Science.gov

Sample records for active motor threshold

  1. Cortex glial cells activation, associated with lowered mechanical thresholds and motor dysfunction, persists into adulthood after neonatal pain

    PubMed Central

    Sanada, Luciana Sayuri; Sato, Karina Laurenti; Machado, Nathalia Leilane Berto; de Cássia do Carmo, Elisabete; Sluka, Kathleen A.; Fazan, Valeria Paula Sassoli

    2014-01-01

    We investigated if changes in glial activity in cortical areas that process nociceptive stimuli persisted in adult rats after neonatal injury. Neonatal pain was induced by repetitive needle prickling on the right paw, twice per day for 15 days starting at birth. Wistar rats received either neonatal pain or tactile stimulation and were tested behaviorally for mechanical withdrawal thresholds of the paws and gait alterations, after 15 (P15) or 180 (P180) days of life. Brains from rats on P15 and P180 were immunostained for glial markers (GFAP, MCP-1, OX-42) and the following cortical areas were analyzed for immunoreactivity density: prefrontal, anterior insular, anterior cingulated, somatosensory and motor cortices. Withdrawal thresholds of the stimulated paw remained decreased on P180 after neonatal pain when compared to controls. Neonatal pain animals showed increased density for both GFAP and MCP-1 staining, but not for OX-42, in all investigated cortical areas on both experimental times (P15 and P180). Painful stimuli in the neonatal period produced pain behaviors immediately after injury that persisted in adult life, and was accompanied by increase in the glial markers density in cortical areas that process and interpret pain. Thus, long-lasting changes in cortical glial activity could be, at least in part, responsible for the persistent hyperalgesia in adult rats that suffered from neonatal pain. PMID:24667146

  2. Cortex glial cells activation, associated with lowered mechanical thresholds and motor dysfunction, persists into adulthood after neonatal pain.

    PubMed

    Sanada, Luciana Sayuri; Sato, Karina Laurenti; Machado, Nathalia Leilane Berto; Carmo, Elisabete de Cássia do; Sluka, Kathleen A; Fazan, Valeria Paula Sassoli

    2014-06-01

    We investigated if changes in glial activity in cortical areas that process nociceptive stimuli persisted in adult rats after neonatal injury. Neonatal pain was induced by repetitive needle prickling on the right paw, twice per day for 15 days starting at birth. Wistar rats received either neonatal pain or tactile stimulation and were tested behaviorally for mechanical withdrawal thresholds of the paws and gait alterations, after 15 (P15) or 180 (P180) days of life. Brains from rats on P15 and P180 were immunostained for glial markers (GFAP, MCP-1, OX-42) and the following cortical areas were analyzed for immunoreactivity density: prefrontal, anterior insular, anterior cingulated, somatosensory and motor cortices. Withdrawal thresholds of the stimulated paw remained decreased on P180 after neonatal pain when compared to controls. Neonatal pain animals showed increased density for both GFAP and MCP-1 staining, but not for OX-42, in all investigated cortical areas on both experimental times (P15 and P180). Painful stimuli in the neonatal period produced pain behaviors immediately after injury that persisted in adult life, and was accompanied by increase in the glial markers density in cortical areas that process and interpret pain. Thus, long-lasting changes in cortical glial activity could be, at least in part, responsible for the persistent hyperalgesia in adult rats that suffered from neonatal pain.

  3. Effects of dietary fats on learning, pain threshold, thermoregulation and motor activity in rats: interaction with the length of feeding period.

    PubMed

    Yehuda, S; Carasso, R L

    1987-02-01

    The effects of both a semisynthetic diet containing 20% fat from various sources (soybean oil, sunflower oil and lard) and a control diet on learning capacity, motor activity, pain threshold and thermoregulation were studied in rats which were fed on these diets for various lengths of feeding periods (1, 2, 3 and 4 weeks). Two weeks feeding period of soybean oil source induced an improvement in learning capacity, which was further enhanced by increasing the length of the feeding period. A 3-week feeding period was required to obtain an increase in the pain threshold, by which time the rats were also protected from d-amphetamine induced hypothermia. The analgesia induced by the diet is naloxone-dependent. None of the other diets, including the sunflower oil diet, which is richer in polyunsaturated fatty acids, differed from control diet. While the mode of action of this diet is still unknown, the effects of the soybean oil source diet cannot be attributed to nutritional factors such as changes in energy consumption or body weight.

  4. Hemispheric lateralization of motor thresholds in relation to stuttering.

    PubMed

    Alm, Per A; Karlsson, Ragnhild; Sundberg, Madeleine; Axelson, Hans W

    2013-01-01

    Stuttering is a complex speech disorder. Previous studies indicate a tendency towards elevated motor threshold for the left hemisphere, as measured using transcranial magnetic stimulation (TMS). This may reflect a monohemispheric motor system impairment. The purpose of the study was to investigate the relative side-to-side difference (asymmetry) and the absolute levels of motor threshold for the hand area, using TMS in adults who stutter (n = 15) and in controls (n = 15). In accordance with the hypothesis, the groups differed significantly regarding the relative side-to-side difference of finger motor threshold (p = 0.0026), with the stuttering group showing higher motor threshold of the left hemisphere in relation to the right. Also the absolute level of the finger motor threshold for the left hemisphere differed between the groups (p = 0.049). The obtained results, together with previous investigations, provide support for the hypothesis that stuttering tends to be related to left hemisphere motor impairment, and possibly to a dysfunctional state of bilateral speech motor control.

  5. Poisson distribution to analyze near-threshold motor evoked potentials.

    PubMed

    Kaelin-Lang, Alain; Conforto, Adriana B; Z'Graggen, Werner; Hess, Christian W

    2010-11-01

    Motor unit action potentials (MUAPs) evoked by repetitive, low-intensity transcranial magnetic stimulation can be modeled as a Poisson process. A mathematical consequence of such a model is that the ratio of the variance to the mean of the amplitudes of motor evoked potentials (MEPs) should provide an estimate of the mean size of the individual MUAPs that summate to generate each MEP. We found that this is, in fact, the case. Our finding thus supports the use of the Poisson distribution to model MEP generation and indicates that this model enables characterization of the motor unit population that contributes to near-threshold MEPs.

  6. Motor threshold predicts working memory performance in healthy humans.

    PubMed

    Schicktanz, Nathalie; Schwegler, Kyrill; Fastenrath, Matthias; Spalek, Klara; Milnik, Annette; Papassotiropoulos, Andreas; Nyffeler, Thomas; de Quervain, Dominique J-F

    2014-01-01

    Cognitive functions, such as working memory, depend on neuronal excitability in a distributed network of cortical regions. It is not known, however, if interindividual differences in cortical excitability are related to differences in working memory performance. In the present transcranial magnetic stimulation study, which included 188 healthy young subjects, we show that participants with lower resting motor threshold, which is related to higher corticospinal excitability, had increased 2-back working memory performance. The findings may help to better understand the link between cortical excitability and cognitive functions and may also have important clinical implications with regard to conditions of altered cortical excitability.

  7. An Activation Threshold Model for Response Inhibition

    PubMed Central

    MacDonald, Hayley J.; McMorland, Angus J. C.; Stinear, Cathy M.; Coxon, James P.; Byblow, Winston D.

    2017-01-01

    Reactive response inhibition (RI) is the cancellation of a prepared response when it is no longer appropriate. Selectivity of RI can be examined by cueing the cancellation of one component of a prepared multi-component response. This substantially delays execution of other components. There is debate regarding whether this response delay is due to a selective neural mechanism. Here we propose a computational activation threshold model (ATM) and test it against a classical “horse-race” model using behavioural and neurophysiological data from partial RI experiments. The models comprise both facilitatory and inhibitory processes that compete upstream of motor output regions. Summary statistics (means and standard deviations) of predicted muscular and neurophysiological data were fit in both models to equivalent experimental measures by minimizing a Pearson Chi-square statistic. The ATM best captured behavioural and neurophysiological dynamics of partial RI. The ATM demonstrated that the observed modulation of corticomotor excitability during partial RI can be explained by nonselective inhibition of the prepared response. The inhibition raised the activation threshold to a level that could not be reached by the original response. This was necessarily followed by an additional phase of facilitation representing a secondary activation process in order to reach the new inhibition threshold and initiate the executed component of the response. The ATM offers a mechanistic description of the neural events underlying RI, in which partial movement cancellation results from a nonselective inhibitory event followed by subsequent initiation of a new response. The ATM provides a framework for considering and exploring the neuroanatomical constraints that underlie RI. PMID:28085907

  8. Effects of whole body vibration on motor unit recruitment and threshold.

    PubMed

    Pollock, Ross D; Woledge, Roger C; Martin, Finbarr C; Newham, Di J

    2012-02-01

    Whole body vibration (WBV) has been suggested to elicit reflex muscle contractions but this has never been verified. We recorded from 32 single motor units (MU) in the vastus lateralis of 7 healthy subjects (34 ± 15.4 yr) during five 1-min bouts of WBV (30 Hz, 3 mm peak to peak), and the vibration waveform was also recorded. Recruitment thresholds were recorded from 38 MUs before and after WBV. The phase angle distribution of all MUs during WBV was nonuniform (P < 0.001) and displayed a prominent peak phase angle of firing. There was a strong linear relationship (r = -0.68, P < 0.001) between the change in recruitment threshold after WBV and average recruitment threshold; the lowest threshold MUs increased recruitment threshold (P = 0.008) while reductions were observed in the higher threshold units (P = 0.031). We investigated one possible cause of changed thresholds. Presynaptic inhibition in the soleus was measured in 8 healthy subjects (29 ± 4.6 yr). A total of 30 H-reflexes (stimulation intensity 30% Mmax) were recorded before and after WBV: 15 conditioned by prior stimulation (60 ms) of the antagonist and 15 unconditioned. There were no significant changes in the relationship between the conditioned and unconditioned responses. The consistent phase angle at which each MU fired during WBV indicates the presence of reflex muscle activity similar to the tonic vibration reflex. The varying response in high- and low-threshold MUs may be due to the different contributions of the mono- and polysynaptic pathways but not presynaptic inhibition.

  9. The threshold of cortical electrical stimulation for mapping sensory and motor functional areas.

    PubMed

    Guojun, Zhang; Duanyu, Ni; Fu, Paul; Lixin, Cai; Tao, Yu; Wei, Du; Liang, Qiao; Zhiwei, Ren

    2014-02-01

    This study aimed to investigate the threshold of cortical electrical stimulation (CES) for functional brain mapping during surgery for the treatment of rolandic epilepsy. A total of 21 patients with rolandic epilepsy who underwent surgical treatment at the Beijing Institute of Functional Neurosurgery between October 2006 and March 2008 were included in this study. Their clinical data were retrospectively collected and analyzed. The thresholds of CES for motor response, sensory response, and after discharge production along with other threshold-related factors were investigated. The thresholds (mean ± standard deviation) for motor response, sensory response, and after discharge production were 3.48 ± 0.87, 3.86 ± 1.31, and 4.84 ± 1.38 mA, respectively. The threshold for after discharge production was significantly higher than those of both the motor and sensory response (both p<0.05). A negative linear correlation was found between the threshold of after discharge production and disease duration. Using the CES parameters at a stimulation frequency of 50 Hz and a pulse width of 0.2 ms, the threshold of sensory and motor responses were similar, and the threshold of after discharge production was higher than that of sensory and motor response.

  10. Effects of stimulation parameters and electrode location on thresholds for epidural stimulation of cat motor cortex

    NASA Astrophysics Data System (ADS)

    Wongsarnpigoon, Amorn; Grill, Warren M.

    2011-12-01

    Epidural electrical stimulation (ECS) of the motor cortex is a developing therapy for neurological disorders. Both placement and programming of ECS systems may affect the therapeutic outcome, but the treatment parameters that will maximize therapeutic outcomes and minimize side effects are not known. We delivered ECS to the motor cortex of anesthetized cats and investigated the effects of electrode placement and stimulation parameters on thresholds for evoking motor responses in the contralateral forelimb. Thresholds were inversely related to stimulation frequency and the number of pulses per stimulus train. Thresholds were lower over the forelimb representation in motor cortex (primary site) than surrounding sites (secondary sites), and thresholds at sites <4 mm away from the primary site were significantly lower than at sites >4 mm away. Electrode location and montage influenced the effects of polarity on thresholds: monopolar anodic and cathodic thresholds were not significantly different over the primary site, cathodic thresholds were significantly lower than anodic thresholds over secondary sites and bipolar thresholds were significantly lower with the anode over the primary site than with the cathode over the primary site. A majority of bipolar thresholds were either between or equal to the respective monopolar thresholds, but several bipolar thresholds were greater than or less than the monopolar thresholds of both the anode and cathode. During bipolar stimulation, thresholds were influenced by both electric field superposition and indirect, synaptically mediated interactions. These results demonstrate the influence of stimulation parameters and electrode location during cortical stimulation, and these effects should be considered during the programming of systems for therapeutic cortical stimulation.

  11. Statistical threshold for nonlinear Granger Causality in motor intention analysis.

    PubMed

    Liu, MengTing; Kuo, Ching-Chang; Chiu, Alan W L

    2011-01-01

    Directed influence between multiple channel signal measurements is important for the understanding of large dynamic systems. This research investigates a method to analyze large, complex multi-variable systems using directional flow measure to extract relevant information related to the functional connectivity between different units in the system. The directional flow measure was completed through nonlinear Granger Causality (GC) which is based on the nonlinear predictive models using radial basis functions (RBF). In order to extract relevant information from the causality map, we propose a threshold method that can be set up through a spatial statistical process where only the top 20% of causality pathways is shown. We applied this approach to a brain computer interface (BCI) application to decode the different intended arm reaching movement (left, right and forward) using 128 surface electroencephalography (EEG) electrodes. We also evaluated the importance of selecting the appropriate radius in the region of interest and found that the directions of causal influence of active brain regions were unique with respect to the intended direction.

  12. Left-right differences in motor thresholds after stimulation of the globus pallidus before pallidotomy.

    PubMed

    Berić, A; Sterio, D; Dogali, M; Kelly, P

    1997-08-01

    Left-right upper limb motor threshold differences were found after electrical stimulation of the globus pallidus administered as a neuroprotective measure to avoid lesioning of the internal capsule during stereotactic pallidotomy for treatment of Parkinson's disease. Left sided stimulation resulted in lower thresholds in right handed patients compared with left handed patients. These differences were significant in women, but no significant differences were found in men. In patients undergoing bilateral pallidotomy, the stimulation produced more significant left-right motor threshold differences. In the absence of known sex-related anatomical left-right corticospinal tract differences, the variability was the result of spinal excitability modulations most likely related to handedness.

  13. Potency matters: thresholds govern endocrine activity.

    PubMed

    Borgert, Christopher J; Baker, Stephen P; Matthews, John C

    2013-10-01

    Whether thresholds exist for endocrine active substances and for endocrine disrupting effects of exogenous chemicals has been posed as a question for regulatory policy by the European Union. This question arises from a concern that the endocrine system is too complex to allow estimations of safe levels of exposure to any chemical with potential endocrine activity, and a belief that any such chemical can augment, retard, or disrupt the normal background activity of endogenous hormones. However, vital signaling functions of the endocrine system require it to continuously discriminate the biological information conveyed by potent endogenous hormones from a more concentrated background of structurally similar, endogenous molecules with low hormonal potential. This obligatory ability to discriminate important hormonal signals from background noise can be used to define thresholds for induction of hormonal effects, without which normal physiological functions would be impossible. From such thresholds, safe levels of exposure can be estimated. This brief review highlights how the fundamental principles governing hormonal effects - affinity, efficacy, potency, and mass action - dictate the existence of thresholds and why these principles also define the potential that exogenous chemicals might have to interfere with normal endocrine functioning.

  14. Activities for a Perceptual Motor Program.

    ERIC Educational Resources Information Center

    Brinning, Dorothy; And Others

    Perceptual motor activities for physically handicapped children are presented in the areas of fine and gross motor skills. Also detailed are activities to develop body image, visual motor skills, and tactile and auditory perception. (JD)

  15. Electric Field Model of Transcranial Electric Stimulation in Nonhuman Primates: Correspondence to Individual Motor Threshold

    PubMed Central

    Lee, Won Hee; Lisanby, Sarah H.; Laine, Andrew F.

    2015-01-01

    Objective To develop a pipeline for realistic head models of nonhuman primates (NHPs) for simulations of noninvasive brain stimulation, and use these models together with empirical threshold measurements to demonstrate that the models capture individual anatomical variability. Methods Based on structural MRI data, we created models of the electric field (E-field) induced by right unilateral (RUL) electroconvulsive therapy (ECT) in four rhesus macaques. Individual motor threshold (MT) was measured with transcranial electric stimulation (TES) administered through the RUL electrodes in the same subjects. Results The interindividual anatomical differences resulted in 57% variation in median E-field strength in the brain at fixed stimulus current amplitude. Individualization of the stimulus current by MT reduced the E-field variation in the target motor area by 27%. There was significant correlation between the measured MT and the ratio of simulated electrode current and E-field strength (r2 = 0.95, p = 0.026). Exploratory analysis revealed significant correlations of this ratio with anatomical parameters including of the superior electrode-to-cortex distance, vertex-to-cortex distance, and brain volume (r2 > 0.96, p < 0.02). The neural activation threshold was estimated to be 0.45 ± 0.07 V/cm for 0.2 ms stimulus pulse width. Conclusion These results suggest that our individual-specific NHP E-field models appropriately capture individual anatomical variability relevant to the dosing of TES/ECT. These findings are exploratory due to the small number of subjects. Significance This work can contribute insight in NHP studies of ECT and other brain stimulation interventions, help link the results to clinical studies, and ultimately lead to more rational brain stimulation dosing paradigms. PMID:25910001

  16. Trunk muscle activation during golf swing: Baseline and threshold.

    PubMed

    Silva, Luís; Marta, Sérgio; Vaz, João; Fernandes, Orlando; Castro, Maria António; Pezarat-Correia, Pedro

    2013-10-01

    There is a lack of studies regarding EMG temporal analysis during dynamic and complex motor tasks, such as golf swing. The aim of this study is to analyze the EMG onset during the golf swing, by comparing two different threshold methods. Method A threshold was determined using the baseline activity recorded between two maximum voluntary contraction (MVC). Method B threshold was calculated using the mean EMG activity for 1000ms before the 500ms prior to the start of the Backswing. Two different clubs were also studied. Three-way repeated measures ANOVA was used to compare methods, muscles and clubs. Two-way mixed Intraclass Correlation Coefficient (ICC) with absolute agreement was used to determine the methods reliability. Club type usage showed no influence in onset detection. Rectus abdominis (RA) showed the higher agreement between methods. Erector spinae (ES), on the other hand, showed a very low agreement, that might be related to postural activity before the swing. External oblique (EO) is the first being activated, at 1295ms prior impact. There is a similar activation time between right and left muscles sides, although the right EO showed better agreement between methods than left side. Therefore, the algorithms usage is task- and muscle-dependent.

  17. Motor Activity Improves Temporal Expectancy

    PubMed Central

    Fautrelle, Lilian; Mareschal, Denis; French, Robert; Addyman, Caspar; Thomas, Elizabeth

    2015-01-01

    Certain brain areas involved in interval timing are also important in motor activity. This raises the possibility that motor activity might influence interval timing. To test this hypothesis, we assessed interval timing in healthy adults following different types of training. The pre- and post-training tasks consisted of a button press in response to the presentation of a rhythmic visual stimulus. Alterations in temporal expectancy were evaluated by measuring response times. Training consisted of responding to the visual presentation of regularly appearing stimuli by either: (1) pointing with a whole-body movement, (2) pointing only with the arm, (3) imagining pointing with a whole-body movement, (4) simply watching the stimulus presentation, (5) pointing with a whole-body movement in response to a target that appeared at irregular intervals (6) reading a newspaper. Participants performing a motor activity in response to the regular target showed significant improvements in judgment times compared to individuals with no associated motor activity. Individuals who only imagined pointing with a whole-body movement also showed significant improvements. No improvements were observed in the group that trained with a motor response to an irregular stimulus, hence eliminating the explanation that the improved temporal expectations of the other motor training groups was purely due to an improved motor capacity to press the response button. All groups performed a secondary task equally well, hence indicating that our results could not simply be attributed to differences in attention between the groups. Our results show that motor activity, even when it does not play a causal or corrective role, can lead to improved interval timing judgments. PMID:25806813

  18. Clinical Factors Underlying the Inter-individual Variability of the Resting Motor Threshold in Navigated Transcranial Magnetic Stimulation Motor Mapping.

    PubMed

    Sollmann, Nico; Tanigawa, Noriko; Bulubas, Lucia; Sabih, Jamil; Zimmer, Claus; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2017-01-01

    Correctly determining individual's resting motor threshold (rMT) is crucial for accurate and reliable mapping by navigated transcranial magnetic stimulation (nTMS), which is especially true for preoperative motor mapping in brain tumor patients. However, systematic data analysis on clinical factors underlying inter-individual rMT variability in neurosurgical motor mapping is sparse. The present study examined 14 preselected clinical factors that may underlie inter-individual rMT variability by performing multiple regression analysis (backward, followed by forward model comparisons) on the nTMS motor mapping data of 100 brain tumor patients. Data were collected from preoperative motor mapping of abductor pollicis brevis (APB), abductor digiti minimi (ADM), and flexor carpi radialis (FCR) muscle representations among these patients. While edema and age at exam in the ADM model only jointly reduced the unexplained variance significantly, the other factors kept in the ADM model (gender, antiepileptic drug intake, and motor deficit) and each of the factors kept in the APB and FCR models independently significantly reduced the unexplained variance. Hence, several clinical parameters contribute to inter-individual rMT variability and should be taken into account during initial and follow-up motor mappings. Thus, the present study adds basic evidence on inter-individual rMT variability, whereby some of the parameters are specific to brain tumor patients.

  19. Left-right differences in motor thresholds after stimulation of the globus pallidus before pallidotomy

    PubMed Central

    Beric, A; Sterio, D; Dogali, M; Kelly, P

    1997-01-01

    Left-right upper limb motor threshold differences were found after electrical stimulation of the globus pallidus administered as a neuroprotective measure to avoid lesioning of the internal capsule during stereotactic pallidotomy for treatment of Parkinson's disease. Left sided stimulation resulted in lower thresholds in right handed patients compared with left handed patients. These differences were significant in women, but no significant differences were found in men. In patients undergoing bilateral pallidotomy, the stimulation produced more significant left-right motor threshold differences. In the absence of known sex-related anatomical left-right corticospinal tract differences, the variability was the result of spinal excitability modulations most likely related to handedness.

 PMID:9285451

  20. 40 CFR 798.6200 - Motor activity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Motor activity. 798.6200 Section 798... (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Neurotoxicity § 798.6200 Motor activity. (a) Purpose—(1... the effects of administration of the substance on motor activity is useful when neurotoxicity...

  1. Motor activity under weightless conditions

    NASA Technical Reports Server (NTRS)

    Kasyan, I. I.; Kopanev, V. I.; Cherepakhin, M. A.; Yuganov, Y. M.

    1975-01-01

    The material presented on the motor activity under weightless conditions (brief and long) leads to the conclusion that it is not significantly disrupted, if those being examined are secured at the workplaces. Some discoordination of movement, moderately expressed disruption of the precision of reproduction of assigned muscular forces, etc., were observed. Motor disorders decrease significantly in proportion to the length of stay under weightless conditions. This apparently takes place, as a consequence of formation of a new functional system, adequate to the conditions of weightlessness. Tests on intact and labyrinthectomized animals have demonstrated that signaling from the inner ear receptors is superfluous in weightlessness, since it promotes the onset of disruptions in the combined work of the position analyzers.

  2. Adaptive spline autoregression threshold method in forecasting Mitsubishi car sales volume at PT Srikandi Diamond Motors

    NASA Astrophysics Data System (ADS)

    Susanti, D.; Hartini, E.; Permana, A.

    2017-01-01

    Sale and purchase of the growing competition between companies in Indonesian, make every company should have a proper planning in order to win the competition with other companies. One of the things that can be done to design the plan is to make car sales forecast for the next few periods, it’s required that the amount of inventory of cars that will be sold in proportion to the number of cars needed. While to get the correct forecasting, on of the methods that can be used is the method of Adaptive Spline Threshold Autoregression (ASTAR). Therefore, this time the discussion will focus on the use of Adaptive Spline Threshold Autoregression (ASTAR) method in forecasting the volume of car sales in PT.Srikandi Diamond Motors using time series data.In the discussion of this research, forecasting using the method of forecasting value Adaptive Spline Threshold Autoregression (ASTAR) produce approximately correct.

  3. IH activity is increased in populations of slow versus fast motor axons of the rat

    PubMed Central

    Lorenz, Chad; Jones, Kelvin E.

    2014-01-01

    Much is known about the electrophysiological variation in motoneuron somata across different motor units. However, comparatively less is known about electrophysiological variation in motor axons and how this could impact function or electrodiagnosis in healthy or diseased states. We performed nerve excitability testing on two groups of motor axons in Sprague–Dawley rats that are known to differ significantly in their chronic daily activity patterns and in the relative proportion of motor unit types: one group innervating the soleus (“slow motor axons”) and the other group innervating the tibialis anterior (“fast motor axons”) muscles. We found that slow motor axons have significantly larger accommodation compared to fast motor axons upon application of a 100 ms hyperpolarizing conditioning stimulus that is 40% of axon threshold (Z = 3.24, p = 0.001) or 20% of axon threshold (Z = 2.67, p = 0.008). Slow motor axons had larger accommodation to hyperpolarizing currents in the current-threshold measurement (-80% Z = 3.07, p = 0.002; -90% Z = 2.98, p = 0.003). In addition, we found that slow motor axons have a significantly smaller rheobase than fast motor axons (Z = -1.99, p = 0.047) accompanied by a lower threshold in stimulus-response curves. The results provide evidence that slow motor axons have greater activity of the hyperpolarization-activated inwardly rectifying cation conductance (IH) than fast motor axons. It is possible that this difference between fast and slow axons is caused by an adaptation to their chronic differences in daily activity patterns, and that this adaptation might have a functional effect on the motor unit. Moreover, these findings indicate that slow and fast motor axons may react differently to pathological conditions. PMID:25309406

  4. Changes in sensory hand representation and pain thresholds induced by motor cortex stimulation in humans.

    PubMed

    Houzé, Bérengère; Bradley, Claire; Magnin, Michel; Garcia-Larrea, Luis

    2013-11-01

    Shrinking of deafferented somatosensory regions after neural damage is thought to participate to the emergence of neuropathic pain, and pain-relieving procedures have been reported to induce the normalization of altered cortical maps. While repetitive magnetic stimulation (rTMS) of the motor cortex can lessen neuropathic pain, no evidence has been provided that this is concomitant to changes in sensory maps. Here, we assessed in healthy volunteers the ability of 2 modes of motor cortex rTMS commonly used in pain patients to induce changes in pain thresholds and plastic phenomena in the S1 cortex. Twenty minutes of high-frequency (20 Hz) rTMS significantly increased pain thresholds in the contralateral hand, and this was associated with the expansion of the cortical representation of the hand on high-density electroencephalogram source analysis. Neither of these effects were observed after sham rTMS, nor following intermittent theta-burst stimulation (iTBS). The superiority of 20-Hz rTMS over iTBS to induce sensory plasticity may reflect its better match with intrinsic cortical motor frequencies, which oscillate at around 20 Hz. rTMS-induced changes might partly counterbalance the plasticity induced by a nerve lesion, and thus substantiate the use of rTMS to treat human pain. However, a mechanistic relation between S1 plasticity and pain-relieving effects is far from being established.

  5. Motor Cortex Activity Organizes the Developing Rubrospinal System

    PubMed Central

    Williams, Preston T.J.A.

    2015-01-01

    The corticospinal and rubrospinal systems function in skilled movement control. A key question is how do these systems develop the capacity to coordinate their motor functions and, in turn, if the red nucleus/rubrospinal tract (RN/RST) compensates for developmental corticospinal injury? We used the cat to investigate whether the developing rubrospinal system is shaped by activity-dependent interactions with the developing corticospinal system. We unilaterally inactivated M1 by muscimol microinfusion between postnatal weeks 5 and 7 to examine activity-dependent interactions and whether the RN/RST compensates for corticospinal tract (CST) developmental motor impairments and CST misprojections after M1 inactivation. We examined the RN motor map and RST cervical projections at 7 weeks of age, while the corticospinal system was inactivated, and at 14 weeks, after activity returned. During M1 inactivation, the RN on the same side showed normal RST projections and reduced motor thresholds, suggestive of precocious development. By contrast, the RN on the untreated/active M1 side showed sparse RST projections and an immature motor map. After M1 activity returned later in adolescent cat development, RN on the active M1/CST side continued to show a substantial loss of spinal terminations and an impaired motor map. RN/RST on the inactivated side regressed to a smaller map and fewer axons. Our findings suggest that the developing rubrospinal system is under activity-dependent regulation by the corticospinal system for establishing mature RST connections and RN motor map. The lack of RS compensation on the non-inactivated side can be explained by development of ipsilateral misprojections from the active M1 that outcompete the RST. SIGNIFICANCE STATEMENT Skilled movements reflect the activity of multiple descending motor systems and their interactions with spinal motor circuits. Currently, there is little insight into whether motor systems interact during development to

  6. Motor unit activity after eccentric exercise and muscle damage in humans.

    PubMed

    Semmler, J G

    2014-04-01

    It is well known that unaccustomed eccentric exercise leads to muscle damage and soreness, which can produce long-lasting effects on muscle function. How this muscle damage influences muscle activation is poorly understood. The purpose of this brief review is to highlight the effect of eccentric exercise on the activation of muscle by the nervous system, by examining the change in motor unit activity obtained from surface electromyography (EMG) and intramuscular recordings. Previous research shows that eccentric exercise produces unusual changes in the EMG–force relation that influences motor performance during isometric, shortening and lengthening muscle contractions and during fatiguing tasks. When examining the effect of eccentric exercise at the single motor unit level, there are substantial changes in recruitment thresholds, discharge rates, motor unit conduction velocities and synchronization, which can last for up to 1 week after eccentric exercise. Examining the time course of these changes suggests that the increased submaximal EMG after eccentric exercise most likely occurs through a decrease in motor unit conduction velocity and an increase in motor unit activity related to antagonist muscle coactivation and low-frequency fatigue. Furthermore, there is a commonly held view that eccentric exercise produces preferential damage to high-threshold motor units, but the evidence for this in humans is limited. Further research is needed to establish whether there is preferential damage to high-threshold motor units after eccentric exercise in humans, preferably by linking changes in motor unit activity with estimates of motor unit size using selective intramuscular recording techniques.

  7. Perceptual Motor Activities in the Home.

    ERIC Educational Resources Information Center

    Brinning, Dorothy; And Others

    Designed for parents, the guide offers instructions for home activities to supplement the school program for children with perceptual motor disturbances. An individual program sheet is provided; behavioral characteristics and the child's need for structure are explained. Activities detailed include motor planning, body image, fine motor…

  8. Pulse width dependence of motor threshold and input–output curve characterized with controllable pulse parameter transcranial magnetic stimulation

    PubMed Central

    Peterchev, Angel V.; Goetz, Stefan M.; Westin, Gregory G.; Luber, Bruce; Lisanby, Sarah H.

    2013-01-01

    Objective To demonstrate the use of a novel controllable pulse parameter TMS (cTMS) device to characterize human corticospinal tract physiology. Methods Motor threshold and input-output (IO) curve of right first dorsal interosseus were determined in 26 and 12 healthy volunteers, respectively, at pulse widths of 30, 60, and 120 μs using a custom-built cTMS device. Strength–duration curve rheobase and time constant were estimated from the motor thresholds. IO slope was estimated from sigmoid functions fitted to the IO data. Results All procedures were well tolerated with no seizures or other serious adverse events. Increasing pulse width decreased the motor threshold and increased the pulse energy and IO slope. The average strength–duration curve time constant is estimated to be 196 μs, 95% CI [181 μs, 210 μs]. IO slope is inversely correlated with motor threshold both across and within pulse width. A simple quantitative model explains these dependencies. Conclusions Our strength–duration time constant estimate compares well to published values and may be more accurate given increased sample size and enhanced methodology. Multiplying the IO slope by the motor threshold may provide a sensitive measure of individual differences in corticospinal tract physiology. Significance Pulse parameter control offered by cTMS provides enhanced flexibility that can contribute novel insights in TMS studies. PMID:23434439

  9. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder.

    PubMed

    Voon, Valerie; Brezing, Christina; Gallea, Cecile; Hallett, Mark

    2011-11-01

    Conversion disorder (CD) is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that CD with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amygdala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Subjects performed either an internally or externally generated 2-button action selection task in a functional MRI study. Eleven CD patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula, and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system, which is both hypoactive and functionally disconnected from prefrontal top-down regulation.

  10. Fuzzy Behavior Modulation with Threshold Activation for Autonomous Vehicle Navigation

    NASA Technical Reports Server (NTRS)

    Tunstel, Edward

    2000-01-01

    This paper describes fuzzy logic techniques used in a hierarchical behavior-based architecture for robot navigation. An architectural feature for threshold activation of fuzzy-behaviors is emphasized, which is potentially useful for tuning navigation performance in real world applications. The target application is autonomous local navigation of a small planetary rover. Threshold activation of low-level navigation behaviors is the primary focus. A preliminary assessment of its impact on local navigation performance is provided based on computer simulations.

  11. Motor Activity and the Education of Retardates.

    ERIC Educational Resources Information Center

    Cratty, Bryant J.

    Presented are chapters concerned with the relationship of motor activity to education. The topics discussed are research, movement and performance in infants and children, principles of teaching motor skills; arousal level and attention; scribbling, drawing, writing, strength, flexibility, endurance, and control of large muscles; music and rhythm;…

  12. 40 CFR 798.6200 - Motor activity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... systematically related to treatment. Among the variables which can affect motor activity are sound level, size and shape of the test cage, temperature, relative humidity, lighting conditions, odors, use of...

  13. 40 CFR 798.6200 - Motor activity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... systematically related to treatment. Among the variables which can affect motor activity are sound level, size and shape of the test cage, temperature, relative humidity, lighting conditions, odors, use of...

  14. Motor patterns during active electrosensory acquisition

    PubMed Central

    Hofmann, Volker; Geurten, Bart R. H.; Sanguinetti-Scheck, Juan I.; Gómez-Sena, Leonel; Engelmann, Jacob

    2014-01-01

    Motor patterns displayed during active electrosensory acquisition of information seem to be an essential part of a sensory strategy by which weakly electric fish actively generate and shape sensory flow. These active sensing strategies are expected to adaptively optimize ongoing behavior with respect to either motor efficiency or sensory information gained. The tight link between the motor domain and sensory perception in active electrolocation make weakly electric fish like Gnathonemus petersii an ideal system for studying sensory-motor interactions in the form of active sensing strategies. Analyzing the movements and electric signals of solitary fish during unrestrained exploration of objects in the dark, we here present the first formal quantification of motor patterns used by fish during electrolocation. Based on a cluster analysis of the kinematic values we categorized the basic units of motion. These were then analyzed for their associative grouping to identify and extract short coherent chains of behavior. This enabled the description of sensory behavior on different levels of complexity: from single movements, over short behaviors to more complex behavioral sequences during which the kinematics alter between different behaviors. We present detailed data for three classified patterns and provide evidence that these can be considered as motor components of active sensing strategies. In accordance with the idea of active sensing strategies, we found categorical motor patterns to be modified by the sensory context. In addition these motor patterns were linked with changes in the temporal sampling in form of differing electric organ discharge frequencies and differing spatial distributions. The ability to detect such strategies quantitatively will allow future research to investigate the impact of such behaviors on sensing. PMID:24904337

  15. T Cell Activation Thresholds are Affected by Gravitational

    NASA Technical Reports Server (NTRS)

    Adams, Charley; Gonzalez, M.; Nelman-Gonzalez, M.

    1999-01-01

    T cells stimulated in space flight by various mitogenic signals show a dramatic reduction in proliferation and expression of early activation markers. Similar results are also obtained in a ground based model of microgravity, clinorotation, which provides a vector-averaged reduction of the apparent gravity on cells without significant shear force. Here we demonstrate that T cell inhibition is due to an increase in the required threshold for activation. Dose response curves indicate that cells activated during clinorotation require higher stimulation to achieve the same level of activation, as measured by CD69 expression. Interleukin 2 receptor expression, and DNA synthesis. The amount of stimulation necessary for 50% activation is 5 fold in the clinostat relative to static. Correlation of TCR internalization with activation also exhibit a dramatic right shift in clinorotation, demonstrating unequivocally that signal transduction mechanism independent of TCR triggering account for the increased activation threshold. Previous results from space flight experiments are consistent with the dose response curves obtained for clinorotation. Activation thresholds are important aspects of T cell memory, autoimmunity and tolerance Clinorotation is a useful, noninvasive tool for the study of cellular and biochemical event regulating T cell activation threshold and the effects of gravitation forces on these systems.

  16. Synchronization of motor unit activity during voluntary contraction in man.

    PubMed

    Datta, A K; Stephens, J A

    1990-03-01

    1. Motor unit synchronization has been studied in human first dorsal interosseous muscle. 2. Two needle electrodes were inserted into the muscle and the activity of pairs of motor units recorded. 3. Pre- and post-stimulus histograms of the firing of unit pairs showed a narrow central peak of duration 1.3-9.3 ms (88% of sample in the range 1-6 ms; mode 3.0 ms), together with a variable amount of synchronization of somewhat longer duration. 4. For the duration of the whole synchronization peak (85% sample in range 5-15 ms; mode between 6.1 and 8.0 ms (31% of sample], units fired between 8 and 485% times more often than would have been expected had the units been firing independently of one another. Amplitudes of the peak of the recorded histograms expressed as a proportion of control ranged from 1.8 to 10.9 (mean 3.9; bin width 160 microseconds). 5. The strength of synchronization between the firing of motor unit pairs was inversely related to differences in recruitment threshold. The largest amount of synchronization was observed for pairs of units in which both had recruitment thresholds less than 0.5 N or greater than 1.0 N. Less synchronization was found between pairs of units in which one had a recruitment threshold less than 0.05 N and the other a threshold greater than 1.0 N. 6. The time course of synchronization was well matched by the predictions of a theoretical model based on the hypothesis that underlying the observed synchronization is the joint arrival of EPSPs from branched last-order input fibres.

  17. Corticospinal excitability and sleep: a motor threshold assessment by transcranial magnetic stimulation after awakenings from REM and NREM sleep.

    PubMed

    Bertini, Mario; Ferrara, Michele; De Gennaro, Luigi; Curcio, Giuseppe; Fratello, Fabiana; Romei, Vincenzo; Pauri, Flavia; Rossini, Paolo Maria

    2004-03-01

    Transcranial magnetic stimulation (TMS) is a recently established technique in the neurosciences that allows the non-invasive assessment, among other parameters, of the excitability of motor cortex. Up to now, its application to sleep research has been very scarce and because of technical problems it provided contrasting results. In fact delivering one single suprathreshold magnetic stimulus easily awakes subjects, or lightens their sleep. For this reason, in the present study we assessed motor thresholds (MTs) upon rapid eye movement (REM) and non-rapid eye movement (NREM) sleep awakenings, both in the first and in the last part of the night. Taking into account that a full re-establishment of wake regional brain activity patterns upon awakening from sleep needs up to 20-30 min, it is possible to make inferences about the neurophysiological characteristics of the different sleep stages by analyzing the variables of interest immediately after provoked awakenings. Ten female volunteers slept in the lab for four consecutive nights. During the first night the MTs were collected, following a standardized procedure: 5 min before lights off, upon stage 2 awakening (second NREM period), upon REM sleep awakening (second REM period), upon the final morning awakening (always from stage 2). Results showed that MTs increased linearly from presleep wakefulness to REM sleep awakenings, and from the latter to stage 2 awakenings. There was also a time-of-night effect on MTs upon awakening from stage 2, indicating that MTs decreased from the first to the second part of the night. The increase in corticospinal excitability across the night, which parallels the fulfillment of sleep need, is consistent with the linear decrease of auditory arousal thresholds during the night. The maximal reduction of corticospinal excitability during early NREM sleep can be related to the hyperpolarization of thalamocortical neurons, and is in line with the decreased metabolic activity of motor

  18. Acute effects of dynamic exercises on the relationship between the motor unit firing rate and the recruitment threshold.

    PubMed

    Ye, Xin; Beck, Travis W; DeFreitas, Jason M; Wages, Nathan P

    2015-04-01

    The aim of this study was to compare the acute effects of concentric versus eccentric exercise on motor control strategies. Fifteen men performed six sets of 10 repetitions of maximal concentric exercises or eccentric isokinetic exercises with their dominant elbow flexors on separate experimental visits. Before and after the exercise, maximal strength testing and submaximal trapezoid isometric contractions (40% of the maximal force) were performed. Both exercise conditions caused significant strength loss in the elbow flexors, but the loss was greater following the eccentric exercise (t=2.401, P=.031). The surface electromyographic signals obtained from the submaximal trapezoid isometric contractions were decomposed into individual motor unit action potential trains. For each submaximal trapezoid isometric contraction, the relationship between the average motor unit firing rate and the recruitment threshold was examined using linear regression analysis. In contrast to the concentric exercise, which did not cause significant changes in the mean linear slope coefficient and y-intercept of the linear regression line, the eccentric exercise resulted in a lower mean linear slope and an increased mean y-intercept, thereby indicating that increasing the firing rates of low-threshold motor units may be more important than recruiting high-threshold motor units to compensate for eccentric exercise-induced strength loss.

  19. Resting motor threshold in idiopathic generalized epilepsies: a systematic review with meta-analysis.

    PubMed

    Brigo, Francesco; Storti, Monica; Benedetti, Maria Donata; Rossini, Fabio; Nardone, Raffaele; Tezzon, Frediano; Fiaschi, Antonio; Bongiovanni, Luigi Giuseppe; Manganotti, Paolo

    2012-08-01

    Resting motor threshold (rMT) assessed by means of Transcranial Magnetic Stimulation (TMS) is thought to reflect trans-synaptic excitability of cortico-spinal neurons. TMS studies reporting rMT in idiopathic generalized epilepsies (IGEs) yielded discrepant results, so that it is difficult to draw a definitive conclusion on cortico-spinal excitability in IGEs by simple summation of previous results regarding this measure. Our purpose was to carry out a systematic review and a meta-analysis of studies evaluating rMT values obtained during single-pulse TMS in patients with IGEs. Controlled studies measuring rMT by single-pulse TMS in drug-naive patients older than 12 years affected by IGEs were systematically reviewed. rMT values were assessed calculating mean difference and odds ratio with 95% confidence intervals (CI). Fourteen trials (265 epileptic patients and 424 controls) were included. Patients with juvenile myoclonic epilepsy (JME) have a statistically significant lower rMT compared with controls (mean difference: -6.78; 95% CI -10.55 to -3.00); when considering all subtypes of IGEs and IGEs other than JME no statistically significant differences were found. Overall considered, the results are indicative of a cortico-spinal hyper-excitability in JME, providing not enough evidence for motor hyper-excitability in other subtypes of IGE. The considerable variability across studies probably reflects the presence of relevant clinical and methodological heterogeneity, and higher temporal variability among rMT measurements over time, related to unstable cortical excitability in these patients.

  20. Activities to Develop Your Students' Motor Skills.

    ERIC Educational Resources Information Center

    Eastman, Mary Kay; Safran, Joan S.

    1986-01-01

    Instructions and illustrations support this discussion of learning activities designed to remediate deficiences and build skills in balance and/or motor skills for mildly handicapped students who may not have access to physical therapy or adaptive physical education. Appropriate for both regular and special classes, activities include arm…

  1. Low-Threshold Active Teaching Methods for Mathematic Instruction

    ERIC Educational Resources Information Center

    Marotta, Sebastian M.; Hargis, Jace

    2011-01-01

    In this article, we present a large list of low-threshold active teaching methods categorized so the instructor can efficiently access and target the deployment of conceptually based lessons. The categories include teaching strategies for lecture on large and small class sizes; student action individually, in pairs, and groups; games; interaction…

  2. Modulation of motor cortex neuronal activity and motor behavior during subthalamic nucleus stimulation in the normal primate.

    PubMed

    Johnson, Luke A; Xu, Weidong; Baker, Kenneth B; Zhang, Jianyu; Vitek, Jerrold L

    2015-04-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established surgical therapy for advanced Parkinson's disease (PD). An emerging hypothesis is that the therapeutic benefit of DBS is derived from direct modulation of primary motor cortex (M1), yet little is known about the influence of STN DBS on individual neurons in M1. We investigated the effect of STN DBS, delivered at discrete interval intensities (20, 40, 60, 80, and 100%) of corticospinal tract threshold (CSTT), on motor performance and M1 neuronal activity in a naive nonhuman primate. Motor performance during a food reach and retrieval task improved during low-intensity stimulation (20% CSTT) but worsened as intensity approached the threshold for activation of corticospinal fibers (80% and 100% CSTT). To assess cortical effects of STN DBS, spontaneous, extracellular neuronal activity was collected from M1 neurons before, during, and after DBS at the same CSTT stimulus intensities. STN DBS significantly modulated the firing of a majority of M1 neurons; however, the direction of effect varied with stimulus intensity such that, at 20% CSTT, most neurons were suppressed, whereas at the highest stimulus intensities the majority of neurons were activated. At a population level, firing rates increased as stimulus intensity increased. These results show that STN DBS influences both motor performance and M1 neuronal activity systematically according to stimulus intensity. In addition, the unanticipated reduction in reach times suggests that STN DBS, at stimulus intensities lower than typically used for treatment of PD motor signs, can enhance normal motor performance.

  3. Multimotor transport in a system of active and inactive kinesin-1 motors.

    PubMed

    Scharrel, Lara; Ma, Rui; Schneider, René; Jülicher, Frank; Diez, Stefan

    2014-07-15

    Long-range directional transport in cells is facilitated by microtubule-based motor proteins. One example is transport in a nerve cell, where small groups of motor proteins, such as kinesins and cytoplasmic dynein, work together to ensure the supply and clearance of cellular material along the axon. Defects in axonal transport have been linked to Alzheimer's and other neurodegenerative diseases. However, it is not known in detail how multimotor-based cargo transport is impaired if a fraction of the motors are defective. To mimic impaired multimotor transport in vitro, we performed gliding motility assays with varying fractions of active kinesin-1 motors and inactive kinesin-1 motor mutants. We found that impaired transport manifests in multiple motility regimes: 1), a fast-motility regime characterized by gliding at velocities close to the single-molecule velocity of the active motors; 2), a slow-motility regime characterized by gliding at close-to zero velocity or full stopping; and 3), a regime in which fast and slow motilities coexist. Notably, the transition from the fast to the slow regime occurred sharply at a threshold fraction of active motors. Based on single-motor parameters, we developed a stochastic model and a mean-field theoretical description that explain our experimental findings. Our results demonstrate that impaired multimotor transport mostly occurs in an either/or fashion: depending on the ratio of active to inactive motors, transport is either performed at close to full speed or is out of action.

  4. Vibrissa motor cortex activity suppresses contralateral whisking behavior.

    PubMed

    Ebbesen, Christian Laut; Doron, Guy; Lenschow, Constanze; Brecht, Michael

    2017-01-01

    Anatomical, stimulation and lesion data implicate vibrissa motor cortex in whisker motor control. Work on motor cortex has focused on movement generation, but correlations between vibrissa motor cortex activity and whisking are weak. The exact role of vibrissa motor cortex remains unknown. We recorded vibrissa motor cortex neurons during various forms of vibrissal touch, which were invariably associated with whisker protraction and movement. Free whisking, object palpation and social touch all resulted in decreased cortical activity. To understand this activity decrease, we performed juxtacellular recordings, nanostimulation and in vivo whole-cell recordings. Social touch resulted in decreased spiking activity, decreased cell excitability and membrane hyperpolarization. Activation of vibrissa motor cortex by intracortical microstimulation elicited whisker retraction, as if to abort vibrissal touch. Various vibrissa motor cortex inactivation protocols resulted in contralateral protraction and increased whisker movements. These data collectively point to movement suppression as a prime function of vibrissa motor cortex activity.

  5. Active training paradigm for motor imagery BCI.

    PubMed

    Li, Junhua; Zhang, Liqing

    2012-06-01

    Brain-computer interface (BCI) allows the use of brain activities for people to directly communicate with the external world or to control external devices without participation of any peripheral nerves and muscles. Motor imagery is one of the most popular modes in the research field of brain-computer interface. Although motor imagery BCI has some advantages compared with other modes of BCI, such as asynchronization, it is necessary to require training sessions before using it. The performance of trained BCI system depends on the quality of training samples or the subject engagement. In order to improve training effect and decrease training time, we proposed a new paradigm where subjects participated in training more actively than in the traditional paradigm. In the traditional paradigm, a cue (to indicate what kind of motor imagery should be imagined during the current trial) is given to the subject at the beginning of a trial or during a trial, and this cue is also used as a label for this trial. It is usually assumed that labels for trials are accurate in the traditional paradigm, although subjects may not have performed the required or correct kind of motor imagery, and trials may thus be mislabeled. And then those mislabeled trials give rise to interference during model training. In our proposed paradigm, the subject is required to reconfirm the label and can correct the label when necessary. This active training paradigm may generate better training samples with fewer inconsistent labels because it overcomes mistakes when subject's motor imagination does not match the given cues. The experiments confirm that our proposed paradigm achieves better performance; the improvement is significant according to statistical analysis.

  6. Enhanced Multisensory Integration and Motor Reactivation after Active Motor Learning of Audiovisual Associations

    ERIC Educational Resources Information Center

    Butler, Andrew J.; James, Thomas W.; James, Karin Harman

    2011-01-01

    Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent…

  7. Motor imagery muscle contraction strength influences spinal motor neuron excitability and cardiac sympathetic nerve activity.

    PubMed

    Bunno, Yoshibumi; Suzuki, Toshiaki; Iwatsuki, Hiroyasu

    2015-12-01

    [Purpose] The aim of this study was to investigate the changes in spinal motor neuron excitability and autonomic nervous system activity during motor imagery of isometric thenar muscle activity at 10% and 50% maximal voluntary contraction (MVC). [Methods] The F-waves and low frequency/high frequency (LF/HF) ratio were recorded at rest, during motor imagery, and post-trial. For motor imagery trials, subjects were instructed to imagine thenar muscle activity at 10% and 50% MVC while holding the sensor of a pinch meter for 5 min. [Results] The F-waves and LF/HF ratio during motor imagery at 50% MVC were significantly increased compared with those at rest, whereas those during motor imagery at 10% MVC were not significantly different from those at rest. The relative values of the F/M amplitude ratio during motor imagery at 50% MVC were significantly higher than those at 10% MVC. The relative values of persistence and the LF/HF ratio during motor imagery were similar during motor imagery at the two muscle contraction strengths. [Conclusion] Motor imagery can increase the spinal motor neuron excitability and cardiac sympathetic nerve activity. Motor imagery at 50% MVC may be more effective than motor imagery at 10% MVC.

  8. Random motor unit activation by electrostimulation.

    PubMed

    Jubeau, M; Gondin, J; Martin, A; Sartorio, A; Maffiuletti, N A

    2007-11-01

    Whether the involvement of motor units is different between surface neuromuscular electrostimulation and voluntary activation remains an unresolved issue. The aim of this pilot study was to verify if motor unit activation during electrostimulation is nonselective/random (i.e., without obvious sequencing related to fibre type), as recently suggested by Gregory and Bickel [6]. Sixteen healthy men randomly performed submaximal isometric contractions (10-s duration) of the quadriceps femoris muscle at 20, 40 and 60 % of maximal voluntary torque under both stimulated and voluntary conditions. During the contractions, paired stimuli were delivered to the femoral nerve (twitch interpolation technique) and the characteristics of the superimposed doublet were compared between the two conditions. For each torque level, time-to-peak torque was significantly longer (p range = 0.05 - 0.0002) during electrostimulation compared to voluntary contractions. Moreover, time-to-peak torque during voluntary trials decreased significantly when increasing the torque level from 20 to 60 % of maximal voluntary torque (p range = 0.03 - 0.0001), whereas it was unchanged during electrostimulation. In conclusion, over-the-muscle electrostimulation would neither result in motor unit recruitment according to Henneman's size principle nor would it result in a reversal in voluntary recruitment order. During electrostimulation, muscle fibres are activated without obvious sequencing related to fibre type.

  9. Motor Behavior Activates Bergmann Glial Networks

    PubMed Central

    Nimmerjahn, Axel; Mukamel, Eran A.; Schnitzer, Mark J.

