE-AgNPs treatment. Also, significant (83 ± 3% and 84 ± 5%) biofilm inhibition was observed in case of S. aureus and P. aeruginosa, respectively. The results elucidated environmentally friendly, economical and quick method for production of colloidal bio-functionalized ELE-AgNPs, for effectual clinical applications, as broad spectrum

  3. Microwave assisted hydrothermal synthesis of Ag/AgCl/WO{sub 3} photocatalyst and its photocatalytic activity under simulated solar light

    SciTech Connect

    Adhikari, Rajesh; Gyawali, Gobinda; Sekino, Tohru; Wohn Lee, Soo

    2013-01-15

    Simulated solar light responsive Ag/AgCl/WO{sub 3} composite photocatalyst was synthesized by microwave assisted hydrothermal process. The synthesized powders were characterized by X-Ray Diffraction (XRD) spectroscopy, X-Ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), Diffuse Reflectance Spectroscopy (UV-Vis DRS), and BET surface area analyzer to investigate the crystal structure, morphology, chemical composition, optical properties and surface area of the composite photocatalyst. This photocatalyst exhibited higher photocatalytic activity for the degradation of rhodamine B under simulated solar light irradiation. Dye degradation efficiency of composite photocatalyst was found to be increased significantly as compared to that of the commercial WO{sub 3} nanopowder. Increase in photocatalytic activity of the photocatalyst was explained on the basis of surface plasmon resonance (SPR) effect caused by the silver nanoparticles present in the composite photocatalyst. Highlights: Black-Right-Pointing-Pointer Successful synthesis of Ag/AgCl/WO{sub 3} nanocomposite. Black-Right-Pointing-Pointer Photocatalytic experiment was performed under simulated solar light. Black-Right-Pointing-Pointer Nanocomposite photocatalyst was very active as compared to WO{sub 3} commercial powder. Black-Right-Pointing-Pointer SPR effect due to Ag nanoparticles enhanced the photocatalytic activity.

  4. Microwave assisted synthesis, characterization and biocidal activities of some new chelates of carbazole derived Schiff bases of cadmium and tin metals

    NASA Astrophysics Data System (ADS)

    Yadav, Manju; Mishra, Neelima; Sharma, Nutan; Chandra, Sulekh; Kumar, Dinesh

    2014-11-01

    This study is planned to report the advancement of green microwave approach in the fabrication of a new series of biologically potent (N^X, where X = O/S) donor Schiff bases and their cadmium(II) and tin(II) complexes. The ligands and their metal complexes have been characterized in terms of elemental analysis, molar ionic conductance, magnetic moment and spectral (IR, UV-Vis, NMR (1H, 119Sn), FAB-mass, thermal and XRD) data. The data revealed that the ligands coordinated to the metal center via nitrogen and oxygen/sulfur atoms and form an octahedral arrangement of the ligands around central metal atom. All compounds were evaluated for their in vitro antimicrobial activities against two pathogenic bacteria Bacillus subtilis and Escherichia coli and two fungi Aspergillus niger and Aspergillus flavus by standard disc diffusion method. The discs were stored in an incubator at 37 °C. The compounds were dissolved in DMF at 500 and 1000 ppm concentrations for screening biocidal activity. The compounds were dissolved in DMF to get the 100 and 200 ppm concentration of test solutions for screening fungicidal activity. The inhibition zone around each disc was measured (in mm) after 24 h and 96 h for biocidal and fungicidal activities respectively.

  5. Microwave assisted synthesis, characterization and biocidal activities of some new chelates of carbazole derived Schiff bases of cadmium and tin metals.

