Science.gov

Sample records for active motion compensation

  1. Effects of image noise, respiratory motion, and motion compensation on 3D activity quantification in count-limited PET images

    NASA Astrophysics Data System (ADS)

    Siman, W.; Mawlawi, O. R.; Mikell, J. K.; Mourtada, F.; Kappadath, S. C.

    2017-01-01

    The aims of this study were to evaluate the effects of noise, motion blur, and motion compensation using quiescent-period gating (QPG) on the activity concentration (AC) distribution—quantified using the cumulative AC volume histogram (ACVH)—in count-limited studies such as 90Y-PET/CT. An International Electrotechnical Commission phantom filled with low 18F activity was used to simulate clinical 90Y-PET images. PET data were acquired using a GE-D690 when the phantom was static and subject to 1-4 cm periodic 1D motion. The static data were down-sampled into shorter durations to determine the effect of noise on ACVH. Motion-degraded PET data were sorted into multiple gates to assess the effect of motion and QPG on ACVH. Errors in ACVH at AC90 (minimum AC that covers 90% of the volume of interest (VOI)), AC80, and ACmean (average AC in the VOI) were characterized as a function of noise and amplitude before and after QPG. Scan-time reduction increased the apparent non-uniformity of sphere doses and the dispersion of ACVH. These effects were more pronounced in smaller spheres. Noise-related errors in ACVH at AC20 to AC70 were smaller (<15%) compared to the errors between AC80 to AC90 (>15%). The accuracy of ACmean was largely independent of the total count. Motion decreased the observed AC and skewed the ACVH toward lower values; the severity of this effect depended on motion amplitude and tumor diameter. The errors in AC20 to AC80 for the 17 mm sphere were  -25% and  -55% for motion amplitudes of 2 cm and 4 cm, respectively. With QPG, the errors in AC20 to AC80 of the 17 mm sphere were reduced to  -15% for motion amplitudes  <4 cm. For spheres with motion amplitude to diameter ratio  >0.5, QPG was effective at reducing errors in ACVH despite increases in image non-uniformity due to increased noise. ACVH is believed to be more relevant than mean or maximum AC to calculate tumor control and normal tissue complication probability

  2. Motion compensator for holographic motion picture camera

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L.

    1973-01-01

    When reference beam strikes target it undergoes Doppler shift dependent upon target velocity. To compensate, object beam is first reflected from rotating cylinder that revolves in direction opposite to target but at same speed. When beam strikes target it is returned to original frequency and is in phase with reference beam. Alternatively this motion compensator may act on reference beam.

  3. Gmti Motion Compensation

    DOEpatents

    Doerry, Armin W.

    2004-07-20

    Movement of a GMTI radar during a coherent processing interval over which a set of radar pulses are processed may cause defocusing of a range-Doppler map in the video signal. This problem may be compensated by varying waveform or sampling parameters of each pulse to compensate for distortions caused by variations in viewing angles from the radar to the target.

  4. Development of magnetically preloaded air bearings for a linear slide: active compensation of three degrees of freedom motion errors.

    PubMed

    Ro, Seung-Kook; Kim, Soohyun; Kwak, Yoonkeun; Park, Chun-Hong

    2008-03-01

    This article describes a linear air-bearing stage that uses active control to compensate for its motion errors. The active control is based on preloads generated by magnetic actuators, which were designed to generate nominal preloads for the air bearings using permanent magnets to maintain the desired stiffness while changing the air-bearing clearance by varying the magnetic flux generated by the current in electromagnetic coils. A single-axis linear stage with a linear motor and 240 mm of travel range was built to verify this design concept and used to test its performance. The motion of the table in three directions was controlled with four magnetic actuators driven by current amplifiers and a DSP (Digital Signal Processor)-based digital controller. The motion errors were measured using a laser interferometer combined with a two-probe method, and had 0.085 microm of repeatability for the straightness error. As a result of feed-forward active compensation, the errors were reduced from 1.09 to 0.11 microm for the vertical motion, from 9.42 to 0.18 arcsec for the pitch motion, and from 2.42 to 0.18 arcsec for the roll motion.

  5. Motion compensation for ultra wide band SAR

    NASA Technical Reports Server (NTRS)

    Madsen, S.

    2001-01-01

    This paper describes an algorithm that combines wavenumber domain processing with a procedure that enables motion compensation to be applied as a function of target range and azimuth angle. First, data are processed with nominal motion compensation applied, partially focusing the image, then the motion compensation of individual subpatches is refined. The results show that the proposed algorithm is effective in compensating for deviations from a straight flight path, from both a performance and a computational efficiency point of view.

  6. Translational motion compensation in ISAR image processing.

    PubMed

    Wu, H; Grenier, D; Delisle, G Y; Fang, D G

    1995-01-01

    In inverse synthetic aperture radar (ISAR) imaging, the target rotational motion with respect to the radar line of sight contributes to the imaging ability, whereas the translational motion must be compensated out. This paper presents a novel two-step approach to translational motion compensation using an adaptive range tracking method for range bin alignment and a recursive multiple-scatterer algorithm (RMSA) for signal phase compensation. The initial step of RMSA is equivalent to the dominant-scatterer algorithm (DSA). An error-compensating point source is then recursively synthesized from the selected range bins, where each contains a prominent scatterer. Since the clutter-induced phase errors are reduced by phase averaging, the image speckle noise can be reduced significantly. Experimental data processing for a commercial aircraft and computer simulations confirm the validity of the approach.

  7. Position Control of Motion Compensation Cardiac Catheters

    PubMed Central

    Kesner, Samuel B.; Howe, Robert D.

    2011-01-01

    Robotic catheters have the potential to revolutionize cardiac surgery by enabling minimally invasive structural repairs within the beating heart. This paper presents an actuated catheter system that compensates for the fast motion of cardiac tissue using 3D ultrasound image guidance. We describe the design and operation of the mechanical drive system and catheter module and analyze the catheter performance limitations of friction and backlash in detail. To mitigate these limitations, we propose and evaluate mechanical and control system compensation methods, including inverse and model-based backlash compensation, to improve the system performance. Finally, in vivo results are presented that demonstrate that the catheter can track the cardiac tissue motion with less than 1 mm RMS error. The ultimate goal of this research is to create a fast and dexterous robotic catheter system that can perform surgery on the delicate structures inside of the beating heart. PMID:21874124

  8. Study of image motion compensation in spectral imaging system

    NASA Astrophysics Data System (ADS)

    Li, Zhijun; Chen, Xing Long

    2016-10-01

    In the spectral imaging system, random jitter and posture change of the aircraft generated random image motion, and flight of aircraft caused forward image motion. Both of image motion can cause image blur in a longer exposure time, which need for image motion compensation. Due to limited field of view of the optical system, limited size and weight, a stable FSM (Fast Steering Mirror) was used for random image motion compensation and a compensation FSM was used for forward image motion compensation. In the random image motion compensation, inertial sensors were used for measuring the random jitter and the posture change of the aircraft. As the advantages and disadvantages for the gyroscope and inclinometer, we used data fusion of the two sensors to complementary advantages with closed-loop mode filter data based on the frequency domain. In this way, we got high linearity, little drift, high bandwidth and little electrical noise inertial measurement sensors. On the other hand, the motion of the compensation mirror was broken down to the amount of displacement within the time required for each interrupt movement. Under strict timing control, macro forward image motion compensation was realized in the exposure time. The above image motion compensation methods were applied to actual spectral imaging systems, aerial experiment results show that image motion compensation obtained good results and met the remaining image motion compensation image error was not more than 1/3 pixel.

  9. Advanced Motion Compensation Methods for Intravital Optical Microscopy

    PubMed Central

    Vinegoni, Claudio; Lee, Sungon; Feruglio, Paolo Fumene; Weissleder, Ralph

    2013-01-01

    Intravital microscopy has emerged in the recent decade as an indispensible imaging modality for the study of the micro-dynamics of biological processes in live animals. Technical advancements in imaging techniques and hardware components, combined with the development of novel targeted probes and new mice models, have enabled us to address long-standing questions in several biology areas such as oncology, cell biology, immunology and neuroscience. As the instrument resolution has increased, physiological motion activities have become a major obstacle that prevents imaging live animals at resolutions analogue to the ones obtained in vitro. Motion compensation techniques aim at reducing this gap and can effectively increase the in vivo resolution. This paper provides a technical review of some of the latest developments in motion compensation methods, providing organ specific solutions. PMID:24273405

  10. Smoothing of respiratory motion traces for motion-compensated radiotherapy

    SciTech Connect

    Ernst, Floris; Schlaefer, Alexander; Schweikard, Achim

    2010-01-15

    Purpose: The CyberKnife system has been used successfully for several years to radiosurgically treat tumors without the need for stereotactic fixation or sedation of the patient. It has been shown that tumor motion in the lung, liver, and pancreas can be tracked with acceptable accuracy and repeatability. However, highly precise targeting for tumors in the lower abdomen, especially for tumors which exhibit strong motion, remains problematic. Reasons for this are manifold, like the slow tracking system operating at 26.5 Hz, and using the signal from the tracking camera ''as is''. Since the motion recorded with the camera is used to compensate for system latency by prediction and the predicted signal is subsequently used to infer the tumor position from a correlation model based on x-ray imaging of gold fiducials around the tumor, camera noise directly influences the targeting accuracy. The goal of this work is to establish the suitability of a new smoothing method for respiratory motion traces used in motion-compensated radiotherapy. The authors endeavor to show that better prediction--With a lower rms error of the predicted signal--and/or smoother prediction is possible using this method. Methods: The authors evaluated six commercially available tracking systems (NDI Aurora, PolarisClassic, Polaris Vicra, MicronTracker2 H40, FP5000, and accuTrack compact). The authors first tracked markers both stationary and while in motion to establish the systems' noise characteristics. Then the authors applied a smoothing method based on the a trous wavelet decomposition to reduce the devices' noise level. Additionally, the smoothed signal of the moving target and a motion trace from actual human respiratory motion were subjected to prediction using the MULIN and the nLMS{sub 2} algorithms. Results: The authors established that the noise distribution for a static target is Gaussian and that when the probe is moved such as to mimic human respiration, it remains Gaussian with the

  11. Motion compensation for structured light sensors

    NASA Astrophysics Data System (ADS)

    Biswas, Debjani; Mertz, Christoph

    2015-05-01

    In order for structured light methods to work outside, the strong background from the sun needs to be suppressed. This can be done with bandpass filters, fast shutters, and background subtraction. In general this last method necessitates the sensor system to be stationary during data taking. The contribution of this paper is a method to compensate for the motion if the system is moving. The key idea is to use video stabilization techniques that work even if the illuminator is switched on and off from one frame to another. We used OpenCV functions and modules to implement a robust and efficient method. We evaluated it under various conditions and tested it on a moving robot outdoors. We will demonstrate that one can not only do 3D reconstruction under strong ambient light, but that it is also possible to observe optical properties of the objects in the environment.

  12. Motion-compensated defect interpolation for flat-panel detectors

    NASA Astrophysics Data System (ADS)

    Aach, Til; Barth, Erhardt; Mayntz, Claudia

    2004-05-01

    One advantage of flat-panel X-ray detectors is the immediate availability of the acquired images for display. Current limitations in large-area active-matrix manufacturing technology, however, require that the images read out from such detectors be processed to correct for inactive pixels. In static radiographs, these defects can only be interpolated by spatial filtering. Moving X-ray image modalities, such as fluoroscopy or cine-angiography, permit to use temporal information as well. This paper describes interframe defect interpolation algorithms based on motion compensation and filtering. Assuming the locations of the defects to be known, we fill in the defective areas from past frames, where the missing information was visible due to motion. The motion estimator is based on regularized block matching, with speedup obtained by successive elimination and related measures. To avoid the motion estimator locking on to static defects, these are cut out of each block during matching. Once motion is estimated, three methods are available for defect interpolation: direct filling-in by the motion-compensated predecessor, filling-in by a 3D-multilevel median filtered value, and spatiotemporal mean filtering. Results are shown for noisy fluoroscopy sequences acquired in clinical routine with varying amounts of motion and simulated defects up to six lines wide. They show that the 3D-multilevel median filter appears as the method of choice since it causes the least blur of the interpolated data, is robust with respect to motion estimation errors and works even in non-moving areas.

  13. A novel motion compensation algorithm for acoustic radiation force elastography.

    PubMed

    Fahey, B J; Hsu, S J; Trahey, G E

    2008-05-01

    A novel method of physiological motion compensation for use with radiation force elasticity imaging has been developed. The method utilizes a priori information from finite element method models of the response of soft tissue to impulsive radiation force to isolate physiological motion artifacts from radiation force-induced displacement fields. The new algorithmis evaluated in a series of clinically realistic imaging scenarios, and its performance is compared to that achieved with previously described motion compensation algorithms. Though not without limitations, the new model-based motion compensation algorithm performs favorably in many circumstances and may be a logical choice for use with in vivo abdominal imaging.

  14. A Stick Motion Compensation System with a Dynamic Model

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasuhiko; Matsubara, Atsushi; Kakino, Yoshiaki; Tsutsui, Kazuhiko

    This paper deals with a stick motion compensation system. Stick motion is trajectory error that happens just after a quadrant change in circular motion on NC machine tools. Recently cylindrical machining with an end mill is often executed instead of boring machining with a bore tool. That is why the accuracy with end mill machining is becoming important. Stick motion extremely damages the accuracy and the quality of the circular parts or free form surfaces on workpieces. In the conventional compensation system, tuning parameters for each combination of radius and feed rate is needed. This research proposes a new stick motion compensation system. The new system has a dynamic model that simulates the friction. The simulated friction consists of two components. One is spring resistance in proportion to a reverse distance from a quadrant change. The other is viscous damping friction in proportion to velocity. The system can compensate stick motions suitably for wide range conditions of radii and feed rate.

  15. Motion error compensation of multi-legged walking robots

    NASA Astrophysics Data System (ADS)

    Wang, Liangwen; Chen, Xuedong; Wang, Xinjie; Tang, Weigang; Sun, Yi; Pan, Chunmei

    2012-07-01

    Existing errors in the structure and kinematic parameters of multi-legged walking robots, the motion trajectory of robot will diverge from the ideal sports requirements in movement. Since the existing error compensation is usually used for control compensation of manipulator arm, the error compensation of multi-legged robots has seldom been explored. In order to reduce the kinematic error of robots, a motion error compensation method based on the feedforward for multi-legged mobile robots is proposed to improve motion precision of a mobile robot. The locus error of a robot body is measured, when robot moves along a given track. Error of driven joint variables is obtained by error calculation model in terms of the locus error of robot body. Error value is used to compensate driven joint variables and modify control model of robot, which can drive the robots following control model modified. The model of the relation between robot's locus errors and kinematic variables errors is set up to achieve the kinematic error compensation. On the basis of the inverse kinematics of a multi-legged walking robot, the relation between error of the motion trajectory and driven joint variables of robots is discussed. Moreover, the equation set is obtained, which expresses relation among error of driven joint variables, structure parameters and error of robot's locus. Take MiniQuad as an example, when the robot MiniQuad moves following beeline tread, motion error compensation is studied. The actual locus errors of the robot body are measured before and after compensation in the test. According to the test, variations of the actual coordinate value of the robot centroid in x-direction and z-direction are reduced more than one time. The kinematic errors of robot body are reduced effectively by the use of the motion error compensation method based on the feedforward.

  16. Motion compensation requirements for a high resolution spotlight SAR

    NASA Astrophysics Data System (ADS)

    Hepburn, J. S. A.; Haslam, G. E.; Liang, D. F.; Widnall, W. S.

    1986-07-01

    The Canadian Department of National Defence is developing a high resolution airborne spotlight synthetic aperture radar (SAR). To attain the high contrast, high resolution and low geometric distortion objectives of the project, it is essential that very accurate motion compensation be applied to the radar returns to minimize the effects on SAR image quality of spurious antenna phase center motion. The motion compensation system being developed for the project includes a gimballed master inertial navigation system (INS) located near the center of gravity of the host aircraft, a strapdown inertial measurement unit (IMU) comprising gyroscope and accelerometer triads mounted on the radar antenna, as well as Doppler velocity and barometric altitude sensors for damping the inertial systems. The role of the master INS is to enable high accuracy alignment of the strapdown IMU. The raw sensor data are integrated using a U-D factorized Kalman filter to obtain optimal estimates of the motion of the radar antenna phase center while the SAR window is open. The data are used to adjust both the radar pulse repetition frequency and the phase and displacement of the radar returns. An analysis of the motion compensation requirements was carried out, leading to the specification of the motion compensation sensor configuration and accuracy. The performance of the motion compensation system has been evaluated by detailed computer simulation. This evaluation accounted for all major system error sources, including errors associated with sensors, transfer alignment and computation, with the system operating in a moderately turbulent environment.

  17. Holographic motion picture camera with Doppler shift compensation

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L. (Inventor)

    1976-01-01

    A holographic motion picture camera is reported for producing three dimensional images by employing an elliptical optical system. There is provided in one of the beam paths (the object or reference beam path) a motion compensator which enables the camera to photograph faster moving objects.

  18. Couch-based motion compensation: modelling, simulation and real-time experiments

    NASA Astrophysics Data System (ADS)

    Haas, Olivier C. L.; Skworcow, Piotr; Paluszczyszyn, Daniel; Sahih, Abdelhamid; Ruta, Mariusz; Mills, John A.

    2012-09-01

    The paper presents a couch-based active motion compensation strategy evaluated in simulation and validated experimentally using both a research and a clinical Elekta Precise Table™. The control strategy combines a Kalman filter to predict the surrogate motion used as a reference by a linear model predictive controller with the control action calculation based on estimated position and velocity feedback provided by an observer as well as predicted couch position and velocity using a linearized state space model. An inversion technique is used to compensate for the dead-zone nonlinearity. New generic couch models are presented and applied to model the Elekta Precise Table™ dynamics and nonlinearities including dead zone. Couch deflection was measured for different manufacturers and found to be up to 25 mm. A feed-forward approach is proposed to compensate for such couch deflection. Simultaneous motion compensation for longitudinal, lateral and vertical motions was evaluated using arbitrary trajectories generated from sensors or loaded from files. Tracking errors were between 0.5 and 2 mm RMS. A dosimetric evaluation of the motion compensation was done using a sinusoidal waveform. No notable differences were observed between films obtained for a fixed- or motion-compensated target. Further dosimetric improvement could be made by combining gating, based on tracking error together with beam on/off time, and PSS compensation.

  19. Couch-based motion compensation: modelling, simulation and real-time experiments.

    PubMed

    Haas, Olivier C L; Skworcow, Piotr; Paluszczyszyn, Daniel; Sahih, Abdelhamid; Ruta, Mariusz; Mills, John A

    2012-09-21

    The paper presents a couch-based active motion compensation strategy evaluated in simulation and validated experimentally using both a research and a clinical Elekta Precise Table™. The control strategy combines a Kalman filter to predict the surrogate motion used as a reference by a linear model predictive controller with the control action calculation based on estimated position and velocity feedback provided by an observer as well as predicted couch position and velocity using a linearized state space model. An inversion technique is used to compensate for the dead-zone nonlinearity. New generic couch models are presented and applied to model the Elekta Precise Table™ dynamics and nonlinearities including dead zone. Couch deflection was measured for different manufacturers and found to be up to 25 mm. A feed-forward approach is proposed to compensate for such couch deflection. Simultaneous motion compensation for longitudinal, lateral and vertical motions was evaluated using arbitrary trajectories generated from sensors or loaded from files. Tracking errors were between 0.5 and 2 mm RMS. A dosimetric evaluation of the motion compensation was done using a sinusoidal waveform. No notable differences were observed between films obtained for a fixed- or motion-compensated target. Further dosimetric improvement could be made by combining gating, based on tracking error together with beam on/off time, and PSS compensation.

  20. Measurement and Compensation of BPM Chamber Motion in HLS

    SciTech Connect

    Li, J. W.; Sun, B. G.; Cao, Y.; Xu, H. L.; Lu, P.; Li, C.; Xuan, K.; Wang, J. G.

    2010-06-23

    Significant horizontal drifts in the beam orbit in the storage ring of HLS (Hefei Light Source) have been seen for many years. What leads to the motion of Beam Position Monitor (BPM) chamber is thermal expansion mainly caused by the synchrotron light. To monitor the BPM chamber motions for all BPMs, a BPM chamber motion measurement system is built in real-time. The raster gauges are used to measure the displacements. The results distinctly show the relation between the BPM chamber motion and the beam current. To suppress the effect of BPM chamber motion, a compensation strategy is implemented at HLS. The horizontal drifts of beam orbit have been really suppressed within 20{mu}m without the compensation of BPM chamber motion in the runtime.

  1. Signal based motion compensation for synthetic aperture radar

    SciTech Connect

    John Kirk

    1999-06-07

    The purpose of the Signal Based Motion Compensation (SBMC) for Synthetic Aperture Radar (SAR) effort is to develop a method to measure and compensate for both down range and cross range motion of the radar in order to provide high quality focused SAR imagery in the absence of precision measurements of the platform motion. Currently SAR systems require very precise navigation sensors for motion compensation. These sensors are very expensive and are often supplied in pairs for reliability. In the case of GPS they can be jammed, further degrading performance. This makes for a potentially very expensive and possibly vulnerable SAR system. SBMC can eliminate or reduce the need for these expensive navigation sensors thus reducing the cost of budget minded SAR systems. The results on this program demonstrated the capability of the SBMC approach.

  2. Video coding using Karhunen-Loeve transform and motion compensation

    NASA Astrophysics Data System (ADS)

    Musatenko, Yurij S.; Soloveyko, Olexandr M.; Kurashov, Vitalij N.; Dubikovskiy, Vladislav A.

    1999-07-01

    The paper present a new method for video compression. The discussed techniques consider video frames as a set of correlated images. Common approach to the problem of compression of correlated images is to use some orthogonal transform, for example cosine or wavelet transform, in order to remove the correlation among images and then to compress resolution coefficients using already known compression technique such as JPEG or EZW. However, the most optimal representation for removing of correlation among images is Karhunen-Loeve (KL) transform. In the paper we apply recently proposed Optimal Image Coding using KL transform method (OICKL) based on this approach. In order to take into account the nature of video we use Triangle Motion Compensation to improve correlation among frames. Experimental part compares the performance of plain OICKL codec with OICKL and motion compensation combined. Recommendations concerning using of motion compensation with OICKL technique are worked out.

  3. Active Wireline Heave Compensation for Ocean Drilling

    NASA Astrophysics Data System (ADS)

    Goldberg, D.; Liu, T.; Swain, K.; Furman, C.; Iturrino, G. J.

    2014-12-01

    The up-and-down heave motion of a ship causes a similar motion on any instruments tethered on wireline cable below it. If the amplitude of this motion is greater than a few tens of cm, significant discrepancy in the depth below the ship is introduced, causing uncertainty in the acquired data. Large and irregular cabled motions also increase the risk of damaging tethered instruments, particularly those with relatively delicate sensors. In 2005, Schlumberger and Deep Down, Inc built an active wireline heave compensator (AHC) system for use onboard the JOIDES Resolution to compensate for heave motion on wireline logging tools deployed in scientific drill holes. The goals for the new AHC system were to (1) design a reliable heave compensation system; and (2) devise a robust and quantitative methodology for routine assessment of compensation efficiency (CE) during wireline operations. Software programs were developed to monitor CE and the dynamics of logging tools in real-time, including system performance under variable parameters such as water depth, sea state, cable length, logging speed and direction. We present the CE results from the AHC system on the JOIDES Resolution during a 5-year period of recent IODP operations and compare the results to those from previous compensation systems deployed during ODP and IODP. Based on new data under heave conditions of ±0.2-2.0 m and water depths of 300-4,800 m in open holes, the system reduces 65-80% of downhole tool displacement under stationary conditions and 50-60% during normal logging operations. Moreover, down/up tool motion at low speeds (300-600 m/h) reduces the system's CE values by 15-20%, and logging down at higher speeds (1,000-1,200 m/h) reduces CE values by 55-65%. Furthermore, the system yields slightly lower CE values of 40-50% without tension feedback of the downhole cable while logging. These results indicate that the new system's compensation efficiency is comparable to or better than previous systems

  4. Motion-compensated wavelet video coding using adaptive mode selection

    NASA Astrophysics Data System (ADS)

    Zhai, Fan; Pappas, Thrasyvoulos N.

    2004-01-01

    A motion-compensated wavelet video coder is presented that uses adaptive mode selection (AMS) for each macroblock (MB). The block-based motion estimation is performed in the spatial domain, and an embedded zerotree wavelet coder (EZW) is employed to encode the residue frame. In contrast to other motion-compensated wavelet video coders, where all the MBs are forced to be in INTER mode, we construct the residue frame by combining the prediction residual of the INTER MBs with the coding residual of the INTRA and INTER_ENCODE MBs. Different from INTER MBs that are not coded, the INTRA and INTER_ENCODE MBs are encoded separately by a DCT coder. By adaptively selecting the quantizers of the INTRA and INTER_ENCODE coded MBs, our goal is to equalize the characteristics of the residue frame in order to improve the overall coding efficiency of the wavelet coder. The mode selection is based on the variance of the MB, the variance of the prediction error, and the variance of the neighboring MBs' residual. Simulations show that the proposed motion-compensated wavelet video coder achieves a gain of around 0.7-0.8dB PSNR over MPEG-2 TM5, and a comparable PSNR to other 2D motion-compensated wavelet-based video codecs. It also provides potential visual quality improvement.

  5. Design of motion compensation mechanism of satellite remote sensing camera

    NASA Astrophysics Data System (ADS)

    Gu, Song; Yan, Yong; Xu, Kai; Jin, Guang

    2011-08-01

    With the development of aerospace remote sensing technology, the ground resolution of remote sensing camera enhances continuously. Since there is relative motion between camera and ground target when taking pictures, the target image recorded in recording media is moved and blurred. In order to enhance the imaging quality and resolution of the camera, the image motion had to be compensated. In order to abate the effect of image motion to image quality of space camera and improve the resolution of the camera, the compensation method of image motion to space camera is researched. First, the reason of producing drift angle and adjustment principle are analyzed in this paper. This paper introduce the composition and transmission principle of image motion compensation mechanism. Second, the system adopts 80C31 as controller of drift angle, and adopts stepping motor for actuators, and adopts absolute photoelectric encoder as the drift Angle measuring element. Then the control mathematical model of the image motion compensation mechanism are deduced, and it achieve the closed-loop control of the drift angle position. At the last, this paper analyses the transmission precision of the mechanism. Through the experiment, we measured the actual precision of the image motion compensation mechanism, and compared with the theoretical analysis.There are two major contributions in this paper. First, the traditional image motion compensation mechanism is big volume and quality heavy. This has not fit for the development trend of space camera miniaturization and lightweight. But if reduce the volume and quality of mechanism, it will bring adverse effects for the precision and stiffness of mechanism. For this problem, This paper designed a image motion compensation that have some advantages such as small size, light weight at the same time, high precision, stiffness and so on. This image motion compensation can be applicable to the small optics cameras with high resolution. Second

  6. Compensation for equiluminant color motion during smooth pursuit eye movement.

    PubMed

    Terao, Masahiko; Murakami, Ikuya

    2011-05-20

    Motion perception is compromised at equiluminance. Because previous investigations have been primarily carried out under fixation conditions, it remains unknown whether and how equiluminant color motion comes into play in the velocity compensation for retinal image motion due to smooth pursuit eye movement. We measured the retinal image velocity required to reach subjective stationarity for a horizontally drifting sinusoidal grating in the presence of horizontal smooth pursuit. The grating was defined by luminance or chromatic modulation. When the subjective stationarity of the color motion was shifted toward environmental stationarity, compared with the subjective stationarity of luminance motion, that of color motion was farther from retinal stationarity, indicating that a slowing of color motion occurred before this factor contributed to the process by which retinal motion was integrated with a biological estimate of eye velocity during pursuit. The gain in the estimate of eye velocity per se was unchanged irrespective of whether the stimulus was defined by luminance or by color. Indeed, the subjective reduction in the speed of color motion during fixation was accounted for by the same amount of deterioration in speed. From these results, we conclude that the motion deterioration at equiluminance takes place prior to the velocity comparison.

  7. Motion compensation by registration-based catheter tracking

    NASA Astrophysics Data System (ADS)

    Brost, Alexander; Wimmer, Andreas; Liao, Rui; Hornegger, Joachim; Strobel, Norbert

    2011-03-01

    The treatment of atrial fibrillation has gained increasing importance in the field of computer-aided interventions. State-of-the-art treatment involves the electrical isolation of the pulmonary veins attached to the left atrium under fluoroscopic X-ray image guidance. Due to the rather low soft-tissue contrast of X-ray fluoroscopy, the heart is difficult to see. To overcome this problem, overlay images from pre-operative 3-D volumetric data can be used to add anatomical detail. Unfortunately, these overlay images are static at the moment, i.e., they do not move with respiratory and cardiac motion. The lack of motion compensation may impair X-ray based catheter navigation, because the physician could potentially position catheters incorrectly. To improve overlay-based catheter navigation, we present a novel two stage approach for respiratory and cardiac motion compensation. First, a cascade of boosted classifiers is employed to segment a commonly used circumferential mapping catheter which is firmly fixed at the ostium of the pulmonary vein during ablation. Then, a 2-D/2-D model-based registration is applied to track the segmented mapping catheter. Our novel hybrid approach was evaluated on 10 clinical data sets consisting of 498 fluoroscopic monoplane frames. We obtained an average 2-D tracking error of 0.61 mm, with a minimum error of 0.26 mm and a maximum error of 1.62 mm. These results demonstrate that motion compensation using registration-based catheter tracking is both feasible and accurate. Using this approach, we can only estimate in-plane motion. Fortunately, compensating for this is often sufficient for EP procedures where the motion is governed by breathing.

  8. Clinical evaluation of 4D PET motion compensation strategies for treatment verification in ion beam therapy

    NASA Astrophysics Data System (ADS)

    Gianoli, Chiara; Kurz, Christopher; Riboldi, Marco; Bauer, Julia; Fontana, Giulia; Baroni, Guido; Debus, Jürgen; Parodi, Katia

    2016-06-01

    A clinical trial named PROMETHEUS is currently ongoing for inoperable hepatocellular carcinoma (HCC) at the Heidelberg Ion Beam Therapy Center (HIT, Germany). In this framework, 4D PET-CT datasets are acquired shortly after the therapeutic treatment to compare the irradiation induced PET image with a Monte Carlo PET prediction resulting from the simulation of treatment delivery. The extremely low count statistics of this measured PET image represents a major limitation of this technique, especially in presence of target motion. The purpose of the study is to investigate two different 4D PET motion compensation strategies towards the recovery of the whole count statistics for improved image quality of the 4D PET-CT datasets for PET-based treatment verification. The well-known 4D-MLEM reconstruction algorithm, embedding the motion compensation in the reconstruction process of 4D PET sinograms, was compared to a recently proposed pre-reconstruction motion compensation strategy, which operates in sinogram domain by applying the motion compensation to the 4D PET sinograms. With reference to phantom and patient datasets, advantages and drawbacks of the two 4D PET motion compensation strategies were identified. The 4D-MLEM algorithm was strongly affected by inverse inconsistency of the motion model but demonstrated the capability to mitigate the noise-break-up effects. Conversely, the pre-reconstruction warping showed less sensitivity to inverse inconsistency but also more noise in the reconstructed images. The comparison was performed by relying on quantification of PET activity and ion range difference, typically yielding similar results. The study demonstrated that treatment verification of moving targets could be accomplished by relying on the whole count statistics image quality, as obtained from the application of 4D PET motion compensation strategies. In particular, the pre-reconstruction warping was shown to represent a promising choice when combined with intra

  9. Clinical evaluation of 4D PET motion compensation strategies for treatment verification in ion beam therapy.

    PubMed

    Gianoli, Chiara; Kurz, Christopher; Riboldi, Marco; Bauer, Julia; Fontana, Giulia; Baroni, Guido; Debus, Jürgen; Parodi, Katia

    2016-06-07

    A clinical trial named PROMETHEUS is currently ongoing for inoperable hepatocellular carcinoma (HCC) at the Heidelberg Ion Beam Therapy Center (HIT, Germany). In this framework, 4D PET-CT datasets are acquired shortly after the therapeutic treatment to compare the irradiation induced PET image with a Monte Carlo PET prediction resulting from the simulation of treatment delivery. The extremely low count statistics of this measured PET image represents a major limitation of this technique, especially in presence of target motion. The purpose of the study is to investigate two different 4D PET motion compensation strategies towards the recovery of the whole count statistics for improved image quality of the 4D PET-CT datasets for PET-based treatment verification. The well-known 4D-MLEM reconstruction algorithm, embedding the motion compensation in the reconstruction process of 4D PET sinograms, was compared to a recently proposed pre-reconstruction motion compensation strategy, which operates in sinogram domain by applying the motion compensation to the 4D PET sinograms. With reference to phantom and patient datasets, advantages and drawbacks of the two 4D PET motion compensation strategies were identified. The 4D-MLEM algorithm was strongly affected by inverse inconsistency of the motion model but demonstrated the capability to mitigate the noise-break-up effects. Conversely, the pre-reconstruction warping showed less sensitivity to inverse inconsistency but also more noise in the reconstructed images. The comparison was performed by relying on quantification of PET activity and ion range difference, typically yielding similar results. The study demonstrated that treatment verification of moving targets could be accomplished by relying on the whole count statistics image quality, as obtained from the application of 4D PET motion compensation strategies. In particular, the pre-reconstruction warping was shown to represent a promising choice when combined with intra

  10. Iterative motion compensation approach for ultrasonic thermal imaging

    NASA Astrophysics Data System (ADS)

    Fleming, Ioana; Hager, Gregory; Guo, Xiaoyu; Kang, Hyun Jae; Boctor, Emad

    2015-03-01

    As thermal imaging attempts to estimate very small tissue motion (on the order of tens of microns), it can be negatively influenced by signal decorrelation. Patient's breathing and cardiac cycle generate shifts in the RF signal patterns. Other sources of movement could be found outside the patient's body, like transducer slippage or small vibrations due to environment factors like electronic noise. Here, we build upon a robust displacement estimation method for ultrasound elastography and we investigate an iterative motion compensation algorithm, which can detect and remove non-heat induced tissue motion at every step of the ablation procedure. The validation experiments are performed on laboratory induced ablation lesions in ex-vivo tissue. The ultrasound probe is either held by the operator's hand or supported by a robotic arm. We demonstrate the ability to detect and remove non-heat induced tissue motion in both settings. We show that removing extraneous motion helps unmask the effects of heating. Our strain estimation curves closely mirror the temperature changes within the tissue. While previous results in the area of motion compensation were reported for experiments lasting less than 10 seconds, our algorithm was tested on experiments that lasted close to 20 minutes.

  11. New inverse synthetic aperture radar algorithm for translational motion compensation

    NASA Astrophysics Data System (ADS)

    Bocker, Richard P.; Henderson, Thomas B.; Jones, Scott A.; Frieden, B. R.

    1991-10-01

    Inverse synthetic aperture radar (ISAR) is an imaging technique that shows real promise in classifying airborne targets in real time under all weather conditions. Over the past few years a large body of ISAR data has been collected and considerable effort has been expended to develop algorithms to form high-resolution images from this data. One important goal of workers in this field is to develop software that will do the best job of imaging under the widest range of conditions. The success of classifying targets using ISAR is predicated upon forming highly focused radar images of these targets. Efforts to develop highly focused imaging computer software have been challenging, mainly because the imaging depends on and is affected by the motion of the target, which in general is not precisely known. Specifically, the target generally has both rotational motion about some axis and translational motion as a whole with respect to the radar. The slant-range translational motion kinematic quantities must be first accurately estimated from the data and compensated before the image can be focused. Following slant-range motion compensation, the image is further focused by determining and correcting for target rotation. The use of the burst derivative measure is proposed as a means to improve the computational efficiency of currently used ISAR algorithms. The use of this measure in motion compensation ISAR algorithms for estimating the slant-range translational motion kinematic quantities of an uncooperative target is described. Preliminary tests have been performed on simulated as well as actual ISAR data using both a Sun 4 workstation and a parallel processing transputer array. Results indicate that the burst derivative measure gives significant improvement in processing speed over the traditional entropy measure now employed.

  12. Motion-compensated speckle tracking via particle filtering

    NASA Astrophysics Data System (ADS)

    Liu, Lixin; Yagi, Shin-ichi; Bian, Hongyu

    2015-07-01

    Recently, an improved motion compensation method that uses the sum of absolute differences (SAD) has been applied to frame persistence utilized in conventional ultrasonic imaging because of its high accuracy and relative simplicity in implementation. However, high time consumption is still a significant drawback of this space-domain method. To seek for a more accelerated motion compensation method and verify if it is possible to eliminate conventional traversal correlation, motion-compensated speckle tracking between two temporally adjacent B-mode frames based on particle filtering is discussed. The optimal initial density of particles, the least number of iterations, and the optimal transition radius of the second iteration are analyzed from simulation results for the sake of evaluating the proposed method quantitatively. The speckle tracking results obtained using the optimized parameters indicate that the proposed method is capable of tracking the micromotion of speckle throughout the region of interest (ROI) that is superposed with global motion. The computational cost of the proposed method is reduced by 25% compared with that of the previous algorithm and further improvement is necessary.

  13. Topography-Dependent Motion Compensation: Application to UAVSAR Data

    NASA Technical Reports Server (NTRS)

    Jones, Cathleen E.; Hensley, Scott; Michel, Thierry

    2009-01-01

    The UAVSAR L-band synthetic aperture radar system has been designed for repeat track interferometry in support of Earth science applications that require high-precision measurements of small surface deformations over timescales from hours to years. Conventional motion compensation algorithms, which are based upon assumptions of a narrow beam and flat terrain, yield unacceptably large errors in areas with even moderate topographic relief, i.e., in most areas of interest. This often limits the ability to achieve sub-centimeter surface change detection over significant portions of an acquired scene. To reduce this source of error in the interferometric phase, we have implemented an advanced motion compensation algorithm that corrects for the scene topography and radar beam width. Here we discuss the algorithm used, its implementation in the UAVSAR data processor, and the improvement in interferometric phase and correlation achieved in areas with significant topographic relief.

  14. Enhanced adaptive loop filter for motion compensated frame.

    PubMed

    Yoo, Young-Joe; Seo, Chan-Won; Han, Jong-Ki; Nguyen, Truong Q

    2011-08-01

    We propose an adaptive loop filter to remove the redundancy between current and motion compensated frames so that the residual signal is minimized, thus coding efficiency increases. The loop filter coefficients and offset are optimized for each frame or a set of blocks to minimize the total energy of the residual signal resulting from motion estimation and compensation. The optimized loop filter with offset is applied for the set of blocks where the filtering process gives coding gain based upon rate-distortion cost. The proposed loop filter is used for the motion compensated frame whereas the conventional adaptive interpolation filter (AIF) is applied to the reference frames to interpolate the subpixel values. Another conventional scheme adaptive loop filter (ALF), is used after deblocking filtering to enhance quality of reconstructed frames, not to minimize energy of residual signal. The proposed loop filter can be used in combination with the AIF and ALF. Experimental results show that proposed algorithm provides the averaged bit reduction of 8% compared to conventional H.264/AVC scheme. When the proposed scheme is combined with AIF and ALF, the coding gain increases even further.

  15. Video coding with lifted wavelet transforms and complementary motion-compensated signals

    NASA Astrophysics Data System (ADS)

    Flierl, Markus H.; Vandergheynst, Pierre; Girod, Bernd

    2004-01-01

    This paper investigates video coding with wavelet transforms applied in the temporal direction of a video sequence. The wavelets are implemented with the lifting scheme in order to permit motion compensation between successive pictures. We improve motion compensation in the lifting steps and utilize complementary motion-compensated signals. Similar to superimposed predictive coding with complementary signals, this approach improves compression efficiency. We investigate experimentally and theoretically complementary motion-compensated signals for lifted wavelet transforms. Experimental results with the complementary motion-compensated Haar wavelet and frame-adaptive motion compensation show improvements in coding efficiency of up to 3 dB. The theoretical results demonstrate that the lifted Haar wavelet scheme with complementary motion-compensated signals is able to approach the bound for bit-rate savings of 2 bits per sample and motion-accuracy step when compared to optimum intra-frame coding of the input pictures.

  16. Viscoelastic model based force control for soft tissue interaction and its application in physiological motion compensation.

    PubMed

    Moreira, Pedro; Zemiti, Nabil; Liu, Chao; Poignet, Philippe

    2014-09-01

    Controlling the interaction between robots and living soft tissues has become an important issue as the number of robotic systems inside the operating room increases. Many researches have been done on force control to help surgeons during medical procedures, such as physiological motion compensation and tele-operation systems with haptic feedback. In order to increase the performance of such controllers, this work presents a novel force control scheme using Active Observer (AOB) based on a viscoelastic interaction model. The control scheme has shown to be stable through theoretical analysis and its performance was evaluated by in vitro experiments. In order to evaluate how the force control scheme behaves under the presence of physiological motion, experiments considering breathing and beating heart disturbances are presented. The proposed control scheme presented a stable behavior in both static and moving environment. The viscoelastic AOB presented a compensation ratio of 87% for the breathing motion and 79% for the beating heart motion.

  17. Motion compensation in digital subtraction angiography using graphics hardware.

    PubMed

    Deuerling-Zheng, Yu; Lell, Michael; Galant, Adam; Hornegger, Joachim

    2006-07-01

    An inherent disadvantage of digital subtraction angiography (DSA) is its sensitivity to patient motion which causes artifacts in the subtraction images. These artifacts could often reduce the diagnostic value of this technique. Automated, fast and accurate motion compensation is therefore required. To cope with this requirement, we first examine a method explicitly designed to detect local motions in DSA. Then, we implement a motion compensation algorithm by means of block matching on modern graphics hardware. Both methods search for maximal local similarity by evaluating a histogram-based measure. In this context, we are the first who have mapped an optimizing search strategy on graphics hardware while paralleling block matching. Moreover, we provide an innovative method for creating histograms on graphics hardware with vertex texturing and frame buffer blending. It turns out that both methods can effectively correct the artifacts in most case, as the hardware implementation of block matching performs much faster: the displacements of two 1024 x 1024 images can be calculated at 3 frames/s with integer precision or 2 frames/s with sub-pixel precision. Preliminary clinical evaluation indicates that the computation with integer precision could already be sufficient.

  18. Galvanometer control system design of aerial camera motion compensation

    NASA Astrophysics Data System (ADS)

    Qiao, Mingrui; Cao, Jianzhong; Wang, Huawei; Guo, Yunzeng; Hu, Changchang; Tang, Hong; Niu, Yuefeng

    2015-10-01

    Aerial cameras exist the image motion on the flight. The image motion has seriously affected the image quality, making the image edge blurred and gray scale loss. According to the actual application situation, when high quality and high precision are required, the image motion compensation (IMC) should be adopted. This paper designs galvanometer control system of IMC. The voice coil motor as the actuator has a simple structure, fast dynamic response and high positioning accuracy. Double-loop feedback is also used. PI arithmetic and Hall sensors are used at the current feedback. Fuzzy-PID arithmetic and optical encoder are used at the speed feedback. Compared to conventional PID control arithmetic, the simulation results show that the control system has fast response and high control accuracy.

  19. Control-structure interaction/mirror motion compensation

    NASA Technical Reports Server (NTRS)

    Mclaren, Mark; Chu, Peter; Price, Xen

    1992-01-01

    Space Systems/Loral (formerly Ford Aerospace, Space Systems Division) has implemented a rigid-body Mirror Motion Compensation (MMC) scheme for the GOES-I/M spacecraft currently being built for NASA and NOAA. This has resulted in a factor of 15 reduction in pointing error due to rigid-body spacecraft motion induced by the periodic black-body calibration maneuvers required for the instruments. For GOES the spacecraft and the payload mirrors are considered as rigid bodies. The structural flexibility effects are small and are included in the total pointing budget as a separate item. This paper extends the MMC technique to include structural flexibility. For large multi-payload platforms, the structural flexibility effects can be more important in sensor pointing jitter as the result of payload motion. Sensitivity results are included to show the importance of the dynamic model fidelity.

  20. Ultrasound tracking for intra-fractional motion compensation in radiation therapy.

    PubMed

    Schwaab, J; Prall, M; Sarti, C; Kaderka, R; Bert, C; Kurz, C; Parodi, K; Günther, M; Jenne, J

    2014-07-01

    Modern techniques as ion beam therapy or 4D imaging require precise target position information. However, target motion particularly in the abdomen due to respiration or patient movement is still a challenge and demands methods that detect and compensate this motion. Ultrasound represents a non-invasive, dose-free and model-independent alternative to fluoroscopy, respiration belt or optical tracking of the patient surface. Thus, ultrasound based motion tracking was integrated into irradiation with actively scanned heavy ions. In a first in vitro experiment, the ultrasound tracking system was used to compensate diverse sinusoidal target motions in two dimensions. A time delay of ∼200 ms between target motion and reported position data was compensated by a prediction algorithm (artificial neural network). The irradiated films proved feasibility of the proposed method. Furthermore, a practicable and reliable calibration workflow was developed to enable the transformation of ultrasound tracking data to the coordinates of the treatment delivery or imaging system - even if the ultrasound probe moves due to respiration. A first proof of principle experiment was performed during time-resolved positron emission tomography (4DPET) to test the calibration workflow and to show the accuracy of an ultrasound based motion tracking in vitro. The results showed that optical ultrasound tracking can reach acceptable accuracies and encourage further research.

  1. Motion-compensated non-contact detection of heart rate

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Liu, Ming; Dong, Liquan; Zhao, Yuejin; Liu, Xiaohua

    2015-12-01

    A new non-contact heart rate detection method based on the dual-wavelength technique is proposed and demonstrated experimentally. It is a well-known fact that the differences in the circuits of two detection modules result in different responses of two modules for motion artifacts. This poses a great challenge to compensate the motion artifacts during measurements. In order to circumvent this problem, we have proposed the amplitude spectrum and phase spectrum adaptive filter. Comparing with the time-domain adaptive filter and independent component analysis, the amplitude spectrum and phase spectrum adaptive filter can suppress the interference caused by the two circuit differences and effectively compensate the motion artifacts. To make the device is much compact and portable, a photoelectric probe is designed. The measurement distance is from several centimeters up to several meters. Moreover, the data obtained by using this non-contact detection system is compared with those of the conventional finger blood volume pulse (BVP) sensor by simultaneously measuring the heart rate of the subject. The data obtained from the proposed non-contact system are consistent and comparable with that of the BVP sensor.

  2. Motion-compensated blind deconvolution of scanning laser opthalmoscope imagery

    NASA Astrophysics Data System (ADS)

    O'Connor, Nathan J.; Bartsch, Dirk-Uwe G.; Freeman, William R.; Holmes, Timothy J.

    1998-06-01

    A deconvolution algorithm for use with scanning laser ophthalmoscope (SLO) data is being developed. The SLO is fundamentally a confocal microscope in which the objective lens is the human ocular lens. 3D data is collected by raster scanning to form images at different depths in retinal and choroidal layers. In this way, 3D anatomy may be imaged and stored as a series of optical sections.Given the poor optical quality of the human lens and random eye motion during data acquisition, any deconvolution method applied to SLO data must be able to account for distortions present in the observed data. The algorithm presented compensates for image warping and frame-to-frame displacement due to random eye motion, smearing along the optic axis, sensor saturation, and other problems. A preprocessing step is first used to compensate for frame-to-frame image displacement. The image warping, caused by random eye motion during raster scanning, is corrected. Finally, a maximum likelihood based blind deconvolution algorithm is used to correct severe blurring along the optic axis. The blind deconvolution algorithm contains an iterative search for subpixel displacements remaining after image warping and frame-to-frame displacements are corrected. This iterative search is formulated to ensure that the likelihood functional is non-decreasing.

  3. Scalable video compression using longer motion compensated temporal filters

    NASA Astrophysics Data System (ADS)

    Golwelkar, Abhijeet V.; Woods, John W.

    2003-06-01

    Three-dimensional (3-D) subband/wavelet coding using a motion compensated temporal filter (MCTF) is emerging as a very effective structure for highly scalable video coding. Most previous work has used two-tap Haar filters for the temporal analysis/synthesis. To make better use of the temporal redundancies, we are proposing an MCTF scheme based on longer biorthogonal filters. We show a lifting based coder capable of subpixel accurate motion compensation. If we retain the fixed size GOP structure of the Haar filter MCTFs, we need to use symmetric extensions at both ends of the GOP. This gives rise to loss of coding efficiency at the GOP boundaries resulting in significant PSNR drops there. This performance can be considerably improved by using a 'sliding window,' in place of the GOP block. We employ the 5/3 filter and its non-orthogonality causes PSNR variation, which can be reduced by employing filter-based weighting coefficients. Overall the longer filters have a higher coding gain than the Haar filters and show significant improvement in average PSNR at high bit rates. However, a doubling in the number of motion vectors to be transmitted, translates to a drop in PSNR at the lower video bit rates.

  4. Motion and deformation compensation for freehand prostate biopsies

    NASA Astrophysics Data System (ADS)

    Khallaghi, Siavash; Nouranian, Saman; Sojoudi, Samira; Ashab, Hussam A.; Machan, Lindsay; Chang, Silvia; Black, Peter; Gleave, Martin; Goldenberg, Larry; Abolmaesumi, Purang

    2014-03-01

    In this paper, we present a registration pipeline to compensate for prostate motion and deformation during targeted freehand prostate biopsies. We perform 2D-3D registration by reconstructing a thin-volume around the real-time 2D ultrasound imaging plane. Constrained Sum of Squared Differences (SSD) and gradient descent optimization are used to rigidly align the moving volume to the fixed thin-volume. Subsequently, B-spline de- formable registration is performed to compensate for remaining non-linear deformations. SSD and zero-bounded Limited memory Broyden Fletcher Goldfarb Shannon (LBFGS) optimizer are used to find the optimum B-spline parameters. Registration results are validated on five prostate biopsy patients. Initial experiments suggest thin- volume-to-volume registration to be more effective than slice-to-volume registration. Also, a minimum consistent 2 mm improvement of Target Registration Error (TRE) is achieved following the deformable registration.

  5. Optimising rigid motion compensation for small animal brain PET imaging

    NASA Astrophysics Data System (ADS)

    Spangler-Bickell, Matthew G.; Zhou, Lin; Kyme, Andre Z.; De Laat, Bart; Fulton, Roger R.; Nuyts, Johan

    2016-10-01

    Motion compensation (MC) in PET brain imaging of awake small animals is attracting increased attention in preclinical studies since it avoids the confounding effects of anaesthesia and enables behavioural tests during the scan. A popular MC technique is to use multiple external cameras to track the motion of the animal’s head, which is assumed to be represented by the motion of a marker attached to its forehead. In this study we have explored several methods to improve the experimental setup and the reconstruction procedures of this method: optimising the camera-marker separation; improving the temporal synchronisation between the motion tracker measurements and the list-mode stream; post-acquisition smoothing and interpolation of the motion data; and list-mode reconstruction with appropriately selected subsets. These techniques have been tested and verified on measurements of a moving resolution phantom and brain scans of an awake rat. The proposed techniques improved the reconstructed spatial resolution of the phantom by 27% and of the rat brain by 14%. We suggest a set of optimal parameter values to use for awake animal PET studies and discuss the relative significance of each parameter choice.

  6. Motion-compensated compressed sensing for dynamic imaging

    NASA Astrophysics Data System (ADS)

    Sundaresan, Rajagopalan; Kim, Yookyung; Nadar, Mariappan S.; Bilgin, Ali

    2010-08-01

    The recently introduced Compressed Sensing (CS) theory explains how sparse or compressible signals can be reconstructed from far fewer samples than what was previously believed possible. The CS theory has attracted significant attention for applications such as Magnetic Resonance Imaging (MRI) where long acquisition times have been problematic. This is especially true for dynamic MRI applications where high spatio-temporal resolution is needed. For example, in cardiac cine MRI, it is desirable to acquire the whole cardiac volume within a single breath-hold in order to avoid artifacts due to respiratory motion. Conventional MRI techniques do not allow reconstruction of high resolution image sequences from such limited amount of data. Vaswani et al. recently proposed an extension of the CS framework to problems with partially known support (i.e. sparsity pattern). In their work, the problem of recursive reconstruction of time sequences of sparse signals was considered. Under the assumption that the support of the signal changes slowly over time, they proposed using the support of the previous frame as the "known" part of the support for the current frame. While this approach works well for image sequences with little or no motion, motion causes significant change in support between adjacent frames. In this paper, we illustrate how motion estimation and compensation techniques can be used to reconstruct more accurate estimates of support for image sequences with substantial motion (such as cardiac MRI). Experimental results using phantoms as well as real MRI data sets illustrate the improved performance of the proposed technique.

  7. Navigated marker placement for motion compensation in radiotherapy

    NASA Astrophysics Data System (ADS)

    Winterstein, A.; März, K.; Franz, A. M.; Hafezi, M.; Fard, N.; Sterzing, F.; Mehrabi, A.; Maier-Hein, L.

    2015-03-01

    Radiotherapy is frequently used to treat unoperated or partially resected tumors. Tumor movement, e.g. caused by respiration, is a major challenge in this context. Markers can be implanted around the tumor prior to radiation therapy for accurate tracking of tumor movement. However, accurate placement of these markers while keeping a secure margin around the target and while taking into account critical structures is a difficult task. Computer-assisted needle insertion has been an active field of research in the past decades. However, the challenge of navigated marker placement for motion compensated radiotherapy has not yet been addressed. This work presents a system to support marker implantation for radiotherapy under consideration of safety margins and optimal marker configuration. It is designed to allow placement of markers both percutaneously and during an open liver surgery. To this end, we adapted the previously proposed EchoTrack system which integrates ultrasound (US) imaging and electromagnetic (EM) tracking in a single mobile modality. The potential of our new marker insertion concept was evaluated in a phantom study by inserting sets of three markers around dedicated targets (n=22) simultaneously spacing the markers evenly around the target as well as placing the markers in a defined distance to the target. In all cases the markers were successfully placed in a configuration fulfilling the predefined criteria. This includes a minimum distance of 18.9 ± 2.4 mm between marker and tumor as well as a divergence of 2.1 ± 1.5 mm from the planned marker positions. We conclude that our system has high potential to facilitate the placement of markers in suitable configurations for surgeons without extensive experience in needle punctions as high quality configurations were obtained even by medical non-experts.

  8. Motion compensation for detecting glucose through dual wavelength polarimetric system

    NASA Astrophysics Data System (ADS)

    Dixon, J. B.; Wan, Qiujie; Cote, Gerard L.

    2005-03-01

    The increasing prevalence of diabetes in the United States has led many to pursue methods for non-invasive glucose detection using various optical approaches such as NIR absorption spectroscopy, Raman spectroscopy, fluorescence spectroscopy, and polarization. Polarization approaches using the aqueous humor as the sensing site have been previously shown to achieve 5 mg/dl accuracy in vitro, however accuracy in vivo has yet to be obtained due to motion induced birefringence changes in the cornea. A dual-wavelength close-looped system was developed to compensate for motion artifact. This method has shown 15 mg/dl accuracy in the presence of birefringence changes in the optical path in vitro similar to those that occur in the cornea -- something previous systems were not capable of doing.

  9. Model-based respiratory motion compensation for emission tomography image reconstruction.

    PubMed

    Reyes, M; Malandain, G; Koulibaly, P M; González-Ballester, M A; Darcourt, J

    2007-06-21

    In emission tomography imaging, respiratory motion causes artifacts in lungs and cardiac reconstructed images, which lead to misinterpretations, imprecise diagnosis, impairing of fusion with other modalities, etc. Solutions like respiratory gating, correlated dynamic PET techniques, list-mode data based techniques and others have been tested, which lead to improvements over the spatial activity distribution in lungs lesions, but which have the disadvantages of requiring additional instrumentation or the need of discarding part of the projection data used for reconstruction. The objective of this study is to incorporate respiratory motion compensation directly into the image reconstruction process, without any additional acquisition protocol consideration. To this end, we propose an extension to the maximum likelihood expectation maximization (MLEM) algorithm that includes a respiratory motion model, which takes into account the displacements and volume deformations produced by the respiratory motion during the data acquisition process. We present results from synthetic simulations incorporating real respiratory motion as well as from phantom and patient data.

  10. Motion compensation for aircraft-borne interferometric SAR

    NASA Astrophysics Data System (ADS)

    Bullock, Richard John

    This research has studied data driven techniques for roll compensation for aircraft-borne InSAR, for platforms where an accurate Inertial Navigation Unit (INU) is inappropriate due to limitations on weight or cost, such as a low-cost civilian mapping system or a miniature UAV. It is shown that for unknown topography, roll errors cannot simply be filtered from the interferogram due to a fundamental ambiguity between aircraft roll effects and certain types of undulating terrain. The solution to this problem lies in the differential Doppler shifts of the signals received at the two antennas. These are proportional to the aircraft roll rate and can be extracted by incoherent or coherent means and utilised to reconstruct the aircraft roll history. This research analyses, experimentally evaluates and further develops the incoherent Differential Doppler (DD) method for roll compensation, developed to the proof-of-concept stage by A. Currie at QinetiQ (Malvern) and compares this with the two-look method, which is a novel coherent technique developed, analysed and experimentally evaluated as part of this PhD from an original idea proposed by Prof. R. Voles of UCL. By means of empirical analysis, numerical simulation and real test data from the QinetiQ C-Band InSAR, it is shown that the two-look method offers significant advantages in sensitivity, frequency performance, robustness and efficiency of implementation over the DD method, particularly at long range. The experimental results also show that for the QinetiQ C-Band InSAR, the two-look method provides roll compensation to a similar quality or better than provided by the on-board Litton-93 INU, which has a specified accuracy of +/-0.05°. Ambiguities in the roll rate estimates from other motions are also shown to be small for this platform, and could be reduced further by employing differential GPS track compensation.

  11. Compensation for respiratory motion in cardiac PET - A feasibility study

    SciTech Connect

    Budinger, T.F.; Klein, G.J.; Reed, J.H. |

    1996-05-01

    We characterize respiration-induced motion in the canine myocardium and present preliminary efforts to compensate for the motion in gated PET. An anesthetized dog was injected with 23 mCi FDG-18 and placed in a CTI/Siemens ECAT EXACT HR scanner. The animal was mechanically held at peak inspiration and peak expiration positions for alternate eight-second time periods. Data from each eight-second interval were stored separately, resulting in a total of 32 interleaved volume datasets for each study; half of which represented data during peak inspiration, half represented data during peak expiration. Data from each position were summed and separately reconstructed. The above protocol was repeated four times. Ungated transmission data were acquired while the animal was ventilated normally and were used to correct for the effects of attenuation. Images from each reconstruction were aligned using a cross-correlation technique, which gives the rigid-body transformation necessary to register the two volumes. Over the four sets of data a 10.8 {plus_minus} 0.7 mm magnitude translation and a 6.3 {plus_minus} 0.5 degree rotation were required to align the inspiration data with the expiration data. Consistent registration of the gated data allows summing of the data to improve statistics. Obviously, if one sums the images without regard to misregistration, blurring occurs proportional to the amount of movement over the respiratory cycle. The blurring is markedly decreased by first registering the gated datasets in image space, and then summing according to the transformation parameters. Though cardiac gating was not used in this preliminary study, it indicates that rigid body transformation followed by summation can compensate for a large portion of the image degradations due to respiratory motion. Gated acquisition of PET data using respiratory status signals via a pneumatic bellows will allow separate stages of the respiratory cycle to be collected on the ECAT EXACT HR.

  12. Importance of motion in motion-compensated temporal discrete wavelet transforms

    NASA Astrophysics Data System (ADS)

    Konrad, Janusz; Bozinovic, Nikola

    2005-03-01

    Discrete wavelet transforms (DWTs) applied temporally under motion compensation (MC) have recently become a very powerful tool in video compression, especially when implemented through lifting. A recent theoretical analysis has established conditions for perfect reconstruction in the case of transversal MC-DWT, and also for the equivalence of lifted and transversal implementations of MC-DWT. For Haar MC-DWT these conditions state that motion must be invertible, while for higher-order transforms they state that motion composition must be a well-defined operator. Since many popular motion models do not obey these properties, thus inducing errors (prior to compression), it is important to understand what is the impact of motion non-invertibility or quasi-invertibility on the performance of video compression. In this paper, we present new experimental results of a study aiming at a quantitative evaluation of such impact in case of block-based motion. We propose a new metric to measure the degree with which two motion fields are not inverses of each other. Using this metric we investigate several motion inversion schemes, from simple temporal sample-and-hold, through spatial nearest-neighbor, to advanced spline-based inversion, and we compare compression performance of each method to that of independently-estimated forward and backward motion fields. We observe that compression performance monotonically improves with the reduction of the proposed motion inversion error, up to 1-1.5dB for the advanced spline-based inversion. We also generalize the problem of "unconnected" pixels by extending it to both update and prediction steps, as opposed to the update step only used in conventional methods. Initial tests show favorable results compared to previously reported techniques.

  13. Low-complexity motion estimation for long-term memory motion compensation

    NASA Astrophysics Data System (ADS)

    Chung, Hyukjune; Ortega, Antonio; Sawchuk, Alexander A.

    2002-01-01

    Long term memory motion compensation (LTMC) is an approach to extend the temporal motion search range by using multiple decoded frames as reference frames. By employing multiple reference frames, LTMC reduces the residual frame energy significantly. However the computational complexity of motion estimation for LTMC increases significantly as well. Therefore reduction of the required computational complexity is one of the most challenging issues for LTMC. Also, if we locate motion search windows at fixed locations in a frame buffer for a given macro-block, it is highly possible that the oldest frames in a frame buffer do not contain matching blocks due to the reduced correlation between the current frame and the reference frames located further in the frame buffer. Therefore, if we can locate the motion search window at a good position adaptively in a frame buffer, we can enhance the gain performance of LTMS. In this paper, we propose a novel motion estimation algorithm for LTMC to reduce significantly the required computation complexity, and to enhance the performance of LTMC. For the proposed motion estimation algorithm, we introduce a directed search strategy. Also, we propose to employ hypothesis testing fast matching (HTFM) as a fast matching criterion. The goal of a directed search strategy is to let the location of the motion search windows change adaptively as the search proceeds to older frames in the frame buffer. The main benefit over standard, fixed window, approaches is that the algorithm can track larger motion and therefore, we can reduce the residual frame energy. In addition, because the directed search strategy keeps track of best matched blocks, we can reduce the computational complexity significantly by reducing the motion search window area in a frame buffer. Simulation results show that by employing the directed search with reduced motion search window, we can reduce the computational complexity approximately 30%-40%, and that by employing HTFM

  14. Motion compensation using origin ensembles in awake small animal positron emission tomography

    NASA Astrophysics Data System (ADS)

    Gillam, John E.; Angelis, Georgios I.; Kyme, Andre Z.; Meikle, Steven R.

    2017-02-01

    In emission tomographic imaging, the stochastic origin ensembles algorithm provides unique information regarding the detected counts given the measured data. Precision in both voxel and region-wise parameters may be determined for a single data set based on the posterior distribution of the count density allowing uncertainty estimates to be allocated to quantitative measures. Uncertainty estimates are of particular importance in awake animal neurological and behavioral studies for which head motion, unique for each acquired data set, perturbs the measured data. Motion compensation can be conducted when rigid head pose is measured during the scan. However, errors in pose measurements used for compensation can degrade the data and hence quantitative outcomes. In this investigation motion compensation and detector resolution models were incorporated into the basic origin ensembles algorithm and an efficient approach to computation was developed. The approach was validated against maximum liklihood—expectation maximisation and tested using simulated data. The resultant algorithm was then used to analyse quantitative uncertainty in regional activity estimates arising from changes in pose measurement precision. Finally, the posterior covariance acquired from a single data set was used to describe correlations between regions of interest providing information about pose measurement precision that may be useful in system analysis and design. The investigation demonstrates the use of origin ensembles as a powerful framework for evaluating statistical uncertainty of voxel and regional estimates. While in this investigation rigid motion was considered in the context of awake animal PET, the extension to arbitrary motion may provide clinical utility where respiratory or cardiac motion perturb the measured data.

  15. Compensation of intra-frame head motion in PET data with motion corrected independent component analysis (MCICA)

    NASA Astrophysics Data System (ADS)

    McKeown, Martin J.; Gadala, Marwa; Abu-Gharbieh, Rafeef

    2005-04-01

    Independent Component Analysis (ICA) has proved a powerful exploratory analysis method for fMRI. In the ICA model, the fMRI data at a given time point are modeled as the linear superposition of spatially independent (and spatially stationary) component maps. The ICA model has been recently applied to positron emission tomography (PET) data with some success (Human Brain Mapping 18:284-295(2003), IEEE Trans. BME, Naganawa et al, in press). However, in PET imaging each frame is, in fact, activity integrated over a relatively long period of time, making the assumption that the underlying component maps are spatially stationary (and hence no head movement has taken place during the frame collection) very tenuous. Here we extend the application of the ICA model to 11C-methylphenidate PET data by assuming that each frame is actually composed of the superposition of rigidly transformed underlying spatial components. We first determine the "noisy" initial spatially independent components of a data set under the erroneous assumption of no intra or inter-frame motion. Aspects of the initial components that reliably track spatial perturbations of the data are then determined to produce the motion-compensated components. Initial components included ring-like spatial distributions, indicating that movement corrupts the statistical properties of the data. The final intra-frame motion-compensated components included more plausible symmetric and robust activity in the striatum as would be expected compared to the raw data and the initial components. We conclude that 1) intra-frame motion is a serious confound in PET imaging which affects the statistical properties of the data and 2) our proposed procedure ameliorates such motion effects.

  16. Friction Effects on Inertia Compensators used for Heliostat Base Motion Isolation.

    DTIC Science & Technology

    The base motion isolation of an optical beam deflector with a two-axis gimbal support ( heliostat ) is discussed. The use of an auxiliary inertia...coupled between the elevation gimbal and the heliostat mirror to produce a compensating torque referred to as a gear compensator and a belt compensator

  17. Spillover Compensation in the Presence of Respiratory Motion Embedded in SPECT Perfusion Data.

    PubMed

    Pretorius, P Hendrik; King, Michael A

    2008-01-01

    Spillover from adjacent significant accumulations of extra-cardiac activity decreases diagnostic accuracy of SPECT perfusion imaging in especially the inferior/septal cardiac region. One method of compensating for the spillover at some location outside of a structure is to estimate it as the counts blurred into this location when a template (3D model) of the structure undergoes simulated imaging followed by reconstruction. The objective of this study was to determine what impact uncorrected respiratory motion has on such spillover compensation of extra-cardiac activity in the right coronary artery (RCA) territory, and if it is possible to use manual segmentation to define the extra-cardiac activity template(s) used in spillover correction. Two separate MCAT phantoms (128(3) matrices) were simulated to represent the source and attenuation distributions of patients with and without respiratory motion. For each phantom the heart was modeled: 1) with a normal perfusion pattern and 2) with an RCA defect equal to 50% of the normal myocardium count level. After Monte Carlo simulation of 64 × 64 × 120 projections with appropriate noise, data were reconstructed using the rescaled block iterative (RBI) algorithm with 30 subsets and 5 iterations with compensation for attenuation, scatter and resolution. A 3D Gaussian post-filter with a sigma of 0.476 cm was used to suppress noise. Manual segmentation of the liver in filtered emission slices was used to create 3D binary templates. The true liver distribution (with and without respiratory motion included) was also used as binary templates. These templates were projected using a ray-driven projector simulating the imaging system with the exclusion of Compton scatter and reconstructed using the same protocol as for the emission data, excluding scatter compensation. Reconstructed templates were scaled using reconstructed emission count levels from the liver, and spillover subtracted outside the template. It was evident from the

  18. Respiratory motion tracking of skin and liver in swine for Cyberknife motion compensation

    NASA Astrophysics Data System (ADS)

    Tang, Jonathan; Dieterich, Sonja; Cleary, Kevin R.