    2010-01-01

    SUMMARY Although it is firmly established neuronal activity is a prime determinant of animal behavior, relationships between astrocytic excitation and animal behavior have remained opaque. Cerebellar Bergmann glia are radial astrocytes that are implicated in motor behavior and exhibit Ca2+-excitation. However, Ca2+-excitation in these cells has not previously been studied in behaving animals. Using two-photon microscopy we found that Bergmann glia exhibit three forms of Ca2+-excitation in awake behaving mice. Two of these are ongoing within the cerebellar vermis. During locomotor performance concerted Ca2+-excitation arises in networks of at least hundreds of Bergmann glia extending across several hundred microns or more. Concerted Ca2+-excitation was abolished by anesthesia or blockade of either neural activity or glutamatergic transmission. Thus, large networks of Bergmann glia can be activated by specific animal behaviors and undergo excitation of sufficient magnitude to potentially initiate macroscopic changes in brain dynamics or blood flow. PMID:19447095

  10. Enhanced multisensory integration and motor reactivation after active motor learning of audiovisual associations.

    PubMed

    Butler, Andrew J; James, Thomas W; James, Karin Harman

    2011-11-01

    Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent perception and recognition of associations among multiple senses has not been investigated. Twenty participants were included in an fMRI study that explored the impact of active motor learning on subsequent processing of unisensory and multisensory stimuli. Participants were exposed to visuo-motor associations between novel objects and novel sounds either through self-generated actions on the objects or by observing an experimenter produce the actions. Immediately after exposure, accuracy, RT, and BOLD fMRI measures were collected with unisensory and multisensory stimuli in associative perception and recognition tasks. Response times during audiovisual associative and unisensory recognition were enhanced by active learning, as was accuracy during audiovisual associative recognition. The difference in motor cortex activation between old and new associations was greater for the active than the passive group. Furthermore, functional connectivity between visual and motor cortices was stronger after active learning than passive learning. Active learning also led to greater activation of the fusiform gyrus during subsequent unisensory visual perception. Finally, brain regions implicated in audiovisual integration (e.g., STS) showed greater multisensory gain after active learning than after passive learning. Overall, the results show that active motor learning modulates the processing of multisensory associations.

  11. Commensal bacteria calibrate the activation threshold of innate antiviral immunity.

    PubMed

    Abt, Michael C; Osborne, Lisa C; Monticelli, Laurel A; Doering, Travis A; Alenghat, Theresa; Sonnenberg, Gregory F; Paley, Michael A; Antenus, Marcelo; Williams, Katie L; Erikson, Jan; Wherry, E John; Artis, David

    2012-07-27

    Signals from commensal bacteria can influence immune cell development and susceptibility to infectious or inflammatory diseases. However, the mechanisms by which commensal bacteria regulate protective immunity after exposure to systemic pathogens remain poorly understood. Here, we demonstrate that antibiotic-treated (ABX) mice exhibit impaired innate and adaptive antiviral immune responses and substantially delayed viral clearance after exposure to systemic LCMV or mucosal influenza virus. Furthermore, ABX mice exhibited severe bronchiole epithelial degeneration and increased host mortality after influenza virus infection. Genome-wide transcriptional profiling of macrophages isolated from ABX mice revealed decreased expression of genes associated with antiviral immunity. Moreover, macrophages from ABX mice exhibited defective responses to type I and type II IFNs and impaired capacity to limit viral replication. Collectively, these data indicate that commensal-derived signals provide tonic immune stimulation that establishes the activation threshold of the innate immune system required for optimal antiviral immunity.

  12. Commensal Bacteria Calibrate the Activation Threshold of Innate Antiviral Immunity

    PubMed Central

    Abt, Michael C.; Osborne, Lisa C.; Monticelli, Laurel A.; Doering, Travis A.; Alenghat, Theresa; Sonnenberg, Gregory F.; Paley, Michael A.; Antenus, Marcelo; Williams, Katie L.; Erikson, Jan; Wherry, E. John; Artis, David

    2013-01-01

    SUMMARY Signals from commensal bacteria can influence immune cell development and susceptibility to infectious or inflammatory diseases. However, the mechanisms by which commensal bacteria regulate protective immunity after exposure to systemic pathogens remain poorly understood. Here, we demonstrate that antibiotic-treated (ABX) mice exhibit impaired innate and adaptive antiviral immune responses and substantially delayed viral clearance after exposure to systemic LCMV or mucosal influenza virus. Furthermore, ABX mice exhibited severe bronchiole epithelial degeneration and increased host mortality after influenza virus infection. Genome-wide transcriptional profiling of macrophages isolated from ABX mice revealed decreased expression of genes associated with antiviral immunity. Moreover, macrophages from ABX mice exhibited defective responses to type I and type II IFNs and impaired capacity to limit viral replication. Collectively, these data indicate that commensal-derived signals provide tonic immune stimulation that establishes the activation threshold of the innate immune system required for optimal antiviral immunity. PMID:22705104

  13. Processing abstract language modulates motor system activity.

    PubMed

    Glenberg, Arthur M; Sato, Marc; Cattaneo, Luigi; Riggio, Lucia; Palumbo, Daniele; Buccino, Giovanni

    2008-06-01

    Embodiment theory proposes that neural systems for perception and action are also engaged during language comprehension. Previous neuroimaging and neurophysiological studies have only been able to demonstrate modulation of action systems during comprehension of concrete language. We provide neurophysiological evidence for modulation of motor system activity during the comprehension of both concrete and abstract language. In Experiment 1, when the described direction of object transfer or information transfer (e.g., away from the reader to another) matched the literal direction of a hand movement used to make a response, speed of responding was faster than when the two directions mismatched (an action-sentence compatibility effect). In Experiment 2, we used single-pulse transcranial magnetic stimulation to study changes in the corticospinal motor pathways to hand muscles while reading the same sentences. Relative to sentences that do not describe transfer, there is greater modulation of activity in the hand muscles when reading sentences describing transfer of both concrete objects and abstract information. These findings are discussed in relation to the human mirror neuron system.

  14. Length regulation of active biopolymers by molecular motors.

    PubMed

    Johann, Denis; Erlenkämper, Christoph; Kruse, Karsten

    2012-06-22

    For biopolymers like cytoskeletal actin filaments and microtubules, assembly and disassembly are inherently dissipative processes. Molecular motors can affect the rates of subunit removal at filament ends. We introduce a driven lattice-gas model to study the effects of motor-induced depolymerization on the length of active biopolymers and find that increasing motor activity sharpens unimodal steady-state length distributions. Furthermore, for sufficiently fast moving motors, the relative width of the length distribution is determined only by the attachment rate of motors. Our results show how established molecular processes can be used to robustly regulate the size of cytoskeletal structures like mitotic spindles.

  15. Influence of motor activities on the release of transmitter quanta from motor nerve terminals in mice.

    PubMed

    Taquahashi, Y; Yonezawa, K; Nishimura, M

    1999-05-01

    We investigated the effects of motor activities on transmitter release in mouse nerve-muscle preparations of the diaphragm muscle (DPH), extensor digitorum longus muscle (EDL), and soleus muscle (SOL). Mice were divided into a control group, a motor-restricted (RST) group, and a motor-compelled (CMP) group. The quantal content (m) of endplate potentials was measured intracellularly. In DPH the motor activity was unaffected. In the CMP group the m value of the EDL group increased with increases in the cooperativity of Ca2+ in transmitter release. Compared with the CMP group, the SOL of the RST group had a smaller m value with increases in the cooperativity of Ca2+ in transmitter release. These results suggest that motor activities can influence neuromuscular activity specific to different systems, however, the motor compulsion specifically activated the function of EDL and the motor restriction activated the function of SOL, and these effects might lead to altered activity of the release of transmitter quanta in motor nerve terminals of mice.

  16. Motor Neuron Activation in Peripheral Nerves Using Infrared Neural Stimulation

    PubMed Central

    Peterson, EJ; Tyler, DJ

    2014-01-01

    Objective Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach The rabbit sciatic nerve was stimulated extraneurally with 1875 nm-wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results 81% of nerves tested were sensitive to INS, with 1.7± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2–9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance The observed selectivity of INS indicates it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS. PMID:24310923

  17. Motor neuron activation in peripheral nerves using infrared neural stimulation

    NASA Astrophysics Data System (ADS)

    Peterson, E. J.; Tyler, D. J.

    2014-02-01

    Objective. Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach. The rabbit sciatic nerve was stimulated extraneurally with 1875 nm wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results. 81% of nerves tested were sensitive to INS, with 1.7 ± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2-9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance. The observed selectivity of INS indicates that it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS.

  18. Twist1 activity thresholds define multiple functions in limb development.

    PubMed

    Krawchuk, Dayana; Weiner, Shoshana J; Chen, You-Tzung; Lu, Benson C; Costantini, Frank; Behringer, Richard R; Laufer, Ed

    2010-11-01

    The basic helix-loop-helix transcription factor Twist1 is essential for normal limb development. Twist1(-/-) embryos die at midgestation. However, studies on early limb buds found that Twist1(-/-) mutant limb mesenchyme has an impaired response to FGF signaling from the apical ectodermal ridge, which disrupts the feedback loop between the mesenchyme and AER, and reduces and shifts anteriorly Shh expression in the zone of polarizing activity. We have combined Twist1 null, hypomorph and conditional alleles to generate a Twist1 allelic series that survives to birth. As Twist1 activity is reduced, limb skeletal defects progress from preaxial polydactyly to girdle reduction combined with hypoplasia, aplasia or mirror symmetry of all limb segments. With reduced Twist1 activity there is striking and progressive upregulation of ectopic Shh expression in the anterior of the limb, combined with an anterior shift in the posterior Shh domain, which is expressed at normal intensity, and loss of the posterior AER. Consequently limb outgrowth is initially impaired, before an ectopic anterior Shh domain expands the AER, promoting additional growth and repatterning. Reducing the dosage of FGF targets of the Etv gene family, which are known repressors of Shh expression in anterior limb mesenchyme, strongly enhances the anterior skeletal phenotype. Conversely this and other phenotypes are suppressed by reducing the dosage of the Twist1 antagonist Hand2. Our data support a model whereby multiple Twist1 activity thresholds contribute to early limb bud patterning, and suggest how particular combinations of skeletal defects result from differing amounts of Twist1 activity.

  19. Twist1 activity thresholds define multiple functions in limb development

    PubMed Central

    Krawchuk, Dayana; Weiner, Shoshana J.; Chen, You-Tzung; Lu, Benson; Costantini, Frank; Behringer, Richard R.; Laufer, Ed

    2010-01-01

    Summary The basic helix-loop-helix transcription factor Twist1 is essential for normal limb development. Twist1−/− embryos die at midgestation. However, studies on early limb buds found that Twist1−/− mutant limb mesenchyme has an impaired response to FGF signaling from the apical ectodermal ridge, which disrupts the feedback loop between the mesenchyme and AER, and reduces and shifts anteriorly Shh expression in the zone of polarizing activity. We have combined Twist1 null, hypomorph and conditional alleles to generate a Twist1 allelic series that survives to birth. As Twist1 activity is reduced, limb skeletal defects progress from preaxial polydactyly to girdle reduction combined with hypoplasia, aplasia or mirror symmetry of all limb segments. With reduced Twist1 activity there is striking and progressive upregulation of ectopic Shh expression in the anterior of the limb, combined with an anterior shift in the posterior Shh domain, which is expressed at normal intensity, and loss of the posterior AER. Consequently limb outgrowth is initially impaired, before an ectopic anterior Shh domain expands the AER, promoting additional growth and repatterning. Reducing the dosage of FGF targets of the Etv gene family, which are known repressors of Shh expression in the anterior limb mesenchyme, strongly enhances the anterior skeletal phenotype. Conversely this and other phenotypes are suppressed by reducing the dosage of the Twist1 antagonist Hand2. Our data support a model whereby multiple Twist1 activity thresholds contribute to early limb bud patterning, and suggest how particular combinations of skeletal defects result from differing amounts of Twist1 activity. PMID:20732316

  20. Hemispheric asymmetry of ipsilateral motor cortex activation in motor skill learning.

    PubMed

    Suzuki, Tomotaka; Higashi, Toshio; Takagi, Mineko; Sugawara, Kenichi

    2013-09-11

    In this study, we investigated how ipsilateral motor cortex (M1) activation during unimanual hand movements and hemispheric asymmetry changed after motor skill learning. Eleven right-handed participants preformed a two-ball-rotation motor task with the right and the left hand, separately, in all experimental sessions. Before and after exercise sessions, the degree of ipsilateral M1 activation during brief execution of the motor task was measured as changes in the size of motor-evoked potentials (MEPs) of the thenar and the first dorsal interosseous muscle of the nontask hand using transcranial magnetic stimulation. Before exercise, MEPs of the nontask hand were significantly facilitated on both sides during the motor task. After exercise, facilitation of MEPs of the nontask hand during the motor task was significantly reduced for the right hand (thenar: P=0.014, first dorsal interosseous: P=0.022) but not for the left hand. We conclude that ipsilateral M1 activation, associated with a complex motor task, is first symmetrical in both hemispheres. However, on exercise, ipsilateral activation is reduced only in left M1, indicating a stronger learning-dependent modification of motor networks within the left hemisphere.

  1. Modulation of motor unit activity in biceps brachii by neuromuscular electrical stimulation applied to the contralateral arm.

    PubMed

    Amiridis, Ioannis G; Mani, Diba; Almuklass, Awad; Matkowski, Boris; Gould, Jeffrey R; Enoka, Roger M

    2015-06-15

    The purpose of the study was to determine the influence of neuromuscular electrical stimulation (NMES) current intensity and pulse width applied to the right elbow flexors on the discharge characteristics of motor units in the left biceps brachii. Three NMES current intensities were applied for 5 s with either narrow (0.2 ms) or wide (1 ms) stimulus pulses: one at 80% of motor threshold and two that evoked contractions at either ∼10% or ∼20% of maximal voluntary contraction (MVC) force. The discharge times of 28 low-threshold (0.4-21.6% MVC force) and 16 high-threshold (31.7-56.3% MVC force) motor units in the short head of biceps brachii were determined before, during, and after NMES. NMES elicited two main effects: one involved transient deflections in the left-arm force at the onset and offset of NMES and the other consisted of nonuniform modulation of motor unit activity. The force deflections, which were influenced by NMES current intensity and pulse width, were observed only when low-threshold motor units were tracked. NMES did not significantly influence the discharge characteristics of tracked single-threshold motor units. However, a qualitative analysis indicated that there was an increase in the number of unique waveforms detected during and after NMES. The findings indicate that activity of motor units in the left elbow flexors can be modulated by NMES current and pulse width applied to right elbow flexors, but the effects are not distributed uniformly to the involved motor units.

  2. Neutron threshold activation detectors (TAD) for the detection of fissions

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-10-01

    , called Threshold Activation Detection (TAD), is to utilize appropriate substances that can be selectively activated by the fission neutrons and not by the source radiation and then measure the radioactively decaying activation products (typically beta and gamma rays) well after the source pulse. The activation material should possess certain properties: a suitable half-life of the order of seconds; an energy threshold below which the numerous source neutrons will not activate it (e.g., 3 MeV); easily detectable activation products (typically >1 MeV beta and gamma rays) and have a usable cross-section for the selected reaction. Ideally the substance would be a part of the scintillator. There are several good material candidates for the TAD, including fluorine, which is a major constituent of available scintillators such as BaF 2, CaF 2 and hydrogen free liquid fluorocarbon. Thus the fluorine activation products, in particular the beta particles, can be measured with a very high efficiency in the detector. The principles, applications and experimental results obtained with the fluorine based TAD are discussed.

  3. Motor co-activation in siblings of patients with juvenile myoclonic epilepsy: an imaging endophenotype?

    PubMed Central

    Wandschneider, Britta; Centeno, Maria; Vollmar, Christian; Symms, Mark; Thompson, Pamela J.; Duncan, John S.

    2014-01-01

    Juvenile myoclonic epilepsy is a heritable idiopathic generalized epilepsy syndrome, characterized by myoclonic jerks and frequently triggered by cognitive effort. Impairment of frontal lobe cognitive functions has been reported in patients with juvenile myoclonic epilepsy and their unaffected siblings. In a recent functional magnetic resonance imaging study we reported abnormal co-activation of the motor cortex and increased functional connectivity between the motor system and prefrontal cognitive networks during a working memory paradigm, providing an underlying mechanism for cognitively triggered jerks. In this study, we used the same task in 15 unaffected siblings (10 female; age range 18–65 years, median 40) of 11 of those patients with juvenile myoclonic epilepsy (six female; age range 22–54 years, median 35) and compared functional magnetic resonance imaging activations with 20 age- and gender-matched healthy control subjects (12 female; age range 23–46 years, median 30.5). Unaffected siblings showed abnormal primary motor cortex and supplementary motor area co-activation with increasing cognitive load, as well as increased task-related functional connectivity between motor and prefrontal cognitive networks, with a similar pattern to patients (P < 0.001 uncorrected; 20-voxel threshold extent). This finding in unaffected siblings suggests that altered motor system activation and functional connectivity is not medication- or seizure-related, but represents a potential underlying mechanism for impairment of frontal lobe functions in both patients and siblings, and so constitutes an endophenotype of juvenile myoclonic epilepsy. PMID:25001494

  4. Changes to somatosensory detection and pain thresholds following high frequency repetitive TMS of the motor cortex in individuals suffering from chronic pain.

    PubMed

    Johnson, Sama; Summers, Jeff; Pridmore, Saxby

    2006-07-01

    Research has shown that transcranial magnetic stimulation (TMS) results in a transient reduction in the experience of chronic pain. The present research aimed to investigate whether a single session of high frequency TMS is able to change the sensory thresholds of individuals suffering from chronic pain. Detection and pain thresholds for cold and heat sensations were measured before and after 20Hz repetitive TMS (rTMS) administered over the motor cortex. A significant decrease in temperature for cold detection and pain thresholds and a significant increase in temperature for heat pain thresholds were evident following a single session of rTMS. In contrast, no change in detection and pain thresholds was obtained following sham rTMS. The finding that rTMS can have a direct effect on sensory thresholds in individuals suffering from chronic pain has implications for the therapeutic use of rTMS in the relief of chronic pain.

  5. Selective Gating of Neuronal Activity by Intrinsic Properties in Distinct Motor Rhythms

    PubMed Central

    2015-01-01

    Many neural circuits show fast reconfiguration following altered sensory or modulatory inputs to generate stereotyped outputs. In the motor circuit of Xenopus tadpoles, I study how certain voltage-dependent ionic currents affect firing thresholds and contribute to circuit reconfiguration to generate two distinct motor patterns, swimming and struggling. Firing thresholds of excitatory interneurons [i.e., descending interneurons (dINs)] in the swimming central pattern generator are raised by depolarization due to the inactivation of Na+ currents. In contrast, the thresholds of other types of neurons active in swimming or struggling are raised by hyperpolarization from the activation of fast transient K+ currents. The firing thresholds are then compared with the excitatory synaptic drives, which are revealed by blocking action potentials intracellularly using QX314 during swimming and struggling. During swimming, transient K+ currents lower neuronal excitability and gate out neurons with weak excitation, whereas their inactivation by strong excitation in other neurons increases excitability and enables fast synaptic potentials to drive reliable firing. During struggling, continuous sensory inputs lead to high levels of network excitation. This allows the inactivation of Na+ currents and suppression of dIN activity while inactivating transient K+ currents, recruiting neurons that are not active in swimming. Therefore, differential expression of these currents between neuron types can explain why synaptic strength does not predict firing reliability/intensity during swimming and struggling. These data show that intrinsic properties can override fast synaptic potentials, mediate circuit reconfiguration, and contribute to motor–pattern switching. PMID:26156983

  6. Intestinal motor activity, endoluminal motion and transit.

    PubMed

    de Iorio, F; Malagelada, C; Azpiroz, F; Maluenda, M; Violanti, C; Igual, L; Vitrià, J; Malagelada, J-R

    2009-12-01

    A programme for evaluation of intestinal motility has been recently developed based on endoluminal image analysis using computer vision methodology and machine learning techniques. Our aim was to determine the effect of intestinal muscle inhibition on wall motion, dynamics of luminal content and transit in the small bowel. Fourteen healthy subjects ingested the endoscopic capsule (Pillcam, Given Imaging) in fasting conditions. Seven of them received glucagon (4.8 microg kg(-1) bolus followed by a 9.6 microg kg(-1) h(-1) infusion during 1 h) and in the other seven, fasting activity was recorded, as controls. This dose of glucagon has previously shown to inhibit both tonic and phasic intestinal motor activity. Endoluminal image and displacement was analyzed by means of a computer vision programme specifically developed for the evaluation of muscular activity (contractile and non-contractile patterns), intestinal contents, endoluminal motion and transit. Thirty-minute periods before, during and after glucagon infusion were analyzed and compared with equivalent periods in controls. No differences were found in the parameters measured during the baseline (pretest) periods when comparing glucagon and control experiments. During glucagon infusion, there was a significant reduction in contractile activity (0.2 +/- 0.1 vs 4.2 +/- 0.9 luminal closures per min, P < 0.05; 0.4 +/- 0.1 vs 3.4 +/- 1.2% of images with radial wrinkles, P < 0.05) and a significant reduction of endoluminal motion (82 +/- 9 vs 21 +/- 10% of static images, P < 0.05). Endoluminal image analysis, by means of computer vision and machine learning techniques, can reliably detect reduced intestinal muscle activity and motion.

  7. Dopamine Promotes Motor Cortex Plasticity and Motor Skill Learning via PLC Activation.

    PubMed

    Rioult-Pedotti, Mengia-Seraina; Pekanovic, Ana; Atiemo, Clement Osei; Marshall, John; Luft, Andreas Rüdiger

    2015-01-01

    Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA), leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC) activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease.

  8. Reduced Motor Cortex Activity during Movement Preparation following a Period of Motor Skill Practice

    PubMed Central

    Wright, David J.; Holmes, Paul; Di Russo, Francesco; Loporto, Michela; Smith, Dave

    2012-01-01

    Experts in a skill produce movement-related cortical potentials (MRCPs) of smaller amplitude and later onset than novices. This may indicate that, following long-term training, experts require less effort to plan motor skill performance. However, no longitudinal evidence exists to support this claim. To address this, EEG was used to study the effect of motor skill training on cortical activity related to motor planning. Ten non-musicians took part in a 5-week training study learning to play guitar. At week 1, the MRCP was recorded from motor areas whilst participants played the G Major scale. Following a period of practice of the scale, the MRCP was recorded again at week 5. Results showed that the amplitude of the later pre-movement components were smaller at week 5 compared to week 1. This may indicate that, following training, less activity at motor cortex sites is involved in motor skill preparation. This supports claims for a more efficient motor preparation following motor skill training. PMID:23251647

  9. Daily update of motor predictions by physical activity.

    PubMed

    Gueugneau, Nicolas; Schweighofer, Nicolas; Papaxanthis, Charalambos

    2015-12-03

    Motor prediction, i.e., the ability to predict the sensory consequences of motor commands, is critical for adapted motor behavior. Like speed or force, the accuracy of motor prediction varies in a 24-hour basis. Although the prevailing view is that basic biological markers regulate this circadian modulation, behavioral factors such as physical activity, itself modulated by the alternation of night and day, can also regulate motor prediction. Here, we propose that physical activity updates motor prediction on a daily basis. We tested our hypothesis by up- and down-regulating physical activity via arm-immobilization and high-intensity training, respectively. Motor prediction was assessed by measuring the timing differences between actual and mental arm movements. Results show that although mental movement time was modulated during the day when the arm was unconstrained, it remained constant when the arm was immobilized. Additionally, increase of physical activity, via release from immobilization or intense bout of training, significantly reduced mental movement time. Finally, mental and actual times were similar in the afternoon in the unconstrained condition, indicating that predicted and actual movements match after sufficient amount of physical activity. Our study supports the view that physical activity calibrates motor predictions on a daily basis.

  10. 78 FR 46677 - Agency Information Collection Activities; New Information Collection Request: Commercial Motor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... Transportation, Federal Motor Carrier Safety Administration, 1200 New Jersey Avenue SE., Washington, DC, 20590... Federal Motor Carrier Safety Administration Agency Information Collection Activities; New Information Collection Request: Commercial Motor Vehicle Marking Requirements AGENCY: Federal Motor Carrier...

  11. 78 FR 21704 - Agency Information Collection Activities; New Information Collection: Commercial Motor Vehicle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... Federal Motor Carrier Safety Administration Agency Information Collection Activities; New Information Collection: Commercial Motor Vehicle Marking Requirements AGENCY: Federal Motor Carrier Safety Administration... require marking of vehicles and intermodal equipment by motor carriers, freight forwarders and...

  12. Design, Synthesis, and Monitoring of Light-Activated Motorized Nanomachines

    NASA Astrophysics Data System (ADS)

    Chiang, Pinn-Tsong

    Our group has developed a family of single molecules termed nanocars, which are aimed at performing controllable motion on surfaces. In this work, a series of light-activated motorized nanomachines incorporated with a MHz frequency light-activated unidirectional rotary motor were designed and synthesized. We hope the light-activated motor can serve as the powering unit for the nanomachines, and perform controllable translational motion on surfaces or in solution. A series of motorized nanovehicles intended for scanning tunneling microscopy (STM) imaging were designed and synthesized. A p-carborane-wheeled motorized nanocar was synthesized and monitored by STM. Single-molecule imaging was accomplished on a Cu(111) surface. However, further manipulations did lead to motor induced lateral motion. We attributed this result to the strong molecule-surface interactions between the p-carborane-wheeled nanocar and the Cu(111) surface and possible energy transfer between the rotary motor and the Cu(111) surface. To fine-tune the molecule-surface interactions, an adamantane-wheeled motorized nanocar and a three-wheel nanoroadster were designed and synthesized. In addition, the STM substrates will be varied and different combinations of molecule-surface interactions will be studied. As a complimentary imaging method to STM, single-molecule fluorescence microscopy (SMFM) also provides single-molecule level resolution. Unlike STM experiment requires ultra-high vacuum and conductive substrate, SMFM experiment is conducted at ambient conditions and uses non-conductive substrate. This imaging method allows us to study another category of molecule-surface interactions. We plan to design a fluorescent motorized nanocar that is suitable for SMFM studies. However, both the motor and fluorophore are photochemically active molecules. In proximity, some undesired energy transfer or interference could occur. A cyanine 5- (cy5-) tagged motorized nanocar incorporated with the MHz motor was

  13. A structural pathway for activation of the kinesin motor ATPase

    PubMed Central

    Yun, Mikyung; Zhang, Xiaohua; Park, Cheon-Gil; Park, Hee-Won; Endow, Sharyn A.

    2001-01-01

    Molecular motors move along actin or microtubules by rapidly hydrolyzing ATP and undergoing changes in filament-binding affinity with steps of the nucleotide hydrolysis cycle. It is generally accepted that motor binding to its filament greatly increases the rate of ATP hydrolysis, but the structural changes in the motor associated with ATPase activation are not known. To identify the conformational changes underlying motor movement on its filament, we solved the crystal structures of three kinesin mutants that decouple nucleotide and microtubule binding by the motor, and block microtubule-activated, but not basal, ATPase activity. Conformational changes in the structures include a disordered loop and helices in the switch I region and a visible switch II loop, which is disordered in wild-type structures. Switch I moved closer to the bound nucleotide in two mutant structures, perturbing water-mediated interactions with the Mg2+. This could weaken Mg2+ binding and accelerate ADP release to activate the motor ATPase. The structural changes we observe define a signaling pathway within the motor for ATPase activation that is likely to be essential for motor movement on microtubules. PMID:11387196

  14. Innovative Perceptual Motor Activities: Programing Techniques That Work.

    ERIC Educational Resources Information Center

    Sorrell, Howard M.

    1978-01-01

    A circuit approach and station techniques are used to depict perceptual motor games for handicapped and nonhandicapped children. Twenty activities are described in terms of objectives, materials, and procedures, and their focus on visual tracking, visual discrimination and copying of forms, spatial body perception, fine motor coordination, tactile…

  15. Learning new gait patterns: Exploratory muscle activity during motor learning is not predicted by motor modules.

    PubMed

    Ranganathan, Rajiv; Krishnan, Chandramouli; Dhaher, Yasin Y; Rymer, William Z

    2016-03-21

    The motor module hypothesis in motor control proposes that the nervous system can simplify the problem of controlling a large number of muscles in human movement by grouping muscles into a smaller number of modules. Here, we tested one prediction of the modular organization hypothesis by examining whether there is preferential exploration along these motor modules during the learning of a new gait pattern. Healthy college-aged participants learned a new gait pattern which required increased hip and knee flexion during the swing phase while walking in a lower-extremity robot (Lokomat). The new gait pattern was displayed as a foot trajectory in the sagittal plane and participants attempted to match their foot trajectory to this template. We recorded EMG from 8 lower-extremity muscles and we extracted motor modules during both baseline walking and target-tracking using non-negative matrix factorization (NMF). Results showed increased trajectory variability in the first block of learning, indicating that participants were engaged in exploratory behavior. Critically, when we examined the muscle activity during this exploratory phase, we found that the composition of motor modules changed significantly within the first few strides of attempting the new gait pattern. The lack of persistence of the motor modules under even short time scales suggests that motor modules extracted during locomotion may be more indicative of correlated muscle activity induced by the task constraints of walking, rather than reflecting a modular control strategy.

  16. T Lymphocyte Activation Threshold and Membrane Reorganization Perturbations in Unique Culture Model

    NASA Technical Reports Server (NTRS)

    Adams, C. L.; Sams, C. F.

    2000-01-01

    Quantitative activation thresholds and cellular membrane reorganization are mechanisms by which resting T cells modulate their response to activating stimuli. Here we demonstrate perturbations of these cellular processes in a unique culture system that non-invasively inhibits T lymphocyte activation. During clinorotation, the T cell activation threshold is increased 5-fold. This increased threshold involves a mechanism independent of TCR triggering. Recruitment of lipid rafts to the activation site is impaired during clinorotation but does occur with increased stimulation. This study describes a situation in which an individual cell senses a change in its physical environment and alters its cell biological behavior.

  17. Novel ‘hunting’ method using transcranial magnetic stimulation over parietal cortex disrupts visuospatial sensitivity in relation to motor thresholds

    PubMed Central

    Oliver, R; Bjoertomt, O; Driver, J; Greenwood, R; Rothwell, J

    2010-01-01

    There is considerable inter-study and inter-individual variation in the scalp location of parietal sites where transcranial magnetic stimulation (TMS) may modulate visuospatial behaviours (see Ryan, Bonilha, & Jackson 2006); and no clear consensus on methods for identifying such sites. Here we introduce a novel TMS “hunting paradigm” that allows rapid, reliable identification of a site over right anterior intraparietal sulcus (IPS), where short trains (at 10 Hz for 0.5s) of TMS disrupt performance of a task in which subjects judge the presence or absence of a small peripheral gap (at 14 degrees eccentricity), on one or other (known) side of an extended (29 degrees) horizontal line centred on fixation. Signal detection analysis confirmed that TMS at this site reduced sensitivity (d’) for gap targets in the left visual hemifield. A further experiment showed that the same right-parietal TMS increased sensitivity instead for gaps in the right hemifield. Comparing TMS across a grid of scalp locations around the identified ‘hotspot’ confirmed the spatial specificity. Assessment of the TMS intensity required to produce the phenomena found this was linearly related to individuals’ resting motor TMS threshold over hand M1. Our approach provides a systematic new way to identify an effective site and intensity in individuals, at which TMS over right parietal cortex reliably changes visuospatial sensitivity. PMID:19651149

  18. Spinal segment-specific transcutaneous stimulation differentially shapes activation pattern among motor pools in humans

    PubMed Central

    Atkinson, Darryn A.; Dy, Christine J.; Gurley, Katelyn M.; Smith, Valerie L.; Angeli, Claudia; Harkema, Susan J.; Edgerton, V. Reggie; Gerasimenko, Yury P.

    2015-01-01

    Transcutaneous and epidural electrical spinal cord stimulation techniques are becoming more valuable as electrophysiological and clinical tools. Recently, we observed selective activation of proximal and distal motor pools during epidural spinal stimulation. In the present study, we hypothesized that the characteristics of recruitment curves obtained from leg muscles will reflect a relative preferential activation of proximal and distal motor pools based on their arrangement along the lumbosacral enlargement. The purpose was to describe the electrophysiological responses to transcutaneous stimulation in leg muscles innervated by motoneurons from different segmental levels. Stimulation delivered along the rostrocaudal axis of the lumbosacral enlargement in the supine position resulted in a selective topographical recruitment of proximal and distal leg muscles, as described by threshold intensity, slope of the recruitment curves, and plateau point intensity and magnitude. Relatively selective recruitment of proximal and distal motor pools can be titrated by optimizing the site and intensity level of stimulation to excite a given combination of motor pools. The slope of the recruitment of particular muscles allows characterization of the properties of afferents projecting to specific motoneuron pools, as well as to the type and size of the motoneurons. The location and intensity of transcutaneous spinal electrical stimulation are critical to target particular neural structures across different motor pools in investigation of specific neuromodulatory effects. Finally, the asymmetry in bilateral evoked potentials is inevitable and can be attributed to both anatomical and functional peculiarities of individual muscles or muscle groups. PMID:25814642

  19. Nonlinear Dynamic Modeling of Neuron Action Potential Threshold During Synaptically Driven Broadband Intracellular Activity

    PubMed Central

    Roach, Shane M.; Song, Dong; Berger, Theodore W.

    2012-01-01

    Activity-dependent variation of neuronal thresholds for action potential (AP) generation is one of the key determinants of spike-train temporal-pattern transformations from presynaptic to postsynaptic spike trains. In this study, we model the nonlinear dynamics of the threshold variation during synaptically driven broadband intracellular activity. First, membrane potentials of single CA1 pyramidal cells were recorded under physiologically plausible broadband stimulation conditions. Second, a method was developed to measure AP thresholds from the continuous recordings of membrane potentials. It involves measuring the turning points of APs by analyzing the third-order derivatives of the membrane potentials. Four stimulation paradigms with different temporal patterns were applied to validate this method by comparing the measured AP turning points and the actual AP thresholds estimated with varying stimulation intensities. Results show that the AP turning points provide consistent measurement of the AP thresholds, except for a constant offset. It indicates that 1) the variation of AP turning points represents the nonlinearities of threshold dynamics; and 2) an optimization of the constant offset is required to achieve accurate spike prediction. Third, a nonlinear dynamical third-order Volterra model was built to describe the relations between the threshold dynamics and the AP activities. Results show that the model can predict threshold accurately based on the preceding APs. Finally, the dynamic threshold model was integrated into a previously developed single neuron model and resulted in a 33% improvement in spike prediction. PMID:22156947

  20. Learning to associate novel words with motor actions: language-induced motor activity following short training.

    PubMed

    Fargier, Raphaël; Paulignan, Yves; Boulenger, Véronique; Monaghan, Padraic; Reboul, Anne; Nazir, Tatjana A

    2012-07-01

    Action words referring to face, arm or leg actions activate areas along the motor strip that also control the planning and execution of the actions specified by the words. This electroencephalogram (EEG) study aimed to test the learning profile of this language-induced motor activity. Participants were trained to associate novel verbal stimuli to videos of object-oriented hand and arm movements or animated visual images on two consecutive days. Each training session was preceded and followed by a test-session with isolated videos and verbal stimuli. We measured motor-related brain activity (reflected by a desynchronization in the μ frequency bands; 8-12 Hz range) localized at centro-parietal and fronto-central electrodes. We compared activity from viewing the videos to activity resulting from processing the language stimuli only. At centro-parietal electrodes, stable action-related μ suppression was observed during viewing of videos in each test-session of the two days. For processing of verbal stimuli associated with motor actions, a similar pattern of activity was evident only in the second test-session of Day 1. Over the fronto-central regions, μ suppression was observed in the second test-session of Day 2 for the videos and in the second test-session of Day 1 for the verbal stimuli. Whereas the centro-parietal μ suppression can be attributed to motor events actually experienced during training, the fronto-central μ suppression seems to serve as a convergence zone that mediates underspecified motor information. Consequently, sensory-motor reactivations through which concepts are comprehended seem to differ in neural dynamics from those implicated in their acquisition.

  1. Motor Skill Competence and Physical Activity in Preschoolers: A Review.

    PubMed

    Figueroa, Roger; An, Ruopeng

    2017-01-01

    Objectives Preschoolers 3-5 years of age are in a crucial stage of motor skill competence. While preschoolers develop their motor skill competence through engagement in physical activity, a majority of them fail to meet guideline-recommended physical activity level. This study reviews scientific evidence on the relationship between motor skill competence and physical activity among preschoolers. Methods This systematic review followed the PRISMA framework. Keyword and reference search were conducted in PubMed, Cochrane Library, PsycINFO, Web of Science, and Google Scholar. Inclusion criteria included-age: 3-5 years of age; setting: preschool environment (e.g., preschool, childcare, head start); main outcomes: motor skill competence and physical activity; study design: cross-sectional study, case-control study, retrospective cohort study, prospective cohort study, or randomized controlled trial; language: English; and article type: peer-reviewed publication. Results Eleven studies met the inclusion criteria, including 6 randomized controlled trials and 5 cross-sectional studies. Studies were conducted in 5 countries: United States (5), United Kingdom (2), Australia (2), Switzerland (1), and Finland (1). Eight out of the 11 studies included in the review reported a significant relationship between motor skill competence and physical activity. The specific pattern and strength of the relationship tend to differ by gender, physical activity intensity, motor skill type, and day of the week (weekdays versus weekends). Conclusions An association has been consistently documented between motor skill competence and physical activity. Future research is warranted to elucidate the underlining causal link, examine potential heterogeneity, and determine the role of environment in the relationship between motor skill competence and physical activity among preschoolers.

  2. Oxytocin stimulates colonic motor activity in healthy women.

    PubMed

    Ohlsson, B; Ringström, G; Abrahamsson, H; Simrén, M; Björnsson, E S

    2004-04-01

    The effects of oxytocin in the gastrointestinal tract are unclear. The aim of this study was to examine the effect of infusion of oxytocin on colonic motility and sensitivity in healthy women. Fourteen healthy women were investigated twice. A 6-channel perfusion catheter, with three recording points (2 cm apart) proximally and three recording points distally to a barostat balloon, was inserted to the splenic flexure. An intestinal feeding tube was placed in the mid-duodenum. A 90-min duodenal lipid infusion of 3 kcal min(-1) was administered. Thirty minutes after the start of the lipid infusion, the subject randomly received either 20 or 40 mU min(-1) of oxytocin, or isotonic saline as intravenous infusions for 90 min. Meanwhile, the colonic motility was recorded. During the last 30 min of oxytocin and saline infusion, the visceral sensitivity to balloon distensions was examined. During lipid infusion the number of antegrade contractions per hour was 0.7 +/- 0.3 after saline and 3.9 +/- 1.4 after oxytocin (P = 0.03), indicating more pronounced lumen-occlusive contractile activity after oxytocin administration. Some of these consisted of high-amplitude (> 103 mmHg in amplitude) antegrade contractions. Lipid infusion evoked a decrease of the balloon volume, reflecting increased colonic tone, but there was no difference between saline and oxytocin. Sensory thresholds did not differ significantly between saline and oxytocin. Infusion of oxytocin stimulates antegrade peristaltic contractions in stimulated colon in healthy women. The effects of oxytocin on colonic motor activity deserve to be further explored, especially in patients with colonic peristaltic dysfunction.

  3. Individual variation in sleep and motor activity in rats.

    PubMed

    Tang, Xiangdong; Yang, Linghui; Sanford, Larry D

    2007-06-04

    We examined individual differences in sleep and motor activity across 2 consecutive days in rats. EEG and motor activity were recorded via telemetry in Wistar rats (n=29) for 48h under well-habituated conditions. Rats were grouped based on sleep amounts and stability across days (short [SS, n=7], intermediate [IS, n=15] and long [LS, n=7] sleep) and comparisons were conducted to determine group differences for measures of sleep and motor activity. We found that correlations across recording days were significant for all selected sleep measures and motor activity counts. Rankings for 24h total sleep time and non-rapid eye movement sleep (NREM) were SSmotor activity counts (per waking min) were greater (32-38%) in SS compared to LS rats on both recording days. The results indicate that individual differences in sleep and motor activity in Wistar rats are stable across days. Differences between SS and LS rats have parallels to those reported for short and long sleep humans.

  4. Motor cortex activity predicts response alternation during sensorimotor decisions

    PubMed Central

    Pape, Anna-Antonia; Siegel, Markus

    2016-01-01

    Our actions are constantly guided by decisions based on sensory information. The motor cortex is traditionally viewed as the final output stage in this process, merely executing motor responses based on these decisions. However, it is not clear if, beyond this role, the motor cortex itself impacts response selection. Here, we report activity fluctuations over motor cortex measured using MEG, which are unrelated to choice content and predict responses to a visuomotor task seconds before decisions are made. These fluctuations are strongly influenced by the previous trial's response and predict a tendency to switch between response alternatives for consecutive decisions. This alternation behaviour depends on the size of neural signals still present from the previous response. Our results uncover a response-alternation bias in sensorimotor decision making. Furthermore, they suggest that motor cortex is more than an output stage and instead shapes response selection during sensorimotor decision making. PMID:27713396

  5. Chained Activation of the Motor System during Language Understanding

    PubMed Central

    Marino, Barbara F.; Borghi, Anna M.; Buccino, Giovanni; Riggio, Lucia

    2017-01-01

    Two experiments were carried out to investigate whether and how one important characteristic of the motor system, that is its goal-directed organization in motor chains, is reflected in language processing. This possibility stems from the embodied theory of language, according to which the linguistic system re-uses the structures of the motor system. The participants were presented with nouns of common tools preceded by a pair of verbs expressing grasping or observational motor chains (i.e., grasp-to-move, grasp-to-use, look-at-to-grasp, and look-at-to-stare). They decided whether the tool mentioned in the sentence was the same as that displayed in a picture presented shortly after. A primacy of the grasp-to-use motor chain over the other motor chains in priming the participants' performance was observed in both the experiments. More interestingly, we found that the motor information evoked by the noun was modulated by the specific motor-chain expressed by the preceding verbs. Specifically, with the grasping chain aimed at using the tool, the functional motor information prevailed over the volumetric information, and vice versa with the grasping chain aimed at moving the tool (Experiment 2). Instead, the functional and volumetric information were balanced for those motor chains that comprise at least an observational act (Experiment 1). Overall our results are in keeping with the embodied theory of language and suggest that understanding sentences expressing an action directed toward a tool drives a chained activation of the motor system. PMID:28265247

  6. Chained Activation of the Motor System during Language Understanding.

    PubMed

    Marino, Barbara F; Borghi, Anna M; Buccino, Giovanni; Riggio, Lucia

    2017-01-01

    Two experiments were carried out to investigate whether and how one important characteristic of the motor system, that is its goal-directed organization in motor chains, is reflected in language processing. This possibility stems from the embodied theory of language, according to which the linguistic system re-uses the structures of the motor system. The participants were presented with nouns of common tools preceded by a pair of verbs expressing grasping or observational motor chains (i.e., grasp-to-move, grasp-to-use, look-at-to-grasp, and look-at-to-stare). They decided whether the tool mentioned in the sentence was the same as that displayed in a picture presented shortly after. A primacy of the grasp-to-use motor chain over the other motor chains in priming the participants' performance was observed in both the experiments. More interestingly, we found that the motor information evoked by the noun was modulated by the specific motor-chain expressed by the preceding verbs. Specifically, with the grasping chain aimed at using the tool, the functional motor information prevailed over the volumetric information, and vice versa with the grasping chain aimed at moving the tool (Experiment 2). Instead, the functional and volumetric information were balanced for those motor chains that comprise at least an observational act (Experiment 1). Overall our results are in keeping with the embodied theory of language and suggest that understanding sentences expressing an action directed toward a tool drives a chained activation of the motor system.

  7. Threshold bedrock channels in tectonically active mountains with frequent mass wasting

    NASA Astrophysics Data System (ADS)

    Korup, O.; Hayakawa, Y. S.; Codilean, A.; Oguchi, T.

    2013-12-01

    Models of how mountain belts grow and erode through time largely rely on the paradigm of fluvial bedrock incision as the main motor of response to differences in rock uplift, thus setting base levels of erosion in tectonically active landscapes. Dynamic feedbacks between rock uplift, bedrock river geometry, and mass wasting have been encapsulated within the concept of threshold hillslopes that attain a mechanically critical inclination capable of adjusting to fluvial incision rates via decreased stability and commensurately more frequent landsliding. Here we provide data that challenge the widely held view that channel steepness records tectonic forcing more faithfully than hillslope inclination despite much robust empirical evidence of such links between bedrock-river geometry and hillslope mass wasting. We show that the volume mobilized by mass wasting depends more on local topographic relief and the sinuosity of bedrock rivers than their mean normalized channel steepness. We derive this counterintuitive observation from an unprecedented inventory of ~300,000 landslides covering the tectonically active Japanese archipelago with substantial differences in seismicity, lithology, vertical surface deformation, topography, and precipitation variability. Both total landslide number and volumes increase nonlinearly with mean local relief even in areas where the fraction of steepest channel segments attains a constant threshold well below the maximum topographic relief. Our data document for the first time that mass wasting increases systematically with preferential steepening of flatter channel segments. Yet concomitant changes in mean channel steepness are negligible such that it remains a largely insensitive predictor of landslide denudation. Further, minute increases in bedrock-river sinuosity lead to substantial reduction in landslide abundance and volumes. Our results underline that sinuosity (together with mean local relief) is a key morphometric variable for

  8. Observing shadow motions: resonant activity within the observer's motor system?

    PubMed

    Alaerts, Kaat; Van Aggelpoel, Tinne; Swinnen, Stephan P; Wenderoth, Nicole

    2009-09-25

    Several studies have demonstrated that the human motor cortex is activated by the mere observation of actions performed by others. In the present study, we explored whether the perception of 'impoverished motion stimuli', such as shadow animations, is sufficient to activate motor areas. To do so, transcranial magnetic stimulation (TMS) was applied over the hand area of the primary motor cortex (M1) while subjects observed shadow animations depicting finger motions. Data showed that resonant motor responses in M1 were only found when a biological effector was recognized from the observed shadow animation. Interestingly, M1 responses were similar for observing shadow or real motions. Therefore, the loss of 'pictorial' movement features in a shadow animation appeared to have no effect on motor resonance in M1. In summary, these findings suggest that the 'recognition' of biological motion from sparse visual input is both necessary and sufficient to recruit motor areas. This supports the hypothesis that the motor system is involved in recognizing the actions performed by others.

  9. Determination of an Optimal Threshold Value for Muscle Activity Detection in EMG Analysis

    PubMed Central

    Özgünen, Kerem Tuncay; Çelik, Umut; Kurdak, Sanlı Sadi

    2010-01-01

    It is commonly agreed that one needs to use a threshold value in the detection of muscle activity timing in electromyographic (EMG) signal analysis. However, the algorithm for threshold determination lacks an agreement between the investigators. In this study we aimed to determine a proper threshold value in an incremental cycling exercise for accurate EMG signal analysis. Nine healthy recreationally active male subjects cycled until exhaustion. EMG recordings were performed on four low extremity muscle groups; gastrocnemius lateralis (GL), gastrocnemius medialis (GM), soleus (SOL) and vastus medialis (VM). We have analyzed our data using three different threshold levels: 25%, 35% and 45% of the mean RMS EMG value. We compared the appropriateness of these threshold values using two criteria: (1) significant correlation between the actual and estimated number of bursts and (2) proximity of the regression line of the actual and estimated number of bursts to the line of identity. It had been possible to find a significant correlation between the actual and estimated number of bursts with the 25, 35 and 45% threshold values for the GL muscle. Correlation analyses for the VM muscle had shown that the number of bursts estimated with the 35% threshold value was found to be significantly correlated with the actual number of bursts. For the GM muscle, it had been possible to predict the burst number by using either the 35% or 45% threshold value and for the SOL muscle the 25% threshold value was found as the best predictor for actual number of burst estimation. Detailed analyses of the actual and estimated number of bursts had shown that success of threshold estimation may differ among muscle groups. Evaluation of our data had clearly shown that it is important to select proper threshold values for correct EMG signal analyses. Using a single threshold value for different exercise intensities and different muscle groups may cause misleading results. Key points α priori

  10. Dissection of perceptual, motor and autonomic components of brain activity evoked by noxious stimulation.

    PubMed

    Piché, M; Arsenault, M; Rainville, P

    2010-06-01

    In the past two decades, functional brain imaging has considerably advanced our knowledge of cerebral pain processing. However, many important links are still missing in our understanding of brain activity in relation to the regulation of pain-related physiological responses. This fMRI study investigates the cerebral correlates of pain (rating), motor responses (RIII-reflex) and autonomic activity (skin conductance response; SCR) evoked by noxious electrical stimulation. Stimulus intensity was adjusted individually based on the RIII threshold to control for differences in peripheral processes and baseline spinal activation. Covariance analyses were used to reveal individual differences in brain activity uniquely associated with individual differences in pain, RIII and SCR. Shock-evoked activity in cingulate, medial orbitofrontal and parahippocampal regions predicted pain sensitivity. Moreover, lateral orbitofrontal and cingulate areas showed strong positive associations with individual differences in motor reactivity but negative associations with autonomic reactivity. Notably, individual differences in OFC activation was almost fully accounted by the combination of individual measures of autonomic and motor reactivity (R(2)=0.93). Additionally, trial-to-trial fluctuations of RIII-reflex and SCR (within-subjects) were proportional to shock-evoked responses in subgenual cingulate cortex (RIII), anterior insula (SCR) and midcingulate cortex (SCR and RIII). Together, these results confirm that individual differences in perceptual, motor, and autonomic components of pain reflect robust individual differences in brain activity. Furthermore, the brain correlates of trial-to-trial fluctuations in pain responses provide additional evidence for a partial segregation of sub-systems involved more specifically in the ongoing monitoring, and possibly the regulation, of pain-related motor and autonomic responses.

  11. Emergence of reproducible spatiotemporal activity during motor learning.

    PubMed

    Peters, Andrew J; Chen, Simon X; Komiyama, Takaki

    2014-06-12

    The motor cortex is capable of reliably driving complex movements yet exhibits considerable plasticity during motor learning. These observations suggest that the fundamental relationship between motor cortex activity and movement may not be fixed but is instead shaped by learning; however, to what extent and how motor learning shapes this relationship are not fully understood. Here we addressed this issue by using in vivo two-photon calcium imaging to monitor the activity of the same population of hundreds of layer 2/3 neurons while mice learned a forelimb lever-press task over two weeks. Excitatory and inhibitory neurons were identified by transgenic labelling. Inhibitory neuron activity was relatively stable and balanced local excitatory neuron activity on a movement-by-movement basis, whereas excitatory neuron activity showed higher dynamism during the initial phase of learning. The dynamics of excitatory neurons during the initial phase involved the expansion of the movement-related population which explored various activity patterns even during similar movements. This was followed by a refinement into a smaller population exhibiting reproducible spatiotemporal sequences of activity. This pattern of activity associated with the learned movement was unique to expert animals and not observed during similar movements made during the naive phase, and the relationship between neuronal activity and individual movements became more consistent with learning. These changes in population activity coincided with a transient increase in dendritic spine turnover in these neurons. Our results indicate that a novel and reproducible activity-movement relationship develops as a result of motor learning, and we speculate that synaptic plasticity within the motor cortex underlies the emergence of reproducible spatiotemporal activity patterns for learned movements. These results underscore the profound influence of learning on the way that the cortex produces movements.