    PubMed

    Yadav, Manju; Mishra, Neelima; Sharma, Nutan; Chandra, Sulekh; Kumar, Dinesh

    2014-11-11

    This study is planned to report the advancement of green microwave approach in the fabrication of a new series of biologically potent (N^X, where X=O/S) donor Schiff bases and their cadmium(II) and tin(II) complexes. The ligands and their metal complexes have been characterized in terms of elemental analysis, molar ionic conductance, magnetic moment and spectral (IR, UV-Vis, NMR ((1)H, (119)Sn), FAB-mass, thermal and XRD) data. The data revealed that the ligands coordinated to the metal center via nitrogen and oxygen/sulfur atoms and form an octahedral arrangement of the ligands around central metal atom. All compounds were evaluated for their in vitro antimicrobial activities against two pathogenic bacteria Bacillus subtilis and Escherichia coli and two fungi Aspergillus niger and Aspergillus flavus by standard disc diffusion method. The discs were stored in an incubator at 37°C. The compounds were dissolved in DMF at 500 and 1000 ppm concentrations for screening biocidal activity. The compounds were dissolved in DMF to get the 100 and 200 ppm concentration of test solutions for screening fungicidal activity. The inhibition zone around each disc was measured (in mm) after 24 h and 96 h for biocidal and fungicidal activities respectively. PMID:24929756

  6. Isotope dilution analysis of Se in human blood serum by using high-power nitrogen microwave-induced plasma mass spectrometry coupled with a hydride generation technique.

    PubMed

    Ohata, M; Ichinose, T; Furuta, N; Shinohara, A; Chiba, M

    1998-07-01

    To establish a method for sensitive, accurate, and precise determination of Se in real samples, isotope dilution analysis using high-power nitrogen microwave-induced plasma mass spectrometry (N2 MIP-IDMS) was conducted. In this study, freeze-dried human blood serum (Standard Reference Material, NIES No. 4) provided by NIES (National Institute for Environmental Studies) was used as a real sample. The measured isotopes of Se were 78Se and 80Se which are the major isotopes of Se. The appropriate amount of a Se spike solution was theoretically calculated by using an error multiplication factor (F) and was confirmed experimentally for the isotope dilution analysis. The mass discrimination effect was corrected for by using a standard Se solution for the measurement of Se isotope ratios in the spiked sample. However, the sensitivity for the detection of Se was not so good and the precision of the determination was not improved (2-3%) by N2 MIP-IDMS with use of the conventional nebulizer. Therefore, a hydride generation system was connected to N2 MIP-IDMS as a sample introduction system (HG-N2 MIP-IDMS) in order to establish a more sensitive detection and a more precise determination of Se. A detection limit (3 sigma) of 10 pg mL-1 could be achieved, and the RSD was less than 1% at the concentration level of 5.0-10.0 ng mL-1 by HG-N2 MIP-IDMS. The analytical results were found to be in a good agreement with those obtained by the standard addition method using conventional Ar ICPMS. PMID:9666737

  7. Application of Semi Active Control Techniques to the Damping Suppression Problem of Solar Sail Booms

    NASA Technical Reports Server (NTRS)

    Adetona, O.; Keel, L. H.; Whorton, M. S.

    2007-01-01

    Solar sails provide a propellant free form for space propulsion. These are large flat surfaces that generate thrust when they are impacted by light. When attached to a space vehicle, the thrust generated can propel the space vehicle to great distances at significant speeds. For optimal performance the sail must be kept from excessive vibration. Active control techniques can provide the best performance. However, they require an external power-source that may create significant parasitic mass to the solar sail. However, solar sails require low mass for optimal performance. Secondly, active control techniques typically require a good system model to ensure stability and performance. However, the accuracy of solar sail models validated on earth for a space environment is questionable. An alternative approach is passive vibration techniques. These do not require an external power supply, and do not destabilize the system. A third alternative is referred to as semi-active control. This approach tries to get the best of both active and passive control, while avoiding their pitfalls. In semi-active control, an active control law is designed for the system, and passive control techniques are used to implement it. As a result, no external power supply is needed so the system is not destabilize-able. Though it typically underperforms active control techniques, it has been shown to out-perform passive control approaches and can be unobtrusively installed on a solar sail boom. Motivated by this, the objective of this research is to study the suitability of a Piezoelectric (PZT) patch actuator/sensor based semi-active control system for the vibration suppression problem of solar sail booms. Accordingly, we develop a suitable mathematical and computer model for such studies and demonstrate the capabilities of the proposed approach with computer simulations.