    2004-05-01

    In this study, we collected respiratory motion data of external skin markers and internal liver fiducials from several swine. The POLARIS infrared tracking system was used for recording reflective markers placed on the swine"s abdomen. The AURORA electromagnetic tracking system was used for recording 2 tracked needles implanted into the liver. This data will be used to develop correlation models between external skin movement and internal organ movement, which is the first step towards the ability to compensate for respiratory movement of the lesion. We are also developing a motion simulator for validation of our model and dose verification of mobile lesions in the CYBERKNIFE Suite. We believe that this research could provide significant information towards the development of precise radiation treatment of mobile target volumes.

  19. Global motion compensated visual attention-based video watermarking

    NASA Astrophysics Data System (ADS)

    Oakes, Matthew; Bhowmik, Deepayan; Abhayaratne, Charith

    2016-11-01

    Imperceptibility and robustness are two key but complementary requirements of any watermarking algorithm. Low-strength watermarking yields high imperceptibility but exhibits poor robustness. High-strength watermarking schemes achieve good robustness but often suffer from embedding distortions resulting in poor visual quality in host media. This paper proposes a unique video watermarking algorithm that offers a fine balance between imperceptibility and robustness using motion compensated wavelet-based visual attention model (VAM). The proposed VAM includes spatial cues for visual saliency as well as temporal cues. The spatial modeling uses the spatial wavelet coefficients while the temporal modeling accounts for both local and global motion to arrive at the spatiotemporal VAM for video. The model is then used to develop a video watermarking algorithm, where a two-level watermarking weighting parameter map is generated from the VAM saliency maps using the saliency model and data are embedded into the host image according to the visual attentiveness of each region. By avoiding higher strength watermarking in the visually attentive region, the resulting watermarked video achieves high perceived visual quality while preserving high robustness. The proposed VAM outperforms the state-of-the-art video visual attention methods in joint saliency detection and low computational complexity performance. For the same embedding distortion, the proposed visual attention-based watermarking achieves up to 39% (nonblind) and 22% (blind) improvement in robustness against H.264/AVC compression, compared to existing watermarking methodology that does not use the VAM. The proposed visual attention-based video watermarking results in visual quality similar to that of low-strength watermarking and a robustness similar to those of high-strength watermarking.

  20. Pulmonary imaging using respiratory motion compensated simultaneous PET/MR

    PubMed Central

    Dutta, Joyita; Huang, Chuan; Li, Quanzheng; El Fakhri, Georges

    2015-01-01

    Purpose: Pulmonary positron emission tomography (PET) imaging is confounded by blurring artifacts caused by respiratory motion. These artifacts degrade both image quality and quantitative accuracy. In this paper, the authors present a complete data acquisition and processing framework for respiratory motion compensated image reconstruction (MCIR) using simultaneous whole body PET/magnetic resonance (MR) and validate it through simulation and clinical patient studies. Methods: The authors have developed an MCIR framework based on maximum a posteriori or MAP estimation. For fast acquisition of high quality 4D MR images, the authors developed a novel Golden-angle RAdial Navigated Gradient Echo (GRANGE) pulse sequence and used it in conjunction with sparsity-enforcing k-t FOCUSS reconstruction. The authors use a 1D slice-projection navigator signal encapsulated within this pulse sequence along with a histogram-based gate assignment technique to retrospectively sort the MR and PET data into individual gates. The authors compute deformation fields for each gate via nonrigid registration. The deformation fields are incorporated into the PET data model as well as utilized for generating dynamic attenuation maps. The framework was validated using simulation studies on the 4D XCAT phantom and three clinical patient studies that were performed on the Biograph mMR, a simultaneous whole body PET/MR scanner. Results: The authors compared MCIR (MC) results with ungated (UG) and one-gate (OG) reconstruction results. The XCAT study revealed contrast-to-noise ratio (CNR) improvements for MC relative to UG in the range of 21%–107% for 14 mm diameter lung lesions and 39%–120% for 10 mm diameter lung lesions. A strategy for regularization parameter selection was proposed, validated using XCAT simulations, and applied to the clinical studies. The authors’ results show that the MC image yields 19%–190% increase in the CNR of high-intensity features of interest affected by

  1. Five-dimensional motion compensation for respiratory and cardiac motion with cone-beam CT of the thorax region

    NASA Astrophysics Data System (ADS)

    Sauppe, Sebastian; Hahn, Andreas; Brehm, Marcus; Paysan, Pascal; Seghers, Dieter; Kachelrieß, Marc

    2016-03-01

    We propose an adapted method of our previously published five-dimensional (5D) motion compensation (MoCo) algorithm1, developed for micro-CT imaging of small animals, to provide for the first time motion artifact-free 5D cone-beam CT (CBCT) images from a conventional flat detector-based CBCT scan of clinical patients. Image quality of retrospectively respiratory- and cardiac-gated volumes from flat detector CBCT scans is deteriorated by severe sparse projection artifacts. These artifacts further complicate motion estimation, as it is required for MoCo image reconstruction. For high quality 5D CBCT images at the same x-ray dose and the same number of projections as todays 3D CBCT we developed a double MoCo approach based on motion vector fields (MVFs) for respiratory and cardiac motion. In a first step our already published four-dimensional (4D) artifact-specific cyclic motion-compensation (acMoCo) approach is applied to compensate for the respiratory patient motion. With this information a cyclic phase-gated deformable heart registration algorithm is applied to the respiratory motion-compensated 4D CBCT data, thus resulting in cardiac MVFs. We apply these MVFs on double-gated images and thereby respiratory and cardiac motion-compensated 5D CBCT images are obtained. Our 5D MoCo approach processing patient data acquired with the TrueBeam 4D CBCT system (Varian Medical Systems). Our double MoCo approach turned out to be very efficient and removed nearly all streak artifacts due to making use of 100% of the projection data for each reconstructed frame. The 5D MoCo patient data show fine details and no motion blurring, even in regions close to the heart where motion is fastest.

  2. Quantitative PET image reconstruction employing nested expectation-maximization deconvolution for motion compensation.

    PubMed

    Karakatsanis, Nicolas A; Tsoumpas, Charalampos; Zaidi, Habib

    2016-11-16

    Bulk body motion may randomly occur during PET acquisitions introducing blurring, attenuation-emission mismatches and, in dynamic PET, discontinuities in the measured time activity curves between consecutive frames. Meanwhile, dynamic PET scans are longer, thus increasing the probability of bulk motion. In this study, we propose a streamlined 3D PET motion-compensated image reconstruction (3D-MCIR) framework, capable of robustly deconvolving intra-frame motion from a static or dynamic 3D sinogram. The presented 3D-MCIR methods need not partition the data into multiple gates, such as 4D MCIR algorithms, or access list-mode (LM) data, such as LM MCIR methods, both associated with increased computation or memory resources. The proposed algorithms can support compensation for any periodic and non-periodic motion, such as cardio-respiratory or bulk motion, the latter including rolling, twisting or drifting. Inspired from the widely adopted point-spread function (PSF) deconvolution 3D PET reconstruction techniques, here we introduce an image-based 3D generalized motion deconvolution method within the standard 3D maximum-likelihood expectation-maximization (ML-EM) reconstruction framework. In particular, we initially integrate a motion blurring kernel, accounting for every tracked motion within a frame, as an additional MLEM modeling component in the image space (integrated 3D-MCIR). Subsequently, we replaced the integrated model component with a nested iterative Richardson-Lucy (RL) image-based deconvolution method to accelerate the MLEM algorithm convergence rate (RL-3D-MCIR). The final method was evaluated with realistic simulations of whole-body dynamic PET data employing the XCAT phantom and real human bulk motion profiles, the latter estimated from volunteer dynamic MRI scans. In addition, metabolic uptake rate Ki parametric images were generated with the standard Patlak method. Our results demonstrate significant improvement in contrast-to-noise ratio (CNR) and

  3. Image-based motion compensation for high-resolution extremities cone-beam CT

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Stayman, J. W.; Cao, Q.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2016-03-01

    Purpose: Cone-beam CT (CBCT) of the extremities provides high spatial resolution, but its quantitative accuracy may be challenged by involuntary sub-mm patient motion that cannot be eliminated with simple means of external immobilization. We investigate a two-step iterative motion compensation based on a multi-component metric of image sharpness. Methods: Motion is considered with respect to locally rigid motion within a particular region of interest, and the method supports application to multiple locally rigid regions. Motion is estimated by maximizing a cost function with three components: a gradient metric encouraging image sharpness, an entropy term that favors high contrast and penalizes streaks, and a penalty term encouraging smooth motion. Motion compensation involved initial coarse estimation of gross motion followed by estimation of fine-scale displacements using high resolution reconstructions. The method was evaluated in simulations with synthetic motion (1-4 mm) applied to a wrist volume obtained on a CMOS-based CBCT testbench. Structural similarity index (SSIM) quantified the agreement between motion-compensated and static data. The algorithm was also tested on a motion contaminated patient scan from dedicated extremities CBCT. Results: Excellent correction was achieved for the investigated range of displacements, indicated by good visual agreement with the static data. 10-15% improvement in SSIM was attained for 2-4 mm motions. The compensation was robust against increasing motion (4% decrease in SSIM across the investigated range, compared to 14% with no compensation). Consistent performance was achieved across a range of noise levels. Significant mitigation of artifacts was shown in patient data. Conclusion: The results indicate feasibility of image-based motion correction in extremities CBCT without the need for a priori motion models, external trackers, or fiducials.

  4. Image-Based Motion Compensation for High-Resolution Extremities Cone-Beam CT

    PubMed Central

    Sisniega, A.; Stayman, J. W.; Cao, Q.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2016-01-01

    Purpose Cone-beam CT (CBCT) of the extremities provides high spatial resolution, but its quantitative accuracy may be challenged by involuntary sub-mm patient motion that cannot be eliminated with simple means of external immobilization. We investigate a two-step iterative motion compensation based on a multi-component metric of image sharpness. Methods Motion is considered with respect to locally rigid motion within a particular region of interest, and the method supports application to multiple locally rigid regions. Motion is estimated by maximizing a cost function with three components: a gradient metric encouraging image sharpness, an entropy term that favors high contrast and penalizes streaks, and a penalty term encouraging smooth motion. Motion compensation involved initial coarse estimation of gross motion followed by estimation of fine-scale displacements using high resolution reconstructions. The method was evaluated in simulations with synthetic motion (1–4 mm) applied to a wrist volume obtained on a CMOS-based CBCT testbench. Structural similarity index (SSIM) quantified the agreement between motion-compensated and static data. The algorithm was also tested on a motion contaminated patient scan from dedicated extremities CBCT. Results Excellent correction was achieved for the investigated range of displacements, indicated by good visual agreement with the static data. 10–15% improvement in SSIM was attained for 2–4 mm motions. The compensation was robust against increasing motion (4% decrease in SSIM across the investigated range, compared to 14% with no compensation). Consistent performance was achieved across a range of noise levels. Significant mitigation of artifacts was shown in patient data. Conclusion The results indicate feasibility of image-based motion correction in extremities CBCT without the need for a priori motion models, external trackers, or fiducials. PMID:27346909

  5. PET Motion Compensation for Radiation Therapy Using a CT-Based Mid-Position Motion Model: Methodology and Clinical Evaluation

    SciTech Connect

    Kruis, Matthijs F.; Kamer, Jeroen B. van de; Houweling, Antonetta C.; Sonke, Jan-Jakob; Belderbos, José S.A.; Herk, Marcel van

    2013-10-01

    Purpose: Four-dimensional positron emission tomography (4D PET) imaging of the thorax produces sharper images with reduced motion artifacts. Current radiation therapy planning systems, however, do not facilitate 4D plan optimization. When images are acquired in a 2-minute time slot, the signal-to-noise ratio of each 4D frame is low, compromising image quality. The purpose of this study was to implement and evaluate the construction of mid-position 3D PET scans, with motion compensated using a 4D computed tomography (CT)-derived motion model. Methods and Materials: All voxels of 4D PET were registered to the time-averaged position by using a motion model derived from the 4D CT frames. After the registration the scans were summed, resulting in a motion-compensated 3D mid-position PET scan. The method was tested with a phantom dataset as well as data from 27 lung cancer patients. Results: PET motion compensation using a CT-based motion model improved image quality of both phantoms and patients in terms of increased maximum SUV (SUV{sub max}) values and decreased apparent volumes. In homogenous phantom data, a strong relationship was found between the amplitude-to-diameter ratio and the effects of the method. In heterogeneous patient data, the effect correlated better with the motion amplitude. In case of large amplitudes, motion compensation may increase SUV{sub max} up to 25% and reduce the diameter of the 50% SUV{sub max} volume by 10%. Conclusions: 4D CT-based motion-compensated mid-position PET scans provide improved quantitative data in terms of uptake values and volumes at the time-averaged position, thereby facilitating more accurate radiation therapy treatment planning of pulmonary lesions.

  6. Intrinsic feature-based pose measurement for imaging motion compensation

    DOEpatents

    Baba, Justin S.; Goddard, Jr., James Samuel

    2014-08-19

    Systems and methods for generating motion corrected tomographic images are provided. A method includes obtaining first images of a region of interest (ROI) to be imaged and associated with a first time, where the first images are associated with different positions and orientations with respect to the ROI. The method also includes defining an active region in the each of the first images and selecting intrinsic features in each of the first images based on the active region. Second, identifying a portion of the intrinsic features temporally and spatially matching intrinsic features in corresponding ones of second images of the ROI associated with a second time prior to the first time and computing three-dimensional (3D) coordinates for the portion of the intrinsic features. Finally, the method includes computing a relative pose for the first images based on the 3D coordinates.

  7. MR-Based Cardiac and Respiratory Motion-Compensation Techniques for PET-MR Imaging.

    PubMed

    Munoz, Camila; Kolbitsch, Christoph; Reader, Andrew J; Marsden, Paul; Schaeffter, Tobias; Prieto, Claudia

    2016-04-01

    Cardiac and respiratory motion cause image quality degradation in PET imaging, affecting diagnostic accuracy of the images. Whole-body simultaneous PET-MR scanners allow for using motion information estimated from MR images to correct PET data and produce motion-compensated PET images. This article reviews methods that have been proposed to estimate motion from MR images and different techniques to include this information in PET reconstruction, in order to overcome the problem of cardiac and respiratory motion in PET-MR imaging. MR-based motion correction techniques significantly increase lesion detectability and contrast, and also improve accuracy of uptake values in PET images.

  8. List mode reconstruction for PET with motion compensation: A simulation study

    SciTech Connect

    Qi, Jinyi; Huesman, Ronald H.

    2002-07-01

    Motion artifacts can be a significant factor that limits the image quality in high-resolution PET. Surveillance systems have been developed to track the movements of the subject during a scan. Development of reconstruction algorithms that are able to compensate for the subject motion will increase the potential of PET. In this paper we present a list mode likelihood reconstruction algorithm with the ability of motion compensation. The subject motion is explicitly modeled in the likelihood function. The detections of each detector pair are modeled as a Poisson process with time-varying rate function. The proposed method has several advantages over the existing methods. It uses all detected events and does not introduce any interpolation error. Computer simulations show that the proposed method can compensate simulated subject movements and that the reconstructed images have no visible motion artifacts.

  9. Filtering of intended motion for real-time tremor compensation in human upper limb using surface electromyography.

    PubMed

    Widjaja, Ferdinan; Shee, Cheng Yap; Poignet, Philippe; Ang, Wei Tech

    2009-01-01

    The recorded motion from (pathological) tremor patient may consist of the involuntary tremulous component and the intended motion. These two components have to be separated so that the actuation part will be able to suppress only the tremor. This paper proposes an algorithm to remove the intended motion by using an extended Kalman filter with the help of adaptive high-pass filter. The effectiveness of the algorithm is also shown in the presence of stimulation artifacts. It is part of the active pathological tremor compensation project for human upper limb.

  10. List mode reconstruction for PET with motion compensation: A simulation study

    SciTech Connect

    Qi, Jinyi; Huesman, Ronald H.

    2002-07-03

    Motion artifacts can be a significant factor that limits the image quality in high-resolution PET. Surveillance systems have been developed to track the movements of the subject during a scan. Development of reconstruction algorithms that are able to compensate for the subject motion will increase the potential of PET. In this paper we present a list mode likelihood reconstruction algorithm with the ability of motion compensation. The subject moti is explicitly modeled in the likelihood function. The detections of each detector pair are modeled as a Poisson process with time vary ingrate function. The proposed method has several advantages over the existing methods. It uses all detected events and does not introduce any interpolation error. Computer simulations show that the proposed method can compensate simulated subject movements and that the reconstructed images have no visible motion artifacts.

  11. Verification and compensation of respiratory motion using an ultrasound imaging system

    SciTech Connect

    Chuang, Ho-Chiao Hsu, Hsiao-Yu; Chiu, Wei-Hung; Tien, Der-Chi; Wu, Ren-Hong; Hsu, Chung-Hsien

    2015-03-15

    Purpose: The purpose of this study was to determine if it is feasible to use ultrasound imaging as an aid for moving the treatment couch during diagnosis and treatment procedures associated with radiation therapy, in order to offset organ displacement caused by respiratory motion. A noninvasive ultrasound system was used to replace the C-arm device during diagnosis and treatment with the aims of reducing the x-ray radiation dose on the human body while simultaneously being able to monitor organ displacements. Methods: This study used a proposed respiratory compensating system combined with an ultrasound imaging system to monitor the compensation effect of respiratory motion. The accuracy of the compensation effect was verified by fluoroscopy, which means that fluoroscopy could be replaced so as to reduce unnecessary radiation dose on patients. A respiratory simulation system was used to simulate the respiratory motion of the human abdomen and a strain gauge (respiratory signal acquisition device) was used to capture the simulated respiratory signals. The target displacements could be detected by an ultrasound probe and used as a reference for adjusting the gain value of the respiratory signal used by the respiratory compensating system. This ensured that the amplitude of the respiratory compensation signal was a faithful representation of the target displacement. Results: The results show that performing respiratory compensation with the assistance of the ultrasound images reduced the compensation error of the respiratory compensating system to 0.81–2.92 mm, both for sine-wave input signals with amplitudes of 5, 10, and 15 mm, and human respiratory signals; this represented compensation of the respiratory motion by up to 92.48%. In addition, the respiratory signals of 10 patients were captured in clinical trials, while their diaphragm displacements were observed simultaneously using ultrasound. Using the respiratory compensating system to offset, the diaphragm

  12. Risk compensation behaviours in construction workers' activities.

    PubMed

    Feng, Yingbin; Wu, Peng

    2015-01-01

    The purpose of this study was to test whether the construction workers have the tendency of engaging in risk compensation behaviours, and identify the demographic variables, which may influence the extent to which the construction workers may show risk compensation behaviours. Both quantitative (survey) and qualitative (interviews) approaches were used in this study. A questionnaire survey was conducted with all the construction workers on three building construction sites of a leading construction company in Australia. Semi-structured interviews were then conducted to validate the findings of the quantitative research. The findings indicate that workers tend to show risk compensation behaviours in the construction environment. The workers with more working experience, higher education, or having never been injured at work before have a higher tendency to show risk compensation in their activities than the others. The implication is that contractors need to assess the potential influence of workers' risk compensation behaviours when evaluating the effect of risk control measures. It is recommended that supervisors pay more attention to the behavioural changes of those workers who have more experience, higher education, and have never been injured before after the implementation of new safety control measures on construction site.

  13. Active-heave compensation benefits North Sea operations

    SciTech Connect

    1997-04-01

    Active-heave-compensation (AHC) systems have become prominent in semisubmersible drilling-rig (SDR) operations. The increasing number of retrofit AHC systems being introduced to the semisubmersible fleet has permitted actual comparisons and field evaluation of semisubmersibles having AHC systems with similar semisubmersibles having passive compensation only. The passive drillstring compensator (PDC) was designed to allow floating drilling rigs to maintain a near-constant load while in operation. The PDC can be described as damping or a low-rate spring device used to reduce disturbance or load variation caused by wave motion. The term active refers to the ability to react to movement, in real time, and maintain a high degree of hook-load stability. AHC, therefore, means the ability to keep the load (drillstring) in a stable position in reference to the seabed or well bottom throughout all the floating drilling rig`s heave motion. The AHC system comprises an actuating accumulator cylinder, heave sensors, a control unit (computer), an operator panel, and a hydraulic-power unit.

  14. Geometric Properties of a Mechanical Forward Motion Compensation System Controlled by a Piezoelectric Drive

    NASA Astrophysics Data System (ADS)

    Collette, F.; Gline, S.; Losseau, J.; Lecharlier, L.

    2012-07-01

    Forward Motion Compensation (FMC) systems have been designed to ensure the radiometric quality of motion acquisition in airborne cameras. If the radiometric benefits of FMC have been acknowledged, what are its effects on the geometrical properties of the camera? This paper demonstrates that FMC significantly improves geometrical properties of a camera. Aspects of FMC theory are discussed, with a focus on the near-lossless implementation of this technology into digital aerial camera systems. Among mechanical FMC technologies, the piezoelectric drive is proving to excel in dynamic positioning in both accuracy and repeatability. The patented piezoelectric drive integrated into Optech aerial camera systems allows for continuous and precise sensor motion to ensure exact compensation of the aircraft's forward motion. This paper presents findings that demonstrate the validity of this assertion. The paper also discusses the physical principles involved in motion acquisition. Equations are included that define the motion effect at image level and illustrate how FMC acts to prevent motion effects. The residual motion effect or compensation error is formulated and a practical computation applied to the more restrictive camera case. The assessment concludes that, in the range of airborne camera utilization, the mechanical FMC technique is free of "visible" error at both human eye and computer assessment level. Lastly, the paper proceeds to a detailed technical discussion of piezoelectric drives and why they have proven to be so effective as nanopositioning devices for optical applications. The effectiveness of the patented piezoelectric drives used to achieve FMC in Optech cameras is conclusively demonstrated.

  15. Respiratory motion compensation algorithm of ultrasound hepatic perfusion data acquired in free-breathing

    NASA Astrophysics Data System (ADS)

    Wu, Kaizhi; Zhang, Xuming; Chen, Guangxie; Weng, Fei; Ding, Mingyue

    2013-10-01

    Images acquired in free breathing using contrast enhanced ultrasound exhibit a periodic motion that needs to be compensated for if a further accurate quantification of the hepatic perfusion analysis is to be executed. In this work, we present an algorithm to compensate the respiratory motion by effectively combining the PCA (Principal Component Analysis) method and block matching method. The respiratory kinetics of the ultrasound hepatic perfusion image sequences was firstly extracted using the PCA method. Then, the optimal phase of the obtained respiratory kinetics was detected after normalizing the motion amplitude and determining the image subsequences of the original image sequences. The image subsequences were registered by the block matching method using cross-correlation as the similarity. Finally, the motion-compensated contrast images can be acquired by using the position mapping and the algorithm was evaluated by comparing the TICs extracted from the original image sequences and compensated image subsequences. Quantitative comparisons demonstrated that the average fitting error estimated of ROIs (region of interest) was reduced from 10.9278 +/- 6.2756 to 5.1644 +/- 3.3431 after compensating.

  16. Phase noise from aircraft motion: Compensation and effect on synthetic aperture radar images

    NASA Technical Reports Server (NTRS)

    Gabriel, Andrew K.; Goldstein, Richard M.

    1986-01-01

    Image degradation of airborne SAR imagery caused by phase errors introduced in the received signal by aircraft motion is discussed. Mechanical motion has a small bandwidth and does not affect the range signal, where the total echo time is typically 60 microsec. However, since the aperture length can be several seconds, the synthesized azimuth signal can have significant errors of which phase noise is the most important. An inertial navigation system can be used to compensate for these errors when processing the images. Calculations to evaluate how much improvement results from compensation are outlined.

  17. Compensation of skull motion and breathing motion in CT using data-based and image-based metrics, respectively

    NASA Astrophysics Data System (ADS)

    Bruder, H.; Rohkohl, C.; Stierstorfer, K.; Flohr, T.

    2016-03-01

    We present a novel reconstruction for motion correction of non-cardiac organs. With non-cooperative patients or in emergency case, breathing motion or motion of the skull may compromise image quality. Our algorithm is based on the optimization of either motion artefact metrics or data-driven metrics. This approach was successfully applied in cardiac CTA [1]. While motion correction of the coronary vessels requires a local motion model, global motion models are sufficient for organs like the lung or the skull. The parameter vector for the global affine motion is estimated iteratively, using the open source optimization library NLOPT. The image is updated using motion compensated reconstruction in each of the iterations. Evaluation of the metric value, e.g. the image entropy, provides information for the next iteration loop. After reaching the fixed point of the iteration, the final motion parameters are used for a motion-compensated full quality reconstruction. In head imaging the motion model is based on translation and rotation, in thoracic imaging the rotation is replaced by non-isotropic scaling in all three dimensions. We demonstrate the efficiency of the method in thoracic imaging by evaluating PET-CT data from free-breathing patients. In neuro imaging, data from stroke patients showing skull tremor were analyzed. It was shown that motion artefacts can be largely reduced and spatial resolution was restored. In head imaging, similar results can be obtained using motion artefact metrics or data-driven metrics. In case of image-based metrics, the entropy of the image proved to be superior. Breathing motion could also be significantly reduced using entropy metric. However, in this case data driven metrics cannot be applied because the line integrals associated to the ROI of the lung have to be computed using the local ROI mechanism [2] It was shown that the lung signal is corrupted by signals originating from the complement of the lung. Thus a meaningful

  18. Motion compensation and noise tolerance in phase-shifting digital in-line holography.

    PubMed

    Stenner, Michael D; Neifeld, Mark A

    2006-05-15

    We present a technique for phase-shifting digital in-line holography which compensates for lateral object motion. By collecting two frames of interference between object and reference fields with identical reference phase, one can estimate the lateral motion that occurred between frames using the cross-correlation. We also describe a very general linear framework for phase-shifting holographic reconstruction which minimizes additive white Gaussian noise (AWGN) for an arbitrary set of reference field amplitudes and phases. We analyze the technique's sensitivity to noise (AWGN, quantization, and shot), errors in the reference fields, errors in motion estimation, resolution, and depth of field. We also present experimental motion-compensated images achieving the expected resolution.

  19. Local motion-compensated method for high-quality 3D coronary artery reconstruction

    PubMed Central

    Liu, Bo; Bai, Xiangzhi; Zhou, Fugen

    2016-01-01

    The 3D reconstruction of coronary artery from X-ray angiograms rotationally acquired on C-arm has great clinical value. While cardiac-gated reconstruction has shown promising results, it suffers from the problem of residual motion. This work proposed a new local motion-compensated reconstruction method to handle this issue. An initial image was firstly reconstructed using a regularized iterative reconstruction method. Then a 3D/2D registration method was proposed to estimate the residual vessel motion. Finally, the residual motion was compensated in the final reconstruction using the extended iterative reconstruction method. Through quantitative evaluation, it was found that high-quality 3D reconstruction could be obtained and the result was comparable to state-of-the-art method. PMID:28018741

  20. Local motion-compensated method for high-quality 3D coronary artery reconstruction.

    PubMed

    Liu, Bo; Bai, Xiangzhi; Zhou, Fugen

    2016-12-01

    The 3D reconstruction of coronary artery from X-ray angiograms rotationally acquired on C-arm has great clinical value. While cardiac-gated reconstruction has shown promising results, it suffers from the problem of residual motion. This work proposed a new local motion-compensated reconstruction method to handle this issue. An initial image was firstly reconstructed using a regularized iterative reconstruction method. Then a 3D/2D registration method was proposed to estimate the residual vessel motion. Finally, the residual motion was compensated in the final reconstruction using the extended iterative reconstruction method. Through quantitative evaluation, it was found that high-quality 3D reconstruction could be obtained and the result was comparable to state-of-the-art method.

  1. Evaluation of Rigid-Body Motion Compensation in Cardiac Perfusion SPECT Employing Polar-Map Quantification.

    PubMed

    Pretorius, P Hendrik; Johnson, Karen L; King, Michael A

    2016-06-01

    We have recently been successful in the development and testing of rigid-body motion tracking, estimation and compensation for cardiac perfusion SPECT based on a visual tracking system (VTS). The goal of this study was to evaluate in patients the effectiveness of our rigid-body motion compensation strategy. Sixty-four patient volunteers were asked to remain motionless or execute some predefined body motion during an additional second stress perfusion acquisition. Acquisitions were performed using the standard clinical protocol with 64 projections acquired through 180 degrees. All data were reconstructed with an ordered-subsets expectation-maximization (OSEM) algorithm using 4 projections per subset and 5 iterations. All physical degradation factors were addressed (attenuation, scatter, and distance dependent resolution), while a 3-dimensional Gaussian rotator was used during reconstruction to correct for six-degree-of-freedom (6-DOF) rigid-body motion estimated by the VTS. Polar map quantification was employed to evaluate compensation techniques. In 54.7% of the uncorrected second stress studies there was a statistically significant difference in the polar maps, and in 45.3% this made a difference in the interpretation of segmental perfusion. Motion correction reduced the impact of motion such that with it 32.8 % of the polar maps were statistically significantly different, and in 14.1% this difference changed the interpretation of segmental perfusion. The improvement shown in polar map quantitation translated to visually improved uniformity of the SPECT slices.

  2. A motion-compensated cone-beam CT using electrical impedance tomography imaging.

    PubMed

    Pengpan, T; Smith, N D; Qiu, W; Yao, A; Mitchell, C N; Soleimani, M

    2011-01-01

    Cone-beam CT (CBCT) is an imaging technique used in conjunction with radiation therapy. For example CBCT is used to verify the position of lung cancer tumours just prior to radiation treatment. The accuracy of the radiation treatment of thoracic and upper abdominal structures is heavily affected by respiratory movement. Such movement typically blurs the CBCT reconstruction and ideally should be removed. Hence motion-compensated CBCT has recently been researched for correcting image artefacts due to breathing motion. This paper presents a new dual-modality approach where CBCT is aided by using electrical impedance tomography (EIT) for motion compensation. EIT can generate images of contrasts in electrical properties. The main advantage of using EIT is its high temporal resolution. In this paper motion information is extracted from EIT images and incorporated directly in the CBCT reconstruction. In this study synthetic moving data are generated using simulated and experimental phantoms. The paper demonstrates that image blur, created as a result of motion, can be reduced through motion compensation with EIT.

  3. Image-based iterative compensation of motion artifacts in computed tomography

    SciTech Connect

    Schretter, Colas; Rose, Georg; Bertram, Matthias

    2009-11-15

    Purpose: This article presents an iterative method for compensation of motion artifacts for slowly rotating computed tomography (CT) systems. Patient's motion introduces inconsistencies among projections and yields severe reconstruction artifacts for free-breathing acquisitions. Streaks and doubling of structures can appear and the resolution is limited by strong blurring. Methods: The rationale of the proposed motion compensation method is to iteratively correct the reconstructed image by first decomposing the perceived motion in projection space, then reconstructing the motion artifacts in image space, and finally subtracting the artifacts from an initial image. The initial image is reconstructed from the acquired data and might contain motion blur artifacts but, nevertheless, is considered as a reference for estimating the reconstruction artifacts. Results: Qualitative and quantitative figures are shown for experiments based on numerically simulated projections of a sequence of clinical images resulting from a respiratory-gated helical CT acquisition. The border of the diaphragm becomes progressively sharper and the contrast improves for small structures in the lungs. Conclusions: The originality of the technique stems from the fact that the patient motion is not explicitly estimated but the motion artifacts are reconstructed in image space. This approach could provide sharp static anatomical images on interventional C-arm systems or on slowly rotating X-ray equipments in radiotherapy.

  4. Block-classified bidirectional motion compensation scheme for wavelet-decomposed digital video

    SciTech Connect

    Zafar, S.; Zhang, Y.Q.; Jabbari, B.

    1997-08-01

    In this paper the authors introduce a block-classified bidirectional motion compensation scheme for the previously developed wavelet-based video codec, where multiresolution motion estimation is performed in the wavelet domain. The frame classification structure described in this paper is similar to that used in the MPEG standard. Specifically, the I-frames are intraframe coded, the P-frames are interpolated from a previous I- or a P-frame, and the B-frames are bidirectional interpolated frames. They apply this frame classification structure to the wavelet domain with variable block sizes and multiresolution representation. They use a symmetric bidirectional scheme for the B-frames and classify the motion blocks as intraframe, compensated either from the preceding or the following frame, or bidirectional (i.e., compensated based on which type yields the minimum energy). They also introduce the concept of F-frames, which are analogous to P-frames but are predicted from the following frame only. This improves the overall quality of the reconstruction in a group of pictures (GOP) but at the expense of extra buffering. They also study the effect of quantization of the I-frames on the reconstruction of a GOP, and they provide intuitive explanation for the results. In addition, the authors study a variety of wavelet filter-banks to be used in a multiresolution motion-compensated hierarchical video codec.

  5. Transversal versus lifting approach to motion-compensated temporal discrete wavelet transform of image sequences: equivalence and tradeoffs

    NASA Astrophysics Data System (ADS)

    Konrad, Janusz

    2004-01-01

    Lifting-based implementations of various discrete wavelet transforms applied in the temporal direction under motion compensation have recently become a very powerful tool in video compression research. We present in this paper a theoretical analysis of motion compensation in both transversal and lifted implementations of such transforms. We derive conditions for perfect reconstruction in the case of motion-compensated transversal discrete wavelet transform. We also derive conditions on motion transformation assuring that a motion-compensated lifting scheme is exactly equivalent to its transversal counterpart. In general, these conditions require that motion transformation allow composition and be invertible. Unfortunately, many motion models do not obey these properties, thus inducing subband decomposition errors (prior to compression). We propose an alternative approach to motion compensation in the case of Haar transform. This new approach poses no constraints on motion; motion-compensated lifted Haar transform exactly implements its transversal implementation, and the latter obeys perfect reconstruction, both regardless of motion transformation used. This new approach, however, does not extend to the 5/3 or any higher-order discrete wavelet transform.

  6. 3D dosimetric validation of motion compensation concepts in radiotherapy using an anthropomorphic dynamic lung phantom.

    PubMed

    Mann, P; Witte, M; Moser, T; Lang, C; Runz, A; Johnen, W; Berger, M; Biederer, J; Karger, C P

    2017-01-21

    In this study, we developed a new setup for the validation of clinical workflows in adaptive radiation therapy, which combines a dynamic ex vivo porcine lung phantom and three-dimensional (3D) polymer gel dosimetry. The phantom consists of an artificial PMMA-thorax and contains a post mortem explanted porcine lung to which arbitrary breathing patterns can be applied. A lung tumor was simulated using the PAGAT (polyacrylamide gelatin gel fabricated at atmospheric conditions) dosimetry gel, which was evaluated in three dimensions by magnetic resonance imaging (MRI). To avoid bias by reaction with oxygen and other materials, the gel was collocated inside a BAREX(™) container. For calibration purposes, the same containers with eight gel samples were irradiated with doses from 0 to 7 Gy. To test the technical feasibility of the system, a small spherical dose distribution located completely within the gel volume was planned. Dose delivery was performed under static and dynamic conditions of the phantom with and without motion compensation by beam gating. To verify clinical target definition and motion compensation concepts, the entire gel volume was homogeneously irradiated applying adequate margins in case of the static phantom and an additional internal target volume in case of dynamically operated phantom without and with gated beam delivery. MR-evaluation of the gel samples and comparison of the resulting 3D dose distribution with the planned dose distribution revealed a good agreement for the static phantom. In case of the dynamically operated phantom without motion compensation, agreement was very poor while additional application of motion compensation techniques restored the good agreement between measured and planned dose. From these experiments it was concluded that the set up with the dynamic and anthropomorphic lung phantom together with 3D-gel dosimetry provides a valuable and versatile tool for geometrical and dosimetrical validation of motion compensated

  7. Prostate implant reconstruction from C-arm images with motion-compensated tomosynthesis

    SciTech Connect

    Dehghan, Ehsan; Moradi, Mehdi; Wen, Xu; French, Danny; Lobo, Julio; Morris, W. James; Salcudean, Septimiu E.; Fichtinger, Gabor

    2011-10-15

    Purpose: Accurate localization of prostate implants from several C-arm images is necessary for ultrasound-fluoroscopy fusion and intraoperative dosimetry. The authors propose a computational motion compensation method for tomosynthesis-based reconstruction that enables 3D localization of prostate implants from C-arm images despite C-arm oscillation and sagging. Methods: Five C-arm images are captured by rotating the C-arm around its primary axis, while measuring its rotation angle using a protractor or the C-arm joint encoder. The C-arm images are processed to obtain binary seed-only images from which a volume of interest is reconstructed. The motion compensation algorithm, iteratively, compensates for 2D translational motion of the C-arm by maximizing the number of voxels that project on a seed projection in all of the images. This obviates the need for C-arm full pose tracking traditionally implemented using radio-opaque fiducials or external trackers. The proposed reconstruction method is tested in simulations, in a phantom study and on ten patient data sets. Results: In a phantom implanted with 136 dummy seeds, the seed detection rate was 100% with a localization error of 0.86 {+-} 0.44 mm (Mean {+-} STD) compared to CT. For patient data sets, a detection rate of 99.5% was achieved in approximately 1 min per patient. The reconstruction results for patient data sets were compared against an available matching-based reconstruction method and showed relative localization difference of 0.5 {+-} 0.4 mm. Conclusions: The motion compensation method can successfully compensate for large C-arm motion without using radio-opaque fiducial or external trackers. Considering the efficacy of the algorithm, its successful reconstruction rate and low computational burden, the algorithm is feasible for clinical use.

  8. 3D dosimetric validation of motion compensation concepts in radiotherapy using an anthropomorphic dynamic lung phantom

    NASA Astrophysics Data System (ADS)

    Mann, P.; Witte, M.; Moser, T.; Lang, C.; Runz, A.; Johnen, W.; Berger, M.; Biederer, J.; Karger, C. P.

    2017-01-01

    In this study, we developed a new setup for the validation of clinical workflows in adaptive radiation therapy, which combines a dynamic ex vivo porcine lung phantom and three-dimensional (3D) polymer gel dosimetry. The phantom consists of an artificial PMMA-thorax and contains a post mortem explanted porcine lung to which arbitrary breathing patterns can be applied. A lung tumor was simulated using the PAGAT (polyacrylamide gelatin gel fabricated at atmospheric conditions) dosimetry gel, which was evaluated in three dimensions by magnetic resonance imaging (MRI). To avoid bias by reaction with oxygen and other materials, the gel was collocated inside a BAREX™ container. For calibration purposes, the same containers with eight gel samples were irradiated with doses from 0 to 7 Gy. To test the technical feasibility of the system, a small spherical dose distribution located completely within the gel volume was planned. Dose delivery was performed under static and dynamic conditions of the phantom with and without motion compensation by beam gating. To verify clinical target definition and motion compensation concepts, the entire gel volume was homogeneously irradiated applying adequate margins in case of the static phantom and an additional internal target volume in case of dynamically operated phantom without and with gated beam delivery. MR-evaluation of the gel samples and comparison of the resulting 3D dose distribution with the planned dose distribution revealed a good agreement for the static phantom. In case of the dynamically operated phantom without motion compensation, agreement was very poor while additional application of motion compensation techniques restored the good agreement between measured and planned dose. From these experiments it was concluded that the set up with the dynamic and anthropomorphic lung phantom together with 3D-gel dosimetry provides a valuable and versatile tool for geometrical and dosimetrical validation of motion compensated

  9. Residual motion compensation in ECG-gated interventional cardiac vasculature reconstruction

    NASA Astrophysics Data System (ADS)

    Schwemmer, C.; Rohkohl, C.; Lauritsch, G.; Müller, K.; Hornegger, J.

    2013-06-01

    Three-dimensional reconstruction of cardiac vasculature from angiographic C-arm CT (rotational angiography) data is a major challenge. Motion artefacts corrupt image quality, reducing usability for diagnosis and guidance. Many state-of-the-art approaches depend on retrospective ECG-gating of projection data for image reconstruction. A trade-off has to be made regarding the size of the ECG-gating window. A large temporal window is desirable to avoid undersampling. However, residual motion will occur in a large window, causing motion artefacts. We present an algorithm to correct for residual motion. Our approach is based on a deformable 2D-2D registration between the forward projection of an initial, ECG-gated reconstruction, and the original projection data. The approach is fully automatic and does not require any complex segmentation of vasculature, or landmarks. The estimated motion is compensated for during the backprojection step of a subsequent reconstruction. We evaluated the method using the publicly available CAVAREV platform and on six human clinical datasets. We found a better visibility of structure, reduced motion artefacts, and increased sharpness of the vessels in the compensated reconstructions compared to the initial reconstructions. At the time of writing, our algorithm outperforms the leading result of the CAVAREV ranking list. For the clinical datasets, we found an average reduction of motion artefacts by 13 ± 6%. Vessel sharpness was improved by 25 ± 12% on average.

  10. A new motion compensation algorithm of floating lidar system for the assessment of turbulence intensity

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Atsushi; Ishihara, Takeshi

    2016-09-01

    In this study, a new motion compensation algorithm was proposed and verified by using numerical simulation. Compensated horizontal mean wind speed by using conventional method shows good agreement with reference wind speed regardless of the motion of the floater. However, turbulence intensity is always overestimated. The overestimation is more significant when the maximum pitch angle of the floater motion is larger. When proposed method is used, the overestimation of the turbulent intensity is improved and estimated turbulent intensity shows better agreement with reference value. There still remains underestimation of the turbulence intensity with the bias of -1.1%. This is probably caused by the low sampling frequency in LIDAR measurement and further research is needed to model the high frequency component of the wind speed for LIDAR measurement.

  11. Refraction-compensated motion tracking of unrestrained small animals in positron emission tomography.

    PubMed

    Kyme, Andre; Meikle, Steven; Baldock, Clive; Fulton, Roger

    2012-08-01

    Motion-compensated radiotracer imaging of fully conscious rodents represents an important paradigm shift for preclinical investigations. In such studies, if motion tracking is performed through a transparent enclosure containing the awake animal, light refraction at the interface will introduce errors in stereo pose estimation. We have performed a thorough investigation of how this impacts the accuracy of pose estimates and the resulting motion correction, and developed an efficient method to predict and correct for refraction-based error. The refraction model underlying this study was validated using a state-of-the-art motion tracking system. Refraction-based error was shown to be dependent on tracking marker size, working distance, and interface thickness and tilt. Correcting for refraction error improved the spatial resolution and quantitative accuracy of motion-corrected positron emission tomography images. Since the methods are general, they may also be useful in other contexts where data are corrupted by refraction effects.

  12. Accurate Event-Driven Motion Compensation in High-Resolution PET Incorporating Scattered and Random Events

    PubMed Central

    Dinelle, Katie; Cheng, Ju-Chieh; Shilov, Mikhail A.; Segars, William P.; Lidstone, Sarah C.; Blinder, Stephan; Rousset, Olivier G.; Vajihollahi, Hamid; Tsui, Benjamin M. W.; Wong, Dean F.; Sossi, Vesna

    2010-01-01

    With continuing improvements in spatial resolution of positron emission tomography (PET) scanners, small patient movements during PET imaging become a significant source of resolution degradation. This work develops and investigates a comprehensive formalism for accurate motion-compensated reconstruction which at the same time is very feasible in the context of high-resolution PET. In particular, this paper proposes an effective method to incorporate presence of scattered and random coincidences in the context of motion (which is similarly applicable to various other motion correction schemes). The overall reconstruction framework takes into consideration missing projection data which are not detected due to motion, and additionally, incorporates information from all detected events, including those which fall outside the field-of-view following motion correction. The proposed approach has been extensively validated using phantom experiments as well as realistic simulations of a new mathematical brain phantom developed in this work, and the results for a dynamic patient study are also presented. PMID:18672420

  13. An experimental evaluation of the Agility MLC for motion-compensated VMAT delivery

    NASA Astrophysics Data System (ADS)

    Davies, G. A.; Clowes, P.; Bedford, J. L.; Evans, P. M.; Webb, S.; Poludniowski, G.

    2013-07-01

    An algorithm for dynamic multileaf-collimator (dMLC) tracking of a target performing a known a priori, rigid-body motion during volumetric modulated arc therapy (VMAT), has been experimentally validated and applied to investigate the potential of the Agility (Elekta AB, Stockholm, Sweden) multileaf-collimator (MLC) for use in motion-compensated VMAT delivery. For five VMAT patients, dosimetric measurements were performed using the Delta4 radiation detector (ScandiDos, Uppsala, Sweden) and the accuracy of dMLC tracking was evaluated using a gamma-analysis, with threshold levels of 3% for dose and 3 mm for distance-to-agreement. For a motion trajectory with components in two orthogonal directions, the mean gamma-analysis pass rate without tracking was found to be 58.0%, 59.0% and 60.9% and was increased to 89.1%, 88.3% and 93.1% with MLC tracking, for time periods of motion of 4 s, 6 s and 10 s respectively. Simulations were performed to compare the efficiency of the Agility MLC with the MLCi MLC when used for motion-compensated VMAT delivery for the same treatment plans and motion trajectories. Delivery time increases from a static-tumour to dMLC-tracking VMAT delivery were observed in the range 0%-20% for the Agility, and 0%-57% with the MLCi, indicating that the increased leaf speed of the Agility MLC is beneficial for MLC tracking during lung radiotherapy.

  14. Self-gated radial MRI for respiratory motion compensation on hybrid PET/MR systems.

    PubMed

    Grimm, Robert; Fürst, Sebastian; Dregely, Isabel; Forman, Christoph; Hutter, Jana Maria; Ziegler, Sibylle I; Nekolla, Stephan; Kiefer, Berthold; Schwaiger, Markus; Hornegger, Joachim; Block, Tobias

    2013-01-01

    Accurate localization and uptake quantification of lesions in the chest and abdomen using PET imaging is challenging due to the respiratory motion during the exam. The advent of hybrid PET/MR systems offers new ways to compensate for respiratory motion without exposing the patient to additional radiation. The use of self-gated reconstructions of a 3D radial stack-of-stars GRE acquisition is proposed to derive a high-resolution MRI motion model. The self-gating signal is used to perform respiratory binning of the simultaneously acquired PET raw data. Matching mu-maps are generated for every bin, and post-reconstruction registration is performed in order to obtain a motion-compensated PET volume from the individual gates. The proposed method is demonstrated in-vivo for three clinical patients. Motion-corrected reconstructions are compared against ungated and gated PET reconstructions. In all cases, motion-induced blurring of lesions in the liver and lung was substantially reduced, without compromising SNR as it is the case for gated reconstructions.

  15. A motion-compensated scheme for helical cone-beam reconstruction in cardiac CT angiography

    SciTech Connect

    Stevendaal, U. van; Berg, J. von; Lorenz, C.; Grass, M.

    2008-07-15

    Since coronary heart disease is one of the main causes of death all over the world, cardiac computed tomography (CT) imaging is an application of very high interest in order to verify indications timely. Due to the cardiac motion, electrocardiogram (ECG) gating has to be implemented into the reconstruction of the measured projection data. However, the temporal and spatial resolution is limited due to the mechanical movement of the gantry and due to the fact that a finite angular span of projections has to be acquired for the reconstruction of each voxel. In this article, a motion-compensated reconstruction method for cardiac CT is described, which can be used to increase the signal-to-noise ratio or to suppress motion blurring. Alternatively, it can be translated into an improvement of the temporal and spatial resolution. It can be applied to the entire heart in common and to high contrast objects moving with the heart in particular, such as calcified plaques or devices like stents. The method is based on three subsequent steps: As a first step, the projection data acquired in low pitch helical acquisition mode together with the ECG are reconstructed at multiple phase points. As a second step, the motion-vector field is calculated from the reconstructed images in relation to the image in a reference phase. Finally, a motion-compensated reconstruction is carried out for the reference phase using those projections, which cover the cardiac phases for which the motion-vector field has been determined.

  16. SAR System for UAV Operation with Motion Error Compensation beyond the Resolution Cell

    PubMed Central

    González-Partida, José-Tomás; Almorox-González, Pablo; Burgos-García, Mateo; Dorta-Naranjo, Blas-Pablo

    2008-01-01

    This paper presents an experimental Synthetic Aperture Radar (SAR) system that is under development in the Universidad Politécnica de Madrid. The system uses Linear Frequency Modulated Continuous Wave (LFM-CW) radar with a two antenna configuration for transmission and reception. The radar operates in the millimeter-wave band with a maximum transmitted bandwidth of 2 GHz. The proposed system is being developed for Unmanned Aerial Vehicle (UAV) operation. Motion errors in UAV operation can be critical. Therefore, this paper proposes a method for focusing SAR images with movement errors larger than the resolution cell. Typically, this problem is solved using two processing steps: first, coarse motion compensation based on the information provided by an Inertial Measuring Unit (IMU); and second, fine motion compensation for the residual errors within the resolution cell based on the received raw data. The proposed technique tries to focus the image without using data of an IMU. The method is based on a combination of the well known Phase Gradient Autofocus (PGA) for SAR imagery and typical algorithms for translational motion compensation on Inverse SAR (ISAR). This paper shows the first real experiments for obtaining high resolution SAR images using a car as a mobile platform for our radar. PMID:27879884

  17. SAR System for UAV Operation with Motion Error Compensation beyond the Resolution Cell.

    PubMed

    González-Partida, José-Tomás; Almorox-González, Pablo; Burgos-Garcia, Mateo; Dorta-Naranjo, Blas-Pablo

    2008-05-23

    This paper presents an experimental Synthetic Aperture Radar (SAR) system that is under development in the Universidad Politécnica de Madrid. The system uses Linear Frequency Modulated Continuous Wave (LFM-CW) radar with a two antenna configuration for transmission and reception. The radar operates in the millimeter-wave band with a maximum transmitted bandwidth of 2 GHz. The proposed system is being developed for Unmanned Aerial Vehicle (UAV) operation. Motion errors in UAV operation can be critical. Therefore, this paper proposes a method for focusing SAR images with movement errors larger than the resolution cell. Typically, this problem is solved using two processing steps: first, coarse motion compensation based on the information provided by an Inertial Measuring Unit (IMU); and second, fine motion compensation for the residual errors within the resolution cell based on the received raw data. The proposed technique tries to focus the image without using data of an IMU. The method is based on a combination of the well known Phase Gradient Autofocus (PGA) for SAR imagery and typical algorithms for translational motion compensation on Inverse SAR (ISAR). This paper shows the first real experiments for obtaining high resolution SAR images using a car as a mobile platform for our radar.

  18. Stability of Single Particle Motion with Head-On Beam-Beam Compensation in the RHIC

    SciTech Connect

    Luo,Y.; Fischer, W.; Abreu, N.

    2008-05-01

    To compensate the large tune shift and tune spread generated by the head-on beam-beam interactions in the polarized proton run in the Relativistic Heavy Ion Collider (RHIC), we proposed a low energy electron beam with a Gaussian transverse profiles to collide head-on with the proton beam. In this article, with a weak-strong beam-beam interaction model, we investigate the stability of single particle motion in the presence of head-on beam-beam compensation. Tune footprints, tune diffusion, Lyapunov exponents, and 10{sup 6} turn dynamic apertures are calculated and compared between the cases without and with beam-beam compensation. A tune scan is performed and the possibility of increasing the bunch intensity is studied. The cause of tune footprint foldings is discussed, and the tune diffusion and Lyapunov exponent analysis are compared.

  19. Registration and motion compensation of a needle placement robot for CT-guided spinal procedures

    NASA Astrophysics Data System (ADS)

    Xu, Sheng; Cleary, Kevin R.; Stoianovici, Dan; Fichtinger, Gabor

    2005-04-01

    Computed tomography (CT) guided needle placement is an established practice in the medical field. The efficacy of these procedures is related to the accuracy of needle placement. Current free-hand techniques have limitations in accuracy, which is often affected by the patient motion. In response to these problems and as a testbed for future developments, we propose a robotically assisted needle placement system consisting of a mobile CT scanner, a needle insertion robot, and an optical localizer. This paper presents the overall system concept and concentrates on the system registration and compensation of the patient motion. Accuracy results using an abdominal phantom are also presented.

  20. High-frame-rate, motion-compensated 25.4 megapixel image sensor

    NASA Astrophysics Data System (ADS)

    Kamasz, Stacy R.; Farrier, Michael G.; Ma, Shing-Fat F.; Sabila, Robert W.; Chamberlain, Savvas G.

    1994-05-01

    The applicability of large-area full-frame CCD image sensor technology to large optical format aerial reconnaissance applications has been recently demonstrated. The requirements of low-contrast, high-resolution imaging at high frame rates have generated the need for a manufacturable, multitap, small-pitch, wafer-scale CCD image sensor technology. The added requirement of incorporation of electronic motion compensation at the focal plane has generated the need for multisegmented full-frame area array architectures. Characterization results from the newly developed 5040 X 5040 element, eight-tap, full-frame image sensor with multisegmentation for electronic motion compensation are discussed. Experimental determination of resistive-capacitive time constants for metal strapped vertical clock busses on wafer-scale sensors is discussed.

  1. Efficient Geolocation of InSAR Images from Motion Compensation Processors

    NASA Astrophysics Data System (ADS)

    Wortham, C.; Zebker, H. A.

    2010-12-01

    We present an efficient and closed-form algorithm for the geolocation of InSAR images resulting from data processors using motion compensation methods in which the known orbits are corrected and processed to a circular arc reference track. We outline here a derivation utilizing the SCH coordinate system, although our approach may be readily applied to any such processor with suitable changes in coordinate definitions. Motion compensation has been traditionally employed in airborne systems, where the instability of the aircraft trajectories presents issues in the accuracy of the processed phase. However, we have found that motion compensation techniques allowing precise output pixel location are useful in both airborne and spaceborne systems; thus, we present an approach that exploits the simplicity of a properly chosen motion compensation reference geometry. Assuming a circular reference track, we develop a closed form set of equations relating the position of a given DEM pixel to that of the radar. Once position and slant-range are known along the reference arc, we interpolate into the uniformly spaced radar image, avoiding the use of computationally intensive irregular interpolation algorithms. Hence, the resulting equations are simple and lead to a solution that is remarkably fast without sacrificing precision. We demonstrate results from the ALOS platform, validated against the set of corner reflectors deployed by the Jet Propulsion Laboratory at the Rosamond Calibration Array outside of Palmdale, California. Here we see ground projection errors with accuracy on the order of less than a pixel (< 15 m). In addition, we present an extension to our algorithm where the processed Doppler centroid has known range-dependence but with no simple functional form. To accommodate this most general case, we must replace the closed-form equations with an iterative solution. We illustrate these results using data from the NASA/JPL UAVSAR sensor, where we see fast convergence

  2. 3D optical imagery for motion compensation in a limb ultrasound system

    NASA Astrophysics Data System (ADS)

    Ranger, Bryan J.; Feigin, Micha; Zhang, Xiang; Mireault, Al; Raskar, Ramesh; Herr, Hugh M.; Anthony, Brian W.

    2016-04-01

    Conventional processes for prosthetic socket fabrication are heavily subjective, often resulting in an interface to the human body that is neither comfortable nor completely functional. With nearly 100% of amputees reporting that they experience discomfort with the wearing of their prosthetic limb, designing an effective interface to the body can significantly affect quality of life and future health outcomes. Active research in medical imaging and biomechanical tissue modeling of residual limbs has led to significant advances in computer aided prosthetic socket design, demonstrating an interest in moving toward more quantifiable processes that are still patient-specific. In our work, medical ultrasonography is being pursued to acquire data that may quantify and improve the design process and fabrication of prosthetic sockets while greatly reducing cost compared to an MRI-based framework. This paper presents a prototype limb imaging system that uses a medical ultrasound probe, mounted to a mechanical positioning system and submerged in a water bath. The limb imaging is combined with three-dimensional optical imaging for motion compensation. Images are collected circumferentially around the limb and combined into cross-sectional axial image slices, resulting in a compound image that shows tissue distributions and anatomical boundaries similar to magnetic resonance imaging. In this paper we provide a progress update on our system development, along with preliminary results as we move toward full volumetric imaging of residual limbs for prosthetic socket design. This demonstrates a novel multi-modal approach to residual limb imaging.

  3. Compensation technique for the intrinsic error in ultrasound motion estimation using a speckle tracking method

    NASA Astrophysics Data System (ADS)

    Taki, Hirofumi; Yamakawa, Makoto; Shiina, Tsuyoshi; Sato, Toru

    2015-07-01

    High-accuracy ultrasound motion estimation has become an essential technique in blood flow imaging, elastography, and motion imaging of the heart wall. Speckle tracking has been one of the best motion estimators; however, conventional speckle-tracking methods neglect the effect of out-of-plane motion and deformation. Our proposed method assumes that the cross-correlation between a reference signal and a comparison signal depends on the spatio-temporal distance between the two signals. The proposed method uses the decrease in the cross-correlation value in a reference frame to compensate for the intrinsic error caused by out-of-plane motion and deformation without a priori information. The root-mean-square error of the estimated lateral tissue motion velocity calculated by the proposed method ranged from 6.4 to 34% of that using a conventional speckle-tracking method. This study demonstrates the high potential of the proposed method for improving the estimation of tissue motion using an ultrasound speckle-tracking method in medical diagnosis.

  4. Real-time circumferential mapping catheter tracking for motion compensation in atrial fibrillation ablation procedures

    NASA Astrophysics Data System (ADS)

    Brost, Alexander; Bourier, Felix; Wimmer, Andreas; Koch, Martin; Kiraly, Atilla; Liao, Rui; Kurzidim, Klaus; Hornegger, Joachim; Strobel, Norbert

    2012-02-01

    Atrial fibrillation (AFib) has been identified as a major cause of stroke. Radiofrequency catheter ablation has become an increasingly important treatment option, especially when drug therapy fails. Navigation under X-ray can be enhanced by using augmented fluoroscopy. It renders overlay images from pre-operative 3-D data sets which are then fused with X-ray images to provide more details about the underlying soft-tissue anatomy. Unfortunately, these fluoroscopic overlay images are compromised by respiratory and cardiac motion. Various methods to deal with motion have been proposed. To meet clinical demands, they have to be fast. Methods providing a processing frame rate of 3 frames-per-second (fps) are considered suitable for interventional electrophysiology catheter procedures if an acquisition frame rate of 2 fps is used. Unfortunately, when working at a processing rate of 3 fps, the delay until the actual motion compensated image can be displayed is about 300 ms. More recent algorithms can achieve frame rates of up to 20 fps, which reduces the lag to 50 ms. By using a novel approach involving a 3-D catheter model, catheter segmentation and a distance transform, we can speed up motion compensation to 25 fps which results in a display delay of only 40 ms on a standard workstation for medical applications. Our method uses a constrained 2-D/3-D registration to perform catheter tracking, and it obtained a 2-D tracking error of 0.61 mm.

  5. Visualizing stable features in live cell nucleus for evaluation of the cell global motion compensation.

    PubMed

    Sorokin, D V; Suchánková, J; Bártová, E; Matula, P

    2014-01-01

    The compensation of cell motion is an important step in single-particle tracking analysis of live cells. This step is required in most of the cases, since the movement of subcellular foci is superimposed by the movement and deformation of the cell, while only the local motion of the foci is important to be analysed. The cell motion and deformation compensation is usually performed by means of image registration. There are a number of approaches with different models and properties presented in the literature that perform cell image registration. However, the evaluation of the registration approach quality on real data is a tricky problem due to the fact that some stable features in the images with a priori no local motion are needed. In this paper we propose a methodology for creating live cell nuclei image sequences with stable features imposed. The features are defined using the regions of fluorescence bleaching invoked by the UV laser. Data with different deformations are acquired and can be used for evaluation of the cell image registration methods. Along with that, we describe an image analysis technique and a metric that can characterize the quality of the method quantitatively. The proposed methodology allows building a ground truth dataset for testing and thoroughly evaluating cell image registration methods.

  6. Adaptive update using visual models for lifting-based motion-compensated temporal filtering

    NASA Astrophysics Data System (ADS)

    Li, Song; Xiong, H. K.; Wu, Feng; Chen, Hong

    2005-03-01

    Motion compensated temporal filtering is a useful framework for fully scalable video compression schemes. However, when supposed motion models cannot represent a real motion perfectly, both the temporal high and the temporal low frequency sub-bands may contain artificial edges, which possibly lead to a decreased coding efficiency, and ghost artifacts appear in the reconstructed video sequence at lower bit rates or in case of temporal scaling. We propose a new technique that is based on utilizing visual models to mitigate ghosting artifacts in the temporal low frequency sub-bands. Specifically, we propose content adaptive update schemes where visual models are used to determine image dependent upper bounds on information to be updated. Experimental results show that the proposed algorithm can significantly improve subjective visual quality of the low-pass temporal frames and at the same time, coding performance can catch or exceed the classical update steps.

  7. Detection of obstacles on runway using Ego-Motion compensation and tracking of significant features

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar (Principal Investigator); Camps, Octavia (Principal Investigator); Gandhi, Tarak; Devadiga, Sadashiva

    1996-01-01

    This report describes a method for obstacle detection on a runway for autonomous navigation and landing of an aircraft. Detection is done in the presence of extraneous features such as tiremarks. Suitable features are extracted from the image and warping using approximately known camera and plane parameters is performed in order to compensate ego-motion as far as possible. Residual disparity after warping is estimated using an optical flow algorithm. Features are tracked from frame to frame so as to obtain more reliable estimates of their motion. Corrections are made to motion parameters with the residual disparities using a robust method, and features having large residual disparities are signaled as obstacles. Sensitivity analysis of the procedure is also studied. Nelson's optical flow constraint is proposed to separate moving obstacles from stationary ones. A Bayesian framework is used at every stage so that the confidence in the estimates can be determined.

  8. Quantitative assessment of tumor angiogenesis using real-time motion-compensated contrast-enhanced ultrasound imaging

    PubMed Central

    Pysz, Marybeth A.; Guracar, Ismayil; Foygel, Kira; Tian, Lu; Willmann, Jürgen K.

    2015-01-01

    Purpose To develop and test a real-time motion compensation algorithm for contrast-enhanced ultrasound imaging of tumor angiogenesis on a clinical ultrasound system. Materials and methods The Administrative Institutional Panel on Laboratory Animal Care approved all experiments. A new motion correction algorithm measuring the sum of absolute differences in pixel displacements within a designated tracking box was implemented in a clinical ultrasound machine. In vivo angiogenesis measurements (expressed as percent contrast area) with and without motion compensated maximum intensity persistence (MIP) ultrasound imaging were analyzed in human colon cancer xenografts (n = 64) in mice. Differences in MIP ultrasound imaging signal with and without motion compensation were compared and correlated with displacements in x- and y-directions. The algorithm was tested in an additional twelve colon cancer xenograft-bearing mice with (n = 6) and without (n = 6) anti-vascular therapy (ASA-404). In vivo MIP percent contrast area measurements were quantitatively correlated with ex vivo microvessel density (MVD) analysis. Results MIP percent contrast area was significantly different (P < 0.001) with and without motion compensation. Differences in percent contrast area correlated significantly (P < 0.001) with x- and y-displacements. MIP percent contrast area measurements were more reproducible with motion compensation (ICC = 0.69) than without (ICC = 0.51) on two consecutive ultrasound scans. Following anti-vascular therapy, motion-compensated MIP percent contrast area significantly (P = 0.03) decreased by 39.4 ± 14.6 % compared to non-treated mice and correlated well with ex vivo MVD analysis (Rho = 0.70; P = 0.05). Conclusion Real-time motion-compensated MIP ultrasound imaging allows reliable and accurate quantification and monitoring of angiogenesis in tumors exposed to breathing-induced motion artifacts. PMID:22535383

  9. Complex amplitude correlation for compensation of large in-plane motion in digital speckle pattern interferometry

    SciTech Connect

    Svanbro, Angelica; Sjoedahl, Mikael

    2006-12-01

    The use of complex amplitude correlation to compensate for large in-plane motion in digital speckle pattern interferometry is investigated. The result is compared with experiments where digital speckle photography (DSP) is used for compensation. An advantage of using complex amplitude correlation instead of intensity correlation (as in DSP) is that the phase change describing the deformation is retrieved directly from the correlation peak, and there is no need to compensate for the large movement and then use the interferometric algorithms. A discovered drawback of this method is that the correlation values drop quickly if a phase gradient larger than {pi} is present in the subimages used for cross correlation. This means that, for the complex amplitude correlation to be used, the size of the subimages must be well chosen or a third parameter in the cross-correlation algorithm that compensates for the phase variation is needed.Correlation values and wrapped phase maps from the two techniques (intensity and complex amplitude correlation) are presented.

  10. Tumor tracking and motion compensation with an adaptive tumor tracking system (ATTS): system description and prototype testing.

    PubMed

    Wilbert, Jürgen; Meyer, Jürgen; Baier, Kurt; Guckenberger, Matthias; Herrmann, Christian; Hess, Robin; Janka, Christian; Ma, Lei; Mersebach, Torben; Richter, Anne; Roth, Michael; Schilling, Klaus; Flentje, Michael

    2008-09-01

    A novel system for real-time tumor tracking and motion compensation with a robotic HexaPOD treatment couch is described. The approach is based on continuous tracking of the tumor motion in portal images without implanted fiducial markers, using the therapeutic megavoltage beam, and tracking of abdominal breathing motion with optical markers. Based on the two independently acquired data sets the table movements for motion compensation are calculated. The principle of operation of the entire prototype system is detailed first. In the second part the performance of the HexaPOD couch was investigated with a robotic four-dimensional-phantom capable of simulating real patient tumor trajectories in three-dimensional space. The performance and limitations of the HexaPOD table and the control system were characterized in terms of its dynamic behavior. The maximum speed and acceleration of the HexaPOD were 8 mm/s and 34.5 mm/s2 in the lateral direction, and 9.5 mm/s and 29.5 mm/s2 in longitudinal and anterior-posterior direction, respectively. Base line drifts of the mean tumor position of realistic lung tumor trajectories could be fully compensated. For continuous tumor tracking and motion compensation a reduction of tumor motion up to 68% of the original amplitude was achieved. In conclusion, this study demonstrated that it is technically feasible to compensate breathing induced tumor motion in the lung with the adaptive tumor tracking system.