  12. Timing of cortical excitability changes during the reaction time of movements superimposed on tonic motor activity.

    PubMed

    Schneider, Cyril; Lavoie, Brigitte A; Barbeau, Hugues; Capaday, Charles

    2004-12-01

    Seated subjects were instructed to react to an auditory cue by simultaneously contracting the tibialis anterior (TA) muscle of each ankle isometrically. Focal transcranial magnetic stimulation of the leg area of the motor cortex (MCx) was used to determine the time course of changes in motor-evoked potential amplitude (MEP) during the reaction time (RT). In one condition the voluntary contraction was superimposed on tonic EMG activity maintained at 10% of maximal voluntary contraction. In the other condition the voluntary contraction was made starting from rest. MEPs in the TA contralateral to the stimulation coil were evoked at various times during the RT in each condition. These were compared to the control MEPs evoked during tonic voluntary activity or with the subject at rest. The RT was measured trial by trial from the EMG activity of the TA ipsilateral to the magnetic stimulus, taking into account the nearly constant time difference between the two sides. The MEPs became far greater than control MEPs during the RT (mean = 332%, SD = 44 %, of control MEPs, P < 0.001) without any measurable change in the background level of EMG activity. The onset of this facilitation occurred on average 12.80 ms (SD = 7.55 ms) before the RT. There was no difference in the onset of facilitation between the two conditions. Because MEPs were facilitated without a change in the background EMG activity, it is concluded that this facilitation is specifically due to an increase of MCx excitability just before voluntary muscle activation. This conclusion is further reinforced by the observation that MEPs evoked by near-threshold anodal stimuli to the MCx were not facilitated during the RT, in contrast to those evoked by near-threshold transcranial magnetic stimulation. However, several observations in the present and previous studies indicate that MEP amplitude may be more sensitive to alpha-motoneuron activity than to motor cortical neuron activity, an idea that has important

  13. Inflammation Effects on Motivation and Motor Activity: Role of Dopamine.

    PubMed

    Felger, Jennifer C; Treadway, Michael T

    2017-01-01

    Motivational and motor deficits are common in patients with depression and other psychiatric disorders, and are related to symptoms of anhedonia and motor retardation. These deficits in motivation and motor function are associated with alterations in corticostriatal neurocircuitry, which may reflect abnormalities in mesolimbic and mesostriatal dopamine (DA). One pathophysiologic pathway that may drive changes in DAergic corticostriatal circuitry is inflammation. Biomarkers of inflammation such as inflammatory cytokines and acute-phase proteins are reliably elevated in a significant proportion of psychiatric patients. A variety of inflammatory stimuli have been found to preferentially target basal ganglia function to lead to impaired motivation and motor activity. Findings have included inflammation-associated reductions in ventral striatal neural responses to reward anticipation, decreased DA and DA metabolites in cerebrospinal fluid, and decreased availability, and release of striatal DA, all of which correlated with symptoms of reduced motivation and/or motor retardation. Importantly, inflammation-associated symptoms are often difficult to treat, and evidence suggests that inflammation may decrease DA synthesis and availability, thus circumventing the efficacy of standard pharmacotherapies. This review will highlight the impact of administration of inflammatory stimuli on the brain in relation to motivation and motor function. Recent data demonstrating similar relationships between increased inflammation and altered DAergic corticostriatal circuitry and behavior in patients with major depressive disorder will also be presented. Finally, we will discuss the mechanisms by which inflammation affects DA neurotransmission and relevance to novel therapeutic strategies to treat reduced motivation and motor symptoms in patients with high inflammation.

  14. Thresholds of auditory-motor coupling measured with a simple task in musicians and non-musicians: was the sound simultaneous to the key press?

    PubMed

    van Vugt, Floris T; Tillmann, Barbara

    2014-01-01

    The human brain is able to predict the sensory effects of its actions. But how precise are these predictions? The present research proposes a tool to measure thresholds between a simple action (keystroke) and a resulting sound. On each trial, participants were required to press a key. Upon each keystroke, a woodblock sound was presented. In some trials, the sound came immediately with the downward keystroke; at other times, it was delayed by a varying amount of time. Participants were asked to verbally report whether the sound came immediately or was delayed. Participants' delay detection thresholds (in msec) were measured with a staircase-like procedure. We hypothesised that musicians would have a lower threshold than non-musicians. Comparing pianists and brass players, we furthermore hypothesised that, as a result of a sharper attack of the timbre of their instrument, pianists might have lower thresholds than brass players. Our results show that non-musicians exhibited higher thresholds for delay detection (180 ± 104 ms) than the two groups of musicians (102 ±65 ms), but there were no differences between pianists and brass players. The variance in delay detection thresholds could be explained by variance i n sensorimotor synchronisation capacities as well as variance in a purely auditory temporal irregularity detection measure. This suggests that the brain's capacity to generate temporal predictions of sensory consequences can be decomposed into general temporal prediction capacities together with auditory-motor coupling. These findings indicate that the brain has a relatively large window of integration within which an action and its resulting effect are judged as simultaneous. Furthermore, musical expertise may narrow this window down, potentially due to a more refined temporal prediction. This novel paradigm provides a simple test to estimate the temporal precision of auditory-motor action-effect coupling, and the paradigm can readily be incorporated in

  15. Motor activity after colon replacement of esophagus. Manometric evaluation.

    PubMed

    Benages, A; Moreno-Ossett, E; Paris, F; Ridocci, M T; Blasco, E; Pastor, J; Tarazona, V; Molina, R; Mora, F

    1981-09-01

    Motor activity of the colon transplant for esophageal reconstruction is a point of controversy. In this paper we present manometric studies carried out in 15 patients subjected to isoperistaltic colon interposition. Manometric studies were carried out with two polyvinyl water-filled catheters inserted through pressure transducers. Basal colonic activity and motor activity following several stimuli and "dry swallows" were registered. The type of waves after stimuli were classified as (1) synchronous, (2) sequential or progressive, and (3) segmental. Details of the basal colonic waves and colon contractions after stimuli are given: i.e., rate, duration, amplitude, interval from the stimulus, and percentage of motor activity. The data reported here indicate the good motor response of the isoperistaltic colon to intraluminal injection of water or 0. 1 N hydrochloric acid and to chachet swallowing. Only two free-symptoms patients did not have motor activity. One of them was submitted to manometric studies too soon after the operation. We conclude that the presence of sequential waves in the interposed segment likely can help to propel the contents of the colon into the stomach and to clear gastric juice if reflux from the stomach should occur.

  16. [Study of cardiac, respiratory, and motor activity in rat fetuses].

    PubMed

    Timofeeva, O P; Vdovichenko, N D

    2009-01-01

    Development of the cardiac, respiratory, and motor activity was studied in rat fetuses with preserved placenta circulation was studied at the 16th, 18th, and 20th gestation days. The presence of three main movement types has been found: complexes of generalization activity, local movements, and jerks. In development of respiratory function, there is observed a gradual transition from individual inspirations to series of respiratory movements and then to formation of periodic respiration episodes. At the studied period, the heart rate has been found to increase. The existence of the slow-wave modulations it the heart rate with a period of 20-40 s has been revealed. Analysis of interrelations between the respiratory and motor systems has shown that in the 16-day fetuses, each respiratory movement is accompanied by extensor jerk. By the 20th days of embryonic development (E20), uncoupling of the respiratory and motor activities occurs. Comparison of the activity observed in the cardiac and somatomotor systems has shown that at E16, the cardiac rhythm fluctuations do not depend on the motor excitation jerks. In the 18-day fetuses, brief slowing down (decelerations) of the cardiac rhythm appeared during the motor activity jerks, whereas at E20, on the contrary, an increase of frequency (accelerations) of the cardiac rhythm occurred.

  17. Antennal motor activity induced by pilocarpine in the American cockroach.

    PubMed

    Okada, Jiro; Morimoto, Yusuke; Toh, Yoshihiro

    2009-04-01

    The antennal motor system is activated by the muscarinic agonist pilocarpine in the American cockroach Periplaneta americana, and its output patterns were examined both in restrained intact animals and in isolated CNS preparations. The three-dimensional antennal movements induced by the hemocoelic drug injection were analyzed in in vivo preparations. Pilocarpine effectively induced prolonged rhythmic movements of both antennae. The antennae tended to describe a spatially patterned trajectory, forming loops or the symbol of infinity (infinity). Such spatial regularity is comparable to that during spontaneous tethered-walking. Rhythmic bursting activities of the antennal motor nerves in in vitro preparations were also elicited by bath application of pilocarpine. Cross-correlation analyses of the bursting spike activities revealed significant couplings among certain motor units, implying the spatial regularity of the antennal trajectory. The pilocarpine-induced rhythmic activity of antennal motor nerves was effectively suppressed by the muscarinic antagonist atropine. These results indicate that the activation of the antennal motor system is mediated by muscarinic receptors.

  18. Activity Analysis for Cognitive-Perceptual-Motor Dysfunction

    ERIC Educational Resources Information Center

    Llorens, Lela A.

    1973-01-01

    This paper presents a review of several approaches to activity and task analysis for their selection for use in occupational therapy and proposes a neuro-behavioral approach to activity analysis and selection for use in treatment of cognitive-perceptual-motor dysfunction. (Editors/JA)

  19. The Dynamic Association between Motor Skill Development and Physical Activity

    ERIC Educational Resources Information Center

    Stodden, David F.; Goodway, Jacqueline D.

    2007-01-01

    Although significant attention has been given to promoting physical activity among children, little attention has been given to the developmental process of how children learn to move or to the changing role that motor skill development plays in children's physical activity levels as they grow. In order to successfully address the obesity…

  20. Probing the Mechanism of Oscillations in Newborn Motor Activity.

    ERIC Educational Resources Information Center

    Robertson, Steven S.

    1993-01-01

    Cyclical fluctuation in spontaneous motor activity (CM) emerges in fetus and persists in newborn. This "resetting" experiment perturbed CM by noise stimulus during infants' active sleep. Pre- and postperturbation CM were measured and compared. Subjects were 33 infants between 1 and 3 days of age. The stimulus induced a relative slowing of CM…

  1. Does motor interference arise from mirror system activation? The effect of prior visuo-motor practice on automatic imitation.

    PubMed

    Capa, Rémi L; Marshall, Peter J; Shipley, Thomas F; Salesse, Robin N; Bouquet, Cédric A

    2011-03-01

    Action perception may involve a mirror-matching system, such that observed actions are mapped onto the observer's own motor representations. The strength of such mirror system activation should depend on an individual's experience with the observed action. The motor interference effect, where an observed action interferes with a concurrently executed incongruent action, is thought to arise from mirror system activation. However, this view was recently challenged. If motor interference arises from mirror system activation, this effect should be sensitive to prior sensorimotor experience with the observed action. To test this prediction, we measured motor interference in two groups of participants observing the same incongruent movements. One group had received brief visuo-motor practice with the observed incongruent action, but not the other group. Action observation induced a larger motor interference in participants who had practiced the observed action. This result thus supports a mirror system account of motor interference.

  2. Mushroom bodies enhance initial motor activity in Drosophila.

    PubMed

    Serway, Christine N; Kaufman, Rebecca R; Strauss, Roland; de Belle, J Steven

    2009-01-01

    The central body (or central complex, CCX) and the mushroom bodies (MBs) are brain structures in most insect phyla that have been shown to influence aspects of locomotion. The CCX regulates motor coordination and enhances activity while MBs have, thus far, been shown to suppress motor activity levels measured over time intervals ranging from hours to weeks. In this report, we investigate MB involvement in motor behavior during the initial stages (15 minutes) of walking in Buridan's paradigm. We measured aspects of walking in flies that had MB lesions induced by mutations in six different genes and by chemical ablation. All tested flies were later examined histologically to assess MB neuroanatomy. Mutant strains with MB structural defects were generally less active in walking than wild-type flies. Most mutants in which MBs were also ablated with hydroxyurea (HU) showed additional activity decrements. Variation in measures of velocity and orientation to landmarks among wild-type and mutant flies was attributed to pleiotropy, rather than to MB lesions. We conclude that MBs upregulate activity during the initial stages of walking, but suppress activity thereafter. An MB influence on decision making has been shown in a wide range of complex behaviors. We suggest that MBs provide appropriate contextual information to motor output systems in the brain, indirectly fine tuning walking by modifying the quantity (i.e., activity) of behavior.

  3. Autonomic nervous system activities during motor imagery in elite athletes.

    PubMed

    Oishi, Kazuo; Maeshima, Takashi

    2004-01-01

    Motor imagery (MI), a mental simulation of voluntary motor actions, has been used as a training method for athletes for many years. It is possible that MI techniques might similarly be useful as part of rehabilitative strategies to help people regain skills lost as a consequence of diseases or stroke. Mental activity and stress induce several different autonomic responses as part of the behavioral response to movement (e.g., motor anticipation) and as part of the central planning and preprogramming of movement. However, the interrelationships between MI, the autonomic responses, and the motor system have not yet been worked out. The authors compare a number of autonomic responses (respiration, heart rate, electro skin resistance) and motoneuron excitability (soleus H-reflex) in elite and nonelite speed skaters during MI. In contrast to the nonelite athletes, MI of elite speed skaters is characterized by larger changes in heart rate and respiration, a greater reliance on an internal perspective for MI, a more vivid MI, a more accurate correspondence between the MI and actual race times, and decreased motoneuron excitability. Two observations suggest that the changes in the autonomic responses and motoneuron excitability for the elite speed skaters are related to the effects of central motor programming: (1) there was no correlation between the autonomic responses for MI and those recorded during mental arithmetic; and (2) mental arithmetic did not significantly alter motoneuron activity. It is suggested that in elite speed skaters, the descending neural mechanisms that reduce motoneuron excitability are activated even when full, vivid MI is performed internally. These inhibitory responses of the motor system may enhance actual motor performance under conditions of remarkably high mental stress, such as that which occurs in the Olympic games.

  4. Automatic motor activation in the executive control of action

    PubMed Central

    McBride, Jennifer; Boy, Frédéric; Husain, Masud; Sumner, Petroc

    2012-01-01

    Although executive control and automatic behavior have often been considered separate and distinct processes, there is strong emerging and convergent evidence that they may in fact be intricately interlinked. In this review, we draw together evidence showing that visual stimuli cause automatic and unconscious motor activation, and how this in turn has implications for executive control. We discuss object affordances, alien limb syndrome, the visual grasp reflex, subliminal priming, and subliminal triggering of attentional orienting. Consideration of these findings suggests automatic motor activation might form an intrinsic part of all behavior, rather than being categorically different from voluntary actions. PMID:22536177

  5. A Circuit for Motor Cortical Modulation of Auditory Cortical Activity

    PubMed Central

    Nelson, Anders; Schneider, David M.; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan

    2013-01-01

    Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity. PMID:24005287

  6. A circuit for motor cortical modulation of auditory cortical activity.

    PubMed

    Nelson, Anders; Schneider, David M; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan; Mooney, Richard

    2013-09-04

    Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity.

  7. Electronic bypass of spinal lesions: activation of lower motor neurons directly driven by cortical neural signals

    PubMed Central

    2014-01-01

    Background Lower motor neurons in the spinal cord lose supraspinal inputs after complete spinal cord injury, leading to a loss of volitional control below the injury site. Extensive locomotor training with spinal cord stimulation can restore locomotion function after spinal cord injury in humans and animals. However, this locomotion is non-voluntary, meaning that subjects cannot control stimulation via their natural “intent”. A recent study demonstrated an advanced system that triggers a stimulator using forelimb stepping electromyographic patterns to restore quadrupedal walking in rats with spinal cord transection. However, this indirect source of “intent” may mean that other non-stepping forelimb activities may false-trigger the spinal stimulator and thus produce unwanted hindlimb movements. Methods We hypothesized that there are distinguishable neural activities in the primary motor cortex during treadmill walking, even after low-thoracic spinal transection in adult guinea pigs. We developed an electronic spinal bridge, called “Motolink”, which detects these neural patterns and triggers a “spinal” stimulator for hindlimb movement. This hardware can be head-mounted or carried in a backpack. Neural data were processed in real-time and transmitted to a computer for analysis by an embedded processor. Off-line neural spike analysis was conducted to calculate and preset the spike threshold for “Motolink” hardware. Results We identified correlated activities of primary motor cortex neurons during treadmill walking of guinea pigs with spinal cord transection. These neural activities were used to predict the kinematic states of the animals. The appropriate selection of spike threshold value enabled the “Motolink” system to detect the neural “intent” of walking, which triggered electrical stimulation of the spinal cord and induced stepping-like hindlimb movements. Conclusion We present a direct cortical “intent”-driven electronic spinal

  8. T Lymphocyte Activation Threshold is Increased in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Adams, Charley L.; Gonzalez, M.; Sams, C. F.

    2000-01-01

    There have been substantial advances in molecular and cellular biology that have provided new insight into the biochemical and genetic basis of lymphocyte recognition, activation and expression of distinct functional phenotypes. It has now become evident that for both T and B cells, stimuli delivered through their receptors can result in either clonal expansion or apoptosis. In the case of T cells, clonal expansion of helper cells is accompanied by differentiation into two major functional subsets which regulate the immune response. The pathways between the membrane and the nucleus and their molecular components are an area of very active investigation. This meeting will draw together scientists working on diverse aspects of this problem, including receptor ligand interactions, intracellular pathways that transmit receptor mediated signals and the effect of such signal transduction pathways on gene regulation. The aim of this meeting is to integrate the information from these various experimental approaches into a new synthesis and molecular explanation of T cell activation, differentiation and death.

  9. THE ORIGIN OF SEGMENTATION MOTOR ACTIVITY IN THE INTESTINE

    PubMed Central

    Huizinga, Jan D.; Chen, Ji-Hong; Zhu, Yong Fang; Pawelka, Andrew; McGinn, Ryan J.; Bardakjian, Berj L.; Parsons, Sean P.; Kunze, Wolfgang A.; Wu, Richard You; Bercik, Premysl; Khoshdel, Amir; Chen, Sifeng; Yin, Sheng; Zhang, Qian; Yu, Yuanjie; Gao, Qingmin; Li, Kongling; Hu, Xinghai; Zarate, Natalia; Collins, Phillip; Pistilli, Marc; Ma, Junling; Zhang, Ruixue; Chen, David

    2016-01-01

    The segmentation motor activity of the gut that facilitates absorption of nutrients, was first described in the late 19th century but the fundamental mechanisms underlying it remain poorly understood. The dominant theory suggests alternate excitation and inhibition from the enteric nervous system. Here we demonstrate that typical segmentation can occur after total nerve blockade. The segmentation motor pattern emerges when the amplitude of the dominant pacemaker, the slow wave generated by ICC associated with the myenteric plexus (ICC-MP), is modulated by the phase of induced lower frequency rhythmic transient depolarizations, generated by ICC associated with the deep muscular plexus (ICC-DMP), resulting in a waxing and waning of the amplitude of the slow wave and a rhythmic checkered pattern of segmentation motor activity. Phase amplitude modulation of the slow waves points to an underlying system of coupled nonlinear oscillators originating in ICC. PMID:24561718

  10. The origin of segmentation motor activity in the intestine.

    PubMed

    Huizinga, Jan D; Chen, Ji-Hong; Zhu, Yong Fang; Pawelka, Andrew; McGinn, Ryan J; Bardakjian, Berj L; Parsons, Sean P; Kunze, Wolfgang A; Wu, Richard You; Bercik, Premysl; Khoshdel, Amir; Chen, Sifeng; Yin, Sheng; Zhang, Qian; Yu, Yuanjie; Gao, Qingmin; Li, Kongling; Hu, Xinghai; Zarate, Natalia; Collins, Phillip; Pistilli, Marc; Ma, Junling; Zhang, Ruixue; Chen, David

    2014-01-01

    The segmentation motor activity of the gut that facilitates absorption of nutrients was first described in the late 19th century, but the fundamental mechanisms underlying it remain poorly understood. The dominant theory suggests alternate excitation and inhibition from the enteric nervous system. Here we demonstrate that typical segmentation can occur after total nerve blockade. The segmentation motor pattern emerges when the amplitude of the dominant pacemaker, the slow wave generated by interstitial cells of Cajal associated with the myenteric plexus (ICC-MP), is modulated by the phase of induced lower frequency rhythmic transient depolarizations, generated by ICC associated with the deep muscular plexus (ICC-DMP), resulting in a waxing and waning of the amplitude of the slow wave and a rhythmic checkered pattern of segmentation motor activity. Phase-amplitude modulation of the slow waves points to an underlying system of coupled nonlinear oscillators originating in the networks of ICC.

  11. Actigraphic motor activity during sleep from infancy to adulthood.

    PubMed

    Tonetti, Lorenzo; Scher, Anat; Atun-Einy, Osnat; Samuel, Moran; Boreggiani, Michele; Natale, Vincenzo

    2017-01-01

    A secondary analysis of longitudinal and cohort studies was carried out to quantitatively investigate the motor activity pattern, recorded through actigraphy, during the first six hours of nocturnal sleep. The first study was of longitudinal nature. Ten healthy participants (four females) were monitored three times, at baseline (T1) when they were infants (mean age 7.10 ± 0.32 months), at the first follow-up examination (T2) around 4 months later (mean age 11.20 ± 0.63 months) and at the second follow-up (T3) around three years later, when they were preschoolers (mean age 4.68 ± 0.14 years). At T1, T2 and T3 each participant wore the actigraph Basic Mini-Motionlogger (Ambulatory Monitoring, Inc., Ardsley, NY, USA) over at least two consecutive nycthemeral cycles, with the aim to measure the mean hourly motor activity count. Seven- and 11-month-old infants had a higher level of motor activity over the night compared to preschoolers. Furthermore, motor activity increased as the night progressed, with a pronounced increment at both T1 and T2, while at T3 such an increase was less marked. The second study was cross-sectional and aimed to explore the motor activity pattern, using actigraphy, during the first six hours of nocturnal sleep in multiple-age healthy groups, from infancy to adulthood. We assigned participants to eight groups according to age: 20 (five females) aged around 10 months old (mean age 10.65 ± 0.67 months); 13 (nine females) aged around 4 years (mean age 4.38 ± 0.51 years); 21 (10 females) aged around 10 years (mean age 9.67 ± 0.91 years); 21 (nine females) aged around 20 years (mean age 19.33 ± 2.44 years); 20 (10 females) aged around 30 years (mean age 29.80 ± 1.99 years); 20 (15 females) aged around 40 years (mean age 40.70 ± 1.26 years); 20 (11 females) aged around 50 years (mean age 50.15 ± 2.80 years) and 20 (nine females) aged around 60 years (mean age 59.25 ± 3.23 years). The participants aged between 10 and 60 years wore the

  12. Abstract art and cortical motor activation: an EEG study

    PubMed Central

    Umilta', M. Alessandra; Berchio, Cristina; Sestito, Mariateresa; Freedberg, David; Gallese, Vittorio

    2012-01-01

    The role of the motor system in the perception of visual art remains to be better understood. Earlier studies on the visual perception of abstract art (from Gestalt theory, as in Arnheim, 1954 and 1988, to balance preference studies as in Locher and Stappers, 2002, and more recent work by Locher et al., 2007; Redies, 2007, and Taylor et al., 2011), neglected the question, while the field of neuroesthetics (Ramachandran and Hirstein, 1999; Zeki, 1999) mostly concentrated on figurative works. Much recent work has demonstrated the multimodality of vision, encompassing the activation of motor, somatosensory, and viscero-motor brain regions. The present study investigated whether the observation of high-resolution digitized static images of abstract paintings by Lucio Fontana is associated with specific cortical motor activation in the beholder's brain. Mu rhythm suppression was evoked by the observation of original art works but not by control stimuli (as in the case of graphically modified versions of these works). Most interestingly, previous visual exposure to the stimuli did not affect the mu rhythm suppression induced by their observation. The present results clearly show the involvement of the cortical motor system in the viewing of static abstract art works. PMID:23162456

  13. Ankle Accelerometry for Assessing Physical Activity among Adolescent Girls: Threshold Determination, Validity, Reliability, and Feasibility

    PubMed Central

    Hager, Erin R.; Treuth, Margarita S.; Gormely, Candice; Epps, LaShawna; Snitker, Soren; Black, Maureen M.

    2016-01-01

    Purpose Ankle accelerometry allows for 24-hour data collection, improving data volume/integrity versus hip accelerometry. Using Actical ankle accelerometry, the purpose was to (a) develop sensitive/specific thresholds; (b) examine validity/reliability; (c) compare new thresholds with manufacturer’s; and (d) examine feasibility in a community sample (low-income, urban adolescent girls). Methods Two studies were conducted with 6th–7th grade girls (age 10–14 years): Laboratory study (n=24)- Two Actical accelerometers were placed on the ankle and worn while measuring energy expenditure (Cosmed K4b2, Metabolic Equivalents (METs)) during 10 prescribed activities. Analyses included device equivalence reliability (intraclass correlation (ICC): activity counts of 2 Acticals), criterion-related validity (correlation: activity counts and METs), and calculations of sensitivity, specificity, kappa and ROC curves for thresholds. Free-Living study (n=459)- an Actical was worn >7 days on the ankle (full 24-hour days retained). Analyses included feasibility (frequencies: missing data) and paired t-tests (new thresholds versus manufacturer’s). Results Laboratory study- Actical demonstrated reliability (ICC=.92) and validity (r=.81). Thresholds demonstrated sensitivity (91%), specificity (84%), kappa=.73 (p=.043), area under curve range .81–.97. Free-Living study- 99.6% wore the accelerometer; 84.1% had complete/valid data (mean=5.7 days). Primary reasons for missing/invalid data: Improper programming/documentation (5.2%), failure to return device (5.0%), wear-time ≤2 days (2.8%). The Moderate to Vigorous Physical Activity (MVPA) threshold (>3200 counts/minute) yielded 37.2 minutes/day, 2–4.5 times lower than the manufacturer’s software (effect size=.74–4.05). Conclusions Validity, reliability, and feasibility evidences support Actical ankle accelerometry to assess physical activity in community studies of adolescent girls. When comparing manufacturers’ software

  14. Face Preference in Infancy and Its Relation to Motor Activity

    ERIC Educational Resources Information Center

    Libertus, Klaus; Needham, Amy

    2014-01-01

    Infants' preference for faces was investigated in a cross-sectional sample of 75 children, aged 3 to 11 months, and 23 adults. A visual preference paradigm was used where pairs of faces and toys were presented side-by-side while eye gaze was recorded. In addition, motor activity was assessed via parent report and the relation between motor…

  15. Brains and Brawn: Complex Motor Activities to Maximize Cognitive Enhancement

    ERIC Educational Resources Information Center

    Moreau, David

    2015-01-01

    The target articles in this special issue address the timely question of embodied cognition in the classroom, and in particular the potential of this approach to facilitate learning in children. The interest for motor activities within settings that typically give little space to nontraditional content is proof of a shift from a Cartesian…

  16. Recreational Activities and Motor Skills of Children in Kindergarten

    ERIC Educational Resources Information Center

    Temple, Viviene A.; Crane, Jeff R.; Brown, Amy; Williams, Buffy-Lynne; Bell, Rick I.

    2016-01-01

    Background: Developmental theorists suggest that physical activity during early childhood promotes fundamental motor skill (FMS) proficiency; and that differences in FMS proficiency are largely related to children's experiences. Aim: To examine associations between participation in different types of recreation/leisure and FMS proficiency of boys…

  17. Sport and Other Motor Activities of Warsaw Students

    ERIC Educational Resources Information Center

    Biernat, Elzbieta

    2011-01-01

    Study aim: To assess the engagement of students of Warsaw university schools in sports and in recreational motor activities. Material and methods: A cohort (n = 1100) of students attending B.S. or M.S. courses at 6 university schools in Warsaw were studied by applying questionnaire techniques. The questions pertained to participation in…

  18. Epidemic spreading of interacting diseases with activity of nodes reshapes the critical threshold

    NASA Astrophysics Data System (ADS)

    Fan, Chongjun; Jin, Yang; Huo, Liang-An; Liu, Chen; Yang, Yunpeng

    In this paper, based on susceptible-infected-susceptible (SIS) scheme, we introduce a framework that allows us to describe the spreading dynamics of two interacting diseases with active nodes. Different from previous studies, the two different diseases, propagating concurrently on the same population, can interact with each other by modifying their transmission rates. Meanwhile, according to certain probabilities, each node on the complex networks rotates between active state and inactive state. Based on heterogeneous mean-field approach, we analyze the epidemic thresholds of the two diseases and compute the temporal evolution characterizing the spreading dynamics. In addition, we validate these theoretical predictions by numerical simulations with phase diagrams. Results show that the secondary thresholds for the two opposite scenarios (mutual enhancement scenario and mutual impairment scenario) are different. We also find that the value of critical threshold and the final size of spreading dynamics are reduced as the node activity rate decreases.

  19. Increases in vocalization and motor reflex thresholds are influenced by the site of morphine microinjection: comparisons following administration into the periaqueductal gray, ventral medulla, and spinal subarachnoid space.

    PubMed

    Borszcz, G S

    1995-06-01

    The relative influence of morphine microinjected into the periaqueductal gray, ventral medulla (nucleus raphé magnus or nucleus reticularis gigantocellularis), or spinal subarachnoid space on the thresholds of responses organized at spinal (spinal motor reflexes, SMRs), medullary (vocalizations elicited during shock, VDSs), and rhinencephalic-diencephalic (vocalization after discharges, VADs) levels of the neuraxis was assessed. Dose-dependent increases in response thresholds differed with the site of morphine injection. These results indicate that the mu-opiate-receptor-linked systems in the mesencephalon, medulla, and spinal cord exert differential antinociceptive effects on pain behaviors organized at different levels of the neuraxis. A hypothesis is offered regarding the mechanisms through which morphine inhibits nociceptive transmission through various levels of the CNS. VADs are promoted as a model system for analyzing the affective-motivational dimension of the pain experience.

  20. Self-organizing model of motor cortical activities during drawing

    NASA Astrophysics Data System (ADS)

    Lin, Siming H.; Si, Jennie; Schwartz, Andrew B.

    1996-05-01

    The population vector algorithm has been developed to combine the simultaneous direction- related activities of a population of motor cortical neurons to predict the trajectory of the arm movement. In our study, we consider a self-organizing model of a neural representation of the arm trajectory based on neuronal discharge rates. Self-organizing feature mapping (SOFM) is used to select the optimal set of weights in the model to determine the contribution of individual neuron to the overall movement. The correspondence between the movement directions and the discharge patterns of the motor cortical neurons is established in the output map. The topology preserving property of the SOFM is used to analyze real recorded data of a behavior monkey. The data used in this analysis were taken while the monkey was drawing spirals and doing the center out movement. Using such a statistical model, the monkey's arm moving directions could be well predicted based on the motor cortex neuronal firing information.

  1. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery

    PubMed Central

    Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele

    2015-01-01

    A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10–12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant’s MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation. PMID:26347642

  2. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery.

    PubMed

    Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele

    2015-01-01

    A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10-12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant's MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation.

  3. Perceptual Motor Activities for Specific Cognitive Goals.

    ERIC Educational Resources Information Center

    Stewart, Charlene Kimbro

    The slide presentation depicts movement activities through which children can perceive and form concepts, thus building cognitive skills in certain areas. The presentation is based on the fact that children interact with their environments through all their senses and benefit from perceiving through their kinesthetic senses. The areas presented…

  4. Vicarious motor activation during action perception: beyond correlational evidence

    PubMed Central

    Avenanti, Alessio; Candidi, Matteo; Urgesi, Cosimo

    2013-01-01

    Neurophysiological and imaging studies have shown that seeing the actions of other individuals brings about the vicarious activation of motor regions involved in performing the same actions. While this suggests a simulative mechanism mediating the perception of others' actions, one cannot use such evidence to make inferences about the functional significance of vicarious activations. Indeed, a central aim in social neuroscience is to comprehend how vicarious activations allow the understanding of other people's behavior, and this requires to use stimulation or lesion methods to establish causal links from brain activity to cognitive functions. In the present work, we review studies investigating the effects of transient manipulations of brain activity or stable lesions in the motor system on individuals' ability to perceive and understand the actions of others. We conclude there is now compelling evidence that neural activity in the motor system is critical for such cognitive ability. More research using causal methods, however, is needed in order to disclose the limits and the conditions under which vicarious activations are required to perceive and understand actions of others as well as their emotions and somatic feelings. PMID:23675338

  5. Hyperactivity and Motoric Activity in ADHD: Characterization, Assessment, and Intervention

    PubMed Central

    Gawrilow, Caterina; Kühnhausen, Jan; Schmid, Johanna; Stadler, Gertraud

    2014-01-01

    The aim of the present literature review is threefold. (1) We will review theories, models, and studies on symptomatic hyperactivity and motoric activity in attention-deficit/hyperactivity disorder (ADHD). (2) Another focus will be on assessment methods that have been proven to be effective in the detection of hyperactivity and motoric activity in children, adolescents, and adults with and without ADHD and emerging areas of research in the field of ADHD. We will compare subjective methods (i.e., rating scales) and objective methods (i.e., accelerometers). (3) Finally, physical activity intervention studies aiming at a modification of activity and overactive behavior will be summarized that seem to be promising candidates for alleviating hyperactivity symptoms in children, adolescents, and adults with ADHD. PMID:25506329

  6. Subcortical evoked activity and motor enhancement in Parkinson's disease.

    PubMed

    Anzak, Anam; Tan, Huiling; Pogosyan, Alek; Khan, Sadaquate; Javed, Shazia; Gill, Steven S; Ashkan, Keyoumars; Akram, Harith; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Green, Alexander L; Aziz, Tipu; Brown, Peter

    2016-03-01

    Enhancements in motor performance have been demonstrated in response to intense stimuli both in healthy subjects and in the form of 'paradoxical kinesis' in patients with Parkinson's disease. Here we identify a mid-latency evoked potential in local field potential recordings from the region of the subthalamic nucleus, which scales in amplitude with both the intensity of the stimulus delivered and corresponding enhancements in biomechanical measures of maximal handgrips, independent of the dopaminergic state of our subjects with Parkinson's disease. Recordings of a similar evoked potential in the related pedunculopontine nucleus - a key component of the reticular activating system - provide support for this neural signature in the subthalmic nucleus being a novel correlate of ascending arousal, propagated from the reticular activating system to exert an 'energizing' influence on motor circuitry. Future manipulation of this system linking arousal and motor performance may provide a novel approach for the non-dopaminergic enhancement of motor performance in patients with hypokinetic disorders such as Parkinson's disease.

  7. Subcortical evoked activity and motor enhancement in Parkinson's disease

    PubMed Central

    Anzak, Anam; Tan, Huiling; Pogosyan, Alek; Khan, Sadaquate; Javed, Shazia; Gill, Steven S.; Ashkan, Keyoumars; Akram, Harith; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Green, Alexander L.; Aziz, Tipu; Brown, Peter

    2016-01-01

    Enhancements in motor performance have been demonstrated in response to intense stimuli both in healthy subjects and in the form of ‘paradoxical kinesis’ in patients with Parkinson's disease. Here we identify a mid-latency evoked potential in local field potential recordings from the region of the subthalamic nucleus, which scales in amplitude with both the intensity of the stimulus delivered and corresponding enhancements in biomechanical measures of maximal handgrips, independent of the dopaminergic state of our subjects with Parkinson's disease. Recordings of a similar evoked potential in the related pedunculopontine nucleus – a key component of the reticular activating system – provide support for this neural signature in the subthalmic nucleus being a novel correlate of ascending arousal, propagated from the reticular activating system to exert an ‘energizing’ influence on motor circuitry. Future manipulation of this system linking arousal and motor performance may provide a novel approach for the non-dopaminergic enhancement of motor performance in patients with hypokinetic disorders such as Parkinson's disease. PMID:26687971

  8. A comparison of the cluster-span threshold and the union of shortest paths as objective thresholds of EEG functional connectivity networks from Beta activity in Alzheimer's disease.

    PubMed

    Smith, Keith; Abasolo, Daniel; Escudero, Javier; Smith, Keith; Abasolo, Daniel; Escudero, Javier; Escudero, Javier; Smith, Keith; Abasolo, Daniel

    2016-08-01

    The Cluster-Span Threshold (CST) is a recently introduced unbiased threshold for functional connectivity networks. This binarisation technique offers a natural trade-off of sparsity and density of information by balancing the ratio of closed to open triples in the network topology. Here we present findings comparing it with the Union of Shortest Paths (USP), another recently proposed objective method. We analyse standard network metrics of binarised networks for sensitivity to clinical Alzheimer's disease in the Beta band of Electroencephalogram activity. We find that the CST outperforms the USP, as well as subjective thresholds based on fixing the network density, as a sensitive threshold for distinguishing differences in the functional connectivity between Alzheimer's disease patients and control. This study provides the first evidence of the usefulness of the CST for clinical research purposes.

  9. Radioactive sealed sources: Reasonable accountability, exemption, and licensing activity thresholds -- A technical basis

    SciTech Connect

    Lee, D.W.; Shingleton, K.L.

    1996-07-01

    Perhaps owing to their small size and portability, some radiation accidents/incidents have involved radioactive sealed sources (RSSs). As a result, programs for the control and accountability of RSSs have come to be recommended and emplaced that essentially require RSSs to be controlled in a manner different from bulk, unsealed radioactive material. Crucially determining the total number of RSSs for which manpower-intensive radiation protection surveillance is provided is the individual RSS activity above which such surveillance is required and below which such effort is not considered cost effective. Individual RSS activity thresholds are typically determined through scenarios which impart a chosen internal or external limiting dose to Reference Man under specified exposure conditions. The resultant RSS threshold activity levels have meaning commensurate with the assumed scenario exposure parameters, i.e., if they are realistic and technically based. A review of how the Department of Energy (DOE), the International Atomic Energy Agency (IAEA), and the Nuclear Regulatory Commission (NRC) have determined their respective accountability, exemption, and licensing threshold activity values is provided. Finally, a fully explained method using references readily available to practicing health physicists is developed using realistic, technically-based calculation parameters by which RSS threshold activities may be locally generated.

  10. Decision making and action implementation: evidence for an early visually triggered motor activation specific to potential actions.

    PubMed

    Tandonnet, Christophe; Garry, Michael I; Summers, Jeffery J

    2013-07-01

    To make a decision may rely on accumulating evidence in favor of one alternative until a threshold is reached. Sequential-sampling models differ by the way of accumulating evidence and the link with action implementation. Here, we tested a model's prediction of an early action implementation specific to potential actions. We assessed the dynamics of action implementation in go/no-go and between-hand choice tasks by transcranial magnetic stimulation of the motor cortex (single- or paired-pulse TMS; 3-ms interstimulus interval). Prior to implementation of the selected action, the amplitude of the motor evoked potential first increased whatever the visual stimulus but only for the hand potentially involved in the to-be-produced action. These findings suggest that visual stimuli can trigger an early motor activation specific to potential actions, consistent with race-like models with continuous transmission between decision making and action implementation.

  11. Primary motor cortex activity is elevated with incremental exercise intensity.

    PubMed

    Brümmer, V; Schneider, S; Strüder, H K; Askew, C D

    2011-05-05

    While the effects of exercise on brain cortical activity from pre-to post-exercise have been thoroughly evaluated, few studies have investigated the change in activity during exercise. As such, it is not clear to what extent changes in exercise intensity influence brain cortical activity. Furthermore, due to the difficulty in using brain-imaging methods during complex whole-body movements like cycling, it is unclear to what extent the activity in specific brain areas is altered with incremental exercise intensity over time. Latterly, active electroencephalography (EEG) electrodes combined with source localization methods allow for the assessment of brain activity, measured as EEG current density, within specific cortical regions. The present study aimed to investigate the application of this method during exercise on a cycle ergometer, and to investigate the effect of increasing exercise intensity on the magnitude and location of any changes in electrocortical current density. Subjects performed an incremental cycle ergometer test until subjective exhaustion. Current density of the EEG recordings during each test stage, as well as before and after exercise, was determined. Spatial changes in current density were localized using low-resolution brain electromagnetic tomography (LORETA) to three regions of interest; the primary motor cortex, primary sensory cortex and prefrontal cortex, and were expressed relative to current density within the local lobe. It was demonstrated that the relative current density of the primary motor cortex was intensified with increasing exercise intensity, whereas activity of the primary sensory cortex and that of the prefrontal cortex were not altered with exercise. The results indicate that the combined active EEG/LORETA method allows for the recording of brain cortical activity during complex movements and incremental exercise. These findings indicate that primary motor cortex activity is elevated with incremental exercise intensity

  12. New Validated Thresholds for Various Intensities of Physical Activity in Adolescents Using the Actigraph Accelerometer

    ERIC Educational Resources Information Center

    Vanhelst, Jeremy; Beghin, Laurent; Turck, Dominique; Gottrand, Frederic

    2011-01-01

    The aim of this study was to determine and validate the new thresholds for various intensities of physical activity in adolescents using the Actigraph accelerometer. Sixty healthy participants aged 10-16 years were recruited. Forty participants participated in the calibration study whereas the others participated in the validation study.…

  13. Chemical and thermal modulation of molecular motor activities

    NASA Astrophysics Data System (ADS)

    Hong, Weili

    Molecular motors of kinesin and dynein families are responsible for various intracellular activities, from long distance movement of organelles, vesicles, protein complexes, and mRNAs to powering mitotic processes. They can take nanometer steps using chemical energy from the hydrolysis of ATP (adenosine triphosphate), and their dysfunction is involved in many neurodegenerative diseases that require long distance transport of cargos. Here I report on the study of the properties of molecular motors at a single-molecule level using optical trappings. I first studied the inhibition properties of kinesin motors by marine natural compound adociasulfates. I showed that adociasulfates compete with microtubules for binding to kinesins and thus inhibit kinesins' activity. Although adociasulfates are a strong inhibitor for all kinesin members, they show a much higher inhibition effect for conventional kinesins than for mitotic kinesins. Thus adociasulfates can be used to specifically inhibit conventional kinesins. By comparing the inhibition of kinesins by two structurally similar adociasulfates, one can see that the negatively charged sulfate residue of adociasulfates can be replaced by other negative residues and thus make it possible for adociasulfate-derived compounds to be more cell permeable. Kinesins and dyneins move cargos towards opposite directions along a microtubule. Cargos with both kinesins and dyneins attached often move bidirectionally due to undergoing a tug-of-war between the oppositely moving kinesin and dynein motors. Here I studied the effect of temperature on microtubule-based kinesin and dynein motor transport. While kinesins' and dyneins' velocities are closely matched above 15 °C, below this temperature the dyneins' velocity decreases much faster than the kinesins'. The kinesins' and dyneins' forces do not measurably change with temperature. The results suggest that temperature has significant effects on bidirectional transport and can be used to

  14. Activation of sensory-motor areas in sentence comprehension.

    PubMed

    Desai, Rutvik H; Binder, Jeffrey R; Conant, Lisa L; Seidenberg, Mark S

    2010-02-01

    The sensory-motor account of conceptual processing suggests that modality-specific attributes play a central role in the organization of object and action knowledge in the brain. An opposing view emphasizes the abstract, amodal, and symbolic character of concepts, which are thought to be represented outside the brain's sensory-motor systems. We conducted a functional magnetic resonance imaging study in which the participants listened to sentences describing hand/arm action events, visual events, or abstract behaviors. In comparison to visual and abstract sentences, areas associated with planning and control of hand movements, motion perception, and vision were activated when understanding sentences describing actions. Sensory-motor areas were activated to a greater extent also for sentences with actions that relied mostly on hands, as opposed to arms. Visual sentences activated a small area in the secondary visual cortex, whereas abstract sentences activated superior temporal and inferior frontal regions. The results support the view that linguistic understanding of actions partly involves imagery or simulation of actions, and relies on some of the same neural substrate used for planning, performing, and perceiving actions.

  15. Effect of a chloride channel activator, lubiprostone, on colonic sensory and motor functions in healthy subjects.

    PubMed

    Sweetser, Seth; Busciglio, Irene A; Camilleri, Michael; Bharucha, Adil E; Szarka, Lawrence A; Papathanasopoulos, Athanasios; Burton, Duane D; Eckert, Deborah J; Zinsmeister, Alan R

    2009-02-01

    Lubiprostone, a bicyclic fatty acid chloride channel activator, is efficacious in treatment of chronic constipation and constipation-predominant irritable bowel syndrome. The study aim was to compare effects of lubiprostone and placebo on colonic sensory and motor functions in humans. In double-blind, randomized fashion, 60 healthy adults received three oral doses of placebo or 24 microg lubiprostone per day in a parallel-group, placebo-controlled trial. A barostat-manometry tube was placed in the left colon by flexible sigmoidoscopy and fluoroscopy. We measured treatment effects on colonic sensation and motility with validated methods, with the following end points: colonic compliance, fasting and postprandial tone and motility indexes, pain thresholds, and sensory ratings to distensions. Among participants receiving lubiprostone or placebo, 26 of 30 and 28 of 30, respectively, completed the study. There were no overall effects of lubiprostone on compliance, fasting tone, motility indexes, or sensation. However, there was a treatment-by-sex interaction effect for compliance (P = 0.02), with lubiprostone inducing decreased fasting compliance in women (P = 0.06) and an overall decreased colonic tone contraction after a standard meal relative to fasting tone (P = 0.014), with greater effect in women (P < 0.01). Numerical differences of first sensation and pain thresholds (P = 0.11 in women) in the two groups were not significant. We concluded that oral lubiprostone 24 microg does not increase colonic motor function. The findings of decreased colonic compliance and decreased postprandial colonic tone in women suggest that motor effects are unlikely to cause accelerated colonic transit with lubiprostone, although they may facilitate laxation. Effects of lubiprostone on sensitivity deserve further study.

  16. Differential actigraphy for monitoring asymmetry in upper limb motor activities.

    PubMed

    Rabuffetti, M; Meriggi, P; Pagliari, C; Bartolomeo, P; Ferrarin, M

    2016-09-21

    Most applications of accelerometry-based actigraphy require a single sensor, properly located onto the body, to estimate, for example, the level of activity or the energy expenditure. Some approaches adopt a multi-sensor setup to improve those analyses or to classify different types of activity. The specific case of two symmetrically placed actigraphs allowing, by some kind of differential analysis, for the assessment of asymmetric motor behaviors, has been considered in relatively few studies. This article presents a novel method for differential actigraphy, which requires the synchronized measurements of two triaxial accelerometers (programmable eZ430-Chronos, Texas Instruments, USA) placed symmetrically on both wrists. The method involved the definition of a robust epoch-related activity index and its implementation on-board the adopted programmable platform. Finally, the activity recordings from both sensors allowed us to define a novel asymmetry index AR24 h ranging from  -100% (only the left arm moves) to  +100% (only the right arm moves) with null value marking a perfect symmetrical behavior. The accuracy of the AR24 h index was 1.3%. Round-the-clock monitoring on 31 healthy participants (20-79 years old, 10 left handed) provided for the AR24 h reference data (range  -5% to 21%) and a fairly good correlation to the clinical handedness index (r  =  0.66, p  <  0.001). A subset of 20 participants repeated the monitoring one week apart evidencing an excellent test-retest reliability (r  =  0.70, p  <  0.001). Such figures support future applications of the methodology for the study of pathologies involving motor asymmetries, such as in patients with motor hemisyndromes and, in general, for those subjects for whom a quantification of the asymmetry in daily motor performances is required to complement laboratory tests.

  17. Threshold responses of songbirds to long-term timber management on an active industrial forest

    USGS Publications Warehouse

    Becker, D.A.; Wood, P.B.; Keyser, P.D.; Wigley, T.B.; Dellinger, R.; Weakland, C.A.

    2011-01-01

    Forest managers often seek to balance economic benefits from timber harvesting with maintenance of habitat for wildlife, ecosystem function, and human uses. Most research on the relationship between avian abundance and active timber management has been short-term, lasting one to two years, creating the need to investigate long-term avian responses and to identify harvest thresholds when a small change in habitat results in a disproportionate response in relative abundance and nest success. Our objectives were to identify trends in relative abundance and nest success and to identify landscape-scale disturbance thresholds for avian species and habitat guilds in response to a variety of harvest treatments (clear-cuts, heavy and light partial harvests) over 14 years. We conducted point counts and monitored nests at an industrial forest in the central Appalachians of West Virginia during 1996-1998, 2001-2003, and 2007-2009. Early successional species increased in relative abundance across all three time periods, whereas interior-edge and forest-interior guilds peaked in relative abundance mid-study after which the forest-interior guild declined. Of 41 species with >10 detections, four (10%) declined significantly, 13 (32%) increased significantly (only three species among all periods), and 9 (22%) peaked in abundance mid-study (over the entire study period, four species had no significant change in abundance, four declined, and one increased). Based on piecewise linear models, forest-interior and interior-edge guilds' relative abundance harvest thresholds were 28% total harvests (all harvests combined), 10% clear-cut harvests, and 18% light partial harvests, after which abundances declined. Harvest thresholds for the early successional guild were 42% total harvests, 11% clear-cut harvest, and 10% light partial harvests, and relative abundances increased after surpassing thresholds albeit at a reduced rate of increase after the clear-cut threshold. Threshold confidence

  18. Repression of inactive motor nerve terminals in partially denervated rat muscle after regeneration of active motor axons.

    PubMed Central

    Ribchester, R R; Taxt, T

    1984-01-01

    The fourth deep lumbrical muscle in the hind foot of adult rats was partially denervated by crushing the sural nerve (s.n.). The denervated muscle fibres became completely reinnervated by sprouts from lateral plantar nerve (l.p.n.) motor axons. By about 20 days after the nerve crush, s.n. motor axons started to reinnervate the muscle. In control muscles, a small proportion of the muscle fibres--about 2.5% of the muscle per motor unit--was reinnervated by s.n. motor axons over the following 20 days. Hence the regenerating terminals were able to re-establish functional synapses, despite the fact that all the muscle fibres were functionally innervated by l.p.n. terminals. When nerve impulse conduction in the l.p.n. was blocked with tetrodotoxin for up to 2 weeks, starting from the time when s.n. axons returned to the muscle, s.n. motor axons retrieved a much larger proportion of the muscle fibres--about 6.5% of the muscle per motor unit. There was a concomitant decrease in the tension produced by the sprouted l.p.n. motor axons. Intracellular recordings showed that many muscle fibres became innervated exclusively by regenerated s.n. motor nerve terminals. Measurements of end-plate potentials suggested that l.p.n. sprouts and the original nerve terminals were eliminated non-selectively. These results suggest that regenerating, active motor nerve terminals have an additional competitive advantage in reinnervating innervated muscles, if the intact terminals are inactive. When the l.p.n. was cut, rather than blocked, extensive reinnervation by the s.n. occurred-about 30% of the muscle per motor unit. This suggests that the absence of an intact nerve terminal in the motor end-plate provides a stronger stimulus than inactivity for synapse formation by regenerating motor axons. PMID:6707966

  19. Activation of attention networks using frequency analysis of a simple auditory-motor paradigm.

    PubMed

    Astrakas, Loukas G; Teicher, Martin; Tzika, A Aria

    2002-04-01

    The purpose of this study was to devise a paradigm that stimulates attention using a frequency-based analysis of the data acquired during a motor task. Six adults (30-40 years of age) and one child (10 years) were studied. Each subject was requested to attend to "start" and "stop" commands every 20 s alternatively and had to respond with the motor task every second time. Attention was stimulated during a block-designed, motor paradigm in which a start-stop commands cycle produced activation at the fourth harmonic of the motor frequency. We disentangled the motor and attention functions using statistical analysis with subspaces spanned by vectors generated by a truncated trigonometric series of motor and attention frequency. During our auditory-motor paradigm, all subjects showed activation in areas that belong to an extensive attention network. Attention and motor functions were coactivated but with different frequencies. While the motor-task-related areas were activated with slower frequency than attention, the activation in the attention-related areas was enhanced every time the subject had to start or end the motor task. We suggest that although a simple block-designed, auditory-motor paradigm stimulates the attention network, motor preparation, and motor inhibition concurrently, a frequency-based analysis can distinguish attention from motor functions. Due to its simplicity the paradigm can be valuable in studying children with attention deficit disorders.

  20. Brain acetylcholinesterase activity in Wistar and August rats with low and high motor activity (a cytochemical study).

    PubMed

    Sergutina, A V; Rakhmanova, V I

    2014-08-01

    Acetylcholinesterase activity was quantitatively evaluated by cytochemical method in brain structures (layers III and V of the sensorimotor cortex, caudate nucleus, nucleus accumbens, hippocampus CA3 field) of August and Wistar rats demonstrating high and low motor activity in the open field test. In August rats, acetylcholinesterase activity in the analyzed brain structures prevailed in animals with high motor activity in comparison with rats with low motor activity. In Wistar rats, the differences between the animals demonstrating high and low motor activity were less pronounced, but varied depending on the experimental series of studies. Comparisons of August rats with low motor activity and Wistar rats with high motor activity (maximum difference of motor function in these animals) revealed significant excess of acetylcholinesterase activity in layer III of the sensorimotor cortex in August rats and no differences in other brain structures of the examined animals.

  1. Motor Cortex Microcircuit Simulation Based on Brain Activity Mapping

    PubMed Central

    Chadderdon, George L.; Mohan, Ashutosh; Suter, Benjamin A.; Neymotin, Samuel A.; Kerr, Cliff C.; Francis, Joseph T.; Shepherd, Gordon M. G.; Lytton, William W.

    2016-01-01

    The deceptively simple laminar structure of neocortex belies the complexity of intra- and interlaminar connectivity. We developed a computational model based primarily on a unified set of brain activity mapping studies of mouse M1. The simulation consisted of 775 spiking neurons of 10 cell types with detailed population-to-population connectivity. Static analysis of connectivity with graph-theoretic tools revealed that the corticostriatal population showed strong centrality, suggesting that would provide a network hub. Subsequent dynamical analysis confirmed this observation, in addition to revealing network dynamics that cannot be readily predicted through analysis of the wiring diagram alone. Activation thresholds depended on the stimulated layer. Low stimulation produced transient activation, while stronger activation produced sustained oscillations where the threshold for sustained responses varied by layer: 13% in layer 2/3, 54% in layer 5A, 25% in layer 5B, and 17% in layer 6. The frequency and phase of the resulting oscillation also depended on stimulation layer. By demonstrating the effectiveness of combined static and dynamic analysis, our results show how static brain maps can be related to the results of brain activity mapping. PMID:24708371

  2. Zopiclone Increases the Arousal Threshold without Impairing Genioglossus Activity in Obstructive Sleep Apnea

    PubMed Central

    Carter, Sophie G.; Berger, Michael S.; Carberry, Jayne C.; Bilston, Lynne E.; Butler, Jane E.; Tong, Benjamin K.Y.; Martins, Rodrigo T.; Fisher, Lauren P.; McKenzie, David K.; Grunstein, Ronald R.; Eckert, Danny J.