  8. Technique for Radiometer and Antenna Array Calibration with Two Antenna Noise Diodes

    NASA Technical Reports Server (NTRS)

    Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul

    2011-01-01

    This paper presents a new technique to calibrate a microwave radiometer and phased array antenna system. This calibration technique uses a radiated noise source in addition to an injected noise sources for calibration. The plane of reference for this calibration technique is the face of the antenna and therefore can effectively calibration the gain fluctuations in the active phased array antennas. This paper gives the mathematical formulation for the technique and discusses the improvements brought by the method over the existing calibration techniques.

  9. Passive microwave sensing of coastal area waters

    NASA Technical Reports Server (NTRS)

    Kendall, B. M.

    1980-01-01

    A technique to remotely measure sea-surface temperature and salinity was demonstrated during the 1970's with a dual-frequency microwave radiometer system developed at the NASA Langley Research Center. Accuracies in temperature of 1 C and 1 part per thousand in salinity were obtained using state-of-the-art radiometers. Several aircraft programs for the measurement of coastal area waters demonstrating the application of the microwave radiometer system are discussed. Improvements of the microwave radiometer system during the 1980's and the design and development of new radiometer systems at other frequencies are outlined and related to potential applications.

  10. Systems analysis for DSN microwave antenna holography

    NASA Technical Reports Server (NTRS)

    Rochblatt, D. J.

    1989-01-01

    Proposed systems for Deep Space Network (DSN) microwave antenna holography are analyzed. Microwave holography, as applied to antennas, is a technique which utilizes the Fourier Transform relation between the complex far-field radiation pattern of an antenna and the complex aperture field distribution to provide a methodology for the analysis and evaluation of antenna performance. Resulting aperture phase and amplitude distribution data are used to precisely characterize various crucial performance parameters, including panel alignment, subreflector position, antenna aperture illumination, directivity at various frequencies, and gravity deformation. Microwave holographic analysis provides diagnostic capacity as well as being a powerful tool for evaluating antenna design specifications and their corresponding theoretical models.

  11. Compact Microwave Fourier Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  12. Microwave enhanced sintering of ceramics

    SciTech Connect

    Wroe, F.C.R.; Rowley, A.T.

    1995-12-31

    It is now well known that microwave dielectric heating can be used to increase the Wintering rates and to reduce the sintering times of ceramic materials. However, the nature of the mechanism causing this enhanced sintering is still far from understood, with many workers attributing the effect to a reduction in the activation energy even though there is no real physical basis for this assumption. Although the mechanism is not understood, many results have indicated that the effect is non thermal in nature, i.e. the enhancement would not be reproduced if conventional heat could be applied in exactly the same way (volumetrically) as microwave heat. By careful control of the relative proportions of microwave and conventional heating, it has been possible to separate the thermal (heating) effects from the non-thermal effects. This paper discusses the results obtained, and show that they are consistent with recent theories of enhanced diffusion.

  13. Exploring Techniques for Vision Based Human Activity Recognition: Methods, Systems, and Evaluation

    PubMed Central

    Xu, Xin; Tang, Jinshan; Zhang, Xiaolong; Liu, Xiaoming; Zhang, Hong; Qiu, Yimin

    2013-01-01

    With the wide applications of vision based intelligent systems, image and video analysis technologies have attracted the attention of researchers in the computer vision field. In image and video analysis, human activity recognition is an important research direction. By interpreting and understanding human activities, we can recognize and predict the occurrence of crimes and help the police or other agencies react immediately. In the past, a large number of papers have been published on human activity recognition in video and image sequences. In this paper, we provide a comprehensive survey of the recent development of the techniques, including methods, systems, and quantitative evaluation of the performance of human activity recognition. PMID:23353144

  14. Tuning Broadband Microwave Amplifiers

    SciTech Connect

    Alaniz, Gabriel

    2003-09-05

    The PEP-II/DA {Phi} NE/ALS longitudinal feedback systems are complex wide bandwidth systems requiring analog, digital and microwave circuits. The solid-state amplifier is one of the components in the microwave circuit that is required to suppress the coupled bunch instabilities that exist in the PEP-II accelerator. The suppression is achieved by using an antenna as a kicker structure that provides an electric field in order to increase or decrease the energy of particles passing through the structure. The amplifier is made up of sixteen 30 to 35W microstrip GaAs FET modules that are combined to obtain 500W over a bandwidth of 850MHz to 1850MHz. The amplifier malfunctioned causing a reduction in the functionality and power output of the individual GaAs FET modules. The amplifier must be repaired. After repair, the amplifier must be tuned to optimize the gain while maintaining proper power output. The amplifier is tuned using microstrip circuit techniques. A variety of microstrip methods are used to obtain the proper line impedance. The result is a working amplifier that operates efficiently.