  11. Toward a handheld laser range scanner: integrating observation-based motion compensation

    NASA Astrophysics Data System (ADS)

    Hebert, Patrick; Rioux, Marc

    1998-03-01

    Although laser range sensors based on sequential scanning can provide accurate measurements in stable operation, the recovered surface geometry becomes noisy and distorted when sensors are hand-held. To compensate for camera motion, some currently existing prototypes integrate a positioning device. Unfortunately, these may not be accurate and fast enough. To circumvent this problem, a method that can compensate for motion distortion is proposed. The principle consists in using the measured shape geometry as a reference frame in 3-D space. The method is based on the collection of a redundant set of crossing profiles. Each surface profile is measured in a very short period of time such that distortion of the profile is negligible. It is assumed that the perturbation error due to motion, affects inter-profile positioning only. Then, the set of rigid crossing profiles are fitted together by moving them such as to minimize the profile intersection spacings. Experiments show that errors in the geometry can be reduced to the order of magnitude of the sensor error. The method can be integrated in the design of a hand-held sensor or as a complementary post-processing stage for improving measurement accuracy when using a sensor positioning device.

  12. Results of CO2 robotic laser oseotomy in surgery with motion compensation

    NASA Astrophysics Data System (ADS)

    Mönnich, Holger; Stein, Daniel; Raczkowsky, Jörg; Wörn, Heinz

    2010-02-01

    This paper presents a visual servoing application with and without motion compensation and a fixed visual servoing configuration for CO2 laser osteotomy. A multi camera system from ART is used to track the position of the robot and a skull via marker spheres that are attached to both. A CT scan from the skull is performed and segmented to acquire a 3D model. Inside the model the position for the robot for the laser ablation is planned. The accuracy of the lightweight robot is increased with the additional supervision of an optical tracking system. Accuracy improvement was measured with an FARO measurement arm. A visual servoing control schema is presented. The demonstrator shows a working visual servoing application for laser osteotomy. To improve the error resulting mainly from the delay to acquire the data from the devices a motion compensation algorithm is introduced based on iterative learning and a normalized Least Mean Square (nLMS) filter. The results during the simulation and the experimental setup are shown. The system was then evaluated with the CO2 laser system OsteoLas X10 from Caesar - Bonn, Germany. Different cuts are performed with the robot and the CO2 laser system. For the breathing motion a robotic breathing simulator is used. The reached accuracy and the cutting results on bone are shown.

  13. Compensation to whole body active rotation perturbation.

    PubMed

    Rossi, S; Gazzellini, S; Petrarca, M; Patanè, F; Salfa, I; Castelli, E; Cappa, P

    2014-01-01

    The aim of the present study is the exploration of the compensation mechanisms in healthy adults elicited by superimposing a horizontal perturbation, through a rotation of the support base, during a whole body active rotation around the participant's own vertical body axis. Eight healthy participants stood on a rotating platform while executing 90° whole body rotations under three conditions: no concurrent platform rotation (NP), support surface rotation of ± 45° in the same (45-S) and opposite (45-O) directions. Participants' kinematics and CoP displacements were analyzed with an optoelectronic system and a force platform. In both 45-S and 45-O conditions, there was a tendency for the head to be affected by the external perturbation and to be the last and least perturbed segment while the pelvis was the most perturbed. The observed reduced head perturbation in 45-S and 45-O trials is consistent with a goal-oriented strategy mediated by vision and vestibular information, whereas the tuning of lumbar rotation is consistent with control mechanisms mediated by somato-sensory information.

  14. Analytic signal phase-based myocardial motion estimation in tagged MRI sequences by a bilinear model and motion compensation.

    PubMed

    Wang, Liang; Basarab, Adrian; Girard, Patrick R; Croisille, Pierre; Clarysse, Patrick; Delachartre, Philippe

    2015-08-01

    Different mathematical tools, such as multidimensional analytic signals, allow for the calculation of 2D spatial phases of real-value images. The motion estimation method proposed in this paper is based on two spatial phases of the 2D analytic signal applied to cardiac sequences. By combining the information of these phases issued from analytic signals of two successive frames, we propose an analytical estimator for 2D local displacements. To improve the accuracy of the motion estimation, a local bilinear deformation model is used within an iterative estimation scheme. The main advantages of our method are: (1) The phase-based method allows the displacement to be estimated with subpixel accuracy and is robust to image intensity variation in time; (2) Preliminary filtering is not required due to the bilinear model. The proposed algorithm, integrating phase-based optical flow motion estimation and the combination of global motion compensation with local bilinear transform, allows spatio-temporal cardiac motion analysis, e.g. strain and dense trajectory estimation over the cardiac cycle. Results from 7 realistic simulated tagged magnetic resonance imaging (MRI) sequences show that our method is more accurate compared with state-of-the-art method for cardiac motion analysis and with another differential approach from the literature. The motion estimation errors (end point error) of the proposed method are reduced by about 33% compared with that of the two methods. In our work, the frame-to-frame displacements are further accumulated in time, to allow for the calculation of myocardial Lagrangian cardiac strains and point trajectories. Indeed, from the estimated trajectories in time on 11 in vivo data sets (9 patients and 2 healthy volunteers), the shape of myocardial point trajectories belonging to pathological regions are clearly reduced in magnitude compared with the ones from normal regions. Myocardial point trajectories, estimated from our phase-based analytic

  15. An analysis of the treatment couch and control system dynamics for respiration-induced motion compensation

    SciTech Connect

    D'Souza, Warren D.; McAvoy, Thomas J.

    2006-12-15

    Sophisticated methods for real-time motion compensation include using the linear accelerator, MLC, or treatment couch. To design such a couch, the required couch and control system dynamics need to be investigated. We used an existing treatment couch known as the Hexapod{sup TM} to gain insight into couch dynamics and an internal model controller to simulate feedback control of respiration-induced motion. The couch dynamics, described using time constants and dead times, were investigated using step inputs. The resulting data were modeled as first and second order systems with dead time. The couch was determined to have a linear response for step inputs {<=}1 cm. Motion data from 12 patients were obtained using a skin marker placed on the abdomen of the patient and the marker data were assumed to be an exact surrogate of tumor motion. The feedback system was modeled with the couch as a second-ordersystem and the controller as a first order system. The time constants of the couch and controller and the dead times were varied starting with parameters obtained from the Hexapod{sup TM} couch and the performance of the feedback system was evaluated. The resulting residual motion under feedback control was generally <0.3 cm when a fast enough couch was simulated.

  16. Novel lossless FMRI image compression based on motion compensation and customized entropy coding.

    PubMed

    Sanchez, Victor; Nasiopoulos, Panos; Abugharbieh, Rafeef

    2009-07-01

    We recently proposed a method for lossless compression of 4-D medical images based on the advanced video coding standard (H.264/AVC). In this paper, we present two major contributions that enhance our previous work for compression of functional MRI (fMRI) data: 1) a new multiframe motion compensation process that employs 4-D search, variable-size block matching, and bidirectional prediction; and 2) a new context-based adaptive binary arithmetic coder designed for lossless compression of the residual and motion vector data. We validate our method on real fMRI sequences of various resolutions and compare the performance to two state-of-the-art methods: 4D-JPEG2000 and H.264/AVC. Quantitative results demonstrate that our proposed technique significantly outperforms current state of the art with an average compression ratio improvement of 13%.

  17. Motion Compensated Ultrasound Imaging Allows Thermometry and Image Guided Drug Delivery Monitoring from Echogenic Liposomes

    PubMed Central

    Ektate, Kalyani; Kapoor, Ankur; Maples, Danny; Tuysuzoglu, Ahmet; VanOsdol, Joshua; Ramasami, Selvarani; Ranjan, Ashish

    2016-01-01

    Ultrasound imaging is widely used both for cancer diagnosis and to assess therapeutic success, but due to its weak tissue contrast and the short half-life of commercially available contrast agents, it is currently not practical for assessing motion compensated contrast-enhanced tumor imaging, or for determining time-resolved absolute tumor temperature while simultaneously reporting on drug delivery. The objectives of this study were to: 1) develop echogenic heat sensitive liposomes (E-LTSL) and non-thermosensitive liposomes (E-NTSL) to enhance half-life of contrast agents, and 2) measure motion compensated temperature induced state changes in acoustic impedance and Laplace pressure of liposomes to monitor temperature and doxorubicin (Dox) delivery to tumors. LTSL and NTSL containing Dox were co-loaded with an US contrast agent (perfluoropentane, PFP) using a one-step sonoporation method to create E-LTSL and E-NTSL. To determine temperature induced intensity variation with respect to the state change of E-LTSL and E-NTSL in mouse colon tumors, cine acquisition of 20 frames/second for about 20 min (or until wash out) at temperatures of 42°C, 39.5°C, and 37°C was performed. A rigid rotation and translation was applied to each of the “key frames” to adjust for any gross motion that arose due to motion of the animal or the transducer. To evaluate the correlation between ultrasound (US) intensity variation and Dox release at various temperatures, treatment (5 mg Dox/kg) was administered via a tail vein once tumors reached a size of 300-400 mm3, and mean intensity within regions of interest (ROIs) defined for each sample was computed over the collected frames and normalized in the range of [0,1]. When the motion compensation technique was applied, a > 2-fold drop in standard deviation in mean image intensity of tumor was observed, enabling a more robust estimation of temporal variations in tumor temperatures for 15-20 min. due to state change of E-LTSL and E

  18. 3D model-based catheter tracking for motion compensation in EP procedures

    NASA Astrophysics Data System (ADS)

    Brost, Alexander; Liao, Rui; Hornegger, Joachim; Strobel, Norbert

    2010-02-01

    Atrial fibrillation is the most common sustained heart arrhythmia and a leading cause of stroke. Its treatment by radio-frequency catheter ablation, performed using fluoroscopic image guidance, is gaining increasingly more importance. Two-dimensional fluoroscopic navigation can take advantage of overlay images derived from pre-operative 3-D data to add anatomical details otherwise not visible under X-ray. Unfortunately, respiratory motion may impair the utility of these static overlay images for catheter navigation. We developed an approach for image-based 3-D motion compensation as a solution to this problem. A bi-plane C-arm system is used to take X-ray images of a special circumferential mapping catheter from two directions. In the first step of the method, a 3-D model of the device is reconstructed. Three-dimensional respiratory motion at the site of ablation is then estimated by tracking the reconstructed catheter model in 3-D. This step involves bi-plane fluoroscopy and 2-D/3-D registration. Phantom data and clinical data were used to assess our model-based catheter tracking method. Experiments involving a moving heart phantom yielded an average 2-D tracking error of 1.4 mm and an average 3-D tracking error of 1.1 mm. Our evaluation of clinical data sets comprised 469 bi-plane fluoroscopy frames (938 monoplane fluoroscopy frames). We observed an average 2-D tracking error of 1.0 mm +/- 0.4 mm and an average 3-D tracking error of 0.8 mm +/- 0.5 mm. These results demonstrate that model-based motion-compensation based on 2-D/3-D registration is both feasible and accurate.

  19. Breathing motion compensated reconstruction for C-arm cone beam CT imaging: initial experience based on animal data

    NASA Astrophysics Data System (ADS)

    Schäfer, D.; Lin, M.; Rao, P. P.; Loffroy, R.; Liapi, E.; Noordhoek, N.; Eshuis, P.; Radaelli, A.; Grass, M.; Geschwind, J.-F. H.

    2012-03-01

    C-arm based tomographic 3D imaging is applied in an increasing number of minimal invasive procedures. Due to the limited acquisition speed for a complete projection data set required for tomographic reconstruction, breathing motion is a potential source of artifacts. This is the case for patients who cannot comply breathing commands (e.g. due to anesthesia). Intra-scan motion estimation and compensation is required. Here, a scheme for projection based local breathing motion estimation is combined with an anatomy adapted interpolation strategy and subsequent motion compensated filtered back projection. The breathing motion vector is measured as a displacement vector on the projections of a tomographic short scan acquisition using the diaphragm as a landmark. Scaling of the displacement to the acquisition iso-center and anatomy adapted volumetric motion vector field interpolation delivers a 3D motion vector per voxel. Motion compensated filtered back projection incorporates this motion vector field in the image reconstruction process. This approach is applied in animal experiments on a flat panel C-arm system delivering improved image quality (lower artifact levels, improved tumor delineation) in 3D liver tumor imaging.

  20. Experiences with active damping and impedance-matching compensators

    NASA Astrophysics Data System (ADS)

    Betros, Robert S.; Alvarez, Oscar S.; Bronowicki, Allen J.

    1993-09-01

    TRW has been implementing active damping compensators on smart structures for the past five years. Since that time there have been numerous publications on the use of impedance matching techniques for structural damping augmentation. The idea of impedance matching compensators came about by considering the flow of power in a structure undergoing vibration. The goal of these compensators is to electronically dissipate as much of this flowing power as possible. This paper shows the performance of impedance matching compensators used in smart structures to be comparable to that of active damping compensators. Theoretical comparisons between active damping and impedance matching methods are made using PZT actuators and sensors. The effects of these collocated and non-collocated PZT sensors and actuators on the types of signals they sense and actuate are investigated. A method for automatically synthesizing impedance matching compensators is presented. Problems with implementing broad band active damping and impedance matching compensators on standard Digital Signal Processing (DSP) chips are discussed. Simulations and measurements that compare the performance of active damping and impedance matching techniques for a lightly damped cantilevered beam are shown.

  1. Motion-compensated compressed sensing for dynamic contrast-enhanced MRI using regional spatiotemporal sparsity and region tracking: Block LOw-rank Sparsity with Motion-guidance (BLOSM)

    PubMed Central

    Chen, Xiao; Salerno, Michael; Yang, Yang; Epstein, Frederick H.

    2014-01-01

    Purpose Dynamic contrast-enhanced MRI of the heart is well-suited for acceleration with compressed sensing (CS) due to its spatiotemporal sparsity; however, respiratory motion can degrade sparsity and lead to image artifacts. We sought to develop a motion-compensated CS method for this application. Methods A new method, Block LOw-rank Sparsity with Motion-guidance (BLOSM), was developed to accelerate first-pass cardiac MRI, even in the presence of respiratory motion. This method divides the images into regions, tracks the regions through time, and applies matrix low-rank sparsity to the tracked regions. BLOSM was evaluated using computer simulations and first-pass cardiac datasets from human subjects. Using rate-4 acceleration, BLOSM was compared to other CS methods such as k-t SLR that employs matrix low-rank sparsity applied to the whole image dataset, with and without motion tracking, and to k-t FOCUSS with motion estimation and compensation that employs spatial and temporal-frequency sparsity. Results BLOSM was qualitatively shown to reduce respiratory artifact compared to other methods. Quantitatively, using root mean squared error and the structural similarity index, BLOSM was superior to other methods. Conclusion BLOSM, which exploits regional low rank structure and uses region tracking for motion compensation, provides improved image quality for CS-accelerated first-pass cardiac MRI. PMID:24243528

  2. Rapid maneuvering of multi-body dynamic systems with optimal motion compensation

    NASA Astrophysics Data System (ADS)

    Bishop, B.; Gargano, R.; Sears, A.; Karpenko, M.

    2015-12-01

    Rapid maneuvering of multi-body dynamical systems is an important, yet challenging, problem in many applications. Even in the case of rigid bodies, it can be difficult to maintain precise control over nominally stationary links if it is required to move some of the other links quickly because of the various nonlinearities and coupled interactions that occur between the bodies. Typical control concepts treat the multi-body motion control problem in two-stages. First, the nonlinear and coupling terms are treated as disturbances and a trajectory tracking control law is designed in order to attenuate their effects. Next, motion profiles are designed, based on kinematics parameterizations, and these are used as inputs to the closed loop system to move the links. This paper describes an approach for rapid maneuvering of multi-body systems that uses optimal control theory to account for dynamic nonlinearities and coupling as part of the motion trajectory design. Incorporating appropriate operational constraints automatically compensates for these multi-body effects so that motion time can be reduced while simultaneously achieving other objectives such as reducing the excitation of selected links. Since the compensatory effect is embedded within the optimal motion trajectories, the performance improvement can be obtained even when using simple closed-loop architectures for maneuver implementation. Simulation results for minimum time control of a two-axis gimbal system and for rapid maneuvering of a TDRS single-access antenna, wherein it is desired to limit the excitation of the satellite body to which the antenna is attached, are presented to illustrate the concepts.

  3. Voltage and Current Unbalance Compensation Using a Parallel Active Filter

    SciTech Connect

    Xu, Yan; Tolbert, Leon M; Kueck, John D; Rizy, D Tom

    2007-01-01

    A three-phase insulated gate bipolar transistor (IGBT)-based parallel active filter is used for current and/or voltage unbalance compensation. An instantaneous power theory is adopted for real-time calculation and control. Three control schemes, current control, voltage control, and integrated control are proposed to compensate the unbalance of current, voltage, or both. The compensation results of the different control schemes in unbalance cases (load unbalance or voltage source unbalance) are compared and analyzed. The simulation and experimental results show that the control schemes can compensate the unbalance in load current or in the voltage source. Different compensation objectives can be achieved, i.e., balanced and unity power factor source current, balanced and regulated voltage, or both, by choosing appropriate control schemes.

  4. Doppler Frequency-Shift Compensated Photorefractive Interferometer for Ultrasound Detection on Objects in Motion

    NASA Astrophysics Data System (ADS)

    Campagne, B.; Blouin, A.; Néron, C.; Monchalin, J.-P.

    2003-03-01

    Two-wave mixing based interferometry has been demonstrated to be a powerful technique for non-contact, broadband and speckle insensitive measurements of the small surface displacements produced by ultrasonic waves propagating in an object. When the object is in rapid motion along the line-of-sight of the probing laser or when the laser beam is rapidly scanned on a wavy surface, the two-wave mixing photorefractive interferometer loses sensitivity to the point it could become useless. To circumvent the Doppler frequency-shift produced by this relative motion, we propose a dynamic compensation scheme. We report a particularly simple scheme to implement this concept by monitoring the low-frequency output signal of a balanced two-wave mixing demodulator whose output is proportional to the frequency difference between the pump and signal beams, and feeding this signal back to the acousto-optic shifter. With this new concept, the two-wave mixing interferometer can operate on objects in rapid motion while maintaining its sensitivity to low frequency ultrasound.

  5. Error motion compensating tracking interferometer for the position measurement of objects with rotational degree of freedom

    NASA Astrophysics Data System (ADS)

    Holler, Mirko; Raabe, Jörg

    2015-05-01

    The nonaxial interferometric position measurement of rotating objects can be performed by imaging the laser beam of the interferometer to a rotating mirror which can be a sphere or a cylinder. This, however, requires such rotating mirrors to be centered on the axis of rotation as a wobble would result in loss of the interference signal. We present a tracking-type interferometer that performs such measurement in a general case where the rotating mirror may wobble on the axis of rotation, or even where the axis of rotation may be translating in space. Aside from tracking, meaning to measure and follow the position of the rotating mirror, the interferometric measurement errors induced by the tracking motion of the interferometer itself are optically compensated, preserving nanometric measurement accuracy. As an example, we show the application of this interferometer in a scanning x-ray tomography instrument.

  6. Precision motion control with a high gain disturbance compensator for linear motors.

    PubMed

    Tan, Kok Kiong; Zhao, Shao

    2004-07-01

    In this paper, we address the problem relating to the precision control of permanent magnet linear motors to track repeated motion trajectories. A high gain disturbance compensator is developed to improve the control performance degraded due to the presence of significant disturbances. An inverse gain of the overall system model is used to set up a disturbance observer. The observed disturbance is then used to generate a "knocker" signal, to be augmented to the control signal, which can provide the additional energy necessary to overcome the effects of the disturbances. A learning scheme is used to adjust the knocker signal iteratively over the repeated cycles. Simulation and experimental results are furnished to demonstrate the effectiveness of the proposed control scheme.

  7. Quantification of microcirculatory parameters by joint analysis of flow‐compensated and non‐flow‐compensated intravoxel incoherent motion (IVIM) data

    PubMed Central

    Knutsson, Linda; Wirestam, Ronnie; Nilsson, Markus; Ståhlberg, Freddy; Topgaard, Daniel; Lasič, Samo

    2016-01-01

    The aim of this study was to improve the accuracy and precision of perfusion fraction and blood velocity dispersion estimates in intravoxel incoherent motion (IVIM) imaging, using joint analysis of flow‐compensated and non‐flow‐compensated motion‐encoded MRI data. A double diffusion encoding sequence capable of switching between flow‐compensated and non‐flow‐compensated encoding modes was implemented. In vivo brain data were collected in eight healthy volunteers and processed using the joint analysis. Simulations were used to compare the performance of the proposed analysis method with conventional IVIM analysis. With flow compensation, strong rephasing was observed for the in vivo data, approximately cancelling the IVIM effect. The joint analysis yielded physiologically reasonable perfusion fraction maps. Estimated perfusion fractions were 2.43 ± 0.81% in gray matter, 1.81 ± 0.90% in deep gray matter, and 1.64 ± 0.72% in white matter (mean ± SD, n = 8). Simulations showed improved accuracy and precision when using joint analysis of flow‐compensated and non‐flow‐compensated data, compared with conventional IVIM analysis. Double diffusion encoding with flow compensation was feasible for in vivo imaging of the perfusion fraction in the brain. The strong rephasing implied that blood flowing through the cerebral microvascular system was closer to the ballistic limit than the diffusive limit. © 2016 The Authors NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:26952166

  8. Source motion detection, estimation, and compensation for underwater acoustics inversion by wideband ambiguity lag-Doppler filtering.

    PubMed

    Josso, Nicolas F; Ioana, Cornel; Mars, Jérôme I; Gervaise, Cédric

    2010-12-01

    Acoustic channel properties in a shallow water environment with moving source and receiver are difficult to investigate. In fact, when the source-receiver relative position changes, the underwater environment causes multipath and Doppler scale changes on the transmitted signal over low-to-medium frequencies (300 Hz-20 kHz). This is the result of a combination of multiple paths propagation, source and receiver motions, as well as sea surface motion or water column fast changes. This paper investigates underwater acoustic channel properties in a shallow water (up to 150 m depth) and moving source-receiver conditions using extracted time-scale features of the propagation channel model for low-to-medium frequencies. An average impulse response of one transmission is estimated using the physical characteristics of propagation and the wideband ambiguity plane. Since a different Doppler scale should be considered for each propagating signal, a time-warping filtering method is proposed to estimate the channel time delay and Doppler scale attributes for each propagating path. The proposed method enables the estimation of motion-compensated impulse responses, where different Doppler scaling factors are considered for the different time delays. It was validated for channel profiles using real data from the BASE'07 experiment conducted by the North Atlantic Treaty Organization Undersea Research Center in the shallow water environment of the Malta Plateau, South Sicily. This paper provides a contribution to many field applications including passive ocean tomography with unknown natural sources position and movement. Another example is active ocean tomography where sources motion enables to rapidly cover one operational area for rapid environmental assessment and hydrophones may be drifting in order to avoid additional flow noise.

  9. Real-time 3D ultrasound fetal image enhancment techniques using motion-compensated frame rate up-conversion

    NASA Astrophysics Data System (ADS)

    Lee, Gun-Ill; Park, Rae-Hong; Song, Young-Seuk; Kim, Cheol-An; Hwang, Jae-Sub

    2003-05-01

    In this paper, we present a motion compensated frame rate up-conversion method for real-time three-dimensional (3-D) ultrasound fetal image enhancement. The conventional mechanical scan method with one-dimensional (1-D) array converters used for 3-D volume data acquisition has a slow frame rate of multi-planar images. This drawback is not an issue for stationary objects, however in ultrasound images showing a fetus of more than about 25 weeks, we perceive abrupt changes due to fast motions. To compensate for this defect, we propose the frame rate up-conversion method by which new interpolated frames are inserted between two input frames, giving smooth renditions to human eyes. More natural motions can be obtained by frame rate up-conversion. In the proposed algorithm, we employ forward motion estimation (ME), in which motion vectors (MVs) ar estimated using a block matching algorithm (BMA). To smooth MVs over neighboring blocks, vector median filtering is performed. Using these smoothed MVs, interpolated frames are reconstructed by motion compensation (MC). The undesirable blocking artifacts due to blockwise processing are reduced by block boundary filtering using a Gaussian low pass filter (LPF). The proposed method can be used in computer aided diagnosis (CAD), where more natural 3-D ultrasound images are displayed in real-time. Simulation results with several real test sequences show the effectiveness of the proposed algorithm.

  10. Development of a frameless stereotactic radiosurgery system based on real-time 6D position monitoring and adaptive head motion compensation

    NASA Astrophysics Data System (ADS)

    Wiersma, Rodney D.; Wen, Zhifei; Sadinski, Meredith; Farrey, Karl; Yenice, Kamil M.

    2010-01-01

    Stereotactic radiosurgery delivers radiation with great spatial accuracy. To achieve sub-millimeter accuracy for intracranial SRS, a head ring is rigidly fixated to the skull to create a fixed reference. For some patients, the invasiveness of the ring can be highly uncomfortable and not well tolerated. In addition, placing and removing the ring requires special expertise from a neurosurgeon, and patient setup time for SRS can often be long. To reduce the invasiveness, hardware limitations and setup time, we are developing a system for performing accurate head positioning without the use of a head ring. The proposed method uses real-time 6D optical position feedback for turning on and off the treatment beam (gating) and guiding a motor-controlled 3D head motion compensation stage. The setup consists of a central control computer, an optical patient motion tracking system and a 3D motion compensation stage attached to the front of the LINAC couch. A styrofoam head cast was custom-built for patient support and was mounted on the compensation stage. The motion feedback of the markers was processed by the control computer, and the resulting motion of the target was calculated using a rigid body model. If the target deviated beyond a preset position of 0.2 mm, an automatic position correction was performed with stepper motors to adjust the head position via the couch mount motion platform. In the event the target deviated more than 1 mm, a safety relay switch was activated and the treatment beam was turned off. The feasibility of the concept was tested using five healthy volunteers. Head motion data were acquired with and without the use of motion compensation over treatment times of 15 min. On average, test subjects exceeded the 0.5 mm tolerance 86% of the time and the 1.0 mm tolerance 45% of the time without motion correction. With correction, this percentage was reduced to 5% and 2% for the 0.5 mm and 1.0 mm tolerances, respectively.

  11. Combination of principal component analysis and optical-flow motion compensation for improved cardiac MR thermometry

    NASA Astrophysics Data System (ADS)

    Toupin, S.; de Senneville, B. Denis; Ozenne, V.; Bour, P.; Lepetit-Coiffe, M.; Boissenin, M.; Jais, P.; Quesson, B.

    2017-02-01

    The use of magnetic resonance (MR) thermometry for the monitoring of thermal ablation is rapidly expanding. However, this technique remains challenging for the monitoring of the treatment of cardiac arrhythmia by radiofrequency ablation due to the heart displacement with respiration and contraction. Recent studies have addressed this problem by compensating in-plane motion in real-time with optical-flow based tracking technique. However, these algorithms are sensitive to local variation of signal intensity on magnitude images associated with tissue heating. In this study, an optical-flow algorithm was combined with a principal component analysis method to reduce the impact of such effects. The proposed method was integrated to a fully automatic cardiac MR thermometry pipeline, compatible with a future clinical workflow. It was evaluated on nine healthy volunteers under free breathing conditions, on a phantom and in vivo on the left ventricle of a sheep. The results showed that local intensity changes in magnitude images had lower impact on motion estimation with the proposed method. Using this strategy, the temperature mapping accuracy was significantly improved.

  12. Motion Compensated Abdominal Diffusion Weighted MRI by Simultaneous Image Registration and Model Estimation (SIR-ME).

    PubMed

    Kurugol, Sila; Freiman, Moti; Afacan, Onur; Domachevsky, Liran; Perez-Rossello, Jeannette M; Callahan, Michael J; Warfield, Simon K

    2015-01-01

    Non-invasive characterization of water molecule's mobility variations by quantitative analysis of diffusion-weighted MRI (DW-MRI) signal decay in the abdomen has the potential to serve as a biomarker in gastrointestinal and oncological applications. Accurate and reproducible estimation of the signal decay model parameters is challenging due to the presence of respiratory, cardiac, and peristalsis motion. Independent registration of each b-value image to the b-value=0 s/mm(2) image prior to parameter estimation might be sub-optimal because of the low SNR and contrast difference between images of varying b-value. In this work, we introduce a motion-compensated parameter estimation framework that simultaneously solves image registration and model estimation (SIR-ME) problems by utilizing the interdependence of acquired volumes along the diffusion weighting dimension. We evaluated the improvement in model parameters estimation accuracy using 16 in-vivo DW-MRI data sets of Crohn's disease patients by comparing parameter estimates obtained using the SIR-ME model to the parameter estimates obtained by fitting the signal decay model to the acquired DW-MRI images. The proposed SIR-ME model reduced the average root-mean-square error between the observed signal and the fitted model by more than 50%. Moreover, the SIR-ME model estimates discriminate between normal and abnormal bowel loops better than the standard parameter estimates.

  13. Motion-compensated noncontact imaging photoplethysmography to monitor cardiorespiratory status during exercise

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Hu, Sijung; Azorin-Peris, Vicente; Greenwald, Stephen; Chambers, Jonathon; Zhu, Yisheng

    2011-07-01

    With the advance of computer and photonics technology, imaging photoplethysmography [(PPG), iPPG] can provide comfortable and comprehensive assessment over a wide range of anatomical locations. However, motion artifact is a major drawback in current iPPG systems, particularly in the context of clinical assessment. To overcome this issue, a new artifact-reduction method consisting of planar motion compensation and blind source separation is introduced in this study. The performance of the iPPG system was evaluated through the measurement of cardiac pulse in the hand from 12 subjects before and after 5 min of cycling exercise. Also, a 12-min continuous recording protocol consisting of repeated exercises was taken from a single volunteer. The physiological parameters (i.e., heart rate, respiration rate), derived from the images captured by the iPPG system, exhibit functional characteristics comparable to conventional contact PPG sensors. Continuous recordings from the iPPG system reveal that heart and respiration rates can be successfully tracked with the artifact reduction method even in high-intensity physical exercise situations. The outcome from this study thereby leads to a new avenue for noncontact sensing of vital signs and remote physiological assessment, with clear applications in triage and sports training.

  14. Influence of increased target dose inhomogeneity on margins for breathing motion compensation in conformal stereotactic body radiotherapy

    PubMed Central

    Richter, Anne; Baier, Kurt; Meyer, Juergen; Wilbert, Juergen; Krieger, Thomas; Flentje, Michael; Guckenberger, Matthias

    2008-01-01

    Background Breathing motion should be considered for stereotactic body radiotherapy (SBRT) of lung tumors. Four-dimensional computer tomography (4D-CT) offers detailed information of tumor motion. The aim of this work is to evaluate the influence of inhomogeneous dose distributions in the presence of breathing induced target motion and to calculate margins for motion compensation. Methods Based on 4D-CT examinations, the probability density function of pulmonary tumors was generated for ten patients. The time-accumulated dose to the tumor was calculated using one-dimensional (1D) convolution simulations of a 'static' dose distribution and target probability density function (PDF). In analogy to stereotactic body radiotherapy (SBRT), different degrees of dose inhomogeneity were allowed in the target volume: minimum doses of 100% were prescribed to the edge of the target and maximum doses varied between 102% (P102) and 150% (P150). The dose loss due to breathing motion was quantified and margins were added until this loss was completely compensated. Results With the time-weighted mean tumor position as the isocentre, a close correlation with a quadratic relationship between the standard deviation of the PDF and the margin size was observed. Increased dose inhomogeneity in the target volume required smaller margins for motion compensation: margins of 2.5 mm, 2.4 mm and 1.3 mm were sufficient for compensation of 11.5 mm motion range and standard deviation of 3.9 mm in P105, P125 and P150, respectively. This effect of smaller margins for increased dose inhomogeneity was observed for all patients. Optimal sparing of the organ-at-risk surrounding the target was achieved for dose prescriptions P105 to P118. The internal target volume concept over-compensated breathing motion with higher than planned doses to the target and increased doses to the surrounding normal tissue. Conclusion Treatment planning with inhomogeneous dose distributions in the target volume required

  15. Digital compensation techniques for the effects of time lag in closed-loop simulation using the 6 DOF motion system

    NASA Technical Reports Server (NTRS)

    Brown, R.

    1982-01-01

    Efforts are continued to develop digital filter compensation schemes for the correction of momentum gains observed in the closed loop simulation of the docking of two satellites using the 6 DOF motion system. Several filters that work well for small delays ( .100ms) and a non-preloaded probe are discussed.

  16. Calculating activation energies for temperature compensation in circadian rhythms

    NASA Astrophysics Data System (ADS)

    Bodenstein, C.; Heiland, I.; Schuster, S.

    2011-10-01

    Many biological species possess a circadian clock, which helps them anticipate daily variations in the environment. In the absence of external stimuli, the rhythm persists autonomously with a period of approximately 24 h. However, single pulses of light, nutrients, chemicals or temperature can shift the clock phase. In the case of light- and temperature-cycles, this allows entrainment of the clock to cycles of exactly 24 h. Circadian clocks have the remarkable property of temperature compensation, that is, the period of the circadian rhythm remains relatively constant within a physiological range of temperatures. For several organisms, temperature-regulated processes within the circadian clock have been identified in recent years. However, how these processes contribute to temperature compensation is not fully understood. Here, we theoretically investigate temperature compensation in general oscillatory systems. It is known that every oscillator can be locally temperature compensated around a reference temperature, if reactions are appropriately balanced. A balancing is always possible if the control coefficient with respect to the oscillation period of at least one reaction in the oscillator network is positive. However, for global temperature compensation, the whole physiological temperature range is relevant. Here, we use an approach which leads to an optimization problem subject to the local balancing principle. We use this approach to analyse different circadian clock models proposed in the literature and calculate activation energies that lead to temperature compensation.

  17. Nonrigid motion compensation in B-mode and contrast enhanced ultrasound image sequences of the carotid artery

    NASA Astrophysics Data System (ADS)

    Carvalho, Diego D. B.; Akkus, Zeynettin; Bosch, Johan G.; van den Oord, Stijn C. H.; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    In this work, we investigate nonrigid motion compensation in simultaneously acquired (side-by-side) B-mode ultrasound (BMUS) and contrast enhanced ultrasound (CEUS) image sequences of the carotid artery. These images are acquired to study the presence of intraplaque neovascularization (IPN), which is a marker of plaque vulnerability. IPN quantification is visualized by performing the maximum intensity projection (MIP) on the CEUS image sequence over time. As carotid images contain considerable motion, accurate global nonrigid motion compensation (GNMC) is required prior to the MIP. Moreover, we demonstrate that an improved lumen and plaque differentiation can be obtained by averaging the motion compensated BMUS images over time. We propose to use a previously published 2D+t nonrigid registration method, which is based on minimization of pixel intensity variance over time, using a spatially and temporally smooth B-spline deformation model. The validation compares displacements of plaque points with manual trackings by 3 experts in 11 carotids. The average (+/- standard deviation) root mean square error (RMSE) was 99+/-74μm for longitudinal and 47+/-18μm for radial displacements. These results were comparable with the interobserver variability, and with results of a local rigid registration technique based on speckle tracking, which estimates motion in a single point, whereas our approach applies motion compensation to the entire image. In conclusion, we evaluated that the GNMC technique produces reliable results. Since this technique tracks global deformations, it can aid in the quantification of IPN and the delineation of lumen and plaque contours.

  18. Real-time high-speed motion blur compensation system based on back-and-forth motion control of galvanometer mirror.

    PubMed

    Hayakawa, Tomohiko; Watanabe, Takanoshin; Ishikawa, Masatoshi

    2015-12-14

    We developed a novel real-time motion blur compensation system for the blur caused by high-speed one-dimensional motion between a camera and a target. The system consists of a galvanometer mirror and a high-speed color camera, without the need for any additional sensors. We controlled the galvanometer mirror with continuous back-and-forth oscillating motion synchronized to a high-speed camera. The angular speed of the mirror is given in real time within 10 ms based on the concept of background tracking and rapid raw Bayer block matching. Experiments demonstrated that our system captures motion-invariant images of objects moving at speeds up to 30 km/h.

  19. Doppler-based motion compensation algorithm for focusing the signature of a rotorcraft.

    PubMed

    Goldman, Geoffrey H

    2013-02-01

    A computationally efficient algorithm was developed and tested to compensate for the effects of motion on the acoustic signature of a rotorcraft. For target signatures with large spectral peaks that vary slowly in amplitude and have near constant frequency, the time-varying Doppler shift can be tracked and then removed from the data. The algorithm can be used to preprocess data for classification, tracking, and nulling algorithms. The algorithm was tested on rotorcraft data. The average instantaneous frequency of the first harmonic of a rotorcraft was tracked with a fixed-lag smoother. Then, state space estimates of the frequency were used to calculate a time warping that removed the effect of a time-varying Doppler shift from the data. The algorithm was evaluated by analyzing the increase in the amplitude of the harmonics in the spectrum of a rotorcraft. The results depended upon the frequency of the harmonics and the processing interval duration. Under good conditions, the results for the fundamental frequency of the target (~11 Hz) almost achieved an estimated upper bound. The results for higher frequency harmonics had larger increases in the amplitude of the peaks, but significantly lower than the estimated upper bounds.

  20. Evaluation of motion compensation method for assessing the gastrointestinal motility using three dimensional endoscope

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Kayo; Yamada, Kenji; Watabe, Kenji; Fujinaga, Tetsuji; Kido, Michiko; Nagakura, Toshiaki; Takahashi, Hideya; Iijima, Hideki; Tsujii, Masahiko; Takehara, Tetsuo; Ohno, Yuko

    2016-03-01

    Functional gastrointestinal disorders (FGID) are the most common gastrointestinal disorders. The term "functional" is generally applied to disorders where there are no structural abnormalities. Gastrointestinal dysmotility is one of the several mechanisms that have been proposed for the pathogenesis of FGID and is usually examined by manometry, a pressure test. There have been no attempts to examine the gastrointestinal dysmotility by endoscopy. We have proposed an imaging system for the assessment of gastric motility using a three-dimensional endoscope. After we newly developed a threedimensional endoscope and constructed a wave simulated model, we established a method of extracting three-dimensional contraction waves derived from a three-dimensional profile of the wave simulated model obtained with the endoscope. In the study, the endoscope and the wave simulated model were fixed to the ground. However, in a clinical setting, it is hard for endoscopists to keep the endoscope still. Moreover, stomach moves under the influence of breathing. Thus, three-dimensional registration of the position between the endoscope and the gastric wall is necessary for the accurate assessment of gastrointestinal motility. In this paper, we propose a motion compensation method using three-dimensional scene flow. The scene flow of the feature point calculated by obtained images in a time series enables the three-dimensional registration of the position between the endoscope and the gastric wall. We confirmed the validity of a proposed method first by a known-movement object and then by a wave simulated model.

  1. Self-similarity in active colloid motion

    NASA Astrophysics Data System (ADS)

    Constant, Colin; Sukhov, Sergey; Dogariu, Aristide

    The self-similarity of displacements among randomly evolving systems has been used to describe the foraging patterns of animals and predict the growth of financial systems. At micron scales, the motion of colloidal particles can be analyzed by sampling their spatial displacement in time. For self-similar systems in equilibrium, the mean squared displacement increases linearly in time. However, external forces can take the system out of equilibrium, creating active colloidal systems, and making this evolution more complex. A moment scaling spectrum of the distribution of particle displacements quantifies the degree of self-similarity in the colloid motion. We will demonstrate that, by varying the temporal and spatial characteristics of the external forces, one can control the degree of self-similarity in active colloid motion.

  2. Evaluation of interpolation methods for surface-based motion compensated tomographic reconstruction for cardiac angiographic C-arm data

    SciTech Connect

    Mueller, Kerstin; Schwemmer, Chris; Hornegger, Joachim; Zheng Yefeng; Wang Yang; Lauritsch, Guenter; Rohkohl, Christopher; Maier, Andreas K.; Schultz, Carl; Fahrig, Rebecca

    2013-03-15

    Purpose: For interventional cardiac procedures, anatomical and functional information about the cardiac chambers is of major interest. With the technology of angiographic C-arm systems it is possible to reconstruct intraprocedural three-dimensional (3D) images from 2D rotational angiographic projection data (C-arm CT). However, 3D reconstruction of a dynamic object is a fundamental problem in C-arm CT reconstruction. The 2D projections are acquired over a scan time of several seconds, thus the projection data show different states of the heart. A standard FDK reconstruction algorithm would use all acquired data for a filtered backprojection and result in a motion-blurred image. In this approach, a motion compensated reconstruction algorithm requiring knowledge of the 3D heart motion is used. The motion is estimated from a previously presented 3D dynamic surface model. This dynamic surface model results in a sparse motion vector field (MVF) defined at control points. In order to perform a motion compensated reconstruction, a dense motion vector field is required. The dense MVF is generated by interpolation of the sparse MVF. Therefore, the influence of different motion interpolation methods on the reconstructed image quality is evaluated. Methods: Four different interpolation methods, thin-plate splines (TPS), Shepard's method, a smoothed weighting function, and a simple averaging, were evaluated. The reconstruction quality was measured on phantom data, a porcine model as well as on in vivo clinical data sets. As a quality index, the 2D overlap of the forward projected motion compensated reconstructed ventricle and the segmented 2D ventricle blood pool was quantitatively measured with the Dice similarity coefficient and the mean deviation between extracted ventricle contours. For the phantom data set, the normalized root mean square error (nRMSE) and the universal quality index (UQI) were also evaluated in 3D image space. Results: The quantitative evaluation of all

  3. Gain-compensated sinusoidal scanning of a galvanometer mirror in proportional-integral-differential control using the pre-emphasis technique for motion-blur compensation.

    PubMed

    Hayakawa, Tomohiko; Watanabe, Takanoshin; Senoo, Taku; Ishikawa, Masatoshi

    2016-07-20

    We propose a method to achieve precise sine-wave path tracking for real-time motion-blur compensation to extend the corresponding frequency spectrum in proportional-integral-differential (PID) control by using a pre-emphasis technique. We calculate pre-emphasis coefficients in advance to follow a sine wave with a gain of 0 dB and multiply the input signal by these pre-emphasis coefficients. In experiments, we were thus able to extend the greatest frequency from 100 to 500 Hz and achieve gain improvement of approximately 3 dB at 400 and 500 Hz. For the application of inspection, we confirmed that motion blur is significantly reduced when the system operates at high frequency, and we achieved a responsiveness 3.3 times higher than that of our previous system.

  4. Tracking 'differential organ motion' with a 'breathing' multileaf collimator: magnitude of problem assessed using 4D CT data and a motion-compensation strategy.

    PubMed

    McClelland, J R; Webb, S; McQuaid, D; Binnie, D M; Hawkes, D J

    2007-08-21

    Intrafraction tumour (e.g. lung) motion due to breathing can, in principle, be compensated for by applying identical breathing motions to the leaves of a multileaf collimator (MLC) as intensity-modulated radiation therapy is delivered by the dynamic MLC (DMLC) technique. A difficulty arising, however, is that irradiated voxels, which are in line with a bixel at one breathing phase (at which the treatment plan has been made), may move such that they cease to be in line with that breathing bixel at another phase. This is the phenomenon of differential voxel motion and existing tracking solutions have ignored this very real problem. There is absolutely no tracking solution to the problem of compensating for differential voxel motion. However, there is a strategy that can be applied in which the leaf breathing is determined to minimize the geometrical mismatch in a least-squares sense in irradiating differentially-moving voxels. A 1D formulation in very restricted circumstances is already in the literature and has been applied to some model breathing situations which can be studied analytically. These are, however, highly artificial. This paper presents the general 2D formulation of the problem including allowing different importance factors to be applied to planning target volume and organ at risk (or most generally) each voxel. The strategy also extends the literature strategy to the situation where the number of voxels connecting to a bixel is a variable. Additionally the phenomenon of 'cross-leaf-track/channel' voxel motion is formally addressed. The general equations are presented and analytic results are given for some 1D, artificially contrived, motions based on the Lujan equations of breathing motion. Further to this, 3D clinical voxel motion data have been extracted from 4D CT measurements to both assess the magnitude of the problem of 2D motion perpendicular to the beam-delivery axis in clinical practice and also to find the 2D optimum breathing-leaf strategy

  5. Tracking 'differential organ motion' with a 'breathing' multileaf collimator: magnitude of problem assessed using 4D CT data and a motion-compensation strategy

    NASA Astrophysics Data System (ADS)

    McClelland, J. R.; Webb, S.; McQuaid, D.; Binnie, D. M.; Hawkes, D. J.

    2007-08-01

    Intrafraction tumour (e.g. lung) motion due to breathing can, in principle, be compensated for by applying identical breathing motions to the leaves of a multileaf collimator (MLC) as intensity-modulated radiation therapy is delivered by the dynamic MLC (DMLC) technique. A difficulty arising, however, is that irradiated voxels, which are in line with a bixel at one breathing phase (at which the treatment plan has been made), may move such that they cease to be in line with that breathing bixel at another phase. This is the phenomenon of differential voxel motion and existing tracking solutions have ignored this very real problem. There is absolutely no tracking solution to the problem of compensating for differential voxel motion. However, there is a strategy that can be applied in which the leaf breathing is determined to minimize the geometrical mismatch in a least-squares sense in irradiating differentially-moving voxels. A 1D formulation in very restricted circumstances is already in the literature and has been applied to some model breathing situations which can be studied analytically. These are, however, highly artificial. This paper presents the general 2D formulation of the problem including allowing different importance factors to be applied to planning target volume and organ at risk (or most generally) each voxel. The strategy also extends the literature strategy to the situation where the number of voxels connecting to a bixel is a variable. Additionally the phenomenon of 'cross-leaf-track/channel' voxel motion is formally addressed. The general equations are presented and analytic results are given for some 1D, artificially contrived, motions based on the Lujan equations of breathing motion. Further to this, 3D clinical voxel motion data have been extracted from 4D CT measurements to both assess the magnitude of the problem of 2D motion perpendicular to the beam-delivery axis in clinical practice and also to find the 2D optimum breathing-leaf strategy

  6. Image registration of interferometric inverse synthetic aperture radar imaging system based on joint respective window sampling and modified motion compensation

    NASA Astrophysics Data System (ADS)

    Tian, Biao; Shi, Si; Liu, Yang; Xu, Shiyou; Chen, Zengping

    2015-01-01

    We propose a new image registration method based on joint respective window sampling (RWS) and modified motion compensation (MMC) in an interferometric inverse synthetic aperture radar (InISAR) imaging system using two antennas. The causation and quantitative analysis of the offset between two ISAR images of different antennas along the baseline are analyzed. In the proposed method, the RWS method, according to the measured distance between the target and different antennas, compensates the offset in the range direction. The MMC method is adopted to eliminate the offset in the Doppler direction. Simulation results demonstrate that the offset between the two ISAR images can be compensated effectively, consequently achieving a high-quality three-dimensional InISAR image.

  7. Evaluating the utility of 3D TRUS image information in guiding intra-procedure registration for motion compensation

    NASA Astrophysics Data System (ADS)

    De Silva, Tharindu; Cool, Derek W.; Romagnoli, Cesare; Fenster, Aaron; Ward, Aaron D.

    2014-03-01

    In targeted 3D transrectal ultrasound (TRUS)-guided biopsy, patient and prostate movement during the procedure can cause target misalignments that hinder accurate sampling of pre-planned suspicious tissue locations. Multiple solutions have been proposed for motion compensation via registration of intra-procedural TRUS images to a baseline 3D TRUS image acquired at the beginning of the biopsy procedure. While 2D TRUS images are widely used for intra-procedural guidance, some solutions utilize richer intra-procedural images such as bi- or multi-planar TRUS or 3D TRUS, acquired by specialized probes. In this work, we measured the impact of such richer intra-procedural imaging on motion compensation accuracy, to evaluate the tradeoff between cost and complexity of intra-procedural imaging versus improved motion compensation. We acquired baseline and intra-procedural 3D TRUS images from 29 patients at standard sextant-template biopsy locations. We used the planes extracted from the 3D intra-procedural scans to simulate 2D and 3D information available in different clinically relevant scenarios for registration. The registration accuracy was evaluated by calculating the target registration error (TRE) using manually identified homologous fiducial markers (micro-calcifications). Our results indicate that TRE improves gradually when the number of intra-procedural imaging planes used in registration is increased. Full 3D TRUS information helps the registration algorithm to robustly converge to more accurate solutions. These results can also inform the design of a fail-safe workflow during motion compensation in a system using a tracked 2D TRUS probe, by prescribing rotational acquisitions that can be performed quickly and easily by the physician immediately prior to needle targeting.

  8. Image motion compensation by area correlation and centroid tracking of solar surface features

    NASA Technical Reports Server (NTRS)

    Nein, M. E.; Mcintosh, W. R.; Cumings, N. P.

    1983-01-01

    An experimental solar correlation tracker was tested and evaluated on a ground-based solar magnetograph. Using sunspots as fixed targets, tracking error signals were derived by which the telescope image was stabilized against wind induced perturbations. Two methods of stabilization were investigated; mechanical stabilization of the image by controlled two-axes motion of an active optical element in the telescope beam, and electronic stabilization by biasing of the electron scan in the recording camera. Both approaches have demonstrated telescope stability of about 0.6 arc sec under random perturbations which can cause the unstabilized image to move up to 120 arc sec at frequencies up to 30 Hz.

  9. Sensor Saturation Compensated Smoothing Algorithm for Inertial Sensor Based Motion Tracking

    PubMed Central

    Dang, Quoc Khanh; Suh, Young Soo

    2014-01-01

    In this paper, a smoothing algorithm for compensating inertial sensor saturation is proposed. The sensor saturation happens when a sensor measures a value that is larger than its dynamic range. This can lead to a considerable accumulated error. To compensate the lost information in saturated sensor data, we propose a smoothing algorithm in which the saturation compensation is formulated as an optimization problem. Based on a standard smoothing algorithm with zero velocity intervals, two saturation estimation methods were proposed. Simulation and experiments prove that the proposed methods are effective in compensating the sensor saturation. PMID:24806740

  10. Compensation of Wave-Induced Motion and Force Phenomena for Ship-Based High Performance Robotic and Human Amplifying Systems

    SciTech Connect

    Love, LJL

    2003-09-24

    Learning Controller has little impact due to the variable nature of the wave period. We then introduce a new approach to HAT control, Ship Motion Compensation for Force Control Systems (SMCFCS). This basic approach uses inclinometer and acceleration information from the base of the robot to compensate for ship motion disturbances. Results of the simulation study show over an order of magnitude decrease in the disturbance force reflected back to the operator and an order of magnitude increase in positioning accuracy and resolution.

  11. Local motion compensation in image sequences degraded by atmospheric turbulence: a comparative analysis of optical flow vs. block matching methods

    NASA Astrophysics Data System (ADS)

    Huebner, Claudia S.

    2016-10-01

    As a consequence of fluctuations in the index of refraction of the air, atmospheric turbulence causes scintillation, spatial and temporal blurring as well as global and local image motion creating geometric distortions. To mitigate these effects many different methods have been proposed. Global as well as local motion compensation in some form or other constitutes an integral part of many software-based approaches. For the estimation of motion vectors between consecutive frames simple methods like block matching are preferable to more complex algorithms like optical flow, at least when challenged with near real-time requirements. However, the processing power of commercially available computers continues to increase rapidly and the more powerful optical flow methods have the potential to outperform standard block matching methods. Therefore, in this paper three standard optical flow algorithms, namely Horn-Schunck (HS), Lucas-Kanade (LK) and Farnebäck (FB), are tested for their suitability to be employed for local motion compensation as part of a turbulence mitigation system. Their qualitative performance is evaluated and compared with that of three standard block matching methods, namely Exhaustive Search (ES), Adaptive Rood Pattern Search (ARPS) and Correlation based Search (CS).

  12. Intestinal motor activity, endoluminal motion and transit.

    PubMed

    de Iorio, F; Malagelada, C; Azpiroz, F; Maluenda, M; Violanti, C; Igual, L; Vitrià, J; Malagelada, J-R

    2009-12-01

    A programme for evaluation of intestinal motility has been recently developed based on endoluminal image analysis using computer vision methodology and machine learning techniques. Our aim was to determine the effect of intestinal muscle inhibition on wall motion, dynamics of luminal content and transit in the small bowel. Fourteen healthy subjects ingested the endoscopic capsule (Pillcam, Given Imaging) in fasting conditions. Seven of them received glucagon (4.8 microg kg(-1) bolus followed by a 9.6 microg kg(-1) h(-1) infusion during 1 h) and in the other seven, fasting activity was recorded, as controls. This dose of glucagon has previously shown to inhibit both tonic and phasic intestinal motor activity. Endoluminal image and displacement was analyzed by means of a computer vision programme specifically developed for the evaluation of muscular activity (contractile and non-contractile patterns), intestinal contents, endoluminal motion and transit. Thirty-minute periods before, during and after glucagon infusion were analyzed and compared with equivalent periods in controls. No differences were found in the parameters measured during the baseline (pretest) periods when comparing glucagon and control experiments. During glucagon infusion, there was a significant reduction in contractile activity (0.2 +/- 0.1 vs 4.2 +/- 0.9 luminal closures per min, P < 0.05; 0.4 +/- 0.1 vs 3.4 +/- 1.2% of images with radial wrinkles, P < 0.05) and a significant reduction of endoluminal motion (82 +/- 9 vs 21 +/- 10% of static images, P < 0.05). Endoluminal image analysis, by means of computer vision and machine learning techniques, can reliably detect reduced intestinal muscle activity and motion.

  13. Motion compensation method using dynamic programming for quantification of neovascularization in carotid atherosclerotic plaques with contrast enhanced ultrasound (CEUS)

    NASA Astrophysics Data System (ADS)

    Akkus, Zeynettin; Hoogi, Assaf; Renaud, Guillaume; ten Kate, Gerrit L.; van den Oord, Stijn C. H.; Schinkel, Arend F. L.; de Jong, Nico; van der Steen, Antonius F. W.; Bosch, Johan G.

    2012-03-01

    Intraplaque neovascularization (IPN) has been linked with progressive atherosclerotic disease and plaque instability in several studies. Quantification of IPN may allow early detection of vulnerable plaques. A dedicated motion compensation method with normalized-cross-correlation (NCC) block matching combined with multidimensional (2D+time) dynamic programming (MDP) was developed for quantification of IPN in small plaques (<30% diameter stenosis). The method was compared to NCC block matching without MDP (forward tracking (FT)) and showed to improve motion tracking. Side-by-side CEUS and B-mode ultrasound images of carotid arteries were acquired by a Philips iU22 system with a L9-3 linear array probe. The motion pattern for the plaque region was obtained from the Bmode images with MDP. MDP results were evaluated in-vitro by a phantom and in-vivo by comparing to manual tracking of three experts for multibeat-image-sequences (MIS) of 11 plaques. In the in-vivo images, the absolute error was 72+/-55μm (mean+/-SD) for X (longitudinal) and 34+/-23μm for Y (radial). The method's success rate was visually assessed on 67 MIS. The tracking was considered failed if it deviated >2 pixels (~200μm) from true motion in any frame. Tracking was scored as fully successful in 63 MIS (94%) for MDP vs. 52(78%) for FT. The range of displacement over these 63 was 1045+/-471μm (X) and 395+/-216μm (Y). The tracking sporadically failed in 4 MIS (6%) due to poor image quality, jugular vein proximity and out-of-plane motion. Motion compensation showed improved lumen-plaque contrast separation. In conclusion, the proposed method is sufficiently accurate and successful for in vivo application.

  14. Marker-less multi-frame motion tracking and compensation in PET-brain imaging

    NASA Astrophysics Data System (ADS)

    Lindsay, C.; Mukherjee, J. M.; Johnson, K.; Olivier, P.; Song, X.; Shao, L.; King, M. A.

    2015-03-01

    In PET brain imaging, patient motion can contribute significantly to the degradation of image quality potentially leading to diagnostic and therapeutic problems. To mitigate the image artifacts resulting from patient motion, motion must be detected and tracked then provided to a motion correction algorithm. Existing techniques to track patient motion fall into one of two categories: 1) image-derived approaches and 2) external motion tracking (EMT). Typical EMT requires patients to have markers in a known pattern on a rigid too attached to their head, which are then tracked by expensive and bulky motion tracking camera systems or stereo cameras. This has made marker-based EMT unattractive for routine clinical application. Our main contributions are the development of a marker-less motion tracking system that uses lowcost, small depth-sensing cameras which can be installed in the bore of the imaging system. Our motion tracking system does not require anything to be attached to the patient and can track the rigid transformation (6-degrees of freedom) of the patient's head at a rate 60 Hz. We show that our method can not only be used in with Multi-frame Acquisition (MAF) PET motion correction, but precise timing can be employed to determine only the necessary frames needed for correction. This can speeds up reconstruction by eliminating the unnecessary subdivision of frames.

  15. Enhancing ejection fraction measurement through 4D respiratory motion compensation in cardiac PET imaging.

    PubMed

    Tang, Jing; Wang, Xinhui; Gao, Xiangzhen; Segars, Paul; Lodge, Martin; Rahmim, Arman

    2017-03-02

    ECG gated cardiac PET imaging measures functional parameters such as left ventricle (LV) ejection fraction (EF), providing diagnostic and prognostic information for management of patients with coronary artery disease (CAD). Respiratory motion degrades spatial resolution and affects the accuracy in measuring the LV volumes for EF calculation. The goal of this study is to systematically investigate the effect of respiratory motion correction on the estimation of end-diastolic volume (EDV), end-systolic volume (ESV), and EF, especially on the separation of normal and abnormal EFs. We developed a respiratory motion incorporated 4D PET image reconstruction technique which uses all gated-frame data to acquire a motion-suppressed image. Using the standard XCAT phantom and two individual-specific volunteer XCAT phantoms, we simulated dual-gated myocardial perfusion imaging data for normally and abnormally beating hearts. With and without respiratory motion correction, we measured the EDV, ESV, and EF from the cardiac gated reconstructed images. For all the phantoms, the estimated volumes increased and the biases significantly reduced with motion correction compared with those without. Furthermore, the improvement of ESV measurement in the abnormally beating heart led to better separation of normal and abnormal EFs. The simulation study demonstrated the significant effect of respiratory motion correction on cardiac imaging data with motion amplitude as small as 0.7 cm. The larger the motion amplitude the more improvement respiratory motion correction brought about on the measurement of EF. Using data-driven respiratory gating, we also demonstrated the effect of respiratory motion correction on estimation of the above functional parameters from list mode patient data. Respiratory motion correction is shown to improve the accuracy of EF measurement in clinical cardiac PET imaging.

  16. Fast luminance and chrominance correction based on motion compensated linear regression for multi-view video coding

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Yin; Ding, Li-Fu; Chen, Liang-Gee

    2007-01-01

    Luminance and chrominance correction (LCC) is important in multi-view video coding (MVC) because it provides better rate-distortion performance when encoding video sequences captured by ill-calibrated multi-view cameras. This paper presents a robust and fast LCC algorithm based on motion compensated linear regression which reuses the motion information from the encoder. We adopt the linear weighted prediction model in H.264/AVC as our LCC model. In our experiments, the proposed LCC algorithm outperforms basic histogram matching method up to 0.4dB with only few computational overhead and zero external memory bandwidth. So, the dataflow of this method is suitable for low bandwidth/low power VLSI design for future multi-view applications.

  17. Compensation of Environment and Motion Error for Accuracy Improvement of Ultra-Precision Lathe

    NASA Astrophysics Data System (ADS)

    Kwac, Lee-Ku; Kim, Jae-Yeol; Kim, Hong-Gun

    The technological manipulation of the piezo-electric actuator could compensate for the errors of the machining precision during the process of machining which lead to an elevation and enhancement in overall precisions. This manipulation is a very convenient method to advance the precision for nations without the solid knowledge of the ultra-precision machining technology. There were 2 divisions of researches conducted to develop the UPCU for precision enhancement of the current lathe and compensation for the environmental errors as shown below; The first research was designed to measure and real-time correct any deviations in variety of areas to achieve a compensation system through more effective optical fiber laser encoder than the encoder resolution which was currently used in the existing lathe. The deviations for a real-time correction were composed of followings; the surrounding air temperature, the thermal deviations of the machining materials, the thermal deviations in spindles, and the overall thermal deviation occurred due to the machine structure. The second research was to develop the UPCU and to improve the machining precision through the ultra-precision positioning and the real-time operative error compensation. The ultimate goal was to improve the machining precision of the existing lathe through completing the 2 research tasks mentioned above.

  18. Magnetocardiography of animals in magnetically shielded environment with active compensation.

    PubMed

    Horng, H E; Liao, S H; Hsu, S J; Yang, H C; Wu, J Y; Chen, C C; Wu, C H; Wu, C C

    2004-11-30

    A high-Tc 1st-order electronic superconducting quantum interference device (SQUID) gradiometer system is constructed to study the magnetocardiogram (MCG) of rabbits in a moderately magnetically shielded environment with active compensation. In the noisy hospital environment, the noise cannot be completely reduced with the 1st-order gradiometer, therefore, a reference SQUID with active compensation was used to further reduce the noise level leaking into the room. The MCG system was equipped with a x-y translation bed. We used a low-pass filter with the cut off frequency at 44 Hz, a high-pass filter with the cut off frequency at 0.1 Hz and the 60 Hz notch filter to reduce the power line interference. The noise level of the 1st order gradiometer MCG system in this moderately magnetically shielded room was about 1 pT/square root of Hz1/2 at 1 Hz. The MCG of a normal rabbits was measured with this system and a MCG contour map and a current density distribution was constructed.

  19. Active Heave-Compensated Coring On The New Jersey Shelf

    NASA Astrophysics Data System (ADS)

    Nielson, D. L.; Pardey, M.; Austin, J. A.; Goff, J. A.; Alexander, C.; Christensen, B. A.; Gulick, S. P.; Fulthorpe, C. S.; Nordfjord, S.; Sommerfield, C.; Venherm, C.

    2003-12-01

    The continental shelves are of obvious scientific and strategic importance. However, the ability to cost-effectively collect core samples of continental shelf sediments has been limited by technical difficulties. Many sites of scientific interest are too shallow to be drilled by large drill ships, and they are too deep to be drilled economically from jack-up platforms. DOSECC has developed an Active Heave Compensated (AHC800) drilling system under sponsorship of the Office of Naval Research to overcome these obstacles by building a small active heave compensated drilling rig that can be used to collect high-quality core from selected vessels of opportunity. The AHC800 drilling rig is designed to collect continuous core to a total drill string length of 800 m. Water depths of 200 m and less are optimal; however, with some modification operation in deeper water is possible. The AHC800 senses vessel heave using a constantly tensioned low-stretch taut line attached to a seafloor weight. A linear position transducer is attached to this taut line and through the data acquisition system, the ship's distance from the bottom is communicated to the heave compensation computer running Labview RT operating system and object-based software language. This real-time control system is used to achieve a 10-ms control loop for both data gathering and output functions. The Labview RT system continuously controls two hydraulic cylinders that keep the heave carriage and the drill string at the same reference distance from the bottom. The AHC800 system was used on the R/V Knorr on the New Jersey continental shelf in water depths from 74 to 130 m from 25 Sep to 15 Oct 2002. The AHC800 system performed up to and beyond its design specifications. The rig was designed to compensate for 2.44 m of heave with an 8 s period. However, the Knorr's response was a 6 s period resulting in a significant increase in the required acceleration as well as a faster response time for the system as a whole

  20. A Temperature Compensation Method for Piezo-Resistive Pressure Sensor Utilizing Chaotic Ions Motion Algorithm Optimized Hybrid Kernel LSSVM.

    PubMed

    Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir

    2016-10-14

    A piezo-resistive pressure sensor is made of silicon, the nature of which is considerably influenced by ambient temperature. The effect of temperature should be eliminated during the working period in expectation of linear output. To deal with this issue, an approach consists of a hybrid kernel Least Squares Support Vector Machine (LSSVM) optimized by a chaotic ions motion algorithm presented. To achieve the learning and generalization for excellent performance, a hybrid kernel function, constructed by a local kernel as Radial Basis Function (RBF) kernel, and a global kernel as polynomial kernel is incorporated into the Least Squares Support Vector Machine. The chaotic ions motion algorithm is introduced to find the best hyper-parameters of the Least Squares Support Vector Machine. The temperature data from a calibration experiment is conducted to validate the proposed method. With attention on algorithm robustness and engineering applications, the compensation result shows the proposed scheme outperforms other compared methods on several performance measures as maximum absolute relative error, minimum absolute relative error mean and variance of the averaged value on fifty runs. Furthermore, the proposed temperature compensation approach lays a foundation for more extensive research.

  1. A Temperature Compensation Method for Piezo-Resistive Pressure Sensor Utilizing Chaotic Ions Motion Algorithm Optimized Hybrid Kernel LSSVM

    PubMed Central

    Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam SM, Jahangir

    2016-01-01

    A piezo-resistive pressure sensor is made of silicon, the nature of which is considerably influenced by ambient temperature. The effect of temperature should be eliminated during the working period in expectation of linear output. To deal with this issue, an approach consists of a hybrid kernel Least Squares Support Vector Machine (LSSVM) optimized by a chaotic ions motion algorithm presented. To achieve the learning and generalization for excellent performance, a hybrid kernel function, constructed by a local kernel as Radial Basis Function (RBF) kernel, and a global kernel as polynomial kernel is incorporated into the Least Squares Support Vector Machine. The chaotic ions motion algorithm is introduced to find the best hyper-parameters of the Least Squares Support Vector Machine. The temperature data from a calibration experiment is conducted to validate the proposed method. With attention on algorithm robustness and engineering applications, the compensation result shows the proposed scheme outperforms other compared methods on several performance measures as maximum absolute relative error, minimum absolute relative error mean and variance of the averaged value on fifty runs. Furthermore, the proposed temperature compensation approach lays a foundation for more extensive research. PMID:27754428

  2. Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns

    NASA Astrophysics Data System (ADS)

    von Tiedemann, Miriam; Fridberger, Anders; Ulfendahl, Mats; de Monvel, Jacques Boutet

    2010-09-01

    A method for three-dimensional motion analysis designed for live cell imaging by fluorescence confocal microscopy is described. The approach is based on optical flow computation and takes into account brightness variations in the image scene that are not due to motion, such as photobleaching or fluorescence variations that may reflect changes in cellular physiology. The 3-D optical flow algorithm allowed almost perfect motion estimation on noise-free artificial sequences, and performed with a relative error of <10% on noisy images typical of real experiments. The method was applied to a series of 3-D confocal image stacks from an in vitro preparation of the guinea pig cochlea. The complex motions caused by slow pressure changes in the cochlear compartments were quantified. At the surface of the hearing organ, the largest motion component was the transverse one (normal to the surface), but significant radial and longitudinal displacements were also present. The outer hair cell displayed larger radial motion at their basolateral membrane than at their apical surface. These movements reflect mechanical interactions between different cellular structures, which may be important for communicating sound-evoked vibrations to the sensory cells. A better understanding of these interactions is important for testing realistic models of cochlear mechanics.