    2016-01-01

    Study Objectives: To determine the effects of the nonbenzodiazepine sedative zopiclone on the threshold to arousal with increasing respiratory effort and genioglossus muscle activity and to examine potential physiological factors mediating disparate effects of zopiclone on obstructive sleep apnea (OSA) severity between patients. Methods: Twelve patients with OSA (apnea-hypopnea index = 41 ± 8 events/h) were studied during 2 single night sleep studies conducted approximately 1 w apart after receiving 7.5 mg of zopiclone or placebo according to a double-blind, placebo-controlled, randomized, crossover design. The respiratory arousal threshold (epiglottic pressure immediately prior to arousal during naturally occurring respiratory events), genioglossus activity and its responsiveness to pharyngeal pressure during respiratory events, and markers of OSA severity were compared between conditions. Genioglossus movement patterns and upper airway anatomy were also assessed via magnetic resonance imaging in a subset of participants (n = 7) during wakefulness. Results: Zopiclone increased the respiratory arousal threshold versus placebo (−31.8 ± 5.6 versus −26.4 ± 4.6 cmH2O, P = 0.02) without impairing genioglossus muscle activity or its responsiveness to negative pharyngeal pressure during respiratory events (−0.56 ± 0.2 versus −0.44 ± 0.1 %max/-cmH2O, P = 0.48). There was substantial interindividual variability in the changes in OSA severity with zopiclone explained, at least in part, by differences in pathophysiological characteristics including body mass index, arousal threshold, and genioglossus movement patterns. Conclusions: In a group of patients with predominantly severe OSA, zopiclone increased the arousal threshold without reducing genioglossus muscle activity or its responsiveness to negative pharyngeal pressure. These properties may be beneficial in some patients with OSA with certain pathophysiological characteristics but may worsen hypoxemia in

  3. The temporal relationship of thresholds between muscle activity and ventilation during bicycle ramp exercise in community dwelling elderly males

    PubMed Central

    Sasaki, Kentaro; Kimura, Tsuyoshi; Kojima, Satoshi; Higuchi, Hiroyuki

    2016-01-01

    [Purpose] To compare the appearance time of the ventilatory threshold point and the electromyographic threshold in the activity of the vastus lateralis, rectus femoris, biceps femoris long head and gastrocnemius lateral head muscles during ramp cycling exercise in elderly males. [Subjects and Methods] Eleven community dwelling elderly males participated in this study. Subjects performed exercise testing with an expiratory gas analyzer and surface electromyography to evaluate the tested muscle activities during ramp exercise. [Results] The electromyographic threshold for rectus femoris was not valid because the slope after electromyographic threshold was not significant as compared to that before electromyographic threshold. The slope of the regression line for vastus lateralis was significantly decreased after electromyographic threshold while biceps femoris and gastrocnemius were increased. The electromyographic threshold appearance times for vastus lateralis and gastrocnemius were significantly earlier than ventilatory threshold point. There were no difference in electromyographic threshold appearance times among three muscles. [Conclusion] These results suggest that the increase in the slope of the regression line after electromyographic threshold for vastus lateralis was decreased, possibly indicating to postpone muscular fatigue resulting from the activation of biceps femoris and gastrocnemius as biarticular antagonists. This recruitment pattern might be an elderly-specific strategy. PMID:27942152

  4. Cortical activity predicts good variation in human motor output.

    PubMed

    Babikian, Sarine; Kanso, Eva; Kutch, Jason J

    2017-02-04

    Human movement patterns have been shown to be particularly variable if many combinations of activity in different muscles all achieve the same task goal (i.e., are goal-equivalent). The nervous system appears to automatically vary its output among goal-equivalent combinations of muscle activity to minimize muscle fatigue or distribute tissue loading, but the neural mechanism of this "good" variation is unknown. Here we use a bimanual finger task, electroencephalography (EEG), and machine learning to determine if cortical signals can predict goal-equivalent variation in finger force output. 18 healthy participants applied left and right index finger forces to repeatedly perform a task that involved matching a total (sum of right and left) finger force. As in previous studies, we observed significantly more variability in goal-equivalent muscle activity across task repetitions compared to variability in muscle activity that would not achieve the goal: participants achieved the task in some repetitions with more right finger force and less left finger force (right > left) and in other repetitions with less right finger force and more left finger force (left > right). We found that EEG signals from the 500 milliseconds (ms) prior to each task repetition could make a significant prediction of which repetitions would have right > left and which would have left > right. We also found that cortical maps of sites contributing to the prediction contain both motor and pre-motor representation in the appropriate hemisphere. Thus, goal-equivalent variation in motor output may be implemented at a cortical level.

  5. Lagged association between geomagnetic activity and diminished nocturnal pain thresholds in mice.

    PubMed

    Galic, M A; Persinger, M A

    2007-10-01

    A wide variety of behaviors in several species has been statistically associated with the natural variations in geomagnetism. To examine whether changes in geomagnetic activity are associated with pain thresholds, adult mice were exposed to a hotplate paradigm once weekly for 52 weeks during the dark cycle. Planetary A index values from the previous 6 days of a given hotplate session were correlated with the mean response latency for subjects to the thermal stimulus. We found that hotplate latency was significantly (P < 0.05) and inversely correlated (rho = -0.25) with the daily geomagnetic intensity 3 days prior to testing. Therefore, if the geomagnetic activity was greater 3 days before a given hotplate trial, subjects tended to exhibit shorter response latencies, suggesting lower pain thresholds or less analgesia. These results are supported by related experimental findings and suggest that natural variations in geomagnetic intensity may influence nociceptive behaviors in mice.

  6. Relation between cooperative molecular motors and active Brownian particles

    NASA Astrophysics Data System (ADS)

    Touya, Clément; Schwalger, Tilo; Lindner, Benjamin

    2011-05-01

    Active Brownian particles (ABPs), obeying a nonlinear Langevin equation with speed-dependent drift and noise amplitude, are well-known models used to describe self-propelled motion in biology. In this paper we study a model describing the stochastic dynamics of a group of coupled molecular motors (CMMs). Using two independent numerical methods, one based on the stationary velocity distribution of the motors and the other one on the local increments (also known as the Kramers-Moyal coefficients) of the velocity, we establish a connection between the CMM and the ABP models. The parameters extracted for the ABP via the two methods show good agreement for both symmetric and asymmetric cases and are independent of N, the number of motors, provided that N is not too small. This indicates that one can indeed describe the CMM problem with a simpler ABP model. However, the power spectrum of velocity fluctuations in the CMM model reveals a peak at a finite frequency, a peak which is absent in the velocity spectrum of the ABP model. This implies richer dynamic features of the CMM model which cannot be captured by an ABP model.

  7. Active Fault Tolerant Control for Ultrasonic Piezoelectric Motor

    NASA Astrophysics Data System (ADS)

    Boukhnifer, Moussa

    2012-07-01

    Ultrasonic piezoelectric motor technology is an important system component in integrated mechatronics devices working on extreme operating conditions. Due to these constraints, robustness and performance of the control interfaces should be taken into account in the motor design. In this paper, we apply a new architecture for a fault tolerant control using Youla parameterization for an ultrasonic piezoelectric motor. The distinguished feature of proposed controller architecture is that it shows structurally how the controller design for performance and robustness may be done separately which has the potential to overcome the conflict between performance and robustness in the traditional feedback framework. A fault tolerant control architecture includes two parts: one part for performance and the other part for robustness. The controller design works in such a way that the feedback control system will be solely controlled by the proportional plus double-integral PI2 performance controller for a nominal model without disturbances and H∞ robustification controller will only be activated in the presence of the uncertainties or an external disturbances. The simulation results demonstrate the effectiveness of the proposed fault tolerant control architecture.

  8. Detection Thresholds of Falling Snow from Satellite-Borne Active and Passive Sensors

    NASA Technical Reports Server (NTRS)

    Jackson, Gail

    2012-01-01

    Precipitation, including rain and snow, is a critical part of the Earth's energy and hydrology cycles. In order to collect information on the complete global precipitation cycle and to understand the energy budget in terms of precipitation, uniform global estimates of both liquid and frozen precipitation must be collected. Active observations of falling snow are somewhat easier to estimate since the radar will detect the precipitation particles and one only needs to know surface temperature to determine if it is liquid rain or snow. The challenges of estimating falling snow from passive spaceborne observations still exist though progress is being made. While these challenges are still being addressed, knowledge of their impact on expected retrieval results is an important key for understanding falling snow retrieval estimations. Important information to assess falling snow retrievals includes knowing thresholds of detection for active and passive sensors, various sensor channel configurations, snow event system characteristics, snowflake particle assumptions, and surface types. For example, can a lake effect snow system with low (2.5 km) cloud tops having an ice water content (Iwe) at the surface of 0.25 g m-3 and dendrite snowflakes be detected? If this information is known, we can focus retrieval efforts on detectable storms and concentrate advances on achievable results. Here, the focus is to determine thresholds of detection for falling snow for various snow conditions over land and lake surfaces. The analysis relies on simulated Weather Research Forecasting (WRF) simulations of falling snow cases since simulations provide all the information to determine the measurements from space and the ground truth. Results are presented for active radar at Ku, Ka, and W-band and for passive radiometer channels from 10 to 183 GHz (Skofronick-Jackson, et al. submitted to IEEE TGRS, April 2012). The notable results show: (1) the W-Band radar has detection thresholds more

  9. Active learning of novel sound-producing objects: motor reactivation and enhancement of visuo-motor connectivity.

    PubMed

    Butler, Andrew J; James, Karin Harman

    2013-02-01

    Our experience with the world commonly involves physical interaction with objects enabling us to learn associations between multisensory information perceived during an event and our actions that create an event. The interplay among active interactions during learning and multisensory integration of object properties is not well understood. To better understand how action might enhance multisensory associative recognition, we investigated the interplay among motor and perceptual systems after active learning. Fifteen participants were included in an fMRI study during which they learned visuo-auditory-motor associations between novel objects and the sounds they produce, either through self-generated actions on the objects (active learning) or by observing an experimenter produce the actions (passive learning). Immediately after learning, behavioral and BOLD fMRI measures were collected while perceiving the objects used during unisensory and multisensory training in associative perception and recognition tasks. Active learning was faster and led to more accurate recognition of audiovisual associations than passive learning. Functional ROI analyses showed that in motor, somatosensory, and cerebellar regions there was greater activation during both the perception and recognition of actively learned associations. Finally, functional connectivity between visual- and motor-related processing regions was enhanced during the presentation of actively learned audiovisual associations. Overall, the results of the current study clarify and extend our own previous work [Butler, A. J., James, T. W., & Harman James, K. Enhanced multisensory integration and motor reactivation after active motor learning of audiovisual associations. Journal of Cognitive Neuroscience, 23, 3515-3528, 2011] by providing several novel findings and highlighting the task-based nature of motor reactivation and retrieval after active learning.

  10. Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke.

    PubMed

    Pariente, J; Loubinoux, I; Carel, C; Albucher, J F; Leger, A; Manelfe, C; Rascol, O; Chollet, F

    2001-12-01

    In order to determine the influence of a single dose of fluoxetine on the cerebral motor activation of lacunar stroke patients in the early phase of recovery, we conducted a prospective, double-blind, crossover, placebo-controlled study on 8 patients with pure motor hemiparesia. Each patient underwent two functional magnetic resonance imaging (fMRI) examinations: one under fluoxetine and one under placebo. The first was performed 2 weeks after stroke onset and the second a week later. During the two fMRI examinations, patients performed an active controlled motor task with the affected hand and a passive one conducted by the examiner with the same hand. Motor performance was evaluated by motor tests under placebo and under fluoxetine immediately before the examinations to investigate the effect of fluoxetine on motor function. Under fluoxetine, during the active motor task, hyperactivation in the ipsilesional primary motor cortex was found. Moreover, fluoxetine significantly improved motor skills of the affected side. We found that a single dose of fluoxetine was enough to modulate cerebral sensory-motor activation in patients. This redistribution of activation toward the motor cortex output activation was associated with an enhancement of motor performance.

  11. Time required for motor activity in lucid dreams.

    PubMed

    Erlacher, Daniel; Schredl, Michael

    2004-12-01

    The present study investigated the relationship between the time required for specific tasks (counting and performing squats) in lucid dreams and in the waking state. Five proficient lucid dreamers (26-34 yr. old, M=29.8, SD=3.0; one woman and four men) participated. Analysis showed that the time needed for counting in a lucid dream is comparable to the time needed for counting in wakefulness, but motor activities required more time in lucid dreams than in the waking state.

  12. Factors to consider when applying transcranial magnetic stimulation of dorsolateral prefrontal cortex when resting motor threshold is asymmetric: A case study.

    PubMed

    Maller, Jerome J; Thomson, Richard H S; McQueen, Susan; Elliot, David; Fitzgerald, Paul B

    2016-02-01

    Transcranial magnetic stimulation (TMS) is an increasingly popular tool in treating psychiatric conditions. The dorsal lateral prefrontal cortex (DLPFC) is typically targeted for stimulation, with magnetic field intensity being calibrated by establishing resting motor threshold (RMT) at hand region of primary motor cortex (M1 hand). This presumes that scalp-to-cortex distance (SCD) and cortical thickness is similar at both sites. We present data from a patient who had very asymmetrical RMTs (47 and 78). We investigated SCDs in this patient at the M1 hand and DLPFC, and the M1 hand cortical thickness. We also investigated TMS electric field distribution. The M1 hand SCD and cortical thickness of the M1 hand was larger on the side with higher RMT. Electric field finite element modelling demonstrated the focal point did not effectively reach the M1 hand with higher RMT as the postcentral gyrus was shunting it. Hence, successful DLPFC treatment was based upon the side with lower RMT. This study highlights the importance of tailoring DLPFC treatment intensity not only based on RMT at the M1 hand, and upon the degree to which SCD distance differs between sites, but also based upon size, shape, and density of M1 hand, as well as electric field distribution.

  13. Decreased Activation of Subcortical Brain Areas in the Motor Fatigue State: An fMRI Study

    PubMed Central

    Hou, Li J.; Song, Zheng; Pan, Zhu J.; Cheng, Jia L.; Yu, Yong; Wang, Jun

    2016-01-01

    One aspect of motor fatigue is the exercise-induced reduction of neural activity to voluntarily drive the muscle or muscle group. Functional magnetic resonance imaging provides access to investigate the neural activation on the whole brain level and studies observed changes of activation intensity after exercise-induced motor fatigue in the sensorimotor cortex. However, in human, little evidence exists to demonstrate the role of subcortical brain regions in motor fatigue, which is contradict to abundant researches in rodent indicating that during simple movement, the activity of the basal ganglia is modulated by the state of motor fatigue. Thus, in present study, we explored the effect of motor fatigue on subcortical areas in human. A series of fMRI data were collected from 11 healthy subjects while they were executing simple motor tasks in two conditions: before and under the motor fatigue state. The results showed that in both conditions, movements evoked activation volumes in the sensorimotor areas, SMA, cerebellum, thalamus, and basal ganglia. Of primary importance are the results that the intensity and size of activation volumes in the subcortical areas (i.e., thalamus and basal ganglia areas) are significantly decreased during the motor fatigue state, implying that motor fatigue disturbs the motor control processing in a way that both sensorimotor areas and subcortical brain areas are less active. Further study is needed to clarify how subcortical areas contribute to the overall decreased activity of CNS during motor fatigue state. PMID:27536264

  14. Sympathetic-induced changes in discharge rate and spike-triggered average twitch torque of low-threshold motor units in humans.

    PubMed

    Roatta, Silvestro; Arendt-Nielsen, Lars; Farina, Dario

    2008-11-15

    Animal and in vitro studies have shown that the sympathetic nervous system modulates the contractility of skeletal muscle fibres, which may require adjustments in the motor drive to the muscle in voluntary contractions. In this study, these mechanisms were investigated in the tibialis anterior muscle of humans during sympathetic activation induced by the cold pressor test (CPT; left hand immersed in water at 4 degrees C). In the first experiment, 11 healthy men performed 20 s isometric contractions at 10% of the maximal torque, before, during and after the CPT. In the second experiment, 12 healthy men activated a target motor unit at the minimum stable discharge rate for 5 min in the same conditions as in experiment 1. Intramuscular electromyographic (EMG) signals and torque were recorded and used to assess the motor unit discharge characteristics (experiment 1) and spike-triggered average twitch torque (experiment 2). CPT increased the diastolic blood pressure and heart rate by (mean +/- S.D.) 18 +/- 9 mmHg and 4.7 +/- 6.5 beats min(-1) (P < 0.01), respectively. In experiment 1, motor unit discharge rate increased from 10.4 +/- 1.0 pulses s(-1) before to 11.1 +/- 1.4 pulses s(-1) (P < 0.05) during the CPT. In experiment 2, the twitch half-relaxation time decreased by 15.8 +/- 9.3% (P < 0.05) during the CPT with respect to baseline. These results provide the first evidence of an adrenergic modulation of contractility of muscle fibres in individual motor units in humans, under physiological sympathetic activation.

  15. Sympathetic-induced changes in discharge rate and spike-triggered average twitch torque of low-threshold motor units in humans

    PubMed Central

    Roatta, Silvestro; Arendt-Nielsen, Lars; Farina, Dario

    2008-01-01

    Animal and in vitro studies have shown that the sympathetic nervous system modulates the contractility of skeletal muscle fibres, which may require adjustments in the motor drive to the muscle in voluntary contractions. In this study, these mechanisms were investigated in the tibialis anterior muscle of humans during sympathetic activation induced by the cold pressor test (CPT; left hand immersed in water at 4°C). In the first experiment, 11 healthy men performed 20 s isometric contractions at 10% of the maximal torque, before, during and after the CPT. In the second experiment, 12 healthy men activated a target motor unit at the minimum stable discharge rate for 5 min in the same conditions as in experiment 1. Intramuscular electromyographic (EMG) signals and torque were recorded and used to assess the motor unit discharge characteristics (experiment 1) and spike-triggered average twitch torque (experiment 2). CPT increased the diastolic blood pressure and heart rate by (mean ±s.d.) 18 ± 9 mmHg and 4.7 ± 6.5 beats min−1 (P < 0.01), respectively. In experiment 1, motor unit discharge rate increased from 10.4 ± 1.0 pulses s−1 before to 11.1 ± 1.4 pulses s−1 (P < 0.05) during the CPT. In experiment 2, the twitch half-relaxation time decreased by 15.8 ± 9.3% (P < 0.05) during the CPT with respect to baseline. These results provide the first evidence of an adrenergic modulation of contractility of muscle fibres in individual motor units in humans, under physiological sympathetic activation. PMID:18818247

  16. Step-rate thresholds for physical activity intensity in persons with multiple sclerosis.

    PubMed

    Agiovlasitis, Stamatis; Motl, Robert W

    2014-01-01

    This study examined whether the relationship between metabolic equivalent units (METs) and step-rate is altered in persons with multiple sclerosis (MS) and developed step-rate thresholds for activity intensity for these persons. Participants were 24 persons with MS (20 women; age = 44 ± 12) and 24 healthy persons without MS (20 women; age = 41 ± 11). The MS group was divided using the 12-item MS Walking Scale (MSWS-12) into two walking impairment subgroups: (a) minimal (n = 13, MSWS-12 ≤ 12.5) and (b) mild-moderate (n = 11, MSWS-12 > 12.5). METs were measured with spirometry and step-rate with hand-tally. Step-rate, height, group, the step-rate by group interaction, and the square of step-rate significantly predicted METs. At a given height, the step-rate thresholds at 3 and 6 METs were lower for persons with minimal impairment than persons without MS and even lower for persons with mild-moderate impairment. The relationship between METs and step-rate is altered in persons with MS, lowering their step-rate thresholds for activity intensity, especially for persons with MS who have higher levels of walking impairment.

  17. From Spontaneous Motor Activity to Coordinated Behaviour: A Developmental Model

    PubMed Central

    Marques, Hugo Gravato; Bharadwaj, Arjun; Iida, Fumiya

    2014-01-01

    In mammals, the developmental path that links the primary behaviours observed during foetal stages to the full fledged behaviours observed in adults is still beyond our understanding. Often theories of motor control try to deal with the process of incremental learning in an abstract and modular way without establishing any correspondence with the mammalian developmental stages. In this paper, we propose a computational model that links three distinct behaviours which appear at three different stages of development. In order of appearance, these behaviours are: spontaneous motor activity (SMA), reflexes, and coordinated behaviours, such as locomotion. The goal of our model is to address in silico four hypotheses that are currently hard to verify in vivo: First, the hypothesis that spinal reflex circuits can be self-organized from the sensor and motor activity induced by SMA. Second, the hypothesis that supraspinal systems can modulate reflex circuits to achieve coordinated behaviour. Third, the hypothesis that, since SMA is observed in an organism throughout its entire lifetime, it provides a mechanism suitable to maintain the reflex circuits aligned with the musculoskeletal system, and thus adapt to changes in body morphology. And fourth, the hypothesis that by changing the modulation of the reflex circuits over time, one can switch between different coordinated behaviours. Our model is tested in a simulated musculoskeletal leg actuated by six muscles arranged in a number of different ways. Hopping is used as a case study of coordinated behaviour. Our results show that reflex circuits can be self-organized from SMA, and that, once these circuits are in place, they can be modulated to achieve coordinated behaviour. In addition, our results show that our model can naturally adapt to different morphological changes and perform behavioural transitions. PMID:25057775

  18. ZD7288 inhibits low-threshold Ca(2+) channel activity and regulates sperm function.

    PubMed

    Felix, Ricardo; Sandoval, Alejandro; Sánchez, Daniel; Gómora, Juan Carlos; De la Vega-Beltrán, José L; Treviño, Claudia L; Darszon, Alberto

    2003-11-07

    In this study, ZD7288, a blocker of hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels, has been found to inhibit the mouse sperm acrosome reaction (AR). HCN channels have not yet been either recorded or implicated in mouse sperm AR, but low-threshold (T-type) Ca(2+) channels have. Interestingly, ZD7288 blocked native T-type Ca(2+) currents in mouse spermatogenic cells with an IC(50) of about 100 microM. This blockade was more effective at voltages producing low levels of inactivation, suggesting a differential affinity of ZD7288 for different channel conformations. Furthermore, ZD7288 inhibited all cloned T-type but not high-threshold N-type channels heterologously expressed in HEK-293 cells. Our results further support the role of T-type Ca(2+) channels in the mouse sperm AR.

  19. Active learning: learning a motor skill without a coach.

    PubMed

    Huang, Vincent S; Shadmehr, Reza; Diedrichsen, Jörn

    2008-08-01

    When we learn a new skill (e.g., golf) without a coach, we are "active learners": we have to choose the specific components of the task on which to train (e.g., iron, driver, putter, etc.). What guides our selection of the training sequence? How do choices that people make compare with choices made by machine learning algorithms that attempt to optimize performance? We asked subjects to learn the novel dynamics of a robotic tool while moving it in four directions. They were instructed to choose their practice directions to maximize their performance in subsequent tests. We found that their choices were strongly influenced by motor errors: subjects tended to immediately repeat an action if that action had produced a large error. This strategy was correlated with better performance on test trials. However, even when participants performed perfectly on a movement, they did not avoid repeating that movement. The probability of repeating an action did not drop below chance even when no errors were observed. This behavior led to suboptimal performance. It also violated a strong prediction of current machine learning algorithms, which solve the active learning problem by choosing a training sequence that will maximally reduce the learner's uncertainty about the task. While we show that these algorithms do not provide an adequate description of human behavior, our results suggest ways to improve human motor learning by helping people choose an optimal training sequence.

  20. [Gallbladder motor activity in patients with virus hepatitis B].

    PubMed

    Mamos, Arkadiusz; Wichan, Paweł; Chojnacki, Jan; Grzegorczyk, Krzysztof

    2003-12-01

    In acute stage of virus hepatitis B patients often complain of dyspeptic discomfort. They may be a consequence of alimentary tract motor activity disorders including these of gallbladder. Routine ultrasonography in an early phase of virus hepatitis often reveals gallbladder wall thickening what may confirm the above thesis. Thus, a group of 15 patients in an acute phase of virus hepatitis B was subjected to examinations. Gallbladder motor activity was assessed by ultrasonographic method determining its total volume and ejection fraction and volume after test meal stimulus. First examination was performed in the first week since the appearance of yellowing of the walls, successive in 4 and 8 week of the disease. Obtained results were compared to the values obtained in the group of 25 healthy volunteers. It was found out that gallbladder volume was significantly decreased and ejection fraction increased in the acute phase of virus hepatitis B than in the controls. This may speak for gallbladder hyperreactivity in patients in the course of virus hepatitis B. These disorders decreased during two-month observation but even in the 8 week the investigated parameters differed from those found in the control group.

  1. CD43 REGULATES THE THRESHOLD FOR T CELL ACTIVATION BY TARGETING CBL FUNCTIONS

    PubMed Central

    Pedraza-Alva, Gustavo; Lilia, B. Mérida; del Rio, Roxana; Nora, A. Fierro; Cruz-Muñoz, Mario E.; Olivares, Norma; Melchy, Erika; Igras, Vivian; Georg, A. Holländer; Steven, J. Burakoff; Rosenstein, Yvonne

    2013-01-01

    SUMMARY T cell (TC) activation requires the coordinated signaling of the T cell receptor (TCR) and co-receptor molecules, allowing TCs to respond to lower degrees of TCR occupancy. Co-receptor molecules set the threshold for TC activation by controlling different regulatory signaling loops. The Cbl family members prevent undesired activation of TCs by regulating TCR signals. In this report we show that TC pre-stimulation by the CD43 co-receptor molecule before TCR engagement inhibits TCR-dependent c-Cbl tyrosine phosphorylation, c-Cbl interaction with the adapter molecule Crk-L and promotes Cbl-b degradation in a PKCθ–dependent manner. Consequently, the prolonged tyrosine phosphorylation and delayed degradation of ZAP-70 and of the ζ chain lead to enhanced MAPK activation and robust TC response. These data indicates that CD43-mediated signals lower the threshold for TC activation by restricting the c-Cbl and Cbl-b inhibitory effects on TCR signaling. In addition to the strength and duration of intracellular signals, our data underscore temporality with which certain molecules are engaged as yet another mechanism to fine tune TC signal quality, and ultimately immune function. PMID:21905200

  2. Thresholds of cortical activation of muscle spindles and α motoneurones of the baboon's hand

    PubMed Central

    Koeze, T. H.; Phillips, C. G.; Sheridan, J. D.

    1968-01-01

    1. Much current thinking about voluntary movement assumes that the segmental γ loops can function as a servomechanism operated by the brain. However, the α motoneurones of the baboon's hand receive a powerful monosynaptic (CM) projection from the precentral gyrus. If servo-driving from the same cortical area is to be possible, it must project independently to the fusimotor neurones and have sufficient power to increase the afferent signalling from the muscle spindles. The cortical thresholds for contraction of m. extensor digitorum communis and for acceleration of the discharges of its muscle spindles have therefore been compared. 2. Significant results in this context require that the spindles studied be coupled in parallel with the responding extrafusal muscle fibres. Many spindles were not unloaded by the submaximal contractions evoked by cortical stimulation, although all so tested were unloaded by maximal motor nerve twitches. Reasons are given for thinking that such apparent lack of parallel coupling is an artifact of complex intramuscular anatomy and limitation of shortening by `isometric' myography. 3. A brief burst of corticospinal volleys at 500/sec, which is specially effective in exciting α motoneurones over the CM projection, failed to excite spindle afferents at or below the threshold for a cortical `twitch'. 4. In a few epileptiform discharges, bursts of spindle acceleration occurred independently of the clonic contractions. A relatively direct and independent cortico-fusimotor (CF) projection may therefore exist. 5. Prolonged near-threshold stimulation at 50-100/sec, which allows time for temporal summation in the less direct projections (e.g. cortico-interneuronal, cortico-rubro-spinal) and does not cause frequency-potentiation at CM synapses, gives abundant evidence of independent α and fusimotor projections, whose actions hardly outlast the stimulation period. 6. Although independent CF projections would permit servo-driving in natural

  3. Familiarity modulates motor activation while other species' actions are observed: a magnetic stimulation study.

    PubMed

    Amoruso, Lucia; Urgesi, Cosimo

    2016-03-01

    Observing other people's actions facilitates the observer's motor system as compared with observing the same individuals at rest. This motor activation is thought to result from mirror-like activity in fronto-parietal areas, which enhances the excitability of the primary motor cortex via cortico-cortical pathways. Although covert motor activation in response to observed actions has been widely investigated between conspecifics, how humans cope with other species' actions has received less attention. For example, it remains unclear whether the human motor system is activated by observing other species' actions, and whether prior familiarity with the non-conspecific agent modulates this activation. Here, we combined single-pulse transcranial magnetic stimulation and motor-evoked potential recording to explore the impact of familiarity on motor activation during the observation of non-conspecific actions. Videos displaying actions performed either by a conspecific (human) or by a non-conspecific (dog) were shown to individuals who had prior familiarity or no familiarity at all with the non-conspecific agent. We found that, whereas individuals with long-lasting familiarity showed similar levels of motor activation for human and canine actions, individuals who had no familiarity showed higher motor activation for human than for canine actions. These findings suggest that the human motor system is flexible enough to resonate with other species, and that familiarity plays a key role in tuning this ability.

  4. Comparison of acute effects of heroin and Kerack on sensory and motor activity of honey bees (Apis mellifera)

    PubMed Central

    Hassanpour-Ezatti, Majid

    2015-01-01

    Objective(s): Previous studies demonstrated a functional similarity between vertebrate and honey bee nervous systems. The aim of the present study was to compare the effects of heroin and Iranian street Kerack, a combination of heroin and caffeine, on sensory threshold and locomotor activity in honey bees. Materials and Methods: All drugs were given orally to honey bees 30 min before each experiment. The levels of these drugs and their metabolites in brain samples of honey bees were determined by GC/MS. The sucrose sensitivity test was used for evaluation of changes in honey bees’ sensory threshold. Following the administration of both drugs, the honey bees’ locomotor activity changes were evaluated in open fields. Results: 6-acetylmorphine had a higher concentration in comparison with other heroin metabolites in honey bees’ brains. Concentration of the compound in the brain was directly proportional to the amount ingested. Heroin reduced the sensory threshold of honey bees, but Kerack increased it in the same doses. Locomotor activity of honey bee in open field was enhanced after the administration of both drugs. However, immobility time of honey bees was only affected by high doses of heroin. Conclusion: Acute effects of heroin andKerack on the sensory and motor functions of honey bees were different. Findings of this research suggest that these differences originated from the activation of different neurotransmitter systems by caffeine together with activation of opioid receptors by heroin. PMID:26019799

  5. An Active Contour Model Based on Adaptive Threshold for Extraction of Cerebral Vascular Structures

    PubMed Central

    Wang, Jiaxin; Zhao, Shifeng; Liu, Zifeng; Duan, Fuqing; Pan, Yutong

    2016-01-01

    Cerebral vessel segmentation is essential and helpful for the clinical diagnosis and the related research. However, automatic segmentation of brain vessels remains challenging because of the variable vessel shape and high complex of vessel geometry. This study proposes a new active contour model (ACM) implemented by the level-set method for segmenting vessels from TOF-MRA data. The energy function of the new model, combining both region intensity and boundary information, is composed of two region terms, one boundary term and one penalty term. The global threshold representing the lower gray boundary of the target object by maximum intensity projection (MIP) is defined in the first-region term, and it is used to guide the segmentation of the thick vessels. In the second term, a dynamic intensity threshold is employed to extract the tiny vessels. The boundary term is used to drive the contours to evolve towards the boundaries with high gradients. The penalty term is used to avoid reinitialization of the level-set function. Experimental results on 10 clinical brain data sets demonstrate that our method is not only able to achieve better Dice Similarity Coefficient than the global threshold based method and localized hybrid level-set method but also able to extract whole cerebral vessel trees, including the thin vessels. PMID:27597878

  6. An Active Contour Model Based on Adaptive Threshold for Extraction of Cerebral Vascular Structures.

    PubMed

    Wang, Jiaxin; Zhao, Shifeng; Liu, Zifeng; Tian, Yun; Duan, Fuqing; Pan, Yutong

    2016-01-01

    Cerebral vessel segmentation is essential and helpful for the clinical diagnosis and the related research. However, automatic segmentation of brain vessels remains challenging because of the variable vessel shape and high complex of vessel geometry. This study proposes a new active contour model (ACM) implemented by the level-set method for segmenting vessels from TOF-MRA data. The energy function of the new model, combining both region intensity and boundary information, is composed of two region terms, one boundary term and one penalty term. The global threshold representing the lower gray boundary of the target object by maximum intensity projection (MIP) is defined in the first-region term, and it is used to guide the segmentation of the thick vessels. In the second term, a dynamic intensity threshold is employed to extract the tiny vessels. The boundary term is used to drive the contours to evolve towards the boundaries with high gradients. The penalty term is used to avoid reinitialization of the level-set function. Experimental results on 10 clinical brain data sets demonstrate that our method is not only able to achieve better Dice Similarity Coefficient than the global threshold based method and localized hybrid level-set method but also able to extract whole cerebral vessel trees, including the thin vessels.

  7. Quantitative structure-activity relationships for nasal pungency thresholds of volatile organic compounds.

    PubMed

    Hau, K M; Connell, D W; Richardson, B J

    1999-01-01

    A model was developed for describing the triggering of nasal pungency in humans, based on the partition of volatile organic compounds (VOCs) between the air phase and the biophase. Two partition parameters are used in the model: the water-air partition coefficient and the octanol-water partition coefficient. The model was validated using data from the literature, principally on alcohols, acetates and ketones. The model suggests that all test compounds, regardless of their chemical functional groups, bind to a common receptor site within the hydrophobic interior of the bilayer membrane of the trigeminal nerve endings. There is probably only a slight, non-specific interaction between the VOC molecule and the receptor molecule, whereas this type of non-specific interaction for the detection of odor is much stronger. In practical terms, the suggestion that all VOCs share a common irritation receptor site implies that nasal-pungency thresholds of individual VOCs may be additive. Quantitative structure-activity relationships (QSARs) for nasal-pungency thresholds were also developed from the model, which can be used to predict nasal-pungency thresholds of common VOCs. Although the present model does not offer additional precision over that of M.H. Abraham et al., 1996, Fundam. Appl. Toxicol. 31, 71-76, it requires fewer descriptors and offers a physiological basis to the QSAR. Another advantage of the present model is that it also provides a basis for comparison between the olfactory process and nasal pungency.

  8. Optogenetically induced spatiotemporal gamma oscillations and neuronal spiking activity in primate motor cortex

    PubMed Central

    Lu, Yao; Truccolo, Wilson; Wagner, Fabien B.; Vargas-Irwin, Carlos E.; Ozden, Ilker; Zimmermann, Jonas B.; May, Travis; Agha, Naubahar S.; Wang, Jing

    2015-01-01

    Transient gamma-band (40–80 Hz) spatiotemporal patterns are hypothesized to play important roles in cortical function. Here we report the direct observation of gamma oscillations as spatiotemporal waves induced by targeted optogenetic stimulation, recorded by intracortical multichannel extracellular techniques in macaque monkeys during their awake resting states. Microelectrode arrays integrating an optical fiber at their center were chronically implanted in primary motor (M1) and ventral premotor (PMv) cortices of two subjects. Targeted brain tissue was transduced with the red-shifted opsin C1V1(T/T). Constant (1-s square pulses) and ramp stimulation induced narrowband gamma oscillations during awake resting states. Recordings across 95 microelectrodes (4 × 4-mm array) enabled us to track the transient gamma spatiotemporal patterns manifested, e.g., as concentric expanding and spiral waves. Gamma oscillations were induced well beyond the light stimulation volume, via network interactions at distal electrode sites, depending on optical power. Despite stimulation-related modulation in spiking rates, neuronal spiking remained highly asynchronous during induced gamma oscillations. In one subject we examined stimulation effects during preparation and execution of a motor task and observed that movement execution largely attenuated optically induced gamma oscillations. Our findings demonstrate that, beyond previously reported induced gamma activity under periodic drive, a prolonged constant stimulus above a certain threshold may carry primate motor cortex network dynamics into gamma oscillations, likely via a Hopf bifurcation. More broadly, the experimental capability in combining microelectrode array recordings and optogenetic stimulation provides an important approach for probing spatiotemporal dynamics in primate cortical networks during various physiological and behavioral conditions. PMID:25761956

  9. Optogenetically induced spatiotemporal gamma oscillations and neuronal spiking activity in primate motor cortex.

    PubMed

    Lu, Yao; Truccolo, Wilson; Wagner, Fabien B; Vargas-Irwin, Carlos E; Ozden, Ilker; Zimmermann, Jonas B; May, Travis; Agha, Naubahar S; Wang, Jing; Nurmikko, Arto V

    2015-06-01

    Transient gamma-band (40-80 Hz) spatiotemporal patterns are hypothesized to play important roles in cortical function. Here we report the direct observation of gamma oscillations as spatiotemporal waves induced by targeted optogenetic stimulation, recorded by intracortical multichannel extracellular techniques in macaque monkeys during their awake resting states. Microelectrode arrays integrating an optical fiber at their center were chronically implanted in primary motor (M1) and ventral premotor (PMv) cortices of two subjects. Targeted brain tissue was transduced with the red-shifted opsin C1V1(T/T). Constant (1-s square pulses) and ramp stimulation induced narrowband gamma oscillations during awake resting states. Recordings across 95 microelectrodes (4 × 4-mm array) enabled us to track the transient gamma spatiotemporal patterns manifested, e.g., as concentric expanding and spiral waves. Gamma oscillations were induced well beyond the light stimulation volume, via network interactions at distal electrode sites, depending on optical power. Despite stimulation-related modulation in spiking rates, neuronal spiking remained highly asynchronous during induced gamma oscillations. In one subject we examined stimulation effects during preparation and execution of a motor task and observed that movement execution largely attenuated optically induced gamma oscillations. Our findings demonstrate that, beyond previously reported induced gamma activity under periodic drive, a prolonged constant stimulus above a certain threshold may carry primate motor cortex network dynamics into gamma oscillations, likely via a Hopf bifurcation. More broadly, the experimental capability in combining microelectrode array recordings and optogenetic stimulation provides an important approach for probing spatiotemporal dynamics in primate cortical networks during various physiological and behavioral conditions.

  10. Uncoupling Malt1 threshold function from paracaspase activity results in destructive autoimmune inflammation.

    PubMed

    Gewies, Andreas; Gorka, Oliver; Bergmann, Hanna; Pechloff, Konstanze; Petermann, Franziska; Jeltsch, Katharina M; Rudelius, Martina; Kriegsmann, Mark; Weichert, Wilko; Horsch, Marion; Beckers, Johannes; Wurst, Wolfgang; Heikenwalder, Mathias; Korn, Thomas; Heissmeyer, Vigo; Ruland, Jürgen

    2014-11-20

    The paracaspase Malt1 is a central regulator of antigen receptor signaling that is frequently mutated in human lymphoma. As a scaffold, it assembles protein complexes for NF-κB activation, and its proteolytic domain cleaves negative NF-κB regulators for signal enforcement. Still, the physiological functions of Malt1-protease are unknown. We demonstrate that targeted Malt1-paracaspase inactivation induces a lethal inflammatory syndrome with lymphocyte-dependent neurodegeneration in vivo. Paracaspase activity is essential for regulatory T cell (Treg) and innate-like B cell development, but it is largely dispensable for overcoming Malt1-dependent thresholds for lymphocyte activation. In addition to NF-κB inhibitors, Malt1 cleaves an entire set of mRNA stability regulators, including Roquin-1, Roquin-2, and Regnase-1, and paracaspase inactivation results in excessive interferon gamma (IFNγ) production by effector lymphocytes that drive pathology. Together, our results reveal distinct threshold and modulatory functions of Malt1 that differentially control lymphocyte differentiation and activation pathways and demonstrate that selective paracaspase blockage skews systemic immunity toward destructive autoinflammation.

  11. Activity-based intervention in motor skill development.

    PubMed

    Apache, R R Goyakla

    2005-06-01

    This study assessed the effectiveness of an activity-based intervention program and a direct instruction program for preschool children with disabilities. Two groups of preschool students (average age=4.1 yr.), classified as having developmental delays or at risk for such delays, were selected. They were provided 15 weeks of physical education through activity-based intervention and 15 weeks of physical education by direct instruction. Instruction was provided three times a week for 30-min. each session. In the fall semester the morning group received physical education through activity-based intervention, while the afternoon group received physical education through direct instruction. In the spring semester delivery of instruction was reversed for each group. The curriculum and activities provided to each group were identical with only the instructional delivery format altered. Two sets of pre- and post-tests using the Test of Gross Motor Development were administered before and after each 15-wk. instructional period. Group improvement in skills was compared between instructional methods. Significant improvement in both locomotor and object control skills through the activity-based intervention was found compared to direct instruction. Activity-based intervention was shown to be easily adapted to a naturalistic educational setting befitting that of preschool education.

  12. Active magnetic suspension in main magnetic field of electric motor

    NASA Astrophysics Data System (ADS)

    Urusov, I. D.; Galkin, V. I.; Likhoshvay, I. P.

    1985-10-01

    An active magnetic suspension for the rotor of an electric motor is considered, especially in small or miniature high-speed devices such as gyros, microturbomachines, and machine-tool spindle drives where it would eliminate the need for extra bearings and contribute to size and weight reduction. A disk-type rotor made of a ferromagnetic material is located horizontally inside the bore of a vertical stator so that weight and external loads compensate the magnetic pull upward. This pull is generated by the magnetic field in the air gap and can be automatically controlled by an electronic feedback circuit which regulates the stator input voltage depending on the rotor position along the stator bore, with a displacement transducer on the rotor indicating the position. The performance of such a suspension with automatic control in a 3-phase induction motor is analyzed on the basis of the system of differential equations describing the behavior of the electromechanical system during axial oscillations of the rotor, assuming a constant rotor speed during the transient periods.

  13. Active fluidization of polymer networks through molecular motors.

    PubMed

    Humphrey, D; Duggan, C; Saha, D; Smith, D; Käs, J

    2002-03-28

    Entangled polymer solutions and melts exhibit elastic, solid-like resistance to quick deformations and a viscous, fluid-like response to slow deformations. This viscoelastic behaviour reflects the dynamics of individual polymer chains driven by brownian motion: since individual chains can only move in a snake-like fashion through the mesh of surrounding polymer molecules, their diffusive transport, described by reptation, is so slow that the relaxation of suddenly imposed stress is delayed. Entangled polymer solutions and melts therefore elastically resist deforming motions that occur faster than the stress relaxation time. Here we show that the protein myosin II permits active control over the viscoelastic behaviour of actin filament solutions. We find that when each actin filament in a polymerized actin solution interacts with at least one myosin minifilament, the stress relaxation time of the polymer solution is significantly shortened. We attribute this effect to myosin's action as a 'molecular motor', which allows it to interact with randomly oriented actin filaments and push them through the solution, thus enhancing longitudinal filament motion. By superseding reptation with sliding motion, the molecular motors thus overcome a fundamental principle of complex fluids: that only depolymerization makes an entangled, isotropic polymer solution fluid for quick deformations.

  14. Pyramidal tract stimulation restores normal corticospinal tract connections and visuomotor skill after early postnatal motor cortex activity blockade

    PubMed Central

    Salimi, I; Friel, KM; Martin, JH

    2008-01-01

    Motor development depends on forming specific connections between the corticospinal tract (CST) and the spinal cord. Blocking CST activity in kittens during the critical period for establishing connections with spinal motor circuits results in permanent impairments in connectivity and function. The changes in connections are consistent with the hypothesis that the inactive tract is less competitive in developing spinal connections than the active tract. In this study we tested the competition hypothesis by determining if activating CST axons, after prior silencing during the critical period, abrogated development of aberrant corticospinal connections and motor impairments. In kittens, we inactivated motor cortex by muscimol infusion between postnatal weeks 5-7. We next electrically stimulated CST axons in the medullary pyramid 2.5 hours daily, between weeks 7-10. In controls (n=3), CST terminations were densest within the contralateral deeper, premotor, spinal layers. After prior inactivation (n=3), CST terminations were densest within the dorsal, somatic sensory, layers. There were more ipsilateral terminations from the active tract. During visually guided locomotion, there was a movement endpoint impairment. Stimulation after inactivation (n=6) resulted in significantly fewer terminations in the sensory layers and more in the premotor layers, and fewer ipsilateral connections from active cortex. Chronic stimulation reduced the current threshold for evoking contralateral movements by pyramidal stimulation, suggesting strengthening of connections. Importantly, stimulation significantly improved stepping accuracy. These findings show the importance of activity-dependent processes in specifying CST connections. They also provide a strategy for harnessing activity to rescue CST axons at risk of developing aberrant connections after CNS injury. PMID:18632946

  15. Pyramidal tract stimulation restores normal corticospinal tract connections and visuomotor skill after early postnatal motor cortex activity blockade.

    PubMed

    Salimi, Iran; Friel, Kathleen M; Martin, John H

    2008-07-16

    Motor development depends on forming specific connections between the corticospinal tract (CST) and the spinal cord. Blocking CST activity in kittens during the critical period for establishing connections with spinal motor circuits results in permanent impairments in connectivity and function. The changes in connections are consistent with the hypothesis that the inactive tract is less competitive in developing spinal connections than the active tract. In this study, we tested the competition hypothesis by determining whether activating CST axons, after previous silencing during the critical period, abrogated development of aberrant corticospinal connections and motor impairments. In kittens, we inactivated motor cortex by muscimol infusion between postnatal weeks 5 and 7. Next, we electrically stimulated CST axons in the medullary pyramid 2.5 h daily, between weeks 7 and 10. In controls (n = 3), CST terminations were densest within the contralateral deeper, premotor, spinal layers. After previous inactivation (n = 3), CST terminations were densest within the dorsal, somatic sensory, layers. There were more ipsilateral terminations from the active tract. During visually guided locomotion, there was a movement endpoint impairment. Stimulation after inactivation (n = 6) resulted in significantly fewer terminations in the sensory layers and more in the premotor layers, and fewer ipsilateral connections from active cortex. Chronic stimulation reduced the current threshold for evoking contralateral movements by pyramidal stimulation, suggesting strengthening of connections. Importantly, stimulation significantly improved stepping accuracy. These findings show the importance of activity-dependent processes in specifying CST connections. They also provide a strategy for harnessing activity to rescue CST axons at risk of developing aberrant connections after CNS injury.

  16. Actin network architecture can determine myosin motor activity.

    PubMed

    Reymann, Anne-Cécile; Boujemaa-Paterski, Rajaa; Martiel, Jean-Louis; Guérin, Christophe; Cao, Wenxiang; Chin, Harvey F; De La Cruz, Enrique M; Théry, Manuel; Blanchoin, Laurent

    2012-06-08

    The organization of actin filaments into higher-ordered structures governs eukaryotic cell shape and movement. Global actin network size and architecture are maintained in a dynamic steady state through regulated assembly and disassembly. Here, we used experimentally defined actin structures in vitro to investigate how the activity of myosin motors depends on network architecture. Direct visualization of filaments revealed myosin-induced actin network deformation. During this reorganization, myosins selectively contracted and disassembled antiparallel actin structures, while parallel actin bundles remained unaffected. The local distribution of nucleation sites and the resulting orientation of actin filaments appeared to regulate the scalability of the contraction process. This "orientation selection" mechanism for selective contraction and disassembly suggests how the dynamics of the cellular actin cytoskeleton can be spatially controlled by actomyosin contractility.

  17. Reduced respiratory neural activity elicits a long-lasting decrease in the CO2 threshold for apnea in anesthetized rats.

    PubMed

    Baertsch, N A; Baker, T L

    2017-01-01

    Two critical parameters that influence breathing stability are the levels of arterial pCO2 at which breathing ceases and subsequently resumes - termed the apneic and recruitment thresholds (AT and RT, respectively). Reduced respiratory neural activity elicits a chemoreflex-independent, long-lasting increase in phrenic burst amplitude, a form of plasticity known as inactivity-induced phrenic motor facilitation (iPMF). The physiological significance of iPMF is unknown. To determine if iPMF and neural apnea have long-lasting physiological effects on breathing, we tested the hypothesis that patterns of neural apnea that induce iPMF also elicit changes in the AT and RT. Phrenic nerve activity and end-tidal CO2 were recorded in urethane-anesthetized, ventilated rats to quantify phrenic nerve burst amplitude and the AT and RT before and after three patterns of neural apnea that differed in their duration and ability to elicit iPMF: brief intermittent neural apneas, a single brief "massed" neural apnea, or a prolonged neural apnea. Consistent with our hypothesis, we found that patterns of neural apnea that elicited iPMF also resulted in changes in the AT and RT. Specifically, intermittent neural apneas progressively decreased the AT with each subsequent neural apnea, which persisted for at least 60min. Similarly, a prolonged neural apnea elicited a long-lasting decrease in the AT. In both cases, the magnitude of the AT decrease was proportional to iPMF. In contrast, the RT was transiently decreased following prolonged neural apnea, and was not proportional to iPMF. No changes in the AT or RT were observed following a single brief neural apnea. Our results indicate that the AT and RT are differentially altered by neural apnea and suggest that specific patterns of neural apnea that elicit plasticity may stabilize breathing via a decrease in the AT.

  18. Magnetic stimulation of the human motor cortex evokes skin sympathetic nerve activity.

    PubMed

    Silber, D H; Sinoway, L I; Leuenberger, U A; Amassian, V E

    2000-01-01

    Single-pulse magnetic coil stimulation (Cadwell MES 10) over the cranium induces without pain an electric pulse in the underlying cerebral cortex. Stimulation over the motor cortex can elicit a muscle twitch. In 10 subjects, we tested whether motor cortical stimulation could also elicit skin sympathetic nerve activity (SSNA; n = 8) and muscle sympathetic nerve activity (MSNA; n = 5) in the peroneal nerve. Focal motor cortical stimulation predictably elicited bursts of SSNA but not MSNA; with successive stimuli, the SSNA responses did not readily extinguish (94% of discharges to the motor cortex evoked SSNA responses) and had predictable latencies [739 +/- 33 (SE) to 895 +/- 13 ms]. The SSNA responses were similar after stimulation of dominant and nondominant sides. Focal stimulation posterior to the motor cortex elicited extinguishable SSNA responses. In three of six subjects, anterior cortical stimulation evoked SSNA responses similar to those seen with motor cortex stimulation but without detectable movement; in the other subjects, anterior stimulation evoked less SSNA discharge than that seen with motor cortex stimulation. Contrasting with motor cortical stimulation, evoked SSNA responses were more readily extinguished with 1) peripheral stimulation that directly elicited forearm muscle activation accompanied by electromyograms similar to those with motor cortical stimulation; 2) auditory stimulation by the click of the energized coil when off the head; and 3) in preliminary experiments, finger afferent stimulation sufficient to cause tingling. Our findings are consistent with the hypothesis that motor cortex stimulation can cause activation of both alpha-motoneurons and SSNA.

  19. Subthreshold activation of the superior colliculus drives saccade motor learning.

    PubMed

    Soetedjo, Robijanto; Fuchs, Albert F; Kojima, Yoshiko

    2009-12-02

    How the brain learns and maintains accurate precision movements is currently unknown. At times throughout life, rapid gaze shifts (saccades) become inaccurate, but the brain makes gradual adjustments so they again stop on target. Previously, we showed that complex spikes (CSs) in Purkinje cells of the oculomotor cerebellum report the direction and amplitude by which saccades are in error. Anatomical studies indicate that this error signal could originate in the superior colliculus (SC). Here, we deliver subthreshold electrical stimulation of the SC after the saccade lands to signal an apparent error. The size of saccades in the same direction as the simulated error gradually increase; those in the opposite direction decrease. The electrically adapted saccades endure after stimulation is discontinued, exhibit an adaptation field, can undergo changes in direction, and depend on error timing. These electrically induced adaptations were virtually identical with those produced by the visually induced adaptations that we report here for comparable visual errors in the same monkeys. Therefore, our experiments reveal that an additional role for the SC in the generation of saccades is to provide a vector error signal that drives dysmetric saccades to adapt. Moreover, the characteristics of the electrically induced adaptation reflect those of error-related CS activity in the oculomotor cerebellum, suggesting that CS activity serves as the learning signal. We speculate that CS activity may serve as the error signal that drives other kinds of motor learning as well.

