Science.gov

Sample records for active mid-ocean ridge

  1. Hydrothermal activity at the Arctic mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Pedersen, Rolf B.; Thorseth, Ingunn H.; Nygård, Tor Eivind; Lilley, Marvin D.; Kelley, Deborah S.

    Over the last 10 years, hydrothermal activity has been shown to be abundant at the ultraslow spreading Arctic Mid-Ocean Ridges (AMOR). Approximately 20 active and extinct vent sites have been located either at the seafloor, as seawater anomalies, or by dredge sampling hydrothermal deposits. Decreasing spreading rates and decreasing influence of the Icelandic hot spot toward the north along the AMOR result in a north-south change from a shallow and magmatically robust to a deep and magmatically starved ridge system. This contrast gives rise to large variability in the ridge geology and in the nature of the associated hydrothermal systems. The known vent sites at the southern part of the ridge system are either low-temperature or white smoker fields. At the deep, northern parts of the ridge system, a large black smoker field has been located, and seawater anomalies and sulfide deposits suggest that black smoker-type venting is common. Several of these fields may be peridotite-hosted. The hydrothermal activity at parts of the AMOR exceeds by a factor of 2 to 3 what would be expected by extrapolating from observations on faster spreading ridges. Higher fracture/fault area relative to the magma volume extracted seems a likely explanation for this. Many of the vent fields at the AMOR are associated with axial volcanic ridges. Strong focusing of magma toward these ridges, deep rifting of the ridges, and subsequent formation of long-lived detachment faults that are rooted below the ridges may be the major geodynamic mechanisms causing the unexpectedly high hydrothermal activity.

  2. The Mid-Ocean Ridge.

    ERIC Educational Resources Information Center

    Macdonald, Kenneth C.; Fox, Paul J.

    1990-01-01

    Described are concepts involved with the formation and actions of the Mid-Ocean Ridge. Sea-floor spreading, the magma supply model, discontinuities, off-axis structures, overlaps and deviation, and aquatic life are discussed. (CW)

  3. The Mid-Ocean Ridge

    SciTech Connect

    Macdonald, K.C. ); Fox, P.J. )

    1990-06-01

    The Mid-Ocean Ridge girdles the earth like the seam of a baseball. For more than 75,000 kilometers, this submerged range of razorback mountains--many higher than the greatest peaks on land--marks the restless boundary between continental plates. An analysis of this huge structure reveals a fascinating picture of how it is created by magma welling up as the plates pull apart. The paper discusses sea-floor spreading, the magma supply model, types of discontinuities, off-axis structures, small overlaps and DEVALs (slight DEViations in Axial Linearity), and aquatic life.

  4. Rapid cooling rates at an active mid-ocean ridge from zircon thermochronology

    NASA Astrophysics Data System (ADS)

    Schmitt, Axel K.; Perfit, Michael R.; Rubin, Kenneth H.; Stockli, Daniel F.; Smith, Matthew C.; Cotsonika, Laurie A.; Zellmer, Georg F.; Ridley, W. Ian; Lovera, Oscar M.

    2011-02-01

    Oceanic spreading ridges are Earth's most productive crust generating environment, but mechanisms and rates of crustal accretion and heat loss are debated. Existing observations on cooling rates are ambiguous regarding the prevalence of conductive vs. convective cooling of lower oceanic crust. Here, we report the discovery and dating of zircon in mid-ocean ridge dacite lavas that constrain magmatic differentiation and cooling rates at an active spreading center. Dacitic lavas erupted on the southern Cleft segment of the Juan de Fuca ridge, an intermediate-rate spreading center, near the intersection with the Blanco transform fault. Their U-Th zircon crystallization ages (29.3 - 4.6 + 4.8 ka; 1σ standard error s.e.) overlap with the (U-Th)/He zircon eruption age (32.7 ± 1.6 ka) within uncertainty. Based on similar 238U- 230Th disequilibria between southern Cleft dacite glass separates and young mid-ocean ridge basalt (MORB) erupted nearby, differentiation must have occurred rapidly, within ~ 10-20 ka at most. Ti-in-zircon thermometry indicates crystallization at 850-900 °C and pressures > 70-150 MPa are calculated from H 2O solubility models. These time-temperature constraints translate into a magma cooling rate of ~ 2 × 10 - 2 °C/a. This rate is at least one order-of-magnitude faster than those calculated for zircon-bearing plutonic rocks from slow spreading ridges. Such short intervals for differentiation and cooling can only be resolved through uranium-series ( 238U- 230Th) decay in young lavas, and are best explained by dissipating heat convectively at high crustal permeability.

  5. Segmentation of mid-ocean ridges

    USGS Publications Warehouse

    Schouten, Hans; Klitgord, Kim D.; Whitehead, J.A.

    1985-01-01

    Studies of mid-ocean ridges in the Pacific and Atlantic oceans show that the volcanism that forms the oceanic crust along the spreading-plate boundaries is concentrated at regular intervals related to spreading rate. This observation and a new calculation for a Rayleigh-Taylor type of gravitational instability of a partially molten mantle region growing under spreading centres yield reasonable estimates of upper mantle viscosities. ?? 1985 Nature Publishing Group.

  6. Active spreading processes at ultraslow mid-ocean ridges: Unusual seismicity at the amagmatic Lena Trough, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Läderach, Christine; Schlindwein, Vera; Riedel, Carsten

    2010-05-01

    Lena Trough is the southern continuation of the ultraslow-spreading Gakkel Ridge and with its position in the Fram Strait between Greenland and Spitsbergen it is the only deep-sea gateway to the Arctic Ocean. DFG funded Emmy Noether group 'Mid-Ocean Volcanoes and Earthquakes' located at Alfred Wegener Institute for Polar and Marine Research is focusing on the seismicity of ultraslow spreading ridges and is especially interested in Lena Trough as an ultraslow spreading ridge in a developing stage. The southern Lena Trough shows similarities to the northern Red Sea spreading centre which is in the early stage of development from continental to oceanic rift. Cochran postulated in 2003 that the continental crust within the water-covered Red Sea is less than 10 km thick and that the northern part of the Red Sea rift spreads ultraslow as well. At Lena Trough an actively spreading mid-ocean ridge with a narrow rift valley has already developed but continental crust lies within a short distance. Lena Trough is extending from 83°N/5°W to 80.3°N/2°W where it passes into the transform fault of the Spitsbergen Fracture Zone. The geometry of Lena Trough and certain asymmetric structures in the rift valley indicate oblique spreading and mostly tectonic and amagmatic rifting. There are several topographic highs west of the ridge axis which could be bounded by deep faults with normal faulting or detachment character exposing mantle material at the surface. Seismicity at the Lena Trough shows apparently the same asymmetric character with epicenters of teleseismically recorded earthquakes concentrating predominantly west of the ridge axis. The most frequent focal mechanism of the earthquakes within the rift valley is normal faulting, whereas strike-slip faults occur in the Spitsbergen Fracture Zone. We relocalized teleseismic earthquakes recorded from May 1973 to April 2009 in the region using a refined localization algorithm and could confirm systematic asymmetry in the

  7. Magnetic Measurements of Bacterial Activity in Mid Oceanic Ridge Basalt Samples.

    NASA Astrophysics Data System (ADS)

    Carlut, J.; Horen, H.; Brunet, F.; Janots, D.; Pozzi, J.

    2004-12-01

    Magnetic properties of the young oceanic crust gives insights on the 3D structure at ridges axis and on variations of the Earth's magnetic field. Accurate interpretations depend on our understanding of the magnetic stability of titanomagnetite crystals carrying the magnetic signal. The mean remanent intensity of young ocean basalts shows significant variations with age and it has been suggested that rapid chemical alteration of titanomagnetite could be responsible. Ubiquitous presence of bacteria in deep marine environment and their ability to interact with iron oxides suggest a possible important impact of these life forms on the stability of titanomagnetites. In vivo experiments have been conducted on more than 15 fresh lava macro samples with a batch of selected sulfate reducing bacteria of the desulfovibrio genus, relevant to the deep biosphere. Remanent magnetization of samples was measured at regular time interval, in addition to more complete magnetic and chemical characterization at beginning and end of experiments. After a few months results show a significant contribution of bacterial activity on magnetic properties of samples, in particular a well defined drop in remanence. Our results suggest a strong impact of bacteria on the alteration rate of iron oxides carrying the magnetic signal within the oceanic crust.

  8. Magnetic Monitoring and Characterization at the Nanoscale of Bacterial Activity in Mid Oceanic Ridge Basalt Samples

    NASA Astrophysics Data System (ADS)

    Carlut, J.; Benzerara, K.; Horen, H.; Baronnet, A.

    2011-12-01

    Microbial communities have been shown over the last few years to be a significant component of the sub-sea floor crustal environment. The ubiquitous presence of these life forms suggests an important chemical impact on the host rocks. Among the diverse species, sulfate-reducing bacteria have been suggested, based on sulfur isotope studies, to be a major actor of the oceanic rocks alteration. Laboratory experiments were thus conducted on basalts from the East Pacific Ridge incubated with model sulfate-reducing bacteria. Results show that such bacteria can have a strong impact on the alteration rate of iron oxides carrying the magnetic signal of oceanic rocks. To some extent microbial processes can thus play a role in the decrease of sea floor magnetic signal. Such findings also open ways for the remote monitoring of bacterial activity through magnetic measurements. In order to gain insights on the mechanisms involved we characterized alteration features of iron oxides at the nanoscale in laboratory bio-altered samples and natural samples. We used a combination of scanning electron microscope, focused ion beam milling, ion beam thinning, transmission electron microscopy and scanning transmission X-ray microscopy. Some of the iron oxide crystals from these samples show singular alteration rims mostly composed of Fe and S and measuring a few nanometers in thickness. These observations contribute to understand the potential role of microbes in the alteration of the oceanic crust and possible impact on the magnetic signal.

  9. Kinematics of Mid-Ocean Ridge Relative Motions in the Indo-Atlantic Frame of Reference: Passive and Active Spreading Ridges

    NASA Astrophysics Data System (ADS)

    Rowan, C. J.; Rowley, D. B.; Forte, A. M.

    2011-12-01

    A kinematic analysis of the motions of mid-ocean ridges is presented in the Indo-Atlantic hotspot frame of reference. Relative motions of all major divergent plate boundaries are computed, including an assessment of uncertainties in their motions, back to 83 Ma (C34ny). As is expected from the general assumption that ridges are passive components of the plate boundary and mantle convective system, most ridges migrate across the underlying mantle along simple paths, largely perpendicular to the trend of the ridge. In the Indo-Atlantic reference frame, the Nansen-Gakkel ridge has migrated away from Europe by ~800 km along a NE trajectory. The Mid Atlantic Ridge (MAR) just north of the Azores triple junction (TJ) has moved away from Europe by ~1800km towards the WNW. South of the Azores TJ the MAR has moved away from Africa by ~1600 km towards the W. The slow to ultraslow spreading Southwest Indian Ridge has migrated slightly away from Antarctica, with a considerable fraction of the motion approximately parallel to the ridge trend. The Carlsberg Ridge has moved ~3400 km away from Africa towards the NNE in the past 65 Ma, while the Mid-Indian Ridge has migrated to the NNE away from Africa by ~3950 km over 83 Ma. The Southeast Indian Ridge, west of the 90°E ridge (Capricorn-Australia-East Antarctica TJ), has migrated ~3950 km to the NE away from Antarctica. Farther east, divergence between Australia and Antarctica has resulted in ~1800 km of northward motion of the ridge away from Antarctica. The Southwest Pacific Ridge, between the Pacific and West Antarctic plates has migrated ~1500 km to the NW away from west Antarctica. These motions are entirely consistent with intuition, given that Africa and Antarctica are largely surrounded by spreading systems. In contrast to the rest of the global ridge system, despite its high spreading rate the East Pacific Ridge has undergone essentially no (<±500 km) ridge perpendicular (E-W) migration in the past 80 Ma, and neglible

  10. Dynamical instability produces transform faults at mid-ocean ridges.

    PubMed

    Gerya, Taras

    2010-08-27

    Transform faults at mid-ocean ridges--one of the most striking, yet enigmatic features of terrestrial plate tectonics--are considered to be the inherited product of preexisting fault structures. Ridge offsets along these faults therefore should remain constant with time. Here, numerical models suggest that transform faults are actively developing and result from dynamical instability of constructive plate boundaries, irrespective of previous structure. Boundary instability from asymmetric plate growth can spontaneously start in alternate directions along successive ridge sections; the resultant curved ridges become transform faults within a few million years. Fracture-related rheological weakening stabilizes ridge-parallel detachment faults. Offsets along the transform faults change continuously with time by asymmetric plate growth and discontinuously by ridge jumps. PMID:20798313

  11. Active spreading processes at ultraslow mid-ocean ridges: The 1999-2001 seismo-volcanic episode at 85°E Gakkel ridge, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Schlindwein, Vera; Riedel, Carsten; Korger, Edith; Läderach, Christine

    2010-05-01

    The rate of magma and crustal production at mid-ocean ridges is thought to decrease with decreasing spreading rate. At ultraslow spreading rates below 10-20 mm/y full rate, heat loss by conduction greatly reduces melt production with less melt produced at increasingly greater depths. Gakkel Ridge, the actively spreading mid-ocean ridge in the Arctic Ocean, opens at rates of 14 mm/y in the west decreasing to less than 6 mm/y at its eastern termination and demonstrates that magma production is not only a function of spreading rate. Whereas amagmatic spreading takes place at rates of about 12-10 mm/y, focussed melt production occurs at even lower spreading rates in long-lived discrete volcanic centres. One such centre is the 85°E volcanic complex at eastern Gakkel ridge where in 1999 a teleseismically recorded earthquake swarm consisting of more than 250 earthquakes over 9 months signalled the onset of an active spreading episode. The earthquake swarm is believed to be associated with volcanic activity although no concurrent lava effusion was found. We analysed the teleseismic earthquake swarm together with visual observation and microseismic data recorded at this site in 2001 and 2007 and noted the following characteristics which may be indicative for volcanic spreading events at the still poorly explored ultraslow spreading ridges: - unusual duration: The 1999 earthquake swarm lasted over 9 months rather than a few weeks as observed on faster spreading ridges. In addition, in 2001 seismoacoustic sounds which we interpret as gas discharge in Strombolian eruptions and a giant event plume maintained over more than one year indicate waxing and waning volcanic activity since 1999. - unusual strength: The earthquake swarm was detected at teleseismic distances of more than 1000 km and included 11 events with a magnitude >5. No other confirmed mid-ocean ridge eruption released a comparable seismic moment. Rather than focussing in a narrow area or showing pronounced

  12. The timescales of magma evolution at mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Brandl, Philipp A.; Regelous, Marcel; Beier, Christoph; O'Neill, Hugh St. C.; Nebel, Oliver; Haase, Karsten M.

    2016-01-01

    Oceanic crust is continuously created at mid-ocean ridges by decompression melting of the upper mantle as it upwells due to plate separation. Decades of research on active spreading ridges have led to a growing understanding of the complex magmatic, tectonic and hydrothermal processes linked to the formation of new oceanic igneous crust. However, less is known about the timescales of magmatic processes at mid-ocean ridges, including melting in and melt extraction from the mantle, fractional crystallisation, crustal assimilation and/or magma mixing. In this paper, we review the timescales of magmatic processes by integrating radiometric dating, chemical and petrological observations of mid-ocean ridge basalts (MORBs) and geophysical models. These different lines of evidence suggest that melt extraction and migration, and crystallisation and mixing processes occur over timescales of 1 to 10,000 a. High-resolution geochemical stratigraphic profiles of the oceanic crust using drill-core samples further show that at fast-spreading ridges, adjacent flow units may differ in age by only a few 100 a. We use existing chemical data and new major- and trace-element analyses of fresh MORB glasses from drill-cores in ancient Atlantic and Pacific crust, together with model stratigraphic ages to investigate how lava chemistry changes over 10 to 100 ka periods, the timescale of crustal accretion at spreading ridges which is recorded in the basalt stratigraphy in drilled sections through the oceanic crust. We show that drilled MORBs have compositions that are similar to those of young MORB glasses dredged from active spreading ridges (lavas that will eventually be preserved in the lowermost part of the extrusive section covered by younger flows), showing that the dredged samples are indeed representative of the bulk oceanic crust. Model stratigraphic ages calculated for individual flows in boreholes, together with the geochemical stratigraphy of the drilled sections, show that at

  13. Migration of mid-ocean-ridge volcanic segments

    USGS Publications Warehouse

    Schouten, Hans; Dick, H.J.B.; Klitgord, Kim D.

    1987-01-01

    The propagation of small-offset volcanic spreading-centre segments along mid-ocean ridge crests may reflect absolute motion of the plate boundary relative to the underlying mesospheric frame. Such a relationship could be caused by a purely vertical flow of the mantle under spreading centres and would have value in constraining past plate motions from non-transform trends generated during along-ridge propagation and in linking the major-element variability of oceanic crust and upper mantle to the bulk composition and temperatures of mantle ascending under mid-ocean ridges. ?? 1987 Nature Publishing Group.

  14. Mantle anisotropy beneath the Earth's mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Nowacki, Andy; Kendall, J.-Michael; Wookey, James

    2012-02-01

    Observations of seismic anisotropy at oceanic spreading centres offer insights into mid-ocean ridge processes and the formation of new plates. Here, remote observations of seismic anisotropy beneath mid-ocean ridges are made using measurements of source-side shear wave splitting. Over 100 high-quality measurements are made using earthquakes that occur near mid-ocean ridges and transform faults, but are observed at teleseismic distances. In general, for off-axis ridge events, the polarisation of fast shear waves, ϕ″, is approximately parallel to the spreading direction. Nearer the ridge (<~50 km), ϕ″ becomes more scattered and is often ridge-parallel. Delay times, δt, tend to increase from < 1 s near the ridge axis to ˜ 3 s further away. Slow-spreading regions (Gakkel and Southwest Indian Ridges) show smaller amounts of splitting than faster spreading centres. At transform zones, the pattern is more complex. Coverage beneath the East Pacific Rise is especially good, and we observe a systematic increase in delay times in S wave splitting measurements compared to previous SKS splitting observations made at ocean-bottom seismometers. One compatible explanation is the presence of horizontally-aligned, connected layers of melt at depth; this is also compatible with other observations of the 'LAB' discontinuity and surface-wave derived measurements of radial anisotropy.

  15. The structure of mid-ocean ridges

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Toomey, Douglas R.

    1992-01-01

    Recent research results on the structure of midocean ridges are reviewed. The new view of ridge-axis crustal structure obtained from high-resolution seismology is reviewed, emphasizing the variation of that structure with spreading rate and along-axis at a given spreading rate. Recent results on upper mantle structure beneath ridges are examined, including variations with seafloor age, indications from anisotropy for directions of mantle flow, and long-wavelength along-axis variations in structure and their implications for lateral heterogeneity in mantle temperature and composition.

  16. Mid-ocean ridge eruptions as a climate valve

    NASA Astrophysics Data System (ADS)

    Tolstoy, Maya

    2015-03-01

    Seafloor eruption rates and mantle melting fueling eruptions may be influenced by sea level and crustal loading cycles at scales from fortnightly to 100 kyr. Recent mid-ocean ridge eruptions occur primarily during neap tides and the first 6 months of the year, suggesting sensitivity to minor changes in tidal forcing and orbital eccentricity. An ~100 kyr periodicity in fast-spreading seafloor bathymetry and relatively low present-day eruption rates at a time of high sea level and decreasing orbital eccentricity suggest a longer-term sensitivity to sea level and orbital variations associated with Milankovitch cycles. Seafloor spreading is considered a small but steady contributor of CO2 to climate cycles on the 100 kyr time scale; however, this assumes a consistent short-term eruption rate. Pulsing of seafloor volcanic activity may feed back into climate cycles, possibly contributing to glacial/interglacial cycles, the abrupt end of ice ages, and dominance of the 100 kyr cycle.

  17. The Galapagos Spreading Center. Galapagos Rifts Expedition--Grades 9-12. Mid-Ocean Ridges.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This activity introduces students to the basic concept of seafloor spreading, the processes involved in creating new seafloor at a mid- ocean ridge, the Galapagos Spreading Center system, and the different types of plate motion associated with ridge segments and transform faults. The activity provides learning objectives, a list of needed…

  18. Hydrothermal activity in Tertiary Icelandic crust: Implication for cooling processes along slow-spreading mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Pałgan, D.; Devey, C. W.; Yeo, I. A.

    2015-12-01

    Known hydrothermal activity along the Mid-Atlantic Ridge is mostly high-temperature venting, controlled by volcano-tectonic processes confined to ridge axes and neotectonic zones ~15km wide on each side of the axis (e.g. TAG or Snake Pit). However, extensive exploration and discoveries of new hydrothermal fields in off-axis regions (e.g. Lost City, MAR) show that hydrothermalism may, in some areas, be dominated by off-axis venting. Little is known about nature of such systems, including whether low-temperature "diffuse" venting dominates rather than high-temperature black-smokers. This is particularly interesting since such systems may transport up to 90% of the hydrothermal heat to the oceans. In this study we use Icelandic hot springs as onshore analogues for off-shore hydrothermal activity along the MAR to better understand volcano-tectonic controls on their occurrence, along with processes supporting fluid circulation. Iceland is a unique laboratory to study how new oceanic crust cools and suggests that old crust may not be as inactive as previously thought. Our results show that Tertiary (>3.3 Myr) crust of Iceland (Westfjords) has widespread low-temperature hydrothermal activity. Lack of tectonism (indicated by lack of seismicity), along with field research suggest that faults in Westfjords are no longer active and that once sealed, can no longer support hydrothermal circulation, i.e. none of the hot springs in the area occur along faults. Instead, dyke margins provide open and permeable fluid migration pathways. Furthermore, we suggest that the Reykjanes Ridge (south of Iceland) may be similar to Westfjords with hydrothermalism dominated by off-axis venting. Using bathymetric data we infer dyke positions and suggest potential sites for future exploration located away from neotectonic zone. We also emphasise the importance of biological observations in seeking for low-temperature hydrothermal activity, since chemical or optical methods are not sufficient.

  19. Topography and tectonics of mid-oceanic ridge axes

    NASA Technical Reports Server (NTRS)

    Sleep, N. H.; Rosendahl, B. R.

    1979-01-01

    Numerical fluid dynamic models of mid-oceanic ridge axes were constructed using distributions of material properties constrained by seismic studies and thermal calculations. The calculations indicate that spreading is passive except for forces caused by density differences due to thermal expansion and partial melt. Except for geometric differences due to temperature distribution, one set of mechanical properties can adequately explain central rifts of slow ridges and central peaks of fast ridges. Viscous head loss in the upwelling material dominates at low spreading rates where material ascends through a narrow conduit. Thermal expansion and partial melting dominate at high spreading rates where a wide low viscosity crustal magma chamber is present. The preferred rheology is 10 to the 20th poise for the upwelling lithosphere; less than 5 x 10 to the 17th for the crustal magma chamber and axial intrusion zone at fast ridges, and a yield stress of 200 bars for the lithosphere. The calculation correctly predicts the existence of central peaks at 'hot-spot' ridges, where seismic evidence indicates a large magma chamber.

  20. The petrogenesis of primary mid-ocean ridge basalts

    NASA Technical Reports Server (NTRS)

    Elthon, Don

    1990-01-01

    The nature of primary mid-ocean ridge basalts (MORB) is reviewed from the primary-magma composition point of view. The concept of primary MORB magma used in the study stipulates that melting of the mantle produces a discrete identifiable magma that separates from the mantle and ascends toward the surface. Constraints from abyssal peridotites are considered along with constraints from high-pressure phase equilibria studies with emphasis on partial melting of mantle peridotites, basalt-peridotite sandwich techniques, high-pressure experiments on MORB-type compositions, and constraints on the pressure of origin from mineral compositions. Compositional variations in primitive MORB glasses are discussed, and possible models for the origin of these glasses are presented.

  1. Crustal processes of the Mid-Ocean Ridge

    USGS Publications Warehouse

    Ballard, Richard D.; Craig, H.; Edmond, J.; Einaudi, M.; Holcomb, R.; Holland, H.D.; Hopson, C.A.; Luyendyk, B.P.; Macdonald, K.; Morton, J.; Orcutt, J.; Sleep, N.

    1981-01-01

    Independent geological and geophysical investigations of the Mid-Ocean Ridge system have begun to focus on the nature of the magma chamber system underlying its central axis. Thermal models predict the existence of a steady-state chamber beneath a thin crustal lid ranging in thickness from 2 to 13 kilometers. The only aspect of the system that these models fail to account for is the extremely slow spreading rates. Seismological studies reveal the existence of a low-velocity zone beneath segments of the East Pacific Rise, which is thought to correspond to a chamber system having a half-width of approximately 5 to 10 kilometers. These estimates compare favorably with those derived separately through petrological investigations of deep-sea drilling results, various sampling programs, and field and laboratory studies of ophiolites. The chamber is thought to be wing-shaped and to remain continuously open; it is thought to be fed from the center while simultaneously solidifying at the sides as spreading carries the two halves apart. Progressive fractionation occurs by crystal settling coupled with repeated replenishment and magma mixing in an open steady-state system. Near-bottom studies reveal that the zone of extrusion above the chamber is narrow, but its eruptive history is cyclic in nature, in conflict with the predictions of a steady-state model. On-bottom gravity data at 21 ??N on the East Pacific Rise reveal a negative gravity anomaly that may be related to the uppermost part of the chamber. The anomaly is only 2 kilometers wide and 1 kilometer below the sea floor. This feature may be associated with a short-term upper magma reservoir. The cyclic volcanic activity is directly related to the active phase of hydrothermal circulation responsible for the observed negative thermal anomaly. The volume of water associated with this circulation is equal to the entire ocean volume passing through the accretion zone approximately every 8 million years. This is about 0

  2. Crustal processes of the mid-ocean ridge.

    PubMed

    1981-07-01

    Independent geological and geophysical investigations of the Mid-Ocean Ridge system have begun to focus on the nature of the magma chamber system underlying its central axis. Thermal models predict the existence of a steady-state chamber beneath a thin crustal lid ranging in thickness from 2 to 13 kilometers. The only aspect of the system that these models fail to account for is the extremely slow spreading rates. Seismological studies reveal the existence of a low-velocity zone beneath segments of the East Pacific Rise, which is thought to correspond to a chamber system having a half-width of approximately 5 to 10 kilometers. These estimates compare favorably with those derived separately through petrological investigations of deep-sea drilling results, various sampling programs, and field and laboratory studies of ophiolites. The chamber is thought to be wing-shaped and to remain continuously open; it is thought to be fed from the center while simultaneously solidifying at the sides as spreading carries the two halves apart. Progressive fractionation occurs by crystal settling coupled with repeated replenishment and magma mixing in an open steady-state system. Near-bottom studies reveal that the zone of extrusion above the chamber is narrow, but its eruptive history is cyclic in nature, in conflict with the predictions of a steady-state model. On-bottom gravity data at 21 degrees N on the East Pacific Rise reveal a negative gravity anomaly that may be related to the uppermost part of the chamber. The anomaly is only 2 kilometers wide and 1 kilometer below the sea floor. This feature may be associated with a short-term upper magma reservoir. The cyclic volcanic activity is directly related to the active phase of hydrothermal circulation responsible for the observed negative thermal anomaly. The volume of water associated with this circulation is equal to the entire ocean volume passing through the accretion zone approximately every 8 million years. This is about 0

  3. Hydrothermal Exploration of Mid-Ocean Ridges: Where Might the Largest Sulfide Deposits Occur?

    NASA Astrophysics Data System (ADS)

    German, C. R.; Petersen, S.; Hannington, M. D.

    2015-12-01

    We review the distribution of modern-day seafloor hydrothermal activity along the global mid-ocean ridge crest (MOR) and the mineral deposits being formed at those sites. To date, one form of hydrothermal activity - "black smoker" venting - has been prospected for along >30% of the global mid ocean ridge crest and some important trends have emerged. Submarine venting can occur along all mid-ocean ridges, of all spreading rates, in all ocean basins. While the abundance of currently active venting (from water column signals), scales linearly with seafloor spreading rate (a proxy for magmatic heat-flux) there is an "excess" of high temperature venting along slow and ultra-slow spreading ridges when compared to early predictions. Consistent with this, no more than half of the sites responsible for "black smoker" plume signals along the slow spreading Mid Atlantic Ridge are associated with magmatic systems with the other half hosted under tectonic control. The latter appear both to be longer-lived than, and to give rise to much larger sulfide deposits than, their magmatic counterparts - presumably as a result of sustained fluid flow. Where these tectonic-hosted systems also involve water-rock interaction with ultramafic sources, seafloor massive sulfide deposits exhibit highly concentrated Cu and Au in surface samples (>10wt.% average Cu content and >3ppm average Au). Intriguingly, first detailed examinations of hydrothermally active sites along ultraslow-spreading ridges seems to indicate that they may depart beyond the slow-spreading Mid-Atlantic Ridge pattern. Hydrothermal plume distributions may follow the same (~50:50) distribution of "black smoker" plume signals between magmatic and tectonics settings, but the first three "black smoker" sites tracked to source have all revealed large polymetallic sulfide deposits - in both magmatic as well as tectonic settings. Could ultra-slow ridges represent the richest mineral resource potential along the global MOR?

  4. Extinct mid-ocean ridges and insights on the influence of hotspots at divergent plate boundaries

    NASA Astrophysics Data System (ADS)

    MacLeod, Sarah; Dietmar Müller, R.; Williams, Simon; Matthews, Kara

    2016-04-01

    We review all global examples of confirmed or suspected extinct mid-ocean ridges that are preserved in present-day ocean basins. Data on their spreading rate prior to extinction, time of cessation, length of activity, bathymetric and gravity signature are analysed. This analysis identifies some differences between subgroups of extinct ridges, including microplate spreading ridges, back-arc basin ridges and large-scale mid-ocean ridges. Crustal structure of extinct ridges is evaluated using gravity inversion to seek to resolve a long-standing debate on whether the final stages of spreading leads to development of thinned or thickened crust. Most of the ridges we assess have thinner crust at their axes than their flanks, yet a small number are found to have a single segment that is overprinted by an anomalous feature such as a seamount or volcanic ridge. A more complex cessation mechanism is necessary in these cases. The location of spreading centres at their time of cessation relative to hotspots was also evaluated using a global plate reconstruction. This review provides strong evidence for the long-term interaction of spreading centres with hotspots and plate boundaries have been frequently modified within the radius of a hotspot zone of influence.

  5. Melt retention and segregation beneath mid-ocean ridges.

    PubMed

    Faul, U H

    2001-04-19

    Geochemical models of melting at mid-ocean ridges-particularly those based on trace elements and uranium-decay-series isotopes-predict that melt segregates from the matrix at very low porosities, of order 0.1%. Some of these models also require that the melt ascends rapidly. But these predictions appear to conflict with seismic data obtained by the mantle electromagnetic and tomography (MELT) experiment. These data reveal, beneath the East Pacific Rise (at 17 degrees S), a region of low velocities several hundred kilometres wide, which is best explained by the presence of 1-2% melt, distributed on a grain scale in disk-shaped geometries. Here I show that these apparently contradictory constraints can be reconciled by taking into account the geometry and resulting permeability of the intergranular network of melt, together with the changing character of the melt as it ascends. A deep, volatile-rich melt with low viscosity and density is mobile at 0.1% porosity, but basaltic melt only becomes mobile at a porosity above 1%. While the volumetric contribution of the volatile-rich melt to the erupted basalts is small, the isotopic disequilibria (except for radium) generated by porous flow of this melt are preserved if melt transport is rapid at the onset of high-productivity melting. Also, because of incomplete extraction, some melt is retained in a broad zone, consistent with the MELT observations. PMID:11309614

  6. Evidence of active ground deformation on the mid-ocean ridge: Axial seamount, Juan de Fuca Ridge, April-June 1988

    SciTech Connect

    Fox, C.G. )

    1990-08-10

    Since September 1987 a precision bottom pressure recorder (BPR) has been deployed within the summit caldera of Axial seamount. The instrument is capable of measuring pressure of 1 mbar resolution and recording these measurements at 64 samples per hour for up to 15 months. Any significant change in the pressure record should indicate a change of depth associated with vertical ground movement, commonly indicative of active inflation or deflation of underlying magma bodies. Results from the first 9 months of the BPR deployment revealed a significant change in pressure, which is interpreted to represent a 15-cm subsidence of the caldera floor during two 2- to 3-week periods in April-June 1988. Also during these periods, an anomalous decline in temperature at the site was recorded that is correlated with an apparent increase in current velocity at the Axial Seamount Hydrothermal Emissions Study (ASHES) vent field, suggesting vigorous advection of cold water into the caldera. Concurrent oceanographic data from Geosat and from current meter arrays do not indicate any large-scale oceanographic phenomena capable of generating these simultaneous events. One mechanism to explain simultaneous ground subsidence and temperature decline at the caldera center and increased bottom current at the caldera margin is the generation of a buoyant parcel of heated water in response to the intrusion or the eruption of magma associated with volcanic deflation. Similar volcanic events also may have generated large midwater plumes that have been described previously along the southern Juan de Fuca Ridge.

  7. Calcium isotopic compositions of mid-ocean ridge basalts

    NASA Astrophysics Data System (ADS)

    Zhu, H.; Zhang, Z.; Sun, W.; Wang, G. Q.

    2015-12-01

    Previous studies have demonstrated that Earth's mantle has heterogeneous calcium isotopic compositions. But the reason why mantle has its heterogeneity remains uncertain. In general, δ44/40Ca values of mantle xenolith samples have a variation of >0.45‰. While ultramafic rocks, especially dunites, have higher δ44/40Ca values than volcanic rocks, and there is a positive correlation between δ44/40Ca and Ca/Mg. These phenomena imply that the heterogeneity of Ca isotopic compositions of mantle xenolith samples might result from different degrees of melt extraction, as indicated by large Ca isotopic fractionation between co-existing clinopyroxene and orthopyroxene. However, because ancient marine carbonate has its own unique calcium isotopic characteristics, recycling of even a small amount of ancient marine carbonates into the mantle could also cause the heterogeneity of Ca isotopes in Earth's mantle. This could be the reason why oceanic island basalts (OIB) have lighter Ca isotopic compositions than the mantle xenolith. Thus, the lighter Ca isotopic compositions in the mantle source cannot only be ascribed to magmatic processes. Therefore, it is more important to know calcium isotopic characteristics during partial melting and oceanic crust contamination.Mid-ocean ridge basalts (MORB) are formed from the partial melts of the upper mantle and are rarely affected by crustal contamination. Different types of MORB, including D-MORB, N-MORB and E-MORB, have experienced different degrees of partial melting and contamination of enriched end-members. Here we report calcium isotopic characteristic of different types of MORB, we believe it will be very helpful to understand the behaviors of Ca isotopes during partial melting and it is possible to provide further information to discover the reason why calcium isotopic compositions is heterogeneous in Earth's mantle. This work was supported by Natural Science Foundation of China (No. 41373007, No. 41490632 and No. 91328204

  8. Controls on melting at spreading ridges from correlated abyssal peridotite - mid-ocean ridge basalt compositions

    NASA Astrophysics Data System (ADS)

    Regelous, Marcel; Weinzierl, Christoph G.; Haase, Karsten M.

    2016-09-01

    Variations in the volume and major element composition of basalt erupted along the global mid-ocean ridge system have been attributed to differences in mantle potential temperature, mantle composition, or plate spreading rate and lithosphere thickness. Abyssal peridotites, the residues of mantle melting beneath mid-ocean ridges, provide additional information on the melting process, which could be used to test these hypotheses. We compiled a global database of abyssal peridotite compositions averaged over the same ridge segments defined by Gale et al. (2013). In addition, we calculated the distance of each ridge segment to the nearest hotspots. We show that Cr# in spinel in abyssal peridotites is negatively correlated with Na90 in basalts from the same ridge segments on a global scale. Ridge segments that erupt basalts apparently produced by larger degrees of mantle melting are thus underlain by peridotites from which large amounts of melt have been extracted. We find that near-ridge hotspots have a more widespread influence on mid-ocean ridge basalt (MORB) composition and ridge depth than previously thought. However, when these hotspot-influenced ridge segments are excluded, the remaining segments show clear relationships between MORB composition, peridotite composition, and ridge depth with spreading rate. Very slow-spreading ridges (<20 mm/yr) are deeper, erupt basalts with higher Na90, Al90, K90/Ti90, and lower Fe90, Ca90/Al90, and expose peridotites with lower Cr# than intermediate and fast-spreading ridges. We show that away from hotspots, the spreading-rate dependence of the maximum degree of mantle melting inferred from Cr# in peridotites (FM) and the bulk degree of melting inferred from Na90 in basalts (FB) from the same ridge segments is unlikely to be due to variations in mantle composition. Nor can the effects of dynamic mantle upwelling or incomplete melt extraction at low spreading rates satisfactorily explain the observed compositions of abyssal

  9. The influence of ridge migration on the magmatic segmentation of mid-ocean ridges.

    PubMed

    Carbotte, S M; Small, C; Donnelly, K

    2004-06-17

    The Earth's mid-ocean ridges display systematic changes in depth and shape, which subdivide the ridges into discrete spreading segments bounded by transform faults and smaller non-transform offsets of the axis. These morphological changes have been attributed to spatial variations in the supply of magma from the mantle, although the origin of the variations is poorly understood. Here we show that magmatic segmentation of ridges with fast and intermediate spreading rates is directly related to the migration velocity of the spreading axis over the mantle. For over 9,500 km of mid-ocean ridge examined, leading ridge segments in the 'hotspot' reference frame coincide with the shallow magmatically robust segments across 86 per cent of all transform faults and 73 per cent of all second-order discontinuities. We attribute this relationship to asymmetric mantle upwelling and melt production due to ridge migration, with focusing of melt towards ridge segments across discontinuities. The model is consistent with variations in crustal structure across discontinuities of the East Pacific Rise, and may explain variations in depth of melting and the distribution of enriched lavas. PMID:15201906

  10. Variations in mid-ocean ridge CO2 emissions driven by glacial cycles

    NASA Astrophysics Data System (ADS)

    Burley, Jonathan M. A.; Katz, Richard F.

    2015-09-01

    The geological record documents links between glacial cycles and volcanic productivity, both subaerially and, tentatively, at mid-ocean ridges. Sea-level-driven pressure changes could also affect chemical properties of mid-ocean ridge volcanism. We consider how changing sea-level could alter the CO2 emissions rate from mid-ocean ridges on both the segment and global scale. We develop a simplified transport model for a highly incompatible trace element moving through a homogeneous mantle; variations in the concentration and the emission rate of the element are the result of changes in the depth of first silicate melting. The model predicts an average global mid-ocean ridge CO2 emissions rate of 53 Mt/yr or 91 Mt/yr for an average source mantle CO2 concentration of 125 or 215 ppm by weight, in line with other estimates. We show that falling sea level would cause an increase in ridge CO2 emissions about 100 kyrs after the causative sea level change. The lag and amplitude of the response are sensitive to mantle permeability and plate spreading rate. For a reconstructed sea-level time series of the past million years, we predict variations of up to 12% in global mid-ocean ridge CO2 emissions.

  11. Mineralogy of the mid-ocean-ridge basalt source from neodymium isotopic composition of abyssal peridotites.

    PubMed

    Salters, Vincent J M; Dick, Henry J B

    2002-07-01

    Inferring the melting process at mid-ocean ridges, and the physical conditions under which melting takes place, usually relies on the assumption of compositional similarity between all mid-ocean-ridge basalt sources. Models of mantle melting therefore tend to be restricted to those that consider the presence of only one lithology in the mantle, peridotite. Evidence from xenoliths and peridotite massifs show that after peridotite, pyroxenite and eclogite are the most abundant rock types in the mantle. But at mid-ocean ridges, where most of the melting takes place, and in ophiolites, pyroxenite is rarely found. Here we present neodymium isotopic compositions of abyssal peridotites to investigate whether peridotite can indeed be the sole source for mid-ocean-ridge basalts. By comparing the isotopic compositions of basalts and peridotites at two segments of the southwest Indian ridge, we show that a component other than peridotite is required to explain the low end of the (143)Nd/(144)Nd variations of the basalts. This component is likely to have a lower melting temperature than peridotite, such as pyroxenite or eclogite, which could explain why it is not observed at mid-ocean ridges. PMID:12097907

  12. Ultraslow spreading processes along the Arctic mid-ocean ridge system

    NASA Astrophysics Data System (ADS)

    Schlindwein, Vera

    2013-04-01

    Generation of new seafloor in the Arctic Ocean occurs along the more than 2800 km long Arctic Ridge System from the Knipovich Ridge in the south to Gakkel ridge in the northeast. The plates separate at velocities of only 6-15 mm/y making the Arctic Ridge System the most prominent representative of an ultraslow spreading mid-ocean ridge. The engine of crustal production splutters at very low spreading rates such that ultraslow spreading ridges show a unique morphology: Isolated volcanoes, capable of vigorous eruptions, pierce the seafloor at distances of several hundred kilometres; in between there are long stretches without volcanism. My work group studies at global, regional and local scale the spreading processes of the Arctic ridge system, using earthquake records of ocean bottom seismometers, seismometers on drifting ice floes and of the global seismic network. We discovered that, contrary to faster spreading ridges, amagmatic portions of the Arctic ridge system are characterised by decreased seismicity rates with few and relatively weak earthquakes, whereas magmatically robust segments display more frequent seismic events. The maximum depth of earthquake hypocentres varies markedly along axis reaching maxima of 22 km depth below sea floor. Volcanic centres are characterized by vigorous earthquake swarm activity including large earthquake swarms that are recorded teleseismically. These earthquake swarms appear to be connected to episodes of active spreading as demonstrated at the 85°E volcanic complex at eastern Gakkel ridge which experienced an unusual spreading event between 1999 and 2001. The varying patterns of seismicity along the ridge axis correlate well with the pronounced differences in ridge morphology and petrology and its magnetic and gravimetric signatures. Our results support current theories of magma production at ultraslow spreading ridges which postulate a lateral melt flow towards isolated volcanic centres.

  13. Depth of Melt Extraction at Mid-Ocean Ridges and Transform Faults

    NASA Astrophysics Data System (ADS)

    Bai, H.; Montesi, L. G.

    2013-12-01

    Crustal thickness variations at oceanic transform faults are closely related to melt migration and extraction processes beneath mid-ocean ridges. Gregg et al. (2007) have shown that at slow-spreading mid-ocean ridges, transform faults exhibit more positive gravity anomalies than the adjacent spreading centers, indicating relatively thin crust in the transform domain, whereas at intermediate- and fast-spreading ridges, transform faults are characterized by more negative gravity anomalies than the adjacent spreading centers, indicating thick crust in the transform domain. We present numerical models reproducing these observations and infer that melt can be extracted from a depth of 30×5km at fast-slipping transforms. At mid-ocean ridges, melt is generated by decompression of the mantle that rises in response to the divergence of the plates. Subsequent extraction of melt that forms the oceanic crust may be modeled as a three-step process (Montési et al., 2011). 1) Melt moves vertically through buoyancy-driven porous flow enhanced by sub-vertical dissolution channels. 2) Melt accumulates in and travels along a decompaction channel lining a low-permeability barrier at the base of the thermal boundary layer. 3) Melt is extracted to the surface when it enters a melt extraction zone. The melt extraction zone probably reflects structural damage of the lithosphere related to tectonic activity at the plate boundary. Therefore, it may be present at both ridge and transform segments of oceanic spreading centers. This three-step melt extraction process was implemented in Matlab to predict crustal thickness variations associated with three-dimensional models of segmented mid-ocean ridges. Mantle flow and thermal structure are solved in the commercial finite element software COMSOL Multiphysics. Model results demonstrate that the lengths of offset affect the crustal thickness in the transform domain. At short (<50 km) offset, time is limited for crust to accumulate, while at

  14. Dynamical consequences of mantle heterogeneity in two-phase models of mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Katz, R. F.

    2010-12-01

    The mid-ocean ridge system, over 50,000 km in length, samples the magmatic products of a large swath of the asthenosphere. It provides our best means to assess the heterogeneity structure of the upper mantle. Interpretation of the diverse array of observations of MOR petrology, geochemistry, tomography, etc requires models that can map heterogeneity structure onto predictions testable by comparison with these observations. I report on progress to this end; in particular, I describe numerical models of coupled magma/mantle dynamics at mid-ocean ridges [1,2]. These models incorporate heterogeneity in terms of a simple, two-component thermochemical system with specified amplitude and spatial distribution. They indicate that mantle heterogeneity has significant fluid-dynamical consequences for both mantle and magmatic flow. Models show that the distribution of enrichment can lead to asymmetry in the strength of upwelling across the ridge-axis and channelised magmatic transport to the axis. Furthermore, heterogeneity can cause off-axis upwelling of partially molten diapirs, trapping of enriched melts off-axis, and re-fertilization of the mantle by pooled and refrozen melts. Predicted consequences of geochemical heterogeneity may also be considered. References: [1] Katz, RF, (2008); Magma dynamics with the Enthalpy Method: Benchmark Solutions and Magmatic Focusing at Mid-ocean Ridges. Journal of Petrology, doi: 10.1093/petrology/egn058. [2] Katz RF, (2010); Porosity-driven convection and asymmetry beneath mid-ocean ridges. Submitted to G3.

  15. Mid-Ocean Ridges: Dynamics of Processes Associated With Creation of New Ocean Crust

    NASA Astrophysics Data System (ADS)

    McClain, James S.

    In the study of mid-ocean ridges, the interdisciplinary approach has been embraced for many years. On research expeditions, it is not unusual to see geologists, geophysicists, physical oceanographers, chemists, and biologists working together on their respective experiments. The motivation for this approach is not only to combine efforts; it also allows specialists to appreciate the intellectual value of each other's disciplines.

  16. Detachment faults at Mid-Ocean Ridges garner interest

    NASA Astrophysics Data System (ADS)

    Mitchell, Neil; Escartin, Jaview; Allerton, Simon

    The recent discovery of low-angle faults known as detachments on the Mid-Atlantic Ridge requires a major reevaluation of how the oceanic crust forms at slow spreading ridges. Detachment faults can expose large areas of plutonic and ultramafic rocks on the seafloor, without an overlying volcanic carapace. They could profoundly influence the thermal structure, rheology, composition, and style of magmatic accretion at ridges. Oceanic detachments have many parallels with continental detachment faults, with the added advantage that the morphology of the fault surface is pristine, unaffected by subareal erosion.

  17. Mid-ocean ridge dynamics - Observations and theory

    SciTech Connect

    Phipps morgan, J. )

    1991-01-01

    Recent observational and theoretical investigations of midocean-ridge extension and its relation to melting, magmatic, deformation, and hydrothermal processes are discussed in a critical review of U.S. research from the period 1987-1990. Topics examined include segmentation, along-axis crustal variations and gravity, axial crust and lithosphere structure and seismics, ophiolite studies, and the interaction of ridge and continental rift studies. Consideration is given to theoretical models of axial topography; mantle flow, melting, and melt migration; mantle rheology and flow beneath a midoceanic ridge; upwelling structure and segmentation; the role of the lithosphere in shaping ridge segmentation; thermal stress and the origin of fracture zones; and hydrothermal cooling. A comprehensive bibliography is provided.

  18. Seismofocal zones and mid-ocean ridges - look outside of the plate paradigm

    NASA Astrophysics Data System (ADS)

    Anokhin, Vladimir; Kholmianskii, Mikhail

    2014-05-01

    Seismofocal zones and mid-ocean ridges - look outside of the plate paradigm Vladimir M. Anokhin, Mikhail A. Kholmianskii Configuration of the seismofocal zones (SFZ), visible in a real position of the focuses of earthquakes, has a significant step component (jagged) expressed by the presence of several sub-horizontal "seismoplanes", which concentrates focuses of earthquakes (depths 10, 35 km and other). Orientation of seismolines inside of SFZ tends to 4 main directions: 0-5 dgr, 120-145 dgr, 40-55 dgr, 85-90 dgr. These facts suggest significantly block, a terraced structure of the body of Benioff zone. The borders of blocks have orientation according directions regmatic net of the Earth. In accordance with this, SFZ can be presented as the most active segments of the border of the crossing: «continent-ocean», having the following properties: - block (terraced) structure; - in some sites - dive under the continental crust (in present time); - prevailing compression (in present time), perhaps, as the period of the oscillatory cycle; Infinite "subduction" in SFZ is unlikely. One of the areas where there is proof of concept of far "spreading" is the southernmost tip of the mid-oceanic Gakkel ridge in the Laptev sea (Arctic ocean). Here active "spreading" ridge normal approaches to the boundary of the continental crust - the shelf of the Laptev sea. On the shelf there are a number of subparallel NW grabens. NE fault zone Charlie, controlling the continental slope is established stepped fault without shift component. This means that the amount of extending of the offshore grabens does not significantly differ from the scale of spreading in the Gakkel ridge. However, the total spreads grabens (50-100 km) 6-10 times less than the width of the oceanic crust (600 km) in the surrounding area. Conclusion: the oceanic crust in the Laptev sea was formed mainly not due to "spreading". It is very likely that here was sinking and the processing of continental crust in the ocean

  19. Grain-Size Dynamics Beneath Mid-Ocean Ridges: Implications for Permeability and Melt Extraction

    NASA Astrophysics Data System (ADS)

    Turner, A. J.; Katz, R. F.; Behn, M. D.

    2014-12-01

    The permeability structure of the sub-ridge mantle plays an important role in how melt is focused and extracted at mid-ocean ridges. Permeability is controlled by porosity and the grain size of the solid mantle matrix, which is in turn controlled by the deformation conditions. To date, models of grain size evolution and mantle deformation have not been coupled to determine the influence of spatial variations in grain-size on the permeability structure at mid-ocean ridges. Rather, current models typically assume a constant grain size for the whole domain [1]. Here, we use 2-D numerical models to evaluate the influence of grain-size variability on the permeability structure beneath a mid-ocean ridge and use these results to speculate on the consequences for melt focusing and extraction. We construct a two-dimensional, single phase model for the steady-state grain size beneath a mid-ocean ridge. The model employs a composite rheology of diffusion creep, dislocation creep, dislocation accommodated grain boundary sliding, and a brittle stress limiter. Grain size is calculated using the "wattmeter" model of Austin and Evans [2]. We investigate the sensitivity of the model to global variations in grain growth exponent, potential temperature, spreading-rate, and grain boundary sliding parameters [3,4]. Our model predicts that permeability varies by two orders of magnitude due to the spatial variability of grain size within the expected melt region of a mid-ocean ridge. The predicted permeability structure suggests grain size may promote focusing of melt towards the ridge axis. Furthermore, the calculated grain size structure should focus melt from a greater depth than models that exclude grain-size variability. Future work will involve evaluating this hypothesis by implementing grain-size dynamics within a two-phase mid-ocean ridge model. The developments of such a model will be discussed. References: [1] R. F. Katz, Journal of Petrology, volume 49, issue 12, page 2099

  20. Pb isotopes in sulfides from mid-ocean ridge hydrothermal sites

    SciTech Connect

    LeHuray, A.P.; Church, S.E.; Koski, R.A.; Bouse, R.M.

    1988-04-01

    The authors report Pb isotope ratios of sulfides deposited at seven recently active mid-ocean ridge (MOR) hydrothermal vents. Sulfides from three sediment-starved sites on the Juan de Fuca Ridge contain Pb with isotope ratios identical to their local basaltic sources. Lead in two deposits from the sediment-covered Escanaba Trough, Gorda Ridge, is derived from the sediments and does not appear to contain any basaltic component. There is a range of isotope ratios in a Guaymas Basin deposit, consistent with a mixture of sediment and MOR basalt Pb. Lead in a Galapagos deposit differs slightly from known Galapagos basalt Pb isotope values. The faithful record of Pb isotope signatures of local sources in MOR sulfides indicates that isotope ratios from ancient analogues ca be used as accurate reflections of ancient oceanic crustal values in ophiolite-hosted deposits and continental crustal averages in sediment-hosted deposits. The preservation of primary ophiolitic or continental crustal Pb isotope signatures in ancient MOR sulfides provides a powerful tool for investigation of crustal evolution and for fingerprinting ancient terranes.

  1. Segmentation of mid-ocean ridges attributed to oblique mantle divergence

    NASA Astrophysics Data System (ADS)

    Vanderbeek, Brandon P.; Toomey, Douglas R.; Hooft, Emilie E. E.; Wilcock, William S. D.

    2016-08-01

    The origin of mid-ocean ridge segmentation--the systematic along-axis variation in tectonic and magmatic processes--remains controversial. It is commonly assumed that mantle flow is a passive response to plate divergence and that between transform faults magma supply controls segmentation. Using seismic tomography, we constrain the geometry of mantle flow and the distribution of mantle melt beneath the intermediate-spreading Endeavour segment of the Juan de Fuca Ridge. Our results, in combination with prior studies, establish a systematic skew between the mantle-divergence and plate-spreading directions. In all three cases studied, mantle divergence is advanced with respect to recent changes in the plate-spreading direction and the extent to which the flow field is advanced increases with decreasing spreading rate. Furthermore, seismic images show that large-offset, non-transform discontinuities are regions of enhanced mantle melt retention. We propose that oblique mantle flow beneath mid-ocean ridges is a driving force for the reorientation of spreading segments and the formation of ridge-axis discontinuities. The resulting tectonic discontinuities decrease the efficiency of upward melt transport, thus defining segment-scale variations in magmatic processes. We predict that across spreading rates mid-ocean ridge segmentation is controlled by evolving patterns in asthenospheric flow and the dynamics of lithospheric rifting.

  2. Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge

    PubMed Central

    Pedersen, Rolf B.; Rapp, Hans Tore; Thorseth, Ingunn H.; Lilley, Marvin D.; Barriga, Fernando J. A. S.; Baumberger, Tamara; Flesland, Kristin; Fonseca, Rita; Früh-Green, Gretchen L.; Jorgensen, Steffen L.

    2010-01-01

    The Arctic Mid-Ocean Ridge (AMOR) represents one of the most slow-spreading ridge systems on Earth. Previous attempts to locate hydrothermal vent fields and unravel the nature of venting, as well as the provenance of vent fauna at this northern and insular termination of the global ridge system, have been unsuccessful. Here, we report the first discovery of a black smoker vent field at the AMOR. The field is located on the crest of an axial volcanic ridge (AVR) and is associated with an unusually large hydrothermal deposit, which documents that extensive venting and long-lived hydrothermal systems exist at ultraslow-spreading ridges, despite their strongly reduced volcanic activity. The vent field hosts a distinct vent fauna that differs from the fauna to the south along the Mid-Atlantic Ridge. The novel vent fauna seems to have developed by local specialization and by migration of fauna from cold seeps and the Pacific. PMID:21119639

  3. Unmixing mid-ocean ridge basalts with EXTENDED QMODEL

    NASA Astrophysics Data System (ADS)

    Horkowitz, Jack; Stakes, Debra; Ehrlich, Robert

    1989-08-01

    Microprobe analyses of major and minor elemental compositions of 103 glass samples from the AMAR rift of the Mid-Atlantic Ridge are used as a test to assess the usefulness of the EXTENDED QMODEL algorithm for petrological modeling over conventional least squares analyses. This procedure derives end member compositions from the data set itself and does not require an a priori geochemical model. The AMAR samples offer one of the best spatially and geochemically constrained systems, including identification of spatial distributions by submersible observers, an analytical program which provided maximum internal consistency of results, inclusion of multiple cycles of pillowed basalts and sheeted fluid flows, and a broad age distribution relative to the well-defined rift valley. The results of the EXTENDED QMODEL analyses were consistent with and strengthened the qualitative conclusions of the original interpretation with one major exception. Refractory megacrysts enclosed in the more evolved glasses are not indicated as primary cumulate phases controlling crystal fractionation trends. In addition, "haystacks" built of highly evolved pillows, and sheet flows and pillows were clearly distinguished on the basis of end member composition. The results suggest a magmatic-tectonic history of the rift valley segment that includes early sheet flows followed by the construction of pillowed ridges. This magmatic event was followed by foundering of the axial roof, during which time residual siliceous magma and small quantities of mixed magma were erupted. This model both confirms and extends the previous interpretation, suggesting that the EXTENDED QMODEL family of algorithms offer powerful alternative to simple least squares decomposition of whole rock data.

  4. Insights into mantle composition and mantle melting beneath mid-ocean ridges from postspreading volcanism on the fossil Galapagos Rise

    NASA Astrophysics Data System (ADS)

    Haase, Karsten M.; Regelous, Marcel; Duncan, Robert A.; Brandl, Philipp A.; Stroncik, Nicole; Grevemeyer, Ingo

    2011-05-01

    New major and trace element and Sr, Nd, and Pb isotope data, together with 39Ar-40Ar ages for lavas from the extinct Galapagos Rise spreading center in the eastern Pacific reveal the evolution in magma compositions erupted during slowdown and after the end of active spreading at a mid-ocean ridge. Lavas erupted at 9.2 Ma, immediately prior to the end of spreading are incompatible element depleted mid-ocean ridge tholeiitic basalts, whereas progressively younger (7.5 to 5.7 Ma) postspreading lavas are increasingly alkalic, have higher concentrations of incompatible elements, higher La/Yb, K/Ti, 87Sr/86Sr, and lower 143Nd/144Nd ratios and were produced by smaller degrees of mantle melting. The large, correlated variations in trace element and isotope compositions can only be explained by melting of heterogenous mantle, in which incompatible trace element enriched lithologies preferentially contribute to smaller degree mantle melts. The effects of variable degrees of melting of heterogeneous mantle on lava compositions must be taken into account when using mid-ocean ridge basalt (MORB) to infer the conditions of melting beneath active spreading ridges. For example, the stronger "garnet signature" inferred from Sm/Nd and 143Nd/144Nd ratios for postspreading lavas from the Galapagos Rise results from a larger contribution from enriched lithologies with high La/Yb and Sm/Yb, rather than from a greater proportion of melting in the stability field of garnet peridotite. Correlations between ridge depth and Sm/Yb and fractionation-corrected Na concentrations in MORB worldwide could result from variations in mantle fertility and/or variations in the average degree of melting, rather than from large variations in mantle temperature. If more fertile mantle lithologies are preferentially melted beneath active spreading ridges, then the upper mantle may be significantly more "depleted" than is generally inferred from the compositions of MORB.

  5. Seismicity of mid-oceanic ridges and its geodynamic implications: a review [review article

    NASA Astrophysics Data System (ADS)

    Rundquist, D. V.; Sobolev, P. O.

    2002-07-01

    The global system of mid-oceanic ridges (MOR) is one of the longest active seismic belts where most of the earthquake epicenters are located continuously within a narrow axial zone. We summarized the principal results of the studies in MOR seismicity and their implications for geodynamics. The studies of epicenter distribution along the ridges and of focal mechanisms make an important contribution to the development of plate tectonics. During recent decades, a great amount of information on MOR structure and sea-floor spreading has become available. Geological and geophysical observations revealed a partitioning of the ridge by numerous discontinuities of several orders, which is reflected in the seismicity. There is a clear difference in seismic regime between two kinds of first-order segments—transform faults and spreading centers. The first have seismic moment release one-two orders higher; their contribution into the total seismic budget of MOR increases with higher spreading rate. The relationships between the seismic moment release, fault length and spreading rate are quite different for transform and rift parts of MOR; this confirms the difference in the geometry of their respective earthquake source volumes. In both these cases, the principal factor controlling the ridge seismicity is the thermal structure of the lithosphere. Microseismic experiments using ocean bottom seismometers, hydrophones and sonobuoys have perceptibly reduced the cutoff magnitude of complete reporting and the location uncertainty. Large numbers of microearthquakes are usually recorded almost everywhere near the ridge axis, even during relatively short recording times. More detailed location of epicenters and focal depths acquired great significance in the studies of magmatism, hydrothermal circulation and fracturing on MOR. Some spatial relationships seem to emerge between epicenter distribution and the location of hydrothermal sulfide deposits along the MOR. Several hierarchical

  6. Circumventing shallow air contamination in Mid Ocean Ridge Basalts

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sujoy; Parai, Rita; Tucker, Jonathan; Middleton, Jennifer; Langmuir, Charles

    2016-04-01

    Noble gases in mantle-derived basalts provide a rich portrait of mantle degassing and surface-interior volatile exchange. However, the ubiquity of shallow-level air contamination frequently obscures the mantle noble gas signal. In a majority of samples, shallow air contamination dominates the noble gas budget. As a result, reconstructing the variability in heavy noble gas mantle source compositions and inferring the history of deep recycling of atmospheric noble gases is difficult. For example, in the gas-rich popping rock 2ΠD43, 129Xe/130Xe ratios reach 7.7±0.23 in individual step-crushes, but the bulk composition of the sample is close to air (129Xe/130Xe of 6.7). Here, we present results from experiments designed to elucidate the source of shallow air contamination in MORBs. Step-crushes were carried out to measure He, Ne, Ar and Xe isotopic compositions on two aliquots of a depleted popping glass that was dredged from between the Kane and Atlantis Fracture Zones of the Mid-Atlantic Ridge in May 2012. One aliquot was sealed in ultrapure N2 after dredge retrieval, while the other aliquot was left exposed to air for 3.5 years. The bulk 20Ne/22Ne and 129Xe/130Xe ratios measured in the aliquot bottled in ultrapure N2 are 12.3 and 7.6, respectively, and are nearly identical to the estimated mantle source values. On the other hand, step crushes in the aliquot left exposed to air for several years show Ne isotopic compositions that are shifted towards air, with a bulk 20Ne/22Ne of 11.5; the bulk 129Xe/130Xe, however, was close to 7.6. These results indicate that lighter noble gases exchange more efficiently between the bubbles trapped in basalt glass and air, suggesting a diffusive or kinetic mechanism for the incorporation of the shallow air contamination. Importantly, in Ne-Ar or Ar-Xe space, step-crushes from the bottled aliquot display a trend that can be easily fit with a simple two-component hyperbolic mixing between mantle and atmosphere noble gases. Step

  7. Permeability of asthenospheric mantle and melt extraction rates at mid-ocean ridges.

    PubMed

    Connolly, James A D; Schmidt, Max W; Solferino, Giulio; Bagdassarov, Nikolai

    2009-11-12

    Magmatic production on Earth is dominated by asthenospheric melts of basaltic composition that have mostly erupted at mid-ocean ridges. The timescale for segregation and transport of these melts, which are ultimately responsible for formation of the Earth's crust, is critically dependent on the permeability of the partly molten asthenospheric mantle, yet this permeability is known mainly from semi-empirical and analogue models. Here we use a high-pressure, high-temperature centrifuge, at accelerations of 400g-700g, to measure the rate of basalt melt flow in olivine aggregates with porosities of 5-12 per cent. The resulting permeabilities are consistent with a microscopic model in which melt is completely connected, and are one to two orders of magnitude larger than predicted by current parameterizations. Extrapolation of the measurements to conditions characteristic of asthenosphere below mid-ocean ridges yields proportionally higher transport speeds. Application of these results in a model of porous-media channelling instabilities yields melt transport times of approximately 1-2.5 kyr across the entire asthenosphere, which is sufficient to preserve the observed (230)Th excess of mid-ocean-ridge basalts and the mantle signatures of even shorter-lived isotopes such as (226)Ra (refs 5,11-14). PMID:19907492

  8. High Tech High School Interns Develop a Mid-Ocean Ridge Database for Research and Education

    NASA Astrophysics Data System (ADS)

    Staudigel, D.; Delaney, R.; Staudigel, H.; Koppers, A. A.; Miller, S. P.

    2004-12-01

    Mid-ocean ridges (MOR) represent one of the most important geographical and geological features on planet Earth. MORs are the locations where plates spread apart, they are the locations of the majority of the Earths' volcanoes that harbor some of the most extreme life forms. These concepts attract much research, but mid-ocean ridges are still effectively underrepresented in the Earth science class rooms. As two High Tech High School students, we began an internship at Scripps to develop a database for mid-ocean ridges as a resource for science and education. This Ridge Catalog will be accessible via http://earthref.org/databases/RC/ and applies a similar structure, design and data archival principle as the Seamount Catalog under EarthRef.org. Major research goals of this project include the development of (1) an archival structure for multibeam and sidescan data, standard bathymetric maps (including ODP-DSDP drill site and dredge locations) or any other arbitrary digital objects relating to MORs, and (2) to compile a global data set for some of the most defining characteristics of every ridge segment including ridge segment length, depth and azimuth and half spreading rates. One of the challenges included the need of making MOR data useful to the scientist as well as the teacher in the class room. Since the basic structure follows the design of the Seamount Catalog closely, we could move our attention to the basic data population of the database. We have pulled together multibeam data for the MOR segments from various public archives (SIOExplorer, SIO-GDC, NGDC, Lamont), and pre-processed it for public use. In particular, we have created individual bathymetric maps for each ridge segment, while merging the multibeam data with global satellite bathymetry data from Smith & Sandwell (1997). The global scale of this database will give it the ability to be used for any number of applications, from cruise planning to data

  9. Degassing of carbon dioxide from basaltic magma at spreading centers: II. mid-oceanic ridge basalts

    NASA Astrophysics Data System (ADS)

    Gerlach, Terrence M.

    1989-11-01

    This study examines the hypothesis that a significant fraction of the CO 2 in basalt supplied to mid-oceanic spreading centers escapes by degassing from magma chambers of the oceanic crust. The approach employs mass balance calculations, stepped-heating data for carbon in sea-floor mid-oceanic ridge basalts (MORBs), and the CO 2 content determined in part I for transitional basalt supplied to the Erta'Ale spreading center in the Afar depression. It is also shown as part of the analysis that carbon data acquired for sea-floor MORBs by single-heating techniques give systematically high values that are difficult to reconcile with solubility data for CO 2 in MORB liquid and the depths of subridge magma chambers. The results confirm the hypothesis. A conservative estimate of the average loss of CO 2 during degassing from subridge magma chambers is between 30 and 65% of the CO 2 initially present in the magma. The conservative estimate for CO 2 degassing at depth is between two and seven times greater than the maximum amount of volcanic CO 2 degassing from MORB. CO 2 degassing from subridge magma chambers is sufficient to supply much (perhaps most) of the mantle carbon discharged from the global mid-oceanic spreading system to the oceans. CO 2 degassing from subridge magma chambers has several important implications. It may be more important than hydrothermal stripping in supplying mantle carbon to mid-oceanic hydrothermal vents. It is an effective mechanism for removing most of the heavier rare gases (Ar, Kr, Xe, and Rn) and much of the He and Ne in magma supplied to mid-oceanic spreading centers and for transporting them and possibly other volatiles from subridge magma chambers to the ocean-atmosphere system. It should also be an effective mechanism for fractionating carbon isotopes in MORB.

  10. Unraveling the unusual morphology of the Cretaceous Dirck Hartog extinct mid-ocean ridge

    NASA Astrophysics Data System (ADS)

    Watson, S. J.; Whittaker, J. M.; Halpin, J.; Williams, S.; Milan, L. A.; Daczko, N. R.; Wyman, D. A.

    2015-12-01

    The Perth Abyssal Plain (PAP), offshore southwest Australia formed during Mesozoic East Gondwana breakup and Kerguelen plume activity. This study combines petrographic and geochemical data from the first samples ever to be dredged from the flanks of the Dirck Hartog Ridge (DHR), a prominent linear bathymetric feature in the central PAP, with new bathymetric profiles across the PAP to better constrain the formation of the early Indian Ocean floor. The DHR exhibits high relief and distinctive asymmetry that is unusual compared to most active or extinct spreading centres and likely results from compression and deformation of the recently extinct DHR during changes in relative motion of the Indian plate (110 - 100 Ma). Exhumation of gabbros in the southern DHR and an increase in seafloor roughness towards the centre of the PAP, likely result from a half spreading rate decrease from 35 mm/yr (based on magnetic reversals) to 24 mm/yr at ~114 Ma. The results support a slowdown of spreading prior to full cessation at ~102 Ma. The composition of basaltic samples varies along the DHR: from sub-alkaline dolerites with incompatible element concentrations most similar to depleted-to-normal mid-ocean ridge basalts in the south, to alkali basalts similar to ocean island basalts in the north. Therefore, magma sources and degrees of partial melting varied in space and time, a result supporting the interpretation that the DHR is an extinct spreading ridge rather than a pseudofault. The enriched alkali basalt signatures may be attributed to melting of a heterogeneous mantle or to the influence of the Kerguelen plume over distances greater than 1000 km. The results demonstrate the significance of regional tectonic plate motions on the formation and deformation of young ocean crust, and provide insight into the unique DHR morphology.

  11. Imaging the deep seismic structure beneath a mid-ocean ridge: the MELT experiment

    PubMed

    1998-05-22

    The Mantle Electromagnetic and Tomography (MELT) Experiment was designed to distinguish between competing models of magma generation beneath mid-ocean ridges. Seismological observations demonstrate that basaltic melt is present beneath the East Pacific Rise spreading center in a broad region several hundred kilometers across and extending to depths greater than 100 kilometers, not just in a narrow region of high melt concentration beneath the spreading center, as predicted by some models. The structure of the ridge system is strongly asymmetric: mantle densities and seismic velocities are lower and seismic anisotropy is stronger to the west of the rise axis. PMID:9596564

  12. Comment on 'Podiform chromitites do form beneath mid-ocean ridges' by Arai, S. and Miura, M.

    NASA Astrophysics Data System (ADS)

    Rollinson, Hugh; Adetunji, Jacob

    2016-06-01

    We note with interest the recent paper by Arai and Miura entitled 'Podiform chromitites do form beneath mid-ocean ridges' (Arai and Miura, 2015) written, we presume, in response to our paper which sought to represent the opposing view and was entitled 'Mantle podiform chromitites do not form beneath mid-ocean ridges: a case study from the Moho Transition Zone of the Oman ophiolite' (Rollinson and Adetunji, 2013). Here we take the opportunity to further clarify our views.

  13. Does sea level influence mid-ocean ridge magmatism on Milankovitch timescales?

    NASA Astrophysics Data System (ADS)

    Lund, David C.; Asimow, Paul D.

    2011-12-01

    Magma production at mid-ocean ridges is driven by seafloor spreading and decompression melting of the upper mantle. In the special case of Iceland, mantle melting may have been amplified by ice sheet retreat during the last deglaciation, yielding anomalously high rates of subaerial volcanism. For the remainder of the global mid-ocean ridge system, the ocean may play an analogous role, with lowering of sea level during glacial maxima producing greater magma flux to ridge crests. Here we show that the mantle decompression rate associated with changes in sea level is a substantial fraction of that from plate spreading. Modeled peaks in magma flux occur after sea level drops rapidly, including the Marine Isotope Stage (MIS) 5/4 and 3/2 transitions. The minimum in simulated flux occurs during the mid-Holocene, due to the rapid sea level rise at the MIS 2/1 boundary. The model results are highly sensitive to melt migration rate; rates of ˜1 m/yr produce small signals, while those >5 m/yr yield substantial anomalies. In the latter case, sea level-driven magma flux varies by 15-100% relative to the long-term average, with the largest effect occurring at slow-spreading ridges. We suggest that sedimentary time series of hydrothermal particle flux, oceanic Os isotopic ratio, and oceanic radiocarbon may serve as proxies for magma-flux variations at mid-ocean ridges. Although well-dated records are rare, preliminary data from the Pacific and Atlantic suggest hydrothermal metal flux was elevated during MIS 2 and 4, broadly consistent with our modeling results.

  14. The dynamics of mid-ocean ridge hydrothermal systems: Splitting plumes and fluctuating vent temperatures

    NASA Astrophysics Data System (ADS)

    Coumou, Dim; Driesner, Thomas; Geiger, Sebastian; Heinrich, Christoph A.; Matthäi, Stephan

    2006-05-01

    We present new, accurate numerical simulations of 2D models resembling hydrothermal systems active in the high-permeability axial plane of mid-ocean ridges and show that fluid flow patterns are much more irregular and convection much more unstable than reported in previous simulation studies. First, we observe the splitting of hot, rising plumes. This phenomenon is caused by the viscous instability at the interface between hot, low-viscosity fluid and cold, high-viscosity fluid. This process, known as Taylor-Saffman fingering could potentially explain the sudden extinguishing of black smokers. Second, our simulations show that for relatively moderate permeabilities, convection is unsteady resulting in transiently varying vent temperatures. The amplitude of these fluctuations typically is 40 °C with a period of decades or less, depending on the permeability. Although externally imposed events such as dike injections are possible mechanisms, they are not required to explain temperature variations observed in natural systems. Our results also offer a simple explanation of how seismic events cause fluctuating temperatures: Earthquake-induced permeability-increase shifts the hydrothermal system to the unsteady regime with accompanying fluctuating vent temperatures. We demonstrate that realistic modelling of these high-Rayleigh number convection systems does not only require the use of real fluid properties, but also the use of higher order numerical methods capable of handling high-resolution meshes. Less accurate numerical solutions smear out sharp advection fronts and thereby artificially stabilize the system.

  15. Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply

    NASA Astrophysics Data System (ADS)

    Olive, Jean-Arthur; Behn, Mark; Ito, Garrett; Escartin, Javier; Buck, Roger; Howell, Samuel

    2016-04-01

    Abyssal hills are the most common topographic feature on the surface of the solid Earth, yet the detailed mechanisms through which they are formed remain a matter of debate. Classical seafloor observations suggest hills acquire their shape at mid-ocean ridges through a combination of normal faulting and volcanic accretion. However, recent studies have proposed that the fabric of the seafloor reflects rapid fluctuations in ridge magma supply caused by oscillations in sea level modulating the partial melting process beneath the ridge [Crowley et al., 2015, Science]. In order to move this debate forward, we propose a modeling framework relating the magma supply of a mid-ocean ridge to the morphology of the seafloor it produces, i.e., the spacing and amplitude of abyssal hills. We specifically assess whether fluctuations in melt supply of a given periodicity can be recorded in seafloor bathymetry through (1) static compensation of crustal thickness oscillations, (2) volcanic extrusion, and (3) fault growth modulated by dike injection. We find that topography-building processes are generally insensitive to fluctuations in melt supply on time scales shorter than ~50-100 kyr. Further, we show that the characteristic wavelengths found in seafloor bathymetry across all spreading rates are best explained by simple tectono-magmatic interaction models, and require no periodic (climatic) forcing. Finally, we explore different spreading regimes where a smaller amplitude sea-level signal super-imposed on the dominant faulting signal could be most easily resolved.

  16. Magmatism at mid-ocean ridges: Constraints from volcanological and geochemical investigations

    NASA Astrophysics Data System (ADS)

    Perfit, Michael R.; Chadwick, William W., Jr.

    The morphological, structural, and volcanic characteristics of the neovolcanic zone at mid-ocean ridges (MOR) vary strongly with spreading rate. At fast-spreading ridges, the neovolcanic zone is narrow, has low-relief both across and along strike, is dominated by the products of fluid, fissure-fed eruptions, and exhibits morphologic and magmatic continuity along axis. At slow-spreading ridges, the neovolcanic zone is wider, has greater relief, is characterized by many discrete point-source constructs, and exhibits less morphologic and magmatic continuity along axis compared to fast-spreading ridges. Intermediate-spreading ridges typically have characteristics that vary in time and space between these two extremes. Lava flow morphology also varies markedly with spreading rate-sheet flows are dominant on fast-spreading ridges whereas pillow lavas are dominant at slow-spreading ridges. The morphological differences primarily reflect a difference in extrusion rates, and indicate that dikes are intruded at higher magma pressure at fast-spreading ridges. Even though volcanism appears to be concentrated within the neovolcanic zone, off-axis eruptions add significant volumes to the crust. Off-axis volcanism may be fed by the distal sections of magma lenses or, in the case of long-lived, near-axis seamounts, from magma sources that are independent of sub-axial magma bodies. The timing, locations, and volumes of volcanic events on the MOR are still largely unknown, but the documentation of recent eruptions have provided new insights and the first quantitative information regarding active volcanic processes on the ridge-crest. Documentation of historical eruptions has been realized by some good luck and detailed surveying of the neovolcanic zone along the southern Juan de Fuca Ridge (JdFR) and northern East Pacific Rise (EPR), but the most recent eruptions have been detected in real-time by listening with hydrophones for acoustic T-waves that are generated by small

  17. Crustal Assimilation and the Petrogenesis of Mid-Ocean Ridge Dacites

    NASA Astrophysics Data System (ADS)

    Wanless, V.; Perfit, M. R.; Ridley, W. I.; Klein, E. M.; Grimes, C. B.; Valley, J. W.

    2010-12-01

    The majority of eruptions at spreading centers produce lavas with relatively homogeneous mid-ocean ridge basalt (MORB) compositions, but andesitic and dacitic lavas have been sampled at several different mid-ocean ridges (MOR). Eruption of high-silica lavas are commonly associated with ridge discontinuities, examples being propagating ridge tips at ridge-transform intersections on the Juan de Fuca Ridge and eastern Galápagos spreading center, and at the 9°N overlapping spreading center on the East Pacific Rise. Although these lavas are found at different ridges, the dacites show remarkably similar major element trends and incompatible trace element enrichments, suggesting that similar processes control their formation. Although most geochemical variability in the MOR series basalts -ferrobasalts - FeTi basalts is consistent with low-pressure fractional crystallization, modeling suggests that extreme fractional crystallization accompanied by partial melting and assimilation of amphibole-bearing altered oceanic crust is important in the petrogenesis of high-silica differentiates. Such a complex process is consistent with dacites showing: 1) elevated U, Th, Zr, and Hf; 2) relatively low Nb and Ta; 3) Al2O3, K2O, Cl, H2O concentrations that are higher than expected from fractional crystallization; 4) relatively low δ18O glass values of ~5.6 compared to values ~6.9 ‰ expected from fractional crystallization. This suggests that crustal assimilation is an important process in the formation of highly evolved MOR lavas (i.e., andesites and dacites) and may be significant in formation of MORB in general. Although basaltic material at MOR is much more voluminous than high-silica lavas, the eruption of dacites at numerous ridges, and the seemingly ubiquitous presence of plagiogranite veins in exposed and drilled sections of gabbroic Layer 3 indicate that high-silica lavas are an intrinsic component of the ocean crust, though their petrogenesis may involve various

  18. Lava Cones and Shields on Intermediate-Rate Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Paduan, J. B.; Caress, D. W.

    2014-12-01

    Most eruptions of basalt along mid-ocean ridges produce either sheet flows or pillow mounds and ridges. Rare eruptions on the Juan de Fuca and Gorda Ridges and on the Alarcon Rise (northern East Pacific Rise) produce volcanic cones or shields from point sources. Bathymetric maps at 1-m resolution from an autonomous underwater vehicle enabled classification of these ~circular features. The most common are 290-510m across and <50m tall cones with craters or tumulus-like inflated flows on their summits. There are 8 of these on the upper south rift, caldera floor, and southwest caldera rim on Axial Seamount; one on North Cleft segment near the 1986 pillow mounds; and one in the axial graben on northern Endeavour Segment. Hundreds of smaller pillow mounds lack craters or tumulus-like inflated flows at their summits. Three 660-1300m across circular cones have either a crater or an inflated tumulus-like structure at their flat to slightly domed summits. One in the axial graben on the northern Endeavour Segment is dissected by extensional faulting. Cage Seamount on the Coaxial Segment south of the 1993 pillow ridge is the most voluminous at 1100m across and >200m tall. Two flat-topped cones are located near the center of Alarcon Rise. A low-relief shield volcano on the northern Alarcon Rise is ~1700m across and only ~45m tall, and is cut by numerous faults and fissures. Two other shields, 860m and 1700m across and 50-70m tall, occur south of the 1996 North Gorda pillow mounds. These shields are decorated with small pillow mounds. Five 100-250m across and 15-30m deep pits collapsed on the northern shield. These constructional cones and shields form during eruptions where the initial fissure consolidated to a point, indicative of long duration activity. They are constructed during uncommon eruptions with flux larger than produces pillow mounds and smaller than produces sheet flows. They are a submarine equivalent of subaerial shield-building eruptions.