  3. Gravity Compensation Method for Combined Accelerometer and Gyro Sensors Used in Cardiac Motion Measurements.

    PubMed

    Krogh, Magnus Reinsfelt; Nghiem, Giang M; Halvorsen, Per Steinar; Elle, Ole Jakob; Grymyr, Ole-Johannes; Hoff, Lars; Remme, Espen W

    2017-01-23

    A miniaturized accelerometer fixed to the heart can be used for monitoring of cardiac function. However, an accelerometer cannot differentiate between acceleration caused by motion and acceleration due to gravity. The accuracy of motion measurements is therefore dependent on how well the gravity component can be estimated and filtered from the measured signal. In this study we propose a new method for estimating the gravity, based on strapdown inertial navigation, using a combined accelerometer and gyro. The gyro was used to estimate the orientation of the gravity field and thereby remove it. We compared this method with two previously proposed gravity filtering methods in three experimental models using: (1) in silico computer simulated heart motion; (2) robot mimicked heart motion; and (3) in vivo measured motion on the heart in an animal model. The new method correlated excellently with the reference (r (2) > 0.93) and had a deviation from reference peak systolic displacement (6.3 ± 3.9 mm) below 0.2 ± 0.5 mm for the robot experiment model. The new method performed significantly better than the two previously proposed methods (p < 0.001). The results show that the proposed method using gyro can measure cardiac motion with high accuracy and performs better than existing methods for filtering the gravity component from the accelerometer signal.

  4. Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns.

    PubMed

    von Tiedemann, Miriam; Fridberger, Anders; Ulfendahl, Mats; de Monvel, Jacques Boutet

    2010-01-01

    A method for three-dimensional motion analysis designed for live cell imaging by fluorescence confocal microscopy is described. The approach is based on optical flow computation and takes into account brightness variations in the image scene that are not due to motion, such as photobleaching or fluorescence variations that may reflect changes in cellular physiology. The 3-D optical flow algorithm allowed almost perfect motion estimation on noise-free artificial sequences, and performed with a relative error of <10% on noisy images typical of real experiments. The method was applied to a series of 3-D confocal image stacks from an in vitro preparation of the guinea pig cochlea. The complex motions caused by slow pressure changes in the cochlear compartments were quantified. At the surface of the hearing organ, the largest motion component was the transverse one (normal to the surface), but significant radial and longitudinal displacements were also present. The outer hair cell displayed larger radial motion at their basolateral membrane than at their apical surface. These movements reflect mechanical interactions between different cellular structures, which may be important for communicating sound-evoked vibrations to the sensory cells. A better understanding of these interactions is important for testing realistic models of cochlear mechanics.

  5. 77 FR 60028 - Proposed Information Collection (Pre-Discharge Compensation Claim) Activity: Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... AFFAIRS Proposed Information Collection (Pre-Discharge Compensation Claim) Activity: Comment Request.... Title: Pre-Discharge Compensation Claim. OMB Control Number: 2900-0743. Type of Review: Extension of a currently approved collection. Abstract: The Pre-Discharge Compensation Claim form will be used by...

  6. Relative role of motion and PSF compensation in whole-body oncologic PET-MR imaging

    SciTech Connect

    Petibon, Yoann; Syrkina, Aleksandra; Huang, Chuan; Ouyang, Jinsong; Li, Quanzheng; El Fakhri, Georges; Reese, Timothy G.; Chen, Yen-Lin

    2014-04-15

    Purpose: Respiratory motion and partial-volume effects are the two main sources of image degradation in whole-body PET imaging. Simultaneous PET-MR allows measurement of respiratory motion using MRI while collecting PET events. Improved PET images may be obtained by modeling respiratory motion and point spread function (PSF) within the PET iterative reconstruction process. In this study, the authors assessed the relative impact of PSF modeling and MR-based respiratory motion correction in phantoms and patient studies using a whole-body PET-MR scanner. Methods: An asymmetric exponential PSF model accounting for radially varying and axial detector blurring effects was obtained from point source acquisitions performed in the PET-MR scanner. A dedicated MRI acquisition protocol using single-slice steady state free-precession MR acquisitions interleaved with pencil-beam navigator echoes was developed to track respiratory motion during PET-MR studies. An iterative ordinary Poisson fully 3D OSEM PET reconstruction algorithm modeling all the physical effects of the acquisition (attenuation, scatters, random events, detectors efficiencies, PSF), as well as MR-based nonrigid respiratory deformations of tissues (in both emission and attenuation maps) was developed. Phantom and{sup 18}F-FDG PET-MR patient studies were performed to evaluate the proposed quantitative PET-MR methods. Results: The phantom experiment results showed that PSF modeling significantly improved contrast recovery while limiting noise propagation in the reconstruction process. In patients with soft-tissue static lesions, PSF modeling improved lesion contrast by 19.7%–109%, enhancing the detectability and assessment of small tumor foci. In a patient study with small moving hepatic lesions, the proposed reconstruction technique improved lesion contrast by 54.4%–98.1% and reduced apparent lesion size by 21.8%–34.2%. Improvements were particularly important for the smallest lesion undergoing large motion

  7. Using Kinesthetic Activities to Teach Ptolemaic and Copernican Retrograde Motion

    ERIC Educational Resources Information Center

    Richards, Ted

    2012-01-01

    This paper describes a method for teaching planetary retrograde motion, and the Ptolemaic and Copernican accounts of retrograde motion, by means of a series kinesthetic learning activities (KLAs). In the KLAs described, the students literally walk through the motions of the planets in both systems. A retrospective statistical analysis shows that…

  8. Anterior Cruciate Ligament Injury: Compensation during Gait using Hamstring Muscle Activity.

    PubMed

    Catalfamo, Paola Formento; Aguiar, Gerardo; Curi, Jorge; Braidot, Ariel

    2010-06-10

    Previous research has shown that an increase in hamstring activation may compensate for anterior tibial transalation (ATT) in patients with anterior cruciate ligament deficient knee (ACLd); however, the effects of this compensation still remain unclear. The goals of this study were to quantify the activation of the hamstring muscles needed to compensate the ATT in ACLd knee during the complete gait cycle and to evaluate the effect of this compensation on quadriceps activation and joint contact forces. A two dimensional model of the knee was used, which included the tibiofemoral and patellofemoral joints, knee ligaments, the medial capsule and two muscles units. Simulations were conducted to determine the ATT in healthy and ACLd knee and the hamstring activation needed to correct the abnormal ATT to normal levels (100% compensation) and to 50% compensation. Then, the quadriceps activation and the joint contact forces were calculated. Results showed that 100% compensation would require hamstring and quadriceps activations larger than their maximum isometric force, and would generate an increment in the peak contact force at the tibiofemoral (115%) and patellofemoral (48%) joint with respect to the healthy knee. On the other hand, 50% compensation would require less force generated by the muscles (less than 0.85 of maximum isometric force) and smaller contact forces (peak tibiofemoral contact force increased 23% and peak patellofemoral contact force decreased 7.5% with respect to the healthy knee). Total compensation of ATT by means of increased hamstring activity is possible; however, partial compensation represents a less deleterious strategy.

  9. Intraoperative CT as a registration benchmark for intervertebral motion compensation in image-guided open spinal surgery

    PubMed Central

    Fan, Xiaoyao; Paulsen, Keith D.; Roberts, David W.; Mirza, Sohail K.; Lollis, S. Scott

    2016-01-01

    Purpose An accurate and reliable benchmark of registration accuracy and intervertebral motion compensation is important for spinal image guidance. In this study, we evaluated the utility of intraoperative CT (iCT) in place of bone-implanted screws as the ground-truth registration and illustrated its use to benchmark the performance of intraoperative stereovision (iSV). Methods A template-based, multi-body registration scheme was developed to individually segment and pair corresponding vertebrae between preoperative CT and iCT of the spine. Intervertebral motion was determined from the resulting vertebral pair-wise registrations. The accuracy of the image-driven registration was evaluated using surface-to-surface distance error (SDE) based on segmented bony features and was independently verified using point-to-point target registration error (TRE) computed from bone-implanted mini-screws. Both SDE and TRE were used to assess the compensation accuracy using iSV. Results The iCT-based technique was evaluated on four explanted porcine spines (20 vertebral pairs) with artificially induced motion. We report a registration accuracy of 0.57 ± 0.32 mm (range 0.34–1.14 mm) and 0.29 ± 0.15 mm (range 0.14–0.78 mm) in SDE and TRE, respectively, for all vertebrae pooled, with an average intervertebral rotation of 4.9° ± 1.2° (range 1.5°–7.9°). The iSV-based compensation accuracy for one sample (four vertebrae) was 1.32 ± 0.19 mm and 1.72 ± 0.55 mm in SDE and TRE, respectively, exceeding the recommended accuracy of 2 mm. Conclusion This study demonstrates the effectiveness of iCT in place of invasive fiducials as a registration ground truth. These findings are important for future development of on-demand spinal image guidance using radiation-free images such as stereovision and ultrasound on human subjects. PMID:26194485

  10. Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: A simulation study

    SciTech Connect

    Seppenwoolde, Yvette; Berbeco, Ross I.; Nishioka, Seiko; Shirato, Hiroki; Heijmen, Ben

    2007-07-15

    The Synchrony{sup TM} Respiratory Tracking System (RTS) is a treatment option of the CyberKnife robotic treatment device to irradiate extra-cranial tumors that move due to respiration. Advantages of RTS are that patients can breath normally and that there is no loss of linac duty cycle such as with gated therapy. Tracking is based on a measured correspondence model (linear or polynomial) between internal tumor motion and external (chest/abdominal) marker motion. The radiation beam follows the tumor movement via the continuously measured external marker motion. To establish the correspondence model at the start of treatment, the 3D internal tumor position is determined at 15 discrete time points by automatic detection of implanted gold fiducials in two orthogonal x-ray images; simultaneously, the positions of the external markers are measured. During the treatment, the relationship between internal and external marker positions is continuously accounted for and is regularly checked and updated. Here we use computer simulations based on continuously and simultaneously recorded internal and external marker positions to investigate the effectiveness of tumor tracking by the RTS. The Cyberknife does not allow continuous acquisition of x-ray images to follow the moving internal markers (typical imaging frequency is once per minute). Therefore, for the simulations, we have used data for eight lung cancer patients treated with respiratory gating. All of these patients had simultaneous and continuous recordings of both internal tumor motion and external abdominal motion. The available continuous relationship between internal and external markers for these patients allowed investigation of the consequences of the lower acquisition frequency of the RTS. With the use of the RTS, simulated treatment errors due to breathing motion were reduced largely and consistently over treatment time for all studied patients. A considerable part of the maximum reduction in treatment error

  11. Adaptive three-dimensional motion-compensated wavelet transform for image sequence coding

    NASA Astrophysics Data System (ADS)

    Leduc, Jean-Pierre

    1994-09-01

    This paper describes a 3D spatio-temporal coding algorithm for the bit-rate compression of digital-image sequences. The coding scheme is based on different specificities namely, a motion representation with a four-parameter affine model, a motion-adapted temporal wavelet decomposition along the motion trajectories and a signal-adapted spatial wavelet transform. The motion estimation is performed on the basis of four-parameter affine transformation models also called similitude. This transformation takes into account translations, rotations and scalings. The temporal wavelet filter bank exploits bi-orthogonal linear-phase dyadic decompositions. The 2D spatial decomposition is based on dyadic signal-adaptive filter banks with either para-unitary or bi-orthogonal bases. The adaptive filtering is carried out according to a performance criterion to be optimized under constraints in order to eventually maximize the compression ratio at the expense of graceful degradations of the subjective image quality. The major principles of the present technique is, in the analysis process, to extract and to separate the motion contained in the sequences from the spatio-temporal redundancy and, in the compression process, to take into account of the rate-distortion function on the basis of the spatio-temporal psycho-visual properties to achieve the most graceful degradations. To complete this description of the coding scheme, the compression procedure is therefore composed of scalar quantizers which exploit the spatio-temporal 3D psycho-visual properties of the Human Visual System and of entropy coders which finalize the bit rate compression.

  12. Impact of reference distance for motion compensation prediction on video quality

    NASA Astrophysics Data System (ADS)

    Wang, Yubing; Claypool, Mark; Kinicki, Robert

    2007-01-01

    Transmitting high-quality, real-time interactive video over lossy networks is challenging because data loss due to the network can severely degrade video quality. A promising feedback technique for low-latency video repair is Reference Picture Selection (RPS), whereby the encoder selects one of several previous frames as a reference frame for predictive encoding of subsequent frames. RPS can operate in two different modes: an optimistic policy that uses negative acknowledgements (NACKs) and a more conservative policy that relies upon positive acknowledgements (ACKs). The choice between RPS ACK mode and NACK mode to some extent depends upon the effects of reference distance on the encoded video quality. This paper provides a systematic study of the effects of reference distance on video quality for a range of video coding conditions. High-quality videos with a wide variety of scene complexity and motion characteristics are selected and encoded using H.264 with a bandwidth constraint and a range of reference distances. Two objective measures of video quality, PSNR and VQM, are analyzed to show that scene complexity and motion characteristics of the video determine the amount of degradation in quality as reference distance increases. In particular, videos with low motion degrade in quality more with an increase in reference distance since they cannot take advantage of the strong similarity between adjacent frames. Videos with high motion do not suffer as much with higher reference distance since the similarity between adjacent frames is already low. The motion characteristics also determine the initial quality under the bandwidth constraint. The data presented should be useful for selecting ACK or NACK mode or for modeling video repair techniques.

  13. Motion compensation in a tomographic ultrasound imaging system: Toward volumetric scans of a limb for prosthetic socket design.

    PubMed

    Ranger, Bryan J; Feigin, Micha; Pestrov, Nikita; Zhang, Xiang; Lempitsky, Victor; Herr, Hugh M; Anthony, Brian W

    2015-08-01

    Current methods of prosthetic socket fabrication remain subjective and ineffective at creating an interface to the human body that is both comfortable and functional. Though there has been recent success using methods like magnetic resonance imaging and biomechanical modeling, a low-cost, streamlined, and repeatable process has not been fully demonstrated. Medical ultrasonography, which has significant potential to expand its clinical applications, is being pursued to acquire data that may quantify and improve the design process and fabrication of prosthetic sockets. This paper presents a new multi-modal imaging approach for acquiring volumetric images of a human limb, specifically focusing on how motion of the limb is compensated for using optical imagery.

  14. Analysis and Simulation of Time Delay Estimation with Compensation for Source/Receiver Relative Motion

    DTIC Science & Technology

    1984-07-24

    34 are from the simulation with motion reported here. Note that the vertical axis is in log^Q StdvCd^-d^]. The confidence intevals , [20, pp. 113-115...LIST OF ACRONYMS ASSP Acoustics Speech and Signal Processing COV Covariance matrix CPE Correlation Performance Estimate CRLB Cramer-Rao Lower Bound ...delay estimate, Var[D] is equal to the Cramer-Rao Lower Bound (CRLB), and, as such, it is an optimum (minimum variance) estimator (see next section

  15. Automated cardiac motion compensation in PET/CT for accurate reconstruction of PET myocardial perfusion images

    NASA Astrophysics Data System (ADS)

    Khurshid, Khawar; McGough, Robert J.; Berger, Kevin

    2008-10-01

    Error-free reconstruction of PET data with a registered CT attenuation map is essential for accurate quantification and interpretation of cardiac perfusion. Misalignment of the CT and PET data can produce an erroneous attenuation map that projects lung attenuation parameters onto the heart wall, thereby underestimating the attenuation and creating artifactual areas of hypoperfusion that can be misinterpreted as myocardial ischemia or infarction. The major causes of misregistration between CT and PET images are the respiratory motion, cardiac motion and gross physical motion of the patient. The misalignment artifact problem is overcome with automated cardiac registration software that minimizes the alignment error between the two modalities. Results show that the automated registration process works equally well for any respiratory phase in which the CT scan is acquired. Further evaluation of this procedure on 50 patients demonstrates that the automated registration software consistently aligns the two modalities, eliminating artifactual hypoperfusion in reconstructed PET images due to PET/CT misregistration. With this registration software, only one CT scan is required for PET/CT imaging, which reduces the radiation dose required for CT-based attenuation correction and improves the clinical workflow for PET/CT.

  16. Heart motion uncertainty compensation prediction method for robot assisted beating heart surgery - Master-slave Kalman Filters approach.

    PubMed

    Liang, Fan; Yu, Yang; Cui, Shigang; Zhao, Li; Wu, Xingli

    2014-05-01

    Robot Assisted Coronary Artery Bypass Graft (CABG) allows the heart keep beating in the surgery by actively eliminating the relative motion between point of interest (POI) on the heart surface and surgical tool. The inherited nonlinear and diverse nature of beating heart motion gives a huge obstacle for the robot to meet the demanding tracking control requirements. In this paper, we novelty propose a Master-slave Kalman Filter based on beating heart motion Nonlinear Adaptive Prediction (NAP) algorithm. In the study, we describe the beating heart motion as the combination of nonlinearity relating mathematics part and uncertainty relating non-mathematics part. Specifically, first, we model the nonlinearity of the heart motion via quadratic modulated sinusoids and estimate it by a Master Kalman Filter. Second, we involve the uncertainty heart motion by adaptively change the covariance of the process noise through the slave Kalman Filter. We conduct comparative experiments to evaluate the proposed approach with four distinguished datasets. The results indicate that the new approach reduces prediction errors by at least 30 μm. Moreover, the new approach performs well in robustness test, in which two kinds of arrhythmia datasets from MIT-BIH arrhythmia database are assessed.

  17. Three-dimensional reconstruction of coronary stents in vivo based on motion compensated X-ray angiography

    NASA Astrophysics Data System (ADS)

    Schäfer, Dirk; Movassaghi, Babak; Grass, Michael; Schoonenberg, Gert; Florent, Raoul; Wink, Onno; Klein, Andrew J. P.; Chen, James Y.; Garcia, Joel; Messenger, John C.; Carroll, John D.

    2007-03-01

    The complete expansion of the stent during a percutaneous transluminal coronary angioplasty (PTCA) procedure is essential for treatment of a stenotic segment of a coronary artery. Inadequate expansion of the stent is a major predisposing factor to in-stent restenosis and acute thrombosis. Stents are positioned and deployed by fluoroscopic guidance. Although the current generation of stents are made of materials with some degree of radio-opacity to detect their location after deployment, proper stent expansion is hard to asses. In this work, we introduce a new method for the three-dimensional (3D) reconstruction of the coronary stents in-vivo utilizing two-dimensional projection images acquired during rotational angiography (RA). The acquisition protocol consist of a propeller rotation of the X-ray C-arm system of 180°, which ensures sufficient angular coverage for volume reconstruction. The angiographic projections were acquired at 30 frames per second resulting in 180 projections during a 7 second rotational run. The motion of the stent is estimated from the automatically tracked 2D coordinates of the markers on the balloon catheter. This information is used within a motion-compensated reconstruction algorithm. Therefore, projections from different cardiac phases and motion states can be used, resulting in improved signal-to-noise ratio of the stent. Results of 3D reconstructed coronary stents in vivo, with high spatial resolution are presented. The proposed method allows for a comprehensive and unique quantitative 3D assessment of stent expansion that rivals current X-ray and intravascular ultrasound techniques.

  18. People can understand descriptions of motion without activating visual motion brain regions

    PubMed Central

    Dravida, Swethasri; Saxe, Rebecca; Bedny, Marina

    2013-01-01

    What is the relationship between our perceptual and linguistic neural representations of the same event? We approached this question by asking whether visual perception of motion and understanding linguistic depictions of motion rely on the same neural architecture. The same group of participants took part in two language tasks and one visual task. In task 1, participants made semantic similarity judgments with high motion (e.g., “to bounce”) and low motion (e.g., “to look”) words. In task 2, participants made plausibility judgments for passages describing movement (“A centaur hurled a spear … ”) or cognitive events (“A gentleman loved cheese …”). Task 3 was a visual motion localizer in which participants viewed animations of point-light walkers, randomly moving dots, and stationary dots changing in luminance. Based on the visual motion localizer we identified classic visual motion areas of the temporal (MT/MST and STS) and parietal cortex (inferior and superior parietal lobules). We find that these visual cortical areas are largely distinct from neural responses to linguistic depictions of motion. Motion words did not activate any part of the visual motion system. Motion passages produced a small response in the right superior parietal lobule, but none of the temporal motion regions. These results suggest that (1) as compared to words, rich language stimuli such as passages are more likely to evoke mental imagery and more likely to affect perceptual circuits and (2) effects of language on the visual system are more likely in secondary perceptual areas as compared to early sensory areas. We conclude that language and visual perception constitute distinct but interacting systems. PMID:24009592

  19. Instabilities, motion and deformation of active fluid droplets

    NASA Astrophysics Data System (ADS)

    Whitfield, Carl A.; Hawkins, Rhoda J.

    2016-12-01

    We consider two minimal models of active fluid droplets that exhibit complex dynamics including steady motion, deformation, rotation and oscillating motion. First we consider a droplet with a concentration of active contractile matter adsorbed to its boundary. We analytically predict activity driven instabilities in the concentration profile, and compare them to the dynamics we find from simulations. Secondly, we consider a droplet of active polar fluid of constant concentration. In this system we predict, motion and deformation of the droplets in certain activity ranges due to instabilities in the polarisation field. Both these systems show spontaneous transitions to motility and deformation which resemble dynamics of the cell cytoskeleton in animal cells.

  20. Using Kinesthetic Activities to Teach Ptolemaic and Copernican Retrograde Motion

    NASA Astrophysics Data System (ADS)

    Richards, Ted

    2012-06-01

    This paper describes a method for teaching planetary retrograde motion, and the Ptolemaic and Copernican accounts of retrograde motion, by means of a series kinesthetic learning activities (KLAs). In the KLAs described, the students literally walk through the motions of the planets in both systems. A retrospective statistical analysis shows that students who participated in these activities performed better on examination questions pertaining to retrograde motion than students who did not. Potential explanations for this result, including the breaking of classroom routine, the effect of body movement on conceptual memory, and egocentric spatial proprioception, are considered.

  1. A common-path optical coherence tomography distance-sensor based surface tracking and motion compensation hand-held microsurgical tool

    NASA Astrophysics Data System (ADS)

    Zhang, Kang; Gehlbach, Peter; Kang, Jin U.

    2011-03-01

    Microsurgery requires constant attention to the involuntary motion due to physiological tremors. In this work, we demonstrated a simple and compact hand-held microsurgical tool capable of surface tracking and motion compensation based on common-path optical coherence tomography (CP-OCT) distance-sensor to improve the accuracy and safety of microsurgery. This tool is miniaturized into a 15mm-diameter plastic syringe and capable of surface tracking at less than 5 micrometer resolution. A phantom made with Intralipid layers is used to simulate a real tissue surface and a single-fiber integrated micro-dissector works as a surgical tip to perform tracking and accurate incision on the phantom surface. The micro-incision depth is evaluated after each operation through a fast 3D scanning by the Fourier domain OCT system. The results using the surface tracking and motion compensation tool show significant improvement compared to the results by free-hand.

  2. Fast CT-CT fluoroscopy registration with respiratory motion compensation for image-guided lung intervention

    NASA Astrophysics Data System (ADS)

    Su, Po; Xue, Zhong; Lu, Kongkuo; Yang, Jianhua; Wong, Stephen T.

    2012-02-01

    CT-fluoroscopy (CTF) is an efficient imaging method for guiding percutaneous lung interventions such as biopsy. During CTF-guided biopsy procedure, four to ten axial sectional images are captured in a very short time period to provide nearly real-time feedback to physicians, so that they can adjust the needle as it is advanced toward the target lesion. Although popularly used in clinics, this traditional CTF-guided intervention procedure may require frequent scans and cause unnecessary radiation exposure to clinicians and patients. In addition, CTF only generates limited slices of images and provides limited anatomical information. It also has limited response to respiratory movements and has narrow local anatomical dynamics. To better utilize CTF guidance, we propose a fast CT-CTF registration algorithm with respiratory motion estimation for image-guided lung intervention using electromagnetic (EM) guidance. With the pre-procedural exhale and inhale CT scans, it would be possible to estimate a series of CT images of the same patient at different respiratory phases. Then, once a CTF image is captured during the intervention, our algorithm can pick the best respiratory phase-matched 3D CT image and performs a fast deformable registration to warp the 3D CT toward the CTF. The new 3D CT image can be used to guide the intervention by superimposing the EM-guided needle location on it. Compared to the traditional repetitive CTF guidance, the registered CT integrates both 3D volumetric patient data and nearly real-time local anatomy for more effective and efficient guidance. In this new system, CTF is used as a nearly real-time sensor to overcome the discrepancies between static pre-procedural CT and the patient's anatomy, so as to provide global guidance that may be supplemented with electromagnetic (EM) tracking and to reduce the number of CTF scans needed. In the experiments, the comparative results showed that our fast CT-CTF algorithm can achieve better registration

  3. Changes in Muscle Activation after Reach Training with Gravity Compensation in Chronic Stroke Patients

    ERIC Educational Resources Information Center

    Prange, Gerdienke B.; Krabben, Thijs; Renzenbrink, Gerbert J.; Ijzerman, Maarten J.; Hermens, Hermie J.; Jannink, Michiel J. A.

    2012-01-01

    The objective of this study is to examine the effect of gravity compensation training on reaching and underlying changes in muscle activation. In this clinical trial, eight chronic stroke patients with limited arm function received 18 sessions (30 min) of gravity-compensated reach training (during 6 weeks) in combination with a rehabilitation…

  4. Static antennae act as locomotory guides that compensate for visual motion blur in a diurnal, keen-eyed predator

    PubMed Central

    Zurek, Daniel B.; Gilbert, Cole

    2014-01-01

    High visual acuity allows parallel processing of distant environmental features, but only when photons are abundant enough. Diurnal tiger beetles (Carabidae: Cicindelinae) have acute vision for insects and visually pursue prey in open, flat habitats. Their fast running speed causes motion blur that degrades visual contrast, forces stop-and-go pursuit and potentially impairs obstacle detection. We demonstrate here that vision is insufficient for obstacle detection during running, and show instead that antennal touch is both necessary and sufficient for obstacle detection. While running, tiger beetle vision appears to be photon-limited in a way reminiscent of animals in low-light habitats. Such animals often acquire wide-field spatial information through mechanosensation mediated by longer, more mobile appendages. We show that a nocturnal tiger beetle species waves its antennae in elliptical patterns typical of poorly sighted insects. While antennae of diurnal species are also used for mechanosensation, they are rigidly held forward with the tips close to the substrate. This enables timely detection of path obstructions followed by an increase in body pitch to avoid collision. Our results demonstrate adaptive mechanosensory augmentation of blurred visual information during fast locomotion, and suggest that future studies may reveal non-visual sensory compensation in other fast-moving animals. PMID:24500171

  5. Prospective Real-Time Correction for Arbitrary Head Motion Using Active Markers

    PubMed Central

    Ooi, Melvyn B.; Krueger, Sascha; Thomas, William J.; Swaminathan, Srirama V.; Brown, Truman R.

    2011-01-01

    Patient motion during an MRI exam can result in major degradation of image quality, and is of increasing concern due to the aging population and its associated diseases. This work presents a general strategy for real-time, intra-image compensation of rigid-body motion that is compatible with multiple imaging sequences. Image quality improvements are established for structural brain MRI acquired during volunteer motion. A headband integrated with three active markers is secured to the forehead. Prospective correction is achieved by interleaving a rapid track-and-update module into the imaging sequence. For every repetition of this module, a short tracking pulse-sequence re-measures the marker positions; during head motion, the rigid-body transformation that realigns the markers to their initial positions is fed back to adaptively update the image-plane – maintaining it at a fixed orientation relative to the head – before the next imaging segment of k-space is acquired. In cases of extreme motion, corrupted lines of k-space are rejected and re-acquired with the updated geometry. High precision tracking measurements (0.01 mm) and corrections are accomplished in a temporal resolution (37 ms) suitable for real-time application. The correction package requires minimal additional hardware and is fully integrated into the standard user interface, promoting transferability to clinical practice. PMID:19488989

  6. Image-based compensation for involuntary motion in weight-bearing C-arm cone-beam CT scanning of knees

    NASA Astrophysics Data System (ADS)

    Unberath, Mathias; Choi, Jang-Hwan; Berger, Martin; Maier, Andreas; Fahrig, Rebecca

    2015-03-01

    We previously introduced four fiducial marker-based strategies to compensate for involuntary knee-joint motion during weight-bearing C-arm CT scanning of the lower body. 2D methods showed significant reduction of motion- related artifacts, but 3D methods worked best. However, previous methods led to increased examination times and patient discomfort caused by the marker attachment process. Moreover, sub-optimal marker placement may lead to decreased marker detectability and therefore unstable motion estimates. In order to reduce overall patient discomfort, we developed a new image-based 2D projection shifting method. A C-arm cone-beam CT system was used to acquire projection images of five healthy volunteers at various flexion angles. Projection matrices for the horizontal scanning trajectory were calibrated using the Siemens standard PDS-2 phantom. The initial reconstruction was forward projected using maximum-intensity projections (MIP), yielding an estimate of a static scan. This estimate was then used to obtain the 2D projection shifts via registration. For the scan with the most motion, the proposed method reproduced the marker-based results with a mean error of 2.90 mm +/- 1.43 mm (compared to a mean error of 4.10 mm +/- 3.03 mm in the uncorrected case). Bone contour surrounding modeling clay layer was improved. The proposed method is a first step towards automatic image-based, marker-free motion-compensation.

  7. Parkinson-Related Changes of Activation in Visuomotor Brain Regions during Perceived Forward Self-Motion

    PubMed Central

    van der Hoorn, Anouk; Renken, Remco J.; Leenders, Klaus L.; de Jong, Bauke M.

    2014-01-01

    Radial expanding optic flow is a visual consequence of forward locomotion. Presented on screen, it generates illusionary forward self-motion, pointing at a close vision-gait interrelation. As particularly parkinsonian gait is vulnerable to external stimuli, effects of optic flow on motor-related cerebral circuitry were explored with functional magnetic resonance imaging in healthy controls (HC) and patients with Parkinson’s disease (PD). Fifteen HC and 22 PD patients, of which 7 experienced freezing of gait (FOG), watched wide-field flow, interruptions by narrowing or deceleration and equivalent control conditions with static dots. Statistical parametric mapping revealed that wide-field flow interruption evoked activation of the (pre-)supplementary motor area (SMA) in HC, which was decreased in PD. During wide-field flow, dorsal occipito-parietal activations were reduced in PD relative to HC, with stronger functional connectivity between right visual motion area V5, pre-SMA and cerebellum (in PD without FOG). Non-specific ‘changes’ in stimulus patterns activated dorsolateral fronto-parietal regions and the fusiform gyrus. This attention-associated network was stronger activated in HC than in PD. PD patients thus appeared compromised in recruiting medial frontal regions facilitating internally generated virtual locomotion when visual motion support falls away. Reduced dorsal visual and parietal activations during wide-field optic flow in PD were explained by impaired feedforward visual and visuomotor processing within a magnocellular (visual motion) functional chain. Compensation of impaired feedforward processing by distant fronto-cerebellar circuitry in PD is consistent with motor responses to visual motion stimuli being either too strong or too weak. The ‘change’-related activations pointed at covert (stimulus-driven) attention. PMID:24755754

  8. The Results of a Simulator Study to Determine the Effects on Pilot Performance of Two Different Motion Cueing Algorithms and Various Delays, Compensated and Uncompensated

    NASA Technical Reports Server (NTRS)

    Guo, Li-Wen; Cardullo, Frank M.; Telban, Robert J.; Houck, Jacob A.; Kelly, Lon C.

    2003-01-01

    A study was conducted employing the Visual Motion Simulator (VMS) at the NASA Langley Research Center, Hampton, Virginia. This study compared two motion cueing algorithms, the NASA adaptive algorithm and a new optimal control based algorithm. Also, the study included the effects of transport delays and the compensation thereof. The delay compensation algorithm employed is one developed by Richard McFarland at NASA Ames Research Center. This paper reports on the analyses of the results of analyzing the experimental data collected from preliminary simulation tests. This series of tests was conducted to evaluate the protocols and the methodology of data analysis in preparation for more comprehensive tests which will be conducted during the spring of 2003. Therefore only three pilots were used. Nevertheless some useful results were obtained. The experimental conditions involved three maneuvers; a straight-in approach with a rotating wind vector, an offset approach with turbulence and gust, and a takeoff with and without an engine failure shortly after liftoff. For each of the maneuvers the two motion conditions were combined with four delay conditions (0, 50, 100 & 200ms), with and without compensation.

  9. An evaluation of motion compensation strategies and repeatability for abdominal (1)H MR spectroscopy measurements in volunteer studies and clinical trials.

    PubMed

    Germuska, M; Tunariu, N; Leach, M O; Xu, Jian; Payne, G S

    2012-06-01

    Increased expression of choline kinase has frequently been shown in tumours and is thought to be associated with disease progression. Studies using magnetic resonance spectroscopy have shown an increase in total choline-containing metabolites (tCho) in tumour compared with healthy tissue. Subsequent reductions in tCho following successful treatment support the use of tCho as a biomarker of disease and response. However, accurate measurement of tCho using MRS in abdominal tumours is complicated by respiratory motion, blurring the acquisition volume and degrading the lineshape and signal-to-noise ratio (SNR) of metabolites. Motion compensation using prospectively gated acquisitions or offline correction of phase and frequency distortions can help restore the SNR and linewidth of metabolites. Prospectively gated acquisitions have the advantage of confining the volume of acquisition to the prescribed volume but are constrained by the repetition time (TR) of the respiratory motion. In contrast, data acquired for offline correction may use a shorter repetition time and therefore yield an increased SNR per unit time. In this study abdominal spectra acquired from single-voxel 'free-breathing' measurements in liver of healthy volunteers and in abdominal tumours of cancer patients were compared with those of prospective gating and with an implementation of offline correction. The two motion compensation methodologies were assessed in terms of SNR, linewidth and repeatability. Our experiments show that prospective gating and offline correction result in a 12-22% reduction in median tCho linewidth, while offline correction also provides a significant increase in SNR. The repeatability coefficient (the expected interval for 95% of repeat measurements) for tCho/water ratio was reduced by 37% (prospective gating) and 41% (offline correction). Both methods of motion compensation substantially improved the reproducibility of the tCho/water measurement and the tCho linewidth. While

  10. 1981 national survey of compensation paid scientists and engineers engaged in research and development activities

    SciTech Connect

    Not Available

    1981-12-01

    The results of a compensation survey conducted by the Columbus Laboratories of Battelle are presented. The survey was entitled A National Survey of Compensation Paid to Scientists and Engineers Engaged in Research and Development Activities. Information is included on the: sampling procedures; basic data for survey analysis; beginning salaries for recent graduates with bachelor, master, or doctorate degrees; salary trends; geographic analysis; interpretation of results; and salary tables. (LCL)

  11. First Steps Toward Ultrasound-Based Motion Compensation for Imaging and Therapy: Calibration with an Optical System and 4D PET Imaging

    PubMed Central

    Schwaab, Julia; Kurz, Christopher; Sarti, Cristina; Bongers, André; Schoenahl, Frédéric; Bert, Christoph; Debus, Jürgen; Parodi, Katia; Jenne, Jürgen Walter

    2015-01-01

    Target motion, particularly in the abdomen, due to respiration or patient movement is still a challenge in many diagnostic and therapeutic processes. Hence, methods to detect and compensate this motion are required. Diagnostic ultrasound (US) represents a non-invasive and dose-free alternative to fluoroscopy, providing more information about internal target motion than respiration belt or optical tracking. The goal of this project is to develop an US-based motion tracking for real-time motion correction in radiation therapy and diagnostic imaging, notably in 4D positron emission tomography (PET). In this work, a workflow is established to enable the transformation of US tracking data to the coordinates of the treatment delivery or imaging system – even if the US probe is moving due to respiration. It is shown that the US tracking signal is equally adequate for 4D PET image reconstruction as the clinically used respiration belt and provides additional opportunities in this concern. Furthermore, it is demonstrated that the US probe being within the PET field of view generally has no relevant influence on the image quality. The accuracy and precision of all the steps in the calibration workflow for US tracking-based 4D PET imaging are found to be in an acceptable range for clinical implementation. Eventually, we show in vitro that an US-based motion tracking in absolute room coordinates with a moving US transducer is feasible. PMID:26649277

  12. First Steps Toward Ultrasound-Based Motion Compensation for Imaging and Therapy: Calibration with an Optical System and 4D PET Imaging.

    PubMed

    Schwaab, Julia; Kurz, Christopher; Sarti, Cristina; Bongers, André; Schoenahl, Frédéric; Bert, Christoph; Debus, Jürgen; Parodi, Katia; Jenne, Jürgen Walter

    2015-01-01

    Target motion, particularly in the abdomen, due to respiration or patient movement is still a challenge in many diagnostic and therapeutic processes. Hence, methods to detect and compensate this motion are required. Diagnostic ultrasound (US) represents a non-invasive and dose-free alternative to fluoroscopy, providing more information about internal target motion than respiration belt or optical tracking. The goal of this project is to develop an US-based motion tracking for real-time motion correction in radiation therapy and diagnostic imaging, notably in 4D positron emission tomography (PET). In this work, a workflow is established to enable the transformation of US tracking data to the coordinates of the treatment delivery or imaging system - even if the US probe is moving due to respiration. It is shown that the US tracking signal is equally adequate for 4D PET image reconstruction as the clinically used respiration belt and provides additional opportunities in this concern. Furthermore, it is demonstrated that the US probe being within the PET field of view generally has no relevant influence on the image quality. The accuracy and precision of all the steps in the calibration workflow for US tracking-based 4D PET imaging are found to be in an acceptable range for clinical implementation. Eventually, we show in vitro that an US-based motion tracking in absolute room coordinates with a moving US transducer is feasible.

  13. Simulation of the active Brownian motion of a microswimmer

    NASA Astrophysics Data System (ADS)

    Volpe, Giorgio; Gigan, Sylvain; Volpe, Giovanni

    2014-07-01

    Unlike passive Brownian particles, active Brownian particles, also known as microswimmers, propel themselves with directed motion and thus drive themselves out of equilibrium. Understanding their motion can provide insight into out-of-equilibrium phenomena associated with biological examples such as bacteria, as well as with artificial microswimmers. We discuss how to mathematically model their motion using a set of stochastic differential equations and how to numerically simulate it using the corresponding set of finite difference equations both in homogenous and complex environments. In particular, we show how active Brownian particles do not follow the Maxwell-Boltzmann distribution—a clear signature of their out-of-equilibrium nature—and how, unlike passive Brownian particles, microswimmers can be funneled, trapped, and sorted.

  14. Optical Modeling Activities for NASA's James Webb Space Telescope (JWST). 3; Wavefront Aberrations due to Alignment and Figure Compensation

    NASA Technical Reports Server (NTRS)

    Howard, Joseph

    2007-01-01

    This is part three of a series describing the ongoing optical modeling activities for James Webb Space Telescope (JWST). The first two discussed modeling JWST on-orbit performance using wavefront sensitivities to predict line of sight motion induced blur, and stability during thermal transients. The work here investigates the aberrations resulting from alignment and figure compensation of the controllable degrees of freedom (primary and secondary mirrors), which may be encountered during ground alignment and on-orbit commissioning of the observatory. The optical design of the telescope is a three-mirror anastigmat, with an active fold mirror at the exit pupil for fine guiding. The primary mirror is over 6.5 meters in diameter, and is composed of 18 hexagonal segments that can individually positioned on hexapods, as well as compensated for radius of curvature. This effectively gives both alignment and figure control of the primary mirror. The secondary mirror can be moved in rigid body only, giving alignment control of the telescope. The tertiary mirror is fixed, however, as well as the location of the science instrumentation. Simulations are performed of various combinations of active alignment corrections of component figure errors, and of primary mirror figure corrections of alignment errors. Single field point and moderate field knowledge is assumed in the corrections. Aberrations over the field are reported for the varying cases, and examples presented.

  15. Muscle motion and EMG activity in vibration treatment.

    PubMed

    Fratini, Antonio; La Gatta, Antonio; Bifulco, Paolo; Romano, Maria; Cesarelli, Mario

    2009-11-01

    The aim of this study is to highlight the relationship between muscle motion, generated by whole body vibration, and the correspondent electromyographic (EMG) activity and to suggest a new method to customize the stimulation frequency. Simultaneous recordings of EMG and tri-axial accelerations of quadriceps rectus femoris from fifteen subjects undergoing vibration treatments were collected. Vibrations were delivered via a sinusoidal oscillating platform at different frequencies (10-45 Hz). Muscle motion was estimated by processing the accelerometer data. Large EMG motion artifacts were removed using sharp notch filters centred at the vibration frequency and its superior harmonics. EMG-RMS values were computed and analyzed before and after artifact suppression to assess muscular activity. Muscles acceleration amplitude increased with frequency. Muscle displacements revealed a mechanical resonant-like behaviour of the muscle. Resonance frequencies and dumping factors depended on subject. Moreover, RMS of artifact-free EMG was found well correlated (R(2)=0.82) to the actual muscle displacement, while the maximum of the EMG response was found related to the mechanical resonance frequency of muscle. Results showed that maximum muscular activity was found in correspondence to the mechanical resonance of the muscle itself. Assuming the hypothesis that muscle activation is proportional to muscle displacement, treatment optimization (i.e. to choose the best stimulation frequency) could be obtained by simply monitoring local acceleration (resonance), leading to a more effective muscle stimulation. Motion artifact produced an overestimation of muscle activity, therefore its removal was essential.

  16. Statistics of Superluminal Motion in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Wei; Fan, Jun-Hui

    2008-08-01

    We have collected an up-to-date sample of 123 superluminal sources (84 quasars, 27 BL Lac objects and 12 galaxies) and calculated the apparent velocities (βapp) for 224 components in the sources with the Λ-CDM model. We checked the relationships between their proper motions, redshifts, βapp and 5 GHz flux densities. Our analysis shows that the radio emission is strongly boosted by the Doppler effect. The superluminal motion and the relativistic beaming boosting effect are, to some extent, the same in active galactic nuclei.

  17. Design of active temperature compensated composite free-free beam MEMS resonators in a standard process

    NASA Astrophysics Data System (ADS)

    Xereas, George; Chodavarapu, Vamsy P.

    2014-03-01

    Frequency references are used in almost every modern electronic device including mobile phones, personal computers, and scientific and medical instrumentation. With modern consumer mobile devices imposing stringent requirements of low cost, low complexity, compact system integration and low power consumption, there has been significant interest to develop batch-manufactured MEMS resonators. An important challenge for MEMS resonators is to match the frequency and temperature stability of quartz resonators. We present 1MHz and 20MHz temperature compensated Free-Free beam MEMS resonators developed using PolyMUMPS, which is a commercial multi-user process available from MEMSCAP. We introduce a novel temperature compensation technique that enables high frequency stability over a wide temperature range. We used three strategies: passive compensation by using a structural gold (Au) layer on the resonator, active compensation through using a heater element, and a Free-Free beam design that minimizes the effects of thermal mismatch between the vibrating structure and the substrate. Detailed electro-mechanical simulations were performed to evaluate the frequency response and Quality Factor (Q). Specifically, for the 20MHz device, a Q of 10,000 was obtained for the passive compensated design. Finite Element Modeling (FEM) simulations were used to evaluate the Temperature Coefficient of frequency (TCf) of the resonators between -50°C and 125°C which yielded +0.638 ppm/°C for the active compensated, compared to -1.66 ppm/°C for the passively compensated design and -8.48 ppm/°C for uncompensated design for the 20MHz device. Electro-thermo-mechanical simulations showed that the heater element was capable of increasing the temperature of the resonators by approximately 53°C with an applied voltage of 10V and power consumption of 8.42 mW.

  18. Observing shadow motions: resonant activity within the observer's motor system?

    PubMed

    Alaerts, Kaat; Van Aggelpoel, Tinne; Swinnen, Stephan P; Wenderoth, Nicole

    2009-09-25

    Several studies have demonstrated that the human motor cortex is activated by the mere observation of actions performed by others. In the present study, we explored whether the perception of 'impoverished motion stimuli', such as shadow animations, is sufficient to activate motor areas. To do so, transcranial magnetic stimulation (TMS) was applied over the hand area of the primary motor cortex (M1) while subjects observed shadow animations depicting finger motions. Data showed that resonant motor responses in M1 were only found when a biological effector was recognized from the observed shadow animation. Interestingly, M1 responses were similar for observing shadow or real motions. Therefore, the loss of 'pictorial' movement features in a shadow animation appeared to have no effect on motor resonance in M1. In summary, these findings suggest that the 'recognition' of biological motion from sparse visual input is both necessary and sufficient to recruit motor areas. This supports the hypothesis that the motor system is involved in recognizing the actions performed by others.

  19. Changes in muscle activation after reach training with gravity compensation in chronic stroke patients.

    PubMed

    Prange, Gerdienke B; Krabben, Thijs; Renzenbrink, Gerbert J; Ijzerman, Maarten J; Hermens, Hermie J; Jannink, Michiel J A

    2012-09-01

    The objective of this study is to examine the effect of gravity compensation training on reaching and underlying changes in muscle activation. In this clinical trial, eight chronic stroke patients with limited arm function received 18 sessions (30 min) of gravity-compensated reach training (during 6 weeks) in combination with a rehabilitation game. Before and after training, unsupported reach (assessing maximal distance, joint angles and muscle activity of eight shoulder and elbow muscles) and the Fugl-Meyer assessment were compared. After training, the maximal reach distance improved significantly by 3.5% of arm length, together with increased elbow extension (+9.2°) and increased elbow extensor activity (+68%). In some patients, a reduced cocontraction of biceps and anterior deltoid was also involved, although this was not significant on group level. Improvements in unsupported reach after gravity compensation training in chronic stroke patients with mild to severe hemiparesis were mainly accompanied by increased activation of prime movers at the elbow, although in some patients, improved selective joint control may also have been involved. Gravity compensation seems to be a suitable way to provide active, task-specific treatment, without the need for high-tech devices. Further research on a larger scale, including control groups and combinations of arm support with functional hand training, is essential to enhance the potential of arm support to complement poststroke arm rehabilitation.

  20. The Importance of Spatiotemporal Information in Biological Motion Perception: White Noise Presented with a Step-like Motion Activates the Biological Motion Area.

    PubMed

    Callan, Akiko; Callan, Daniel; Ando, Hiroshi

    2017-02-01

    Humans can easily recognize the motion of living creatures using only a handful of point-lights that describe the motion of the main joints (biological motion perception). This special ability to perceive the motion of animate objects signifies the importance of the spatiotemporal information in perceiving biological motion. The posterior STS (pSTS) and posterior middle temporal gyrus (pMTG) region have been established by many functional neuroimaging studies as a locus for biological motion perception. Because listening to a walking human also activates the pSTS/pMTG region, the region has been proposed to be supramodal in nature. In this study, we investigated whether the spatiotemporal information from simple auditory stimuli is sufficient to activate this biological motion area. We compared spatially moving white noise, having a running-like tempo that was consistent with biological motion, with stationary white noise. The moving-minus-stationary contrast showed significant differences in activation of the pSTS/pMTG region. Our results suggest that the spatiotemporal information of the auditory stimuli is sufficient to activate the biological motion area.

  1. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  2. Motion.

    ERIC Educational Resources Information Center

    Gerhart, James B.; Nussbaum, Rudi H.

    This monograph was written for the Conference on the New Instructional Materials in Physics held at the University of Washington in summer, 1965. It is intended for use in an introductory course in college physics. It consists of an extensive qualitative discussion of motion followed by a detailed development of the quantitative methods needed to…

  3. 78 FR 68780 - Treatment of Income From Indian Fishing Rights-Related Activity as Compensation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service 26 CFR Part 1 RIN-1545-BL61 Treatment of Income From Indian Fishing Rights-Related Activity as Compensation AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of...

  4. Active and passive compensation of APPLE II-introduced multipole errors through beam-based measurement

    NASA Astrophysics Data System (ADS)

    Chung, Ting-Yi; Huang, Szu-Jung; Fu, Huang-Wen; Chang, Ho-Ping; Chang, Cheng-Hsiang; Hwang, Ching-Shiang

    2016-08-01

    The effect of an APPLE II-type elliptically polarized undulator (EPU) on the beam dynamics were investigated using active and passive methods. To reduce the tune shift and improve the injection efficiency, dynamic multipole errors were compensated using L-shaped iron shims, which resulted in stable top-up operation for a minimum gap. The skew quadrupole error was compensated using a multipole corrector, which was located downstream of the EPU for minimizing betatron coupling, and it ensured the enhancement of the synchrotron radiation brightness. The investigation methods, a numerical simulation algorithm, a multipole error correction method, and the beam-based measurement results are discussed.

  5. Thermally activated depinning motion of contact lines in pseudopartial wetting.

    PubMed

    Du, Lingguo; Bodiguel, Hugues; Colin, Annie

    2014-07-01

    We investigate pressure-driven motion of liquid-liquid menisci in circular tubes, for systems in pseudopartial wetting conditions. The originality of this type of wetting lies in the coexistence of a macroscopic contact angle with a wetting liquid film covering the solid surface. Focusing on small capillary numbers, we report observations of an apparent contact angle hysteresis at first sight similar to the standard partial wetting case. However, this apparent hysteresis exhibits original features. We observe very long transient regimes before steady state, up to several hundreds of seconds. Furthermore, in steady state, the velocities are nonzero, meaning that the contact line is not strongly pinned to the surface defects, but are very small. The velocity of the contact line tends to vanish near the equilibrium contact angle. These observations are consistent with the thermally activated depinning theory that has been proposed to describe partial wetting systems on disordered substrates and suggest that a single physical mechanism controls both the hysteresis (or the pinning) and the motion of the contact line. The proposed analysis leads to the conclusion that the depinning activated energy is lower with pseudopartial wetting systems than with partial wetting ones, allowing the direct observation of the thermally activated motion of the contact line.

  6. Compensation of errors due to incident beam drift in a 3 DOF measurement system for linear guide motion.

    PubMed

    Hu, Pengcheng; Mao, Shuai; Tan, Jiu-Bin

    2015-11-02

    A measurement system with three degrees of freedom (3 DOF) that compensates for errors caused by incident beam drift is proposed. The system's measurement model (i.e. its mathematical foundation) is analyzed, and a measurement module (i.e. the designed orientation measurement unit) is developed and adopted to measure simultaneously straightness errors and the incident beam direction; thus, the errors due to incident beam drift can be compensated. The experimental results show that the proposed system has a deviation of 1 μm in the range of 200 mm for distance measurements, and a deviation of 1.3 μm in the range of 2 mm for straightness error measurements.

  7. Motion Sensor Use for Physical Activity Data: Methodological Considerations

    PubMed Central

    McCarthy, Margaret; Grey, Margaret

    2015-01-01

    Background Physical inactivity continues to be a major risk factor for cardiovascular disease, and only one half of adults in the United States meet physical activity (PA) goals. PA data are often collected for surveillance or for measuring change after an intervention. One of the challenges in PA research is quantifying exactly how much and what type of PA is taking place—especially because self-report instruments have inconsistent validity. Objective The purpose is to review the elements to consider when collecting PA data via motion sensors, including the difference between PA and exercise; type of data to collect; choosing the device; length of time to monitor PA; instructions to the participants; and interpretation of the data. Methods The current literature on motion sensor research was reviewed and synthesized to summarize relevant considerations when using a motion sensor to collect PA data. Results Exercise is a division of PA that is structured, planned, and repetitive. Pedometer data includes steps taken, and calculated distance and energy expenditure. Accelerometer data includes activity counts and intensity. The device chosen depends on desired data, cost, validity, and ease of use. Reactivity to the device may influence the duration of data collection. Instructions to participants may vary depending on purpose of the study. Experts suggest pedometer data be reported as steps—since that is the direct output—and distance traveled and energy expenditure are estimated values. Accelerometer count data may be analyzed to provide information on time spent in moderate or vigorous activity. Discussion Thoughtful decision making about PA data collection using motion sensor devices is needed to advance nursing science. PMID:26126065

  8. Increased activity in frontal motor cortex compensates impaired speech perception in older adults

    PubMed Central

    Du, Yi; Buchsbaum, Bradley R.; Grady, Cheryl L.; Alain, Claude

    2016-01-01

    Understanding speech in noisy environments is challenging, especially for seniors. Although evidence suggests that older adults increasingly recruit prefrontal cortices to offset reduced periphery and central auditory processing, the brain mechanisms underlying such compensation remain elusive. Here we show that relative to young adults, older adults show higher activation of frontal speech motor areas as measured by functional MRI during a syllable identification task at varying signal-to-noise ratios. This increased activity correlates with improved speech discrimination performance in older adults. Multivoxel pattern classification reveals that despite an overall phoneme dedifferentiation, older adults show greater specificity of phoneme representations in frontal articulatory regions than auditory regions. Moreover, older adults with stronger frontal activity have higher phoneme specificity in frontal and auditory regions. Thus, preserved phoneme specificity and upregulation of activity in speech motor regions provide a means of compensation in older adults for decoding impoverished speech representations in adverse listening conditions. PMID:27483187

  9. An active thermal compensator for closed-cycle helium refrigerators

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.; Hillman, J. J.

    1977-01-01

    A technique was developed for reducing the amplitude of the temperature oscillation in He closed-cyle refrigerators. The device uses a semiconductor diode as a heating element to actively supply a small oscillating input of heat at a point between the laser and the cold-tip to cancel the heat oscillations due to the refrigerator. It was found that the heater diode could drive the temperature of the heat sink more effectively, i.e., with lower current and therefore less heat, if the heat sink was insulated slightly from the rest of the mount. A sine-wave generator was used to drive the programmable supply which provided the offset current to the heater diode. By matching the frequency and phase of the oscillator to that of the refrigerator cycle, and by adjusting the amplitude of the oscillator signal, the temperature fluctuations at the laser could be minimized. Residual fluctuations were about 0.003K peak-to-peak, at an operating temperature of 9.5K.

  10. Collective motion in an active suspension of Escherichia coli bacteria

    NASA Astrophysics Data System (ADS)

    Gachelin, J.; Rousselet, A.; Lindner, A.; Clement, E.

    2014-02-01

    We investigate experimentally the emergence of collective motion in the bulk of an active suspension of Escherichia coli bacteria. When increasing the concentration from a dilute to a semi-dilute regime, we observe a continuous crossover from a dynamical cluster regime to a regime of ‘bio-turbulence’ convection patterns. We measure a length scale characterizing the collective motion as a function of the bacteria concentration. For bacteria fully supplied with oxygen, the increase of the correlation length is almost linear with concentration and at the largest concentrations tested, the correlation length could be as large as 24 bacterial body sizes (or 7-8 when including the flagella bundle). In contrast, under conditions of oxygen shortage the correlation length saturates at a value of around 7 body lengths.

  11. Motion of Euglena gracilis: Active fluctuations and velocity distribution

    NASA Astrophysics Data System (ADS)

    Romanczuk, P.; Romensky, M.; Scholz, D.; Lobaskin, V.; Schimansky-Geier, L.

    2015-07-01

    We study the velocity distribution of unicellular swimming algae Euglena gracilis using optical microscopy and active Brownian particle theory. To characterize a peculiar feature of the experimentally observed distribution at small velocities we use the concept of active fluctuations, which was recently proposed for the description of stochastically self-propelled particles [Romanczuk, P. and Schimansky-Geier, L., Phys. Rev. Lett. 106, 230601 (2011)]. In this concept, the fluctuating forces arise due to internal random performance of the propulsive motor. The fluctuating forces are directed in parallel to the heading direction, in which the propulsion acts. In the theory, we introduce the active motion via the depot model [Schweitzer, et al., Phys. Rev. Lett. 80(23), 5044 (1998)]. We demonstrate that the theoretical predictions based on the depot model with active fluctuations are consistent with the experimentally observed velocity distributions. In addition to the model with additive active noise, we obtain theoretical results for a constant propulsion with multiplicative noise.

  12. Fusion of smartphone motion sensors for physical activity recognition.

    PubMed

    Shoaib, Muhammad; Bosch, Stephan; Incel, Ozlem Durmaz; Scholten, Hans; Havinga, Paul J M

    2014-06-10

    For physical activity recognition, smartphone sensors, such as an accelerometer and a gyroscope, are being utilized in many research studies. So far, particularly, the accelerometer has been extensively studied. In a few recent studies, a combination of a gyroscope, a magnetometer (in a supporting role) and an accelerometer (in a lead role) has been used with the aim to improve the recognition performance. How and when are various motion sensors, which are available on a smartphone, best used for better recognition performance, either individually or in combination? This is yet to be explored. In order to investigate this question, in this paper, we explore how these various motion sensors behave in different situations in the activity recognition process. For this purpose, we designed a data collection experiment where ten participants performed seven different activities carrying smart phones at different positions. Based on the analysis of this data set, we show that these sensors, except the magnetometer, are each capable of taking the lead roles individually, depending on the type of activity being recognized, the body position, the used data features and the classification method employed (personalized or generalized). We also show that their combination only improves the overall recognition performance when their individual performances are not very high, so that there is room for performance improvement. We have made our data set and our data collection application publicly available, thereby making our experiments reproducible.

  13. Fusion of Smartphone Motion Sensors for Physical Activity Recognition

    PubMed Central

    Shoaib, Muhammad; Bosch, Stephan; Incel, Ozlem Durmaz; Scholten, Hans; Havinga, Paul J. M.

    2014-01-01

    For physical activity recognition, smartphone sensors, such as an accelerometer and a gyroscope, are being utilized in many research studies. So far, particularly, the accelerometer has been extensively studied. In a few recent studies, a combination of a gyroscope, a magnetometer (in a supporting role) and an accelerometer (in a lead role) has been used with the aim to improve the recognition performance. How and when are various motion sensors, which are available on a smartphone, best used for better recognition performance, either individually or in combination? This is yet to be explored. In order to investigate this question, in this paper, we explore how these various motion sensors behave in different situations in the activity recognition process. For this purpose, we designed a data collection experiment where ten participants performed seven different activities carrying smart phones at different positions. Based on the analysis of this data set, we show that these sensors, except the magnetometer, are each capable of taking the lead roles individually, depending on the type of activity being recognized, the body position, the used data features and the classification method employed (personalized or generalized). We also show that their combination only improves the overall recognition performance when their individual performances are not very high, so that there is room for performance improvement. We have made our data set and our data collection application publicly available, thereby making our experiments reproducible. PMID:24919015

  14. Active listening room compensation for massive multichannel sound reproduction systems using wave-domain adaptive filtering.

    PubMed

    Spors, Sascha; Buchner, Herbert; Rabenstein, Rudolf; Herbordt, Wolfgang

    2007-07-01

    The acoustic theory for multichannel sound reproduction systems usually assumes free-field conditions for the listening environment. However, their performance in real-world listening environments may be impaired by reflections at the walls. This impairment can be reduced by suitable compensation measures. For systems with many channels, active compensation is an option, since the compensating waves can be created by the reproduction loudspeakers. Due to the time-varying nature of room acoustics, the compensation signals have to be determined by an adaptive system. The problems associated with the successful operation of multichannel adaptive systems are addressed in this contribution. First, a method for decoupling the adaptation problem is introduced. It is based on a generalized singular value decomposition and is called eigenspace adaptive filtering. Unfortunately, it cannot be implemented in its pure form, since the continuous adaptation of the generalized singular value decomposition matrices to the variable room acoustics is numerically very demanding. However, a combination of this mathematical technique with the physical description of wave propagation yields a realizable multichannel adaptation method with good decoupling properties. It is called wave domain adaptive filtering and is discussed here in the context of wave field synthesis.

  15. Respiratory motion compensation for simultaneous PET/MR based on a 3D-2D registration of strongly undersampled radial MR data: a simulation study

    NASA Astrophysics Data System (ADS)

    Rank, Christopher M.; Heußer, Thorsten; Flach, Barbara; Brehm, Marcus; Kachelrieß, Marc

    2015-03-01

    We propose a new method for PET/MR respiratory motion compensation, which is based on a 3D-2D registration of strongly undersampled MR data and a) runs in parallel with the PET acquisition, b) can be interlaced with clinical MR sequences, and c) requires less than one minute of the total MR acquisition time per bed position. In our simulation study, we applied a 3D encoded radial stack-of-stars sampling scheme with 160 radial spokes per slice and an acquisition time of 38 s. Gated 4D MR images were reconstructed using a 4D iterative reconstruction algorithm. Based on these images, motion vector fields were estimated using our newly-developed 3D-2D registration framework. A 4D PET volume of a patient with eight hot lesions in the lungs and upper abdomen was simulated and MoCo 4D PET images were reconstructed based on the motion vector fields derived from MR. For evaluation, average SUVmean values of the artificial lesions were determined for a 3D, a gated 4D, a MoCo 4D and a reference (with ten-fold measurement time) gated 4D reconstruction. Compared to the reference, 3D reconstructions yielded an underestimation of SUVmean values due to motion blurring. In contrast, gated 4D reconstructions showed the highest variation of SUVmean due to low statistics. MoCo 4D reconstructions were only slightly affected by these two sources of uncertainty resulting in a significant visual and quantitative improvement in terms of SUVmean values. Whereas temporal resolution was comparable to the gated 4D images, signal-to-noise ratio and contrast-to-noise ratio were close to the 3D reconstructions.

  16. Differential brain activity states during the perception and nonperception of illusory motion as revealed by magnetoencephalography.

    PubMed

    Crowe, David A; Leuthold, Arthur C; Georgopoulos, Apostolos P

    2010-12-28

    We studied visual perception using an annular random-dot motion stimulus called the racetrack. We recorded neural activity using magnetoencephalography while subjects viewed variants of this stimulus that contained no inherent motion or various degrees of embedded motion. Subjects reported seeing rotary motion during viewing of all stimuli. We found that, in the absence of any motion signals, patterns of brain activity differed between states of motion perception and nonperception. Furthermore, when subjects perceived motion, activity states within the brain did not differ across stimuli of different amounts of embedded motion. In contrast, we found that during periods of nonperception brain-activity states varied with the amount of motion signal embedded in the stimulus. Taken together, these results suggest that during perception the brain may lock into a stable state in which lower-level signals are suppressed.

  17. Modelling and Simulation of Single-Phase Series Active Compensator for Power Quality Improvement

    NASA Astrophysics Data System (ADS)

    Verma, Arun Kumar; Mathuria, Kirti; Singh, Bhim; Bhuvaneshwari, G.

    2016-10-01

    A single-phase active series compensator is proposed in this work to reduce harmonic currents at the ac mains and to regulate the dc link voltage of a diode bridge rectifier (DBR) that acts as the front end converter for a voltage source inverter feeding an ac motor. This ac motor drive is used in any of the domestic, commercial or industrial appliances. Under fluctuating ac mains voltages, the dc link voltage of the DBR depicts wide variations and hence the ac motor is used at reduced rating as compared to its name-plate rating. The active series compensator proposed here provides dual functions of improving the power quality at the ac mains and regulating the dc link voltage thus averting the need for derating of the ac motor.

  18. Active sensor/actuator assemblies for vibration damping, compensation, measurement, and testing

    NASA Astrophysics Data System (ADS)

    Ryaboy, Vyacheslav M.; Kasturi, Prakash S.

    2010-04-01

    The vibration control module known as IQ damper had been developed as part of active vibration damping system for optical tables and other precision vibration isolated platforms. The present work describes steps to expand the application of these units to other tasks, namely, (1) dynamic testing of structures and (2) compensation of forced vibration in local areas. The sensor-actuator assembly, including signal conditioning circuits, is designed as a compact dynamically symmetric module with mechanical interface to an optical table. The test data show that the vibration control modules can be used to measure dynamic compliance characteristics of optical tables with precision comparable to that of dedicated vibration measurement systems. Stable concerted work of active vibration control modules compensating forced harmonic vibration is demonstrated experimentally.

  19. Motion-compensated hand-held common-path Fourier-domain optical coherence tomography probe for image-guided intervention

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Song, Cheol; Liu, Xuan; Kang, Jin U.

    2013-03-01

    A motion-compensated hand-held common-path Fourier-domain optical coherence tomography imaging probe has been developed for image guided intervention during microsurgery. A hand-held prototype instrument was designed and fabricated by integrating an imaging fiber probe inside a stainless steel needle which is attached to the ceramic shaft of a piezoelectric motor housed in an aluminum handle. The fiber probe obtains A-scan images. The distance information was extracted from the A-scans to track the sample surface distance and a fixed distance was maintained by a feedback motor control which effectively compensated hand tremor and target movements in the axial direction. Graphical user interface, real-time data processing, and visualization based on a CPU-GPU hybrid programming architecture were developed and used in the implantation of this system. To validate the system, free-hand optical coherence tomography images using various samples were obtained. The system can be easily integrated into microsurgical tools and robotics for a wide range of clinical applications. Such tools could offer physicians the freedom to easily image sites of interest with reduced risk and higher image quality.

  20. A SAR image-formation algorithm that compensates for the spatially-variant effects of antenna motion

    SciTech Connect

    Burns, B.L.; Cordaro, J.T.

    1994-03-01

    A synthetic aperture radar (SAR) obtains azimuth resolution by combining data from a number of points along a specified path. Uncompensated antenna motion that deviates significantly from the desired path produces spatially-variant errors in the output image. The algorithm presented in this paper corrects many of these motion-related errors. In this respect, it is similar to time-domain convolution, but it is more computationally efficient. The algorithm uses overlapped subapertures in a three-step image-formation process: coarse-resolution azimuth processing, fine-resolution range processing, and fine-resolution azimuth processing. Range migration is corrected after the first stage, based on coarse azimuth position. Prior to the final azimuth-compression step, data coordinates, are determined to fine resolution in range and coarse resolution in azimuth. This coordinate information is combined with measured motion data to generate a phase correction that removes spatially-variant errors. The algorithm is well-suited for real-time applications, particularly where large flight-path deviations must be tolerated.

  1. Crew activity and motion effects on the space station

    NASA Technical Reports Server (NTRS)

    Rochon, Brian V.; Scheer, Steven A.

    1987-01-01

    Among the significant sources of internal disturbances that must be considered in the design of space station vibration control systems are the loads induced on the structure from various crew activities. Flight experiment T013, flown on the second manned mission of Skylab, measured force and moment time histories for a range of preplanned crew motions and activities. This experiment has proved itself invaluable as a source of on-orbit crew induced loads that has allowed a space station forcing function data base to be built. This will enable forced response such as acceleration and deflections, attributable to crew activity, to be calculated. The flight experiment, resultant database and structural model pre-processor, analysis examples and areas of combined research shall be described.

  2. Dosage Compensation in Drosophila: Nadp-Enzyme Activities and Cross-Reacting Material

    PubMed Central

    Williamson, John H.; Bentley, Michael M.