  20. Distribution of the forces produced by motor unit activity in the human flexor digitorum profundus

    PubMed Central

    Kilbreath, S L; Gorman, R B; Raymond, J; Gandevia, S C

    2002-01-01

    In humans, the flexor digitorum profundus (FDP), which is a multi-tendoned muscle, produces forces that flex the four distal interphalangeal joints of the fingers. We determined whether the force associated with activity in a single motor unit in the FDP was confined to a single finger or distributed to more than one finger during a natural grasp. The discharge of single low-threshold motor units (n = 69) was recorded at sites across the muscle during weak voluntary grasping involving all fingers and spike-triggered averaging of the forces under each of the finger pads was used to assess the distribution pattern. Spike-triggered averaging revealed that time-locked changes in force occurred under the ‘test’ finger (that finger on which the unit principally acted) as well as under the ‘non-test’ fingers. However, for the index-, middle- and ring-finger units, the changes in force under non-test fingers were typically small (< 20 % of those under the test finger). For little-finger units, the mean changes in force under the adjacent ring finger were large (>50 % of those under the test finger). The distribution of forces by little-finger units differed significantly from that for each of the other three fingers. Apart from increases in force under non-test fingers, there was occasional unloading of adjacent fingers (22/267 combinations), usually affecting the index finger. The increases in force under the test finger correlated significantly with the background force for units acting on the middle, ring and little fingers. During a functional grasp, the activity of single units in the FDP allows for a relatively selective control of forces at the tips of the index, middle and ring fingers, but this is limited for little-finger units. PMID:12181299

  1. Threshold level of NF-kB activation in small bowel ischemic preconditioning procedure.

    PubMed

    Ferencz, A; Rácz, B; Gasz, B; Kalmár-Nagy, K; Horváth, O P; Röth, E

    2006-01-01

    Ischemic preconditioning (IPC), which is obtained by exposure to brief periods of vascular occlusion, improves organ tolerance to prolonged ischemia. The aim of this study was to evaluate the threshold level of NF-kB activation in small intestine during an IPC procedure. Various intestinal IPC were performed on 20 Wistar rats in seven groups: group I (GI, nonpreconditioned); group II (GII, 1-minute ischemia and 1-minute reperfusion); group III (GIII, two cycles of 1-minute ischemia and 1-minute reperfusion); group IV (GIV, 2-minutes ischemia and 2-minutes reperfusion); group V (GV, two cycles of 2-minute ischemia and 2-minute reperfusion); group VI (GVI, 5-minute ischemia and 10-minute reperfusion); group VII (GVII, two cycles of 5-minute ischemia and 10-minute reperfusion). Bowel biopsies were collected after laparotomy (control) as well as at 30, 60, and 120 minutes following IPC. We determined the cytoplasmic and nuclear NF-kB by a chemiluminescence-based ELISA method. Our results showed low, constant NF-kB levels in GI. In the preconditioned groups (GII-GVII), NF-kB was significantly elevated at 30 minutes following IPC (P < .05 vs control). After 1 hour, NF-kB activity decreased to the control level. However, 2 hours after IPC both forms of NF-kB were elevated significantly again, which was independent of the number of IPC cycles (P < .05 vs control). Our experiments revealed that one cycle of 1-minute ischemia and 1-minute reperfusion is a critical threshold level for NF-kB activation during small bowel IPC. Longer and more IPC cycles did not result in further elevation of NF-kB activation.

  2. Molecular motors robustly drive active gels to a critically connected state

    NASA Astrophysics Data System (ADS)

    Alvarado, José; Sheinman, Michael; Sharma, Abhinav; Mackintosh, Fred C.; Koenderink, Gijsje H.

    2013-09-01

    Living systems naturally exhibit internal driving: active, molecular processes drive non-equilibrium phenomena such as metabolism or migration. Active gels constitute a fascinating class of internally driven matter, in which molecular motors exert localized stresses inside polymer networks. There is evidence that network crosslinking is required to allow motors to induce macroscopic contraction. Yet a quantitative understanding of how network connectivity enables contraction is lacking. Here we show experimentally that myosin motors contract crosslinked actin polymer networks to clusters with a scale-free size distribution. This critical behaviour occurs over an unexpectedly broad range of crosslink concentrations. To understand this robustness, we developed a quantitative model of contractile networks that takes into account network restructuring: motors reduce connectivity by forcing crosslinks to unbind. Paradoxically, to coordinate global contractions, motor activity should be low. Otherwise, motors drive initially well-connected networks to a critical state where ruptures form across the entire network.

  3. Threshold occupancy and specific cation binding modes in the hammerhead ribozyme active site are required for active conformation

    PubMed Central

    Lee, Tai-Sung; Giambaşu, George M.; Sosa, Carlos P.; Martick, Monika; Scott, William G.; York, Darrin M.

    2009-01-01

    The relationship between formation of active in-line attack conformations and monovalent (Na+) and divalent (Mg2+) metal ion binding in the hammerhead ribozyme has been explored with molecular dynamics simulations. To stabilize repulsions between negatively charged groups, different requirements of threshold occupancy of metal ions were observed in the reactant and activated precursor states both in the presence or absence of a Mg2+ in the active site. Specific bridging coordination patterns of the ions are correlated with the formation of active in-line attack conformations and can be accommodated in both cases. Furthermore, simulation results suggest that the hammerhead ribozyme folds to form an electronegative recruiting pocket that attracts high local concentrations of positive charge. The present simulations help to reconcile experiments that probe the metal ion sensitivity of hammerhead ribozyme catalysis and support the supposition that Mg2+, in addition to stabilizing active conformations, plays a specific chemical role in catalysis. PMID:19265710

  4. CARA Risk Assessment Thresholds

    NASA Technical Reports Server (NTRS)

    Hejduk, M. D.

    2016-01-01

    Warning remediation threshold (Red threshold): Pc level at which warnings are issued, and active remediation considered and usually executed. Analysis threshold (Green to Yellow threshold): Pc level at which analysis of event is indicated, including seeking additional information if warranted. Post-remediation threshold: Pc level to which remediation maneuvers are sized in order to achieve event remediation and obviate any need for immediate follow-up maneuvers. Maneuver screening threshold: Pc compliance level for routine maneuver screenings (more demanding than regular Red threshold due to additional maneuver uncertainty).

  5. Activation of thalamus in motor imagery results from gating by hypnosis.

    PubMed

    Müller, Katharina; Bacht, Katrin; Prochnow, Denise; Schramm, Stefanie; Seitz, Rüdiger J

    2013-02-01

    The ability to mentally imagine the performance of automatic movements has been well-established being employed in sports and physiotherapy as a tool for motor learning and rehabilitation. This is probably mediated by engagement of the same brain areas as during real motor performance. Here we investigated the effect of hypnotic trance on the cerebral activation pattern engaged in motor imagery in 16 healthy, right-handed subjects using fMRI. Motor imagery as compared with rest was related to activations in the left medial frontal areas (preSMA/SMA), prefrontal- and frontal areas, putamen and inferior parietal areas. When compared with performance of the same movements motor imagery resulted in activation of the left middle frontal cortex, precuneus, and posterior cingulate. Under hypnotic trance there was one extra-activation in the left thalamus which occurred specifically in the motor imagery condition. The regional beta indices were highly correlated among the areas of the cortical-subcortical motor network. Our data accord with the notion that hypnotic trance enhances the motor control circuit engaged in motor imagery by modulating the gating function of the thalamus.

  6. Central command does not decrease cardiac parasympathetic efferent nerve activity during spontaneous fictive motor activity in decerebrate cats.

    PubMed

    Kadowaki, Akito; Matsukawa, Kanji; Wakasugi, Rie; Nakamoto, Tomoko; Liang, Nan

    2011-04-01

    To examine whether withdrawal of cardiac vagal efferent nerve activity (CVNA) predominantly controls the tachycardia at the start of exercise, the responses of CVNA and cardiac sympathetic efferent nerve activity (CSNA) were directly assessed during fictive motor activity that occurred spontaneously in unanesthetized, decerebrate cats. CSNA abruptly increased by 71 ± 12% at the onset of the motor activity, preceding the tachycardia response. The increase in CSNA lasted for 4-5 s and returned to the baseline, even though the motor activity was not ended. The increase of 6 ± 1 beats/min in heart rate appeared with the same time course of the increase in CSNA. In contrast, CVNA never decreased but increased throughout the motor activity, in parallel with a rise in mean arterial blood pressure (MAP). The peak increase in CVNA was 37 ± 9% at 5 s after the motor onset. The rise in MAP gradually developed to 21 ± 2 mmHg and was sustained throughout the spontaneous motor activity. Partial sinoaortic denervation (SAD) blunted the baroreflex sensitivity of the MAP-CSNA and MAP-CVNA relationship to 22-33% of the control. Although partial SAD blunted the initial increase in CSNA to 53% of the control, the increase in CSNA was sustained throughout the motor activity. In contrast, partial SAD almost abolished the increase in CVNA during the motor activity, despite the augmented elevation of 31 ± 1 mmHg in MAP. Because afferent inputs from both muscle receptors and arterial baroreceptors were absent or greatly attenuated in the partial SAD condition, only central command was operating during spontaneous fictive motor activity in decerebrate cats. Therefore, it is likely that central command causes activation of cardiac sympathetic outflow but does not produce withdrawal of cardiac parasympathetic outflow during spontaneous motor activity.

  7. Brain activation patterns of motor imagery reflect plastic changes associated with intensive shooting training.

    PubMed

    Baeck, Jong-Su; Kim, Yang-Tae; Seo, Jee-Hye; Ryeom, Hun-Kyu; Lee, Jongmin; Choi, Sung-Mook; Woo, Minjung; Kim, Woojong; Kim, Jin Gu; Chang, Yongmin

    2012-09-01

    Evidence from previous studies has suggested that motor imagery and motor action engage overlapping brain systems. As a result of this observation that motor imagery can activate brain regions associated with actual motor movement, motor imagery is expected to enhance motor skill performance and become an underlying principle for physical training in sports and physical rehabilitation. However, few studies have examined the effects of physical training on motor imagery in beginners. Also, differences in neural networks related to motor imagery before and after training have seldom been studied. In the current study, using functional magnetic resonance imaging (fMRI), we investigated the question of whether motor imagery can reflect plastic changes of neural correlates associated with intensive training. In fact, motor imagery was used in this study as a tool to assess the brain areas involved in shooting and involved in learning of shooting. We discovered that use of motor imagery resulted in recruitment of widely distributed common cortical areas, which were suggested to play a role in generation and maintenance of mental images before and after 90 h of shooting training. In addition to these common areas, brain activation before and after 90 h of shooting practice showed regionally distinct patterns of activity change in subcortical motor areas. That is, basal ganglia showed increased activity after 90 h of shooting practice, suggesting the occurrence of plastic change in association with gains in performance and reinforcement learning. Therefore, our results suggest that, in order to reach a level of expertise, the brain would change through initial reinforcement of preexistent connections during the training period and then use more focused neural correlates through formation of new connections.

  8. Stem cell cytoskeleton is slaved to active motors

    NASA Astrophysics Data System (ADS)

    Rehfeldt, Florian; Brown, Andre; Engler, Adam; Discher, Dennis

    2007-03-01

    Cells feel their physical microenvironment through their adhesion and respond to it in various ways. Indeed, matrix elasticity can even guide the differentiation of human adult mesenchymal stem cells (MSCs) [Engler et al. Cell 2006]. Sparse cultures of MSCs on elastic collagen--coated substrates that are respectively soft, stiff, or extremely stiff were shown to induce neurogenesis, myogenesis, and osteogenesis. Lineage commitment was evaluated by morphological analysis, protein expression profiles, and transcription microarrays. Differentiation could be completely blocked with a specific non-muscle myosin II (NMM II) inhibitor, suggesting that contractile motor activity is essential for the cells to sense matrix elasticity. Current studies by AFM and near-field fluorescence imaging show that NMM II inhibition in stem cells on rigid glass surfaces promotes actin-rich dendritic outgrowth resembling neurite extension. Dynamic cell studies have been conducted to elucidate the complex molecular interplay of the contractile apparatus in response to selected physical and biochemical stimuli. Additional insight is being gained by using AFM to investigate the local elasticity of the cell's cytoskeletal force sensing machinery.

  9. Detection Thresholds of Falling Snow from Satellite-Borne Active and Passive Sensors

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Johnson, Benjamin T.; Munchak, S. Joseph

    2012-01-01

    surface of 0.25 g / cubic m and dendrite snowflakes be detected? If this information is known, we can focus retrieval efforts on detectable storms and concentrate advances on achievable results. Here, the focus is to determine thresholds of detection for falling snow for various snow conditions over land and lake surfaces. The results rely on simulated Weather Research Forecasting (WRF) simulations of falling snow cases since simulations provide all the information to determine the measurements from space and the ground truth. Sensitivity analyses were performed to better ascertain the relationships between multifrequency microwave and millimeter-wave sensor observations and the falling snow/underlying field of view. In addition, thresholds of detection for various sensor channel configurations, snow event system characteristics, snowflake particle assumptions, and surface types were studied. Results will be presented for active radar at Ku, Ka, and W-band and for passive radiometer channels from 10 to 183 GHz.

  10. Graded boosting of synaptic signals by low-threshold voltage-activated calcium conductance

    PubMed Central

    Carbó Tano, Martín; Vilarchao, María Eugenia

    2015-01-01

    Low-threshold voltage-activated calcium conductances (LT-VACCs) play a substantial role in shaping the electrophysiological attributes of neurites. We have investigated how these conductances affect synaptic integration in a premotor nonspiking (NS) neuron of the leech nervous system. These cells exhibit an extensive neuritic tree, do not fire Na+-dependent spikes, but express an LT-VACC that was sensitive to 250 μM Ni2+ and 100 μM NNC 55-0396 (NNC). NS neurons responded to excitation of mechanosensory pressure neurons with depolarizing responses for which amplitude was a linear function of the presynaptic firing frequency. NNC decreased these synaptic responses and abolished the concomitant widespread Ca2+ signals. Coherent with the interpretation that the LT-VACC amplified signals at the postsynaptic level, this conductance also amplified the responses of NS neurons to direct injection of sinusoidal current. Synaptic amplification thus is achieved via a positive feedback in which depolarizing signals activate an LT-VACC that, in turn, boosts these signals. The wide distribution of LT-VACC could support the active propagation of depolarizing signals, turning the complex NS neuritic tree into a relatively compact electrical compartment. PMID:25972583

  11. Motor Neurons Tune Premotor Activity in a Vertebrate Central Pattern Generator.

    PubMed

    Lawton, Kristy J; Perry, Wick M; Yamaguchi, Ayako; Zornik, Erik

    2017-03-22

    Central patterns generators (CPGs) are neural circuits that drive rhythmic motor output without sensory feedback. Vertebrate CPGs are generally believed to operate in a top-down manner in which premotor interneurons activate motor neurons that in turn drive muscles. In contrast, the frog (Xenopus laevis) vocal CPG contains a functionally unexplored neuronal projection from the motor nucleus to the premotor nucleus, indicating a recurrent pathway that may contribute to rhythm generation. In this study, we characterized the function of this bottom-up connection. The X. laevis vocal CPG produces a 50-60 Hz "fast trill" song used by males during courtship. We recorded "fictive vocalizations" in the in vitro CPG from the laryngeal nerve while simultaneously recording premotor activity at the population and single-cell level. We show that transecting the motor-to-premotor projection eliminated the characteristic firing rate of premotor neurons. Silencing motor neurons with the intracellular sodium channel blocker QX-314 also disrupted premotor rhythms, as did blockade of nicotinic synapses in the motor nucleus (the putative location of motor neuron-to-interneuron connections). Electrically stimulating the laryngeal nerve elicited primarily IPSPs in premotor neurons that could be blocked by a nicotinic receptor antagonist. Our results indicate that an inhibitory signal, activated by motor neurons, is required for proper CPG function. To our knowledge, these findings represent the first example of a CPG in which precise premotor rhythms are tuned by motor neuron activity.SIGNIFICANCE STATEMENT Central pattern generators (CPGs) are neural circuits that produce rhythmic behaviors. In vertebrates, motor neurons are not commonly known to contribute to CPG function, with the exception of a few spinal circuits where the functional significance of motor neuron feedback is still poorly understood. The frog hindbrain vocal circuit contains a previously unexplored connection from

  12. Transport dynamics of molecular motors that switch between an active and inactive state.

    PubMed

    Pinkoviezky, I; Gov, N S

    2013-08-01

    Molecular motors are involved in key transport processes in the cell. Many of these motors can switch from an active to a nonactive state, either spontaneously or depending on their interaction with other molecules. When active, the motors move processively along the filaments, while when inactive they are stationary. We treat here the simple case of spontaneously switching motors, between the active and inactive states, along an open linear track. We use our recent analogy with vehicular traffic, where we go beyond the mean-field description. We map the phase diagram of this system, and find that it clearly breaks the symmetry between the different phases, as compared to the standard total asymmetric exclusion process. We make several predictions that may be testable using molecular motors in vitro and in living cells.

  13. Innovative Perceptual-Motor Activities: Programing Techniques that Work--Part II.

    ERIC Educational Resources Information Center

    Sorrell, Howard M.

    1979-01-01

    The article describes tasks that promote perceptual motor coordination in handicapped students. An introductory section provides suggestions for implementation and charts the activities in terms of emphasis on visual tracking, visual discrimination and/or copying of forms, spatial body perception, fine motor coordination, tactile discrimination,…

  14. Children Move to Learn: A Guide to Planning Gross Motor Activities.

    ERIC Educational Resources Information Center

    Kline, Judy

    This guide for persons working with young children with gross motor delays is designed to be used in the assessment of gross motor abilities, the detection and identification of delays and the planning and implementation of appropriate Individual Activity Plans (IAP) for correcting the delays. Observation guidelines in the form of questions (Can…

  15. Lenalidomide augments actin remodeling and lowers NK-cell activation thresholds

    PubMed Central

    Lagrue, Kathryn; Carisey, Alex; Morgan, David J.; Chopra, Rajesh

    2015-01-01

    As multiple myeloma (MM) progresses, natural killer (NK)-cell responses decline against malignant plasma cells. The immunomodulatory drug lenalidomide is widely used for treatment of MM but its influence on NK-cell biology is unclear. Here, we report that lenalidomide lowers the threshold for NK-cell activation, causing a 66% decrease in the 50% effective concentration (EC50) for activation through CD16, and a 38% decrease in EC50 for NK group 2 member D (NKG2D)–mediated activation, allowing NK cells to respond to lower doses of ligand. In addition, lenalidomide augments NK-cell responses, causing a twofold increase in the proportion of primary NK cells producing interferon-γ (IFN-γ), and a 20-fold increase in the amount of IFN-γ produced per cell. Importantly, lenalidomide did not trigger IFN-γ production in unstimulated NK cells. Thus, lenalidomide enhances the NK-cell arm of the immune response, without activating NK cells inappropriately. Of particular clinical importance, lenalidomide also allowed NK cells to be activated by lower doses of rituximab, an anti-CD20 monoclonal antibody (mAb) widely used to treat B-cell malignancies. This supports combined use of lenalidomide and rituximab in a clinical setting. Finally, superresolution microscopy revealed that lenalidomide increased the periodicity of cortical actin at immune synapses, resulting in an increase in the area of the actin mesh predicted to be penetrable to vesicles containing IFN-γ. NK cells from MM patients also responded to lenalidomide in this way. This indicates that nanometer-scale rearrangements in cortical actin, a recently discovered step in immune synapse assembly, are a potential new target for therapeutic compounds. PMID:26002964

  16. Lenalidomide augments actin remodeling and lowers NK-cell activation thresholds.

    PubMed

    Lagrue, Kathryn; Carisey, Alex; Morgan, David J; Chopra, Rajesh; Davis, Daniel M

    2015-07-02

    As multiple myeloma (MM) progresses, natural killer (NK)-cell responses decline against malignant plasma cells. The immunomodulatory drug lenalidomide is widely used for treatment of MM but its influence on NK-cell biology is unclear. Here, we report that lenalidomide lowers the threshold for NK-cell activation, causing a 66% decrease in the 50% effective concentration (EC50) for activation through CD16, and a 38% decrease in EC50 for NK group 2 member D (NKG2D)-mediated activation, allowing NK cells to respond to lower doses of ligand. In addition, lenalidomide augments NK-cell responses, causing a twofold increase in the proportion of primary NK cells producing interferon-γ (IFN-γ), and a 20-fold increase in the amount of IFN-γ produced per cell. Importantly, lenalidomide did not trigger IFN-γ production in unstimulated NK cells. Thus, lenalidomide enhances the NK-cell arm of the immune response, without activating NK cells inappropriately. Of particular clinical importance, lenalidomide also allowed NK cells to be activated by lower doses of rituximab, an anti-CD20 monoclonal antibody (mAb) widely used to treat B-cell malignancies. This supports combined use of lenalidomide and rituximab in a clinical setting. Finally, superresolution microscopy revealed that lenalidomide increased the periodicity of cortical actin at immune synapses, resulting in an increase in the area of the actin mesh predicted to be penetrable to vesicles containing IFN-γ. NK cells from MM patients also responded to lenalidomide in this way. This indicates that nanometer-scale rearrangements in cortical actin, a recently discovered step in immune synapse assembly, are a potential new target for therapeutic compounds.

  17. [The neuronal level of motor activity: determination of motor cortex excitability by TMS].

    PubMed

    Eichhammer, Peter; Langguth, Berthold; Müller, Jürgen; Hajak, Göran

    2005-04-01

    Transcranial magnetic stimulation as mapping method offers the possibility to measure aspects of motor cortex excitability painlessly and non-invasively. Using this neurophysiological tool, new insights into the effects of central-acting drugs are possible. Particularly striking seems to be the potential of this approach to gain new insights into neurobiological processes associated with neuropsychiatric diseases like schizophrenia or major depression. In combination with genetic aspects, TMS is able to bridge the gap between molecular research and clinical approach.

  18. Relationship between motor activity-related cortical potential and voluntary muscle activation.

    PubMed

    Siemionow, V; Yue, G H; Ranganathan, V K; Liu, J Z; Sahgal, V

    2000-08-01

    The purpose of this study was to investigate the relationship between EEG-derived motor activity-related cortical potential (MRCP) and voluntary muscle activation. Eight healthy volunteers participated in two experimental sessions. In one session, subjects performed isometric elbow-flexion contractions at four intensity levels [10%, 35%, 60%, and 85% maximal voluntary contraction (MVC)]. In another session, a given elbow-flexion force (35% MVC) was generated at three different rates (slow, intermediate, and fast). Thirty to 40 contractions were performed at each force level or rate. EEG signals were recorded from the scalp overlying the supplementary motor area (SMA) and contralateral sensorimotor cortex, and EMG signals were recorded from the skin surface overlying the belly of the biceps brachii and brachioradialis muscles during all contractions. In each trial, the force was used as the triggering signal for MRCP averaging. MRCP amplitude was measured from the beginning to the peak of the negative slope. The magnitude of MRCP from both EEG recording locations (sensorimotor cortex and SMA) was highly correlated with elbow-flexion force, rate of rising of force, and muscle EMG signals. These results suggest that MRCP represents cortical motor commands that scale the level of muscle activation.

  19. Activity-dependent plasticity improves M1 motor representation and corticospinal tract connectivity.

    PubMed

    Chakrabarty, S; Friel, K M; Martin, J H

    2009-03-01

    Motor cortex (M1) activity between postnatal weeks 5 and 7 is essential for normal development of the corticospinal tract (CST) and visually guided movements. Unilateral reversible inactivation of M1, by intracortical muscimol infusion, during this period permanently impairs development of the normal dorsoventral distribution of CST terminations and visually guided motor skills. These impairments are abrogated if this M1 inactivation is followed by inactivation of the contralateral, initially active M1, from weeks 7 to 11 (termed alternate inactivation). This later period is when the M1 motor representation normally develops. The purpose of this study was to determine the effects of alternate inactivation on the motor representation of the initially inactivated M1. We used intracortical microstimulation to map the left M1 1 to 2 mo after the end of left M1 muscimol infusion. We compared representations in the unilateral inactivation and alternate inactivation groups. Alternate inactivation converted the sparse proximal M1 motor representation produced by unilateral inactivation to a complete and high-resolution proximal-distal representation. The motor map was restored by week 11, the same age that our present and prior studies demonstrated that alternate inactivation restored CST spinal connectivity. Thus M1 motor map developmental plasticity closely parallels plasticity of CST spinal terminations. After alternate inactivation reestablished CST connections and the motor map, an additional 3 wk was required for motor skill recovery. Since motor map recovery preceded behavioral recovery, our findings suggest that the representation is necessary for recovering motor skills, but additional time, or experience, is needed to learn to take advantage of the restored CST connections and motor map.

  20. Ankle Accelerometry for Assessing Physical Activity among Adolescent Girls: Threshold Determination, Validity, Reliability, and Feasibility

    ERIC Educational Resources Information Center

    Hager, Erin R.; Treuth, Margarita S.; Gormely, Candice; Epps, LaShawna; Snitker, Soren; Black, Maureen M.

    2015-01-01

    Purpose: Ankle accelerometry allows for 24-hr data collection and improves data volume/integrity versus hip accelerometry. Using Actical ankle accelerometry, the purpose of this study was to (a) develop sensitive/specific thresholds, (b) examine validity/reliability, (c) compare new thresholds with those of the manufacturer, and (d) examine…

  1. Neural Activation during Anticipation of Near Pain-Threshold Stimulation among the Pain-Fearful

    PubMed Central

    Yang, Zhou; Jackson, Todd; Huang, Chengzhi

    2016-01-01

    Fear of pain (FOP) can increase risk for chronic pain and disability but little is known about corresponding neural responses in anticipation of potential pain. In this study, more (10 women, 6 men) and less (7 women, 6 men) pain-fearful groups underwent whole-brain functional magnetic resonance imaging (fMRI) during anticipation of near pain-threshold stimulation. Groups did not differ in the proportion of stimuli judged to be painful but pain-fearful participants reported significantly more state fear prior to stimulus exposure. Within the entire sample, stronger activation was found in several pain perception regions (e.g., bilateral insula, midcingulate cortex (MCC), thalamus, superior frontal gyrus) and visual areas linked to decoding stimulus valences (inferior orbital cortex) during anticipation of “painful” stimuli. Between groups and correlation analyses indicated pain-fearful participants experienced comparatively more activity in regions implicated in evaluating potential threats and processing negative emotions during anticipation (i.e., MCC, mid occipital cortex, superior temporal pole), though group differences were not apparent in most so-called “pain matrix” regions. In sum, trait- and task-based FOP is associated with enhanced responsiveness in regions involved in threat processing and negative affect during anticipation of potentially painful stimulation. PMID:27489536

  2. Group planarian sudden mortality: Is the threshold around global geomagnetic activity ≥K6?

    PubMed

    Murugan, Nirosha J; Karbowski, Lukasz M; Mekers, William Ft; Persinger, Michael A

    2015-01-01

    Sudden deaths in groups of animals have been observed by field and laboratory biologists. We have measured mortalities in large group-housed planarian during the infrequent periods of very intense geomagnetic activity. In 13 separate episodes over the last 5 y we have observed the sudden death in our laboratory of hundreds of planarian if their density was about 1 worm per cc and the global geomagnetic activity was K≥6 the day before or the day of the observation of the mortality. Such mortality never occurred in other conditions or days. Both estimates of the "magnetic moment" of a planarian in magnetic fields above this threshold of sustained magnetic flux density as well as the magnetic energy within the planarian volume predict values that could affect phenomenon associated with the total numbers of pH-dependent charges within each worm. These conditions could affect the Levin-Burr bioelectrical signals and networks that affect patterning information and sustainability in whole living systems. The establishment of a central reservoir for the report of these transient events might allow Life Scientists to more fully appreciate the impact of these pervasive global stimuli upon dense groups of animals.

  3. Muscle activation described with a differential equation model for large ensembles of locally coupled molecular motors.

    PubMed

    Walcott, Sam

    2014-10-01

    Molecular motors, by turning chemical energy into mechanical work, are responsible for active cellular processes. Often groups of these motors work together to perform their biological role. Motors in an ensemble are coupled and exhibit complex emergent behavior. Although large motor ensembles can be modeled with partial differential equations (PDEs) by assuming that molecules function independently of their neighbors, this assumption is violated when motors are coupled locally. It is therefore unclear how to describe the ensemble behavior of the locally coupled motors responsible for biological processes such as calcium-dependent skeletal muscle activation. Here we develop a theory to describe locally coupled motor ensembles and apply the theory to skeletal muscle activation. The central idea is that a muscle filament can be divided into two phases: an active and an inactive phase. Dynamic changes in the relative size of these phases are described by a set of linear ordinary differential equations (ODEs). As the dynamics of the active phase are described by PDEs, muscle activation is governed by a set of coupled ODEs and PDEs, building on previous PDE models. With comparison to Monte Carlo simulations, we demonstrate that the theory captures the behavior of locally coupled ensembles. The theory also plausibly describes and predicts muscle experiments from molecular to whole muscle scales, suggesting that a micro- to macroscale muscle model is within reach.

  4. Cerebral-cortical networking and activation increase as a function of cognitive-motor task difficulty.

    PubMed

    Rietschel, Jeremy C; Miller, Matthew W; Gentili, Rodolphe J; Goodman, Ronald N; McDonald, Craig G; Hatfield, Bradley D

    2012-05-01

    Excessive increases in task difficulty typically result in marked attenuation of cognitive-motor performance. The psychomotor efficiency hypothesis suggests that poor performance is mediated by non-essential neural activity and cerebral cortical networking (inefficient cortical dynamics). This phenomenon may underlie the inverse relationship between excessive task difficulty and performance. However, investigation of the psychomotor efficiency hypothesis as it relates to task difficulty has not been conducted. The present study used electroencephalography (EEG) to examine cerebral cortical dynamics while participants were challenged with both Easy and Hard conditions during a cognitive-motor task (Tetris(®)). In accord with the psychomotor efficiency hypothesis, it was predicted that with increases in task difficulty, participants would demonstrate greater 'neural effort,' as indexed by EEG spectral power and cortical networking (i.e., EEG coherence) between the premotor (motor planning) region and sensory, executive, and motor regions. Increases in neural activation and cortical networking were observed during the Hard condition relative to the Easy condition, thus supporting the psychomotor efficiency hypothesis. To further determine the unique contributions of cognitive versus sensory-motor demands, a control experiment was conducted in which cognitive demand was increased while sensory-motor demand was held constant. This experiment revealed that regionally specific neural activation was influenced by changes in cognitive demand, whereas cortical networking to the motor planning region was sensitive only to changes in sensory-motor demand. Crucially, the present study is the first, to our knowledge, to characterize the separate impact of cognitive versus sensory-motor demands on cerebral cortical dynamics. The findings further inform the dynamics of the cortical processes that underlie the quality of cognitive-motor performance particularly with regard to task

  5. Opposing regulation of dopaminergic activity and exploratory motor behavior by forebrain and brainstem cholinergic circuits.

    PubMed

    Patel, Jyoti C; Rossignol, Elsa; Rice, Margaret E; Machold, Robert P

    2012-01-01

    Dopamine transmission is critical for exploratory motor behaviour. A key regulator is acetylcholine; forebrain acetylcholine regulates striatal dopamine release, whereas brainstem cholinergic inputs regulate the transition of dopamine neurons from tonic to burst firing modes. How these sources of cholinergic activity combine to control dopamine efflux and exploratory motor behaviour is unclear. Here we show that mice lacking total forebrain acetylcholine exhibit enhanced frequency-dependent striatal dopamine release and are hyperactive in a novel environment, whereas mice lacking rostral brainstem acetylcholine are hypoactive. Exploratory motor behaviour is normalized by the removal of both cholinergic sources. Involvement of dopamine in the exploratory motor phenotypes observed in these mutants is indicated by their altered sensitivity to the dopamine D2 receptor antagonist raclopride. These results support a model in which forebrain and brainstem cholinergic systems act in tandem to regulate striatal dopamine signalling for proper control of motor activity.

  6. Progress toward motor recovery with active neuromuscular stimulation: muscle activation pattern evidence after a stroke.

    PubMed

    Cauraugh, James H; Kim, Sangbum

    2003-03-15

    Chronic cerebrovascular accident individuals with partial paralysis in an upper extremity typically demonstrate difficulty in voluntarily controlling movement initiation. This study investigated patterns of electromyogram (EMG) activation levels while stroke subjects voluntarily initiated their impaired wrist and finger extensor muscles. Twenty subjects were randomly assigned to either a unilateral movement/stimulation group or a bilateral movement/stimulation group. Participants completed 4 days (6 h over 2 weeks) of active neuromuscular stimulation (i.e., 5 s/trial, 90 trials/day, biphasic waveform) on the wrist and finger extensors according to group assignments. The EMG activation levels were analyzed with a three-factor mixed design Motor recovery protocol x Session block x Trial block (2 x 2 x 3) ANOVA with repeated measures on the second and third factors. This robust analysis revealed higher EMG activation levels for the coupled bilateral movement/stimulation group than the unilateral movement/stimulation group. In addition, higher muscle activation levels were found for the second session block as well as trial blocks 2 and 3. Overall, these findings indicated improved motor capabilities of the impaired muscles as evidenced by the higher voluntary EMG activation levels.

  7. Analysis of automated quantification of motor activity in REM sleep behaviour disorder.

    PubMed

    Frandsen, Rune; Nikolic, Miki; Zoetmulder, Marielle; Kempfner, Lykke; Jennum, Poul

    2015-10-01

    Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterized by dream enactment and REM sleep without atonia. Atonia is evaluated on the basis of visual criteria, but there is a need for more objective, quantitative measurements. We aimed to define and optimize a method for establishing baseline and all other parameters in automatic quantifying submental motor activity during REM sleep. We analysed the electromyographic activity of the submental muscle in polysomnographs of 29 patients with idiopathic RBD (iRBD), 29 controls and 43 Parkinson's (PD) patients. Six adjustable parameters for motor activity were defined. Motor activity was detected and quantified automatically. The optimal parameters for separating RBD patients from controls were investigated by identifying the greatest area under the receiver operating curve from a total of 648 possible combinations. The optimal parameters were validated on PD patients. Automatic baseline estimation improved characterization of atonia during REM sleep, as it eliminates inter/intra-observer variability and can be standardized across diagnostic centres. We found an optimized method for quantifying motor activity during REM sleep. The method was stable and can be used to differentiate RBD from controls and to quantify motor activity during REM sleep in patients with neurodegeneration. No control had more than 30% of REM sleep with increased motor activity; patients with known RBD had as low activity as 4.5%. We developed and applied a sensitive, quantitative, automatic algorithm to evaluate loss of atonia in RBD patients.

  8. Effect of Spinal Manipulation Thrust Duration on Trunk Mechanical Activation Thresholds of Nociceptive-Specific Lateral Thalamic Neurons

    PubMed Central

    Reed, William R.; Sozio, Randall; Pickar, Joel G.; Onifer, Stephen M.

    2015-01-01

    Objective The objective of this preliminary study was to determine if high-velocity, low-amplitude spinal manipulation (HVLA-SM) thrust duration alters mechanical trunk activation thresholds of nociceptive-specific (NS) lateral thalamic neurons. Methods Extracellular recordings were obtained from 18 NS neurons located in 2 lateral thalamic nuclei (ventrolateral [n = 12] and posterior [n = 6]) in normal anesthetized Wistar rats. Response thresholds to electronic von Frey anesthesiometer (rigid tip) mechanical trunk stimuli applied in 3 lumbar directions (dorsal-ventral, 45° caudal, and 45° cranial) were determined before and immediately after the delivery of 3 HVLA-SM thrust durations (time control 0, 100, and 400 milliseconds). Mean changes in mechanical trunk activation thresholds were compared using a mixed model analysis of variance. Results High-velocity, low-amplitude spinal manipulation duration did not significantly alter NS lateral thalamic neurons’ mechanical trunk responses to any of the 3 directions tested with the anesthesiometer. Conclusions This study is the first to examine the effect of HVLA-SM thrust duration on NS lateral thalamic mechanical response thresholds. High-velocity, low-amplitude spinal manipulation thrust duration did not affect mechanical trunk thresholds. PMID:25220757

  9. Drosophila non-muscle myosin II motor activity determines the rate of tissue folding.

    PubMed

    Vasquez, Claudia G; Heissler, Sarah M; Billington, Neil; Sellers, James R; Martin, Adam C

    2016-12-30

    Non-muscle cell contractility is critical for tissues to adopt shape changes. Although, the non-muscle myosin II holoenzyme (myosin) is a molecular motor that powers contraction of actin cytoskeleton networks, recent studies have questioned the importance of myosin motor activity cell and tissue shape changes. Here, combining the biochemical analysis of enzymatic and motile properties for purified myosin mutants with in vivo measurements of apical constriction for the same mutants, we show that in vivo constriction rate scales with myosin motor activity. We show that so-called phosphomimetic mutants of the Drosophila regulatory light chain (RLC) do not mimic the phosphorylated RLC state in vitro. The defect in the myosin motor activity in these mutants is evident in developing Drosophila embryos where tissue recoil following laser ablation is decreased compared to wild-type tissue. Overall, our data highlights that myosin activity is required for rapid cell contraction and tissue folding in developing Drosophila embryos.

  10. CORRELATIONS OF PESTICIDE-INDUCED CHOLINESTERASE INHIBITION AND MOTOR ACTIVITY CHANGES IN ADULT RATS.

    EPA Science Inventory

    The acute neurobehavioral effects of acetylcholinesterase-inhibiting pesticides are primarily due to overstimulation of the cholinergic system. Lowered motor activity levels represent a sensitive endpoint with which to monitor functional changes in laboratory animals exposed to ...

  11. Indatraline: synthesis and effect on the motor activity of Wistar rats.

    PubMed

    Kameyama, Márcia; Siqueira, Fernanda A; Garcia-Mijares, Miriam; Silva, Luiz F; Silva, Maria T A

    2011-11-10

    A new approach for the synthesis of indatraline was developed using as the key step an iodine(III)-mediated ring contraction of a 1,2-dihydronaphthalene derivative. Behavioral tests were conducted to evaluate the effect of indatraline and of its precursor indanamide on the motor activity of Wistar rats. Specific indexes for ambulation, raising and stereotypy were computed one, two and three hours after i.p. drug administration. Indatraline effects on motor activity lasted for at least three hours. On the other hand, no significant differences in motor activity were observed using indanamide. The results suggest that indatraline has a long lasting effect on motor activity and add evidence in favor of the potential use of that compound as a substitute in cocaine addiction.

  12. Demonstration of motor imagery movement and phantom movement-related neuronal activity in human thalamus.

    PubMed

    Anderson, William S; Weiss, Nirit; Lawson, Herman Christopher; Ohara, Shinji; Rowland, Lance; Lenz, Frederick A

    2011-01-26

    Functional imaging studies show that motor imagery activates multiple structures in the human forebrain. We now show that phantom movements in an amputee and imagined movements in intact individuals elicit responses from neurons in several human thalamic nuclei. These include the somatic sensory nucleus receiving input from the periphery (ventral caudal), and the motor nuclei receiving input from the cerebellum [ventral intermediate (Vim)] and the basal ganglia [ventral oral posterior (Vop)]. Seven neurons in the amputee showed phantom movement-related activity (three Vim, two Vop, and two ventral caudal). In addition, seven neurons in a group of three controls showed motor imagery-related activity (four Vim and three Vop). These studies were performed during single neuron recording sessions in patients undergoing therapeutic treatment of phantom pain, tremor, and chronic pain conditions by thalamic stimulation. The activity of neurons in these sensory and motor nuclei, respectively, may encode the expected sensory consequences and the dynamics of planned movements.

  13. Kinesin-Binding Protein Controls Microtubule Dynamics and Cargo Trafficking by Regulating Kinesin Motor Activity.

    PubMed

    Kevenaar, Josta T; Bianchi, Sarah; van Spronsen, Myrrhe; Olieric, Natacha; Lipka, Joanna; Frias, Cátia P; Mikhaylova, Marina; Harterink, Martin; Keijzer, Nanda; Wulf, Phebe S; Hilbert, Manuel; Kapitein, Lukas C; de Graaff, Esther; Ahkmanova, Anna; Steinmetz, Michel O; Hoogenraad, Casper C

    2016-04-04

    Kinesin motor proteins play a fundamental role for normal neuronal development by controlling intracellular cargo transport and microtubule (MT) cytoskeleton organization. Regulating kinesin activity is important to ensure their proper functioning, and their misregulation often leads to severe human neurological disorders. Homozygous nonsense mutations in kinesin-binding protein (KBP)/KIAA1279 cause the neurological disorder Goldberg-Shprintzen syndrome (GOSHS), which is characterized by intellectual disability, microcephaly, and axonal neuropathy. Here, we show that KBP regulates kinesin activity by interacting with the motor domains of a specific subset of kinesins to prevent their association with the MT cytoskeleton. The KBP-interacting kinesins include cargo-transporting motors such as kinesin-3/KIF1A and MT-depolymerizing motor kinesin-8/KIF18A. We found that KBP blocks KIF1A/UNC-104-mediated synaptic vesicle transport in cultured hippocampal neurons and in C. elegans PVD sensory neurons. In contrast, depletion of KBP results in the accumulation of KIF1A motors and synaptic vesicles in the axonal growth cone. We also show that KBP regulates neuronal MT dynamics by controlling KIF18A activity. Our data suggest that KBP functions as a kinesin inhibitor that modulates MT-based cargo motility and depolymerizing activity of a subset of kinesin motors. We propose that misregulation of KBP-controlled kinesin motors may represent the underlying molecular mechanism that contributes to the neuropathological defects observed in GOSHS patients.

  14. A Guide for Perceptual-Motor Training Activities.

    ERIC Educational Resources Information Center

    South Euclid - Lyndhurst City Schools, Lyndhurst, OH.

    This document has been prepared as part of a kindergarten perceptual-training program of the South Euclid-Lyndhurst City School District near Cleveland, Ohio. The guide contains information on training and procedures related to perceptual-motor learning. This information is structured primarily into 150 lesson plans, devised as 30-minute sessions…

  15. The relationship between actual motor competence and physical activity in children: mediating roles of perceived motor competence and health-related physical fitness.

    PubMed

    Khodaverdi, Zeinab; Bahram, Abbas; Stodden, David; Kazemnejad, Anoshirvan

    2016-08-01

    The purpose of this study was to investigate whether perceived motor competence and components of health-related physical fitness mediated the relationship between actual motor competence and physical activity in 8- to 9-year-old Iranian girls. A convenience sample of 352 girls (mean age = 8.7, SD = 0.3 years) participated in the study. Actual motor competence, perceived motor competence and children's physical activity were assessed using the Test of Gross Motor Development-2, the physical ability sub-scale of Marsh's Self-Description Questionnaire and Physical Activity Questionnaire for Older Children, respectively. Body mass index, the 600 yard run/walk, curl-ups, push-ups, and back-saver sit and reach tests assessed health-related physical fitness. Preacher & Hayes (2004) bootstrap method was used to assess the potential mediating effects of fitness and perceived competence on the direct relationship between actual motor competence and physical activity. Regression analyses revealed that aerobic fitness (b = .28, 95% CI = [.21, .39]), as the only fitness measure, and perceived competence (b = .16, 95% CI = [.12, .32]) were measures that mediated the relationship between actual motor competence and physical activity with the models. Development of strategies targeting motor skill acquisition, children's self-perceptions of competence and cardiorespiratory fitness should be targeted to promote girls' moderate-to-vigorous physical activity.

  16. Motor cortex plasticity induced by paired associative stimulation is enhanced in physically active individuals.

    PubMed

    Cirillo, John; Lavender, Andrew P; Ridding, Michael C; Semmler, John G

    2009-12-15

    Recent evidence indicates that regular physical activity enhances brain plasticity (i.e. the ability to reorganise neural connections) and improves neurocognitive function. However, the effect of regular physical activity on human motor cortex function is unknown. The purpose of this study was to examine motor cortex plasticity for a small hand muscle in highly active and sedentary individuals. Electromyographic recordings were obtained from the left abductor pollicis brevis (APB) muscle of 14 active and 14 sedentary subjects (aged 18-38 yrs). The extent of physical activity was assessed by questionnaire, where the physically active subjects performed >150 min per day moderate-to-vigorous aerobic activity on at least 5 days per week, whereas the sedentary group performed <20 min per day of physical activity on no more than 3 days per week. Transcranial magnetic stimulation (TMS) of the right hemisphere was used to assess changes in APB motor-evoked potentials (MEPs), input-output curve (IO curve), short-interval intracortical inhibition (SICI) and cortical silent period (CSP). Neuroplastic changes were induced using paired-associative stimulation (PAS), which consisted of 90 paired stimuli (0.05 Hz for 30 min) of median nerve electrical stimulation at the wrist followed 25 ms later by TMS to the hand area of motor cortex. The IO curve slope was 35% steeper in individuals with increased physical activity (combined before and after PAS, P < 0.05), suggesting increased motor cortex excitability, although there was no difference in SICI or CSP between groups. PAS induced an increase in MEP amplitude in the physically active subjects (54% increase compared with before, P < 0.01), but no significant facilitation in the sedentary subjects. We conclude that participation in regular physical activity may offer global benefits to motor cortex function that enhances neuroplasticity, which could improve motor learning and neurorehabilitation in physically active individuals.

  17. Exercise-induced Alteration in Brain Activity during Motor Performance under Cognitive Stress

    DTIC Science & Technology

    2014-07-02

    stress . It is possible that the correlated activity between EEG and EMG is used for “fine-tuning” brain activity during the performance of fine motor...brain and muscle during simple fine motor performance under stress after high-intensity physical exertion. Healthy young adults were assigned to...leg resistance exercise. Oscillations in EEG and corticomuscular coherence in beta band both tended to decrease 1. REPORT DATE (DD-MM-YYYY) 4. TITLE

  18. Esterases activity in the axolotl Ambystoma mexicanum exposed to chlorpyrifos and its implication to motor activity.

    PubMed

    Robles-Mendoza, Cecilia; Zúñiga-Lagunes, Sebastian R; Ponce de León-Hill, Claudia A; Hernández-Soto, Jesús; Vanegas-Pérez, Cecilia

    2011-10-01

    The axolotl Ambystoma mexicanum is a neotenic salamander considered a good biological model due to its ability to regenerate limbs, tail, brain and heart cells. Nevertheless, severe reduction of A. mexicanum wild populations in the lacustrine area of Xochimilco, the natural habitat of the axolotl, could be related to several environmental pressures as the presence of organophosphate pesticides (OPPs), intensively applied in agricultural activities in Xochimilco. Thus the aim of this study was to evaluate the effect of environmentally realistic chlorpyrifos (CPF) concentrations, a OPP commonly used in this zone, on esterases activity (acetylcholinesterase and carboxylesterase) and bioconcentration of CPF and to relate them with the motor activity of A. mexicanum juveniles. Axolotls were exposed 48 h to 0.05 and 0.1mg CPF/L, and the responses were evaluated at the end of the CPF exposure. Results suggest that CPF is bioconcentrated into axolotls and that the CPF internal concentrations are related with the observed inhibition activity of AChE (>50%) and CbE (≈ 50%). CPF concentration responsible of the inhibition of the 50% of AChE activity (IC50) was estimated in 0.04 mg CPF/L; however IC50 for CbE activity was not possible to calculate since inhibition levels were lower than 50%, results that suggest a higher resistance of CbE enzymatic activity to CPF. However, motor activity was a more sensitive endpoint to CPF poisoning since time that axolotls spent active and walking, frequency and speed of swimming, frequency of prey attack were reduced >90% of control groups. The motor activity alterations in the axolotl could be related with the registered esterases inhibition. Thus important alterations on axolotls were identified even at short time and low concentrations of CPF exposure. Also, it was possible to link biochemical responses as esterases activity with higher levels of biological organization as behavior. This study provides tools for the regulation of the

  19. Motor-Enriched Learning Activities Can Improve Mathematical Performance in Preadolescent Children

    PubMed Central

    Beck, Mikkel M.; Lind, Rune R.; Geertsen, Svend S.; Ritz, Christian; Lundbye-Jensen, Jesper; Wienecke, Jacob

    2016-01-01

    Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning activities. Thus, the aim of this study was to investigate whether fine or gross motor activity integrated into math lessons (i.e., motor-enrichment) could improve children's mathematical performance. Methods: A 6-week within school cluster-randomized intervention study investigated the effects of motor-enriched mathematical teaching in Danish preadolescent children (n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical teaching enriched with fine and gross motor activity, respectively. The children were tested before (T0), immediately after (T1) and 8 weeks after the intervention (T2). A standardized mathematical test (50 tasks) was used to evaluate mathematical performance. Furthermore, it was investigated whether motor-enriched math was accompanied by different effects in low and normal math performers. Additionally, the study investigated the potential contribution of cognitive functions and motor skills on mathematical performance. Results: All groups improved their mathematical performance from T0 to T1. However, from T0 to T1, the improvement was significantly greater in GMM compared to FMM (1.87 ± 0.71 correct answers) (p = 0.02). At T2 no significant differences in mathematical performance were observed. A subgroup analysis revealed that normal math-performers benefitted from GMM compared to both CON 1.78 ± 0.73 correct answers (p = 0.04) and FMM 2.14 ± 0.72 correct answers (p = 0.008). These effects were not observed in low math-performers. The effects were partly

  20. Motor-Enriched Learning Activities Can Improve Mathematical Performance in Preadolescent Children.

    PubMed

    Beck, Mikkel M; Lind, Rune R; Geertsen, Svend S; Ritz, Christian; Lundbye-Jensen, Jesper; Wienecke, Jacob

    2016-01-01

    Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning activities. Thus, the aim of this study was to investigate whether fine or gross motor activity integrated into math lessons (i.e., motor-enrichment) could improve children's mathematical performance. Methods: A 6-week within school cluster-randomized intervention study investigated the effects of motor-enriched mathematical teaching in Danish preadolescent children (n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical teaching enriched with fine and gross motor activity, respectively. The children were tested before (T0), immediately after (T1) and 8 weeks after the intervention (T2). A standardized mathematical test (50 tasks) was used to evaluate mathematical performance. Furthermore, it was investigated whether motor-enriched math was accompanied by different effects in low and normal math performers. Additionally, the study investigated the potential contribution of cognitive functions and motor skills on mathematical performance. Results: All groups improved their mathematical performance from T0 to T1. However, from T0 to T1, the improvement was significantly greater in GMM compared to FMM (1.87 ± 0.71 correct answers) (p = 0.02). At T2 no significant differences in mathematical performance were observed. A subgroup analysis revealed that normal math-performers benefitted from GMM compared to both CON 1.78 ± 0.73 correct answers (p = 0.04) and FMM 2.14 ± 0.72 correct answers (p = 0.008). These effects were not observed in low math-performers. The effects were partly

  1. Opposite-polarity motors activate one another to trigger cargo transport in live cells

    PubMed Central

    Ally, Shabeen; Larson, Adam G.; Barlan, Kari; Rice, Sarah E.

    2009-01-01

    Intracellular transport is typically bidirectional, consisting of a series of back and forth movements. Kinesin-1 and cytoplasmic dynein require each other for bidirectional transport of intracellular cargo along microtubules; i.e., inhibition or depletion of kinesin-1 abolishes dynein-driven cargo transport and vice versa. Using Drosophila melanogaster S2 cells, we demonstrate that replacement of endogenous kinesin-1 or dynein with an unrelated, peroxisome-targeted motor of the same directionality activates peroxisome transport in the opposite direction. However, motility-deficient versions of motors, which retain the ability to bind microtubules and hydrolyze adenosine triphosphate, do not activate peroxisome motility. Thus, any pair of opposite-polarity motors, provided they move along microtubules, can activate one another. These results demonstrate that mechanical interactions between opposite-polarity motors are necessary and sufficient for bidirectional organelle transport in live cells. PMID:20038680

  2. Brain Activation Patterns Characterizing Different Phases of Motor Action: Execution, Choice and Ideation.

    PubMed

    Gardini, Simona; Venneri, Annalena; McGeown, William Jonathan; Toraci, Cristian; Nocetti, Luca; Porro, Carlo Adolfo; Caffarra, Paolo

    2016-09-01

    Motor behaviour is controlled by a large set of interacting neural structures, subserving the different components involved in hierarchical motor processes. Few studies have investigated the neural substrate of higher-order motor ideation, i.e. the mental operation of conceiving a movement. The aim of this functional magnetic resonance imaging study was to segregate the neural structures involved in motor ideation from those involved in movement choice and execution. An index finger movement paradigm was adopted, including three different conditions: performing a pre-specified movement, choosing and executing a movement and ideating a movement of choice. The tasks involved either the right or left hand, in separate runs. Neuroimaging results were obtained by comparing the different experimental conditions and computing conjunction maps of the right and left hands for each contrast. Pre-specified movement execution was supported by bilateral fronto-parietal motor regions, the cerebellum and putamen. Choosing and executing finger movement involved mainly left fronto-temporal areas and the anterior cingulate. Motor ideation activated almost exclusively left hemisphere regions, including the inferior, middle and superior frontal regions, middle temporal and middle occipital gyri. These findings show that motor ideation is controlled by a cortical network mainly involved in abstract thinking, cognitive and motor control, semantic and visual imagery processes.