  19. Serpentinization-assisted deformation processes and characterization of hydrothermal fluxes at mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Genc, Gence

    Seafloor hydrothermal systems play a significantly important role in Earth’s energy and geochemical budgets and support the existence and development of complex biological ecosystems by providing nutrient and energy to microbial and macrafaunal ecosystems through geochemical fluxes. Heat output and fluid flow are key parameters which characterize hydrothermal systems at oceanic spreading centers by constraining models of hydrothermal circulation. Although integrated measurements of heat flux in plumes are critically important as well, quantification of heat flux at discrete sources (vent orifices versus patches of seafloor shimmering diffuse flow) from direct measurements is particularly essential for examining the partitioning of heat flow into focused and diffuse components of venting and determining geochemical fluxes from these two modes of flow. Hydrothermal heat output also constrains the permeability of young oceanic crust and thickness of the conductive boundary layer that separates magmatic heat source from overlying hydrothermal circulation. This dissertation will be fundamentally focused on three main inter-connected topics: (1) the design and development of direct high- or low-temperature heat flow measuring devices for hydrothermal systems, (2) the collection of new heat output results on four cruises between 2008 and 2010 at several distinct hydrothermal sites along mid-ocean ridges (MORs) to estimate total heat output from individual vent structures such as Dante, Hulk or the whole vent field (e.g., Main Endeavour Vent Field (MEF)), the partitioning between focused and diffuse hydrothermal venting in MEF, and determination of initial estimates of geochemical flux from diffuse hydrothermal fluids which may be influenced by the activity in subsurface biosphere and finally (3) the deformation and uplift associated with serpentinization at MORs and subduction zones. Despite extensive efforts spent for the last couple of decades on heat flow measurement

  20. Rapid hydrothermal cooling above the axial melt lens at fast-spreading mid-ocean ridge.

    PubMed

    Zhang, Chao; Koepke, Juergen; Kirchner, Clemens; Götze, Niko; Behrens, Harald

    2014-01-01

    Axial melt lenses sandwiched between the lower oceanic crust and the sheeted dike sequences at fast-spreading mid-ocean ridges are assumed to be the major magma source of oceanic crust accretion. According to the widely discussed "gabbro glacier" model, the formation of the lower oceanic crust requires efficient cooling of the axial melt lens, leading to partial crystallization and crystal-melt mush subsiding down to lower crust. These processes are believed to be controlled by periodical magma replenishment and hydrothermal circulation above the melt lens. Here we quantify the cooling rate above melt lens using chemical zoning of plagioclase from hornfelsic recrystallized sheeted dikes drilled from the East Pacific at the Integrated Ocean Drilling Program Hole 1256D. We estimate the cooling rate using a forward modelling approach based on CaAl-NaSi interdiffusion in plagioclase. The results show that cooling from the peak thermal overprint at 1000-1050°C to 600°C are yielded within about 10-30 years as a result of hydrothermal circulation above melt lens during magma starvation. The estimated rapid hydrothermal cooling explains how the effective heat extraction from melt lens is achieved at fast-spreading mid-ocean ridges. PMID:25209311

  1. Rapid hydrothermal cooling above the axial melt lens at fast-spreading mid-ocean ridge

    PubMed Central

    Zhang, Chao; Koepke, Juergen; Kirchner, Clemens; Götze, Niko; Behrens, Harald

    2014-01-01

    Axial melt lenses sandwiched between the lower oceanic crust and the sheeted dike sequences at fast-spreading mid-ocean ridges are assumed to be the major magma source of oceanic crust accretion. According to the widely discussed “gabbro glacier” model, the formation of the lower oceanic crust requires efficient cooling of the axial melt lens, leading to partial crystallization and crystal-melt mush subsiding down to lower crust. These processes are believed to be controlled by periodical magma replenishment and hydrothermal circulation above the melt lens. Here we quantify the cooling rate above melt lens using chemical zoning of plagioclase from hornfelsic recrystallized sheeted dikes drilled from the East Pacific at the Integrated Ocean Drilling Program Hole 1256D. We estimate the cooling rate using a forward modelling approach based on CaAl-NaSi interdiffusion in plagioclase. The results show that cooling from the peak thermal overprint at 1000–1050°C to 600°C are yielded within about 10–30 years as a result of hydrothermal circulation above melt lens during magma starvation. The estimated rapid hydrothermal cooling explains how the effective heat extraction from melt lens is achieved at fast-spreading mid-ocean ridges. PMID:25209311

  2. Coupled magma/mantle dynamics in a heterogeneous mantle beneath mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Katz, R. F.; Weatherley, S.

    2012-04-01

    Global magmatism segregates the products of melting from their source; plate tectonics and convection stir those products back into Earth's mantle. In this context, it is not surprising that the mantle is chemically heterogeneous, even if the details remain poorly known. What happens when the heterogeneous mantle melts beneath a mid-ocean ridge? Is chemical variability created or destroyed? What are the implications for magmatic transport and focusing? How does consideration of heterogeneity affect our ideas about reactive channellisation of magma? We present new results from computational models that incorporate chemical heterogeneity in the context of conservation of mass, momentum, and energy for the two-phase system of magma within the mantle (e.g. McKenzie 1984). The simulations build on those of Katz (2010), who considered only large-scale gradients in temperature and composition. Results presented here demonstrate that sharper variations in composition, whether discrete blobs or a more distributed pattern of variability, may lead to magmatic channellisation, melt trapping beneath the lithosphere, and even the creation of new chemical heterogeneities. Our results underscore the importance of accounting for conservation of energy in models of coupled magma/mantle dynamics. Katz, R.F. (2010) Porosity-driven convection and asymmetry beneath mid-ocean ridges. Geochem. Geophys. Geosys., doi: 10.1029/2010GC003282. http://foalab.earth.ox.ac.uk/

  3. Age determination of mid-ocean ridge basalts by radiocarbon dating of lithified carbonate crusts

    SciTech Connect

    Kuptsov, V.M.; Bogdanov, Yu.A.; Palkina, A.M.; Lisitsyn, A.P.

    1986-01-01

    The processes that take place in the mid-ocean ridges are the key to their understanding of the evolution of the earth's crust and mantle. Mid-ocean ridge volcanism supplies vast masses of mantle material, forming new oceanic crust. In recent years, comprehensive study has been made of such processes. The problems of geochronology have an important place in these investigations, since only a study of the events in their time sequence will enable them to make a valid estimate of the intensity of these global processes. In 1980, crusts were obtained by the Pikar combined expedition in the Red Sea rift in the 18/sup 0/ study area on the lower tectonic terrace, in the axial zone, and in three deep water basins. Manned deep water submersible, dredges, trawls, bottom samplers, and impact tubes brought up basalts covered with lithified crusts, and also separate lithified crusts, collected from the basalt basement during sampling. The authors have dated the crusts by the radiocarbon method using the benzene technique. Results of the analysis give ages ranging from 2980 to 20,700 years. Results are discussed. The use of lithified carbonate crusts for determining the age of the basalts is effective within the range of the radiocarbon dating method (up to 40,000-45,000 years). This time interval is inaccessible for determinations by other methods of nuclear geochronology, which makes the method especially valuable. 1 reference, 2 figures, 1 table.

  4. Phase equilibria constraints on the chemistry of hot spring fluids at mid-ocean ridges

    SciTech Connect

    Seyfried, W.E. Jr.; Ding, K.; Berndt, M.E. )

    1991-12-01

    Recent advances in experimental and theoretical geochemistry have made it possible to assess both homogeneous and heterogeneous equilibria involving a wide range of aqueous species at temperatures and pressures appropriate to model hydrothermal alteration processes at mid-ocean ridges. The authors have combined selected aspects of the chemistry of hot spring fluids with constraints imposed by a geologically reasonable assemblage of minerals in the system Na{sub 2}O-K{sub 2}O-CaO-MgO-FeO-Fe{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O-HCl-H{sub 2}S to assess the effect of temperature on the composition of the aqueous phase and the activities of mineral components in plagioclase and epidote solid solutions. Assuming fO{sub 2(g)} and fS{sub 2(g)} controlled by pyrite-pyrrhotite-magnetite equilibria, a constant dissolved Ca concentration, and a dissolved Cl concentration equivalent to that of seawater, increasing temperature from 250 to 400C at 500 bars results in systematic changes in the composition of mineral phases, which in turn constrain pH and the distribution of aqueous species. The model predicts that dissolved concentrations of Fe, SiO{sub 2}, K, H{sub 2}S, and H{sub 2} increase, while Na and pH{sub (25C)} decrease with increasing temperature. That many hot springs vent fluids are characterized by variable degrees of conductive heat loss renders measured temperatures unreliable as indicators of the maximum temperature of subseafloor hydrothermal alteration processes. The implications of this are significant for hot spring fluids which reveal large Cl variations relative to seawater, since likely mechanisms to account for such variability typically require temperatures in excess of those inferred for subseafloor reaction zones by simply correcting measured temperatures for the effects of adiabatic cooling.

  5. Oceanic phosphorus imbalance: Magnitude of the mid-ocean ridge flank hydrothermal sink

    NASA Astrophysics Data System (ADS)

    Wheat, C. Geoffrey; McManus, James; Mottl, Michael J.; Giambalvo, Emily

    2003-09-01

    We present a new estimate for the crustal phosphorous sink that results from reactions among seawater, basalt, and sediment blanketing low temperature mid-ocean ridge flank hydrothermal systems. New estimates for global hydrothermal power output, sediment thickness, and the dissolved phosphate concentrations in basement formation fluids indicate that fluid flow through ridge flanks removes 2.8 × 1010 mol P yr-1. This value is larger (130%) than the riverine dissolved flux of inorganic phosphate and is as much as 35% of the sedimentary P sink. The concordant seawater flux (2.1 × 1016 kg yr-1) is 65% of the riverine fluid flux and circulates a fluid volume equivalent to the entire ocean in about 70,000 yr. Additional sampling of seafloor springs is required to further constrain the range of calculated phosphate fluxes; nevertheless the modern phosphorus budget is clearly unbalanced with total sinks outpacing sources.

  6. Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply.

    PubMed

    Olive, J-A; Behn, M D; Ito, G; Buck, W R; Escartín, J; Howell, S

    2015-10-16

    Recent studies have proposed that the bathymetric fabric of the seafloor formed at mid-ocean ridges records rapid (23,000 to 100,000 years) fluctuations in ridge magma supply caused by sealevel changes that modulate melt production in the underlying mantle. Using quantitative models of faulting and magma emplacement, we demonstrate that, in fact, seafloor-shaping processes act as a low-pass filter on variations in magma supply, strongly damping fluctuations shorter than about 100,000 years. We show that the systematic decrease in dominant seafloor wavelengths with increasing spreading rate is best explained by a model of fault growth and abandonment under a steady magma input. This provides a robust framework for deciphering the footprint of mantle melting in the fabric of abyssal hills, the most common topographic feature on Earth. PMID:26472905

  7. Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply

    NASA Astrophysics Data System (ADS)

    Olive, J.-A.; Behn, M. D.; Ito, G.; Buck, W. R.; Escartín, J.; Howell, S.

    2015-10-01

    Recent studies have proposed that the bathymetric fabric of the seafloor formed at mid-ocean ridges records rapid (23,000 to 100,000 years) fluctuations in ridge magma supply caused by sealevel changes that modulate melt production in the underlying mantle. Using quantitative models of faulting and magma emplacement, we demonstrate that, in fact, seafloor-shaping processes act as a low-pass filter on variations in magma supply, strongly damping fluctuations shorter than about 100,000 years. We show that the systematic decrease in dominant seafloor wavelengths with increasing spreading rate is best explained by a model of fault growth and abandonment under a steady magma input. This provides a robust framework for deciphering the footprint of mantle melting in the fabric of abyssal hills, the most common topographic feature on Earth.

  8. Grain Size as a Control for Melt Focusing Beneath Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Turner, A.; Katz, R. F.; Behn, M. D.

    2015-12-01

    Grain size is a fundamental control on both the rheology and permeability of the mantle. These properties, in turn, affect the transport of melt beneath mid-ocean ridges. Previous models of grain size beneath ridges have considered only the single-phase problem of dynamic recrystallisation and the resultant pattern of grain-size variation [1,2]. These models have not coupled the spatially variable grain-size field to two-phase (partially molten) mechanics to investigate the implications of spatially variable grain size on melt transport. Here, we present new results from numerical models that investigate the consequences of this coupling. In our two-dimensional, two-phase model the grain-size is coupled to both the permeability and rheology. The rheology is strain-rate and grain-size dependent. For simplicity, however, the grain-size field is not computed dynamically — rather, it is imposed from a single-phase, steady-state model [1] that is based on the "wattmeter" theory [3]. Our calculations predicts that a spatially variable grain size field can promote focusing of melt towards the ridge axis. This focusing is distinct from the commonly discussed, sub-lithospheric decompaction channel [4]. Furthermore, our model predicts that the shape of the partially molten region is sensitive to rheological parameters associated with grain size. The comparison of this shape with observations [5] may help to constrain the rheology of the upper mantle beneath mid-ocean ridges. References: [1] Turner et al., Geochem. Geophys. Geosyst., 16, 925-946, 2015. [2] Behn et al., EPSL, 282, 178-189, 2009. [3] Austin and Evans, Geology, 35:343-346, 2007. [4] Sparks and Parmentier, EPSL, 105, 368-377, 1991. [5] Key et al., Nature, 495, 499-502, 2013.

  9. Distribution and Alignment of Small Volcanic Edifices at Slow-Spreading Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Yeo, Isobel; Achenbach, Kay L.; Searle, Roger C.

    2010-05-01

    Around seventy percent of the Earth's surface is covered by oceanic crust produced along the 80,000km of mid-ocean ridges. However, despite its prevalence the processes by which ocean crust is built remain poorly understood, particularly at slow-spreading centres. This study uses sidescan sonar images from several volcanic centres along the Mid-Atlantic Ridge and Southwest Indian Ridge to statistically quantify the distribution and structural influence on volcanic edifice emplacement. Volcanism at slow-spreading mid-ocean ridges is concentrated on Axial Volcanic Ridges (AVRs), elongate topographic highs found within the axial valley. AVRs may reach a kilometre above the seafloor and tens of kilometres in length and are composite piles of volcanics, constructed almost entirely of 'hummocks', small volcanic edifices usually between fifty and several hundred metres across. In this study we analyse sidescan sonar data from three slow-spreading ridges, two on the Mid-Atlantic Ridge (at 45° N and 29° N) and one on the Southwest Indian Ridge (at 64° E). Nearest neighbour analyses are used to identify statistically significant degrees of cluster of hummocks at the three study areas and maps of areal volcano density are used to asses the distribution of high and low density areas. From these analyses hundreds of small clustered groups can be identified, possibly corresponding to individual sources of melt. Larger areas of lower density can also be identified and appear to be linked to the initiation of new faulting. This implies either a lower melt flux to these areas or a low flux of volcanic cone building material. The initiation of new faulting and the narrowing of the axial valley suggest the first option is more likely. This study records the presence of lateral volcanic 'spurs' running off either side of the AVR for the first time. Several methods are used to quantify the alignments of both these features and the hummocks on the main body of the AVR. We find that

  10. Patterns of faulting and seismicity in the mid-ocean ridge environment

    NASA Astrophysics Data System (ADS)

    Bohnenstiehl, Delwayne Roger

    Abyssal hill faults within the slow-spreading (˜20 mm/yr) mid-ocean ridge environment exhibit displacement-length ratios that are systematically larger than those observed within the fast-spreading environment (˜100 mm/yr). This can be explained by considering the importance of fault linkage in the lateral growth of abyssal hill faults and the limits imposed on maximum fault displacement by the lithospheric thickness within each setting. Within the superfast spreading environment (>140 mm/yr) of the southern East Pacific Rise (EPR), a pattern of inward-dipping master faults is observed, with smaller outward-dipping faults clustered within their hanging walls. This pattern is distinct from the more classic horst and graben morphology described on the fast-spreading northern EPR. The pattern documented on the southern EPR suggests inward-dipping master faults are more sharply curved or listric relative to their abyssal hill equivalents at fast-spreading rates. Boundary element modeling is used to examine the role of axial magma chamber inflation in generating the pattern of faulting observed along the southern EPR. An earthquake catalog derived from the detection of seismically generated T-waves is used to study the decay rate and spatial distribution of mid-ocean ridge aftershock sequences. Generally, aftershock sequences in the mid-ocean ridge setting can be well described by a modified Omori law. Decay constants (p-values) are slightly higher than those previously estimated from stacked sequences derived from the teleseismic record. Three transform fault sequences and one microplate thrust sequence exhibit p-values consistent with the global median value. There is some evidence for higher p-values associated with normal faulting mainshocks along the spreading centers. Although the June 1999 Endeavour segment sequence has been suggested previously to be of tectonic origin, the timing and distribution of earthquakes are inconsistent with the aftershock process

  11. Dacite petrogenesis on mid-ocean ridges: Evidence for oceanic crustal melting and assimilation

    USGS Publications Warehouse

    Wanless, V.D.; Perfit, M.R.; Ridley, W.I.; Klein, E.

    2010-01-01

    Whereas the majority of eruptions at oceanic spreading centers produce lavas with relatively homogeneous mid-ocean ridge basalt (MORB) compositions, the formation of tholeiitic andesites and dacites at mid-ocean ridges (MORs) is a petrological enigma. Eruptions of MOR high-silica lavas are typically associated with ridge discontinuities and have produced regionally significant volumes of lava. Andesites and dacites have been observed and sampled at several locations along the global MOR system; these include propagating ridge tips at ridge-transform intersections on the Juan de Fuca Ridge and eastern Gal??pagos spreading center, and at the 9??N overlapping spreading center on the East Pacific Rise. Despite the formation of these lavas at various ridges, MOR dacites show remarkably similar major element trends and incompatible trace element enrichments, suggesting that similar processes are controlling their chemistry. Although most geochemical variability in MOR basalts is consistent with low-pressure fractional crystallization of various mantle-derived parental melts, our geochemical data for MOR dacitic glasses suggest that contamination from a seawater-altered component is important in their petrogenesis. MOR dacites are characterized by elevated U, Th, Zr, and Hf, low Nb and Ta concentrations relative to rare earth elements (REE), and Al2O3, K2O, and Cl concentrations that are higher than expected from low-pressure fractional crystallization alone. Petrological modeling of MOR dacites suggests that partial melting and assimilation are both integral to their petrogenesis. Extensive fractional crystallization of a MORB parent combined with partial melting and assimilation of amphibole-bearing altered crust produces a magma with a geochemical signature similar to a MOR dacite. This supports the hypothesis that crustal assimilation is an important process in the formation of highly evolved MOR lavas and may be significant in the generation of evolved MORB in

  12. The Cobb-Eickelberg seamount chain: Hotspot volcanism with mid-ocean ridge basalt affinity

    SciTech Connect

    Desonie, D.L.; Duncan, R.A. )

    1990-08-10

    Cobb hotspot, currently located beneath Axial seamount on the Juan de Fuca ridge, has the temporal but not the isotopic characteristics usually attributed to a mantle plume. The earlier volcanic products of the hotspot, form eight volcanoes in the Cobb-Eickelberg seamount (CES) chain, show a westward age progression away from the hotspot and a westward increase in the age difference between the seamounts and the crust on which they formed. These results are consistent with movement of the Pacific plate over a fixed Cobb hotspot and eventual encroachment by the westwardly migrating Juan de Fuca ridge. CES lavas are slightly enriched in alkalies and incompatible elements relative to those of the Juan de Fuca ridge but they have Sr, Nd, and Pb isotopic compositions virtually identical to those found along the ridge. Therefore, Cobb hotspot is a stationary, upper mantle melting anomaly whose volcanic products show strong mid-ocean ridge basalt (MORB) affinity. These observations can be explained by low degrees of partial melting of entrained heterogeneous upper mantle MORB source material within a thermally driven lower mantle diapir or by an intrinsic MORB-like composition of the deeper mantle source region from which northeast Pacific plumes rise.

  13. Noble metals in mid-ocean ridge volcanism: A significant fractionation of gold with respect to platinum group metals

    NASA Technical Reports Server (NTRS)

    Crocket, James H.

    1988-01-01

    Hydrothermal precipitates, black smoker particulate, and massive sulphide dredge samples from the Explorer Ridge on the Juan de Fuca Plate and the TAG hydrothermal area on the Mid-Atlantic Ridge were analyzed for selected noble metals including Au, Ir and Pd by radiochemical neutron activation analysis. The preliminary results indicate that gold contents may reach the ppm range although values in the neighborhood of 100 to 200 ppb are more typical. The platinum group elements (PGE) represented by Ir and Pd are typically less than 0.02 ppb and less than 2 ppb respectively. These abundances represent a significant enrichment of gold relative to the PGE in comparison with average noble metal abundances in mid-ocean ridge basalts (MORB). A partial explanation of this distinctive fractionation can be found in the concepts of sulfur-saturation of basic magma in mid-ocean ridge (MOR) settings, and the origin of MOR hydrothermal fluids. Experimental and petrological data suggest that MORBs are sulfur-saturated at the time of magma generation and that an immiscible sulfide component remains in the mantle residue. Hence, MORBs are noble metal-poor, particularly with respect to PGE. Consequently, black smoker fluids can be expected to reflect the low Ir and Pd contents of the rock column. The average Au content of MORB is 1.3 ppb, and so the rock column is not significantly enriched in Au. The generation of fluids which precipitate solids with 200 ppb Au is apparently dependent on highly efficient fluid chemistry to mobilize Au from the rock column, high Au solubility in seawater hydrothermal fluids and efficient precipitation mechanisms to coprecipitate Au on Fe, Zn and Cu sulfides. Significant differences in these parameters appear to be the ultimate cause of the strong Au-PGE fractionation in the MOR setting. It does not appear from the current data base that MOR hydrothermal fluids are significant contributors to the Ir enrichment seen in Cretaceous-Tertiary boundary

  14. Seismic structure of the lithosphere beneath the ocean islands near the mid-oceanic ridges

    NASA Astrophysics Data System (ADS)

    Haldar, C.; Kumar, P.; Kumar, M. Ravi

    2013-10-01

    Deciphering the seismic character of the young lithosphere near the mid-oceanic ridges (MOR) is a challenging endeavor. In this study, we determine the seismic structure of the oceanic plate near the MORs, using the P-to-s conversions isolated from good quality data recorded at 5 broadband seismological stations situated on the ocean Islands in their vicinity. Estimates of the crustal and lithospheric thickness values from waveform modeling of the P receiver function stacks reveal that the crustal thickness varies between 6 and 8 km with the corresponding depths to the lithosphere asthenosphere boundary (LAB) varying between 43 and 68 km. However, the depth to the LAB at Macquire Island is intriguing in view of the observation of a thick (~ 87 km) lithosphere beneath a relatively young crust. At three other stations i.e., Ascension Island, Sao Jorge and Easter Island, we find evidence for an additional deeper low velocity layer probably related to the presence of a hotspot.

  15. Hydrothermal activity and core complex formation at the Arctic Mid-Ocean Ridge: An overview of preliminary results of the H2DEEP expedition to the southern Knipovich Ridge at 73N

    NASA Astrophysics Data System (ADS)

    Pedersen, R. B.; Thorseth, I. H.; Olson, E.; Hellevang, H.; Okland, I.; Baumberger, T.; Lilley, M.; Bruvoll, V.; Mjelde, R.; Haflidason, H.

    2007-12-01

    The oblique spreading Mohns Ridge passes into the highly oblique spreading Knipovich Ridge through a near 90 degree bend in the ridge axis at 73-74N. Multibeam mapping of this area shows that a 30 km long axial volcanic ridge (AVR) with a 500m high summit occupy the rift valley floor in the central part of the bend where the axis is perpendicular to the spreading direction. The volcanic activity decreases northwards as the obliquity of the spreading increases and this is associated with an increase in the water depth from 2000-2500 m to 3000-3500 m. A hydrothermal plume was located at the eastern side of the AVR with methane values reaching 260 nmol/l and hydrogen values 53 nmol/l. These anomalies are associated with small positive temperature anomaly, but no significant particle anomaly could be detected. The rift valley in the area is partly filled with sediments derived from the nearby Bjornoya fan, and reflection seismic profiles across the ridge demonstrate that sediments thicknesses in the rift valley locally exceeds several hundred meters. Gravity cores of the upper 4 m of these sediments show multiple glass- and iron-rich laminas and layers, demonstrating that these sediments represent a record of hydrothermal and volcanic activity in the area. Seamounts at the western flank of the ridge extend to 600 m below sea level and are limited by low angle detachment faults to the east. A flat summit area suggests that one of the seamounts has been at or close to sea level. Gabbros, troctolites and serpentinites were sampled from the fault surfaces, demonstrating that lower crust and mantle rocks have been exhumed in the area, and bathymetry data indicates that this oceanic core complex cover an area of about 500 km2. A younger detachment fault appears to develop at the inner rift wall just west of the AVR. The rift valley sediments are affected by the faulting and the seismic stratigraphy of these sediments constrain the history of core complex formation.

  16. Estimation of S, F, Br, Cl, and P Fluxes at Mid Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Kagoshima, T.; Sano, Y.; Takahata, N.; Jung, J.; Amakawa, H.; Kumagai, H.

    2011-12-01

    It is known that superficial volatile elements have been accumulated by degassing from the solid Earth. Studies that use noble gases as tracers have been conducted to investigate the degassing history of the Earth, which suggests that the significant degassing occurred in the early Earth. C and N fluxes were well documented in literatures. In order to estimate the other fluxes of volatile elements from mantle, we measured S, F, Br, Cl, and P concentrations trapped in vesicles in mid-ocean ridge basalts (MORBs) and back-arc basin basalts (BABBs). Highly reactive elements such as sulfur and fluorine in the sample were extracted into the alkali solution at the crushing: crush leaching. We selected fresh glassy aliquots from MORBs and BABBs and put them in a crusher with an iron ball and 1-2 cm^{3} of 4M aqueous sodium hydroxide. Then, we crushed the samples with the solution kept frozen at the liquid nitrogen temperature to avoid the adhesion of the solution to the inside of the crusher. After crushing, we froze the solution again, and introduced volatiles in the gas phase into the purification vacuum line. At first, we removed volatile elements except He and Ne by a U-tube and activated charcoals at the temperature of liquid nitrogen and hot Ti-getters. We measured ^{4}He/^{20}Ne ratio of the gas by a quadrupole mass spectrometer and removed Ne by a cryogenic charcoal trap at 40K. Then, the He fraction was introduced into VG5400 mass spectrometer and the ^{3}He/^{4}He ratio was measured. Immediately after the sample analysis, we measured HESJ (He standard of Japan; 20.4 R_{A}) for calibration. For sulfur measurement, 1-2 cm^{3} of 30% hydrogen peroxide were added into the filtered sodium hydroxide solutions. Thus all sulfur compounds were quantified as sulfate ions and F, Br, Cl, and P were measured by ion chromatography (Dionex-320). We collected fine powders of basalt glass by filtering through a stainless steel sieve and measured their weight to estimate the

  17. Trace element and isotopic effects arising from magma migration beneath mid-ocean ridges

    NASA Technical Reports Server (NTRS)

    Kenyon, Patricia M.

    1990-01-01

    The trace element concentrations and isotopic ratios in the magma erupted on mid-ocean ridges may differ from those in the source material due to physical effects such as porous flow dispersion, exchange of trace elements between the fluid and solid phases during magma migration, and convective mixing in magma chambers. These differences are in addition to those produced by better known processes such as fractional crystallization and partial melting. The effects of the three former processes are described. It is predicted that magma typically reaches the subridge magma chambers with a spatial heterogeneity only slightly reduced from that of the source material, but with a subdued variation in time. Convective mixing then further reduces the spatial heterogeneity. Application of the results for convective mixing to a recent Fourier analysis of Sr-87/Sr-86 variations along the Mid-Atlantic Ridge suggests that the falloff in amplitude of variation observed with decreasing wavelength in the Mid-Atlantic Ridge data cannot be explained by convective mixing in magma chambers. Instead, it is postulated that this falloff is due to the mechanics of the production and/or the solid-state convective mixing of chemical and isotopic heterogeneities in the solid mantle.

  18. Incorporation of seawater into mid-ocean ridge lava flows during emplacement

    NASA Astrophysics Data System (ADS)

    Soule, S. Adam; Fornari, Daniel J.; Perfit, Michael R.; Ridley, W. Ian; Reed, Mark H.; Cann, Johnson R.

    2006-12-01

    Evidence for the interaction between seawater and lava during emplacement on the deep seafloor can be observed in solidified flows at a variety of scales including rapid quenching of their outer crusts and the formation of lava pillars through the body of the flow. Recently, an additional interaction, incorporation of heated seawater (vapor) into the body of a flow, has been proposed. Large voids and vesicles beneath the surface crusts of mid-ocean ridge crest lobate and sheet lava flows and lava drips found within those cavities have been cited as evidence for this interaction. The voids resulting from this interaction contribute to the high porosity of the shallow ocean crust and play an important role in crustal permeability and hydrothermal circulation at mid-ocean ridges, and thus it is important to understand their origin. We analyze lava samples from the fast-spreading East Pacific Rise and intermediate-spreading Galapagos Spreading Center to characterize this process, identify the source of the vapor, and investigate the implications this would have on submarine lava flow dynamics. We find that lava samples that have interacted with a vapor have a zone of increased vesicularity on the underside of the lava crust and a coating of precipitate minerals ( i.e., crystal fringe) that are distinct in form and composition from those crystallized from the melt. We use thermochemical modeling to simulate the reaction between the lava and a vapor and find that only with seawater can we reproduce the phase assemblage we observe within the crystal fringes present in the samples. Model results suggest that large-scale contamination of the lava by mass exchange with the vapor is unlikely, but we observe local enrichment of the lava in Cl resulting from the incorporation of a brine phase separated from the seawater. We suggest that high eruption rates are necessary for seawater incorporation to occur, but the mechanism by which seawater enters the flow has yet to be

  19. Does presence of a mid-ocean ridge enhance biomass and biodiversity?

    PubMed

    Priede, Imants G; Bergstad, Odd Aksel; Miller, Peter I; Vecchione, Michael; Gebruk, Andrey; Falkenhaug, Tone; Billett, David S M; Craig, Jessica; Dale, Andrew C; Shields, Mark A; Tilstone, Gavin H; Sutton, Tracey T; Gooday, Andrew J; Inall, Mark E; Jones, Daniel O B; Martinez-Vicente, Victor; Menezes, Gui M; Niedzielski, Tomasz; Sigurðsson, Þorsteinn; Rothe, Nina; Rogacheva, Antonina; Alt, Claudia H S; Brand, Timothy; Abell, Richard; Brierley, Andrew S; Cousins, Nicola J; Crockard, Deborah; Hoelzel, A Rus; Høines, Åge; Letessier, Tom B; Read, Jane F; Shimmield, Tracy; Cox, Martin J; Galbraith, John K; Gordon, John D M; Horton, Tammy; Neat, Francis; Lorance, Pascal

    2013-01-01

    In contrast to generally sparse biological communities in open-ocean settings, seamounts and ridges are perceived as areas of elevated productivity and biodiversity capable of supporting commercial fisheries. We investigated the origin of this apparent biological enhancement over a segment of the North Mid-Atlantic Ridge (MAR) using sonar, corers, trawls, traps, and a remotely operated vehicle to survey habitat, biomass, and biodiversity. Satellite remote sensing provided information on flow patterns, thermal fronts, and primary production, while sediment traps measured export flux during 2007-2010. The MAR, 3,704,404 km(2) in area, accounts for 44.7% lower bathyal habitat (800-3500 m depth) in the North Atlantic and is dominated by fine soft sediment substrate (95% of area) on a series of flat terraces with intervening slopes either side of the ridge axis contributing to habitat heterogeneity. The MAR fauna comprises mainly species known from continental margins with no evidence of greater biodiversity. Primary production and export flux over the MAR were not enhanced compared with a nearby reference station over the Porcupine Abyssal Plain. Biomasses of benthic macrofauna and megafauna were similar to global averages at the same depths totalling an estimated 258.9 kt C over the entire lower bathyal north MAR. A hypothetical flat plain at 3500 m depth in place of the MAR would contain 85.6 kt C, implying an increase of 173.3 kt C attributable to the presence of the Ridge. This is approximately equal to 167 kt C of estimated pelagic biomass displaced by the volume of the MAR. There is no enhancement of biological productivity over the MAR; oceanic bathypelagic species are replaced by benthic fauna otherwise unable to survive in the mid ocean. We propose that globally sea floor elevation has no effect on deep sea biomass; pelagic plus benthic biomass is constant within a given surface productivity regime. PMID:23658696

  20. Does Presence of a Mid-Ocean Ridge Enhance Biomass and Biodiversity?

    PubMed Central

    Priede, Imants G.; Bergstad, Odd Aksel; Miller, Peter I.; Vecchione, Michael; Gebruk, Andrey; Falkenhaug, Tone; Billett, David S. M.; Craig, Jessica; Dale, Andrew C.; Shields, Mark A.; Tilstone, Gavin H.; Sutton, Tracey T.; Gooday, Andrew J.; Inall, Mark E.; Jones, Daniel O. B.; Martinez-Vicente, Victor; Menezes, Gui M.; Niedzielski, Tomasz; Sigurðsson, Þorsteinn; Rothe, Nina; Rogacheva, Antonina; Alt, Claudia H. S.; Brand, Timothy; Abell, Richard; Brierley, Andrew S.; Cousins, Nicola J.; Crockard, Deborah; Hoelzel, A. Rus; Høines, Åge; Letessier, Tom B.; Read, Jane F.; Shimmield, Tracy; Cox, Martin J.; Galbraith, John K.; Gordon, John D. M.; Horton, Tammy; Neat, Francis; Lorance, Pascal

    2013-01-01

    In contrast to generally sparse biological communities in open-ocean settings, seamounts and ridges are perceived as areas of elevated productivity and biodiversity capable of supporting commercial fisheries. We investigated the origin of this apparent biological enhancement over a segment of the North Mid-Atlantic Ridge (MAR) using sonar, corers, trawls, traps, and a remotely operated vehicle to survey habitat, biomass, and biodiversity. Satellite remote sensing provided information on flow patterns, thermal fronts, and primary production, while sediment traps measured export flux during 2007–2010. The MAR, 3,704,404 km2 in area, accounts for 44.7% lower bathyal habitat (800–3500 m depth) in the North Atlantic and is dominated by fine soft sediment substrate (95% of area) on a series of flat terraces with intervening slopes either side of the ridge axis contributing to habitat heterogeneity. The MAR fauna comprises mainly species known from continental margins with no evidence of greater biodiversity. Primary production and export flux over the MAR were not enhanced compared with a nearby reference station over the Porcupine Abyssal Plain. Biomasses of benthic macrofauna and megafauna were similar to global averages at the same depths totalling an estimated 258.9 kt C over the entire lower bathyal north MAR. A hypothetical flat plain at 3500 m depth in place of the MAR would contain 85.6 kt C, implying an increase of 173.3 kt C attributable to the presence of the Ridge. This is approximately equal to 167 kt C of estimated pelagic biomass displaced by the volume of the MAR. There is no enhancement of biological productivity over the MAR; oceanic bathypelagic species are replaced by benthic fauna otherwise unable to survive in the mid ocean. We propose that globally sea floor elevation has no effect on deep sea biomass; pelagic plus benthic biomass is constant within a given surface productivity regime. PMID:23658696

  1. Grain-size dynamics beneath mid-ocean ridges: Implications for permeability and melt extraction

    PubMed Central

    Turner, Andrew J; Katz, Richard F; Behn, Mark D

    2015-01-01

    Grain size is an important control on mantle viscosity and permeability, but is difficult or impossible to measure in situ. We construct a two-dimensional, single phase model for the steady state mean grain size beneath a mid-ocean ridge. The mantle rheology is modeled as a composite of diffusion creep, dislocation creep, dislocation accommodated grain boundary sliding, and a plastic stress limiter. The mean grain size is calculated by the paleowattmeter relationship of Austin and Evans (2007). We investigate the sensitivity of our model to global variations in grain growth exponent, potential temperature, spreading-rate, and mantle hydration. We interpret the mean grain-size field in terms of its permeability to melt transport. The permeability structure due to mean grain size may be approximated as a high permeability region beneath a low permeability region. The transition between high and low permeability regions occurs across a boundary that is steeply inclined toward the ridge axis. We hypothesize that such a permeability structure generated from the variability of the mean grain size may focus melt toward the ridge axis, analogous to Sparks and Parmentier (1991)-type focusing. This focusing may, in turn, constrain the region where significant melt fractions are observed by seismic or magnetotelluric surveys. This interpretation of melt focusing via the grain-size permeability structure is consistent with MT observation of the asthenosphere beneath the East Pacific Rise. Key Points: The grain-size field beneath MORs can vary over orders of magnitude The grain-size field affects the rheology and permeability of the asthenosphere The grain-size field may focus melt toward the ridge axis PMID:26693211

  2. Earthquake-induced changes in a hydrothermal system on the Juan de Fuca mid-ocean ridge

    PubMed

    Johnson; Hutnak; Dziak; Fox; Urcuyo; Cowen; Nabelek; Fisher

    2000-09-14

    Hydrothermal vents on mid-ocean ridges of the northeast Pacific Ocean are known to respond to seismic disturbances, with observed changes in vent temperature. But these disturbances resulted from submarine volcanic activity; until now, there have been no observations of the response of a vent system to non-magmatic, tectonic events. Here we report measurements of hydrothermal vent temperature from several vents on the Juan de Fuca ridge in June 1999, before, during and after an earthquake swarm of apparent tectonic origin. Vent fluid temperatures began to rise 4-11 days after the first earthquake. Following this initial increase, the vent temperatures oscillated for about a month before settling down to higher values. We also observed a tenfold increase in fluid output from the hydrothermal system over a period of at least 80 days, extending along the entire ridge segment. Such a large, segment-wide thermal response to relatively modest tectonic activity is surprising, and raises questions about the sources of excess heat and fluid, and the possible effect on vent biological communities. PMID:11001052

  3. Reactive Transport of Carbonated Magma Beneath a Mid-Oceanic Ridge: Theory and Numerical Models

    NASA Astrophysics Data System (ADS)

    Keller, T.; Katz, R. F.; Hirschmann, M. M.

    2014-12-01

    Laboratory experiments indicate that even small concentrations of CO2 in the upper mantle significantly affect the silicate melting behavior [DH06]. CO2 stabilizes carbon-rich melt at high pressure, thus vastly increasing the volume of the upper mantle expected to be partially molten [H10,DH10]. These small-degree melts have important consequences for chemical differentiation and could affect the dynamics of mantle flow. We have developed theory and numerical implementation to simulate thermo-chemically coupled magma/mantle dynamics in terms of a two-phase (rock+melt), three component (dunite+basalt+volatiles) physical model. The fluid dynamics is based on McKenzie's equations [McK84], while the thermo-chemical formulation of the system is represented by a novel, disequilibrium approach to volatile-bearing mantle melting. An experimentally constrained ternary phase diagram, based on an effective solid solution, is used to characterize the equilibrium state in the system. This physical model is implemented as a parallel, two-dimensional finite-volume code that leverages tools from the PETSc library. Early application of this simulation code to a mid-ocean ridge system suggests that the methodology captures some of the first order features of carbonated mantle melting, including deep, low-degree, volatile-rich melt formation. Melt segregation leads to continuous dynamic thermo-chemical dis-equilibration, while phenomenologically derived reaction rates continually move the system towards re-equilibration. The simulations will be used to first characterize carbon extraction from the MOR system assuming chemically homogeneous mantle, and will subsequently be extended to investigate the consequences of heterogeneity in lithology [KW12] and volatile content. Such studies will advance our understanding of the role that the mid-ocean ridge system plays in the deep carbon cycle. REFERENCESDH06 Dasgupta & Hirschmann (2006), doi:10.1038/nature04612.H10 Hirschmann (2010), doi

  4. Melting and Reactive Flow of Carbonated Peridotite Beneath Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Keller, T.; Katz, R. F.

    2015-12-01

    The mantle carbon reservoir is four orders of magnitude more massive than that of the atmosphere and ocean combined. The behaviour of carbon in the mantle, especially its transport and extraction, is thus of crucial importance to understanding the coupling between the deep interior and the surface environment of Earth. Laboratory experiments indicate that even small concentrations of carbon dioxide (and other volatiles like H2O) in the upper mantle significantly affect silicate melting [HK96,DH06] by stabilising carbon-rich melt at high pressure. The presence of carbon in the mantle substantially extends the region where partial melt is stable and has important consequences for the dynamics of magma transport and chemical differentiation [H10,DH10]. We have developed theory and numerical implementation to simulate thermo-chemically coupled magma/mantle dynamics in terms of a two-phase (rock+melt), three component (dunite+MORB+carbonated MORB) physical model. The fluid dynamics is based on McKenzie's equations [McK84]. The thermo-chemical formulation of the system is represented by a novel, disequilibrium, multi-component melting model based on thermodynamic theory [RBS11]. This physical model is implemented as a parallel, two-dimensional, finite-volume code that leverages tools from the PETSc toolkit. First results show that carbon and other volatiles cause a qualitative difference to the style of melt transport, potentially enhancing its extraction efficiency - measured in the carbon mass flux arriving at the mid-ocean ridge axis - by at least an order of magnitude. The process that controls magma transport in our models is a volatile flux-induced reactive infiltration instability, causing carbonated melt to rise from depth in localized channels. These results add to our understanding of melt formation and transport at mid-ocean ridges (the most important magmatic system in the mantle) and may have important implications for subduction zones. REFERENCESHK96 Hirth

  5. Some Lessons Learned From Observations and Modeling of Mid-ocean Ridge Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Cathles, L. M.

    2004-05-01

    Modeling of critical observations at mid-ocean ridge and continental hydrothermal systems has taught us a good deal about how these systems operate. Aspects will be reviewed from the large to small scale focusing on physical processes. At the largest scale the shape of the axial mid-ocean ridge magma chamber is clearly controlled by seawater convection. If the crust is impermeable, the 400°C isotherm of the magma chamber extends ~15 km from the ridge. As the crust becomes permeable, the width of the magma chamber collapses. A narrow axial magma chamber requires a crust whose permeability decreases exponentially from few 10's of millidarcies to a few tenths of millidarcy at moho depths (or the equivalent). Venting of ~350°C seawater at black smokers requires flow not significantly penetrate hotter rock. Variations in black smoker salinity from half to twice seawater, transit times of ~10 yrs, and megaplume discharge at ~250 times the normal black smoker rates (proceeded and succeeded by normal discharge), suggest a ~3.4 m wide, 350°C flow zone separated by ~180 m from 1200°C magma. With this geometry, periodic thermal contraction cracking in the 180 m wide thermal boundary layer can draw in sufficient flow-zone waters (which flash, leave behind salt, and return and salt-free condensed vapor) to lower the flow zone salinity by a factor of two. Halo-less veins with salt-rich amphiboles and minerals precipitated at >600°C record boundary layer cracking events. Migration of the flow zone toward the axis recovers the salt and doubles flow zone salinity. Increases in flow zone permeability by faulting or magma deflation produces megaplume discharges preceded and succeeded by normal black smoker venting. The routine (discharge salinities almost never equal seawater) interaction of convecting seawater with basalt at temperatures of >600°C makes it difficult to distinguish true magmatic waters (e.g., waters exsolved from magma) from seawater from thermal contraction

  6. Impacts of Volcanic Eruptions and Disturbances on Mid-Ocean Ridge Biological Communities

    NASA Astrophysics Data System (ADS)

    Shank, T. M.

    2009-12-01

    Understanding ecological processes in mid-ocean ridge benthic environments requires a knowledge of the temporal and spatial scales over which those processes take place. Over the past 17 years, the detection and now “direct observation” of more than nine seafloor eruptions and even more numerous and diverse geologic disturbances (e.g., dyking and cracking events) have provided a broad spectrum of perturbating seafloor phenomena that serve as key agents for creating new vent habitat, providing bursts of nutrients, supporting blooms of microbial and macrobiological communities, imparting magmatic/hydrothermal fluxes, controlling fluid geochemical composition, altering the successional stage of faunal communities, guiding the temporal and spatial scales of local extinction and recolonization, and for directing the evolution of physiological adaptations. Eruptions have now been documented on the East Pacific Rise, Southern Mid-Atlantic Ridge, Gakkel Ridge, Galapagos Rift, CoAxial, Northwest Rota, West Mata, and Loihi Seamounts, representing diverse emergent eruptive styles, from explosive pyroclastic deposits to thin lava flows, these processes are occurring in different biogeographic regions hosting different regional species pools. As such, not only do these eruptions provide a method of establishing a “time-zero” with which to construct manipulative temporal experiments, but also provide a contextual framework with which to interpret the affect eruptions and disturbance have on ecological interactions in different biogeographic regions of the world, and the timescales over which they vary. The temporal and spatial impact of these different eruptive styles in relation to the alteration of biological community structure will be discussed.

  7. Characteristics of Seamounts in the South China Sea: Implications on Mid-Ocean Ridge Magmatism during Cessation of Seafloor Spreading

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Lin, J.

    2014-12-01

    We have analyzed bathymetric, seismic, and geophysical data of the South China Sea (SCS) to investigate the characteristics of seamounts and their implications on the magmatic evolution of a mid-ocean ridge from active seafloor spreading to post-spreading volcanism. Among the two dozens of seamounts that can be identified with ease on multi-beam bathymetry data, about half of them are located along the fossil spreading ridge while the remaining located off axis. The distribution of off-axis seamounts also shows strong asymmetry about the fossil spreading ridge with a much greater population of seamounts concentrated in the northern basin. The shape of individual seamounts is approximated as elliptical cones to yield best-fitting models: the population of seamounts in the SCS has an average major-axis length of 21 km (standard deviation σ = 8.3 km) and an average minor-axis length of 14 km (σ = 5.3 km); The above-seafloor height and volume of the seamounts have average value of 2.9 km (σ = 1.1 km) and 1.21*1012 m3 (σ = 0.99*1012 m3), respectively. However, limited seismic reflection data show that when the parts of the seamounts buried in the sediment are considered, the resulting estimations of the seamount dimension and volume would increase significantly. Overall, seamounts located on the fossil ridge in the East Subbasin have larger dimension and volume than those in the Southwest Subbasin, except for a seamount neat the Zhongnan Fault between the two subbasins. Adjacent seamounts on the fossil ridge have an average separation distance of 53 km (σ = 9.4 km). We are currently investing lithospheric and mantle melting mechanisms that might control the observed characteristics of the spatial distribution and dimension of seamounts in the SCS. Keywords: the South China Sea, fossil spreading ridge, seamounts

  8. Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge

    PubMed Central

    Dahle, Håkon; Økland, Ingeborg; Thorseth, Ingunn H; Pederesen, Rolf B; Steen, Ida H

    2015-01-01

    Methods developed in geochemical modelling combined with recent advances in molecular microbial ecology provide new opportunities to explore how microbial communities are shaped by their chemical surroundings. Here, we present a framework for analyses of how chemical energy availability shape chemotrophic microbial communities in hydrothermal systems through an investigation of two geochemically different basalt-hosted hydrothermal systems on the Arctic Mid-Ocean Ridge: the Soria Moria Vent field (SMVF) and the Loki's Castle Vent Field (LCVF). Chemical energy landscapes were evaluated through modelling of the Gibbs energy from selected redox reactions under different mixing ratios between seawater and hydrothermal fluids. Our models indicate that the sediment-influenced LCVF has a much higher potential for both anaerobic and aerobic methane oxidation, as well as aerobic ammonium and hydrogen oxidation, than the SMVF. The modelled energy landscapes were used to develop microbial community composition models, which were compared with community compositions in environmental samples inside or on the exterior of hydrothermal chimneys, as assessed by pyrosequencing of partial 16S rRNA genes. We show that modelled microbial communities based solely on thermodynamic considerations can have a high predictive power and provide a framework for analyses of the link between energy availability and microbial community composition. PMID:25575309

  9. Interaction of sea water and lava during submarine eruptions at mid-ocean ridges.

    PubMed

    Perfit, Michael R; Cann, Johnson R; Fornari, Daniel J; Engels, Jennifer; Smith, Deborah K; Ridley, W Ian; Edwards, Margo H

    2003-11-01

    Lava erupts into cold sea water on the ocean floor at mid-ocean ridges (at depths of 2,500 m and greater), and the resulting flows make up the upper part of the global oceanic crust. Interactions between heated sea water and molten basaltic lava could exert significant control on the dynamics of lava flows and on their chemistry. But it has been thought that heating sea water at pressures of several hundred bars cannot produce significant amounts of vapour and that a thick crust of chilled glass on the exterior of lava flows minimizes the interaction of lava with sea water. Here we present evidence to the contrary, and show that bubbles of vaporized sea water often rise through the base of lava flows and collect beneath the chilled upper crust. These bubbles of steam at magmatic temperatures may interact both chemically and physically with flowing lava, which could influence our understanding of deep-sea volcanic processes and oceanic crustal construction more generally. We infer that vapour formation plays an important role in creating the collapse features that characterize much of the upper oceanic crust and may accordingly contribute to the measured low seismic velocities in this layer. PMID:14603316

  10. Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge.

    PubMed

    Dahle, Håkon; Økland, Ingeborg; Thorseth, Ingunn H; Pederesen, Rolf B; Steen, Ida H

    2015-07-01

    Methods developed in geochemical modelling combined with recent advances in molecular microbial ecology provide new opportunities to explore how microbial communities are shaped by their chemical surroundings. Here, we present a framework for analyses of how chemical energy availability shape chemotrophic microbial communities in hydrothermal systems through an investigation of two geochemically different basalt-hosted hydrothermal systems on the Arctic Mid-Ocean Ridge: the Soria Moria Vent field (SMVF) and the Loki's Castle Vent Field (LCVF). Chemical energy landscapes were evaluated through modelling of the Gibbs energy from selected redox reactions under different mixing ratios between seawater and hydrothermal fluids. Our models indicate that the sediment-influenced LCVF has a much higher potential for both anaerobic and aerobic methane oxidation, as well as aerobic ammonium and hydrogen oxidation, than the SMVF. The modelled energy landscapes were used to develop microbial community composition models, which were compared with community compositions in environmental samples inside or on the exterior of hydrothermal chimneys, as assessed by pyrosequencing of partial 16S rRNA genes. We show that modelled microbial communities based solely on thermodynamic considerations can have a high predictive power and provide a framework for analyses of the link between energy availability and microbial community composition. PMID:25575309

  11. Investigation of turbulent flows and near-bottom hydrothermal plumes at mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Lin, J.; Jiang, H.

    2015-12-01

    We investigate the characteristics of turbulent flows within near-bottom hydrothermal plumes at mid-ocean ridges through quantitative analysis of video images from manned submersibles using the Particle Image Velocimetry (PIV) method. High-quality video images of near-bottom hydrothermal vents were selected from the Data Library and Archives of the Woods Hole Oceanographic Institution (WHOI), consisting of multiple examples of vent fields in the Atlantic, Pacific, and Indian Oceans. Selected video segments of near-bottom hydrothermal plumes were decomposed into a series of still-image frames at a typical time interval of 1/30 second between consecutive frames. The PIV method was then used to track the motion of individual turbulent parcels, which were identified based on their relatively high concentration of optically visible particles than the surrounding water column. Finally, the velocity fields of the individual turbulent parcels, as well as the integrated fluxes of the composing hydrothermal plume, were calculated. Preliminary investigation of hydrothermal plumes at the TAG area of the Mid-Atlantic Ridge revealed significant spatial and temporal variations in the fluid dynamics of turbulent fluid parcels and near-bottom hydrothermal plumes: (1) Each rising hydrothermal plume is composed of a string of turbulent fluid parcels of variable sizes with a typical dimension of several cm. The calculated instantaneous velocities of individual turbulent parcels could reach tens of cm/s. (2) Turbulent fluid parcels within the hydrothermal plume were observed to grow rapidly through coalescing with adjacent parcels and interacting with ambient water column. (3) The cross-sectional dimensions of the near-bottom hydrothermal plumes were observed to increase several times within upwelling distance of tens of cm, indicating rapid entrainment of ambient fluids into the rising plumes. The overall vertical fluxes of the rising plumes are calculated to have changed

  12. A novel microbial habitat in the mid-ocean ridge subseafloor

    PubMed Central

    Summit, Melanie; Baross, John A.

    2001-01-01

    The subseafloor at the mid-ocean ridge is predicted to be an excellent microbial habitat, because there is abundant space, fluid flow, and geochemical energy in the porous, hydrothermally influenced oceanic crust. These characteristics also make it a good analog for potential subsurface extraterrestrial habitats. Subseafloor environments created by the mixing of hot hydrothermal fluids and seawater are predicted to be particularly energy-rich, and hyperthermophilic microorganisms that broadly reflect such predictions are ejected from these systems in low-temperature (≈15°C), basalt-hosted diffuse effluents. Seven hyperthermophilic heterotrophs isolated from low-temperature diffuse fluids exiting the basaltic crust in and near two hydrothermal vent fields on the Endeavour Segment, Juan de Fuca Ridge, were compared phylogenetically and physiologically to six similarly enriched hyperthermophiles from samples associated with seafloor metal sulfide structures. The 13 organisms fell into four distinct groups: one group of two organisms corresponding to the genus Pyrococcus and three groups corresponding to the genus Thermococcus. Of these three groups, one was composed solely of sulfide-derived organisms, and the other two related groups were composed of subseafloor organisms. There was no evidence of restricted exchange of organisms between sulfide and subseafloor habitats, and therefore this phylogenetic distinction indicates a selective force operating between the two habitats. Hypotheses regarding the habitat differences were generated through comparison of the physiology of the two groups of hyperthermophiles; some potential differences between these habitats include fluid flow stability, metal ion concentrations, and sources of complex organic matter. PMID:11226209

  13. Flow rate perturbations in a black smoker hydrothermal vent in response to a mid-ocean ridge earthquake swarm

    NASA Astrophysics Data System (ADS)

    Crone, Timothy J.; Wilcock, William S. D.; McDuff, Russell E.

    2010-03-01

    Although there is indirect evidence for strong connections between tectonic processes and mid-ocean ridge hydrothermal flow, there are no direct observations of these links, primarily because measuring flow in these systems is difficult. Here we use an optical analysis technique to obtain a 44 day record of flow rate changes in a black smoker vent in the Main Endeavour field of the Juan de Fuca Ridge. We show that variations in the flow rate coincide with an earthquake swarm observed using an ocean bottom seismometer array. These observations indicate that connections between tectonics and flow are indeed strong, that hydraulic connections within this hydrothermal system are long ranging, and that enhanced tidal pumping of fluids may be initiated by earthquake activity. Because the effects of the swarm cross over an intervening vent field, we infer that the upflow zones feeding this field are narrow. Using the time lag between the swarm onset and the flow rate changes we estimate that the bulk permeability of the crust on the Endeavour segment ranges from 3.0 × 10-13 m2 to 6.0 × 10-12 m2.

  14. Thermal response of mid-ocean ridge hydrothermal systems to perturbations

    NASA Astrophysics Data System (ADS)

    Singh, Shreya; Lowell, Robert P.

    2015-11-01

    Mid-ocean ridges are subject to episodic disturbances in the form of magmatic intrusions and earthquakes. Following these events, the temperature of associated hydrothermal vent fluids is observed to increase within a few days. In this paper, we aim to understand the rapid thermal response of hydrothermal systems to such disturbances. We construct a classic single-pass numerical model and use the examples of the 1995 and 1999 non-eruptive events at East Pacific Rise (EPR) 9°50‧N and Main Endeavour Field (MEF), respectively. We model both the thermal effects of dikes and permeability changes that might be attributed to diking and/or earthquake swarms. We find that the rapid response of vent temperatures results from steep thermal gradients close to the surface. When the perturbations are accompanied by an increase in permeability, the response on the surface is further enhanced. For EPR9°50‧N, the observed ~7 °C rise can be obtained for a ~50% increase in permeability in the diking zone. The mass flow rate increases as a result of change in permeability deeper in the system, and, therefore, the amount of hot fluid in the diffused flow also increases. Using a thermal energy balance, we show that the ~10 °C increase in diffuse flow temperatures recorded for MEF after the 1999 event may result from a 3-4 times increase in permeability. The rapid thermal response of the system resulting from a change in permeability also occurs for cases in which there is no additional heat input, indicating that hydrothermal systems may respond similarly to purely seismic and non-eruptive magmatic events.

  15. The Thermal Response of Mid-Ocean Ridge Hydrothermal Systems to Perturbations

    NASA Astrophysics Data System (ADS)

    Singh, S.; Lowell, R. P.

    2014-12-01

    Mid-ocean ridges are subject to episodic disturbances in the form of magmatic intrusions and earthquakes. Following these events, the temperature of associated hydrothermal vent fluids is observed to increase within a few days. In this paper, we aim to understand the rapid thermal response of hydrothermal systems to such disturbances. We construct a classic single-pass numerical model and use the examples of the 1995 and 1999 non-eruptive events at East Pacific Rise 9⁰50' N and Main Endeavour Field, respectively. We model both the thermal effects of dikes and permeability changes that might be attributed to diking and/or earthquake swarms. We find that the rapid response of vent temperatures results from steep thermal gradients close to the surface. When the perturbations are accompanied by an increase in permeability, the response on the surface is enhanced further. For East Pacific Rise 9⁰50' N, the observed ~7°C rise can be obtained for a ~ 50% increase in permeability in the diking zone. The mass flow rate increases as a result of change in permeability deeper in the system, and, therefore, the amount of hot fluid in the diffused flow also increases. Using a thermal energy balance, we show that the ~ 10 ⁰C increase in diffuse flow temperatures recorded for MEF after the 1999 event may result from a 3-4 times increase in permeability. The rapid thermal response of the system resulting from a change in permeability also occurs for cases in which there is no additional heat input, indicating that hydrothermal systems may respond similarly to purely seismic and non-eruptive magmatic events.

  16. Fluid composition of the sediment-influenced Loki's Castle vent field at the ultra-slow spreading Arctic Mid-Ocean Ridge

    NASA Astrophysics Data System (ADS)

    Baumberger, Tamara; Früh-Green, Gretchen L.; Thorseth, Ingunn H.; Lilley, Marvin D.; Hamelin, Cédric; Bernasconi, Stefano M.; Okland, Ingeborg E.; Pedersen, Rolf B.

    2016-08-01

    The hydrothermal vent field Loki's Castle is located in the Mohns-Knipovich bend (73°N) of the ultraslow spreading Arctic Mid-Ocean Ridge (AMOR) close to the Bear Island sediment fan. The hydrothermal field is venting up to 320° C hot black smoker fluids near the summit of an axial volcanic ridge. Even though the active chimneys have grown on a basaltic ridge, geochemical fluid data show a strong sedimentary influence into the hydrothermal circulation at Loki's Castle. Compelling evidence for a sediment input is given by high alkalinity, high concentrations of NH4+, H2, CH4, C2+ hydrocarbons as well as low Mn and Fe contents. The low δ13C values of CO2 and CH4 and the thermogenic isotopic pattern of the C2+ hydrocarbons in the high-temperature vent fluids clearly point to thermal degradation of sedimentary organic matter and illustrate diminution of the natural carbon sequestration in sediments by hydrothermal circulation. Thus, carbon-release to the hydrosphere in Arctic regions is especially relevant in areas where the active Arctic Mid-Ocean Ridge system is in contact with the organic matter rich detrital sediment fans.

  17. Vertical structure, biomass and topographic association of deep-pelagic fishes in relation to a mid-ocean ridge system

    NASA Astrophysics Data System (ADS)

    Sutton, T. T.; Porteiro, F. M.; Heino, M.; Byrkjedal, I.; Langhelle, G.; Anderson, C. I. H.; Horne, J.; Søiland, H.; Falkenhaug, T.; Godø, O. R.; Bergstad, O. A.

    2008-01-01

    The assemblage structure and vertical distribution of deep-pelagic fishes relative to a mid-ocean ridge system are described from an acoustic and discrete-depth trawling survey conducted as part of the international Census of Marine Life field project MAR-ECO < http://www.mar-eco.no>. The 36-station, zig-zag survey along the northern Mid-Atlantic Ridge (MAR; Iceland to the Azores) covered the full depth range (0 to >3000 m), from the surface to near the bottom, using a combination of gear types to gain a more comprehensive understanding of the pelagic fauna. Abundance per volume of deep-pelagic fishes was highest in the epipelagic zone and within the benthic boundary layer (BBL; 0-200 m above the seafloor). Minimum fish abundance occurred at depths below 2300 m but above the BBL. Biomass per volume of deep-pelagic fishes over the MAR reached a maximum within the BBL, revealing a previously unknown topographic association of a bathypelagic fish assemblage with a mid-ocean ridge system. With the exception of the BBL, biomass per volume reached a water column maximum in the bathypelagic zone between 1500 and 2300 m. This stands in stark contrast to the general "open-ocean" paradigm that biomass decreases exponentially from the surface downwards. As much of the summit of the MAR extends into this depth layer, a likely explanation for this mid-water maximum is ridge association. Multivariate statistical analyses suggest that the dominant component of deep-pelagic fish biomass over the northern MAR was a wide-ranging bathypelagic assemblage that was remarkably consistent along the length of the ridge from Iceland to the Azores. Integrating these results with those of previous studies in oceanic ecosystems, there appears to be adequate evidence to conclude that special hydrodynamic and biotic features of mid-ocean ridge systems cause changes in the ecological structure of deep-pelagic fish assemblages relative to those at the same depths over abyssal plains. Lacking

  18. Evidence from gabbro of the Troodos ophiolite for lateral magma transport along a slow-spreading mid-ocean ridge.

    PubMed

    Abelson, M; Baer, G; Agnon, A

    2001-01-01

    The lateral flow of magma and ductile deformation of the lower crust along oceanic spreading axes has been thought to play a significant role in suppressing both mid-ocean ridge segmentation and variations in crustal thickness. Direct investigation of such flow patterns is hampered by the kilometres of water that cover the oceanic crust, but such studies can be made on ophiolites (fragments of oceanic crust accreted to a continent). In the Oman ophiolite, small-scale radial patterns of flow have been mapped along what is thought to be the relict of a fast-spreading mid-ocean ridge. Here we present evidence for broad-scale along-axis flow that has been frozen into the gabbro of the Troodos ophiolite in Cyprus (thought to be representative of a slow-spreading ridge axis). The gabbro suite of Troodos spans nearly 20 km of a segment of a fossil spreading axis, near a ridge-transform intersection. We mapped the pattern of magma flow by analysing the rocks' magnetic fabric at 20 sites widely distributed in the gabbro suite, and by examining the petrographic fabric at 9 sites. We infer an along-axis magma flow for much of the gabbro suite, which indicates that redistribution of melt occurred towards the segment edge in a large depth range of the oceanic crust. Our results support the magma plumbing structure that has been inferred indirectly from a seismic tomography experiment on the slow-spreading Mid-Atlantic Ridge. PMID:11343114

  19. Lava Flow Ages and Geologic Mapping on Mid-ocean Ridges

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Paduan, J. B.; Dreyer, B. M.; Caress, D. W.

    2010-12-01

    Geologic mapping of mid-ocean ridges has been hindered by a lack of high-resolution bathymetry and age data. Autonomous underwater vehicles (AUV) with multibeam sonars now produce maps with 1-m resolution. MBARI has collected data since 2006 along the Juan de Fuca and Gorda Ridges, including the 1998 eruptions in summit caldera and upper south rift zone on Axial Seamount, the 1993 and 1982-1991 eruptions on the CoAxial segment, the 1986 pillow mounds and “young sheet flow” on the north Cleft segment, the 1996 eruption on the North Gorda segment, and part of the Endeavour Ridge. The 1-m data allows identification of flow internal structure, boundaries, and emplacement sequences using superposition and abundance of fissures. Geologic maps of young volcanoes on land are constructed using the same principles, constrained by observations of flow contacts and 14C age dates on charcoal from beneath flow margins. In the deep sea, we collect sediment on top of the flows that contains planktic and benthic foraminifera that can be dated using AMS 14C dating. We sampled sediment on flows from the Axial, CoAxial, and North Cleft areas using 30-cm long pushcores deployed from remotely operated vehicles (ROVs). The coring is done with collection of flow samples for chemistry and video observations to confirm contact locations and flow superposition. Cores are inserted until they hit the underlying lava and can be recovered between pillow lobes when the sediment is >~10 cm thick. We recover the basal 1 cm of sediment, sieve to recover foraminifera, and hand-pick for 14C dating. The North Gorda neovolcanic zone at ~3150 m lacks carbonate sediment and therefore ages. Ages of planktic foraminifera are marine calibrated in years before present (aBP). Benthic foraminifera are calibrated against planktic foraminifera from 5 samples. 14C ages obtained from basal sediment from over 40 sites represent minimum ages as there is probably a small amount of unrecovered basal sediment. Ages

  20. On the limits and limitations of the ophiolite - mid-ocean ridge analogy: Oman vs the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    MacLeod, Christopher J.; Lissenberg, C. Johan

    2015-04-01

    Throughout the near half century since Ian Gass proposed that ophiolite complexes formed by a process directly analogous to seafloor spreading, the study of ophiolites has been central to the development of our conceptual understanding of the mechanisms of formation of oceanic lithosphere at mid-ocean ridges. This role has been affected little by the recognition - on the basis of their geochemistry - that most ophiolites must have formed by spreading above subduction zones rather than at 'proper' open-ocean mid-ocean ridges. Why? - because we will never be able to gain access to the internal structure of modern ocean lithosphere to the extent we can by walking over the largest and best-preserved ophiolites (e.g. Cyprus, Oman, Newfoundland etc.). Ophiolites will always provide vital insights into the mechanisms of formation of lithosphere formed at submarine volcanic spreading centres. To what extent, however, can we be confident that what we learn from ophiolite studies is directly applicable to modern open-ocean mid-ocean ridges? Exactly how far can we press the analogy? To a first order it is reasonable to assume that the physical processes of crustal formation at an open-ocean mid-ocean ridge and at a supra-subduction zone spreading centre should be closely comparable: the presence of an organised sheeted dyke complex, representing 100% extension accompanied by magmatism, is convincing evidence for seafloor spreading. But does this mean the processes of crustal formation are identical in these different geodynamic environments? In this presentation we compare the 'crown jewel' of ophiolites, Oman, with the East Pacific Rise to explore the veracity of the widely-held belief that Oman represents a direct analogue for lithosphere formed at a fast-spreading (open-ocean) mid-ocean ridge. Whereas the mantle source of the axial volcanic suite in Oman is very similar to that of mid-ocean ridge basalt, we have recently shown (MacLeod et al. 2013, Geology v.41, p.459

  1. Low temperature hydrothermal oil and associated biological precursors in serpentinites from Mid-Ocean Ridge

    NASA Astrophysics Data System (ADS)

    Pasini, Valerio; Brunelli, Daniele; Dumas, Paul; Sandt, Christophe; Frederick, Joni; Benzerara, Karim; Bernard, Sylvain; Ménez, Bénédicte

    2013-09-01

    The origin of light hydrocarbons discovered at serpentinite-hosted mid-ocean hydrothermal fields is generally attributed to the abiogenic reduction of carbon (di)oxide by molecular hydrogen released during the progressive hydration of mantle-derived peridotites. These serpentinization by-products represent a valuable source of carbon and energy and are known to support deep microbial ecosystems unrelated to photosynthesis. In addition, the pool of subsurface organic compounds could also include materials derived from the thermal degradation of biological material. We re-investigate the recently described relics of deep microbial ecosystems hosted in serpentinites of the Mid-Atlantic Ridge (4-6°N) in order to study the ageing and (hydro)thermal degradation of the preserved biomass. An integrated set of high resolution micro-imaging techniques (Scanning Electron Microscopy, High Resolution Transmission Electron Microscopy, Raman and Fourier Transform Infra-Red microspectroscopy, Confocal Laser Scanning Microscopy, and Scanning Transmission X-ray Microscopy at the carbon K-edge) has been applied to map the distribution of the different organic components at the micrometer scale and to characterize their speciation and structure. We show that biologically-derived material, containing aliphatic groups, along with carbonyl and amide functional groups, has experienced hydrothermal degradation and slight aromatization. In addition, aliphatic compounds up to C6-C10 with associated carboxylic functional groups wet the host bastite and the late serpentine veins crosscutting the rock. These compounds represent a light soluble organic fraction expelled after biomass degradation through oxidation and thermal cracking. The detected complex organic matter distribution recalls a typical petroleum system, where fossil organic matter of biological origin maturates, expelling the soluble fraction which then migrates from the source to the reservoir. Ecosystem-hosting serpentinites

  2. Automatic Fault Extraction at Mid-Ocean Ridges: Effects of Bathymetry Resolution and Extraction Method

    NASA Astrophysics Data System (ADS)

    Schnur, S.; Escartin, J.; Purves, R. S.; Frueh-Green, G. L.; Soule, S. A.

    2011-12-01

    High-angle normal faults at mid-ocean ridges are important indicators of the processes driving oceanic crust formation. Fault size and distribution are currently either estimated in the field or scarp outlines are painstakingly digitized by hand following a cruise. Some attempts have been made to automate this process using techniques from the fields of geomorphometry and image analysis, such as slope gradient and curvature thresholding and wavelet filtering. However, little assessment of the accuracy of these techniques has been made. Additionally, these techniques require manual threshold selection and thus cannot be equally applied to areas with different length scales of deformation. This study presents a fully-automatic method of fault extraction consisting of two major steps: fault identification and error removal. Fault scarps are initially extracted using slope gradient thresholding, profile curvature thresholding and the Canny edge detection algorithm. The extracted set of faults is then refined by removing small noise objects, eliminating other steep seafloor features with an aspect ratio threshold, and finally by focusing on a single fault population using an azimuth threshold. Terrain thresholds are automatically determined from digital bathymetric model (DBM) gradient and curvature histograms using the Jenks natural breaks algorithm, and error removal thresholds are standardized based on DBM resolution. DBMs at a variety of resolutions (1 m - 150 m pixels) and at a variety of spreading locations are used to test the three methods. Results show that automatic extraction accuracy varies widely and is affected most by the linearity of fault lines and the smoothness of fault upper and lower boundaries rather than by resolution or extraction method. Assessed visually, the gradient method gives better results for large, smooth, linear faults located far from the axis. The curvature method gives better results for small, sharp, complex faults located adjacent

  3. The Complex History of Alarcon Rise Mid-Ocean Ridge Rhyolite Revealed through Mineral Chemistry

    NASA Astrophysics Data System (ADS)

    Dreyer, B. M.; Portner, R. A.; Clague, D. A.; Daczko, N. R.; Castillo, P.; Bindeman, I. N.

    2014-12-01

    enrichments in zircon 176Hf/177Hf and whole rock 207,206Pb/204Pb may indicate an enriched MORB mantle component. In conclusion, mid-ocean rhyolite at Alarcon formed from a variety of petrogenetic processes including magma-mixing, assimilation, and crystallization following partial melting of slightly heterogeneous mantle source(s).

  4. Biogenic iron oxyhydroxide formation at mid-ocean ridge hydrothermal vents: Juan de Fuca Ridge

    SciTech Connect

    Toner, Brandy M.; Santelli, Cara M.; Marcus, Matthew A.; Wirth, Richard; Chan, Clara S.; McCollom, Thomas; Bach, Wolfgang; Edwards, Katrina J.

    2008-05-22

    Here we examine Fe speciation within Fe-encrusted biofilms formed during 2-month seafloor incubations of sulfide mineral assemblages at the Main Endeavor Segment of the Juan de Fuca Ridge. The biofilms were distributed heterogeneously across the surface of the incubated sulfide and composed primarily of particles with a twisted stalk morphology resembling those produced by some aerobic Fe-oxidizing microorganisms. Our objectives were to determine the form of biofilm-associated Fe, and identify the sulfide minerals associated with microbial growth. We used micro-focused synchrotron-radiation X-ray fluorescence mapping (mu XRF), X-ray absorption spectroscopy (mu EXAFS), and X-ray diffraction (mu XRD) in conjunction with focused ion beam (FIB) sectioning, and highresolution transmission electron microscopy (HRTEM). The chemical and mineralogical composition of an Fe-encrusted biofilm was queried at different spatial scales, and the spatial relationship between primary sulfide and secondary oxyhydroxide minerals was resolved. The Fe-encrusted biofilms formed preferentially at pyrrhotite-rich (Fe1-xS, 0<_ x<_ 0.2) regions of the incubated chimney sulfide. At the nanometer spatial scale, particles within the biofilm exhibiting lattice fringing and diffraction patterns consistent with 2-line ferrihydrite were identified infrequently. At the micron spatial scale, Fe mu EXAFS spectroscopy and mu XRD measurements indicate that the dominant form of biofilm Fe is a short-range ordered Fe oxyhydroxide characterized by pervasive edge-sharing Fe-O6 octahedral linkages. Double corner-sharing Fe-O6 linkages, which are common to Fe oxyhydroxide mineral structures of 2-line ferrihydrite, 6-line ferrihydrite, and goethite, were not detected in the biogenic iron oxyhydroxide (BIO). The suspended development of the BIO mineral structure is consistent with Fe(III) hydrolysis and polymerization in the presence of high concentrations of Fe-complexing ligands. We hypothesize that

  5. Spreading-rate dependence of melt extraction at mid-ocean ridges from mantle seismic refraction data.

    PubMed

    Lizarralde, Daniel; Gaherty, James B; Collins, John A; Hirth, Greg; Kim, Sangmyung D

    2004-12-01

    A variety of observations indicate that mid-ocean ridges produce less crust at spreading rates below 20 mm yr(-1) (refs 1-3), reflecting changes in fundamental ridge processes with decreasing spreading rate. The nature of these changes, however, remains uncertain, with end-member explanations being decreasing shallow melting or incomplete melt extraction, each due to the influence of a thicker thermal lid. Here we present results of a seismic refraction experiment designed to study mid-ocean ridge processes by imaging residual mantle structure. Our results reveal an abrupt lateral change in bulk mantle seismic properties associated with a change from slow to ultraslow palaeo-spreading rate. Changes in mantle velocity gradient, basement topography and crustal thickness all correlate with this spreading-rate change. These observations can be explained by variations in melt extraction at the ridge, with a gabbroic phase preferentially retained in the mantle at slower spreading rates. The estimated volume of retained melt balances the approximately 1.5-km difference in crustal thickness, suggesting that changes in spreading rate affect melt-extraction processes rather than total melting. PMID:15592410

  6. Halogen and trace element geochemistry in Mid-Ocean Ridge basalts from the Australian-Antarctic Ridge (AAR)

    NASA Astrophysics Data System (ADS)

    Yang, Y. S.; Seo, J. H.; Park, S. H.; Kim, T.

    2015-12-01

    Australian-Antarctic Ridge (AAR) is an extension of easternmost SE Indian Mid-Ocean Ridge (MOR).We collected volcanic glasses from the "in-axis" of the KR1 and KR2 MOR, and the overlapping zones of the KR1 MOR and the nearby seamounts ("KR1 mixing"). We determined trace and halogen elements in the glasses. Halogen concentrations and its ratios in the glasses are important to understand the mantle metasomatism and volatile recycling. 52 of the collected glasses are "primitive" (higher than 6 wt% MgO), while 3 of them have rather "evolved" composition (MgO wt% of 1.72, 2.95 and 4.15). K2O concentrations and Th/Sc ratios in the glasses show a negative correlation with its MgO concentration. Incompatible element ratios such as La/Sm are rather immobile during a magma differentiation so the ratios are important to understand mantle composition (Hofmann et al. 2003). La/Sm ratios in the glasses are 0.95 ~ 3.28 suggesting that the AAR basalts can be classified into T-MORB and E-MORB (Schilling et al., 1983). La/Sm ratios are well-correlated with incompatible elements such as U, Ba, Nb, and negatively correlated with compatible elements such as Sc, Eu2+, Mg. The AAR glasses contain detectable halogen elements. The "KR1 mixing" glasses in halogen elements are more abundant than "in-axis" the glasses. Cl is the least variable element compared to the other halogens such as Br and I in the AAR. The "KR1 mixing" glasses have the largest variations of Br/Cl ratios compared to the "in-axis" glasses. The Cl/Br and Th/Sc ratios in the "in-axis" glasses and in the "KR1 mixing" glasses show positive and negative correlations, respectively. The Br-rich glasses in the "KR1 mixing" zone might be explained by a recycled Br-rich oceanic slab of paleo-subduction or by a hydrothermal alteration in the AAR. I composition in the glasses does not show a correlation other trace elements. The K/Cl and K/Ti ratios in the AAR glasses are similar to the basalts from the Galapagos Spreading Center

  7. A Novel Approach to Characterize Compositional Variability through Time at Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Dreyer, B. M.; Clague, D. A.; Gill, J. B.

    2013-12-01

    The temporal, spatial, and compositional variability of eruptive products illuminates the scales of magmatic sources and processes. Prior methods to evaluate this variability rely on extensive sampling of lava flows. We describe a novel approach to assess the variability of submarine volcanics using material recovered in pushcores at a mid-ocean ridge. Pushcores collected from the west flank of Endeavour in 2011 with ROV Doc Ricketts were extruded in 1- or 2-cm intervals and volcaniclastic glass shards and foraminifera were extracted for electron microprobe and radiocarbon analyses, respectively. 14C ages and glass compositions from two cores provide chemical stratigraphies we compare to compositions of proximal lavas to assess local variability and volcaniclast dispersal. A 20-cm core from the north slope of Summit Seamount ~100m above the axial valley floor has a basal age of 4.5ka and 10-12 cm is ~1.5ka. Shards in the bottom 6cm are chemically distinct from the lava flow that it overlies. These basal shards are bimodal in MgO and the more differentiated mode is similar to flows on the valley floor on the opposite side of the faulted remnants of Summit Seamount. Most shards in the top 14 cm are similar to the underlying lava flow and have uniform MgO of 7.3 ×0.1. This composition is dominant in shards from 6-12 cm, which may represent a single eruption. Nearby flows encompassing three additional distinct lava types are also present as rare random shards; one additional lava type ~1km distant is absent. A 24-cm core from NW of Main Endeavour Field overlies a compositionally distinct low pillow mound on the west flank; no shards with this composition are found. The core is dated at 10.5ka (basal), ~4.8ka (15-17 cm), and ~2.0ka (9-11 cm). From 10.5 to 4.8 ka, most shards are compositionally similar to, but slightly more evolved than, extensive sheet lavas that flowed around the pillow mounds. A subordinate amount of shards that are compositionally similar, but more

  8. Correlation Length Scales of Isotopic Variations Along Mid-Ocean Ridges and Upper Mantle Dynamics

    NASA Astrophysics Data System (ADS)

    Graham, D. W.; Spera, F. J.

    2003-12-01

    How isotopic variations in basalts erupted at the Earth's surface are linked to convective mixing in the underlying mantle is a central problem in geodynamics. The objective of this study is to quantify the length scales of upper mantle heterogeneity through spatial statistical analysis of MORB. We define a characteristic length scale, the scale of segregation L, computed from the spatial self-correlations for 3He/4He, 87Sr/86Sr, 143Nd/144Nd and 206,207,208Pb/204Pb in "zero age" lavas from mid-ocean ridges. Our working hypothesis is that small scale convection in the upper mantle controls dispersion of geochemical tracers. Differences in L between ocean basins may then be quantitatively related to unsteadiness in this convection, due to thickening of the lithosphere, plume impingement, or lateral temperature/compositional differences between continental and oceanic lithosphere induced by batholith formation. The correlation coefficient R, and the separation distance r, are calculated for every i,j pair of points. Ri,j is given by the product of the deviations in isotope composition from the population mean, normalized to the population variance, and R(r) is computed as an ensemble average. The total number of point pairs (N) for n sample locations is given by N=n(n-1)/2. For the global MORB data set (n=1265 and 735 for Sr and He, respectively), N exceeds 105 (799480 and 269745, respectively). A value of R(r) close to 1 indicates that an isotope ratio above (or below) the population average is likely to be associated with an above (or below) average value at a distance r away. A value of R(r) close to zero implies a random relationship, and a value close to -1 implies an anti-correlation. R(r) approaches unity at small r by definition, as points close together are from the same "clump" of mantle. The value of r at which R first goes to zero is denoted as r*. On a diagram of R(r) vs. r (the correlogram), the integral of R(r) from r=0 to r=r* is the scale of

  9. Investigating Earthquake Stress Drops on Mid-Ocean Ridge Transform Faults (Invited)

    NASA Astrophysics Data System (ADS)

    Boettcher, M. S.; Moyer, P. A.; McGuire, J. J.; Collins, J. A.

    2013-12-01

    A key question concerning the development of mid-ocean ridge transform faults (RTFs) is why have full fault ruptures not been observed in the historic record? Similarly, why do the rupture areas of the largest earthquakes on RTFs not scale directly with area above the 600°C isotherm? Recent studies have shown that Blanco, Discovery, Gofar, Heezen, Tharp, and Hollister RTFs all have multiple rupture patches on a single fault segment that repeatedly fail in characteristic largest (Mc) earthquakes. We develop a scaling relation for the stress drop of repeating Mc earthquakes assuming full-coupling on Mc rupture patches, such that slip (Dc) in Mc earthquakes is given by the product of the repeat time (tR) and plate tectonic slip (V), and assuming that slip scales with the square root of rupture area (Ac), Dc = ΔσAc1/2μ-1, where μ is the shear modulus. Using the definition of seismic moment, Mc = μAcDc, we directly solve for stress drop given observed repeat times: Δσ = μVtR3/2Mc-1/2. For stress drops in the range of 1-2 MPa, slip in repeating Mc earthquakes on each of the RTFs noted above is approximately equal to the accumulated plate tectonic motion. We analyze the source parameters of 3.0 < Mw < 5.0 earthquakes recorded in 2008 during a yearlong ocean bottom seismic (OBS) experiment on Gofar transform fault to determine the stress drop of earthquakes in both repeating Mc patches and the rupture barriers between the rupture patches. The OBS deployment captured the end of a seismic cycle, including a foreshock sequence that was both extensive (~20,000 earthquakes within the week prior to the mainshock) and localized (within a ~10 km region), as well as the Mw 6.0 mainshock and its aftershock sequence [McGuire et. al, 2012]. The foreshocks occurred in a rupture barrier on the western segment of Gofar and the aftershocks occurred in the rupture patch. Using waveforms recorded with a sample rate of 50 Hz on OBS accelerometers, we investigate the corner

  10. Pioneering Research on Accretionary Processes - Jean Francheteau's Contributions to Understanding Mid-Ocean Ridges and Seafloor Volcanic Processes

    NASA Astrophysics Data System (ADS)

    Fornari, D. J.; Ballard, R. D.