    1983-01-01

    The relationships between gene dosage, enzyme activities and CRM levels have been determined for G6PD and 6PGD. Enzyme activities and CRM levels were directly proportional and increased in genotypes carrying duplications of the respective structural genes. When a duplication consisting of the distal 45% of the X chromosome was used to duplicate Pgd+, 6PGD activity and CRM increased and G6PD activity decreased. When the proximal 55% of the X chromosome was duplicated, G6PD activity and CRM increased whereas 6PGD activity and CRM levels decreased. These observations support the model of dosage compensation of X-linked genes that invokes an autosomal activator in limited concentrations for which X-linked loci compete. The distal 45% of the X chromosome, when duplicated, caused a significant increase in NADP-malic enzyme activity and CRM levels, as if a structural gene for NADP-ME is sex-linked. PMID:6406296

  3. Active motion and load control of floating offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Jalili, Kaveh

    The research in this thesis is focused on stabilization and load reduction of floating offshore wind turbine (FOWT) structures for both the fore-aft (pitch) and side-to-side (roll) directions. Based on the Tuned Mass Damper (TMD) and Active Vane concepts recently proposed, two composite actuation schemes are investigated. The first scheme is to apply the horizontal vane and vertical vane to platform pitch and roll, respectively, resulting in the so-called Double Vane Actuation (DVA) scheme. The second scheme is the combination of the TMD based pitch control and active vertical vane based roll control, resulting in the so-called Hybrid Actuation (HA) scheme. Simulation results of DVA show great reductions of motions and loads in the fore-aft and side-to-side directions. Performance of HA is investigated by extensive simulations based on the IEC61400-3 standard and results show significant and consistent motions and loads reductions in both FA and SS directions.

  4. Active Motion Control of Tetrahymena pyriformis by Galvanotaxis and Geotaxis

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Byun, Doyoung; Kim, Min Jun

    2013-11-01

    Recently, there has been increasing interest in the swimming behavior of microorganisms and biologically inspired micro-robots. These microorganisms naturally accompanied by complex motions. Therefore it is important to understand the flow characteristics as well as control mechanisms. One of eukaryotic cells, the protozoa are a diverse group of unicellular organisms, many of which are motile cilia. Motile cilia are cover on the surface of cell in large numbers and beat in oriented waves. Sequential beating motions of a single cilium form metachronal strokes, producing a propagation wave, and therefore the body is achieved propulsion force. So preliminary studies are achieved to understand the flow induced by swimming microorganisms. Based on hydrodynamic results, the follow study of a few micro-scale protozoa cell, such as the Tetrahymena pyriformis, has provided active or passive control into several external stimuli. In typical control methods, the galvanotaxis and geotaxis were adopted active and passive control, respectively. The validation of galvanotaxis is used DC and AC voltage. In terms of geotaxis, corrugated microstructures were used to control in the microchannel. This research was supported by the Ministry of Education, Science and Technology (MEST, 2011-0016461), National Science Foundation (NSF) CMMI Control Systems Program (#1000255) and Army Research Office (W911NF-11-1-0490).

  5. Flare Activity and Magnetic Helicity Injection By Photospheric Horizontal Motions

    NASA Astrophysics Data System (ADS)

    Moon, Y.-J.; Chae, J.; Choe, G.; Wang, H.; Park, Y. D.; Yun, H. S.; Yurchyshyn, V.; Goode, P. R.

    2002-05-01

    We present observational evidence that the occurrence of homologous flares in an active region is physically related to the injection of magnetic helicity by horizontal photospheric motions. We have analyzed a set of 1 minute cadence magnetograms of NOAA AR 8100 taken over a period of 6.5 hours by Michelson Doppler Imager (MDI) on board Solar and Heliospheric Observatory (SOHO). During this observing time span, seven homologous flares took place in the active region. We have computed the magnetic helicity injection rate into the solar atmosphere by photospheric shearing motions, and found that a significant amount of magnetic helicity was injected during the observing period. In a strong M4.1 flare, the magnetic helicity injection rate impulsively increased and peaked at the same time as the X-ray flux did. The flare X-ray flux integrated over the X-ray emission time strongly correlates with the magnetic helicity injected during the flaring interval. The integrated X-ray flux is found to be a logarithmically increasing function of the injected magnetic helicity. Our results suggest that injection of helicity and abrupt increase of helicity magnitude play a significant role in flare triggering. This work has been supported by NASA grants NAG5-10894 and NAG5-7837, by MURI grant of AFOSR, by the US-Korea Cooperative Science Program (NSF INT-98-16267), by NRL M10104000059-01J000002500 of the Korean government, and by the BK 21 project of the Korean government.

  6. Study on a Mechanical Semi-Active Heave Compensation System of Drill String for Use on Floating Drilling Platform.

    PubMed

    Liu, Qingyou; Tang, Yang; Huang, Chongjun; Xie, Chong

    2015-01-01

    There are some disadvantages for existing heave compensation systems of drill string used for the Floating Drilling Platform (FDP), including high energy consumption, large and complex structure, and expensive manufacturing and maintenance costs. In view of the above, we present a streamlined mechanical semi-active heave compensation system (MSAHC) in this study. This system consists of active compensation part with the pinion and rack and passive compensation part. In order to evaluate system performance of the MSAHC, we establish its simulation model with AMEsim software. In the process of simulation, displacement of rotary hook and energy consumption is regarded as performance parameters of the system. And the change rule of two performance parameters are analyzed by changing these design parameters including gear radius of the pinion and rack, scale coefficient of PID, rotary hook load, heave height and heave period of the FDP, and accumulator volume. Then, based on the simulation results of the MSAHC system performance, we have selected out a best set of design parameters from them. Moreover, the feasibility of the design scheme of the MSAHC is effectively verified by comparison with the existing three heave compensation system. The result shows that the energy consumption of the MSAHC is lower than the active heave compensation system (AHC) and the semi-active heave compensation system (SAHC) when achieving a same compensation effect as well as the accumulator volume of MSAHC is half of the passive heave compensation system (PHC). Therefore, the new designed MSAHC not only ensure compensation effect but also lower energy consumption, and its structure is simplified by adopting the simple mechanical structure to decrease manufacturing cost, maintenance cost and floor space.

  7. Study on a Mechanical Semi-Active Heave Compensation System of Drill String for Use on Floating Drilling Platform

    PubMed Central

    Liu, Qingyou; Tang, Yang; Huang, Chongjun; Xie, Chong

    2015-01-01

    There are some disadvantages for existing heave compensation systems of drill string used for the Floating Drilling Platform (FDP), including high energy consumption, large and complex structure, and expensive manufacturing and maintenance costs. In view of the above, we present a streamlined mechanical semi-active heave compensation system (MSAHC) in this study. This system consists of active compensation part with the pinion and rack and passive compensation part. In order to evaluate system performance of the MSAHC, we establish its simulation model with AMEsim software. In the process of simulation, displacement of rotary hook and energy consumption is regarded as performance parameters of the system. And the change rule of two performance parameters are analyzed by changing these design parameters including gear radius of the pinion and rack, scale coefficient of PID, rotary hook load, heave height and heave period of the FDP, and accumulator volume. Then, based on the simulation results of the MSAHC system performance, we have selected out a best set of design parameters from them. Moreover, the feasibility of the design scheme of the MSAHC is effectively verified by comparison with the existing three heave compensation system. The result shows that the energy consumption of the MSAHC is lower than the active heave compensation system (AHC) and the semi-active heave compensation system (SAHC) when achieving a same compensation effect as well as the accumulator volume of MSAHC is half of the passive heave compensation system (PHC). Therefore, the new designed MSAHC not only ensure compensation effect but also lower energy consumption, and its structure is simplified by adopting the simple mechanical structure to decrease manufacturing cost, maintenance cost and floor space. PMID:26186620

  8. Documenting Western Burrowing Owl Reproduction and Activity Patterns Using Motion-Activated Cameras

    SciTech Connect

    Hall, Derek B.; Greger, Paul D.

    2014-08-01

    We used motion-activated cameras to monitor the reproduction and patterns of activity of the Burrowing Owl (Athene cunicularia) above ground at 45 burrows in south-central Nevada during the breeding seasons of 1999, 2000, 2001, and 2005. The 37 broods, encompassing 180 young, raised over the four years represented an average of 4.9 young per successful breeding pair. Young and adult owls were detected at the burrow entrance at all times of the day and night, but adults were detected more frequently during afternoon/early evening than were young. Motion-activated cameras require less effort to implement than other techniques. Limitations include photographing only a small percentage of owl activity at the burrow; not detecting the actual number of eggs, young, or number fledged; and not being able to track individual owls over time. Further work is also necessary to compare the accuracy of productivity estimates generated from motion-activated cameras with other techniques.

  9. Effective one step-iterative fiducial marker-based compensation for involuntary motion in weight-bearing C-arm cone-beam CT scanning of knees

    NASA Astrophysics Data System (ADS)

    Choi, Jang-Hwan; Maier, Andreas; Berger, Martin; Fahrig, Rebecca

    2014-03-01

    We previously introduced three different fiducial marker-based correction methods (2D projection shifting, 2D projection warping, and 3D image warping) for patients' involuntary motion in the lower body during weight-bearing Carm CT scanning. The 3D warping method performed better than 2D methods since it could more accurately take into account the lower body motion in 3D. However, as the 3D warping method applies different rotational and translational movement to the reconstructed image for each projection frame, distance-related weightings were slightly twisted and thus result in overlaying background noise over the entire image. In order to suppress background noise and artifacts (e.g. metallic marker-caused streaks), the 3D warping method has been improved by incorporating bilateral filtering and a Landwebertype iteration in one step. A series of projection images of five healthy volunteers standing at various flexion angles were acquired using a C-arm cone-beam CT system with a flat panel. A horizontal scanning trajectory of the C-arm was calibrated to generate projection matrices. Using the projection matrices, the static reference marker coordinates in 3D were estimated and used for the improved 3D warping method. The improved 3D warping method effectively reduced background noise down below the noise level of 2D methods and also eliminated metal-generated streaks. Thus, improved visibility of soft tissue structures (e.g. fat and muscle) was achieved while maintaining sharp edges at bone-tissue interfaces. Any high resolution weight-bearing cone-beam CT system can apply this method for motion compensation.

  10. The NACA High-Speed Motion-Picture Camera Optical Compensation at 40,000 Photographs Per Second

    NASA Technical Reports Server (NTRS)

    Miller, Cearcy D

    1946-01-01

    The principle of operation of the NACA high-speed camera is completely explained. This camera, operating at the rate of 40,000 photographs per second, took the photographs presented in numerous NACA reports concerning combustion, preignition, and knock in the spark-ignition engine. Many design details are presented and discussed, details of an entirely conventional nature are omitted. The inherent aberrations of the camera are discussed and partly evaluated. The focal-plane-shutter effect of the camera is explained. Photographs of the camera are presented. Some high-speed motion pictures of familiar objects -- photoflash bulb, firecrackers, camera shutter -- are reproduced as an illustration of the quality of the photographs taken by the camera.

  11. Compensation for Adolescents’ School Mental Load by Physical Activity on Weekend Days

    PubMed Central

    Kudláček, Michal; Frömel, Karel; Jakubec, Lukáš; Groffik, Dorota

    2016-01-01

    Introduction and objective: Increasing mental load and inadequate stress management significantly affect the efficiency, success and safety of the educational/working process in adolescents. The objective of this study is to determine the extent that adolescents compensate for their school mental load by physical activity (PA) on weekend days and, thus, to contribute to the objective measurement of mental load in natural working conditions. Methods: A cross-sectional study was conducted between September 2013 and April 2014. A set of different methods was employed—self-administered questionnaire (IPAQ-long questionnaire), objective measurements—pedometers, and accelerometers (ActiTrainers). They was distributed to 548 students from 17 high schools. Participants’ mental load was assessed based on the difference between PA intensity and/or physical inactivity and heart rate range. Results: The participants with the highest mental load during school lessons do not compensate for this load by PA on weekend days. Conclusions: Adolescents need to be encouraged to be aware of their subjective mental load and to intentionally compensate for this load by PA on weekend days. It is necessary to support the process of adopting habits by sufficient physical literacy of students, as well as teachers, and by changes in the school program. PMID:27005652

  12. Characterization and modelling of the boron-oxygen defect activation in compensated n-type silicon

    SciTech Connect

    Schön, J.; Niewelt, T.; Broisch, J.; Warta, W.; Schubert, M. C.

    2015-12-28

    A study of the activation of the light-induced degradation in compensated n-type Czochralski grown silicon is presented. A kinetic model is established that verifies the existence of both the fast and the slow components known from p-type and proves the quadratic dependence of the defect generation rates of both defects on the hole concentration. The model allows for the description of lifetime degradation kinetics in compensated n-type silicon under various intensities and is in accordance with the findings for p-type silicon. We found that the final concentrations of the slow defect component in compensated n-type silicon only depend on the interstitial oxygen concentration and on neither the boron concentration nor the equilibrium electron concentration n{sub 0}. The final concentrations of the fast defect component slightly increase with increasing boron concentration. The results on n-type silicon give new insight to the origin of the BO defect and question the existing models for the defect composition.

  13. Diffusion in different models of active Brownian motion

    NASA Astrophysics Data System (ADS)

    Lindner, B.; Nicola, E. M.

    2008-04-01

    Active Brownian particles (ABP) have served as phenomenological models of self-propelled motion in biology. We study the effective diffusion coefficient of two one-dimensional ABP models (simplified depot model and Rayleigh-Helmholtz model) differing in their nonlinear friction functions. Depending on the choice of the friction function the diffusion coefficient does or does not attain a minimum as a function of noise intensity. We furthermore discuss the case of an additional bias breaking the left-right symmetry of the system. We show that this bias induces a drift and that it generally reduces the diffusion coefficient. For a finite range of values of the bias, both models can exhibit a maximum in the diffusion coefficient vs. noise intensity.

  14. Unwinding motion of a twisted active region filament

    SciTech Connect

    Yan, X. L.; Xue, Z. K.; Kong, D. F.; Liu, J. H.; Xu, C. L.

    2014-12-10

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  15. Dynamically harmonized FT-ICR cell with specially shaped electrodes for compensation of inhomogeneity of the magnetic field. Computer simulations of the electric field and ion motion dynamics.

    PubMed

    Kostyukevich, Yury I; Vladimirov, Gleb N; Nikolaev, Eugene N

    2012-12-01

    The recently introduced ion trap for FT-ICR mass spectrometers with dynamic harmonization showed the highest resolving power ever achieved both for ions with moderate masses 500-1000 Da (peptides) as well as ions with very high masses of up to 200 kDa (proteins). Such results were obtained for superconducting magnets of very high homogeneity of the magnetic field. For magnets with lower homogeneity, the time of transient duration would be smaller. In superconducting magnets used in FT-ICR mass spectrometry the inhomogeneity of the magnetic field in its axial direction prevails over the inhomogeneity in other directions and should be considered as the main factor influencing the synchronic motion of the ion cloud. The inhomogeneity leads to a dependence of the cyclotron frequency from the amplitude of axial oscillation in the potential well of the ion trap. As a consequence, ions in an ion cloud become dephased, which leads to signal attenuation and decrease in the resolving power. Ion cyclotron frequency is also affected by the radial component of the electric field. Hence, by appropriately adjusting the electric field one can compensate the inhomogeneity of the magnetic field and align the cyclotron frequency in the whole range of amplitudes of z-oscillations. A method of magnetic field inhomogeneity compensation in a dynamically harmonized FT-ICR cell is presented, based on adding of extra electrodes into the cell shaped in such a way that the averaged electric field created by these electrodes produces a counter force to the forces caused by the inhomogeneous magnetic field.

  16. Kaposi's Sarcoma-Associated Herpesvirus Latency Locus Compensates for Interleukin-6 in Initial B Cell Activation.

    PubMed

    Sin, Sang-Hoon; Kang, Sun Ah; Kim, Yongbaek; Eason, Anthony; Tan, Kelly; An, Hyowon; Dittmer, Dirk P

    2015-12-09

    Interleukin 6 (IL-6) is considered a proliferation and survival factor for B cells. To assess the role of IL-6 in Kaposi sarcoma-associated herpesvirus (KSHV) latency, KSHV latency locus-transgenic mice (referred to as latency mice) lacking IL-6 were evaluated. IL-6(-/-) latency mice had the same phenotypes as the latency mice, i.e., increased frequency of marginal zone B cells, hyperplasia, and hyperglobulinemia, indicating that the KSHV latency locus, which includes all viral microRNAs (miRNAs), can compensate for lack of IL-6 in premalignant B cell activation.

  17. Viewing the motion of human body parts activates different regions of premotor, temporal, and parietal cortex.

    PubMed

    Wheaton, Kylie J; Thompson, James C; Syngeniotis, Ari; Abbott, David F; Puce, Aina

    2004-05-01

    Activation of premotor and temporoparietal cortex occurs when we observe others movements, particularly relating to objects. Viewing the motion of different body parts without the context of an object has not been systematically evaluated. During a 3T fMRI study, 12 healthy subjects viewed human face, hand, and leg motion, which was not directed at or did not involve an object. Activation was identified relative to static images of the same human face, hand, and leg in both individual subject and group average data. Four clear activation foci emerged: (1) right MT/V5 activated to all forms of viewed motion; (2) right STS activated to face and leg motion; (3) ventral premotor cortex activated to face, hand, and leg motion in the right hemisphere and to leg motion in the left hemisphere; and (4) anterior intraparietal cortex (aIP) was active bilaterally to viewing hand motion and in the right hemisphere leg motion. In addition, in the group data, a somatotopic activation pattern for viewing face, hand, and leg motion occurred in right ventral premotor cortex. Activation patterns in STS and aIP were more complex--typically activation foci to viewing two types of human motion showed some overlap. Activation in individual subjects was similar; however, activation to hand motion also occurred in the STS with a variable location across subjects--explaining the lack of a clear activation focus in the group data. The data indicate that there are selective responses to viewing motion of different body parts in the human brain that are independent of object or tool use.

  18. Respiratory motion compensated overlay of surface models from cardiac MR on interventional x-ray fluoroscopy for guidance of cardiac resynchronization therapy procedures

    NASA Astrophysics Data System (ADS)

    Manzke, R.; Bornstedt, A.; Lutz, A.; Schenderlein, M.; Hombach, V.; Binner, L.; Rasche, V.

    2010-02-01

    Various multi-center trials have shown that cardiac resynchronization therapy (CRT) is an effective procedure for patients with end-stage drug invariable heart failure (HF). Despite the encouraging results of CRT, at least 30% of patients do not respond to the treatment. Detailed knowledge of the cardiac anatomy (coronary venous tree, left ventricle), functional parameters (i.e. ventricular synchronicity) is supposed to improve CRT patient selection and interventional lead placement for reduction of the number of non-responders. As a pre-interventional imaging modality, cardiac magnetic resonance (CMR) imaging has the potential to provide all relevant information. With functional information from CMR optimal implantation target sites may be better identified. Pre-operative CMR could also help to determine whether useful vein target segments are available for lead placement. Fused with X-ray, the mainstay interventional modality, improved interventional guidance for lead-placement could further help to increase procedure outcome. In this contribution, we present novel and practicable methods for a) pre-operative functional and anatomical imaging of relevant cardiac structures to CRT using CMR, b) 2D-3D registration of CMR anatomy and functional meshes with X-ray vein angiograms and c) real-time capable breathing motion compensation for improved fluoroscopy mesh overlay during the intervention based on right ventricular pacer lead tracking. With these methods, enhanced interventional guidance for left ventricular lead placement is provided.

  19. Pointing compensation system for spacecraft instruments

    NASA Technical Reports Server (NTRS)

    Plescia, Carl T. (Inventor); Gamble, Donald W. (Inventor)

    1987-01-01

    A closed loop system reduces pointing errors in one or more spacecraft instruments. Associated with each instrument is a electronics package (3) for commanding motion in that instrument and a pointing control system (5) for imparting motion in that instrument in response to a command (4) from the commanding package (3). Spacecraft motion compensation logic (25) compensates for instrument pointing errors caused by instrument-motion-induced spacecraft motion. Any finite number of instruments can be so compensated, by providing each pointing control system (5) and each commanding package (3), for the instruments desired to be compensated, with a link to the spacecraft motion compensation logic (25). The spacecraft motion compensation logic (25) is an electronic manifestation of the algebraic negative of a model of the dynamics of motion of the spacecraft. An example of a suitable model, and computer-simulated results, are presented.

  20. Design of an active magnetic field compensation system for MiniCLEAN

    NASA Astrophysics Data System (ADS)

    Bodmer, M.; Giuliani, F.; Gold, M.; Christou, A.; Batygov, M.

    2013-01-01

    MiniCLEANis a single-phase noble liquid scintillator experiment designed to detect nuclear recoils due to weakly interacting massive particles hypothesized to constitute the dark matter. The principle of the detector is to monitor scintillation light resulting from ionizing radiation using 92 photomultiplier tubes surrounding a spherical target. Photomultiplier tube response is known to be affected by sub-Gauss magnetic fields, so that the Earth's magnetic field has a non-negligible effect on the photomultiplier tube efficiency. In this experiment, the crucial nuclear recoil energy threshold depends on the ability to detect very small amounts of scintillation light; high photomultiplier tube efficiency is critical. Therefore, the MiniCLEAN collaboration has designed active compensation coils to mitigate the Earth's local magnetic field. Two features of the experimental environment make this situation unique: first, the underground laboratory (SNOLAB) is located in a nickel mine, so that direct measurement of the potentially distorted geomagnetic field is mandatory. Second, the close proximity of another experiment based on photomultiplier tubes (DEAP-3600) makes the compensating field outside our detector a concern. An additional complication is that MiniCLEANis surrounded by a steel water tank needed for shielding and a muon veto composed of four strings of 12 photomultipliers suspended in the water. We describe our design based on these considerations, survey data, field calculations and simulations of the photomultiplier tube response.

  1. A triboelectric motion sensor in wearable body sensor network for human activity recognition.

    PubMed

    Hui Huang; Xian Li; Ye Sun

    2016-08-01

    The goal of this study is to design a novel triboelectric motion sensor in wearable body sensor network for human activity recognition. Physical activity recognition is widely used in well-being management, medical diagnosis and rehabilitation. Other than traditional accelerometers, we design a novel wearable sensor system based on triboelectrification. The triboelectric motion sensor can be easily attached to human body and collect motion signals caused by physical activities. The experiments are conducted to collect five common activity data: sitting and standing, walking, climbing upstairs, downstairs, and running. The k-Nearest Neighbor (kNN) clustering algorithm is adopted to recognize these activities and validate the feasibility of this new approach. The results show that our system can perform physical activity recognition with a successful rate over 80% for walking, sitting and standing. The triboelectric structure can also be used as an energy harvester for motion harvesting due to its high output voltage in random low-frequency motion.

  2. Chirality in microswimmer motion: From circle swimmers to active turbulence

    NASA Astrophysics Data System (ADS)

    Löwen, Hartmut

    2016-11-01

    In this minireview, recent progress in our understanding of the basic physical principles of microswimmers which perform a motion characterized by chirality is summarized. We discuss both the chiral motion of a single circle swimmer and the occurrence of bacterial turbulence where swirls of different chirality are formed spontaneously in an interacting ensemble of linear microswimmers. Some recent highlights in this context as obtained by theory, simulation and experiment are summarized and briefly discussed.

  3. Unsteady aerodynamic modeling for arbitrary motions. [for active control techniques

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1977-01-01

    Results indicating that unsteady aerodynamic loads derived under the assumption of simple harmonic motions executed by airfoil or wing can be extended to arbitrary motions are summarized. The generalized Theodorsen (1953) function referable to loads due to simple harmonic oscillations of a wing section in incompressible flow, the Laplace inversion integral for unsteady aerodynamic loads, calculations of root loci of aeroelastic loads, and analysis of generalized compressible transient airloads are discussed.

  4. Hardware-in-the-loop implementation for an active heave compensated drawworks

    NASA Astrophysics Data System (ADS)

    Muraspahic, Sanin; Gu, Peter; Farji, Lawk; Iskandarani, Yousef; Shi, Peng; Karimi, Hamid

    2012-06-01

    This paper presents the setup and running of a hardware-in-loop (HIL) simulation for an active heave compensated (AHC) draw-works. A simulation model of the draw-works is executed on a PC to simulate the AHC draw-works with a physical PLC. The PLC (ET200S) is configured with a controller architecture that regulates the motor angular displacement and velocity through actuation of the servo valves. Furthermore, a graphical user interface is developed for operation of the AHC system. The HIL test allowed tuning of the physical controller in terms of heave stabilization and positioning. The conclusion after the testing is a PLC which is ready for operation without necessitating the use a physical prototype of the process.

  5. Thermal analysis of HTS air-core transformer used in voltage compensation type active SFCL

    NASA Astrophysics Data System (ADS)

    Song, M.; Tang, Y.; Li, J.; Zhou, Y.; Chen, L.; Ren, L.

    2010-11-01

    The three-phase voltage compensation type active superconducting fault current limiter (SFCL) is composed of three HTS air-core transformers and a three-phase four-wire Pulse Width Modulation (PWM) converter. The primary winding of the each phase HTS air-core transformer is in series with the main system, and the second winding is connected with the PWM converter. The single-phase conduction-cooled HTS air-core transformer is consisting of four double-pancakes wound by the Bi2223/Ag tape. In this paper, according to the electromagnetic analysis on the single-phase HTS air-core transformer, its AC loss corresponding to different operation modes is calculated. Furthermore, the thermal behaviors are studied by the time-stepping numerical simulations. On the basis of the simulation results, the related problems with the HTS air-core transformer's thermal stability are discussed.

  6. Nonreciprocal nonlinear wave scattering by loss-compensated active hyperbolic structures

    PubMed Central

    Shramkova, O. V.; Tsironis, G. P.

    2017-01-01

    The combinatorial frequency generation (CFG) in active periodic semiconductor-dielectric structures has been explored through illumination by a pair of pump waves with dissimilar frequencies and incidence angles. We study the influence of gain on linear refraction properties of the stack and on the efficiency of the mixing processes by the system with the resistive character of nonlinearity. We demonstrate that the introduction of gain dielectric material inside the stack not only compensates for losses caused by the collisions of the electrons in semiconductor media but also improves the efficiency of the CFG. We show that in systems with weak asymmetry of linear response we can get significant nonreciprocity of nonlinear interaction. PMID:28225004

  7. The effects of a single game of rugby on active cervical range of motion.

    PubMed

    Lark, Sally D; McCarthy, Peter W

    2009-03-01

    The cumulative effect of playing rugby over many years decreases active cervical range of motion, especially in the forwards. This in itself should influence long-term neck care; however, it leaves the important question of how noticeable the acute effects of active cervical range of motion are following a single game. The active cervical range of motion was measured in 21 elite rugby players (mean age 24.4 +/- 4.3 years; average professional career of 7 +/- 3.4 years) before and after a single game of rugby at the start of the season. The active cervical range of motion was recorded in flexion, extension, left and right side flexion, plus left and right rotation using a cervical range of motion device. The results show generally decreased active cervical range of motion from before to after a game independent of position played. Rugby backs had significantly (P < 0.05) reduced active cervical range of motion in flexion, while forwards were affected in extension and left lateral flexion (P < 0.05). These results highlight that a single game of rugby can reduce functional capacity of the neck (active cervical range of motion), and the affected neck movement appears to be related to the role of positional play. The authors suggest that neck training and muscle damage repair should be an important part of a rugby player's post-game recovery to limit the reduction in functional capacity.

  8. Obesity effect on male active joint range of motion.

    PubMed

    Park, Woojin; Ramachandran, Jaiganesh; Weisman, Paul; Jung, Eui S

    2010-01-01

    Despite the prevalence of obesity, how obesity affects human physical capabilities is not well documented. As an effort toward addressing this, the current study investigated the obesity effect on joint range of motion (RoM) based on data collected from 20 obese and 20 non-obese males. In total, 30 inter-segmental motions occurring at the shoulder, elbow, knee and ankle joints and lumbar and cervical spine areas were examined. The obesity effect was found to be non-uniform across the joint motions. Obesity significantly reduced RoM for nine of the 30 motions: shoulder extensions and adductions, lumbar spine extension and lateral flexions and knee flexions. The largest significant RoM reduction was 38.9% for the left shoulder adduction. The smallest was 11.1% for the right knee flexion. The obesity-associated RoM reductions appear to be mainly due to the mechanical interposition and obstruction of inter-segmental motions caused by excess fat in the obese body. STATEMENT OF RELEVANCE: Currently, obesity is prevalent worldwide and its prevalence is expected to increase continually in the near future. This study empirically characterised the obesity effects on joint RoM to provide better understanding of the physical capabilities of the obese. The study findings will facilitate designing man-artefact systems that accommodate obese individuals.

  9. Postural activity and motion sickness during video game play in children and adults.

    PubMed

    Chang, Chih-Hui; Pan, Wu-Wen; Tseng, Li-Ya; Stoffregen, Thomas A

    2012-03-01

    Research has confirmed that console video games give rise to motion sickness in many adults. During exposure to console video games, there are differences in postural activity (movement of the head and torso) between participants who later experience motion sickness and those who do not, confirming a prediction of the postural instability theory of motion sickness. Previous research has not addressed relations between video games, movement and motion sickness in children. We evaluated the nauseogenic properties of a commercially available console video game in both adults and 10-year-old children. Individuals played the game for up to 50 min and were instructed to discontinue immediately if they experienced any symptoms of motion sickness, however mild. During game play, we monitored movement of the head and torso. Motion sickness was reported by 67% of adults and by 56% of children; these rates did not differ. As a group, children moved more than adults. Across age groups, the positional variability of the head and torso increased over time during game play. In addition, we found differences in movement between participants who later reported motion sickness and those who did not. Some of these differences were general across age groups but we also found significant differences between the movement of adults and children who later reported motion sickness. The results confirm that console video games can induce motion sickness in children and demonstrate that changes in postural activity precede the onset of subjective symptoms of motion sickness in children.

  10. Effective temperature and spontaneous collective motion of active matter

    NASA Astrophysics Data System (ADS)

    Wang, Shenshen; Wolynes, Peter

    2012-02-01

    Spontaneous directed motion, a hallmark of cell biology, is unusual in classical statistical physics. Here we study, using both numerical and analytical methods, organized motion in models of the cytoskeleton in which constituents are driven by energy-consuming motors. Although systems driven by small-step motors are described by an effective temperature and are thus quiescent, at higher order in step size, both homogeneous and inhomogeneous, flowing and oscillating behavior emerges. Motors that respond with a negative susceptibility to imposed forces lead to an apparent negative temperature system in which beautiful structures form resembling the asters seen in cell division.

  11. New hybrid active power filter for harmonic current suppression and reactive power compensation

    NASA Astrophysics Data System (ADS)

    Biricik, Samet; Cemal Ozerdem, Ozgur; Redif, Soydan; Sezai Dincer, Mustafa

    2016-08-01

    In the case of undistorted and balanced grid voltages, low ratio shunt active power filters (APFs) can give unity power factors and achieve current harmonic cancellation. However, this is not possible when source voltages are distorted and unbalanced. In this study, the cost-effective hybrid active power filter (HAPF) topology for satisfying the requirements of harmonic current suppression and non-active power compensation for industry is presented. An effective strategy is developed to observe the effect of the placement of power capacitors and LC filters with the shunt APF. A new method for alleviating the negative effects of a nonideal grid voltage is proposed that uses a self-tuning filter algorithm with instantaneous reactive power theory. The real-time control of the studied system was achieved with a field-programmable gate array (FPGA) architecture, which was developed using the OPAL-RT system. The performance result of the proposed HAPF system is tested and presented under nonideal supply voltage conditions.

  12. The effects of Juchumseogi and Juchumseo Jireugi motions of taekwondo on muscle activation of paraspinal muscles.

    PubMed

    Baek, Jongmyeng; Lee, Jaeseok; Kim, Jonghyun; Kim, Jeonghun; Han, Dongwook; Byun, Sunghak

    2015-09-01

    [Purpose] The purpose of this study is to examine the effects of Juchumseogi and Juchumseo Jireugi motions on muscle activation of the paraspinal muscles. [Subjects] The subjects of this study were 20 healthy male students who listened to an explanation of the study methods and the purpose of the experiment, and agreed to participate in the study. [Methods] Muscle activation measurements of the paraspinal muscles at C3, T7, and L3 were taken while standing still and while performing Juchumseogi and Juchumseo Jireugi movements. The Juchumseogi and Juchumseo Jireugi motions were performed 3 times, and its mean value was used for analysis. [Results] The right and left muscle activation of paraspinal muscles induced by Juchumseogi and Juchumseo Jireugi motions in C3 and T7 were significantly higher than those induced by just standing. Muscle activation of paraspinal muscles induced by Juchumseo Jireugi motions in C3, T7, and L3 were significantly higher than those induced by Juchumseogi alone. The right and left muscle activation of paraspinal muscles induced by Juchumseo Jireugi motion in C3, T7, and L3 were significantly higher than those induced by standing and Juchumseogi alone. [Conclusion] This study demonstrated that Juchumseogi and Juchumseo Jireugi motions of Taekwondo could increase muscle activation of paraspinal muscles, and Juchumseo Jireugi motions were more effective for enhancing muscle activation of paraspinal muscles.

  13. The effects of Juchumseogi and Juchumseo Jireugi motions of taekwondo on muscle activation of paraspinal muscles

    PubMed Central

    Baek, Jongmyeng; Lee, Jaeseok; Kim, Jonghyun; Kim, Jeonghun; Han, Dongwook; Byun, Sunghak

    2015-01-01

    [Purpose] The purpose of this study is to examine the effects of Juchumseogi and Juchumseo Jireugi motions on muscle activation of the paraspinal muscles. [Subjects] The subjects of this study were 20 healthy male students who listened to an explanation of the study methods and the purpose of the experiment, and agreed to participate in the study. [Methods] Muscle activation measurements of the paraspinal muscles at C3, T7, and L3 were taken while standing still and while performing Juchumseogi and Juchumseo Jireugi movements. The Juchumseogi and Juchumseo Jireugi motions were performed 3 times, and its mean value was used for analysis. [Results] The right and left muscle activation of paraspinal muscles induced by Juchumseogi and Juchumseo Jireugi motions in C3 and T7 were significantly higher than those induced by just standing. Muscle activation of paraspinal muscles induced by Juchumseo Jireugi motions in C3, T7, and L3 were significantly higher than those induced by Juchumseogi alone. The right and left muscle activation of paraspinal muscles induced by Juchumseo Jireugi motion in C3, T7, and L3 were significantly higher than those induced by standing and Juchumseogi alone. [Conclusion] This study demonstrated that Juchumseogi and Juchumseo Jireugi motions of Taekwondo could increase muscle activation of paraspinal muscles, and Juchumseo Jireugi motions were more effective for enhancing muscle activation of paraspinal muscles. PMID:26504295

  14. Method for determination of the degree of compensation for electrically active impurities in multivalley semiconductors

    SciTech Connect

    Baranskii, P. I.; Gaidar, G. P.

    2013-06-15

    A method for determination of the degree of compensation k = N{sub a}/N{sub d} for shallow impurities in n-Si crystals with a nondegenerate electron gas is suggested. Data facilitating practical determination of the degree of compensation are given.

  15. Marker-less reconstruction of dense 4-D surface motion fields using active laser triangulation for respiratory motion management.

    PubMed

    Bauer, Sebastian; Berkels, Benjamin; Ettl, Svenja; Arold, Oliver; Hornegger, Joachim; Rumpf, Martin

    2012-01-01

    To manage respiratory motion in image-guided interventions a novel sparse-to-dense registration approach is presented. We apply an emerging laser-based active triangulation (AT) sensor that delivers sparse but highly accurate 3-D measurements in real-time. These sparse position measurements are registered with a dense reference surface extracted from planning data. Thereby a dense displacement field is reconstructed which describes the 4-D deformation of the complete patient body surface and recovers a multi-dimensional respiratory signal for application in respiratory motion management. The method is validated on real data from an AT prototype and synthetic data sampled from dense surface scans acquired with a structured light scanner. In a study on 16 subjects, the proposed algorithm achieved a mean reconstruction accuracy of +/- 0.22 mm w.r.t. ground truth data.

  16. 34 CFR 222.22 - How does the Secretary treat compensation from Federal activities for purposes of determining...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... activities for purposes of determining eligibility and payments? 222.22 Section 222.22 Education Regulations..., DEPARTMENT OF EDUCATION IMPACT AID PROGRAMS Payments for Federal Property Under Section 8002 of the Act § 222... regulations and § 222.21, and is not substantially compensated, for the loss in revenue resulting from...

  17. Photothermally Activated Motion and Ignition Using Aluminum Nanoparticles

    DTIC Science & Technology

    2013-01-17

    In comparison with alternative sources such as spark ignition,19 laser igni- tion,20 plasma ignition,21 plasma -assisted combustion,22 and combustion...energy-dispersive X-ray spectroscopy measurements of motion-only and afterignition products confirm significant Al oxidation occurs through sintering ...significant Al oxidation occurs through sintering and bursting after the flash exposure. Simulations suggest local heat generation is enhanced by LSPR. The

  18. Sunspots motions in the 22^nd cycle of activity

    NASA Astrophysics Data System (ADS)

    Tomic, A. S.; Vince, I.

    2006-08-01

    We handled approximately 30 000 rows with data for 5744 sunspots, obtained on Debrecen Heliophysical Observatory, for years 1986-1989 and 1993-1995. By method of last squares we solved for each spot inverse relations between time of observation, angular distance from central meridian and latitude. On this way were obtained mean equatorial and mean meridional motion, giving parameters of rotation for 90 latitude zones width of one degree. The averaged sideral equatorial angular speed of rotation: omega = 2.91+/-0.01[micro rad/ day], and: A = -0.65+/-0/01 [micro rad/day] were obtained. Solving second inverse problem - Busso's equation, were derived characteristic equatorial periods for different latitudes, from sunspots meridional motion. We obtained values between 32 day on the pole, and 400 years for latitude 2.5 degree. Also, covariance of spot motions along equator and meridian is calculated for all 5744 spots in 90 degree of latitude, which fully confirmed Ward's model of angular moment transport.

  19. Examination of the operator and compensator tank role in urban wastewater treatment using activated sludge method.

    PubMed

    Mokhtari Azar, Akbar; Ghadirpour Jelogir, Ali; Nabi Bidhendi, Gholam Reza; Zaredar, Narges

    2011-04-01

    No doubt, operator is one of the main fundaments in wastewater treatment plants. By identifying the inadequacies, the operator could be considered as an important key in treatment plant. Several methods are used for wastewater treatment that requires spending a lot of cost. However, all investments of treatment facilities are usable when the expected efficiency of the treatment plant was obtained. Using experienced operator, this goal is more easily accessible. In this research, the wastewater of an urban community contaminated with moderated, diluted and highly concentrated pollution has been treated using surface and deep aeration treatment method. Sampling of these pilots was performed during winter 2008 to summer 2009. The results indicate that all analyzed parameters were eliminated using activated sludge and surface aeration methods. However, in activated sludge and deep aeration methods in combination with suitable function of operator, more pollutants could be eliminated. Hence, existence of operator in wastewater treatment plants is the basic principle to achieve considered efficiency. Wastewater treatment system is not intelligent itself and that is the operator who can organize even an inefficient system by its continuous presence. The converse of this fact is also real. Despite the various units and appropriate design of wastewater treatment plant, without an operator, the studied process cannot be expected highly efficient. In places frequently affected by the shock of organic and hydraulic loads, the compensator tank is important to offset the wastewater treatment process. Finally, in regard to microbial parameters, existence of disinfection unit is very useful.

  20. Localized, Non-Harmonic Active Flap Motions for Low Frequency In-Plane Rotor Noise Reduction

    NASA Technical Reports Server (NTRS)

    Sim, Ben W.; Potsdam, Mark; Kitaplioglu, Cahit; LeMasurier, Philip; Lorber, Peter; Andrews, Joseph

    2012-01-01

    A first-of-its-kind demonstration of the use of localized, non-harmonic active flap motions, for suppressing low frequency, in-plane rotor noise, is reported in this paper. Operational feasibility is verified via testing of the full-scale AATD/Sikorsky/UTRC active flap demonstration rotor in the NFAC's 40- by 80-Foot anechoic wind tunnel. Effectiveness of using localized, non-harmonic active flap motions are compared to conventional four-per-rev harmonic flap motions, and also active flap motions derived from closed-loop acoustics implementations. All three approaches resulted in approximately the same noise reductions over an in-plane three-by-three microphone array installed forward and near in-plane of the rotor in the nearfield. It is also reported that using an active flap in this localized, non-harmonic manner, resulted in no more that 2% rotor performance penalty, but had the tendency to incur higher hub vibration levels.

  1. Adjustments of Motor Pattern for Load Compensation Via Modulated Activations of Muscle Synergies During Natural Behaviors

    PubMed Central

    Cheung, Vincent C. K.; d'Avella, Andrea; Bizzi, Emilio

    2009-01-01

    It has been suggested that the motor system may circumvent the difficulty of controlling many degrees of freedom in the musculoskeletal apparatus by generating motor outputs through a combination of discrete muscle synergies. How a discretely organized motor system compensates for diverse perturbations has remained elusive. Here, we investigate whether motor responses observed after an inertial-load perturbation can be generated by altering the recruitment of synergies normally used for constructing unperturbed movements. Electromyographic (EMG, 13 muscles) data were collected from the bullfrog hindlimb during natural behaviors before, during, and after the same limb was loaded by a weight attached to the calf. Kinematic analysis reveals the absence of aftereffect on load removal, suggesting that load-related EMG changes were results of immediate motor pattern adjustments. We then extracted synergies from EMGs using the nonnegative matrix factorization algorithm and developed a procedure for assessing the extent of synergy sharing across different loading conditions. Most synergies extracted were found to be activated in all loaded and unloaded conditions. However, for certain synergies, the amplitude, duration, and/or onset time of their activation bursts were up- or down-modulated during loading. Behavioral parameterizations reveal that load-related modulation of synergy activations depended on the behavioral variety (e.g., kick direction and amplitude) and the movement phase performed. Our results suggest that muscle synergies are robust across different dynamic conditions and immediate motor adjustments can be accomplished by modulating synergy activations. An appendix describes the novel procedure we developed, useful for discovering shared and specific features from multiple data sets. PMID:19091930

  2. Yaw Motion Cues in Helicopter Simulation

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffrey A.; Johnson, Walter W.

    1996-01-01

    A piloted simulation that examined the effects of yaw motion cues on pilot-vehicle performance, pilot workload, and pilot motion perception was conducted on the NASA Ames Vertical Motion Simulator. The vehicle model that was used represented an AH-64 helicopter. Three tasks were performed in which only combinations of vehicle yaw and vertical displacement were allowed. The commands issued to the motion platform were modified to present the following four motion configurations for a pilot located forward of the center of rotation: (1) only the linear translations, (2) only the angular rotation, (3) both the linear translations and the angular rotation, and (4) no motion. The objective data indicated that pilot-vehicle performance was reduced and the necessary control activity increased when linear motion was removed; however, the lack of angular rotation did not result in a measured degradation for almost all cases. Also, pilots provided subjective assessments of their compensation required, the motion fidelity, and their judgment of whether or not linear or rotational cockpit motion was present. Ratings of compensation and fidelity were affected only by linear acceleration, and the rotational motion had no significant impact. Also, when only linear motion was present, pilots typically reported the presence of rotation. Thus, linear acceleration cues, not yaw rotational cues, appear necessary to simulate hovering flight.

  3. Development and Psychometric Properties of the Instrumental Activities of Daily Living: Compensation Scale

    PubMed Central

    Schmitter-Edgecombe, Maureen; Parsey, Carolyn; Lamb, Richard

    2014-01-01

    The Instrumental Activities of Daily Living – Compensation (IADL-C) scale was developed to capture early functional difficulties and to quantify compensatory strategy use that may mitigate functional decline in the aging population. The IADL-C was validated in a sample of cognitively healthy older adults (N=184) and individuals with mild cognitive impairment (MCI; N=92) and dementia (N=24). Factor analysis and Rasch item analysis led to the 27-item IADL-C informant questionnaire with four functional domain subscales (money and self-management, home daily living, travel and event memory, and social skills). The subscales demonstrated good internal consistency (Rasch reliability 0.80 to 0.93) and test-retest reliability (Spearman coefficients 0.70 to 0.91). The IADL-C total score and subscales showed convergent validity with other IADL measures, discriminant validity with psychosocial measures, and the ability to discriminate between diagnostic groups. The money and self management subscale showed notable difficulties for individuals with MCI, whereas difficulties with home daily living became more prominent for dementia participants. Compensatory strategy use increased in the MCI group and decreased in the dementia group. PMID:25344901

  4. Mantle compensation of active metamorphic core complexes at Woodlark rift in Papua New Guinea.

    PubMed

    Abers, Geoffrey A; Ferris, Aaron; Craig, Mitchell; Davies, Hugh; Lerner-Lam, Arthur L; Mutter, John C; Taylor, Brian

    2002-08-22

    In many highly extended rifts on the Earth, tectonic removal of the upper crust exhumes mid-crustal rocks, producing metamorphic core complexes. These structures allow the upper continental crust to accommodate tens of kilometres of extension, but it is not clear how the lower crust and underlying mantle respond. Also, despite removal of the upper crust, such core complexes remain both topographically high and in isostatic equilibrium. Because many core complexes in the western United States are underlain by a flat Moho discontinuity, it has been widely assumed that their elevation is supported by flow in the lower crust or by magmatic underplating. These processes should decouple upper-crust extension from that in the mantle. In contrast, here we present seismic observations of metamorphic core complexes of the western Woodlark rift that show the overall crust to be thinned beneath regions of greatest surface extension. These core complexes are actively being exhumed at a rate of 5-10 km Myr(-1), and the thinning of the underlying crust appears to be compensated by mantle rocks of anomalously low density, as indicated by low seismic velocities. We conclude that, at least in this case, the development of metamorphic core complexes and the accommodation of high extension is not purely a crustal phenomenon, but must involve mantle extension.

  5. Development and psychometric properties of the instrumental activities of daily living: compensation scale.

    PubMed

    Schmitter-Edgecombe, Maureen; Parsey, Carolyn; Lamb, Richard

    2014-12-01

    The Instrumental Activities of Daily Living - Compensation (IADL-C) scale was developed to capture early functional difficulties and to quantify compensatory strategy use that may mitigate functional decline in the aging population. The IADL-C was validated in a sample of cognitively healthy older adults (N=184) and individuals with mild cognitive impairment (MCI; N=92) and dementia (N=24). Factor analysis and Rasch item analysis led to the 27-item IADL-C informant questionnaire with four functional domain subscales (money and self-management, home daily living, travel and event memory, and social skills). The subscales demonstrated good internal consistency (Rasch reliability 0.80 to 0.93) and test-retest reliability (Spearman coefficients 0.70 to 0.91). The IADL-C total score and subscales showed convergent validity with other IADL measures, discriminant validity with psychosocial measures, and the ability to discriminate between diagnostic groups. The money and self management subscale showed notable difficulties for individuals with MCI, whereas difficulties with home daily living became more prominent for dementia participants. Compensatory strategy use increased in the MCI group and decreased in the dementia group.

  6. Application of active electrode compensation to perform continuous voltage-clamp recordings with sharp microelectrodes

    NASA Astrophysics Data System (ADS)

    Gómez-González, J. F.; Destexhe, A.; Bal, T.

    2014-10-01

    Objective. Electrophysiological recordings of single neurons in brain tissues are very common in neuroscience. Glass microelectrodes filled with an electrolyte are used to impale the cell membrane in order to record the membrane potential or to inject current. Their high resistance induces a high voltage drop when passing current and it is essential to correct the voltage measurements. In particular, for voltage clamping, the traditional alternatives are two-electrode voltage-clamp technique or discontinuous single electrode voltage-clamp (dSEVC). Nevertheless, it is generally difficult to impale two electrodes in a same neuron and the switching frequency is limited to low frequencies in the case of dSEVC. We present a novel fully computer-implemented alternative to perform continuous voltage-clamp recordings with a single sharp-electrode. Approach. To reach such voltage-clamp recordings, we combine an active electrode compensation algorithm (AEC) with a digital controller (AECVC). Main results. We applied two types of control-systems: a linear controller (proportional plus integrative controller) and a model-based controller (optimal control). We compared the performance of the two methods to dSEVC using a dynamic model cell and experiments in brain slices. Significance. The AECVC method provides an entirely digital method to perform continuous recording and smooth switching between voltage-clamp, current clamp or dynamic-clamp configurations without introducing artifacts.

  7. High-contrast Imaging with an Arbitrary Aperture: Active Compensation of Aperture Discontinuities

    NASA Astrophysics Data System (ADS)

    Pueyo, Laurent; Norman, Colin

    2013-06-01

    We present a new method to achieve high-contrast images using segmented and/or on-axis telescopes. Our approach relies on using two sequential deformable mirrors (DMs) to compensate for the large amplitude excursions in the telescope aperture due to secondary support structures and/or segment gaps. In this configuration the parameter landscape of DM surfaces that yield high-contrast point-spread functions is not linear, and nonlinear methods are needed to find the true minimum in the optimization topology. We solve the highly nonlinear Monge-Ampere equation that is the fundamental equation describing the physics of phase-induced amplitude modulation. We determine the optimum configuration for our two sequential DM system and show that high-throughput and high-contrast solutions can be achieved using realistic surface deformations that are accessible using existing technologies. We name this process Active Compensation of Aperture Discontinuities (ACAD). We show that for geometries similar to the James Webb Space Telescope, ACAD can attain at least 10-7 in contrast and an order of magnitude higher for both the future extremely large telescopes and on-axis architectures reminiscent of the Hubble Space Telescope. We show that the converging nonlinear mappings resulting from our DM shapes actually damp near-field diffraction artifacts in the vicinity of the discontinuities. Thus, ACAD actually lowers the chromatic ringing due to diffraction by segment gaps and struts while not amplifying the diffraction at the aperture edges beyond the Fresnel regime. This outer Fresnel ringing can be mitigated by properly designing the optical system. Consequently, ACAD is a true broadband solution to the problem of high-contrast imaging with segmented and/or on-axis apertures. We finally show that once the nonlinear solution is found, fine tuning with linear methods used in wavefront control can be applied to further contrast by another order of magnitude. Generally speaking, the

  8. High-contrast imaging with an arbitrary aperture: Active compensation of aperture discontinuities

    SciTech Connect

    Pueyo, Laurent; Norman, Colin

    2013-06-01

    We present a new method to achieve high-contrast images using segmented and/or on-axis telescopes. Our approach relies on using two sequential deformable mirrors (DMs) to compensate for the large amplitude excursions in the telescope aperture due to secondary support structures and/or segment gaps. In this configuration the parameter landscape of DM surfaces that yield high-contrast point-spread functions is not linear, and nonlinear methods are needed to find the true minimum in the optimization topology. We solve the highly nonlinear Monge-Ampere equation that is the fundamental equation describing the physics of phase-induced amplitude modulation. We determine the optimum configuration for our two sequential DM system and show that high-throughput and high-contrast solutions can be achieved using realistic surface deformations that are accessible using existing technologies. We name this process Active Compensation of Aperture Discontinuities (ACAD). We show that for geometries similar to the James Webb Space Telescope, ACAD can attain at least 10{sup –7} in contrast and an order of magnitude higher for both the future extremely large telescopes and on-axis architectures reminiscent of the Hubble Space Telescope. We show that the converging nonlinear mappings resulting from our DM shapes actually damp near-field diffraction artifacts in the vicinity of the discontinuities. Thus, ACAD actually lowers the chromatic ringing due to diffraction by segment gaps and struts while not amplifying the diffraction at the aperture edges beyond the Fresnel regime. This outer Fresnel ringing can be mitigated by properly designing the optical system. Consequently, ACAD is a true broadband solution to the problem of high-contrast imaging with segmented and/or on-axis apertures. We finally show that once the nonlinear solution is found, fine tuning with linear methods used in wavefront control can be applied to further contrast by another order of magnitude. Generally speaking

  9. Motion sickness susceptibility in parabolic flight and velocity storage activity

    NASA Technical Reports Server (NTRS)

    Dizio, Paul; Lackner, James R.

    1991-01-01

    In parabolic flight experiments, postrotary nystagmus is as found to be differentially suppressed in free fall (G) and in a high gravitoinertial force (1.8 G) background relative to 1 G. In addition, the influence of postrotary head movements on nystagmus suppression was found to be contingent on G-dependency of the velocity storage and dumping mechanisms. Here, susceptibility to motion sickness during head movements in 0 G and 1.8 G was rank-correlated with the following: (1) the decay time constant of the slow phase velocity of postrotary nystagmus under 1 G, no head movement, baseline conditions, (2) the extent of time constant reduction elicited in 0 G and 1.8 G; (3) the extent of time constant reduction elicited by head tilts in 1 G; and (4) changes in the extent of time constants reduction in 0 G and 1.8 G over repeated tests. Susceptibility was significantly correlated with the extent to which a head movement reduced the time constant in 1 G, was weakly correlated with the baseline time constant, but was not correlated with the extent of reduction in 0 G or 1.8 G. This pattern suggests a link between mechanisms evoking symptoms of space motion sickness and the mechanisms of velocity storage and dumping. Experimental means of evaluating this link are described.

  10. GABAA-receptor activation in the subthalamic nucleus compensates behavioral asymmetries in the hemiparkinsonian rat.

    PubMed

    Petri, David; Pum, Martin; Vesper, Jan; Huston, Joseph P; Schnitzler, Alfons

    2013-09-01

    The subthalamic nucleus (STN) has a pivotal role in the pathophysiology of Parkinson's disease (PD). Modulation of STN activity (by lesions, pharmacological or electrical stimulation) has been shown to improve motor parameters in PD patients and in animal models of PD. In an attempt to characterize the neurochemical bases for such antiparkinsonian action, we address specific neurotransmitter systems via local pharmacological manipulation of the STN in hemiparkinsonian rats. Here, we have focused on the GABAergic and glutamatergic receptors in the STN. In animals with unilateral 6-hydroxydopamine lesions of the nigro-striatal tract, we administered either the selective GABAA-agonist muscimol (0.5 μg and 1.0 μg), the non-competitive N-methyl-d-aspartate (NMDA)-antagonist MK-801 (dizocilpine; 2.5 μg), or vehicle (0.25 μl) into the STN. The effects of GABAergic and glutamatergic modulation of the STN on motor parameters were assessed by gauging rotational behavior and locomotion. Application of muscimol ipsilateral to the side of dopamine-depletion influenced turning behavior in a dose-dependent fashion, with the low dose re-adjusting turning behavior to a non-biased distribution, and the high dose evoking contraversive turning. The administration of MK-801 did not have such effects. These findings give evidence for the involvement of GABAergic activation in the STN in the compensation of motor asymmetries in the hemiparkinsonian rat, whereas N-methyl-d-aspartate (NMDA)-antagonism was ineffective in this model of PD.

  11. Tracking of EEG activity using motion estimation to understand brain wiring.

    PubMed

    Nisar, Humaira; Malik, Aamir Saeed; Ullah, Rafi; Shim, Seong-O; Bawakid, Abdullah; Khan, Muhammad Burhan; Subhani, Ahmad Rauf

    2015-01-01

    The fundamental step in brain research deals with recording electroencephalogram (EEG) signals and then investigating the recorded signals quantitatively. Topographic EEG (visual spatial representation of EEG signal) is commonly referred to as brain topomaps or brain EEG maps. In this chapter, full search full search block motion estimation algorithm has been employed to track the brain activity in brain topomaps to understand the mechanism of brain wiring. The behavior of EEG topomaps is examined throughout a particular brain activation with respect to time. Motion vectors are used to track the brain activation over the scalp during the activation period. Using motion estimation it is possible to track the path from the starting point of activation to the final point of activation. Thus it is possible to track the path of a signal across various lobes.

  12. Move with Science: Energy, Force, & Motion. An Activities-Based Teacher's Guide.

    ERIC Educational Resources Information Center

    Beven, Roy Q.

    The secondary school level activities contained in this book use the subject of transportation to teach the basic concepts of physics and several areas of human biology. The material is organized into sections including curriculum design, activities, background readings, and resources. Activities focus on such topics as notions of motion stability…

  13. Student expectations in a group learning activity on harmonic motion

    NASA Astrophysics Data System (ADS)

    Kaczynski, Adam; Wittmann, Michael C.

    2013-01-01

    Students in a sophomore-level mechanics course participated in a new group learning activity that was intended to support model-building and finding coherence between multiple representations in the context of an underdamped harmonic system. Not all of the student groups framed the activity in the same way, and many attempted tasks that existed outside of the prompts of the activity. For one group, this meant that instead of providing a rich verbal description, they framed the activity as finding a mathematical expression.

  14. tRNA synthase suppression activates de novo cysteine synthesis to compensate for cystine and glutathione deprivation during ferroptosis.

    PubMed

    Shimada, Kenichi; Stockwell, Brent R

    2016-03-01

    Glutathione is a major endogenous reducing agent in cells, and cysteine is a limiting factor in glutathione synthesis. Cysteine is obtained by uptake or biosynthesis, and mammalian cells often rely on either one or the other pathway. Because of the scarcity of glutathione, blockade of cysteine uptake causes oxidative cell death known as ferroptosis. A new study suggests that tRNA synthetase suppression activates the endogenous biosynthesis of cysteine, compensates such cysteine loss, and thus makes cells resistant to ferroptosis.

  15. The visual perception of natural motion: abnormal task-related neural activity in DYT1 dystonia.

    PubMed

    Sako, Wataru; Fujita, Koji; Vo, An; Rucker, Janet C; Rizzo, John-Ross; Niethammer, Martin; Carbon, Maren; Bressman, Susan B; Uluğ, Aziz M; Eidelberg, David

    2015-12-01

    Although primary dystonia is defined by its characteristic motor manifestations, non-motor signs and symptoms have increasingly been recognized in this disorder. Recent neuroimaging studies have related the motor features of primary dystonia to connectivity changes in cerebello-thalamo-cortical pathways. It is not known, however, whether the non-motor manifestations of the disorder are associated with similar circuit abnormalities. To explore this possibility, we used functional magnetic resonance imaging to study primary dystonia and healthy volunteer subjects while they performed a motion perception task in which elliptical target trajectories were visually tracked on a computer screen. Prior functional magnetic resonance imaging studies of healthy subjects performing this task have revealed selective activation of motor regions during the perception of 'natural' versus 'unnatural' motion (defined respectively as trajectories with kinematic properties that either comply with or violate the two-thirds power law of motion). Several regions with significant connectivity changes in primary dystonia were situated in proximity to normal motion perception pathways, suggesting that abnormalities of these circuits may also be present in this disorder. To determine whether activation responses to natural versus unnatural motion in primary dystonia differ from normal, we used functional magnetic resonance imaging to study 10 DYT1 dystonia and 10 healthy control subjects at rest and during the perception of 'natural' and 'unnatural' motion. Both groups exhibited significant activation changes across perceptual conditions in the cerebellum, pons, and subthalamic nucleus. The two groups differed, however, in their responses to 'natural' versus 'unnatural' motion in these regions. In healthy subjects, regional activation was greater during the perception of natural (versus unnatural) motion (P < 0.05). By contrast, in DYT1 dystonia subjects, activation was relatively greater

  16. Classification of upper limb motions from around-shoulder muscle activities: hand biofeedback.

    PubMed

    González, Jose; Horiuchi, Yuse; Yu, Wenwei

    2010-05-28

    Mining information from EMG signals to detect complex motion intention has attracted growing research attention, especially for upper-limb prosthetic hand applications. In most of the studies, recordings of forearm muscle activities were used as the signal sources, from which the intention of wrist and hand motions were detected using pattern recognition technology. However, most daily-life upper limb activities need coordination of the shoulder-arm-hand complex, therefore, relying only on the local information to recognize the body coordinated motion has many disadvantages because natural continuous arm-hand motions can't be realized. Also, achieving a dynamical coupling between the user and the prosthesis will not be possible. This study objective was to investigate whether it is possible to associate the around-shoulder muscles' Electromyogram (EMG) activities with the different hand grips and arm directions movements. Experiments were conducted to record the EMG of different arm and hand motions and the data were analyzed to decide the contribution of each sensor, in order to distinguish the arm-hand motions as a function of the reaching time. Results showed that it is possible to differentiate hand grips and arm position while doing a reaching and grasping task. Also, these results are of great importance as one step to achieve a close loop dynamical coupling between the user and the prosthesis.

  17. Design of a continuous passive and active motion device for hand rehabilitation.

    PubMed

    Birch, B; Haslam, E; Heerah, I; Dechev, N; Park, E J

    2008-01-01

    This paper presents the design of a novel, portable device for hand rehabilitation. The device provides for CPM (continuous passive motion) and CAM (continuous active motion) hand rehabilitation for patients recovering from damage such as flexor tendon repair and strokes. The device is capable of flexing/extending the MCP (metacarpophalangeal) and PIP (proximal interphalangeal) joints through a range of motion of 0 degrees to 90 degrees for both the joints independently. In this way, typical hand rehabilitation motions such as intrinsic plus, intrinsic minus, and a fist can be achieved without the need of any splints or attachments. The CPM mode is broken into two subgroups. The first mode is the use of preset waypoints for the device to cycle through. The second mode involves motion from a starting position to a final position, but senses the torque from the user during the cycle. Therefore the user can control the ROM by resisting when they are at the end of the desired motion. During the CPM modes the device utilizes a minimum jerk trajectory model under PD control, moving smoothly and accurately between preselected positions. CAM is the final mode where the device will actively resist the movement of the user. The user moves from a start to end position while the device produces a torque to resist the motion. This active resistance motion is a unique ability designed to mimic the benefits of a human therapist. Another unique feature of the device is its ability to independently act on both the MCP and PIP joints. The feedback sensing built into the device makes it capable of offering a wide and flexible range of rehabilitation programs for the hand.

  18. Effects of eating on vection-induced motion sickness, cardiac vagal tone, and gastric myoelectric activity

    NASA Technical Reports Server (NTRS)

    Uijtdehaage, S. H.; Stern, R. M.; Koch, K. L.

    1992-01-01

    This study investigated the effect of food ingestion on motion sickness severity and its physiological mechanisms. Forty-six fasted subjects were assigned either to a meal group or to a no-meal group. Electrogastrographic (EGG) indices (normal 3 cpm activity and abnormal 4-9 cpm tachyarrhythmia) and respiratory sinus arrhythmia (RSA) were measured before and after a meal and during a subsequent exposure to a rotating drum in which illusory self-motion was induced. The results indicated that food intake enhanced cardiac parasympathetic tone (RSA) and increased gastric 3 cpm activity. Postprandial effects on motion sickness severity remain equivocal due to group differences in RSA baseline levels. During drum rotation, dysrhythmic activity of the stomach (tachyarrhythmia) and vagal withdrawal were observed. Furthermore, high levels of vagal tone prior to drum rotation predicted a low incidence of motion sickness symptoms, and were associated positively with gastric 3 cpm activity and negatively with tachyarrhythmia. These data suggest that enhanced levels of parasympathetic activity can alleviate motion sickness symptoms by suppressing, in part, its dysrhythmic gastric underpinnings.

  19. A Snapshot of Industry and Academic Professional Activities, Compensation, and Engagement in Educational Measurement

    ERIC Educational Resources Information Center

    Packman, Sheryl; Camara, Wayne J.; Huff, Kristen

    2010-01-01

    This paper provides a snapshot of educational measurement professionals--their educational, professional and demographic backgrounds, as well as their workplace settings, job tasks, professional involvement, and compensation practices. Two previous studies have surveyed employers, but this is the first attempt to conduct a comprehensive survey of…

  20. Narratives of Compensated Dating of Girls in Hong Kong Using Routine Activity Theory: Results of a Focus Group Study of Guardians.

    PubMed

    Li, Jessica C M; Cheung, Chau-Kiu; Jia, Cindy X S; Yu, Yolanda M Y; Nguyen, Ping

    2016-05-13

    This article presents public discourses on compensated dating of adolescent girls in Chinese society. Data are obtained from eight focus groups comprising 50 guardians at private, parochial, and public levels (i.e., social workers, police officers, parents of students, and community representatives). Qualitative data are used to demonstrate how the guardians conceptualize and contextualize compensated dating as an outcome of the dynamics of societal features. Social features such as contemporary ideologies, Internet technology advancement, commercialization of human relationships, and ambiguity between "right" and "wrong" motivate the service providers and customers of compensated dating, and accelerate their convergence and weakened levels of guardianship in society. This study is the first to connect the features of compensated dating of adolescent girls with recent societal changes using the routine activity approach. The findings confirm the application of the routine activity approach in the phenomenon of girls' compensated dating, and also offer theoretical and practical implications.

  1. Your Students Can Be Rocket Scientists! A Galaxy of Great Activities about Astronauts, Gravity, and Motion.

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1994-01-01

    Presents activities for a springtime Space Day that can teach students about astronauts, gravity, and motion. Activities include creating a paper bag spacecraft to study liftoff and having students simulate gravity's effects by walking in various manners and recording pulse rates. A list of resources is included. (SM)

  2. Activation of nanoscale allosteric protein domain motion revealed by neutron spin echo spectroscopy

    NASA Astrophysics Data System (ADS)

    Bu, Zimei; Farago, Bela; Callaway, David

    2012-02-01

    NHERF1 is a multi-domain scaffolding protein that assembles the signaling complexes, and regulates the cell surface expression and endocytic recycling of a variety of membrane proteins. The ability of the two PDZ domains in NHERF1 to assemble protein complexes is allosterically modulated by a membrane-cytoskeleton linker protein ezrin, whose binding site is located as far as 110 angstroms away from the PDZ domains. Here, using neutron spin echo (NSE) spectroscopy, selective deuterium labeling, and theoretical analyses, we reveal the activation of interdomain motion in NHERF1 on nanometer length scales and on sub-microsecond time scales upon forming a complex with ezrin. We show that a much simplified coarse-grained model is sufficient to describe inter-domain motion of a multi-domain protein or protein complex. We expect that future NSE experiments will benefit by exploiting our approach of selective deuteration to resolve the specific domain motions of interest from a plethora of global translational and rotational motions. The results demonstrate that propagation of allosteric signals to distal sites involves the activation of long-range coupled domain motions on submicrosecond time scales, and that these coupled motions can be distinguished and characterized by NSE.

  3. Morphometrical investigations on the reproductive activity of the ovaries in rats subjected to immobilization and to motion activity

    NASA Technical Reports Server (NTRS)

    Konstantinov, N.; Cheresharov, L.; Toshkova, S.

    1982-01-01

    Wistar-strain white female rats were divided into three groups, with the first group subjected to motion loading, the second used as control, and the third group was immobilized. A considerable reduction in numbers of corpora lutea was observed in the immobilized group, together with smaller numbers of embryos, high percent of embryo mortality, fetal growth retardation, and endometrium disorders. The control group showed no deviation from normal conditions, and there was slight improvement in reproductive activity of animals under motion loading.