  3. Threshold of geomorphic detectability estimated from geologic observations of active low slip-rate strike-slip faults

    NASA Astrophysics Data System (ADS)

    Kaneda, Heitaro

    2003-03-01

    Sources of catastrophic earthquakes include not only major active faults, but also those with low slip rates. Geologic observations of two Japanese surface-rupturing earthquakes on low slip-rate strike-slip faults (the 1927 Kita-Tango and the 1943 Tottori earthquakes) suggests a concept of ``threshold of geomorphic detectability'' for strike-slip faults in humid mountainous regions. This threshold must be exceeded in order that progressive coseismic surface offset can be preserved as detectable faulted topography that may be otherwise erased by surface processes. The determined threshold minimum slip rates for both examples are about 0.1 mm/yr, which can be a quantitative explanation for lack of recognition and mapping of many active faults with slip rates of less than 0.1 mm/yr in Japan islands. Although this threshold is probably negligible in arid regions, it can produce another type of unrecognized active fault in humid mountainous regions, in addition to blind thrusts beneath thick sediments.

  4. Motor neuron-specific overexpression of the presynaptic choline transporter: impact on motor endurance and evoked muscle activity.

    PubMed

    Lund, D; Ruggiero, A M; Ferguson, S M; Wright, J; English, B A; Reisz, P A; Whitaker, S M; Peltier, A C; Blakely, R D

    2010-12-29

    The presynaptic, hemicholinium-3 sensitive, high-affinity choline transporter (CHT) supplies choline for acetylcholine (ACh) synthesis. In mice, a homozygous deletion of CHT (CHT-/-) leads to premature cessation of spontaneous or evoked neuromuscular signaling and is associated with perinatal cyanosis and lethality within 1 h. Heterozygous (CHT+/-) mice exhibit diminished brain ACh levels and demonstrate an inability to sustain vigorous motor activity. We sought to explore the contribution of CHT gene dosage to motor function in greater detail using transgenic mice where CHT is expressed under control of the motor neuron promoter Hb9 (Hb9:CHT). On a CHT-/- background, the Hb9:CHT transgene conferred mice with the ability to move and breath for a postnatal period of ∼24 h, thus increasing survival. Conversely, Hb9:CHT expression on a wild-type background (CHT+/+;Hb9:CHT) leads to an increased capacity for treadmill running compared to wild-type littermates. Analysis of the stimulated compound muscle action potential (CMAP) in these animals under basal conditions established that CHT+/+;Hb9:CHT mice display an unexpected, bidirectional change, producing either elevated or reduced CMAP amplitude, relative to CHT+/+ animals. To examine whether these two groups arise from underlying changes in synaptic properties, we used high-frequency stimulation of motor axons to assess CMAP recovery kinetics. Although CHT+/+; Hb9:CHT mice in the two groups display an equivalent, time-dependent reduction in CMAP amplitude, animals with a higher basal CMAP amplitude demonstrate a significantly enhanced rate of recovery. To explain our findings, we propose a model whereby CHT support for neuromuscular signaling involves contributions to ACh synthesis as well as cholinergic synaptic vesicle availability.

  5. How Actin Initiates the Motor Activity of Myosin

    PubMed Central

    Llinas, Paola; Isabet, Tatiana; Song, Lin; Ropars, Virginie; Zong, Bin; Benisty, Hannah; Sirigu, Serena; Morris, Carl; Kikuti, Carlos; Safer, Dan; Sweeney, H. Lee; Houdusse, Anne

    2015-01-01

    SUMMARY Fundamental to cellular processes are directional movements driven by molecular motors. A common theme for these and other molecular machines driven by ATP is that controlled release of hydrolysis products is essential to use the chemical energy efficiently. Mechanochemical transduction by myosin motors on actin is coupled to unknown structural changes that result in the sequential release of inorganic phosphate (Pi) and MgADP. We present here a myosin structure possessing an actin-binding interface and a tunnel (back door) that creates an escape route for Pi with a minimal rotation of the myosin lever arm that drives movements. We propose that this state represents the beginning of the powerstroke on actin, and that Pi translocation from the nucleotide pocket triggered by actin binding initiates myosin force generation. This elucidates how actin initiates force generation and movement, and may represent a strategy common to many molecular machines. PMID:25936506

  6. Predictive motor control of sensory dynamics in auditory active sensing.

    PubMed

    Morillon, Benjamin; Hackett, Troy A; Kajikawa, Yoshinao; Schroeder, Charles E

    2015-04-01

    Neuronal oscillations present potential physiological substrates for brain operations that require temporal prediction. We review this idea in the context of auditory perception. Using speech as an exemplar, we illustrate how hierarchically organized oscillations can be used to parse and encode complex input streams. We then consider the motor system as a major source of rhythms (temporal priors) in auditory processing, that act in concert with attention to sharpen sensory representations and link them across areas. We discuss the circuits that could mediate this audio-motor interaction, notably the potential role of the somatosensory system. Finally, we reposition temporal predictions in the context of internal models, discussing how they interact with feature-based or spatial predictions. We argue that complementary predictions interact synergistically according to the organizational principles of each sensory system, forming multidimensional filters crucial to perception.

  7. How actin initiates the motor activity of Myosin.

    PubMed

    Llinas, Paola; Isabet, Tatiana; Song, Lin; Ropars, Virginie; Zong, Bin; Benisty, Hannah; Sirigu, Serena; Morris, Carl; Kikuti, Carlos; Safer, Dan; Sweeney, H Lee; Houdusse, Anne

    2015-05-26

    Fundamental to cellular processes are directional movements driven by molecular motors. A common theme for these and other molecular machines driven by ATP is that controlled release of hydrolysis products is essential for using the chemical energy efficiently. Mechanochemical transduction by myosin motors on actin is coupled to unknown structural changes that result in the sequential release of inorganic phosphate (Pi) and MgADP. We present here a myosin structure possessing an actin-binding interface and a tunnel (back door) that creates an escape route for Pi with a minimal rotation of the myosin lever arm that drives movements. We propose that this state represents the beginning of the powerstroke on actin and that Pi translocation from the nucleotide pocket triggered by actin binding initiates myosin force generation. This elucidates how actin initiates force generation and movement and may represent a strategy common to many molecular machines.

  8. Movement observation specifies motor programs activated by the action observed objective.

    PubMed

    Lago, Angel; Fernandez-del-Olmo, Miguel

    2011-04-15

    There are human cortical areas that fire both when a person executes an action and when he observes someone performing a similar action. The observer activates a motor program that resembles the observed action. However, it is not known whether the motor program activated via action observation is muscle specific. In this study, using simple pulse transcranial magnetic stimulation (TMS) applied over the primary motor cortex (M1), we investigated whether the Mirror System activates a muscle specific motor program, or codes the observed action in terms of its goal. The results showed that when subjects observed a static effector in front of an object, cortical excitability was enhanced even in muscles not involved in the observed movement, but that are able to achieve the goal of the action. When there was an effector-object interaction the motor program activated via action observation is muscle specific. These results suggest that when subjects observe an object related action there is an activation of a motor program based on the observed action goal, that is transformed into a muscle specific program when the subject shows an effector-object interaction.

  9. Physical activity and obesity mediate the association between childhood motor function and adolescents’ academic achievement

    PubMed Central

    Kantomaa, Marko T.; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija

    2013-01-01

    The global epidemic of obesity and physical inactivity may have detrimental implications for young people’s cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, predicted cardiorespiratory fitness (cycle ergometer test), obesity (body weight and height), and academic achievement (grades) at age 16 y. Structural equation models with unstandardized (B) and standardized (β) coefficients were used to test whether, and to what extent, physical activity, cardiorespiratory fitness, and obesity at age 16 mediated the association between childhood motor function and adolescents’ academic achievement. Physical activity was associated with a higher grade-point average, and obesity was associated with a lower grade-point average in adolescence. Furthermore, compromised motor function in childhood had a negative indirect effect on adolescents’ academic achievement via physical inactivity (B = –0.023, 95% confidence interval = –0.031, –0.015) and obesity (B = –0.025, 95% confidence interval = –0.039, –0.011), but not via cardiorespiratory fitness. These results suggest that physical activity and obesity may mediate the association between childhood motor function and adolescents’ academic achievement. Compromised motor function in childhood may represent an important factor driving the effects of obesity and physical inactivity on academic underachievement. PMID:23277558

  10. Postural challenge affects motor cortical activity in young and old adults.

    PubMed

    Papegaaij, Selma; Taube, Wolfgang; van Keeken, Helco G; Otten, Egbert; Baudry, Stéphane; Hortobágyi, Tibor

    2016-01-01

    When humans voluntarily activate a muscle, intracortical inhibition decreases. Such a decrease also occurs in the presence of a postural challenge and more so with increasing age. Here, we examined age-related changes in motor cortical activity during postural and non-postural contractions with varying levels of postural challenge. Fourteen young (age 22) and twelve old adults (age 70) performed three conditions: (1) voluntary contraction of the soleus muscle in sitting and (2) leaning forward while standing with and (3) without being supported. Subthreshold transcranial magnetic stimulation was applied to the soleus motor area suppressing ongoing EMG, as an index of motor cortical activity. The area of EMG suppression was ~60% smaller (p<0.05) in unsupported vs. supported leaning and sitting, with no difference between these latter two conditions (p>0.05). Even though in absolute terms young compared with old adults leaned farther (p=0.018), there was no age effect or an age by condition interaction in EMG suppression. Leaning closer to the maximum without support correlated with less EMG suppression (rho=-0.44, p=0.034). We conclude that the critical factor in modulating motor cortical activity was postural challenge and not contraction aim or posture. Age did not affect the motor control strategy as quantified by the modulation of motor cortical activity, but the modulation appeared at a lower task difficulty with increasing age.

  11. Physical activity and obesity mediate the association between childhood motor function and adolescents' academic achievement.

    PubMed

    Kantomaa, Marko T; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija

    2013-01-29

    The global epidemic of obesity and physical inactivity may have detrimental implications for young people's cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, predicted cardiorespiratory fitness (cycle ergometer test), obesity (body weight and height), and academic achievement (grades) at age 16 y. Structural equation models with unstandardized (B) and standardized (β) coefficients were used to test whether, and to what extent, physical activity, cardiorespiratory fitness, and obesity at age 16 mediated the association between childhood motor function and adolescents' academic achievement. Physical activity was associated with a higher grade-point average, and obesity was associated with a lower grade-point average in adolescence. Furthermore, compromised motor function in childhood had a negative indirect effect on adolescents' academic achievement via physical inactivity (B = -0.023, 95% confidence interval = -0.031, -0.015) and obesity (B = -0.025, 95% confidence interval = -0.039, -0.011), but not via cardiorespiratory fitness. These results suggest that physical activity and obesity may mediate the association between childhood motor function and adolescents' academic achievement. Compromised motor function in childhood may represent an important factor driving the effects of obesity and physical inactivity on academic underachievement.

  12. High-resolution genetic mapping of mammalian motor activity levels in mice.

    PubMed

    Kas, M J H; de Mooij-van Malsen, J G; de Krom, M; van Gassen, K L I; van Lith, H A; Olivier, B; Oppelaar, H; Hendriks, J; de Wit, M; Groot Koerkamp, M J A; Holstege, F C P; van Oost, B A; de Graan, P N E

    2009-02-01

    The generation of motor activity levels is under tight neural control to execute essential behaviors, such as movement toward food or for social interaction. To identify novel neurobiological mechanisms underlying motor activity levels, we studied a panel of chromosome substitution (CS) strains derived from mice with high (C57BL/6J strain) or low motor activity levels (A/J strain) using automated home cage behavioral registration. In this study, we genetically mapped the expression of baseline motor activity levels (horizontal distance moved) to mouse chromosome 1. Further genetic mapping of this trait revealed an 8.3-Mb quantitative trait locus (QTL) interval. This locus is distinct from the QTL interval for open-field anxiety-related motor behavior on this chromosome. By data mining, an existing phenotypic and genotypic data set of 2445 genetically heterogeneous mice (http://gscan.well.ox.ac.uk/), we confirmed linkage to the peak marker at 79 970 253 bp and refined the QTL to a 312-kb interval containing a single gene (A830043J08Rik). Sequence analysis showed a nucleotide deletion in the 3' untranslated region of the Riken gene. Genome-wide microarray gene expression profiling in brains of discordant F(2) individuals from CS strain 1 showed a significant upregulation of Epha4 in low-active F(2) individuals. Inclusion of a genetic marker for Epha4 confirmed that this gene is located outside of the QTL interval. Both Epha4 and A830043J08Rik are expressed in brain motor circuits, and similar to Epha4 mutants, we found linkage between reduced motor neurons number and A/J chromosome 1. Our findings provide a novel QTL and a potential downstream target underlying motor circuitry development and the expression of physical activity levels.

  13. Symposium FF: Molecular Motors, Nanomachines, and Active Nanostructures

    DTIC Science & Technology

    2008-06-23

    effects . Contributed talks by Francisco Raymo and Dongwhan Lee were followed by the second invited talk by Miguel Garcia-Garibay from UCLA...to 100 scientists in the audience for almost all talks. The large fraction of invited talks resulted in a consistently high quality of presentations...and engineers, and the large number of parallel symposia draws in attendees who are more peripherally interested in molecular motors. The main

  14. A Field-Based Testing Protocol for Assessing Gross Motor Skills in Preschool Children: The Children's Activity and Movement in Preschool Study Motor Skills Protocol

    ERIC Educational Resources Information Center

    Williams, Harriet G.; Pfeiffer, Karin A.; Dowda, Marsha; Jeter, Chevy; Jones, Shaverra; Pate, Russell R.

    2009-01-01

    The purpose of this study was to develop a valid and reliable tool for use in assessing motor skills in preschool children in field-based settings. The development of the Children's Activity and Movement in Preschool Study Motor Skills Protocol included evidence of its reliability and validity for use in field-based environments as part of large…

  15. Orientation-dependent changes in single motor neuron activity during adaptive soft-bodied locomotion.

    PubMed

    Metallo, Cinzia; Trimmer, Barry A

    2015-01-01

    Recent major advances in understanding the organizational principles underlying motor control have focused on a small number of animal species with stiff articulated skeletons. These model systems have the advantage of easily quantifiable mechanics, but the neural codes underlying different movements are difficult to characterize because they typically involve a large population of neurons controlling each muscle. As a result, studying how neural codes drive adaptive changes in behavior is extremely challenging. This problem is highly simplified in the tobacco hawkmoth Manduca sexta, which, in its larval stage (caterpillar), is predominantly soft-bodied. Since each M. sexta muscle is innervated by one, occasionally two, excitatory motor neurons, the electrical activity generated by each muscle can be mapped to individual motor neurons. In the present study, muscle activation patterns were converted into motor neuron frequency patterns by identifying single excitatory junction potentials within recorded electromyographic traces. This conversion was carried out with single motor neuron resolution thanks to the high signal selectivity of newly developed flexible microelectrode arrays, which were specifically designed to record from M. sexta muscles. It was discovered that the timing of motor neuron activity and gait kinematics depend on the orientation of the plane of motion during locomotion. We report that, during climbing, the motor neurons monitored in the present study shift their activity to correlate with movements in the animal's more anterior segments. This orientation-dependent shift in motor activity is in agreement with the expected shift in the propulsive forces required for climbing. Our results suggest that, contrary to what has been previously hypothesized, M.sexta uses central command timing for adaptive load compensation.

  16. Activation of the motor cortex during phasic rapid eye movement sleep

    PubMed Central

    De Carli, Fabrizio; Proserpio, Paola; Morrone, Elisa; Sartori, Ivana; Ferrara, Michele; Gibbs, Steve Alex; De Gennaro, Luigi; Lo Russo, Giorgio

    2016-01-01

    When dreaming during rapid eye movement (REM) sleep, we can perform complex motor behaviors while remaining motionless. How the motor cortex behaves during this state remains unknown. Here, using intracerebral electrodes sampling the human motor cortex in pharmacoresistant epileptic patients, we report a pattern of electroencephalographic activation during REM sleep similar to that observed during the performance of a voluntary movement during wakefulness. This pattern is present during phasic REM sleep but not during tonic REM sleep, the latter resembling relaxed wakefulness. This finding may help clarify certain phenomenological aspects observed in REM sleep behavior disorder. Ann Neurol 2016;79:326–330 PMID:26575212

  17. [Characteristics of pilot motor activity when different control systems are used during landing approaches].

    PubMed

    Brusnichkina, R I

    1980-01-01

    Complex motor acts of pilots during their professional work were investigated with control information presented in a different manner. Two experimental series were run: in a real flight and in a simulator. Parameters of muscle bioelectric activity, control movements and performance efficiency were used. Differences in the formation of motor acts were shown to depend on the scope and quality of the information presented. During required transfer from one mode to another the structure of working movements and performance efficiency obeyed at large changes in the information necessary for piloting. This was accompanied by an alteration in the developed stereotype of actions, including motor acts.

  18. Cytoskeletal motor-driven active self-assembly in in vitro systems

    DOE PAGES

    Lam, A. T.; VanDelinder, V.; Kabir, A. M. R.; ...

    2015-11-11

    Molecular motor-driven self-assembly has been an active area of soft matter research for the past decade. Because molecular motors transform chemical energy into mechanical work, systems which employ molecular motors to drive self-assembly processes are able to overcome kinetic and thermodynamic limits on assembly time, size, complexity, and structure. Here, we review the progress in elucidating and demonstrating the rules and capabilities of motor-driven active self-assembly. Lastly, we focus on the types of structures created and the degree of control realized over these structures, and discuss the next steps necessary to achieve the full potential of this assembly mode whichmore » complements robotic manipulation and passive self-assembly.« less

  19. Measurements of Myosin-II Motor Activity During Cytokinesis in Fission Yeast.

    PubMed

    Tang, Qing; Pollard, Luther W; Lord, Matthew

    2016-01-01

    Fission yeast myosin-II (Myo2p) represents the critical actin-based motor protein that drives actomyosin ring assembly and constriction during cytokinesis. We detail three different methods to measure Myo2p motor function. Actin-activated ATPases provide a readout of actomyosin ATPase motor activity in a bulk assay; actin filament motility assays reveal the speed and efficiency of myosin-driven actin filament gliding (when motors are anchored); myosin-bead motility assays reveal the speed and efficiency of myosin ensembles traveling along actin filaments (when actin is anchored). Collectively, these methods allow us to combine the standard in vivo approaches common to fission yeast with in vitro biochemical methods to learn more about the mechanistic action of myosin-II during cytokinesis.

  20. Cytoskeletal motor-driven active self-assembly in in vitro systems

    SciTech Connect

    Lam, A. T.; VanDelinder, V.; Hess, H.; Bachand, G. D.

    2015-11-11

    Molecular motor-driven self-assembly has been an active area of soft matter research for the past decade. Because molecular motors transform chemical energy into mechanical work, systems which employ molecular motors to drive self-assembly processes are able to overcome kinetic and thermodynamic limits on assembly time, size, complexity, and structure. Here, we review the progress in elucidating and demonstrating the rules and capabilities of motor-driven active self-assembly. Lastly, we focus on the types of structures created and the degree of control realized over these structures, and discuss the next steps necessary to achieve the full potential of this assembly mode which complements robotic manipulation and passive self-assembly.

  1. Chapter 6: Children's Environmental Access in Relation to Motor Competence, Physical Activity, and Fitness

    ERIC Educational Resources Information Center

    Erwin, Heather E.; Woods, Amelia Mays; Woods, Martha K.; Castelli, Darla M.

    2007-01-01

    The purpose of this study was to examine levels of physical activity engagement, motor competence, and physical fitness as related to child access to physical activity facilities in the home and school environments. The present investigation attempts to further efforts to examine the relationship between physical activity levels and access.…

  2. Get Kids Moving: Simple Activities To Build Gross-Motor Skills.

    ERIC Educational Resources Information Center

    Texas Child Care, 2003

    2003-01-01

    Highlights the importance of activities to build gross motor skills and provides hints for encouraging such activities. Specific areas of activities presented are: (1) running and jumping; (2) music games; (3) action games; (4) races; (5) bed sheets or parachutes; (6) hula hoops; (7) balls; (8) batting; (9) balance; and (10) creative movement. (SD)

  3. Accelerometer thresholds: Accounting for body mass reduces discrepancies between measures of physical activity for individuals with overweight and obesity.

    PubMed

    Raiber, Lilian; Christensen, Rebecca A G; Jamnik, Veronica K; Kuk, Jennifer L

    2017-01-01

    The objective of this study was to explore whether accelerometer thresholds that are adjusted to account for differences in body mass influence discrepancies between self-report and accelerometer-measured physical activity (PA) volume for individuals with overweight and obesity. We analyzed 6164 adults from the National Health and Nutrition Examination Survey between 2003-2006. Established accelerometer thresholds were adjusted to account for differences in body mass to produce a similar energy expenditure (EE) rate as individuals with normal weight. Moderate-, vigorous-, and moderate- to vigorous-intensity PA (MVPA) durations were measured using established and adjusted accelerometer thresholds and compared with self-report. Durations of self-report were longer than accelerometer-measured MVPA using established thresholds (normal weight: 57.8 ± 2.4 vs 9.0 ± 0.5 min/day, overweight: 56.1 ± 2.7 vs 7.4 ± 0.5 min/day, and obesity: 46.5 ± 2.2 vs 3.7 ± 0.3 min/day). Durations of subjective and objective PA were negatively associated with body mass index (BMI) (P < 0.05). Using adjusted thresholds increased MVPA durations, and reduced discrepancies between accelerometer and self-report measures for overweight and obese groups by 6.0 ± 0.3 min/day and 17.7 ± 0.8 min/day, respectively (P < 0.05). Using accelerometer thresholds that represent equal EE rates across BMI categories reduced the discrepancies between durations of subjective and objective PA for overweight and obese groups. However, accelerometer-measured PA generally remained shorter than durations of self-report within all BMI categories. Further research may be necessary to improve analytical approaches when using objective measures of PA for individuals with overweight or obesity.

  4. Neurotensin Changes Propulsive Activity into a Segmental Motor Pattern in the Rat Colon

    PubMed Central

    Li, Hongfei; Chen, Ji-Hong; Yang, Zixian; Huang, Min; Yu, Yuanjie; Tan, Shiyun; Luo, Hesheng; Huizinga, Jan D

    2016-01-01

    Background/Aims Neurotensin is a gut-brain peptide with both inhibitory and excitatory actions on the colonic musculature; our objective was to understand the implications of this for motor patterns occurring in the intact colon of the rat. Methods The effects of neurotensin with concentrations ranging from 0.1–100 nM were studied in the intact rat colon in vitro, by investigating spatio-temporal maps created from video recordings of colonic motility before and after neurotensin. Results Low concentration of neurotensin (0.1–1 nM) inhibited propagating long distance contractions and rhythmic propagating motor complexes; in its place a slow propagating rhythmic segmental motor pattern developed. The neurotensin receptor 1 antagonist SR-48692 prevented the development of the segmental motor pattern. Higher concentrations of neurotensin (10 nM and 100 nM) were capable of restoring long distance contraction activity and inhibiting the segmental activity. The slow propagating segmental contraction showed a rhythmic contraction—relaxation cycle at the slow wave frequency originating from the interstitial cells of Cajal associated with the myenteric plexus pacemaker. High concentrations given without prior additions of low concentrations did not evoke the segmental motor pattern. These actions occurred when neurotensin was given in the bath solution or intraluminally. The segmental motor pattern evoked by neurotensin was inhibited by the neural conduction blocker lidocaine. Conclusions Neurotensin (0.1–1 nM) inhibits the dominant propulsive motor patterns of the colon and a distinct motor pattern of rhythmic slow propagating segmental contractions develops. This motor pattern has the hallmarks of haustral boundary contractions. PMID:26882114

  5. [Participation of the primary motor cortex in programming of muscle activity during catching of falling object].

    PubMed

    Kazennikov, O V; Lipshits, M I

    2011-01-01

    Object fell into the cup that sitting subject held between thumb and index fingers. Transcranial magnetic stimulation (TMS) of the primary motor cortex was performed early before and during anticipatory grip force increasing. Comparison of current EMG activity of adductor pollicis brevis and first dorsal interosseous muscles and responses of these muscles on TMS showed that responses were increased before the raising of muscle activity. From the other side only slight augmentation of responses was observed during subsequent strong muscle activation. It is assumed that the increasing of the TMS responses that occurred before the initiation of muscle activity reflects the enhancement ofthe motor cortex excitability associated to specific processes related to the motor cortex participation in programming of the muscles activities.

  6. Microinjection of the D2 agonist quinpirole into the A10 dopamine region blocks amphetamine-, but not cocaine-stimulated motor activity.

    PubMed

    Steketee, J D; Kalivas, P W

    1992-05-01

    Dopamine neurons in the ventral mesencephalon are under the inhibitory influence of dopamine D2 and gamma-aminobutyric acidB receptors. In a previous report, we demonstrated that intra-A10 injections of baclofen, a gamma-aminobutyric acidB agonist, could inhibit the motor-stimulant response to cocaine and amphetamine. In order to further extend these results, we examined the effects of injection of the D2 agonist quinpirole into the A10 region on cocaine- and amphetamine-stimulated motor activity. The results of this study showed that intra-A10 quinpirole dose-dependently decreased locomotor activity. In addition, an intra-A10 injection of 0.3 nmol/microliter quinpirole, a dose chosen for its near threshold effect, could block the motor-stimulant response to a low dose of amphetamine (0.5 mg/kg) and attenuate the response to moderate doses (1.0 and 2.0 mg/kg). Cocaine-stimulated motor activity, at all doses tested (7.5, 15.0 and 30.0 mg/kg), was not altered by intra-A10 quinpirole pretreatment. In vivo microdialysis revealed that quinpirole was unable to block the amphetamine-induced increase in extracellular dopamine concentrations within the nucleus accumbens, despite blocking the motor-stimulant response. It is suggested that the different mechanisms of action of cocaine and amphetamine, uptake blocker vs. releaser or longloop vs. shortloop feedback inhibition of A10 dopamine neurons, respectively, may account for the differential effects that quinpirole had in blocking the motor-stimulant response to these psychostimulants.

  7. Changes in fMRI activation in anterior hippocampus and motor cortex during memory retrieval after an intense exercise intervention.

    PubMed

    Wagner, Gerd; Herbsleb, Marco; de la Cruz, Feliberto; Schumann, Andy; Köhler, Stefanie; Puta, Christian; Gabriel, Holger W; Reichenbach, Jürgen R; Bär, Karl-Jürgen

    2017-03-01

    Strong evidence indicates that regular aerobic training induces beneficial effects on cognitive functions. The present controlled fMRI study was designed to investigate the impact of a short-term intense aerobic exercise on the pattern of functional activation during the retrieval of learned pair-associates in 17 young and healthy male adults compared to 17 matched control subjects. We further aimed to relate putative changes in hippocampal activation to postulated changes in the exercised-induced brain derived neurotrophic factor (BDNF). The supervised exercise program was performed on a bicycle ergometer and lasted six weeks, with three aerobic sessions per week. We found profound improvement of physical fitness in most subjects indicated by the target parameter 'individual anaerobic threshold'. Significant improvements in the cognitive performance were detected in the exercise group, but also in the control group. We observed significant differences in the activation pattern of the left anterior hippocampus during the pair-associates task after the intervention. We could also show a significant positive correlation between changes in exercise-induced BDNF and left anterior hippocampal activation. Moreover, we observed the brain's motor network to be significantly stronger activated after the exercise intervention. Thus, our results suggest BDNF dependent activation changes of the hippocampus in addition to previously described structural changes after exercise.

  8. Convergence of inhibitory neural inputs regulate motor activity in the murine and monkey stomach.

    PubMed

    Shaylor, Lara A; Hwang, Sung Jin; Sanders, Kenton M; Ward, Sean M

    2016-11-01

    Inhibitory motor neurons regulate several gastric motility patterns including receptive relaxation, gastric peristaltic motor patterns, and pyloric sphincter opening. Nitric oxide (NO) and purines have been identified as likely candidates that mediate inhibitory neural responses. However, the contribution from each neurotransmitter has received little attention in the distal stomach. The aims of this study were to identify the roles played by NO and purines in inhibitory motor responses in the antrums of mice and monkeys. By using wild-type mice and mutants with genetically deleted neural nitric oxide synthase (Nos1(-/-)) and P2Y1 receptors (P2ry1(-/-)) we examined the roles of NO and purines in postjunctional inhibitory responses in the distal stomach and compared these responses to those in primate stomach. Activation of inhibitory motor nerves using electrical field stimulation (EFS) produced frequency-dependent inhibitory junction potentials (IJPs) that produced muscle relaxations in both species. Stimulation of inhibitory nerves during slow waves terminated pacemaker events and associated contractions. In Nos1(-/-) mice IJPs and relaxations persisted whereas in P2ry1(-/-) mice IJPs were absent but relaxations persisted. In the gastric antrum of the non-human primate model Macaca fascicularis, similar NO and purine neural components contributed to inhibition of gastric motor activity. These data support a role of convergent inhibitory neural responses in the regulation of gastric motor activity across diverse species.

  9. BDNF heightens the sensitivity of motor neurons to excitotoxic insults through activation of TrkB

    NASA Technical Reports Server (NTRS)

    Hu, Peter; Kalb, Robert G.; Walton, K. D. (Principal Investigator)

    2003-01-01

    The survival promoting and neuroprotective actions of brain-derived neurotrophic factor (BDNF) are well known but under certain circumstances this growth factor can also exacerbate excitotoxic insults to neurons. Prior exploration of the receptor through which BDNF exerts this action on motor neurons deflects attention away from p75. Here we investigated the possibility that BDNF acts through the receptor tyrosine kinase, TrkB, to confer on motor neurons sensitivity to excitotoxic challenge. We blocked BDNF activation of TrkB using a dominant negative TrkB mutant or a TrkB function blocking antibody, and found that this protected motor neurons against excitotoxic insult in cultures of mixed spinal cord neurons. Addition of a function blocking antibody to BDNF to mixed spinal cord neuron cultures is also neuroprotective indicating that endogenously produced BDNF participates in vulnerability to excitotoxicity. We next examined the intracellular signaling cascades that are engaged upon TrkB activation. Previously we found that inhibition of the phosphatidylinositide-3'-kinase (PI3'K) pathway blocks BDNF-induced excitotoxic sensitivity. Here we show that expression of a constitutively active catalytic subunit of PI3'K, p110, confers excitotoxic sensitivity (ES) upon motor neurons not incubated with BDNF. Parallel studies with purified motor neurons confirm that these events are likely to be occuring specifically within motor neurons. The abrogation of BDNF's capacity to accentuate excitotoxic insults may make it a more attractive neuroprotective agent.

  10. Active Female Maximal and Anaerobic Threshold Cardiorespiratory Responses to Six Different Water Aerobics Exercises

    ERIC Educational Resources Information Center

    Antunes, Amanda H.; Alberton, Cristine L.; Finatto, Paula; Pinto, Stephanie S.; Cadore, Eduardo L.; Zaffari, Paula; Kruel, Luiz F. M.

    2015-01-01

    Purpose: Maximal tests conducted on land are not suitable for the prescription of aquatic exercises, which makes it difficult to optimize the intensity of water aerobics classes. The aim of the present study was to evaluate the maximal and anaerobic threshold cardiorespiratory responses to 6 water aerobics exercises. Volunteers performed 3 of the…

  11. 75 FR 18209 - Agency Information Collection Activities; Proposed Collection; Comment Request; Threshold of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... Collection; Comment Request; Threshold of Regulation for Substances Used in Food- Contact Articles AGENCY... number found in brackets in the heading of this document. FOR FURTHER INFORMATION CONTACT: Denver Presley... Substances Used in Food-Contact Articles-- 21 CFR 170.39 (OMB Control Number 0910-0298)--Extension...

  12. 78 FR 38348 - Agency Information Collection Activities; Proposed Collection; Comment Request; Threshold of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... Collection; Comment Request; Threshold of Regulation for Substances Used in Food- Contact Articles AGENCY... for Substances Used in Food-Contact Articles. DATES: Submit either electronic or written comments on... brackets in the heading of this document. FOR FURTHER INFORMATION CONTACT: Domini Bean, Office...

  13. Emergence of gamma motor activity in an artificial neural network model of the corticospinal system.

    PubMed

    Grandjean, Bernard; Maier, Marc A

    2017-02-01

    Muscle spindle discharge during active movement is a function of mechanical and neural parameters. Muscle length changes (and their derivatives) represent its primary mechanical, fusimotor drive its neural component. However, neither the action nor the function of fusimotor and in particular of γ-drive, have been clearly established, since γ-motor activity during voluntary, non-locomotor movements remains largely unknown. Here, using a computational approach, we explored whether γ-drive emerges in an artificial neural network model of the corticospinal system linked to a biomechanical antagonist wrist simulator. The wrist simulator included length-sensitive and γ-drive-dependent type Ia and type II muscle spindle activity. Network activity and connectivity were derived by a gradient descent algorithm to generate reciprocal, known target α-motor unit activity during wrist flexion-extension (F/E) movements. Two tasks were simulated: an alternating F/E task and a slow F/E tracking task. Emergence of γ-motor activity in the alternating F/E network was a function of α-motor unit drive: if muscle afferent (together with supraspinal) input was required for driving α-motor units, then γ-drive emerged in the form of α-γ coactivation, as predicted by empirical studies. In the slow F/E tracking network, γ-drive emerged in the form of α-γ dissociation and provided critical, bidirectional muscle afferent activity to the cortical network, containing known bidirectional target units. The model thus demonstrates the complementary aspects of spindle output and hence γ-drive: i) muscle spindle activity as a driving force of α-motor unit activity, and ii) afferent activity providing continuous sensory information, both of which crucially depend on γ-drive.

  14. White matter microstructure and volitional motor activity in schizophrenia: A diffusion kurtosis imaging study.

    PubMed

    Docx, Lise; Emsell, Louise; Van Hecke, Wim; De Bondt, Timo; Parizel, Paul M; Sabbe, Bernard; Morrens, Manuel

    2017-02-28

    Avolition is a core feature of schizophrenia and may arise from altered brain connectivity. Here we used diffusion kurtosis imaging (DKI) to investigate the association between white matter (WM) microstructure and volitional motor activity. Multi-shell diffusion MRI and 24-h actigraphy data were obtained from 20 right-handed patients with schizophrenia and 16 right-handed age and gender matched healthy controls. We examined correlations between fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK), and motor activity level, as well as group differences in these measures. In the patient group, increasing motor activity level was positively correlated with MK in the inferior, medial and superior longitudinal fasciculus, the corpus callosum, the posterior fronto-occipital fasciculus and the posterior cingulum. This association was not found in control subjects or in DTI measures. These results show that a lack of volitional motor activity in schizophrenia is associated with potentially altered WM microstructure in posterior brain regions associated with cognitive function and motivation. This could reflect both illness related dysconnectivity which through altered cognition, manifests as reduced volitional motor activity, and/or the effects of reduced physical activity on brain WM.

  15. Gender-dependent reduction of spontaneous motor activity and growth in rats subjected to portacaval shunt.

    PubMed

    Conjeevaram, H S; Mullen, K D; May, E J; McCullough, A J

    1994-02-01

    Alterations in behavior are frequently described in rats subjected to portacaval shunt. Previous work has reported reduced spontaneous motor activity in various settings (nighttime, red light, decreased illumination) in this animal model. We investigated this phenomenon in rats of both genders subjected to portacaval shunt to determine whether our previously observed divergent growth patterns (males reduced, females unchanged) had any impact on the alterations in spontaneous motor activity in this model. Dietary intake, growth, motor activity and serum ammonia and amino acid concentrations were measured, in addition to final liver and spleen weights, in each animal after 3 to 4 wk of observation. Our results reconfirm the differential impact of portacaval shunt on growth in male (35% reduction p < 0.01) but not female rats (5% reduction, NS) compared with their respective-gender sham-operated controls. In addition, spontaneous motor activity was significantly reduced in male (congruent to 50%, p = 0.01) but not female rats subjected to portacaval shunt. The reduction of activity in male rats subjected to portacaval shunt did not correlate with any of the measured biochemical data or calculated nutritional/growth parameters. Thus we observed gender-dependent reduction in spontaneous motor activity after portacaval shunt in the rat. The mechanism for this phenomenon is unknown, but it is easily investigated with this reproducible model.

  16. The Effects of Environmental Stimulation on the Perceptual Thresholds of High-Active and Low-Active Mentally Retarded Persons. IMRID Behavioral Science Monograph No. 15.

    ERIC Educational Resources Information Center

    Lucker, William Glasgow

    In order to assess the effects of environmental stimulation on the perceptual thresholds of high active and low active mentally retarded persons, 36 male and female residents from a state institution (mean IQ 56 and 60 for high and low groups, respectively) were observed under three conditions of environmental stimulation: no noise, white noise,…

  17. Common Coding and Dynamic Interactions Between Observed, Imagined, and Experienced Motor and Somatosensory Activity

    PubMed Central

    Case, Laura K; Pineda, Jaime; Ramachandran, Vilayanur S

    2015-01-01

    Motor imagery and perception- considered generally as forms of motor simulation- share overlapping neural representations with motor production. While much research has focused on the extent of this “common coding,” less attention has been paid to how these overlapping representations interact. How do imagined, observed, or produced actions influence one another, and how do we maintain control over our perception and behavior? In the first part of this review we describe interactions between motor production and motor simulation, and explore apparent regulatory mechanisms that balance these processes. Next, we consider the somatosensory system. Numerous studies now support a “sensory mirror system” comprised of neural representations activated by either afferent sensation or vicarious sensation. In the second part of this review we summarize evidence for shared representations of sensation and sensory simulation (including imagery and observed sensation), and suggest that similar interactions and regulation of simulation occur in the somatosensory domain as in the motor domain. We suggest that both motor and somatosensory simulations are flexibly regulated to support simulations congruent with our sensorimotor experience and goals and suppress or separate the influence of those that are not. These regulatory mechanisms are frequently revealed by cases of brain injury but can also be employed to facilitate sensorimotor rehabilitation. PMID:25863237

  18. Motor Skill Development in Italian Pre-School Children Induced by Structured Activities in a Specific Playground

    PubMed Central

    Tortella, Patrizia; Haga, Monika; Loras, Håvard

    2016-01-01

    This study examined the effects and specificity of structured and unstructured activities played at the playground Primo Sport 0246 in Northern Italy on motor skill competence in five years old children. The playground was specifically designed to promote gross motor skills in preschool children; in this study 71 children from local kindergartens came to the park once a week for ten consecutive weeks and were exposed to 30 minutes of free play and 30 minutes of structured activities. Before and after the ten visits, each child completed nine tests to assess levels of motor skills, three for fine-motor skills and six for gross-motor skills. As control, motor skills were also assessed on 39 children from different kindergartens who did not come to the park. The results show that the experimental group who practiced gross-motor activities in the playground for 1 hour a week for 10 weeks improved significantly in 4 out of the 6 gross motor tasks and in none of the fine motor tasks. The data indicate that limited transfer occurred between tasks referring to different domains of motor competences while suggesting cross feeding for improvement of gross-motor skills between different exercises when domains related to physical fitness and strength of specific muscle groups are involved. These results are relevant to the issue of condition(s) appropriate for maintaining and developing motor skills in this age group as well as for the planning, organization and implementation of play and physical activities in kindergartens. PMID:27462985

  19. Absence of lateral gastrocnemius activity and differential motor unit behavior in soleus and medial gastrocnemius during standing balance

    PubMed Central

    Héroux, Martin E.; Dakin, Christopher J.; Luu, Billy L.; Inglis, John Timothy

    2013-01-01

    In a standing position, the vertical projection of the center of mass passes in front of the ankle, which requires active plantar-flexor torque from the triceps surae to maintain balance. We recorded motor unit (MU) activity in the medial (MG) and lateral (LG) gastrocnemius muscle and the soleus (SOL) in standing balance and voluntary isometric contractions to understand the effect of functional requirements and descending drive from different neural sources on motoneuron behavior. Single MU activity was recorded in seven subjects with wire electrodes in the triceps surae. Two 3-min standing balance trials and several ramp-and-hold contractions were performed. Lateral gastrocnemius MU activity was rarely observed in standing. The lowest thresholds for LG MUs in ramp contractions were 20–35 times higher than SOL and MG MUs (P < 0.001). Compared with MUs from the SOL, MG MUs were intermittently active (P < 0.001), had higher recruitment thresholds (P = 0.022), and greater firing rate variability (P < 0.001); this difference in firing rate variability was present in standing balance and isometric contractions. In SOL and MG MUs, both recruitment of new MUs (R2 = 0.59–0.79, P < 0.01) and MU firing rates (R2 = 0.05–0.40, P < 0.05) were associated with anterior-posterior and medio-lateral torque in standing. Our results suggest that the two heads of the gastrocnemius may operate in different ankle ranges with the larger MG being of primary importance when standing, likely due to its fascicle orientation. These differences in MU discharge behavior were independent of the type of descending neural drive, which points to a muscle-specific optimization of triceps surae motoneurons. PMID:24311748

  20. Absence of lateral gastrocnemius activity and differential motor unit behavior in soleus and medial gastrocnemius during standing balance.

    PubMed

    Héroux, Martin E; Dakin, Christopher J; Luu, Billy L; Inglis, John Timothy; Blouin, Jean-Sébastien

    2014-01-15

    In a standing position, the vertical projection of the center of mass passes in front of the ankle, which requires active plantar-flexor torque from the triceps surae to maintain balance. We recorded motor unit (MU) activity in the medial (MG) and lateral (LG) gastrocnemius muscle and the soleus (SOL) in standing balance and voluntary isometric contractions to understand the effect of functional requirements and descending drive from different neural sources on motoneuron behavior. Single MU activity was recorded in seven subjects with wire electrodes in the triceps surae. Two 3-min standing balance trials and several ramp-and-hold contractions were performed. Lateral gastrocnemius MU activity was rarely observed in standing. The lowest thresholds for LG MUs in ramp contractions were 20-35 times higher than SOL and MG MUs (P < 0.001). Compared with MUs from the SOL, MG MUs were intermittently active (P < 0.001), had higher recruitment thresholds (P = 0.022), and greater firing rate variability (P < 0.001); this difference in firing rate variability was present in standing balance and isometric contractions. In SOL and MG MUs, both recruitment of new MUs (R(2) = 0.59-0.79, P < 0.01) and MU firing rates (R(2) = 0.05-0.40, P < 0.05) were associated with anterior-posterior and medio-lateral torque in standing. Our results suggest that the two heads of the gastrocnemius may operate in different ankle ranges with the larger MG being of primary importance when standing, likely due to its fascicle orientation. These differences in MU discharge behavior were independent of the type of descending neural drive, which points to a muscle-specific optimization of triceps surae motoneurons.

  1. You can count on the motor cortex: Finger counting habits modulate motor cortex activation evoked by numbers

    PubMed Central

    Tschentscher, Nadja; Hauk, Olaf; Fischer, Martin H.; Pulvermüller, Friedemann

    2012-01-01

    The embodied cognition framework suggests that neural systems for perception and action are engaged during higher cognitive processes. In an event-related fMRI study, we tested this claim for the abstract domain of numerical symbol processing: is the human cortical motor system part of the representation of numbers, and is organization of numerical knowledge influenced by individual finger counting habits? Developmental studies suggest a link between numerals and finger counting habits due to the acquisition of numerical skills through finger counting in childhood. In the present study, digits 1 to 9 and the corresponding number words were presented visually to adults with different finger counting habits, i.e. left- and right-starters who reported that they usually start counting small numbers with their left and right hand, respectively. Despite the absence of overt hand movements, the hemisphere contralateral to the hand used for counting small numbers was activated when small numbers were presented. The correspondence between finger counting habits and hemispheric motor activation is consistent with an intrinsic functional link between finger counting and number processing. PMID:22133748

  2. Adaptive Thresholds

    SciTech Connect

    Bremer, P. -T.

    2014-08-26

    ADAPT is a topological analysis code that allow to compute local threshold, in particular relevance based thresholds for features defined in scalar fields. The initial target application is vortex detection but the software is more generally applicable to all threshold based feature definitions.

  3. Endogenous rhythm of absence epilepsy: relationship with general motor activity and sleep-wake states.

    PubMed

    Smyk, Magdalena K; Coenen, Anton M L; Lewandowski, Marian H; van Luijtelaar, Gilles

    2011-02-01

    The rhythms of spontaneously occurring seizures (spike-wave discharges, SWD) and motor activity, as well as the relationship between SWD and sleep-wake states were investigated in the WAG/Rij rat model of absence epilepsy. In order to establish whether SWD are controlled by external (Zeitgebers) or by endogenous factors such as circadian influences or the state of vigilance, the study was performed in entrained and constant dim light conditions. EEG and motor activity were recorded in the 12:12 light-dark cycle and in constant dim light conditions. Circadian rhythmicity was found both for motor activity and the occurrence of SWD in conditions of entrainment. In constant dim light conditions also circadian rhythms emerged, however, the change in circadian parameters was opposite for the rhythm of SWD and motor activity. SWD were preceded mostly by passive wakefulness and by slow-wave sleep in both experimental conditions. It can be concluded that the rhythm of SWD seems to be generated and controlled by an endogenous mechanism distinct from that which controls the rhythm of motor activity. The relationship between SWD and sleep-wake states preceding their occurrences appeared to be unchanged, suggesting that the mechanism of generation of SWD is independent of the circadian timing system.

  4. MOTOR DEVELOPMENT AND PHYSICAL ACTIVITY: A LONGITUDINAL DISCORDANT TWIN-PAIR STUDY

    PubMed Central

    Aaltonen, Sari; Latvala, Antti; Rose, Richard J.; Pulkkinen, Lea; Kujala, Urho M.; Kaprio, Jaakko; Silventoinen, Karri

    2015-01-01

    Introduction Previous longitudinal research suggests that motor proficiency in early life predicts physical activity in adulthood. Familial effects including genetic and environmental factors could explain the association, but no long-term follow-up studies have taken into account potential confounding by genetic and social family background. The present twin study investigated whether childhood motor skill development is associated with leisure-time physical activity levels in adulthood independent of family background. Methods Altogether, 1 550 twin pairs from the FinnTwin12 study and 1 752 twin pairs from the FinnTwin16 study were included in the analysis. Childhood motor development was assessed by the parents’ report of whether one of the co-twins had been ahead of the other in different indicators of motor skill development in childhood. Leisure-time physical activity (MET hours/day) was self-reported by the twins in young adulthood and adulthood. Statistical analyses included conditional and ordinary linear regression models within twin pairs. Results Using all activity-discordant twin pairs, the within-pair difference in a sum score of motor development in childhood predicted the within-pair difference in the leisure-time physical activity level in young adulthood (p<0.001). Within specific motor development indicators, learning to stand unaided earlier in infancy predicted higher leisure-time MET values in young adulthood statistically significantly in both samples (FinnTwin12 p=0.02, FinnTwin16 p=0.001) and also in the pooled dataset of the FinnTwin12 and FinnTwin16 studies (p<0.001). Having been more agile than the co-twin as a child predicted higher leisure-time MET values up to adulthood (p=0.03). Conclusions More advanced childhood motor development is associated with higher leisure-time MET values in young adulthood at least partly independent of family background, in both men and women. PMID:26378945

  5. Enhanced activation of motor execution networks using action observation combined with imagination of lower limb movements.

    PubMed

    Villiger, Michael; Estévez, Natalia; Hepp-Reymond, Marie-Claude; Kiper, Daniel; Kollias, Spyros S; Eng, Kynan; Hotz-Boendermaker, Sabina

    2013-01-01

    The combination of first-person observation and motor imagery, i.e. first-person observation of limbs with online motor imagination, is commonly used in interactive 3D computer gaming and in some movie scenes. These scenarios are designed to induce a cognitive process in which a subject imagines himself/herself acting as the agent in the displayed movement situation. Despite the ubiquity of this type of interaction and its therapeutic potential, its relationship to passive observation and imitation during observation has not been directly studied using an interactive paradigm. In the present study we show activation resulting from observation, coupled with online imagination and with online imitation of a goal-directed lower limb movement using functional MRI (fMRI) in a mixed block/event-related design. Healthy volunteers viewed a video (first-person perspective) of a foot kicking a ball. They were instructed to observe-only the action (O), observe and simultaneously imagine performing the action (O-MI), or imitate the action (O-IMIT). We found that when O-MI was compared to O, activation was enhanced in the ventralpremotor cortex bilaterally, left inferior parietal lobule and left insula. The O-MI and O-IMIT conditions shared many activation foci in motor relevant areas as confirmed by conjunction analysis. These results show that (i) combining observation with motor imagery (O-MI) enhances activation compared to observation-only (O) in the relevant foot motor network and in regions responsible for attention, for control of goal-directed movements and for the awareness of causing an action, and (ii) it is possible to extensively activate the motor execution network using O-MI, even in the absence of overt movement. Our results may have implications for the development of novel virtual reality interactions for neurorehabilitation interventions and other applications involving training of motor tasks.

  6. Discharges of aortic and carotid sinus baroreceptors during spontaneous motor activity and pharmacologically evoked pressor interventions.

    PubMed

    Matsukawa, Kanji; Ishii, Kei; Kadowaki, Akito; Ishida, Tomoko; Idesako, Mitsuhiro; Liang, Nan

    2014-07-01

    Our laboratory has demonstrated that the cardiomotor component of aortic baroreflex is temporarily inhibited at the onset of spontaneous motor activity in decerebrate cats, without altering carotid sinus baroreflex. A reason for this dissociation may be attributed to a difference in the responses between aortic nerve activity (AoNA) and carotid sinus nerve activity (CsNA) during spontaneous motor activity. The stimulus-response curves of AoNA and CsNA against mean arterial blood pressure (MAP) were compared between the pressor interventions evoked by spontaneous motor activity and by intravenous administration of phenylephrine or norepinephrine, in which the responses in heart rate (HR) were opposite (i.e., tachycardia vs. baroreflex bradycardia), despite the identical increase in MAP of 34-40 mmHg. In parallel to the pressor response, mean AoNA and CsNA increased similarly by 78-81 and by 88 % of the baseline control, respectively, irrespective of whether the pressor response was evoked by spontaneous motor activity or by a pharmacological intervention. The slope of the stimulus-response curve of the mean AoNA became greater (P < 0.05) during spontaneous motor activity as compared to the pharmacological intervention. On the other hand, the stimulus-response curve of the mean CsNA and its slope were equal (P > 0.05) between the two pressor interventions. Furthermore, the slopes of the stimulus-response curves of both diastolic AoNA and CsNA (defined as the minimal value within a beat) exhibited a greater increase during spontaneous motor activity. All differences in the slopes of the stimulus-response curves were abolished by restraining HR at the intrinsic cardiac frequency. In conclusion, mean mass activities of both aortic and carotid sinus baroreceptors are able to encode the beat-by-beat changes in MAP not only at rest but also during spontaneous motor activity and spontaneous motor activity-related reduction of aortic baroreceptor activity is denied

  7. Complementary interactions between command-like interneurons that function to activate and specify motor programs.

    PubMed

    Wu, Jin-Sheng; Wang, Nan; Siniscalchi, Michael J; Perkins, Matthew H; Zheng, Yu-Tong; Yu, Wei; Chen, Song-an; Jia, Ruo-nan; Gu, Jia-Wei; Qian, Yi-Qing; Ye, Yang; Vilim, Ferdinand S; Cropper, Elizabeth C; Weiss, Klaudiusz R; Jing, Jian

    2014-05-07

    Motor activity is often initiated by a population of command-like interneurons. Command-like interneurons that reliably drive programs have received the most attention, so little is known about how less reliable command-like interneurons may contribute to program generation. We study two electrically coupled interneurons, cerebral-buccal interneuron-2 (CBI-2) and CBI-11, which activate feeding motor programs in the mollusk Aplysia californica. Earlier work indicated that, in rested preparations, CBI-2, a powerful activator of programs, can trigger ingestive and egestive programs. CBI-2 reliably generated ingestive patterns only when it was repeatedly stimulated. The ability of CBI-2 to trigger motor activity has been attributed to the two program-promoting peptides it contains, FCAP and CP2. Here, we show that CBI-11 differs from CBI-2 in that it contains FCAP but not CP2. Furthermore, it is weak in its ability to drive programs. On its own, CBI-11 is therefore less effective as a program activator. When it is successful, however, CBI-11 is an effective specifier of motor activity; that is, it drives mostly ingestive programs. Importantly, we found that CBI-2 and CBI-11 complement each other's actions. First, prestimulation of CBI-2 enhanced the ability of CBI-11 to drive programs. This effect appears to be partly mediated by CP2. Second, coactivation of CBI-11 with CBI-2 makes CBI-2 programs immediately ingestive. This effect may be mediated by specific actions that CBI-11 exerts on pattern-generating interneurons. Therefore, different classes of command-like neurons in a motor network may make distinct, but potentially complementary, contributions as either activators or specifiers of motor activity.