    2011-12-01

    Jean Francheteau's 40-year career as a marine geophysicist spanned an exceptionally broad range of research interests and influenced generations of marine scientists, providing new concepts and insights on accretionary tectonics and seafloor volcanism. Using seafloor mapping techniques that at the time (in the early 1970s) were innovative in their own right, Jean and colleagues provided some of the first detailed perspectives of mid-ocean ridge axial topography that helped solidify acceptance of volcanic accretion at the ridges and specifically the highly focused volcanism occurring within the rift valley of the Mid-Atlantic Ridge. Building on that work, Jean collaborated with many investigators, including one of us (RDB), over several decades of exploratory work that elucidated the fine-scale volcanic and tectonic features of many segments of the global mid-ocean ridge from the Mid-Atlanic Ridge to the northern and southern East Pacific Rise. His work in marine tectonics was equally eclectic and included detailed studies of fracture zones, microplates and exposures of crustal and upper mantle rocks in Hess Deep. Jean excelled at using the latest technologies to investigate and map seafloor volcanic and hydrothermal terrains. His work helped establish routine academic use of multibeam sonar and deep submergence technologies - both towed camera and ultimately submersibles - to make in situ field observations and collect samples. In so doing, Jean and colleagues amassed a vast amount of data pertaining to submarine volcanic and hydrothermal processes and he was one of the first to help establish causal links between these processes and their distribution along and across spreading center axes separating at slow to ultra-fast rates. Jean's superb mentorship of young marine scientists, involving them in both field and laboratory studies was a hallmark of his gracious style and reflects one of the many ways in which he admirably served the international oceanographic

  11. Comparison of Oceanic and Continental Ultramafic Hosted Hydrothermal Sulfide Deposits under Slow-spreading Mid-ocean Ridge Setting

    NASA Astrophysics Data System (ADS)

    Li, Honglin; Li, Jianghai; Zhang, Huatian

    2013-04-01

    Recently, slow-spreading mid-ocean ridges have attracted lots of researchers, especially in the MAR (Mid-Atlantic Ridge) and the Indian Ocean Ridge. People have found many hydrothermal vents or hydrothermal sulfide deposits around MAR, such as TAG, Rainbow and Lost City. The slow-spreading ridges are characterized by variations in magmatic, tectonic, and alteration processes along ridge segments. Because of the difficulties of the seafloor exploration, we need an example on the continent for compare with the hydrothermal sulfide deposits on mid-ocean ridge. So we found De'erni Cu (Co) ore deposit on the north of Tibet. De'erni Cu (Co) ore deposit is a typical VHMS developing in the north of Tibet, China. The ore body is hosted by the ultramafic rocks of the A'nyemagen ophiolite suite, which is the symbol of the residual crust of Paleo-Tethys Ocean. Through the detailed geological analysis to De'erni Cu (Co) ore deposit, lots of reminded geological records of submarine hydrothermal system, including: 1) thin-layer exhalative rock covering on the ore body; 2) the colloform structure, raspberry-like structure and breccia structure reserved in the porous-type ores; 3) the main mineral composition; 4) the calcite and felsic cement in the synchronization with the pyrite clast; 4) the ore zonality similar to the TAG hydrothermal sulfide deposit. According to the TiO2 content in the MORB basalts, the approximate half-spreading rate is 1.1-2.5cm/a, of the Paleo-Tethys Ocean represented by the De'erni ophiolite. Comparing to the mineralization processes of present mid-ocean hydrothermal sulfide deposits, we insist that De'erni Cu (Co) deposit has experienced three stages: submarine exhalation stage, cooling deposition and subduction emplacement. And the OCC (Oceanic Core Complex) may be the host setting of the submarine hydrothermal exhalation stage. Compared to other similar sulfide deposits on the continent in the world, De'erni Cu (Co) sulfide deposit has a younger age

  12. Geodynamic modeling of the capture and release of a plume conduit by a migrating mid-ocean ridge

    NASA Astrophysics Data System (ADS)

    Hall, P. S.

    2011-12-01

    plates over the relatively stationary, long-lived conduits of mantle plumes. However, paleomagnetic data from the Hawaii-Emperor Seamount Chain suggests that the Hawaiian hotspot moved rapidly (~40 mm/yr) between 81 - 47 Ma [Tarduno et al., 2003]. Recently, Tarduno et al. [2009] suggested that this period of rapid motion might be the surface expression of a plume conduit returning to a largely vertical orientation after having been captured and tilted as the result of being "run over" by migrating mid-ocean ridge. I report on a series of analog geodynamic experiments designed to characterize the evolution of a plume conduit as a mid-ocean ridge migrates over. Experiments were conducted in a clear acrylic tank (100 cm x 70 cm x 50 cm) filled with commercial grade high-fructose corn syrup. Plate-driven flow is modeled by dragging two sheets of Mylar film (driven by independent DC motors) in opposite directions over the surface of the fluid. Ridge migration is achieved by moving the point at which the mylar sheets diverge using a separate motor drive. Buoyant plume flow is generated using a small electrical heater placed at the bottom of the tank. Plate velocities and ridge migration rate are controlled and plume temperature monitored using LabView software. Experiments are recorded using digital video which is then analyzed using digital image analysis software to track the position and shape of the plume conduit throughout the course of the experiment. The intersection of the plume conduit with the surface of the fluid is taken as an analog for the locus of hotspot volcanism and tracked as a function of time to obtain a hotspot migration rate. Results show that the plume conduit experiences significant tilting immediately following the passage of the migrating ridge.

  13. Mantle properties and the MOR process: a new and versatile model for mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Osmaston, Miles

    2014-05-01

    Introduction. First I summarize the reasons why a radical departure from the current MOR model is now essential. I then outline the new model and its apparent versatility, not only in providing the observed contrasting spreading-rate-dependent characteristics but also some of the other common features of the MOR system which warrant clearer explanation. Ophiolites have been thought to provide on-land guidance but turn out to be a non-mid-ocean variant, outside the scope of this presentation. Seismic anisotropy and mantle mobility. Ever since the 1969 discovery [1] of seismic anisotropy in the uppermost oceanic mantle, this has been attributed to the shearing of olivine in a convectively driven MOR-divergent flow beneath the flanks. This would imply a high degree of rheological mobility of this mantle, but new constraints on its rheological properties and dynamical behaviour have come from two directions and need to be taken into account in forming a model. 1. Contrary to the seismologists' rule-book, the oceanic seismological Low Velocity Zone (LVZ) is no longer to be thought of as mobile, because the presence of interstitial melt strips out the water-weakening of the mineral structure [2, 3]. So we require a substitute for the divergent-flow model for MORs which, we find, also has other, apparently unrecognized, dynamical inconsistencies. One of these [4] is that there are in the record many rapid changes of spreading rate and direction, and ridge jumps. This cannot happen with a process driven by slow-to-change body forces, such as thermal convection. 2. My work on the global dynamic pattern for the past 150Ma (I will show examples) has shown [4 - 7] that the tectospheres of cratons must extend to very close to the bottom of the upper mantle (660km). The metasomatism of kimberlite xenoliths from >180km depth suggests that the reason for this downwards extent of 'keels' is the same as [3]. Phase changes. Another geodynamically important property apparently

  14. Advanced Seismic Studies of the Endeavour Ridge: Understanding the Interplay among Magmatic, Hydrothermal, and Tectonic Processes at Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Arnoux, G. M.; VanderBeek, B. P.; Morgan, J. V.; Hooft, E. E. E.; Toomey, D. R.; Wilcock, W. S. D.; Warner, M.

    2014-12-01

    At mid-ocean ridges magmatic, hydrothermal, and tectonic processes are linked. Understanding their interactions requires mapping magmatic systems and tectonic structures, as well as their relationship to hydrothermal circulation. Three-dimensional seismic images of the crust can be used to infer the size, shape, and location of magma reservoirs, in addition to the structure of the thermal boundary layer that connects magmatic and hydrothermal processes. Travel time tomography has often been used to study these processes, however, the spatial resolution of travel time tomography is limited. Three-dimensional full waveform inversion (FWI) is a state-of-the art seismic method developed for use in the oil industry to obtain high-resolution models of the velocity structure. The primary advantage of FWI is that it has the potential to resolve subsurface structures on the order of half the seismic wavelength—a significant improvement on conventional travel time tomography. Here, we apply anisotropic FWI to data collected on the Endeavour segment of the Juan de Fuca Ridge. Starting models for anisotropic P-wave velocity were obtained by travel time tomography [Weekly et al., 2014]. During FWI, the isotropic velocity model is updated and anisotropy is held constant. We have recovered low-velocity zones approximately 2-3 km beneath the ridge axis that likely correspond to a segmented magma-rich body and are in concert with those previously resolved using multi-channel seismic reflection methods. The segmented crustal magma body underlies all five known high-temperature hydrothermal vent fields along the Endeavour segment. A high-velocity zone, shallower than the observed low-velocity zones, underlies the southernmost hydrothermal vent field. This may be indicative of waning hydrothermal activity in which minerals are crystallizing beneath the vent field. Our FWI study of the Endeavour Ridge will provide the most detailed three-dimensional images of the crustal structure to

  15. Mid-Ocean Ridge Magma Supply and Glacial Cycles: Long Time Series Studies of Crustal Thickness and Seafloor Topography

    NASA Astrophysics Data System (ADS)

    Boulahanis, B.; Carbotte, S. M.; Huybers, P. J.; Langmuir, C. H.; Han, S.; Aghaei, O.; Canales, J. P.; Nedimovic, M. R.; Menke, W. H.

    2015-12-01

    Glacial loading has been shown to modulate volcanic melt generation in subaerial systems, and recent studies suggest that eustatic sea level fluctuations induced by glacial cycles may influence mantle-melting regimes at mid-ocean ridges. Models predict temporal variation in crustal thickness, and seafloor topography, linked to sea level change. Recent studies of bathymetry as a proxy for crustal thickness show significant spectral energy at periodicities linked to Milankovitch cycles of 23, 41, and 100ka (Crowley et al., 2015; Tolstoy, M., 2015). In this study we investigate climate driven periodicity in mid-ocean ridge magma supply utilizing basement topography and crustal thickness data. We use multichannel seismic reflection (MCS) data from two prior studies of the flanks of the Juan de Fuca (JdF) ridge, and 3D MCS data from the Northern East Pacific Rise (EPR) 9°37-57'N. The JdF datasets extend to crustal ages up to 8.78 Ma, and EPR data to ~180 ka. By performing spectral analysis on these data along with dO18 climate records from Lisiecki and Raymo (2005) for the last 5.32ma and Zachos et al. (2001) for earlier times we investigate intervals of similar periodicities in order to identify potential links between climate and magma supply to mid-ocean ridges. Further analysis is undertaken to determine whether depth to basement and crustal thickness are correlated within and across datasets, and whether significant spectral peaks occur in basement and crustal thickness data outside of known climate cycles. Initial results show significant spectral energy in basement depth at the 100ky cycle in the 0-1Ma time series, when eccentricity is understood to have the most impact. Long-term temporal variability is apparent in JdF data, with low relief abyssal hills (~70m on average) present 1-3.2Ma and 6-8.78Ma, but higher relief bathymetry (~200m) from 3.2-6Ma. These subsets align well with previously identified climatic subgroups (Zachos et al., 2001), correlating both

  16. Crustal accretion along the global mid-ocean ridge system based on basaltic glass and olivine-hosted melt inclusion compositions

    NASA Astrophysics Data System (ADS)

    Wanless, V. D.; Behn, M. D.

    2015-12-01

    The depth and distribution of crystallization at mid-ocean ridges controls the overall architecture of the oceanic crust, influences hydrothermal circulation, and determines geothermal gradients in the crust and uppermost mantle. Despite this, there is no overall consensus on how crystallization is distributed within the crust/upper mantle or how this varies with spreading rate. Here, we examine crustal accretion at mid-ocean ridges by combining crystallization pressures calculated from major element barometers on mid-ocean ridge basalt (MORB) glasses with vapor-saturation pressures from melt inclusions to produce a detailed map of crystallization depths and distributions along the global ridge system. We calculate pressures of crystallization from >11,500 MORB glasses from the global ridge system using two established major element barometers (1,2). Additionally, we use vapor-saturation pressures from >400 olivine-hosted melt inclusions from five ridges with variable spreading rates to constrain pressures and distributions of crystallization along the global ridge system. We show that (i) crystallization depths from MORB glasses increase and become less focused with decreasing spreading rate, (ii) maximum glass pressures are greater than the maximum melt inclusion pressure, which indicates that the melt inclusions do not record the deepest crystallization at mid-ocean ridges, and (iii) crystallization occurs in the lower crust/upper mantle at all ridges, indicating accretion is distributed throughout the crust at all spreading rates, including those with a steady-state magma lens. Finally, we suggest that the remarkably similar maximum vapor-saturation pressures (~ 3000 bars) in melt inclusion from all spreading rates reflects the CO2 content of the depleted upper mantle feeding the global mid-ocean ridge system. (1) Michael, P. & W. Cornell (1998), Journal of Geophysical Research, 103(B8), 18325-18356; (2) Herzberg, C. (2004), Journal of Petrology, 45(12), 2389.

  17. Mantle properties and the MOR process: a new and versatile model for mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Osmaston, Miles

    2014-05-01

    Introduction. First I summarize the reasons why a radical departure from the current MOR model is now essential. I then outline the new model and its apparent versatility, not only in providing the observed contrasting spreading-rate-dependent characteristics but also some of the other common features of the MOR system which warrant clearer explanation. Ophiolites have been thought to provide on-land guidance but turn out to be a non-mid-ocean variant, outside the scope of this presentation. Seismic anisotropy and mantle mobility. Ever since the 1969 discovery [1] of seismic anisotropy in the uppermost oceanic mantle, this has been attributed to the shearing of olivine in a convectively driven MOR-divergent flow beneath the flanks. This would imply a high degree of rheological mobility of this mantle, but new constraints on its rheological properties and dynamical behaviour have come from two directions and need to be taken into account in forming a model. 1. Contrary to the seismologists' rule-book, the oceanic seismological Low Velocity Zone (LVZ) is no longer to be thought of as mobile, because the presence of interstitial melt strips out the water-weakening of the mineral structure [2, 3]. So we require a substitute for the divergent-flow model for MORs which, we find, also has other, apparently unrecognized, dynamical inconsistencies. One of these [4] is that there are in the record many rapid changes of spreading rate and direction, and ridge jumps. This cannot happen with a process driven by slow-to-change body forces, such as thermal convection. 2. My work on the global dynamic pattern for the past 150Ma (I will show examples) has shown [4 - 7] that the tectospheres of cratons must extend to very close to the bottom of the upper mantle (660km). The metasomatism of kimberlite xenoliths from >180km depth suggests that the reason for this downwards extent of 'keels' is the same as [3]. Phase changes. Another geodynamically important property apparently

  18. [sup 226]Ra-[sup 230]Th disequilibrium in axial and off-axis mid-ocean ridge basalts

    SciTech Connect

    Volpe, A.M.; Goldstein, S.J. Los Alamos National Lab., NM )

    1993-03-01

    The authors describe [sup 226]Ra-[sup 230]Th disequilibrium in mid-ocean ridge basalt (MORB) glasses from the Juan de Fuca, Gorda, and East Pacific ridges. These first mass spectrometric measurements of [sup 226]Ra in MORB glasses at sub-picogram abundance levels confirm the large excesses over [sup 230]Th determined by radon-emanation techniques and alpha spectrometry. All off-axis MORB glasses have [sup 226]Ra-[sup 230]Th and [sup 234]U-[sup 238]U in secular equilibrium. This suggests that magmatic processes, not secondary post-eruption alteration, generate [sup 238]U-series disequilibrium in these MORB. Least evolved, N-MORB from axial valleys have ([sup 226]Ra/[sup 230]Th) between 2.2-2.3. Differentiated and enriched E-type MORB have consistently low ([sup 226]Ra/[sup 230]Th) ratios compared with N-MORB from the same ridge sections. Ra-Th fractionation may be less pronounced, or magma residence-transit periods may be long for differentiated MORB. Also, E-MORB may be generated by different melt extraction volumes and rates. Estimated [sup 226]Ra-[sup 230]Th ages for N-MORB agree with location on and off ridge segments, and with Th-U model ages. These preliminary results show that [sup 226]Ra-[sup 230]Th disequilibrium could be used to quantify volcanic episodicity at ocean ridges. 39 refs., 6 figs., 4 tabs.

  19. Boron, bromine, and other trace elements as clues to the fate of chlorine in mid-ocean ridge vent fluids

    SciTech Connect

    Berndt, M.E.; Seyfried, W.E. Jr. )

    1990-08-01

    Fluids from mid-ocean ridge hot springs typically have Cl concentrations which depart significantly from seawater values. These variations may be due in part to phase separation processes and/or precipitation and dissolution of chloride-bearing minerals. Both of these processes likely produce systematic and recognizable variations in the distributions of trace elements which should be evident in vent fluid chemistries. To better understand how supercritical phase separation can affect trace element distributions, we conducted an experiment involving a Na-Ca-K-Cl fluid containing trace quantities of Sr, Ba, B, Li, and Br, which was allowed to separate into vapor and brine phases at 425, 440, and 450{degree}C by systematically adjusting pressure. All of the measured trace elements were concentrated into the brine phase relative to the vapor phase. The relative order of partitioning into the brine was Ba > Sr > Ca > K > Na,Cl > Li > Br > B.

  20. Seismic structure and crustal accretion along an intermediate-rate mid-ocean ridge segment

    NASA Astrophysics Data System (ADS)

    Weekly, Robert Todd

    Epicenters and magnitudes for 36,523 earthquakes recorded along the Endeavour segment between August 2003 and October 2006 are automatically determined using a local ocean-bottom seismometer (OBS) network. The catalog is dominated by two swarm sequences in January and February 2005 in the vicinity of the Endeavour overlapping spreading center, which included earthquakes in West Valley, the northern portion of the Endeavour segment, southwest Endeavour Valley and the Endeavour vent fields. These swarms are attributed to volcanism including a dike intrusion on the northern Endeavour in February 2005 and smaller diking events on the propagating tip of the West Valley segment in both swarms. The dike on the northern Endeavour propagated to the south, which is inconsistent with magma sourced from the axial magma chamber beneath the elevated central portion of the segment. Following the swarms, seismic activity on the Endeavour segment decreased on average to ˜15% of pre-swarm values and almost ceased at the segment ends. I infer that a six-year non-eruptive event that started with a swarm in 1999 and finished with the 2005 swarms ruptured the entire segment and relieved plate-spreading stresses. The inferred coupling between the 1999 and 2005 events, the observation of extensive precursory activity prior to the 2005 swarms, and the interaction between seismically active regions during the swarms is consistent with static triggering with delays influenced by viscoelastic relaxation, hydraulic diffusion and magma withdrawal and replenishment. The isotropic and anisotropic P-wave velocity structure of the upper oceanic crust on the Endeavour Segment of the Juan de Fuca Ridge is studied using refracted travel time data collected by an active-source, three-dimensional tomography experiment. The isotropic velocity structure is characterized by low crustal velocities in the overlapping spreading centers (OSCs) at the ends of the segment. These low velocities are indicative of

  1. The crustal structure of central East Greenland-II: From the Precambrian shield to the recent mid-oceanic ridges

    NASA Astrophysics Data System (ADS)

    Schmidt-Aursch, Mechita C.; Jokat, Wilfried

    2005-02-01

    We present a 3-D crustal model of the East Greenland Fjord Region between 69°N and 74°N. The model covers the Precambrian shield and the Caledonian orogenic belt, the adjoining Devonian and Mesozoic basins, the continent-ocean transition and the Cenozoic oceanic areas as far as the Kolbeinsey and the Mohns mid-oceanic ridges. Existing seismic models of the crustal structure are extrapolated into adjacent areas using 3-D gravity modelling. For this purpose, we compile a new regional-scale Bouguer anomaly map. The Precambrian shield, west of the Caledonian orogen (approximately west of 32°W), shows a mean thickness of 35 km with only small-scale undulations. This thickness is at the lower limit of the global range in shield thickness. The Caledonian orogen exhibits a pronounced mountain root with overall crustal thicknesses up to 51 km. Beside the Urals, the East Greenland Caledonides are one of the two Palaeozoic mountain belts where a crustal root has preserved to the present day. Continuation of the crustal model to the east, beyond the continent-ocean transition, yielded thicknesses of the crystalline oceanic crust from 9 km near the Kolbeinsey Ridge to 3 km west of the Mohns Ridge. Differences in the thermal structures of the old continental and the young oceanic lithosphere are responsible for the low-density mantle beneath the oceanic crust, which is also demonstrated by 3-D gravity modelling.

  2. Modes and implications of mantle and lower-crust denudation at slow-spreading mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Schroeder, Timothy John

    Slow-spreading mid-ocean ridges (<5 cm/yr) have intermittent magma supply, and accommodate spreading by a combination of magmatism and tectonic extension (Smith and Cann, 1993, Cannat, 1993). Extension at mid-ocean ridges is most commonly manifested by slip on high angle (˜60°) normal faults that dip into, and define the rift valley walls (Smith and Cann, 1993). Less commonly, extension occurs by long periods of slip along low-angle normal faults that penetrate to structurally deep levels of oceanic lithosphere and denude gabbro and/or pendotite to the seafloor in domal massifs termed "oceanic core complexes" (Dick et al., 1981; Dick et al., 1991; Tucholke et al., 1998; Mutter and Karson, 1992; Cann et al., 1997; MacLeod et al., 2002). This dissertation addresses processes and implications of tectonic extension at two oceanic core complexes. Atlantis Massif (30°N, Mid-Atlantic Ridge) is formed dominantly of serpentinized peridotite with lesser gabbro, and Atlantis Bank (57°E, Southwest Indian Ridge) is dominated by gabbro. Localization of brittle strain at Atlantis Massif occurred by reaction-softening processes associated with metasomatic alteration of peridotite and serpentmite to amphibole-, chlorite- and talc-bearing assemblages. Ductile strain at Atlantis Massif and Atlantis Bank is localized into intervals of highly-fractionated, oxide-rich gabbro. Two-oxide geothermometry of gabbro indicates that it was not penetratively deformed below ˜500°C. Denuded peridotite at Atlantis Massif is host to hydrothermal circulation driven in part by exothermic serpentinization reactions. Serpentinization decreases the seismic velocity of peridotite and leads to acquisition of a magnetic signature. Venting of highly-alkaline, methane- and hydrogen-rich serpentinization-derived fluids leads to lithification of seafloor carbonate ooze by precipitation of carbonate cement in a zone of mixing with "normal" seawater. This process may be the primary depositional mechanism of

  3. Interaction of a mantle plume and a segmented mid-ocean ridge: Results from numerical modeling

    NASA Astrophysics Data System (ADS)

    Georgen, Jennifer E.

    2014-04-01

    Previous investigations have proposed that changes in lithospheric thickness across a transform fault, due to the juxtaposition of seafloor of different ages, can impede lateral dispersion of an on-ridge mantle plume. The application of this “transform damming” mechanism has been considered for several plume-ridge systems, including the Reunion hotspot and the Central Indian Ridge, the Amsterdam-St. Paul hotspot and the Southeast Indian Ridge, the Cobb hotspot and the Juan de Fuca Ridge, the Iceland hotspot and the Kolbeinsey Ridge, the Afar plume and the ridges of the Gulf of Aden, and the Marion/Crozet hotspot and the Southwest Indian Ridge. This study explores the geodynamics of the transform damming mechanism using a three-dimensional finite element numerical model. The model solves the coupled steady-state equations for conservation of mass, momentum, and energy, including thermal buoyancy and viscosity that is dependent on pressure and temperature. The plume is introduced as a circular thermal anomaly on the bottom boundary of the numerical domain. The center of the plume conduit is located directly beneath a spreading segment, at a distance of 200 km (measured in the along-axis direction) from a transform offset with length 100 km. Half-spreading rate is 0.5 cm/yr. In a series of numerical experiments, the buoyancy flux of the modeled plume is progressively increased to investigate the effects on the temperature and velocity structure of the upper mantle in the vicinity of the transform. Unlike earlier studies, which suggest that a transform always acts to decrease the along-axis extent of plume signature, these models imply that the effect of a transform on plume dispersion may be complex. Under certain ranges of plume flux modeled in this study, the region of the upper mantle undergoing along-axis flow directed away from the plume could be enhanced by the three-dimensional velocity and temperature structure associated with ridge-transform-ridge

  4. Role of random thermal perturbations in the magmatic segmentation of mid-oceanic ridges: Insights from numerical simulations

    NASA Astrophysics Data System (ADS)

    Sarkar, Shamik; Baruah, Amiya; Dutta, Urmi; Mandal, Nibir

    2014-12-01

    Using a random thermal perturbation (RTP) model this study investigates the process of magmatic segmentation along mid-oceanic ridge (MOR) axes as a function of the upwelling dynamics, controlled by coupled solidification-melting processes. The RTP model suggests that the variation in along-axis velocity (VL) fields constitutes the underlying mechanism of segmentation in natural MORs, showing temperature variations within a steady-state range, irrespective of large initial thermal perturbations imposed at the model base. The VL patterns are initially transient, characterized by multi-order segments, but attain a stable configuration with dominantly large segments (average size ~ 100 km) within a time scale of 2.3 Ma. Buoyant-melt driven thermal convection explains this transient segmentation. Small scale convection cells are found to be progressively consumed by larger cells, resulting in a stable convection structure over a similar time scale. Slow- and fast-spreading ridges (SSR and FSR) undergo upwelling with contrasting melt flow patterns. SSRs involve melt feeding into the ridge axis by horizontal flows from segment centers, trailing into large-scale conduits at an early stage. With time, vertical upwelling occurs throughout the segment. In the case of FSRs, both melt supply avenues prevail throughout their development. We also evaluate the variation of the across-axis flow velocity (VT) to investigate the mode of geometric evolution of MORs. Time series VT maps suggest that a ridge structure develops through localization of discrete axes (VT = 0) with offsets varying up to 15 km, which coalesce with one another to form a single axis. The matured ridge, however, retains higher-order offsets (up to 9 km).

  5. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere.

    PubMed

    Schlindwein, Vera; Schmid, Florian

    2016-07-14

    Along ultraslow-spreading ridges, where oceanic tectonic plates drift very slowly apart, conductive cooling is thought to limit mantle melting and melt production has been inferred to be highly discontinuous. Along such spreading centres, long ridge sections without any igneous crust alternate with magmatic sections that host massive volcanoes capable of strong earthquakes. Hence melt supply, lithospheric composition and tectonic structure seem to vary considerably along the axis of the slowest-spreading ridges. However, owing to the lack of seismic data, the lithospheric structure of ultraslow ridges is poorly constrained. Here we describe the structure and accretion modes of two end-member types of oceanic lithosphere using a detailed seismicity survey along 390 kilometres of ultraslow-spreading ridge axis. We observe that amagmatic sections lack shallow seismicity in the upper 15 kilometres of the lithosphere, but unusually contain earthquakes down to depths of 35 kilometres. This observation implies a cold, thick lithosphere, with an upper aseismic zone that probably reflects substantial serpentinization. We find that regions of magmatic lithosphere thin dramatically under volcanic centres, and infer that the resulting topography of the lithosphere-asthenosphere boundary could allow along-axis melt flow, explaining the uneven crustal production at ultraslow-spreading ridges. The seismicity data indicate that alteration in ocean lithosphere may reach far deeper than previously thought, with important implications towards seafloor deformation and fluid circulation. PMID:27362231

  6. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere

    NASA Astrophysics Data System (ADS)

    Schlindwein, Vera; Schmid, Florian

    2016-07-01

    Along ultraslow-spreading ridges, where oceanic tectonic plates drift very slowly apart, conductive cooling is thought to limit mantle melting and melt production has been inferred to be highly discontinuous. Along such spreading centres, long ridge sections without any igneous crust alternate with magmatic sections that host massive volcanoes capable of strong earthquakes. Hence melt supply, lithospheric composition and tectonic structure seem to vary considerably along the axis of the slowest-spreading ridges. However, owing to the lack of seismic data, the lithospheric structure of ultraslow ridges is poorly constrained. Here we describe the structure and accretion modes of two end-member types of oceanic lithosphere using a detailed seismicity survey along 390 kilometres of ultraslow-spreading ridge axis. We observe that amagmatic sections lack shallow seismicity in the upper 15 kilometres of the lithosphere, but unusually contain earthquakes down to depths of 35 kilometres. This observation implies a cold, thick lithosphere, with an upper aseismic zone that probably reflects substantial serpentinization. We find that regions of magmatic lithosphere thin dramatically under volcanic centres, and infer that the resulting topography of the lithosphere–asthenosphere boundary could allow along-axis melt flow, explaining the uneven crustal production at ultraslow-spreading ridges. The seismicity data indicate that alteration in ocean lithosphere may reach far deeper than previously thought, with important implications towards seafloor deformation and fluid circulation.

  7. Microscopy study of biologically mediated alteration of natural mid-oceanic ridge basalts and magnetic implications

    NASA Astrophysics Data System (ADS)

    Carlut, Julie; Benzerara, Karim; Horen, HéLèNe; Menguy, Nicolas; Janots, Dominique; Findling, Nathaniel; Addad, Amhed; Machouk, ImèNe

    2010-12-01

    Microbial communities have been shown over the last few years to be a significant component of the subseafloor crustal environment. However, their role in the low-temperature alteration of seafloor basalts remains an open question. Among the diversity of microorganisms that can contribute to oceanic rock weathering, sulfate-reducing bacteria have been suggested, based on sulfur isotope studies, to be major actors. Previous laboratory experiments conducted on basalt samples from the Juan de Fuca Ridge incubated with model sulfate-reducing bacteria for several months showed that bacterial activity can play a role in the decrease of seafloor magnetic signal. In this paper, we characterized alteration features at the nanoscale in one of these basalt samples in order to better understand the mechanisms of the magnetic signal decrease. For that purpose, we used a combination of focused ion beam milling, transmission electron microscopy and scanning transmission X-ray microscopy. Fossilized microbial cells and phyllosilicates were evidenced at the surface of the sample. Within the sample, alteration rims mostly composed of Fe and S and measuring 100-300 nm in thickness were observed around titanomagnetites crystals that bear most of the magnetic signal. In contrast, these features were not observed on noninoculated control samples. This study offers a detailed view of the specific mineral assemblages formed in the presence of model sulfate-reducing bacteria that can be looked for in the oceanic crust. These observations contribute to understand the potential role of microbes in the alteration of the oceanic crust.

  8. Microscopy study of biologically mediated alteration of natural mid-oceanic ridge basalts and magnetic implications

    NASA Astrophysics Data System (ADS)

    Carlut, Julie; Benzerara, Karim; Horen, Hélène; Menguy, Nicolas; Janots, Dominique; Findling, Nathaniel; Addad, Amhed; Machouk, Imène

    2010-10-01

    Microbial communities have been shown over the last few years to be a significant component of the subseafloor crustal environment. However, their role in the low-temperature alteration of seafloor basalts remains an open question. Among the diversity of microorganisms that can contribute to oceanic rock weathering, sulfate-reducing bacteria have been suggested, based on sulfur isotope studies, to be major actors. Previous laboratory experiments conducted on basalt samples from the Juan de Fuca Ridge incubated with model sulfate-reducing bacteria for several months showed that bacterial activity can play a role in the decrease of seafloor magnetic signal. In this paper, we characterized alteration features at the nanoscale in one of these basalt samples in order to better understand the mechanisms of the magnetic signal decrease. For that purpose, we used a combination of focused ion beam milling, transmission electron microscopy and scanning transmission X-ray microscopy. Fossilized microbial cells and phyllosilicates were evidenced at the surface of the sample. Within the sample, alteration rims mostly composed of Fe and S and measuring 100-300 nm in thickness were observed around titanomagnetites crystals that bear most of the magnetic signal. In contrast, these features were not observed on noninoculated control samples. This study offers a detailed view of the specific mineral assemblages formed in the presence of model sulfate-reducing bacteria that can be looked for in the oceanic crust. These observations contribute to understand the potential role of microbes in the alteration of the oceanic crust.

  9. Experimental and theoretical constraints on the origin of mid-ocean ridge geothermal fluids

    SciTech Connect

    Berndt, M.E.

    1987-01-01

    Hydrothermal experiments were performed using basalt, diabase, and two synthetic plagioclase bearing assemblages and Na-Ca-K-Cl fluids of seawater chlorinity at conditions from 350 to 425/sup 0/C and 250 to 400 bars. Dissolved Ca, Na, SiO/sub 2/, and pH appear to be controlled by equilibrium with plagioclase and epidote. Fluids reacting with diabase at low fluid/rock ratios (0.5-1) remain undersaturated with respect to quartz due to formation of olivine hydration products, whereas fluids reacting with basalt become supersaturated with respect to quartz due to breakdown of fractionated glass and formation of amphibole. High SiO/sub 2/ activities during basalt alteration, leads to high Ca and base metal concentrations and low pH compared to diabase alteration at the same conditions. Dissolved Li, K, Rb, and Ba concentrations reach higher levels during basalt alteration than during diabase alteration. Since these elements avoid incorporation into crystalline phases during solidification of magmas they are concentrated in the glass which is easily altered by fluids and explains their increased mobility during basalt alteration. Na-Ca-pH-SiO/sub 2/ relationships in vent fluids can be used to constrain reaction zone conditions assuming the fluids are equilibrated with plagioclase and epidote. The temperatures predicted by such models are higher than measured vent fluid temperatures. Dissolved Sr/Ca ratios for ridge crest fluids are similar to those produced during diabase alteration and higher than those produced during basalt alteration. This observation supports deep-seated reaction of the hydrothermal fluids with diabase dikes and/or gabbro for vent fluid origin. Only 4% of the Sr initially present in basalt is mobilized during hydrothermal alteration even after 800 hours of reaction.

  10. Melt transport rates in heterogeneous mantle beneath mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Weatherley, Samuel M.; Katz, Richard F.

    2016-01-01

    Recent insights to melt migration beneath ridges suggest that channelized flow is a consequence of melting of a heterogeneous mantle, and that spreading rate modulates the dynamics of the localised flow. A corollary of this finding is that both mantle heterogeneity and spreading rate have implications for the speed and time scale of melt migration. Here, we investigate these implications using numerical models of magma flow in heterogeneous mantle beneath spreading plates. The models predict that a broad distribution of magma flow speeds is characteristic of the sub-ridge mantle. Within the melting region, magmatic flow is fastest in regions of average fusibility; surprisingly, magmas from sources of above-average fusibility travel to the ridge in a longer time. Spreading rate has comparatively simple consequences, mainly resulting in faster segregation speeds at higher spreading rates. The computed time scales are short enough to preserve deep origin 230 Th disequilibria and, under favourable parameter regimes, also 226 Ra excesses. An important prediction from the models is that mantle heterogeneity induces significant natural variability into U-series disequilibria, complicating the identification of relationships between disequilibria and ridge properties or chemical signatures of heterogeneity.

  11. Enhanced volcanic CO2 degassing at oceanic hotspots and mid-ocean ridges in response to falling sea level

    NASA Astrophysics Data System (ADS)

    Hasenclever, Jörg; Knorr, Gregor; Rüpke, Lars; Köhler, Peter; Morgan, Jason; Garofalo, Kristin; Barker, Stephen; Lohmann, Gerrit; Hall, Ian

    2016-04-01

    Evidence from paleo-climate proxy data as well as results from geodynamical and biogeochemical modelling point to complex interactions between sea level variations, pressure-release melting of oceanic mantle, associated volcanic degassing, and atmospheric CO2 concentrations. Ice core data shows that the orbital component in global temperature records gradually declined between ˜85,000-70,000 yr BP, while atmospheric CO2 - instead of continuing its long-term correlation with Antarctic temperatures - remained relatively stable for several thousand years. Based on 2-D and 3-D geodynamical models we show that the massive (60-100 m) sea level drop during this period of Earth history led to a significant increase in magma and possibly CO2 fluxes along mid-ocean ridges (MOR) and especially oceanic hotspot volcanoes. We assess the MOR magma and CO2 fluxes using 2-D thermo-mechanical models that solve for wet melting of the mantle and the partitioning of highly incompatible carbon dioxide into the melt. These models have been run at various MOR opening rates, and we integrate these results with the global distribution of spreading rates to compute baseline fluxes as well as enhanced fluxes during the sea level fall. Furthermore we conducted more than 120 3-D simulations of rising and melting mantle plumes to construct a four-dimensional parameter space that covers a wide range of plume buoyancy fluxes, plume excess temperatures, lithosphere thicknesses and plate speeds. Using published data on 43 oceanic hotspots and locating them in the parameter space we derive a global hotspot-melting model that predicts magma and CO2 fluxes before and during the sea level drop. We find that, during a 80 m sea level drop over 10 kyr, global degassing at MOR and oceanic hotspots increases by 26 % and 36 %, respectively. Biogeochemical carbon cycle modelling further shows that the combined predicted increase in volcanic emissions along the global mid-ocean ridge system and at oceanic

  12. Some Approaches to Modeling Diffuse Flow at Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Farough, A.; Lowell, R. P.; Craft, K.; Germanovich, L. N.

    2011-12-01

    To obtain a sound understanding of subsurface temperatures and the extent of the subsurface biosphere in young oceanic crust, one must understand the mechanisms of diffuse flow at oceanic spreading centers. Mathematical modeling of diffuse flow at oceanic spreading centers has received relatively little attention compared to high-temperature black smoker discharge, in part because the temperature and fluid flow data required to constrain the models are scarce. We review a number of different approaches to modelling diffuse flow: (1) The simplest method considers 1-D steady-state uniform upflow from below subject to a heat transfer boundary condition at the surface, which represents the effects of mixing of hydrothermal fluid with seawater. These models, in which the heat transfer coefficient and the velocity of the ascending fluid are constrained by observed diffuse flow vent temperature and heat flux, typically result in a steep temperature gradient near the seafloor and subsurface biological activity may be limited to the upper few cm of the crust. (2) A related method uses data on the partitioning of heat flux between focused and diffuse flow and chemical data from the focused and diffuse flow components in a two-limb single pass modeling approach to determine the fraction of high-temperature fluid that is incorporated in the diffuse flow. Using data available from EPR 950', the Main Endeavour Field, and ASHES vent field at Axial Volcano on the Juan de Fuca Ridge in conjunction with Mg as a passive tracer, we find that the mixing ratio of high temperature in diffuse flow is <10%. The high-temperature contribution to the diffuse heat flux remains large, however, and high-temperature vent fluid ultimately contributes ~ 90% of the total heat output from the vent field. In these models mixing between high-temperature fluid and seawater may occur over a considerable depth, and the subsurface biosphere may be ~ 100 m deep beneath diffuse flow sites. (3) Finally, in

  13. Along-strike magma mixing beneath mid-ocean ridges - Effects on isotopic ratios

    NASA Technical Reports Server (NTRS)

    Kenyon, P. M.; Turcotte, D. L.

    1987-01-01

    The effects of mixing processes on the isotopic variability of midocean ridge basalts are studied. The processes considered are porous flow dispersion and convective mixing in magma chambers. Porous flow dispersion is capable of mixing magmas over distances of only a few tens of meters. Convective mixing, on the other hand, is found to produce continuous magma chambers, where mixing is limited by convective processes, and for discontinuous chambers, where mixing is limited by chamber size. Preliminary comparison of the calculations with observations along the midocean ridges shows that the calculations are consistent with the existence of a correlation between bathymetry and isotopic ratio at long, but not at short, wavelengths. They are also capable of explaining a decrease in isotopic variability with increasing spreading rate.

  14. Broadband Marine Magnetotelluric Exploration of the Crust at a Petroleum Prospect and a Mid-Ocean RIdge

    NASA Astrophysics Data System (ADS)

    Key, K. W.; Constable, S. C.

    2004-12-01

    Broadband marine magnetotelluric (MT) instrumentation developed at Scripps Institution of Oceanography enables resolution of electrical resistivity structure at much shallower depths than previously attainable. While marine seismic reflection surveys have routinely surveyed crustal structure on the continental shelves and mid-ocean ridges, traditional marine MT sensors were only capable of measuring long period fields and so MT experiments were limited to studying mantle structure. The introduction of low-noise sensors allows the broadband MT instrument to now measure the shorter period fields that contain information about crustal resistivity structure. We present two case studies of using the broadband MT system at areas previously surveyed with seismic methods. The joint interpretation of both seismic and MT models for these case studies leads to an improved geological interpretation. At Gemini Prospect in the northern Gulf of Mexico we have collected 42 MT sites in a grid over a three-dimensional (3D) resistive salt structure associated with the petroleum prospect. Depth migrated seismic reflection profiles from a 3D seismic survey at Gemini allow for the verification of two-dimensional (2D) MT inversion models. Combined images of the MT resistivity and seismic reflection profiles show that 2D MT can recover that salt body despite its 3D shape. A steeply dipping and overhanging resistive feature correlates with a previously uninterpreted strong reflection and illustrates how MT can constrain structure in regions where the seismic method performs poorly. A thin and shallow resistive feature shown outside the seismic salt volume may indicate a change in porosity or pore fluids associated with a natural trap in the sediments. At the East Pacific Rise near 9{o50'}N, a pilot survey using the broadband instruments shows sensitivity to structure at shallower depths than previous ridge MT experiments. Two-dimensional inversion of data from 4 MT sites shows a high

  15. Loki's Castle: Discovery and geology of a black smoker vent field at the Arctic Mid-Ocean Ridge

    NASA Astrophysics Data System (ADS)

    Pedersen, R.; Thorseth, I. H.; Lilley, M. D.; Barriga, F. J.; Früh-Green, G.; Nakamura, K.

    2010-12-01

    Previous attempts to locate hydrothermal vent fields and unravel the nature of venting at the ultraslow spreading and magma starved parts of the Arctic Mid Ocean Ridge (AMOR) have been unsuccessful. A black smoker vent field was eventually discovered at the Mohns-Knipovich bend at 73.5°N in 2008, and the field was revisited in 2009 and 2010. The Loki’s Castle vent field is located on the crest of an axial volcanic ridge that is bordered by a tectonic terrain dominated by core complexes to the NW, and a ridge flank that is buried by sediments from the Bear Island Fan to the SE. Fluid compositions are anomalous to other basalt-hosted fields and indicate interactions with sediments at depths. The vent field is associated with an unusually large hydrothermal deposit, which documents that extensive venting occurs at ultraslow spreading ridges despite the strongly reduced magmatic heat budget. ROV surveys have shown that venting occurs in two areas separated by around 100 m. Micro-bathymetry acquired by a Hugin AUV documents that two 20-30 tall mounds that coalesce at the base have developed around the vent sites. The micro-bathymetry also shows that the venting is located above two normal faults that define the NW margin of a rift that runs along the crest of the volcano. The black smoker fluids reach 317 °C, with an end-member SiO2 content of 16 mmol/kg. End-member chlorinity is around 85% of seawater suggesting that the fluids have phase-separated at depth. The fluid compositions indicate that the rock-water reactions occur around 2 km below the seafloor. The crustal thickness is estimated to be 4 +/- 0.5 km in the area. Whereas the depth of the reaction zone is comparable with faster spreading ridges, the fraction of crust cooled convectively by hydrothermal circulation is two times that of vent fields at ridges with normal crustal thickness.

  16. Mantle rock exposures at oceanic core complexes along mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Ciazela, Jakub; Koepke, Juergen; Dick, Henry J. B.; Muszynski, Andrzej

    2015-12-01

    The mantle is the most voluminous part of the Earth. However, mantle petrologists usually have to rely on indirect geophysical methods or on material found ex situ. In this review paper, we point out the in-situ existence of oceanic core complexes (OCCs), which provide large exposures of mantle and lower crustal rocks on the seafloor on detachment fault footwalls at slow-spreading ridges. OCCs are a common structure in oceanic crust architecture of slow-spreading ridges. At least 172 OCCs have been identified so far and we can expect to discover hundreds of new OCCs as more detailed mapping takes place. Thirty-two of the thirty-nine OCCs that have been sampled to date contain peridotites. Moreover, peridotites dominate in the plutonic footwall of 77% of OCCs. Massive OCC peridotites come from the very top of the melting column beneath ocean ridges. They are typically spinel harzburgites and show 11.3-18.3% partial melting, generally representing a maximum degree of melting along a segment. Another key feature is the lower frequency of plagioclase-bearing peridotites in the mantle rocks and the lower abundance of plagioclase in the plagioclase-bearing peridotites in comparison to transform peridotites. The presence of plagioclase is usually linked to impregnation with late-stage melt. Based on the above, OCC peridotites away from segment ends and transforms can be treated as a new class of abyssal peridotites that differ from transform peridotites by a higher degree of partial melting and lower interaction with subsequent transient melt.

  17. Seismic structure of the lithosphere and upper mantle beneath the ocean islands near mid-oceanic ridges

    NASA Astrophysics Data System (ADS)

    Haldar, C.; Kumar, P.; Kumar, M. Ravi

    2014-05-01

    Deciphering the seismic character of the young lithosphere near mid-oceanic ridges (MORs) is a challenging endeavor. In this study, we determine the seismic structure of the oceanic plate near the MORs using the P-to-S conversions isolated from quality data recorded at five broadband seismological stations situated on ocean islands in their vicinity. Estimates of the crustal and lithospheric thickness values from waveform inversion of the P-receiver function stacks at individual stations reveal that the Moho depth varies between ~ 10 ± 1 km and ~ 20 ± 1 km with the depths of the lithosphere-asthenosphere boundary (LAB) varying between ~ 40 ± 4 and ~ 65 ± 7 km. We found evidence for an additional low-velocity layer below the expected LAB depths at stations on Ascension, São Jorge and Easter islands. The layer probably relates to the presence of a hot spot corresponding to a magma chamber. Further, thinning of the upper mantle transition zone suggests a hotter mantle transition zone due to the possible presence of plumes in the mantle beneath the stations.

  18. Poroelastic response of mid-ocean ridge hydrothermal systems to ocean tidal loading: Implications for shallow permeability structure

    NASA Astrophysics Data System (ADS)

    Barreyre, Thibaut; Sohn, Robert A.

    2016-02-01

    We use the time delay between tidal loading and exit-fluid temperature response for hydrothermal vents to model the poroelastic behavior and shallow upflow zone (SUZ) effective permeability structure of three mid-ocean ridge (MOR) sites with different spreading rates. Hydrothermal vents at Lucky Strike field exhibit relatively small phase lags corresponding to high SUZ effective permeabilities of ≥ ~10-10 m2, with variations that we interpret as resulting from differences in the extrusive layer thickness. By contrast, vents at East Pacific Rise site exhibit relatively large phase lags corresponding to low SUZ effective permeabilities of ≤ ~10-13 m2. Vents at Main Endeavour field exhibit both high and low phase lags, suggestive of a transitional behavior. Our results demonstrate that tidal forcing perturbs hydrothermal flow across the global MOR system, even in places where the tidal amplitude is very low, and that the flow response can be used to constrain variations in SUZ permeability structure beneath individual vent fields.

  19. Novel microbial assemblages inhabiting crustal fluids within mid-ocean ridge flank subsurface basalt.

    PubMed

    Jungbluth, Sean P; Bowers, Robert M; Lin, Huei-Ting; Cowen, James P; Rappé, Michael S

    2016-08-01

    Although little is known regarding microbial life within our planet's rock-hosted deep subseafloor biosphere, boreholes drilled through deep ocean sediment and into the underlying basaltic crust provide invaluable windows of access that have been used previously to document the presence of microorganisms within fluids percolating through the deep ocean crust. In this study, the analysis of 1.7 million small subunit ribosomal RNA genes amplified and sequenced from marine sediment, bottom seawater and basalt-hosted deep subseafloor fluids that span multiple years and locations on the Juan de Fuca Ridge flank was used to quantitatively delineate a subseafloor microbiome comprised of distinct bacteria and archaea. Hot, anoxic crustal fluids tapped by newly installed seafloor sampling observatories at boreholes U1362A and U1362B contained abundant bacterial lineages of phylogenetically unique Nitrospirae, Aminicenantes, Calescamantes and Chloroflexi. Although less abundant, the domain Archaea was dominated by unique, uncultivated lineages of marine benthic group E, the Terrestrial Hot Spring Crenarchaeotic Group, the Bathyarchaeota and relatives of cultivated, sulfate-reducing Archaeoglobi. Consistent with recent geochemical measurements and bioenergetic predictions, the potential importance of methane cycling and sulfate reduction were imprinted within the basalt-hosted deep subseafloor crustal fluid microbial community. This unique window of access to the deep ocean subsurface basement reveals a microbial landscape that exhibits previously undetected spatial heterogeneity. PMID:26872042

  20. Low seismic velocities below mid-ocean ridges: Attenuation versus melt retention

    NASA Astrophysics Data System (ADS)

    Goes, Saskia; Armitage, John; Harmon, Nick; Smith, Hannah; Huismans, Ritske

    2012-12-01

    The first comprehensive seismic experiment sampling subridge mantle revealed a pronounced low-velocity zone between 40 and 100 km depth below the East Pacific Rise (EPR) that has been attributed to substantial retained melt fractions of 0.3-2%. Such high melt fractions are at odds with low melt productivity and high melt mobility inferred from petrology and geochemistry. Here, we evaluate whether seismic attenuation can reconcile subridge seismic structure with low melt fractions. We start from a dynamic spreading model which includes melt generation and migration and is converted into seismic structure, accounting for temperature-, pressure-, composition-, phase-, and melt-dependent anharmonicity, and temperature-, pressure-, frequency- and hydration-dependent anelasticity. Our models predict a double low-velocity zone: a shallow—approximately triangular—region due to dry melting, and a low-velocity channel between 60 and 150 km depth dominantly controlled by solid state high-temperature seismic attenuation in a damp mantle, with only a minor contribution of (<0.1%) melt. We test how tomographic inversion influences the imaging of our modeled shear velocity features. The EPR experiment revealed a double low-velocity zone, but most tomographic studies would only resolve the deeper velocity minimum. Experimentally constrained anelasticity formulations produce VSas low as observed and can explain lateral variations in near-ridge asthenospheric VS with ±100 K temperature variations and/or zero to high water content. Furthermore, such QS formulations also reproduce low asthenospheric VS below older oceans and continents from basic lithospheric cooling models. Although these structures are compatible with global QS images, they are more attenuating than permitted by EPR data.

  1. Reply to the comment of rollinson and adetunji "podiform chromitites do form beneath mid-ocean ridges" by Arai, S. And Miura, M

    NASA Astrophysics Data System (ADS)

    Arai, Shoji; Miura, Makoto

    2016-06-01

    Our original paper (Arai and Miura, 2015) discussed the possibility of formation of podiform chromitites in the mantle below mid-ocean ridges. As noted by Rollinson and Adetunji in their comment, Arai and Miura (2015) aimed, in part, to argue against the ideas of Rollinson and Adetunji (2013) who did not consider significant the possibility of podiform chromitite formation in a mid-ocean ridge environment. However, Rollinson and Adetunji (this comment) appear to have misunderstood some important points that were discussed in detail in Arai and Miura (2015). We therefore welcome the opportunity to reply to the comment of Rollinson and Adetunji and reaffirm some important points that we have already discussed in Arai and Miura (2015).

  2. The axial melt lens as a processor of evolved melts at fast-spreading mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Loocke, M. P.; Lissenberg, J. C. J.; MacLeod, C. J.

    2015-12-01

    The axial melt lens is a steady-state, generally magma-rich body located at the dyke-gabbro transition at mid-crustal levels beneath intermediate- and fast-spreading ridges. It is widely believed to be the reservoir from which mid-ocean ridge basalt (MORB) erupts. Using a remotely-operated vehicle, cruise JC21 to the Hess Deep Rift recovered the first comprehensive sample suite of the uppermost plutonics from a fast-spreading ridge. We present the results of a detailed microanalytical investigation of 23 samples (8 dolerites, 14 gabbronorites, and 1 gabbro) recovered by ROV dive 78 from a section traversing the transition from the uppermost gabbros into the sheeted dykes. With the exception of a single olivine-bearing sample (78R-6), dive 78 is dominated by evolved, varitextured (both in hand sample and thin section) oxide gabbronorites. Full thin section quantitative element maps were acquired on serial thin sections from each sample using the analytical scanning electron microscope in the at Cardiff University. The resulting maps were post-processed in MatlabTM to determine the full distribution of plagioclase compositions across entire thin sections (typically 500,000 analyses per sample); an approach we term 'quantitative assessment of compositional distribution' (QACD). By so doing we are able to conduct the first fully rigorous assessment of gabbro compositions, and, by extension, melt compositions present at this level beneath the ridge axis. Critically, we only found 2 grains of high-An plagioclase (An>80) in all of the samples (N = 51). These occur as cores within a sample dominated by lower-An plagioclase. Instead, the vast majority (75%) of plagioclase within the samples have compositions of An65 or lower; compositions too evolved to be in equilibrium with MORB. The most primitive sample, 78R-6, is an olivine-bearing gabbronorite with Fo67 olivine, and plagioclase ranging from An52-77 (median An = 65). These data are difficult to reconcile with models in

  3. Macrofauna of shallow hydrothermal vents on the Arctic Mid-Ocean Ridge at 71N

    NASA Astrophysics Data System (ADS)

    Schander, C.; Rapp, H. T.; Pedersen, R. B.

    2007-12-01

    Deep-sea hydrothermal vents are usually associated with a highly specialized fauna and since their discovery in 1977, more than 400 species of animals have been described. Specialized vent fauna includes various animal phyla, but the most conspicuous and well known are annelids, mollusks and crustaceans. We have investigated the fauna collected around newly discovered hydrothermal vents on the Mohns Ridge north of Jan Mayen. The venting fields are located at 71°N and the venting takes place within two main areas separated by 5 km. The shallowest vent area is at 500-550 m water depth and is located at the base of a normal fault. This vent field stretches approximately 1 km along the strike of the fault, and it is composed of 10-20 major vent sites each with multiple chimney constructions discharging up to 260°C hot fluids. A large area of diffuse, low- temperature venting occurs in the area surrounding the high-temperature field. Here, partly microbial mediated iron-oxide-hydroxide deposits are abundant. The hydrothermal vent sites do not show any high abundance of specialized hydrothermal vent fauna. Single groups (i.e. Porifera and Mollusca) have a few representatives but groups otherwise common in hydrothermal vent areas (e.g. vestimentifera, Alvinellid worms, mussels, clams, galathaeid and brachyuran crabs) are absent. Up until now slightly more than 200 species have been identified from the vent area. The macrofauna found in the vent area is, with few exceptions, an assortment of bathyal species known in the area. One endemic, yet undescribed, species of mollusc has been found so far, an gastropod related to Alvania incognita Warén, 1996 and A. angularis Warén, 1996 (Rissoidae), two species originally described from pieces of sunken wood north and south of Iceland. It is by far the most numerous mollusc species at the vents and was found on smokers, in the bacterial mats, and on the ferric deposits. A single specimen of an undescribed tanaidacean has also

  4. Variations in Seismic Anisotropy and Olivine LPO in Peridotites From Four Mid-Ocean Ridges: the Effect of Melt?

    NASA Astrophysics Data System (ADS)

    Achenbach, K. L.; Cheadle, M. J.; Dick, H. J.; Swapp, S.

    2008-12-01

    We present results of an electron backscatter diffraction (EBSD) study of abyssal peridotites from four mid- ocean ridges. Included in the study are peridotites from: a) the Mid-Atlantic Ridge (MAR) at 15°39' N (full spreading rate ~2.6 cm/year), b) the Atlantis II Fracture Zone (57°E) on the Southwest Indian Ridge (SWIR) (full spreading rate ~1.4 cm/year), c) the Gakkel Ridge at 84°38'N and 4°13'E (full spreading rate ~1.2 cm/year), and d) Hess Deep (2°N) on the East Pacific Rise (EPR) (full spreading rate ~12.3 cm/year). All samples preserve distinct crystal lattice-preferred orientations (LPOs) indicative of high-temperature (>1100°C) deformation in the dislocation creep regime. LPOs were used to predict seismic properties following the method of Mainprice (1990). The samples from the MAR and SWIR preserve olivine [010] axes perpendicular to the foliation, and olivine [100] axis maxima within the plane of foliation, indicative of slip in the (010)[100] or "Type A" slip system commonly observed in high- temperature environments of low differential stress and low water content. Predicted P-wave anisotropy ranges from 5.8 to 8.6%. The Gakkel Ridge sample also preserves an olivine [010] axis maxima perpendicular to the foliation, but has a girdle of olivine [100] axes within the plane of the foliation. Holtzman et al. (2003) observed this latter LPO pattern during deformation experiments of olivine + MORB, and suggested that it is characteristic of olivine deformation in the presence of oriented melt pockets. Predicted P-wave anisotropy is 6.8%. The EPR sample preserves both olivine [010] and [100] axis maxima within the plane of the foliation and olivine [001] axis maxima perpendicular to the foliation. We interpret the EPR olivine slip system as (001)[100], which is in agreement with findings by Boudier et al. (1996) from the same sample suite. This"Type E" slip system is thought to form in high-temperature low diferential stress environments, either with

  5. Degassing history of a mid-ocean ridge rhyolite dome on the Alarcon Rise, Gulf of California

    NASA Astrophysics Data System (ADS)

    Portner, R. A.; Dreyer, B. M.; Clague, D. A.; Lowenstern, J. B.; Head, J. W., III; Saal, A. E.

    2014-12-01

    A 2350 meter deep rhyolite lava dome and surrounding intermediate-mafic complex on the Alarcon Rise mid-ocean ridge in the Gulf of California was sampled extensively during a 2012 MBARI expedition. The dome is predominantly composed of sparsely vesicular (<10%) obsidian with local deposits of pumiceous breccia. Pumiceous lapilli comprise highly vesicular (40-60%) fracture networks that separate non-vesicular obsidian "pseudoclasts". Textures and major element geochemistry suggest that both lithologies originated from the same magma that formed the majority of the dome. This is corroborated by comparable major element compositions (~75% SiO2) and near-equilibrium phenocryst assemblages including olivine (Fo10) and plagioclase (An17). Attenuated total reflectance (ATR) and transmission FTIR spectroscopy was used to measure H2O concentrations in olivine and plagioclase melt inclusions as well as host glasses (CO2 was below detection, <30 ppm). Rhyolite host glass contains 1.5-2.0 wt% H2O, similar to nearby andesite and dacite. These concentrations agree with saturation limits for H2O (1.7%) at the depth of Alarcon Rise, but are slightly less than what is predicted by fractional crystallization modeling. Melt inclusions from plagioclase and olivine in rhyolite contain a maximum of 3.5-4.5% H2O suggesting that up to 3.0% H2O exsolved into bubbles during a 3 km ascent. Hydrostatic pressures (23 MPa) at the eruptive vent would have permitted 53% vesiculation in agreement with petrographic observations. Although ~50% vesiculation and exsolved H2O contents of 3.0 wt% are less than the ideal threshold for magmatic fragmentation, the presence of highly vesicular ash particles representing fragmented pumiceous breccia argues otherwise. We posit that decoupled volatiles from a deeper magma body migrated through fracture networks to the surface causing mild explosivity.

  6. Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the Arctic mid-ocean spreading ridge

    PubMed Central

    Jørgensen, Steffen L.; Thorseth, Ingunn H.; Pedersen, Rolf B.; Baumberger, Tamara; Schleper, Christa

    2013-01-01

    In marine sediments archaea often constitute a considerable part of the microbial community, of which the Deep Sea Archaeal Group (DSAG) is one of the most predominant. Despite their high abundance no members from this archaeal group have so far been characterized and thus their metabolism is unknown. Here we show that the relative abundance of DSAG marker genes can be correlated with geochemical parameters, allowing prediction of both the potential electron donors and acceptors of these organisms. We estimated the abundance of 16S rRNA genes from Archaea, Bacteria, and DSAG in 52 sediment horizons from two cores collected at the slow-spreading Arctic Mid-Ocean Ridge, using qPCR. The results indicate that members of the DSAG make up the entire archaeal population in certain horizons and constitute up to ~50% of the total microbial community. The quantitative data were correlated to 30 different geophysical and geochemical parameters obtained from the same sediment horizons. We observed a significant correlation between the relative abundance of DSAG 16S rRNA genes and the content of organic carbon (p < 0.0001). Further, significant co-variation with iron oxide, and dissolved iron and manganese (all p < 0.0000), indicated a direct or indirect link to iron and manganese cycling. Neither of these parameters correlated with the relative abundance of archaeal or bacterial 16S rRNA genes, nor did any other major electron donor or acceptor measured. Phylogenetic analysis of DSAG 16S rRNA gene sequences reveals three monophyletic lineages with no apparent habitat-specific distribution. In this study we support the hypothesis that members of the DSAG are tightly linked to the content of organic carbon and directly or indirectly involved in the cycling of iron and/or manganese compounds. Further, we provide a molecular tool to assess their abundance in environmental samples and enrichment cultures. PMID:24109477

  7. Investigations of a novel fauna from hydrothermal vents along the Arctic Mid-Ocean Ridge (AMOR) (Invited)

    NASA Astrophysics Data System (ADS)

    Rapp, H.; Schander, C.; Halanych, K. M.; Levin, L. A.; Sweetman, A.; Tverberg, J.; Hoem, S.; Steen, I.; Thorseth, I. H.; Pedersen, R.

    2010-12-01

    The Arctic deep ocean hosts a variety of habitats ranging from fairly uniform sedimentary abyssal plains to highly variable hard bottoms on mid ocean ridges, including biodiversity hotspots like seamounts and hydrothermal vents. Deep-sea hydrothermal vents are usually associated with a highly specialized fauna, and since their discovery in 1977 more than 400 species of animals have been described. This fauna includes various animal groups of which the most conspicuous and well known are annelids, mollusks and crustaceans. The newly discovered deep sea hydrothermal vents on the Mohns-Knipovich ridge north of Iceland harbour unique biodiversity. The Jan Mayen field consists of two main areas with high-temperature white smoker venting and wide areas with low-temperature seepage, located at 5-700 m, while the deeper Loki Castle vent field at 2400 m depth consists of a large area with high temperature black smokers surrounded by a sedimentary area with more diffuse low-temperature venting and barite chimneys. The Jan Mayen sites show low abundance of specialized hydrothermal vent fauna. Single groups have a few specialized representatives but groups otherwise common in hydrothermal vent areas are absent. Slightly more than 200 macrofaunal species have been identified from this vent area, comprising mainly an assortment of bathyal species known from the surrounding area. Analysis of stable isotope data also indicates that the majority of the species present are feeding on phytodetritus and/or phytoplankton. However, the deeper Loki Castle vent field contains a much more diverse vent endemic fauna with high abundances of specialized polychaetes, gastropods and amphipods. These specializations also include symbioses with a range of chemosynthetic microorganisms. Our data show that the fauna composition is a result of high degree of local specialization with some similarities to the fauna of cold seeps along the Norwegian margin and wood-falls in the abyssal Norwegian Sea

  8. Quantitative estimate of heat flow from a mid-ocean ridge axial valley, Raven field, Juan de Fuca Ridge: Observations and inferences

    NASA Astrophysics Data System (ADS)

    Salmi, Marie S.; Johnson, H. Paul; Tivey, Maurice A.; Hutnak, Michael

    2014-09-01

    A systematic heat flow survey using thermal blankets within the Endeavour segment of the Juan de Fuca Ridge axial valley provides quantitative estimates of the magnitude and distribution of conductive heat flow at a mid-ocean ridge, with the goal of testing current models of hydrothermal circulation present within newly formed oceanic crust. Thermal blankets were deployed covering an area of 700 by 450 m in the Raven Hydrothermal vent field area located 400 m north of the Main Endeavour hydrothermal field. A total of 176 successful blanket deployment sites measured heat flow values that ranged from 0 to 31 W m-2. Approximately 53% of the sites recorded values lower than 100 mW m-2, suggesting large areas of seawater recharge and advective extraction of lithospheric heat. High heat flow values were concentrated around relatively small "hot spots." Integration of heat flow values over the Raven survey area gives an estimate of conductive heat output of 0.3 MW, an average of 0.95 W m-2, over the survey area. Fluid circulation cell dimensions and scaling equations allow calculation of a Rayleigh number of approximately 700 in Layer 2A. The close proximity of high and low heat flow areas, coupled with previous estimates of surficial seafloor permeability, argues for the presence of small-scale hydrothermal fluid circulation cells within the high-porosity uppermost crustal layer of the axial seafloor.

  9. Melting and reactive flow of a volatilized mantle beneath mid-ocean ridges: theory and numerical models

    NASA Astrophysics Data System (ADS)

    Keller, Tobias; Katz, Richard F.

    2015-04-01

    Laboratory experiments indicate that even small concentrations volatiles (H2O or CO2) in the upper mantle significantly affect the silicate melting behavior [HK96,DH06]. The presence of volatiles stabilizes volatile-rich melt at high pressure, thus vastly increasing the volume of the upper mantle expected to be partially molten [H10,DH10]. These small-degree melts have important consequences for chemical differentiation and could affect the dynamics of mantle flow. We have developed theory and numerical implementation to simulate thermo-chemically coupled magma/mantle dynamics in terms of a two-phase (rock+melt), three component (dunite+MORB+volatilized MORB) physical model. The fluid dynamics is based on McKenzie's equations [McK84], while the thermo-chemical formulation of the system is represented by a novel disequilibrium multi-component melting model based on thermo-dynamic theory [RBS11]. This physical model is implemented as a parallel, two-dimensional, finite-volume code that leverages tools from the PETSc toolkit. Application of this simulation code to a mid-ocean ridge system suggests that the methodology captures the leading-order features of both hydrated and carbonated mantle melting, including deep, low-degree, volatile-rich melt formation. Melt segregation leads to continuous dynamic thermo-chemical dis-equilibration, while phenomenological reaction rates are applied to continually move the system towards re-equilibration. The simulations will be used first to characterize volatile extraction from the MOR system assuming a chemically homogeneous mantle. Subsequently, simulations will be extended to investigate the consequences of heterogeneity in lithology [KW12] and volatile content. These studies will advance our understanding of the role of volatiles in the dynamic and chemical evolution of the upper mantle. Moreover, they will help to gauge the significance of the coupling between the deep carbon cycle and the ocean/atmosphere system. REFERENCES

  10. Insights into mantle heterogeneities: mid-ocean ridge basalt tapping an ocean island magma source in the North Fiji Basin

    NASA Astrophysics Data System (ADS)

    Brens, R., Jr.; Jenner, F. E.; Bullock, E. S.; Hauri, E. H.; Turner, S.; Rushmer, T. A.

    2015-12-01

    The North Fiji Basin (NFB), and connected Lau Basin, is located in a complex area of volcanism. The NFB is a back-arc basin (BAB) that is a result of an extinct subduction zone, incorporating the complicated geodynamics of two rotating landmasses: Fiji and the Vanuatu island arc. Collectively this makes the spreading centers of the NFB the highest producing spreading centers recorded. Here we present volatile concentrations, major, and trace element data for a previously undiscovered triple junction spreading center in the NFB. We show our enrichment samples contain some of the highest water contents yet reported from (MORB). The samples from the NFB exhibit a combination of MORB-like major chemical signatures along with high water content similar to ocean island basalts (OIB). This peculiarity in geochemistry is unlike other studied MORB or back-arc basin (to our knowledge) that is not attributed to subduction related signatures. Our results employ the use of volatiles (carbon dioxide and water) and their constraints (Nb and Ce) combined with trace element ratios to indicate a potential source for the enrichment in the North Fiji Basin. The North Fiji Basin lavas are tholeiitic with similar major element composition as averaged primitive normal MORB; with the exception of averaged K2O and P2O5, which are still within range for observed normal MORB. For a mid-ocean ridge basalt, the lavas in the NFB exhibit a large range in volatiles: H2O (0.16-0.9 wt%) and CO2 (80-359 ppm). The NFB lavas have volatile levels that exceed the range of MORB and trend toward a more enriched source. In addition, when compared to MORB, the NFB lavas are all enriched in H2O/Ce. La/Sm values in the NFB lavas range from 0.9 to 3.8 while, Gd/Yb values range from 1.2 to 2.5. The NFB lavas overlap the MORB range for both La/Sm (~1.1) and Gd/Yb (~1.3). However, they span a larger range outside of the MORB array. High La/Sm and Gd/Yb ratios (>1) are indications of deeper melting within the

  11. Volatile Content of the Mid-ocean Ridge Mantle Inferred from Off-axis Seamounts and Intra-transform Lavas

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Saal, A. E.; Hauri, E. H.; Nagle, A.; Forsyth, D. W.; Niu, Y.

    2011-12-01

    H2O/Ce ratios in our samples positively correlate with Th/La, Sm/Yb, and isotope ratios suggesting that the enriched mantle component is also enriched in volatile contents. S/Dy ratios are the exception, with relatively constant values in both enriched, and depleted basalts. Although it has been argued that correlation between Sr, Nd and Pb isotope ratios and fractionation corrected major element in seamount samples indicate different mantle lithologies under the mid-ocean ridges, we will show that such correlation might be an artifact of ignoring the effect of water during the correction for fractional crystallization. [1] Dixon et al. (1995) J. Pet., 36, 1607-1631. [2] Liu et al. (2007) Geochim Cosmochim Ac., 71, 1783-1799.

  12. Results from a 14-month hydroacoustic monitoring of the three mid-oceanic ridges in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Royer, J.-Y.; Dziak, R. P.; Delatre, M.; Chateau, R.; Brachet, C.; Haxel, J. H.; Matsumoto, H.; Goslin, J.; Brandon, V.; Bohnenstielh, D. R.

    2009-04-01

    From October 2006 to January 2008, an hydroacoustic experiment in the Indian Ocean was carried out by the CNRS/University of Brest and NOAA/Oregon State University to monitor the low-level seismic activity associated with the three contrasting spreading ridges and deforming zones in the Indian Ocean. Three autonomous hydrophones were moored in the SOFAR channel by R/V Marion Dufresne for 14 months in the Madagascar Basin, and northeast and southwest of Amsterdam Island, complementing the two permanent hydroacoustic stations of the Comprehensive nuclear-Test-Ban Treaty Organization (CTBTO) located near Diego Garcia Island and off Cape Leeuwin. The three instruments successfully collected 14 month of continuous acoustic records. Combined with the records from the permanent stations, the array detected 1780 acoustic events consisting mostly of earthquake generated T-waves, but also of iceberg tremors from Wilkes Land, Antarctica. Within the triangle defined by the temporary array, the three ridges exhibit contrasting seismicity patterns. Along the Southeast Indian ridge (SEIR), the 272 acoustic events (vs 24 events in the NEIC catalog) occur predominantly along the transform faults ; only one ridge segment (76˚E) displays a continuous activity for 10 months. Along the Central Indian Ridge (CIR), seismicity is distributed along fracture zones and ridge segments (269 events vs 45 NEIC events), with two clusters of events near the triple junction (24-25S) and south of Marie-Celeste FZ (18.5S). Along the Southwest Indian Ridge (SWIR), the 222 events (vs 31 NEIC events) are distributed along the ridge segments with a larger number of events west of Melville FZ and a cluster at 58E. The immediate vicinity of the Rodrigues triple junction shows periods of quiescence and of intense activity. Some large earthquakes (Mb>5) near the triple junction (SEIR and CIR) seem to be preceded by several acoustic events that may be precursors. Finally, off-ridge seismicity is mostly

  13. Constraints On Fluid Evolution During Mid-Ocean Ridge Hydrothermal Circulation From Anhydrite Sampled by ODP Hole 1256D

    NASA Astrophysics Data System (ADS)

    Smith-Duque, C.; Teagle, D. A.; Alt, J. C.; Cooper, M. J.

    2008-12-01

    Anhydrite is potentially a useful mineral for recording the evolution of seawater-derived fluids during mid- ocean ridge hydrothermal circulation because it exhibits retrograde solubility, and hence may precipitate due to the heating of seawater or the sub-surface mixing of seawater with black smoker-like fluids. Here we provide new insights into the chemical and thermal evolution of seawater during hydrothermal circulation through analyses of anhydrite recovered from ODP Hole 1256D, the first complete penetration of intact upper oceanic crust down to gabbros. Previously, crustal anhydrite has been recovered only from Hole 504B. Measurements of 87Sr/86Sr, major element ratios, Rare Earth Elements and δ18O in anhydrite constrain the changing composition of fluids as they chemically interact with basalt. Anhydrite fills veins and pore-space in the lower lava sequences from ~530 to ~1000 meters sub- basement (msb), but is concentrated in the lava-dike transition (754 to 811 msb) and uppermost sheeted dikes. Although present in greater quantities than in Hole 504B, the amount of anhydrite recovered from the Site 1256 crust is low compared to that predicted by models of hydrothermal circulation (e.g., Sleep, 1991). Two distinct populations of anhydrite are indicated by measurements of 87Sr/86Sr suggesting different fluid evolution paths within Site 1256. One group of anhydrites have 87Sr/86Sr of 0.7070 to 0.7085, close to that of 15 Ma seawater (0.70878), suggesting that some fluids penetrate through the lavas and into the sheeted dikes with only minimal Sr-exchange with the host basalts. A second group, with low 87Sr/86Sr between 0.7048 and 0.7052, indicates precipitation from a fluid that has undergone far greater interaction with basalt. This range is close to that estimated from Sr-isotopic analyses of epidote for the Hole 1256D hydrothermal fluids (87Sr/86Sr ~0.705). Sr/Ca and 87Sr/86Sr indicate a similar relationship to that seen at ODP Hole 504B suggesting that

  14. Volcanic accretion, tectonic extension and the second-order segmentation of slow and ultraslow-spreading mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Cannat, M.; Sauter, D.; Escartin, J.

    2011-12-01

    In this presentation we compare the segmentation and seafloor geology record of slow and ultraslow ridges with variable volcanic input. The easternmost Southwest Indian Ridge (SWIR), where long stretches of the axis lack volcanism is our volcanism-poor end-member, which we contrast with volcanically more active parts of the Mid-Atlantic Ridge (MAR). Keeping the differences of spreading rates in perspective, we use this comparison to analyze and discuss the respective roles of tectonic extension, which ultimately leads to the exhumation of deeply-derived rocks (ultramafics and gabbros), and of volcanic accretion, in shaping the geometry of the plate boundary. Second-order segments at slow and ultraslow ridges are typically 30 to 100 km-long, and separated by transform, or so-called "non-transform" discontinuities. Segment centers typically have a thicker crust, and in most cases have a thinner axial lithosphere, than segment ends. Although we do not resolve the controversy of whether these characteristics are produced by discrete melt and/or mantle diapirs in the subaxial asthenosphere (eg Lin et al. 1990), or by melt channeling toward regions of thinner axial lithosphere (eg Magde and Sparks, 1997), we show that melt supply and volcanism are needed to initiate second-order ridge segmentation. Axial valley bounding faults in our SWIR volcanism-poor end-member go un-segmented for up to 170 km along-axis.

  15. Petrogenesis of the Conejo volcanic suite, southern California: Evidence for mid-ocean ridge continental margin interactions

    NASA Astrophysics Data System (ADS)

    Hurst, Richard W.

    1982-05-01

    The evolution of the southern California Borderland during mid-Miocene time was dependent on the interactions between the North American continent and the converging East Pacific Rise. Evidence from geological and geochemical investigations of the Conejo volcanic suite, whose petrogenesis is linked to these interactions, suggests an intimate relation between the subducting ridge and the volcanic rocks. The whole-rock chemistry of this suite (K2O < 0.4%; 87Sr/86Sr = 0.70248 0.70372, average = 0.70306; TiO2 = 1.2% 1.8%) and restricted range of pyroxene and plagioclase compositions support a model in which active ridge volcanism, fractionation, and mixing of primitive liquids with later differentiates can account for the observed petrologic evolution. The interaction of the ridge with the subduction zone may result in the cessation of subduction, the preferential subduction of the trenchward ridge flank, or localized volcanism in the vicinity of the ridge subduction zone intersection.

  16. Subaerial Seafloor Spreading in Iceland: Segment-Scale Processes and Analogs for Fast-Spreading Mid-Ocean Ridge Spreading Centers

    NASA Astrophysics Data System (ADS)

    Karson, Jeffrey; Varga, Robert; Siler, Drew; Horst, Andrew

    2010-05-01

    The nature of oceanic crust and spreading center processes are derived from direct observations of surface features and geophysics at active spreading centers as well as from deep crustal drilling, tectonic windows into the upper oceanic crust, and ophiolites. Integrating active spreading processes with deeply eroded crustal structures in Iceland provides an additional perspective on subsurface processes that are likely to be important at mid-ocean ridge spreading centers. Spreading in Iceland strongly resembles second-order segment-scale processes of the fast-spreading centers. Along axis, major processes including subsidence, magmatic construction, and hydrothermal activity vary systematically over tens of kilometers from segment centers to ends. Near spreading segment centers ("central volcanoes") subsidence and crustal thickening are greatest. The intrusion of high-level sill and cone sheet complexes and small gabbroic plutons contribute substantially to upper crustal thickening. Both magma supply and tectonic movements have a very strong vertical component. In contrast, near segment ends (fissure swarms in active spreading areas) subsidence is limited, most thickening occurs in the lava units and lateral dike injection is likely to dominate. In both Iceland and fast-spread crust, where the magma supply is relatively high, subaxial subsidence is the key process that controls the construction and modification of the crust during spreading. Seafloor studies on fast-spreading ridge show lava flows fed by dike intrusion events focused along a narrow (<1 km) axial region with very limited relief. However, subsurface structures reveal that axial lavas must subside hundreds of meters immediately beneath the axis as the overlying lava pile thickens. Similar relationships occur in Iceland but over a wider region of active magmatism (neovolcanic zone tens of kilometers wide) and building a much thicker upper crust (~5 km). For both cases, in order for the lava units to

  17. Diversity of microbial communities of Loki's Castle black smoker field at the ultra-slow spreading Arctic Mid-Ocean Ridge

    NASA Astrophysics Data System (ADS)

    Jaeschke, A.; Bernasconi, S. M.; Thorseth, I. H.; Pedersen, R.; Früh-Green, G.

    2010-12-01

    Here we present an organic geochemical study of Loki’s Castle, a black smoker field recently discovered at the Arctic Mid-Ocean Ridge (AMOR) in the Norwegian-Greenland Sea at around 73.2°N. Located at the Mohn-Knipovich Ridge, which is one of the slowest spreading ridge segments on Earth, Loki’s Castle is the most northerly major hydrothermal vent field known to date. The vent field is composed of five actively venting (320°C) black-smoker chimneys that tower on top of a large mound of hydrothermal sulfide deposits. Loki’s Castle is a basalt-hosted hydrothermal system, but high methane and ammonium contents in the vent fluids strongly indicate a sedimentary component below the volcanic ridge. In 2009, another site of low-temperature hydrothermal venting hosting numerous barite chimneys was discovered in the vicinity of the black smokers, which probably results from subsurface mixing of diffuse hydrothermal fluid with seawater. In our study, variations in microbial communities associated with the formation of actively venting, sulfide and sulfate chimneys in this essentially unexplored ultraslow spreading ridge system are assessed based on biomarker lipid and compound-specific carbon isotope analyses. Lipid extracts from an active, high-temperature sulfide chimney yielded abundant archaeal di- and tetraether lipids as well as irregular isoprenoidal hydrocarbons (PMIs) that are associated with archaeal methanogens and methanotrophs. Predominant archaeal biomarker lipids include archaeol, sn-2-hydroxyarchaeol as well as glycerol dialkyl glycerol tetraethers (GDGTs) containing 0-4 cyclopentyl moieties. In addition, GDGTs with an additional covalent bond between the isoprenoid hydrocarbon chains, so-called H-shaped GDGTs, containing 0-4 cyclopentyl rings were also found to be abundant components and are indicative of hyperthermophilic methanogens. Biomarkers characteristic of eukaryotes (sterols) and bacteria (fatty acids and hopanoids) were less prevalent in

  18. Spatial and temporal distribution of the seismicity along two mid-oceanic ridges with contrasted spreading rates in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Tsang-Hin-Sun, E.; Perrot, J.; Royer, J. Y.

    2015-12-01

    The seismicity of the ultra-slow spreading Southwest (14 mm/y) and intermediate spreading Southeast (60 mm/y) Indian ridges was monitored from February 2012 to March 2013 by the OHASISBIO array of 7 autonomous hydrophones. A total of 1471 events were located with 4 instruments or more, inside the array, with a median location uncertainty < 5 km and a completeness magnitude of mb = 3. Both ridges display similar average rates of seismicity, suggesting that there is no systematic relationship between seismicity and spreading rates. Accretion modes do differ, however, by the along-axis distribution of the seismic events. Along the ultra-slow Southwest Indian Ridge, events are sparse but regularly spaced and scattered up to 50 km off-axis. Along the fast Southeast Indian Ridge, events are irregularly distributed, focusing in narrow regions near the ridge axis at segment ends and along transform faults, whereas ridge-segment centers generally appear as seismic gaps (at the level of completeness of the array). Only two clusters, 6 months apart, are identified in a segment-center at 29°S. From the temporal distribution of the clustered events and comparisons with observations in similar mid-oceanic ridge setting, both clusters seem to have a volcanic origin and to be related to a dike emplacement or a possible eruption on the seafloor. Their onset time and migration rate are comparable to volcanic swarms recorded along the Juan de Fuca Ridge. Overall, the rate of seismicity along the two Indian spreading ridges correlates with the large-scale variations in the bathymetry and shear-wave velocity anomaly in the upper mantle, suggesting that the distribution of the low-magnitude seismicity is mainly controlled by along-axis variations in the lithosphere rheology and temperature.

  19. Plagioclase and epidote buffering of cation ratios in mid-ocean ridge hydrothermal fluids: Experimental results in and near the supercritical region

    SciTech Connect

    Berndt, M.E.; Seyfried, W.E. Jr. ); Janecky, D.R. )

    1989-09-01

    Experiments have been performed with Na-Ca-K-Cl fluids of seawater chlorinity and diabase, basalt, and plagioclase bearing mineral mixtures at 350-425{degree}C and 250-400 bars to help constrain hydrothermal alteration processes at mid-ocean ridges. Dissolved Ca, Na, and pH for all experiments responded systematically to differences in dissolved SiO{sub 2} concentrations and the compositions of plagioclase reactants. Diabase alteration at low fluid/rock mass ratios (0.5 to 1) produces fluids undersaturated with respect to quartz during hydration of primary olivine and orthopyroxene, whereas basalt alteration under similar conditions yields fluids slightly supersaturated with respect to quartz during breakdown of glass to smectite and amphibole. Fluid chemistry in all experiments appears to approach a partial equilibrium state with the albite and anorthite components in plagioclase and approaches a pH consistent with plagioclase alteration to epidote. Trace element data from vent fluids, specifically B and Sr, together with major element chemistry, provides evidence that the reaction zone for black-smoker fluids at mid-ocean ridges is composed of only slightly altered diabase and is characterized by small amounts of epidote, nearly fresh plagioclase and clinopyroxene, and partially to completely hydrated olivine and orthopyroxene. Using equilibrium between plagioclase, the dominant reactant, and epidote, the dominant reaction product in experiments, the authors estimate that temperatures in reaction zones are in excess of 375{degree}C for most vent systems. These temperatures are higher than measured vent temperatures, suggesting that hot spring fluids commonly loose heat during ascent to the sea floor.