  15. Microwave spectrum compatibility in planetary research

    NASA Technical Reports Server (NTRS)

    Siegmeth, A. J.

    1976-01-01

    The paper presents an overview of solar system exploration, basic functions of the Deep Space Network (DSN), deep space microwave links, space research compatibility problems, and DSN's interference susceptibility. To maintain the operational integrity of competing radio systems using the microwave spectrum, the technology must extend to make possible the shared use of the spectral ranges without the ill effects of interferences. Suggestions are given which are only examples of many possible techniques that can eliminate or reduce interferences.

  16. Antibacterial activities of essential oils extracted from leaves of Murraya koenigii by solvent-free microwave extraction and hydro-distillation.

    PubMed

    Erkan, Naciye; Tao, Zhou; Rupasinghe, H P Vasantha; Uysal, Burcu; Oksal, Birsen S

    2012-01-01

    Solvent-free microwave extraction (SFME) for the isolation of essential oil from leaves of Murraya koenigii L. (Rutaceae) has been compared with the conventional hydro-distilled oil (HD) in terms of yield, composition, antioxidant activity, and antibacterial activity against Listeria innocua. The yield of essential oil obtained from 30 min of SFME was similar to that of HD for 180 min. By GC-MS analysis, the major compounds of the essential oil extracted by SFME, which were obtained in somewhat lower amounts than in the essential oil obtained by HD, were alpha-copaene (44.3%), beta-gurjunene (25.5%), isocaryophyllene (12.1%), beta-caryophyllene (8.7%) and germacrene D (2.9%). The content of oxygenated terpenes, slightly higher for the SFME-essential oil (2.3%) than the HD-essential oil (1.4%), were much lower than that of nonoxygenated terpenes in both oils. DPPH radical scavenging activities of both essential oils were relatively low (10%-24%). Complete inhibition of growth of L. innocua was observed with both SFME and HD essential oils, at 400 and 600 microg/mL (minimum inhibitory concentration), respectively. The SFME-essential oil at 300 microg/mL provided 92% inhibition, indicating its potential as a natural antimicrobial agent. PMID:22428264

  17. Multielement determination of heavy metals in water samples by continuous powder introduction microwave-induced plasma atomic emission spectrometry after preconcentration on activated carbon

    NASA Astrophysics Data System (ADS)

    Jankowski, Krzysztof; Yao, Jun; Kasiura, Krzysztof; Jackowska, Adrianna; Sieradzka, Anna

    2005-03-01

    A novel continuous powder introduction microwave-induced plasma atomic emission spectrometry method (CPI-MIP-AES) has been developed for trace determination of metals in ground and tap water samples after preconcentration on activated carbon. The experimental setup consisted of integrated rectangular cavity TE 101 and vertically positioned plasma torch. The technical arrangement of the sample introduction system has been designed based on the fluidized bed concept. The satisfactory signal stability required for sequential analysis was attained owing to the vertical plasma configuration, as well as the plasma gas flow rate compatibility with sample introduction flow rate. The elements of interest (Cd, Cu, Cr, Fe, Mn, Pb, Zn) were preconcentrated in a batch procedure at pH 8-8.5 after addition of activated carbon and then, after filtering and drying of the activated carbon suspension, introduced to the MIP by the CPI system. An enrichment factor of about 1000-fold for a sample volume of 1 l was obtained. The detection limit values for the proposed method were 17-250 ng l -1. The proposed method was validated by analyzing the certified reference materials: SRW "Warta" Synthetic River Water and BCR CRM 399 major elements in freshwater. The method was successfully applied to the determination of the heavy metals in tap water samples.