  4. Using Online Active-Learning Techniques to Convey Time Compensated Sun Compass Orientation in the Eastern North American Monarch

    PubMed Central

    Green, Noah H.; McMahon, Douglas G.; Brame, Cynthia

    2016-01-01

    A common tool that animals use to navigate in a constant direction is known as “time compensated sun compass orientation.” This is a process by which animals use the position of the sun along with information from their internal circadian clocks to determine and maintain a directional heading. Many circadian scientists and educators use this process as an example of how the internal circadian clock can directly influence animal behavior. However, many students have difficulty grasping this biological process due to its multivariable nature. We have created an online module that uses the principles of active learning to facilitate student comprehension of this process. Our module contains instructional videos, practice problems and an interactive diagram. We implemented the module in an undergraduate biological clocks class at Vanderbilt University, where its use significantly improved students’ understanding of time compensated sun compass orientation as well as their ability to solve complex problems involving principles associated with this process. PMID:28101270

  5. Spontaneous Motion in Hierarchically Assembled Active Cellular Materials

    NASA Astrophysics Data System (ADS)

    Chen, Daniel

    2013-03-01

    With exquisite precision and reproducibility, cells orchestrate the cooperative action of thousands of nanometer-sized molecular motors to carry out mechanical tasks at much larger length scales, such as cell motility, division and replication. Besides their biological importance, such inherently far-from-equilibrium processes are an inspiration for the development of soft materials with highly sought after biomimetic properties such as autonomous motility and self-healing. I will describe our exploration of such a class of biologically inspired soft active materials. Starting from extensile bundles comprised of microtubules and kinesin, we hierarchically assemble active analogs of polymeric gels, liquid crystals and emulsions. At high enough concentration, microtubule bundles form an active gel network capable of generating internally driven chaotic flows that enhance transport and fluid mixing. When confined to emulsion droplets, these 3D networks buckle onto the water-oil interface forming a dense thin film of bundles exhibiting cascades of collective buckling, fracture, and self-healing driven by internally generated stresses from the kinesin clusters. When compressed against surfaces, this active nematic cortex exerts traction stresses that propel the locomotion of the droplet. Taken together, these observations exemplify how assemblies of animate microscopic objects exhibit collective biomimetic properties that are fundamentally distinct from those found in materials assembled from inanimate building blocks. These assemblies, in turn, enable the generation of a new class of materials that exhibit macroscale flow phenomena emerging from nanoscale components.

  6. Composition-tuning in a solid-state electrotransport furnace with active thermal expansion compensation.

    PubMed

    Schmehr, J L; Whitley, W; Huxley, A D

    2016-12-01

    A new solid-state electrotransport (SSE) apparatus for refining ultra-pure single crystals of metallic compounds under ultra-high vacuum is described. The setup employs a novel thermal expansion compensation mechanism to minimize mechanical stress on the sample during refinement with cold clamps for contamination-less purification at elevated temperatures. The apparatus is designed to tune the composition of initially slightly off-stoichiometric samples. The expansion compensation and stress-free operation were tested by recording the thermal expansion of elemental cerium in a treatment up to 655 °C. SSE refinement was then performed on a high-quality single crystal of U6Fe resulting in a 50% increase of its residual resistivity ratio to the highest value obtained for a single crystal to date.

  7. Composition-tuning in a solid-state electrotransport furnace with active thermal expansion compensation

    NASA Astrophysics Data System (ADS)

    Schmehr, J. L.; Whitley, W.; Huxley, A. D.

    2016-12-01

    A new solid-state electrotransport (SSE) apparatus for refining ultra-pure single crystals of metallic compounds under ultra-high vacuum is described. The setup employs a novel thermal expansion compensation mechanism to minimize mechanical stress on the sample during refinement with cold clamps for contamination-less purification at elevated temperatures. The apparatus is designed to tune the composition of initially slightly off-stoichiometric samples. The expansion compensation and stress-free operation were tested by recording the thermal expansion of elemental cerium in a treatment up to 655 °C. SSE refinement was then performed on a high-quality single crystal of U6Fe resulting in a 50% increase of its residual resistivity ratio to the highest value obtained for a single crystal to date.

  8. Active feed array compensation for reflector antenna surface distortions. Ph.D. Thesis - Akron Univ., Ohio

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.

    1988-01-01

    The feasibility of electromagnetic compensation for reflector antenna surface distortions is investigated. The performance characteristics of large satellite communication reflector antenna systems degrade as the reflector surface distorts, mainly due to thermal effects from solar radiation. The technique developed can be used to maintain the antenna boresight directivity and sidelobe level independent of thermal effects on the reflector surface. With the advent of monolithic microwave integrated circuits (MMIC), a greater flexibility in array fed reflector antenna systems can be achieved. MMIC arrays provide independent control of amplitude and phase for each of the many radiating elements in the feed array. By assuming a known surface distortion profile, a simulation study is carried out to examine the antenna performance as a function of feed array size and number of elements. Results indicate that the compensation technique can effectively control boresight directivity and sidelobe level under peak surface distortion in the order of tenth of a wavelength.

  9. Loss compensation in metamaterials through embedding of active transistor based negative differential resistance circuits.

    PubMed

    Xu, Wangren; Padilla, Willie J; Sonkusale, Sameer

    2012-09-24

    Dielectric and ohmic losses in metamaterials are known to limit their practical use. In this paper, an all-electronic approach for loss compensation in metamaterials is presented. Each unit cell of the meta-material is embedded with a cross-coupled transistor pair based negative differential resistance circuit to cancel these losses. Design, simulation and experimental results for Split Ring Resonator (SRR) metamaterials with and without loss compensation are presented. Results indicate that the quality factor (Q) of the SRR improves by over 400% at 1.6 GHz, showing the effectiveness of the approach. The proposed technique is scalable over a broad frequency range and is limited only by the maximum operating frequency of transistors, which is reaching terahertz in today's semiconductor technologies.

  10. Activation of the Human MT Complex by Motion in Depth Induced by a Moving Cast Shadow

    PubMed Central

    Katsuyama, Narumi; Usui, Nobuo; Taira, Masato

    2016-01-01

    A moving cast shadow is a powerful monocular depth cue for motion perception in depth. For example, when a cast shadow moves away from or toward an object in a two-dimensional plane, the object appears to move toward or away from the observer in depth, respectively, whereas the size and position of the object are constant. Although the cortical mechanisms underlying motion perception in depth by cast shadow are unknown, the human MT complex (hMT+) is likely involved in the process, as it is sensitive to motion in depth represented by binocular depth cues. In the present study, we examined this possibility by using a functional magnetic resonance imaging (fMRI) technique. First, we identified the cortical regions sensitive to the motion of a square in depth represented via binocular disparity. Consistent with previous studies, we observed significant activation in the bilateral hMT+, and defined functional regions of interest (ROIs) there. We then investigated the activity of the ROIs during observation of the following stimuli: 1) a central square that appeared to move back and forth via a moving cast shadow (mCS); 2) a segmented and scrambled cast shadow presented beside the square (sCS); and 3) no cast shadow (nCS). Participants perceived motion of the square in depth in the mCS condition only. The activity of the hMT+ was significantly higher in the mCS compared with the sCS and nCS conditions. Moreover, the hMT+ was activated equally in both hemispheres in the mCS condition, despite presentation of the cast shadow in the bottom-right quadrant of the stimulus. Perception of the square moving in depth across visual hemifields may be reflected in the bilateral activation of the hMT+. We concluded that the hMT+ is involved in motion perception in depth induced by moving cast shadow and by binocular disparity. PMID:27597999

  11. Activation of the Human MT Complex by Motion in Depth Induced by a Moving Cast Shadow.

    PubMed

    Katsuyama, Narumi; Usui, Nobuo; Taira, Masato

    2016-01-01

    A moving cast shadow is a powerful monocular depth cue for motion perception in depth. For example, when a cast shadow moves away from or toward an object in a two-dimensional plane, the object appears to move toward or away from the observer in depth, respectively, whereas the size and position of the object are constant. Although the cortical mechanisms underlying motion perception in depth by cast shadow are unknown, the human MT complex (hMT+) is likely involved in the process, as it is sensitive to motion in depth represented by binocular depth cues. In the present study, we examined this possibility by using a functional magnetic resonance imaging (fMRI) technique. First, we identified the cortical regions sensitive to the motion of a square in depth represented via binocular disparity. Consistent with previous studies, we observed significant activation in the bilateral hMT+, and defined functional regions of interest (ROIs) there. We then investigated the activity of the ROIs during observation of the following stimuli: 1) a central square that appeared to move back and forth via a moving cast shadow (mCS); 2) a segmented and scrambled cast shadow presented beside the square (sCS); and 3) no cast shadow (nCS). Participants perceived motion of the square in depth in the mCS condition only. The activity of the hMT+ was significantly higher in the mCS compared with the sCS and nCS conditions. Moreover, the hMT+ was activated equally in both hemispheres in the mCS condition, despite presentation of the cast shadow in the bottom-right quadrant of the stimulus. Perception of the square moving in depth across visual hemifields may be reflected in the bilateral activation of the hMT+. We concluded that the hMT+ is involved in motion perception in depth induced by moving cast shadow and by binocular disparity.

  12. Active experiments and single ion motion in the magnetotail

    NASA Astrophysics Data System (ADS)

    Rothwell, P. L.; Yates, G. K.

    1983-07-01

    Analytic solutions to the Lorentz equation which indicate that the magnetic field in the plasma sheet focuses selected ions from the plasma sheet boundaries on the neutral sheet are obtained. The kinetic energy of these ions usually exceeds the threshold energy required for the ion tearing mode instability. Two active experiments based on this effect are proposed. Heavy ions injected towards dusk on the plasma sheet boundary would become focused on the neutral sheet and perhaps trigger the ion tearing mode. A boundary perturbation, such as a thermal chemical release, that locally enhances the boundary turbulence level could be introduced, causing sufficient ksq = 1 ions to be focused on the neutral sheet to trigger the ion tearing mode.

  13. Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors.

    PubMed

    Shoaib, Muhammad; Bosch, Stephan; Incel, Ozlem Durmaz; Scholten, Hans; Havinga, Paul J M

    2016-03-24

    The position of on-body motion sensors plays an important role in human activity recognition. Most often, mobile phone sensors at the trouser pocket or an equivalent position are used for this purpose. However, this position is not suitable for recognizing activities that involve hand gestures, such as smoking, eating, drinking coffee and giving a talk. To recognize such activities, wrist-worn motion sensors are used. However, these two positions are mainly used in isolation. To use richer context information, we evaluate three motion sensors (accelerometer, gyroscope and linear acceleration sensor) at both wrist and pocket positions. Using three classifiers, we show that the combination of these two positions outperforms the wrist position alone, mainly at smaller segmentation windows. Another problem is that less-repetitive activities, such as smoking, eating, giving a talk and drinking coffee, cannot be recognized easily at smaller segmentation windows unlike repetitive activities, like walking, jogging and biking. For this purpose, we evaluate the effect of seven window sizes (2-30 s) on thirteen activities and show how increasing window size affects these various activities in different ways. We also propose various optimizations to further improve the recognition of these activities. For reproducibility, we make our dataset publicly available.

  14. Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors

    PubMed Central

    Shoaib, Muhammad; Bosch, Stephan; Incel, Ozlem Durmaz; Scholten, Hans; Havinga, Paul J. M.

    2016-01-01

    The position of on-body motion sensors plays an important role in human activity recognition. Most often, mobile phone sensors at the trouser pocket or an equivalent position are used for this purpose. However, this position is not suitable for recognizing activities that involve hand gestures, such as smoking, eating, drinking coffee and giving a talk. To recognize such activities, wrist-worn motion sensors are used. However, these two positions are mainly used in isolation. To use richer context information, we evaluate three motion sensors (accelerometer, gyroscope and linear acceleration sensor) at both wrist and pocket positions. Using three classifiers, we show that the combination of these two positions outperforms the wrist position alone, mainly at smaller segmentation windows. Another problem is that less-repetitive activities, such as smoking, eating, giving a talk and drinking coffee, cannot be recognized easily at smaller segmentation windows unlike repetitive activities, like walking, jogging and biking. For this purpose, we evaluate the effect of seven window sizes (2–30 s) on thirteen activities and show how increasing window size affects these various activities in different ways. We also propose various optimizations to further improve the recognition of these activities. For reproducibility, we make our dataset publicly available. PMID:27023543

  15. Generalized analysis of thermally activated domain-wall motion in Co/Pt multilayers

    NASA Astrophysics Data System (ADS)

    Emori, Satoru; Umachi, Chinedum K.; Bono, David C.; Beach, Geoffrey S. D.

    2015-03-01

    Thermally activated domain-wall (DW) motion driven by magnetic field and electric current is investigated experimentally in out-of-plane magnetized Pt(Co/Pt)3 multilayers. We directly extract the thermal activation energy barrier for DW motion and observe the dynamic regimes of creep, depinning, and viscous flow. Further analysis reveals that the activation energy must be corrected with a factor dependent on the Curie temperature, and we derive a generalized Arrhenius-like equation governing thermally activated motion. By using this generalized equation, we quantify the efficiency of current-induced spin torque in assisting DW motion. Current produces no effect aside from Joule heating in the multilayer with 7-Å thick Co layers, whereas it generates a finite spin torque on DWs in the multilayer with atomically thin 3-Å Co layers. These findings suggest that conventional spin-transfer torques from in-plane spin-polarized current do not drive DWs in ultrathin Co/Pt multilayers.

  16. Influence of gravity compensation on kinematics and muscle activation patterns during reach and retrieval in subjects with cervical spinal cord injury: an explorative study.

    PubMed

    Kloosterman, Marieke G M; Snoek, Govert J; Kouwenhoven, Mirjam; Nene, Anand V; Jannink, Michiel J A

    2010-01-01

    Many interventions in upper-limb rehabilitation after cervical spinal cord injury (CSCI) use arm support (gravity compensation); however, its specific effects on kinematics and muscle activation characteristics in subjects with a CSCI are largely unknown. We conducted a cross-sectional explorative study to study these effects. Nine subjects with a CSCI performed two goal-directed arm movements (maximal reach, reach and retrieval) with and without gravity compensation. Angles at elbow and shoulder joints and muscle activation were measured and compared. Seven subjects reduced elbow extension (range 1.8°-4.5°) during the maximal reaching task with gravity compensation. In the reach and retrieval task with gravity compensation, all subjects decreased elbow extension (range 0.1°-11.0°). Eight subjects executed movement closer to the body. Regarding muscle activation, gravity compensation did not influence timing; however, the amplitude of activation decreased, especially in antigravity muscles, namely mean change +/- standard deviation of descending part of trapezius (18.2% +/- 37.5%), anterior part of deltoid (37.7% +/- 16.7%), posterior part of deltoid (32.0% +/- 13.9%), and long head biceps (49.6% +/- 20.0%). Clinical implications for the use of gravity compensation in rehabilitation (during activities of daily living or exercise therapy) should be further investigated with a larger population.

  17. Radical advancement in multi-spectral imaging for autonomous vehicles (UAVs, UGVs, and UUVs) using active compensation.

    SciTech Connect

    Clark, Brian F.; Bagwell, Brett E.; Wick, David Victor

    2007-01-01

    The purpose of this LDRD was to demonstrate a compact, multi-spectral, refractive imaging systems using active optical compensation. Compared to a comparable, conventional lens system, our system has an increased operational bandwidth, provides for spectral selectivity and, non-mechanically corrects aberrations induced by the wavelength dependent properties of a passive refractive optical element (i.e. lens). The compact nature and low power requirements of the system lends itself to small platforms such as autonomous vehicles. In addition, the broad spectral bandwidth of our system would allow optimized performance for both day/night use, and the multi-spectral capability allows for spectral discrimination and signature identification.

  18. Teacher Compensation.

    ERIC Educational Resources Information Center

    Minnesota State Office of the Legislative Auditor, St. Paul. Program Evaluation Div.

    Minnesota state policy makers are concerned about teacher compensation because it constitutes a major category of state and local spending and can affect education results. This report examines compensation issues by describing the pay structure of Minnesota's K-12 public school teachers, making pay comparisons with other professionals, and…

  19. Compensation Chemistry

    ERIC Educational Resources Information Center

    Roady, Celia

    2008-01-01

    Congress, the news media, and the Internal Revenue Service (IRS) continue to cast a wary eye on the compensation of nonprofit leaders. Hence, any college or university board that falls short of IRS expectations in its procedures for setting the president's compensation is putting the president, other senior officials, and board members at…

  20. Population variability in the Active Brownian Particle model of Daphnia motions

    NASA Astrophysics Data System (ADS)

    Moss, Frank; Erdmann, Udo; Schimansky-Geier, Lutz; Ordmann, Anke

    2004-03-01

    Three characteristic motions of foraging biological agents are predicted by the Active Brownian Particle model [1]. These are random motions about the minimum of a central attracting potential, a bifurcation to bidirectional circular motions about the axis of symmetry of the potential, and a transition to vortex motion. All three can be observed in swarms of the zooplankton Daphnia swimming in light fields. Here we focus on the bidirectional circular motions in 2-D space [1]. The mean radii, as well as other characteristics of the paths, are determined by three strength parameters appropriate to individual Daphnia: energy uptake from the medium, metabolistic drain, and dissipation due to movement. It is shown that individual variability can be represented by distributions of these strength parameters. Conditions for which the experimental data are best described by the model are discussed. [1] U. Erdmann, W. Ebeling and V. S. Anishchenko, Excitation of rotational modes in two-dimensional systems of driven Brownian particles. Phys. Rev. E 65, 061106 (2002)

  1. Active contour-based visual tracking by integrating colors, shapes, and motions.

    PubMed

    Hu, Weiming; Zhou, Xue; Li, Wei; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen

    2013-05-01

    In this paper, we present a framework for active contour-based visual tracking using level sets. The main components of our framework include contour-based tracking initialization, color-based contour evolution, adaptive shape-based contour evolution for non-periodic motions, dynamic shape-based contour evolution for periodic motions, and the handling of abrupt motions. For the initialization of contour-based tracking, we develop an optical flow-based algorithm for automatically initializing contours at the first frame. For the color-based contour evolution, Markov random field theory is used to measure correlations between values of neighboring pixels for posterior probability estimation. For adaptive shape-based contour evolution, the global shape information and the local color information are combined to hierarchically evolve the contour, and a flexible shape updating model is constructed. For the dynamic shape-based contour evolution, a shape mode transition matrix is learnt to characterize the temporal correlations of object shapes. For the handling of abrupt motions, particle swarm optimization is adopted to capture the global motion which is applied to the contour in the current frame to produce an initial contour in the next frame.

  2. On the relationship between photospheric footpoint motions and coronal heating in solar active regions

    SciTech Connect

    Van Ballegooijen, A. A.; Asgari-Targhi, M.; Berger, M. A.

    2014-05-20

    Coronal heating theories can be classified as either direct current (DC) or alternating current (AC) mechanisms, depending on whether the coronal magnetic field responds quasi-statically or dynamically to the photospheric footpoint motions. In this paper we investigate whether photospheric footpoint motions with velocities of 1-2 km s{sup –1} can heat the corona in active regions, and whether the corona responds quasi-statically or dynamically to such motions (DC versus AC heating). We construct three-dimensional magnetohydrodynamic models for the Alfvén waves and quasi-static perturbations generated within a coronal loop. We find that in models where the effects of the lower atmosphere are neglected, the corona responds quasi-statically to the footpoint motions (DC heating), but the energy flux into the corona is too low compared to observational requirements. In more realistic models that include the lower atmosphere, the corona responds more dynamically to the footpoint motions (AC heating) and the predicted heating rates due to Alfvén wave turbulence are sufficient to explain the observed hot loops. The higher heating rates are due to the amplification of Alfvén waves in the lower atmosphere. We conclude that magnetic braiding is a highly dynamic process.

  3. MR-based motion correction for PET imaging using wired active MR microcoils in simultaneous PET-MR: Phantom study

    SciTech Connect

    Huang, Chuan; Brady, Thomas J.; El Fakhri, Georges; Ouyang, Jinsong; Ackerman, Jerome L.; Petibon, Yoann

    2014-04-15

    Purpose: Artifacts caused by head motion present a major challenge in brain positron emission tomography (PET) imaging. The authors investigated the feasibility of using wired active MR microcoils to track head motion and incorporate the measured rigid motion fields into iterative PET reconstruction. Methods: Several wired active MR microcoils and a dedicated MR coil-tracking sequence were developed. The microcoils were attached to the outer surface of an anthropomorphic{sup 18}F-filled Hoffman phantom to mimic a brain PET scan. Complex rotation/translation motion of the phantom was induced by a balloon, which was connected to a ventilator. PET list-mode and MR tracking data were acquired simultaneously on a PET-MR scanner. The acquired dynamic PET data were reconstructed iteratively with and without motion correction. Additionally, static phantom data were acquired and used as the gold standard. Results: Motion artifacts in PET images were effectively removed by wired active MR microcoil based motion correction. Motion correction yielded an activity concentration bias ranging from −0.6% to 3.4% as compared to a bias ranging from −25.0% to 16.6% if no motion correction was applied. The contrast recovery values were improved by 37%–156% with motion correction as compared to no motion correction. The image correlation (mean ± standard deviation) between the motion corrected (uncorrected) images of 20 independent noise realizations and static reference was R{sup 2} = 0.978 ± 0.007 (0.588 ± 0.010, respectively). Conclusions: Wired active MR microcoil based motion correction significantly improves brain PET quantitative accuracy and image contrast.

  4. Active vibration isolation of macro-micro motion stage disturbances using a floating stator platform

    NASA Astrophysics Data System (ADS)

    Zhang, Lufan; Long, Zhili; Cai, Jiandong; Liu, Yang; Fang, Jiwen; Wang, Michael Yu

    2015-10-01

    Macro-micro motion stage is mainly applied in microelectronics manufacturing to realize a high-acceleration, high-speed and nano-positioning motion. The high acceleration and nano-positioning accuracy would be influenced by the vibration of the motion stage. In the paper, a concept of floating stage is introduced in the macro-micro motion for isolating vibration disturbances. The design model of the floating stage is established and its theoretical analyses including natural frequency, transient and frequency response analyses are investigated, in order to demonstrate the feasibility of the floating stator platform as a vibration isolator for the macro-micro motion stage. Moreover, an optimal design of the floating stator is conducted and then verified by experiments. In order to characterize and quantify the performance of isolation obtained from the traditional fixed stator and the floating stator, the acceleration responses at different accelerations, speeds and displacements are measured in x, y and z directions. The theoretical and experimental analyses in time and frequency domains indicate that the floating stator platform is effective to actively isolate the vibration in the macro-micro motion stage. In macro-micro motion stage, high acceleration motion is provided by VCM. Vibration is induced from VCM, that is, VCM is a source system, the vibration response or force is felt by a receiver system. Generally, VCM is fixed on the base, which means that the base is the receiver system which absorbs or transfers the vibration. However, the vibration cannot completely disappear and the base vibration is inevitable. In the paper, a floated stator platform as isolation system is developed to decrease or isolate vibration between VCM and base. The floated stator platform consists of damper, stopper, floated lock, spring, limiter, sub base, etc. Unlike the traditional stator of VCM fixed on the base, the floated stator can be moved on the linear guide under vibration

  5. Less wiring, more firing: low-performing older adults compensate for impaired white matter with greater neural activity.

    PubMed

    Daselaar, Sander M; Iyengar, Vijeth; Davis, Simon W; Eklund, Karl; Hayes, Scott M; Cabeza, Roberto E

    2015-04-01

    The reliable neuroimaging finding that older adults often show greater activity (over-recruitment) than younger adults is typically attributed to compensation. Yet, the neural mechanisms of over-recruitment in older adults (OAs) are largely unknown. Rodent electrophysiology studies have shown that as number of afferent fibers within a circuit decreases with age, the fibers that remain show higher synaptic field potentials (less wiring, more firing). Extrapolating to system-level measures in humans, we proposed and tested the hypothesis that greater activity in OAs compensates for impaired white-matter connectivity. Using a neuropsychological test battery, we measured individual differences in executive functions associated with the prefrontal cortex (PFC) and memory functions associated with the medial temporal lobes (MTLs). Using event-related functional magnetic resonance imaging, we compared activity for successful versus unsuccessful trials during a source memory task. Finally, we measured white-matter integrity using diffusion tensor imaging. The study yielded 3 main findings. First, low-executive OAs showed greater success-related activity in the PFC, whereas low-memory OAs showed greater success-related activity in the MTLs. Second, low-executive OAs displayed white-matter deficits in the PFC, whereas low-memory OAs displayed white-matter deficits in the MTLs. Finally, in both prefrontal and MTL regions, white-matter decline and success-related activations occurred in close proximity and were negatively correlated. This finding supports the less-wiring-more-firing hypothesis, which provides a testable account of compensatory over-recruitment in OAs.

  6. Case study of active array feed compensation with sidelobe control for reflector surface distortion

    NASA Technical Reports Server (NTRS)

    Acosta, R. J.; Zaman, A. J. M.; Bobinsky, E. A.; Cherrette, A. R.; Lee, S. W.

    1988-01-01

    The feasibility of electromagnetically compensating for reflector surface distortions has been investigated. The performance characteristics (gain, sidelobe levels, etc.) of large communication antenna systems degrade as the reflector surface distorts mainly due to thermal effects from a varying solar flux. The techniques described in this report can be used to maintain the design performance characteristics independently of thermal effects on the reflector surface. With the advent of monolithic microwave integrated circuits (MMIC), a greater flexibility in array-fed reflector system design can be achieved. MMIC arrays provide independent control of amplitude and phase for each of many radiating elements of the feed array. It is assumed that the surface characteristics (x,y,z, its first and second derivatives) under distorted conditions are known.

  7. Photovoltaic power converter system with a controller configured to actively compensate load harmonics

    DOEpatents

    de Rooij, Michael Andrew; Steigerwald, Robert Louis; Delgado, Eladio Clemente

    2008-12-16

    Photovoltaic power converter system including a controller configured to reduce load harmonics is provided. The system comprises a photovoltaic array and an inverter electrically coupled to the array to generate an output current for energizing a load connected to the inverter and to a mains grid supply voltage. The system further comprises a controller including a first circuit coupled to receive a load current to measure a harmonic current in the load current. The controller includes a second circuit to generate a fundamental reference drawn by the load. The controller further includes a third circuit for combining the measured harmonic current and the fundamental reference to generate a command output signal for generating the output current for energizing the load connected to the inverter. The photovoltaic system may be configured to compensate harmonic currents that may be drawn by the load.

  8. Range of Motion Requirements for Upper-Limb Activities of Daily Living

    PubMed Central

    Walters, Lisa Smurr; Cowley, Jeffrey; Wilken, Jason M.; Resnik, Linda

    2016-01-01

    OBJECTIVE. We quantified the range of motion (ROM) required for eight upper-extremity activities of daily living (ADLs) in healthy participants. METHOD. Fifteen right-handed participants completed several bimanual and unilateral basic ADLs while joint kinematics were monitored using a motion capture system. Peak motions of the pelvis, trunk, shoulder, elbow, and wrist were quantified for each task. RESULTS. To complete all activities tested, participants needed a minimum ROM of −65°/0°/105° for humeral plane angle (horizontal abduction–adduction), 0°–108° for humeral elevation, −55°/0°/79° for humeral rotation, 0°–121° for elbow flexion, −53°/0°/13° for forearm rotation, −40°/0°/38° for wrist flexion–extension, and −28°/0°/38° for wrist ulnar–radial deviation. Peak trunk ROM was 23° lean, 32° axial rotation, and 59° flexion–extension. CONCLUSION. Full upper-limb kinematics were calculated for several ADLs. This methodology can be used in future studies as a basis for developing normative databases of upper-extremity motions and evaluating pathology in populations. PMID:26709433

  9. Examining the Magnetic Field Strength and the Horizontal and Vertical Motions in an Emerging Active Region

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hsien; Chen, Yu-Che

    2016-03-01

    Earlier observational studies have used the time evolution of emerging magnetic flux regions at the photosphere to infer their subsurface structures, assuming that the flux structure does not change significantly over the near-surface layer. In this study, we test the validity of this assumption by comparing the horizontal and vertical motions of an emerging active region. The two motions would be correlated if the emerging structure is rigid. The selected active region (AR) NOAA 11645 is not embedded in detectable preexisting magnetic field. The observed horizontal motion is quantified by the separation of the two AR polarities and the width of the region. The vertical motion is derived from the magnetic buoyancy theory. Our results show that the separation of the polarities is fastest at the beginning with a velocity of {≈ }4 Mm hr^{-1} and decreases to ≤ 1 Mm hr^{-1} after the main growing phase of flux emergence. The derived thick flux-tube buoyant velocity is between 1 and 3 Mm hr^{-1}, while the thin flux-tube approximation results in an unreasonably high buoyant velocity, consistent with the expectation that the approximation is inappropriate at the surface layer. The observed horizontal motion is not found to directly correlate with either the magnetic field strength or the derived buoyant velocities. However, the percentage of the horizontally oriented fields and the temporal derivatives of the field strength and the buoyant velocity show some positive correlations with the separation velocity. The results of this study imply that the assumption that the emerging active region is the cross section of a rising flux tube whose structure can be considered rigid as it rises through the near-surface layer should be taken with caution.

  10. Direction of Biological Motion Affects Early Brain Activation: A Link with Social Cognition

    PubMed Central

    Pegna, Alan John; Gehring, Elise; Meyer, Georg; Del Zotto, Marzia

    2015-01-01

    A number of EEG studies have investigated the time course of brain activation for biological movement over this last decade, however the temporal dynamics of processing are still debated. Moreover, the role of direction of movement has not received much attention even though it is an essential component allowing us to determine the intentions of the moving agent, and thus permitting the anticipation of potential social interactions. In this study, we examined event-related responses (ERPs) in 15 healthy human participants to light point walkers and their scrambled counterparts, whose movements occurred either in the radial or in the lateral plane. Compared to scrambled motion (SM), biological motion (BM) showed an enhanced negativity between 210 and 360ms. A source localization algorithm (sLORETA) revealed that this was due to an increase in superior and middle temporal lobe activity. Regarding direction, we found that radial BM produced an enhanced P1 compared to lateral BM, lateral SM and radial SM. This heightened P1 was due to an increase in activity in extrastriate regions, as well as in superior temporal, medial parietal and medial prefrontal areas. This network is known to be involved in decoding the underlying intentionality of the movement and in the attribution of mental states. The social meaning signaled by the direction of biological motion therefore appears to trigger an early response in brain activity. PMID:26121591

  11. Coupling of postural activity with motion of a ship at sea.

    PubMed

    Varlet, Manuel; Bardy, Benoît G; Chen, Fu-Chen; Alcantara, Cristina; Stoffregen, Thomas A

    2015-05-01

    On land, body sway during stance becomes coupled with imposed oscillations of the illuminated environment or of the support surface. This coupling appears to have the function of stabilizing the body relative to the illuminated or inertial environment. In previous research, the stimulus has been limited to motion in a single axis. Little is known about our ability to couple postural activity with complex, multi-axis oscillations. On a ship at sea, we evaluated postural activity using measures of body movement, as such, and we separately evaluated a direct measure of coupling between body movement and ship motion. Participants were tested while facing fore-aft and athwartship. We compared postural activity between participants who had been seasick at the beginning of the voyage and those who had not. Coupling of postural activity with ship motion differed between body axes as a function of body orientation relative to the ship. In addition, coupling differed between participants who had been seasick at the beginning of the voyage and those who had not. We discuss the results in terms of implications for general theories of postural control, and for prediction of susceptibility to seasickness in individuals.

  12. The cerebral activity related to the visual perception of forward motion in depth.

    PubMed

    de Jong, B M; Shipp, S; Skidmore, B; Frackowiak, R S; Zeki, S

    1994-10-01

    We have used the technique of PET to chart the areas of human cerebral cortex specifically responsive to an optical flow stimulus simulating forward motion in depth over a flat horizontal surface. The optical flow display contained about 2000 dots accelerating in radial directions away from the focus of expansion, which subjects fixated at the centre of the display monitor. Dots remained of constant size, but their density decreased from the horizon, lying across the middle of the screen, to the foreground at the lower screen margin; the top half of the display was void. For the control stimulus the dot motions were randomized, removing any sensation of motion in depth and diminishing the impression of a flat terrain. Comparison of the regional cerebral blood flow (rCBF) elicited by the optical flow and control stimuli was thus intended to reveal any area selectively responsive to the radial velocity field that is characteristic of optical flow in its simplest natural form. Six subjects were scanned, and analysed as a group. Four subjects were analysed as individuals, their PET data being co-registered with MRIs of the cerebrum to localize rCBF changes to individual gyri and sulci. There were three main areas of activation associated with optical flow: the dorsal cuneus (area V3) and the latero-posterior precuneus (or superior parietal lobe) in the right hemisphere, and the occipito-temporal ventral surface, in the region of the fusiform gyrus, in both hemispheres. There was no significant activation of V1/V2, nor of V5. These results show that higher stages of motion take place in both the 'dorsal' and 'ventral' visual pathways, as these are commonly conceived, and that both may be fed by area V3. The information potentially derivable from optical flow concerns the direction of heading, and the layout of the visual environment, a form of three-dimensional structure-from-motion. The perceptual division of labour between the various activated areas cannot be

  13. Automatic active space selection for the similarity transformed equations of motion coupled cluster method

    NASA Astrophysics Data System (ADS)

    Dutta, Achintya Kumar; Nooijen, Marcel; Neese, Frank; Izsák, Róbert

    2017-02-01

    An efficient scheme for the automatic selection of an active space for similarity transformed equations of motion (STEOM) coupled cluster method is proposed. It relies on state averaged configuration interaction singles (CIS) natural orbitals and makes it possible to use STEOM as a black box method. The performance of the new scheme is tested for singlet and triplet valence, charge transfer, and Rydberg excited states.

  14. The Impact of Model Uncertainty on Spatial Compensation in Active Structural Acoustic Control

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.; Gibbs, Gary P.; Sprofera, Joseph D.; Clark, Robert L.

    2004-01-01

    Turbulent boundary layer (TBL) noise is considered a primary factor in the interior noise experienced by passengers aboard commercial airliners. There have been numerous investigations of interior noise control devoted to aircraft panels; however, practical realization is a challenge since the physical boundary conditions are uncertain at best. In most prior studies, pinned or clamped boundary conditions have been assumed; however, realistic panels likely display a range of varying boundary conditions between these two limits. Uncertainty in boundary conditions is a challenge for control system designers, both in terms of the compensator implemented and the location of actuators and sensors required to achieve the desired control. The impact of model uncertainties, uncertain boundary conditions in particular, on the selection of actuator and sensor locations for structural acoustic control are considered herein. Results from this research effort indicate that it is possible to optimize the design of actuator and sensor location and aperture, which minimizes the impact of boundary conditions on the desired structural acoustic control.

  15. Synchrony - Cyberknife Respiratory Compensation Technology

    SciTech Connect

    Ozhasoglu, Cihat Saw, Cheng B.; Chen Hungcheng; Burton, Steven; Komanduri, Krishna; Yue, Ning J.; Huq, Saiful M.; Heron, Dwight E.

    2008-07-01

    Studies of organs in the thorax and abdomen have shown that these organs can move as much as 40 mm due to respiratory motion. Without compensation for this motion during the course of external beam radiation therapy, the dose coverage to target may be compromised. On the other hand, if compensation of this motion is by expansion of the margin around the target, a significant volume of normal tissue may be unnecessarily irradiated. In hypofractionated regimens, the issue of respiratory compensation becomes an important factor and is critical in single-fraction extracranial radiosurgery applications. CyberKnife is an image-guided radiosurgery system that consists of a 6-MV LINAC mounted to a robotic arm coupled through a control loop to a digital diagnostic x-ray imaging system. The robotic arm can point the beam anywhere in space with 6 degrees of freedom, without being constrained to a conventional isocenter. The CyberKnife has been recently upgraded with a real-time respiratory tracking and compensation system called Synchrony. Using external markers in conjunction with diagnostic x-ray images, Synchrony helps guide the robotic arm to move the radiation beam in real time such that the beam always remains aligned with the target. With the aid of Synchrony, the tumor motion can be tracked in three-dimensional space, and the motion-induced dosimetric change to target can be minimized with a limited margin. The working principles, advantages, limitations, and our clinical experience with this new technology will be discussed.

  16. Conical Euler simulation and active suppression of delta wing rocking motion

    NASA Technical Reports Server (NTRS)

    Lee, Elizabeth M.; Batina, John T.

    1990-01-01

    A conical Euler code was developed to study unsteady vortex-dominated flows about rolling highly-swept delta wings, undergoing either forced or free-to-roll motions including active roll suppression. The flow solver of the code involves a multistage Runge-Kutta time-stepping scheme which uses a finite volume spatial discretization of the Euler equations on an unstructured grid of triangles. The code allows for the additional analysis of the free-to-roll case, by including the rigid-body equation of motion for its simultaneous time integration with the governing flow equations. Results are presented for a 75 deg swept sharp leading edge delta wing at a freestream Mach number of 1.2 and at alpha equal to 10 and 30 deg angle of attack. A forced harmonic analysis indicates that the rolling moment coefficient provides: (1) a positive damping at the lower angle of attack equal to 10 deg, which is verified in a free-to-roll calculation; (2) a negative damping at the higher angle of attack equal to 30 deg at the small roll amplitudes. A free-to-roll calculation for the latter case produces an initially divergent response, but as the amplitude of motion grows with time, the response transitions to a wing-rock type of limit cycle oscillation. The wing rocking motion may be actively suppressed, however, through the use of a rate-feedback control law and antisymmetrically deflected leading edge flaps. The descriptions of the conical Euler flow solver and the free-to-roll analysis are presented. Results are also presented which give insight into the flow physics associated with unsteady vortical flows about forced and free-to-roll delta wings, including the active roll suppression of this wing-rock phenomenon.

  17. Alumina Encapsulated Strain Gage Not Mechanically Attached To The Substrate, Used to Temperature Compensate an Active High Temperature Gage In A Half-Bridge Configuration

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony (Inventor)

    2001-01-01

    A temperature compensation element for a high-temperature strain gage and the method of fabricating the same. Preferably, the element is a "dummy" strain gage not mechanically attached to the substrate. The element is encapsulated in an insulative material and used to compensate an active high-temperature strain gage and wired in a half-bridge configuration. The temperature compensation element and high-temperature strain gage are fabricated using the method of the present invention. This method includes temporarily adhering the element to a heat sink, encapsulated in an insulative material and then removed from the heat sink. Next, the element is either stacked or placed near the active gage. Ideally, the element and the active gage have substantially similar heat transfer and electrical properties.

  18. Superior results with continuous passive motion compared to active motion after periosteal transplantation. A retrospective study of human patella cartilage defect treatment.

    PubMed

    Alfredson, H; Lorentzon, R

    1999-01-01

    Fifty-seven consecutive patients (33 men and 24 women), with a mean age of 32 years (range 16-53 years), who suffered from an isolated full-thickness cartilage defect of the patella and disabling knee pain of long duration, were treated by autologous periosteal transplantation to the cartilage defect. The first 38 consecutive patients (group A) were postoperatively treated with continuous passive motion (CPM), and the next 19 consecutive patients (group B) were treated with active motion for the first 5 days postoperatively. In both groups, the initial regimens were followed by active motion, slowly progressive strength training, and slowly progressive weight bearing. In group A, after a mean follow-up of 51 months (range 33-92 months), 29 patients (76%) were graded as excellent or good, 7 patients (19%) were graded as fair, and 2 patients (5%) were graded as poor. In group B, after a mean follow-up of 21 months (range 14-28 months), 10 patients (53%) were graded as excellent or good, 6 patients (32%) were graded as fair, and 3 patients (15%) were graded as poor. Altogether, nine of the fair or poor cases (50%) were diagnosed with chondromalacia of the patella. Our results, after performing autologous periosteal transplantation in patients with full-thickness cartilage defects of the patella and disabling knee pain, are good if CPM is used postoperatively. The clinical results using active motion postoperatively are not acceptable, especially not in patients with chondromalacia of the patella.

  19. Influence of a voltage compensation type active superconducting fault current limiter on the transient stability of power system

    NASA Astrophysics Data System (ADS)

    Chen, L.; Tang, Y. J.; Shi, J.; Chen, N.; Song, M.; Cheng, S. J.; Hu, Y.; Chen, X. S.

    2009-10-01

    We have proposed a voltage compensation type active superconducting fault current limiter (SFCL). In this paper, the influence of the SFCL on the transient stability of power system is investigated. For the typical one-machine infinite-bus system, the power-angle characteristics of generator with SFCL are studied in different working conditions, and the transient physical process is analyzed. Using MATLAB SIMULINK, the power-angle swing curves are simulated under different current-limiting modes, fault types and fault clearance times. The results show that the proposed SFCL can effectively reduce the transient swing amplitude of rotor and extend the critical clearance time under mode 1, compared with mode 2 and mode 3 having few effects on enhancing the transient stability.

  20. Research on the filtering characteristic of single phase series hybrid active power filter based on fundamental magnetic flux compensation

    NASA Astrophysics Data System (ADS)

    Tian, Jun; Chen, Qiaofu; Zhang, Yuqi

    2012-12-01

    In this article, the PWM inverter works as a controlled fundamental current source in the single phase series hybrid active power filter (APF) based on fundamental magnetic flux compensation (FMFC). The series transformer can exhibit the self-impedance of primary winding to harmonic current, which forces harmonic current to flow into passive power filter. With the influence of harmonic current, the voltage of primary winding of transformer is a harmonic voltage, which makes the inverter output currents have a certain harmonic component, and it degrades the filtering characteristics. On the basis of PWM inverter, the mathematical model of series hybrid APF is established, and the filtering characteristics of single phase APF are analysed in detail. Three methods are gained to improve filtering characteristics: reasonably designing the inverter output filter inductance, increasing series transformer ratio and adopting voltage feed-forward control. Experimental results show that the proposed APF has greater validity.

  1. Convergence in full motion video processing, exploitation, and dissemination and activity based intelligence

    NASA Astrophysics Data System (ADS)

    Phipps, Marja; Lewis, Gina

    2012-06-01

    Over the last decade, intelligence capabilities within the Department of Defense/Intelligence Community (DoD/IC) have evolved from ad hoc, single source, just-in-time, analog processing; to multi source, digitally integrated, real-time analytics; to multi-INT, predictive Processing, Exploitation and Dissemination (PED). Full Motion Video (FMV) technology and motion imagery tradecraft advancements have greatly contributed to Intelligence, Surveillance and Reconnaissance (ISR) capabilities during this timeframe. Imagery analysts have exploited events, missions and high value targets, generating and disseminating critical intelligence reports within seconds of occurrence across operationally significant PED cells. Now, we go beyond FMV, enabling All-Source Analysts to effectively deliver ISR information in a multi-INT sensor rich environment. In this paper, we explore the operational benefits and technical challenges of an Activity Based Intelligence (ABI) approach to FMV PED. Existing and emerging ABI features within FMV PED frameworks are discussed, to include refined motion imagery tools, additional intelligence sources, activity relevant content management techniques and automated analytics.

  2. Arm position influences the activation patterns of trunk muscles during trunk range-of-motion movements.

    PubMed

    Siu, Aaron; Schinkel-Ivy, Alison; Drake, Janessa Dm

    2016-10-01

    To understand the activation patterns of the trunk musculature, it is also important to consider the implications of adjacent structures such as the upper limbs, and the muscles that act to move the arms. This study investigated the effects of arm positions on the activation patterns and co-activation of the trunk musculature and muscles that move the arm during trunk range-of-motion movements (maximum trunk axial twist, flexion, and lateral bend). Fifteen males and fifteen females, asymptomatic for low back pain, performed maximum trunk range-of-motion movements, with three arm positions for axial twist (loose, crossed, abducted) and two positions for flexion and lateral bend (loose, crossed). Electromyographical data were collected for eight muscles bilaterally, and activation signals were cross-correlated between trunk muscles and the muscles that move the arms (upper trapezius, latissimus dorsi). Results revealed consistently greater muscle co-activation (higher cross-correlation coefficients) between the trunk muscles and upper trapezius for the abducted arm position during maximum trunk axial twist, while results for the latissimus dorsi-trunk pairings were more dependent on the specific trunk muscles (either abdominal or back) and latissimus dorsi muscle (either right or left side), as well as the range-of-motion movement. The findings of this study contribute to the understanding of interactions between the upper limbs and trunk, and highlight the influence of arm positions on the trunk musculature. In addition, the comparison of the present results to those of individuals with back or shoulder conditions may ultimately aid in elucidating underlying mechanisms or contributing factors to those conditions.

  3. Early active motion protocol following open reduction internal fixation of the scaphoid: A pilot study.

    PubMed

    Dunn, J-C; Kusnezov, N; Fares, A; Buccino, Z; Esquivel, D; Mitchell, J

    2017-02-01

    Scaphoid fractures are common injuries which traditionally have been treated with long periods of immobilization even after open reduction and internal fixation (ORIF). The purpose of this pilot investigation was two-fold: 1) describe a precise postoperative Early Active Motion (EAM) rehabilitation protocol following ORIF of scaphoid fractures and 2) record the outcomes of the EAM protocol. Eight consecutive patients having undergone ORIF of the scaphoid were enrolled in the EAM and followed for a minimum of 1 year. At 12 weeks, Disabilities of the Arm Shoulder and Hand (DASH) score, Mayo Wrist score, and range of motion values were obtained. At 1 year, a telephone survey was conducted and several data points were obtained including DASH and Mayo Wrist score, number of push-ups, satisfaction with surgery and ability to remain on active duty. All 8 patients were male, on active duty, with an average age of 26 years. Two patients used tobacco products and none had major health problems. All patients completed the EAM protocol and obtained CT; all CT exams demonstrated healing at 8 weeks. At 12 weeks postoperatively, the average DASH score was 8.8±16 (range: 0-47.5), Mayo wrist score was 88±10 (range: 75-100) and range of motion nearly symmetrical. At a mean final follow-up of 15.4 months postoperatively, the average DASH score was 1.1±1.7 (Range: 0-4.5), Mayo wrist score was 97.5±4 (range 90-100), average number of push-ups was 57 (40-70) at the prior Army Physical Fitness Test. All patients were satisfied with surgery and all remained on active duty at 1 year. There were no reported complications. The EAM protocol following scaphoid fracture ORIF is safe and effective. The EAM can reliably return patients back to high demand activity earlier than a traditional protocol.

  4. Ice motion and seismic activity on a steep temporate glacier tongue

    NASA Astrophysics Data System (ADS)

    Dalban Canassy, Pierre; Faillettaz, Jerome; Funk, Martin

    2010-05-01

    Ice motion and seismic activity on a steep temporate glacier (Triftgletscher, Bernese Alps, Switzerland) Pierre Dalban Canassy*, Jerome Faillettaz* and Martin Funk* * Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, CH-8092 Zurich, Switzerland (dalban@vaw.baug.ethz.ch) In the last 15 years Triftgletscher (Bernese Alps, Switzerland) has substantially retreated (several hundreds of meters) from the riegel and a proglacial lake containing 6.106 m3 water has been formed in the glacier forefield. Because of the glacier retreat, especially the thinning of the lower flat tongue, the stability of the steep section behind it is affected. The consequence is that the likelihood of large ice avalanches starting from the steep section will increase. The recent intensive glacier thinning in the lower tongue area of 6-10 m.a-1 has even worsened the situation because the runout path of the ice avalanches has become steeper. Ice avalanches with several millions of m3 triggering impulse waves by plunguing into the lake can be the consequence. The aim of our study is to improve the understanding of the mechanisms leading to such instabilities and to develop a predictive method based on both seismic and photogrammetric surveys. The seismic recording is performed with help of 3 geophones installed on the rock on both sides of the serac fall allowing a continuous record. We are able to highlight seismic events by applying an automatic detection procedure, to locate their sources and also to evaluate the released energy of each detected icequake. The most part of these events are due to crack openings and falls of ice chunks, but we could also isolate specific events corresponding to stick-slip motions. The latter seem to play a significant role in the destabilization of the ice mass and represent valuable precursors to break-off episodes. The 2D picture analysis is achieved by analysing photographs taken every day at the same time by an automatic camera installed in

  5. Impact of Physical Activity in Cardiovascular and Musculoskeletal Health: Can Motion Be Medicine?

    PubMed Central

    Curtis, Gannon L.; Chughtai, Morad; Khlopas, Anton; Newman, Jared M.; Khan, Rafay; Shaffiy, Shervin; Nadhim, Ali; Bhave, Anil; Mont, Michael A.

    2017-01-01

    Physical activity is a well-known therapeutic tool for various types of medical conditions, including vasculopathic diseases such as coronary artery disease, stroke, type 2 diabetes, and obesity. Additionally, increased physical activity has been proposed as a therapy to improve musculoskeletal health; however, there are conflicting reports about physical activity potentially leading to degenerative musculoskeletal disease, especially osteoarthritis (OA). Additionally, although physical activity is known to have its benefits, it is unclear as to what amount of physical activity is the most advantageous. Too much, as well as not enough exercise can have negative consequences. This could impact how physicians advise their patients about exercise intensity. Multiple studies have evaluated the effect of physical activity on various aspects of health. However, there is a paucity of systematic studies which review cardiovascular and musculoskeletal health as outcomes. Therefore, the purpose of this review was to assess how physical activity impacts these aspects of health. Specifically, we evaluated the effect of various levels of physical activity on: 1) cardiovascular and 2) musculoskeletal health. The review revealed that physical activity may decrease cardiovascular disease and improve OA symptoms, and therefore, motion can be considered a “medicine”. However, because heavy activity can potentially lead to increased OA risk, physicians should advise their patients that excessive activity can also potentially impact their health negatively, and should be done in moderation, until further study. PMID:28392856

  6. Modeling meiotic chromosome pairing: nuclear envelope attachment, telomere-led active random motion, and anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Marshall, Wallace F.; Fung, Jennifer C.

    2016-04-01

    The recognition and pairing of homologous chromosomes during meiosis is a complex physical and molecular process involving a combination of polymer dynamics and molecular recognition events. Two highly conserved features of meiotic chromosome behavior are the attachment of telomeres to the nuclear envelope and the active random motion of telomeres driven by their interaction with cytoskeletal motor proteins. Both of these features have been proposed to facilitate the process of homolog pairing, but exactly what role these features play in meiosis remains poorly understood. Here we investigate the roles of active motion and nuclear envelope tethering using a Brownian dynamics simulation in which meiotic chromosomes are represented by a Rouse polymer model subjected to tethering and active forces at the telomeres. We find that tethering telomeres to the nuclear envelope slows down pairing relative to the rates achieved by unattached chromosomes, but that randomly directed active forces applied to the telomeres speed up pairing dramatically in a manner that depends on the statistical properties of the telomere force fluctuations. The increased rate of initial pairing cannot be explained by stretching out of the chromosome conformation but instead seems to correlate with anomalous diffusion of sub-telomeric regions.

  7. Predicting muscle activation patterns from motion and anatomy: modelling the skull of Sphenodon (Diapsida: Rhynchocephalia)

    PubMed Central

    Curtis, Neil; Jones, Marc E. H.; Evans, Susan E.; Shi, JunFen; O'Higgins, Paul; Fagan, Michael J.

    2010-01-01

    The relationship between skull shape and the forces generated during feeding is currently under widespread scrutiny and increasingly involves the use of computer simulations such as finite element analysis. The computer models used to represent skulls are often based on computed tomography data and thus are structurally accurate; however, correctly representing muscular loading during food reduction remains a major problem. Here, we present a novel approach for predicting the forces and activation patterns of muscles and muscle groups based on their known anatomical orientation (line of action). The work was carried out for the lizard-like reptile Sphenodon (Rhynchocephalia) using a sophisticated computer-based model and multi-body dynamics analysis. The model suggests that specific muscle groups control specific motions, and that during certain times in the bite cycle some muscles are highly active whereas others are inactive. The predictions of muscle activity closely correspond to data previously recorded from live Sphenodon using electromyography. Apparent exceptions can be explained by variations in food resistance, food size, food position and lower jaw motions. This approach shows considerable promise in advancing detailed functional models of food acquisition and reduction, and for use in other musculoskeletal systems where no experimental determination of muscle activity is possible, such as in rare, endangered or extinct species. PMID:19474084

  8. Modeling meiotic chromosome pairing: nuclear envelope attachment, telomere-led active random motion, and anomalous diffusion

    PubMed Central

    Marshall, Wallace F.; Fung, Jennifer C.

    2016-01-01

    The recognition and pairing of homologous chromosomes during meiosis is a complex physical and molecular process involving a combination of polymer dynamics and molecular recognition events. Two highly conserved features of meiotic chromosome behavior are the attachment of telomeres to the nuclear envelope and the active random motion of telomeres driven by their interaction with cytoskeletal motor proteins. Both of these features have been proposed to facilitate the process of homolog pairing, but exactly what role these features play in meiosis remains poorly understood. Here we investigate the roles of active motion and nuclear envelope tethering using a Brownian dynamics simulation in which meiotic chromosomes are represented by a Rouse polymer model subjected to tethering and active forces at the telomeres. We find that tethering telomeres to the nuclear envelope slows down pairing relative to the rates achieved by un-attached chromosomes, but that randomly-directed active forces applied to the telomeres speeds up pairing dramatically in a manner that depends on the statistical properties of the telomere force fluctuations. The increased rate of initial pairing cannot be explained by stretching out of the chromosome conformation but instead seems to correlate with anomalous diffusion of sub-telomeric regions. PMID:27046097

  9. Active breathing control (ABC): Determination and reduction of breathing-induced organ motion in the chest

    SciTech Connect

    Gagel, Bernd . E-mail: BGagel@UKAachen.de; Demirel, Cengiz M.P.; Kientopf, Aline; Pinkawa, Michael; Piroth, Marc; Stanzel, Sven; Breuer, Christian; Asadpour, Branka; Jansen, Thomas; Holy, Richard; Wildberger, Joachim E.; Eble, Michael J.

    2007-03-01

    Purpose: Extensive radiotherapy volumes for tumors of the chest are partly caused by interfractional organ motion. We evaluated the feasibility of respiratory observation tools using the active breathing control (ABC) system and the effect on breathing cycle regularity and reproducibility. Methods and Materials: Thirty-six patients with unresectable tumors of the chest were selected for evaluation of the ABC system. Computed tomography scans were performed at various respiratory phases starting at the same couch position without patient movement. Threshold levels were set at minimum and maximum volume during normal breathing cycles and at a volume defined as shallow breathing, reflecting the subjective maximal tolerable reduction of breath volume. To evaluate the extent of organ movement, 13 landmarks were considering using commercial software for image coregistration. In 4 patients, second examinations were performed during therapy. Results: Investigating the differences in a normal breathing cycle versus shallow breathing, a statistically significant reduction of respiratory motion in the upper, middle, and lower regions of the chest could be detected, representing potential movement reduction achieved through reduced breath volume. Evaluating interfraction reproducibility, the mean displacement ranged between 0.24 mm (chest wall/tracheal bifurcation) to 3.5 mm (diaphragm) for expiration and shallow breathing and 0.24 mm (chest wall) to 5.25 mm (diaphragm) for normal inspiration. Conclusions: By modifying regularity of the respiratory cycle through reduction of breath volume, a significant and reproducible reduction of chest and diaphragm motion is possible, enabling reduction of treatment planning margins.

  10. Control strategy for three-phase four-wire PWM converter of integrated voltage compensation type active SFCL

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Tang, Yuejin; Shi, Jing; Li, Zhi; Ren, Li; Cheng, Shijie

    2010-02-01

    The integrated voltage compensation type active superconducting fault current limiter (SFCL) is composed of three air-core superconducting transformers and a three-phase four-wire PWM converter. In order to realize the current-limiting characteristics of the integrated active SFCL, it is needed to control the three-phase four-wire PWM converter flexibly and reasonably. Thereby, the control strategy for the converter is analyzed in this paper. In dq0 reference frame, the mathematical model of the converter is founded. The double-loop control strategy, consisting of voltage outer loop and current inner loop, is presented. Moreover, the voltage balance control for the split DC link capacitors is also considered. Using MATLAB, the simulation model of the integrated active SFCL is built. According to the simulation results, it is known that, the presented control strategy is feasible and valid, and the converter can work well under unsymmetrical and symmetrical fault conditions, and then the fault current can be limited quickly and effectively.

  11. Impaired complex IV activity in response to loss of LRPPRC function can be compensated by mitochondrial hyperfusion

    PubMed Central

    Rolland, Stéphane G.; Motori, Elisa; Memar, Nadin; Hench, Jürgen; Frank, Stephan; Winklhofer, Konstanze F.; Conradt, Barbara

    2013-01-01

    Mitochondrial morphology changes in response to various stimuli but the significance of this is unclear. In a screen for mutants with abnormal mitochondrial morphology, we identified MMA-1, the Caenorhabditis elegans homolog of the French Canadian Leigh Syndrome protein LRPPRC (leucine-rich pentatricopeptide repeat containing). We demonstrate that reducing mma-1 or LRPPRC function causes mitochondrial hyperfusion. Reducing mma-1/LRPPRC function also decreases the activity of complex IV of the electron transport chain, however without affecting cellular ATP levels. Preventing mitochondrial hyperfusion in mma-1 animals causes larval arrest and embryonic lethality. Furthermore, prolonged LRPPRC knock-down in mammalian cells leads to mitochondrial fragmentation and decreased levels of ATP. These findings indicate that in a mma-1/LRPPRC–deficient background, hyperfusion allows mitochondria to maintain their functions despite a reduction in complex IV activity. Our data reveal an evolutionary conserved mechanism that is triggered by reduced complex IV function and that induces mitochondrial hyperfusion to transiently compensate for a drop in the activity of the electron transport chain. PMID:23878239

  12. Respiratory Motion of The Heart and Positional Reproducibility Under Active Breathing Control

    SciTech Connect

    Jagsi, Reshma; Moran, Jean M.; Kessler, Marc L.; Marsh, Robin B. C; Balter, James M.; Pierce, Lori J. . E-mail: ljpierce@umich.edu

    2007-05-01

    Purpose: To reduce cardiotoxicity from breast radiotherapy (RT), innovative techniques are under investigation. Information about cardiac motion with respiration and positional reproducibility under active breathing control (ABC) is necessary to evaluate these techniques. Methods and Materials: Patients requiring loco-regional RT for breast cancer were scanned by computed tomography using an ABC device at various breath-hold states, before and during treatment. Ten patients were studied. For each patient, 12 datasets were analyzed. Mutual information-based regional rigid alignment was used to determine the magnitude and reproducibility of cardiac motion as a function of breathing state. For each scan session, motion was quantified by evaluating the displacement of a point along the left anterior descending artery (LAD) with respect to its position at end expiration. Long-term positional reproducibility was also assessed. Results: Displacement of the LAD was greatest in the inferior direction, moderate in the anterior direction, and lowest in the left-right direction. At shallow breathing states, the average displacement of LAD position was up to 6 mm in the inferior direction. The maximum displacement in any patient was 2.8 cm in the inferior direction, between expiration and deep-inspiration breath hold. At end expiration, the long-term reproducibility (SD) of the LAD position was 3 mm in the A-P, 6 mm in the S-I, and 4 mm in the L-R directions. At deep-inspiration breath hold, long-term reproducibility was 3 mm in the A-P, 7 mm in the S-I, and 3 mm in the L-R directions. Conclusions: These data demonstrate the extent of LAD displacement that occurs with shallow breathing and with deep-inspiration breath hold. This information may guide optimization studies considering the effects of respiratory motion and reproducibility of cardiac position on cardiac dose, both with and without ABC.

  13. Dosage Compensation in Mammals

    PubMed Central

    Brockdorff, Neil; Turner, Bryan M.

    2015-01-01

    Many organisms show major chromosomal differences between sexes. In mammals, females have two copies of a large, gene-rich chromosome, the X, whereas males have one X and a small, gene-poor Y. The imbalance in expression of several hundred genes is lethal if not dealt with by dosage compensation. The male–female difference is addressed by silencing of genes on one female X early in development. However, both males and females now have only one active X chromosome. This is compensated by twofold up-regulation of genes on the active X. This complex system continues to provide important insights into mechanisms of epigenetic regulation. PMID:25731764

  14. Modeling Human Control of Self-Motion Direction With Optic Flow and Vestibular Motion.

    PubMed

    Zaal, Peter M T; Nieuwenhuizen, Frank M; van Paassen, Marinus M; Mulder, Max

    2013-04-01

    In this paper, we investigate the effects of visual and motion stimuli on the manual control of one's direction of self-motion. In a flight simulator, subjects conducted an active target-following disturbance-rejection task, using a compensatory display. Simulating a vehicular control task, the direction of vehicular motion was shown on the outside visual display in two ways: an explicit presentation using a symbol and an implicit presentation, namely, through the focus of radial outflow that emerges from optic flow. In addition, the effects of the relative strength of congruent vestibular motion cues were investigated. The dynamic properties of human visual and vestibular motion perception paths were modeled using a control-theoretical approach. As expected, improved tracking performance was found for the configurations that explicitly showed the direction of self-motion. The human visual time delay increased with approximately 150 ms for the optic flow conditions, relative to explicit presentations. Vestibular motion, providing higher order information on the direction of self-motion, allowed subjects to partially compensate for this visual perception delay, improving performance. Parameter estimates of the operator control model show that, with vestibular motion, the visual feedback becomes stronger, indicating that operators are more confident to act on optic flow information when congruent vestibular motion cues are present.

  15. Motion and Muscle Activity Are Affected by Instability Location During a Squat Exercise.

    PubMed

    Nairn, Brian C; Sutherland, Chad A; Drake, Janessa D M

    2017-03-01

    Nairn, BC, Sutherland, CA, and Drake, JDM. Motion and muscle activity are affected by instability location during a squat exercise. J Strength Cond Res 31(3): 677-685, 2017-Squat exercise training using instability devices has become increasingly popular for a multitude of reasons. Many devices generate instability at the feet and provide a bottom-up perturbation; however, the effect of a top-down instability device during a squat remains unclear. To induce instability at the upper body, a water-filled cylinder called the Attitube was used. This study analyzed the effects of instability location (top-down, bottom-up, and no instability) during a squat exercise in terms of kinematics and muscle activation. Ten male participants were instrumented with 75 reflective markers to track kinematics of the ankle, knee, hip, trunk, and the Bar/Attitube, and electromyography was recorded from 12 muscles bilaterally. Squats were performed with an Olympic bar on a stable surface, an Olympic bar on a BOSU ball (BALL, bottom-up), and the Attitube on solid ground (TUBE, top-down). The TUBE showed up to 1.5 times reduction in erector spinae activation and up to 1.5 times less trunk flexion while being performed at a slower velocity. There was also higher abdominal activation in the TUBE, with up to 2.8 times greater oblique activation compared with the stable condition. The BALL increased ankle eversion and knee flexion with higher muscle activation in gastrocnemius, biceps femoris, and quadriceps. Overall, changing the location of instability during a squat changed the motion and muscle activation patterns of the trunk and lower extremities. This provides information for future research into rehabilitation, learning proper squat technique, and for specific training scenarios.

  16. An autotuning respiration compensation system based on ultrasound image tracking.

    PubMed

    Kuo, Chia-Chun; Chuang, Ho-Chiao; Teng, Kuan-Ting; Hsu, Hsiao-Yu; Tien, Der-Chi; Wu, Chih-Jen; Jeng, Shiu-Chen; Chiou, Jeng-Fong

    2016-11-22

    waves, the correlation between the target displacement on the ultrasound images and the actual target displacement was around 97%, and all of the compensation rates exceeded 94% after activating the RCS. Furthermore, the diaphragm movements on the ultrasound images of three patients could be captured by our image tracking technique. The test results show that our algorithm could achieve precise point locking and tracking functions on the diaphragm. This study has demonstrated the feasibility of the proposed ultrasound image tracking technique combined with the RCS for compensating for organ displacements caused by respiratory motion.This study has shown that the proposed ultrasound image tracking technique combined with the RCS can provide real-time compensation of respiratory motion during radiation therapy, without increasing the overall treatment time. In addition, the system has modest space requirements and is easy to operate.

  17. Extract the Relational Information of Static Features and Motion Features for Human Activities Recognition in Videos

    PubMed Central

    2016-01-01

    Both static features and motion features have shown promising performance in human activities recognition task. However, the information included in these features is insufficient for complex human activities. In this paper, we propose extracting relational information of static features and motion features for human activities recognition. The videos are represented by a classical Bag-of-Word (BoW) model which is useful in many works. To get a compact and discriminative codebook with small dimension, we employ the divisive algorithm based on KL-divergence to reconstruct the codebook. After that, to further capture strong relational information, we construct a bipartite graph to model the relationship between words of different feature set. Then we use a k-way partition to create a new codebook in which similar words are getting together. With this new codebook, videos can be represented by a new BoW vector with strong relational information. Moreover, we propose a method to compute new clusters from the divisive algorithm's projective function. We test our work on the several datasets and obtain very promising results. PMID:27656199

  18. Circular Motion.

    ERIC Educational Resources Information Center

    Lee, Paul D.

    1995-01-01

    Provides a period-long activity using battery powered cars rolling in a circular motion on a tile floor. Students measure the time and distance as the car moves to derive the equation for centripetal acceleration. (MVL)

  19. The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction

    PubMed Central

    Koizumi, Shun; Irie, Taro; Hirayama, Shoshiro; Sakurai, Yasuyuki; Yashiroda, Hideki; Naguro, Isao; Ichijo, Hidenori; Hamazaki, Jun; Murata, Shigeo

    2016-01-01

    In response to proteasome dysfunction, mammalian cells upregulate proteasome gene expression by activating Nrf1. Nrf1 is an endoplasmic reticulum-resident transcription factor that is continually retrotranslocated and degraded by the proteasome. Upon proteasome inhibition, Nrf1 escapes degradation and is cleaved to become active. However, the processing enzyme for Nrf1 remains obscure. Here we show that the aspartyl protease DNA-damage inducible 1 homolog 2 (DDI2) is required to cleave and activate Nrf1. Deletion of DDI2 reduced the cleaved form of Nrf1 and increased the full-length cytosolic form of Nrf1, resulting in poor upregulation of proteasomes in response to proteasome inhibition. These defects were restored by adding back wild-type DDI2 but not protease-defective DDI2. Our results provide a clue for blocking compensatory proteasome synthesis to improve cancer therapies targeting proteasomes. DOI: http://dx.doi.org/10.7554/eLife.18357.001 PMID:27528193

  20. Effect of motion on tracer activity determination in CT attenuation corrected PET images: A lung phantom study

    SciTech Connect

    Pevsner, Alex; Nehmeh, Sadek A.; Humm, John L.; Mageras, Gig S.; Erdi, Yusuf E.