  20. Composition of plume-influenced mid-ocean ridge lavas and glasses from the Mid-Atlantic Ridge, East Pacific Rise, Galápagos Spreading Center, and Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Kelley, Katherine A.; Kingsley, Richard; Schilling, Jean-Guy

    2013-01-01

    The global mid-ocean ridge system is peppered with localities where mantle plumes impinge on oceanic spreading centers. Here, we present new, high resolution and high precision data for 40 trace elements in 573 samples of variably plume-influenced mid-ocean ridge basalts from the Mid-Atlantic ridge, the Easter Microplate and Salas y Gomez seamounts, the Galápagos spreading center, and the Gulf of Aden, in addition to previously unpublished major element and isotopic data for these regions. Included in the data set are the unconventional trace elements Mo, Cd, Sn, Sb, W, and Tl, which are not commonly reported by most geochemical studies. We show variations in the ratios Mo/Ce, Cd/Dy, Sn/Sm, Sb/Ce, W/U, and Rb/Tl, which are expected not to fractionate significantly during melting or crystallization, as a function of proximity to plume-related features on these ridges. The Cd/Dy and Sn/Sm ratios show little variation with plume proximity, although higher Cd/Dy may signal increases in the role of garnet in the mantle source beneath some plumes. Globally, the Rb/Tl ratio closely approximates the La/SmN ratio, and thus provides a sensitive tracer of enriched mantle domains. The W/U ratio is not elevated at plume centers, but we find significant enrichments in W/U, and to a lesser extent the Mo/Ce and Sb/Ce ratios, at mid-ocean ridges proximal to plumes. Such enrichments may provide evidence of far-field entrainment of lower mantle material that has interacted with the core by deeply-rooted, upwelling mantle plumes.

  1. Mid-Ocean Ridge Hydrothermal Vent Fluid Chemistry at Ultrafast Spreading Rates: Control by Phase Separation and Water-Rock Equilibrium

    NASA Astrophysics Data System (ADS)

    O'Grady, K. M.; Von Damm, K. L.

    2001-12-01

    Phase separation, overprinted by water-rock equilibration are the major controls on the chemical composition of hydrothermal vent fluids sampled from two morphologically distinct areas (18\\deg 24-26'S and 21\\deg 24-27'S) along the ultrafast spreading ( ~15 cm/yr full rate) Southern East Pacific Rise (SEPR) during the 1998 SouEPR Cruise. This conclusion, along with the growing evidence that phase separation and water-rock equilibrium also control the composition of previously sampled hydrothermal vent fluids from slower-spreading ridges, indicates that to a first approximation neither spreading rate nor ridge morphology can be directly related to hydrothermal fluid compositions. Hydrothermal fluids from ultrafast spreading centers therefore do not form a unique subset in the global range of known chemical compositions. Previous geophysical surveys and submersible observations suggested that the hydrothermal system located at 21\\deg 24-27'S, the SouEPR Area, was dominated by tectonic activity (Renard et al., 1985; Tufar, 1995; Krasnov et al., 1997). Submersible observations and hydrothermal vent fluid chemistry indicated that the N. Hump Area, experienced volcanic activity shortly before the 1993 NADUR Cruise (Charlou et al., 1996). The N. Hump Area vent fluids sampled during the 1998 SouEPR Cruise displayed a relatively uniform chlorinity (616-670 mmol/kg Cl) that is greater than seawater. The Si and Cl data from the N. Hump Area vent fluids suggest reaction zone conditions up to ~360 bars (~1 km below the seafloor) and ~430\\deg C, indicating supercritical phase separation. The unusually large chlorinity variation (113-803 mmol/kg Cl) in the SouEPR Area hydrothermal vent fluids covers almost the entire range of sampled mid-ocean ridge (MOR) hydrothermal vent fluid chemistries worldwide (30.5-1245 mmol/kg Cl). The Si and Cl data from the SouEPR Area vent fluids suggest reaction zone conditions up to ~410 bars ( ~1.3 km below the seafloor) and ~450\\deg C. The

  2. Hydrothermal Exploration of the Mid-Cayman Spreading Center: Isolated Evolution on Earth’s Deepest Mid-Ocean Ridge?

    NASA Astrophysics Data System (ADS)

    German, C. R.; Bowen, A.; Coleman, M. L.; Huber, J. A.; Seewald, J.; van Dover, C.; Whitcomb, L. L.; Yoerger, D.; Connelly, D.; Honig, D. L.; Jakuba, M.; Kinsey, J. C.; McDermott, J.; Nakamura, K.; Sands, C.; Smith, J.; Sylva, S.

    2009-12-01

    We report the first systematic exploration for and characterization of hydrothermal vents and vent ecosystems on the short (~110 km), deep (> 5000 m), ultra-slow-spreading (<20 mm yr-1) Mid-Cayman Rise in the Caribbean Sea. This work was carried out aboard the RV Cape Hatteras in October-November 2009 as part of the ChEss Project of the Census of Marine Life, funded through NASA’s ASTEP program and represents the first scientific field program funded to use WHOI’s new hybrid deep submergence vehicle, Nereus, first in AUV mode then in ROV mode. Prior to this work, evidence for hydrothermal venting had been found on every active spreading center investigated, including the comparably ultra-slow spreading ridges in the SW Indian Ocean and in the Arctic (Mohns, Knipovich & Gakkel Ridges). The organisms colonizing vents are renowned for their endemicity, their adaptations to the extreme chemical and physical conditions encountered and for differences in species level from one ocean basin to another. Consequently, the identification of any organisms colonizing vents of the Mid-Cayman Spreading Center offers a critical opportunity to build upon our understanding of the dispersion of vent species and the potential role of the rise of the Isthmus of Panama (dating from ~5 Ma) as a vicariant event leading to the evolutionary divergence of Atlantic and Pacific vent faunas. Further, the MCSC is so deep that any vents present may occur at depths greater than all previously known vent systems, extending the known limits to life on our planet in terms of pressure, temperature, and vent-fluid chemistry. Finally, hydrothermal circulation through ultramafic rocks can generate abiotic synthesis of organic matter: an analog for the prebiotic basis for the origin of life on early Earth and Mars. In future years of this 4-year study, therefore, we will also aim to assess the relative importance of abiotic organic synthesis versus recycling of bio-organic material and/or chemical

  3. Zn isotope composition in hydrothermal systems on the mid-ocean ridge and its implication for oceanic cycling of Zinc

    NASA Astrophysics Data System (ADS)

    Li, Xiaohu; Wang, Jianqiang; Lei, Jijiang; Yu, Xing; Wang, Hao; Chu, Fengyou

    2016-04-01

    Seafloor hydrothermal systems play an important role on the oceanic biogeochemical cycles of Zn and its isotopes. However, for the Zn isotopic systems in hydrothermal systems we know too little of the distribution of Zn isotopes in variable hydrothermal products and its impact on modern oceanic mass balance. We have measured Zn isotopes in hydrothermal products such as oxidation products of chimney sulfides and hydrothermal sediments from the active hydrothermal field on the Mid-Atlantic Ridge in order to better understand the oceanic biogeochemical cycles of Zn isotopes. We present isotopic data for Zn in sulfides and sediments, which yield δ66Zn=+0.11±0.08‰(2SD,n=23)and range from -0.14‰ to +0.38‰.We found that δ66Zn values of our samples were lighter or similar to chimney sulfides from the high-temperature hydrothermal vent, but much lighter than hydrothermal fluids and chimney sulfides from the low-temperature hydrothermal vent. We also compared our results with δ66Zn values of the Fe-Mn crusts, nodules and oceanic carbonate as heavy Zn isotope sink, which implies that Zn isotopes output to hydrothermal sediment and oxidation products of chimney sulfides as a missing light sink can explain the heavy isotopic composition of the oceans.

  4. How the growth and freeboard of continents may relate to geometric and kinematic parameters of mid-ocean spreading ridges

    USGS Publications Warehouse

    Howell, D.G.

    1989-01-01

    If the volume of continents has been growing since 4 Ga then the area of the ocean basins must have been shrinking. Therefore, by inferring a constant continental freeboard, in addition to constant continental crustal thicknesses and seawater volume, it is possible to calculate the necessary combinations of increased ridge lengths and spreading rates required to displace the seawater in the larger oceans of the past in order to maintain the constant freeboard. A reasonable choice from the various possibilities is that at 4 Ga ago, the ridge length and spreading rates were ca. 2.5 times greater than the averages of these parameters during the past 200 Ma. By 2.5 Ga ago the ridge length and spreading rate decreased to about 1.8 times the recent average and by 1 Ga ago these features became reduced to approximately 1.4 times recent averages. ?? 1989.

  5. Constructing mid-ocean ridge flat-topped volcanoes: First evidence from AUV mapping in the Woodlark Basin

    NASA Astrophysics Data System (ADS)

    Devey, C. W.; Petersen, S.; Hannington, M.; Klaucke, I.; Lackschewitz, K. S.; Mahlke, J.; Rothenbeck, M.; Sticklus, J.

    2010-12-01

    The style of volcanic activity at many of the global spreading axes is dominated or at least strongly influenced by the construction of circular volcanoes with a flat, sometimes cratered, summit plateau. Such volcanoes are an important constituent of the upper oceanic crust in many ocean basins and so knowledge of their formation process and the rock types which constitute them is important for understanding the rheology and hydrology of the upper crust on a regional to ocean basin scale. Based on previous ship-mounted multibeam sonar cartography, deep-towed side-scan sonar and submersible investigations, a range of models for their formation has been proposed varying from construction above ring-dykes, with the central crater being either a product of this eruption style or of later caldera collapse, to successive eruptions of ever-smaller sheet flows ("pancake-stack"). Here we present the results of the first high resolution (<1m) mapping of such volcanoes using an autonomous underwater vehicle (AUV). The maps, combined with visual ground truthing, clearly show that the summit plateau was generated by lavas flowing laterally from a central lava lake. In the case of cratered volcanoes, this lake has drained (fully or partially) post-eruption, volcanoes with no crater (which are in the majority) appear to have retained the lake, which is now solidified. The solidified lake will form a massive, doleritic plug whose seismic, mechanical and hydrological characteristics will differ greatly (both at the axis itself and during crustal ageing) from those of pillow or sheet lava flows, with important consequences for bulk crustal properties both at the ridge axis and in older crust.

  6. Plume Capture by Divergent Plate Motions: Implications for the Distribution of Hotspots, Geochemistry of Mid-Ocean Ridge Basalts, and Heat Flux from the Core-Mantle Boundary

    NASA Astrophysics Data System (ADS)

    Jellinek, A. M.; Richards, M. A.

    2001-12-01

    The coexistence of mantle plumes with plate-scale flow is problematic in geodynamics. Significant problems include the fixity of hotspots with respect to plate motions, the spatial distribution and duration of hotspots, the geophysical and geochemical signatures of plume-ridge interactions, and the relation between mantle plumes and heat flux across the core-mantle boundary. We present results from laboratory experiments aimed at understanding the effects of an imposed large-scale circulation on thermal convection at high Rayleigh number (up to 109) in a fluid with a strongly temperature-dependent viscosity. In a large tank, a layer of corn syrup is heated from below while being stirred by large-scale flow due to the opposing motions of a pair of conveyor belts immersed in the syrup at the top of the tank. Three regimes are observed, depending on the velocity ratio V of the imposed horizontal flow velocity to the rise velocity of plumes ascending from the hot boundary. When V<<1, large scale circulation has a negligible effect and convective upwelling occurs as randomly-spaced axisymmetric plumes that interact with one another. When V>10, plume instabilities are suppressed entirely and the heat flux from the hot lower boundary is carried by a central sheet-like upwelling. At intermediate V, ascending plumes are advected along the bottom boundary layer, and the heat flux from the boundary is found to scale (according to a simple boundary layer theory) with V and the ratio of the viscosity of cold fluid above the thermal boundary layer to the viscosity of the hottest fluid in contact with the bottom boundary. For large viscosity ratios (10-100), only about 1/5th or less of the total heat flux from the hot boundary layer is carried by plume instabilities, even for modest imposed horizontal flow velocities (V of order 1). When applied to Earth, our results suggest that plate-scale flow focuses ascending mantle plumes toward mid-ocean ridges, and that plumes may be

  7. Response to Comment on "Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply".

    PubMed

    Olive, J-A; Behn, M D; Ito, G; Buck, W R; Escartín, J; Howell, S

    2016-07-15

    Tolstoy reports the existence of a characteristic 100 thousand year (ky) period in the bathymetry of fast-spreading seafloor but does not argue that sea level change is a first-order control on seafloor morphology worldwide. Upon evaluating the overlap between tectonic and Milankovitch periodicities across spreading rates, we reemphasize that fast-spreading ridges are the best potential recorders of a sea level signature in seafloor bathymetry. PMID:27418498

  8. Response to Comment on "Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply".

    PubMed

    Olive, J-A; Behn, M D; Ito, G; Buck, W R; Escartín, J; Howell, S

    2016-06-17

    Huybers et al present new bathymetric spectra from an intermediate-spreading ridge as evidence for a primary contribution of sea level cycles to the morphology of the seafloor. Although we acknowledge the possibility that sea level-modulated magmatic constructions may be superimposed on a first-order tectonic fabric, we emphasize the difficulty of deciphering these different contributions in the frequency domain alone. PMID:27313035

  9. Comment on "Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply".

    PubMed

    Huybers, Peter; Langmuir, Charles; Katz, Richard F; Ferguson, David; Proistosescu, Cristian; Carbotte, Suzanne

    2016-06-17

    Olive et al (Reports, 16 October 2015, p. 310) argue that ~10% fluctuations in melt supply do not produce appreciable changes in ocean ridge bathymetry on time scales less than 100,000 years and thus cannot reflect sea level forcing. Spectral analysis of bathymetry in a region they highlight as being fault controlled, however, shows strong evidence for a signal from sea level variation. PMID:27313034

  10. Lava accretion system around mid-ocean ridges: Volcanic stratigraphy in the Wadi Fizh area, northern Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Kusano, Yuki; Adachi, Yoshiko; Miyashita, Sumio; Umino, Susumu

    2012-05-01

    Detailed lithological study combined with geochemical variations of lavas reveals the across-axis accretionary process at Wadi Fizh in the northern Oman ophiolite. The >900 m thick V1 sequence is divided into the lower V1 (LV1), middle V1 (MV1) and upper V1 (UV1) sequence by 0.4 m and 0.8 m thick umbers at 410 mab (meters above the base of the extrusive rocks) and 670 mab, respectively. The lowest part of the LV1 (LV1a) consists of lobate sheet and pillow lava flows extruded on the relatively flat ridge crest. Elongate pillows at 230 mab are flows draping downslope from the ridge crest and characterize the lithofacies on the ridge flank. Just above a jasper layer at 270 mab, 130 m thick evolved lavas were transported from the crest and emplaced on the ridge flank (LV1b). Off-axial accretionary processes recorded in the MV1 resulted in alternating flows of less evolved, depleted lava and evolved lava, suggesting that the MV1 off-axial lava sequence comprises flows emanated from both on- and off-axis source vents. The less evolved and depleted UV1 flows suggest independent sources distinct from the axial lavas. The Lasail Unit is regarded as a subunit of the V1 because it is comparable to the UV1 in the geological, petrological, and geochemical characteristics. The broad compositional range of the V1 sequence endorses a view that the Wadi Fizh area corresponds to a segment end of the Oman paleospreading system accompanied by off-axis volcanism as in segment boundaries of the present East Pacific Rise.

  11. Microbial Life in the Subseafloor at Mid-Ocean Ridges: A Key to Understanding Ancient Ecosystems on Earth and Elsewhere?

    NASA Astrophysics Data System (ADS)

    Baross, J. A.; Delaney, J. R.

    2001-12-01

    Some planets and moons in our solar system were similar to Earth in their geological properties during the first few hundred million years after accretion. This is the period when life arose and became established on Earth. It follows that understanding the geophysical and geochemical characteristics of early Earth could provide insight into life-supporting environments on other solar bodies that have not evolved "Garden of Eden" conditions. Hydrothermal systems are primordial and their emergence coincided with the accumulation of liquid water on Earth. The interactions of water and rock associated with hydrothermal systems result in predictable suites of dissolved elements and volatiles. While the concentrations of these chemicals vary at different vent locations and were certainly different during the early Archaean, the overall chemical composition of aqueous hydrothermal fluid is likely to be the same because of the basaltic nature of oceanic crust. In present-day hydrothermal systems, those environments not contaminated by electron acceptors produced from pelagic photosynthesis would most closely mimic the earliest conditions on Earth. These conditions include the subseafloor and high temperature, anaerobic environments associated with hydrothermal systems. The microorganisms associated with these environments derive energy from sulfur, iron, hydrogen and organic compounds. New seafloor eruptions and diffuse flow vents provide unprecedented access to deep subseafloor microbial communities. For example, 12 new eruptions have occurred in the past 15 years including five in the Northeast Pacific. Hyperthermophiles were isolated from 5-30oC diffuse vent fluids from new eruption sites at CoAxial within months of the June, 1993 eruption and from the 1998 eruption at Axial Volcano, and from plume fluids within days of the February, 1996 eruption at the N. Gorda Ridge. The presence of such organisms in fluids that are 20 to 50°C below their minimum growth temperature

  12. Ultramafic-hosted Hydrothermal Systems at Mid-Ocean Ridges: Serpentinization, Chloritization and Geochemical Controls on Mass-Transfer Processes

    NASA Astrophysics Data System (ADS)

    Seyfried, W. E.; Pester, N. J.; Ding, K.

    2012-12-01

    Recent studies of seafloor hydrothermal systems associated with the slow spreading Mid-Atlantic Ridge have provided a wealth of information on the complex interplay between tectonic and magmatic processes that ultimately govern the chemical and physical evolution of these systems. The Lost City hydrothermal field (LCHF)(30°N) and the Rainbow hydrothermal system (36°N), for example, provide contrasting styles of heat and mass transfer that result in very different constraints on the composition of hydrothermal fluids. Hydrothermal fluids were sampled and analyzed during a series of ROV (Jason II) supported dives in 2008 to these and related vent sites along the northern MAR. In addition to deployment of conventional vent fluid sampling devices, in-situ chemical sensor systems were also used to better constrain pH and redox reactions. The general characteristics of the Lost City hydrothermal field, which is offset approximately 15km from the MAR owing to tectonic effects imposed by the emplacement of the Atlantis Massif, have been extensively reviewed in recent years. Vent fluids issuing from this peridotite-hosted system reveal temperatures of approximately 90-100°C, high concentrations of dissolved hydrogen and methane, and pH measured (25°C) values that exceed 10. The relatively low vent fluid temperatures notwithstanding, phase equilibria constraints imposed by dissolved Ca and sulfate suggest temperatures of approximately 200°C at depth, below the seafloor. New data for dissolved silica indicate a hydrothermal "root zone" lacking brucite, but where fluid chemistry and pH is buffered by serpentine-diopside-fluid equilibria. Consistent with previously published strontium and boron isotope measurements, data reported here for trace alkali elements (Cs, Rb, Li) indicate high fluid/rock mass ratios. Variably low dissolved Fe concentrations are broadly consistent with constraints imposed by magnetite-fluid equilibria at the high measured dissolved H2

  13. Palagonitization of Basalt Glass in the Flanks of Mid-Ocean Ridges: Implications for the Bioenergetics of Oceanic Intracrustal Ecosystems.

    PubMed

    Türke, Andreas; Nakamura, Kentaro; Bach, Wolfgang

    2015-10-01

    When basalt is exposed to oxygenated aqueous solutions, rims of palagonite form along fractures at the expense of glass. We employed electron microprobe and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of fresh glass and adjacent palagonite crusts to determine the geochemical changes involved in palagonite formation. Samples were retrieved from drill cores taken in the North Pond Area, located on the western flank of the Mid-Atlantic Ridge at 22°45'N and 46°05'W. We also analyzed whole rock powders to determine the overall crust-seawater exchange in a young ridge flank. Radioactive elements are enriched in palagonite relative to fresh glass, reaching concentrations where radiolytic production of molecular hydrogen (H2) may be a significant energy source. Based on these results, we hypothesize that microbial ecosystems in ridge flank habitats undergo a transition in the principal energy carrier, fueling carbon fixation from Fe oxidation in very young crust to H2 consumption in older crust. Unless the H2 is swept away by rapid fluid flow (i.e., in young flanks), it may easily accumulate to levels high enough to support chemolithoautotrophic life. In older flanks, crustal sealing and sediment accumulation have slowed down seawater circulation, and the significance of radiolytically produced H2 for catalytic energy supply is expected to increase greatly. Similar habitats on other planetary surfaces are theoretically possible, as accumulation of radiolytically produced hydrogen merely requires the presence of H2O molecules and a porous medium, from which the hydrogen is not lost. PMID:26426282

  14. Mechanisms of magma generation beneath hawaii and mid-ocean ridges: uranium/thorium and samarium/neodymium isotopic evidence.

    PubMed

    Sims, K W; Depaolo, D J; Murrell, M T; Baldridge, W S; Goldstein, S J; Clague, D A

    1995-01-27

    Measurements of uranium/thorium and samarium/neodymium isotopes and concentrations in a suite of Hawaiian basalts show that uranium/thorium fractionation varies systematically with samarium/neodymium fractionation and major-element composition; these correlations can be understood in terms of simple batch melting models with a garnet-bearing peridotite magma source and melt fractions of 0.25 to 6.5 percent. Midocean ridge basalts shows a systematic but much different relation between uranium/thorium fractionation and samarium/neodymium fractionation, which, although broadly consistent with melting of a garnet-bearing peridotite source, requires a more complex melting model. PMID:17788786

  15. Plume-proximal mid-ocean ridge origin of Zhongba mafic rocks in the western Yarlung Zangbo Suture Zone, Southern Tibet

    NASA Astrophysics Data System (ADS)

    He, Juan; Li, Yalin; Wang, Chengshan; Dilek, Yildirim; Wei, Yushuai; Chen, Xi; Hou, Yunling; Zhou, Aorigele

    2016-05-01

    The >2000 km-long Yarlung Zangbo Suture Zone (YZSZ) in southern Tibet includes the remnants of the Mesozoic Neotethyan oceanic lithosphere, and is divided by the Zhada-Zhongba microcontinent into northern and southern branches in its western segment. Zircon U-Pb dating of a doleritic rock from the northern branch has revealed a concordant age of 160.5 ± 1.3 Ma. All of the doleritic samples from the northern branch and the pillow basalt and gabbro samples from the southern branch display consistent REE and trace element patterns similar to those of modern OIB-type rocks. The geochemical and Sr-Nd-Pb isotopic signatures of these OIB-type rocks from the western segment are identical with those of OIB-type and alkaline rocks from other ophiolite massifs along the central and eastern segments of the YZSZ, suggesting a common mantle plume source for their melt evolution. The enriched Sr-Nd-Pb isotopic character of the gabbroic dike rocks from the southern branch points to a mantle plume source, contaminated by subducted oceanic crust or pelagic sediments. We infer that the mafic rock associations exposed along the YZSZ represent the remnants of a Neotethyan oceanic lithosphere, which was developed as part of a plume-proximal seafloor-spreading system, reminiscent of the seamount chains along-across the modern mid-ocean ridges in the Pacific Ocean.

  16. Mathematical modeling of diffuse flow in seafloor hydrothermal systems: The potential extent of the subsurface biosphere at mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Lowell, R. P.; Houghton, J. L.; Farough, A.; Craft, K. L.; Larson, B. I.; Meile, C. D.

    2015-09-01

    We describe a variety of one- and two-dimensional mathematical modeling approaches to characterizing diffuse flow circulation at mid-ocean ridge hydrothermal systems. The goal is to estimate the potential extent of the sub-seafloor microbial biosphere based on subsurface contours of the 120 °C isotherm as determined from the various models. The models suggest that the sub-seafloor depth for microbial life may range from less than 1 m in some places to the thickness of crustal layer 2A of ∼ 500 m in others. This depth depends primarily on how diffuse flow is driven. The 120 °C isotherm tends to be much deeper if diffuse flow is induced as boundary layer flow near high-temperature plumes, than if it results from conductive cooling or mixing near the seafloor. Because the heat flow alone may not allow identification of the flow regime in the subsurface, we highlight the use of chemical tracers as an additional constraint that sheds light into the flow and reaction patterns associated with vents. We use thermodynamic modeling, which connects the temperature of the diffuse fluid to its chemical composition. As the temperature-composition relationships differ for mixing versus conductive heating and cooling, the fluid geochemistry can shed light on subsurface transport. Using methane as an example, the geochemical models indicate subsurface microbial methane production and consumption in different regions of the vent field near EPR 9 °50‧ N.

  17. Estimates of crustal permeability on the Endeavour segment of the Juan de Fuca mid-ocean ridge

    NASA Astrophysics Data System (ADS)

    Wilcock, William S. D.; McNabb, Alex

    1996-02-01

    Observational studies of hydrothermal venting on the Endeavour segment of the Juan de Fuca Ridge place strong constraints on the spacing and area of vent fields, the depth of circulation, and the hydrothermal heat flux. A method is described to estimate a uniform crustal permeability from these parameters under the assumptions that upflow is confined to a narrow plume underlying each vent field and downflow can be described by potential flow into a point sink at the base of each plume. For a reasonable range of parameter values, the isotropic permeability of the Endeavour lies in the range 6 × 10 -13 to 6 × 10 -12 m 2. A significant elongation of vent fields along-axis suggests that the permeability structure is strongly anisotropic, with the across-axis permeability about an order of magnitude lower than the permeability in orthogonal directions.

  18. Reconstructing past seawater Mg/Ca and Sr/Ca from mid-ocean ridge flank calcium carbonate veins.

    PubMed

    Coggon, Rosalind M; Teagle, Damon A H; Smith-Duque, Christopher E; Alt, Jeffrey C; Cooper, Matthew J

    2010-02-26

    Proxies for past seawater chemistry, such as Mg/Ca and Sr/Ca ratios, provide a record of the dynamic exchanges of elements between the solid Earth, the atmosphere, and the hydrosphere and the evolving influence of life. We estimated past oceanic Mg/Ca and Sr/Ca ratios from suites of 1.6- to 170-million-year-old calcium carbonate veins that had precipitated from seawater-derived fluids in ocean ridge flank basalts. Our data indicate that before the Neogene, oceanic Mg/Ca and Sr/Ca ratios were lower than in the modern ocean. Decreased ocean spreading since the Cretaceous and the resulting slow reduction in ocean crustal hydrothermal exchange throughout the early Tertiary may explain the recent rise in these ratios. PMID:20133522

  19. Geology of the Early Archean Mid-Ocean Ridge Hydrothermal System in the North Pole Dome, Pilbara Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Kitajima, K.; Maruyama, S.

    2007-12-01

    An Archean hydrothermal system in the North Pole Dome, Pilbara Craton is associated with extensive fluid circulation driven by numerous extensional fracture systems and the underlying heat source. The fracture system is now occupied by abundant fine-grained quartz aggregate, hence we call this as silica dikes. Some of the fracture system extends deeper structural levels as listric normal faults down to 1000 m depth in the MORB crust. Barite-bearing fine-grained quartz predominant mineralogy indicates the extensive development of fracturing and quenching in a short time. Accompanying the fluid circulation, the extensive metasomatism proceeded to form the four different chemical courses, (1) silicification, (2) carbonation, (3) potassium-enrichment, and (4) Fe- enrichment. Silicification occurs along the silica dikes, carbonated greenstones are distributed relatively shallower level. Potassium-enriched (mica-rich) greenstones occur at the top of the greenstone sequence, and Fe-enriched (chlorite-rich) greenstones are distributed at lower part of the basaltic greenstones. The down going fluid precipitated carbonate-rich layer at shallow levels, whereas depleted in SiO2. Then, the fluid went down to more deeper level, and was dissolved SiO2 at high temperature (~350°C) and chlorite-rich greenstone was formed by water-rock interaction. The upwelling fluid precipitated dominantly SiO2 and formed silica dikes. Silica dikes cement the fractures formed by extensional faulting at earliest stage of development of oceanic crust. Therefore, the hydrothermal system must have related to normal fault system simultaneously with MORB volcanism. Particularly the greenish breccia with cherty matrix (oregano chert) was formed at positions by upwelling near ridge axis. After the horizontal removal of MORB crust from the ridge-axis with time, the propagating fracture into deeper levels, transports hydrothermal fluids into 500-1000 m depth range where metasomatic element exchange between

  20. Atmospheric contamination of the primary Ne and Ar signal in mid-ocean ridge basalts and its implications for ocean crust formation

    NASA Astrophysics Data System (ADS)

    Stroncik, N. A.; Niedermann, S.

    2016-01-01

    Both, terrestrial and extra-terrestrial applications of noble gases have demonstrated their importance as tracers for source identification, process characterisation and mass and heat flux quantification. However, the interpretation of noble gas isotope data from terrestrial igneous rocks is often complicated by the ubiquitous presence of heavy noble gases (Ne, Ar, Kr, Xe) with an atmospheric origin. Up to now there has been no consensus on how atmospheric noble gases are entrained into igneous rocks. Suggested processes range from contamination during sample preparation to mantle recycling through subduction. Here we present Ne, Ar, Mg, K, and Cl data of fresh glasses from the Mid-Atlantic Ridge north and south of the Ascension Fracture Zone which show that incorporation of atmospheric noble gases into igneous rocks is in general a two-step process: (1) magma contamination by assimilation of altered oceanic crust results in the entrainment of noble gases from air-equilibrated seawater; (2) atmospheric noble gases are adsorbed onto grain surfaces during sample preparation. This implies, considering the ubiquitous presence of the contamination signal, that magma contamination by assimilation of a seawater-sourced component is an integral part of mid-ocean ridge basalt evolution. Combining the results obtained from noble gas and Cl/K data with estimates of crystallisation pressures for the sample suite shows that the magma contamination must have taken place at a depth between 9 and 13 km. Taking thickness estimates for the local oceanic crust into account, this implies that seawater penetration in this area reaches lower crustal levels, indicating that hydrothermal circulation might be an effective cooling mechanism even for the deep parts of the oceanic crust.

  1. Noble gas isotope signals of mid-ocean ridge basalts and their implication for upper mantle structure

    NASA Astrophysics Data System (ADS)

    Stroncik, Nicole A.; Niedermann, Samuel

    2016-04-01

    The geochemical structure of the upper mantle in general and its noble gas isotopic structure in particular have been the subject of countless studies, as both provide important insights into mantle dynamic processes and are essential for the formulation of mantle geodynamic models. This contribution presents a noble gas study of basaltic glasses derived from the Mid-Atlantic-Ridge (MAR) between 4 and 12° S, an area well known for its high degree of lithophile isotope heterogeneity and exhibiting anomalous crustal thickness. The Sr, Nd, Pb and Hf isotopies along this segment of the MAR range from ultra-depleted (more than NMORB) to highly enriched, and different concepts have been proposed to explain the observed isotopic signatures. Here we show that the high degree of heterogeneity is not confined to the isotopes of the lithophile elements, but is also shown by the noble gas isotopes and noble gas interelement ratios, such as e.g. 3He/22NeM or 4He/40Ar*. 3He/4He, 21Ne/22Neextra and 40Ar/36Ar range from 7.3 to 9.3 RA, from 0.05 to 0.08, and from 346 to 37,400, respectively. Nevertheless, the majority of the Ne isotope data are clearly aligned along a single mixing line in the Ne-three-isotope diagram, represented by the equation 20Ne/22Ne=70.5 x 21Ne/22Ne + 7.782, with a slope distinctly different from that of the MORB line, indicating that the ultra-depleted material is characterised by a significantly more nucleogenic 21Ne/22Ne isotopy than the normal depleted mantle. We show, based on covariations between 3He/4He and 21Ne/22Neextra with 206Pb/204Pb and 178Hf/177Hf, that the ultra-depleted material erupted at this MAR segment was most likely produced by an ancient, deep melting event. This implies that isotopic heterogeneities in the upper mantle are not solely caused by the injection of enriched materials from deep-seated mantle plumes or by crustal recycling but may also be due to differences in the depth and degree of melting of upper mantle material within

  2. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites.

    PubMed

    Hellebrand, E; Snow, J E; Dick, H J; Hofmann, A W

    2001-04-01

    Rocks in the Earth's uppermost sub-oceanic mantle, known as abyssal peridotites, have lost variable but generally large amounts of basaltic melt, which subsequently forms the oceanic crust. This process preferentially removes from the peridotite some major constituents such as aluminium, as well as trace elements that are incompatible in mantle minerals (that is, prefer to enter the basaltic melt), such as the rare-earth elements. A quantitative understanding of this important differentiation process has been hampered by the lack of correlation generally observed between major- and trace-element depletions in such peridotites. Here we show that the heavy rare-earth elements in abyssal clinopyroxenes that are moderately incompatible are highly correlated with the Cr/(Cr + Al) ratios of coexisting spinels. This correlation deteriorates only for the most highly incompatible elements-probably owing to late metasomatic processes. Using electron- and ion-microprobe data from residual abyssal peridotites collected on the central Indian ridge, along with previously published data, we develop a quantitative melting indicator for mantle residues. This procedure should prove useful for relating partial melting in peridotites to geodynamic variables such as spreading rate and mantle temperature. PMID:11287951

  3. Timescales of rhyolite formation at a mid-ocean ridge: Alarcon Rise segment of the northern East Pacific Rise.

    NASA Astrophysics Data System (ADS)

    Dreyer, B. M.; Clague, D. A.; Portner, R. A.; Miggins, D. P.; Coble, M. A.

    2015-12-01

    newly injected melt. These processes may be ubiquitous along ridges, but it is more evident here because the stored, differentiated melts and the newly input mafic melts are so dissimilar chemically and mineralogically.

  4. Hydrothermal and magmatic couplings at mid-ocean ridges : controls on the locations of high-temperature hydrothermal vent fields

    NASA Astrophysics Data System (ADS)

    Rabinowicz, M.; Fontaine, F. J.; Cannat, M.; Escartin, J.

    2012-12-01

    The heat output and thermal regime of oceanic spreading centers are strongly controlled by boundary layer processes between the hydrothermal system and the underlying crustal magma chamber, which remain to be fully understood. In thermal models, the dynamical interactions between the hydrothermal system and the deeper part of the lithosphere affected by processes such as magma chamber convection, magma crystallization and latent heat release, or simple conduction, is usually not considered and a ad-hoc temperature or heat flux is prescribed at the base of the hydrothermal layer. In this work we develop original two-dimensional numerical models of the interactions between a shallow cellular hydrothermal (porous) system at temperatures <700°C in the upper crust, and a deeper magmatic (viscous) layer at temperatures up to 1200°C representing the lower crust. Our formalism allows for a dynamical interface between the two layers, which is fluctuating according to the dynamics of each layer. We systematically investigate the range of permeability and viscosity that characterized the dynamics of the porous and magmatic systems, respectively. An intriguing and highly debated question that we investigate is about the genesis of focused (i.e., kilometer-wide), hundreds-of-mega-watt (MW) powerfull, high-temperature (300-400°C) hydrothermal fields such as those discovered along the East Pacific Rise at 9°50'N or along the Juan de Fuca ridge/Endeavour segment for example. One hypothesis is that these fields require the formation of "elongated" hydrothermal convection cells that cool the crust on 5-10 kms, but the processes controlling the formation of such large aspect ratio (length/height) are poorly constrain. Our models show that such cells naturally arise from the dynamical coupling between a « low-viscosity », convecting lower-crust and a low-permeability upper hydrothermal layer. They also predict along-axis variations in the depth of the axial magma lens (AMC

  5. Hydrothermal and magmatic couplings at mid-ocean ridges : controls on the locations of high-temperature hydrothermal vent fields

    NASA Astrophysics Data System (ADS)

    Fontaine, Fabrice; Rabinowicz, Michel; Cannat, Mathilde; Escartin, Javier

    2013-04-01

    The heat output and thermal regime of oceanic spreading centers are strongly controlled by boundary layer processes between the hydrothermal system and the underlying crustal magma chamber, which remain to be fully understood. In thermal models, the dynamical interactions between the hydrothermal system and the deeper part of the lithosphere affected by processes such as magma chamber convection, magma crystallization and latent heat release, or simple conduction, is usually not considered and a ad-hoc temperature or heat flux is prescribed at the base of the hydrothermal layer. In this work we develop original two-dimensional numerical models of the interactions between a shallow cellular hydrothermal (porous) system at temperatures <700°C in the upper crust, and a deeper magmatic (viscous) layer at temperatures up to 1200°C representing the lower crust. Our formalism allows for a dynamical interface between the two layers, which is fluctuating according to the dynamics of each layer. We systematically investigate the range of permeability and viscosity that characterized the dynamics of the porous and magmatic systems, respectively. An intriguing and highly debated question that we investigate is about the genesis of focused (i.e., kilometer-wide), hundreds-of-mega-watt (MW) powerfull, high-temperature (300-400°C) hydrothermal fields such as those discovered along the East Pacific Rise at 9°50'N or along the Juan de Fuca ridge/Endeavour segment for example. One hypothesis is that these fields require the formation of "elongated" hydrothermal convection cells that cool the crust on 5-10 kms, but the processes controlling the formation of such large aspect ratio (length/height) are poorly constrain. Our models show that such cells naturally arise from the dynamical coupling between a « low-viscosity », convecting lower-crust and a low-permeability upper hydrothermal layer. They also predict along-axis variations in the depth of the axial magma lens (AMC

  6. Two-component mantle melting-mixing model for the generation of mid-ocean ridge basalts: Implications for the volatile content of the Pacific upper mantle

    NASA Astrophysics Data System (ADS)

    Shimizu, Kei; Saal, Alberto E.; Myers, Corinne E.; Nagle, Ashley N.; Hauri, Erik H.; Forsyth, Donald W.; Kamenetsky, Vadim S.; Niu, Yaoling

    2016-03-01

    We report major, trace, and volatile element (CO2, H2O, F, Cl, S) contents and Sr, Nd, and Pb isotopes of mid-ocean ridge basalt (MORB) glasses from the Northern East Pacific Rise (NEPR) off-axis seamounts, the Quebrada-Discovery-GoFar (QDG) transform fault system, and the Macquarie Island. The incompatible trace element (ITE) contents of the samples range from highly depleted (DMORB, Th/La ⩽ 0.035) to enriched (EMORB, Th/La ⩾ 0.07), and the isotopic composition spans the entire range observed in EPR MORB. Our data suggest that at the time of melt generation, the source that generated the EMORB was essentially peridotitic, and that the composition of NMORB might not represent melting of a single upper mantle source (DMM), but rather mixing of melts from a two-component mantle (depleted and enriched DMM or D-DMM and E-DMM, respectively). After filtering the volatile element data for secondary processes (degassing, sulfide saturation, assimilation of seawater-derived component, and fractional crystallization), we use the volatiles to ITE ratios of our samples and a two-component mantle melting-mixing model to estimate the volatile content of the D-DMM (CO2 = 22 ppm, H2O = 59 ppm, F = 8 ppm, Cl = 0.4 ppm, and S = 100 ppm) and the E-DMM (CO2 = 990 ppm, H2O = 660 ppm, F = 31 ppm, Cl = 22 ppm, and S = 165 ppm). Our two-component mantle melting-mixing model reproduces the kernel density estimates (KDE) of Th/La and 143Nd/144Nd ratios for our samples and for EPR axial MORB compiled from the literature. This model suggests that: (1) 78% of the Pacific upper mantle is highly depleted (D-DMM) while 22% is enriched (E-DMM) in volatile and refractory ITE, (2) the melts produced during variable degrees of melting of the E-DMM controls most of the MORB geochemical variation, and (3) a fraction (∼65% to 80%) of the low degree EMORB melts (produced by ∼1.3% melting) may escape melt aggregation by freezing at the base of the oceanic lithosphere, significantly enriching it in

  7. Implications of the Iceland Deep Drilling Project for improving understanding of hydrothermal processes at slow spreading mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Elders, Wilfred A.; Friðleifsson, Guðmundur Ómar

    The Iceland Deep Drilling Project (IDDP) is investigating producing geothermal energy from magma-hydrothermal systems at supercritical conditions. This requires drilling to depths of 4 to 5 km where temperatures should be in the range of 450-600°C or higher. Modeling studies suggest producing superheated steam from supercritical temperatures >450°C could increase power output tenfold relative to steam produced from a 300°C reservoir. The first IDDP well was drilled at Krafla within a volcanic caldera in the active rift zone of NE Iceland. At the end of June 2009, drilling was terminated at only 2100 m depth when a >900°C rhyolitic magma flowed into the drill hole. The well was completed with a casing cemented a few meters above the magma. Depending on the result of a planned flow test, there is the possibility of creating the world's hottest "Engineered Geothermal System" by injecting water in a nearby well to produce superheated steam from the magma. An advantage of such a strategy would be that the acidic gases likely to be given off by the magma could be neutralized by injecting suitably treated water. Two new wells, ˜4 km deep, are planned to be drilled during 2010-2012 at the Hengill and the Reykjanes geothermal fields in SW Iceland to explore for supercritical zones. The Reykjanes geothermal system produces hydrothermally modified seawater. This presents an ideal situation to study a high-temperature magma-hydrothermal system at depth analogous to those responsible for the black smokers at submarine divergent plate margins.

  8. Modeling mid-ocean ridge hydrothermal response to earthquakes, tides, and ocean currents: a case study at the Grotto mound, Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Xu, G.; Bemis, K. G.

    2014-12-01

    Seafloor hydrothermal systems feature intricate interconnections among oceanic, geological, hydrothermal, and biological processes. The advent of the NEPTUNE observatory operated by Ocean Networks Canada at the Endeavour Segment, Juan de Fuca Ridge enables scientists to study these interconnections through multidisciplinary, continuous, real-time observations. The multidisciplinary observatory instruments deployed at the Grotto Mound, a major study site of the NEPTUNE observatory, makes it a perfect place to study the response of a seafloor hydrothermal system to geological and oceanic processes. In this study, we use the multidisciplinary datasets recorded by the NEPTUNE Observatory instruments as observational tools to demonstrate two different aspects of the response of hydrothermal activity at the Grotto Mound to geological and oceanic processes. First, we investigate a recent increase in venting temperature and heat flux at Grotto observed by the Benthic and Resistivity Sensors (BARS) and the Cabled Observatory Vent Imaging Sonar (COVIS) respectively. This event started in Mar 2014 and is still evolving by the time of writing this abstract. An initial interpretation in light of the seismic data recorded by a neighboring ocean bottom seismometer on the NEPTUNE observatory suggests the temperature and heat flux increase is probably triggered by local seismic activities. Comparison of the observations with the results of a 1-D mathematical model simulation of hydrothermal sub-seafloor circulation elucidates the potential mechanisms underlying hydrothermal response to local earthquakes. Second, we observe significant tidal oscillations in the venting temperature time series recorded by BARS and the acoustic imaging of hydrothermal plumes by COVIS, which is evidence for hydrothermal response to ocean tides and currents. We interpret the tidal oscillations of venting temperature as a result of tidal loading on a poroelastic medium. We then invoke poroelastic

  9. A Dual-Porosity, In Situ Crystallisation Model For Fast-Spreading Mid-Ocean Ridge Magma Chambers Based Upon Direct Observation From Hess Deep

    NASA Astrophysics Data System (ADS)

    MacLeod, C. J.; Lissenberg, C. J.

    2014-12-01

    We propose a revised magma chamber model for fast-spreading mid-ocean ridges based upon a synthesis of new data from a complete section of lower crust from the East Pacific Rise, reconstructed from samples collected from the Hess Deep rift valley during cruise JC21. Our investigation includes detailed sampling across critical transitions in the upper part of the plutonic section, including the inferred axial melt lens (AML) within the dyke-gabbro transition. We find that an overall petrological progression, from troctolite and primitive gabbro at the base up into evolved (oxide) gabbro and gabbronorite at the top of the lower crustal section, is mirrored by a progressive upward chemical fractionation as recorded in bulk rock and mineral compositions. Crystallographic preferred orientations measured using EBSD show that the downward increase in deformation of mush required in crystal subsidence models is not observed. Together these observations are consistent only with a model in which crystallisation of upward migrating evolving melts occurs in situ in the lower crust. Over-enrichment in incompatible trace element concentrations and ratios above that possible by fractional crystallisation is ubiquitous. This implies redistribution of incompatible trace elements in the lower crust by low porosity, near-pervasive reactive porous flow of interstitial melt moving continuously upward through the mush pile. Mass balance calculations reveal a significant proportion of this trace element enriched melt is trapped at mid-crustal levels. Mineral compositions in the upper third to half of the plutonic section are too evolved to represent the crystal residues of MORB. Erupted MORB therefore must be fed from melts sourced in the deeper part of the crystal mush pile, and which must ascend rapidly without significant modification in the upper plutonics or AML. From physical models of mush processes we posit that primitive melts are transported through transient, high porosity

  10. Lava-seawater vapor interaction at the mid-ocean ridge crest: an important volcanic process to explain lava transport and flow morphology on the deep sea floor

    NASA Astrophysics Data System (ADS)

    Ridley, W. I.; Perfit, M.; Fornari, D.; Cann, J.; Smith, D.

    2003-12-01

    Eruption of lava from seafloor vents at the mid-ocean ridge (MOR) crest remains a poorly understood phenomena, despite the fact that it is the dominant volcanic process on earth. During the last decade only a handful of MOR eruptions have been documented using either NOAA-PMEL hydrophone detected events or serendipity, and observations of seafloor manifestations of those effusive events did not capture the actual interaction between erupted lava and near-freezing ambient seawater. Because of the great physical and technological obstacles to actually observing volcanic eruption processes in the deep sea, we must rely on the physical and chemical evidence left behind in the cooled seafloor lava flows to deduce the likely processes that occurred. Based on observations and sampling of numerous lava flows from slow to fast-spreading MORs we find a plethora of delicate macroscopic features preserved on the crusts of lava flows and in lava pillars that suggest intense and extensive interactions between hot magma and seawater during seafloor eruptions resulting in a briny vapor phase. Undersides of many lobate and sheet lava crusts have glassy drips (lava stalactites) and flanges (relict bubble walls) that could only have formed in cavities initially filled with a hot vapor at magmatic temperatures as lava was transported across the seafloor. Detailed petrologic observations of the surfaces of drips and flanges, including the presence of molten salt, exotic Cl- and S-bearing secondary silicates, secondary sulfates and almost pure forsterite, suggest that the vapor phase was flashed seawater. This vapor phase is a key to understanding delicate drip structures formed on lava crusts and the mechanisms by which lava is distributed far from eruptive fissures on the deep sea floor. We suggest that vaporized seawater is incorporated at the flow front as lava moves over the seafloor. The vapor rises as streams of bubbles through the lava behind the flow front and then collects

  11. A possible difference in cooling rates recorded in REE in coexisting pyroxenes in peridotites from supra-subduction ophiolites and mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Dygert, N. J.; Liang, Y.; Kelley, K. A.

    2013-12-01

    Recently a REE-in-two-pyroxene thermometer was developed for mafic and ultramafic rocks [1]. This new thermometer is based on temperature sensitive REE partition coefficients between coexisting pyroxenes and calibrated against laboratory partitioning data. Because REE diffusion rates in pyroxene are relatively slow, the thermometer reads a higher temperature than major element based pyroxene thermometers. The difference between major and trace element derived temperatures depends primarily on cooling rate. Here we report new trace element data for peridotites from Trinity and Josephine ophiolites and a modern supra-subduction zone (SSZ) ophiolite analogue (the Mariana trench) determined by laser ablation ICP-MS. We inverted temperatures from the new data and globally distributed ophiolitic peridotite from eight literature studies (Figure 1). Data quality was carefully monitored leaving temperatures from 65 samples. Individual ophiolites usually have temperatures clustered within a range of a few hundred degrees, but the temperature range for the global dataset is greater than 700°C (688-1401°C). Temperatures calculated for the same samples using the two pyroxene thermometer of Brey and Köhler [2] are considerably lower (564-1049°C). REE temperatures are plotted against the major element temperatures [2] in Figure 1. Abyssal peridotites reported in [1] are shown by the peach field. Much of the ophiolite data plots farther from the blue 1:1 line than the abyssal peridotites, suggesting SSZ lithospheric mantle may cool more rapidly at those ophiolites. Fast cooling can be attributed to one or more dynamic differences between mid-ocean ridge (MOR) environments and supra-subduction environments, such as enhanced hydrothermal circulation, thinner oceanic crust, or rapid cooling due to basin closure and obduction. We note that several ophiolites appear to cool more slowly than the abyssal peridotites, however in those samples geochemical evidence suggests secondary

  12. A Gradient in Cooling Rate Beneath the Moho at the Oman Ophiolite: Fresh Insights into Cooling Processes at Mid-Ocean Ridges from REE-Based Thermometry

    NASA Astrophysics Data System (ADS)

    Dygert, N. J.; Kelemen, P. B.; Liang, Y.

    2015-12-01

    The Wadi Tayin massif in the southern Oman ophiolite has a more than 10 km thick mantle section and is believed to have formed in a mid-ocean ridge like environment with an intermediate to fast spreading rate. Previously, [1] used major element geothermometers to investigate spatial variations in temperatures recorded in mantle peridotites and observed that samples near the paleo-Moho have higher closure temperatures than samples at the base of the mantle section. Motivated by these observations, we measured major and trace elements in orthopyroxene and clinopyroxene in peridotites from depths of ~1-8km beneath the Moho to determine closure temperatures of REE in the samples using the REE-in-two-pyroxene thermometer [2]. Clinopyroxene are depleted in LREE and have REE concentrations that vary depending on distance from the Moho. Samples nearer the Moho have lower REE concentrations than those deeper in the section (e.g., chondrite normalized Yb ranges from ~1.5 at the Moho to 4 at 8km depth), consistent with near fractional melting along a mantle adiabat. Orthopyroxene are highly depleted in LREE but measurements of middle to heavy REE have good reproducibility. We find that REE-in-two-pyroxene temperatures decrease with increasing distance from the Moho, ranging from 1325±10°C near the Moho to 1063±24°C near the base of the mantle section. Using methods from [3], we calculate cooling rates of >1000°C/Myr near the Moho, dropping to rates of <10°C/Myr at the bottom of the section. The faster cooling rate is inconsistent with conductive cooling models. Fast cooling of the mantle lithosphere could be facilitated by infiltration of seawater to or beneath the petrologic Moho. This can explain why abyssal peridotites from ultra-slow spreading centers (which lack a crustal section) have cooling rates comparable to those of Oman peridotites [3]. [1] Hanghøj et al. (2010), JPet 51(1-2), 201-227. [2] Liang et al. (2013), GCA 102, 246-260. [3] Dygert & Liang (2015

  13. δ37Cl of Mid-Ocean Ridge Vent Fluids Determined by a new SIMS Method for Stable Chlorine Isotope Ratio Measurements

    NASA Astrophysics Data System (ADS)

    Bach, W.; Layne, G. L.; von Damm, K. L.

    2002-12-01

    A method has been developed for the direct determination of δ37Cl in natural fluid samples or rock leachates (pyrohydrolysis products) using Secondary Ion Mass Spectrometry (SIMS). Samples as small as 1 μl (<2 μg Cl) are simply dried by evaporation and the residual salts are then admixed with 1 mg of graphite powder and pressed into a small (1mm diameter) pellet amenable to SIMS analysis. Analyses are performed with a large format high-transmission, high-resolution ion microprobe -- the IMS 1270. Mass resolving powers of greater than 5000 are used to exclude isobaric interferences on 35Cl and 37Cl, producing an accurate and reproducible measurement of δ37Cl. Nine analyses of NIST Cl isotope standard 975a yield an external reproducibility of 0.5 ‰ (2σ ). Repeat analyses of samples are reproducible within 1 ‰ . First δ37Cl data for mid-ocean ridge hydrothermal vent fluids from three sites at EPR 9°N and the Logatchev site (MAR 15°N) have been collected. End member δ37Cl compositions for the EPR fluids are between +6.5 and +7.1 ‰ , whereas that of the Logatchev fluid is +4.6 ‰ . Together with pore waters from accretionary prisms, which are depleted in 37Cl (-2.0 to -7.7 ‰ ; Ransom et al., Geology, 23, 715-718, 1995), seawater-derived fluids in the marine environment span range in δ37Cl of 15 ‰ . This variability is remarkably large when compared to >100 analyses of continental waters (formation and oil-field waters, fresh waters, brines, etc.) that cluster around 0 ‰ with a maximum variation of only 5 ‰ . Two observations suggest that the 37Cl enriched nature of the vent fluids is not related to phase separation. (1) Laboratory experiments indicate that the Δ37Cl(vapor-brine) associated with super-critical phase separation of seawater between 420 and 450°C is small (-0.6 to 0.2 ‰ ; Magenheim, PhD Thesis, UCSD, 1995). (2) Conjugate vapor-brine pairs of boiling sampled in 1991 and 1994 at F vent (Von Damm et al. EPSL, 149, 101-111, 1997

  14. Igneous Cooling Rate constraints on the Accretion of the lower Oceanic Crust in Mid-ocean Ridges: Insights from a new Thermo-mechanical Model

    NASA Astrophysics Data System (ADS)

    Garrido, C. J.; Machetel, P.

    2005-12-01

    We report the results of a new thermo-mechanical model of crustal flow beneath fast spreading mid-ocean ridges to investigate both the effect of deep, near off-axis hydrothermal convection on the thermal structure of the magma chamber and the role of variable number of melt intrusions on the accretion of the oceanic crust. In our model the melt is injected at the center of the axial magma chamber with a 'needle' with adjustable porosity at different depths allowing the simulation of different arrangements of melt injection and supply within the magma chamber. Conversely to previous models, the shape of the magma chamber -defined as the isotherm where 95% solidification of the melt occurs- is not imposed but computed from the steady state reached by the thermal field considering the heat diffusion and advection and the latent heat of crystallization. The motion equation is solved for a temperature and phase dependent viscosity. The thermal diffusivity is also dependent on temperature and depth, with a higher diffusivity in the upper plutonic crust to account for more efficient hydrothermal cooling at these crustal levels. In agreement with previous non-dynamic thermal models, our results show that near, deep off-axis hydrothermal circulation strongly affects the shape of the axial magma by tightening isotherms in the upper half of the plutonic oceanic crust where hydrothermal cooling is more efficient. Different accretion modes have however little effect on the shape of the magma chamber, but result in variable arrangements of flow lines ranging from tent-shape in a single-lens accretion scenario to sub-horizontal in "sheeted-sill" intrusion models. For different intrusion models, we computed the average Igneous Cooling Rates (ICR) of gabbros by dividing the crystallization temperature interval of gabbros by the integrated time, from the initial intrusion to the point where it crossed the 950 °C isotherm where total solidification of gabbro occurs, along individual

  15. Petrogenesis of Cretaceous adakite-like intrusions of the Gangdese Plutonic Belt, southern Tibet: Implications for mid-ocean ridge subduction and crustal growth

    NASA Astrophysics Data System (ADS)

    Zheng, Yuan-chuan; Hou, Zeng-qian; Gong, Ying-li; Liang, Wei; Sun, Qing-Zhong; Zhang, Song; Fu, Qiang; Huang, Ke-Xian; Li, Qiu-Yun; Li, Wei

    2014-03-01

    least 70% of the magma source region was juvenile materials. Combined with the presence of HT (high temperature) charnockitic magmatism, HT granulite facies metamorphism, and large volumes of Late Cretaceous batholiths, the oceanic-slab-derived Nuri adakitic rocks indicate a substantial high heat flux in the Gangdese batholith belt during the Late Cretaceous, which may have been related to subduction of a Neo-Tethyan mid-ocean ridge system. According to this model, hot asthenosphere would rise up through the corresponding slab window, and come into direct contact with both the oceanic slab and the base of the overlying plate. This would cause melting of both the oceanic slab and the overlying plate by the addition of heat that was ultimately linked with peak magmatism and the significant growth and chemical differentiation of juvenile crust in southern Tibet during the Late Cretaceous (105-76 Ma). In addition, the petrogenesis of the Langxian adakite-like two-mica granite indicates that the southern Tibetan crust was still of normal thickness prior to the emplacement of these intrusions at ca. 76 Ma. This probably means that large parts of southern Tibet were not very highly elevated prior to the Indian-Asian collision.

  16. Mid-ocean ridge basalt generation along the slow-spreading, South Mid-Atlantic Ridge (5-11°S): Inferences from 238U-230Th-226Ra disequilibria

    NASA Astrophysics Data System (ADS)

    Turner, Simon; Kokfelt, Thomas; Hauff, Folkmar; Haase, Karsten; Lundstrom, Craig; Hoernle, Kaj; Yeo, Isobel; Devey, Colin

    2015-11-01

    U-series disequilibria have provided important constraints on the physical processes of partial melting that produce basaltic magma beneath mid-ocean ridges. Here we present the first 238U-230Th-226Ra isotope data for a suite of 83 basalts sampled between 5°S and 11°S along the South Mid-Atlantic Ridge. This section of the ridge can be divided into 5 segments (A0-A4) and the depths to the ridge axis span much of the global range, varying from 1429 to 4514 m. Previous work has also demonstrated that strong trace element and radiogenic isotope heterogeneity existed in the source regions of these basalts. Accordingly, this area provides an ideal location in which to investigate the effects of both inferred melt column length and recycled materials. 226Ra-230Th disequilibria indicate that the majority of the basalts are less than a few millennia old such that their 230Th values do not require any age correction. The U-Th isotope data span a significant range from secular equilibrium up to 32% 230Th excess, also similar to the global range, and vary from segment to segment. However, the (230Th/238U) ratios are not negatively correlated with axial depth and the samples with the largest 230Th excesses come from the deepest ridge segment (A1). Two sub-parallel and positively sloped arrays (for segments A0-2 and A3 and A4) between (230Th/238U) and Th/U ratios can be modelled in various ways as mixing between melts from peridotite and recycled mafic lithologies. Despite abundant evidence for source heterogeneity, there is no simple correlation between (230Th/238U) and radiogenic isotope ratios suggesting that at least some of the trace element and radiogenic isotope variability may have been imparted to the source regions >350 kyr prior to partial melting to produce the basalts. In our preferred model, the two (230Th/238U) versus Th/U arrays can be explained by mixing of melts from one or more recycled mafic lithologies with melts derived from chemically heterogeneous

  17. Plume capture by divergent plate motions: implications for the distribution of hotspots, geochemistry of mid-ocean ridge basalts, and estimates of the heat flux at the core-mantle boundary

    NASA Astrophysics Data System (ADS)

    Jellinek, A. Mark; Gonnermann, Helge M.; Richards, Mark A.

    2003-01-01

    The coexistence of stationary mantle plumes with plate-scale flow is problematic in geodynamics. We present results from laboratory experiments aimed at understanding the effects of an imposed large-scale circulation on thermal convection at high Rayleigh number (10 6≤Ra≤10 9) in a fluid with a temperature-dependent viscosity. In a large tank, a layer of corn syrup is heated from below while being stirred by large-scale flow due to the opposing motions of a pair of conveyor belts immersed in the syrup at the top of the tank. Three regimes are observed, depending on the ratio V of the imposed horizontal flow velocity to the rise velocity of plumes ascending from the hot boundary, and on the ratio λ of the viscosity of the interior fluid to the viscosity of the hottest fluid in contact with the bottom boundary. When V≪1 and λ≥1, large-scale circulation has a negligible effect on convection and the heat flux is due to the formation and rise of randomly spaced plumes. When V>10 and λ>100, plume formation is suppressed entirely, and the heat flux is carried by a sheet-like upwelling located in the center of the tank. At intermediate V, and depending on λ, established plume conduits are advected along the bottom boundary and ascending plumes are focused towards the central upwelling. Heat transfer across the layer occurs through a combination of ascending plumes and large-scale flow. Scaling analyses show that the bottom boundary layer thickness and, in turn, the basal heat flux q depend on the Peclet number, Pe, and λ. When λ>10, q∝Pe 1/2 and when λ→1, q∝(Pe λ) 1/3, consistent with classical scalings. When applied to the Earth, our results suggest that plate-driven mantle flow focuses ascending plumes towards upwellings in the central Pacific and Africa as well as into mid-ocean ridges. Furthermore, plumes may be captured by strong upwelling flow beneath fast-spreading ridges. This behavior may explain why hotspots are more abundant near slow

  18. Experimental study on weathering of seafloor volcanic glass by bacteria (Pseudomonas fluorescens) - Implications for the contribution of bacteria to the wate-rock reaction at the Mid-Oceanic Ridge setting

    NASA Astrophysics Data System (ADS)

    Chen, Shun; Wu, Zijun; Peng, Xiaotong

    2014-08-01

    biogeochemical cycling process in the Mid-Oceanic Ridge setting.

  19. Sub-km HIMU-type Enriched Mantle at a Mid-ocean Ridge Far From a Plume: Endeavour, JdFR

    NASA Astrophysics Data System (ADS)

    Gill, J. B.; Michael, P. J.; Dreyer, B. M.; Clague, D. A.; Ramos, F. C.

    2015-12-01

    The Endeavour segment of the Juan de Fuca Ridge is characterized by abundant enriched (E) MORB since the currently inflated axial ridge formed <105 years ago, and by the full range of depleted (D) to E-MORB during the last 2300 years in the km-wide axial graben. Two different styles of enrichment of moderately incompatible elements are present. The first characterized basalts across the ~5 km-wide ridge from >10,000 to ~4000 years ago, whereas the second characterizes more recent basalts erupted in the axial graben. We attribute the first to a higher proportion of pyroxenite to enriched peridotite in the mantle source during ridge inflation. The more recent style reflects the reduced role of pyroxenite after the axial graben formed. The enriched component for both styles is a HIMU-type because it has low 87Sr/86Sr and 176Hf/177Hf relative to 143Nd/144Nd, lower 3He/4He (~8.1 RA) than in the more depleted basalts, shallow slopes on Pb isotope diagrams, and high Nb/LREE ratios. It is regionally widespread and shared with the West Valley and Explorer segments to the north. At least 14 different samplings of mantle components occurred within <1 km of ridge length and width during a time when <1 km of upwelling occurred, indicating that the scale of mantle heterogeneity is <1 km in this setting that is far from a plume.

  20. Design of an integrated flow sensor device with application for monitoring in-situ pH and redox of hydrothermal diffuse flow fluids at mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Ding, K.; Seyfried, W. E.; Tan, C.; Jin, B.; Chen, Y.

    2009-05-01

    In-situ measurement of fluid chemistry with chemical sensors at deep sea conditions is always affected by drifting phenomena, which can be especially serious for long-term monitoring studies. Although fundamental changes in sensor design can be used to lessen the effect of this, in-situ calibration is still an unusually effective means to ensure measurement accuracy. With recent development of more reliable valves and pumps applicable for deep sea operation, together with results of laboratory studies showing the viability of solid state chemical sensors, it now possible to achieve in-situ calibration for sensor measurements under challenging chemical and physical conditions. Thus, a new flow device has been designed to facilitate chemical sensor measurements (e.g., pH and redox) in diffuse flow hydrothermal systems at mid-ocean ridges. The integrated calibration and measurement system was developed with a notion of promoting in-situ data acquisition at deep-sea vents for extended periods of time. Accordingly, it enables integration of multiple thermal and chemical sensors, while allowing automated in-situ calibration during deployment. Laboratory tests have successfully demonstrated the effectiveness of this in-situ calibration. For instance in the case of pH measurement with Ir/IrOx pH sensor in NaCl-bearing fluid at 220 bars, the device not only insured reliable measurement in seawater-type fluids, but also revealed effectiveness during measurement of fluids having dissolved CO2 up to 0.52 mol/kg, which is relevant to conditions likely in volcanically active back- arc settings, fluids issuing from cold seeps, as well as monitoring studies in connection with different carbon sequestration scenarios. The sea-going device consists of a sensor cell with limited internal volume of ~ 1 ml for more effectively enhancing interaction between incoming sample fluid and integrated temperature/chemical sensors. The instrument also contains a computer-controlled process

  1. Response to Comment on “Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply”

    NASA Astrophysics Data System (ADS)

    Olive, J.-A.; Behn, M. D.; Ito, G.; Buck, W. R.; Escartín, J.; Howell, S.

    2016-07-01

    Tolstoy reports the existence of a characteristic 100 thousand year (ky) period in the bathymetry of fast-spreading seafloor but does not argue that sea level change is a first-order control on seafloor morphology worldwide. Upon evaluating the overlap between tectonic and Milankovitch periodicities across spreading rates, we reemphasize that fast-spreading ridges are the best potential recorders of a sea level signature in seafloor bathymetry.

  2. Response to Comment on “Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply”

    NASA Astrophysics Data System (ADS)

    Olive, J.-A.; Behn, M. D.; Ito, G.; Buck, W. R.; Escartín, J.; Howell, S.

    2016-06-01

    Huybers et al. present new bathymetric spectra from an intermediate-spreading ridge as evidence for a primary contribution of sea level cycles to the morphology of the seafloor. Although we acknowledge the possibility that sea level–modulated magmatic constructions may be superimposed on a first-order tectonic fabric, we emphasize the difficulty of deciphering these different contributions in the frequency domain alone.

  3. Complete genome sequence of the heavy metal resistant bacterium Altererythrobacter atlanticus 26DY36(T), isolated from deep-sea sediment of the North Atlantic Mid-ocean ridge.

    PubMed

    Wu, Yue-Hong; Cheng, Hong; Zhou, Peng; Huo, Ying-Yi; Wang, Chun-Sheng; Xu, Xue-Wei

    2015-12-01

    Altererythrobacter atlanticus 26DY36(T) (CGMCC 1.12411(T)=JCM 18865(T)) was isolated from the North Atlantic Mid-Ocean Ridge. The strain is resistant to heavy metals, such as Mn(2+) (200 mM), Co(2+) (2.0mM), Cu(2+) (1mM), Zn(2+) (1mM), Hg(2+) (0.1mM) and Cd(2+) (0.5mM). Here we describe the genome sequence and annotation, as well as the features of the organism. A. atlanticus 26DY36(T) harbors a chromosome (3,386,291 bp) and a circular plasmid (88,815 bp). The genome contains 3322 protein-coding genes (2483 with predicted functions), 47 tRNA genes and 6 rRNA genes. A. atlanticus 26DY36(T) encodes dozens of genes related to heavy metal resistance and has potential applications in the bioremediation of heavy metal-contaminated environments. PMID:26508671

  4. Colonization by pioneer populations of ɛ-Proteobacteria and community succession at mid-ocean ridge hydrothermal vents as determined by T-RFLP analysis

    NASA Astrophysics Data System (ADS)

    Moyer, C. L.; Engebretson, J. J.

    2002-12-01

    Terminal-restriction fragment length polymorphism (T-RFLP) patterns were used to track populations of bacteria occurring within multiple bacterial growth chambers (BGCs) deployed at eight diffuse-flow (Tmax=78°C) hydrothermal vent orifices located within the caldera of Axial Volcano, Juan de Fuca Ridge. For comparison, two distal diffuse vents located at the Magic Mountain area on the Explorer Ridge were also examined. Over a five-year sampling period in conjunction with the NeMO (New Millennium Observatory) program, 52 BGCs were recovered after either a short-term (days) or long-term (annual) deployment. Upon recovery, genomic DNA was extracted and amplified using bacterial-specific PCR primers to generate 5' fluorescently-labeled amplicons of small subunit rRNA genes (i.e., SSU rDNAs). These PCR amplicons were digested with multiple tetrameric restriction endonucleases and the respective community diversity and succession patterns were characterized. The average number of populations (a measure of species richness) within the community that developed in short-term deployed BGCs was significantly lower than those detected in long-term deployed BGCs. All short-term BGC communities were dominated by primary colonizers or pioneer populations indicative of ɛ-Proteobacteria, of which, specific phylogenetic groups were recognized at vent sites throughout the five-year sampling period. The long-term BGCs showed evidence of successional events by an increased occurrence of numerous other populations accompanying the pioneer populations of ɛ-Proteobacteria. The discovery that all primary colonizing populations were most similar to known lineages of ɛ-Proteobacteria detected from hydrothermal vents located worldwide provides further evidence that a few cosmopolitan populations are capable of acting as the primary microbial successors of newly-formed hydrothermal vent systems.

  5. In-Situ pH Measurements in Mid-Ocean Ridge Hydrothermal Vent Fluids: Constraints on Subseafloor Alteration Processes at Crustal Depths

    NASA Astrophysics Data System (ADS)

    Schaen, A. T.; Ding, K.; Seyfried, W. E.

    2013-12-01

    Developments in electrochemistry and material science have facilitated the construction of ceramic (YSZ) based chemical sensor systems that can be used to measure and monitor pH and redox in aqueous fluids at elevated temperatures and pressures. In recent years, these sensor systems have been deployed to acquire real-time and time series in-situ data for high-temperature hydrothermal vent fluids at the Main Endeavour Field (Juan de Fuca Ridge), 9oN (East Pacific Rise), and at the ultramafic-hosted Rainbow field (36oN, Mid-Atlantic Ridge). Here we review in-situ pH data measured at these sites and apply these data to estimate the pH of fluids ascending to the seafloor from hydrothermal alteration zones deeper in the crust. In general, in-situ pH measured at virtually all vent sites is well in excess of that measured shipboard owing to the effects of temperature on the distribution of aqueous species and the solubility of metal sulfides, especially Cu and Zn, originally dissolved in the vent fluids. In situ pH measurements determined at MEF (Sully vent) and EPR 9oN (P-vent) in 2005 and 2008 were 4.4 ×0.02 and 5.05×0.05, respectively. The temperature and pressure (seafloor) of the vent fluids at each of the respective sites were 356oC and 220 bar, and 380oC and 250 bar. Plotting these data with respect to fluid density reveals that the in-situ pH of each vent fluid is approximately 1.5 pH units below neutrality. The density-pH (in-situ) correlation, however, is important because it provides a means from which the vent fluids were derived. Using dissolved silica and chloride from fluid samples at the MEF (Sully) suggest T/P conditions of approximately 435oC, 380 bar, based on quartz-fluid and NaCl-H2O systems. At the fluid density calculated for these conditions, pH (in-situ) is predicted to be ~6.2. Attempts are presently underway to assess the effect of the calculated pH on metal sulfide and silicate (e.g., plagioclase, chlorite) solubility in comparison with

  6. Depth-dependent permeability of hydrothermal discharge zones: measurements through tidal modulation and implications for mid-ocean ridge heat budgets

    NASA Astrophysics Data System (ADS)

    Barreyre, T.; Crone, T. J.; Olive, J. A. L.

    2015-12-01

    The efficiency of hydrothermal circulation as a heat and mass exchanger is strongly modulated by the permeability structure of newly formed oceanic crust, which is known to vary spatially and temporally. Here we use the modulation of discharge temperatures by oscillatory tidal loading to estimate permeability vs. depth profiles beneath hydrothermal discharge zones at three basalt-hosted hydrothermal fields. Phase lags between fluctuations in discharge temperature and seafloor tidal loading have previously been inverted for the permeability of the underlying discharge zone using the poroelastic modulation model of Jupp and Schulz [2004]. This has yielded a wide range of permeability estimates ranging from 10-13­-10-9 m2. Here we extend the model to a stratified medium comprising a top layer (2A) of permeability k2A overlying a bottom layer (2B) of permeability k2B. We apply it to three basalt-hosted hydrothermal fields on a slow- (Lucky Strike), intermediate- (Main Endeavour Field), and fast-spreading (East Pacific Rise, EPR-9ºN) ridge, where stratification is well known from seismic studies. We estimate a layer 2A permeability of ~10-10 m2 at Lucky Strike, in sharp contrast with EPR-9ºN, where k2A ~ 10-13 m2. At the Main Endeavour field, two different sites located above different distinct discharge zones (as indicated by magnetic studies) yield a high and a low permeability. The permeability of layer 2B is not as well constrained as that of layer 2A, with possible values ranging from 10-14-10-12 m2. We note, however, that the variability in measured phase lags across hydrothermal fields is compatible with a uniform layer 2B permeability of ~10-13 m2. Using theoretical scalings for high-Rayleigh porous convection, we demonstrate that the permeability of layer 2B sets the "effective permeability" of the entire convective system, and therefore the efficiency of heat extraction through young oceanic crust. A uniform layer 2B permeability would thus reconcile the

  7. Geochemical Controls on the Mobility of Cu and Fe in Hydrothermal Vent Fluids at Mid-Ocean Ridges: Experimental and Theoretical Constraints

    NASA Astrophysics Data System (ADS)

    Schaen, A. T.; Tutolo, B. M.; Seyfried, W. E.

    2012-12-01

    It has long been recognized that MOR hydrothermal vent fluids are characterized by variably high concentrations of dissolved transition metals. These metalliferous fluids play a role in the formation of seafloor massive sulfide deposits, serving as analogues for similar deposits on land, while also contributing to the flux of metals to seawater, with biogeochemical implications. Owing to the evolution of magmatic and tectonic processes associated with crustal formation at both fast and slow spreading ridges, chemical and physical conditions can change in space and time with corresponding changes in the solubility of Cu and Fe. Indeed, time series observations of hydrothermal vent fluids at EPR 9o N have provided unambiguous evidence of both diking and eruptive events with important implications for temperature and pressure changes affecting phase equilibria controls on mineral solubility. At the same time, recent advances in theoretical data have resulted in more robust thermodynamic models that can be used to calculate the effect of temperature and pressure, redox variability and dissolved chloride on metal mobility. However, fluid speciation calculations employing currently accepted Helgeson-Kirkham-Flowers (HKF) parameters for aqueous species result in Cu and Fe solubilities that differ significantly from constraints imposed by published experimental data and sampled MOR vent fluids. Consequently, new thermodynamic data is retrieved in this study from recent high P, T experimental data for Cu and Fe complexes and validated against new experiments to ensure accurate fluid speciation and trace metal solubility calculations. The addition of new experimental data to the thermodynamic data retrieval process strengthens predictions of geochemical interactions not only at the P and T of the experiments, but also over the entire range of applicability of the HKF model. For example, theoretical modeling of seawater salinity fluids (550 mmol/kg Cl) at 400 oC show

  8. Anhydrite Solubility and Ca Isotope Fractionation in the Vapor-Liquid Field of the NaCl-H2O System: Implications for Hydrothermal Vent Fluids at Mid-ocean Ridges

    NASA Astrophysics Data System (ADS)

    Scheuermann, P.; Syverson, D. D.; Higgins, J. A.; Seyfried, W. E., Jr.

    2015-12-01

    mid-ocean ridges.

  9. Hydrothermal activity on near-arc sections of back-arc ridges: Results from the Mariana Trough and Lau Basin

    NASA Astrophysics Data System (ADS)

    Baker, Edward T.; Massoth, Gary J.; Nakamura, Ko-Ichi; Embley, Robert W.; de Ronde, Cornel E. J.; Arculus, Richard J.

    2005-09-01

    The spatial density of hydrothermal venting is strongly correlated with spreading rate on mid-ocean ridges (with the interesting exception of hot spot-affected ridges), evidently because spreading rate is a reliable proxy for the magma budget. This correlation remains untested on spreading ridges in back-arc basins, where the magma budget may be complicated by subduction-induced variations of the melt supply. To address this uncertainty, we conducted hydrothermal plume surveys along slow-spreading (40-60 mm/yr) and arc-proximal (10-60 km distant) sections of the southern Mariana Trough and the Valu Fa Ridge (Lau Basin). On both sections we found multiple plumes overlying ˜15-20% of the total length of each section, a coverage comparable to mid-ocean ridges spreading at similar rates. These conditions contrast with earlier reported results from the two nearest-arc segments of a faster spreading (60-70 mm/yr) back-arc ridge, the East Scotia Ridge, which approaches no closer than 100 km to its arc. There, hydrothermal venting is relatively scarce (˜5% plume coverage) and the ridge characteristics are distinctly slow-spreading: small central volcanic highs bookended by deep median valleys, and axial melt lenses restricted to the volcanic highs. Two factors may contribute to an unexpectedly low hydrothermal budget on these East Scotia Ridge segments: they may lie too far from the adjacent arc to benefit from near-arc sources of melt supply, and subduction-aided migration of mantle from the Bouvet hot spot may reduce hydrothermal circulation by local crustal warming and thickening, analogous to the Reykjanes Ridge. Thus the pattern among these three ridge sections appears to mirror the larger global pattern defined by mid-ocean ridges: a well-defined trend of spreading rate versus hydrothermal activity on most ridge sections, plus a subset of ridge sections where unusual melt delivery conditions diminish the expected hydrothermal activity.

  10. Carbon and its isotopes in mid-oceanic basaltic glasses

    USGS Publications Warehouse

    Des Marais, D.J.; Moore, J.G.

    1984-01-01

    Three carbon components are evident in eleven analyzed mid-oceanic basalts: carbon on sample surfaces (resembling adsorbed gases, organic matter, or other non-magmatic carbon species acquired by the glasses subsequent to their eruption), mantle carbon dioxide in vesicles, and mantle carbon dissolved in the glasses. The combustion technique employed recovered only reduced sulfur, all of which appears to be indigenous to the glasses. The dissolved carbon concentration (measured in vesicle-free glass) increases with the eruption depth of the spreading ridge, and is consistent with earlier data which show that magma carbon solubility increases with pressure. The total glass carbon content (dissolved plus vesicular carbon) may be controlled by the depth of the shallowest ridge magma chamber. Carbon isotopic fractionation accompanies magma degassing; vesicle CO2 is about 3.8??? enriched in 13C, relative to dissolved carbon. Despite this fractionation, ??13CPDB values for all spreading ridge glasses lie within the range -5.6 and -7.5, and the ??13CPDB of mantle carbon likely lies between -5 and -7. The carbon abundances and ??13CPDB values of Kilauea East Rift glasses apparently are influenced by the differentiation and movement of magma within that Hawaiian volcano. Using 3He and carbon data for submarine hydrothermal fluids, the present-day mid-oceanic ridge mantle carbon flux is estimated very roughly to be about 1.0 ?? 1013 g C/yr. Such a flux requires 8 Gyr to accumulate the earth's present crustal carbon inventory. ?? 1984.

  11. He, Ne and Ar isotope signatures of mid-ocean ridge basalts and their implications for upper mantle structure: A case study from the Mid-Atlantic Ridge at 4-12°S

    NASA Astrophysics Data System (ADS)

    Stroncik, Nicole A.; Niedermann, Samuel

    2016-06-01

    The geochemical structure of the upper mantle in general and its noble gas isotopic structure in particular have been the subject of countless studies, as both provide important insights into mantle dynamic processes and are essential for the formulation of mantle geodynamic models. This contribution presents a noble gas study of basaltic glasses derived from the Mid-Atlantic Ridge (MAR) between 4° and 12°S, an area well known for its high degree of lithophile isotope heterogeneity and its anomalous crustal thickness. The Sr, Nd, Pb and Hf isotopic systematics along this segment of the MAR range from strongly depleted (i.e. more depleted than N-MORB) to highly enriched. Different concepts have been proposed to explain the observed isotopic signatures. Here we show that the high degree of heterogeneity is not confined to the isotopes of the lithophile elements, but is also shown by the noble gas isotopes and noble gas interelement ratios, such as 3He/22NeM or 4He/40Ar∗. Helium isotopic ratios (3He/4He), 21Ne/22Neextra and 40Ar/36Ar range from 7.34 ± 0.06 to 9.38 ± 0.08 RA, from 0.039 ± 0.020 to 0.075 ± 0.007, and from 346 ± 5 to 37,400 ± 1300, respectively. However, the majority of the Ne isotope data are clearly aligned along a single mixing line in the Ne three-isotope diagram, represented by the equation 20Ne/22Ne = 70.5 × 21Ne/22Ne + 7.782, with a slope distinctly less than that of the MORB line. This indicates that the strongly depleted material is characterised by a significantly more nucleogenic Ne isotopic composition than the normal depleted mantle. We show, based on covariations between 3He/4He and 21Ne/22Neextra with 206Pb/204Pb and 178Hf/177Hf that the strongly depleted material erupted at this MAR segment was most likely produced by an ancient melting event. This implies that isotopic heterogeneities in the upper mantle are not solely caused by the injection of enriched materials from deep-seated mantle plumes or by crustal recycling but may

  12. Hydrothermal Activity on ultraslow Spreading Ridge: new hydrothermal fields found on the Southwest Indian ridge

    NASA Astrophysics Data System (ADS)

    Tao, C.; Li, H.; Deng, X.; Lei, J.; Wang, Y.; Zhang, K.; Zhou, J.; Liu, W.