  8. Combustion-Characteristic-Based Active Thrust Modulation of a Solid Rocket Motor

    NASA Astrophysics Data System (ADS)

    Tanaka, Masafumi; Gaspard, Guillaume; Urakawa, Katsuya

    A new concept of thrust modulation of solid propellant rocket motor is proposed. Some propellants cannot burn at intermediate pressure, while they can burn at lower and higher pressures. When one applies such a propellant to a motor, two combustion modes or two thrust levels are attainable without any change of the nozzle configuration. In the experiments different ignition conditions brought independent two combustion modes (low mode and high mode) in the same motor geometry. Some motors showed a natural transition from low mode to high mode. As an example, the alternative thrust levels were 50 N and 180 N. The natural transition was restricted with use of the partitioned grain. An active transition method was explored by exerting pressure perturbation through a vent hole with a ball valve. The valve system worked for the transition from high mode to low mode, but the reverse transition was not achieved well.

  9. Induction Motor Drive System Based on Linear Active Disturbance Rejection Controller

    NASA Astrophysics Data System (ADS)

    Liu, Liying; Zhang, Yongli; Yao, Qingmei

    It is difficult to establish an exact mathematical model for the induction motor and the robustness is poor of the vector control system using PI regulator. This paper adopts the linear active disturbance rejection controller (LADRC) to control inductor motor. LADRC doesn't need the exact mathematical model of motor and it can not only estimate but also compensate the general disturbance that includes the coupling items in model of motor and parameters perturbations by linear extended state observer (LESO), so the rotor flux and torque fully decouple. As a result, the performance is improved. To prove the above control scheme, the proposed control system has been simulated in MATLAB/SIMULINK, and the comparison was made with PID. Simulation results show that LADRC' has better performance and robustness than PID.

  10. Cerebral Activation During Initial Motor Learning Forecasts Subsequent Sleep-Facilitated Memory Consolidation in Older Adults.

    PubMed

    King, Bradley R; Saucier, Philippe; Albouy, Genevieve; Fogel, Stuart M; Rumpf, Jost-Julian; Klann, Juliane; Buccino, Giovanni; Binkofski, Ferdinand; Classen, Joseph; Karni, Avi; Doyon, Julien

    2016-01-21

    Older adults exhibit deficits in motor memory consolidation; however, little is known about the cerebral correlates of this impairment. We thus employed fMRI to investigate the neural substrates underlying motor sequence memory consolidation, and the modulatory influence of post-learning sleep, in healthy older adults. Participants were trained on a motor sequence and retested following an 8-h interval including wake or diurnal sleep as well as a 22-h interval including a night of sleep. Results demonstrated that a post-learning nap improved offline consolidation across same- and next-day retests. This enhanced consolidation was reflected by increased activity in the putamen and the medial temporal lobe, including the hippocampus, regions that have previously been implicated in sleep-dependent neural plasticity in young adults. Moreover, for the first time in older adults, the neural substrates subserving initial motor learning, including the putamen, cerebellum, and parietal cortex, were shown to forecast subsequent consolidation depending on whether a post-learning nap was afforded. Specifically, sufficient activation in a motor-related network appears to be necessary to trigger sleep-facilitated consolidation in older adults. Our findings not only demonstrate that post-learning sleep can enhance motor memory consolidation in older adults, but also provide the system-level neural correlates of this beneficial effect.

  11. Striatal dopamine release and biphasic pattern of locomotor and motor activity under gas narcosis.

    PubMed

    Balon, Norbert; Risso, Jean-Jacques; Blanc, François; Rostain, Jean-Claude; Weiss, Michel

    2003-05-02

    Inert gas narcosis is a neurological syndrome appearing when humans or animals are exposed to hyperbaric inert gases (nitrogen, argon) composed by motor and cognitive impairments. Inert gas narcosis induces a decrease of the dopamine release at the striatum level, structure involved in the regulation of the extrapyramidal motricity. We have investigated, in freely moving rats exposed to different narcotic conditions, the relationship between the locomotor and motor activity and the striatal dopamine release, using respectively a computerized device that enables a quantitative analysis of this behavioural disturbance and voltammetry. The use of 3 MPa of nitrogen, 2 MPa of argon and 0.1 MPa of nitrous oxide, revealed after a transient phase of hyperactivity, a lower level of the locomotor and motor activity, in relation with the decrease of the striatal dopamine release. It is concluded that the striatal dopamine decrease could be related to the decrease of the locomotor and motor hyperactivity, but that other(s) neurotransmitter(s) could be primarily involved in the behavioural motor disturbances induced by narcotics. This biphasic effect could be of major importance for future pharmacological investigations, and motor categorization, on the basic mechanisms of inert gas at pressure.

  12. [Characterization of electrical brain activity related to hand motor imagery in healthy subjects].

    PubMed

    Cantillo-Negrete, Jessica; Gutiérrez-Martínez, Josefina; Flores-Rodríguez, Teodoro B; Cariño-Escobar, Rubén I; Elías-Viñas, David

    2014-07-01

    Brain computer interface systems (BCI) translate the intentions of patients affected with locked-in syndrome through the EEG signal characteristics, which are converted into commands used to control external devices. One of the strategies used, is to decode the motor imagery of the subject, which can modify the neuronal activity in the sensory-motor areas in a similar way to which it is observed in real movement. The present study shows the activation patterns that are registered in motor and motor imagery tasks of right and left hand movement in a sample of young healthy subjects of Mexican nationality. By means of frequency analysis it was possible to determine the difference conditions of motor imagery and movement. Using U Mann- Whitney tests, differences with statistical significance (p < 0.05) where obtained, in the EEG channels C3, Cz, C4, T3 and P3 in the mu and beta rhythms, for subjects with similar characteristics (age, gender, and education). With these results, it would be possible to define a classifier or decoder by gender that improves the performance rate and diminishes the training time, with the goal of designing a functional BCI system that can be transferred from the laboratory to the clinical application in patients with motor disabilities.

  13. Dynamic and Active Proteins: Biomolecular Motors in Engineered Nanostructures.

    PubMed

    Vélez, Marisela

    In Nature, proteins perform functions that go well beyond controlled self-assembly at the nano scale. They are the principal components of diverse "biological machines" that can self-assemble into dynamic aggregates that achieve the cold conversion of chemical energy into motion to realize complex functions involved in cell division, cellular transport and cell motility. Nowadays, we have identified many of the proteins involved in these "molecular machines" and know much about their biochemistry, structure and biophysical behavior. Additionally, we have a rich toolbox of resources to engineer the basic dynamic working units into nanostructures to provide them with motion and the capacity to manipulate, transport, separate or sense single molecules to develop in vitro sensors and bioassays. This chapter summarizes some of the progress made in incorporating bio-molecular motors and dynamic self-organizing proteins into protein based functional nanostructures.

  14. Motor unit activity when young and old adults perform steady contractions while supporting an inertial load.

    PubMed

    Pascoe, Michael A; Gould, Jeffrey R; Enoka, Roger M

    2013-02-01

    The purpose of the study was to compare the discharge characteristics of biceps brachii motor units of young and old adults when they performed steady, submaximal contractions while the arm supported different inertial loads. Young (28 ± 4 yr; n = 16) and old (75 ± 4 yr; n = 14) adults performed steady contractions with the elbow flexors at target forces set at either small (11.7 ± 4.4% maximum) or large (17.8 ± 6.5% maximum) differences below the recruitment threshold force of the motor unit (n = 40). The task was to maintain an elbow angle at 1.57 rad until the motor unit was recruited and discharged action potentials for ∼120 s. Time to recruitment was longer for the larger target force difference (187 ± 227 s vs. 23 ± 46 s, P < 0.001). Once recruited, motor units discharged action potentials either repetitively or intermittently, with a greater proportion of motor units exhibiting the repetitive pattern for old adults. Discharge rate at recruitment and during the steady contraction was similar for the two target force differences for old adults but was greater for the small target force difference for young adults. Discharge variability was similar at recruitment for the two age groups but less for the old adults during the steady contraction. The greatest difference between the present results and those reported previously when the arm pulled against a rigid restraint was that old adults modulated discharge rate less than young adults across the two contraction intensities for both load types.

  15. A2A Adenosine Receptor Antagonism Enhances Synaptic and Motor Effects of Cocaine via CB1 Cannabinoid Receptor Activation

    PubMed Central

    Tozzi, Alessandro; de Iure, Antonio; Marsili, Valentina; Romano, Rosaria; Tantucci, Michela; Di Filippo, Massimiliano; Costa, Cinzia; Napolitano, Francesco; Mercuri, Nicola Biagio; Borsini, Franco; Giampà, Carmen; Fusco, Francesca Romana; Picconi, Barbara; Usiello, Alessandro; Calabresi, Paolo

    2012-01-01

    Background Cocaine increases the level of endogenous dopamine (DA) in the striatum by blocking the DA transporter. Endogenous DA modulates glutamatergic inputs to striatal neurons and this modulation influences motor activity. Since D2 DA and A2A-adenosine receptors (A2A-Rs) have antagonistic effects on striatal neurons, drugs targeting adenosine receptors such as caffeine-like compounds, could enhance psychomotor stimulant effects of cocaine. In this study, we analyzed the electrophysiological effects of cocaine and A2A-Rs antagonists in striatal slices and the motor effects produced by this pharmacological modulation in rodents. Principal Findings Concomitant administration of cocaine and A2A-Rs antagonists reduced glutamatergic synaptic transmission in striatal spiny neurons while these drugs failed to produce this effect when given in isolation. This inhibitory effect was dependent on the activation of D2-like receptors and the release of endocannabinoids since it was prevented by L-sulpiride and reduced by a CB1 receptor antagonist. Combined application of cocaine and A2A-R antagonists also reduced the firing frequency of striatal cholinergic interneurons suggesting that changes in cholinergic tone might contribute to this synaptic modulation. Finally, A2A-Rs antagonists, in the presence of a sub-threshold dose of cocaine, enhanced locomotion and, in line with the electrophysiological experiments, this enhanced activity required activation of D2-like and CB1 receptors. Conclusions The present study provides a possible synaptic mechanism explaining how caffeine-like compounds could enhance psychomotor stimulant effects of cocaine. PMID:22715379

  16. The Longitudinal Course of Gross Motor Activity in Schizophrenia - Within and between Episodes.

    PubMed

    Walther, Sebastian; Stegmayer, Katharina; Horn, Helge; Rampa, Luca; Razavi, Nadja; Müller, Thomas J; Strik, Werner

    2015-01-01

    Schizophrenia is associated with heterogeneous course of positive and negative symptoms. In addition, reduced motor activity as measured by wrist actigraphy has been reported. However, longitudinal studies of spontaneous motor activity are missing. We aimed to explore whether activity levels were stable within and between psychotic episodes. Furthermore, we investigated the association with the course of negative symptoms. In 45 medicated patients, we investigated motor behavior within a psychotic episode. In addition, we followed 18 medicated patients across 2 episodes. Wrist actigraphy and psychopathological ratings were applied. Within an episode symptoms changed but activity levels did not vary systematically. Activity at baseline predicted the course of negative symptoms. Between two episodes activity recordings were much more stable. Again, activity at the index episode predicted the outcome of negative symptoms. In sum, spontaneous motor activity shares trait and state characteristics, the latter are associated with negative symptom course. Actigraphy may therefore become an important ambulatory instrument to monitor negative symptoms and treatment outcome in schizophrenia.

  17. The Longitudinal Course of Gross Motor Activity in Schizophrenia – Within and between Episodes

    PubMed Central

    Walther, Sebastian; Stegmayer, Katharina; Horn, Helge; Rampa, Luca; Razavi, Nadja; Müller, Thomas J.; Strik, Werner

    2015-01-01

    Schizophrenia is associated with heterogeneous course of positive and negative symptoms. In addition, reduced motor activity as measured by wrist actigraphy has been reported. However, longitudinal studies of spontaneous motor activity are missing. We aimed to explore whether activity levels were stable within and between psychotic episodes. Furthermore, we investigated the association with the course of negative symptoms. In 45 medicated patients, we investigated motor behavior within a psychotic episode. In addition, we followed 18 medicated patients across 2 episodes. Wrist actigraphy and psychopathological ratings were applied. Within an episode symptoms changed but activity levels did not vary systematically. Activity at baseline predicted the course of negative symptoms. Between two episodes activity recordings were much more stable. Again, activity at the index episode predicted the outcome of negative symptoms. In sum, spontaneous motor activity shares trait and state characteristics, the latter are associated with negative symptom course. Actigraphy may therefore become an important ambulatory instrument to monitor negative symptoms and treatment outcome in schizophrenia. PMID:25698981

  18. Extracellular voltage threshold settings can be tuned for optimal encoding of movement and stimulus parameters

    NASA Astrophysics Data System (ADS)

    Oby, Emily R.; Perel, Sagi; Sadtler, Patrick T.; Ruff, Douglas A.; Mischel, Jessica L.; Montez, David F.; Cohen, Marlene R.; Batista, Aaron P.; Chase, Steven M.

    2016-06-01

    Objective. A traditional goal of neural recording with extracellular electrodes is to isolate action potential waveforms of an individual neuron. Recently, in brain-computer interfaces (BCIs), it has been recognized that threshold crossing events of the voltage waveform also convey rich information. To date, the threshold for detecting threshold crossings has been selected to preserve single-neuron isolation. However, the optimal threshold for single-neuron identification is not necessarily the optimal threshold for information extraction. Here we introduce a procedure to determine the best threshold for extracting information from extracellular recordings. We apply this procedure in two distinct contexts: the encoding of kinematic parameters from neural activity in primary motor cortex (M1), and visual stimulus parameters from neural activity in primary visual cortex (V1). Approach. We record extracellularly from multi-electrode arrays implanted in M1 or V1 in monkeys. Then, we systematically sweep the voltage detection threshold and quantify the information conveyed by the corresponding threshold crossings. Main Results. The optimal threshold depends on the desired information. In M1, velocity is optimally encoded at higher thresholds than speed; in both cases the optimal thresholds are lower than are typically used in BCI applications. In V1, information about the orientation of a visual stimulus is optimally encoded at higher thresholds than is visual contrast. A conceptual model explains these results as a consequence of cortical topography. Significance. How neural signals are processed impacts the information that can be extracted from them. Both the type and quality of information contained in threshold crossings depend on the threshold setting. There is more information available in these signals than is typically extracted. Adjusting the detection threshold to the parameter of interest in a BCI context should improve our ability to decode motor intent

  19. Microscopic origins of anistropic active stress in motor-driven nematic liquid crystals

    PubMed Central

    Blackwell, Robert; Sweezy-Schindler, Oliver; Baldwin, Christopher; Hough, Loren E.; Glaser, Matthew A.; Betterton, M. D.

    2016-01-01

    The cytoskeleton, despite comprising relatively few building blocks, drives an impressive variety of cellular phenomena ranging from cell division to motility. These building blocks include filaments, motor proteins, and static crosslinkers. Outside of cells, these same components can form novel materials exhibiting active flows and nonequilibrium contraction or extension. While dipolar extensile or contractile active stresses are common in nematic motor-filament systems, their microscopic origin remains unclear. Here we study a minimal physical model of filaments, crosslinking motors, and static crosslinkers to dissect the microscopic mechanisms of stress generation in a two-dimensional system of orientationally aligned rods. We demonstrate the essential role of filament steric interactions which have not previously be considered to significantly contribute to active stresses. With this insight, we are able to tune contractile or extensile behavior through control of motor-driven filament sliding and crosslinking. This work provides a roadmap for engineering stresses in active liquid crystals. The mechanisms we study may help explain why flowing nematic motor-filament mixtures are extensile while gelled systems are contractile. PMID:26742483

  20. Emerging principles and neural substrates underlying tonic sleep-state-dependent influences on respiratory motor activity.

    PubMed

    Horner, Richard L

    2009-09-12

    Respiratory muscles with dual respiratory and non-respiratory functions (e.g. the pharyngeal and intercostal muscles) show greater suppression of activity in sleep than the diaphragm, a muscle almost entirely devoted to respiratory function. This sleep-related suppression of activity is most apparent in the tonic component of motor activity, which has functional implications of a more collapsible upper airspace in the case of pharyngeal muscles, and decreased functional residual capacity in the case of intercostal muscles. A major source of tonic drive to respiratory motoneurons originates from neurons intimately involved in states of brain arousal, i.e. neurons not classically involved in generating respiratory rhythm and pattern per se. The tonic drive to hypoglossal motoneurons, a respiratory motor pool with both respiratory and non-respiratory functions, is mediated principally by noradrenergic and glutamatergic inputs, these constituting the essential components of the wakefulness stimulus. These tonic excitatory drives are opposed by tonic inhibitory glycinergic and gamma-amino butyric acid (GABA) inputs that constrain the level of respiratory-related motor activity, with the balance determining net motor tone. In sleep, the excitatory inputs are withdrawn and GABA release into the brainstem is increased, thus decreasing respiratory motor tone and predisposing susceptible individuals to hypoventilation and obstructive sleep apnoea.

  1. KIF4 motor regulates activity-dependent neuronal survival by suppressing PARP-1 enzymatic activity.

    PubMed

    Midorikawa, Ryosuke; Takei, Yosuke; Hirokawa, Nobutaka

    2006-04-21

    In brain development, apoptosis is a physiological process that controls the final numbers of neurons. Here, we report that the activity-dependent prevention of apoptosis in juvenile neurons is regulated by kinesin superfamily protein 4 (KIF4), a microtubule-based molecular motor. The C-terminal domain of KIF4 is a module that suppresses the activity of poly (ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme known to maintain cell homeostasis by repairing DNA and serving as a transcriptional regulator. When neurons are stimulated by membrane depolarization, calcium signaling mediated by CaMKII induces dissociation of KIF4 from PARP-1, resulting in upregulation of PARP-1 activity, which supports neuron survival. After dissociation from PARP-1, KIF4 enters into the cytoplasm from the nucleus and moves to the distal part of neurites in a microtubule-dependent manner. We suggested that KIF4 controls the activity-dependent survival of postmitotic neurons by regulating PARP-1 activity in brain development.

  2. Associations among Elementary School Children’s Actual Motor Competence, Perceived Motor Competence, Physical Activity and BMI: A Cross-Sectional Study

    PubMed Central

    Stodden, David; Brian, Ali; True, Larissa; Cardon, Greet; Tallir, Isabel; Haerens, Leen

    2016-01-01

    Background Positive associations between motor competence and physical activity have been identified by means of variable-centered analyses. To expand the understanding of these associations, this study used a person-centered approach to investigate whether different combinations (i.e., profiles) of actual and perceived motor competence exist (aim 1); and to examine differences in physical activity levels (aim 2) and weight status (aim 3) among children with different motor competence-based profiles. Materials and Methods Children’s (N = 361; 180 boys = 50%; Mage = 9.50±1.24yrs) actual motor competence was measured with the Test of Gross Motor Development-2 and their perceived motor competence via the Self Perception Profile for Children. We assessed physical activity via accelerometers; height through stadiometers, and weight through scales. Cluster analyses (aim 1) and MANCOVAs (aim 2 & 3) were used to analyze the data. Results The analysis generated two predictable groups: one group displaying relatively high levels of both actual (M TGMD-2 percentile = 42.54, SD = 2.33) and perceived motor competence (M = 3.42, SD = .37; high-high), and one group with relatively low levels of both (M percentile = 9.71, SD = 3.21; M PMC = 2.52, SD = .35; low-low). One additional group was also identified as having relatively low levels of actual motor competence (M percentile = 4.22, SD = 2.85) but relatively high levels of perceived motor competence (M = 3.52, SD = .30; low-high). The high-high group demonstrated higher daily physical activity (M = 48.39±2.03) and lower BMI (M = 18.13±.43) than the low-low group (MMVPA = 37.93±2.01; MBMI = 20.22±.42). The low-high group had similar physical activity-levels as the low-low group (M = 36.21±2.18) and did not significantly differ in BMI (M = 19.49±.46) from the other two groups. Conclusions A combination of high actual and perceived motor competence is related to higher physical activity and lower weight status. It is thus

  3. Effects of clonidine and methylphenidate on motor activity in Fmr1 knockout mice.

    PubMed

    Wrenn, Craige C; Heitzer, Andrew M; Roth, Alexandra K; Nawrocki, Lauren; Valdovinos, Maria G

    2015-01-12

    Fragile X syndrome (FXS), a disorder caused by a mutation in the FMR1 gene, is often associated with Attention Deficit Hyperactivity Disorder (ADHD). Common treatments for the hyperactivity often seen in ADHD involve the use of stimulants and α2-adrenergic agonists. The Fmr1 knockout (KO) mouse has been found to be a valid model for FXS both biologically and behaviorally. Of particular interest to our research, the Fmr1 KO mouse has been demonstrated to show increased locomotion in comparison to wild type (WT) littermates. In the present study, we assessed the effects of clonidine (0.05 mg/kg) and methylphenidate (5 mg/kg) on motor activity in Fmr1 KO mice and their WT littermates in the open field test. Results showed that methylphenidate increased motor activity in both genotypes. Clonidine decreased motor activity in both genotypes, but the effect was delayed in the Fmr1 KO mice.

  4. Effects of a low alcohol dose on static balance, fine motor activity, and mental performance.

    PubMed

    Mangold, S; Läubli, T; Krueger, H

    1996-01-01

    The effects of a single low alcohol dose (men 0.54 g and women 0.44 g alcohol per kg body weight) were measured by static balance, fine motor activity, and mental performance. In 10 healthy volunteers balance was registered by a temporally and spatially high resolution platform measuring the center of foot pressure and a three-dimensional coordination measurement system. Fine motor activity and mental performance were tested with selected experiments from the NES2 (Neurobehavioral Evaluation System) neuropsychological test battery. Changes of bipedal and monopedal balance could be detected after the alcohol consumption. Neither the fine motor activity nor the mental performance test demonstrated significant effects. Thus, the static balance test proved to be a sensitive, fast, and atraumatic method to identify slight neurotoxic disturbances.

  5. Twenty four hour manometric recording of colonic motor activity in healthy man.

    PubMed Central

    Narducci, F; Bassotti, G; Gaburri, M; Morelli, A

    1987-01-01

    The motor activity of the transverse, descending, and sigmoid colon was recorded for 24 hours in 14 healthy volunteers with a colonoscope positioned catheter. During the study the patients ate two 1000 kcal mixed meals and one continental breakfast. Colonic motor activity was low before meals and minimal during sleep; the motility index increased significantly after meals and at morning awakening. Most of the motor activity was represented by low amplitude contractions present singly or in bursts, which showed no recognisable pattern. All but two subjects also showed isolated high amplitude (up to 200 mmHg) contractions that propagated peristaltically over long distances at approximately 1 cm/sec. Most of these contractions occurred after morning awakening, and some in the late postprandial period, with a mean of 4.4/subject/24 h. The peristaltic contractions were often felt as an urge to defecate or preceded defecation, and could represent the manometric equivalent of the mass movements. PMID:3817580

  6. Effect of an altered rest-activity or feeding schedule on the shift of motor activity rhythm of mice.

    PubMed

    Murakami, H; Murakami, Y

    1980-04-01

    Preflight acclimatization to the rhythm of destination and postflight daytime activity are assumed to be effective countermeasures against the jet lag syndrome. Regarding this idea, resynchronization of motor activity rhythm was investigated in mice subjected to daytime exercises on a driven belt before or after the reversal of lighting regimen. In addition, the effect of prior daytime feeding was studied. No evidence was manifested that the forced exercises or feeding schedule would hasten synchronization. This result indicates that the central control system of motor activity rhythm could not be manipulated favorably by such method in mice. On the basis of the result obtained, the applicability of countermeasures to human beings was discussed.

  7. Motor cortex activation in Parkinson's disease: dissociation of electrocortical and peripheral measures of response generation.

    PubMed

    Praamstra, P; Plat, E M; Meyer, A S; Horstink, M W

    1999-09-01

    This study investigated characteristics of motor cortex activation and response generation in Parkinson's disease with measures of electrocortical activity (lateralized readiness potential [LRP]), electromyographic activity (EMG), and isometric force in a noise-compatibility task. When presented with stimuli consisting of incompatible target and distractor elements asking for responses of opposite hands, patients were less able than control subjects to suppress activation of the motor cortex controlling the wrong response hand. This was manifested in the pattern of reaction times and in an incorrect lateralization of the LRP. Onset latency and rise time of the LRP did not differ between patients and control subjects, but EMG and response force developed more slowly in patients. Moreover, in patients but not in control subjects, the rate of development of EMG and response force decreased as reaction time increased. We hypothesize that this dissociation between electrocortical activity and peripheral measures in Parkinson's disease is the result of changes in motor cortex function that alter the relation between signal-related and movement-related neural activity in the motor cortex. In the LRP, this altered balance may obscure an abnormal development of movement-related neural activity.

  8. Cortical current density oscillations in the motor cortex are correlated with muscular activity during pedaling exercise.

    PubMed

    Schneider, S; Rouffet, D M; Billaut, F; Strüder, H K

    2013-01-03

    Despite modern imaging techniques, assessing and localizing changes in brain activity during whole-body exercise is still challenging. Using an active electroencephalography (EEG) system in combination with source localization algorithms, this study aimed to localize brain cortical oscillations patterns in the motor cortex and to correlate these with surface electromyography (EMG)-detected muscular activity during pedaling exercise. Eight subjects performed 2-min isokinetic (90 rpm) cycling bouts at intensities ranging from 1 to 5 Wkg(-1) body mass on a cycle ergometer. These bouts were interspersed by a minimum of 2 min of passive rest to limit to development of peripheral muscle fatigue. Brain cortical activity within the motor cortex was analyzed using a 32-channel active EEG system combined with source localization algorithms. EMG activity was recorded from seven muscles on each lower limb. EEG and EMG activity revealed comparatively stable oscillations across the different exercise intensities. More importantly, the oscillations in cortical activity within the motor cortex were significantly correlated with EMG activity during the high-intensity cycling bouts. This study demonstrates that it is possible to localize oscillations in brain cortical activity during moderate- to high-intensity cycling exercise using EEG in combination with source localization algorithms, and that these oscillations match the activity of the active muscles in time and amplitude. Results of this study might help to further evaluate the effects of central vs. peripheral fatigue during exercise.

  9. Altered motor activity of alternative splice variants of the mammalian kinesin-3 protein KIF1B.

    PubMed

    Matsushita, Masafumi; Yamamoto, Ruri; Mitsui, Keiji; Kanazawa, Hiroshi

    2009-11-01

    Several mammalian kinesin motor proteins exist as multiple isoforms that arise from alternative splicing of a single gene. However, the roles of many motor protein splice variants remain unclear. The kinesin-3 motor protein KIF1B has alternatively spliced isoforms distinguished by the presence or absence of insertion sequences in the conserved amino-terminal region of the protein. The insertions are located in the loop region containing the lysine-rich cluster, also known as the K-loop, and in the hinge region adjacent to the motor domain. To clarify the functions of these alternative splice variants of KIF1B, we examined the biochemical properties of recombinant KIF1B with and without insertion sequences. In a microtubule-dependent ATPase assay, KIF1B variants that contained both insertions had higher activity and affinity for microtubules than KIF1B variants that contained no insertions. Mutational analysis of the K-loop insertion revealed that variants with a longer insertion sequence at this site had higher activity. However, the velocity of movement in motility assays was similar between KIF1B with and without insertion sequences. Our results indicate that splicing isoforms of KIF1B that vary in their insertion sequences have different motor activities.

  10. When Action Observation Facilitates Visual Perception: Activation in Visuo-Motor Areas Contributes to Object Recognition.

    PubMed

    Sim, Eun-Jin; Helbig, Hannah B; Graf, Markus; Kiefer, Markus

    2015-09-01

    Recent evidence suggests an interaction between the ventral visual-perceptual and dorsal visuo-motor brain systems during the course of object recognition. However, the precise function of the dorsal stream for perception remains to be determined. The present study specified the functional contribution of the visuo-motor system to visual object recognition using functional magnetic resonance imaging and event-related potential (ERP) during action priming. Primes were movies showing hands performing an action with an object with the object being erased, followed by a manipulable target object, which either afforded a similar or a dissimilar action (congruent vs. incongruent condition). Participants had to recognize the target object within a picture-word matching task. Priming-related reductions of brain activity were found in frontal and parietal visuo-motor areas as well as in ventral regions including inferior and anterior temporal areas. Effective connectivity analyses suggested functional influences of parietal areas on anterior temporal areas. ERPs revealed priming-related source activity in visuo-motor regions at about 120 ms and later activity in the ventral stream at about 380 ms. Hence, rapidly initiated visuo-motor processes within the dorsal stream functionally contribute to visual object recognition in interaction with ventral stream processes dedicated to visual analysis and semantic integration.

  11. Afferent and efferent activity control in the design of brain computer interfaces for motor rehabilitation.

    PubMed

    Cho, Woosang; Vidaurre, Carmen; Hoffmann, Ulrich; Birbaumer, Niels; Ramos-Murguialday, Ander

    2011-01-01

    Stroke is a cardiovascular accident within the brain resulting in motor and sensory impairment in most of the survivors. A stroke can produce complete paralysis of the limb although sensory abilities are normally preserved. Functional electrical stimulation (FES), robotics and brain computer interfaces (BCIs) have been used to induce motor rehabilitation. In this work we measured the brain activity of healthy volunteers using electroencephalography (EEG) during FES, passive movements, active movements, motor imagery of the hand and resting to compare afferent and efferent brain signals produced during these motor related activities and to define possible features for an online FES-BCI. In the conditions in which the hand was moved we limited the movement range in order to control the afferent flow. Although we observed that there is a subject dependent frequency and spatial distribution of efferent and afferent signals, common patterns between conditions and subjects were present mainly in the low beta frequency range. When averaging all the subjects together the most significant frequency bin comparing each condition versus rest was exactly the same for all conditions but motor imagery. These results suggest that to implement an on-line FES-BCI, afferent brain signals resulting from FES have to be filtered and time-frequency-spatial features need to be used.

  12. Can Kinesiological Activities Change "Pure" Motor Development in Preschool Children during One School Year?

    PubMed

    Krneta, Željko; Casals, Cristina; Bala, Gustav; Madić, Dejan; Pavlović, Slobodan; Drid, Patrik

    2015-07-01

    The purpose of this study was to evaluate the effects of an additional, organized, and more intensive kinesiological treatment on "pure" motor abilities in preschool children. In the present study an experimental treatment was carried out on a sample of 37 preschool boys by applying kinesiological activities. The 60 minute treatment was applied over a period of one school year (9 months), twice a week. A control group of 31 boys were trained according to the regular program for preschool institutions. Treatment effects were assessed by 8 motor ability tests and 5 anthropometric measures. The significant differences between the groups, which were observed after the final measurement and compared to the initial one, proved that the kinesiological treatment had a positive impact on the general development of "pure" motor abilities. The most significant effect of experimental kinesiological treatment was the improvement in whole body force, flexibility and coordination of preschool boys. These findings, obtained only in one school year, point to the importance of physical exercise and the application of additional kinesiological activities with various modalities, to improve motor development, even morphological growth and development in preschool children. The effects of the perennial application of kinesiological activities, under the supervision of kinesiological professionals, could be beneficial and could form the basis for a better biological and motor development in older age.

  13. A novel approach in automatic estimation of rats' loco-motor activity

    NASA Astrophysics Data System (ADS)

    Anishchenko, Lesya N.; Ivashov, Sergey I.; Vasiliev, Igor A.

    2014-05-01

    The paper contains feasibility study of a method for bioradar monitoring of small laboratory animals loco-motor activity improved by using a corner reflector. It presents results of mathematical simulation of bioradar signal reflection from the animal with the help of finite-difference time-domain method. It was proved both by theoretical and experimental results that a corner reflector usage during monitoring of small laboratory animals loco-motor activity improved the effectiveness of the method by reducing the dependency of the power flux density level from the distance between antennas block and the object.

  14. Non-exercise physical activity attenuates motor symptoms in Parkinson disease independent from nigrostriatal degeneration

    PubMed Central

    Snider, Jon; Müller, Martijn L.T.M; Kotagal, Vikas; Koeppe, Robert A; Scott, Peter J.H.; Frey, Kirk A; Albin, Roger L.; Bohnen, Nicolaas I.

    2015-01-01

    Objective To investigate the relationship between time spent in non-exercise and exercise physical activity and severity of motor functions in Parkinson disease (PD). Background Increasing motor impairments of PD incline many patients to a sedentary lifestyle. We investigated the relationship between duration of both non-exercise and exercise physical activity over a 4-week period using the Community Health Activities Model Program for Seniors (CHAMPS) questionnaire and severity of clinical motor symptoms in PD. We accounted for the magnitude of nigrostriatal degeneration. Methods Cross-sectional study. PD subjects, n=48 (40M); 69.4±7.4 (56–84) years old; 8.4±4.2 (2.5–20) years motor disease duration, mean UPDRS motor score 27.5 ± 10.3 (7–53) and mean MMSE score 28.4 ± 1.9 (22–30) underwent [11C]dihydrotetrabenazine (DTBZ) PET imaging to assess nigrostriatal denervation and completed the CHAMPS questionnaire and clinical assessment. Results Bivariate correlations showed an inverse relationship between motor UPDRS severity scores and duration of non-exercise physical activity (R= −0.37, P=0.0099) but not with duration of exercise physical activity (R= −0.05, P= 0.76) over 4 weeks. Multiple regression analysis using UPDRS motor score as outcome variable demonstrated a significant regressor effect for duration of non-exercise physical activity (F=6.15, P=0.017) while accounting for effects of nigrostriatal degeneration (F=4.93, P=0.032), levodopa-equivalent dose (LED; F=1.07, P=0.31), age (F=4.37, P=0.043) and duration of disease (F=1.46, P=0.23; total model (F=5.76, P=0.0004). Conclusions Non-exercise physical activity is a correlate of motor symptom severity in PD independent of the magnitude of nigrostriatal degeneration. Non-exercise physical activity may have positive effects on functional performance in PD. PMID:26330028

  15. [Glutamatergic neurotransmitter system in regulation of the gastrointestinal tract motor activity].

    PubMed

    Alekseeva, E V; Popova, T S; Sal'nikov, P S

    2015-01-01

    The review include actual facts, demonstrating high probability of glutamatergic neurotransmitter system role in the regulation of the gastrointestinal tract motor activity. These facts suggest significant role of the glutamatergic neurotransmitter system dysfunction in forming motor activity disorders of the digestive tract, including in patients in critical condition. The analysis is based on results of multiple experimental and clinical researches of glutamic acid and other components of the glutamatergic neurotransmitter system in central nervous system and autonomic nervous system (with the accent on the enteral nervous system) in normal conditions and with functioning changes of the glutamatergic neurotransmitter system in case of inflammation, hupoxia, stress and in critical condition.

  16. Effect of percutaneous stimulation at different spinal levels on the activation of sensory and motor roots.

    PubMed

    Roy, François D; Gibson, Grady; Stein, Richard B

    2012-11-01

    Percutaneous spinal stimulation is a promising new technique for understanding human spinal reflexes and for evaluating the pathophysiology of motor roots. Previous studies have generally stimulated the T11/T12 or T12/L1 vertebral junctions, sites that overlie the lumbosacral enlargement. The present study sought to determine the best location for targeting sensory and motor roots during sitting. We used paired stimuli, 50 ms apart, to distinguish the contribution of the reflex and motor components which make up the root evoked potential. This assumed that post-stimulation attenuation, primarily through homosynaptic depression, would abolish the second potential if it was trans-synaptic in origin. Conversely, successive responses would be unchanged if motor roots were being stimulated. Here, we show that sensory root reflexes were optimally elicited with percutaneous stimulation over the L1-L3 vertebrae. However, the optimal position varied between subjects and depended on the target muscle being studied. A collision test showed that the reflex recorded in pre-tibial flexors was low in amplitude and was prone to crosstalk from neighbouring muscles. In contrast to the reflex response, direct motor root activation was optimal with stimulation over the more caudal L5-S1 vertebrae. The present results support the utility of paired stimulation for evaluating the topographical recruitment of sensory and motor roots to human leg muscles.

  17. A non-mitotic CENP-E homolog in Dictyostelium discoideum with slow motor activity.

    PubMed

    Kösem, Süleyman; Ökten, Zeynep; Ho, Thi-Hieu; Trommler, Gudrun; Koonce, Michael P; Samereier, Matthias; Müller-Taubenberger, Annette

    2013-02-15

    Kinesins are ATP-dependent molecular motors that mediate unidirectional intracellular transport along microtubules. Dictyostelium discoideum has 13 different kinesin isoforms including two members of the kinesin-7 family, Kif4 and Kif11. While Kif4 is structurally and functionally related to centromere-associated CENP-E proteins involved in the transport of chromosomes to the poles during mitosis, the function of the unusually short CENP-E variant Kif11 is unclear. Here we show that orthologs of short CENP-E variants are present in plants and fungi, and analyze functional properties of the Dictyostelium CENP-E version, Kif11. Gene knockout mutants reveal that Kif11 is not required for mitosis or development. Imaging of GFP-labeled Kif11 expressing Dictyostelium cells indicates that Kif11 is a plus-end directed motor that accumulates at microtubule plus ends. By multiple motor gliding assays, we show that Kif11 moves with an average velocity of 38nm/s, thus defining Kif11 as a very slow motor. The activity of the Kif11 motor appears to be modulated via interactions with the non-catalytic tail region. Our work highlights a subclass of kinesin-7-like motors that function outside of a role in mitosis.

  18. ATP-dependent motor activity of the transcription termination factor Rho from Mycobacterium tuberculosis.

    PubMed

    D'Heygère, François; Schwartz, Annie; Coste, Franck; Castaing, Bertrand; Boudvillain, Marc

    2015-07-13

    The bacterial transcription termination factor Rho-a ring-shaped molecular motor displaying directional, ATP-dependent RNA helicase/translocase activity-is an interesting therapeutic target. Recently, Rho from Mycobacterium tuberculosis (MtbRho) has been proposed to operate by a mechanism uncoupled from molecular motor action, suggesting that the manner used by Rho to dissociate transcriptional complexes is not conserved throughout the bacterial kingdom. Here, however, we demonstrate that MtbRho is a bona fide molecular motor and directional helicase which requires a catalytic site competent for ATP hydrolysis to disrupt RNA duplexes or transcription elongation complexes. Moreover, we show that idiosyncratic features of the MtbRho enzyme are conferred by a large, hydrophilic insertion in its N-terminal 'RNA binding' domain and by a non-canonical R-loop residue in its C-terminal 'motor' domain. We also show that the 'motor' domain of MtbRho has a low apparent affinity for the Rho inhibitor bicyclomycin, thereby contributing to explain why M. tuberculosis is resistant to this drug. Overall, our findings support that, in spite of adjustments of the Rho motor to specific traits of its hosting bacterium, the basic principles of Rho action are conserved across species and could thus constitute pertinent screening criteria in high-throughput searches of new Rho inhibitors.

  19. Aberrant neuromagnetic activation in the motor cortex in children with acute migraine: a magnetoencephalography study.

    PubMed

    Guo, Xinyao; Xiang, Jing; Wang, Yingying; O'Brien, Hope; Kabbouche, Marielle; Horn, Paul; Powers, Scott W; Hershey, Andrew D

    2012-01-01

    Migraine attacks have been shown to interfere with normal function in the brain such as motor or sensory function. However, to date, there has been no clinical neurophysiology study focusing on the motor function in children with migraine during headache attacks. To investigate the motor function in children with migraine, twenty-six children with acute migraine, meeting International Classification of Headache Disorders criteria and age- and gender-matched healthy children were studied using a 275-channel magnetoencephalography system. A finger-tapping paradigm was designed to elicit neuromagnetic activation in the motor cortex. Children with migraine showed significantly prolonged latency of movement-evoked magnetic fields (MEF) during finger movement compared with the controls. The correlation coefficient of MEF latency and age in children with migraine was significantly different from that in healthy controls. The spectral power of high gamma (65-150 Hz) oscillations during finger movement in the primary motor cortex is also significantly higher in children with migraine than in controls. The alteration of responding latency and aberrant high gamma oscillations suggest that the developmental trajectory of motor function in children with migraine is impaired during migraine attacks and/or developmentally delayed. This finding indicates that childhood migraine may affect the development of brain function and result in long-term problems.

  20. A simple but efficient voice activity detection algorithm through Hilbert transform and dynamic threshold for speech pathologies

    NASA Astrophysics Data System (ADS)

    Ortiz P., D.; Villa, Luisa F.; Salazar, Carlos; Quintero, O. L.

    2016-04-01

    A simple but efficient voice activity detector based on the Hilbert transform and a dynamic threshold is presented to be used on the pre-processing of audio signals. The algorithm to define the dynamic threshold is a modification of a convex combination found in literature. This scheme allows the detection of prosodic and silence segments on a speech in presence of non-ideal conditions like a spectral overlapped noise. The present work shows preliminary results over a database built with some political speech. The tests were performed adding artificial noise to natural noises over the audio signals, and some algorithms are compared. Results will be extrapolated to the field of adaptive filtering on monophonic signals and the analysis of speech pathologies on futures works.

  1. Regulation of pumping function of the heart in developing body under changing regimens of motor activity.

    PubMed

    Vafina, E Z; Abzalov, R A; Abzalov, N I; Nikitin, A S; Gulyakov, A A

    2014-06-01

    We analyzed parameters of the pumping function of the heart in rats subjected to enhanced motor activity after a preliminary 70-day hypokinesia under conditions of α- and β-adrenergic receptor stimulation with norepinephrine followed by blockade of β-adrenergic receptor with propranolol (obsidian) and α1-adrenergic receptors with doxazosin. After norepinephrine administration, the HR and cardiac output were higher in rats with enhanced physical activity after preliminary hypokinesia than in rats with low physical activity. After propranolol administration, stroke volume and cardiac output in 100-day-old rats with limited activity were lower, and HR higher was than in rats with enhanced physical activity after preliminary 70-day hypokinesia. After administration of doxazosin, rats with limited motor activity demonstrated more pronounced changes in HR than rats with enhanced physical activity after preliminary 70-day hypokinesia.

  2. The Promotion of Gross and Fine Motor Development for Infants and Toddlers: Developmentally Appropriate Activities for Parents and Teachers.

    ERIC Educational Resources Information Center

    Thompson, Debra S.

    In recognition of the close relationship between motor skill and cognitive development in the first 2 years of life, this guide presents 78 developmentally appropriate activities that parents and teachers can use to enhance infant and toddler motor development. Activities are categorized by age group as follows: (1) 16 activities for newborn to…

  3. A threat to a virtual hand elicits motor cortex activation.

    PubMed

    González-Franco, Mar; Peck, Tabitha C; Rodríguez-Fornells, Antoni; Slater, Mel

    2014-03-01

    We report an experiment where participants observed an attack on their virtual body as experienced in an immersive virtual reality (IVR) system. Participants sat by a table with their right hand resting upon it. In IVR, they saw a virtual table that was registered with the real one, and they had a virtual body that substituted their real body seen from a first person perspective. The virtual right hand was collocated with their real right hand. Event-related brain potentials were recorded in two conditions, one where the participant's virtual hand was attacked with a knife and a control condition where the knife only struck the virtual table. Significantly greater P450 potentials were obtained in the attack condition confirming our expectations that participants had a strong illusion of the virtual hand being their own, which was also strongly supported by questionnaire responses. Higher levels of subjective virtual hand ownership correlated with larger P450 amplitudes. Mu-rhythm event-related desynchronization in the motor cortex and readiness potential (C3-C4) negativity were clearly observed when the virtual hand was threatened-as would be expected, if the real hand was threatened and the participant tried to avoid harm. Our results support the idea that event-related potentials may provide a promising non-subjective measure of virtual embodiment. They also support previous experiments on pain observation and are placed into context of similar experiments and studies of body perception and body ownership within cognitive neuroscience.

  4. VAV-1 acts in a single interneuron to inhibit motor circuit activity in Caenorhabditis elegans.

    PubMed

    Fry, Amanda L; Laboy, Jocelyn T; Norman, Kenneth R

    2014-11-21

    The complex molecular and cellular mechanisms underlying neuronal control of animal movement are not well understood. Locomotion of Caenorhabditis elegans is mediated by a neuronal circuit that produces coordinated sinusoidal movement. Here we utilize this simple, yet elegant, behaviour to show that VAV-1, a conserved guanine nucleotide exchange factor for Rho-family GTPases, negatively regulates motor circuit activity and the rate of locomotion. While vav-1 is expressed in a small subset of neurons, we find that VAV-1 function is required in a single interneuron, ALA, to regulate motor neuron circuit activity. Furthermore, we show by genetic and optogenetic manipulation of ALA that VAV-1 is required for the excitation and activation of this neuron. We find that ALA signalling inhibits command interneuron activity by abrogating excitatory signalling in the command interneurons, which is responsible for promoting motor neuron circuit activity. Together, our data describe a novel neuromodulatory role for VAV-1-dependent signalling in the regulation of motor circuit activity and locomotion.

  5. Carbohydrate in the mouth enhances activation of brain circuitry involved in motor performance and sensory perception.

    PubMed

    Turner, Clare E; Byblow, Winston D; Stinear, Cathy M; Gant, Nicholas

    2014-09-01

    The presence of carbohydrate in the human mouth has been associated with the facilitation of motor output and improvements in physical performance. Oral receptors have been identified as a potential mode of afferent transduction for this novel form of nutrient signalling that is distinct from taste. In the current study oral exposure to carbohydrate was combined with a motor task in a neuroimaging environment to identify areas of the brain involved in this phenomenon. A mouth-rinsing protocol was conducted whilst carbohydrate (CHO) and taste-matched placebo (PLA) solutions were delivered and recovered from the mouths of 10 healthy volunteers within a double-blind, counterbalanced design. This protocol eliminates post-oral factors and controls for the perceptual qualities of solutions. Functional magnetic resonance imaging of the brain was used to identify cortical areas responsive to oral carbohydrate during rest and activity phases of a hand-grip motor task. Mean blood-oxygen-level dependent signal change experienced in the contralateral primary sensorimotor cortex was larger for CHO compared with PLA during the motor task when contrasted with a control condition. Areas of activation associated with CHO exclusively were observed over the primary taste cortex and regions involved in visual perception. Regions in the limbic system associated with reward were also significantly more active with CHO. This is the first demonstration that oral carbohydrate signalling can increase activation within the primary sensorimotor cortex during physical activity and enhance activation of neural networks involved in sensory perception.

  6. High-resolution tracking of motor disorders in Parkinson's disease during unconstrained activity.

    PubMed

    Roy, Serge H; Cole, Bryan T; Gilmore, L Don; De Luca, Carlo J; Thomas, Cathi A; Saint-Hilaire, Marie M; Nawab, S Hamid

    2013-07-01

    Parkinson's disease (PD) can present with a variety of motor disorders that fluctuate throughout the day, making assessment a challenging task. Paper-based measurement tools can be burdensome to the patient and clinician and lack the temporal resolution needed to accurately and objectively track changes in motor symptom severity throughout the day. Wearable sensor-based systems that continuously monitor PD motor disorders may help to solve this problem, although critical shortcomings persist in identifying multiple disorders at high temporal resolution during unconstrained activity. The purpose of this study was to advance the current state of the art by (1) introducing hybrid sensor technology to concurrently acquire surface electromyographic (sEMG) and accelerometer data during unconstrained activity and (2) analyzing the data using dynamic neural network algorithms to capture the evolving temporal characteristics of the sensor data and improve motor disorder recognition of tremor and dyskinesia. Algorithms were trained (n=11 patients) and tested (n=8 patients; n=4 controls) to recognize tremor and dyskinesia at 1-second resolution based on sensor data features and expert annotation of video recording during 4-hour monitoring periods of unconstrained daily activity. The algorithms were able to make accurate distinctions between tremor, dyskinesia, and normal movement despite the presence of diverse voluntary activity. Motor disorder severity classifications averaged 94.9% sensitivity and 97.1% specificity based on 1 sensor per symptomatic limb. These initial findings indicate that new sensor technology and software algorithms can be effective in enhancing wearable sensor-based system performance for monitoring PD motor disorders during unconstrained activities.

  7. The Impact of Physical Activity on Non-Motor Symptoms in Parkinson's Disease: A Systematic Review.

    PubMed

    Cusso, Melanie E; Donald, Kenneth J; Khoo, Tien K

    2016-01-01

    Parkinson's disease (PD) is a neurological disorder that is associated with both motor and non-motor symptoms (NMS). The management of PD is primarily via pharmaceutical treatment; however, non-pharmaceutical interventions have become increasingly recognized in the management of motor and NMS. In this review, the efficacy of physical activity, including physiotherapy and occupational therapy, as an intervention in NMS will be assessed. The papers were extracted between the 20th and 22nd of June 2016 from PubMed, Web of Science, Medline, Ovid, SportsDiscuss, and Scopus using the MeSH search terms "Parkinson's," "Parkinson," and "Parkinsonism" in conjunction with "exercise," "physical activity," "physiotherapy," "occupational therapy," "physical therapy," "rehabilitation," "dance," and "martial arts." Twenty studies matched inclusion criteria of having 10 or more participants with diagnosed idiopathic PD participating in the intervention as well as having to evaluate the effects of physical activity on NMS in PD as controlled, randomized intervention studies. The outcomes of interest were NMS, including depression, cognition, fatigue, apathy, anxiety, and sleep. Risk of bias in the studies was evaluated using the Cochrane Collaboration's tool for assessing risk of bias. Comparability of the various intervention methods, however, was challenging due to demographic variability and methodological differences. Nevertheless, physical activity can positively impact the global NMS burden including depression, apathy, fatigue, day time sleepiness, sleep, and cognition, thus supporting its therapeutic potential in neurodegenerative conditions such as PD. It is recommended that further adequately powered studies are conducted to assess the therapeutic role of physical activity on both motor and non-motor aspects of PD. These studies should be optimally designed to assess non-motor elements of disease using instruments validated in PD.

  8. Active vibrations of 1-cyanonaphthalene cation studied by mass-analyzed threshold ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Shivatare, Vidya; Tzeng, Sheng Yuan; Tzeng, Wen Bih

    2013-02-01

    We apply the two-color resonant two-photon mass-analyzed threshold ionization (MATI) spectroscopic technique to record the cation spectra of 1-cyanonaphthalene via four intermediate vibronic levels. The adiabatic ionization energy is determined to be 69 466 ± 5 cm-1. The distinct bands at 416, 472, 516, 669, and 852 cm-1 result from in-plane ring deformation vibrations of the cation. Analysis of these MATI spectra suggests that the molecular geometry and vibrational coordinates of the observed vibrations of the cation in the ground D0 state resemble those of the neutral in the electronically excited S1 state.