    2005-07-15

    Respiratory motion is known to affect the quantitation of {sup 18}FDG uptake in lung lesions. The aim of the study was to investigate the magnitude of errors in tracer activity determination due to motion, and its dependence upon CT attenuation at different phases of the motion cycle. To estimate these errors we have compared maximum activity concentrations determined from PET/CT images of a lung phantom at rest and under simulated respiratory motion. The NEMA 2001 IEC body phantom, containing six hollow spheres with diameters 37, 28, 22, 17, 13, and 10 mm, was used in this study. To mimic lung tissue density, the phantom (excluding spheres) was filled with low density polystyrene beads and water. The phantom spheres were filled with {sup 18}FDG solution setting the target-to-background activity concentration ratio at 8:1. PET/CT data were acquired with the phantom at rest, and while it was undergoing periodic motion along the longitudinal axis of the scanner with a range of displacement being 2 cm, and a period of 5 s. The phantom at rest and in motion was scanned using manufacturer provided standard helical/clinical protocol, a helical CT scan followed by a PET emission scan. The moving phantom was also scanned using a 4D-CT protocol that provides volume image sets at different phases of the motion cycle. To estimate the effect of motion on quantitation of activities in six spheres, we have examined the activity concentration data for (a) the stationary phantom, (b) the phantom undergoing simulated respiratory motion, and (c) a moving phantom acquired with PET/4D-CT protocol in which attenuation correction was performed with CT images acquired at different phases of motion cycle. The data for the phantom at rest and in motion acquired with the standard helical/clinical protocol showed that the activity concentration in the spheres can be underestimated by as much as 75%, depending on the sphere diameter. We have also demonstrated that fluctuations in sphere

  1. Effect of motion smoothness on brain activity while observing a dance: An fMRI study using a humanoid robot.

    PubMed

    Miura, Naoki; Sugiura, Motoaki; Takahashi, Makoto; Sassa, Yuko; Miyamoto, Atsushi; Sato, Shigeru; Horie, Kaoru; Nakamura, Katsuki; Kawashima, Ryuta

    2010-01-01

    Motion smoothness is critical in transmitting implicit information of body action, such as aesthetic qualities in dance performances. We expected that the perception of motion smoothness would be characterized by great intersubject variability deriving from differences in personal backgrounds and attitudes toward expressive body actions. We used functional magnetic resonance imaging and a humanoid robot to investigate the effects of the motion smoothness of expressive body actions and the intersubject variability due to personal attitudes on perceptions during dance observation. The effect of motion smoothness was analyzed by both conventional subtraction analysis and functional connectivity analyses that detect cortical networks reflecting intersubject variability. The results showed that the cortical networks of motion- and body-sensitive visual areas showed increases in activity in areas corresponding with motion smoothness, but the intersubject variability of personal attitudes toward art did not influence these active areas. In contrast, activation of cortical networks, including the parieto-frontal network, has large intersubject variability, and this variability is associated with personal attitudes about the consciousness of art. Thus, our results suggest that activity in the cortical network involved in understanding action is influenced by personal attitudes about the consciousness of art during observations of expressive body actions.

  2. Neural network compensation of semi-active control for magneto-rheological suspension with time delay uncertainty

    NASA Astrophysics Data System (ADS)

    Dong, Xiao Min; Yu, Miao; Li, Zushu; Liao, Changrong; Chen, Weimin

    2009-01-01

    This study presents a new intelligent control method, human-simulated intelligent control (HSIC) based on the sensory motor intelligent schema (SMIS), for a magneto-rheological (MR) suspension system considering the time delay uncertainty of MR dampers. After formulating the full car dynamic model featuring four MR dampers, the HSIC based on eight SMIS is derived. A neural network model is proposed to compensate for the uncertain time delay of the MR dampers. The HSIC based on SMIS is then experimentally realized for the manufactured full vehicle MR suspension system on the basis of the dSPACE platform. Its performance is evaluated and compared under various road conditions and presented in both time and frequency domains. The results show that significant gains are made in the improvement of vehicle performance. Results include a reduction of over 35% in the acceleration peak-to-peak value of a sprung mass over a bumpy road and a reduction of over 24% in the root-mean-square (RMS) sprung mass acceleration over a random road as compared to passive suspension with typical original equipment (OE) shock absorbers. In addition, the semi-active full vehicle system via HSIC based on SMIS provides better isolation than that via the original HSIC, which can avoid the effect of the time delay uncertainty of the MR dampers.

  3. Compensating for the absence of selenocysteine in high-molecular weight thioredoxin reductases: the electrophilic activation hypothesis.

    PubMed

    Lothrop, Adam P; Snider, Gregg W; Flemer, Stevenson; Ruggles, Erik L; Davidson, Ronald S; Lamb, Audrey L; Hondal, Robert J

    2014-02-04

    Mammalian thioredoxin reductase (TR) is a pyridine disulfide oxidoreductase that uses the rare amino acid selenocysteine (Sec) in place of the more commonly used amino acid cysteine (Cys). Selenium is a Janus-faced element because it is both highly nucleophilic and highly electrophilic. Cys orthologs of Sec-containing enzymes may compensate for the absence of a Sec residue by making the active site Cys residue more (i) nucleophilic, (ii) electrophilic, or (iii) reactive by increasing both S-nucleophilicity and S-electrophilicity. It has already been shown that the Cys ortholog TR from Drosophila melanogaster (DmTR) has increased S-nucleophilicity [Gromer, S., Johansson, L., Bauer, H., Arscott, L. D., Rauch, S., Ballou, D. P., Williams, C. H., Jr., Schrimer, R. H., and Arnér, E. S (2003) Active sites of thioredoxin reductases: Why selenoproteins? Proc. Natl. Acad. Sci. U.S.A. 100, 12618-12623]. Here we present evidence that DmTR also enhances the electrophilicity of Cys490 through the use of an "electrophilic activation" mechanism. This mechanism is proposed to work by polarizing the disulfide bond that occurs between Cys489 and Cys490 in the C-terminal redox center by the placement of a positive charge near Cys489. This polarization renders the sulfur atom of Cys490 electron deficient and enhances the rate of thiol/disulfide exchange that occurs between the N- and C-terminal redox centers. Our hypothesis was developed by using a strategy of homocysteine (hCys) for Cys substitution in the Cys-Cys redox dyad of DmTR to differentiate the function of each Cys residue. The results show that hCys could substitute for Cys490 with little loss of thioredoxin reductase activity, but that substitution of hCys for Cys489 resulted in a 238-fold reduction in activity. We hypothesize that replacement of Cys489 with hCys destroys an interaction between the sulfur atom of Cys489 and His464 crucial for the proposed electrophilic activation mechanism. This electrophilic activation

  4. Compensating for the Absence of Selenocysteine in High-Molecular Weight Thioredoxin Reductases: The Electrophilic Activation Hypothesis

    PubMed Central

    2015-01-01

    Mammalian thioredoxin reductase (TR) is a pyridine disulfide oxidoreductase that uses the rare amino acid selenocysteine (Sec) in place of the more commonly used amino acid cysteine (Cys). Selenium is a Janus-faced element because it is both highly nucleophilic and highly electrophilic. Cys orthologs of Sec-containing enzymes may compensate for the absence of a Sec residue by making the active site Cys residue more (i) nucleophilic, (ii) electrophilic, or (iii) reactive by increasing both S-nucleophilicity and S-electrophilicity. It has already been shown that the Cys ortholog TR from Drosophila melanogaster (DmTR) has increased S-nucleophilicity [Gromer, S., Johansson, L., Bauer, H., Arscott, L. D., Rauch, S., Ballou, D. P., Williams, C. H., Jr., Schrimer, R. H., and Arnér, E. S (2003) Active sites of thioredoxin reductases: Why selenoproteins? Proc. Natl. Acad. Sci. U.S.A. 100, 12618–12623]. Here we present evidence that DmTR also enhances the electrophilicity of Cys490 through the use of an “electrophilic activation” mechanism. This mechanism is proposed to work by polarizing the disulfide bond that occurs between Cys489 and Cys490 in the C-terminal redox center by the placement of a positive charge near Cys489. This polarization renders the sulfur atom of Cys490 electron deficient and enhances the rate of thiol/disulfide exchange that occurs between the N- and C-terminal redox centers. Our hypothesis was developed by using a strategy of homocysteine (hCys) for Cys substitution in the Cys-Cys redox dyad of DmTR to differentiate the function of each Cys residue. The results show that hCys could substitute for Cys490 with little loss of thioredoxin reductase activity, but that substitution of hCys for Cys489 resulted in a 238-fold reduction in activity. We hypothesize that replacement of Cys489 with hCys destroys an interaction between the sulfur atom of Cys489 and His464 crucial for the proposed electrophilic activation mechanism. This electrophilic

  5. Thermal and Kinetic Properties of Motions in a Prominence Activation and Nearby Loop

    NASA Technical Reports Server (NTRS)

    Kucera, Therese; Landi, E.

    2005-01-01

    We perform a quantitative analysis of the thermal properties of a prominence activation and motions in a nearby loop. In order to make measurements of the quickly moving features seen in prominences in the UV we use the SOHO/SUMER spectrograph to take a time series of exposures from a single pointing position, providing a measurement of spectral line properties as a function of time and position along the slit. The lines observed cover a broad range of temperatures from 80,000 - 1.6 million K. These measurements are combined with TRACE movies in transition region and coronal temperature bands to obtain more complete information concerning prominence structure and motions. The resulting observations allow us to analyze the thermal and kinetic energy of the moving sources as functions of time. The loop and prominence are most apparent in lines formed at temperatures below 250,000 K. We find that in most cases the temperature distribution of plasma in a moving feature changes relatively little over time periods of about 20 minutes.

  6. Understanding and Visualizing Multitasking and Task Switching Activities: A Time Motion Study to Capture Nursing Workflow.

    PubMed

    Yen, Po-Yin; Kelley, Marjorie; Lopetegui, Marcelo; Rosado, Amber L; Migliore, Elaina M; Chipps, Esther M; Buck, Jacalyn

    2016-01-01

    A fundamental understanding of multitasking within nursing workflow is important in today's dynamic and complex healthcare environment. We conducted a time motion study to understand nursing workflow, specifically multitasking and task switching activities. We used TimeCaT, a comprehensive electronic time capture tool, to capture observational data. We established inter-observer reliability prior to data collection. We completed 56 hours of observation of 10 registered nurses. We found, on average, nurses had 124 communications and 208 hands-on tasks per 4-hour block of time. They multitasked (having communication and hands-on tasks simultaneously) 131 times, representing 39.48% of all times; the total multitasking duration ranges from 14.6 minutes to 109 minutes, 44.98 minutes (18.63%) on average. We also reviewed workflow visualization to uncover the multitasking events. Our study design and methods provide a practical and reliable approach to conducting and analyzing time motion studies from both quantitative and qualitative perspectives.

  7. Understanding and Visualizing Multitasking and Task Switching Activities: A Time Motion Study to Capture Nursing Workflow

    PubMed Central

    Yen, Po-Yin; Kelley, Marjorie; Lopetegui, Marcelo; Rosado, Amber L.; Migliore, Elaina M.; Chipps, Esther M.; Buck, Jacalyn

    2016-01-01

    A fundamental understanding of multitasking within nursing workflow is important in today’s dynamic and complex healthcare environment. We conducted a time motion study to understand nursing workflow, specifically multitasking and task switching activities. We used TimeCaT, a comprehensive electronic time capture tool, to capture observational data. We established inter-observer reliability prior to data collection. We completed 56 hours of observation of 10 registered nurses. We found, on average, nurses had 124 communications and 208 hands-on tasks per 4-hour block of time. They multitasked (having communication and hands-on tasks simultaneously) 131 times, representing 39.48% of all times; the total multitasking duration ranges from 14.6 minutes to 109 minutes, 44.98 minutes (18.63%) on average. We also reviewed workflow visualization to uncover the multitasking events. Our study design and methods provide a practical and reliable approach to conducting and analyzing time motion studies from both quantitative and qualitative perspectives. PMID:28269924

  8. Vagal control of cardiac electrical activity and wall motion during ventricular fibrillation in large animals.

    PubMed

    Naggar, Isaac; Nakase, Ko; Lazar, Jason; Salciccioli, Louis; Selesnick, Ivan; Stewart, Mark

    2014-07-01

    Vagal inputs control pacemaking and conduction systems in the heart. Anatomical evidence suggests a direct ventricular action, but functional evidence that separates direct and indirect (via the conduction system) vagal actions is less well established. We studied vagus nerve stimulation (VNS) during sinus rhythm and ventricular fibrillation (VF) in pigs and sheep to determine: 1) the range of unilateral and bilateral actions (inotropic and chronotropic) and 2) whether VNS alters left ventricular motion and/or electrical activity during VF, a model of abnormal electrical conduction of the left ventricle that excludes sinus and atrioventricular nodal function. Adult pigs (N=8) and sheep (N=10) were anesthetized with urethane and mechanically ventilated. VNS was performed in animals at 1, 2, 5, 10, 20, 50, and 100Hz for 20s. VF was induced with direct current to the ventricles or occlusion of the left anterior descending coronary artery. In 4 pigs and 3 sheep, left ventricular wall motion was assessed from endocardial excursion in epicardial echocardiography. In sheep and pigs, the best frequency among those tested for VNS during sinus rhythm to produce sustained electrical and mechanical ventricular standstill was 50Hz for unilateral or bilateral stimulation. When applied during VF, bilateral VNS increased the variability of the dominant VF frequency, indicating a direct impact on the excitability of ventricular myocytes, and decreased endocardial excursion by more than 50% during VF. We conclude that the vagus nerve directly modulates left ventricular function independently from its effects on the conduction system.

  9. Control of a Virtual Vehicle Influences Postural Activity and Motion Sickness

    ERIC Educational Resources Information Center

    Dong, Xiao; Yoshida, Ken; Stoffregen, Thomas A.

    2011-01-01

    Everyday experience suggests that drivers are less susceptible to motion sickness than passengers. In the context of inertial motion (i.e., physical displacement), this effect has been confirmed in laboratory research using whole body motion devices. We asked whether a similar effect would occur in the context of simulated vehicles in a visual…

  10. 14 CFR 1253.515 - Compensation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 1253.515 Compensation. A...

  11. Relationship between active cervical range of motion and flexion-relaxation ratio in asymptomatic computer workers.

    PubMed

    Yoo, Won-Gyu; Park, Se-Yeon; Lee, Mi-Ra

    2011-01-01

    A high prevalence and incidence of neck and shoulder pain is present in the working population, especially sedentary workers. Recent findings have indicated that the flexion-relaxation (FR) ratio in the cervical erector spinae (CES) muscles might be a significant criteria of neuromuscular impairment and function. Additionally, the active cervical range of motion (ROM) is frequently used for discriminating between individuals with pain and those who are asymptomatic. The purpose of the present study was to examine the relationship between the active cervical ROM and the FR ratio in a sample of regular visual display terminal (VDT) workers. In total, 20 asymptomatic male VDT workers were recruited. Active cervical ROM was measured by a cervical ROM (CROM) instrument. Surface electromyography (EMG) was used to collect myoelectrical signals from the CES muscles, and the FR ratio was calculated for statistical analysis. Pearson correlation coefficients were used to quantify the linear relationship between the active cervical ROM and the FR ratio. The values obtained for the FR ratio in the right CES muscles correlated significantly with the active cervical ROM measured in flexion (r=0.73, p<0.01), left lateral flexion (r=0.64, p<0.01), and left rotation (r=0.60, p<0.01). Flexion (r=0.74, p<0.01) and right lateral flexion (r=0.61, p<0.01) positively correlated with the left FR ratio. Extension and right rotation showed either a very weak or no correlation with the mean value of the right and left FR ratio. Our findings suggested that the cervical FR ratio had a positive correlation with cervical movements, and that changes of the activation patterns in CES demonstrated as cervical FR ratio are associated with reduction of the cervical range of motion including flexion and lateral flexion. In addition, muscular dysfunction of the CES could occur in regular computer workers prior to occurrence of pain; this means that the FR ratio could be used to evaluate the potential

  12. Dopamine Activation Preserves Visual Motion Perception Despite Noise Interference of Human V5/MT

    PubMed Central

    Yousif, Nada; Fu, Richard Z.; Abou-El-Ela Bourquin, Bilal; Bhrugubanda, Vamsee; Schultz, Simon R.

    2016-01-01

    When processing sensory signals, the brain must account for noise, both noise in the stimulus and that arising from within its own neuronal circuitry. Dopamine receptor activation is known to enhance both visual cortical signal-to-noise-ratio (SNR) and visual perceptual performance; however, it is unknown whether these two dopamine-mediated phenomena are linked. To assess this, we used single-pulse transcranial magnetic stimulation (TMS) applied to visual cortical area V5/MT to reduce the SNR focally and thus disrupt visual motion discrimination performance to visual targets located in the same retinotopic space. The hypothesis that dopamine receptor activation enhances perceptual performance by improving cortical SNR predicts that dopamine activation should antagonize TMS disruption of visual perception. We assessed this hypothesis via a double-blinded, placebo-controlled study with the dopamine receptor agonists cabergoline (a D2 agonist) and pergolide (a D1/D2 agonist) administered in separate sessions (separated by 2 weeks) in 12 healthy volunteers in a William's balance-order design. TMS degraded visual motion perception when the evoked phosphene and the visual stimulus overlapped in time and space in the placebo and cabergoline conditions, but not in the pergolide condition. This suggests that dopamine D1 or combined D1 and D2 receptor activation enhances cortical SNR to boost perceptual performance. That local visual cortical excitability was unchanged across drug conditions suggests the involvement of long-range intracortical interactions in this D1 effect. Because increased internal noise (and thus lower SNR) can impair visual perceptual learning, improving visual cortical SNR via D1/D2 agonist therapy may be useful in boosting rehabilitation programs involving visual perceptual training. SIGNIFICANCE STATEMENT In this study, we address the issue of whether dopamine activation improves visual perception despite increasing sensory noise in the visual cortex

  13. Aftershock activity of the 2015 Gorkha, Nepal, earthquake determined using the Kathmandu strong motion seismographic array

    NASA Astrophysics Data System (ADS)

    Ichiyanagi, Masayoshi; Takai, Nobuo; Shigefuji, Michiko; Bijukchhen, Subeg; Sasatani, Tsutomu; Rajaure, Sudhir; Dhital, Megh Raj; Takahashi, Hiroaki

    2016-02-01

    The characteristics of aftershock activity of the 2015 Gorkha, Nepal, earthquake (Mw 7.8) were evaluated. The mainshock and aftershocks were recorded continuously by the international Kathmandu strong motion seismographic array operated by Hokkaido University and Tribhuvan University. Full waveform data without saturation for all events enabled us to clarify aftershock locations and decay characteristics. The aftershock distribution was determined using the estimated local velocity structure. The hypocenter distribution in the Kathmandu metropolitan region was well determined and indicated earthquakes located shallower than 12 km depth, suggesting that aftershocks occurred at depths shallower than the Himalayan main thrust fault. Although numerical investigation suggested less resolution for the depth component, the regional aftershock epicentral distribution of the entire focal region clearly indicated earthquakes concentrated in the eastern margin of the major slip region of the mainshock. The calculated modified Omori law's p value of 1.35 suggests rapid aftershock decay and a possible high temperature structure in the aftershock region.

  14. X-RAY ACTIVITY PHASED WITH PLANET MOTION IN HD 189733?

    SciTech Connect

    Pillitteri, I.; Guenther, H. M.; Wolk, S. J.; Kashyap, V. L.; Cohen, O.

    2011-11-01

    We report on the follow-up XMM-Newton observation of the planet-hosting star HD 189733 we obtained in 2011 April. We observe a flare just after the secondary transit of the hot Jupiter. This event shares the same phase and many of the characteristics of the flare we observed in 2009. We suggest that a systematic interaction between planet and stellar magnetic fields when the planet passes close to active regions on the star can lead to periodic variability phased with planetary motion. By means of high-resolution X-ray spectroscopy with the Reflection Grating Spectrometer on board XMM-Newton, we determine that the corona of this star is unusually dense.

  15. Recommended survey designs for occupancy modelling using motion-activated cameras: insights from empirical wildlife data.

    PubMed

    Shannon, Graeme; Lewis, Jesse S; Gerber, Brian D

    2014-01-01

    Motion-activated cameras are a versatile tool that wildlife biologists can use for sampling wild animal populations to estimate species occurrence. Occupancy modelling provides a flexible framework for the analysis of these data; explicitly recognizing that given a species occupies an area the probability of detecting it is often less than one. Despite the number of studies using camera data in an occupancy framework, there is only limited guidance from the scientific literature about survey design trade-offs when using motion-activated cameras. A fuller understanding of these trade-offs will allow researchers to maximise available resources and determine whether the objectives of a monitoring program or research study are achievable. We use an empirical dataset collected from 40 cameras deployed across 160 km(2) of the Western Slope of Colorado, USA to explore how survey effort (number of cameras deployed and the length of sampling period) affects the accuracy and precision (i.e., error) of the occupancy estimate for ten mammal and three virtual species. We do this using a simulation approach where species occupancy and detection parameters were informed by empirical data from motion-activated cameras. A total of 54 survey designs were considered by varying combinations of sites (10-120 cameras) and occasions (20-120 survey days). Our findings demonstrate that increasing total sampling effort generally decreases error associated with the occupancy estimate, but changing the number of sites or sampling duration can have very different results, depending on whether a species is spatially common or rare (occupancy = ψ) and easy or hard to detect when available (detection probability = p). For rare species with a low probability of detection (i.e., raccoon and spotted skunk) the required survey effort includes maximizing the number of sites and the number of survey days, often to a level that may be logistically unrealistic for many studies. For common species with

  16. Active range of motion outcomes after reconstruction of burned wrist and hand deformities.

    PubMed

    Afifi, Ahmed M; Mahboub, Tarek A; Ibrahim Fouad, Amr; Azari, Kodi; Khalil, Haitham H; McCarthy, James E

    2016-06-01

    This works aim is to evaluate the efficacy of skin grafts and flaps in reconstruction of post-burn hand and wrist deformities. A prospective study of 57 burn contractures of the wrist and dorsum of the hand was performed. Flaps were used only if there was a non-vascularized structure after contracture release, otherwise a skin graft was used. Active range of motion (ROM) was used to assess hand function. The extension deformity cohort uniformly underwent skin graft following contracture release with a mean improvement of 71 degrees (p<0.0001). The flexion deformity cohort was treated with either skin grafts (8 patients) or flaps (9 patients) with a mean improvement of 44 degrees (p<0.0001). Skin grafts suffice for dorsal hand contractures to restore functional wrist ROM. For flexion contractures, flaps were more likely for contractures >6 months. Early release of burn contracture is advisable to avoid deep structure contracture.

  17. Thermal activation of 'allosteric-like' large-scale motions in a eukaryotic Lactate Dehydrogenase.

    PubMed

    Katava, Marina; Maccarini, Marco; Villain, Guillaume; Paciaroni, Alessandro; Sztucki, Michael; Ivanova, Oxana; Madern, Dominique; Sterpone, Fabio

    2017-01-23

    Conformational changes occurring during the enzymatic turnover are essential for the regulation of protein functionality. Individuating the protein regions involved in these changes and the associated mechanical modes is still a challenge at both experimental and theoretical levels. We present here a detailed investigation of the thermal activation of the functional modes and conformational changes in a eukaryotic Lactate Dehydrogenase enzyme (LDH). Neutron Spin Echo spectroscopy and Molecular Dynamics simulations were used to uncover the characteristic length- and timescales of the LDH nanoscale motions in the apo state. The modes involving the catalytic loop and the mobile region around the binding site are activated at room temperature, and match the allosteric reorganisation of bacterial LDHs. In a temperature window of about 15 degrees, these modes render the protein flexible enough and capable of reorganising the active site toward reactive configurations. On the other hand an excess of thermal excitation leads to the distortion of the protein matrix with a possible anti-catalytic effect. Thus, the temperature activates eukaryotic LDHs via the same conformational changes observed in the allosteric bacterial LDHs. Our investigation provides an extended molecular picture of eukaryotic LDH's conformational landscape that enriches the static view based on crystallographic studies alone.

  18. Thermal activation of ‘allosteric-like’ large-scale motions in a eukaryotic Lactate Dehydrogenase

    PubMed Central

    Katava, Marina; Maccarini, Marco; Villain, Guillaume; Paciaroni, Alessandro; Sztucki, Michael; Ivanova, Oxana; Madern, Dominique; Sterpone, Fabio

    2017-01-01

    Conformational changes occurring during the enzymatic turnover are essential for the regulation of protein functionality. Individuating the protein regions involved in these changes and the associated mechanical modes is still a challenge at both experimental and theoretical levels. We present here a detailed investigation of the thermal activation of the functional modes and conformational changes in a eukaryotic Lactate Dehydrogenase enzyme (LDH). Neutron Spin Echo spectroscopy and Molecular Dynamics simulations were used to uncover the characteristic length- and timescales of the LDH nanoscale motions in the apo state. The modes involving the catalytic loop and the mobile region around the binding site are activated at room temperature, and match the allosteric reorganisation of bacterial LDHs. In a temperature window of about 15 degrees, these modes render the protein flexible enough and capable of reorganising the active site toward reactive configurations. On the other hand an excess of thermal excitation leads to the distortion of the protein matrix with a possible anti-catalytic effect. Thus, the temperature activates eukaryotic LDHs via the same conformational changes observed in the allosteric bacterial LDHs. Our investigation provides an extended molecular picture of eukaryotic LDH’s conformational landscape that enriches the static view based on crystallographic studies alone. PMID:28112231

  19. Spinal Motion and Muscle Activity during Active Trunk Movements – Comparing Sheep and Humans Adopting Upright and Quadrupedal Postures

    PubMed Central

    Valentin, Stephanie; Licka, Theresia F.

    2016-01-01

    Sheep are used as models for the human spine, yet comparative in vivo data necessary for validation is limited. The purpose of this study was therefore to compare spinal motion and trunk muscle activity during active trunk movements in sheep and humans. Three-dimensional kinematic data as well as surface electromyography (sEMG) of spinal flexion and extension was compared in twenty-four humans in upright (UR) and 4-point kneeling (KN) postures and in 17 Austrian mountain sheep. Kinematic markers were attached over the sacrum, posterior iliac spines, and spinous and transverse processes of T5, T8, T11, L2 and L5 in humans and over the sacrum, tuber sacrale, T5, T8, T12, L3 and L7 in sheep. The activity of erector spinae (ES), rectus abdominis (RA), obliquus externus (OE), and obliquus internus (OI) were collected. Maximum sEMG (MOE) was identified for each muscle and trial, and reported as a percentage (MOE%) of the overall maximally observed sEMG from all trials. Spinal range of motion was significantly smaller in sheep compared to humans (UR / KN) during flexion (sheep: 6–11°; humans 12–34°) and extension (sheep: 4°; humans: 11–17°). During extension, MOE% of ES was greater in sheep (median: 77.37%) than UR humans (24.89%), and MOE% of OE and OI was greater in sheep (OE 76.20%; OI 67.31%) than KN humans (OE 21.45%; OI 19.34%), while MOE% of RA was lower in sheep (21.71%) than UR humans (82.69%). During flexion, MOE% of RA was greater in sheep (83.09%) than humans (KN 47.42%; UR 41.38%), and MOE% of ES in sheep (45.73%) was greater than KN humans (14.45%), but smaller than UR humans (72.36%). The differences in human and sheep spinal motion and muscle activity suggest that caution is warranted when ovine data are used to infer human spine biomechanics. PMID:26741136

  20. Dynamic analysis of astronaut motions in microgravity: Applications for Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Newman, Dava J.

    1995-01-01

    Simulations of astronaut motions during extravehicular activity (EVA) tasks were performed using computational multibody dynamics methods. The application of computational dynamic simulation to EVA was prompted by the realization that physical microgravity simulators have inherent limitations: viscosity in neutral buoyancy tanks; friction in air bearing floors; short duration for parabolic aircraft; and inertia and friction in suspension mechanisms. These limitations can mask critical dynamic effects that later cause problems during actual EVA's performed in space. Methods of formulating dynamic equations of motion for multibody systems are discussed with emphasis on Kane's method, which forms the basis of the simulations presented herein. Formulation of the equations of motion for a two degree of freedom arm is presented as an explicit example. The four basic steps in creating the computational simulations were: system description, in which the geometry, mass properties, and interconnection of system bodies are input to the computer; equation formulation based on the system description; inverse kinematics, in which the angles, velocities, and accelerations of joints are calculated for prescribed motion of the endpoint (hand) of the arm; and inverse dynamics, in which joint torques are calculated for a prescribed motion. A graphical animation and data plotting program, EVADS (EVA Dynamics Simulation), was developed and used to analyze the results of the simulations that were performed on a Silicon Graphics Indigo2 computer. EVA tasks involving manipulation of the Spartan 204 free flying astronomy payload, as performed during Space Shuttle mission STS-63 (February 1995), served as the subject for two dynamic simulations. An EVA crewmember was modeled as a seven segment system with an eighth segment representing the massive payload attached to the hand. For both simulations, the initial configuration of the lower body (trunk, upper leg, and lower leg) was a neutral

  1. Comparison of electromyographic activity and range of neck motion in violin students with and without neck pain during playing.

    PubMed

    Park, Kyue-nam; Kwon, Oh-yun; Ha, Sung-min; Kim, Su-jung; Choi, Hyun-jung; Weon, Jong-hyuck

    2012-12-01

    Neck pain is common in violin students during a musical performance. The purpose of this study was to compare electromyographic (EMG) activity in superficial neck muscles with neck motion when playing the violin as well as neck range of motion (ROM) at rest, between violin students with and without neck pain. Nine violin students with neck pain and nine age- and gender-matched subjects without neck pain were recruited. Muscle activity of the bilateral upper trapezius, sternocleidomastoid, and superficial cervical extensor muscles was measured using surface EMG. Kinematic data on neck motion while playing and active neck ROM were also measured using a three-dimensional motion analysis system. Independent t-tests were used to compare EMG activity with kinematic data between groups. These analyses revealed that while playing, both the angle of left lateral bending and leftward rotation of the cervical spine were significantly greater in the neck pain group than among those without neck pain. Similarly, EMG activity of the left upper trapezius, both cervical extensors, and both sternocleidomastoid muscles were significantly greater in the neck pain group. The active ROM of left axial rotation was significantly lower in the neck pain group. These results suggest that an asymmetric playing posture and the associated increased muscle activity as well as decreased neck axial rotation may contribute to neck pain in violin students.

  2. Electromyographic Activity of Scapular Muscle Control in Free-Motion Exercise

    PubMed Central

    Nakamura, Yukiko; Tsuruike, Masaaki; Ellenbecker, Todd S.

    2016-01-01

    Context:  The appropriate resistance intensity to prescribe for shoulder rehabilitative exercise is not completely known. Excessive activation of the deltoid and upper trapezius muscles could be counterproductive for scapulohumeral rhythm during humeral elevation. Objective:  To identify the effects of different exercise intensities on the scapular muscles during a free-motion “robbery” exercise performed in different degrees of shoulder abduction in seated and standing positions. Design:  Descriptive laboratory study. Setting:  Kinesiology Adapted Physical Education Laboratory. Patients or Other Participants:  A total of 15 healthy male college students (age = 20.5 ± 2.2 years, height = 174.5 ± 5.3 cm, mass = 63.8 ± 6.0 kg). Intervention(s):  Participants performed 5 repetitions of a randomized exercise sequence of the robbery exercise in 2 body positions (seated, standing), 2 shoulder-abducted positions (W [20°], 90/90 [90°]) at 3 intensities (0%, 3%, and 7% body weight). Main Outcome Measure(s):  Electromyographic (EMG) activity of the upper trapezius, lower trapezius, serratus anterior, anterior deltoid, and infraspinatus muscles of the upper extremity was collected. All EMG activities were normalized by the maximal voluntary isometric contraction of each corresponding muscle (%). Results:  The serratus anterior, anterior deltoid, and infraspinatus EMG activities were greater at 7% body weight in the seated position compared with the standing position (P < .05). The EMG activities in all 5 muscles were greater in the 90/90 position than in the W position (P < .05). Conclusions:  Scapular muscle activity modulated relative to changes in body posture and resistance intensity. These findings will enable clinicians to prescribe the appropriate level of exercise intensity and positioning during shoulder rehabilitation. PMID:26986055

  3. Detection of (in)activity periods in human body motion using inertial sensors: a comparative study.

    PubMed

    Olivares, Alberto; Ramírez, Javier; Górriz, Juan M; Olivares, Gonzalo; Damas, Miguel

    2012-01-01

    Determination of (in)activity periods when monitoring human body motion is a mandatory preprocessing step in all human inertial navigation and position analysis applications. Distinction of (in)activity needs to be established in order to allow the system to recompute the calibration parameters of the inertial sensors as well as the Zero Velocity Updates (ZUPT) of inertial navigation. The periodical recomputation of these parameters allows the application to maintain a constant degree of precision. This work presents a comparative study among different well known inertial magnitude-based detectors and proposes a new approach by applying spectrum-based detectors and memory-based detectors. A robust statistical comparison is carried out by the use of an accelerometer and angular rate signal synthesizer that mimics the output of accelerometers and gyroscopes when subjects are performing basic activities of daily life. Theoretical results are verified by testing the algorithms over signals gathered using an Inertial Measurement Unit (IMU). Detection accuracy rates of up to 97% are achieved.

  4. Detection of (In)activity Periods in Human Body Motion Using Inertial Sensors: A Comparative Study

    PubMed Central

    Olivares, Alberto; Ramírez, Javier; Górriz, Juan M.; Olivares, Gonzalo; Damas, Miguel

    2012-01-01

    Determination of (in)activity periods when monitoring human body motion is a mandatory preprocessing step in all human inertial navigation and position analysis applications. Distinction of (in)activity needs to be established in order to allow the system to recompute the calibration parameters of the inertial sensors as well as the Zero Velocity Updates (ZUPT) of inertial navigation. The periodical recomputation of these parameters allows the application to maintain a constant degree of precision. This work presents a comparative study among different well known inertial magnitude-based detectors and proposes a new approach by applying spectrum-based detectors and memory-based detectors. A robust statistical comparison is carried out by the use of an accelerometer and angular rate signal synthesizer that mimics the output of accelerometers and gyroscopes when subjects are performing basic activities of daily life. Theoretical results are verified by testing the algorithms over signals gathered using an Inertial Measurement Unit (IMU). Detection accuracy rates of up to 97% are achieved. PMID:22778613

  5. Active Deformation in the Overriding Plate Associated with Temporal Changes of the Philippine Sea Plate Motion

    NASA Astrophysics Data System (ADS)

    Ishiyama, T.; Sato, H.; Van Horne, A.

    2015-12-01

    We present detailed geologic evidence linking changes over time in Philippine Sea plate (PHS) motion and intracontinental deformation in central and southwest (SW) Japan during the Pliocene and after. In the early Pliocene, subduction of the PHS plate under SW Japan restarted in a northerly direction after period of deceleration or cessation. Later, motion changed to a more westerly direction. Corresponding geological changes found in the overriding plate include unconformities in the forearc basins, changes in slip sense on faults, depocenter migration, re-organization of drainage systems and volcanism. Quaternary intraplate deformation is prominent north of the Median Tectonic Line (MTL) inactive segment, above a shallow flat slab. In contrast, less Quaternary tectonic activity is found north of the MTL active segment which lies over a steadily-slipping portion of the subducting slab that behaves as a less-deformed rigid block. Depocenters and active thrusting have migrated north/northwestward over the past 5 My above the shallow flat slab segment of the PHS. We reconstructed the Plio-Pleistocene migration history using Neogene stratigraphy and shallow seismic reflection profiles. We see shallow PHS slab contact with the lower continental crust in our deep seismic reflection profiles, which may explain its enhanced downward drag of the overriding plate and synchronous strong compression in the crust. We find evidence of more westerly PHS plate subduction since the middle Pleistocene in (1) unconformities in the Kumano forearc basin deposits in SW Japan, (2) drastic stream captures in Shikoku, and (3) concordant changes in fault slip sense from thrust to dextral slip along the MTL. Oblique subduction could have induced stronger horizontal stress in the overriding plate above the shallow flat slab which could account for the increasing geologic slip rate observed on active structures. During four repetitions of megathrust earthquake sequences since the 17th century

  6. 15 CFR 8a.515 - Compensation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Compensation. 8a.515 Section 8a.515... in Employment in Education Programs or Activities Prohibited § 8a.515 Compensation. A recipient shall... of pay or other compensation; (b) Results in the payment of wages to employees of one sex at a...

  7. 41 CFR 101-4.515 - Compensation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Compensation. 101-4.515... Employment in Education Programs or Activities Prohibited § 101-4.515 Compensation. A recipient shall not... pay or other compensation; (b) Results in the payment of wages to employees of one sex at a rate...

  8. 31 CFR 28.515 - Compensation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Compensation. 28.515 Section 28.515... Basis of Sex in Employment in Education Programs or Activities Prohibited § 28.515 Compensation. A... in rates of pay or other compensation; (b) Results in the payment of wages to employees of one sex...

  9. 49 CFR 25.515 - Compensation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Compensation. 25.515 Section 25.515 Transportation... Education Programs or Activities Prohibited § 25.515 Compensation. A recipient shall not make or enforce any... compensation; (b) Results in the payment of wages to employees of one sex at a rate less than that paid...

  10. 22 CFR 146.515 - Compensation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Compensation. 146.515 Section 146.515 Foreign... Education Programs or Activities Prohibited § 146.515 Compensation. A recipient shall not make or enforce... compensation; (b) Results in the payment of wages to employees of one sex at a rate less than that paid...

  11. 10 CFR 5.515 - Compensation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Compensation. 5.515 Section 5.515 Energy NUCLEAR... Activities Prohibited § 5.515 Compensation. A recipient shall not make or enforce any policy or practice that, on the basis of sex: (a) Makes distinctions in rates of pay or other compensation; (b) Results in...

  12. 7 CFR 15a.54 - Compensation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false Compensation. 15a.54 Section 15a.54 Agriculture Office... Activities Prohibited § 15a.54 Compensation. A recipient shall not make or enforce any policy or practice which, on the basis of sex: (a) Makes distinctions in rates of pay or other compensation; (b) Results...

  13. 45 CFR 86.54 - Compensation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Compensation. 86.54 Section 86.54 Public Welfare... in Employment in Education Programs or Activities Prohibited § 86.54 Compensation. A recipient shall... of pay or other compensation; (b) Results in the payment of wages to employees of one sex at a...

  14. 14 CFR § 1253.515 - Compensation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Compensation. § 1253.515 Section § 1253... the Basis of Sex in Employment in Education Programs or Activities Prohibited § 1253.515 Compensation... distinctions in rates of pay or other compensation; (b) Results in the payment of wages to employees of one...

  15. 41 CFR 101-4.515 - Compensation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Compensation. 101-4.515... Employment in Education Programs or Activities Prohibited § 101-4.515 Compensation. A recipient shall not... pay or other compensation; (b) Results in the payment of wages to employees of one sex at a rate...

  16. 22 CFR 229.515 - Compensation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Compensation. 229.515 Section 229.515 Foreign... in Education Programs or Activities Prohibited § 229.515 Compensation. A recipient shall not make or... compensation; (b) Results in the payment of wages to employees of one sex at a rate less than that paid...

  17. 49 CFR 25.515 - Compensation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Compensation. 25.515 Section 25.515 Transportation... Education Programs or Activities Prohibited § 25.515 Compensation. A recipient shall not make or enforce any... compensation; (b) Results in the payment of wages to employees of one sex at a rate less than that paid...

  18. 43 CFR 41.515 - Compensation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Compensation. 41.515 Section 41.515 Public... in Employment in Education Programs or Activities Prohibited § 41.515 Compensation. A recipient shall... of pay or other compensation; (b) Results in the payment of wages to employees of one sex at a...

  19. 15 CFR 8a.515 - Compensation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Compensation. 8a.515 Section 8a.515... in Employment in Education Programs or Activities Prohibited § 8a.515 Compensation. A recipient shall... of pay or other compensation; (b) Results in the payment of wages to employees of one sex at a...

  20. 15 CFR 8a.515 - Compensation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Compensation. 8a.515 Section 8a.515... in Employment in Education Programs or Activities Prohibited § 8a.515 Compensation. A recipient shall... of pay or other compensation; (b) Results in the payment of wages to employees of one sex at a...

  1. 28 CFR 54.515 - Compensation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Compensation. 54.515 Section 54.515... in Employment in Education Programs or Activities Prohibited § 54.515 Compensation. A recipient shall... of pay or other compensation; (b) Results in the payment of wages to employees of one sex at a...

  2. 22 CFR 229.515 - Compensation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Compensation. 229.515 Section 229.515 Foreign... in Education Programs or Activities Prohibited § 229.515 Compensation. A recipient shall not make or... compensation; (b) Results in the payment of wages to employees of one sex at a rate less than that paid...

  3. 22 CFR 146.515 - Compensation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Compensation. 146.515 Section 146.515 Foreign... Education Programs or Activities Prohibited § 146.515 Compensation. A recipient shall not make or enforce... compensation; (b) Results in the payment of wages to employees of one sex at a rate less than that paid...

  4. 28 CFR 54.515 - Compensation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Compensation. 54.515 Section 54.515... in Employment in Education Programs or Activities Prohibited § 54.515 Compensation. A recipient shall... of pay or other compensation; (b) Results in the payment of wages to employees of one sex at a...

  5. 28 CFR 54.515 - Compensation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Compensation. 54.515 Section 54.515... in Employment in Education Programs or Activities Prohibited § 54.515 Compensation. A recipient shall... of pay or other compensation; (b) Results in the payment of wages to employees of one sex at a...

  6. 22 CFR 229.515 - Compensation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Compensation. 229.515 Section 229.515 Foreign... in Education Programs or Activities Prohibited § 229.515 Compensation. A recipient shall not make or... compensation; (b) Results in the payment of wages to employees of one sex at a rate less than that paid...

  7. 14 CFR 1253.515 - Compensation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Compensation. 1253.515 Section 1253.515... in Employment in Education Programs or Activities Prohibited § 1253.515 Compensation. A recipient... rates of pay or other compensation; (b) Results in the payment of wages to employees of one sex at...

  8. 7 CFR 15a.54 - Compensation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false Compensation. 15a.54 Section 15a.54 Agriculture Office... Activities Prohibited § 15a.54 Compensation. A recipient shall not make or enforce any policy or practice which, on the basis of sex: (a) Makes distinctions in rates of pay or other compensation; (b) Results...

  9. 6 CFR 17.515 - Compensation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 6 Domestic Security 1 2011-01-01 2011-01-01 false Compensation. 17.515 Section 17.515 Domestic... in Employment in Education Programs or Activities Prohibited § 17.515 Compensation. A recipient shall... of pay or other compensation; (b) Results in the payment of wages to employees of one sex at a...

  10. 10 CFR 5.515 - Compensation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Compensation. 5.515 Section 5.515 Energy NUCLEAR... Activities Prohibited § 5.515 Compensation. A recipient shall not make or enforce any policy or practice that, on the basis of sex: (a) Makes distinctions in rates of pay or other compensation; (b) Results in...

  11. 31 CFR 28.515 - Compensation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Compensation. 28.515 Section 28.515... Basis of Sex in Employment in Education Programs or Activities Prohibited § 28.515 Compensation. A... in rates of pay or other compensation; (b) Results in the payment of wages to employees of one sex...

  12. 41 CFR 101-4.515 - Compensation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Compensation. 101-4.515... Employment in Education Programs or Activities Prohibited § 101-4.515 Compensation. A recipient shall not... pay or other compensation; (b) Results in the payment of wages to employees of one sex at a rate...

  13. 45 CFR 86.54 - Compensation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Compensation. 86.54 Section 86.54 Public Welfare... in Employment in Education Programs or Activities Prohibited § 86.54 Compensation. A recipient shall... of pay or other compensation; (b) Results in the payment of wages to employees of one sex at a...

  14. 22 CFR 146.515 - Compensation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Compensation. 146.515 Section 146.515 Foreign... Education Programs or Activities Prohibited § 146.515 Compensation. A recipient shall not make or enforce... compensation; (b) Results in the payment of wages to employees of one sex at a rate less than that paid...

  15. 45 CFR 86.54 - Compensation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Compensation. 86.54 Section 86.54 Public Welfare... in Employment in Education Programs or Activities Prohibited § 86.54 Compensation. A recipient shall... of pay or other compensation; (b) Results in the payment of wages to employees of one sex at a...

  16. 49 CFR 25.515 - Compensation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Compensation. 25.515 Section 25.515 Transportation... Education Programs or Activities Prohibited § 25.515 Compensation. A recipient shall not make or enforce any... compensation; (b) Results in the payment of wages to employees of one sex at a rate less than that paid...

  17. 14 CFR 1253.515 - Compensation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Compensation. 1253.515 Section 1253.515... in Employment in Education Programs or Activities Prohibited § 1253.515 Compensation. A recipient... rates of pay or other compensation; (b) Results in the payment of wages to employees of one sex at...

  18. 6 CFR 17.515 - Compensation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 6 Domestic Security 1 2014-01-01 2014-01-01 false Compensation. 17.515 Section 17.515 Domestic... in Employment in Education Programs or Activities Prohibited § 17.515 Compensation. A recipient shall... of pay or other compensation; (b) Results in the payment of wages to employees of one sex at a...

  19. 31 CFR 28.515 - Compensation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Compensation. 28.515 Section 28.515... Basis of Sex in Employment in Education Programs or Activities Prohibited § 28.515 Compensation. A... in rates of pay or other compensation; (b) Results in the payment of wages to employees of one sex...

  20. 6 CFR 17.515 - Compensation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 6 Domestic Security 1 2013-01-01 2013-01-01 false Compensation. 17.515 Section 17.515 Domestic... in Employment in Education Programs or Activities Prohibited § 17.515 Compensation. A recipient shall... of pay or other compensation; (b) Results in the payment of wages to employees of one sex at a...

  1. 7 CFR 15a.54 - Compensation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 1 2014-01-01 2014-01-01 false Compensation. 15a.54 Section 15a.54 Agriculture Office... Activities Prohibited § 15a.54 Compensation. A recipient shall not make or enforce any policy or practice which, on the basis of sex: (a) Makes distinctions in rates of pay or other compensation; (b) Results...

  2. 10 CFR 5.515 - Compensation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Compensation. 5.515 Section 5.515 Energy NUCLEAR... Activities Prohibited § 5.515 Compensation. A recipient shall not make or enforce any policy or practice that, on the basis of sex: (a) Makes distinctions in rates of pay or other compensation; (b) Results in...

  3. 15 CFR 8a.515 - Compensation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Compensation. 8a.515 Section 8a.515... in Employment in Education Programs or Activities Prohibited § 8a.515 Compensation. A recipient shall... of pay or other compensation; (b) Results in the payment of wages to employees of one sex at a...

  4. 41 CFR 101-4.515 - Compensation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Compensation. 101-4.515... Employment in Education Programs or Activities Prohibited § 101-4.515 Compensation. A recipient shall not... pay or other compensation; (b) Results in the payment of wages to employees of one sex at a rate...

  5. A parallelogram-based compliant remote-center-of-motion stage for active parallel alignment.

    PubMed

    Qu, Jianliang; Chen, Weihai; Zhang, Jianbin

    2014-09-01

    Parallel alignment stage with remote-center-of-motion (RCM) is of key importance in precision out-of-plane aligning since it can eliminate the harmful lateral displacement generated at the output platform. This paper presents the development of a parallelogram-based compliant RCM stage for active parallel alignment. Different from conventional parallelogram-based RCM mechanism, the proposed stage is designed with compliant mechanisms, which endows the stage with many attractive merits when used in precision micro-/nanomanipulations. A symmetric double-parallelogram mechanism (SDPM) based on flexure hinges is developed as the rotary guiding component to realize desired RCM function. Due to the geometrical constraint of the SDPM, the operating space of the stage can be easily adjusted by bending the input links without loss of rotational precision. The stage is driven by a piezoelectric actuator and its output motion is measured by non-contact displacement sensors. Based on pseudo-rigid-body simplification method, the analytical models predicting kinematics, statics, and dynamics of the RCM stage have been established. Besides, the dimensional optimization is conducted in order to maximize the first resonance frequency of the stage. After that, finite element analysis is conducted to validate the established models and the prototype of the stage is fabricated for performance tests. The experimental results show that the developed RCM stage has a rotational range of 1.45 mrad while the maximum center shift of the RCM point is as low as 1 μm, which validate the effectiveness of the proposed scheme.

  6. Ground Motion Simulation for a Large Active Fault System using Empirical Green's Function Method and the Strong Motion Prediction Recipe - a Case Study of the Noubi Fault Zone -

    NASA Astrophysics Data System (ADS)

    Kuriyama, M.; Kumamoto, T.; Fujita, M.

    2005-12-01

    propagation. Moreover, it was clarified that the horizontal velocities by assuming the cascade model was underestimated more than one standard deviation of empirical relation by Si and Midorikawa (1999). The scaling and cascade models showed an approximately 6.4-fold difference for the case, in which the rupture started along the southeastern edge of the Umehara Fault at observation point GIF020. This difference is significantly large in comparison with the effect of different rupture starting points, and shows that it is important to base scenario earthquake assumptions on active fault datasets before establishing the source characterization model. The distribution map of seismic intensity for the 1891 Noubi Earthquake also suggests that the synthetic waveforms in the southeastern Noubi Fault zone may be underestimated. Our results indicate that outer fault parameters (e.g., earthquake moment) related to the construction of scenario earthquakes influence strong motion prediction, rather than inner fault parameters such as the rupture starting point. Based on these methods, we will predict strong motion for approximately 140 to 150 km of the Itoigawa-Shizuoka Tectonic Line.

  7. Motion-dependent representation of space in area MT+

    PubMed Central

    Fischer, Jason; Whitney, David

    2013-01-01

    Summary How is visual space represented in cortical area MT+? At a relatively coarse scale, the organization of MT+ is debated: Retinotopic, spatiotopic, or mixed representations have been proposed. However, none of these entirely explains perceptual localization of objects at a fine spatial scale—a scale relevant for tasks like navigating or manipulating objects. For example, perceived positions of objects are strongly modulated by visual motion: stationary flashes appear shifted in the direction of nearby motion. Does spatial coding in MT+ reflect these shifts in perceived position? We performed an fMRI experiment employing this “flash-drag effect”, and found that flashes presented near motion produced patterns of activity similar to physically shifted flashes in the absence of motion. This reveals a motion-dependent change in the neural representation of object position in human MT+, a process that could help compensate for perceptual and motor delays in localizing objects in dynamic scenes. PMID:23664618

  8. The Vestibulo-ocular Reflex During Active Head Motion in Chiari II Malformation

    PubMed Central

    Salman, Michael S.; Sharpe, James A.; Lillakas, Linda; Dennis, Maureen; Steinbach, Martin J.

    2008-01-01

    Background Chiari type II malformation (CII) is a developmental anomaly of the cerebellum and brainstem, which are important structures for processing the vestibulo-ocular reflex (VOR). We investigated the effects of the deformity of CII on the angular VOR during active head motion. Methods Eye and head movements were recorded using an infrared eye tracker and magnetic head tracker in 20 participants with CII [11 males, age range 8-19 years, mean (SD) 14.4 (3.2) years]. Thirty-eight age-matched healthy children and adolescents (21 males) constituted the control group. Participants were instructed to ‘look’ in darkness at the position of their thumb, placed 25 cm away, while they made horizontal and vertical sinusoidal head rotations at frequencies of about 0.5 Hz and 2 Hz. Parametric and non-parametric tests were used to compare the two groups. Results The VOR gains, the ratio of eye to head velocities, were abnormally low in two participants with CII and abnormally high in one participant with CII. Conclusion The majority of participants with CII had normal VOR performance in this investigation. However, the deformity of CII can impair the active angular VOR in some patients with CII. Low gain is attributed to brainstem damage and high gain to cerebellar dysfunction. PMID:18973069

  9. Evolution of muscle activity patterns driving motions of the jaw and hyoid during chewing in Gnathostomes.

    PubMed

    Konow, Nicolai; Herrel, Anthony; Ross, Callum F; Williams, Susan H; German, Rebecca Z; Sanford, Christopher P J; Gintof, Chris

    2011-08-01

    Although chewing has been suggested to be a basal gnathostome trait retained in most major vertebrate lineages, it has not been studied broadly and comparatively across vertebrates. To redress this imbalance, we recorded EMG from muscles powering anteroposterior movement of the hyoid, and dorsoventral movement of the mandibular jaw during chewing. We compared muscle activity patterns (MAP) during chewing in jawed vertebrate taxa belonging to unrelated groups of basal bony fishes and artiodactyl mammals. Our aim was to outline the evolution of coordination in MAP. Comparisons of activity in muscles of the jaw and hyoid that power chewing in closely related artiodactyls using cross-correlation analyses identified reorganizations of jaw and hyoid MAP between herbivores and omnivores. EMG data from basal bony fishes revealed a tighter coordination of jaw and hyoid MAP during chewing than seen in artiodactyls. Across this broad phylogenetic range, there have been major structural reorganizations, including a reduction of the bony hyoid suspension, which is robust in fishes, to the acquisition in a mammalian ancestor of a muscle sling suspending the hyoid. These changes appear to be reflected in a shift in chewing MAP that occurred in an unidentified anamniote stem-lineage. This shift matches observations that, when compared with fishes, the pattern of hyoid motion in tetrapods is reversed and also time-shifted relative to the pattern of jaw movement.

  10. Human joint motion estimation for electromyography (EMG)-based dynamic motion control.

    PubMed

    Zhang, Qin; Hosoda, Ryo; Venture, Gentiane

    2013-01-01

    This study aims to investigate a joint motion estimation method from Electromyography (EMG) signals during dynamic movement. In most EMG-based humanoid or prosthetics control systems, EMG features were directly or indirectly used to trigger intended motions. However, both physiological and nonphysiological factors can influence EMG characteristics during dynamic movements, resulting in subject-specific, non-stationary and crosstalk problems. Particularly, when motion velocity and/or joint torque are not constrained, joint motion estimation from EMG signals are more challenging. In this paper, we propose a joint motion estimation method based on muscle activation recorded from a pair of agonist and antagonist muscles of the joint. A linear state-space model with multi input single output is proposed to map the muscle activity to joint motion. An adaptive estimation method is proposed to train the model. The estimation performance is evaluated in performing a single elbow flexion-extension movement in two subjects. All the results in two subjects at two load levels indicate the feasibility and suitability of the proposed method in joint motion estimation. The estimation root-mean-square error is within 8.3% ∼ 10.6%, which is lower than that being reported in several previous studies. Moreover, this method is able to overcome subject-specific problem and compensate non-stationary EMG properties.

  11. Stochastic non-circular motion and outflows driven by magnetic activity in the Galactic bulge region

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Machida, Mami; Matsumoto, Ryoji

    2015-12-01

    By performing a global magnetohydrodynamical simulation for the Milky Way with an axisymmetric gravitational potential, we propose that spatially dependent amplification of magnetic fields possibly explains the observed noncircular motion of the gas in the Galactic centre region. The radial distribution of the rotation frequency in the bulge region is not monotonic in general. The amplification of the magnetic field is enhanced in regions with stronger differential rotation, because magnetorotational instability and field-line stretching are more effective. The strength of the amplified magnetic field reaches ≳0.5 mG, and radial flows of the gas are excited by the inhomogeneous transport of angular momentum through turbulent magnetic field that is amplified in a spatially dependent manner. In addition, the magnetic pressure-gradient force also drives radial flows in a similar manner. As a result, the simulated position-velocity diagram exhibits a time-dependent asymmetric parallelogram-shape owing to the intermittency of the magnetic turbulence; the present model provides a viable alternative to the bar-potential-driven model for the parallelogram shape of the central molecular zone. This is a natural extension into the central few 100 pc of the magnetic activity, which is observed as molecular loops at radii from a few 100 pc to 1 kpc. Furthermore, the time-averaged net gas flow is directed outward, whereas the flows are highly time dependent, which we discuss from a viewpoint of the outflow from the bulge.

  12. Experiments on the motion of gas bubbles in turbulence generated by an active grid

    NASA Astrophysics Data System (ADS)

    Poorte, R. E. G.; Biesheuvel, A.

    2002-06-01

    The random motion of nearly spherical bubbles in the turbulent flow behind a grid is studied experimentally. In quiescent water these bubbles rise at high Reynolds number. The turbulence is generated by an active grid of the design of Makita (1991), and can have turbulence Reynolds number R[lambda] of up to 200. Minor changes in the geometry of the grid and in its mode of operation improves the isotropy of the turbulence, compared with that reported by Makita (1991) and Mydlarski & Warhaft (1996). The trajectory of each bubble is measured with high spatial and temporal resolution with a specially developed technique that makes use of a position-sensitive detector. Bubble statistics such as the mean rise velocity and the root-mean-square velocity fluctuations are obtained by ensemble averaging over many identical bubbles. The resulting bubble mean rise velocity is significantly reduced (up to 35%) compared with the quiescent conditions. The vertical bubble velocity fluctuations are found to be non-Gaussian, whereas the horizontal displacements are Gaussian for all times. The diffusivity of bubbles is considerably less than that of fluid particles. These findings are qualitatively consistent with results obtained through theoretical analysis and numerical simulations by Spelt & Biesheuvel (1997).

  13. A framework for activity detection in wide-area motion imagery

    SciTech Connect

    Porter, Reid B; Ruggiero, Christy E; Morrison, Jack D

    2009-01-01

    Wide-area persistent imaging systems are becoming increasingly cost effective and now large areas of the earth can be imaged at relatively high frame rates (1-2 fps). The efficient exploitation of the large geo-spatial-temporal datasets produced by these systems poses significant technical challenges for image and video analysis and data mining. In recent years there has been significant progress made on stabilization, moving object detection and tracking and automated systems now generate hundreds to thousands of vehicle tracks from raw data, with little human intervention. However, the tracking performance at this scale, is unreliable and average track length is much smaller than the average vehicle route. This is a limiting factor for applications which depend heavily on track identity, i.e. tracking vehicles from their points of origin to their final destination. In this paper we propose and investigate a framework for wide-area motion imagery (W AMI) exploitation that minimizes the dependence on track identity. In its current form this framework takes noisy, incomplete moving object detection tracks as input, and produces a small set of activities (e.g. multi-vehicle meetings) as output. The framework can be used to focus and direct human users and additional computation, and suggests a path towards high-level content extraction by learning from the human-in-the-loop.

  14. Three-dimensional kinematic analysis of active cervical spine motion by using a multifaceted marker device.

    PubMed

    Tsunezuka, Hiroaki; Kato, Daishiro; Okada, Satru; Ishihara, Shunta; Shimada, Junichi

    2013-01-01

    Assessing cervical range of motion (CROM) is an important part of the clinical evaluation of patients with conditions such as whiplash syndrome. This study aimed to develop a convenient and accurate system involving multifaceted marker device (MMD)-based assessment of 3-dimensional (3D) dynamic coupled CROM and joint angular velocity. We used an infrared optical tracking system and our newly developed MMD that solved problems such as marker shielding and reflection angle associated with the optical tracking devices and enabled sequential and accurate analysis of the 3D dynamic movement of the polyaxial joint and other structurally complicated joints. The study included 30 asymptomatic young male volunteers (age, 22-27 years). The MMD consisted of 5 surfaces and 5 markers and was attached to the participant's forehead. We measured active CROM (axial rotation, flexion/extension, and lateral bending) and joint angular velocity by the MMD. The MMD was easy to use, safe for patients and operators, could be constructed economically, and generated accurate data such as dynamic coupled CROM and angular velocity.

  15. Oak Ridge National Laboratory's (ORNL) Weigh-In-Motion (WIM) Configuration and Data Management Activities

    SciTech Connect

    Abercrombie, Robert K; Sheldon, Frederick T; Schlicher, Bob G

    2006-01-01

    The Oak Ridge National Laboratory (ORNL) involvement in the Weigh-in-Motion (WIM) research with both government agencies and private companies dates back to 1989. The discussion here will focus on the US Army's current need for an automated WIM system to weigh and determine the center-of-balance for military wheeled vehicles and cargo and the expanded uses of WIM data. ORNL is addressing configuration and data management issues as they relate to deployments for both military and humanitarian activities. The transition from the previous WIM Gen I to the current Gen II system illustrates a configuration and data management solution that ensures data integration, integrity, coherence and cost effectiveness. Currently, Army units use portable and fixed scales, tape measures, and calculators to determine vehicle axle, total weights and center of balance for vehicles prior to being transshipped via railcar, ship, or airlifted. Manually weighing and measuring all vehicles subject to these transshipment operations is time-consuming, labor-intensive, hazardous and is prone to human errors (e.g., misreading scales and tape measures, calculating centers of balance and wheel, axle, and vehicle weights, recording data, and transferring data from manually prepared work sheets into an electronic data base and aggravated by adverse weather conditions). Additionally, in the context of the military, the timeliness, safety, success, and effectiveness of airborne heavy-drop operations can be significantly improved by the use of an automated system to weigh and determine center of balance of vehicles while they are in motion. The lack of a standardized airlift-weighing system for joint service use also creates redundant weighing requirements at the cost of scarce resources and time. This case study can be judiciously expanded into commercial operations related to safety and enforcement. The WIM program will provide a means for the Army to automatically identify/weigh and monitor

  16. Cortical activation associated with determination of depth order during transparent motion perception: A normalized integrative fMRI-MEG study.

    PubMed

    Natsukawa, Hiroaki; Kobayashi, Tetsuo

    2015-10-01

    When visual patterns drifting in different directions and/or at different speeds are superimposed on the same plane, observers perceive transparent surfaces on planes of different depths. This phenomenon is known as transparent motion perception. In this study, cortical activities were measured using functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) to reveal the cortical dynamics associated with determination of depth order during transparent motion perception. In addition, offline eye movement measurements were performed to determine the latencies of the start of both pursuit eye movements and depth attention that are important in determination of the depth order. MEG and fMRI data were analyzed by a normalized integrative fMRI-MEG method that enables reconstruction of time-varying dipole moments of activated regions from MEG signals. Statistical analysis of fMRI data was performed to identify activated regions. The activated regions were used as spatial constraints for the reconstruction using the integrative fMRI-MEG method. We focused on the period between latencies (216-405 ms) determined by eye movement experiment, which are related to determination of the depth order. The results of integrative analysis revealed that significant neural activities were observed in the visual association area, the human middle temporal area, the intraparietal sulcus, the lateral occipital cortex, and the anterior cingulate cortex between 216 and 405 ms. These results suggest that initial eye movement and accompanying cortical activations during focused duration play an important role in determining the depth order during transparent motion perception.

  17. MR-based motion correction for PET imaging using wired active MR microcoils in simultaneous PET-MR: Phantom study1

    PubMed Central

    Huang, Chuan; Ackerman, Jerome L.; Petibon, Yoann; Brady, Thomas J.; El Fakhri, Georges; Ouyang, Jinsong

    2014-01-01

    Purpose: Artifacts caused by head motion present a major challenge in brain positron emission tomography (PET) imaging. The authors investigated the feasibility of using wired active MR microcoils to track head motion and incorporate the measured rigid motion fields into iterative PET reconstruction. Methods: Several wired active MR microcoils and a dedicated MR coil-tracking sequence were developed. The microcoils were attached to the outer surface of an anthropomorphic 18F-filled Hoffman phantom to mimic a brain PET scan. Complex rotation/translation motion of the phantom was induced by a balloon, which was connected to a ventilator. PET list-mode and MR tracking data were acquired simultaneously on a PET-MR scanner. The acquired dynamic PET data were reconstructed iteratively with and without motion correction. Additionally, static phantom data were acquired and used as the gold standard. Results: Motion artifacts in PET images were effectively removed by wired active MR microcoil based motion correction. Motion correction yielded an activity concentration bias ranging from −0.6% to 3.4% as compared to a bias ranging from −25.0% to 16.6% if no motion correction was applied. The contrast recovery values were improved by 37%–156% with motion correction as compared to no motion correction. The image correlation (mean ± standard deviation) between the motion corrected (uncorrected) images of 20 independent noise realizations and static reference was R2 = 0.978 ± 0.007 (0.588 ± 0.010, respectively). Conclusions: Wired active MR microcoil based motion correction significantly improves brain PET quantitative accuracy and image contrast. PMID:24694141

  18. Compensation effects and relation between the activation energy of spin transition and the hysteresis loop width for an iron(ii) complex.

    PubMed

    Bushuev, Mark B; Pishchur, Denis P; Nikolaenkova, Elena B; Krivopalov, Viktor P

    2016-06-22

    The enthalpy-entropy compensation was observed for the cooperative → spin transition (the phase is a mononuclear complex [FeL2](BF4)2, L is 4-(3,5-dimethyl-1H-pyrazol-1-yl)-2-(pyridin-2-yl)-6-methylpyrimidine). The physical origin of this effect is the fact that the → spin transition is the first order phase transition accompanied by noticeable variations in the Tonset↑, ΔH and ΔS values. Higher ΔH and ΔS values are correlated with higher Tonset↑ values. The higher the enthalpy and entropy of the spin transition, the wider the hysteresis loop. The kinetic compensation effect, i.e. a linear relationship between ln A and Ea, was observed for the → spin transition. Moreover, an isokinetic relationship was detected in this system: the Arrhenius lines (ln k vs. 1/T) obtained from magnetochemical data for different samples of the phase undergoing the → transition show a common point of intersection (Tiso = 490 ± 2 K, ln kiso = -6.0 ± 0.2). The validity of this conclusion was confirmed by the Exner-Linert statistical method. This means that the isokinetic relationship and the kinetic compensation effect (ln A vs. Ea) in this system are true ones. The existence of a true kinetic compensation effect is supported independently by the fact that the hysteresis loop width for the cooperative spin transition ↔ increases with increasing activation barrier height. Estimating the energy of excitations for the phase with Tiso ∼ 490 K yields wavenumbers of ca. 340 cm(-1) corresponding to the frequencies of the stretching vibrations of the Fe(LS)-N bonds, i.e. the bonds directly involved in the mechanism of the spin transition. This is the first observation of the kinetic compensation effect (ln A vs. Ea) and the isokinetic relationship for a cooperative spin crossover system showing thermal hysteresis. Our results provide the first experimental evidence that the higher the activation barrier for the spin transition, the wider the hysteresis loop for a

  19. Reactive power compensating system

    DOEpatents

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1987-01-01

    The reactive power of an induction machine is compensated by providing fixed capacitors on each phase line for the minimum compensation required, sensing the current on one line at the time its voltage crosses zero to determine the actual compensation required for each phase, and selecting switched capacitors on each line to provide the balance of the compensation required.

  20. Faculty Compensation Policies.

    ERIC Educational Resources Information Center

    Silander, Fred

    1983-01-01

    Faculty compensation policy is seen as one means by which an institution influences the faculty to work toward institutional goals. Among the broad criteria for compensation are worth, equity, need, and market measures. Benefits and issues in compensation including differentials in compensation, merit, part-time instruction, etc. are discussed.…

  1. Report on 1985 national survey of compensation paid scientists and engineers engaged in research and development activities

    SciTech Connect

    Not Available

    1985-11-01

    In November of 1966, the US DOE awarded a contract to the Columbus Division of Battelle to design a survey of compensation paid to scientific and engineering personnel engaged in research and development in the United States. The contract provided that such a survey would utilize the maturity or ''age-wage'' approach, under which salary data would be related to years since receipt of degree or chronological age. This document reports the results of the seventeenth annual survey, with a salary effective date of February 1, 1985.

  2. Report on 1986 national survey of compensation paid scientists and engineers engaged in research and development activities

    SciTech Connect

    Not Available

    1987-01-01

    In November of 1966, the United States Department of Energy awarded a contract to the Columbus Division of Battelle to design a survey of compensation paid to scientific and engineering personnel engaged in research and development in the United States. This survey utilized the maturity or ''age-wage'' approach, under which salary data would be related to years since receipt or degree of chronological age. This document reports the results of the eighteenth annual survey, with a salary effective data of February 1, 1986.