    2014-12-01

    Ultraslow spreading ridge makes up about 25% of global mid-ocean ridge length. Previous studies believed that hydrothermal activity is not widespread on the ultraslow spreading ridge owing to lower magma supply. Southwest Indian ridge (SWIR) with the spreading rate between 1.2cm/a to 1.4cm/a, represents the ultraslow spreading ridge. In 2007, Chinese Cruise (CC) 19th discovered the Dragon Flag deposit (DFD) on the SWIR, which is the first active hydrothermal field found on the ultraslow spreading ridge. In recent years, over 10 hydrothermal fields have been found on the SWIR between Indomed and Gallieni transform faults by the Chinese team. Tao et al. (2012) implied that the segment sections with excess heat from enhanced magmatism and suitable crustal permeability along slow and ultraslow ridges might be the most promising areas for searching for hydrothermal activities. In 2014, CC 30thdiscovered five hydrothermal fields and several hydrothermal anomalies on the SWIR. Dragon Horn Area (DHA). The DHA is located on the southern of segment 27 SWIR, with an area of about 400 km2. The geophysical studies indicated that the DHA belongs to the oceanic core complex (OCC), which is widespread on the slow spreading ridges (Zhao et al., 2013). The rocks, such as gabbro, serpentinized peridotite, and consolidated carbonate were collected in the DHA, which provide the direct evidence with the existence of the OCC. However, all rock samples gathered by three TV-grab stations are basalts on the top of the OCC. A hydrothermal anomaly area, centered at 49.66°E,37.80° S with a range of several kms, is detected in the DHA. It is probably comprised of several hydrothermal fields and controlled by a NW fault. New discovery of hydrothermal fields. From January to April 2014, five hydrothermal fields were discovered on the SWIR between 48°E to 50°E during the leg 2&3 of the CC 30th, which are the Su Causeway field (48.6°E, 38.1°S), Bai Causeway field (48.8°E, 37.9 °S), Dragon

  13. Dynamics of melt generation beneath mid-ocean ridge axes: Theoretical analysis based on [sup 238]U-[sup 230]Th-[sup 226]Ra and [sup 235]U-[sup 231]Pa disequilibria

    SciTech Connect

    Zhenwei Qin )

    1993-04-01

    Although slow melting favors the generation of basaltic melt from a mantle matrix with large radioactive disequilibrium between two actinide nuclides (McKenzie, 1985a), it results in long residence time in a magma chamber, during which the disequilibrium may be removed. An equilibrium melting model modified after McKenzie (1985a) is presented here which suggests that, for a given actinide parent-daughter pair, there exists a specific melting rate at which disequilibrium between these two nuclides reaches its maximum. This melting rate depends on the decay constant of the daughter nuclide concerned and the magma chamber volume scaled to that of its source. For a given scaled chamber size, large radioactive disequilibrium between two actinide nuclides in basalts will be observed if the melting rate is such that the residence time of the magma in the chamber is comparable to the mean life of the daughter nuclide. With a chamber size 1% in volume of the melting source, the melting rates at which maximum disequilibrium in basalts is obtained are 10[sup [minus]7], 2 [times] 10[sup [minus]7], and 3 [times] 10[sup [minus]6] y[sup [minus]1], respectively for [sup 238]U-[sup 230]Th, [sup 235]U-[sup 231]Pa, and [sup 230]Th-[sup 226]Ra. This implies that, while large disequilibrium between [sup 238]U-[sup 230]Th and between [sup 235]U-[sup 231]Pa may occur together, large [sup 230]Th-[sup 226]Ra disequilibrium will not coexist with large [sup 238]U-[sup 230]Th disequilibrium, consistent with some observations. The active mantle melting zone which supplies melt to a ridge axis is inferred to be only about 10 km thick and 50 km wide. The fraction of melt present in such a mantle source at any time is about 0.01 and 0.04, respectively, if melting rate is 10[sup [minus]7] and 10[sup [minus]6] y[sup [minus]1]. The corresponding residence time of the residual melt in the matrix is 10[sup 5] and 4 [times] 10[sup 4] y. 27 refs., 3 figs.

  14. Axial Magma System Geometry beneath a Fast-Spreading Mid-Ocean Ridge: Insight from Three-Dimensional Seismic Reflection Imaging on the East Pacific Rise 9º42' to 9º57'N

    NASA Astrophysics Data System (ADS)

    Carton, H. D.; Carbotte, S. M.; Mutter, J. C.; Canales, J. P.; Nedimovic, M. R.

    2014-12-01

    The fast-spreading East Pacific Rise at the 9º50'N Ridge 2000 Integrated Study Site was the focus of the first academic 3D, multi-source, multi-streamer seismic survey, carried out aboard R/V Langseth in summer 2008. The main area of 3D coverage extends from 9º42-57'N, spanning the seafloor extent of two documented volcanic eruptions. There, the 3D geometry of the mid-crustal axial magma lens (AML), located ~1.5 km below the seafloor, was initially investigated using a best 1D stacking velocity function hung from the seafloor and two-pass post-stack time migration. Preliminary results suggested a relatively narrow (~0.5-1.8 km wide) AML showing fingering and overlap of individual magma bodies, particularly in association with several small-scale ridge-axis discontinuities identified from seafloor morphology and structure of the axial summit trough. A westward-dipping limb of the AML was imaged near 9º51'N, where the AML attains its largest width. From 9º53-56'N, the AML was seen to veer slightly westward, in accordance with a shift in orientation of the ridge. Sub-axial magma lenses (SAMLs) have been recently imaged between 9º20' and 9º56'N on along-axis reflection profiles from the same survey, with the suggestion that these deeper lenses may have contributed melts to the 2005/06 eruption. In the cross-axis dataset, SAML events are observed down to ~600-700 ms (~1.7-2 km) below the AML. They sometimes appear slightly offset with respect to the center of the AML. They are generally less bright than the AML reflection, some of them display prominent diffraction tails on un-migrated sections, and the deeper events have a distinctly lower frequency content than the shallower ones. New images for the 9º42-57'N area are currently being generated from a suite of detailed stacking velocities for the AML and SAML events and 3D post-stack time migration, which will provide insight into the width and along-axis continuity of individual magma bodies at multiple levels

  15. Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9°45-52'N: direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991

    USGS Publications Warehouse

    Haymon, R.M.; Fornari, D.J.; Von Damm, K. L.; Lilley, M.D.; Perfit, M.R.; Edmond, J.M.; Shanks, Wayne C., III; Lutz, R.A.; Grebmeier, J.M.; Carbotte, S.; Wright, D.; McLaughlin, E.; Smith, M.; Beedle, N.; Olson, E.

    1993-01-01

    We suggest that, in April, 1991, intrusion of dikes in the eruption area to < 200 m beneath the ASC floor resulted in phase separation of fluids near the tops of the dikes and a large flux of vapor-rich hydrothermal fluids through the overlying rubbly, cavernous lavas. Low salinities and gas-rich compositions of hydrothermal fluids sampled in the eruption area are appropriate for a vapor phase in a seawater system undergoing subcritical liquid-vapor phase separation (boiling) and phase segregation. Hydrothermal fluids streamed directly from fissures and pits that may have been loci of lava drainback and/or hydrovolcanic explosions. These fissures and pits were lined with white mats of a unique fast-growing bacteria that was the only life associated with the brand-new vents. The prolific bacteria, which covered thousands of square meters on the ridge crest and were also abundant in subseafloor voids, may thrive on high levels of gases in the vapor-rich hydrothermal fluids initially escaping the hydrothermal system. White bacterial particulates swept from the seafloor by hydrothermal vents swirled in an unprecedented biogenic ‘blizzard’ up to 50 m above the bottom. The bacterial proliferation of April, 1991 is likely to be a transient bloom that will be checked quickly either by decline of dissolved gas concentrations in the fluids as rapid heat loss brings about cessation of boiling, and/or by grazing as other organisms are re-established in the biologically devastated area.

  16. Mechanisms of magma degassing at mid-oceanic ridges and the local volatile composition (4He-40Ar*-CO2) of the mantle by laser ablation analysis of individual MORB vesicles

    NASA Astrophysics Data System (ADS)

    Colin, A.; Burnard, P.; Marty, B.

    2013-01-01

    Individual vesicles in <1 cm3 samples of MORB glasses commonly preserve significantly different volatile (He, Ar, CO2) compositions. Five separate MORB glass samples from different ridges were investigated, selectively opening targeted vesicles using a 193 nm excimer laser. One sample shows evidence of syn-emplacement selective helium loss from the vesicles in the glass rim close to the crystallised zone of the pillow lava, proving that He contents and low He/Ar ratios do not always reflect mantle and/or magmatic processes. However the composition of the different vesicles of three of these samples covers large ranges in He/Ar and Ar/CO2 with linear variations in plots of ln(He/Ar) vs. ln(Ar/CO2) which are consistent with a Rayleigh distillation at equilibrium and allow the relative abundances of the volatiles in the MORB mantle source to be estimated by correcting for degassing processes on a sample-by-sample basis. This technique presents a new tool for characterising and correcting for volatile fractionation processes that have modified the initial mantle source composition. The results confirm a heterogeneous CO2/3He ratio in the MORB source regions with the Azores mantle source enriched in C/3He compared to that of N-MORBs. The considerable heterogeneity in vesicle compositions within such a small volume (<1 cm3) requires injection of less degassed magma at shallow level before eruption. The maximum time interval between magma mixing and quenching on the seafloor is of the order of a few hours.

  17. Reaction of seawater with fresh mid-ocean ridge gabbro creates ';atypical' REE pattern and high REE fluid fluxes: Experiments at 425 and 475 °C, 400 and 1000 bar

    NASA Astrophysics Data System (ADS)

    Beermann, O.; Garbe-Schönberg, D.; Holzheid, A. D.

    2013-12-01

    High-temperature MOR hydrothermalism significantly affects ocean chemistry. The Sisters Peak (SP) hydrothermal field at 5°S on the slow-spreading Mid-Atlantic Ridge (MAR) emanates fluids >400°C [1] that have high concentrations of H2, transition metals, and rare earth elements (REE) exhibiting ';atypical' REE pattern characterized by depletions of LREE and HREE relative to MREE and no Eu anomaly [2]. This is in contrast to the ';typical' LREE enrichment and strong positive Eu anomaly known from many MOR vent fluids observed world-wide [e.g., 3]. Besides temperature, the seawater-to-rock ratio (w/r ratio) has significant control on the fluid chemistry [e.g., 4, 5]. To understand how vent fluid REE-signatures are generated during water-rock interaction processes we reacted unaltered gabbro with natural bottom seawater at 425 °C and 400 bar and at 425 and 475 °C at 1000 bar at variable w/r (mass) ratios ranging from 0.5-10 by using cold seal pressure vessels (CSPV). The run durations varied from 3-72 h. Reacted fluids were analysed for major and trace elements by ICP-OES and ICP-MS. In our experiments, ';atypical' REE fluid pattern similar to those of SP fluids were obtained at high w/r ratio (5 and 10) that might be characteristic for focused fluid-flow along e.g., detachment faults at slow-spreading MOR [6]. In contrast, more ';typical'-like REE pattern with elevated LREE and slightly positive Eu anomalies have been reproduced at low w/r ratio (0.5-1). Results of numerical simulations imply that strong positive Eu anomalies of fluids and altered gabbro from high temperature MOR hydrothermal systems can be created by intense rock leaching processes at high w/r ratio (5-10). This suggests that hydrothermal circulation through the ocean crust creates ';typical' REE fluid pattern with strong positive Eu anomalies if seawater reacts with gabbroic host rock that has been already leached in REE at high fluid fluxes. Simulations of the temporal chemical evolution of

  18. The First-ever Detection and Tracking of a Mid-Ocean Ridge Volcanic Eruption Using the Recently Completed, NSF-Funded, Submarine Fiber-Optic Network in the Juan de Fuca Region.

    NASA Astrophysics Data System (ADS)

    Delaney, J. R.

    2015-12-01

    The most scientifically diverse and technologically advanced component of the Ocean Observatories Initiative involves 900 km of electro-optical fiber, extending from Pacific City, OR, across active portions of the JDF tectonic plate, and upward into the overlying ocean. Completed in 2014, on time and under budget, this network enables real-time, high-bandwidth, 2-way communication with seafloor/water-column sensor arrays across: 1. the Cascadia accretionary prism, 2. the JdF spreading center, and, 3. portions of the overlying NE Pacific. Oceanographic processes in coastal environments, the California Current, and 400 km offshore, are captured by six remote-controlled, profiling moorings covering full-ocean depths. In August, 2015, all sections of cable, all six operational primary nodes, all 17 junction boxes, and 97% of all 146 instruments are transmitting data ashore to the Internet via the Pacific Northwest Gigapop (http://www.pnwgp.net/). All data are archived at the U of Washington, pending completion of the OOI CyberInfrastructure System in October 2015. In 2014, community requests to access seismic and seafloor deformational information for assessment of progressive inflation at Axial Seamount (Chadwick et al, 2012), resulted in NSF releasing, through IRIS (http://www.iris.edu/hq/), real-time data from 7 seismometers and 3 pressure sensors. At a community-initiated meeting on April 20-22, 90 participants covering the spectrum of Ocean Sciences, met in Seattle to explore scientific responses in the event Axial actually erupted (http://novae.ocean.washington.edu). On April 24, Axial did erupt; seismic event counts rose dramatically to many hundreds/hour (Wilcock, AGU-2015), the Axial caldera floor dropped 2.2 m in ~20 hours (Nooner et al, AGU-2015), and water temperatures in the caldera rose slowly by ~0.7°C, then declined in 3 weeks to normal values. Unusual water-bourn acoustic signals indicated ongoing seafloor activity along the rift zone extending north

  19. Widespread active detachment faulting and core complex formation near 13 degrees N on the Mid-Atlantic Ridge.

    PubMed

    Smith, Deborah K; Cann, Johnson R; Escartín, Javier

    2006-07-27

    Oceanic core complexes are massifs in which lower-crustal and upper-mantle rocks are exposed at the sea floor. They form at mid-ocean ridges through slip on detachment faults rooted below the spreading axis. To date, most studies of core complexes have been based on isolated inactive massifs that have spread away from ridge axes. Here we present a survey of the Mid-Atlantic Ridge near 13 degrees N containing a segment in which a number of linked detachment faults extend for 75 km along one flank of the spreading axis. The detachment faults are apparently all currently active and at various stages of development. A field of extinct core complexes extends away from the axis for at least 100 km. Our observations reveal the topographic characteristics of actively forming core complexes and their evolution from initiation within the axial valley floor to maturity and eventual inactivity. Within the surrounding region there is a strong correlation between detachment fault morphology at the ridge axis and high rates of hydroacoustically recorded earthquake seismicity. Preliminary examination of seismicity and seafloor morphology farther north along the Mid-Atlantic Ridge suggests that active detachment faulting is occurring in many segments and that detachment faulting is more important in the generation of ocean crust at this slow-spreading ridge than previously suspected. PMID:16871215

  20. Earthquake swarms on the Mid-Atlantic Ridge - Products of magmatism or extensional tectonics?

    NASA Technical Reports Server (NTRS)

    Bergman, Eric A.; Solomon, Sean C.

    1990-01-01

    The spatial and temporal patterns and other characteristics of earthquakes in 34 earthquake swarms on the Mid-Atlantic Ridge were compared with those of well-studied earthquake swarms which accompany terrestrial volcanic eruptions, to test the assumption that the teleseismically observed earthquake swarms along mid-ocean ridges are indicators of volcanism. Improved resolution of these patterns for the mid-ocean ridge events was achieved by a multiple-event relocation technique. It was found that the teleseismically located earthquake swarms on the mid-ocean ridge system have few features in common with swarms directly associated with active magmatism in terrestrial volcanic rift zones such as Hawaii and Iceland. While the possibility that some of the mid-ocean earthquake swarms might be directly associated with a current episode of eruptive activity on the Mid-Atlantic Ridge cannot be excluded, none of the 34 swarms studied in this work was found to be a conspicuously attractive candidate for such a role.

  1. Explosive volcanism on the ultraslow-spreading Gakkel ridge, Arctic Ocean.

    PubMed

    Sohn, Robert A; Willis, Claire; Humphris, Susan; Shank, Timothy M; Singh, Hanumant; Edmonds, Henrietta N; Kunz, Clayton; Hedman, Ulf; Helmke, Elisabeth; Jakuba, Michael; Liljebladh, Bengt; Linder, Julia; Murphy, Christopher; Nakamura, Ko-Ichi; Sato, Taichi; Schlindwein, Vera; Stranne, Christian; Tausenfreund, Maria; Upchurch, Lucia; Winsor, Peter; Jakobsson, Martin; Soule, Adam

    2008-06-26

    Roughly 60% of the Earth's outer surface is composed of oceanic crust formed by volcanic processes at mid-ocean ridges. Although only a small fraction of this vast volcanic terrain has been visually surveyed or sampled, the available evidence suggests that explosive eruptions are rare on mid-ocean ridges, particularly at depths below the critical point for seawater (3,000 m). A pyroclastic deposit has never been observed on the sea floor below 3,000 m, presumably because the volatile content of mid-ocean-ridge basalts is generally too low to produce the gas fractions required for fragmenting a magma at such high hydrostatic pressure. We employed new deep submergence technologies during an International Polar Year expedition to the Gakkel ridge in the Arctic Basin at 85 degrees E, to acquire photographic and video images of 'zero-age' volcanic terrain on this remote, ice-covered ridge. Here we present images revealing that the axial valley at 4,000 m water depth is blanketed with unconsolidated pyroclastic deposits, including bubble wall fragments (limu o Pele), covering a large (>10 km(2)) area. At least 13.5 wt% CO(2) is necessary to fragment magma at these depths, which is about tenfold the highest values previously measured in a mid-ocean-ridge basalt. These observations raise important questions about the accumulation and discharge of magmatic volatiles at ultraslow spreading rates on the Gakkel ridge and demonstrate that large-scale pyroclastic activity is possible along even the deepest portions of the global mid-ocean ridge volcanic system. PMID:18580949

  2. Different cluster relocation techniques and their applications to mid-oceanic earthquakes

    NASA Astrophysics Data System (ADS)

    Pan, J.; Antolik, M.; Dziewonski, A. M.

    2002-12-01

    We examine and apply three multi-event relocation (cluster analysis) techniques: double difference (DD), hypocentral decomposition (HDC), and joint hypocenter determination based on master events constrained by seafloor bathymetry (JHDME) to mid-oceanic earthquakes. We compare them with single event relocation method coupled with three dimensional (3D) model-based station corrections (SER3D), in terms of event clustering against background bathymetry, location errors, root mean square (RMS) of the residuals and relocation vectors. We find that using virtually the same dataset, JHDME fits the data best and yields lower residual RMS than the other methods. Absolute locations cluster better for HDC and JHDME against the bathymetric features. In one of our experiments, HDC hypocentroid change little and this reduces HDC to JHDME in which only one master event is fixed. Because DD fits relative travel times, the absolute residual RMSs are relatively larger, relocation vectors are smaller and final locations scatter more. But the error ellipses for DD are smallest. SER3D uses more available phases for each event but no other inter-event constraint than model-based station corrections and usually generates smaller relocation vectors than the other methods, except DD. For the cluster on the Romanche Fracture Zone (RFZ), all methods leave several events off the main transform. But the cluster `collapses' more toward the linear RFZ bathymetric low for HDC and JHDME. For the cluster in the Gulf of Aden, distribution of the relocated events is more consistent with the geometry of closely spaced ridges and transforms. We introduce a measure for the mid-oceanic earthquake clustering based on the concept of Voronoi cells but adapted to the linear bathymetry features. Such measurement is set up to be a function of the volume of each Voronoi cell around an earthquake weighted by the minimum distance between the earthquake and any possible ridge/transform to which the earthquake is

  3. Evidence of recent volcanic activity on the ultraslow-spreading Gakkel ridge.

    PubMed

    Edwards, M H; Kurras, G J; Tolstoy, M; Bohnenstiehl, D R; Coakley, B J; Cochran, J R

    2001-02-15

    Seafloor spreading is accommodated by volcanic and tectonic processes along the global mid-ocean ridge system. As spreading rate decreases the influence of volcanism also decreases, and it is unknown whether significant volcanism occurs at all at ultraslow spreading rates (<1.5 cm yr(-1)). Here we present three-dimensional sonar maps of the Gakkel ridge, Earth's slowest-spreading mid-ocean ridge, located in the Arctic basin under the Arctic Ocean ice canopy. We acquired this data using hull-mounted sonars attached to a nuclear-powered submarine, the USS Hawkbill. Sidescan data for the ultraslow-spreading (approximately 1.0 cm yr(-1)) eastern Gakkel ridge depict two young volcanoes covering approximately 720 km2 of an otherwise heavily sedimented axial valley. The western volcano coincides with the average location of epicentres for more than 250 teleseismic events detected in 1999, suggesting that an axial eruption was imaged shortly after its occurrence. These findings demonstrate that eruptions along the ultraslow-spreading Gakkel ridge are focused at discrete locations and appear to be more voluminous and occur more frequently than was previously thought. PMID:11236991

  4. Teleseismic earthquake swarms at ultraslow spreading ridges: indicator for dyke intrusions?

    NASA Astrophysics Data System (ADS)

    Schlindwein, V.

    2012-07-01

    Earthquakes at mid-ocean ridges reflect the active magmatic and tectonic processes that form new oceanic crust. Studies of large earthquakes observed on land and smaller earthquakes observed locally or regionally by ocean bottom seismometers or autonomous underwater hydrophones have greatly contributed to our understanding of the structure and active spreading processes at the mid-ocean ridges of the Atlantic and Pacific Ocean opening with velocities in excess of 25 mm yr-1. At spreading rates below 20 mm yr-1 full rate, the appearance and the accretion processes of mid-ocean ridges undergo fundamental changes as the melt supply is drastically reduced. The active spreading processes at these so-called ultraslow spreading ridges are still poorly known, as the main representatives, the Arctic Ridge System and the Southwest Indian Ridge, are poorly accessible and neither autonomous underwater hydrophone nor ocean bottom seismometer records of local seismicity are available. In an attempt to compare on a large scale the accretion style of ultraslow spreading ridge sections, I analyse the teleseismically recorded seismicity in 11 sections of the Arctic Ridge System and the Southwest Indian Ridge spanning altogether 7200 km. Epicentres located within 30-35 km of the rift axis were extracted from the catalogue of the International Seismological Centre for a time period of 35 yr. On the basis of a single-link cluster analysis, I identified 27 swarms with eight or more events. These swarms occur almost exclusively at centres of focussed magmatism suggesting that the swarms are probably initiated by magmatism. Normal faults along several tens of kilometres surrounding the volcanic centres react in large earthquakes (M > 5) to dyke emplacement. The routine generation of large earthquakes in the cold, brittle lithosphere of ultraslow spreading ridges makes the teleseismic record a valuable means to study ultraslow accretion processes and to provide a global framework for the

  5. Oceanic Core Complexes on the Mohns Ridge

    NASA Astrophysics Data System (ADS)

    Denny, A. R.; Pedersen, R. B.

    2013-12-01

    The Mohns Ridge, an ultra-slow spreading ridge in the Arctic Mid-Ocean Ridge system, is host to multiple volcanic and tectonic spreading segments. This oblique-spreading ridge is hotspot influenced at its southern terminus and is bound to the north by a curvilinear contact with the highly oblique Knipovich Ridge. This study examines EM120 multibeam bathymetry of the Mohns Ridge collected from 1999-2001 and gridded to 50 m cell size. Geomorphic interpretation of near-axis and off-axis structures reveals multiple expressions of potential oceanic core complexes (OCCs) along the 550 km long spreading axis. The OCCs form only on the western side of the spreading axis, consistent with the increased tectonic vs. volcanic morphology of the western flank of the Mohns Ridge. In the southern Mohns Ridge OCCs occur adjacent to on-axis active volcanic spreading centers. In the northern Mohns Ridge OCCs appear related to both ';V' shaped northern-propagating ridge spreading centers and spreading-parallel strings of core complexes extending at least 60 km off axis in the direction of spreading. This geomorphic interpretation should be further refined by dedicated ship-based investigations to fully describe this unique oblique-spreading Arctic Ridge system.

  6. Hydrothermal activity at slow-spreading ridges: variability and importance of magmatic controls

    NASA Astrophysics Data System (ADS)

    Escartin, Javier

    2016-04-01

    Hydrothermal activity along mid-ocean ridge axes is ubiquitous, associated with mass, chemical, and heat exchanges between the deep lithosphere and the overlying envelopes, and sustaining chemiosynthetic ecosystems at the seafloor. Compared with hydrothermal fields at fast-spreading ridges, those at slow spreading ones show a large variability as their location and nature is controlled or influenced by several parameters that are inter-related: a) tectonic setting, ranging from 'volcanic systems' (along the rift valley floor, volcanic ridges, seamounts), to 'tectonic' ones (rift-bounding faults, oceanic detachment faults); b) the nature of the host rock, owing to compositional heterogeneity of slow-spreading lithosphere (basalt, gabbro, peridotite); c) the type of heat source (magmatic bodies at depth, hot lithosphere, serpentinization reactions); d) and the associated temperature of outflow fluids (high- vs.- low temperature venting and their relative proportion). A systematic review of the distribution and characteristics of hydrothermal fields along the slow-spreading Mid-Atlantic Ridge suggests that long-lived hydrothermal activity is concentrated either at oceanic detachment faults, or along volcanic segments with evidence of robust magma supply to the axis. A detailed study of the magmatically robust Lucky Strike segment suggests that all present and past hydrothermal activity is found at the center of the segment. The association of these fields to central volcanos, and the absence of indicators of hydrothermal activity along the remaining of the ridge segment, suggests that long-lived hydrothermal activity in these volcanic systems is maintained by the enhanced melt supply and the associated magma chamber(s) required to build these volcanic edifices. In this setting, hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal fluids in the shallow crust exploit permeable fault zones to circulate. While

  7. CO2-filled vesicles in mid-ocean basalt

    USGS Publications Warehouse

    Moore, J.G.; Batchelder, J.N.; Cunningham, C.G.

    1977-01-01

    Volatile-filled vesicles are present in minor amounts in all samples of mid-ocean basalt yet collected (and presumably erupted) down to depths of 4.8 km. When such vesicles are pierced in liquid under standard conditions, the volume expansion of the gas is 0.2 ?? 0.05 times the eruption pressure in bars or 20 ?? 5 times the eruption depth in km. Such expansion could be used as a measure of eruption depth. A variety of techniques: (1) vacuum crushing and gas chromatographic, freezing separation, and mass spectrographic analyses; (2) measurements of phase changes on a freezing microscope stage; (3) microscopic chemical and solubility observations; and (4) volume change measurements, all indicate that CO2 comprises more than 95% by volume of the vesicle gas in several submarine basalt samples from the Atlantic and Pacific. The CO2 held in vesicles is present in quantities about equal to or greater than that presumed to be dissolved in the glass (melt) and amounts to 400-900 ppm of the rock. The rigid temperature of the glass is 800-1000??C and increases for shallower samples. A sulfur gas was originally present in subordinate amounts in the vesicles, but has largely reacted with iron in the vesicle walls to produce sulfide spherules. ?? 1977.

  8. A reduced crustal magnetization zone near the first observed active hydrothermal vent field on the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Lin, Jian; Chen, Yongshun J.; Tao, Chunhui; German, Christopher R.; Yoerger, Dana R.; Tivey, Maurice A.

    2010-09-01

    Inversion of near-bottom magnetic data reveals a well-defined low crustal magnetization zone (LMZ) near a local topographic high (37°47‧S, 49°39‧E) on the ultraslow-spreading Southwest Indian Ridge (SWIR). The magnetic data were collected by the autonomous underwater vehicle ABE on board R/V DaYangYiHao in February-March 2007. The first active hydrothermal vent field observed on the SWIR is located in Area A within and adjacent to the LMZ at the local topographic high, implying that this LMZ may be the result of hydrothermal alteration of magnetic minerals. The maximum reduction in crustal magnetization is 3 A/M. The spatial extent of the LMZ is estimated to be at least 6.7 × 104 m2, which is larger than that of the LMZs at the TAG vent field on the Mid-Atlantic Ridge (MAR), as well as the Relict Field, Bastille, Dante-Grotto, and New Field vent-sites on the Juan de Fuca Ridge (JdF). The calculated magnetic moment, i.e., the product of the spatial extent and amplitude of crustal magnetization reduction is at least -3 × 107 Am2 for the LMZ on the SWIR, while that for the TAG field on the MAR is -8 × 107 Am2 and that for the four individual vent fields on the JdF range from -5 × 107 to -3 × 107 Am2. Together these results indicate that crustal demagnetization is a common feature of basalt-hosted hydrothermal vent fields at mid-ocean ridges of all spreading rates. Furthermore, the crustal demagnetization of the Area A on the ultraslow-spreading SWIR is comparable in strength to that of the TAG area on the slow-spreading MAR.

  9. The Sound Generated by Mid-Ocean Ridge Black Smoker Hydrothermal Vents

    PubMed Central

    Crone, Timothy J.; Wilcock, William S.D.; Barclay, Andrew H.; Parsons, Jeffrey D.

    2006-01-01

    Hydrothermal flow through seafloor black smoker vents is typically turbulent and vigorous, with speeds often exceeding 1 m/s. Although theory predicts that these flows will generate sound, the prevailing view has been that black smokers are essentially silent. Here we present the first unambiguous field recordings showing that these vents radiate significant acoustic energy. The sounds contain a broadband component and narrowband tones which are indicative of resonance. The amplitude of the broadband component shows tidal modulation which is indicative of discharge rate variations related to the mechanics of tidal loading. Vent sounds will provide researchers with new ways to study flow through sulfide structures, and may provide some local organisms with behavioral or navigational cues. PMID:17205137

  10. Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge Hydrothermal Vents

    DOE Data Explorer

    Andrew Fowler

    2015-10-01

    Compilation of rare earth element and associated major and minor dissolved constituent analytical data for USA geothermal fields and global seafloor hydrothermal vents. Data is in original units. Reference to and use of this data should be attributed to the original authors and publications according to the provisions outlined therein.

  11. Mass-dependent molybdenum isotopes in mid-ocean ridge basalts: A new mantle reference

    NASA Astrophysics Data System (ADS)

    Hibbert, K.; Freymuth, H.; Willbold, M.; Elliott, T.

    2013-12-01

    Molybdenum isotopes have been proposed as a novel tracer for subduction components in arc magmas as well as for recycled crustal components in the source of ocean island basalts. In order to investigate these hypotheses, it is important to establish a reference value for the molybdenum isotope composition of the mantle, which has so far been only poorly constrained and based on continental material and volcanic rocks with large analytical errors [1]. Analysis of samples of basalts from the Mariana arc shows that samples are enriched in Mo relative to Pr, an element with a similar degree of incompatibility during mantle melting. This enrichment correlates with δ98Mo such that the heaviest samples (~+0.16‰ relative to NIST SRM 3134) also have the highest Mo/Pr. The resulting array is interpreted as a result of fluid enrichment of a presumed mantle composition, with isotopically heavy fluids derived from fluid-solid fractionation during slab dehydration [2]. This scenario further implies that the deep recycled, subduction zone processed crust should be isotopically light. There is evidence for this in the Mo isotopic composition of some ocean island basalts (OIBs). Notably, basalts from La Palma, which have radiogenic Pb and Os isotopic compositions proposed to result from a component of recycled mafic oceanic crust, have isotopically light Mo (δ98Mo -0.24 to -0.49‰). Implicit in this apparently self-consistent model is that MORB has a δ98Mo intermediate between the isotopically heavy, fluid-rich arc lavas of the Marianas and the isotopically light basalts of La Palma. The low [Mo] of MORB, coupled with the potential for Fe-Mn coatings to perturb δ98Mo to lower values, has made this a more challenging quest. Here we present new data to constrain this datum for the convecting upper mantle. We have processed up to ~1g of carefully handpicked glasses and obtain values of ~-0.15 to -0.25‰, entirely in keeping with the scenario outlined above. Analysis of additional MORB samples will aim to discern any variability. [1] Siebert et al. (2003), EPSL, 211, 159-171; [2] Freymuth et al. (2011) Min. Mag., 75(3), 867.

  12. Active spreading processes at ultraslow-spreading ridges: Relocalization and analysis of the 1999 earthquake swarm at Gakkel Ridge, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Korger, Edith; Schlindwein, Vera; Riedel, Carsten

    2010-05-01

    Gakkel Ridge is situated within the Arctic Ocean and spans from eastern Greenland to the continental Siberian shelf. It is termed an ultraslow spreading ridge (full spreading rate 6-14 mm/yr). At ultraslow spreading ridges, heat loss by conductive cooling is thought to decrease magma supply and focus magmatism in widely spaced discrete volcanic centres. In 1999 lasting over 7 months, the largest ever earthquake swarm at a mid-ocean ridge was teleseismically registered worldwide. It originated from around 85°E which was postulated to be a volcanic complex and featured 252 recorded events, including 11 events with a magnitude mb > 5.0. The unprecedented duration, magnitude and number of events ran counter to expectations at this location. Preliminary analysis with unreviewed datasets showed changing source-mechanisms from extensional to events with a greater non-double-couple component at around March, 4th and an abrupt decrease in the number of events on the 15th of April. Also the epicentres of the larger events seemed to migrate with advancing time to the NW, farther away from the volcanic centre. As these analyses were based on preliminary datasets it seemed indicated to relocalize the earthquakes when the reviewed bulletin of the International Seismological Centre was released. This relocalization was done with the earthquake localization programme NonLinLoc using a probabilistic approach and grid-search. The calculation of travel times used as velocity model both AK135 and IASP91 combined with a regional velocity model for recording stations with epicentral distance < 30°. We tested extensively the influence of localization algorithm, velocity model, station coverage and weighting on the localization result. The new locations of the epicentres show a clustering of events within the central rift valley and the southern rift flank. The dataset was further reviewed with regard to the quality of the localization and reduced to 93 well located events whose

  13. Comparison of mid-oceanic earthquake epicentral differences of travel time, centroid locations, and those determined by autonomous underwater hydrophone arrays

    NASA Astrophysics Data System (ADS)

    Pan, Jianfeng; Dziewonski, Adam M.

    2005-07-01

    Mid-oceanic interplate earthquakes are difficult to locate accurately because they normally occur far away from land-based seismic stations. Use of water-borne T waves recorded by autonomous underwater hydrophone (AUH) arrays records an order of magnitude more highly accurate regional low seismicity along the north Mid-Atlantic Ridge than the International Seismic Centre (ISC). Even though the physical meaning of an AUH locations is still not well known, AUH's small location errors are important for better constraining mid-oceanic earthquakes. Comparison of such AUH locations with those in ISC and Harvard centroid moment tensor (CMT) location catalog, and relocated ones based on the high-resolution bathymetry and teleseismic P phases, is made in this study. AUH locations are used as a reference to compare the teleseismically determined locations. For large earthquakes with known focal mechanisms, we find that relocated locations agree with AUH ones better than with ISC. We also note that the centroid vectors from relocated epicenters are usually larger than AUH centroid vectors. The relocated epicenters and AUH locations lie in similar azimuthal directions to the associated CMT epicenters. The larger relocated and AUH centroid vectors (than the error ellipses of AUH, CMT, and relocated ones combined) might be explained by the fault rupture process. For smaller events, relocated location confidence ellipses are usually large enough to cover AUH locations and their error ellipses. Overall, the highly accurate AUH locations can be used to confirm the mid-oceanic earthquake hypocenters and seismicity characteristics and for detail studies of the low-level seismicity associated with the plate motions.

  14. Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations

    NASA Astrophysics Data System (ADS)

    Lund, D. C.; Asimow, P. D.; Farley, K. A.; Rooney, T. O.; Seeley, E.; Jackson, E. W.; Durham, Z. M.

    2016-01-01

    Mid-ocean ridge magmatism is driven by seafloor spreading and decompression melting of the upper mantle. Melt production is apparently modulated by glacial-interglacial changes in sea level, raising the possibility that magmatic flux acts as a negative feedback on ice-sheet size. The timing of melt variability is poorly constrained, however, precluding a clear link between ridge magmatism and Pleistocene climate transitions. Here we present well-dated sedimentary records from the East Pacific Rise that show evidence of enhanced hydrothermal activity during the last two glacial terminations. We suggest that glacial maxima and lowering of sea level caused anomalous melting in the upper mantle and that the subsequent magmatic anomalies promoted deglaciation through the release of mantle heat and carbon at mid-ocean ridges.

  15. Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations.

    PubMed

    Lund, D C; Asimow, P D; Farley, K A; Rooney, T O; Seeley, E; Jackson, E W; Durham, Z M

    2016-01-29

    Mid-ocean ridge magmatism is driven by seafloor spreading and decompression melting of the upper mantle. Melt production is apparently modulated by glacial-interglacial changes in sea level, raising the possibility that magmatic flux acts as a negative feedback on ice-sheet size. The timing of melt variability is poorly constrained, however, precluding a clear link between ridge magmatism and Pleistocene climate transitions. Here we present well-dated sedimentary records from the East Pacific Rise that show evidence of enhanced hydrothermal activity during the last two glacial terminations. We suggest that glacial maxima and lowering of sea level caused anomalous melting in the upper mantle and that the subsequent magmatic anomalies promoted deglaciation through the release of mantle heat and carbon at mid-ocean ridges. PMID:26823422

  16. Hydrothermal Activity Along Multiple Ridge Segments of the Northern Central Indian Ridge, 8°-17°S

    NASA Astrophysics Data System (ADS)

    Son, J.; Kim, J.; Pak, S.; Son, S.; Moon, J.; Baker, E. T.

    2012-12-01

    We report the first systematic hydrothermal plume surveys conducted on the northern Central Indian Ridge (CIR, 8°-17°S), a slow spreading ridge with rates between ~35 and 40 mm/yr, during the CIR research program of KORDI between 2009 and 2011. Using a combined CTD/Miniature Autonomous Plume Recorder (MAPR) package we occupied 208 vertical casts and 82 tows along seven segments of the CIR totaling ~700 km of ridge length to estimate the frequency of hydrothermal activity on this slow-spreading ridge. Evidence for hydrothermal activity was found on each of the seven segments, with most plumes found between 3000 and 3500 m. Using only stations within the rift valley, the estimated value of plume incidence (ph=0.19) coincides with the global trend between the spatial density of hydrothermal plumes and full-spreading rate (an indicator of magmatic budget). However, there are also indications of possible discharge from hydrothermal activity or serpentinization from the ridge flanks (possible ocean core complexes), as has been observed along the Mid-Atlantic Ridge. For example, some sites show methane anomalies unaccompanied by any optical anomaly. Our preliminary results support the increasing role of tectonic control on hydrothermal activity as spreading rates decrease. Further examination of the plume signals, combined with chemical composition of sampled water and geological data, will provide valuable insights into hydrothermal activity on slow spreading ridges.

  17. Neogene magmatism northeast of the Aegir and Kolbeinsey ridges, NE Atlantic: Spreading ridge-mantle plume interaction?

    NASA Astrophysics Data System (ADS)

    Breivik, AsbjøRn Johan; Faleide, Jan Inge; Mjelde, Rolf

    2008-02-01

    According to mantle plume theory the Earth's interior cools partly by localized large vertical mass transport, causing extensive decompression melting. The Iceland melt anomaly is regarded as a typical example of a mantle plume. However, there are centers of Miocene to recent magmatism in the Norwegian-Greenland Sea not easily explained by the plume theory. Here we present new data to document diffuse late Miocene magmatic underplating of older oceanic crust located mostly north of the Aegir Ridge, an extinct seafloor spreading axis in the Norway Basin. There is also a region with similar magmatism northeast of the presently spreading Kolbeinsey Ridge north of Iceland. Intraplate magmatism in these locations is not easily explained by local plume models, edge-driven convection, or by asthenosphere flow-lithosphere thickness interaction. On the basis of correlation between the magmatism and the active or extinct spreading ridges, we propose the mid-ocean ridge basalt-capture model, in which this magmatism can be understood through plume-spreading ridge interaction: The asthenosphere flow out from Iceland captures deeper, low-degree partially molten asthenospheric regions from underneath the spreading ridges and carry these across the terminating fracture zones, to subsequently underplate oceanic crust or to intrude and build seamounts. This model is similar to lithospheric cracking models for intraplate magmatism in requiring that low-degree partial melt can be retained in the asthenosphere over time but differ in that the magma is extracted by internal magma movement processes and not by external tectonic forces.

  18. Morphology of the Knipovich Ridge Area

    NASA Astrophysics Data System (ADS)

    Zarayskaya, Y.; Abramova, A.; Dobrolyubova, K.; Mazarovich, A.; Moroz, E.

    2014-12-01

    Knipovich Ridge is the northernmost part of the Mid-Atlantic Ridge system. It is located between Mohns and Molloy spreading centers in the Greenland Sea. The scientific team of the R/V "Akademik Nikolaj Strakhov" (Geological Institute RAS, Russia) surveyed this area in 2006, 2007, 2009 and 2010 using the deep-water multibeam echosounder RESON Seabat 7150 with working frequency 12 kHz. The total surveyed area is up to 82000 km² including 65000 km² covering rift valley and flanges of the ridge. Knipovich ridge is classified as an ultra-slow oblique spreading center with spreading rate around 1,4 cm/y. Its large-scale morphological features are reduced in number comparing to other mid-ocean ridges. Eastern flange is buried under the continental slope sediments and only the rare highest peaks rise above this cover. Western flange is fully developed and consists of several ridges prolonged parallel to the rift valley. Ridges are supplemented with individual highs. Rift valley is 20-40 km wide and 500 km long. Its depth is 3300-3700 m. Valley slopes have terraces and ledges of different amplitudes. The bottom of the valley is echeloned by 5 volcanic axial highs rising 400 - 1000 m above it. Spreading obliquity is imprinted in the ridge morphology. The global models predict a plate motion vector of 307º. The main ridge axis has general orientation of 350º. Rift valley follows this direction from the South, and on the half way to the North turns to azimuth of 2º. The detailed bathymetry shows that small-scale features orientation differs. Rift axial highs and individual flange highs are prolonged NW-SE under azimuth of 30º. This orientation is sub-perpendicular to the plate motion vector (83º) and oblique to the ridge axes (40º). The multibeam bathymetry shows no sing of transform faults or non-transform discontinuities along the Knipovich ridge rift valley. There is one strong lineation in the northern part of the ridge. It includes flange and axial highs and

  19. Enabling Integration and Synthesis through the Ridge 2000 Data Portal

    NASA Astrophysics Data System (ADS)

    Ryan, W. B.; Ferrini, V.; Carbotte, S. M.; O'Hara, S.; Arko, R. A.; Bonczkowski, J.; Chan, S.

    2009-12-01

    Achieving an integrated, holistic understanding of global mid-ocean ridge (MOR) processes through the Ridge 2000 Program relies heavily on the sharing of data across disciplinary boundaries. Although most Ridge 2000 research has been focused on three Integrated Study Sites (ISSs), data from throughout the global mid-ocean ridge (MOR) system will also be important in the integration and synthesis phase of the program. The Ridge 2000 Data Portal (www.marine-geo.org/portals/ridge2000) is a resource established to facilitate the sharing, discovery, and integration of Ridge 2000-relevant data by providing data documentation and access. The Data Portal includes an inventory of field programs and activities, raw and derived data files, and access to publications and remote data sets in specialized data systems (e.g. PetDB, www.petdb.org; GenBank, www.ncbi.nlm.nih.gov; NGDC, www.ngdc.noaa.gov). Access to the R2K database is provided through several pathways, including a web-based search interface (www.marine-geo.org/tools/search) that now includes basic and advanced search functionality. New versions of our data exploration and visualization tool GeoMapApp (www.geomapapp.org) includes a newly designed menu system with cascading and tear-off menus, a new Layer Manager that lists selected layers and enables re-ordering and rendering with variable transparency, a Go To option that allows direct zooming to areas of interest, and an Add Image Overlay option for importing georeferenced images. New data sets are continually added to both GeoMapApp and Virtual Ocean (www.virtualocean.org), a 3D virtual globe with GeoMapApp functionality. Several Ridge 2000 data sets are also bundled for viewing in Google Earth (www.marine-geo.org/tools/kmls.php). This poster will highlight new functionality and data sets relevant to Ridge 2000 Integration and Synthesis, and will provide comparisons of several data sets that exist for each ISS.

  20. The RAMESSES experiment-II. Evidence for accumulated melt beneath a slow spreading ridge from wide-angle refraction and multichannel reflection seismic profiles

    NASA Astrophysics Data System (ADS)

    Navin, D. A.; Peirce, C.; Sinha, M. C.

    1998-12-01

    The RAMESSES study (Reykjanes Axial Melt Experiment: Structural Synthesis from Electromagnetics and Seismics) targeted an apparently magmatically active axial volcanic ridge (AVR), centred on 57°45'N at the Reykjanes Ridge, with the aim of investigating the processes of crustal accretion at a slow spreading mid-ocean ridge. As part of this multicomponent experiment, airgun and explosive wide-angle seismic data were recorded by 10 digital ocean-bottom seismometers (OBSs) along profiles oriented both across- and along-axis. Coincident normal-incidence seismic, bathymetry and underway gravity and magnetic data were also collected. Forward modelling of the seismic and gravity data has revealed layer thicknesses, velocities and densities similar to those observed elsewhere within the oceanic crust near mid-ocean ridges. At 57°45'N, the Reykjanes Ridge has a crustal thickness of approximately 7.5 km on-axis. However, the crust is modelled to decrease in thickness slightly off-axis (i.e. with age), which implies that full crustal thickness is achieved on-axis and that it is subsequently thinned, most likely, by off-axis extension. Modelling also indicates that the AVR is underlain by a thin (~100 m), narrow (~4 km) melt lens some 2.5 km beneath the seafloor, which overlies a broader zone of partial melt approximately 8 km in width. Thus the results of this study provide the first clear evidence for a crustal magma chamber beneath any slow spreading ridge. The size and depth of this magma chamber (the melt lens and underlying zone of partial melt) are similar to those observed beneath fast and intermediate spreading ridges, which implies that the processes of crustal accretion are similar at all spreading rates. Hence the lack of previous observations of magma chambers beneath slow spreading ridges is probably temporally related to the periods of magmatic activity being considerably shorter and more widely spaced in time than at fast and intermediate spreading ridges.

  1. Where are the undiscovered hydrothermal vents on oceanic spreading ridges?

    NASA Astrophysics Data System (ADS)

    Beaulieu, Stace E.; Baker, Edward T.; German, Christopher R.

    2015-11-01

    In nearly four decades since the discovery of deep-sea vents, one-third of the length of global oceanic spreading ridges has been surveyed for hydrothermal activity. Active submarine vent fields are now known along the boundaries of 46 out of 52 recognized tectonic plates. Hydrothermal survey efforts over the most recent decade were sparked by national and commercial interests in the mineral resource potential of seafloor hydrothermal deposits, as well as by academic research. Here we incorporate recent data for back-arc spreading centers and ultraslow- and slow-spreading mid-ocean ridges (MORs) to revise a linear equation relating the frequency of vent fields along oceanic spreading ridges to spreading rate. We apply this equation globally to predict a total number of vent fields on spreading ridges, which suggests that ~900 vent fields remain to be discovered. Almost half of these undiscovered vent fields (comparable to the total of all vent fields discovered during 35 years of research) are likely to occur at MORs with full spreading rates less than 60 mm/yr. We then apply the equation regionally to predict where these hydrothermal vents may be discovered with respect to plate boundaries and national jurisdiction, with the majority expected to occur outside of states' exclusive economic zones. We hope that these predictions will prove useful to the community in the future, in helping to shape continuing ridge-crest exploration.

  2. Slow-Spreading Oceanic Crust Formed By Steady-State Axial Volcanic Ridges

    NASA Astrophysics Data System (ADS)

    Murton, B. J.; Schroth, N.; LeBas, T.; Van Calsteren, P. W.; Yeo, I. A.; Achenbach, K. L.; Searle, R. C.

    2012-12-01

    Oceanic crust originates at mid-ocean spreading ridges (MORs), covers almost three quarters of the earth's surface and dominates the global magmatic flux. Axial volcanic ridges (AVRs) are almost ubiquitous features of orthogonal slow-spreading ridges, which account for three quarters of the global mid-ocean spreading ridge system today. Typically 3-6 km wide, 200-500 m high and 10-20 km long, AVRs are the loci of recent volcanic activity and form the most prominent topography rising above the otherwise flat-lying Median Valley floor. Previous studies indicate that AVRs, and their related crustal magma reservoirs are episodic, on a time scale of 150-300 ka. Yet their near ubiquitous occurrence at slow-spreading ridge segments provides us with a paradox: if AVRs have a life cycle of formation and degradation, does their near ubiquitous presence at slow spreading ridges imply their life-cycles are synchronised? In this contribution, we report the findings from a high-resolution study of a well-developed axial volcanic ridge (AVR) at 45°N on the Mid-Atlantic Ridge (MAR). Here, the MAR is typical of most slow-spreading ridges: it spreads generally symmetrically and orthogonally, at a full rate of 23.6 mm per year, has second and third-order segmentation, and contains a typical AVR. Using a combination of detailed micro-bathymetry, sidescan sonar, visual surveying and petrology, we suggest that the AVR is the product of quasi-steady state volcanotectonic processes. Small volume lava flows, originating at or near the crest and with short run-out lengths, form ~60 m high hummocky pillow-lava mounds that dominate the construction of the AVR. The lavas are the product of moderate degrees of mantle melting that are typical for normal mid-ocean ridge basalt. Synchronous with these eruptions the flanks of the AVR subside forming a structural horst. Subsidence is partially accommodated by a series of outward-facing volcanic growth faults that step-down and away from the AVR

  3. Epithermal Neutron Activation Analysis of Some Geological Samples of Different Origin

    SciTech Connect

    Duliu, O. G.; Cristache, C. I.; Oaie, G.; Ricman, C.; Culicov, O. A.; Frontasyeva, M. V.

    2010-01-21

    Instrumental Epithermal Neutron Activation Analysis was used to investigate the distribution of six major elements and 34 trace elements in a set of eight igneous and metamorphic rocks collected from Carpathian and Macin Mountainsas well as unconsolidated sediments collected from anoxic zone of the Black Sea. All experimental data were interpreted within the Upper Continental Core and Mid Ocean Ridge Basalt model system that allowed getting more information concerning samples origin as well as the environmental peculiarities.

  4. A History of Classified Activities at Oak Ridge National Laboratory

    SciTech Connect

    Quist, A.S.

    2001-01-30

    The facilities that became Oak Ridge National Laboratory (ORNL) were created in 1943 during the United States' super-secret World War II project to construct an atomic bomb (the Manhattan Project). During World War II and for several years thereafter, essentially all ORNL activities were classified. Now, in 2000, essentially all ORNL activities are unclassified. The major purpose of this report is to provide a brief history of ORNL's major classified activities from 1943 until the present (September 2000). This report is expected to be useful to the ORNL Classification Officer and to ORNL's Authorized Derivative Classifiers and Authorized Derivative Declassifiers in their classification review of ORNL documents, especially those documents that date from the 1940s and 1950s.

  5. Beryllium 10 in hydrothermal vent deposits from the East Pacific Ridges: Role of sediments in the hydrothermal processes

    SciTech Connect

    Valette-Silver, J.N.; Tera, F.; Klein, J.; Middleton, R.

    1987-10-10

    Beryllium 10 concentrations were determined for 31 handpicked hydrothermal sulfides, six oxyhydroxides, seven basalts, and five sediments collected from the hydrothermally active areas of the East Pacific ridges. The samples includes specimens from the East Pacific Rise (EPR) at 21 /sup 0/N and 13 /sup 0/N, the Galapagos Rift, the Guaymas Basin, and the Gorda and the Juan de Fuca ridges. Additional samples from massive sulfides associated with the Oman ophiolites were studied. In all samples, we obtained values ranging from 0.04 x 10/sup 6/ atoms/g to 125 x 10/sup 6/ atoms/g, with the lowest values being very close to our blank (0.015 x 10/sup 6/ atoms/g). The data show systematic variations with sample location and type. The /sup 10/Be concentrations measured for the mid-ocean basalts are of the order of 0.3 x 10/sup 6/ atoms/g and reach 3800 x 10/sup 6/ atoms/g for the pelagic deep-sea sediments collected near the EPR 21 /sup 0/N. Based on their /sup 10/Be concentrations, we can clearly distinguish two categories of sulfides: sulfides containing low /sup 10/Be concentration (<10 /sup 6/ atoms/g) sitting directly on the mid-ocean basalt (EPR of Juan de Fuca), and sulfides with high /sup 10/Be concentration (>10/sup 6/ atoms/g) located atop of a thick pile of young sediments (Guaymas Basin or Gorda Ridge).

  6. High-resolution bathymetry reveals contrasting landslide activity shaping the walls of the Mid-Atlantic Ridge axial valley

    NASA Astrophysics Data System (ADS)

    Cannat, Mathilde; Mangeney, Anne; OndréAs, HéLèNe; Fouquet, Yves; Normand, Alain

    2013-04-01

    Axial valleys are found along most slow-spreading mid-ocean ridges and are one of the most prominent topographic features on Earth. In this paper, we present the first deep-tow swath bathymetry for the axial valley walls of the Mid-Atlantic Ridge. These data allow us to analyze axial valley wall morphology with a very high resolution (0.5 to 1 m compared to ≥ 50 m for shipboard multibeam bathymetry), revealing the role played by landslides. Slow-spreading ridge axial valleys also commonly expose mantle-derived serpentinized peridotites in the footwalls of large offset normal faults (detachments). In our map of the Ashadze area (lat. 13°N), ultramafic outcrops have an average slope of 18° and behave as sliding deformable rock masses, with little fragmentation. By contrast, the basaltic seafloor in the Krasnov area (lat. 16°38'N) has an average slope of 32° and the erosion of the steep basaltic rock faces leads to extensive fragmentation, forming debris with morphologies consistent with noncohesive granular flow. Comparison with laboratory experiments suggests that the repose angle for this basaltic debris is > 25°. We discuss the interplay between the normal faults that bound the axial valley and the observed mass wasting processes. We propose that, along axial valley walls where serpentinized peridotites are exposed by detachment faults, mass wasting results in average slopes ≤ 20°, even in places where the emergence angle of the detachment is larger.

  7. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean.

    PubMed

    Michael, P J; Langmuir, C H; Dick, H J B; Snow, J E; Goldstein, S L; Graham, D W; Lehnert, K; Kurras, G; Jokat, W; Mühe, R; Edmonds, H N

    2003-06-26

    A high-resolution mapping and sampling study of the Gakkel ridge was accomplished during an international ice-breaker expedition to the high Arctic and North Pole in summer 2001. For this slowest-spreading endmember of the global mid-ocean-ridge system, predictions were that magmatism should progressively diminish as the spreading rate decreases along the ridge, and that hydrothermal activity should be rare. Instead, it was found that magmatic variations are irregular, and that hydrothermal activity is abundant. A 300-kilometre-long central amagmatic zone, where mantle peridotites are emplaced directly in the ridge axis, lies between abundant, continuous volcanism in the west, and large, widely spaced volcanic centres in the east. These observations demonstrate that the extent of mantle melting is not a simple function of spreading rate: mantle temperatures at depth or mantle chemistry (or both) must vary significantly along-axis. Highly punctuated volcanism in the absence of ridge offsets suggests that first-order ridge segmentation is controlled by mantle processes of melting and melt segregation. The strong focusing of magmatic activity coupled with faulting may account for the unexpectedly high levels of hydrothermal activity observed. PMID:12827193

  8. Revisiting the Ridge-Push Force Using the Lithospheric Geoid

    NASA Astrophysics Data System (ADS)

    Richardson, R. M.; Coblentz, D. D.

    2014-12-01

    The geoid anomaly and driving force associated with the cooling oceanic lithosphere ("ridge push") are both proportional to dipole moment of the density-depth distribution, and allow a reevaluation of the ridge push force using the geoid. The challenge with this approach is to isolate the "lithospheric geoid" from the full geoid signal. Our approach is to use a band-pass spherical harmonic filter on the full geoid (e.g., EGM2008-WGS84, complete to spherical harmonic degree and order 2159) between orders 6 and 80. However, even this "lithospheric geoid" is noisy, and thus we average over 100 profiles evenly spaced along the global ridge system to obtain an average geoid step associated with the mid-ocean ridges. Because the positive ridge geoid signal is largest near the ridge (and to capture fast-spreading ridges), we evaluate symmetrical profiles extending ±45 m.y. about the ridge. We find an average ridge geoid anomaly of 4.5m, which is equivalent to a 10m anomaly for 100 m.y. old oceanic lithosphere. This geoid step corresponds to a ridge push force of ~2.4 x1012N/m for old oceanic lithosphere of 100 m.y., very similar to earlier estimates of ~2.5 x1012N/m based on simple half-space models. This simple half-space model also predicts constant geoid slopes of about 0.15 m/m.y. for cooling oceanic lithosphere. Our observed geoid slopes are consistent with this value for ages up to 40-50 m.y., but drop off to lower values at greater ages. We model this using a plate cooling model (with a thickness of the order of 125km) to fit the observation that the geoid anomaly and ridge driving force only increase slowly for ages greater than 40 m.y. (in contrast to the half-space model where the linear dependence on age holds for all ages). This reduction of the geoid slope results in a 20% decrease in the predicted ridge push force. This decrease is due to the combined effects of treating the oceanic lithosphere as a cooling plate (vs. a half-space), and the loss of geoidal

  9. New Frontiers in Arctic Exploration: Autonomous Location and Sampling of Hydrothermal Vents Under the Ice at Earth's Slowest Spreading Ridge (IPY Project 173)

    NASA Astrophysics Data System (ADS)

    Edmonds, H. N.; Reves-Sohn, R.; Singh, H.; Shank, T. M.; Humphris, S.; Seewald, J.; Akin, D.; Bach, W.; Nogi, Y.; Pedersen, R.

    2006-12-01

    As part of IPY project #173, we are planning an international expedition for 2007 to locate and study hydrothermal vents on the ultraslow-spreading Gakkel Ridge, at depths greater than 4000 m beneath the permanent ice cap. This effort necessitates the development of novel exploration technologies, because the Gakkel Ridge rift valley is inaccessible to traditional deep submergence tools. With funding from NASA, NSF, and the private sector we have developed two new autonomous underwater vehicles that will find and map hydrothermal plumes in the water column, trace the buoyant plume stem to the seafloor source, and then map, photograph, and collect samples from the vent sites. The Gakkel Ridge is a key target for hydrothermal exploration not only because of its spreading rate but also because its geographic and hydrographic isolation from other portions of the mid-ocean ridge system have important implications for novel endemic vent fauna. Our major scientific themes are the geological diversity and biogeography of hydrothermal vents on the Arctic mid-ocean ridge system. Our major technology theme is autonomous exploration and sample return with an explicit mandate to develop techniques and methods for eventual use in astrobiology missions to search for life under the ice covered oceans of Europa, a moon of Jupiter. In addition to the US-led Gakkel Ridge expedition, a Norway-led expedition will target sites in seasonally ice-free water over the Mohns Ridge. The results of these two expeditions will be combined to reveal systematic patterns regarding biogeography (through both community-level and genetic-level investigations) of vent-endemic fauna, to study the differences between basalt vs. peridotite hosted vent fields, and to improve our understanding of hydrothermal circulation at ultra- slow spreading plate boundaries where amagmatic extension and long-lived faulting predominate. The expeditions will provide educational and outreach activities through the award

  10. The response of two-phase hydrothermal systems to changing magmatic heat input at mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Choi, Jaewoon; Lowell, Robert P.

    2015-11-01

    We develop numerical simulations of two-phase flow in a NaCl-H2O fluid subject to time varying basal heat flux boundary conditions in order to understand the response of hydrothermal vent temperature and salinity to changing magmatic heat input. The results show that periodic changes in basal heat input on a time scale of several years will not be detected in a continuous time series record of temperature measurements. Fluctuations in vent salinity may be recorded, however. For models with monotonic decay of the magmatic heat flux, a decline in vent temperature may not be observed for several years; however, once single phase conditions are established at the base of the system, a pulse of brine-derived fluid is expected to appear at the surface, followed by a gradual decline of salinity to the seawater value. The pulse of brine salinity is expected to occur before an observed decline in vent temperature. Observed rapid changes in vent temperature and salinity associated with either eruptive or non-eruptive magmatic events are not likely a result of changes in basal heat flux.

  11. The Response of Two-Phase Hydrothermal Systems to Changing Magmatic Heat Input at Mid Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Choi, J.; Lowell, R. P.

    2012-12-01

    Hydrothermal processes at oceanic spreading centers are largely influenced by changing magmatic heat input. We use the two-phase NaCl-H2O FISHES code to investigate the evolution of surface temperature and salinity as a function of time-varying heat flux at the base of the hydrothermal system. We consider a two-dimensional rectangular box that is 1.5 km deep and 2 km long with homogeneous permeability of 10-13 m2. Temperature and pressure at top boundary correspond to seafloor conditions of 10°C, 25MPa respectively. Upstream conditions are applied at the top so temperature and salinity of fluids exiting the surface is set equal to that at one cell below the top boundary. Impermeable, insulated conditions are imposed on the left and right hand boundaries. To simulate time-varying heat flux from a sub-axial magma chamber of 500 m long half-width, we considered a variety of basal boundary conditions: (1) a sinusoidal heat flux with a period of 6 years and an amplitude ranging between 100 and 50 W/m2; (2) step function, random function, and exponential function between 200 and 15 W/m2; and (3) an analytical function of temporally decaying heat flux resulting from a simulated cooling, crystallizing magmatic sill. As a result of the investigation we find: (1) changes in bottom temperature and salinity closely follow the temporal variations in magmatic heat inputs; (2) the surface temperature response is severely damped and high frequency variations in heat flow are not detected; (3) in regions where phase separation occurs, surface salinity variations may be recorded in response to changing conditions at depth, but these are smaller in amplitude than the changes at depth. These simulations represent an important forward toward understanding time-dependent behavior of coupled magma-hydrothermal processes at oceanic spreading centers.

  12. Comment on “Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply”

    NASA Astrophysics Data System (ADS)

    Tolstoy, Maya

    2016-07-01

    Olive et al. (Reports, 16 October 2015, p. 310) and Goff (Technical Comment, 4 September 2015, p. 1065) raise important concerns with respect to recent findings of Milankovitch cycles in seafloor bathymetry. However, their results inherently support that the Southern East Pacific Rise is the optimum place to look for such signals and, in fact, models match those observations quite closely.

  13. Comment on "Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply".

    PubMed

    Tolstoy, Maya

    2016-07-15

    Olive et al (Reports, 16 October 2015, p. 310) and Goff (Technical Comment, 4 September 2015, p. 1065) raise important concerns with respect to recent findings of Milankovitch cycles in seafloor bathymetry. However, their results inherently support that the Southern East Pacific Rise is the optimum place to look for such signals and, in fact, models match those observations quite closely. PMID:27418497

  14. Isotopic evidence for Late Cretaceous plume-ridge interaction at the Hawaiian hotspot

    PubMed

    Keller; Fisk; White

    2000-06-01

    When a mantle plume interacts with a mid-ocean ridge, both are noticeably affected. The mid-ocean ridge can display anomalously shallow bathymetry, excess volcanism, thickened crust, asymmetric sea-floor spreading and a plume component in the composition of the ridge basalts. The hotspot-related volcanism can be drawn closer to the ridge, and its geochemical composition can also be affected. Here we present Sr-Nd-Pb isotopic analyses of samples from the next-to-oldest seamount in the Hawaiian hotspot track, the Detroit seamount at 51 degrees N, which show that, 81 Myr ago, the Hawaiian hotspot produced volcanism with an isotopic signature indistinguishable from mid-ocean ridge basalt. This composition is unprecedented in the known volcanism from the Hawaiian hotspot, but is consistent with the interpretation from plate reconstructions that the hotspot was located close to a mid-ocean ridge about 80 Myr ago. As the rising mantle plume encountered the hot, low-viscosity asthenosphere and hot, thin lithosphere near the spreading centre, it appears to have entrained enough of the isotopically depleted upper mantle to overwhelm the chemical characteristics of the plume itself. The Hawaiian hotspot thus joins the growing list of hotspots that have interacted with a rift early in their history. PMID:10864321

  15. Drainage systems associated with mid-ocean channels and submarine Yazoos: Alternative to submarine fan depositional systems

    SciTech Connect

    Hesse, R. )

    1989-12-01

    Submarine drainage systems associated with mid-ocean channels and Yazoo River-type tributaries in small ocean basins represent a contrast to deep-sea fan depositional systems. Deep-sea fans are diverging sediment-dispersal systems of distributary fan valleys. Deep-sea channel-submarine-yazoo systems, on the other hand, form centripetally converging patterns of tributaries and yazoo-type satellite channels that join a major basin-draining (mid-ocean) channel. The facies model for such systems is characterized by randomly stacked fining-upward, gravelly, and sandy channel-fill and submarine point-bar sequences of the main channel encased in fine-grained overbank deposits. Second-order channels contain sandy proximal overbank deposits, whereas the levees of the main channel are predominantly composed of silt and clay. Second-order channels may be braided and may broaden into braid plains. Morphology and surficial sediment distribution have been studied within the Northwest Atlantic Mid-Ocean Channel of the Labrador Sea and its associated levees and yazoo-type (and other) tributaries.

  16. A discontinuity in mantle composition beneath the southwest Indian ridge.

    PubMed

    Meyzen, Christine M; Toplis, Michael J; Humler, Eric; Ludden, John N; Mével, Catherine

    2003-02-13

    The composition of mid-ocean-ridge basalt is known to correlate with attributes such as ridge topography and seismic velocity in the underlying mantle, and these correlations have been interpreted to reflect variations in the average extent and mean pressures of melting during mantle upwelling. In this respect, the eastern extremity of the southwest Indian ridge is of special interest, as its mean depth of 4.7 km (ref. 4), high upper-mantle seismic wave velocities and thin oceanic crust of 4-5 km (ref. 6) suggest the presence of unusually cold mantle beneath the region. Here we show that basaltic glasses dredged in this zone, when compared to other sections of the global mid-ocean-ridge system, have higher Na(8.0), Sr and Al2O3 compositions, very low CaO/Al2O3 ratios relative to TiO2 and depleted heavy rare-earth element distributions. This signature cannot simply be ascribed to low-degree melting of a typical mid-ocean-ridge source mantle, as different geochemical indicators of the extent of melting are mutually inconsistent. Instead, we propose that the mantle beneath approximately 1,000 km of the southwest Indian ridge axis has a complex history involving extensive earlier melting events and interaction with partial melts of a more fertile source. PMID:12610622

  17. Minimum speed limit for ocean ridge magmatism from 210Pb-226Ra-230Th disequilibria.

    PubMed

    Rubin, K H; van der Zander, I; Smith, M C; Bergmanis, E C

    2005-09-22

    Although 70 per cent of global crustal magmatism occurs at mid-ocean ridges-where the heat budget controls crustal structure, hydrothermal activity and a vibrant biosphere-the tempo of magmatic inputs in these regions remains poorly understood. Such timescales can be assessed, however, with natural radioactive-decay-chain nuclides, because chemical disruption to secular equilibrium systems initiates parent-daughter disequilibria, which re-equilibrate by the shorter half-life in a pair. Here we use 210Pb-226Ra-230Th radioactive disequilibria and other geochemical attributes in oceanic basalts less than 20 years old to infer that melts of the Earth's mantle can be transported, accumulated and erupted in a few decades. This implies that magmatic conditions can fluctuate rapidly at ridge volcanoes. 210Pb deficits of up to 15 per cent relative to 226Ra occur in normal mid-ocean ridge basalts, with the largest deficits in the most magnesium-rich lavas. The 22-year half-life of 210Pb requires very recent fractionation of these two uranium-series nuclides. Relationships between 210Pb-deficits, (226Ra/230Th) activity ratios and compatible trace-element ratios preclude crustal-magma differentiation or daughter-isotope degassing as the main causes for the signal. A mantle-melting model can simulate observed disequilibria but preservation requires a subsequent mechanism to transport melt rapidly. The likelihood of magmatic disequilibria occurring before melt enters shallow crustal magma bodies also limits differentiation and heat replenishment timescales to decades at the localities studied. PMID:16177787

  18. Newly Discovered Hydrothermal Plumes Along the Furious Fifties, South East Indian Ridge (SEIR; 128°E-140°E)

    NASA Astrophysics Data System (ADS)

    Boulart, C.; Chavagnac, V.; Briais, A.; Revillon, S.; Donval, J. P.; Guyader, V.

    2015-12-01

    We report on the first evidence for hydrothermal activity along the intermediate-spreading South-East Indian Ridge (SEIR) between Australia and Antarctica (128°E-140°E), discovered during the STORM cruise of R/V L'Atalante. This section of the SEIR is located east of the low-magma Australian-Antarctic Discordance (AAD), where the ridge has the morphology of a slow-spreading mid-ocean ridge despite its intermediate spreading rate of 75 mm/yr. The axial depth decreases eastward, reflecting an eastward increase in magma budget.Using in-situ geochemical tracers based on optical backscatter, temperature, redox potential sensor and in situ mass spectrometer (ISMS) anomalies, we establish the existence of several distinct hydrothermal plumes within the water column along the 500 nautical miles ridge section. At one site, the combination of near-bottom temperature anomalies of 0.1°C together with strong dissolved methane and dissolved carbon dioxide anomalies revealed by the ISMS provides the precise location of an active vent in the Deep Southern Indian Ocean off Tasmania. Hydrothermal venting along the 128°E-140°E section of the SEIR appears to be significant, an observation consistent with the global link between spreading rate and plume occurrence (Baker and German, 2004). Moreover, the plume incidence increases westward and, in the eastern part, hydrothermal venting seems to be less significant, suggesting a possible influence of the high magma budget, as observed in mid-ocean ridge sections affected by hotspots. Future investigation will focus on the direct identification of venting sources and the study of hydrothermal circulation within the specific settings of the AAD. The observation of new venting sites at the frontier between Pacific and Indian Oceans may also provide new insights on the biogeography (diversity and distribution) of hydrothermal fauna. Baker, E. T., and C. R. German (2004), On the global distribution of hydrothermal vent fields, in Mid-Ocean

  19. The Davie Ridge: a Marginal Transform Ridge not Formed During Continental Breakup

    NASA Astrophysics Data System (ADS)

    Phethean, J. J. J.; Van Hunen, J.; McCaffrey, K. J. W.; Davies, R. J.

    2014-12-01

    The breakup of Gondwana translated Madagascar southwards relative to Africa along the Davie Fracture Zone (DFZ). This fracture zone now forms the Transform Passive Continental Margin (TPCM) from Kenya to Mozambique. The Davie Ridge (DR), a transform marginal ridge, has formed along the DFZ between 5 and 2°S and 22 and 11°S, but with little expression in-between. It has been proposed that this marginal ridge was formed by the thermal effects of a passing Mid Ocean Ridge (MOR) during the separation of Gondwana. Plate kinematic reconstructions, however, constrained by ocean magnetic anomalies, show that the MOR only passed between the north and south expressions of the DR. Therefore the positive linear gravity anomalies of the DR cannot be attributed to the effects of a passing MOR, and some other mechanism must be found to explain their formation. Interpretation of seismic reflection profiles along the DR shows that the gravity highs occur adjacent to large basin structures. In the north this correlates with a basin-bounding basement high of ~Albian age, and in the south with the rift flank uplifts of the currently active Quirimbas graben. This suggests that the northern and southern DR segments are instead shoulder uplifts resulting from two separate extensional episodes during different stress regimes. These are the Cretaceous NE-SW extension during the breakup of the south Atlantic, and the E-W extension of the Neogene-recent Afar-East Africa rift system, respectfully. The lack of deformation and DR formation along the region of the TPCM passed by the MOR suggests it has been coupled by thermal effects and/or the injection of magma.

  20. The East Pacific Rise: An Active Not Passive Spreading System

    NASA Astrophysics Data System (ADS)

    Rowley, D. B.; Rowan, C. J.; Forte, A. M.; Moucha, R.; Grand, S. P.; Simmons, N. A.

    2011-12-01

    Traditional plate tectonic interpretations of mid-oceanic ridges regard spreading as an entirely passive phenomenon. From this one would assume that the oceanic ridges will move over the mantle in response to the geodynamics of the diverging plates, and do not remain fixed spatially over any protracted period of time. An analysis of the kinematics of ridge motions in the Indo-Atlantic hotspot frame of reference since 83 Ma generally supports this view, with the notable exception of the East Pacific Rise (EPR). The Pacific-Nazca/Farallon segment of the EPR north of Easter Island (27°S) is oriented essentially N-S, and has produced more than 9500km of E-W spreading in the past 80 Ma, making it the dominant ridge in the world's plate system over this interval of time. Yet despite the large amount of E-W divergence, the spreading center has maintained its longitudinal position to within <±250 km of the current ridge axis. Global mantle convective flow modeling indicates that the EPR, unlike any other extensive segment of the mid-oceanic ridge system, is underlain by an active upwelling system extending from the core-mantle boundary to the surface. We suggest that the lack of E-W motion of the EPR apparent from the kinematics is a consequence of these mantle dynamics; this ridge is thus not behaving as a passive plate boundary, but is actively and directly linked to, and controlled by, whole mantle upwelling. This observation overturns the notion that ridges are always entirely passive features of the plate system. Subduction of the northern EPR beneath western North America has thus resulted in the overriding of an active upwelling system that has contributed significantly to the evolution of Basin and Range kinematics and superimposed dynamics, including significant contributions from dynamic topography.

  1. Age distribution of Ocean Drill sites across the Central Walvis Ridge indicates plate boundary control of plume volcanism in the South Atlantic

    NASA Astrophysics Data System (ADS)

    O'Connor, John M.; Jokat, Wilfried

    2015-08-01

    The Tristan-Gough hotspot trail on the African plate consists of the Walvis Ridge and a younger province of seamounts and islands. In order to determine the relative motion between the African plate and the Tristan-Gough hotspot it is essential to resolve changes in the age and morphology of the Walvis Ridge. A significant problem is, however, to establish how the vigor and flow of hotspot material to the mid-ocean ridge constructed the Walvis Ridge. We have addressed this issue by measuring an 40Ar/39Ar stratigraphy at three sites across the central Walvis Ridge sampled by Ocean Drilling (DSDP Leg 74). The age-distance relation of volcanism, together with geophysical, geochemical and paleodepth information, suggests collectively that hotspot volcanism was occurring locally c. 72 Ma on an elevated segment of the mid-ocean ridge located close to the Tristan-Gough hotspot. As the mid-ocean ridge migrated away from the hotspot (c. 36 km/Ma) between c. 72 Ma and 68 Ma, hotspot material continued flowing to the mid-ocean ridge and the Walvis Ridge shoaled rapidly (c. 500 m/Ma) to the west, on seafloor that might have been subsiding at a rate consistent with normal crustal cooling. This apparent correlation points to the possibility of an inverse relation between the volume flux of hotspot volcanism and the distance between the mid-ocean ridge and the Tristan-Gough hotspot. We infer that since c. 93 Ma the geometry and motion of the mid-ocean ridge determined where the hotspot material that built the Walvis Ridge was channeled to the plate surface. Furthermore, interplay between hotspot flow, and the changing geometry of the mid-ocean ridge as it migrated relative to the Tristan-Gough hotspot, might explain the age and morphology of the Walvis Ridge. Our finding provides further evidence that the distribution of hotspot volcanism in the southeast Atlantic expresses interaction between deep mantle (plume) and shallow plate tectonic and asthenosphere processes.

  2. Annual report on surveillance and maintenance activities at Oak Ridge National Laboratory, Oak Ridge, Tennessee, fiscal year 1996

    SciTech Connect

    1996-11-01

    In fiscal year (FY) 1995, the sites and facilities from both the Remedial Action (RA) and Decontamination and Decommissioning (D and D) programs were combined to form the Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Surveillance and Maintenance (S and M) Program. Surveillance and Maintenance activities were conducted throughout FY 1996 at the RA facilities. Overall, the RA S and M Program consists of approximately 650 acres that include 14 waste area groupings with approximately 200 sites. These sites include 46 major facilities, several leak and contaminated soil sites, 38 inactive tanks, approximately 50 environmental study areas and approximately 2,973 wells and boreholes. Site inspections were conducted at established frequencies on appropriate sites in the RA S and M Program in accordance with the established S and M FY 1996 Incentive Task Order (ITO).

  3. ­­­­Submarine Mass Wasting on Hovgaard Ridge, Fram Strait, European Arctic

    NASA Astrophysics Data System (ADS)

    Forwick, M.; Laberg, J. S.; Husum, K.; Gales, J. A.

    2015-12-01

    Hovgaard Ridge is an 1800 m high bathymetric high in the Fram Strait, the only deep-water gateway between the Arctic Ocean and the other World's oceans. The slopes of the ridge provide evidence of various types of sediment reworking, including 1) up to 12 km wide single and merged slide scars with maximum ~30 m high headwalls and some secondary escarpments; 2) maximum 3 km wide and 130 m deep slide scars with irregular internal morphology, partly narrowing towards the foot of the slope; 3) up to 130 m deep, 1.5 km wide and maximum 8 km long channels/gullies originating from areas of increasing slope angle at the margins of a plateau on top of the ridge. Most slide scars result presumably from retrogressive failure related to weak layers in contourites or ash. The most likely trigger mechanism is seismicity related to tectonic activity within the nearby mid-ocean fracture zone. Gully/channel formation is suggested to result from cascading water masses and/or from sediment gravity flows originating from failure at the slope break after winnowing on the plateau of the ridge.

  4. New data about small-magnitude earthquakes of the ultraslow-spreading Gakkel Ridge, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Morozov, Alexey N.; Vaganova, Natalya V.; Ivanova, Ekaterina V.; Konechnaya, Yana V.; Fedorenko, Irina V.; Mikhaylova, Yana A.

    2016-01-01

    At the present time there is available detailed bathymetry, gravimetric, magnetometer, petrological, and seismic (mb > 4) data for the Gakkel Ridge. However, so far not enough information has been obtained on the distribution of small-magnitude earthquakes (or microearthquakes) within the ridge area due to the absence of a suitable observation system. With the ZFI seismic station (80.8° N, 47.7° E), operating since 2011 at the Frantz Josef Land Archipelago, we can now register small-magnitude earthquakes down to 1.5 ML within the Gakkel Ridge area. This article elaborates on the results and analysis of the ZFI station seismic monitoring obtained for the period from December 2011 to January 2015. In order to improve the accuracy of the earthquakes epicenter locations, velocity models and regional seismic phase travel-times for spreading ridges in areas within the Euro-Arctic Region have been calculated. The Gakkel Ridge is seismically active, regardless of having the lowest spreading velocity among global mid-ocean ridges. Quiet periods alternate with periods of higher seismic activity. Earthquakes epicenters are unevenly spread across the area. Most of the epicenters are assigned to the Sparsely Magmatic Zone, more specifically, to the area between 1.5° E and 19.0° E. We hypothesize that assignment of most earthquakes to the SMZ segment can be explained by the amagmatic character of the spreading of this segment. The structuring of this part of the ridge is characterized by the prevalence of tectonic processes, not magmatic or metamorphic ones.

  5. Segment-scale volcanic episodicity: Evidence from the North Kolbeinsey Ridge, Atlantic

    NASA Astrophysics Data System (ADS)

    Yeo, I. A.; Devey, C. W.,; LeBas, T. P.; Augustin, N.; Steinführer, A.

    2016-04-01

    The upper oceanic crust is produced by magmatism at mid-ocean ridges, a process thought to be characterized by cyclic bouts of intense magmatic activity, separated by periods when faulting accommodates most or even all of the plate motion. It is not known whether there is a distinct periodicity to such magmatic-tectonic cycles. Here we present high-resolution sidescan sonar data from the neovolcanic zone of the North Kolbeinsey Ridge, a shallow slow-spreading ridge where high glacial and steady post-glacial sedimentation rates allow relative flow ages to be determined with a resolution of around 2 kyr using backscatter amplitude as a proxy for sediment thickness and hence age. We identify 18 lava flow fields covering 40% of the area surveyed. A group of 7 flow fields showing the highest (and similar) backscatter intensity are scattered along 75 km of axial valley surveyed, suggesting that at least this length of the segment was magmatically active within a 1.2 kyr time window. Based on conservative age estimates for all datable flows and estimated eruption volumes, the post-glacial volcanic activity imaged is insufficient to maintain crustal thickness, implying that episode(s) of enhanced activity must have preceded the volcanism we image.

  6. Asymmetric active seismicity along the ultra-slow spreading Gakkel Ridge

    NASA Astrophysics Data System (ADS)

    Hopper, John R.; Voss, Peter H.; Lavier, Luc L.

    2015-04-01

    Ultra-slow spreading ridges are frequently characterised by spreading segments that are largely magma starved. Spreading along such segments does not occur by crustal creation/accretion processes such as intrusions, diking and volcanism, but rather by mechanical extension of the lithosphere, exposing the mantle to seafloor where it interacts with seawater to form serpentinite. Such exhumation is thought to occur along detachment faults that form concave down surfaces and produce an extensional geometry that is highly asymmetric. A consequence of all models that have been developed to simulate this type of extension is that stress and strain is focused primarily on the footwall block of the spreading system. This would predict that at any given time, only one side of the system should show active seismicity. In 2001, the Gakkel Ridge was extensively sampled by dredging during the AMORE cruise. These samples showed that the ridge is divided into distinct segments that today are either magmatically robust (only basalts recovered) or magmatically starved (dominantly serpentinised peridotite and gabbros recovered). We extracted earthquake data along the Gakkel Ridge from the global catalogs to investigate if these distinct segments exhibit any differences in active seismicity. We show that the western volcanic zone shows symmetric active seismicity, with earthquakes occurring on both sides of the ridge axis along a relatively restricted region. In contrast, the sparsely magmatic zone shows active seismicity dominantly along along the southern half of the ridge, with comparatively little seismicity to the north. These results are consistent with the proposed models for the formation of amagmatic spreading centers.

  7. Hydrothermal activity along the slow-spreading Lucky Strike ridge segment (Mid-Atlantic Ridge): Distribution, heatflux, and geological controls

    NASA Astrophysics Data System (ADS)

    Escartin, J.; Barreyre, T.; Cannat, M.; Garcia, R.; Gracias, N.; Deschamps, A.; Salocchi, A.; Sarradin, P. M.; Ballu, V.

    2015-12-01

    We have reviewed available visual information from the seafloor, and recently acquired microbathymetry for several traverses across the Lucky Strike segment to evaluate the distribution of hydrothermal activity. The Lucky Strike segment hosts three active hydrothermal fields: Capelinhos, Ewan, and the known Main Lucky Strike Hydrothermal Field (MLSHF). Capelinhos is located 1.3 km E of the axis and the MLSHF, and consists of a ~20 m sulfide mound with black smoker vents. Ewan is located ~1.8 km south from the MLSHF along the axial graben, and displays only diffuse flow along and around scarps of collapse structures associated with fault scarps. At the MLSHF we have identified an inactive site, thus broadening the extent of this field. Heat flux estimates from these new sites are relatively low and correspond to ~10% of the heat flux estimated for the Main field, with an integrated heatflux of 200-1200 MW. Overall, most of the flux (up to 80-90%) is associated with diffuse outflow, with the Ewan site showing solely diffuse flow and Capelinhos mostly focused flow. Microbathymetry also reveals a large, off-axis (~2.4 km) hydrothermal field, similar to the TAG mound in size, on the flanks of a rifted volcano. The association of these fields to a central volcano, and the absence of indicators of hydrothermal activity along the ridge segment, suggest that sustained hydrothermal activity is maintained by the enhanced melt supply and the associated magma chamber(s) required to build central volcanoes. Hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal circulation in the shallow crust exploits permeable fault zones. Central volcanoes are thus associated with long-lived hydrothermal activity, and these sites may play a major role in the distribution and biogeography of vent communities.