  18. Deposition of photocatalytically active TiO2 films by inkjet printing of TiO2 nanoparticle suspensions obtained from microwave-assisted hydrothermal synthesis.

    PubMed

    Arin, Melis; Lommens, Petra; Hopkins, Simon C; Pollefeyt, Glenn; Van der Eycken, Johan; Ricart, Susagna; Granados, Xavier; Glowacki, Bartek A; Van Driessche, Isabel

    2012-04-27

    In this paper, we present an inkjet printing approach suited for the deposition of photocatalytically active, transparent titanium oxide coatings from an aqueous, colloidal suspension. We used a bottom-up approach in which a microwave-assisted hydrothermal treatment of titanium propoxide aqueous solutions in the presence of ethylenediaminetetraacetic acid and triethanolamine was used to create suspensions containing titania nanoparticles. Different inkjet printing set-ups, electromagnetic and piezoelectric driven, were tested to deposit the inks on glass substrates. The presence of preformed titania nanoparticles was expected to make it possible to reduce the heating temperature necessary to obtain the functionality of photocatalysis which can widen the application range of the approach to heat-sensitive substrates. We investigated the crystallinity and size of the obtained nanoparticles by electron microscopy and dynamic light scattering. The rheological properties of the suspensions were evaluated against the relevant criteria for inkjet printing and the jettability was analyzed. The photocatalytic activity of the obtained layers was analyzed by following the decomposition of a methylene blue solution under UV illumination. The influence of the heat treatment temperature on the film roughness, thickness and photocatalytic activity was studied. Good photocatalytic performance was achieved for heat treatments at temperatures as low as 150 °C, introducing the possibility of using this approach for heat-sensitive substrates. PMID:22460736

  19. Microwave hydrothermal synthesis and photocatalytic activity of AgIn{sub 5}S{sub 8} for the degradation of dye

    SciTech Connect

    Zhang Wenjuan; Li Danzhen; Sun Meng; Shao Yu; Chen Zhixin; Xiao Guangcan; Fu Xianzhi

    2010-10-15

    AgIn{sub 5}S{sub 8} powders were successfully synthesized by a microwave hydrothermal method for the first time. This method is a mild and highly efficient route involves no templates, catalysts, or surfactants. Therefore, it is very promising for the low-cost and large-scale industrial production. The samples were characterized by X-ray diffraction, UV-vis spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. The photocatalytic activity of AgIn{sub 5}S{sub 8} nanoparticles was investigated through the degradation of methyl orange under visible light irradiation. Compared with TiO{sub 2-x}N{sub x}, AgIn{sub 5}S{sub 8} has exhibited a superior activity under the same condition. A liquid chromatogram-mass spectrometer was used to separate and identify the dye and degradation products generated during the reaction. According to the experiment results, a possible mechanism for the degradation of organic pollutant over AgIn{sub 5}S{sub 8} was proposed. - Graphical abstract: Compared with TiO{sub 2-x}N{sub x}, AgIn{sub 5}S{sub 8} has exhibited a superior activity under the same condition.

  20. A novel microwave recipe for an antibiofilm titanium surface.

    PubMed

    Gopal, Judy; Nandakumar, Venkatesan; Doble, Mukesh

    2015-11-01

    A microwave based method for the surface modification of titanium was demonstrated for biomedical applications. The surfaces were characterized using XRD, HR-SEM and Goniometer. The absence of rutile, anatase and brookite phases and the presence of an amorphous near-native oxide film were confirmed. The microwave oxidized (MWO) surfaces exhibited a significant antibiofilm activity against Escherichia coli and Staphylococcus aureus. In the presence and absence of the water pot, the oxidation times of 60 and 20min demonstrated a high antibiofilm property respectively. The surfaces turned more hydrophobic with increasing oxidation time. The viability of L6 cells remained unaffected on the MWO oxidized surfaces, signifying no loss in biocompatibility. This systematic study presents MWO as a promising technique for solving the biofilm problem faced by the otherwise robust titanium. PMID:26249583