  3. On a chaotic potential at the surface of a compensated semiconductor under conditions of the self-assembly of electrically active defects

    SciTech Connect

    Bondarenko, V. B. Filimonov, A. V.

    2015-09-15

    Natural irregularities of the electric potential on the surface of a semiconductor under conditions of the partial self-assembly of electrically active defects, i.e., on the formation of donor–acceptor pairs in depletion layers, are studied. The amplitude and character of the spatial distribution of the chaotic potential on the surface of a semiconductor in the cases of localized and delocalized states are determined. The dependence of the amplitude of the chaotic potential on the degree of compensation of the semiconductor is obtained.

  4. Active control of the attitude motion and structural vibration of a flexible satellite by jet thrusters

    NASA Astrophysics Data System (ADS)

    Lee, Mokin

    A Lagrangian formulation is used to obtain the equations of motion of a flexible satellite in a tree-type geometry. The flexible satellite model is the geosynchronous INSAT-II type satellite with a flexible balance beam and a flexible solar panel attached to the rigid main body. In deriving the equations of motion, the orbital motion, the librational motion, and the structural motion of flexible bodies are involved. The assumed-modes method is used to express the deflections of the flexible structures in the form of a finite series of space-dependent admissible functions multiplied by time-dependent amplitudes. The kinetic energy, potential energy, strain energy, and virtual work of the flexible satellite are evaluated as functions of time in terms of the generalized coordinates. Then, by substituting them into Lagrange's equations for discrete systems, the governing equations of motion of the flexible satellite are obtained as a set of second-order nonlinear ordinary differential equations. The attitude motion and the structural motion of the flexible satellite are coupled motions with one another. Uncontrolled dynamics show that the librational and structural motions are oscillatory and undamped motions. The stability and performance of the flexible satellite needs to be improved by designing control systems. A control objective is proposed to improve the stability and performance for pointing accuracy maneuver by controlling the librational motions and flexible modes simultaneously. For the control objective, a control system is synthesized, using feedback linearization control, thrust determination, thrust management, and pulse-width pulse-frequency modulation. Feedback linearization for second-order nonlinear systems is used to obtain a stable feedback control system for the pointing-accuracy control. A stable feedback control system is obtained by adjusting the diagonal matrices of the linear second-order system. Jet thrusters are used as the primary

  5. Using Motion-Sensor Games to Encourage Physical Activity for Adults with Intellectual Disability.

    PubMed

    Taylor, Michael J; Taylor, David; Gamboa, Patricia; Vlaev, Ivo; Darzi, Ara

    2016-01-01

    Adults with Intellectual Disability (ID) are at high risk of being in poor health as a result of exercising infrequently; recent evidence indicates this is often due to there being a lack of opportunities to exercise. This pilot study involved an investigation of the use of motion-sensor game technology to enable and encourage exercise for this population. Five adults (two female; 3 male, aged 34-74 [M = 55.20, SD = 16.71] with ID used motion-sensor games to conduct exercise at weekly sessions at a day-centre. Session attendees reported to have enjoyed using the games, and that they would like to use the games in future. Interviews were conducted with six (four female; two male, aged 27-51 [M = 40.20, SD = 11.28]) day-centre staff, which indicated ways in which the motion-sensor games could be improved for use by adults with ID, and barriers to consider in relation to their possible future implementation. Findings indicate motion-sensor games provide a useful, enjoyable and accessible way for adults with ID to exercise. Future research could investigate implementation of motion-sensor games as a method for exercise promotion for this population on a larger scale.

  6. Parallax-sensitive remapping of visual space in occipito-parietal alpha-band activity during whole-body motion

    PubMed Central

    Selen, L. P. J.; Medendorp, W. P.

    2014-01-01

    Despite the constantly changing retinal image due to eye, head, and body movements, we are able to maintain a stable representation of the visual environment. Various studies on retinal image shifts caused by saccades have suggested that occipital and parietal areas correct for these perturbations by a gaze-centered remapping of the neural image. However, such a uniform, rotational, remapping mechanism cannot work during translations when objects shift on the retina in a more complex, depth-dependent fashion due to motion parallax. Here we tested whether the brain's activity patterns show parallax-sensitive remapping of remembered visual space during whole-body motion. Under continuous recording of electroencephalography (EEG), we passively translated human subjects while they had to remember the location of a world-fixed visual target, briefly presented in front of or behind the eyes' fixation point prior to the motion. Using a psychometric approach we assessed the quality of the memory update, which had to be made based on vestibular feedback and other extraretinal motion cues. All subjects showed a variable amount of parallax-sensitive updating errors, i.e., the direction of the errors depended on the depth of the target relative to fixation. The EEG recordings show a neural correlate of this parallax-sensitive remapping in the alpha-band power at occipito-parietal electrodes. At parietal electrodes, the strength of these alpha-band modulations correlated significantly with updating performance. These results suggest that alpha-band oscillatory activity reflects the time-varying updating of gaze-centered spatial information during parallax-sensitive remapping during whole-body motion. PMID:25505108

  7. Parallax-sensitive remapping of visual space in occipito-parietal alpha-band activity during whole-body motion.

    PubMed

    Gutteling, T P; Selen, L P J; Medendorp, W P

    2015-03-01

    Despite the constantly changing retinal image due to eye, head, and body movements, we are able to maintain a stable representation of the visual environment. Various studies on retinal image shifts caused by saccades have suggested that occipital and parietal areas correct for these perturbations by a gaze-centered remapping of the neural image. However, such a uniform, rotational, remapping mechanism cannot work during translations when objects shift on the retina in a more complex, depth-dependent fashion due to motion parallax. Here we tested whether the brain's activity patterns show parallax-sensitive remapping of remembered visual space during whole-body motion. Under continuous recording of electroencephalography (EEG), we passively translated human subjects while they had to remember the location of a world-fixed visual target, briefly presented in front of or behind the eyes' fixation point prior to the motion. Using a psychometric approach we assessed the quality of the memory update, which had to be made based on vestibular feedback and other extraretinal motion cues. All subjects showed a variable amount of parallax-sensitive updating errors, i.e., the direction of the errors depended on the depth of the target relative to fixation. The EEG recordings show a neural correlate of this parallax-sensitive remapping in the alpha-band power at occipito-parietal electrodes. At parietal electrodes, the strength of these alpha-band modulations correlated significantly with updating performance. These results suggest that alpha-band oscillatory activity reflects the time-varying updating of gaze-centered spatial information during parallax-sensitive remapping during whole-body motion.

  8. Adaptation of the modified Bouc–Wen model to compensate for hysteresis in respiratory motion for the list-mode binning of cardiac SPECT and PET acquisitions: Testing using MRI

    SciTech Connect

    Dasari, Paul K. R.; Shazeeb, Mohammed Salman; Könik, Arda; Lindsay, Clifford; Mukherjee, Joyeeta M.; Johnson, Karen L.; King, Michael A.

    2014-11-01

    Purpose: Binning list-mode acquisitions as a function of a surrogate signal related to respiration has been employed to reduce the impact of respiratory motion on image quality in cardiac emission tomography (SPECT and PET). Inherent in amplitude binning is the assumption that there is a monotonic relationship between the amplitude of the surrogate signal and respiratory motion of the heart. This assumption is not valid in the presence of hysteresis when heart motion exhibits a different relationship with the surrogate during inspiration and expiration. The purpose of this study was to investigate the novel approach of using the Bouc–Wen (BW) model to provide a signal accounting for hysteresis when binning list-mode data with the goal of thereby improving motion correction. The study is based on the authors’ previous observations that hysteresis between chest and abdomen markers was indicative of hysteresis between abdomen markers and the internal motion of the heart. Methods: In 19 healthy volunteers, they determined the internal motion of the heart and diaphragm in the superior–inferior direction during free breathing using MRI navigators. A visual tracking system (VTS) synchronized with MRI acquisition tracked the anterior–posterior motions of external markers placed on the chest and abdomen. These data were employed to develop and test the Bouc–Wen model by inputting the VTS derived chest and abdomen motions into it and using the resulting output signals as surrogates for cardiac motion. The data of the volunteers were divided into training and testing sets. The training set was used to obtain initial values for the model parameters for all of the volunteers in the set, and for set members based on whether they were or were not classified as exhibiting hysteresis using a metric derived from the markers. These initial parameters were then employed with the testing set to estimate output signals. Pearson’s linear correlation coefficient between the

  9. Adaptation of the modified Bouc–Wen model to compensate for hysteresis in respiratory motion for the list-mode binning of cardiac SPECT and PET acquisitions: Testing using MRI

    PubMed Central

    Dasari, Paul K. R.; Shazeeb, Mohammed Salman; Könik, Arda; Lindsay, Clifford; Mukherjee, Joyeeta M.; Johnson, Karen L.; King, Michael A.

    2014-01-01

    Purpose: Binning list-mode acquisitions as a function of a surrogate signal related to respiration has been employed to reduce the impact of respiratory motion on image quality in cardiac emission tomography (SPECT and PET). Inherent in amplitude binning is the assumption that there is a monotonic relationship between the amplitude of the surrogate signal and respiratory motion of the heart. This assumption is not valid in the presence of hysteresis when heart motion exhibits a different relationship with the surrogate during inspiration and expiration. The purpose of this study was to investigate the novel approach of using the Bouc–Wen (BW) model to provide a signal accounting for hysteresis when binning list-mode data with the goal of thereby improving motion correction. The study is based on the authors’ previous observations that hysteresis between chest and abdomen markers was indicative of hysteresis between abdomen markers and the internal motion of the heart. Methods: In 19 healthy volunteers, they determined the internal motion of the heart and diaphragm in the superior–inferior direction during free breathing using MRI navigators. A visual tracking system (vts) synchronized with MRI acquisition tracked the anterior–posterior motions of external markers placed on the chest and abdomen. These data were employed to develop and test the Bouc–Wen model by inputting the vts derived chest and abdomen motions into it and using the resulting output signals as surrogates for cardiac motion. The data of the volunteers were divided into training and testing sets. The training set was used to obtain initial values for the model parameters for all of the volunteers in the set, and for set members based on whether they were or were not classified as exhibiting hysteresis using a metric derived from the markers. These initial parameters were then employed with the testing set to estimate output signals. Pearson’s linear correlation coefficient between the

  10. Motion sickness in migraine sufferers.

    PubMed

    Marcus, Dawn A; Furman, Joseph M; Balaban, Carey D

    2005-12-01

    Motion sickness commonly occurs after exposure to actual motion, such as car or amusement park rides, or virtual motion, such as panoramic movies. Motion sickness symptoms may be disabling, significantly limiting business, travel and leisure activities. Motion sickness occurs in approximately 50% of migraine sufferers. Understanding motion sickness in migraine patients may improve understanding of the physiology of both conditions. Recent literature suggests important relationships between the trigeminal system and vestibular nuclei that may have implications for both motion sickness and migraine. Studies demonstrating an important relationship between serotonin receptors and motion sickness susceptibility in both rodents and humans suggest possible new motion sickness prevention therapies.

  11. Compensation Review Analyst

    SciTech Connect

    2003-06-03

    COMPERA is a decision support system designed to facilitate the compensation review process. With parameters provided by the user(s), the system generates recommendations for base increases and nonbase compensation that strives to align total compensation with performance compensation targets. The user(s) prescribe(s) compensation targets according to performance (or value of contribution) designators. These targets are presented in look-up tables, which are then used by embedded formulas in the worksheet to determine the recommended compensation for each individual.

  12. Activated Ion Electron Capture Dissociation (AI ECD) of proteins: synchronization of infrared and electron irradiation with ion magnetron motion.

    PubMed

    Mikhailov, Victor A; Cooper, Helen J

    2009-05-01

    Here, we show that to perform activated ion electron capture dissociation (AI-ECD) in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer equipped with a CO(2) laser, it is necessary to synchronize both infrared irradiation and electron capture dissociation with ion magnetron motion. This requirement is essential for instruments in which the infrared laser is angled off-axis, such as the Thermo Finnigan LTQ FT. Generally, the electron irradiation time required for proteins is much shorter (ms) than that required for peptides (tens of ms), and the modulation of ECD, AI ECD, and infrared multiphoton dissociation (IRMPD) with ion magnetron motion is more pronounced. We have optimized AI ECD for ubiquitin, cytochrome c, and myoglobin; however the results can be extended to other proteins. We demonstrate that pre-ECD and post-ECD activation are physically different and display different kinetics. We also demonstrate how, by use of appropriate AI ECD time sequences and normalization, the kinetics of protein gas-phase refolding can be deconvoluted from the diffusion of the ion cloud and measured on the time scale longer than the period of ion magnetron motion.

  13. The relationship between the active cervical range of motion and changes in head and neck posture after continuous VDT work.

    PubMed

    Yoo, Won-Gyu; An, Duk-Hyun

    2009-04-01

    This study investigated the relationship between the active cervical range of motion (ROM) and changes in the head and neck posture after continuous visual display terminal (VDT) work. Twenty VDT workers were recruited from laboratories. The active cervical ROM of the participants was measured and videotaped to capture the craniocervical and cervicothoracic angles using a single video camera before and after VDT work. Pearson correlation coefficients were used to quantify the linear relationship between active cervical ROM measurements and the changes in the craniocervical and cervicothoracic angles after continuous VDT work. Active neck extension (r=-0.84, p<0.01) was negatively correlated with the mean craniocervical angle, and active neck flexion (r=-0.82, p<0.01) and left lateral flexion (r=-0.67, p<0.01) were negatively correlated with the mean cervicothoracic angle.

  14. Rigid motion correction of dual opposed planar projections in single photon imaging.

    PubMed

    Angelis, Georgios I; Ryder, William; Gillam, John; Boisson, Frederic; Kyme, Andre; Fulton, Roger; Meikle, Steven; Kench, Peter

    2017-03-23

    Awake and/or freely moving small animal single photon emission imaging allows the continuous study of molecules exhibiting slow kinetics without the need to restrain or anaesthetise the animals. Estimating motion free projections in freely moving small animal planar imaging can be considered as a limited angle tomography problem, except that we wish to estimate the 2D planar projections rather than the 3D volume, where the angular sampling in all three axes depends on the rotational motion of the animal. In this study, we hypothesise that the motion corrected planar projections estimated by reconstructing an estimate of the 3D volume using an iterative motion compensating reconstruction algorithm and integrating it along the projection path, will closely match the true, motion-less, planar distribution regardless of the object motion. We tested this hypothesis for the case of rigid motion using Monte- Carlo simulations and experimental phantom data based on a dual opposed detector system, where object motion was modelled with 6 degrees of freedom. In addition, we investigated the quantitative accuracy of the regional activity extracted from the geometric mean of opposing motion corrected planar projections. Results showed that it is feasible to estimate qualitatively accurate motion-corrected projections for a wide range of motions around all 3 axes. Errors in the geometric mean estimates of regional activity were relatively small and within 10% of expected true values. In addition, quantitative regional errors were dependent on the observed motion, as well as on the surrounding activity of overlapping organs. We conclude that both qualitatively and quantitatively accurate motion-free projections of the tracer distribution in a freely moving animal can be estimated from dual opposed detectors using a rigid-motion correction approach within an iterative reconstruction framework and we expect this approach can be extended to the case of non-rigid motion.

  15. A motion- and sound-activated, 3D-printed, chalcogenide-based triboelectric nanogenerator.

    PubMed

    Kanik, Mehmet; Say, Mehmet Girayhan; Daglar, Bihter; Yavuz, Ahmet Faruk; Dolas, Muhammet Halit; El-Ashry, Mostafa M; Bayindir, Mehmet

    2015-04-08

    A multilayered triboelectric nanogenerator (MULTENG) that can be actuated by acoustic waves, vibration of a moving car, and tapping motion is built using a 3D-printing technique. The MULTENG can generate an open-circuit voltage of up to 396 V and a short-circuit current of up to 1.62 mA, and can power 38 LEDs. The layers of the triboelectric generator are made of polyetherimide nanopillars and chalcogenide core-shell nanofibers.

  16. A Short-Term Decrease in Nitrogenase Activity (C2H2 Reduction) Is Induced by Exposure of Soybean Shoots to Their CO2 Compensation Point.

    PubMed Central

    Vidal, R.; Gerbaud, A.; Vidal, D.; Drevon, J. J.

    1995-01-01

    Photosynthesis and nitrogenase acetylene-reducing activity (ARA) were measured in soybeans (Glycine max [L.] Merr.) in which the shoots were exposed for 48 h to 60 [mu]L L-1 CO2, a value corresponding to their CO2 compensation point. Six hours after the beginning of the light period at low CO2, the ARA started to decrease, reaching a rate of 50% of the control rate in 14 to 24 h and 20% of the control rate in 34 to 38 h after the beginning of the CO2 treatment. At these times, there was no net photosynthesis, and the transpiration rate was 20% lower than that in the control plants. An increase in the partial pressure of O2 around the nodules alleviated this inhibition of ARA. The maximal ARA achieved at 40 kPaO2 was 3 times higher than that at 20 kPa O2 and similar to the maximal ARA of the control plants. It was argued that the decrease in ARA of soybean exposed to the CO2 compensation point was due to a decrease in the nodule's permeability to O2 diffusion. PMID:12228555

  17. Healthy Eating at School to Compensate for the Activity-Related Obesigenic Lifestyle in Children and Adolescents: The Quebec Experience123

    PubMed Central

    Tremblay, Angelo; Arguin, Hélène

    2011-01-01

    In this article, we describe the Quebec experience about the determinants of childhood obesity and the search for solutions, which are well adapted to the constraints of the current lifestyle. As expected, it is likely that a decrease in physical fitness and its related sedentariness as well as suboptimal food habits have contributed to the increase in overweight prevalence that was observed between 1980 and 2000. Our research experience suggests that other less suspected activity related factors have also played an important role in the occurrence of the obesity epidemic. This is particularly the case for short sleeping and demanding mental work, which are features of our modern lifestyle. Because there is no foreseeable prospect for a change in sleep and mental work habits, we argue that compensations in other factors may be necessary to prevent weight gain in this new context. We thus developed a concept of food design aiming at the maximization of the satiating properties of a food or a meal course. In this context, we were successful in the design of healthy lunch bags for students of a school located in a low socioeconomic area. Indeed, for a majority of menus, an optimal compromise seemed to be reached between nutrient composition, satiating potential, palatability, and financial accessibility. In summary, the Quebec experience reveals that childhood obesity is a complex problem that partly results from unsuspected environmental factors that deserve creative solutions to at least partly compensate for their effect. PMID:22332048

  18. Risk and Combat Compensation

    DTIC Science & Technology

    2011-08-01

    Leader iii Executive Summary The Eleventh Quadrennial Review of Military Compensation (11th QRMC) was chartered to review four areas of the military...compensation is an important element in the remuneration of military personnel. The principal justification for combat compensation is to recognize...combat zone received at least $4,660 in federal tax savings and benefits. One unexpected aspect of CZTE-related compensation is that senior officers

  19. Reduced Activity of Mutant Calcium-Dependent Protein Kinase 1 Is Compensated in Plasmodium falciparum through the Action of Protein Kinase G

    PubMed Central

    Ojo, Kayode K.; Mu, Jianbing; Maly, Dustin J.; Van Voorhis, Wesley C.

    2016-01-01

    ABSTRACT We used a sensitization approach that involves replacement of the gatekeeper residue in a protein kinase with one with a different side chain. The activity of the enzyme with a bulky gatekeeper residue, such as methionine, cannot be inhibited using bumped kinase inhibitors (BKIs). Here, we have used this approach to study Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1). The methionine gatekeeper substitution, T145M, although it led to a 47% reduction in transphosphorylation, was successfully introduced into the CDPK1 locus using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9. As methionine is a bulky residue, BKI 1294 had a 10-fold-greater effect in vitro on the wild-type enzyme than on the methionine mutant. However, in contrast to in vitro data with recombinant enzymes, BKI 1294 had a slightly greater inhibition of the growth of CDPK1 T145M parasites than the wild type. Moreover, the CDPK1 T145M parasites were more sensitive to the action of compound 2 (C2), a specific inhibitor of protein kinase G (PKG). These results suggest that a reduction in the activity of CDPK1 due to methionine substitution at the gatekeeper position is compensated through the direct action of PKG or of another kinase under the regulation of PKG. The transcript levels of CDPK5 and CDPK6 were significantly upregulated in the CDPK1 T145M parasites. The increase in CDPK6 or some other kinase may compensate for decrease in CDPK1 activity during invasion. This study suggests that targeting two kinases may be more effective in chemotherapy to treat malaria so as not to select for mutations in one of the enzymes. PMID:27923926

  20. 40 CFR 5.515 - Compensation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 5.515 Compensation. A recipient...

  1. 28 CFR 54.515 - Compensation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 54.515 Compensation. A recipient...

  2. The flexion–rotation test performed actively and passively: a comparison of range of motion in patients with cervicogenic headache

    PubMed Central

    Bravo Petersen, Shannon M.; Vardaxis, Vassilios G.

    2015-01-01

    Limitation in cervical spine range of motion (ROM) is one criterion for diagnosis of cervicogenic headaches (CHs). The flexion–rotation test, when performed passively (FRT-P), has been shown to be a useful test in diagnosis of CH. Few investigations have examined the flexion-rotation test when performed actively (FRT-A) by the individual, and no studies have examined the FRT-A in a symptomatic population. The purpose of this study was to compare ROM during the FRT-A and FRT-P in patients with CH and asymptomatic individuals and to compare ROM between sides for these two versions of the test. Twelve patients with CH and 10 asymptomatic participants were included in the study. An eight-camera Motion Analysis system was used to measure head motion relative to the trunk during the FRT-P and the FRT-A. Cervical rotation ROM was measured in a position of full cervical flexion for both tests. No significant difference was observed between right and left sides for cervical rotation ROM during the FRT-P nor the FRT-A when performed by asymptomatic participants. In patients with CH, a significant difference was observed between sides for the FRT-P (P = 0.014); however, the FRT-A failed to reveal bilateral descrepancy in rotation ROM. PMID:26109826

  3. Using motion-sensor camera technology to infer seasonal activity and thermal niche of the desert tortoise (Gopherus agassizii)

    USGS Publications Warehouse

    Agha, Mickey; Augustine, Benjamin; Lovich, Jeffrey E.; Delaney, David F.; Sinervo, Barry; Murphy, Mason O.; Ennen, Joshua R.; Briggs, Jessica R.; Cooper, Robert J.; Price, Steven J.

    2015-01-01

    Understanding the relationships between environmental variables and wildlife activity is an important part of effective management. The desert tortoise (Gopherus agassizii), an imperiled species of arid environments in the southwest US, may have increasingly restricted windows for activity due to current warming trends. In summer 2013, we deployed 48 motion sensor cameras at the entrances of tortoise burrows to investigate the effects of temperature, sex, and day of the year on the activity of desert tortoises. Using generalized estimating equations, we found that the relative probability of activity was associated with temperature (linear and quadratic), sex, and day of the year. Sex effects showed that male tortoises are generally more active than female tortoises. Temperature had a quadratic effect, indicating that tortoise activity was heightened at a range of temperatures. In addition, we found significant support for interactions between sex and day of the year, and sex and temperature as predictors of the probability of activity. Using our models, we were able to estimate air temperatures and times (days and hours) that were associated with maximum activity during the study. Because tortoise activity is constrained by environmental conditions such as temperature, it is increasingly vital to conduct studies on how tortoises vary their activity throughout the Sonoran Desert to better understand the effects of a changing climate.

  4. Using motion-sensor camera technology to infer seasonal activity and thermal niche of the desert tortoise (Gopherus agassizii).

    PubMed

    Agha, Mickey; Augustine, Benjamin; Lovich, Jeffrey E; Delaney, David; Sinervo, Barry; Murphy, Mason O; Ennen, Joshua R; Briggs, Jessica R; Cooper, Robert; Price, Steven J

    2015-01-01

    Understanding the relationships between environmental variables and wildlife activity is an important part of effective management. The desert tortoise (Gopherus agassizii), an imperiled species of arid environments in the southwest US, may have increasingly restricted windows for activity due to current warming trends. In summer 2013, we deployed 48 motion sensor cameras at the entrances of tortoise burrows to investigate the effects of temperature, sex, and day of the year on the activity of desert tortoises. Using generalized estimating equations, we found that the relative probability of activity was associated with temperature (linear and quadratic), sex, and day of the year. Sex effects showed that male tortoises are generally more active than female tortoises. Temperature had a quadratic effect, indicating that tortoise activity was heightened at a range of temperatures. In addition, we found significant support for interactions between sex and day of the year, and sex and temperature as predictors of the probability of activity. Using our models, we were able to estimate air temperatures and times (days and hours) that were associated with maximum activity during the study. Because tortoise activity is constrained by environmental conditions such as temperature, it is increasingly vital to conduct studies on how tortoises vary their activity throughout the Sonoran Desert to better understand the effects of a changing climate.

  5. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam.

    PubMed

    Jiang, Hong-Ren; Yoshinaga, Natsuhiko; Sano, Masaki

    2010-12-31

    We study self-propulsion of a half-metal coated colloidal particle under laser irradiation. The motion is caused by self-thermophoresis: i.e., absorption of a laser at the metal-coated side of the particle creates local temperature gradient which in turn drives the particle by thermophoresis. To clarify the mechanism, temperature distribution and a thermal slip flow field around a microscale Janus particle are measured for the first time. With measured temperature drop across the particle, the speed of self-propulsion is corroborated with the prediction based on accessible parameters. As an application for driving a micromachine, a microrotor is demonstrated.

  6. Sport for All? Insight into Stratification and Compensation Mechanisms of Sporting Activity in the 27 European Union Member States

    ERIC Educational Resources Information Center

    Van Tuyckom, Charlotte; Scheerder, Jeroen

    2010-01-01

    Physical activity is an important public health issue and the benefits of an active lifestyle in relation to well-being and health have been strongly emphasised in recent years in Europe, as well as in most parts of the world. However, previous research has shown that physical activity within Europe and its member states is stratified. The present…

  7. 48 CFR 970.2803-1 - Workers' Compensation Insurance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...' Compensation Insurance. (a) Policies and requirements. (1) Workers' compensation insurance protects employers... contrast termination at existing benefit levels. (b) Assignment of responsibilities. (1) Office of Resource... Activities, consistent with their delegations of responsibility, shall assure management and...

  8. 44 CFR 19.515 - Compensation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Compensation. 19.515 Section... Programs or Activities Prohibited § 19.515 Compensation. A recipient shall not make or enforce any policy or practice that, on the basis of sex: (a) Makes distinctions in rates of pay or other...

  9. 44 CFR 19.515 - Compensation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Compensation. 19.515 Section... Programs or Activities Prohibited § 19.515 Compensation. A recipient shall not make or enforce any policy or practice that, on the basis of sex: (a) Makes distinctions in rates of pay or other...

  10. 44 CFR 19.515 - Compensation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Compensation. 19.515 Section... Programs or Activities Prohibited § 19.515 Compensation. A recipient shall not make or enforce any policy or practice that, on the basis of sex: (a) Makes distinctions in rates of pay or other...

  11. Children's Compensations for Poorly Automated Reading Skills

    ERIC Educational Resources Information Center

    Walczyk, Jeffrey J.; Marsiglia, Cheryl S.; Johns, Amanda K.; Bryan, Keli S.

    2004-01-01

    The compensatory-encoding model (CEM) postulates that readers whose decoding of words or verbal working memory capacities is inefficient can compensate so that literal comprehension of text is not deleteriously affected. However, the use of compensations may draw cognitive resources away from higher level reading activities such as comprehension…

  12. Hip range of motion during daily activities in patients with posterior pelvic tilt from supine to standing position.

    PubMed

    Tamura, Satoru; Miki, Hidenobu; Tsuda, Kosuke; Takao, Masaki; Hattori, Asaki; Suzuki, Naoki; Yonenobu, Kazuo; Sugano, Nobuhiko

    2015-04-01

    In most patients with hip disorders, the anterior pelvic plane (APP) sagittal tilt does not change from supine to standing position. However, in some patients, APP sagittal tilt changes more than 10° posteriorly from supine to standing position. The purpose of this study was to both examine APP sagittal tilt and investigate the hip flexion and extension range of motion (ROM) required during daily activities in these atypical patients. Patient-specific 4-dimensional (4D) motion analysis was performed for 50 hips from 44 patients who had undergone total hip arthroplasty. All patients divided into two categories, such as atypical patients for whom the pelvis tilted more than 10° posteriorly from supine to standing position preoperatively (19 hips from 18 patients) and the remaining typical patients (31 hips from 26 patients). The required hip flexion and extension angles did not differ significantly between atypical patients and typical patients. In conclusion, the hip flexion ROM during deep bending activities and hip extension ROM during extension activities required in those atypical patients with pelvic tilt more than 10° backward from supine to standing position did not shift in the direction of extension.

  13. Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making.

    PubMed

    Huk, Alexander C; Shadlen, Michael N

    2005-11-09

    Decision-making often requires the accumulation and maintenance of evidence over time. Although the neural signals underlying sensory processing have been studied extensively, little is known about how the brain accrues and holds these sensory signals to guide later actions. Previous work has suggested that neural activity in the lateral intraparietal area (LIP) of the monkey brain reflects the formation of perceptual decisions in a random dot direction-discrimination task in which monkeys communicate their decisions with eye-movement responses. We tested the hypothesis that decision-related neural activity in LIP represents the time integral of the momentary motion "evidence." By briefly perturbing the strength of the visual motion stimulus during the formation of perceptual decisions, we tested whether this LIP activity reflected a persistent, integrated "memory" of these brief sensory events. We found that the responses of LIP neurons reflected substantial temporal integration. Brief pulses had persistent effects on both the monkeys' choices and the responses of neurons in LIP, lasting up to 800 ms after appearance. These results demonstrate that LIP is involved in neural time integration underlying the accumulation of evidence in this task. Additional analyses suggest that decision-related LIP responses, as well as behavioral choices and reaction times, can be explained by near-perfect time integration that stops when a criterion amount of evidence has been accumulated. Temporal integration may be a fundamental computation underlying higher cognitive functions that are dissociated from immediate sensory inputs or motor outputs.

  14. FLOWS AND MOTIONS IN MOSS IN THE CORE OF A FLARING ACTIVE REGION: EVIDENCE FOR STEADY HEATING

    SciTech Connect

    Brooks, David H.; Warren, Harry P.

    2009-09-20

    We present new measurements of the time variability of intensity, Doppler, and nonthermal velocities in moss in an active region core observed by the EUV Imaging Spectrometer on Hinode in 2007 June. The measurements are derived from spectral profiles of the Fe XII 195 A line. Using the 2'' slit, we repeatedly scanned 150'' by 150'' in a few minutes. This is the first time it has been possible to make such velocity measurements in the moss, and the data presented are the highest cadence spatially resolved maps of moss Doppler and nonthermal velocities ever obtained in the corona. The observed region produced numerous C- and M-class flares with several occurring in the core close to the moss. The magnetic field was therefore clearly changing in the active region core, so we ought to be able to detect dynamic signatures in the moss if they exist. Our measurements of moss intensities agree with previous studies in that a less than 15% variability is seen over a period of 16 hr. Our new measurements of Doppler and nonthermal velocities reveal no strong flows or motions in the moss, nor any significant variability in these quantities. The results confirm that moss at the bases of high temperature coronal loops is heated quasi-steadily. They also show that quasi-steady heating can contribute significantly even in the core of a flare productive active region. Such heating may be impulsive at high frequency, but if so it does not give rise to large flows or motions.

  15. Nuclear organization and dosage compensation.

    PubMed

    Chow, Jennifer C; Heard, Edith

    2010-11-01

    Dosage compensation is a strategy to deal with the imbalance of sex chromosomal gene products relative to autosomes and also between the sexes. The mechanisms that ensure dosage compensation for X-chromosome activity have been extensively studied in mammals, worms, and flies. Although each entails very different mechanisms to equalize the dose of X-linked genes between the sexes, they all involve the co-ordinate regulation of hundreds of genes specifically on the sex chromosomes and not the autosomes. In addition to chromatin modifications and changes in higher order chromatin structure, nuclear organization is emerging as an important component of these chromosome-wide processes and in the specific targeting of dosage compensation complexes to the sex chromosomes. Preferential localization within the nucleus and 3D organization are thought to contribute to the differential treatment of two identical homologs within the same nucleus, as well as to the chromosome-wide spread and stable maintenance of heterochromatin.

  16. Influences of Surface and Ionic Properties on Electricity Generation of an Active Transducer Driven by Water Motion.

    PubMed

    Park, Junwoo; Yang, YoungJun; Kwon, Soon-Hyung; Kim, Youn Sang

    2015-02-19

    In this Letter, we discuss the surface, ionic properties, and scale-up potential of an active transducer that generated electricity from natural water motion. When a liquid contacts a solid surface, an electrical double layer (EDL) is always formed at the solid/liquid interface. By modulating the EDL, the active transducer could generate a peak voltage of ∼3 V and a peak power of ∼5 μW. Interestingly, there were specific salinities of solution droplets that showed maximum performance and different characteristics according to the ions' nature. Analyzing the results macroscopically, we tried to figure out the origins of the active transducing precipitated by ions dynamics. Also, we demonstrated the scale-up potential for practical usage by multiple electrode design.

  17. Compensation of static deformation and vibrations of antenna arrays

    NASA Astrophysics Data System (ADS)

    Knott, Peter; Loecker, Claudius; Algermissen, Stephan; Sekora, Robert

    2012-11-01

    The effect of vibrations and static deformations on aerospace platforms and their influence on the performance of radar, navigation or communication systems are currently studied in the scope of the NATO Research Task Groups SET-131. The deformations may be caused by different effects, e.g. aerodynamic loads, vehicle motion, moving parts such as rudders or turbines, or the impact of a collision. Depending on their strength and the function of the wireless system, they may have a significant impact on the system performance. Structural aspects of the platform such as mechanical or thermal stability, aerodynamics or outer appearance are of great importance. The present paper gives an overview of the scope of work of the group and on-going investigations on system performance analysis and compensation methods such as adaptive signal processing or electronic phase compensation for military key applications such as RADAR, Communication, Electronic Support Measures (ESM) or Command and Control (C2). In addition, the development of an antenna array demonstrator with active vibration compensation using piezo sensors and actuators and control algorithms will be shown, including simulated as well as experimental results.

  18. Reconstruction of active regular motion in amoeba extract: dynamic cooperation between sol and gel states.

    PubMed

    Nishigami, Yukinori; Ichikawa, Masatoshi; Kazama, Toshiya; Kobayashi, Ryo; Shimmen, Teruo; Yoshikawa, Kenichi; Sonobe, Seiji

    2013-01-01

    Amoeboid locomotion is one of the typical modes of biological cell migration. Cytoplasmic sol-gel conversion of an actomyosin system is thought to play an important role in locomotion. However, the mechanisms underlying sol-gel conversion, including trigger, signal, and regulating factors, remain unclear. We developed a novel model system in which an actomyosin fraction moves like an amoeba in a cytoplasmic extract. Rheological study of this model system revealed that the actomyosin fraction exhibits shear banding: the sol-gel state of actomyosin can be regulated by shear rate or mechanical force. Furthermore, study of the living cell indicated that the shear-banding property also causes sol-gel conversion with the same order of magnitude as that of shear rate. Our results suggest that the inherent sol-gel transition property plays an essential role in the self-regulation of autonomous translational motion in amoeba.

  19. Complexity reduction in the H.264/AVC using highly adaptive fast mode decision based on macroblock motion activity

    NASA Astrophysics Data System (ADS)

    Abdellah, Skoudarli; Mokhtar, Nibouche; Amina, Serir

    2015-11-01

    The H.264/AVC video coding standard is used in a wide range of applications from video conferencing to high-definition television according to its high compression efficiency. This efficiency is mainly acquired from the newly allowed prediction schemes including variable block modes. However, these schemes require a high complexity to select the optimal mode. Consequently, complexity reduction in the H.264/AVC encoder has recently become a very challenging task in the video compression domain, especially when implementing the encoder in real-time applications. Fast mode decision algorithms play an important role in reducing the overall complexity of the encoder. In this paper, we propose an adaptive fast intermode algorithm based on motion activity, temporal stationarity, and spatial homogeneity. This algorithm predicts the motion activity of the current macroblock from its neighboring blocks and identifies temporal stationary regions and spatially homogeneous regions using adaptive threshold values based on content video features. Extensive experimental work has been done in high profile, and results show that the proposed source-coding algorithm effectively reduces the computational complexity by 53.18% on average compared with the reference software encoder, while maintaining the high-coding efficiency of H.264/AVC by incurring only 0.097 dB in total peak signal-to-noise ratio and 0.228% increment on the total bit rate.

  20. Auditory Compensation for Head Rotation Is Incomplete

    PubMed Central

    2016-01-01

    Hearing is confronted by a similar problem to vision when the observer moves. The image motion that is created remains ambiguous until the observer knows the velocity of eye and/or head. One way the visual system solves this problem is to use motor commands, proprioception, and vestibular information. These “extraretinal signals” compensate for self-movement, converting image motion into head-centered coordinates, although not always perfectly. We investigated whether the auditory system also transforms coordinates by examining the degree of compensation for head rotation when judging a moving sound. Real-time recordings of head motion were used to change the “movement gain” relating head movement to source movement across a loudspeaker array. We then determined psychophysically the gain that corresponded to a perceptually stationary source. Experiment 1 showed that the gain was small and positive for a wide range of trained head speeds. Hence, listeners perceived a stationary source as moving slightly opposite to the head rotation, in much the same way that observers see stationary visual objects move against a smooth pursuit eye movement. Experiment 2 showed the degree of compensation remained the same for sounds presented at different azimuths, although the precision of performance declined when the sound was eccentric. We discuss two possible explanations for incomplete compensation, one based on differences in the accuracy of signals encoding image motion and self-movement and one concerning statistical optimization that sacrifices accuracy for precision. We then consider the degree to which such explanations can be applied to auditory motion perception in moving listeners. PMID:27841453

  1. Temperature compensated photovoltaic array

    DOEpatents

    Mosher, Dan Michael

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  2. Temperature compensated photovoltaic array

    DOEpatents

    Mosher, D.M.

    1997-11-18

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  3. Experimental investigation of irregular motion impact on 4D PET-based particle therapy monitoring

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Stützer, K.; Enghardt, W.; Priegnitz, M.; Helmbrecht, S.; Bert, C.; Fiedler, F.

    2016-01-01

    Particle therapy positron emission tomography (PT-PET) is an in vivo and non-invasive imaging technique to monitor treatment delivery in particle therapy. The inevitable patient respiratory motion during irradiation causes artefacts and inaccurate activity distribution in PET images. Four-dimensional (4D) maximum likelihood expectation maximisation (4D MLEM) allows for a compensation of these effects, but has up to now been restricted to regular motion for PT-PET investigations. However, intra-fractional motion during treatment might differ from that during acquisition of the 4D-planning CT (e.g. amplitude variation, baseline drift) and therefore might induce inaccurate 4D PET reconstruction results. This study investigates the impact of different irregular analytical one-dimensional (1D) motion patterns on PT-PET imaging by means of experiments with a radioactive source and irradiated moving phantoms. Three sorting methods, namely phase sorting, equal amplitude sorting and event-based amplitude sorting, were applied to manage the PET list-mode data. The influence of these sorting methods on the motion compensating algorithm has been analysed. The event-based amplitude sorting showed a superior performance and it is applicable for irregular motions with  ⩽4 mm amplitude elongation and drift. For motion with 10 mm baseline drift, the normalised root mean square error was as high as 10.5% and a 10 mm range deviation was observed.

  4. Toying with Motion.

    ERIC Educational Resources Information Center

    Galus, Pamela J.

    2002-01-01

    Presents a variety of activities that support the development of an understanding of Newton's laws of motion. Activities use toy cars, mobile roads, and a seat-of-nails. Includes a scoring rubric. (DDR)

  5. Toxic compensation bills

    SciTech Connect

    Anderson, R.C.

    1985-10-01

    Congress has demonstrated interest in toxic compensation legislation, but not enough agreement to make significant progress. Advocates of reform claim that the legal system is heavily weighed against victims who seek compensation through the courts. Proposed reforms include a compensation fund and a cause of action in federal court. Critics have questioned whether these changes in the law would represent an improvement. Existing income replacement, medical cost reimbursement, and survivor insurance programs largely cover the losses of individuals with chronic disease. Thus, the need for an additional compensation is not clear. Furthermore, experience with compensation funds such as the Black Lung Fund suggests that political rather than scientific criteria may be used to determine eligibility. Finally, under the proposed financing mechanisms the compensation funds that are being debated would not increase incentives for care in the handling of hazardous wastes or toxic substances.

  6. Toxic compensation bills.

    PubMed Central

    Anderson, R C

    1985-01-01

    Congress has demonstrated interest in toxic compensation legislation, but not enough agreement to make significant progress. Advocates of reform claim that the legal system is heavily weighed against victims who seek compensation through the courts. Proposed reforms include a compensation fund and a cause of action in federal court. Critics have questioned whether these changes in the law would represent an improvement. Existing income replacement, medical cost reimbursement, and survivor insurance programs largely cover the losses of individuals with chronic disease. Thus, the need for an additional compensation is not clear. Furthermore, experience with compensation funds such as the Black Lung Fund suggests that political rather than scientific criteria may be used to determine eligibility. Finally, under the proposed financing mechanisms the compensation funds that are being debated would not increase incentives for care in the handling of hazardous wastes or toxic substances. PMID:4085440

  7. Motion mitigation for lung cancer patients treated with active scanning proton therapy

    SciTech Connect

    Grassberger, Clemens; Dowdell, Stephen; Sharp, Greg; Paganetti, Harald

    2015-05-15

    Purpose: Motion interplay can affect the tumor dose in scanned proton beam therapy. This study assesses the ability of rescanning and gating to mitigate interplay effects during lung treatments. Methods: The treatments of five lung cancer patients [48 Gy(RBE)/4fx] with varying tumor size (21.1–82.3 cm{sup 3}) and motion amplitude (2.9–30.6 mm) were simulated employing 4D Monte Carlo. The authors investigated two spot sizes (σ ∼ 12 and ∼3 mm), three rescanning techniques (layered, volumetric, breath-sampled volumetric) and respiratory gating with a 30% duty cycle. Results: For 4/5 patients, layered rescanning 6/2 times (for the small/large spot size) maintains equivalent uniform dose within the target >98% for a single fraction. Breath sampling the timing of rescanning is ∼2 times more effective than the same number of continuous rescans. Volumetric rescanning is sensitive to synchronization effects, which was observed in 3/5 patients, though not for layered rescanning. For the large spot size, rescanning compared favorably with gating in terms of time requirements, i.e., 2x-rescanning is on average a factor ∼2.6 faster than gating for this scenario. For the small spot size however, 6x-rescanning takes on average 65% longer compared to gating. Rescanning has no effect on normal lung V{sub 20} and mean lung dose (MLD), though it reduces the maximum lung dose by on average 6.9 ± 2.4/16.7 ± 12.2 Gy(RBE) for the large and small spot sizes, respectively. Gating leads to a similar reduction in maximum dose and additionally reduces V{sub 20} and MLD. Breath-sampled rescanning is most successful in reducing the maximum dose to the normal lung. Conclusions: Both rescanning (2–6 times, depending on the beam size) as well as gating was able to mitigate interplay effects in the target for 4/5 patients studied. Layered rescanning is superior to volumetric rescanning, as the latter suffers from synchronization effects in 3/5 patients studied. Gating minimizes the

  8. Nutritional state modulates the neural processing of visual motion.

    PubMed

    Longden, Kit D; Muzzu, Tomaso; Cook, Daniel J; Schultz, Simon R; Krapp, Holger G

    2014-04-14

    Food deprivation alters the processing of sensory information, increasing neural activity in the olfactory and gustatory systems in animals across phyla. Neural signaling is metabolically costly, and a hungry animal has limited energy reserves, so we hypothesized that neural activity in other systems may be downregulated by food deprivation. We investigated this hypothesis in the motion vision pathway of the blowfly. Like other animals, flies augment their motion vision when moving: they increase the resting activity and gain of visual interneurons supporting the control of locomotion and gaze. In the present study, walking-induced changes in visual processing depended on the nutritional state-they decreased with food deprivation and recovered after subsequent feeding. We found that changes in the motion vision pathway depended on walking speed in a manner dependent on the nutritional state. Walking also reduced response latencies in visual interneurons, an effect not altered by food deprivation. Finally, the optomotor reflex that compensates for visual wide-field motion was reduced in food-deprived flies. Thus, walking augmented motion vision, but the effect was decreased when energy reserves were low. Our results suggest that energy limitations may drive the rebalancing of neural activity with changes in the nutritional state.

  9. Effects of using an unstable inclined board on active and passive ankle range of motion in patients with ankle stiffness.

    PubMed

    Yoo, Won-Gyu

    2015-07-01

    [Purpose] The present study assessed the effects of using an unstable inclined board on the active and passive ankle range of motion in patients with ankle stiffness. [Subjects] The study included 10 young female patients with ankle stiffness. [Methods] The patients were divided into the following two groups: a group that performed ankle dorsiflexion stretching exercises using a wooden inclined board and a group that performed stretching exercises using an air-cushioned inclined board (unstable inclined board). Active and passive ankle dorsiflexion angles were measured bilaterally using a goniometer. [Results] Both inclined boards significantly increased active and passive ankle dorsiflexion. After performing ankle stretching exercises, active dorsiflexion significantly increased the unstable inclined board compared to that using the wooden inclined board. However, the passive dorsiflexion angles did not differ significantly between the two groups after ankle stretching exercises. [Conclusion] The use of an unstable inclined board might stimulate activation of the ankle dorsiflexors in addition to stretching muscle or tissue. Active ankle dorsiflexion was more effectively improved with stretching exercises using an unstable inclined board than with exercises using a wooden inclined board.

  10. Active Flow Control of the Near Wake of an Axisymmetric Body in Prescribed Motion

    NASA Astrophysics Data System (ADS)

    Lambert, Thomas; Vukasinovic, Bojan; Glezer, Ari

    2014-11-01

    Controlled interactions between fluidic actuators and the cross flow over the aft end of a wire-mounted axisymmetric moving wind tunnel bluff body model are exploited for modification of its near wake and thereby its global unsteady aerodynamic loads. The model is supported by eight servo-controlled wires, each including a miniature inline force transducer for measurements of the time-resolved tension. The body moves along a prescribed trajectory controllable in six degrees of freedom using closed loop feedback from an external camera system. Actuation is effected by an integrated azimuthally-segmented array of four aft-facing synthetic jet modules around the perimeter of the tail end. In the present investigations, the aerodynamic loads are controlled during time-periodic axial and rotational motions with varying reduced frequencies of up to 0.259. It is shown that this flow control approach modifies the near wake and induces aerodynamic loads that are comparable to the baseline model dynamic loads. Control of the model's unsteady aerodynamic characteristics may be adopted for in flight stabilization.

  11. Gamma-Band Activities in Mouse Frontal and Visual Cortex Induced by Coherent Dot Motion

    PubMed Central

    Han, Hio-Been; Hwang, Eunjin; Lee, Soohyun; Kim, Min-Shik; Choi, Jee Hyun

    2017-01-01

    A key question within systems neuroscience is to understand how the brain encodes spatially and temporally distributed local features and binds these together into one perceptual representation. Previous works in animal and human have shown that changes in neural synchrony occur during the perceptual processing and these changes are distinguished by the emergence of gamma-band oscillations (GBO, 30–80 Hz, centered at 40 Hz). Here, we used the mouse electroencephalogram to investigate how different cortical areas play roles in perceptual processing by assessing their GBO patterns during the visual presentation of coherently/incoherently moving random-dot kinematogram and static dots display. Our results revealed that GBO in the visual cortex were strongly modulated by the moving dots regardless of the existence of a global dot coherence, whereas GBO in frontal cortex were modulated by coherence of the motion. Moreover, concurrent GBO across the multiple cortical area occur more frequently for coherently moving dots. Taken together, these findings of GBO in the mouse frontal and visual cortex are related to the perceptual binding of local features into a globally-coherent representation, suggesting the dynamic interplay across the local/distributed networks of GBO in the global processing of optic flow. PMID:28252109

  12. Application of Hyperelastic-based Active Mesh Model in Cardiac Motion Recovery

    PubMed Central

    Yousefi-Banaem, Hossein; Kermani, Saeed; Daneshmehr, Alireza; Saneie, Hamid

    2016-01-01

    Considering the nonlinear hyperelastic or viscoelastic nature of soft tissues has an important effect on modeling results. In medical applications, accounting nonlinearity begets an ill posed problem, due to absence of external force. Myocardium can be considered as a hyperelastic material, and variational approaches are proposed to estimate stiffness matrix, which take into account the linear and nonlinear properties of myocardium. By displacement estimation of some points in the four-dimensional cardiac magnetic resonance imaging series, using a similarity criterion, the elementary deformations are estimated, then using the Moore–Penrose inverse matrix approach, all point deformations are obtained. Using this process, the cardiac wall motion is quantized to mechanically determine local parameters to investigate the cardiac wall functionality. This process was implemented and tested over 10 healthy and 20 patients with myocardial infarction. In all patients, the process was able to precisely determine the affected region. The proposed approach was also compared with linear one and the results demonstrated its superiority respect to the linear model. PMID:27563570

  13. Myocardial metabolism, perfusion, wall motion and electrical activity in Duchenne muscular dystrophy

    SciTech Connect

    Perloff, J.K.; Henze, E.; Schelbert, H.R.

    1982-01-01

    The cardiomyopathy of Duchenne's muscular dystrophy originates in the posterobasal left ventricle and extends chiefly to the contiguous lateral wall. Ultrastructural abnormalities in these regions precede connective tissue replacement. We postulated that a metabolic fault coincided with or antedated the subcellular abnormality. Accordingly, regional left ventricular metabolism, perfusion and wall motion were studied using positron computed tomography and metabolic isotopes supplemented by thallium perfusion scans, equilibrium radionuclide angiography and M-mode and two-dimensional echocardiography. To complete the assessment, electrocardiograms, vectorcardiograms, 24 hour taped electrocardiograms and chest x-rays were analyzed. Positron computed tomography utilizing F-18 2-fluoro 2-deoxyglucose (FDG) provided the first conclusive evidence supporting the hypothesis of a premorphologic regional metabolic fault. Thus, cardiac involvement in duchenne dystrophy emerges as a unique form of heart disease, genetically targeting specific regions of ventricular myocardium for initial metabolic and subcellular changes. Reported ultrastructural abnormalities of the impulse and conduction systems provide, at least in part, a basis for the clinically observed sinus node, intraatrial, internodal, AV nodal and infranodal disorders.

  14. Using structure-from-motion for monitoring active lava flows and domes

    NASA Astrophysics Data System (ADS)

    James, Mike R.; Robson, Stuart; Varley, Nick

    2016-04-01

    3-D reconstruction software based on structure-from-motion (SfM) algorithms can substantially reduce the requirements and learning curve for generating topographic data from photographs, and thus offers strong potential for data collection in many dynamic environments. Unfortunately, SfM-based software tends not to provide the rigorous metrics that are used to assess the quality of results in conventional photogrammetry software. Here, we use examples of repeat oblique airborne acquisitions from a volcanic dome (Volcán de Colima, Mexico) and terrestrial time-lapse stereo-photography (Mt. Etna, Sicily) to examine the sensitivity of results to imaging characteristics and SfM processing procedures. At Volcán de Colima, photographs were acquired with a relatively favourable convergent geometry, from an opened window in a light aircraft. However, hazards prevent the deployment of ground control, so the derived topographic shape relies entirely on the image tie points generated automatically by the software. In contrast, at Mt. Etna, control targets could be used but, with only two (mildly convergent) cameras, the image geometry is naturally weaker that at Colima. We use both of these cases to explore some of the challenges involved with understanding the error inherent in projects processed using SfM-based approaches. Results are compared with those achieved using a rigorous close-range photogrammetry package.

  15. Open architecture CMM motion controller

    NASA Astrophysics Data System (ADS)

    Chang, David; Spence, Allan D.; Bigg, Steve; Heslip, Joe; Peterson, John

    2001-12-01

    Although initially the only Coordinate Measuring Machine (CMM) sensor available was a touch trigger probe, technological advances in sensors and computing have greatly increased the variety of available inspection sensors. Non-contact laser digitizers and analog scanning touch probes require very well tuned CMM motion control, as well as an extensible, open architecture interface. This paper describes the implementation of a retrofit CMM motion controller designed for open architecture interface to a variety of sensors. The controller is based on an Intel Pentium microcomputer and a Servo To Go motion interface electronics card. Motor amplifiers, safety, and additional interface electronics are housed in a separate enclosure. Host Signal Processing (HSP) is used for the motion control algorithm. Compared to the usual host plus DSP architecture, single CPU HSP simplifies integration with the various sensors, and implementation of software geometric error compensation. Motion control tuning is accomplished using a remote computer via 100BaseTX Ethernet. A Graphical User Interface (GUI) is used to enter geometric error compensation data, and to optimize the motion control tuning parameters. It is shown that this architecture achieves the required real time motion control response, yet is much easier to extend to additional sensors.

  16. Rationalizing vaccine injury compensation.

    PubMed

    Mello, Michelle M

    2008-01-01

    Legislation recently adopted by the United States Congress provides producers of pandemic vaccines with near-total immunity from civil lawsuits without making individuals injured by those vaccines eligible for compensation through the Vaccine Injury Compensation Program. The unusual decision not to provide an alternative mechanism for compensation is indicative of a broader problem of inconsistency in the American approach to vaccine-injury compensation policy. Compensation policies have tended to reflect political pressures and economic considerations more than any cognizable set of principles. This article identifies a set of ethical principles bearing on the circumstances in which vaccine injuries should be compensated, both inside and outside public health emergencies. A series of possible bases for compensation rules, some grounded in utilitarianism and some nonconsequentialist, are discussed and evaluated. Principles of fairness and reasonableness are found to constitute the strongest bases. An ethically defensible compensation policy grounded in these principles would make a compensation fund available to all individuals with severe injuries and to individuals with less-severe injuries whenever the vaccination was required by law or professional duty.

  17. Three-dimensional motion estimation using genetic algorithms from image sequence in an active stereo vision system

    NASA Astrophysics Data System (ADS)

    Dipanda, Albert; Ajot, Jerome; Woo, Sanghyuk

    2003-06-01

    This paper proposes a method for estimating 3D rigid motion parameters from an image sequence of a moving object. The 3D surface measurement is achieved using an active stereovision system composed of a camera and a light projector, which illuminates objects to be analyzed by a pyramid-shaped laser beam. By associating the laser rays and the spots in the 2D image, the 3D points corresponding to these spots are reconstructed. Each image of the sequence provides a set of 3D points, which is modeled by a B-spline surface. Therefore, estimating the motion between two images of the sequence boils down to matching two B-spline surfaces. We consider the matching environment as an optimization problem and find the optimal solution using Genetic Algorithms. A chromosome is encoded by concatenating six binary coded parameters, the three angles of rotation and the x-axis, y-axis and z-axis translations. We have defined an original fitness function to calculate the similarity measure between two surfaces. The matching process is performed iteratively: the number of points to be matched grows as the process advances and results are refined until convergence. Experimental results with a real image sequence are presented to show the effectiveness of the method.

  18. Modeling and classifying human activities from trajectories using a class of space-varying parametric motion fields.

    PubMed

    Nascimento, Jacinto C; Marques, Jorge S; Lemos, João M

    2013-05-01

    Many approaches to trajectory analysis, such as clustering or classification, use probabilistic generative models, thus not requiring trajectory alignment/registration. Switched linear dynamical models (e.g., HMMs) have been used in this context, due to their ability to describe different motion regimes. However, these models are not suitable for handling space-dependent dynamics that are more naturally captured by nonlinear models. As is well known, these are more difficult to identify. In this paper, we propose a new way of modeling trajectories, based on a mixture of parametric motion vector fields that depend on a small number of parameters. Switching among these fields follows a probabilistic mechanism, characterized by a field of stochastic matrices. This approach allows representing a wide variety of trajectories and modeling space-dependent behaviors without using global nonlinear dynamical models. Experimental evaluation is conducted in both synthetic and real scenarios. The latter concerning with human trajectory modeling for activity classification, a central task in video surveillance.

  19. Effects of restrictive clothing on lumbar range of motion and trunk muscle activity in young adult worker manual material handling.

    PubMed

    Eungpinichpong, Wichai; Buttagat, Vitsarut; Areeudomwong, Pattanasin; Pramodhyakul, Noppol; Swangnetr, Manida; Kaber, David; Puntumetakul, Rungthip

    2013-11-01

    The objective of this study was to examine the effect of wearing restrictive trousers on lumbar spine movement, trunk muscle activity and low back discomfort (LBD) in simulations of manual material handling (MMH) tasks. Twenty-eight young adults participated in the study performing box lifting, liquid container handling while squatting, and forward reaching while sitting on a task chair when wearing tight pants (sizes too small for the wearer) vs. fit pants (correct size according to anthropometry). Each task was repeated three times and video recordings were used as a basis for measuring lumbar range of motion (LRoM). The response was normalized in terms on baseline hip mobility. Trunk muscle activity of rectus abdominis (RA) and erector spinae (ES) muscles were also measured in each trial and normalized. At the close of each trial, participants rated LBD using a visual analog scale. Results revealed significant effects of both pants and task types on the normalized LRoM, trunk muscle activity and subjective ratings of LBD. The LRoM was higher and trunk muscle (ES) activity was lower for participants when wearing tight pants, as compared to fit pants. Discomfort ratings were significantly higher for tight pants than fit. These results provide guidance for recommendations on work clothing fit in specific types of MMH activities in order to reduce the potential of low-back pain among younger workers in industrial companies.

  20. 29 CFR 36.515 - Compensation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Activities Prohibited § 36.515 Compensation. A recipient shall not make or enforce any policy or practice... opposite sex for equal work on jobs the performance of which requires equal skill, effort,...

  1. 29 CFR 36.515 - Compensation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Activities Prohibited § 36.515 Compensation. A recipient shall not make or enforce any policy or practice... opposite sex for equal work on jobs the performance of which requires equal skill, effort,...

  2. 7 CFR 15a.54 - Compensation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Activities Prohibited § 15a.54 Compensation. A recipient shall not make or enforce any policy or practice... opposite sex for equal work on jobs the performance of which requires equal skill, effort,...

  3. 44 CFR 19.515 - Compensation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Programs or Activities Prohibited § 19.515 Compensation. A recipient shall not make or enforce any policy... employees of the opposite sex for equal work on jobs the performance of which requires equal skill,...

  4. 10 CFR 5.515 - Compensation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Activities Prohibited § 5.515 Compensation. A recipient shall not make or enforce any policy or practice that... for equal work on jobs the performance of which requires equal skill, effort, and responsibility,...

  5. ERROR COMPENSATOR FOR A POSITION TRANSDUCER

    DOEpatents

    Fowler, A.H.

    1962-06-12

    A device is designed for eliminating the effect of leadscrew errors in positioning machines in which linear motion of a slide is effected from rotary motion of a leadscrew. This is accomplished by providing a corrector cam mounted on the slide, a cam follower, and a transducer housing rotatable by the follower to compensate for all the reproducible errors in the transducer signal which can be related to the slide position. The transducer has an inner part which is movable with respect to the transducer housing. The transducer inner part is coupled to the means for rotating the leadscrew such that relative movement between this part and its housing will provide an output signal proportional to the position of the slide. The corrector cam and its follower perform the compensation by changing the angular position of the transducer housing by an amount that is a function of the slide position and the error at that position. (AEC)

  6. Activity Classification Using Mobile Phone based Motion Sensing and Distributed Computing.

    PubMed

    Artetxe, Arkaitz; Beristain, Andoni; Kabongo, Luis

    2014-01-01

    In this work we present a system that uses the accelerometer embedded in a mobile phone to perform activity recognition, with the purpose of continuously and pervasively monitoring the users' level of physical activity in their everyday life. Several classification algorithms are analysed and their performance measured, based for 6 different activities, namely walking, running, climbing stairs, descending stairs, sitting and standing. Feature selection has also been explored in order to minimize computational load, which is one of the main concerns given the restrictions of smartphones in terms of processor capabilities and specially battery life.

  7. Temperature-Compensating Inactive Strain Gauge

    NASA Technical Reports Server (NTRS)

    Moore, Thomas C., Sr.

    1993-01-01

    Thermal contribution to output of active gauge canceled. High-temperature strain gauges include both active gauge wires sensing strains and inactive gauge wires providing compensation for thermal contributions to gauge readings. Inactive-gauge approach to temperature compensation applicable to commercially available resistance-type strain gauges operating at temperatures up to 700 degrees F and to developmental strain gauges operating at temperatures up to 2,000 degrees F.

  8. Magnetic force driven six degree-of-freedom active vibration isolation system using a phase compensated velocity sensor

    SciTech Connect

    Kim, Yongdae; Park, Kyihwan; Kim, Sangyoo

    2009-04-15

    A six-axis active vibration isolation system (AVIS) is developed using voice coil actuators. Point contact configuration is employed to have an easy assembly of eight voice coil actuators to an upper and a base plates. The velocity sensor, using an electromagnetic principle that is commonly used in the vibration control, is investigated since its phase lead characteristic causes an instability problem for a low frequency vibration. The performances of the AVIS are investigated in the frequency domain and finally validated by comparing with the passive isolation system using the atomic force microscope images.

  9. Worker's Compensation: Will College and University Professors Be Compensated for Mental Injuries Caused by Work-Related Stress?

    ERIC Educational Resources Information Center

    Hasty, Keith N.

    1991-01-01

    The extent to which college faculty may recover compensation for debilitating mental illness resulting from stressful work-related activities is discussed. General requirements for worker's compensation claims, compensability of stress-related mental and physical illnesses, applicability of these standards to college faculty, and the current state…

  10. The activL® Artificial Disc: a next-generation motion-preserving implant for chronic lumbar discogenic pain

    PubMed Central

    Yue, James J; Garcia, Rolando; Miller, Larry E

    2016-01-01

    Degeneration of the lumbar intervertebral discs is a leading cause of chronic low back pain in adults. Treatment options for patients with chronic lumbar discogenic pain unresponsive to conservative management include total disc replacement (TDR) or lumbar fusion. Until recently, only two lumbar TDRs had been approved by the US Food and Drug Administration − the Charité Artificial Disc in 2004 and the ProDisc-L Total Disc Replacement in 2006. In June 2015, a next-generation lumbar TDR received Food and Drug Administration approval − the activL® Artificial Disc (Aesculap Implant Systems). Compared to previous-generation lumbar TDRs, the activL® Artificial Disc incorporates specific design enhancements that result in a more precise anatomical match and allow a range of motion that better mimics the healthy spine. The results of mechanical and clinical studies demonstrate that the activL® Artificial Disc results in improved mechanical and clinical outcomes versus earlier-generation artificial discs and compares favorably to lumbar fusion. The purpose of this report is to describe the activL® Artificial Disc including implant characteristics, intended use, surgical technique, postoperative care, mechanical testing, and clinical experience to date. PMID:27274317

  11. The activL(®) Artificial Disc: a next-generation motion-preserving implant for chronic lumbar discogenic pain.

    PubMed

    Yue, James J; Garcia, Rolando; Miller, Larry E

    2016-01-01

    Degeneration of the lumbar intervertebral discs is a leading cause of chronic low back pain in adults. Treatment options for patients with chronic lumbar discogenic pain unresponsive to conservative management include total disc replacement (TDR) or lumbar fusion. Until recently, only two lumbar TDRs had been approved by the US Food and Drug Administration - the Charité Artificial Disc in 2004 and the ProDisc-L Total Disc Replacement in 2006. In June 2015, a next-generation lumbar TDR received Food and Drug Administration approval - the activL(®) Artificial Disc (Aesculap Implant Systems). Compared to previous-generation lumbar TDRs, the activL(®) Artificial Disc incorporates specific design enhancements that result in a more precise anatomical match and allow a range of motion that better mimics the healthy spine. The results of mechanical and clinical studies demonstrate that the activL(®) Artificial Disc results in improved mechanical and clinical outcomes versus earlier-generation artificial discs and compares favorably to lumbar fusion. The purpose of this report is to describe the activL(®) Artificial Disc including implant characteristics, intended use, surgical technique, postoperative care, mechanical testing, and clinical experience to date.

  12. Present-day Block Motions and Strain Accumulation on Active Faults in the Caribbean

    NASA Astrophysics Data System (ADS)

    Symithe, S. J.; Calais, E.; Freed, A. M.

    2014-12-01

    The quasi-frontal subduction of the north and south American plates under the Lesser Antilles and the left and right lateral strike-slip along the northern and southern margins of the Caribbean plate offer the opportunity to study the transition from subduction to strike-slip between major plates. In addition, the segmentation and degree of interplate coupling at the Lesser Antilles subduction is key to our understanding of the earthquake potential of a subduction whose length is similar to the rupture area of the Mw9.0, 2011, Tohoku earthquake in Japan. We used the block modeling approach described in Meade and Loveless (2009) to test the optimal block geometry for the northern, eastern and southern boundaries of the Caribbean plate. We solved for angular velocities for each block/plate and strain accumulation rates for all major faults in the region. Then we calculated the variations in interplate coupling along the subduction plate boundaries using the accumulated strain rates. We tested 11 different block geometries; they are all based on geological evidences unless they are suggested by discrepancies within the GPS and seismological data or by previously published results. We confirm the existence of the micro Gonave plate. The boundary between the Micro-Gonave plate and the Hispaniola crustal block is better suited along the Haitian-Thrust-Belt instead of the Neiba-Matheux fault. The interseismic GPS velocities do not show evidence for a distinct North Lesser Antilles block. We found a totally uncoupled section of the subduction starting from the Puerto-Rico trench to the end of the Lesser Antilles section. All the relative motion of the Caribbean block is lost aseismically along the boundary of that portion of the subduction. While we found strong coupling along the northern Hispaniola section, most of the deformation on this region is being accumulated along intrablock faults with very low strain (~2mm/yr) along the intraplate subduction interface. We also

  13. Objects in Motion

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2008-01-01

    Objects in motion attract children. The following activity helps children explore the motion of bodies riding in a vehicle and safely demonstrates the answer to their questions, "Why do I need a seatbelt?" Children will enjoy moving the cup around, even if all they "see" is a cup rather than understanding it represents a car. They will understand…

  14. Interactive modeling activities in the classroom—rotational motion and smartphone gyroscopes

    NASA Astrophysics Data System (ADS)

    Pörn, Ray; Braskén, Mats

    2016-11-01

    The wide-spread availability of smartphones makes them a valuable addition to the measurement equipment in both the physics classroom and the instructional laboratory, encouraging an active interaction between measurements and modeling activities. In this paper we illustrate this interaction by making use of the internal gyroscope of a smartphone to study and measure the rotational dynamics of objects rotating about a fixed axis. The workflow described in this paper has been tested in a classroom setting and found to encourage an exploratory approach to both data collecting and modeling.

  15. Transponder-aided joint calibration and synchronization compensation for distributed radar systems.

    PubMed

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent varia