  8. Three-dimensional seismic structure of the Dragon Flag oceanic core complex at the ultraslow spreading Southwest Indian Ridge (49°39'E)

    NASA Astrophysics Data System (ADS)

    Zhao, Minghui; Qiu, Xuelin; Li, Jiabiao; Sauter, Daniel; Ruan, Aiguo; Chen, John; Cannat, Mathilde; Singh, Satish; Zhang, Jiazheng; Wu, Zhenli; Niu, Xiongwei

    2013-10-01

    The Southwest Indian Ridge (SWIR) is an ultraslow spreading end-member of mid-ocean ridge system. We use air gun shooting data recorded by ocean bottom seismometers (OBS) and multibeam bathymetry to obtain a detailed three-dimensional (3-D) P wave tomographic model centered at 49°39'E near the active hydrothermal "Dragon Flag" vent. Results are presented in the form of a 3-D seismic traveltime inversion over the center and both ends of a ridge segment. We show that the crustal thickness, defined as the depth to the 7 km/s isovelocity contour, decreases systematically from the center (˜7.0-8.0 km) toward the segment ends (˜3.0-4.0 km). This variation is dominantly controlled by thickness changes in the lower crustal layer. We interpret this variation as due to focusing of the magmatic activity at the segment center. The across-axis velocity model documents a strong asymmetrical structure involving oceanic detachment faulting. A locally corrugated oceanic core complex (Dragon Flag OCC) on the southern ridge flank is characterized by high shallow crustal velocities and a strong vertical velocity gradient. We infer that this OCC may be predominantly made of gabbros. We suggest that detachment faulting is a prominent process of slow spreading oceanic crust accretion even in magmatically robust ridge sections. Hydrothermal activity at the Dragon Flag vents is located next to the detachment fault termination. We infer that the detachment fault system provides a pathway for hydrothermal convection.

  9. Alkalic Basalt in Ridge Axis of 53˚E Amagmatic Segment Center, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Wang, J.; Liu, Y.; Ji, F.; Dick, H. J.

    2014-12-01

    Mid-ocean ridge basalt (MORB) is key tracer of composition and process in the mantle. It is interesting to notice that some alkalic basalts occur in amagmatic spreading center of ultraslow spreading ridges, for examples, 9-16˚E of the Southwest Indian ridge (Standish et al., 2008) and Lena Trough of Arctic Ocean (Snow et al., 2011). The latter is interpreted as the result of the pre-existence of continental transform fault or the especially cold thermal structure of ancient continental lithosphere. 53˚E segment, east of the Gallieni transform fault, was discovered as an amagmatic segment (Zhou and Dick, 2013). On both sides of the ridge axis, peridotites with a little gabbro are exposed in an area more than 3200 km2. Basalts exist in the southern portion of 53˚E segment, indicating the transformation from magmatic to amagmatic spreading about 9.4 million years ago. In April of 2014, Leg 4 of the RV Dayang Yihao cruise 30, basaltic glasses was dredged at one location (3500 m water depth) in the ridge axis of 53˚E segment center. It is shown by electric probe analysis that the samples have extremely high sodium content (4.0-4.49 wt% Na­2O ), relative higher potassium content (0.27-0.32 wt% K2O) and silica (50.67-51.87 wt% SiO2), and lower MgO content (5.9-6.4 wt% MgO). Mg-number is 0.55-0.59. It is distinctly different from the N-MORB (2.42-2.68 wt% Na2O, 0.03-0.06 wt% K2O, 48.6-49.6 wt% Si2O, 8.8-9.0 wt% MgO, Mg-numbers 0.63) distributed in the 560-km-long supersegment, west of the Gallieni transform fault, where the active Dragon Flag hydrothermal field was discovered at 49.6˚E in 2007. The reasons for the alkalic basalt in the ridge axis of 53˚E amagmatic segment center, either by low melting degree of garnet stability field, by melting from an ancient subcontinental lithospheric mantle, or by sodium-metasomatism or even other mantle processes or their combination in the deep mantle, are under further studies.

  10. Characterization of Active Hydrothermal Fluid Discharge and Recharge Zones in the Endeavour Axial Valley, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Salmi, M.; Hutnak, M.; Hearn, C.; Tivey, M.; Bjorklund, T.; Johnson, H. P.

    2012-12-01

    Sites where warm hydrothermal fluid vents at mid-ocean spreading centers are important for understanding a wide range of critical oceanic processes, but discharge zones represent a very limited portion of crustal fluid circulation pathways. Mapping the distribution of both fluid recharge and discharge sites within the axial valley provides wider insight into the larger scale features of hydrothermal circulation. Our 2011 survey consisted of 180 conductive heat flow stations within the Endeavour axial valley in roughly a 400 m by 1000 m grid, extending across the entire axial valley from the outer flank of the western boundary ridge to the eastern wall. Data acquisition used thermal blankets which measured conductive heat flow without requiring substantial sediment cover. A surprising result from this survey was zones of high heat flow extending across-strike, from the summit of the west valley wall across the entire axial valley floor. This trend was correlated with anomalously low seafloor magnetization from a near-bottom survey with the ROV JASON. Unexpectedly, over half of the axial valley floor was anomalously low at <50 mW m-2, while a small portion of the sites within the 'warm zone' had heat flow values >1 W m-2. The areas of extremely low heat flow values are interpreted as being directly influenced by recharge zones. Based on MCS estimates of partial melt depth below the axial valley and the assumption of no fluid advection, the purely conductive heat flow for this region should be on the order of 1 W m-2.The observation that conductive heat flux is suppressed over large portions of the axial valley floor suggests that heat transfer within the crustal sub-surface fluid reservoir is widespread, and impacts a large portion of our survey area. The largely bi-modal distribution of high and low conductive heat flow, coupled with geophysical and video observations, suggest current Endeavour axial valley crustal fluid circulation models need to be re-evaluated.

  11. 78 FR 69447 - Agency Information Collection Activities; Existing Collection, Comments Requested: Friction Ridge...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Federal Bureau of Investigation Agency Information Collection Activities; Existing Collection, Comments Requested: Friction Ridge Cards: Arrest and Institution; Applicant; Personal Identification; FBI Standard Palm Print; Supplemental Finger and Palm...

  12. Ridge 2000 Data Integration and Synthesis

    NASA Astrophysics Data System (ADS)

    Fornari, D. J.; Ferrini, V.; Carbotte, S.; Blackman, D.

    2008-12-01

    The Ridge 2000 (R2K) program is transitioning toward an increased emphasis on integration and synthesis of data acquired on multi-disciplinary expeditions focused on understanding the geo-biological processes associated with hydrothermal systems on mid-ocean ridges (MORs). This phase of the program will focus not only on the compilation of existing data, but also on integration of results across disciplines, and development of models that examine the linkages between spreading, hydrothermal, and ecosystem processes. During this phase of the program, data from throughout the global mid-ocean ridge system will be important to achieve a more holistic understanding of MOR processes and how they relate to the Ridge 2000 data sets from each Integrated Study Site (ISS). A series of workshops were held in Fall 2008 to bring together researchers from each ISS to help coordinate the integration and synthesis phase of the program. While most cruises conducted during the R2K program have been cataloged and basic metadata made available through R2K Data Portal (http://www.marine- geo.org/ridge2000), additional data, including derived and interpreted data sets from R2K-funded expeditions and other ridge-related expeditions are important to make available during this phase in the program. Once data are available, a variety of data access and visualization tools including GeoMapApp, Google Earth, and IVS-Fledermaus can be used to help coordinate analysis and integration efforts. We focus on highlighting potential scientific applications made possible with currently available software tools, and report on the R2K community feedback and utilization of data bases and visualization tools brought to light during the Fall 2008 workshops. geo.org/ridge2000

  13. Jurassic zircons from the Southwest Indian Ridge

    PubMed Central

    Cheng, Hao; Zhou, Huaiyang; Yang, Qunhui; Zhang, Lingmin; Ji, Fuwu; Dick, Henry

    2016-01-01

    The existence of ancient rocks in present mid-ocean ridges have long been observed but received less attention. Here we report the discovery of zircons with both reasonably young ages of about 5 Ma and abnormally old ages of approximate 180 Ma from two evolved gabbroic rocks that were dredged from the Southwest Indian Ridge (SWIR) in the Gallieni fracture zone. U–Pb and Lu–Hf isotope analyses of zircons were made using ion probe and conventional laser abrasion directly in petrographic thin sections. Young zircons and their host oxide gabbro have positive Hf isotope compositions (εHf = +15.7–+12.4), suggesting a highly depleted mantle beneath the SWIR. The spread εHf values (from−2.3 to−4.5) of abnormally old zircons, together with the unradiogenic Nd-Hf isotope of the host quartz diorite, appears to suggest an ancient juvenile magmatism along the rifting margin of the southern Gondwana prior to the opening of the Indian Ocean. A convincing explanation for the origin of the unusually old zircons is yet to surface, however, an update of the theory of plate tectonics would be expected with continuing discovery of ancient rocks in the mid-oceanic ridges and abyssal ocean basins. PMID:27185575

  14. Jurassic zircons from the Southwest Indian Ridge.

    PubMed

    Cheng, Hao; Zhou, Huaiyang; Yang, Qunhui; Zhang, Lingmin; Ji, Fuwu; Dick, Henry

    2016-01-01

    The existence of ancient rocks in present mid-ocean ridges have long been observed but received less attention. Here we report the discovery of zircons with both reasonably young ages of about 5 Ma and abnormally old ages of approximate 180 Ma from two evolved gabbroic rocks that were dredged from the Southwest Indian Ridge (SWIR) in the Gallieni fracture zone. U-Pb and Lu-Hf isotope analyses of zircons were made using ion probe and conventional laser abrasion directly in petrographic thin sections. Young zircons and their host oxide gabbro have positive Hf isotope compositions (εHf = +15.7-+12.4), suggesting a highly depleted mantle beneath the SWIR. The spread εHf values (from-2.3 to-4.5) of abnormally old zircons, together with the unradiogenic Nd-Hf isotope of the host quartz diorite, appears to suggest an ancient juvenile magmatism along the rifting margin of the southern Gondwana prior to the opening of the Indian Ocean. A convincing explanation for the origin of the unusually old zircons is yet to surface, however, an update of the theory of plate tectonics would be expected with continuing discovery of ancient rocks in the mid-oceanic ridges and abyssal ocean basins. PMID:27185575

  15. Jurassic zircons from the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Cheng, Hao; Zhou, Huaiyang; Yang, Qunhui; Zhang, Lingmin; Ji, Fuwu; Dick, Henry

    2016-05-01

    The existence of ancient rocks in present mid-ocean ridges have long been observed but received less attention. Here we report the discovery of zircons with both reasonably young ages of about 5 Ma and abnormally old ages of approximate 180 Ma from two evolved gabbroic rocks that were dredged from the Southwest Indian Ridge (SWIR) in the Gallieni fracture zone. U–Pb and Lu–Hf isotope analyses of zircons were made using ion probe and conventional laser abrasion directly in petrographic thin sections. Young zircons and their host oxide gabbro have positive Hf isotope compositions (εHf = +15.7–+12.4), suggesting a highly depleted mantle beneath the SWIR. The spread εHf values (from‑2.3 to‑4.5) of abnormally old zircons, together with the unradiogenic Nd-Hf isotope of the host quartz diorite, appears to suggest an ancient juvenile magmatism along the rifting margin of the southern Gondwana prior to the opening of the Indian Ocean. A convincing explanation for the origin of the unusually old zircons is yet to surface, however, an update of the theory of plate tectonics would be expected with continuing discovery of ancient rocks in the mid-oceanic ridges and abyssal ocean basins.

  16. Compositional variation of lavas from a young volcanic field on the Southern Mid-Atlantic Ridge, 8°48'S

    NASA Astrophysics Data System (ADS)

    Haase, K.; Brandl, P. A.; Melchert, B.; Hauff, F.; Garbe-Schoenberg, C.; Paulick, H.; Kokfelt, T. F.; Devey, C. W.

    2012-12-01

    Volcanic eruptions along the mid-oceanic ridge system are the most abundant signs of volcanic activity on Earth but little is known about the timescales and nature of these processes. The main parameter determining eruption frequency as well as magma composition appears to be the spreading rate of the mid-oceanic ridge. However, few observations on the scale of single lava flows exist from the slow-spreading Mid-Atlantic Ridge so far. Here we present geological observations and geochemical data for the youngest volcanic features of the so-called A2 segment (Bruguier et al., 2003, Hoernle et al., 2011) of the slow-spreading (33 mm/yr) southern Mid-Atlantic Ridge at 8°48'S. This segment has a thickened crust of about 9 km indicating increased melt production in the mantle. Side-scan sonar mapping revealed a young volcanic field with high reflectivity that was probably erupted from two volcanic fissures each of about 3 km length. Small-scale sampling of the young lava field at 8°48'S by ROV and wax corer and geochemical analyses of the volcanic glasses reveal three different compositional lava units along this about 11 km long portion of the ridge. Based on the incompatible element compositions of volcanic glasses (e.g. K/Ti, Ce/Yb) we can distinguish two lava units forming the northern and the larger southern part of the lava field covering areas of about 5 and 9 square kilometres, respectively. Basalts surrounding the lava field and from an apparently old pillow mound within the young flows are more depleted in incompatible elements than glasses from the young volcanic field. Radium disequilibria suggest that most lavas from this volcanic field have ages of 3000 to 5000 yrs whereas the older lavas surrounding the lava field are older than 8000 yrs. Faults and a thin sediment cover on many lavas support the ages and indicate that this part of the Mid-Atlantic Ridge is in a tectonic rather than in a magmatic stage. Lavas from the northern and southern ends of the

  17. DATA SHARING REPORT CHARACTERIZATION OF POPULATION 7: PERSONAL PROTECTIVE EQUIPMENT, DRY ACTIVE WASTE, AND MISCELLANEOUS DEBRIS, SURVEILLANCE AND MAINTENANCE PROJECT OAK RIDGE NATIONAL LABORATORY OAK RIDGE, TENNESSEE

    SciTech Connect

    Harpenau, Evan M

    2013-10-10

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested that ORAU plan and implement a sampling and analysis campaign targeting certain URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing to determine a final pathway for disposal. Population 7 (POP 7) consists of 56 containers of aged, low-level and potentially mixed S&M waste that has been staged in various locations around ORNL. Several of these POP 7 containers primarily contain personal protective equipment (PPE) and dry active waste (DAW), but may contain other miscellaneous debris. This data sharing report addresses the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) specified waste in a 13-container subpopulation (including eight steel boxes, three 55-gal drums, one sealand, and one intermodal) that lacked sufficient characterization data for possible disposal at the Environmental Management Waste Management Facility (EMWMF) using the approved Waste Lot (WL) 108.1 profile.

  18. Sulphur Cycling at the Mid-Atlantic Ridge: Isotopic Evidence From the Logatchev and Turtle Pits Hydrothermal Fields

    NASA Astrophysics Data System (ADS)

    Eickmann, B.; Strauss, H.; Koschinsky, A.; Kuhn, T.; Petersen, S.; Schmidt, K.

    2005-12-01

    Mid-ocean ridges and associated hydrothermal vent systems represent a unique scenario in which the interaction of hydrosphere, lithosphere and biosphere and the related element cycling can be studied. Sulphur participates in inorganic and microbially driven processes and plays, thus, an important role at these vent sites. The sulphur isotopic compositions of different sulphur-bearing minerals as well as dissolved sulphur compounds provide a tool for identifying the sulphur source and pertinent processes of sulphur cycling. Here, we present sulphur isotope data from an ongoing study of the Logatchev hydrothermal field at 14°45' N and the Turtle Pits hydrothermal field at 4°48' S. The former is located in 2900 to 3060 m water depth, hosted by ultramafic rocks, while the latter is situated in 2990 m water depth, hosted by basaltic rocks. Different metal sulphides (chalcopyrite, pyrite, pyrrhotite, various copper sulphides), either particles from the emanating hot fluid itself or pieces of active and inactive black smokers, display δ34S values between +2 and +9 ‰. So far, no significant difference is discernible between mineral precipitates from both hydrothermal fields. However, differences exist between different generations of sulphide precipitates. Based on respective data from other sites of hydrothermal activity at mid-ocean ridges, this sulphur isotope range suggests that sulphur in the hydrothermal fluid and mineral precipitates represents a mixture between mantle sulphur and reduced seawater sulphate. Anhydrite precipitates from hydrothermal chimneys, located inside sulphide conduits, and obvious late stage gypsum needles from voids, yielded sulphur isotope values between +17.5 and +20.0 ‰. This clearly identifies seawater sulphate as the principal sulphur source. Variable, but generally low abundances of sulphide and sulphate in differently altered mafic and ultramafic rocks point to a complex fluid-rock interaction. Sulphur isotope values for total

  19. Hydrological response to a seafloor spreading episode on the Juan de Fuca ridge.

    PubMed

    Davis, Earl; Becker, Keir; Dziak, Robert; Cassidy, John; Wang, Kelin; Lilley, Marvin

    2004-07-15

    Seafloor hydrothermal systems are known to respond to seismic and magmatic activity along mid-ocean ridges, often resulting in locally positive changes in hydrothermal discharge rate, temperature and microbial activity, and shifts in composition occurring at the time of earthquake swarms and axial crustal dike injections. Corresponding regional effects have also been observed. Here we present observations of a hydrological response to seafloor spreading activity, which resulted in a negative formation-fluid pressure transient during and after an earthquake swarm in the sediment-sealed igneous crust of the Middle Valley rift of the northernmost Juan de Fuca ridge. The observations were made with a borehole seal and hydrologic observatory originally established in 1991 to study the steady-state pressure and temperature conditions in this hydrothermally active area. The magnitude of the co-seismic response is consistent with the elastic strain that would be expected from the associated earthquakes, but the prolonged negative pressure transient after the swarm is surprising and suggests net co-seismic dilatation of the upper, permeable igneous crust. The rift valley was visited four weeks after the onset of the seismic activity, but no signature of increased hydrothermal activity was detected in the water column. It appears that water, not magma, filled the void left by this spreading episode. PMID:15254534

  20. The Morphology, Structure and Origin of Seamounts on the South-West Indian Ocean Ridge

    NASA Astrophysics Data System (ADS)

    Muller, L. A.; Watts, A. B.; JC066 shipboard scientific party

    2012-04-01

    The South-West Indian Ridge (SWIR) between longitude 46 and 57° East is an ultra-slow spreading (~16 mm/a) mid-ocean ridge system with a highly oblique (>50°) spreading direction and a large number of closely spaced transform faults. Previous swath bathymetry surveys onboard R/V Dr. Fridtjof Nansen in 2009 show that the ridge crest is characterised by a number of irregularly shaped seamounts which rise about 2500 m above the mean depth of the surrounding seafloor. However, the origin of these seamounts and whether they reflect passive cracking of the lithosphere or deep mantle processes is not clear. In November/December, 2011 we re-surveyed 5 of these seamounts onboard RRS James Cook using an EM120 swath bathymetry system, a Lacoste-Romberg air-sea gravimeter and a Remotely Operated Vehicle (ROV). Preliminary results show that the seamounts are highly fractured, with fault trends parallel and orthogonal to the spreading direction. There is evidence of both growth and collapse structures, including head scars, chutes and debris flows. We present here a preliminary analysis of the morphology, gravity field and rock sample data and its implications for tectonics, mass wasting and eruptive processes at young seamounts that have formed in an active extensional setting.

  1. Numerical and laboratory experiments on the dynamics of plume-ridge interaction. Progress report

    SciTech Connect

    Kincaid, C.; Gable, C.W.

    1995-09-01

    Mantle plumes and passive upwelling beneath ridges are the two dominant modes of mantle transport and thermal/chemical fluxing between the Earth`s deep interior and surface. While plumes and ridges independently contribute to crustal accretion, they also interact and the dispersion of plumes within the upper mantle is strongly modulated by mid-ocean ridges. The simplest mode of interaction, with the plume centered on the ridge, has been well documented and modeled. The remaining question is how plumes and ridges interact when the plume is located off-axis; it has been suggested that a pipeline-like flow from the off-axis plume to the ridge axis at the base of the rigid lithosphere may develop. Mid-ocean ridges migrating away from hot mantle plumes can be affected by plume discharges over long times and ridge migration distances. Salient feature of this model is that off-axis plumes communicate with the ridge through a channel resulting from the refraction and dispersion of an axi-symmetric plume conduit along the base of the sloping lithosphere. To test the dynamics of this model, a series of numerical and laboratory dynamic experiments on the problem of a fixed ridge and an off-axis buoyant upwelling were conducted. Results are discussed.

  2. Activity of Wind-Blown Sand and the Formation of Feathered Sand Ridges in the Kumtagh Desert, China

    NASA Astrophysics Data System (ADS)

    Liao, Kongtai; Qu, Jianjun; Tang, Jinnian; Ding, Feng; Liu, Hujun; Zhu, Shujuan

    2010-05-01

    We study the activity of wind-blown sand and its effects on the evolution of feathered sand ridges in the Kumtagh Desert, China, and attempt to reveal the formation process of feathered sand ridges using wind-tunnel experiments, remote sensing data, and detailed field observations from 2005 to 2008. The prevailing wind direction in the Kumtagh Desert is easterly in winter and north-easterly in other seasons. The average annual wind speed is 5.9 ms-1, and winds sufficiently strong to entrain sand occur on 143 days per annum. The sand transport rate within 0.4 m of the ground is strongly influenced by local landforms, and is related to wind speed by a power function. Wind erosion occurs on the crest, the windward slope of crescent sand ridges and inter-ridge sand strips, where the blowing sand cloud is in an unsaturated state; in contrast, sand accumulation occurs on the leeward slope of the crescent sand ridges, where the blowing sand cloud is in an over-saturated state. These results indicate that the development of feathered sand ridges in the Kumtagh Desert is mainly controlled by the local wind regime. The dominant winds (from the north, north-north-east and north-east) and additional winds (from the east-north-east, east and east-south-east) determine the development of crescent sand ridges, but winds that are approximately parallel to sand ridges form the secondary inter-ridge sand strips.

  3. Are Axial Volcanic Ridges where all the (volcanic) action is?

    NASA Astrophysics Data System (ADS)

    Searle, R. C.

    2012-12-01

    Although axial volcanic ridges (AVRs) are generally recognised as the main loci for lithospheric generation at slow-spreading mid-ocean ridges, various recent studies have suggested that axial volcanism is not confined to them. Here I present evidence from three studies for significant amounts of off-AVR volcanism at three slow-spreading ridges. 1) Near-bottom side-scan sonar (TOBI) images of the Mid-Atlantic Ridge near 13°N show a complex pattern of closely-spaced, active oceanic core complexes (OCCs) where plate separation is largely a-volcanic, separated by short segments of vigorous volcanic spreading. In one such volcanic segment, the brightest sea floor and therefore inferred youngest volcanism occurs not on the topographic axis (an apparently 'old' AVR) but at the edge of a broad axial valley. 2) A similar TOBI survey of the Mid-Cayman Spreading Centre reveals AVRs in the north and south flanking an OCC (Mt. Dent) and a non-volcanic ridge interpreted as tectonically extruded peridotite ('smooth' sea floor). In both AVR segments there are clear, young lava flows that have erupted from perched sources part way up the median valley walls and have partly flowed down into the valley. 3) The third case is from the Mid-Atlantic Ridge at 45°N, where we conducted a detailed geophysical and geological study of an AVR and surrounding median valley floor. The AVR is largely surrounded by flat sea floor composed mainly of lobate and sheet flows, whereas the AVR comprises predominantly pillow lavas. Although we have no firm dates, various indicators suggest most lavas on the AVR are around 10ka old or somewhat less. The apparently youngest (brightest acoustic returns, thinnest sediment cover) of the flat-lying lava flows appears to have a similar age from its degree of sediment cover. Contact relations between these lavas and the AVR flanks show no evidence of a clear age difference between the two, and we think both types of eruption may have occurred roughly

  4. Modelling of hydrothermal fluid circulation in a heterogeneous medium: Application to the Rainbow Vent site (Mid-Atlantic-Ridge, 36°14N)

    NASA Astrophysics Data System (ADS)

    Perez, F.; Mügler, C.; Jean-Baptiste, P.; Charlou, J. L.

    2012-04-01

    Hydrothermal activity at the axis of mid-ocean ridges is a key driver for energy and matter transfer from the interior of the Earth to the ocean floor. At mid-ocean ridges, seawater penetrates through the permeable young crust, warms at depth and exchanges chemicals with the surrounding rocks. This hot fluid focuses and flows upwards, then is expelled from the crust at hydrothermal vent sites in the form of black or white smokers completed by diffusive emissions. We developed a new numerical tool in the Cast3M software framework to model such hydrothermal circulations. Thermodynamic properties of one-phase pure water were calculated from the IAPWS formulation. This new numerical tool was validated on several test cases of convection in closed-top and open-top boxes. Simulations of hydrothermal circulation in a homogeneous-permeability porous medium also gave results in good agreement with already published simulations. We used this new numerical tool to construct a geometric and physical model configuration of the Rainbow Vent site at 36°14'N on the Mid-Atlantic Ridge. In this presentation, several configurations will be discussed, showing that high temperatures and high mass fluxes measured at the Rainbow site cannot be modelled with hydrothermal circulation in a homogeneous-permeability porous medium. We will show that these high values require the presence of a fault or a preferential pathway right below the venting site. We will propose and discuss a 2-D one-path model that allows us to simulate both high temperatures and high mass fluxes. This modelling of the hydrothermal circulation at the Rainbow site constitutes a first but necessary step to understand the origin of high concentrations of hydrogen issued from this ultramafic-hosted vent field.

  5. Human factors activities in teleoperator development at the Oak Ridge National Laboratory

    SciTech Connect

    Draper, J.V.; Herndon, J.N.

    1986-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory is developing advanced teleoperator systems for maintenance of future nuclear reprocessing facilities. Remote maintenance systems developed by the CFRP emphasize man-in-the-loop teleoperation. Consequently, human factors issues which affect teleoperator performance must be addressed. This papers surveys research and development activities carried out by the human factors group within the Remote Control Engineering Task of the CFRP.

  6. Detailed leak detection test plan and schedule for the Oak Ridge National Laboratory LLLW active tanks

    SciTech Connect

    Douglas, D.G.; Maresca, J.W. Jr. )

    1993-03-01

    This document provides a detailed leak detection test plan and schedule for leak testing many of the tanks that comprise the active portion of the liquid low-level waste (LLLW) system at the Oak Ridge National Laboratory (ORNL). This plan was prepared in response to the requirements of the Federal Facility Agreement (FFA) between the US Department of Energy (DOE) and two other agencies, the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC).

  7. Abundant Hydrothermal Venting in the Southern Ocean Near 62°S/159°E on the Australian-Antarctic Ridge

    NASA Astrophysics Data System (ADS)

    Baker, E. T.; Hahm, D.; Rhee, T. S.; Park, S. H.; Lupton, J. E.; Walker, S. L.; Choi, H.

    2014-12-01

    Circum-Antarctic Ridges (CARs) comprise almost one-third of the global Mid-Ocean Ridge, yet remain terra incognita for hydrothermal activity and chemosynthetic ecosystems. The InterRidge Vents Database lists only 3 confirmed (visualized) and 35 inferred (plume evidence) active sites along the ~21,000 km of CARs. Here, we report on a multi-year effort to locate and characterize hydrothermal activity on two 1st-order segments of the Australian-Antarctic Ridge that are perhaps more isolated from other known vent fields than any other vent site on the Mid-Ocean Ridge. KR1 is a 300-km-long segment near 62°S/159°E, and KR2 a 90-km-long segment near 60°S/152.5°E. We used profiles collected by Miniature Autonomous Plume Recorders (MAPRs) on rock corers in March and December of 2011 to survey each segment, and an intensive CTD survey in Jan/Feb 2013 to pinpoint sites and sample plumes on KR1. Optical and oxidation-reduction potential (ORP, aka Eh) anomalies indicate multiple active sites on both segments. Seven profiles on KR2 found 3 sites, each separated by ~25 km. Forty profiles on KR1 identified 13 sites, some within a few km of each other. The densest site concentration on KR1 occurred along a relatively inflated, 90-km-long section near the segment center. CTD tows covered 20 km of the eastern, most inflated portion of this area, finding two 6-km-long zones centered near 158.6°E and 158.8°E with multiple plume anomalies. Three ORP anomalies within 50 m of the seafloor indicate precise venting locations. We call this area the Mujin "Misty Harbor" vent field. Vent frequency sharply decreases away from Mujin. 3He/heat ratios determined from 20 plume samples in the Mujin field were mostly <0.015 fM/J, indicative of chronic venting, but 3 samples, 0.021-0.034 fM/J, are ratios typical of a recent eruption. The spatial density of hydrothermal activity along KR1 and KR2 is similar to other intermediate-rate spreading ridges. We calculate the plume incidence (ph) along

  8. Ridges and Hot Spots: Reconciling Isotopes and Major Elements

    NASA Astrophysics Data System (ADS)

    Albarede, F.; Lee, C.; Agranier, A.; Blichert-Toft, J.

    2008-12-01

    Meyzen et al. (2007) combined the radiogenic isotope data of several hundred MORB samples along a single mid-ocean ridge profile extending from the northernmost Atlantic to the Indian over to the Pacific Ocean covering >400 degrees. A remarkable finding was that the total reduced variance on Sr-Nd-Hf-Pb data, hereafter referred to as "isotopic variance", showed conspicuous maxima and that a harmonic analysis of this variance showed a periodic spacing of the maxima with a mean value of ~35° (actually a doublet, which is a consequence of modulation by a hemispheric contrast). The strong but unexpected hint was that hot spots are nearly periodically spaced along the ridge systems. To explore whether the isotopic variations in the mantle are controlled by physical properties of the mantle source, such as its thermal state and major element composition, we estimated the apparent temperatures and pressures of equilibration using newly calibrated thermometers and barometers of Lee et al. (submitted) based on the most recent compilation of experimental data. We calculated T-P couples for over 3000 MORB samples after correcting for olivine fractionation. Peaks appear for pressure and even stronger for temperature at the precise same localities along the ridges where the presence of hot spots has been inferred. Periodograms of temperature estimates were calculated which produced a spectrum similar to that of the isotopic variance with the same conspicuous doublet and the same mean spacing of ~35° with a total power >40%. Pressure estimates show similar features with a lesser signal/noise ratio but we suspect that these features may largely reflect the rather strong correlation between errors on Tand P. These results, based on two independent data sets, leave little doubt about deep mantle upwellings with high potential temperatures underpinning mid-ocean ridges. However, the regular spacing of hot spots along mid-ocean ridges remains an unsolved conundrum. Meyzen etal

  9. Major off-axis hydrothermal activity on the northern Gorda Ridge

    SciTech Connect

    Rona, P.A. ); Denlinger, R.P. ); Fisk, M.R.; Howard, K.J.; Taghon, G.L. ); Klitgord, K.D. ); McClain, J.S. ); McMurray, G.R. ); Wiltshire, J.C. )

    1990-06-01

    The first hydrothermal field on the northern Gorda Ridge, the Sea Cliff hydrothermal field, was discovered and geologic controls of hydrothermal activity in the rift valley were investigated on a dive series using the DSV Sea Cliff. The Sea Cliff hydrothermal field was discovered where predicted at the intersection of axis-oblique and axis-parallel faults at the south end of a linear ridge at mid-depth (2700 m) on on the east wall. Preliminary mapping and sampling of the field reveal: a setting nested on nearly sediment-free fault blocks 300 m above the rift valley floor 2.6 km from the axis; a spectrum of venting types from seeps to black smokers; high conductive heat flow estimated to be equivalent to the convective flux of multiple black smokers through areas of the sea floor sealed by a caprock of clastic breccia primarily derived from basalt with siliceous cement and barite pore fillings; and a vent biota with Juan de Fuca Ridge affinities. These findings demonstrate the importance of off-axis hydrothermal activity and the role of the intersection of tectonic lineations in controlling hydrothermal sites at sea-floor spreading centers.

  10. First hydrothermal discoveries on the Australian-Antarctic Ridge: Discharge sites, plume chemistry, and vent organisms

    NASA Astrophysics Data System (ADS)

    Hahm, Doshik; Baker, Edward T.; Siek Rhee, Tae; Won, Yong-Jin; Resing, Joseph A.; Lupton, John E.; Lee, Won-Kyung; Kim, Minjeong; Park, Sung-Hyun

    2015-09-01

    The Australian-Antarctic Ridge (AAR) is one of the largest unexplored regions of the global mid-ocean ridge system. Here, we report a multiyear effort to locate and characterize hydrothermal activity on two first-order segments of the AAR: KR1 and KR2. To locate vent sites on each segment, we used profiles collected by Miniature Autonomous Plume Recorders on rock corers during R/V Araon cruises in March and December of 2011. Optical and oxidation-reduction-potential anomalies indicate multiple active sites on both segments. Seven profiles on KR2 found 3 sites, each separated by ˜25 km. Forty profiles on KR1 identified 17 sites, some within a few kilometer of each other. The spatial density of hydrothermal activity along KR1 and KR2 (plume incidence of 0.34) is consistent with the global trend for a spreading rate of ˜70 mm/yr. The densest area of hydrothermal activity, named "Mujin," occurred along the 20 km-long inflated section near the segment center of KR1. Continuous plume surveys conducted in January-February of 2013 on R/V Araon found CH4/3He (1 - 15 × 106) and CH4/Mn (0.01-0.5) ratios in the plume samples, consistent with a basaltic-hosted system and typical of ridges with intermediate spreading rates. Additionally, some of the plume samples exhibited slightly higher ratios of H2/3He and Fe/Mn than others, suggesting that those plumes are supported by a younger hydrothermal system that may have experienced a recent eruption. The Mujin-field was populated by Kiwa crabs and seven-armed Paulasterias starfish previously recorded on the East Scotia Ridge, raising the possibility of circum-Antarctic biogeographic connections of vent fauna.

  11. Significant Centers of Tectonic Activity as Identified by Wrinkle Ridges for the Western Hemisphere of Mars

    NASA Technical Reports Server (NTRS)

    Anderson, R.C.; Haldemann, A. F. C.; Golombek, M. P.; Franklin, B. J.; Dohm, J. M.; Lias, J.

    2000-01-01

    The western hemisphere region of Mars has been the site of numerous scientific investigations regarding its tectonic evolution. For this region of Mars, the dominant tectonic region is the Tharsis province. Tharsis is characterized by an enormous system of radiating grabens and a circumferential system of wrinkle ridges. Past investigations of grabens associated with Tharsis have identified specific centers of tectonic activity. A recent structural analysis of the western hemisphere region of Mars which includes the Tharsis region, utilized 25,000 structures to determine the history of local and regional centers of tectonic activity based primarily on the spatial and temporal relationships of extensional features. This investigation revealed that Tharsis is more structurally complex (heterogeneous) than has been previously identified: it consists of numerous regional and local centers of tectonic activity (some are more dominant and/or more long lived than others). Here we use the same approach as Anderson et al. to determine whether the centers of tectonic activity that formed the extensional features also contributed to wrinkle ridge (compressional) formation.

  12. Geochemical Characterization of Hydrothermal Plume Fluids From Peridotite- and Basalt- Dominated Regions of the Ultra-Slow Spreading Gakkel Ridge

    NASA Astrophysics Data System (ADS)

    Upchurch, L.; Edmonds, H. N.; Resing, J.; Nakamura, K.; Buck, N.; Liljebladh, B.; Stranne, C.; Tupper, G.; Winsor, P.

    2007-12-01

    Geochemical characterization of hydrothermal plumes initially located during the 2001 AMORE cruise to the Gakkel Ridge was undertaken as part of the 2007 Arctic Gakkel Vents Expedition (AGAVE). One peridotite- and one basalt-dominated area were targeted for this exploration to constrain the range of venting environments found on the Gakkel Ridge, the ultra-slow spreading endmember of the global mid-ocean ridge. CTD hydrocasts at the 7 E peridotite-hosted site relocated the plumes found initially on the AMORE cruise. The target plume was located between 2800 and 2950 meters and exhibited a localized signal in temperature and light scattering. While shipboard analysis of dissolved gases was unavailable at the 7 E site, samples were preserved for manganese and helium measurements. No Eh signal was found at the 7 E site. The 85 E basalt-hosted site has experienced recent volcanic activity and was more extensively studied relative to the 7 E site during the AGAVE cruise. CTD casts detected numerous temperature, light scattering, and Eh plumes at 85 E indicative of multiple hydrothermal sources. Three of the plumes sampled exhibited methane concentrations ranging from 20 nM to greater than 250 nM and hydrogen concentrations ranging from 10nM to 100nM. In situ Eh measurements recorded negative excursions of at least 25 mV in each plume. Associated manganese and particle chemistry samples collected at both sites will be analyzed in time for this meeting.

  13. Crevasse-squeeze ridge corridors: Diagnostic features of late-stage palaeo-ice stream activity

    NASA Astrophysics Data System (ADS)

    Evans, David J. A.; Storrar, Robert D.; Rea, Brice R.

    2016-04-01

    A 200-km-long and 10-km-wide linear assemblage of till-filled geometrical ridges on the bed of the Maskwa palaeo-ice stream of the late Wisconsinan southwest Laurentide Ice Sheet are interpreted as crevasse-squeeze ridges (CSR) developed during internal flow unit reorganization, immediately prior to ice stream shutdown. Ridge orientations are predominantly orientated WNW-ESE, with a subordinate WSW-ENE alignment, both indicative of ice fracture development transverse to former ice stream flow, as indicated by NNE-SSW aligned MSGL. Subglacial till injection into basal and/or full depth, mode I and II crevasses occurred at the approximate centreline of the ice stream, in response to extension and fracturing. Landform preservation indicates that this took place during the final stages of ice streaming, immediately prior to ice stream shutdown. This linear zone of ice fracturing therefore likely represents the narrowing of the fast-flowing trunk, similar to the plug flow identified in some surging valley glaciers. Lateral drag between the final active flow unit and the slower moving ice on either side is likely recorded by the up-ice bending of the CSR limbs. The resulting CSR corridor, here related to an individual ice stream flow unit, constitutes a previously unreported style of crevasse infilling and contrasts with two existing CSR patterns: (1) wide arcuate zones of CSRs related to widespread fracturing within glacier surge lobes; and (2) narrow concentric arcs of CSRs and recessional push moraines related to submarginal till deformation at active temperate glacier lobes.

  14. Rare earth abundances and Rb-Sr systematics of basalts, gabbro, anorthosite and minor granitic rocks from the Indian Ocean Ridge System, Western Indian Ocean

    USGS Publications Warehouse

    Hedge, C.E.; Futa, K.; Engel, C.G.; Fisher, R.L.

    1979-01-01

    Basalts dredged from the Mid-Indian Ocean Ridge System have rare earth, Rb, and Sr concentrations like those from other mid-ocean ridges, but have slightly higher Sr87/Sr86 ratios. Underlying gabbroic complexes are similar to the basalts in Sr87/Sr86, but are poorer K, Rb, and in rare earths. The chemical and isotopic data, as well as the geologic relations suggest a cumulate origin for the bulk of the gabbroic complexes. ?? 1979 Springer-Verlag.

  15. An Early-Middle Guadalupian (Permian) isotopic record from a mid-oceanic carbonate buildup: Akiyoshi Limestone, Japan

    NASA Astrophysics Data System (ADS)

    Musashi, Masaaki; Isozaki, Yukio; Kawahata, Hodaka

    2010-08-01

    In order to understand the oceanographic changes before the Guadalupian-Lopingian (Permian) boundary mass extinction event, we investigated the isotopic compositions of the inorganic carbon and the oxygen ( δ13C carb and δ18O carb) of the Guadalupian (Middle Permian) shallow marine carbonates deposited on a seamount-top in the superocean Panthalassa. The drilled samples were obtained at Kaerimizu in the Akiyoshi area, SW Japan. We focused on the Roadian-Wordian (Middle Guadalupian) interval that spans over 7 fusuline zones; i.e. the Parafusulina kaerimizuensis Zone ( Pk Z.), Afghanella ozawai Zone ( Ao Z.), Neoschwagerina craticulifera robusta Zone ( Ncr Z.), Verbeekina verbeeki-Afghanella schenki Zone ( Vv-As Z.), Neoschwageina fusiformis Zone ( Nf Z.), Verbeekina verbeeki Zone ( Vv Z.), and Colania douvillei Zone ( Cd Z.), in ascending order. Analytical results showed that the δ13C carb values stayed almost constant around + 3.0‰ PDB in the Pk Z., Ao Z. and the lower half of the Ncr Z., and those in the upper-section gradually decreased down to -2.0‰, of which the lowest was found in the Cd Z. We statistically extracted the samples with presumably better preserved δ13C carb values in the Kaerimizu section ranged between + 0.5 and + 4.0‰ with average values of δ13C carb of + 2.7 ± 1.0‰, on the basis of δ13C carb- δ18O carb characterization. This interval shows a monotonous decrease in δ13C carb values from ca + 4.0‰ to + 2.0‰. This indicates that the primary productivity might be generally high in the Wordian mid-oceanic domain but slightly declined in the Late Wordian. The studied Early-Middle Guadalupian interval is chemostratigraphically correlated with the other mid-Pansalassan paleo-atoll limestone e.g. Iwato Formation in Japan, suggesting that the relatively high δ13C carb (over + 3.0‰) of seawater predominated in shallow mid-superocean during the middle Middle Permian.

  16. Using Hydrothermal Plumes and Their Chemical Composition to Identify and Understand Hydrothermal Activity at Explorer Ridge

    NASA Astrophysics Data System (ADS)

    Resing, J.; Lebon, G.; Baker, E.; Walker, S.; Nakamura, K.; Silvers, B.

    2002-12-01

    During June and July, 2002, an extensive survey of the hydrothermal systems of the Explorer Ridge was made aboard the R/V Thomas Thompson. This survey employed hydrocasts and the Autonomous Benthic Explorer (ABE) to locate and map hydrothermal vent fields. A total of 28 hydrocasts (17 verticals and 11 tow-yos) were used to search for hydrothermal activity from 49.5°N to 50.3°N on the Explorer Ridge. During the hydrocasts continuous measurements were made of conductivity, temperature, pressure, light backscatter, eH, Fe, Mn, and pH. Discrete samples were collected for total dissolved Fe and Mn, methane, pH, total CO2, and particulate matter. Most of the strong hydrothermal venting was near the Magic Mountain area of the Explorer Ridge at ~49.76° N, 130.26° W, where strong particulate backscatter signals (~0.130 NTUs) and moderate temperature anomalies (~ 0.05 °C) were detected. The particulate matter causing the backscatter was made up primarily of volatile particulate sulfur (PS) with little to no hydrothermal PFe. PS:PFe ratios exceeded 25 in the areas of most intense venting, . These PFe and PS data suggest that the hydrothermal Fe, if any, is deposited as sulfide minerals beneath the sea floor and that S is far in excess of Fe in the hydrothermal fluids. In the most intense plumes,total dissolvable Fe and Mn were between 20 and 30 nM, pH anomalies exceeded 0.025 pH units (indicating an increase of ~10uM CO2), and methane reached 16nM. These results suggest that the fluids exiting the sea floor are metal-poor and moderately gas-rich.

  17. Data Sharing Report for the Quantification of Removable Activity in Various Surveillance and Maintenance Facilities at the Oak Ridge National Laboratory Oak Ridge TN

    SciTech Connect

    King, David A

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (OR-EM) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using American Recovery and Reinvestment Act (ARRA) funds. Specifically, DOE OR-EM requested that ORAU plan and implement a sampling and analysis campaign targeting potential removable radiological contamination that may be transferrable to future personal protective equipment (PPE) and contamination control materials—collectively referred to as PPE throughout the remainder of this report—used in certain URS|CH2M Oak Ridge, LLC (UCOR) Surveillance and Maintenance (S&M) Project facilities at the Oak Ridge National Laboratory (ORNL). Routine surveys in Bldgs. 3001, 3005, 3010, 3028, 3029, 3038, 3042, 3517, 4507, and 7500 continuously generate PPE. The waste is comprised of Tyvek coveralls, gloves, booties, Herculite, and other materials used to prevent worker exposure or the spread of contamination during routine maintenance and monitoring activities. This report describes the effort to collect and quantify removable activity that may be used by the ORNL S&M Project team to develop radiation instrumentation “screening criteria.” Material potentially containing removable activity was collected on smears, including both masselin large-area wipes (LAWs) and standard paper smears, and analyzed for site-related constituents (SRCs) in an analytical laboratory. The screening criteria, if approved, may be used to expedite waste disposition of relatively clean PPE. The ultimate objectives of this effort were to: 1) determine whether screening criteria can be developed for these facilities, and 2) provide process knowledge information for future site planners. The screening criteria, if calculated, must be formally approved by Federal Facility Agreement parties prior to use for

  18. Characteristics of tectonomagmatic earthquake swarms at the Southwest Indian Ridge between 16°E and 25°E

    NASA Astrophysics Data System (ADS)

    Läderach, C.; Korger, E. I. M.; Schlindwein, V.; Müller, C.; Eckstaller, A.

    2012-07-01

    The ultraslow spreading Southwest Indian Ridge (SWIR) is a prominent end-member of the global mid-ocean ridge system. It spreads with a full-rate of 14-16 mm y-1 and shows several segments of various obliquities. The western SWIR consists of the Oblique and Orthogonal Supersegments lying at an epicentral distance of ˜21° to the VNA2 seismic array operated by the German Neumayer station in East Antarctica. The array monitors backazimuth, apparent velocity and signal-to-noise ratio of arriving waves and provides a data set of seismicity from the western SWIR over several years. Compared to the global seismological network, its detection threshold for earthquakes occurring at the western SWIR is more than 0.5 mb lower enabling a more comprehensive study of mid-ocean ridge processes than the teleseismic earthquake catalogues. We identified a total number of 743 earthquakes occurring at the western part of the SWIR and calculated the body-wave magnitudes (mb) from P-wave amplitude picks on the VNA2 broad-band sensor obtaining a magnitude range from mb 3.18 to mb 5.34. In the years of 2001, 2004, 2005 and 2008, significantly increased event rates indicated four earthquake swarms with up to 164 events lasting for several days. All swarms had strong events registered in the International Seismological Centre catalogue. The relocalization of these events confirmed that all swarms occurred in the same region on the Orthogonal Supersegment. We analysed event and moment release rate histories, b-values and aftershock decay rates (Modified Omori Law) finding that the swarms of 2001, 2004 and 2005 have similarities in the temporal distribution of seismic moment and event numbers. The swarm of 2008 is smaller with high magnitude events at the swarm's onset which represent shear failure on normal faults. The application of the Modified Omori Law and the b-value show that the earthquakes of the swarms do not follow the classical main shock-aftershock pattern of purely tectonic

  19. Magma flow directions in the sheeted dike complex at superfast spreading mid-ocean ridges: Insights from IODP Hole 1256D, Eastern Pacific

    NASA Astrophysics Data System (ADS)

    Veloso, Eugenio E.; Hayman, Nicholas W.; Anma, Ryo; Tominaga, Masako; González, Rodrigo T.; Yamazaki, Toshitsugu; Astudillo, Natalia

    2014-04-01

    Integrated Ocean Drilling Program (IODP) Hole 1256D successfully sampled a complete section of an intact oceanic crustal sheeted dike complex (SDC) (from 1061 to 1320 meters below seafloor; mbsf) on a 15 Ma old Cocos Plate. A series of rock magnetic measurements were carried out to understand the magmatic processes that accreted this end-member, superfast-spread (200 mm/yr full rate) oceanic crust. Results indicate that main ferromagnetic minerals are predominantly pseudo single-domain (titano)magnetite crystals, responsible for both anisotropy of magnetic susceptibility (AMS) and magnetic remanence signals. AMS fabrics were reoriented into a geographic reference frame using magnetic remanence data, and corrected for a counterclockwise rotation of the Cocos Plate relative to the East Pacific Rise (EPR) ca. 15 Ma. Corrected AMS fabrics were then compared with the orientations of chilled margins previously obtained from Formation MicroScanner (FMS) images of the SDC at Hole 1256D. For some samples taken from close to dike margins, a dike-normal orientation of the minimum AMS axes (Kmin) of prolate AMS ellipsoids mean that the long axis (Kmax) can be used to infer magma flow directions. Subvertical Kmin orientations in the interior of the dikes, however, may have required settling or compaction of the magma shortly after intrusion, thus rearranging the AMS fabric. Despite this orientation of Kmin axes, orientation of Kmax axes indicate a rather constant subhorizontal paleo-flow direction, suggesting that magmas most probably traveled to the surface considerable distances from source regions within the EPR system.

  20. Volatile abundances and oxygen isotopes in basaltic to dacitic lavas on mid-ocean ridges: The role of assimilation at spreading centers

    USGS Publications Warehouse

    Wanless, V.D.; Perfit, M.R.; Ridley, W.I.; Wallace, P.J.; Grimes, Craig B.; Klein, E.M.

    2011-01-01

    Most geochemical variability in MOR basalts is consistent with low- to moderate-pressure fractional crystallization of various mantle-derived parental melts. However, our geochemical data from MOR high-silica glasses, including new volatile and oxygen isotope data, suggest that assimilation of altered crustal material plays a significant role in the petrogenesis of dacites and may be important in the formation of basaltic lavas at MOR in general. MOR high-silica andesites and dacites from diverse areas show remarkably similar major element trends, incompatible trace element enrichments, and isotopic signatures suggesting similar processes control their chemistry. In particular, very high Cl and elevated H2O concentrations and relatively light oxygen isotope ratios (~ 5.8‰ vs. expected values of ~ 6.8‰) in fresh dacite glasses can be explained by contamination of magmas from a component of ocean crust altered by hydrothermal fluids. Crystallization of silicate phases and Fe-oxides causes an increase in δ18O in residual magma, but assimilation of material initially altered at high temperatures results in lower δ18O values. The observed geochemical signatures can be explained by extreme fractional crystallization of a MOR basalt parent combined with partial melting and assimilation (AFC) of amphibole-bearing altered oceanic crust. The MOR dacitic lavas do not appear to be simply the extrusive equivalent of oceanic plagiogranites. The combination of partial melting and assimilation produces a distinct geochemical signature that includes higher incompatible trace element abundances and distinct trace element ratios relative to those observed in plagiogranites.

  1. Lateral variation in upper mantle temperature and composition beneath mid-ocean ridges inferred from shear-wave propagation, geoid, and bathymetry. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Sheehan, Anne Francis

    1991-01-01

    Resolution of both the extent and mechanism of lateral heterogeneity in the upper mantle constraints the nature and scales of mantle convection. Oceanic regions are of particular interest as they are likely to provide the closest glimpse at the patterns of temperature anomalies and convective flow in the upper mantle because of their young age and simple crustal structure relative to continental regions. Lateral variations were determined in the seismic velocity and attenuation structure of the lithosphere and astenosphere beneath the oceans, and these seismological observations were combined with the data and theory of geoid and bathymetry anomalies in order to test and improve current models for seafloor spreading and mantle convection. Variations were determined in mantle properties on a scale of about 1000 km, comparable to the thickness of the upper mantle. Seismic velocity, geoid, and bathymetry anomalies are all sensitive to variations in upper mantle density, and inversions were formulated to combine quantitatively these different data and to search for a common origin. Variations in mantle density can be either of thermal or compositional origin and are related to mantle convection or differentiation.

  2. An analysis of ridge axis gravity roughness and spreading rate

    NASA Technical Reports Server (NTRS)

    Small, Christopher; Sandwell, David T.

    1992-01-01

    Fast and slow spreading ridges have radically different morphologic and gravimetric characteristics. In this study, altimeter measurements from the Geosat Exact Repeat Mission are used to investigate spreading rate dependence of the ridge axis gravity field. Gravity roughness provides an estimate of the amplitude of the gravity anomaly and is robust to small errors in the location of the ridge axis. Gravity roughness as a weighted root mean square of the vertical deflection at 438 ridge crossings on the mid-ocean ridge system is computed. Ridge axis gravity anomalies show a decrease in amplitude with increasing spreading rate up to an intermediate rate of about 60-80 mm/yr and almost no change at higher rates; overall the roughness decreases by a factor of 10 between the lowest and highest rates. In addition to the amplitude decrease, the range of roughness values observed at a given spreading rate shows a similar order of magnitude decrease with transition between 60 and 80 mm/yr. The transition of ridge axis gravity is most apparent at three relatively unexplored locations on the Southeast Indian Ridge and the Pacific-Antarctic Rise; on these intermediate rate ridges the transition occurs abruptly across transform faults.

  3. Time-clustering behavior of spreading-center seismicity between 15 and 35°N on the Mid-Atlantic Ridge: observations from hydroacoustic monitoring

    NASA Astrophysics Data System (ADS)

    Bohnenstiehl, DelWayne R.; Tolstoy, Maya; Smith, Deborah K.; Fox, Christopher G.; Dziak, Robert P.

    2003-07-01

    An earthquake catalog derived from the detection of seismically-generated T-waves is used to study the time-clustering behavior of moderate-size (≳3.0 M) earthquakes between 15 and 35°N along the Mid-Atlantic Ridge (MAR). Within this region, the distribution of inter-event times is consistent with a non-periodic, non-random, clustered process. The highest degrees of clustering are associated temporally with large mainshock-aftershock sequences; however, some swarm-like activity also is evident. Temporal fluctuations characterized by a power spectral density P( f) that decays as 1/ fα are present within the time sequence, with α ranging from 0.12 to 0.55 for different regions of the spreading axis. This behavior is negligible at time scales less than ˜5×10 3 s, and earthquake occurrence becomes less clustered (smaller α) as increasing size thresholds are applied to the catalog. A power-law size-frequency scaling for Mid-Atlantic Ridge earthquakes also can be demonstrated using the distribution of acoustic magnitudes, or source levels. Although fractal seismic behavior has been linked to the structure of the underlying fault population in other environments, power-law fault size distributions have not been observed widely in the mid-ocean ridge setting.

  4. The Pine Ridge-Mayo National Aeronautics and Space Administration Telemedicine Project: Program Activities and Participant Reactions

    NASA Technical Reports Server (NTRS)

    Kottke, T. E.; Little Finger, L.; Trapp, M. A.; Panser, L. A.; Novotny, P. J.

    1996-01-01

    OBJECTIVE: To determine the response of participants to the Pine Ridge-Mayo National Aeronautics and Space Administration telemedicine project. DESIGN: We describe a 3-month demonstration project of medical education and clinical consultations conducted by means of satellite transmission. Postparticipation questionnaires and a postproject survey were used to assess the success of the activity. MATERIAL AND METHODS: Patients and employees at the Pine Ridge Indian Health Service Hospital in southwestern South Dakota and employees at Mayo Clinic Rochester participated in a telemedicine project, after which they completed exit surveys and a postproject questionnaire to ascertain the acceptability of this mode of health care. RESULTS: Almost all Pine Ridge and Mayo Clinic participants viewed the project as beneficial. The educational sessions received favorable evaluations, and almost two-thirds of the patients who completed evaluations thought the consultation had contributed to their medical care. More than 90% of the respondents from Pine Ridge and more than 85% of the respondents from Mayo Clinic Rochester said that they would recommend participation in this project to others. More than 90% of respondents from Pine Ridge and 80% of Mayo respondents agreed with the statement that the project should continue. CONCLUSION: These data suggest that a program of clinical consultation services, professional education, and patient education available by telemedicine might be viewed as beneficial.

  5. Middle Tertiary volcanism during ridge-trench interactions in western California

    SciTech Connect

    Cole, R.B.; Basu, A.R. )

    1992-10-01

    Bimodal volcanism in the Santa Maria Province of west-central California occurred when segments of the East Pacific Rise interacted with a subduction zone along the California margin during the Early Miocene (about 17 million years ago). Isotopic compositions of neodymium and strontium as well as trace-element data indicate that these volcanic rocks were derived from a depleted-mantle (mid-ocean ridge basalt) source. After ridge-trench interactions, the depleted-mantle reservoir was juxtaposed beneath the continental margin and was erupted to form basalts. It also assimilated and partially melted local Jurassic-Cretaceous sedimentary and metasedimentary basement rocks to form rhyolites and dacites. 28 refs.

  6. Seismic evidence for hotspot-induced buoyant flow beneath the Reykjanes Ridge.

    PubMed

    Gaherty, J B

    2001-08-31

    Volcanic hotspots and mid-ocean ridge spreading centers are the surface expressions of upwelling in Earth's mantle convection system, and their interaction provides unique information on upwelling dynamics. I investigated the influence of the Iceland hotspot on the adjacent mid-Atlantic spreading center using phase-delay times of seismic surface waves, which show anomalous polarization anisotropy-a delay-time discrepancy between waves with different polarizations. This anisotropy implies that the hotspot induces buoyancy-driven upwelling in the mantle beneath the ridge. PMID:11533487

  7. Hydrothermal activity along the slow-spreading Lucky Strike ridge segment (Mid-Atlantic Ridge): Distribution, heatflux, and geological controls

    NASA Astrophysics Data System (ADS)

    Escartin, J.; Barreyre, T.; Cannat, M.; Garcia, R.; Gracias, N.; Deschamps, A.; Salocchi, A.; Sarradin, P.-M.; Ballu, V.

    2015-12-01

    We have reviewed available visual information from the seafloor, and recently acquired microbathymetry for several traverses across the Lucky Strike segment, to evaluate the distribution of hydrothermal activity. We have identified a new on-axis site with diffuse flow, Ewan, and an active vent structure ∼1.2 km from the axis, Capelinhos. These sites are minor relative to the Main field, and our total heatflux estimate for all active sites (200-1200 MW) is only slightly higher than previously published estimates. We also identify fossil sites W of the main Lucky Strike field. A circular feature ∼200 m in diameter located on the flanks of a rifted off-axis central volcano is likely a large and inactive hydrothermal edifice, named Grunnus. We find no indicator of focused hydrothermal activity elsewhere along the segment, suggesting that the enhanced melt supply and the associated melt lenses, required to form central volcanoes, also sustain hydrothermal circulation to form and maintain large and long-lived hydrothermal fields. Hydrothermal discharge to the seafloor occurs along fault traces, suggesting focusing of hydrothermal circulation in the shallow crust along permeable fault zones.

  8. Intraplate compressional deformation in West-Congo and the Congo basin: related to ridge-puch from the South Atlantic spreading ridge?

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Everaerts, Michel; Kongota Isasi, Elvis; Ganza Bamulezi, Gloire

    2016-04-01

    After the break-up and separation of South America from Africa and the initiation of the South-Atlantic mid-oceanic ridge in the Albian, at about 120 Ma, ridge-push forces started to build-up in the oceanic lithosphere and were transmitted to the adjacent continental plates. This is particularly well expressed in the passive margin and continental interior of Central Africa. According to the relations of Wiens and Stein (1985) between ridge-push forces and basal drag in function of the lithospheric age of oceanic plates, the deviatoric stress reaches a compressional maximum between 50 and 100, Ma after the initiation of the spreading ridge, so broadly corresponding to the Paleocene in this case (~70-20 Ma). Earthquake focal mechanism data show that the West-Congo margin and a large part of the Congo basin are still currently under compressional stresses with an horizontal compression parallel to the direction of the active transform fracture zones. We studied the fracture network along the Congo River in Kinshasa and Brazzaville which affect Cambrian sandstones and probably also the late Cretaceous-Paleocene sediments. Their brittle tectonic evolution is compatible with the buildup of ridge-push forces related to the South-Atlantic opening. Further inland, low-angle reverse faults are found affecting Jurassic to Middle Cretaceous cores from the Samba borehole in the Congo basin and strike-slip movements are recorded as a second brittle phase in the Permian cores of the Dekese well, at the southern margin of the Congo basin. An analysis of the topography and river network of the Congo basin show the development of low-amplitude (50-100 m) long wavelengths (100-300 km) undulations that can be interpreted as lithospheric buckling in response to the compressional intraplate stress field generated by the Mid-Atlantic ridge-push. Wiens, D.A., Stein, S., 1985. Implications of oceanic intraplate seismicity for plate stresses, driving forces and theology. Tectonophysics

  9. Chemistry of Hydrothermal Plumes at 159°E on the Australian-Antarctic Ridge

    NASA Astrophysics Data System (ADS)

    Hahm, D.; Baker, E. T.; Rhee, T. S.; Lupton, J. E.; Resing, J. A.; Park, S. H.

    2014-12-01

    The Australian-Antarctic Ridge (AAR) is one of the largest unexplored regions of the global mid-ocean ridge system. In the present contribution, we present the geochemistry of the hydrothermal plumes over the KR1, an AAR segment at 159ºE and 62ºS. In 2011, we collected 48 Miniature Autonomous Plume Recorder profiles, measuring optical back scatter and oxidation-reduction potential, and identified the area between 158.5 and 159ºE as the densest concentration of active hydrothermal sites. In order to further characterize the chemistry of the hydrothermal plumes over the area, named 'Mujin', we conducted intensive vertical and tow-yo CTD casts in 2013. The maximum concentrations of the chemical tracers 3He, CH4, H2, and dissolved Mn, were 7.47 fmol/kg, 19.6 nmol/kg, 8.8 nmol/kg, 94.3 nmol/L, respectively. The CH4/3He (1 -10) and CH4/Mn (0.01 - 0.2) ratios were significantly lower than many ultra-mafic hosted systems, which are often found in slow spreading ridges. The lower ratios are consistent with a basaltic-hosted system, typical of the intermediate spreading rate of 6.8 cm/yr of KR1. Additionally, some of the plume samples collected around 158.6 and 158.8ºE exhibited slightly higher ratios of H2/3He than the others. Assuming that H2 is produced from the reduction of water by reduced iron compounds in the rock, the higher ratios suggest that those plumes are supported by a younger hydrothermal system, which may have experienced a recent eruption.

  10. The relationships between volcanism, tectonism and hydrothermal activity on the Mid-Atlantic Ridge south of the equator

    NASA Astrophysics Data System (ADS)

    Devey, C. W.; German, C. R.; Haase, K. M.; Lackschewitz, K. S.; Melchert, B.; Connelly, D.; Parson, L. M.

    2009-04-01

    Using data from the complete bathymetric and side-scan (TOBI) coverage of the Mid-Atlantic Ridge 2-14 °S collected since 2004 in conjunction with the results of extensive prospecting for hydrothermal systems in this area we attempt to formulate a general model for the interplay between volcanism, tectonics and hydrothermalism on a slow-spreading ridge. The model defines three basic types of ridge morphology with specific hydrothermal characteristics: (a) A deep, tectonically-dominated rift valley where hydrothermalism is seldom associated with volcanism and much more likely confined to long-lived bounding faults (b) a shallower, segment-centre bulge where a combination of repeated magmatic activity and tectonism results in repeated, possibly temporally overlapping periods of hydrothermal activity on the ridge axis and (c) a very shallow, inflated axis beneath which temperatures in all but the uppermost crust are so high that deformation is ductile, inhibiting the formation of high-porosity deep fractures and severely depressing hydrothermal circulation. This model is used together with predicted bathymetry to provide forecasts of the best places to look for hydrothermal sites in the remaining unexplored regions of the South Atlantic

  11. Active and relict sea-floor hydrothermal mineralization at the TAG hydrothermal field, Mid-Atlantic Ridge

    SciTech Connect

    Rona, P.A. . Atlantic Oceanographic and Meteorological Labs.); Hannington, M.D. ); Raman, C.V. ); Thompson, G.; Tivey, M.K.; Humphris, S.E. ); Lalou, C. . Lab. CNRS-CEA); Petersen, S. Aachen Univ. of Technology )

    1993-12-01

    The TAG hydrothermal field is a site of major active and inactive volcanic-hosted hydrothermal mineralization in the rift valley of the slow-spreading Mid-Atlantic Ridge at 26[degree]N. The axial high is the principal locus of present magmatic intrusions. The TAG field contains three main areas of present and past hydrothermal activity: (1) an actively venting high-temperature sulfide mound; (2) two former high-temperature vent areas; (3) a zone of low-temperature venting and precipitation of Fe and Mn oxide deposits. The volcanic centers occur at the intersections between ridge axis-parallel normal faults and projected axis-transverse transfer faults. The intersections of these active fault systems may act as conduits both for magmatic intrusions from sources beneath the axial high that build the volcanic centers and for hydrothermal upwelling that taps the heat sources. Radiometric dating of sulfide samples and manganese crusts in the hydrothermal zones and dating of sediments intercalated with pillow lava flows in the volcanic center adjacent to the active sulfide mound indicate multiple episodes of hydrothermal activity throughout the field driven by heat supplied by episodic intrusions over a period of at least 140 [times] 10[sup 3] yr. The sulfide deposits are built by juxtaposition and superposition during relatively long residence times near episodic axial heat sources counterbalanced by mass wasting in the tectonically active rift valley of the slow-spreading oceanic ridge. Hydrothermal reworking of a relict hydrothermal zone by high-temperature hydrothermal episodes has recrystallized sulfides and concentrated the first visible primary gold reported in a deposit at an oceanic ridge.

  12. Annual report of decommissioning and remedial action S&M activities for the Environmental Management Program at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1997-11-01

    The Oak Ridge National Laboratory (ORNL) Surveillance and Maintenance (S&M) Program performs a variety of activities to ensure that sites and facilities within its responsibility remain in a safe condition and in compliance with applicable regulations. All S&M Program activities during fiscal year (FY) 1997 were accomplished safely, with no health and safety incidents, no lost work days, and no environmental noncompliances. In addition, all activities were performed within schedule thresholds and under budget. Many remedial action (RA) sites and decontamination and decommissioning (D&D) facilities are inspected and maintained by the S&M Program. RA sites encompass approximately 650 acres and 33 D&D facilities, including 4 inactive reactors. During FY 1997, routine, preventative, and emergency maintenance activities were performed as needed at these sites and facilities. Stabilization activities were also performed to reduce risks and reduce future S&M costs. Major activities at the RA sites during FY 1997 included maintaining proper liquid levels in surface impoundments and inactive -liquid low-level waste storage tanks as well as installing a new cover at the tumulus pads in Waste Area Grouping (WAG) 6, planting trees in the First Creek Riparian Corridor, and performing over 900 well inspections. Postremediation monitoring was conducted at the 3001 Canal, Core Hole 8, the WAG 6 Resource Conservation and Recovery caps, and WAG 5 Seeps C and D; groundwater monitoring was performed in WAGs 4, 5, and 6 and at the 3001 Canal Well. At ORNL D&D facilities, significant accomplishments included contaminated lead brick removal, asbestos abatement, contaminated equipment and debris removal, and radiologically contaminated area painting.

  13. Surveillance and maintenance report on decontamination and decommissioning and remedial action activities at the Oak Ridge Y-12 plant, Oak Ridge, Tennessee. Fiscal year 1996

    SciTech Connect

    King, H.L.; Sollenberger, M.L.; Sparkman, D.E.; Reynolds, R.M.; Wayland, G.S.

    1996-12-01

    The Oak Ridge Y-12 Plant Decontamination and Decommissioning (D&D) and Remedial Action (RA) programs are part of the Environmental Restoration (ER) Division and are funded by the Office of Environmental Management (EM-40). Building 9201-4 (known as Alpha-4), three sites located within Building 9201-3 (the Oil Storage Tank, the Molten Salt Reactor Experiment Fuel Handling Facility, and the Coolant Salt Technology Facility), and Building 9419-1 (the Decontamination Facility) are currently the facilities at the Y-12 Plant included in the D&D program. The RA program provides surveillance and maintenance (S&M) and program management of ER sites at the Y-12 Plant, including selected sites listed in Appendix C of the Federal Facilities Agreement (FFA), sites listed in the Hazardous and Solid Waste Amendment (HSWA) permit Solid Waste Management Unit (SWM-U) list, and sites currently closed or undergoing post-closure activities under the Resource Conservation and Recovery Act of 1976 (RCRA) or the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This report communicates the status of the program plans and specific S&M activities for the D&D and RA programs.

  14. Magmatic processes at slow spreading ridges: implications of the RAMESSES experiment at 57° 45'N on the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Sinha, M. C.; Constable, S. C.; Peirce, C.; White, A.; Heinson, G.; MacGregor, L. M.; Navin, D. A.

    1998-12-01

    findings have major implications for the temporal patterns of generation and migration of basaltic melt in the mantle, and of its delivery into the crust, beneath slow-spreading mid-ocean ridges.

  15. Dive and Discover: New Arctic Educational Modules and Near Real-Time Coverage of Exploration on the Gakkel Ridge, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Humphris, S. E.; Conrad, D. S.; Joyce, K.; Whitcomb, L.; Carignan, C.

    2006-12-01

    The award-winning Dive and Discover web site will provide education and outreach activities during the International Polar Year for an expedition to investigate hydrothermal activity on the Gakkel Ridge using autonomous underwater vehicles. Created in 2000, this web site is targeted mainly at middle-school students (Grades 6-8) and the general public, but is structured to provide multiple layers and levels of information to cover a wide range of educational experience. The backbone of the site is a series of educational modules that address basic science concepts central to marine science and research being conducted in the deep ocean and on the seafloor. The site already contains considerable material on a range of topics pertinent to seafloor exploration, including mid-ocean ridges, hydrothermal vents, and vent biology, as well as Antarctica. For the cruise to the Gakkel Ridge, two new modules relevant to the upcoming Gakkel Ridge cruise are being developed: one on the geography, oceanography and ecosystems of the Arctic Ocean, and another on underwater robotics. During the 2007 cruise, Dive and Discover will provide daily updates on the progress of the cruise through still and video images from the ship and from the seafloor, graphical representations of a wide variety of oceanographic data, explanations about the technology being used, general information about life at sea on an ice breaker conducting marine research, and interviews with the scientists, engineers, and mariners that make oceanographic research possible. In addition, a "Mail Buoy" will allow the general public to communicate directly by email with scientists at sea. Once the cruise is completed, it will remain live on the site so that it can continue to be accessed and used by teachers during any part of the school year.

  16. Surficial permeability of the axial valley seafloor: Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Hearn, Casey K.; Homola, Kira L.; Johnson, H. Paul

    2013-09-01

    Hydrothermal systems at mid-ocean spreading centers play a fundamental role in Earth's geothermal budget. One underexamined facet of marine hydrothermal systems is the role that permeability of the uppermost seafloor veneer plays in the distribution of hydrothermal fluid. As both the initial and final vertical gateway for subsurface fluid circulation, uppermost seafloor permeability may influence the local spatial distribution of hydrothermal flow. A method of deriving a photomosaic from seafloor video was developed and utilized to estimate relative surface permeability in an active hydrothermal area on the Endeavour Segment of the Juan de Fuca Ridge. The mosaic resolves seafloor geology of the axial valley seafloor at submeter resolution over an area greater than 1 km2. Results indicate that the valley walls and basal talus slope are topographically rugged and unsedimented, providing minimal resistance to fluid transmission. Elsewhere, the axial valley floor is capped by an unbroken blanket of low-permeability sediment, resisting fluid exchange with the subsurface reservoir. Active fluid emission sites were restricted to the high-permeability zone at the base of the western wall. A series of inactive fossil hydrothermal structures form a linear trend along the western bounding wall, oriented orthogonal to the spreading axis. High-temperature vent locations appear to have migrated over 100 m along-ridge-strike over the decade between surveys. While initially an expression of subsurface faulting, this spatial pattern suggests that increases in seafloor permeability from sedimentation may be at least a secondary contributing factor in regulating fluid flow across the seafloor interface.

  17. Local Seismicity of the slow-spreading Mid-Atlantic ridge: median valley earthquakes shallow towards segment ends

    NASA Astrophysics Data System (ADS)

    Tilmann, F.; Planert, L.; Flueh, E.; Reston, T.; Weinrebe, W.

    2003-04-01

    Slow spreading mid-ocean ridges are characterized by along-axis segmentation where crustal composition and structure varies significantly within a segment and across transform faults and other ridge axis discontinuities. In May 2000, the GERSHWIN experiment (Geophysical Experiments to investigate Ridge Segmentation HoW INside and outside corners forms) investigated the Mid-Atlantic Ridge (MAR) at 5oS during cruise M47/2 of RV Meteor. The work program included seismic refraction profiling, bathymetric mapping, dredging, and a passive seismological survey, the results of which we are reporting here. In the study area, two spreading segments of the MAR are separated by a 70 km offset transform fault. This segment of the ridge is unusual in that the inside corner high has been split by a change in location of active seafloor spreading. (Reston et al., 2002). Just south of the 5oS transform fault, a network of up to 15 ocean bottom stations (13 hydrophones and 2 seismometers), recorded micro-earthquake activity for a duration of altogether 10 days (because of instrument failures and early recovery instrument numbers vary throughout this period, though). Approximately, 150 earthquakes produced clear arrivals on three or more stations. Approximately half of these events have five or more picks and a azimuthal gap less than 300o, so can be considered well located; 49 events have good depth control. Earthquake activity is concentrated along a narrow zone along the median valley. A few events occur along the transform fault, and in diffuse regions within the Inside Corner High and the bounding massif near the centre of the segment. Event depths vary between 5 and 13 km below sea level (approx. 1-9 km below the seafloor), with most occurring at 7-9 km depth below seafloor. Earthquake depths within the median valley shallow towards the segment end, however, there is no significant seismicity within the immediate neighbourhood of the fracture zone or beneath the volcanic ridge

  18. Endeavour Segment, Juan de Fuca Ridge, Integrated Studies Site (ISS) Update and Opportunities

    NASA Astrophysics Data System (ADS)

    Butterfield, D.; Ridge Community

    2003-12-01

    The Ridge 2000 (R2K) Integrated Studies bull's eye on the Juan de Fuca Ridge is focused on the Main Endeavour hydrothermal field, located on the central portion of the Endeavour Segment. This vent field is one of the most vigorously venting systems along the global mid-ocean ridge spreading network, hosting at least 18 large sulfide structures that contains more than100 smokers. Prior to a magmatic event in 2000 some of the edifices had been venting 380C, volatile-rich fluids with extremely low chlorinities for a decade. In addition to the Main Endeavour Field there are four other known high temperature vent fields spaced approximately 2 kilometers apart along the segment (with hints of more) and abundant areas of diffuse flow, both nearby and distal to the high temperature venting. Diffuse flow from the structures and from a variety of basaltic-hosted sites provides rich habitats abundant with microbial and macrofaunal communities. There are well-developed gradients in volatile concentrations along axis that may reflect influence from a sedimentary source to the north, and high chlorinity fluids vent from the most southern (Mothra) and northern fields (Sasquatch). Twenty years of research have laid a firm base for the 5-year plans of R2K at this site, which include examining the response of this segment to perturbations induced by tectonic and magmatic events, identification of the reservoirs, fluxes, and feedbacks of mass and energy at this site, and predictive modeling coupled with field observations. Since designation as an IS site, high-resolution bathymetric mapping (EM300) and an extensive multi-channel seismic survey have been conducted along the entire segment. Smaller focused areas have also been mapped at meter resolution by SM2000 sonar. Intense field programs in 2003 established the first in-situ seismic array along a mid-ocean ridge, which includes installation of a buried broadband seismometer and 7 short-period seismometers emplaced within basaltic

  19. Oak Ridge National Laboratory's (ORNL) Weigh-In-Motion (WIM) Configuration and Data Management Activities

    SciTech Connect

    Abercrombie, Robert K; Sheldon, Frederick T; Schlicher, Bob G

    2006-01-01

    The Oak Ridge National Laboratory (ORNL) involvement in the Weigh-in-Motion (WIM) research with both government agencies and private companies dates back to 1989. The discussion here will focus on the US Army's current need for an automated WIM system to weigh and determine the center-of-balance for military wheeled vehicles and cargo and the expanded uses of WIM data. ORNL is addressing configuration and data management issues as they relate to deployments for both military and humanitarian activities. The transition from the previous WIM Gen I to the current Gen II system illustrates a configuration and data management solution that ensures data integration, integrity, coherence and cost effectiveness. Currently, Army units use portable and fixed scales, tape measures, and calculators to determine vehicle axle, total weights and center of balance for vehicles prior to being transshipped via railcar, ship, or airlifted. Manually weighing and measuring all vehicles subject to these transshipment operations is time-consuming, labor-intensive, hazardous and is prone to human errors (e.g., misreading scales and tape measures, calculating centers of balance and wheel, axle, and vehicle weights, recording data, and transferring data from manually prepared work sheets into an electronic data base and aggravated by adverse weather conditions). Additionally, in the context of the military, the timeliness, safety, success, and effectiveness of airborne heavy-drop operations can be significantly improved by the use of an automated system to weigh and determine center of balance of vehicles while they are in motion. The lack of a standardized airlift-weighing system for joint service use also creates redundant weighing requirements at the cost of scarce resources and time. This case study can be judiciously expanded into commercial operations related to safety and enforcement. The WIM program will provide a means for the Army to automatically identify/weigh and monitor

  20. Seismicity and active tectonic processes in the ultra-slow spreading Lena Trough, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Läderach, C.; Schlindwein, V.; Schenke, H.-W.; Jokat, W.

    2011-03-01

    With its remote location in the ice-covered Fram Strait, Lena Trough is a poorly known segment of the global mid-ocean ridge system. It is a prominent member of the ultra-slow spreading mid-ocean ridges but its spreading mechanisms are not well understood. We relocalized teleseismically recorded earthquakes from the past five decades to identify tectonic processes in Lena Trough and the adjacent Spitsbergen Fracture Zone (FZ). During two cruises with RV Polarstern in 2008 and 2009 we deployed seismic arrays on ice floes to record the local seismicity of Lena Trough. We could identify and localize microseismic events which we assume to be present in the entire rift valley. In contrast, our relocalization of teleseismically recorded earthquakes shows an asymmetric epicentre distribution along Lena Trough with earthquakes occurring predominately along the western valley flanks of Lena Trough. In 2009 February/March, several high-magnitude earthquakes peaking in an Mb 6.6 event occurred in an outside-corner setting of the Spitsbergen FZ. This is the strongest earthquake which has ever been recorded in Fram Strait and its location at the outside-corner high of the ultra-slow spreading ridge is exceptional. Comparing the seismicity with the magnetic anomalies and high-resolution multibeam bathymetry, we divide Lena Trough in a symmetrically spreading northern part and an asymmetrically spreading southern part south of the South Lena FZ. We propose that a complex interaction between the former De Geer Megashear zone, which separated Greenland from Svalbard starting at Late Mesozoic/Early Cenozoic times, and the developing rift in the southern Lena Trough resulted an increasing eastward dislocation towards the Spitsbergen FZ between older spreading axes and the recent active spreading axis which we believe to be located west of the bathymetric rift valley flanks in a wide extensional plain.

  1. Microbial Communities at Non-Volcanic and Volcanic Sites of the Gakkel Ridge

    NASA Astrophysics Data System (ADS)

    Helmke, E.; Juergens, J.; Tausendfreund, M.; Wollenburg, J.; Shank, T.; Edmonds, H.; Humphris, S.; Nakamura, K.; Liljebladh, B.; Winsor, P.; Singh, H.; Reves-Sohn, R. A.

    2007-12-01

    The Gakkel Ridge in the eastern Arctic Ocean is the slowest spreading, deepest, and most isolated portion of the global mid-ocean ridge system and therefore predestined for comparative investigations on deep-sea vent communities. However, the perennial cover of thick sea ice has made this area largely inaccessible to science. The Arctic Gakkel Vents Expedition (AGAVE) utilized the icebreaker ODEN and newly developed vehicles for exploration and sampling in connection with a CTD/rosette equipped with different sensors and a high-resolution multi-beam bathymetry system. We focused our studies on the peridotite-hosted region at 85°N, 7°E and on the basaltic volcanism area at 85°N, 85°E. Water, sediment, and rock samples were taken to describe the microbial communities in different zones of these two sites. Sampling was guided by anomalies of backscattering, temperature, Eh, as well as by high-resolution seafloor imagery. Samples were preserved or processed on board immediately after sampling. Molecular analyses, cultural methods, total bacterial counts, and activity measurements were employed to describe the structure of the microbial communities, their phylogeny, potential adaptations, and possible role in biogeochemical cycles. The first molecular biological results of the bacterial communities of the 85°E site indicated atypical of deep- sea venting communities. These preliminary results were supported by the images of the under-ice vehicle "Camper" which showed thick yellow "fluffy" mats (often > 5cm thick) and orange "pebbly" material without any smell of H2S markedly different than the white, consolidated Beggiatoa mats often observable at deep venting sites. Foraminifera occurred regularly on top of basalt rocks as well as within the bacterial mats.

  2. Heat Flow on the South West Indian Ridge at 14°E and the Consequences for Microbiological Activity

    NASA Astrophysics Data System (ADS)

    Kaul, N. E.; Molari, M.; Boetius, A.

    2014-12-01

    During RV POLARSTERN cruise PS81 to the South West Indian Ridge (SWIR) at 52°S, 14°E an integrated study was carried out in more than 4000 m water depth employing seismology, geology, microbiology, deep-sea ecology, heat flow and others. Heat flow is supposed to be an indicator for the varying depth of the magma chamber beneath the ridge axis. Bottom observations from previous work on the SWIR are scarce and visual information about geostructures, habitat landscapes, benthic faunal communities and their distribution in this area have so far been missing. Vigorous fluid flow in the form of black smokers or shimmering water could not be detected but enhanced heat flow due to upward pore water migration occurred. This leads to values of very high heat flow (up to 850 mW/m2) and advection rates up to 25 cm/a Darcy velocity. Enhanced biomass and a greater variation of megafauna along those sites of high heat flow could be inferred from reconnaissance observations with a camera sledge. A closer investigation of microbial activity in the material of gravity corers revealed favorable living conditions for microorganisms. We find the inorganic carbon fixation rates, here applied like a proxy of microbial metabolic activity, were significantly higher (up to 7 times higher) in surficial sediments in proximity of the station PS 81/640 compared to other stations along the ridge. Conversely the extracellular enzymatic activities did not show any significant difference in the potential organic matter degradation between the stations investigated. These results suggest an increase of chemosynthetic activities at St PS 81/649, possibly related to increase of availability of reduced compounds (i.e. sulphide, reduced metals) in presence of pore water flow.

  3. Changes in Microbial Communities, Including both Uncultured and Culturable Bacteria, with Mid-Ocean Ballast-Water Exchange during a Voyage from Japan to Australia

    PubMed Central

    Tomaru, Akiko; Kawachi, Masanobu; Demura, Mikihide; Fukuyo, Yasuwo

    2014-01-01

    We assessed changes in the microbial communities in ballast water during a trans-Pacific voyage from Japan to Australia that included a mid-ocean ballast-water exchange. Uncultured (i.e., total) and culturable bacteria were counted and were characterized by using denaturing gradient gel electrophoresis (DGGE). There was a clear decrease over time in numbers of uncultured microorganisms, except for heterotrophic nanoflagellates, whereas the abundance of culturable bacteria initially decreased after the ballast-water exchange but then increased. The increase, however, was only up to 5.34% of the total number of uncultured bacteria. Cluster analysis showed that the DGGE profiles of uncultured bacteria clearly changed after the exchange. In contrast, there was no clear change in the DGGE profiles of culturable bacteria after the exchange. Multidimensional scaling analysis showed changes in microbial communities over the course of the voyage. Although indicator microbes as defined by the International Convention for the Control and Management of Ships' Ballast Water and Sediments were occasionally detected, no coliform bacteria were detected after the exchange. PMID:24817212

  4. Annual Report on Environmental Monitoring Activities for FY 1995 (Baseline Year) at Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-06-01

    This report describes baseline contaminant release conditions for Waste Area Grouping (WAG) 6 at Oak Ridge National Laboratory (ORNL). The sampling approach and data analysis methods used to establish baseline conditions were presented in ``Environmental Monitoring Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee (EMP).`` As outlined in the EMP, the purpose of the baseline monitoring year at WAG 6 was to determine the annual contaminant releases from the site during fiscal year 1995 (FY95) against which any potential changes in releases over time could be compared. The baseline year data set provides a comprehensive understanding of release conditions from all major waste units in the WAG through each major contaminant transport pathway. Due to a mandate to reduce all monitoring work, WAG 6 monitoring was scaled back and reporting efforts on the baseline year results are being minimized. This report presents the quantified baseline year contaminant flux conditions for the site and briefly summarizes other findings. All baseline data cited in this report will reside in the Oak Ridge Environmental Information system (OREIS) database, and will be available for use in future years as the need arises to identify potential release changes.

  5. 4D Time-Lapse Seismic Analysis of Active Gas Seepage Systems on the Vestnesa Ridge, Offshore W-Svalbard

    NASA Astrophysics Data System (ADS)

    Bunz, S.; Hurter, S.; Plaza-Faverola, A. A.; Mienert, J.

    2014-12-01

    Active gas venting occurs on the Vestnesa Ridge, an elongated sediment drift north of the Molloy Transform and just east of the Molloy Ridge, one of the shortest segments of the slow spreading North-Atlantic Ridge system. The crest of the Vestnesa Ridge at water depth between 1200-1300 m is pierced with fluid-flow features. Seafloor pockmarks vary in size up to 1 km in diameter with significant morphological features consisting of small ridges, diapiric structures and small pits. Detailed hydro-acoustic surveying shows that gas mostly emanates from the small-scale pits, where also hydrates have been recovered by sediment sampling. High-resolution P-Cable 3D seismic data acquired in 2012 show vertical focused fluid flow features beneath the seafloor pockmarks. These co-called chimneys extend down to the free-gas zone underneath a bottom-simulating reflection (BSR). Here, they link up with small fault systems that might provide pathways to the deeper subsurface. The chimney features show a high variability in their acoustic characteristics with alternating blanked or masked zones and high-amplitude anomalies scattered through the whole vertical extent of the chimneys. The amplitude anomalies indicate high-impedance contrasts due to the likely presence of gas or a high-velocity material like gas hydrates or carbonates. In most cases, the high-amplitude anomalies line up along specific vertical pathways that connect nicely with the small-scale pits at the surface where gas bubbles seep from the seafloor. We re-acquired the 3D seismic survey in 2013 for time-lapse seismic studies in order to better understand the origin of the amplitude anomalies and in order to track potentially migrating gas fronts up along the chimney structure. The time-lapse seismic analysis indicates several areas, where gas migration may have led to changes in acoustic properties of the subsurface. These areas are located along chimney structures and the BSR. This work provides a basis for better

  6. Preeruptive flow focussing in dikes feeding historical pillow ridges on the Juan de Fuca and Gorda Ridges

    NASA Astrophysics Data System (ADS)

    Yeo, I. A.; Clague, D. A.; Martin, J. F.; Paduan, J. B.; Caress, D. W.

    2013-09-01

    Linear, hummocky pillow mound volcanism dominates at slow and intermediate spreading rate mid-ocean ridges. Volcanic hummocks are thought to be formed by low effusion rates or as a result of flow focussing during effusive fissure style eruptions in which the initial dike intercepts the seafloor and erupts along its entire length. In this study, high-resolution autonomous underwater vehicle (AUV) bathymetry is used to accurately map the extents of four historical fissure eruptions of the Juan de Fuca and Gorda ridges: on the North Gorda, North Cleft, and CoAxial ridge segments. The four mapped eruptions take the form of pillow mounds, which are similar in both lithology and dimension to hummocks on the Mid-Atlantic Ridge. Pillow mounds may be isolated, or coalesce to form composite mounds, aligned as ridges or as clustered groups. In three of the four mapped sites, the eruptions were discontinuous along their lengths, with pillow mounds and composite mounds commonly separated by areas of older seafloor. This style of discontinuous eruption is inconsistent with typical en echelon fissure eruptions and is probably due to a mildly overpressured, fingering dike intersecting the seafloor along parts of its length.

  7. Different TDM/CH4 hydrothermal plume signatures: TAG site at 26N and serpentinized ultrabasic diapir at 15 degrees 05'N on the Mid-Atlantic ridge

    SciTech Connect

    Charlou, J.L.; Bougault, H. ); Appriou, P. ); Nelsen, T.; Rona, P. )

    1991-11-01

    As a part of the 1988 NOAA VENTS Program, CH{sub 4} and Mn tracers were used to identify and compare hydrothermal plumes found above the TAG Field (26{degrees}N) and in the rift valley at 15{degrees}N close to the eastern intersection of the ridge axis with the 15{degrees}20'N Fracture Zone at the Mid-Atlantic Ridge (MAR). Active hydrothermal venting was confirmed at TAG, based on elevated concentrations of total dissolved Mn (TDM up to 30 nmol/kg), high CH{sub 4} concentrations (up to 200 nL/L), and elevated nephelometry signals. Plumes of a different composition were identified at 15{degree}N with high CH{sub 4} concentrations (up to 400 nL/L), low total dissolved Mn concentrations (TDM < 1 nmol/kg) and no significant nephelometry signal. The different properties of these tracers and the different tracer ratios can be used to deduce vent fluid characteristics and compare one hydrothermal area to another. TDM/CH{sub 4} and Nephel/CH{sub 4} ratios at TEG are of the same order of magnitude as those observed at other spreading axis hydrothermal fields. At 15{degrees}N, the low TDM/CH{sub 4} ratio provides evidence of fluid circulation into ultrabasic rocks and offers a potentially useful and single method of exploring for hydrothermal activity associated with serpentinization. Mantle degassing through hydrothermal activity associated with serpentinization is an important process with respect to chemical and thermal exchanges between the upper mantle and the ocean. Different ratios of hydrothermal tracers (i.e., TDM/CH{sub 4}) provide a useful framework for identifying subseafloor processes along mid-oceanic ridges.

  8. Visual Observations and Geologic Settings of the Newly-Discovered Black Smoker Vent Sites Across the Galapagos Ridge-Hotspot Intersection

    NASA Astrophysics Data System (ADS)

    Anderson, P.; Haymon, R.; MacDonald, K.; White, S.

    2006-12-01

    Nearly one-fifth of the global mid-ocean ridge is hotspot-affected, yet very little is known about how hotspots affect quantity and distribution of high-temperature hydrothermal vents along the ridge. During the 2005-06 GalAPAGoS expedition, acoustic and plume sensor surveys were conducted across the Galapagos ridge- hotspot intersection, lon. 94.5ºW- lon. 89.5ºW, to map fine scale geologic features and locate hydrothermal plumes emanating from the ridge crest. Where significant plumes were detected, the Medea fiber-optic camera sled was used successfully to find and image high-temperature vents on the seafloor. With Medea we discovered and imaged the first active and recently extinct black smokers known along the entire Galapagos Spreading Center (GSC), and documented the geologic setting of these vents. The Medea survey imaged numerous inactive vents as well as 3 active high-temperature vent fields along the ridge at 94º 04.5'W (Navidad Site), 91º56.2'W (Iguanas Site) and 91º54.3'W (Pinguinos Site). Two recently extinct vent fields also were identified at 91º23.4'-23.7'W and 91º13.8'W. All of the high-temperature vent sites that we identified along the GSC are found above relatively shallow AMC reflectors and are located in the middle 20% of ridge segments. Without exception the vent sites are located along fissures atop constructional axial volcanic ridges (AVR's) composed of relatively young pillow basalts. In some cases, the vents were associated with collapses adjacent to the fissures. The fissures appear to be eruptive sources of the pillow lavas comprising the AVR's. Video images of the chimneys show mature, cylindrical structures, up to 14m high; little diffuse flow; few animals; and some worm casts and dead clam shells, suggesting prior habitation. We conclude that distribution of the vents is controlled by magmatic processes, (i.e., by locations of shallow AMC magma reservoirs and eruptive fissures above dike intrusions), and that there is

  9. The mean composition of ocean ridge basalts

    NASA Astrophysics Data System (ADS)

    Gale, Allison; Dalton, Colleen A.; Langmuir, Charles H.; Su, Yongjun; Schilling, Jean-Guy

    2013-03-01

    mean composition of mid-ocean ridge basalts (MORB) is determined using a global data set of major elements, trace elements, and isotopes compiled from new and previously published data. A global catalog of 771 ridge segments, including their mean depth, length, and spreading rate enables calculation of average compositions for each segment. Segment averages allow weighting by segment length and spreading rate and reduce the bias introduced by uneven sampling. A bootstrapping statistical technique provides rigorous error estimates. Based on the characteristics of the data, we suggest a revised nomenclature for MORB. "ALL MORB" is the total composition of the crust apart from back-arc basins, N-MORB the most likely basalt composition encountered along the ridge >500 km from hot spots, and D-MORB the depleted end-member. ALL MORB and N-MORB are substantially more enriched than early estimates of normal ridge basalts. The mean composition of back-arc spreading centers requires higher extents of melting and greater concentrations of fluid-mobile elements, reflecting the influence of water on back-arc petrogenesis. The average data permit a re-evaluation of several problems of global geochemistry. The K/U ratio reported here (12,340 ± 840) is in accord with previous estimates, much lower than the estimate of Arevalo et al. (2009). The low Sm/Nd and 143Nd/144Nd ratio of ALL MORB and N-MORB provide constraints on the hypothesis that Earth has a non-chondritic primitive mantle. Either Earth is chondritic in Sm/Nd and the hypothesis is incorrect or MORB preferentially sample an enriched reservoir, requiring a large depleted reservoir in the deep mantle.

  10. Data base management activities for the Remedial Action Program at Oak Ridge National Laboratories (ORNL)

    SciTech Connect

    Hook, L.A.; Voorhees, L.D.; Gentry, M.J.; Faulkner, M.A.; Shaakir-Ali, J.A.; Newman, K.A.; McCord, R.A.; Goins, L.F.; Owen, P.T.

    1990-07-01

    The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP) was established in 1985 in response to state and federal regulations requiring comprehensive control over facility discharges and cleanup of contaminated sites. A computerized Data and Information Management System (DIMS) was developed for RAP to (1) provide a centralized repository for data pertinent to RAP and (2) provide support for the investigations and assessments leading to the long-term remediation of contaminated facilities and sites. The current status of DIMS and its role in supporting RAP during 1989 are described. The DIMS consists of three components: (1) the Numeric Data Base, (2) the Bibliographic Data Base, and (3) the Records Control Data Base. This report addresses all three data bases, but focuses on the contents of the Numeric Data Base. Significant progress was made last year with the geographic information system (GIS) and ARC/INFO, which can be interfaced with SAS/GRAPH to provide combined mapping and statistical graphic products. Several thematic layers of GIS data for the Oak Ridge Reservation are now available. 18 refs., 8 figs., 19 tabs.

  11. Slab break-off related to the Pacific-Izanagi ridge and the 50 Ma plate reorganization

    NASA Astrophysics Data System (ADS)

    Whittaker, J. M.; Seton, M.; Flament, N.; Gurnis, M.; Talsma, A. S.; Müller, R. D.

    2011-12-01

    A hemisphere-wide plate reorganization occurred approximately 50 million years ago, causing a plethora of tectonic events in the Pacific, Indian and Atlantic oceans. The ultimate driver of this reorganization, either a plate tectonic/top-down or a mantle flow/bottom-up mechanism, remains unresolved. Top-down mechanisms often invoke a dramatic change in slab pull due to the arrival of a mid ocean ridge or aseismic ridge at a subduction zone. Bottom-up mechanisms require sudden lateral or vertical changes in mantle flow. We use a combination of surface geology, plate reconstructions, forward geodynamic models and seismic tomography to investigate the effect a slab break-off event related to the intersection of the Pacific-Izanagi ridge and the East Asian subduction zone on the 50 Ma plate reorganization. The intersection of an active mid ocean ridge with a subduction zone commonly results in the formation of a slab window. Surface manifestations of an underlying slab window are observed in the geology of southern and central Japan including: the cessation of a major accretion phase in the late Cretaceous; elevated geothermal gradients and heat flux around 55 Ma; and the emplacement of the Okitsu Melange due to underlying hot, buoyant material at 55 Ma. The cessation of granitic plutonism in Korea suggests that subduction along the margin terminated at around 60-50 Ma before restarting again ~42 Ma. We independently reconstructed the now subducted ocean floor in Panthalassa based on the magnetic lineations preserved in the ocean floor in the western Pacific and following a simple, symmetrical spreading regime with inferred intermediate spreading rates. Our plate reconstructions result in the progressively southward arrival of the Pacific-Izanagi ridge parallel to the East Asian margin between 60-50 Ma, consistent with the geological observations listed above. In addition, we carry out a series of forward geodynamic models with imposed surface plate velocities

  12. Diffuse Crustal Accretion at the Southern Terminus of the Malaguana-Gadao Ridge, Mariana Trough

    NASA Astrophysics Data System (ADS)

    Sleeper, J. D.; Martinez, F.; Fryer, P. B.

    2014-12-01

    The mode of extension and crustal accretion in backarc basins is strongly affected by proximity to the arc volcanic front. The factor that likely has the strongest control on these processes is mantle water content. At Mid-Ocean Ridges, the small amount of water in the mantle is efficiently extracted into the melt, dehydrating the residual material and increasing the viscosity and strength of the lithosphere. This may aid in focusing melt generated over a broad (~200+ km wide) zone in the mantle toward a narrow zone of crustal accretion ~1-2 km wide. In the near-arc setting, the continuous flux of water into the mantle wedge should oppose lithospheric dehydration and inhibit strengthening of the lithosphere, which may allow deformation, volcanism, and crustal accretion to occur over a broad area instead of along a narrow axis. A possible example of this process can be observed at the southern terminus of the Malaguana-Gadao Ridge, a backarc spreading center in the Southern Mariana Trough, at the southern end of the Izu-Bonin-Mariana convergent margin. The spreading axis, which forms an axial high in this area, abruptly terminates at 143˚20'E, 12˚37'N and is replaced by a broad zone of active volcanism and tectonism characterized by short volcanic ridges, volcanic cones, and low-relief grabens. This study uses deep-towed and ship multibeam sonar, gravity, and magnetics data collected during an early 2012 cruise on R/V Thomas G. Thompson (TN273) along with available geophysical and geochemical data in the Southern Mariana Trough to gain insight into the nature of the diffuse crustal accretion process. Evidence of a similar transition from organized to "disorganized" spreading can also be observed at Valu Fa Ridge in the southern Lau basin and other backarc spreading centers. This suggests that this process is not unique to the Southern Mariana Trough, and may be an important mode of crustal accretion in a variety of backarc settings where there is extension in

  13. Enhanced hydrothermal activity along the East Pacific Rise during the last two glacial terminations

    NASA Astrophysics Data System (ADS)

    Lund, D. C.; Asimow, P. D.; Farley, K. A.

    2015-12-01

    Mid-ocean ridge magmatism is driven by seafloor spreading and decompression melting of the upper mantle. Scaling estimates [1-2] and model results [3-4] indicate that glacial-interglacial changes in sea level should modulate melt production at mid-ocean ridges, an idea that has been confirmed with detailed surveys of ridge bathymetry [4-5]. The nature and timing of associated changes in hydrothermal activity have remained unknown, however, precluding a clear understanding of whether ridge magmatism can act as a negative feedback on ice sheet size. Here we present multiple records of hydrothermal sedimentation spanning 1300 km of the East Pacific Rise (EPR). At each location, the flux of Fe, Mn, and As increased beginning at ~25 kyr BP, reached maximum values by 15 kyr BP, and then decreased into the Holocene. Lateral sediment focusing is an unlikely explanation given the similar signal in multiple cores and the lack of evidence for anomalous horizontal transport in 3He-based focusing factors. Coherent variations in Fe, Mn, and As suggest that diagenetic overprinting is not the primary driver of the down core signal. Elevated metal fluxes also occur during Termination II. The time series of hydrothermal sedimentation bear a strong resemblance to a record of seafloor bathymetry from 17ºS [5], suggesting that both have a common driver. The simplest explanation is glacial-interglacial variations in sea level, which apparently modulates sub-ridge melting, seafloor bathymetry, and hydrothermal activity at the EPR. Our results imply that geothermal heat flux from ridges increases during the last two glacial terminations, which should act to erode the deep ocean stratification, enhance the abyssal circulation, and transmit excess heat to the Southern Ocean, thereby setting the stage for deglaciation. [1] Lund and Asimow (2008) AGU Fall Meeting, Abstract #PP11D-08. [2] Huybers and Langmuir (2009) Earth and Planetary Science Letters 286, 479-491. [3] Lund and Asimow (2011

  14. Hydrodynamic properties and grain-size characteristics of volcaniclastic deposits on the mid-Atlantic Ridge north of Iceland (Kolbeinsey Ridge)

    SciTech Connect

    Oehmig, R.; Wallrabe-Adams, H. )

    1993-01-01

    Surface sediments from a transect across the mid-ocean ridge north of Iceland (Kolbeinsey Ridge) have been analyzed according to their compositional, textural and hydromechanical characteristics. The results were used to reconstruct sediment formation and depositional processes. The ridge sediments are dominated by volcaniclastic particles of hyaloclastic and pyroclastic origin. These particles show a wide variety in size, shape and density. Single-grain settling velocities of the different glass types reveal the suitability of this parameter as a reflector of the particle properties of size, shape and density, which are also known to be relevant to grain transport. Observations concerning different current expositions of central ridge sediments, combined with the parameters of settling velocity distribution, grain-size distribution and sediment particle composition, were applied to distinguish between transport association with rare, easily movable glass shards and poorly sorted sediments in sheltered ponds. A bimodal settling velocity distribution of steep ridge-flank sediments probably indicates the effect of sediment admixture from poorly sorted mass flows. Alternating coarse- and fine-grained layers characterize the transition between ridge-glass sands and the ridge-adjacent plain, which is dominated by slow-settling pelagic material.

  15. 4D seismic study of active gas seepage systems on the Vestnesa Ridge, offshore W-Svalbard

    NASA Astrophysics Data System (ADS)

    Bünz, Stefan; Plaza-Faverola, Andreia; Hurter, Sandra; Mienert, Jürgen

    2014-05-01

    Active gas venting occurs on the Vestnesa Ridge, an elongated sediment drift north of the Molloy Transform and just east of the Molloy Ridge, one of the shortest segments of the slow spreading North-Atlantic Ridge system. The crest of the Vestnesa Ridge at water depth between 1200-1300 m is pierced with fluid-flow features. Seafloor pockmarks vary in size up to 1 km in diameter. High-resolution P-Cable 3D seismic data acquired in 2012 show vertical focused fluid flow features beneath the seafloor pockmarks. These co-called chimneys extend down to the free-gas zone underneath a bottom-simulating reflection. Here, they link up with small fault systems that might provide pathways to the deeper subsurface. The chimney features show a high variability in their acoustic characteristics with alternating blanked or masked zones and high-amplitude anomalies scattered through the whole vertical extent of the chimneys. The amplitude anomalies indicate high-impedance contrasts due to the likely presence of gas or a high-velocity material like gas hydrates or carbonates. We re-acquired the 3D seismic survey in 2013 for time-lapse seismic studies in order to better understand the origin of the amplitude anomalies and in order to track potentially migrating gas fronts up along the chimney structure. Here, we will present the preliminary results of this time-lapse analysis, which will allow us to better understand gas migration and seafloor plumbing systems in continental margins. This work is part of CAGE - Centre of Excellence for Arctic Gas Hydrate, Environment and Climate. Details on the CAGE research plan and organization can be found on www.cage.uit.no to foster opportunities for cross-disciplinary collaboration. Based in Tromsø, at the world's northernmost University, CAGE establishes the intellectual and infrastructure resources for studying the amount of methane hydrate and magnitude of methane release in Arctic Ocean environments on time scales from the Neogene to the

  16. Evidence for melt channelization in Galapagos plume-ridge interaction

    NASA Astrophysics Data System (ADS)

    Mittal, T.; Richards, M. A.

    2015-12-01

    Many present-day hot spots are located within ~ 1000 km of a mid-ocean ridge, either currently or in the geologic past, leading to frequent interaction between these two magmatic regimes. The consequent plume-ridge interactions provide a unique opportunity to test models for asthenosphere-lithosphere dynamics, with the plume acting as a tracer fluid in the problem, and excess magmatism reflecting otherwise unsampled sub-surface phenomena. Galapagos is an off-ridge hotspot with the mantle plume located ~150-250 km south of the plate boundary. Plume-ridge interaction in Galapagos is expressed by the formation of volcanic lineaments of islands and seamounts - e.g., the Wolf-Darwin lineament (WDL) - providing a direct probe of the plume-ridge interaction process, especially in regards to geochemical data. Although several models have been proposed to explain plume-ridge interaction in Galapagos, none adequately explain the observed characteristics, especially the WDL. In particular, predicted lithospheric fault orientations and melt density considerations appear at odds with observations, suggesting that lithospheric extension is not the primary process for formation of these islands. Other off-ridge hotspots interacting with nearby spreading ridges, such as Reunion and Louisville, also exhibit volcanic lineaments linking the plume and the ridge. Thus these lineament-type features are a common outcome of plume-ridge interaction that are indicative of the underlying physics. We propose that the lineaments are surface expressions of narrow sub-lithospheric melt channels focused towards the spreading ridge. These channels should form naturally due to the reactive infiltration instability in a two-phase flow of magma and solid mantle as demonstrated in two-phase flow simulations (e.g., Katz & Weatherley 2012). For Galapagos, we show that melt channels can persist thermodynamically over sufficient length-scales to link the plume and nearby ridge segments. We also show that

  17. Follow-on Research Activities for the Rensselaer Isothermal Dendritic Growth Experiment (RIDGE)

    NASA Technical Reports Server (NTRS)

    LaCombe, J. C.; Koss, M. B.; Lupulescu, A. O.; Frei, J. E.; Giummarra, C.; Glicksman, M. E.

    2001-01-01

    The RIDGE effort continues the aegis of the earlier, NASA-sponsored, Isothermal Dendritic Growth Experiment (IDGE) series of experiments through the continued analysis of microgravity data acquired during these earlier space flights. The preliminary observations presented here demonstrate that there are significant differences between SCN and the more anisotropic PVA dendrites. The side branch structure becomes amplified only further behind the tip, and the interface shape is generally wider (i.e. more hyperbolic than parabolic) in PVA than in SCN. These characteristics are seen to affect the process of heat transport. Additionally, the dendrites grown during the fourth United States Microgravity Payload (USMP-4) exhibit time-dependent growth characteristics and may not always have reached steady-state growth during the experiment.

  18. COMSOL-Related Activities within the Research Reactors Division of Oak Ridge National Laboratory

    SciTech Connect

    Freels, James D

    2015-01-01

    Our group at Oak Ridge National Laboratory (ORNL) started using COMSOL shortly after version 3.0 was released in the Spring of 2004. Over 11 years later and several new releases of the code, the application usage has grown along with the number of licenses we are responsible for. This paper focuses not on details of results and modeling methods, but instead, takes a look at our past and present applications, and evaluates where we are headed with COMSOL in the future. In doing so, we reveal some lessons learned along our pathway, provide some insight on how best to use COMSOL in a group setting, and perhaps help both users and developers to improve how the code is utilized.

  19. Microbiological characterization of post-eruption “snowblower” vents at Axial Seamount, Juan de Fuca Ridge

    PubMed Central

    Meyer, Julie L.; Akerman, Nancy H.; Proskurowski, Giora; Huber, Julie A.

    2013-01-01

    Microbial processes within the subseafloor can be examined during the ephemeral and uncommonly observed phenomena known as snowblower venting. Snowblowers are characterized by the large quantity of white floc that is expelled from the seafloor following mid-ocean ridge eruptions. During these eruptions, rapidly cooling lava entrains seawater and hydrothermal fluids enriched in geochemical reactants, creating a natural bioreactor that supports a subseafloor microbial “bloom.” Previous studies hypothesized that the eruption-associated floc was made by sulfide-oxidizing bacteria; however, the microbes involved were never identified. Here we present the first molecular analysis combined with microscopy of microbial communities in snowblower vents from samples collected shortly after the 2011 eruption at Axial Seamount, an active volcano on the Juan de Fuca Ridge. We obtained fluid samples and white flocculent material from active snowblower vents as well as orange flocculent material found on top of newly formed lava flows. Both flocculent types revealed diverse cell types and particulates when examined by phase contrast and scanning electron microscopy (SEM). Distinct archaeal and bacterial communities were detected in each sample type through Illumina tag sequencing of 16S rRNA genes and through sequencing of the sulfide oxidation gene, soxB. In fluids and white floc, the dominant bacteria were sulfur-oxidizing Epsilonproteobacteria and the dominant archaea were thermophilic Methanococcales. In contrast, the dominant organisms in the orange floc were Gammaproteobacteria and Thaumarchaeota Marine Group I. In all samples, bacteria greatly outnumbered archaea. The presence of anaerobic methanogens and microaerobic Epsilonproteobacteria in snowblower communities provides evidence that these blooms are seeded by subseafloor microbes, rather than from microbes in bottom seawater. These eruptive events thus provide a unique opportunity to observe subseafloor microbial

  20. Seismicity and active accretion processes at the ultraslow-spreading Southwest and intermediate-spreading Southeast Indian ridges from hydroacoustic data

    NASA Astrophysics Data System (ADS)

    Tsang-Hin-Sun, Eve; Royer, Jean-Yves; Perrot, Julie

    2016-08-01

    Volcanic and tectonic events are the main processes involved in the generation of the oceanic crust and responsible for the seismicity associated with seafloor spreading. To monitor this activity, usually not or poorly detected by land-based seismological stations, we deployed from February 2012 to February 2013 a network of autonomous hydrophones to compare the behaviour of the ultraslow-spreading Southwest Indian ridge (SWIR) with that of the intermediate-spreading Southeast Indian ridge (SEIR). The rate of seismicity is similar for both ridges, suggesting that there is no systematic relationship between seismicity and spreading rates. The along-axis distribution of the seismic events, however, does differ, reflecting the rate dependence of accretion modes. Earthquakes are sparse and regularly spaced and scattered along the SWIR, reflecting prevailing tectonic processes. By contrast, along the SEIR, events are irregularly distributed and focus at ridge-segment ends and transforms faults, reflecting the ridge segmentation; only two swarms occurred at a segment centre and are probably caused by a magmatic event. This seismicity distribution thus looks controlled by segment-scale crustal heterogeneities along the SEIR and by regional-scale contrasting accretion processes along the SWIR, probably driven by different lithospheric and asthenospheric dynamics on either side of the Melville fracture zone. The comparison of hydroacoustic and teleseismic catalogues shows that, along these spreading ridges, the background seismicity observed in 1 yr by a hydroacoustic network is representative of the seismicity observed over two decades by land-based networks.

  1. Morphology and genesis of slow-spreading ridges-seabed scattering and seismic imaging within the oceanic crust

    NASA Astrophysics Data System (ADS)

    Peirce, Christine; Sinha, Martin; Topping, Simon; Gill, Christopher

    2007-01-01

    A grid of 32 across-axis and five axis-parallel multichannel seismic (MCS) reflection profiles were acquired at an axial volcanic ridge (AVR) segment at 57° 45'N, 32° 35'W on the slow-spreading Reykjanes Ridge, Mid-Atlantic Ridge, to determine the along-axis variation and geometry of the axial magmatic system and to investigate the relationship between magma chamber structure, the along-axis continuity and segmentation of melt supply to the crust, the development of faulting and the thickness of oceanic layer 2A. Seismic reflection profiles acquired at mid-ocean ridges are prone to being swamped by high amplitude seabed scattered noise which can either mask or be mistaken for intracrustal reflection events. In this paper, we present the results of two approaches to this problem which simulate seabed scatter and which can either be used to remove or simply predict events within processed MCS profiles. The 37 MCS profiles show clear intracrustal seismic events which are related to the structure of oceanic layer 2, to the axial magmatic system and to the faults which dismember each AVR as it ages through its tectono-magmatic life cycle and which form the median valley walls. The layer 2A event can be mapped around the entirety of the survey area between 0.1 and 0.5 s two-way traveltime below the seabed, being thickest at AVR centres, and thinning both off-axis and along-axis towards AVR tips. Both AVR-parallel and ridge-parallel trends are observed, with the pattern of on-axis layer 2A thickness variation preserved beneath relict AVRs which are rafted off-axis largely intact. Each active AVR is underlain by a mid-crustal melt lens reflection extending almost along its entire length. Similar reflection events are observed beneath the offset basins between adjacent AVRs. These are interpreted as new AVRs at the start of their life cycle, developing centrally within the median valley. The east-west spacings of relict AVRs and offset basins is ~5-7 km, corresponding to

  2. Moytirra: Discovery of the first known deep-sea hydrothermal vent field on the slow-spreading Mid-Atlantic Ridge north of the Azores

    NASA Astrophysics Data System (ADS)

    Wheeler, A. J.; Murton, B.; Copley, J.; Lim, A.; Carlsson, J.; Collins, P.; Dorschel, B.; Green, D.; Judge, M.; Nye, V.; Benzie, J.; Antoniacomi, A.; Coughlan, M.; Morris, K.

    2013-10-01

    Geological, biological, morphological, and hydrochemical data are presented for the newly discovered Moytirra vent field at 45oN. This is the only high temperature hydrothermal vent known between the Azores and Iceland, in the North Atlantic and is located on a slow to ultraslow-spreading mid-ocean ridge uniquely situated on the 300 m high fault scarp of the eastern axial wall, 3.5 km from the axial volcanic ridge crest. Furthermore, the Moytirra vent field is, unusually for tectonically controlled hydrothermal vents systems, basalt hosted and perched midway up on the median valley wall and presumably heated by an off-axis magma chamber. The Moytirra vent field consists of an alignment of four sites of venting, three actively emitting "black smoke," producing a complex of chimneys and beehive diffusers. The largest chimney is 18 m tall and vigorously venting. The vent fauna described here are the only ones documented for the North Atlantic (Azores to Reykjanes Ridge) and significantly expands our knowledge of North Atlantic biodiversity. The surfaces of the vent chimneys are occupied by aggregations of gastropods (Peltospira sp.) and populations of alvinocaridid shrimp (Mirocaris sp. with Rimicaris sp. also present). Other fauna present include bythograeid crabs (Segonzacia sp.) and zoarcid fish (Pachycara sp.), but bathymodiolin mussels and actinostolid anemones were not observed in the vent field. The discovery of the Moytirra vent field therefore expands the known latitudinal distributions of several vent-endemic genera in the north Atlantic, and reveals faunal affinities with vents south of the Azores rather than north of Iceland.

  3. Implications of spinel compositions for the petrotectonic history of abyssal peridotite from Southwest Indian Ridge (SWIR)

    NASA Astrophysics Data System (ADS)

    Chen, T.; Jin, Z.; Wang, Y.; Tao, C.

    2012-12-01

    Abyssal peridotites generate at mid-ocean ridges. Lherzolite and harzburgite are the main rock types of peridotites in the uppermost mantle. The lherzolite subtype, less depleted and less common in ophiolites, characterizes mantle diapirs and slow-spreading ridges. Along the Earth's mid-ocean ridges, abyssal peridotites undergo hydration reactions to become serpentinite minerals, especially in slow to ultraslow spreading mid-ocean ridges. Spinel is common in small quantities in peridotites, and its compositions have often been used as petrogenetic indicators [1]. The Southwest Indian Ridge (SWIR) is one of the two ultraslow spreading ridges in the world. The studied serpentinized peridotite sample was collected by the 21st Voyage of the Chinese oceanic research ship Dayang Yihao (aka Ocean No. 1) from a hydrothermal field (63.5°E, 28.0°S, and 3660 m deep) in SWIR. The studied spinels in serpentinized lherzolite have four zones with different compositions: relic, unaltered core is magmatic Al-spinels; micro- to nano- sized ferrichromite zoned particles; narrow and discontinuous magnetite rim; and chlorite aureoles. The values Cr# of the primary Al-spinels indicate the range of melting for abyssal peridotites from SWIR extends from ~4% to ~7% [2]. The alteration rims of ferrichromite have a chemical composition characterized by Fe enrichment and Cr# increase indicating chromite altered under greenschist-amphibolite facies. Magnetites formed in syn- and post- serpentinization. Chlorite (clinochlore) formed at the boundary and crack of spinel indicating it had undergone with low-temperature MgO- and SiO2-rich hydrothermal fluids [3]. It suggests that serpentinized lherzolite from SWIR had undergone poly-stage hydration reactions with a wide range of temperature. Acknowledgments: EMPA experiment was carried out by Xihao Zhu and Shu Zheng in The Second Institute of Oceanography and China University of Geosciences, respectively. The work was supported by NSFC

  4. Influence of magma ascent rate on carbon dioxide degassing at oceanic ridges: Message in a bubble

    NASA Astrophysics Data System (ADS)

    Chavrit, D.; Humler, E.; Morizet, Y.; Laporte, D.

    2012-12-01

    In order to quantify the magma ascent rate beneath oceanic ridges, we propose a new method based on vesicle size distribution (VSD) and volatiles measurements (CO2 and H2O) on 65 fresh glasses from the global Mid-Ocean Ridge system. Comparisons of VSD between the main oceanic basins reveal that Mid-Ocean-Ridge-Basalts (MORB) from the Pacific Ocean have significantly higher bubble densities (148-124+739 bubbles/cm2) and initial population densities ln(n0)=19.6±2.8 cm-4 but lower vesicularities (˜0.1%). We determine the residence time of bubbles in the magma using the linear relationship between the logarithm of the density population and the vesicle diameters. Assuming a constant bubble growth rate (G=1.5×10-7 cm/s), we suggest that the transit times of the magmas through the oceanic crust are shorter beneath Pacific ridges (˜2 h) than elsewhere (˜15 h). In addition, the CO2 and H2O contents of the studied glasses allow the carbon saturation pressure to be calculated. Pacific MORB display a significantly lower carbon dioxide saturation pressure (Psat=843-221+300 bars) than Atlantic and Indian MORB (Psat=1898-827+1466 bars) but identical pressures of eruption (Pe˜310 bars). Consequently, the distance traveled by bubbles from the vesiculation depth to the seafloor is shorter for the Pacific (˜1.9 km) than for the Atlantic and Indian oceans (˜5.2 km): the longer the transit time, the longer the distance traveled. A closer inspection of the data revealed that the decompression rate (dP/dt) varied from 5.0×102 to 2.3×104 Pa/s and correlated positively with the measured bubble densities (nb/m3) as expected from experimental data and numerical modeling. At the global scale, most of the Pacific samples are characterized by high ascent rates (0.25-0.13+0.26 m/s) relative to those from the Atlantic (0.11-0.06+0.15 m/s) and the Indian samples (0.09-0.03+0.05 m/s). However, at the local scale some samples from the Mid-Atlantic Ridge at 37 °N (where the reflections of

  5. Evidence for chemically heterogeneous Arctic mantle beneath the Gakkel Ridge

    NASA Astrophysics Data System (ADS)

    D'Errico, Megan E.; Warren, Jessica M.; Godard, Marguerite

    2016-02-01

    Ultraslow spreading at mid-ocean ridges limits melting due to on-axis conductive cooling, leading to the prediction that peridotites from these ridges are relatively fertile. To test this, we examined abyssal peridotites from the Gakkel Ridge, the slowest spreading ridge in the global ocean ridge system. Major and trace element concentrations in pyroxene and olivine minerals are reported for 14 dredged abyssal peridotite samples from the Sparsely Magmatic (SMZ) and Eastern Volcanic (EVZ) Zones. We observe large compositional variations among peridotites from the same dredge and among dredges in close proximity to each other. Modeling of lherzolite trace element compositions indicates varying degrees of non-modal fractional mantle melting, whereas most harzburgite samples require open-system melting involving interaction with a percolating melt. All peridotite chemistry suggests significant melting that would generate a thick crust, which is inconsistent with geophysical observations at Gakkel Ridge. The refractory harzburgites and thin overlying oceanic crust are best explained by low present-day melting of a previously melted heterogeneous mantle. Observed peridotite compositional variations and evidence for melt infiltration demonstrates that fertile mantle components are present and co-existing with infertile mantle components. Melt generated in the Gakkel mantle becomes trapped on short length-scales, which produces selective enrichments in very incompatible rare earth elements. Melt migration and extraction may be significantly controlled by the thick lithosphere induced by cooling at such slow spreading rates. We propose the heterogeneous mantle that exists beneath Gakkel Ridge is the consequence of ancient melting, combined with subsequent melt percolation and entrapment. Initial modes of depleted mantle composition from Hellebrand et al. (2002b). Melt compositions are from Brunelli et al. (2014) in

  6. Seismic reflection images of a near-axis melt sill within the lower crust at the Juan de Fuca ridge.

    PubMed

    Canales, J Pablo; Nedimović, Mladen R; Kent, Graham M; Carbotte, Suzanne M; Detrick, Robert S

    2009-07-01

    The oceanic crust extends over two-thirds of the Earth's solid surface, and is generated along mid-ocean ridges from melts derived from the upwelling mantle. The upper and middle crust are constructed by dyking and sea-floor eruptions originating from magma accumulated in mid-crustal lenses at the spreading axis, but the style of accretion of the lower oceanic crust is actively debated. Models based on geological and petrological data from ophiolites propose that the lower oceanic crust is accreted from melt sills intruded at multiple levels between the Moho transition zone (MTZ) and the mid-crustal lens, consistent with geophysical studies that suggest the presence of melt within the lower crust. However, seismic images of molten sills within the lower crust have been elusive. Until now, only seismic reflections from mid-crustal melt lenses and sills within the MTZ have been described, suggesting that melt is efficiently transported through the lower crust. Here we report deep crustal seismic reflections off the southern Juan de Fuca ridge that we interpret as originating from a molten sill at present accreting the lower oceanic crust. The sill sits 5-6 km beneath the sea floor and 850-900 m above the MTZ, and is located 1.4-3.2 km off the spreading axis. Our results provide evidence for the existence of low-permeability barriers to melt migration within the lower section of modern oceanic crust forming at intermediate-to-fast spreading rates, as inferred from ophiolite studies. PMID:19571883

  7. Leak testing plan for the Oak Ridge National Laboratory liquid low- level waste system (active tanks)

    SciTech Connect

    Douglas, D.G.; Wise, R.F.; Starr, J.W.; Maresca, J.W. Jr. )

    1992-06-01

    A leak testing plan for a portion of the Liquid Low-Level Waste (LLLW) system at the Oak Ridge National Laboratory (ORNL) is provided in the two volumes that form this document. This plan was prepared in response to the requirements of the Federal Facilities Agreement (FFA) between the US Department of Energy and two other agencies, the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC). The effective date of this agreement was 1 January 1992. The LLLW system is an interconnected complex of tanks and pipelines. The FFA distinguishes four different categories of tank and pipeline systems within this complex: new systems (Category A), doubly contained systems (Category B), singly contained systems (Category C), and inactive systems (Category D). The FFA's specific requirements for leak testing of the Category C systems is addressed in this plan. The plan also addresses leak testing of the Category B portions of the LLLW system. Leak testing of the Category B components was brought into the plan to supplement the secondary containment design demonstration effort that is under way for these components.

  8. Summary of environmental characterization activities at the Oak Ridge National Laboratory Solid Waste Storage Area Six, FY 1986 through 1987

    SciTech Connect

    Davis, E.C.; Solomon, D.K.; Dreier, R.B.; Lee, S.Y.; Kelmers, A.D.; Lietzke, D.A.; Craig, P.M.

    1987-09-30

    The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP), has supported characterization activities in Solid Waste Storage Area (SWSA 6) to acquire information necessary for identification and planning of remedial actions that may be warranted, and to facilitate eventual closure of the site. In FY 1986 investigations began in the areas of site hydrology, geochemistry, soils, geology, and geohydrologic model application. This report summarizes work carried out in each of these areas during FY`s 1986 and 1987 and serves as a status report pulling together the large volume of data that has resulted. Characterization efforts are by no means completed; however, a sufficient data base has been generated to begin data interpretation and analysis of site contaminants.

  9. Summary of environmental characterization activities at the Oak Ridge National Laboratory Solid Waste Storage Area Six, FY 1986 through 1987

    SciTech Connect

    Davis, E.C.; Solomon, D.K.; Dreier, R.B.; Lee, S.Y.; Kelmers, A.D.; Lietzke, D.A. ); Craig, P.M. )

    1987-09-30

    The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP), has supported characterization activities in Solid Waste Storage Area (SWSA 6) to acquire information necessary for identification and planning of remedial actions that may be warranted, and to facilitate eventual closure of the site. In FY 1986 investigations began in the areas of site hydrology, geochemistry, soils, geology, and geohydrologic model application. This report summarizes work carried out in each of these areas during FY's 1986 and 1987 and serves as a status report pulling together the large volume of data that has resulted. Characterization efforts are by no means completed; however, a sufficient data base has been generated to begin data interpretation and analysis of site contaminants.

  10. Magmatism, Hydrothermal Cooling and Asymmetric Accretion at Slow-spreading Ridges

    NASA Astrophysics Data System (ADS)

    Bai, H.; Montesi, L.

    2014-12-01

    Asymmetric spreading is common at slow-spreading mid-ocean ridges when an active detachment fault accommodates a portion of the total plate separation. Basalts erupted along asymmetric segments have lower Ca, higher Fe, Na, K than the ones collected from symmetric segments, indicating higher pressures of fractionation and lower extents of partial melting of the mantle [Langmuir et al., AGU, 2013]. Seismic evidence also shows a thicker and colder axial lithosphere at asymmetric sections of the ridge [Escartín et al., 2008]. This phenomenon is most obvious when the asymmetric spreading centers are also oblique to its opening direction. The reduced melt supply beneath asymmetric spreading segments may be attributed to distorted mantle upwelling, enhanced hydrothermal cooling, and enriched compositional heterogeneities in the upper mantle. We construct two-dimensional thermo-mechanical models of symmetric and asymmetric spreading centers, and test the effects of asymmetric accretion and hydrothermal circulation on mantle melting. A temperature-dependent mantle viscosity is used. The hydrothermal circulation is implemented as an enhanced thermal conductivity limited by cutoff depth and temperature. The effect of oblique spreading is incorporated in the model as reduced effective spreading rate. Mantle flow and thermal structure are solved in the commercial finite element software COMSOL Multiphysics®. Melt production and flux are estimated in Matlab® using a nonlinear melting function [Katz et al., 2003]. We show that the asymmetric accretion alone does not affect the extent of melting or reduce the melt flux significantly. Hydrothermal cooling can plays an important role in deepening the melting depth and lowering the melt extent. Therefore, the difference in the extent of melting between asymmetric and symmetric spreading models can be explained by an enhanced hydrothermal circulation at asymmetric segments. This correlation is supported by the observation made at

  11. Mantle flow geometry from ridge to trench beneath the Gorda-Juan de Fuca plate system

    NASA Astrophysics Data System (ADS)

    Martin-Short, Robert; Allen, Richard M.; Bastow, Ian D.; Totten, Eoghan; Richards, Mark A.

    2015-12-01

    Tectonic plates are underlain by a low-viscosity mantle layer, the asthenosphere. Asthenospheric flow may be induced by the overriding plate or by deeper mantle convection. Shear strain due to this flow can be inferred using the directional dependence of seismic wave speeds--seismic anisotropy. However, isolation of asthenospheric signals is challenging; most seismometers are located on continents, whose complex structure influences the seismic waves en route to the surface. The Cascadia Initiative, an offshore seismometer deployment in the US Pacific Northwest, offers the opportunity to analyse seismic data recorded on simpler oceanic lithosphere. Here we use measurements of seismic anisotropy across the Juan de Fuca and Gorda plates to reconstruct patterns of asthenospheric mantle shear flow from the Juan de Fuca mid-ocean ridge to the Cascadia subduction zone trench. We find that the direction of fastest seismic wave motion rotates with increasing distance from the mid-ocean ridge to become aligned with the direction of motion of the Juan de Fuca Plate, implying that this plate influences mantle flow. In contrast, asthenospheric mantle flow beneath the Gorda Plate does not align with Gorda Plate motion and instead aligns with the neighbouring Pacific Plate motion. These results show that asthenospheric flow beneath the small, slow-moving Gorda Plate is controlled largely by advection due to the much larger, faster-moving Pacific Plate.

  12. Age, Episodicity and Migration of Hydrothermal Activity within the Axial Valley, Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Jamieson, J. W.; Hannington, M. D.; Kelley, D. S.; Clague, D. A.; Holden, J. F.; Tivey, M. K.; Delaney, J. R.

    2011-12-01

    Hydrothermal sulfide deposits record the history of high-temperature venting along the Endeavour Segment. Active venting is currently located within five discreet vent fields, with minor diffuse venting occurring between the fields. However, inactive and/or extinct sulfide structures are found throughout the entire axial valley of the ridge segment, suggesting that hydrothermal activity has been more vigorous in the past or focused venting has migrated with time. Here, we present age constraints from U-series dating of 44 sulfide samples collected by manned submersible from between the Mothra Field in the south to Sasquatch in the north. Samples are dated using 226Ra/Ba ratios from hydrothermal barite that precipitates along with the sulfide minerals. Most samples have been collected from within or near the active vent fields. Fifteen samples from the Main Endeavour Field (MEF) show a spectrum of ages from present to 2,430 years old, indicating that this field has been continuously active for at least ~2,400 years. MEF appears to be oldest currently active field. This minimum value for the age of hydrothermal activity also provides a minimum age of the axial valley itself. Ages from thirteen samples from the High-Rise Field indicate continuous venting for at least the past ~1,250 years. These age data are used in conjunction with age constraints of the volcanic flows to develop an integrated volcanic, hydrothermal and tectonic history of the Endeavour Segment. The total volume of hydrothermal sulfide within the axial valley, determined from high-resolution bathymetry, is used in conjunction with the age constraints of the sulfide material to determine the mass accumulation rates of sulfide along the Endeavour Segment. These data can be used to calibrate the efficiency of sulfide deposition from the hydrothermal vents, and provide a time-integrated history of heat, fluid and chemical fluxes at the ridge-segment scale. The comparison of time-integrated rates with

  13. Metopic ridge

    MedlinePlus

    ... infant is made up of bony plates. The gaps between the plates allow for growth of the skull. The places where these plates connect are called sutures or suture lines. They do not fully close until the 2nd or 3rd year of life. A metopic ridge occurs when the ...

  14. An authoritative global database for active submarine hydrothermal vent fields

    NASA Astrophysics Data System (ADS)

    Beaulieu, Stace E.; Baker, Edward T.; German, Christopher R.; Maffei, Andrew

    2013-11-01

    The InterRidge Vents Database is available online as the authoritative reference for locations of active submarine hydrothermal vent fields. Here we describe the revision of the database to an open source content management system and conduct a meta-analysis of the global distribution of known active vent fields. The number of known active vent fields has almost doubled in the past decade (521 as of year 2009), with about half visually confirmed and others inferred active from physical and chemical clues. Although previously known mainly from mid-ocean ridges (MORs), active vent fields at MORs now comprise only half of the total known, with about a quarter each now known at volcanic arcs and back-arc spreading centers. Discoveries in arc and back-arc settings resulted in an increase in known vent fields within exclusive economic zones, consequently reducing the proportion known in high seas to one third. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. The purpose of the database now extends beyond academic research and education and into marine policy and management, with at least 18% of known vent fields in areas granted or pending applications for mineral prospecting and 8% in marine protected areas.

  15. Moderation of Neogene Deep-Water Overflow at the Greenland-Scotland Ridge by the Icelandic Plume

    NASA Astrophysics Data System (ADS)

    Henstock, T.; White, N. J.; Jones, S. M.; Murton, B. J.; Maclennan, J.

    2010-12-01

    A global analysis of Neogene δ13C records shows that overflow of Northern Component Water (NCW), the ancient precursor of North Atlantic Deep Water, varies with time. It is generally accepted that the Icelandic plume, which has dominated the tectonic evolution of the North Atlantic Realm since its inception ˜60 million years ago, has played a key role in moderating deep-water overflow. The V-shaped ridges, which straddle the mid-oceanic ridge system on either side of Iceland, are an important window into transient convective circulation associated with this plume. Knowledge of the evolving pattern of convective circulation can be used to constrain vertical displacement of the Greenland-Scotland Ridge through time. Although some progress has been made in refining the variation of NCW with time, any link between overflow and convective circulation has relied upon vintage seismic reflection profiles acquired in the 1960s. In order to construct a more accurate chronology of plume activity through time, we have acquired a set of regional seismic reflection profiles along flowlines which traverse the Iceland and Irminger basins between 60° and 62° N. We used a single generator-injector airgun operating at 3,000 p.s.i. and a 2 km streamer with a group spacing of 12.5 m with an average fold of 20. The porcessed seismic images are excellent. The sediment-basement interface can be accurately mapped and fine details of the sedimentary cover are resolved. We have identified a series of V-shaped ridges and erected a chronology of plume activity on an astronomical timescale. This chronology correlates with the Neogene history of deep-water overflow and confirms that convective circulation of the mantle has played a significant role in moderating deep-water overflow. Our seismic profiles also cross the major contourites of the North Atlantic Ocean, notably the Gardar, Bjorn and Eirik Drifts. Excellent images of their detailed internal stratigraphy demonstrate that distinct

  16. Lithospheric Structure, Stress, and Magmatism at the Rainbow Non-Transform Offset on the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Paulatto, M.; Canales, J. P.; Dunn, R. A.

    2014-12-01

    New oceanic lithosphere is formed at slow-spreading mid-ocean ridges by a combination of eruption and intrusion of magma and by tectonic exhumation and alteration of lower crustal and mantle rocks. We look at the relationship between these two processes and how their relative contributions vary at non-transform ridge-segment offsets (NTOs). Models of mantle upwelling predict magmatic input and heat flux to be relatively low at NTOs, yet many host high-temperature hydrothermal systems, which are difficult to explain without the presence of a crustal magmatic source. We analyzed newly acquired swath bathymetry, gravity and magnetic data from the MARINER experiment together with archived data from the Rainbow NTO (36º10' N) on the Mid-Atlantic Ridge. This NTO is currently experiencing both mantle exhumation and magmatic input as evidenced by the active Rainbow high-temperature hydrothermal field. We calculate mantle Bouguer gravity anomalies and crustal magnetization to constrain the lithospheric structure and tectonic evolution of the NTO during the past ~2 Myr. The swath bathymetry data are used to map faults, extrusive volcanic terrain and tectonized blocks and show that the style of crustal accretion varies along the adjacent ridge segments. Spatial changes in the style of extensional faulting are indicative of variations in the mechanical properties and the state of stress of the lithosphere. We suggest that the availability of magma to drive hydrothermal activity at Rainbow and other similar settings is controlled not only by the thermal regime and the structure of the lithosphere but also by the effect of local stress conditions on magma migration. Models of magma migration and dyking show that changes in the direction of minimum compressive stress affect the propagation of magmatic intrusions. We argue that stress rotation can explain the formation of crustal magma chambers at NTOs despite a reduced magmatic flux. These constraints help determine the role of

  17. Seismicity and active accretion processes at the ultraslow-spreading Southwest and intermediate-spreading Southeast Indian ridges from hydroacoustic data

    NASA Astrophysics Data System (ADS)

    Tsang-Hin-Sun, Eve; Royer, Jean-Yves; Perrot, Julie

    2016-05-01

    Volcanic and tectonic events are the main processes involved in the generation of the oceanic crust and responsible for the seismicity associated with seafloor spreading. To monitor this activity, usually not or poorly detected by land-based seismological stations, we deployed from February 2012 to February 2013 a network of autonomous hydrophones to compare the behaviour of the ultraslow-spreading Southwest (SWIR) with that of the intermediate-spreading Southeast Indian ridges (SEIR). The rate of seismicity is similar for both ridges, suggesting that there is no systematic relationship between seismicity and spreading rates. The along-axis distribution of the seismic events, however, does differ, reflecting the rate-dependence of accretion modes. Earthquakes are sparse and regularly spaced and scattered along the SWIR, reflecting prevailing tectonic processes. By contrast, along the SEIR, events are irregularly distributed and focus at ridge-segment ends and transforms faults, reflecting the ridge segmentation; only two swarms occurred at a segment centre and are probably caused by a magmatic event. This seismicity distribution thus looks controlled by segment-scale crustal heterogeneities along the SEIR and by regional-scale contrasting accretion processes along the SWIR, probably driven by different lithospheric and asthenospheric dynamics on either side of the Melville FZ. The comparison of hydroacoustic and teleseismic catalogues shows that, along these spreading ridges, the background seismicity observed in one year by a hydroacoustic network is representative of the seismicity observed over two decades by land-based networks.

  18. Gabbroic xenoliths from the northern Gorda Ridge: implications for magma chamber processes under slow spreading centers

    USGS Publications Warehouse

    Davis, A.S.; Clague, D.A.

    1990-01-01

    Abundant gabbroic xenoliths in porphyritic pillow basalt were dredged from the northern Gorda Ridge. The host lava is a moderately fractionated, normal mid-ocean ridge basalt with a heterogeneous glass rind (Mg numbers 56-60). Other lavas in the vicinity range from near primary (Mg number 69) to fractionated (Mg number 56). On the basis of textures and mineral compositions, the xenoliths are divided into five types. The xenoliths are not cognate to the host lava, but they are genetically related. Chemistry of mineral phases in conjunction with textural features suggests that the xenoliths formed in different parts of a convecting magma chamber that underwent a period of closed system fractionation. The chamber was filled with a large proportion of crystalline mush when new, more primitive, and less dense magma was injected and mixed incompletely with the contents in the chamber, forming the hybrid host lava. -from Authors

  19. Biological and Geological Characteristics of the Gakkel Ridge

    NASA Astrophysics Data System (ADS)

    Shank, T. M.; Bailey, J.; Edmonds, H.; Forte, P.; Helmke, E.; Humphris, S.; Kemp, J.; Nakamura, K.; Reves-Sohn, R.; Singh, H.; Willis, C.

    2007-12-01

    The Gakkel Ridge (Arctic Ocean) is one of the slowest (1.0 cm per yr), deepest (5000 m axial depth), and most hydrographically and tectonically isolated mid-ocean ridge systems on earth. This isolation from the global ridge system should have profound implications for the evolution and ecology of resident chemosynthetic fauna. The July 2007 Arctic GAkkel Vents Expedition (AGAVE) sought to define this Arctic biogeographic province and the relationship of Arctic vent fauna to Atlantic, Pacific, and hydrocarbon seep fauna through the use of an new under- ice vehicle `Camper', a fiber-optic video-guided sampling system drift towed 1 to 3 m above the seafloor. The imaging, sampling, and sensing capabilities were used to obtain high-resolution seafloor imagery to identify and collect benthic samples with a clamshell `grab' sampler and a suction 'slurp' sampler. Imagery from five video cameras, including obliquely-mounted video and downlooking digital high-definition color cameras were used to construct maps of seafloor features and faunal composition during 3 dives in the peridotite-hosted 7°E region and 13 dives in the volcanic 85°E region. The 7°E site was dominated by an almost continuous cover of pelagic sediment with abundant animal tracks, brittle stars, anemones, and shrimp. The explored 85°E area was dominated by relatively diverse and young lava morphologies- from large pillows hosting delicate surface ornamentation to lobates, long lava tubes, and fresh sheet flows, all with the upper surfaces covered (often cm thick) of fresh volcanic glass 'sediment' suggestive of explosive volcanic activity in the `recent' past. Fauna in these areas consisted mainly of sponges, anemones, amphipods and shrimp. Characterization of the newly-discovered Asgard volcanic chain, including `Oden', `Thor', and `Loke' volcanoes, in the 85°E axial valley revealed extensive microbial mats in the form of: 1) yellow `fluffy' material (often >5 cm thick) in places; and 2) yellow

  20. Variability of Southern Valu Fa Ridge Magmatic Systems

    NASA Astrophysics Data System (ADS)

    Goddard, C. I.; Christie, D. M.; Arculus, R.

    2004-12-01

    Valu Fa Ridge (VFR), which encompasses the southernmost segments of the East Lau Spreading Center (ELSC), is an important end-member in the spectrum of back-arc spreading centers because it is strongly affected in all aspects of the spreading process by inputs from the nearby active Tofua (Tonga) volcanic arc, and because its magma systems are rapidly evolving as the VFR propagates to the south. New lava samples collected by the TELVE Expedition of the R/V Southern Surveyor (Australia) from the four southernmost VFR segments have greatly increased the number and spatial distribution of fresh volcanic glass samples, quadrupling the availability of "primitive" (MgO > 6 wt.%) glass samples and encompassing significant along- and across-axis geochemical variability. These new data provide an opportunity to evaluate both the evolution of crustal magmatic processes relative to southward rift propagation and variability in mantle source inputs relative to the active volcanic arc. The four sampled segments of VFR are separated by left-stepping overlapping offsets that differ from their mid-ocean ridge counterparts in their longer, more parallel overlapping limbs and in the absence of an overlap basin. The TELVE glasses display considerable major element variability and the VFR is unusual among well-developed spreading centers in its strongly bimodal volcanism, in the abundance of evolved lavas and in the coexistence of two distinct liquid lines of descent. Dacites and rhyolites (SiO2 ~67-75 wt.%) are relatively abundant close to segment ends or discontinuities along the southernmost three ridge segments, but rare from the northernmost sampled segment and from off-axis seamounts. A "Daly Gap" from ~60-67 wt.% SiO2 and 1.75-0.75 wt.% MgO is present along the northern segments but absent near the southern propagating rift tip. Primitive (MgO > 6wt.%) glasses were recovered from all VFR segments and on 5 of the 9 sampled seamounts. Both high-silica glasses and FeTi basalt

  1. Inter-Rifting and Inter-Seismic Strain Accumulation in a Propagating Ridge System: A Geodetic Study from South Iceland

    NASA Astrophysics Data System (ADS)

    Travis, M. E.; La Femina, P. C.; Geirsson, H.

    2012-12-01

    The Mid-Atlantic Ridge, a slow spreading (~19 mm/yr) mid-ocean ridge boundary between the North American and Eurasian plates, is exposed subaerially in Iceland as the result of ridge-hotspot interaction. Plate spreading in Iceland is accommodated along neovolcanic zones comprised of central volcanoes and their fissure swarms. In south Iceland plate motion is partitioned between the Western Volcanic Zone (WVZ) and Eastern Volcanic Zone (EVZ). The EVZ is propagating to the southwest, while the WVZ is dying out from the northeast. Plate motion across both systems has been accommodated by repeated rifting events and fissure eruptions. In this study we investigate whether the WVZ is active and accumulating strain, and how strain is partitioned between the WVZ and EVZ. We also test how strain is accumulating along fissure swarms within the EVZ (i.e. is strain accumulation localized to one fissure swarm, or are multiple systems active?). We use GPS data and elastic block models run using the program DEFNODE to investigate these issues. GPS data are processed using the GIPSY-OASIS II software, and have been truncated to the 2000.5-2011 time period to avoid co-seismic displacement from the two June 2000 South Iceland Seismic Zone earthquakes. We also truncate the time series for sites within 20 km of Eyjafjallajökull to the beginning of 2010 to eliminate deformation associated with the March 2010 eruption of that volcano. We correct for co-seismic displacement from the two May 2008 SISZ earthquakes, inflation at Hekla volcano and the horizontal component of glacial isostatic rebound (GIA). Our best-fit model for inter-rifting and inter-seismic elastic strain accumulation suggests 80-90% of spreading is accommodated in the EVZ with the other 10-20% accommodated by the WVZ. The best-fit location of the EVZ is between Veidivotn and Lakigigar in an area of no Holocene volcanic activity. We suggest the WVZ is only active at Hengill and its associated fissure swarm. Geologic and

  2. US Department of Energy reservior research activities Oak Ridge National Laboratory

    SciTech Connect

    Railsback, S.F.

    1991-01-01

    The US Department of Energy (DOE) does not directly manage large reservoirs, but DOE laboratories conduct research on reservoir monitoring, assessment, and enhancement under several activities. These activities include (1) studies and remedial actions for reservoirs affected by releases from DOE facilities, (2) industry- sponsored research on reservoir and stream fish, (3) climate change research, (4) hydropower impact assessment studies conducted for the Federal Energy Regulatory Commission (FERC), and (5) the DOE hydropower program. These activities fall under DOE's missions of providing support for environmentally sound energy technologies and managing the legacies of past waste disposal practices at DOE facilities. 9 refs.

  3. FY 1994 annual summary report of the surveillance and maintenance activities for the Oak Ridge National Laboratory Environmental Restoration Program

    SciTech Connect

    Not Available

    1994-11-01

    The Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Surveillance and Maintenance (S and M) Program was initiated to manage former waste management and environmental research sites contaminated with radioactive materials and/or hazardous chemicals. The S and M Program is responsible for managing designated sites/facilities from the end of their operating lives until final disposition or site stabilization. To effectively manage and perform the various S and M Program responsibilities, five summary-level work breakdown structure (WBS) elements have been established: S and M Preliminary Investigations, Special Projects, Routine S and M, Inactive Groundwater Wells, and Project Management. Routine S and M activities were conducted as scheduled throughout fiscal years (FY) 1994 at applicable inactive waste management (WM) and other contaminated areas. Overall, the ER S and M Program maintains 47 facilities, performs vegetation maintenance on approximately 230 acres, maintains 54 inactive tanks, and provides overall site management on over 700 acres. In addition to the routine S and M activities, detailed site inspections were conducted at established frequencies on appropriate sites in the ER S and M Program. This document provides a summary of the FY 1994 ORNL ER S and M Program accomplishments.

  4. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    SciTech Connect

    Not Available

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta`s K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports.

  5. Chemistry of fracture-filling raised ridges in Yellowknife Bay, Gale Crater: Window into past aqueous activity and habitability on Mars

    NASA Astrophysics Data System (ADS)

    Léveillé, Richard J.; Bridges, John; Wiens, Roger C.; Mangold, Nicolas; Cousin, Agnes; Lanza, Nina; Forni, Olivier; Ollila, Ann; Grotzinger, John; Clegg, Samuel; Siebach, Kirsten; Berger, Gilles; Clark, Ben; Fabre, Cécile; Anderson, Ryan; Gasnault, Olivier; Blaney, Diana; Deflores, Lauren; Leshin, Laurie; Maurice, Sylvestre; Newsom, Horton

    2014-11-01

    The ChemCam instrument package on the Curiosity rover was used to characterize distinctive raised ridges in the Sheepbed mudstone, Yellowknife Bay formation, Gale Crater. The multilayered, fracture-filling ridges are more resistant to erosion than the Sheepbed mudstone rock in which they occur. The bulk average composition of the raised ridges is enriched in MgO by 1.2-1.7 times (average of 8.3-11.4 wt %; single-shot maximum of 17.0 wt %) over that of the mudstone. Al2O3 is anticorrelated with MgO, while Li is somewhat enriched where MgO is highest. Some ridges show a variation in composition with different layers on a submillimeter scale. In particular, the McGrath target shows similar high-MgO resistant outer layers and a low-MgO, less resistant inner layer. This is consistent with the interpretation that the raised ridges are isopachous fracture-filling cements with a stratigraphy that likely reveals changes in fluid composition or depositional conditions over time. Overall, the average composition of the raised ridges is close to that of a Mg- and Fe-rich smectite, or saponite, which may also be the main clay mineral constituent of the host mudstone. These analyses provide evidence of diagenesis and aqueous activity in the early postdepositional history of the Yellowknife Bay formation, consistent with a low salinity to brackish fluid at near-neutral or slightly alkaline pH. The fluids that circulated through the fractures likely interacted with the Sheepbed mudstone and (or) other stratigraphically adjacent rock units of basaltic composition and leached Mg from them preferentially.

  6. Southeast Indian Ocean-Ridge Earthquake Sequences from Cross-correlation Analysis of Hydro-acoustic Data

    NASA Astrophysics Data System (ADS)

    Yun, S.; Ni, S.; Park, M.

    2006-12-01

    Earthquake sequences (location and timing of foreshocks and aftershocks) are critical for understanding dynamics of mid-ocean ridge and transform faults. Unfortunately whole sequences (including very small earthquakes) in the ocean can not be well recorded by land-based seismometers mostly because of large epicentral distances. Recent hydro-acoustic studies have demonstrated that T waves are very effective in detecting small submarine earthquakes because of little energy loss of T waves propagating in SOFAR channel. For example, a Mw6.2 (03/06/2006, Latitude -40.11, Longitude 78.49) transform earthquake occurred at the Southeastern Indian Ocean Ridge (an intermediate spreading rate ridge, 58-76 mm/year), but NEIC only reports 3 aftershocks in the first following week. We applied progressive multi-channel cross-correlation methods to hydro-acoustic data from the IMS arrays in Indian Ocean to detect the whole earthquake sequence. We also correlate waveform envelopes to accurately locate aftershocks and found consistent pattern of earthquake migration along the transform fault. In contrast to transform fault earthquake sequences at fast spreading ridge (East Pacific Rise, 142 mm/year) where foreshocks are observed, we failed to detect any foreshocks for the Mw6.2 earthquake though we found many aftershocks. The lack of foreshocks may be caused by lower spreading rate (hence lower temperature) or too small scale ridge segmentation. Still the number of aftershocks is much less than that of typical tectonic earthquake such as subduction or continental earthquakes, arguing different fault dynamics for mid ocean ridge systems, perhaps due to higher water content or presence of melt.

  7. Depleted components in the source of hotspot magmas: Evidence from the Ninetyeast Ridge (Kerguelen)

    NASA Astrophysics Data System (ADS)

    Frey, Frederick A.; Nobre Silva, Inês G.; Huang, Shichun; Pringle, Malcolm S.; Meleney, Peter R.; Weis, Dominique

    2015-09-01

    Although most ocean island basalts (OIB) are enriched in incompatible elements relative to mid-ocean ridge basalts, OIB depleted in these elements also occur on some islands. The Ninetyeast Ridge (NER) in the eastern Indian Ocean is a 5000 km long hotspot track defined by submarine basaltic volcanoes that were islands when they formed from 43 to 77 Ma. A subset of NER basalts, described as depleted, has high abundances of Sc, Y and Lu, which are relatively compatible in clinopyroxene and especially in garnet. It is unusual for magmas to have the trace element characteristics of a mineral. A likely explanation is that the depleted NER basalts were derived from a source that was created as a garnet- and clinopyroxene-bearing residue during partial melting. When this residue formed, the extent of melting must have been low as not all of the garnet and clinopyroxene was melted. To provide sufficient time for the relatively high Lu/Hf of the residue to develop the high 176Hf/177Hf that is characteristic of depleted NER basalts, this melting event must have been ancient. In the second much younger melting event that formed the NER, the extent of melting was sufficiently high to eliminate garnet and clinopyroxene from the ancient residue. Basalts erupted on a segment of the Mid-Atlantic Ridge near the Azores were also derived from an ancient garnet-bearing residue. Residues from ancient partial melting events involving low extents of melting are the dominant source of mid-ocean ridge basalts and depleted magmas associated with the Kerguelen and Azores hotspots. In contrast, a very different process has been inferred for creating the source of depleted Icelandic basalts. Their source was gabbro containing cumulate plagioclase and clinopyroxene. Such gabbros are common in the lower oceanic crust, and if recycled into the Icelandic hotspot they are a source of depleted Icelandic basalts.

  8. Magma system along fast-spreading centers controlled by ridge segmentation: Evidence from the northern Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Miyashita, Sumio; Adachi, Yoshiko

    2013-04-01

    Mid-ocean ridges are segmented at various scales with a hierarchy, from the biggest 1st- order to the smallest 4th-order segments. These segment structures control magmatic processes beneath the mid-ocean ridges such as mantle upwelling, partial melting of the upper mantle, and magma delivery system to form the oceanic crust (Macdonald, 1998). However, systematic studies on the segment control for magmatic processes are rare at modern mid-ocean ridges due to the difficulty of obtaining in-situ samples from different crustal-lithospheric depths. Sampling at ocean floors is generally exclusively limited only to the surface (i.e. the seafloor). Furthermore, the samples obtained from the surface of the ocean floor may likely represent the products of off-axis magmatism (Kusano et al., 2012). Therefore, studies of ocean ridge segmentation in ophiolites provide important constraints for the magmatic processes beneath seafloor spreading centers, because the precise 3-D architecture of the upper mantle and the crust (all the way to the uppermost extrusive layer) and their lateral variations could be observed and investigated in ophiolites. We have studied the northern Oman ophiolite where a complete succession from the upper mantle peridotites to the uppermost extrusive rocks is well exposed. Miyashita et al. (2003), Adachi and Miyashita (2003) and Umino et al. (2003) proposed a segment structure in the northern Oman ophiolite; the Wadi Fizh area is regarded as a northward propagating tip of a mid-ocean ridge based on geological evidence (Adachi and Miyashita. 2003). On the other hand, the Wadi Thuqbah area, about 25 km south of Wadi Fizh, is regarded as a segment center based on the thickest Moho transition zone, well developed EW-trending lineations in the MTZ and layered gabbro, and the comparatively primitive compositions of the layered gabbros. Furthermore, the southern margin of the Hilti block (Salahi block), about 40 km south of Wadi Thuqbah, is inferred to be the

  9. Pleiotropic patterning response to activation of Shh signaling in the limb Apical Ectodermal Ridge

    PubMed Central

    Wang, Chi-Kuang Leo; Tsugane, Mizuyo H.; Scranton, Victoria; Kosher, Robert A.; Pierro, Louis J.; Upholt, William B.; Dealy, Caroline N.

    2012-01-01

    Sonic hedgehog (Shh) signaling in the limb plays a central role in coordination of limb patterning and outgrowth. Shh expression in the limb is limited to the cells of the Zone of Polarizing Activity (ZPA), located in posterior limb bud mesoderm. Shh is not expressed by limb ectoderm or AER, but recent studies suggest a role for AER-Shh signaling in limb patterning. Here, we have examined the effects of activation of Shh signaling in the AER. We find that targeted expression of Shh in the AER activates constitutive Shh signaling throughout the AER and subjacent limb mesoderm, and causes a range of limb patterning defects with progressive severity from mild polydactyly, to polysyndactyly with proximal defects, to severe oligodactyly with phocomelia and partial limb ventralization. Our studies emphasize the importance of control of the timing, level and location of Shh pathway signaling for limb AP, PD and DV patterning. PMID:21465622

  10. Surveillance and maintenance activities of waste area groupings at Oak Ridge National Laboratory

    SciTech Connect

    Ford, M.K.; Holder, L. Jr.; Jones, R.G.

    1991-12-01

    Surveillance and maintenance (S M) of 75 sites were conductd by the Remedial Action Section for the Environmental Restoration Program for surplus facilities and sites contaminated with radioactive materials and/or hazardous chemicals. S M activities on these sites were conducted from the end of their operating life until final facility disposal or site stabilization. The objectives of the Waste Area Grouping S M Program are met by maintaining a program of routine S M as well as by implementing interim corrective maintenance when deemed necessary as a result of site surveillance. This report briefly presents this program's activities and includes tables indicating tank levels and dry well data for FY 1991.

  11. Discovery and Distribution of Black Smokers on the Western Galapagos Spreading Center: Implications for Spatial and Temporal Controls on High Temperature Venting at Ridge/Hotspot Intersections

    NASA Astrophysics Data System (ADS)

    Haymon, R. M.; Anderson, P. G.; Baker, E. T.; Resing, J. A.; White, S. M.; MacDonald, K. C.

    2006-12-01

    Though nearly one-fifth of the mid-ocean ridge (MOR) lies on or near hotspots, it has been debated whether hotspots increase or decrease MOR hydrothermal flux, or affect vent biota. Despite hotspot enhancement of melt supply, high-temperature vent plumes are enigmatically sparse along two previously-surveyed ridge- hotspot intersections [Reykjanes Ridge (RR), Southeast Indian Ridge (SEIR)]. This has been attributed to crustal thickening by excess volcanism. During the 2005-06 GalAPAGoS expedition, we conducted nested sonar, plume, and camera surveys along a 540 km-long portion of the Galapagos Spreading Center (GSC) where the ridge intersects the Galapagos hotspot at lon. 94.5 -89.5 deg. W. Although MOR hydrothermal springs were first found along the eastern GSC crest in 1977 near lon. 86 deg. W, the GalAPAGoS smokers are the first active high-temperature vents to be found anywhere along the Cocos-Nazca plate boundary. Active and/or recently-inactive smokers were located beneath plumes at 5 sites on the seafloor between lon. 91 deg. W and 94.5 deg. W (see Anderson et al., this session) during near-bottom, real-time fiber-optic Medea camera surveys. Smokers occur along eruptive seafloor fissures atop axial volcanic ridges near the middles of ridge segments, mainly in areas underlain by relatively shallow, continuous axial magma chamber (AMC) seismic reflectors. These findings (1) support magmatic, rather than tectonic, control of GSC smoker distribution; (2) demonstrate that thick crust at MOR-hotspot intersections does not prevent high-temperature hydrothermal vents from forming; and, (3) appear to be inconsistent with models suggesting that enhanced hydrothermal cooling causes abrupt deepening of the AMC and transition from non-rifted to rifted GSC morphology near lon. 92.7 deg. W. The widely-spaced smoker sites located on different GSC segments exhibit remarkably similar characteristics and seafloor settings. Most sites are mature or extinct, and are on lava

  12. Oak Ridge Health Studies Phase 1 report, Volume 2: Part C, Dose Reconstruction Feasibility Study. Tasks 5: A summary of information concerning historical locations and activities of populations potentially affected by releases from the Oak Ridge Reservation

    SciTech Connect

    DaMassa, C.L.; Widner, T.E.

    1993-09-01

    A significant number of information sources have been identified that are relevant to historical locations and activities of populations potentially affected by releases from the Oak Ridge Reservation. The information that has been reviewed as part of this Task 5 investigation has shown that numerous residences and farms have historically been present near the ORR boundary and that a variety of land uses and recreational activities have been practiced. Based on this information alone, it would appear that many routes of off-site exposure could have been plausible. Most of the available published information addresses demographic and land use data on a regional or county-wide basis over fairly broad time periods. The information sources that are most readily available do not support direct evaluation of potential exposure pathways at specific geographic locations near the Oak Ridge facilities at specific points in time. A number of information sources have been identified that can provide demography and land use information more specific to locations and time periods that are identified to be of interest. Examples of data sources in this category include individual USGS topographic maps, aerial photographs, lowest-level census tract data, and interviews with long-time local residents. However, specific release events and periods of interest should be identified prior to attempts to collect more specific demographic or land use information for actual dose reconstruction.

  13. Contrasting crustal production and rapid mantle transitions beneath back-arc ridges.

    PubMed

    Dunn, Robert A; Martinez, Fernando

    2011-01-13

    The opening of back-arc basins behind subduction zones progresses from initial rifting near the volcanic arc to seafloor spreading. During this process, the spreading ridge and the volcanic arc separate and lavas erupted at the ridge are predicted to evolve away from being heavily subduction influenced (with high volatile contents derived from the subducting plate). Current models predict gradational, rather than abrupt, changes in the crust formed along the ridge as the inferred broad melting region beneath it migrates away from heavily subduction-influenced mantle. In contrast, here we show that across-strike and along-strike changes in crustal properties at the Eastern Lau spreading centre are large and abrupt, implying correspondingly large discontinuities in the nature of the mantle supplying melt to the ridge axes. With incremental separation of the ridge axis from the volcanic front of as little as 5 km, seafloor morphology changes from shallower complex volcanic landforms to deeper flat sea floor dominated by linear abyssal hills, upper crustal seismic velocities abruptly increase by over 20%, and gravity anomalies and isostasy indicate crustal thinning of more than 1.9 km. We infer that the abrupt changes in crustal properties reflect rapid evolution of the mantle entrained by the ridge, such that stable, broad triangular upwelling regions, as inferred for mid-ocean ridges, cannot form near the mantle wedge corner. Instead, the observations imply a dynamic process in which the ridge upwelling zone preferentially captures water-rich low-viscosity mantle when it is near the arc. As the ridge moves away from the arc, a tipping point is reached at which that material is rapidly released from the upwelling zone, resulting in rapid changes in the character of the crust formed at the ridge. PMID:21228874

  14. Atomic and molecular physics and data activities for astrophysics at Oak Ridge National Laboratory

    SciTech Connect

    Jeffery, D.J.; Kristic, P.S.; Liu, W.; Schultz, D.R.; Stancil, P.C.

    1998-04-01

    The atomic astrophysics group at ORNL produces, collects, evaluates, and disseminates atomic and molecular data relevant to astrophysics and actively models various astrophysical environments utilizing this information. With the advent of the World Wide Web, these data are also being placed on-line to facilitate their use by end-users. In this brief report, the group`s recent activities in data production and in modeling are highlighted. For example, the authors describe recent calculations of elastic and transport cross sections relevant to ionospheric and heliospheric studies, charge transfer between metal ions and metal atoms and novel supernova nebular spectra modeling, ion-molecule collision data relevant to planetary atmospheres and comets, and data for early universe modeling.

  15. Regional inventory of karst activity in the Valley and Ridge Province, eastern Tennessee: Phase 1

    SciTech Connect

    Newton, J.G.; Tanner, J.M.

    1987-09-01

    A data collection form was developed for use in compiling information in the inventory. Information sources included files on subsidence, state and county highway departments, county agents and executives, soil conservation service representative, etc. Data obtained included location, date of occurrence, number of subsidence features at the reported site, size, topographic setting, geologic setting, and probable causative factors. The regional inventory obtained information on over 300 historic subsidence events at more than 200 sites in East Tennessee. Areas having the greatest areal density of active subsidence include Hamblen, Jefferson, and Loudon Counties. Reported subsidence events occurred between 1945 and 1986. The Knox Group dolomites account for about two-thirds of all reported sinkholes in the inventory. Most of the karst activity occurs in valleys or flat areas. In cases where causative factors could be established, the combination of surface water drainage alteration or impoundment combined with soil disturbance associated with construction activity were most often precursors to subsidence. 54 refs., 10 figs., 4 tabs.

  16. Polar Ridges

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03662 Polar Ridges

    This ridge system is located in the south polar region.

    Image information: VIS instrument. Latitude -81.7N, Longitude 296.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  17. Upper Crustal Seismic Velocity Structure of the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Weekly, R. T.; Wilcock, W. S.; Toomey, D. R.; Hooft, E. E.; Wells, A. E.

    2010-12-01

    We report preliminary results from an active-source seismic tomography experiment that was conducted along the intermediate-spreading Endeavour Segment of the Juan de Fuca Ridge in 2009. The overarching objective of the experiment is to test competing hypotheses for what governs the scale and intensity of magmatic and hydrothermal processes at mid-ocean ridges. Previous models of crustal accretion inferred that ridge-basin topography observed at the Endeavour results from alternating periods of enhanced or reduced magma supply from the mantle. Alternatively, a recent seismic reflection study has imaged a crustal magma chamber underlying the central portion of the Endeavour, which may indicate that variations in seafloor topography instead result from dike-induced faulting that occurs within the upper crust, adjacent to the axial magma chamber. The first model predicts a thicker high-porosity eruptive layer and lower velocities beneath topographic highs, while the second model is compatible with a uniform pattern of volcanic accretion. The experiment used 68 four-component ocean-bottom seismometers (OBSs) at 64 sites to record 5,567 airgun shots from the 6600 in3 airgun array of the R/V Marcus G. Langseth. Three nested shooting grids were collected to image the three-dimensional crustal and upper mantle velocity structure of the segment at multiple spatial scales. We use first-arriving crustal phases (Pg) recorded by the two grids with the densest shot-receiver spacing, the 24 x 8 km2 vent field grid and the 60 x 20 km2 crustal grid, to image the fine-scale (< 1 km) three-dimensional velocity structure of the upper few kilometers of crust at the segment scale. We employ a non-linear tomographic method that utilizes a shortest-path ray-tracing algorithm with columns of nodes sheared vertically to include effects of seafloor topography. To date, we have manually picked 13,000 Pg phases located within 10 km of 17 OBSs. The full analysis will include ~40,000 Pg travel

  18. Time-Clustering Behavior of Spreading-Center Seismicity Between 15-35 N on the Mid-Atlantic Ridge: Observations from Hydroacoustic Monitoring

    NASA Astrophysics Data System (ADS)

    Bohnenstiehl, D. R.; Tolstoy, M.; Smith, D. K.; Fox, C. G.; Dziak, R. P.

    2002-12-01

    An earthquake catalog derived from the detection of seismically-generated Tertiary (T) waves is used to study the time-clustering behavior of moderate-size (> 3.0 M) earthquakes along the north-central Mid-Atlantic Ridge. Because T-waves propagate efficiently within the ocean's sound channel, these data represent a significant improvement relative to the detection capabilities of land-based seismic stations. In addition, hydroacoustic monitoring overcomes many of the spatial and temporal limitations associated with ocean-bottom seismometer data, with the existing array being deployed continuously between 15-35 degrees N during the period February 1999-Februrary 2001.Within this region, the distribution of inter-event times is consistent with a non-random clustered process, with a coefficient of variation greater than 1.0. The clustered behavior is power-law in nature with temporal fluctuations characterized by a power spectral density that decays as 1/fα . Using Allan Factor analysis, α is found to range from 0.12-0.55 for different regions of the spreading axis. This scaling is negligible at time scales less than 3.5 x 103 s, and earthquake occurrence becomes less clustered (smaller α ) as increasing size thresholds are applied to the catalog. The highest degrees of clustering are associated temporally with large mainshock-aftershock sequences; however, some swarm-like activity also is evident. The distribution of acoustic magnitudes, or source levels, is consistent with a power-law size-frequency scaling for earthquakes. Although such behavior has been linked closely to the fractal nature of the underlying fault population in other environments, power-law fault size distributions have not been widely observed in the mid-ocean ridge setting.

  19. Elastic Full Waveform Inversion reveals the fine-scale structure of Axial Volcano on the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Arnulf, A. F.; Harding, A. J.; Kent, G.

    2012-12-01

    Axial volcano (sometimes referred to as "Axial seamount" or "Axial") is located at 46N, 130W at the intersection of the Juan de Fuca Ridge and the Cobb-Eickelberg seamount chain. It is the most recent eruptive center of the Cobb hotspot, which last erupted in 2011. The volcano rises ~700 m above the adjacent ridge axis and its summit features a U-shaped caldera open to the southeast, which hosts an active hydrothermal field and very young lava flows. Located at the junction of a mid-ocean ridge and a volcanic hotspot, Axial volcano is atypical and its internal structure remains poorly understood. Here, we present results from an elastic full waveform inversion (FWI) along multiple seismic lines that span the whole volcano. We have used a multi-stage FWI, inverting successively wide-angle reflections and refractions arrivals from downward extrapolated streamer data, then windowed short offset reflections from the underlying magma chamber. Our final models show fine scale velocity structures with spatial resolutions of tens of meters. Our results indicate that Layer 2A thickness is extremely heterogeneous (350-900 m) within the volcano with abrupt vertical throws of >300 m beneath the caldera walls that suggests the tectonic thinning of a geologically defined Layer 2A. Interestingly, Layer 2A appears to be extremely thin beneath the active hydrothermal field and the most recent lava flows, on the southeast end of the caldera, where sheeted dikes might lay <100 m beneath the seafloor. On the other hand, the nearby caldera center is filled by successive lava sequences (~450 m thick) that further appear to be micro faulted, suggesting a constant interplay between magmatic and tectonic processes. Surface velocities show limited variation over the whole volcano and may suggest relative recent formation, considering the rapid increase in layer 2A velocity with age. Finally, our velocity structures image a wide and complex magma chamber system beneath the volcano at depth

  20. Continuing Evolution of the Hydrothermal System at the RIDGE2000 ISS, 9-10° N EPR: 1991-2004

    NASA Astrophysics Data System (ADS)

    von Damm, K. L.; Parker, C. M.; Beers, K. A.; Hyde, A. A.

    2004-12-01

    We have been studying the evolution of the chemical composition of the mid-ocean ridge (MOR) hydrothermal system on the East Pacific Rise from 9° 46-51'N since it was impacted by volcanic eruptions in 1991/2. We have been using the chemical and temperature data to infer the processes that are occurring subseafloor in the upper oceanic crust. As of March 2004, the chemical compositions of the vent fluids from this site have not yet stabilized. This observation is helping us to better understand not only the impact of magmatic events on these systems, but also the time scales on which they occur. Centered at the RIDGE2000 ISS "bull's-eye" at 9° 50'N we have noted a striking increase in the number of hydrothermal vents as well as in their measured fluid temperatures beginning after ~2000. In November 2003 we first noted the formation of a black smoker vent at the Tica site (measured T=342° C). In March 2004 we identified another new area of robust flow near the Bio9 vents at 9° 50'N, the 'Alvinellid Mat,' that we anticipate will form an additional black smoker to the three currently active at this site. In March 2004 we measured temperatures of 388° C in fluids from both the Bio9 and Bio9' smokers, putting them essentially on the two phase curve for seawater at this depth. For all of the Bio9 vents, as well as Tica, the fluids contain less than 300 mmoles/kg of Cl, approximately half the local seawater concentration. These high temperature and low Cl concentrations are accompanied by unusually low Si concentrations, <9.5 mmoles/kg. These data suggest a relatively shallow depth of reaction for the fluids, within a few hundred meters of the seafloor. These are the hottest temperatures measured in the Bio9 vents since the eruption in 1992. In contrast, the temperatures at P vent, about 60m south have cooled by ˜15° C since 2002. About 400m south, the chlorinity of the fluids from Ty and Io vents have increased, and Tube Worm Pillar, about 400m further south has

  1. Off-axis Submarine Massive Sulfide accumulation at the fault-controlled Logatchev 1 hydrothermal field, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Andersen, Christine; Theissen-Krah, Sonja; Hannington, Mark

    2016-04-01

    The largest Submarine Massive Sulfide (SMS) deposits in Mid-ocean ridge settings are found along slow-spreading ridges, where tectonic processes dominate and long-lived faults control the circulation of hydrothermal fluids through the oceanic crust. Here we combine results from 2D fluid flow simulations of the off-axis (8km), fault-controlled, high-T Logatchev 1 hydrothermal field (LHF1) at the Mid-Atlantic Ridge with data on vent fluid chemistry and the associated SMS deposit, which give insights about its accumulation history. Modeled high vent temperatures of 360°C, as measured at the active LHF1, result in a total integrated mass-flow rate through the seafloor of ~36 kg/sec scaled to 28 vent orifices of 10x10cm, located in the 7 known high-T sites at the LHF1. About 42% of the vent fluids are hotter than 350°C, the minimum temperature required for efficient metal transport, with a mass-flow rate of 13 kg/sec. This corresponds to ~400 kilotons of potentially SMS-forming hydrothermal fluids leaving the vent field per year. Combined with a total H2S-SiO2-metal (Zn+Cu+Fe) concentration of 732 ppm, measured in the LHF1 vent fluids, this makes a flux of ~300 t of hydrothermal precipitates per year. The SMS deposit at LHF1 has been dated to 58.200 years and has an estimated tonnage of 135 kilotons. Applying the above modeled annual discharge rate over the dated time period, results in an SMS accumulation efficiency of ~0.8% for the SMS deposit at the Logatchev 1 field, which fits the range of estimated global average for MORs between <0.3% and 3%. Our predicted depositional efficiency is based on numerical modeling, which simulates continuous and ideal venting. Realistically, venting at LHF1 might well have been fluctuating, including periods of low temperature discharge, where metal transport is insufficient or periods of inactivity, compensated by periods with a higher depositional efficiency than 0.8%. Such fluctuations could have been caused by variations in

  2. MoMar-Demo at Lucky Strike. A near-real time multidisciplinary observatory of hydrothermal processes and ecosystems at the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Cannat, M.; Sarradin, P.; Blandin, J.; Escartin, J.; Colaco, A.; MoMAR-Demo Scientific Party : Aron Michael, Aumont Virginie, Baillard Christian, Ballu Valérie, Barreyre Thibaut, Blandin Jérôme, Blin Alexandre, Boulart Cédric, Cannat Mathilde, Carval Thierry, Castillo Alain, Chavagnac Valérie, Coail Jean Yves, Colaço Ana, Corela Carlos, Courrier Christophe, Crawford Wayne, Cuvelier Daphné, Daniel Romuald, Dausse Denis, Escartin Javier, Fabrice Fontaine, Gabsi Taoufik, Gayet Nicolas, Guyader Gérard, Lallier François, Lecomte Benoit, Legrand Julien, Lino Silva, Miranda Miguel, Mitard Emmelyne, Pichavant Pascal, Pot Olivier, Reverdin Gilles, Rommevaux Céline, Sarradin Pierre Marie, Sarrazin Jozée, Tanguy Virginie, Villinger Heinrich, Zbinden Magali

    2011-12-01

    The MoMAR "Monitoring the Mid-Atlantic Ridge" project was initiated by InterRidge in 1998 to study the environmental instability resulting from active mid-ocean-ridge processes at hydrothermal vent fields south of the Azores. It then developped into a component of the ESONET (European Seafloor Observatory Network) and EMSO (European Multidisciplinary Subsea Observatory) programs, which coordinate eulerian observatory initiatives in the seas around Europe. MoMAR experiments have started in 2006 and address two main questions : What are the feedbacks between volcanism, deformation, seismicity, and hydrothermalism at a slow spreading mid-ocean ridge? and How does the hydrothermal ecosystem couple with these sub-seabed processes? The MoMAR-Demo project started in 2010 with partial support from ESONET. It has been implemented so far by 2 cruises of the RV Pourquoi Pas ? during which we successfully deployed (in 2010), and upgraded (in 2011) a near-realtime buoyed observatory system. The system comprises two Sea Monitoring Nodes (SeaMoN) at the seafloor, which are acoustically linked to a surface relay buoy (BoRel), ensuring satellite communication to a land base station in Brest (France). One SeaMoN node connects to a 3-components seismometer and an hydrophone for seismic event detection, and two pressure probes for geodetic measurements, and the other SeaMoN node connects to a video camera, a dissolved-iron analyzer, and an optode (oxygen and temperature probe) for ecological time studies. The BOREL transmission buoy is equiped with GPS (geodetic experiment and buoy location) and meteo station. Data and/or status signals from these sensors are transmitted every 6 hours, and put on line in compliance with the ESONET-EMSO data policy (temporary access through http://www.ifremer.fr/WC2en/allEulerianNetworks). The MoMAR-Demo system also allows for interactive connections and changes of data transmission rates on demand. It is nested in arrays of autonomous sensors (OBSs

  3. Detailed leak detection test plan and schedule for the Oak Ridge National Laboratory LLLW active tanks. Waste Management and Environmental Restoration Programs

    SciTech Connect

    Douglas, D.G.; Maresca, J.W. Jr.

    1993-03-01

    This document provides a detailed leak detection test plan and schedule for leak testing many of the tanks that comprise the active portion of the liquid low-level waste (LLLW) system at the Oak Ridge National Laboratory (ORNL). This plan was prepared in response to the requirements of the Federal Facility Agreement (FFA) between the US Department of Energy (DOE) and two other agencies, the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC).

  4. Remedial site evaluation report for the waste area grouping 10 wells associated with the new hydrofracture facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2: Field activities and well summaries

    SciTech Connect

    1996-08-01

    Four hydrofracture sites at the Oak Ridge National Laboratory (ORNL) were used for development, demonstration, and disposal from 1959 to 1984. More than 10 million gal of waste grout mix was disposed of via hydrofracture. Various types of wells were installed to monitor the hydrofracture operations. The primary goal of this remedial investigation was to gather information about the wells in order to recommend the type and best method of final disposition for the wells. Evaluations were performed to determine the integrity of well castings, confirm construction details for each well, evaluate the extent of contamination, assist in planning for future activities, and determine the suitability of the wells for future temporary site monitoring.

  5. High-Resolution Imaging of Axial Volcano, Juan de Fuca ridge.

    NASA Astrophysics Data System (ADS)

    Arnulf, A. F.; Harding, A. J.; Kent, G. M.

    2014-12-01

    To date, seismic experiments have been key in our understanding of the internal structure of volcanic systems. However, most experiments, especially subaerial-based, are often restricted to refraction geometries with limited numbers of sources and receivers, and employ smoothing constraints required by tomographic inversions that produce smoothed and blurry images with spatial resolutions well below the length scale of important features that define these magmatic systems. Taking advantage of the high density of sources and receivers from multichannel seismic (MCS) data should, in principle, allow detailed images of velocity and reflectivity to be recovered. Unfortunately, the depth of mid-ocean ridges has the detrimental effect of concealing critical velocity information behind the seafloor reflection, preventing first arrival travel-time tomographic approaches from imaging the shallowest and most heterogeneous part of the crust. To overcome the limitations of the acquisition geometry, here we are using an innovative multistep approach. We combine a synthetic ocean bottom experiment (SOBE), 3-D traveltime tomography, 2D elastic full waveform and a reverse time migration (RTM) formalism, and present one of the most detailed imagery to date of a massive and complex magmatic system beneath Axial seamount, an active submarine volcano that lies at the intersection of the Juan de Fuca ridge and the Cobb-Eickelberg seamount chain. We present high-resolution images along 12 seismic lines that span the volcano. We refine the extent/volume of the main crustal magma reservoir that lies beneath the central caldera. We investigate the extent, volume and physical state of a secondary magma body present to the southwest and study its connections with the main magma reservoir. Additionally, we present a 3D tomographic model of the entire volcano that reveals a subsiding caldera floor that provides a near perfect trap for the ponding of lava flows, supporting a "trapdoor

  6. Active normal fault network of the Apulian Ridge (Eastern Mediterranean Sea) imaged by multibeam bathymetry and seismic data

    NASA Astrophysics Data System (ADS)

    Pellegrini, Claudio; Marchese, Fabio; Savini, Alessandra; Bistacchi, Andrea

    2016-04-01

    The Apulian ridge (North-eastern Ionian margin - Mediterranean Sea) is formed by thick cretaceous carbonatic sequences and discontinuous tertiary deposits crosscut by a NNW-SSE penetrative normal fault system and is part of the present foreland system of both the Apennine to the west and the Hellenic arc to the east. The geometry, age, architecture and kinematics of the fault network were investigated integrating data of heterogeneous sources, provided by previous studies: regional scale 2D seismics and three wells collected by oil companies from the '60s to the '80s, more recent seismics collected during research projects in the '90s, very high resolution seismic (VHRS - Sparker and Chirp-sonar data), multi-beam echosounder bathymetry and results from sedimentological and geo-chronological analysis of sediment samples collected on the seabed. Multibeam bathymetric data allowed in particular assessing the 3D continuity of structures imaged in 2D seismics, thanks to the occurrence of continuous fault scarps on the seabed (only partly reworked by currents and covered by landslides), revealing the vertical extent and finite displacement associated to fault scarps. A penetrative network of relatively small faults, always showing a high dip angle, composes the NNW-SSE normal fault system, resulting in frequent relay zones, which are particularly well imaged by seafloor geomorphology. In addition, numerous fault scarps appear to be roughly coeval with quaternary submarine mass-wasting deposits colonised by Cold-Water Corals (CWC). Coral colonies, yielding ages between 11 and 14 kA, develop immediately on top of late Pleistocene mass-wasting deposits. Mutual cross-cutting relationships have been recognized between fault scarps and landslides, indicating that, at least in places, these features may be coeval. We suppose that fault activity lasted at least as far as the Holocene-Pleistocene boundary and that the NNW-SSW normal fault network in the Apulian Plateau can be

  7. Learning experiences at Oak Ridge

    SciTech Connect

    White, R.K.

    1990-01-01

    The Oak Ridge Operations (ORO) of DOE has organized an Environmental Restoration Program to handle environmental cleanup activitis for the Oak Ridge Reservation (ORR) following General Watkins' reorganization at DOE Headquarters. Based on the major facilities and locations of contamination sites, the Environmental Restoration Program is divided into five subprograms: Oak Ridge, National Laboatory (ORNL) sites, y-12 Plant sites, Oak Ridge Gaseous Diffusion Plant (ORGDP) sites, Oak Ridge Associated Universities (ORAU) sites and off-site areas. The Office of Risk Analysis at ORNL was established under the auspices of the Environmental Restoration Program to implement Superfun legislation in the five subprograms of DOE-ORO. Risk assessment must examine protetial human health and ecological impacts from contaminant sources that range from highly radioactive materials to toxic chemicals and mixed wastes. The remedial alternatives we are evaluating need to reach acceptable levels of risk effectively while also being cost-efficient. The purpose of this paper is to highlight areas of particular interest and concern at Oak Ridge and to discuss, where possible, solutions implemented by the Oak Ridge Environmental Restoation Program.

  8. High-resolution Remotely Operated Vehicle (ROV) mapping of a slow-spreading ridge: Mid-Atlantic Ridge 45°N

    NASA Astrophysics Data System (ADS)

    Yeo, I. A.; Searle, R. C.

    2013-06-01

    Axial volcanic ridges (AVRs) are found on most slow-spreading mid-ocean ridges and are thought to be the main locus of volcanism there. In this study we present high-resolution mapping of a typical, well-defined AVR on the Mid-Atlantic Ridge at 45°N. The AVR is characterized by "hummocky terrain," composed typically of hummocks with pillowed or elongate pillowed flanks with pillowed or lobate lava flow summits, often with small haystacks sitting on their highest points. The AVR is surrounded by several areas of "flat seafloor," composed of lobate and sheet lava flows. The spatial and morphological differences between these areas indicate different eruption processes operating on and off the AVR. Volcanic fissures are found all around and on the AVR, although those with the greatest horizontal displacement are found on the ridge crest and flat seafloor. Clusters of fissures may represent volcanic vents. Extremely detailed comparisons of sediment coverage and examination of contact relations around the AVR suggest that many of the areas of flat seafloor are of a similar age or younger than the hummocky terrain of the AVR. Additionally, all the lavas surveyed have similar degrees of sediment cover, suggesting that the AVR was either built or resurfaced in the same 50 ka time frame as the flat seafloor.

  9. Strategic Environmental Research and Development Project FY 1994: Assessing national remote sensing technologies for use in US Department of Energy Environmental Restoration Activities, Oak Ridge Solid Waste Storage Area 4 case study

    SciTech Connect

    King, A.L.; Smyre, J.L.; Evers, T.K.

    1995-02-01

    During FY 1994, the Oak Ridge Environmental Restoration (ER) Remote Sensing Program teamed with members of the Oak Ridge National Security Program Office (NSPO), the Environmental Research Institute of Michigan (ERIM) under contract to the National Exploitation Laboratory (NEL), the Oak Ridge Waste Area Group 4 (WAG 4) ER Program, and the US Department of Energy (DOE), Offices of Technology Development, Nonproliferation and National Security, and Environmental Restoration, to conduct a test and demonstration of the uses of national remote sensing technologies at DOE hazardous waste sites located in Oak Ridge, Tennessee. Objectives of the Oak Ridge study were to determine if national remote sensing technologies are useful in conducting prescreening, characterization, and/or monitoring activities to expedite the clean-up process at hazardous waste sites and to cut clean-up costs wherever possible. This project was sponsored by the Strategic Environmental Research and Development Project (SERDP).

  10. Initiation and collapse of active circulation in a hydrothermal system at the Mid-Atlantic Ridge, 23°N

    NASA Astrophysics Data System (ADS)

    Gallinatti, Barbara Cosens

    1984-05-01

    Gabbro and basalt, collected from an area south of the Kane Fracture Zone along the Mid-Atlantic Ridge, have three stages of alteration which record the cooling of a hydrothermal system: (1) Stage 1. Penetration of seawater began between 400° and 550°C, altering pyroxene to fibrous green amphibole. (2) Stage 2. Propylitic alteration formed along connected fractures between 250° and 300°C. As fracture density increased, the Fe/Mg ratio of chlorite increased, the final result being an Fe chlorite-quartz-sulfide breccia. (3) Stage 3. Late smectite veinlets formed at low temperatures (≤200°C) after active circulation ceased The study focuses on stage 2 alteration. By assuming local equilibrium between alteration minerals and the hydrothermal fluid, constraints can be placed on the fluid composition responsible for stage 2 alteration, the stage associated with deposition of sulfides. The following activities of species in solution were determined for the system FeO Na2O-CaO-MgO-Al2O3-SiO2-H2O at 350 bars and 250°C: log a (Ca++)/a2 (H+) = 8.0, log a (Na+)/a (H+) = 5.0, log a (Fe++)/a2 (H+) = 1.7, log a (Mg++)/a2 (H+) = 6.0. Log a (SiO2) was set at quartz saturation (-2.3 at 350 bars and 250°C). Fluid inclusions record the introduction of a low temperature, seawater-salinity fluid during formation of the latest quartz veins associated with stage 2 alteration. Mixing of this and the hydrothermal fluid caused a drop in temperature and increase in oxidation state, resulting in increased precipitation of quartz, pyrite and chalcopyrite. The salinities of fluid inclusions trapped in quartz during stage 2 alteration are as much as 3 times that of seawater. Concentration of a fluid initially of seawater salinity may be the result of boiling at ≥350°C and ≤3000 m depth.

  11. Compositional Comparison of Iceland Rift Zones and Adjacent Portions of the Mid-Atlantic Ridge.

    NASA Astrophysics Data System (ADS)

    Kelley, D.; Barton, M.

    2007-12-01

    Iceland is a portion of the Mid-Atlantic Ridge (MAR) that has been built by anomalous crustal production throughout the 55ma spreading history of the opening of the Atlantic Ocean. The anomalously thick crust of Iceland contains the subaerial traces of the MAR which are the volcanically active rift zones. From the south, the Reykjanes Ridge (RR) continues on land as the Western Volcanic Zone (WVZ). In the north, the Northern Volcanic Zone (NVZ) traces into the sea where it offset from the Kolbeinsey Ridge (KR) by the Tjornnes Fracture Zone (TVZ). We report the results of petrologic comparison of the WVZ, the EVZ, and the NVZ of Iceland and the adjacent portions of the MAR - the RR and the KR. The EVZ, WVZ, and NVZ have been shown to have similar crustal structures with ~20 km thick crust thickening toward the hotspot in central Iceland with magma chambers located at the base of the crust and at some depth in the upper crust. Likewise, the KR and RR have melt chambers at the base of and within the crust. Melt compositions have been compared using a filtered database of 588 glass analyses from 29 localities throughout the rift zones, 57 glass analyses from the KR, and 521 glass analyses from the RR. This is the first such study carried out with such an extensive data set. Compositions are similar between the NVZ and WVZ with SiO2 wt.% of 49.0, and 48.6, MgO wt.% of 7.9, and 7.5, and FeOT wt.% of 10.9, and 11.7 respectively. The EVZ which is considered to be a propagating rift is a bit different with SiO2 wt.% of 49.4, MgO wt.% of 5.9, and FeOT wt.% of 13.8. The NVZ and WVZ have also been compared with their respectively adjacent ridge segments, the KR (SiO2 50.3 wt.%, MgO 6.9 wt.%, and FeOT 12.0 wt.%), and the RR (SiO2 50.8 wt.%, MgO 6.9 wt.%, and FeOT 12.3 wt.%). Mg#s for the NVZ and the WVZ are 0.56, and .053 respectively while the Mg# for both the KR and RR is 0.50. For further comparison, a database of 9035 glass analyses from mid-ocean ridge basalts worldwide

  12. Hydrothermal activity on the southern Mid-Atlantic Ridge: Tectonically- and volcanically-controlled venting at 4 5°S

    NASA Astrophysics Data System (ADS)

    German, C. R.; Bennett, S. A.; Connelly, D. P.; Evans, A. J.; Murton, B. J.; Parson, L. M.; Prien, R. D.; Ramirez-Llodra, E.; Jakuba, M.; Shank, T. M.; Yoerger, D. R.; Baker, E. T.; Walker, S. L.; Nakamura, K.

    2008-09-01

    We report results from an investigation of the geologic processes controlling hydrothermal activity along the previously-unstudied southern Mid-Atlantic Ridge (3-7°S). Our study employed the NOC (UK) deep-tow sidescan sonar instrument, TOBI, in concert with the WHOI (USA) autonomous underwater vehicle, ABE, to collect information concerning hydrothermal plume distributions in the water column co-registered with geologic investigations of the underlying seafloor. Two areas of high-temperature hydrothermal venting were identified. The first was situated in a non-transform discontinuity (NTD) between two adjacent second-order ridge-segments near 4°02'S, distant from any neovolcanic activity. This geologic setting is very similar to that of the ultramafic-hosted and tectonically-controlled Rainbow vent-site on the northern Mid-Atlantic Ridge. The second site was located at 4°48'S at the axial-summit centre of a second-order ridge-segment. There, high-temperature venting is hosted in an ˜ 18 km 2 area of young lava flows which in some cases are observed to have flowed over and engulfed pre-existing chemosynthetic vent-fauna. In both appearance and extent, these lava flows are directly reminiscent of those emplaced in Winter 2005-06 at the East Pacific Rise, 9°50'N and reference to global seismic catalogues reveals that a swarm of large (M 4.6-5.6) seismic events was centred on the 5°S segment over a ˜ 24 h period in late June 2002, perhaps indicating the precise timing of this volcanic eruptive episode. Temperature measurements at one of the vents found directly adjacent to the fresh lava flows at 5°S MAR (Turtle Pits) have subsequently revealed vent-fluids that are actively phase separating under conditions very close to the Critical Point for seawater, at ˜ 3000 m depth and 407 °C: the hottest vent-fluids yet reported from anywhere along the global ridge crest.

  13. Growth of a tectonic ridge

    SciTech Connect

    Fleming, R.W.; Messerich, J.A.; Johnson, A.M.

    1997-12-31

    The 28 June 1992 Landers, California, earthquake of M 7.6 created an impressive record of surface rupture and ground deformation. Fractures extend over a length of more than 80 km including zones of right-lateral shift, steps in the fault zones, fault intersections and vertical changes. Among the vertical changes was the growth of a tectonic ridge described here. In this paper the authors describe the Emerson fault zone and the Tortoise Hill ridge including the relations between the fault zone and the ridge. They present data on the horizontal deformation at several scales associated with activity within the ridge and belt of shear zones and show the differential vertical uplifts. And, they conclude with a discussion of potential models for the observed deformation.

  14. High Connectivity of Animal Populations in Deep-Sea Hydrothermal Vent Fields in the Central Indian Ridge Relevant to Its Geological Setting

    PubMed Central

    Beedessee, Girish; Watanabe, Hiromi; Ogura, Tomomi; Nemoto, Suguru; Yahagi, Takuya; Nakagawa, Satoshi; Nakamura, Kentaro; Takai, Ken; Koonjul, Meera; Marie, Daniel E. P.

    2013-01-01

    Dispersal ability plays a key role in the maintenance of species in spatially and temporally discrete niches of deep-sea hydrothermal vent environments. On the basis of population genetic analyses in the eastern Pacific vent fields, dispersal of animals in the mid-oceanic ridge systems generally appears to be constrained by geographical barriers such as trenches, transform faults, and microplates. Four hydrothermal vent fields (the Kairei and Edmond fields near the Rodriguez Triple Junction, and the Dodo and Solitaire fields in the Central Indian Ridge) have been discovered in the mid-oceanic ridge system of the Indian Ocean. In the present study, we monitored the dispersal of four representative animals, Austinograea rodriguezensis, Rimicaris kairei, Alviniconcha and the scaly-foot gastropods, among these vent fields by using indirect methods, i.e., phylogenetic and population genetic analyses. For all four investigated species, we estimated potentially high connectivity, i.e., no genetic difference among the populations present in vent fields located several thousands of kilometers apart; however, the direction of migration appeared to differ among the species, probably because of different dispersal strategies. Comparison of the intermediate-spreading Central Indian Ridge with the fast-spreading East Pacific Rise and slow-spreading Mid-Atlantic Ridge revealed the presence of relatively high connectivity in the intermediate- and slow-spreading ridge systems. We propose that geological background, such as spreading rate which determines distance among vent fields, is related to the larval dispersal and population establishment of vent-endemic animal species, and may play an important role in controlling connectivity among populations within a biogeographical province. PMID:24358117

  15. High connectivity of animal populations in deep-sea hydrothermal vent fields in the Central Indian Ridge relevant to its geological setting.

    PubMed

    Beedessee, Girish; Watanabe, Hiromi; Ogura, Tomomi; Nemoto, Suguru; Yahagi, Takuya; Nakagawa, Satoshi; Nakamura, Kentaro; Takai, Ken; Koonjul, Meera; Marie, Daniel E P

    2013-01-01

    Dispersal ability plays a key role in the maintenance of species in spatially and temporally discrete niches of deep-sea hydrothermal vent environments. On the basis of population genetic analyses in the eastern Pacific vent fields, dispersal of animals in the mid-oceanic ridge systems generally appears to be constrained by geographical barriers such as trenches, transform faults, and microplates. Four hydrothermal vent fields (the Kairei and Edmond fields near the Rodriguez Triple Junction, and the Dodo and Solitaire fields in the Central Indian Ridge) have been discovered in the mid-oceanic ridge system of the Indian Ocean. In the present study, we monitored the dispersal of four representative animals, Austinograea rodriguezensis, Rimicaris kairei, Alviniconcha and the scaly-foot gastropods, among these vent fields by using indirect methods, i.e., phylogenetic and population genetic analyses. For all four investigated species, we estimated potentially high connectivity, i.e., no genetic difference among the populations present in vent fields located several thousands of kilometers apart; however, the direction of migration appeared to differ among the species, probably because of different dispersal strategies. Comparison of the intermediate-spreading Central Indian Ridge with the fast-spreading East Pacific Rise and slow-spreading Mid-Atlantic Ridge revealed the presence of relatively high connectivity in the intermediate- and slow-spreading ridge systems. We propose that geological background, such as spreading rate which determines distance among vent fields, is related to the larval dispersal and population establishment of vent-endemic animal species, and may play an important role in controlling connectivity among populations within a biogeographical province. PMID:24358117

  16. Models and Observations of Plume-Ridge Interaction in the South Atlantic and their Implications for Crustal Thickness Variations

    NASA Astrophysics Data System (ADS)

    Gassmoeller, R.; Dannberg, J.; Steinberger, B. M.; Bredow, E.; Torsvik, T. H.

    2015-12-01

    Mantle plumes are thought to originate at thermal or thermo-chemical boundary layers, and since their origin is relatively fixed compared to plate motion they produce hotspot tracks at the position of their impingement. When plumes reach the surface close to mid-ocean ridges, they generate thicker oceanic crust due to their increased temperature and hence higher degree of melting. Observations of these thickness variations allow estimates about the buoyancy flux and excess temperature of the plume. One example is the interaction of the Tristan plume with the South Atlantic Mid-Ocean Ridge, however, conclusions about the plume properties are complicated by the fact that the Tristan plume track has both on- and off-ridge segments. In these cases, where a plume is overridden by a ridge, it is assumed that the plume flux has a lateral component towards the ridge (the plume is "captured" by the ridge). Additionally, sea floor spreading north of the Florianopolis Fracture Zone did not start until 112 Ma -- at least 15 Ma after the plume head arrival -- while the Atlantic had already opened south of it. Therefore, the plume is influenced by the jump in lithosphere thickness across the Florianopolis Fracture zone.We present crustal thickness and plume tracks of a three-dimensional regional convection model of the upper mantle for the Tristan-South Atlantic ridge interaction. The model is created with the convection code ASPECT, which allows for adaptive finite-element meshes to resolve the fine-scale structures within a rising plume head in the presence of large viscosity variations. The boundary conditions of the model are prescribed from a coarser global mantle convection model and the results are compared against recently published models of crustal thickness in the South Atlantic and hotspot tracks in global moving hotspot reference frames. In particular, we investigate the influence of the overriding ridge on the plume head.Thus, our comparison between models of plume-ridge

  17. Models and observations of plume-ridge interaction in the South Atlantic and their implications for crustal thickness variations

    NASA Astrophysics Data System (ADS)

    Gassmöller, Rene; Steinberger, Bernhard; Dannberg, Juliane; Bredow, Eva; Torsvik, Trond

    2015-04-01

    Mantle plumes are thought to originate at thermal or thermo-chemical boundary layers, and since their origin is relatively fixed compared to plate motion they produce hotspot tracks at the position of their impingement. When plumes reach the surface close to mid-ocean ridges, they generate thicker oceanic crust due to their increased temperature and hence higher degree of melting. Observations of these thickness variations allow estimates about the buoyancy flux and excess temperature of the plume. One example is the interaction of the Tristan plume with the South Atlantic Mid-Ocean Ridge, however, conclusions about the plume properties are complicated by the fact that the Tristan plume track has both on- and off-ridge segments. In these cases, where a plume is overridden by a ridge, it is assumed that the plume flux has a lateral component towards the ridge (the plume is "captured" by the ridge). Additionally, sea floor spreading north of the Florianopolis Fracture Zone did not start until ~112 Ma - at least 15 Ma after the plume head arrival - while the Atlantic had already opened south of it. Therefore, the plume is influenced by the jump in lithosphere thickness across the Florianopolis Fracture zone. We present crustal thickness and plume tracks of a three-dimensional regional convection model of the upper mantle for the Tristan-South Atlantic ridge interaction. The model is created with the convection code ASPECT, which allows for adaptive finite-element meshes to resolve the fine-scale structures within a rising plume head in the presence of large viscosity variations. The boundary conditions of the model are prescribed from a coarser global mantle convection model and the results are compared against recently published models of crustal thickness in the South Atlantic and hotspot tracks in global moving hotspot reference frames. In particular, we investigate the influence of the overriding ridge on the plume head. Thus, our comparison between models of

  18. Lead Isotopic Compositions of the Endeavour Sulfides, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Labonte, F.; Hannington, M. D.; Cousens, B. L.; Blenkinsop, J.; Gill, J. B.; Kelley, D. S.; Lilley, M. D.; Delaney, J. R.

    2006-12-01

    32 sulfide samples from the main structures of the Endeavour vent field, Juan de Fuca Ridge, were analyzed for their Pb isotope composition. The samples were collected from 6 main vent fields between 1985 and 2005 and encompass a strike length of more than 15 km along the ridge crest. The sulfides are typical of black smoker deposits on sediment-starved mid-ocean ridges. Pb isotope compositions of the massive sulfides within the six hydrothermal fields vary within narrow ranges, with 206Pb/204Pb = 18.58 18.75, 207Pb/204Pb = 15.45 15.53 and 208Pb/204Pb = 37.84 38.10. A geographic trend is observed, with the lower Pb ratios restricted mostly to the northern part of the segment (Salty Dawg, Sasquatch and High Rise fields), and the higher Pb ratios restricted mostly to the southern part of the segment (Main Endeavour, Clam Bed and Mothra fields). Variations within individual fields are much smaller than those between fields, and variation within individual sulfide structures is within the uncertainty of the measurements. Therefore, it is unlikely that the ranges of Pb isotope compositions along the length of the segment reflect remobilization, replacement, and recrystallization of sulfides, as suggested for the observed Pb isotope variability in some large seafloor sulfide deposits. Instead, the differences in isotopic compositions from north to south are interpreted to reflect differences in the source rocks exposed to hydrothermal circulation of fluids below the seafloor. Possible sources of the somewhat more radiogenic Pb may be small amounts of buried sediment, either from turbidites or from hemipelagic sediment. This possibility is supported by high concentrations of CH4 and NHC4 found in the high-temperature vent fluids at the Main Endeavour Field, which are interpreted to reflect subseafloor interaction between hydrothermal fluids and organic material in buried sediments. However, the majority of the samples fall below and are approximately parallel to the

  19. Exploring the plutonic crust at a fast-spreading ridge:new drilling at Hess Deep

    SciTech Connect

    Gillis, Kathryn M.; Snow, Jonathan E.; Klaus, Adam; Guerin, Gilles; Abe, Natsue; Akizawa, Norikatsu; Ceuleneer, Georges; Cheadle, Michael J.; Adriao, Alden de Brito; Faak, Kathrin; Falloon, Trevor J.; Friedman, Sarah A.; Godard, Marguerite M.; Harigane, Yumiko; Horst, Andrew J.; Hoshide, Takashi; Ildefonse, Benoit; Jean, Marlon M.; John, Barbara E.; Koepke, Juergen H.; Machi, Sumiaki; Maeda, Jinichiro; Marks, Naomi E.; McCaig, Andrew M.; Meyer, Romain; Morris, Antony; Nozaka, Toshio; Python, Marie; Saha, Abhishek; Wintsch, Robert P.

    2013-02-28

    Integrated Ocean Drilling Program (IODP) Hess Deep Expedition 345 was designed to sample lower crustal primitive gabbroic rocks that formed at the fast-spreading East Pacific Rise (EPR) in order to test models of magmatic accretion and the intensity of hydrothermal cooling at depth. The Hess Deep Rift was selected to exploit tectonic exposures of young EPR plutonic crust, building upon results from ODP Leg 147 as well as more recent submersible, remotely operated vehicle, and near-bottom surveys. The primary goal was to acquire the observations required to test end-member crustal accretion models that were in large part based on relationships from ophiolites, in combination with mid-ocean ridge geophysical studies. This goal was achieved with the recovery of primitive layered olivine gabbros and troctolites with many unexpected mineralogical and textural relationships, such as the abundance of orthopyroxene and the preservation of delicate skeletal olivine textures.

  20. The non-transform discontinuity on the Central Indian Ridge at 11°S: The transtensional basin formation and hydrothermal activity

    NASA Astrophysics Data System (ADS)

    Pak, S. J.; Kim, H. S.; Son, J.; Kim, J.; Moon, J. W.; Son, S. K.

    2014-12-01

    The bathymetric and magnetic survey, hydrocasting and seabed sampling have been carried out in the middle portion of the Central Indian Ridge (MCIR) between 7°S and 17°S. The MCIR constitutes six first-order segments and seven second-order segments with four non-transform discontinuities (NTDs) and twelve ocean core complexes (OCCs). These segments are characterized by asymmetric accretion that corresponds to about 70% of the surveyed MCIR segment. One of the outstanding NTD in the area is a basin like NTD3-1 at 11°S (50km in length) which strike at 035°, approximately 45° oblique in a clockwise direction to the orientation of two adjoining second-order segments. The hydrothermal activity is recognized at the tips of NTD3-1. No abyssal hills paralleling to basin-shape NTD3-1 are observed. Anomalous depth of the basin, lack of positive magnetic anomaly across the basin and rare seismic activities in the basin floor suggests that extensional tectonism with a sparse volcanism is the dominant process occurring along the NTD3-1. Based on the previous researches that the counterclockwise rotation of ridge is predominant in the area, the region of NTD3-1 largely accommodates shear strain by left-lateral sense motion and consequently forms a transtensional basin, i.e., a pull-apart basin. The strong and frequent hydrothermal plume signals, and highly tectonized rocks in both tips of the NTD3-1 are reflective of the dilation zones or tensional fractures accompanied by the pull-apart basin formation. It is the first identification of a pull-apart basin associated with hydrothermal activity in the Central Indian Ridge.

  1. What`s an ARAR?: Regulatory requirements for CERCLA remedial activities at D&D sites on the Oak Ridge Reservation

    SciTech Connect

    Houlberg, L.M.; Etnier, E.L.

    1994-09-01

    Many government-owned facilities that supported early nuclear energy research and defense programs have no current use and have been retired. Some of these facilities have residual radioactive or chemical contamination that require remediation. The Department of Energy (DOE) Decontamination and Decommissioning (D&D) Program is responsible for managing these surplus facilities. Remedial activities for contaminated environs and inactive land-based units (e.g., landfills, surface impoundments) at the Oak Ridge Reservation (ORR) are conducted under the direction of the Environmental Restoration (ER) Program.

  2. Seismogenic behavior of symmetric vs. detachment-dominated sections of the Northern Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Olive, J. A. L.; Escartin, J.

    2015-12-01

    Normal faults are essential in shaping the seafloor formed at slow-spreading mid-ocean ridges, and information on their behavior on short (seismic cycle) time scales is limited. Here we combine catalogs of hydro-acoustically recorded [Bohnenstiehl et al., 2000; 2002] and teleseismic earthquakes to analyze the modes of seismic moment release along the Northern Mid-Atlantic Ridge between the Marathon (12ºN) and Oceanographer (35ºN) Fracture Zones. Along about 50% of the ridge axis, tectonic extension is taken up by steep, symmetric conjugate faults that bound a well-defined axial valley. By contrast, along the remaining 50% most of the tectonic strain is accommodated by large-offset detachment faults [Escartín et al., 2008]. Upon declustering the catalogs to remove major aftershock sequences, we estimate seismicity rates and infer seismic moment release along the ridge axis by converting hydro-acoustic source level to moment magnitude. The shape of the resulting cumulative moment release curves is then investigated at individual ridge sections defined by tectonic interpretation of seafloor morphology. Qualitatively, the seismogenic behavior of symmetric sections appears more stick slip-like (with large events separated by a few years of relative quiescence) than that of detachment-dominated sections, which feature more frequent, smaller events. We quantify these differences by measuring relevant parameters (e.g., background seismicity rates, b-values...) along different tectonic ridge sections, as well as along sliding windows with no prior knowledge of the seafloor morphology. Finally, we assess possible relations between the observed contrasted seismogenic behavior and the systematic variations in fault geometry and rheology (dip, offset, cross-axis and down-dip extent, presence of weak minerals in the fault zone) inferred from seafloor observations along slow-spreading ridges.

  3. Electrical resistivity structure of the Valu Fa Ridge, Lau Basin, from marine controlled-source electromagnetic sounding

    NASA Astrophysics Data System (ADS)

    MacGregor, Lucy; Sinha, Martin; Constable, Steven

    2001-07-01

    -angle seismic study, is similar to that observed at other mid-ocean ridges, with a steep seismic velocity gradient through layer 2 (although overall velocities are slightly lower). The seismic velocity anomaly calculated relative to an average off-axis structure is also small. This suggests that the very low resistivities observed at the axis are not caused by an upper crust of abnormally high porosity. However, hot and/or saline fluids permeating the crust can explain the low resistivities without affecting the seismic velocity. Since the conductive region extends unbroken from 3km depth to the seafloor, it is probable that these fluids circulate to (or close to) the magma chamber itself.

  4. Detailed leak detection test plan and schedule for Oak Ridge National Laboratory liquid low-level waste active tanks

    SciTech Connect

    1995-01-01

    This document provides a plan and schedule for leak testing a portion of the Liquid Low-Level Waste (LLLW) system at the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. It is a concise version of a more general leak testing plan that was prepared in response to the requirements of the Federal Facility Agreement (FFA) for the Oak Ridge Reservation (ORR). This plan includes a schedule for the initial reporting of the leak test results from the various tanks that will be tested. The FFA distinguishes four categories of tank and pipeline systems: new systems (Category A), doubly contained systems (Category B), singly contained systems (Category C), and inactive systems (Category D). The FFA specifically requires leak testing of the Category C systems; there are 14 such tanks addressed in this plan, plus one tank (W-12) that has been temporarily returned to service based on EPA and TDEC concurrence. A schedule for testing these tanks is also included. The plan and schedule also addresses an additional 15 Category B tanks have been demonstrated to meet secondary containment requirements. While these 15 tanks are addressed in this plan for the sake of completeness, they have been removed from the leak testing program based on the design demonstrations that show secondary containment. It is noted that the general plan included 42 tanks. Since that report was issued, 26 of those tanks have passed secondary containment design demonstrations and subsequently have been removed from this leak testing plan. In addition, one tank (LA-104) has been removed from service. Accordingly, this document addresses 15 of the LLLW tanks in the system; plans for testing the pipelines will be described in a separate document.

  5. Lower bathyal and abyssal distribution of coral in the axial volcanic ridge of the Mid-Atlantic Ridge at 45°N

    NASA Astrophysics Data System (ADS)

    Morris, Kirsty; Tyler, Paul A.; Murton, Bramley; Rogers, Alex D.

    2012-04-01

    The deep-sea floor below 3000 m occupies 50% of the surface of the planet and is composed mainly of fine sediments. Most studies of deep-sea benthic fauna have concentrated on soft sediments with little sampling in rocky areas and even less on non-vent mid-ocean ridges. To assess the distribution and abundance of coral between 2500 m and 3500 m depths, video footage from the ROV Isis taken during a cruise to the Axial Volcanic Ridge (AVR) of the Mid-Atlantic Ridge at approx 45°30' N was analysed. Abundances per 100 m were calculated and mapped using Arc GIS, with a maximum of 59 being observed. 20 putative species were identified. Scleractinia were absent from the observed area and the coral fauna was dominated by Octocorallia. The data were separated into four substratum types, sediment, sloped rock, flat rock and mixed substratum, with both abundance and community being compared. Sedimented and rocky areas had different coral communities with sediment having a higher occurrence of Pennatulidae and Chrysogorgidae than rock. Sloped rock had the highest abundance of corals. We suggest that this increase in abundance reflects higher food availability as well as the solid substratum on which coral larvae settle.

  6. Crustal structure of Axial Volcano on the Juan de Fuca Ridge, from seafloor depths to the bottom of the magma chamber, using Elastic Full Waveform Inversion.

    NASA Astrophysics Data System (ADS)

    Arnulf, Adrien; Harding, Alistair; Kent, Graham

    2013-04-01

    Axial volcano is located at 46˚N, 130˚W at the intersection of the Juan de Fuca Ridge and the Cobb-Eickelberg seamount chain. It is the most recent eruptive center of the Cobb hotspot, which last erupted in 2011. The volcano rises ~700 m above the adjacent ridge axis and its summit features a 8-km-long, U-shaped caldera with an opening to the southeast where there is an active hydrothermal field and very young lava flows. Located at the junction of a mid-ocean ridge and a volcanic hotspot, Axial volcano is atypical and its internal structure remains poorly understood. Here, we present results from an elastic full waveform inversion (FWI) along multiple seismic lines that span the whole volcano. We have used a multi-stage FWI, inverting successively wide-angle reflections and refractions arrivals from downward extrapolated streamer data, then windowed short offset reflections from the underlying magma chamber. Our final models show fine scale velocity structures with spatial resolutions of tens of meters. Our results indicate that Layer 2A thickness is extremely heterogeneous (350-900 m) within the volcano with abrupt vertical offsets of >300 m at the caldera walls, consistent with faulting of a geologically defined Layer 2A. Interestingly, Layer 2A appears to be extremely thin beneath the active hydrothermal field, where sheeted dikes might lay <100 m beneath the seafloor. On the other hand, the ever-dropping floor of the caldera appears to be a perfect trap for the ponding of lava flows: the thickness of the lava flows increase gradually to the northwest reaching ~450 m at end of the caldera. Surface velocities are low and exhibit limited variation over the whole volcano suggesting relative recent formation, as layer 2A velocity increases rapidly with age at slightly greater depths. Crustal aging (increase in layer 2A velocity with age) appears to be controlled by pipe-like pattern of focused hydrothermal mineralization. Finally, RTM images reveal a large melt

  7. Hidden tectonics at slow-spreading ridges: distinguishing magmatic from tectonic spreading

    NASA Astrophysics Data System (ADS)

    MacLeod, C. J.; Searle, R. C.; Mallows, C.; Young, E. C.

    2011-12-01

    In the fifteen years since the discovery of oceanic core complexes (OCCs) at slow-spreading mid-ocean ridges our understanding of the processes of seafloor spreading has changed fundamentally. Following the 2010 Chapman Conference on Detachments in Oceanic Lithosphere there has been a general convergence of view that OCCs - the flat-topped domal massifs with spreading-direction-parallel corrugations found at intervals along slow-spreading ridges - represent the exposed, inactive portions of long-lived extensional detachment structures that exhume mantle rocks in their footwalls. Detachments appear to initiate and slip at steep angles before rolling over as a flexural response to unloading. It is recognised that detachment fault initiation, i.e. maintenance of slip on a single median valley fault, is favoured when the proportion of plate separation accommodated by magmatic accretion in the axial valley is about a third to a half of the total. Fault weakening, typically by formation of phyllosilicates such as talc as a result of deep penetration of fluids along the fault, appears also to be an essential pre-requisite for detachment fault formation. Considerably less well understood are the mechanisms of melt emplacement into the lithosphere and the nature of the interactions between tectonism and magmatism. In a recent paper on the 13°N region of the Mid-Atlantic Ridge (MAR; MacLeod et al. 2009 EPSL v.287, p.333-344) we showed that volcanism is suppressed when OCC detachment faults are active, but that renewed volcanism propagating laterally along strike from adjacent, magmatically robust segments intrudes into their footwalls and may eventually terminate them. If melt supply is insufficient to overwhelm the detachment it may instead be captured in the footwall of an OCC, decoupling the mantle melt flux from that contributing to magmatic accretion in the hanging wall and instead promoting asymmetric accretion. This model implicitly views oceanic detachments as

  8. Juan de Fuca Plate Ridge-to-Trench Experiment: initial results from active source seismic imaging of the Juan de Fuca plate and Cascadia fore-arc (Invited)

    NASA Astrophysics Data System (ADS)

    Carbotte, S. M.; Canales, J.; Carton, H. D.; Han, S.; Gibson, J. C.; Janiszewski, H. A.; Horning, G.; Nedimovic, M. R.; Abers, G. A.; Trehu, A. M.

    2013-12-01

    Active source seismic data were acquired during the Juan de Fuca Ridge-to-Trench experiment (June-July 2012) to characterize the evolution and structure of the Juan de Fuca plate from formation at the ridge, through evolution in the plate interior, to subduction at the Cascadia trench. The survey provides plate-scale images of the sediments, crust, and shallowest mantle along two ridge-perpendicular transects, one extending from Axial seamount to the Oregon margin near Hydrate Ridge and the other from near Endeavour segment to Grays Harbor offshore Washington. In addition, a 450 km long trench-parallel line ~10 km seaward of the Cascadia deformation front was acquired to characterize variations in plate structure along the margin. Coincident long-streamer (8 km) multi-channel seismic (MCS) and wide-angle ocean bottom seismometer (OBS) data were collected along each transect. Using these data, our current investigations focus on the properties of the thick sediment blanket covering the Juan de Fuca plate and evidence for fluid flow at the deformation front, crustal structure within the plate interior and near the deformation front, and tracking the downgoing plate beneath the margin. Highlights include the discovery of numerous pockmarks on the seafloor providing evidence of active fluid flow up to 60 km west of the deformation front. Along the Oregon transect, a bright decollement horizon is imaged at ~1sec twtt above basement whereas at the Washington margin, protothrusts of the deformation front reach to the top of the oceanic crust. Variations in sediment properties are documented within the margin-parallel transect with changes in the stratigraphic level of decollement. While crustal thickness is quite uniform along the margin (~ 6 km), variations in crustal reflectivity and in shallowest mantle velocities are observed over ~30-50 km length scales that could be related to structural variations in the Cascadia subduction zone. Further landward, the top of the

  9. Mapping oceanic ridge segments in Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Nicolas, A.; Boudier, F.

    1995-04-01

    This paper presents the results of detailed mapping of high-temperature flow structures in the mantle and crust of two massifs of the Oman ophiolite. In these massifs, the dominant structures, including large-scale folds, shear zones, and fractures, were generated at elevated temperatures and are ascribed to the ridge or ridge environment activity; this means that the structural maps presented can be viewed as those of partly dissected ridge segments. It has been possible in the two massifs to locate the paleoaxis of the oceanic ridge which created this crust. This location, which is constrained by several independent tests, is a prerequisite to reconstruct the structure and to investigate the dynamics of a fast spreading ridge. In the Nakhl-Rustaq massif, high temperature tectonic activity at the ridge rotated the Moho toward a vertical altitude and folded the layered gabbros on the scale of several hundred meters. This tectonism is attributed to a propagating ridge deforming a slightly older lithosphere. The propagating ridge segment extends in the field from a diapir area to a domain located along strike some 20 km away, where the sheeted dike complex roots directly in the mantle, without layered gabbros in between. The diapir area represents the mantle feeder for the ridge segment, and the rooted dikes represent the propagating tip. Other results include the detailed mapping of two mantle diapirs and of the diverging mantle flow issued from them. Magma chambers are centered over diapirs and are tent-shaped, in accord with our previous models.

  10. Grafts for Ridge Preservation

    PubMed Central

    Jamjoom, Amal; Cohen, Robert E.

    2015-01-01

    Alveolar ridge bone resorption is a biologic phenomenon that occurs following tooth extraction and cannot be prevented. This paper reviews the vertical and horizontal ridge dimensional changes that are associated with tooth extraction. It also provides an overview of the advantages of ridge preservation as well as grafting materials. A Medline search among English language papers was performed in March 2015 using alveolar ridge preservation, ridge augmentation, and various graft types as search terms. Additional papers were considered following the preliminary review of the initial search that were relevant to alveolar ridge preservation. The literature suggests that ridge preservation methods and augmentation techniques are available to minimize and restore available bone. Numerous grafting materials, such as autografts, allografts, xenografts, and alloplasts, currently are used for ridge preservation. Other materials, such as growth factors, also can be used to enhance biologic outcome. PMID:26262646

  11. An admittance study of the Reykjanes Ridge and elevated plateaux between the Charlie-Gibbs and Senja fracture zones

    NASA Astrophysics Data System (ADS)

    Heller, Daniel A.; Marquart, Gabriele

    2002-01-01

    The North Atlantic between the Charlie-Gibbs and Senja Fracture Zones shows a number of oceanic plateaux, continental fragments and unusual mid-oceanic ridges, the Reykjanes Ridges and the Iceland Plateau being the most prominent ones. While rifted continental fragments and marginal volcanic plateaux have been formed during the initial formation process of the North Atlantic, others, such as the Reykjanes Ridge and plume-related plateaux such as Iceland and possibly also Jan Mayen, are still under development. By studying the ratio of geoid to topography in the long-wavelength range for these regions of elevated topography and comparing the results with theoretical models of crustal loading and subsurface thermal uplift we can show that the Rockall Bank and the Vøring Plateau are compensated by a thick crust alone, while the Iceland Plateau, the outer Faeroe Plateau and the Jan Mayen Block have a strong component of deeply situated mass anomalies. The admittance, the spectral ratio of geoid to topography, for a number of profiles across the Reykjanes Ridge clearly indicates a decrease in compensation depth with distance from Iceland. This strengthens the argument for a mass flux from the Iceland Plume into the Reykjanes Ridge.

  12. Magma Supply at the Arctic Gakkel Ridge: Constraints from Peridotites and Basalts

    NASA Astrophysics Data System (ADS)

    Sun, C.; Dick, H. J.; Hellebrand, E.; Snow, J. E.

    2015-12-01

    Crustal thickness in global ridge systems is widely believed to be nearly uniform (~7 km) at slow- and fast-spreading mid-ocean ridges, but appears significantly thinner (< ~4 km) at ultraslow-spreading ridges. At the slowest-spreading Arctic Gakkel Ridge, the crust becomes extremely thin (1.4 - 2.9 km; [1]). The thin crust at the Gakkel and other ultraslow-spreading ridges, has been attributed to lithosphere thickening, ancient mantle depletion, lower mantle temperature, ridge obliquity, and melt retention/focusing. To better understand the magma supply at ultraslow-spreading ridges, we examined melting dynamics by linking peridotites and basalts dredged along the Gakkel Ridge. We analyzed rare earth elements in clinopyroxene from 84 residual peridotites, and estimated melting parameters for individual samples through nonlinear least squares analyses. The degrees of melting show a large variation but mainly center at around 7% assuming a somewhat arbitrary but widely used depleted MORB mantle starting composition. Thermobarometry on published primitive basaltic glasses from [2] indicates that the mantle potential temperature at the Gakkel Ridge is ~50°C cooler than that at the East Pacific Rise. The ridge-scale low-degree melting and lower mantle potential temperature place the final depth of melting at ~30 km and a melt thickness of 1.0 or 2.9 km for a triangular or trapezoidal melting regime, respectively. The final melting depth is consistent with excess conductive cooling and lithosphere thickening suggested by geodynamic models, while the estimated melt thickness is comparable to the seismic crust (1.4 - 2.9 km; [1]). The general agreement among geochemical analyses, seismic measurements, and geodynamic models supports that lower mantle potential temperature and thick lithosphere determine the ridge-scale low-degree melting and thin crust at the Gakkel Ridge, while melt retention/focusing and excess ancient mantle depletion are perhaps locally important at

  13. Lava Morphology Classification of a Fast-Spreading Ridge Using Deep-Towed Sonar Data: East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Meyer, J.; White, S.

    2005-05-01

    Classification of lava morphology on a regional scale contributes to the understanding of the distribution and extent of lava flows at a mid-ocean ridge. Seafloor classification is essential to understand the regional undersea environment at midocean ridges. In this study, the development of a classification scheme is found to identify and extract textural patterns of different lava morphologies along the East Pacific Rise using DSL-120 side-scan and ARGO camera imagery. Application of an accurate image classification technique to side-scan sonar allows us to expand upon the locally available visual ground reference data to make the first comprehensive regional maps of small-scale lava morphology present at a mid-ocean ridge. The submarine lava morphologies focused upon in this study; sheet flows, lobate flows, and pillow flows; have unique textures. Several algorithms were applied to the sonar backscatter intensity images to produce multiple textural image layers useful in distinguishing the different lava morphologies. The intensity and spatially enhanced images were then combined and applied to a hybrid classification technique. The hybrid classification involves two integrated classifiers, a rule-based expert system classifier and a machine learning classifier. The complementary capabilities of the two integrated classifiers provided a higher accuracy of regional seafloor classification compared to using either classifier alone. Once trained, the hybrid classifier can then be applied to classify neighboring images with relative ease. This classification technique has been used to map the lava morphology distribution and infer spatial variability of lava effusion rates along two segments of the East Pacific Rise, 17 deg S and 9 deg N. Future use of this technique may also be useful for attaining temporal information. Repeated documentation of morphology classification in this dynamic environment can be compared to detect regional seafloor change.

  14. Long-term eruptive activity at a submarine arc volcano

    USGS Publications Warehouse

    Embley, R.W.; Chadwick, W.W., Jr.; Baker, E.T.; Butterfield, D.A.; Resing, J.A.; De Ronde, C. E. J.; Tunnicliffe, V.; Lupton, J.E.; Juniper, S.K.; Rubin, K.H.; Stern, R.J.; Lebon, G.T.; Nakamura, K.-I.; Merle, S.G.; Hein, J.R.; Wiens, D.A.; Tamura, Y.

    2006-01-01

    Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions have been indirect, made from surface vessels or made after the fact. We describe here direct observations and sampling of an eruption at a submarine arc volcano named NW Rota-1, located 60 km northwest of the island of Rota (Commonwealth of the Northern Mariana Islands). We observed a pulsating plume permeated with droplets of molten sulphur disgorging volcanic ash and lapilli from a 15-m diameter pit in March 2004 and again in October 2005 near the summit of the volcano at a water depth of 555 m (depth in 2004). A turbid layer found on the flanks of the volcano (in 2004) at depths from 700 m to more than 1,400 m was probably formed by mass-wasting events related to the eruption. Long-term eruptive activity has produced an unusual chemical environment and a very unstable benthic habitat exploited by only a few mobile decapod species. Such conditions are perhaps distinctive of active arc and hotspot volcanoes. ?? 2006 Nature Publishing Group.

  15. Broadening the Spectrum of Actin-Based Protrusive Activity Mediated by Arp2/3 Complex-Facilitated Polymerization: Motility of Cytoplasmic Ridges and Tubular Projections

    PubMed Central

    Henson, John H.; Gianakas, Anastasia D.; Henson, Lauren H.; Lakin, Christina L.; Voss, Meagen K.; Bewersdorf, Joerg; Oldenbourg, Rudolf; Morris, Robert L.

    2014-01-01

    Arp2/3 complex-facilitated actin polymerization plays an essential role in a variety of cellular functions including motility, adherence, endocytosis and trafficking. In the present study we employ the sea urchin coelomocyte experimental model system to test the hypotheses that Arp2/3 complex-nucleated actin assembly mediates the motility of two unusual cellular protrusions; the cytoplasmic ridges present during coelomocyte spreading, and inducible, tubular-shaped, and neurite-like projections. Our investigations couple pharmacological manipulation employing inhibitors of actin polymerization and the Arp2/3 complex with a wide array of imaging methods including digitally enhanced phase contrast, DIC and polarization light microscopy of live cells; conventional, confocal and super-resolution light microscopy of fluorescently labeled cells; and scanning and transmission electron microscopy. Taken together, the results of this study indicate that Arp2/3 complex-facilitated actin polymerization underlies the motility of coelomocyte cytoplasmic ridges and tubular projections, that these processes are related to each other, and that they have been preliminarily identified in other cell types. The results also highlight the broad spectrum of actin-based protrusive activities dependent on the Arp2/3 complex and provide additional insights into the pervasive nature of this ubiquitous actin nucleator. Furthermore we provide the first evidence of a possible mechanistic difference between the impacts of the small molecule drugs BDM and CK666 on the Arp2/3 complex. PMID:25111797

  16. Feeding Ecology of Coryphaenoides rupestris from the Mid-Atlantic Ridge

    PubMed Central

    Bergstad, Odd Aksel; Gjelsvik, Guro; Schander, Christoffer; Høines, Åge S.

    2010-01-01

    The Macrourid fish roundnose grenadier, Coryphaenoides rupestris, is one of the most common benthopelagic fishes on the northern mid-Atlantic Ridge. The ecology of the species is comparatively well studied in continental slope waters of the North Atlantic, but not on the mid-Atlantic Ridge, which is a central mid-ocean area of its distribution. In total, 166 specimens from the RV G.O. Sars cruise in July 2004 were examined. The diet mainly comprised cephalopods, pelagic shrimps and fish. Pelagic and benthopelagic copepods were the most numerous prey, but did not contribute much on a weight basis. Cephalopods were by far the most important prey of the small grenadiers, while shrimps and fish became increasingly significant with increasing size. Previous studies from other areas have also found pelagic prey to be important, but in contrast to this study, cephalopods were generally of less importance. The study was an element of more wide-ranging food-web studies of the mid-Atlantic Ridge macro- and megafauna communities within the international MAR-ECO project. PMID:20454674

  17. Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Bourbonnais, A.; Juniper, S. K.; Butterfield, D. A.; Devol, A. H.; Kuypers, M. M. M.; Lavik, G.; Hallam, S. J.; Wenk, C. B.; Chang, B. X.; Murdock, S. A.; Lehmann, M. F.

    2012-11-01

    Little is known about fixed nitrogen (N) transformation and elimination at diffuse hydrothermal vents where anoxic fluids are mixed with oxygenated crustal seawater prior to discharge. Oceanic N sinks that remove bio-available N ultimately affect chemosynthetic primary productivity in these ecosystems. Using 15N paired isotope techniques, we determined potential rates of fixed N loss pathways (denitrification, anammox) and dissimilatory nitrate reduction to ammonium (DNRA) in sulfidic hydrothermal vent fluids discharging from the subsurface at several sites at Axial Volcano and the Endeavour Segment on the Juan de Fuca Ridge. We also measured physico-chemical parameters (i.e., temperature, pH, nutrients, H2S and N2O concentrations) as well as the biodiversity and abundance of chemolithoautotrophic nitrate-reducing, sulfur-oxidizing γ-proteobacteria (SUP05 cluster) using sequence analysis of amplified small subunit ribosomal RNA (16S rRNA) genes in combination with taxon-specific quantitative polymerase chain reaction (qPCR) assays. Denitrification was the dominant N loss pathway in the subsurface biosphere of the Juan de Fuca Ridge, with rates of up to ~1000 nmol N l-1 day-1. In comparison, anammox rates were always < 5 nmol N l-1 day-1 and below the detection limit at most of the sites. DNRA rates were up to ~150 nmol N l-1 day-1. These results suggest that bacterial denitrification out-competes anammox in sulfidic hydrothermal vent waters. Taxon-specific qPCR revealed that γ-proteobacteria of the SUP05 cluster sometimes dominated the microbial community (SUP05/total bacteria up to 38%). Significant correlations were found between fixed N loss (i.e., denitrification, anammox) rates and in situ nitrate and dissolved inorganic nitrogen (DIN) deficits in the fluids, indicating that DIN availability may ultimately regulate N loss in the subsurface. Based on our rate measurements, and on published data on hydrothermal fluid fluxes and residence times, we estimated

  18. Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Bourbonnais, A.; Juniper, S. K.; Butterfield, D. A.; Devol, A. H.; Kuypers, M. M. M.; Lavik, G.; Hallam, S. J.; Wenk, C. B.; Chang, B. X.; Murdock, S. A.; Lehmann, M. F.

    2012-04-01

    Little is known about nitrogen (N) transformations in general, and the elimination of N in particular, at diffuse vents where anoxic hydrothermal fluids have mixed with oxygenated crustal seawater prior to discharge. Oceanic N sinks that remove bio-available N ultimately affect chemosynthetic primary productivity in these ecosystems. Using 15N paired isotope techniques, we determined potential rates of fixed N-loss pathways (denitrification, anammox) and dissimilative nitrate reduction to ammonium (DNRA) in sulfidic hydrothermal vent fluids discharging from the subsurface at several sites at Axial Volcano and the Endeavour Segment on the Juan de Fuca Ridge. We also measured physico-chemical parameters (i.e. temperature, pH, nutrients, H2S and N2O concentrations) as well as the biodiversity and abundance of chemolithotrophic nitrate-reducing, sulfur-oxidizing γ-proteobacteria (SUP05 cluster) using sequence analysis of amplified small subunit ribosomal RNA (16S rRNA) genes in combination with taxon-specific quantitative polymerase chain reaction (qPCR) assays. Denitrification was the dominant N-loss pathway in the subsurface biosphere of the Juan de Fuca Ridge, with rates of up to ~1000 nmol N l-1 day-1. In comparison, anammox rates were always <5 nmol N l-1 day-1 and below the detection limit at most of the sites. DNRA rates were up to 152 nmol N l-1 day-1. These results suggest that bacterial denitrification out-competes anammox in sulfidic hydrothermal vent waters. Taxon-specific qPCR revealed that γ-proteobacteria of the SUP05 cluster sometimes dominated the microbial community (SUP05/total bacteria up to 38%). Significant correlation existed between fixed N-loss (i.e., denitrification, anammox) rates and in-situ nitrate and dissolved inorganic nitrogen (DIN) deficits in the fluids, indicating that DIN availability may ultimately regulate N-loss in the subsurface. Based on our rate measurements, and on published data on hydrothermal fluid fluxes and residence

  19. Summary of activities of the life cycle costing workshop conducted by the Environmental Restoration Program of Oak Ridge National Laboratory. Enviromental Restoration Program

    SciTech Connect

    Not Available

    1992-08-01

    A five-day life cycle workshop was conducted by the Environmental Restoration (FR) Program of Oak Ridge National Laboratory (ORNL) to develop appropriate remediation scenarios for each Waste Area Grouping (WAG) at ORNL and to identify associated data needs (e.g., remedial investigations, special studies, and technology demonstrations) and required interfaces. Workshop participants represented the Department of Energy, Martin Marietta Energy Systems, Inc., Bechtel National, Radian Corporation, EBASCO Corporation, and M-K Ferguson. The workshop was used to establish a technical basis for remediation activities at each WAG. The workshop results are documented in this report and provide the baseline for estimating the technical scope for each WAG. The scope and associated budgets and schedules will be summarized in baseline reports for each WAG, which, in turn, will be compiled into an overall strategy document for ORNL ER.

  20. Continental rifting and metamorphic core complex formation ahead of the Woodlark spreading ridge, D'Entrecasteaux Islands, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Little, Timothy A.; Baldwin, S. L.; Fitzgerald, P. G.; Monteleone, B.

    2007-02-01

    We evaluate the role of a metamorphic core complex (MCC) on Normanby Island in the Woodlark rift. Located <30 km from an active mid-ocean ridge (MOR), a >1 km thickness of blueschist-derived mylonites formed in a midcrustal shear zone during the Pliocene at ˜400-500°C. This top-to-the-north zone appears to have reactivated the gently dipping base of the Papuan ophiolite (Papuan Ultramafic Body, PUB), and its continued activity appears to control the north dipping asymmetry of active half grabens to the north of the MCC and rapid subsidence of the Woodlark Rise. Mylonites in the MCC's lower plate have been exhumed along a detachment as a result of >50 km of slip at rates of >12 mm/yr. The inactive, back-tilted detachment preserves fault surface megamullions and mylonitic lineations parallel to the Plio-Pleistocene plate motion. A second SE vergent detachment has been established on the opposite flank of this rolling-hinge style MCC, probably since <0.5 Ma. Centimeters per year slip rates on these two faults can account for most of the Pleistocene plate motion in this eastern sector of the Woodlark rift, and confirm the important role of MCCs in exhuming very young HP rocks in this rift. Paleopiezometry of mylonites using recrystallized quartz grain size indicates flow stresses of ˜30 MPa before the rocks were overprinted by extension fractures. These results imply high pore fluid pressures (λ > 0.8) at depth, and provide a sufficient mechanism for activating low-angle normal faults in the rift. MCC inception was not localized to the tip of the Woodlark MOR. Instead, extreme crustal thinning near the MCC preconditioned later continental breakup. The lower crust appears to be weak, thickening beneath unloaded footwalls to uplift MCCs above sea level, and flowing laterally to even out regional crustal thickness contrasts on a 1-6 m.y. timescale. Deep-seated transforms separate rheologically distinct domains in which extension has been localized along the weak PUB

  1. Gold enrichment in active geothermal systems by accumulating colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Hannington, Mark; Harðardóttir, Vigdis; Garbe-Schönberg, Dieter; Brown, Kevin L.

    2016-04-01

    The origins of high-grade hydrothermal ore deposits are debated, but active geothermal systems provide important clues to their formation. The highest concentrations of gold are found in geothermal systems with direct links to island arc magmatism. Yet, similar concentrations have also been found in the absence of any input from arc magmas, for example, in the Reykjanes geothermal field, Iceland. Here we analyse brine samples taken from deep wells at Reykjanes and find that gold concentrations in the reservoir zone have increased over the past seven years from an average of 3 ppb to 14 ppb. The metal concentrations greatly exceed the maximum solubility of gold in the reservoir under saturated conditions and are now nearly two orders of magnitude higher than in mid-ocean ridge black smoker fluids--the direct analogues of Reykjanes deep liquids. We suggest that ongoing extraction of brine, the resulting pressure drop, and increased boiling have caused gold to drop out of solution and become trapped in the reservoir as a colloidal suspension. This process may explain how the stock of metal in the reservoirs of fossil geothermal systems could have increased over time and thus become available for the formation of gold-rich ore deposits.

  2. High temperature structural relationships in re-oriented cores from the Atlantis Bank, Southwest Indian Ridge (SWIR) and Atlantis Massif, Mid-Atlantic Ridge (MAR)

    NASA Astrophysics Data System (ADS)

    Deans, J. R.; Yoshinobu, A. S.; Miranda, E.

    2013-12-01

    We present new microstructural data and the most extensive geographically-reoriented fabric results from two slow-spreading oceanic core complexes to a) further constrain the onset of detachment faulting and magma emplacement, and b) constrain the kinematics of high- to moderate-temperature deformation at slow-spreading mid-ocean ridges. High temperature fabrics (including supersolidus and subsolidus foliations/lineations; amphibolite-facies veins) were re-oriented to the ridge reference frame by correlating structural measurements of fractures in the core (and, therefore, fabrics in the core) and fractures in the core wall identified using the Formation MicroScanner (FMS) logging tool. Four ODP/IODP Holes at core complexes meet the necessary requirements (i.e., structural measurements and FMS logs) to reorient high temperature fabrics: Holes 735B and 1105A from Atlantis Bank, SWIR and 1309B and 1309D from Atlantis Massif, MAR. The Atlantis Bank and Atlantis Massif are bathymetric highs with lower crustal and upper mantle rocks, exposed by a currently low angle detachment fault, providing a cross section through the oceanic crust. Both complexes have been sampled by ODP/IODP drilling, submersible dives, and dredging. The Atlantis Bank was drilled by three ODP Legs over two holes, Holes 735B is 1.5 km deep and 1105A is 160 m deep. Both Holes recovered ~90% with rocks ranging from olivine gabbro to oxide gabbros. The Atlantis Massif was drilled by two IODP Legs with two main holes, Holes 1309B is 102 deep and 1309D is 1.4 km deep with recoveries of ~50% and ~75% respectively. The rocks recovered range from troctolite to oxide gabbro. All rock types recovered at both complexes have magmatic and crystal plastic fabrics. Fabrics were reoriented in Hole 735B over the interval of 90-600 mbsf and in Hole 1309D over the interval 98-380 mbsf. Core pieces from Hole 1309D were reoriented by Morris et al. (2009), who did not reorient the fabrics. The reorientation results

  3. Plume capture by a migrating ridge: Analog geodynamic experiments

    NASA Astrophysics Data System (ADS)

    Mendez, J. S.; Hall, P.

    2010-12-01

    Paleomagnetic data from the Hawaii-Emperor Seamount Chain (HESC) suggests that the Hawaiian hotspot moved rapidly (~40 mm/yr) between 81 - 47 Ma but has remained relatively stationary since that time. This implies that the iconic bend in the HESC may in fact reflect the transition from a period of rapid hotspot motion to a stationary state, rather than a change in motion of the Pacific plate. Tarduno et al. (2009) have suggested that this period of rapid hotspot motion might be the surface expression of a plume conduit returning to a largely vertical orientation after having been “captured” and tilted by a migrating mid-ocean ridge. We report on a series of analog fluid dynamic experiments designed to characterize the interaction between a migrating spreading center and a thermally buoyant mantle plume. Experiments were conducted in a clear acrylic tank (100 cm x 70 cm x 50 cm) filled with commercial grade high-fructose corn syrup. Plate-driven flow is modeled by dragging two sheets of Mylar film (driven by independent DC motors) in opposite directions over the surface of the fluid. Ridge migration is achieved by moving the point at which the mylar sheets diverge using a separate motor drive. Buoyant plume flow is modeled using corn syrup introduced into the bottom of the tank from an external, heated, pressurized reservoir. Small (~2 mm diameter), neutrally buoyant Delrin spheres are mixed into reservoir of plume material to aid in visualization. Plate velocities and ridge migration rate are controlled and plume temperature monitored using LabView software. Experiments are recorded using digital video which is then analyzed using digital image analysis software to track the position and shape of the plume conduit throughout the course of the experiment. The intersection of the plume conduit with the surface of the fluid is taken as an analog for the locus of hotspot volcanism and tracked as a function of time to obtain a hotspot migration rate. Experiments are

  4. Drill core-based facies reconstruction of a deep-marine felsic volcano hosting an active hydrothermal system (Pual Ridge, Papau New Guinea, ODP Leg 193)

    NASA Astrophysics Data System (ADS)

    Paulick, H.; Vanko, D. A.; Yeats, C. J.

    2004-02-01

    Pual Ridge is a deep-marine, felsic volcanic edifice in the eastern Manus back-arc basin (Papua New Guinea) with an estimated volume of ˜6 to 9 km 3. It is 1-1.5 km wide, 20 km long and rises 500-600 m above the surrounding ocean floor. The active PACMANUS hydrothermal field on the crest of Pual Ridge at 1640-1690 m below sea level was the target of Ocean Drilling Program Leg 193. Variably altered dacite lavas have been recovered from the subsurface of a low-T discharge site (Snowcap) and a high-T black smoker site (Roman Ruins) reaching a maximum depth of 380 m below seafloor (mbsf). Volcanic facies interpretation of these cores is difficult due to incomplete recovery and widespread pseudoclastic textures generated by fracturing and multi-phase, incomplete fluid-dacite interaction. However, distinction of genuine volcaniclastic facies and facies with alteration-related clastic appearance is important in order to define paleo-seafloor positions within the volcanic stratigraphy, that may be prospective for massive sulfide mineralization. This has been accomplished using remnant primary characteristics indicative of transportation such as polymictic composition, grading or textural evidence for differential movement of individual clasts. Three phases of volcanic activity can be distinguished and a proximal facies association dominated by coherent facies of dacite lavas exists below Snowcap. At Roman Ruins, a medial facies association consists of lava flows with about equal proportions of coherent and volcaniclastic facies. Endogenous growth was an important process during lava flow emplacement and groundmass textures such as perlite, flow banding and spherulites indicate that cooling rates were variable, locally allowing for high-temperature devitrification. A tube pumice breccia unit is interpreted as the resedimented facies of a quench fragmented, highly vesicular dacite lava carapace. Sulfide accumulations in the subsurface are restricted to Roman Ruins

  5. Actinide-series disequilibrium as a tool to establish the chronology of deep-sea hydrothermal activity

    SciTech Connect

    Lalou, C.; Reyss, J.L.; Brichet, E. )

    1993-03-01

    This paper describes the different radiochronological methods used to date geologically recent (i.e., <400,000 years) deep-sea hydrothermal deposits as well as the basic conditions necessary to obtain reliable dates. The limitations of the different techniques also are described. Using measurements of [sup 210]Pb/Pb, [sup 228]Th/[sup 228]Ra, [sup 230]Th/[sup 234]U, [sup 231]Pa/[sup 235]U, and [sup 228]Ra/[sup 226]Ra, the authors have undertaken an exhaustive chronological study of the hydrothermal deposits along the East Pacific Rise, the Mid-Atlantic Ridge, and in some back-arc basins. The objectives of this study were to obtain regional chronologies and to establish a general synthesis on the evolution of the hydrothermal processes at the scale of the mid-oceanic ridge system. Some results obtained by other authors are included in this synthesis. The dependence of the general trends of temporal development of the hydrothermal chimneys, edifices, and fields on their tectonic settings is discussed. This study demonstrates that hydrothermal activity does not represent a regular input of matter to the ocean, and that its pulsed character must be taken into account in all modeling attempts (chemical, biological, and tectonic) affected by hydrothermal processes. In areas of rapid spreading, like the East Pacific Rise, recent and fossil deposits are spatially separated. By contrast, at the slow spreading Mid-Atlantic Ridge, fossil and present activity are found in the same location. 54 refs., 5 figs., 4 tabs.

  6. Ocean core complexes within Non-transform discontinuities and hydrothermal mineralizations on the Central Indian Ridge between 17°S and 5°S

    NASA Astrophysics Data System (ADS)

    Pak, S.; Kim, H.; Kim, J.; Moon, J.; Choi, S.

    2012-12-01

    Mantle rocks exposure within basaltic basement along the mid-ocean ridge, so called, ocean core complex (OCC) have been intensively researched for their high abundances of hydrothermal activities as well as interesting oceanic crust sequences in present decade. However, most studies on OCC are limited to TAG area in slow-spreading ridge and SWIR in ultra slow-spreading ridge. Here we firstly report survey results of the Central Indian Ridge (CIR) between 17°S and 5°S and illuminate distribution patterns of ocean core complexes at non-transform discontinuities (NTD) as well as potentialities of deep-sea hydrothermal activities within OCC. CIR spreading axis between 17°S and 5°S are separated by three major transform offsets at Vema fracture zone (9°30'S), Argo fracture zone (13°30'S) and Marie Celeste fracture zone (17°S), i.e., three first-order segments. First-order segments can be subdevided by NTD and small-scale discontinuities into seven second-order segments. Four OCCs are situated on end of small-scale discontinuities and two OCCs are adjacent to NTDs. Generally, OCCs founded at 8°S (segment 1) and 11°S (segment 3) are consisted of ultramafic rock and gabbroic rock and featured by the corrugated structures. However, OCCs at 12°S and 15°30'S are founded in a typical the uplifted and elongated-shape NTDs where serpentinite and/or gabbroic rocks were recovered. OCC at 12°S shows unique bridge-shape NTD and both tips of the NTD link with other OCCs at rifting valley flanks. The northern part of OCC on 12°S is mostly comprised of gabbroic rocks whereas serpentinite was dominantly sampled in the southern part of OCC. At 15°30'S OCC displays septum structure and splits southern part of segment 6 into two parts. Gabbroic rocks and serpentinite are dominant rocks of eastern part and western part of NTD, respectively. The bridge- and septum-shape OCCs in NTDs at 12°S and 15°30'S are unusual ones because those OCCs show so elongated and narrow features

  7. Quality Assurance Plan for Field Activities at the Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC), Oak Ridge, Tennessee

    SciTech Connect

    Brandt, C.C.

    2002-02-28

    The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) has established a Natural and Accelerated Bioremediation Research (NABIR) program Field Research Center (FRC) for the U.S. Department of Energy (DOE) Office of Biological and Environmental Research. The FRC is located in Bear Creek Valley within the Y-12 Plant area of responsibility on DOE's Oak Ridge Reservation in Tennessee. The NABIR program is a long-term effort designed to increase the understanding of fundamental biogeochemical processes that would allow the use of bioremediation approaches for cleaning up DOE's contaminated legacy waste sites. The FRC provides a site for investigators in the NABIR program to conduct research and obtain samples related to in situ bioremediation. The FRC is integrated with existing and future laboratory and field research and provides a means of examining the biogeochemical processes that influence bioremediation under controlled small-scale field conditions. This Quality Assurance Plan (QAP) documents the quality assurance protocols for field and laboratory activities performed by the FRC staff. It supplements the requirements in the ORNL Nuclear Quality Assurance Program and the ESD Quality Assurance Program. The QAP addresses the requirements in Title 10 CFR, Part 830 Subpart A, ''Quality Assurance Requirements'', using a graded approach appropriate for Research and Development projects based on guidance from ''Implementation Guide for Quality Assurance Programs for Basic and Applied Research'' (DOE-ER-STD-6001-92). It also supports the NABIR FRC Management Plan (Watson and Quarles 2000a) which outlines the overall procedures, roles and responsibilities for conducting research at the FRC. The QAP summarizes the organization, work activities, and qualify assurance and quality control protocols that will be used to generate scientifically defensible data at the FRC. The QAP pertai