  9. Adjustments of Motor Pattern for Load Compensation Via Modulated Activations of Muscle Synergies During Natural Behaviors

    PubMed Central

    Cheung, Vincent C. K.; d'Avella, Andrea; Bizzi, Emilio

    2009-01-01

    It has been suggested that the motor system may circumvent the difficulty of controlling many degrees of freedom in the musculoskeletal apparatus by generating motor outputs through a combination of discrete muscle synergies. How a discretely organized motor system compensates for diverse perturbations has remained elusive. Here, we investigate whether motor responses observed after an inertial-load perturbation can be generated by altering the recruitment of synergies normally used for constructing unperturbed movements. Electromyographic (EMG, 13 muscles) data were collected from the bullfrog hindlimb during natural behaviors before, during, and after the same limb was loaded by a weight attached to the calf. Kinematic analysis reveals the absence of aftereffect on load removal, suggesting that load-related EMG changes were results of immediate motor pattern adjustments. We then extracted synergies from EMGs using the nonnegative matrix factorization algorithm and developed a procedure for assessing the extent of synergy sharing across different loading conditions. Most synergies extracted were found to be activated in all loaded and unloaded conditions. However, for certain synergies, the amplitude, duration, and/or onset time of their activation bursts were up- or down-modulated during loading. Behavioral parameterizations reveal that load-related modulation of synergy activations depended on the behavioral variety (e.g., kick direction and amplitude) and the movement phase performed. Our results suggest that muscle synergies are robust across different dynamic conditions and immediate motor adjustments can be accomplished by modulating synergy activations. An appendix describes the novel procedure we developed, useful for discovering shared and specific features from multiple data sets. PMID:19091930

  10. Motor imagery evokes increased somatosensory activity in Parkinson's disease patients with tremor.

    PubMed

    Helmich, Rick C; Bloem, Bastiaan R; Toni, Ivan

    2012-08-01

    Parkinson's disease (PD) is surprisingly heterogeneous: some patients have a prominent resting tremor, while others never develop this symptom. Here we investigate whether the functional organization of the voluntary motor system differs between PD patients with and without resting tremor, and whether these differences relate to the cerebral circuit producing tremor. We compared 18 PD patients with marked tremor, 20 PD patients without tremor, and 19 healthy controls. Subjects performed a controlled motor imagery task during fMRI scanning. We quantified imagery-related cerebral activity by contrasting imagery of biomechanically difficult and easy movements. Tremor-related activity was identified by relating cerebral activity to fluctuations in tremor amplitude, using electromyography during scanning. PD patients with tremor had better behavioral performance than PD patients without tremor. Furthermore, tremulous PD patients showed increased imagery-related activity in somatosensory area 3a, as compared with both healthy controls and to nontremor PD patients. This effect was independent from tremor-related activity, which was localized to the motor cortex, cerebellum, and thalamic ventral intermediate nucleus (VIM). The VIM, with known projections to area 3a, was unique in showing both tremor- and imagery-related responses. We conclude that parkinsonian tremor influences motor imagery by modulating central somatosensory processing through the VIM. This mechanism may explain clinical differences between PD patients with and without tremor.

  11. [2 stages in the development of spontaneous motor activity in the early postnatal ontogeny of rats].

    PubMed

    Bursian, A V; Dmitrieva, L E

    1994-01-01

    In ontogenesis of rats, similar to many other animals, in the development of the spontaneous motor activity two qualitatively different stages are observed. The first one is characterized by periodic, mainly sensor-independent generalized motor excitation which at the second stage is substituted by stereotypic specialized motor programs (locomotion, grooming). Both stages exhibit similar age dynamics: the increase in the activity, its maximum and subsequent inhibition with a shift of the corresponding phases for about two weeks. This dynamics is mainly associated with heterochronous maturation of excitatory and inhibitory systems of regulation of the nervous activity. Change in the stages depends on changes of functional role of motor activity in ontogenesis from mainly morphogenetic one (and promotion of a necessary level of vegetative functions) to directional behavior. Inhibition at the first stage results in deep functional rearrangement in the central nervous system serving as a background for the onset of specialized behavioural activity. The development of the latter is also excessive, the subsequent inhibition being less deep and reversible.

  12. Spatiotemporal relations of primary sensorimotor and secondary motor activation patterns mapped by NIR imaging

    PubMed Central

    Khan, Bilal; Chand, Pankaj; Alexandrakis, George

    2011-01-01

    Functional near infrared (fNIR) imaging was used to identify spatiotemporal relations between spatially distinct cortical regions activated during various hand and arm motion protocols. Imaging was performed over a field of view (FOV, 12 x 8.4 cm) including the secondary motor, primary sensorimotor, and the posterior parietal cortices over a single brain hemisphere. This is a more extended FOV than typically used in current fNIR studies. Three subjects performed four motor tasks that induced activation over this extended FOV. The tasks included card flipping (pronation and supination) that, to our knowledge, has not been performed in previous functional magnetic resonance imaging (fMRI) or fNIR studies. An earlier rise and a longer duration of the hemodynamic activation response were found in tasks requiring increased physical or mental effort. Additionally, analysis of activation images by cluster component analysis (CCA) demonstrated that cortical regions can be grouped into clusters, which can be adjacent or distant from each other, that have similar temporal activation patterns depending on whether the performed motor task is guided by visual or tactile feedback. These analyses highlight the future potential of fNIR imaging to tackle clinically relevant questions regarding the spatiotemporal relations between different sensorimotor cortex regions, e.g. ones involved in the rehabilitation response to motor impairments. PMID:22162826

  13. Greater activation of secondary motor areas is related to less arm use after stroke

    PubMed Central

    Kokotilo, Kristen J; Eng, Janice J; Boyd, Lara A; McKeown, Martin J

    2011-01-01

    Background Past studies have identified reorganization of brain activity in relation to motor outcome through standardized laboratory measures, which are quantifiable surrogates for arm use in real-life. In contrast, accelerometers can provide a real-life estimate of arm and hand usage. Methods Ten persons with chronic, subcortical stroke and ten healthy controls of similar age performed a squeeze motor task at 40% maximum voluntary contraction during fMRI. Use of the upper extremity was quantified over 3 consecutive days using wrist accelerometers. Correlations were performed between arm use and peak percent signal change (PSC) during grasp force production in six regions of interest (ROIs): bilateral primary motor cortex (M1), supplementary motor area (SMA) and premotor cortex (PM). Results Results demonstrate that in healthy controls, PSC across all ROIs did not show a relationship between arm use and brain activation during force production. In contrast, after stroke, contralesional PM and M1 showed a significant (P ≤ 0.05) correlation between increasing activation and decreasing paretic arm use, while ipsilesional PM showed a significant correlation (P ≤ 0.05) between increasing activation and decreasing non-paretic arm use. Conclusions The results of this pilot study demonstrate a negative relationship between brain activation and actual arm use after stroke. Larger studies using accelerometers that can detect amount and types of movement may offer further insight into brain reorganization and rehabilitation interventions. PMID:19737873

  14. Brain oscillatory activity during motor imagery in EEG-fMRI coregistration.

    PubMed

    Formaggio, Emanuela; Storti, Silvia Francesca; Cerini, Roberto; Fiaschi, Antonio; Manganotti, Paolo

    2010-12-01

    The purpose of the present work was to investigate the correlation between topographical changes in brain oscillatory activity and the blood oxygenation level-dependent (BOLD) signal during a motor imagery (MI) task using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) coregistration. EEG was recorded in 7 healthy subjects inside a 1.5 T MR scanner during the imagination of the kinesthetic experience of movement. A Fast Fourier Transform was applied to EEG signal in the rest and active conditions. We used the event-related-synchronization (ERS)/desynchronization (ERD) approach to characterize where the imagination of movement produces a decrease in alpha and beta power. The mean alpha map showed ERD decrease localized over the contralateral sensory motor area (SM1c) and a light desynchronization in the ipsilateral sensory motor area (SM1i); whereas the mean beta map showed ERD decrease over the supplementary motor area (SMA). fMRI showed significant activation in SMA, SM1c, SM1i. The correlation is negative in the contralateral side and positive in the ipsilateral side. Using combined EEG-fMRI signals we obtained useful new information on the description of the changes in oscillatory activity in alpha and beta bands during MI and on the investigation of the sites of BOLD activity as possible sources in generating these rhythms. By correlating BOLD and ERD/ERS we may identify more accurately which regions contribute to changes of the electrical response.

  15. Effect of the Children’s Health Activity Motor Program on Motor Skills and Self-Regulation in Head Start Preschoolers: An Efficacy Trial

    PubMed Central

    Robinson, Leah E.; Palmer, Kara K.; Bub, Kristen L.

    2016-01-01

    Self-regulatory skills are broadly defined as the ability to manage emotions, focus attention, and inhibit some behaviors while activating others in accordance with social expectations and are an established indicator of academic success. Growing evidence links motor skills and physical activity to self-regulation. This study examined the efficacy of a motor skills intervention (i.e., the Children’s Health Activity Motor Program, CHAMP) that is theoretically grounded in Achievement Goal Theory on motor skill performance and self-regulation in Head Start preschoolers. A sample of 113 Head Start preschoolers (Mage = 51.91 ± 6.5 months; 49.5% males) were randomly assigned to a treatment (n = 68) or control (n = 45) program. CHAMP participants engaged in 15, 40-min sessions of a mastery climate intervention that focused on the development of motor skills over 5 weeks while control participants engaged in their normal outdoor recess period. The Delay of Gratification Snack Task was used to measure self-regulation and the Test of Gross Motor Development-2nd Edition was used to assess motor skills. All measures were assessed prior to and following the intervention. Linear mixed models were fit for both self-regulation and motor skills. Results revealed a significant time × treatment interaction (p < 0.001). In regard to motor skills, post hoc comparisons found that all children improved their motor skills (p < 0.05), but the CHAMP group improved significantly more than the control group (p < 0.001). Children in CHAMP maintained their self-regulation scores across time, while children in the control group scored significantly lower than the CHAMP group at the posttest (p < 0.05). CHAMP is a mastery climate movement program that enhance skills associated with healthy development in children (i.e., motor skills and self-regulation). This efficacy trial provided evidence that CHAMP helped maintain delay of gratification in preschool

  16. Effect of the Children's Health Activity Motor Program on Motor Skills and Self-Regulation in Head Start Preschoolers: An Efficacy Trial.

    PubMed

    Robinson, Leah E; Palmer, Kara K; Bub, Kristen L

    2016-01-01

    Self-regulatory skills are broadly defined as the ability to manage emotions, focus attention, and inhibit some behaviors while activating others in accordance with social expectations and are an established indicator of academic success. Growing evidence links motor skills and physical activity to self-regulation. This study examined the efficacy of a motor skills intervention (i.e., the Children's Health Activity Motor Program, CHAMP) that is theoretically grounded in Achievement Goal Theory on motor skill performance and self-regulation in Head Start preschoolers. A sample of 113 Head Start preschoolers (Mage = 51.91 ± 6.5 months; 49.5% males) were randomly assigned to a treatment (n = 68) or control (n = 45) program. CHAMP participants engaged in 15, 40-min sessions of a mastery climate intervention that focused on the development of motor skills over 5 weeks while control participants engaged in their normal outdoor recess period. The Delay of Gratification Snack Task was used to measure self-regulation and the Test of Gross Motor Development-2nd Edition was used to assess motor skills. All measures were assessed prior to and following the intervention. Linear mixed models were fit for both self-regulation and motor skills. Results revealed a significant time × treatment interaction (p < 0.001). In regard to motor skills, post hoc comparisons found that all children improved their motor skills (p < 0.05), but the CHAMP group improved significantly more than the control group (p < 0.001). Children in CHAMP maintained their self-regulation scores across time, while children in the control group scored significantly lower than the CHAMP group at the posttest (p < 0.05). CHAMP is a mastery climate movement program that enhance skills associated with healthy development in children (i.e., motor skills and self-regulation). This efficacy trial provided evidence that CHAMP helped maintain delay of gratification in preschool

  17. Out of control: Diminished prefrontal activity coincides with impaired motor performance due to choking under pressure

    PubMed Central

    Lee, Taraz G.; Grafton, Scott T.

    2014-01-01

    There are three non-exclusive theoretical explanations for the paradoxical collapse of performance due to large financial incentives. It has been proposed that “choking under pressure” is either due to distraction, interference via an increase in top-down control and performance monitoring, or excessive levels of arousal in the face of large losses. Given the known neural architecture involved in executive control and reward, we used fMRI of human participants during incentivized motor performance to provide evidence to support and/or reconcile these competing models in a visuomotor task. We show that the execution of a pre-trained motor task during neuroimaging is impaired by high rewards. BOLD activity occurring prior to movement onset is increased in dorsolateral prefrontal cortex and functional connectivity between this region and motor cortex is likewise increased just prior to choking. However, the extent of this increase in functional connectivity is inversely related to a participant's propensity to choke, suggesting that a failure in exerting top-down influence on motor control underlies choking under pressure due to large incentives. These results are consistent with a distraction account of choking and suggest that frontal influences on motor activity are necessary to protect performance from vulnerability under pressure. PMID:25449744

  18. Out of control: diminished prefrontal activity coincides with impaired motor performance due to choking under pressure.

    PubMed

    Lee, Taraz G; Grafton, Scott T

    2015-01-15

    There are three non-exclusive theoretical explanations for the paradoxical collapse of performance due to large financial incentives. It has been proposed that "choking under pressure" is either due to distraction, interference via an increase in top-down control and performance monitoring, or excessive levels of arousal in the face of large losses. Given the known neural architecture involved in executive control and reward, we used fMRI of human participants during incentivized motor performance to provide evidence to support and/or reconcile these competing models in a visuomotor task. We show that the execution of a pre-trained motor task during neuroimaging is impaired by high rewards. BOLD activity occurring prior to movement onset is increased in dorsolateral prefrontal cortex and functional connectivity between this region and motor cortex is likewise increased just prior to choking. However, the extent of this increase in functional connectivity is inversely related to a participant's propensity to choke, suggesting that a failure in exerting top-down influence on motor control underlies choking under pressure due to large incentives. These results are consistent with a distraction account of choking and suggest that frontal influences on motor activity are necessary to protect performance from vulnerability under pressure.

  19. Threshold of Geomorphic Detectability Estimated from Geologic Observations of Active Slow-Slipping Strike-Slip Faults

    NASA Astrophysics Data System (ADS)

    Kaneda, H.

    2002-12-01

    Sources of catastrophic earthquakes include not only major active faults, but also slow-slipping ones. However, geomorphic characteristics and long-term seismic behavior of slow-slipping faults have not been well understood, although intensive paleoseismic studies were carried out after the unexpected 1992 Landers and 1999 Hector Mine earthquakes. Two Japanese surface faulting earthquakes on slow-slipping strike-slip faults (the 1927 Mw=7.0 Kita-Tango and 1943 Mw=7.0 Tottori earthquakes) provided good opportunity to examine these problems. Analysis of coseismic surface slip, cumulative geomorphic expressions, and paleoseismicity for these two events not only supports a characteristic-slip behavior for these faults, but also suggests a concept of threshold of geomorphic detectability for intramontane strike-slip faults, which must be exceeded in order that progressive coseismic surface offsets can be preserved against surface processes as detectable systematic deflections of channels and ridge crests. The determined threshold slip rates for these examples are in the range of 0.06-0.13 mm/yr, which can be a quantitative explanation for an extremely small number of mapped active faults with slip rates of less than 0.1 mm/yr in Japan islands. On the contrary, the threshold of geomorphic detectability is probably negligible in arid regions where denudation rate would be extremely low. To date, the issue of geomorphologically undetectable active faults has been that of blind thrust faults buried beneath thick sediments, but another type of blind active faults or fault segments can exist in humid and mountainous regions. In spite of their low slip rates and long recurrence intervals, their potential presence must be considered, especially in regions under the tectonically undeveloped regime, where regional strain is accommodated by many scattered slow-slipping faults.

  20. Using hierarchical clustering methods to classify motor activities of COPD patients from wearable sensor data

    PubMed Central

    Sherrill, Delsey M; Moy, Marilyn L; Reilly, John J; Bonato, Paolo

    2005-01-01

    Background Advances in miniature sensor technology have led to the development of wearable systems that allow one to monitor motor activities in the field. A variety of classifiers have been proposed in the past, but little has been done toward developing systematic approaches to assess the feasibility of discriminating the motor tasks of interest and to guide the choice of the classifier architecture. Methods A technique is introduced to address this problem according to a hierarchical framework and its use is demonstrated for the application of detecting motor activities in patients with chronic obstructive pulmonary disease (COPD) undergoing pulmonary rehabilitation. Accelerometers were used to collect data for 10 different classes of activity. Features were extracted to capture essential properties of the data set and reduce the dimensionality of the problem at hand. Cluster measures were utilized to find natural groupings in the data set and then construct a hierarchy of the relationships between clusters to guide the process of merging clusters that are too similar to distinguish reliably. It provides a means to assess whether the benefits of merging for performance of a classifier outweigh the loss of resolution incurred through merging. Results Analysis of the COPD data set demonstrated that motor tasks related to ambulation can be reliably discriminated from tasks performed in a seated position with the legs in motion or stationary using two features derived from one accelerometer. Classifying motor tasks within the category of activities related to ambulation requires more advanced techniques. While in certain cases all the tasks could be accurately classified, in others merging clusters associated with different motor tasks was necessary. When merging clusters, it was found that the proposed method could lead to more than 12% improvement in classifier accuracy while retaining resolution of 4 tasks. Conclusion Hierarchical clustering methods are relevant

  1. 5-HT1A receptor-responsive pedunculopontine tegmental neurons suppress REM sleep and respiratory motor activity.

    PubMed

    Grace, Kevin P; Liu, Hattie; Horner, Richard L

    2012-02-01

    Serotonin type 1A (5-HT(1A)) receptor-responsive neurons in the pedunculopontine tegmental nucleus (PPTn) become maximally active immediately before and during rapid eye movement (REM) sleep. A prevailing model of REM sleep generation indicates that activation of such neurons contributes significantly to the generation of REM sleep, and if correct then inactivation of such neurons ought to suppress REM sleep. We test this hypothesis using bilateral microperfusion of the 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 10 μm) into the PPTn; this tool has been shown to selectively silence REM sleep-active PPTn neurons while the activity of wake/REM sleep-active PPTn neurons is unaffected. Contrary to the prevailing model, bilateral microperfusion of 8-OH-DPAT into the PPTn (n = 23 rats) significantly increased REM sleep both as a percentage of the total recording time and sleep time, compared with both within-animal vehicle controls and between-animal time-controls. This increased REM sleep resulted from an increased frequency of REM sleep bouts but not their duration, indicating an effect on mechanisms of REM sleep initiation but not maintenance. Furthermore, an increased proportion of the REM sleep bouts stemmed from periods of low REM sleep drive quantified electrographically. Targeted suppression of 5-HT(1A) receptor-responsive PPTn neurons also increased respiratory rate and respiratory-related genioglossus activity, and increased the frequency and amplitude of the sporadic genioglossus activations occurring during REM sleep. These data indicate that 5-HT(1A) receptor-responsive PPTn neurons normally function to restrain REM sleep by elevating the drive threshold for REM sleep induction, and restrain the expression of respiratory rate and motor activities.

  2. The Over-expression of the Plastidial Transglutaminase from Maize in Arabidopsis Increases the Activation Threshold of Photoprotection

    PubMed Central

    Ioannidis, Nikolaos E.; Malliarakis, Dimitris; Torné, Josep M.; Santos, Mireya; Kotzabasis, Kiriakos

    2016-01-01

    Plastidial transglutaminase is one of the most promising enzymes in chloroplast bioenergetics due to its link with polyamine pathways and the cross talk with signals such as Ca2+ and GTP. Here, we show the effect of the increase of transglutaminase activity in Arabidopsis by using genetic transformation techniques. These lines fulfill their biological cycle normally (normal growth in soil, production of viable seeds) and show a relatively mild increase in transglutaminase activity (127%). These overexpressors of transglutaminase (OE TGase) have an extended stroma thylakoid network (71% higher number of PSIIβ centers), similar chlorophyll content (-4%), higher linear electron flow (+13%), and higher threshold of photoprotection activation (∼100%). On the other hand OE TGase showed a reduced maximum photochemistry of PSII (-6.5%), a smaller antenna per photosystem II (-25%), a lower photoprotective “energization” quenching or qE (-77% at 490 μmol photons m-2 s-1) due to a higher threshold of qE activation and slightly lower light induced proton motive force (-17%). The role of the polyamines and of the transglutaminase in the regulation of chemiosmosis and photoprotection in chloroplasts is discussed. PMID:27242838

  3. Primary motor cortex of the parkinsonian monkey: altered encoding of active movement

    PubMed Central

    Pasquereau, Benjamin; DeLong, Mahlon R.

    2016-01-01

    Abnormalities in the movement-related activation of the primary motor cortex (M1) are thought to be a major contributor to the motor signs of Parkinson’s disease. The existing evidence, however, variably indicates that M1 is under-activated with movement, overactivated (due to a loss of functional specificity) or activated with abnormal timing. In addition, few models consider the possibility that distinct cortical neuron subtypes may be affected differently. Those gaps in knowledge were addressed by studying the extracellular activity of antidromically-identified lamina 5b pyramidal-tract type neurons (n = 153) and intratelencephalic-type corticostriatal neurons (n = 126) in the M1 of two monkeys as they performed a step-tracking arm movement task. We compared movement-related discharge before and after the induction of parkinsonism by administration of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and quantified the spike rate encoding of specific kinematic parameters of movement using a generalized linear model. The fraction of M1 neurons with movement-related activity declined following MPTP but only marginally. The strength of neuronal encoding of parameters of movement was reduced markedly (mean 29% reduction in the coefficients from the generalized linear model). This relative decoupling of M1 activity from kinematics was attributable to reductions in the coefficients that estimated the spike rate encoding of movement direction (−22%), speed (−40%), acceleration (−49%) and hand position (−33%). After controlling for MPTP-induced changes in motor performance, M1 activity related to movement itself was reduced markedly (mean 36% hypoactivation). This reduced activation was strong in pyramidal tract-type neurons (−50%) but essentially absent in corticostriatal neurons. The timing of M1 activation was also abnormal, with earlier onset times, prolonged response durations, and a 43% reduction in the prevalence of movement-related changes

  4. Evidence for Dose-Additive Effects of Pyrethroids on Motor Activity in Rats

    EPA Science Inventory

    BACKGROUND: Pyrethroids are neurotoxic insecticides used in a variety of indoor and outdoor applications. Previous research characterized the acute dose-effect functions for 11 pyrethroids administered orally in corn oil (1 mL/kg) based on assessment of motor activity. OBJECTIVES...

  5. The influence of motor activity on the development of cardiac arrhythmias during experimental emotional stress

    NASA Technical Reports Server (NTRS)

    Ulyaninskiy, L. S.; Urmancheyeva, T. G.; Stepanyan, Y. P.; Fufacheva, A. A.; Gritsak, A. V.; Kuznetsova, B. A.; Kvitka, A. A.

    1982-01-01

    Experimental emotional stress which can produce various disorders of cardiac rhythm: sinus tachycardia, atrial fibrillation, ventricular, extrasystoles and paroxysmal ventricular tachysystoles was studied. In these conditions the adrenalin content in the blood and myocardium is increased 3 to 4 times. It is found that moderate motor activity leads to a relative decrease of adrenalin in the myocardium and arrest of cardiac arrhythmias.

  6. Indices of free radical activity in the cerebrospinal fluid in motor neuron disease.

    PubMed Central

    Mitchell, J D; Jackson, M J; Pentland, B

    1987-01-01

    Indices of free-radical activity and lipid peroxidation were studied in cerebrospinal fluid samples obtained from 11 patients with motor neuron disease and 11 reference subjects. No differences were found between the two groups. The significance of this finding is discussed in relation to current views of the possible pathogenesis of this disease. PMID:3625217

  7. Educational Gymnastics: The Effectiveness of Montessori Practical Life Activities in Developing Fine Motor Skills in Kindergartners

    ERIC Educational Resources Information Center

    Bhatia, Punum; Davis, Alan; Shamas-Brandt, Ellen

    2015-01-01

    Research Findings: A quasi-experiment was undertaken to test the effect of Montessori practical life activities on kindergarten children's fine motor development and hand dominance over an 8-month period. Participants were 50 children age 5 in 4 Montessori schools and 50 students age 5 in a kindergarten program in a high-performing suburban…

  8. MOTOR ACTIVITY IN DEVELOPMENTAL NEUROTOXICITY TESTING: A CROSS-LABORATORY COMPARISON OF CONTROL DATA.

    EPA Science Inventory

    The USEPA Developmental Neurotoxicity (DNT) Study Test Guideline (OPPTS 870.6300) calls for a battery of functional and neuropathological assessments in offspring during and following maternal exposure. The battery includes measurement of motor activity on post-natal days (PND) ...

  9. GHB differentially affects morphine actions on motor activity and social behaviours in male mice.

    PubMed

    Maldonado, C; Rodriíuez-Arias, M; Aguilar, M A; Miñarro, J

    2003-09-01

    There are several reports suggesting that gamma-hydroxybutyric acid (GHB) influences the endogenous opioid system. The present study aimed to investigate the effects of GHB on motor and social activities and to examine its influence on morphine's actions on these behaviours. In a first experiment, several doses of GHB were studied but only the highest (200 and 400 mg/kg) produced a decrease in spontaneous motor activity measured in an actimeter cage. When hyperactivity induced by injecting 50 mg/kg of morphine was evaluated, all the GHB doses efficiently counteracted this morphine action. Using the paradigm of isolation-induced aggression, administration of 200 mg/kg of GHB significantly decreased threat and attack without impairing motor activity and, in addition, increased time spent in social contact. GHB increased morphine's suppression of threat or nonsocial exploratory behaviours. In conclusion, the interaction between GHB and the opioid systems was confirmed, with the drug having an additive effect on morphine-affected social behaviours but counteracting morphine-induced increases in motor activity.

  10. NEUROBEHAVIORAL DATA INTERPRETATION IN NEUROTOXICITY STUDIES: FOB, MOTOR ACTIVITY AND FUNCTION

    EPA Science Inventory

    Neurobehavioral evaluations are emerging as a key component in neurotoxicity testing. The tests most often used for screening are the functional observational battery (FOB) and motor activity. The FOB is a series of non-invasive observational and manipulative measures which ass...

  11. TOLERANCE AND SENSITIZATION TO WEEKLY NICOTINE EXPOSURES ON THE MOTOR ACTIVITY OF RATS.

    EPA Science Inventory

    Motor activity was examined in adult female Long-Evans rats in a photocell device during daily (M-F) 30-min sessions. Following adaptation to the testing routine the rats were divided into six groups of eight that were designated to receive either nothing (non-injected control),...

  12. Real-Time Control of Biological Motor Activity using Graphene-polymer Hybrid Bioenergy Storage Device

    NASA Astrophysics Data System (ADS)

    Lee, Dong; Byun, Kyung-Eun; Choi, Dong; Kim, Eunji; Kim, Daesan; Seo, David; Yang, Heejun; Seo, Sunae; Hong, Seunghun; Hybrid Nanodevice Lab Team; Samsung Research Park Team

    2013-03-01

    Biological motors have been drawing an attention as a key component for highly efficient nanomechanical systems. For such applications, many researchers have tried to control the activity of motor proteins through various methods such as microfluidics or UV-active compounds. However, these methods have some limitations such as the incapability of controlling local biomotor activity and a slow response rate. Herein, we developed a graphene-polymer hybrid nanostructure-based bioenergy storage device which enables the real-time control of biomotor activity. In this strategy, graphene layers functionalized with amine groups were utilized as a transparent electrode supporting the motility of biomotors. And conducting polymer patterns doped with adenosine triphosphate (ATP) were electrically deposited on the graphene and utilized for the fast release of ATP by electrical stimuli through the graphene. Such controlled release of ATP allowed us to control the motility of actin filaments propelled by myosin biomotors in real time. This strategy should enable integrated nanodevices for the real-time control of biological motors to the nanodevices, which can be a significant stepping stone toward hybrid nanomechanical systems based on motor proteins.

  13. SENSITIZATION AND TOLERANCE WITH EPISODIC (WEEKLY) NICOTINE ON MOTOR ACTIVITY IN RATS.

    EPA Science Inventory

    These studies grew out of an unexpected finding from investigations of the neurobehavioral toxicity of PCBs. This paper shows that episodic, or recurring intermittent acute exposures to nicotine produce dramatic and long-lasting changes in the motor activity of laboratory rats. ...

  14. Drosophila non-muscle myosin II motor activity determines the rate of tissue folding

    PubMed Central

    Vasquez, Claudia G; Heissler, Sarah M; Billington, Neil; Sellers, James R; Martin, Adam C

    2016-01-01

    Non-muscle cell contractility is critical for tissues to adopt shape changes. Although, the non-muscle myosin II holoenzyme (myosin) is a molecular motor that powers contraction of actin cytoskeleton networks, recent studies have questioned the importance of myosin motor activity cell and tissue shape changes. Here, combining the biochemical analysis of enzymatic and motile properties for purified myosin mutants with in vivo measurements of apical constriction for the same mutants, we show that in vivo constriction rate scales with myosin motor activity. We show that so-called phosphomimetic mutants of the Drosophila regulatory light chain (RLC) do not mimic the phosphorylated RLC state in vitro. The defect in the myosin motor activity in these mutants is evident in developing Drosophila embryos where tissue recoil following laser ablation is decreased compared to wild-type tissue. Overall, our data highlights that myosin activity is required for rapid cell contraction and tissue folding in developing Drosophila embryos. DOI: http://dx.doi.org/10.7554/eLife.20828.001 PMID:28035903

  15. The method of subliminal psychodynamic activation: do individual thresholds make a difference?

    PubMed

    Malik, R; Paraherakis, A; Joseph, S; Ladd, H

    1996-12-01

    The present experiment investigated the effects of subliminal psychodynamic stimuli on anxiety as measured by heart rate. Following an anxiety-inducing task, male and female subjects were tachistoscopically shown, at their subjective thresholds, one of five subliminal stimuli, MOMMY AND I ARE ONE, DADDY AND I ARE ONE (symbiotic messages). MOMMY HAS LEFT ME (abandonment message), I AM HAPPY AND CALM (positively toned but nonsymbiotic phrase), or MYMMO NAD I REA ENO (control stimulus). It was hypothesized that men would exhibit a greater decrease in heart rate after exposure to the MOMMY stimulus than the control message. No definitive predictions were made for women. The abandonment phrase was expected to increase heart rate. A positively toned message was included to assess whether its effects would be comparable to those hypothesized for the MOMMY message. The results yielded no significant effects for stimulus or gender and so provided no support for the hypotheses.

  16. Supplementary motor area and primary auditory cortex activation in an expert break-dancer during the kinesthetic motor imagery of dance to music.

    PubMed

    Olshansky, Michael P; Bar, Rachel J; Fogarty, Mary; DeSouza, Joseph F X

    2015-01-01

    The current study used functional magnetic resonance imaging to examine the neural activity of an expert dancer with 35 years of break-dancing experience during the kinesthetic motor imagery (KMI) of dance accompanied by highly familiar and unfamiliar music. The goal of this study was to examine the effect of musical familiarity on neural activity underlying KMI within a highly experienced dancer. In order to investigate this in both primary sensory and motor planning cortical areas, we examined the effects of music familiarity on the primary auditory cortex [Heschl's gyrus (HG)] and the supplementary motor area (SMA). Our findings reveal reduced HG activity and greater SMA activity during imagined dance to familiar music compared to unfamiliar music. We propose that one's internal representations of dance moves are influenced by auditory stimuli and may be specific to a dance style and the music accompanying it.

  17. Chronic hyperammonemia alters the circadian rhythms of corticosteroid hormone levels and of motor activity in rats.

    PubMed

    Ahabrach, Hanan; Piedrafita, Blanca; Ayad, Abdelmalik; El Mlili, Nisrin; Errami, Mohammed; Felipo, Vicente; Llansola, Marta

    2010-05-15

    Patients with liver cirrhosis may present hepatic encephalopathy with a wide range of neurological disturbances and alterations in sleep quality and in the sleep-wake circadian rhythm. Hyperammonemia is a main contributor to the neurological alterations in hepatic encephalopathy. We have assessed, in an animal model of chronic hyperammonemia without liver failure, the effects of hyperammonemia per se on the circadian rhythms of motor activity, temperature, and plasma levels of adrenal corticosteroid hormones. Chronic hyperammonemia alters the circadian rhythms of locomotor activity and of cortisol and corticosterone levels in blood. Different types of motor activity are affected differentially. Hyperammonemia significantly alters the rhythm of spontaneous ambulatory activity, reducing strongly ambulatory counts and slightly average velocity during the night (the active phase) but not during the day, resulting in altered circadian rhythms. In contrast, hyperammonemia did not affect wheel running at all, indicating that it affects spontaneous but not voluntary activity. Vertical activity was affected only very slightly, indicating that hyperammonemia does not induce anxiety. Hyperammonemia abolished completely the circadian rhythm of corticosteroid hormones in plasma, completely eliminating the peaks of cortisol and corticosterone present in control rats at the start of the dark period. The data reported show that chronic hyperammonemia, similar to that present in patients with liver cirrhosis, alters the circadian rhythms of corticosteroid hormones and of motor activity. This suggests that hyperammonemia would be a relevant contributor to the alterations in corticosteroid hormones and in circadian rhythms in patients with liver cirrhosis.

  18. The effect of cerebellar transplantation and enforced physical activity on motor skills and spatial learning in adult Lurcher mutant mice.

    PubMed

    Cendelín, Jan; Korelusová, Ivana; Vozeh, Frantisek

    2009-03-01

    Lurcher mutant mice represent a model of olivocerebellar degeneration. They are used to investigate cerebellar functions, consequences of cerebellar degeneration and methods of therapy influencing them. The aim of the work was to assess the effect of foetal cerebellar graft transplantation, repeated enforced physical activity and the combination of both these types of treatment on motor skills, spontaneous motor activity and spatial learning ability in adult B6CBA Lurcher mice. Foetal cerebellar grafts were applied into the cerebellum of Lurchers in the form of solid tissue pieces. Enforced motor activity was realised through rotarod training. Motor functions were examined using bar, ladder and rotarod tests. Spatial learning was tested in the Morris water maze. Spontaneous motor activity in the open field was observed. The presence of the graft was examined histologically. Enforced physical activity led to moderate improvement of some motor skills and to a significant amelioration of spatial learning ability in Lurchers. The transplantation of cerebellar tissue did not influence motor functions significantly but led to an improvement of spatial learning ability. Mutual advancement of the effects of both types of treatment was not observed. Spontaneous motor activity was influenced neither by physical activity nor by the transplantation. Physical activity did not influence the graft survival and development. Because nerve sprouting and cell migration from the graft to the host cerebellum was poor, the functional effects of the graft should be explained with regard to its trophic influence rather than with any involvement of the grafted cells into neural circuitries.

  19. Age effects on the asymmetry of the motor system: evidence from cortical oscillatory activity.

    PubMed

    Vallesi, Antonino; McIntosh, Anthony R; Kovacevic, Natasa; Chan, Sam C C; Stuss, Donald T

    2010-10-01

    Functional hemispheric asymmetry can be lost with aging. In this electroencephalographic study, we assessed hemispheric asymmetries in regulating motor responses by analyzing oscillatory brain activity during a go/nogo task in younger and older right-handed participants. Three conditions were embedded in the task: go, high-conflict and low-conflict nogo. The hand used to respond to go stimuli was varied block-wise. Independently of the go/nogo conditions and responding hand, young participants showed asymmetric desynchronizations in the mu (10 Hz) and beta (18-22 Hz) frequency bands that was stronger in the scalp sensorimotor region contralateral to the hand used for the go responses, while older adults showed a more symmetric pattern of desynchronization. These findings indicate that a loss of hemispheric asymmetry is a hallmark of the aging motor system, consistent with a decline of inter-hemispheric motor inhibition in normal aging.

  20. Central command differentially affects aortic and carotid sinus baroreflexes at the onset of spontaneous motor activity.

    PubMed

    Matsukawa, Kanji; Ishii, Kei; Idesako, Mitsuhiro; Ishida, Tomoko; Endo, Kana; Liang, Nan

    2013-12-01

    Our laboratory has recently demonstrated that central command provides selective inhibition of the cardiomotor component of aortic (AOR) baroreflex during exercise, preserving carotid sinus (CS) baroreflex. To further explore the differential effects of central command on the arterial baroreflexes, we surgically separated the AOR and CS baroreflex systems, to identify the input-output relationship of each baroreflex system using brief occlusion of the abdominal aorta in decerebrate cats. Baroreflex sensitivity for heart rate (HR) was estimated from the baroreflex ratio between the pressor and bradycardia responses during aortic occlusion and from the slope of the baroreflex curve between the changes in mean arterial blood pressure (ΔMAP) and ΔHR. Spontaneous motor activity accompanied the abrupt increases in HR and MAP. When aortic occlusion was given at the onset of spontaneous motor activity, the baroreflex ratio was blunted to 11-25% of the preexercise value in either intact or AOR baroreflex. The slope of the ΔMAP-ΔHR curve was similarly attenuated at the onset of spontaneous motor activity to 11-18% of the slope during the preexercise period. In contrast, in the CS baroreflex, the baroreflex ratio and curve slope were not significantly (P>0.05) altered by spontaneous motor activity. An upward shift of the baroreflex curve appeared at the onset of spontaneous motor activity, irrespective of the intact, AOR, and CS baroreflex conditions. Taken together, it is concluded that central command provides selective inhibition for the cardiomotor limb of the aortic baroreflex at the onset of exercise, which in turn contributes to an instantaneous increase in HR.

  1. Changing ideas about others' intentions: updating prior expectations tunes activity in the human motor system.

    PubMed

    Jacquet, Pierre O; Roy, Alice C; Chambon, Valérian; Borghi, Anna M; Salemme, Roméo; Farnè, Alessandro; Reilly, Karen T

    2016-05-31

    Predicting intentions from observing another agent's behaviours is often thought to depend on motor resonance - i.e., the motor system's response to a perceived movement by the activation of its stored motor counterpart, but observers might also rely on prior expectations, especially when actions take place in perceptually uncertain situations. Here we assessed motor resonance during an action prediction task using transcranial magnetic stimulation to probe corticospinal excitability (CSE) and report that experimentally-induced updates in observers' prior expectations modulate CSE when predictions are made under situations of perceptual uncertainty. We show that prior expectations are updated on the basis of both biomechanical and probabilistic prior information and that the magnitude of the CSE modulation observed across participants is explained by the magnitude of change in their prior expectations. These findings provide the first evidence that when observers predict others' intentions, motor resonance mechanisms adapt to changes in their prior expectations. We propose that this adaptive adjustment might reflect a regulatory control mechanism that shares some similarities with that observed during action selection. Such a mechanism could help arbitrate the competition between biomechanical and probabilistic prior information when appropriate for prediction.

  2. Changing ideas about others’ intentions: updating prior expectations tunes activity in the human motor system

    PubMed Central

    Jacquet, Pierre O.; Roy, Alice C.; Chambon, Valérian; Borghi, Anna M.; Salemme, Roméo; Farnè, Alessandro; Reilly, Karen T.

    2016-01-01

    Predicting intentions from observing another agent’s behaviours is often thought to depend on motor resonance – i.e., the motor system’s response to a perceived movement by the activation of its stored motor counterpart, but observers might also rely on prior expectations, especially when actions take place in perceptually uncertain situations. Here we assessed motor resonance during an action prediction task using transcranial magnetic stimulation to probe corticospinal excitability (CSE) and report that experimentally-induced updates in observers’ prior expectations modulate CSE when predictions are made under situations of perceptual uncertainty. We show that prior expectations are updated on the basis of both biomechanical and probabilistic prior information and that the magnitude of the CSE modulation observed across participants is explained by the magnitude of change in their prior expectations. These findings provide the first evidence that when observers predict others’ intentions, motor resonance mechanisms adapt to changes in their prior expectations. We propose that this adaptive adjustment might reflect a regulatory control mechanism that shares some similarities with that observed during action selection. Such a mechanism could help arbitrate the competition between biomechanical and probabilistic prior information when appropriate for prediction. PMID:27243157

  3. Chronotype predicts activity patterns in the neural underpinnings of the motor system during the day.

    PubMed

    Peres, Isabella; Vetter, Céline; Blautzik, Janusch; Reiser, Maximilian; Pöppel, Ernst; Meindl, Thomas; Roenneberg, Till; Gutyrchik, Evgeny

    2011-12-01

    Neuroimaging is increasingly used to study the motor system in vivo. Despite many reports of time-of-day influences on motor function at the behavioral level, little is known about these influences on neural motor networks and their activations recorded in neuroimaging. Using functional magnetic resonance imaging (fMRI), the authors studied 15 healthy subjects (9 females; mean ± SD age: 23 ± 3 yrs) performing a self-paced finger-tapping task at different times of day (morning, midday, afternoon, and evening). Blood-oxygenation-level-dependent signal showed systematic differences across the day in task-related motor areas of the brain, specifically in the supplementary motor area, parietal cortex, and rolandic operculum (p(corr)< .0125). The authors found that these time-of-day-dependent hemodynamic modulations are associated with chronotype and not with homeostatic sleep pressure. These results show that consideration of time-of-day for the analysis of fMRI studies is imperative.

  4. Effect of hindlimb unloading on motor activity in adult rats: impact of prenatal stress.

    PubMed

    Canu, M H; Darnaudéry, M; Falempin, M; Maccari, S; Viltart, O

    2007-02-01

    Environmental changes that occur in daily life or, in particular, in situations like actual or simulated microgravity require neuronal adaptation of sensory and motor functions. Such conditions can exert long-lasting disturbances on an individual's adaptive ability. Additionally, prenatal stress also leads to behavioral and physiological abnormalities in adulthood. Therefore, the aims of the present study were (a) to evaluate in adult rats the behavioral motor adaptation that follows 14 days of exposure to simulated microgravity (hindlimb unloading) and (b) to determine whether restraint prenatal stress influences this motor adaptation. For this purpose, the authors assessed rats' motor reactivity to novelty, their skilled walking on a ladder, and their swimming performance. Results showed that unloading severely impaired motor activity and skilled walking. By contrast, it had no effect on swimming performance. Moreover, results demonstrated for the first time that restraint prenatal stress exacerbates the effects of unloading. These results are consistent with the role of a steady prenatal environment in allowing an adequate development and maturation of sensorimotor systems to generate adapted responses to environmental challenges during adulthood.

  5. [Application of transcranial magnetic stimulation for monitoring of the motor cortex condition in dynamics in healthy subjects].

    PubMed

    Gimranov, R F

    2002-01-01

    Transcranial magnetic stimulation (TMS) is used already for sixteen years for studying human central nervous system. The main objective of this work was to study motor thresholds and their hemispheric asymmetry in healthy subjects during TMS. We examined 31 righthanded healthy students. Their motor thresholds were measured in May (before vacations), September (immediately after vacations), and November (two months after vacations). Magnetic stimulator Neurosoft-MS (Ivanovo, Russia) was used for TNS of the motor cortex. It was shown that in the absence of regular active functional loads on the right hand, the motor thresholds in healthy righthanders significantly increased under the TMS of the left hemisphere, and hemispheric asymmetry disappeared under conditions both of muscle relaxation and voluntary contraction. Motor thresholds under the left-side TMS decreased and hemispheric asymmetry recovered with the restart of the regular active functional loads on the right hand.

  6. Cerebral Activity Associated with Transient Sleep-Facilitated Reduction in Motor Memory Vulnerability to Interference

    PubMed Central

    Albouy, Geneviève; King, Bradley R.; Schmidt, Christina; Desseilles, Martin; Dang-Vu, Thien Thanh; Balteau, Evelyne; Phillips, Christophe; Degueldre, Christian; Orban, Pierre; Benali, Habib; Peigneux, Philippe; Luxen, André; Karni, Avi; Doyon, Julien; Maquet, Pierre; Korman, Maria

    2016-01-01

    Motor memory consolidation is characterized, in part, by a sleep-facilitated decrease in susceptibility to subsequent interfering experiences. Surprisingly, the cerebral substrates supporting this phenomenon have never been examined. We used fMRI to investigate the neural correlates of the influence of sleep on interference to motor memory consolidation. Healthy young adults were trained on a sequential motor task, and subsequently practiced a second competing sequence after an interval including diurnal sleep or wakefulness. Participants were then retested on the initial sequence 8 h and 24 h (including nocturnal sleep) after training. Results demonstrated that a post-training nap significantly protected memory against interference at 8 h and modulated the link between cerebral activity and behavior, such that a smaller post-interference decrease in cortico-striatal activity was associated with better performance. Interestingly, the protective effect of a nap was only transitory, as both groups performed similarly at 24 h. Activity in cortico-striatal areas that was disrupted during the day, presumably due to interference and accentuated in the absence of a nap, was restored overnight. Altogether, our findings offer the first evidence that cortico-striatal areas play a critical role in the transient sleep-facilitated reduction in motor memory vulnerability and in the overnight restoration of previously degraded memories. PMID:27725727

  7. Cerebral Activity Associated with Transient Sleep-Facilitated Reduction in Motor Memory Vulnerability to Interference.

    PubMed

    Albouy, Geneviève; King, Bradley R; Schmidt, Christina; Desseilles, Martin; Dang-Vu, Thien Thanh; Balteau, Evelyne; Phillips, Christophe; Degueldre, Christian; Orban, Pierre; Benali, Habib; Peigneux, Philippe; Luxen, André; Karni, Avi; Doyon, Julien; Maquet, Pierre; Korman, Maria

    2016-10-11

    Motor memory consolidation is characterized, in part, by a sleep-facilitated decrease in susceptibility to subsequent interfering experiences. Surprisingly, the cerebral substrates supporting this phenomenon have never been examined. We used fMRI to investigate the neural correlates of the influence of sleep on interference to motor memory consolidation. Healthy young adults were trained on a sequential motor task, and subsequently practiced a second competing sequence after an interval including diurnal sleep or wakefulness. Participants were then retested on the initial sequence 8 h and 24 h (including nocturnal sleep) after training. Results demonstrated that a post-training nap significantly protected memory against interference at 8 h and modulated the link between cerebral activity and behavior, such that a smaller post-interference decrease in cortico-striatal activity was associated with better performance. Interestingly, the protective effect of a nap was only transitory, as both groups performed similarly at 24 h. Activity in cortico-striatal areas that was disrupted during the day, presumably due to interference and accentuated in the absence of a nap, was restored overnight. Altogether, our findings offer the first evidence that cortico-striatal areas play a critical role in the transient sleep-facilitated reduction in motor memory vulnerability and in the overnight restoration of previously degraded memories.

  8. Population decoding of motor cortical activity using a generalized linear model with hidden states.

    PubMed

    Lawhern, Vernon; Wu, Wei; Hatsopoulos, Nicholas; Paninski, Liam

    2010-06-15

    Generalized linear models (GLMs) have been developed for modeling and decoding population neuronal spiking activity in the motor cortex. These models provide reasonable characterizations between neural activity and motor behavior. However, they lack a description of movement-related terms which are not observed directly in these experiments, such as muscular activation, the subject's level of attention, and other internal or external states. Here we propose to include a multi-dimensional hidden state to address these states in a GLM framework where the spike count at each time is described as a function of the hand state (position, velocity, and acceleration), truncated spike history, and the hidden state. The model can be identified by an Expectation-Maximization algorithm. We tested this new method in two datasets where spikes were simultaneously recorded using a multi-electrode array in the primary motor cortex of two monkeys. It was found that this method significantly improves the model-fitting over the classical GLM, for hidden dimensions varying from 1 to 4. This method also provides more accurate decoding of hand state (reducing the mean square error by up to 29% in some cases), while retaining real-time computational efficiency. These improvements on representation and decoding over the classical GLM model suggest that this new approach could contribute as a useful tool to motor cortical decoding and prosthetic applications.

  9. [Effect of the sharply strengthened motor activity on heart pumping ability of rats and mechanisms of its regulation].

    PubMed

    Nikitin, A S; Abzalov, R A; Abzalov, N I; Vafina, E Z

    2013-08-01

    The indicators of heart pumping ability of rats at a muscular loading of the maximum power and also in the conditions of transition from sharply strengthened motor activity regime on a strengthened motor activity regime at adrenergic influence stimulation and blockade were investigated. At rats of 100-daily age at the strengthened motor activity heart rate is less, and blood stroke volume is more, than in the rats, subject to muscular loading of the maximum power. The adrenergic influence on the heart's pumping ability of sharply strengthened motor activity rats is much more, than of unlimited motor activity rats. At the α1-adrenoreceptors blockade at 100-daily rats the decreasing in intensity of muscular loading causes increased in adrenergic influence on heart pumping ability.

  10. Increased activity in frontal motor cortex compensates impaired speech perception in older adults

    PubMed Central

    Du, Yi; Buchsbaum, Bradley R.; Grady, Cheryl L.; Alain, Claude

    2016-01-01

    Understanding speech in noisy environments is challenging, especially for seniors. Although evidence suggests that older adults increasingly recruit prefrontal cortices to offset reduced periphery and central auditory processing, the brain mechanisms underlying such compensation remain elusive. Here we show that relative to young adults, older adults show higher activation of frontal speech motor areas as measured by functional MRI during a syllable identification task at varying signal-to-noise ratios. This increased activity correlates with improved speech discrimination performance in older adults. Multivoxel pattern classification reveals that despite an overall phoneme dedifferentiation, older adults show greater specificity of phoneme representations in frontal articulatory regions than auditory regions. Moreover, older adults with stronger frontal activity have higher phoneme specificity in frontal and auditory regions. Thus, preserved phoneme specificity and upregulation of activity in speech motor regions provide a means of compensation in older adults for decoding impoverished speech representations in adverse listening conditions. PMID:27483187

  11. A threshold of mechanical strain intensity for the direct activation of osteoblast function exists in a murine maxilla loading model.

    PubMed

    Suzuki, Natsuki; Aoki, Kazuhiro; Marcián, Petr; Borák, Libor; Wakabayashi, Noriyuki

    2016-10-01

    The response to the mechanical loading of bone tissue has been extensively investigated; however, precisely how much strain intensity is necessary to promote bone formation remains unclear. Combination studies utilizing histomorphometric and numerical analyses were performed using the established murine maxilla loading model to clarify the threshold of mechanical strain needed to accelerate bone formation activity. For 7 days, 191 kPa loading stimulation for 30 min/day was applied to C57BL/6J mice. Two regions of interest, the AWAY region (away from the loading site) and the NEAR region (near the loading site), were determined. The inflammatory score increased in the NEAR region, but not in the AWAY region. A strain intensity map obtained from [Formula: see text] images was superimposed onto the images of the bone formation inhibitor, sclerostin-positive cell localization. The number of sclerostin-positive cells significantly decreased after mechanical loading of more than [Formula: see text] in the AWAY region, but not in the NEAR region. The mineral apposition rate, which shows the bone formation ability of osteoblasts, was accelerated at the site of surface strain intensity, namely around [Formula: see text], but not at the site of lower surface strain intensity, which was around [Formula: see text] in the AWAY region, thus suggesting the existence of a strain intensity threshold for promoting bone formation. Taken together, our data suggest that a threshold of mechanical strain intensity for the direct activation of osteoblast function and the reduction of sclerostin exists in a murine maxilla loading model in the non-inflammatory region.

  12. Pulsed Light Stimulation Increases Boundary Preference and Periodicity of Episodic Motor Activity in Drosophila melanogaster

    PubMed Central

    Qiu, Shuang; Xiao, Chengfeng; Robertson, R. Meldrum

    2016-01-01

    There is considerable interest in the therapeutic benefits of long-term sensory stimulation for improving cognitive abilities and motor performance of stroke patients. The rationale is that such stimulation would activate mechanisms of neural plasticity to promote enhanced coordination and associated circuit functions. Experimental approaches to characterize such mechanisms are needed. Drosophila melanogaster is one of the most attractive model organisms to investigate neural mechanisms responsible for stimulation-induced behaviors with its powerful accessibility to genetic analysis. In this study, the effect of chronic sensory stimulation (pulsed light stimulation) on motor activity in w1118 flies was investigated. Flies were exposed to a chronic pulsed light stimulation protocol prior to testing their performance in a standard locomotion assay. Flies responded to pulsed light stimulation with increased boundary preference and travel distance in a circular arena. In addition, pulsed light stimulation increased the power of extracellular electrical activity, leading to the enhancement of periodic electrical activity which was associated with a centrally-generated motor pattern (struggling behavior). In contrast, such periodic events were largely missing in w1118 flies without pulsed light treatment. These data suggest that the sensory stimulation induced a response in motor activity associated with the modifications of electrical activity in the central nervous system (CNS). Finally, without pulsed light treatment, the wild-type genetic background was associated with the occurrence of the periodic activity in wild-type Canton S (CS) flies, and w+ modulated the consistency of periodicity. We conclude that pulsed light stimulation modifies behavioral and electrophysiological activities in w1118 flies. These data provide a foundation for future research on the genetic mechanisms of neural plasticity underlying such behavioral modification. PMID:27684063

  13. Subthalamic nucleus activity in the awake hemiparkinsonian rat: relationships with motor and cognitive networks.

    PubMed

    Delaville, Claire; McCoy, Alex J; Gerber, Colin M; Cruz, Ana V; Walters, Judith R

    2015-04-29

    Oscillatory activity in both beta and gamma ranges has been recorded in the subthalamic nucleus (STN) of Parkinson's disease (PD) patients and linked to motor function, with beta activity considered antikinetic, and gamma activity, prokinetic. However, the extent to which nonmotor networks contribute to this activity is unclear. This study uses hemiparkinsonian rats performing a treadmill walking task to compare synchronized STN local field potential (LFP) activity with activity in motor cortex (MCx) and medial prefrontal cortex (mPFC), areas involved in motor and cognitive processes, respectively. Data show increases in STN and MCx 29-36 Hz LFP spectral power and coherence after dopamine depletion, which are reduced by apomorphine and levodopa treatments. In contrast, recordings from mPFC 3 weeks after dopamine depletion failed to show peaks in 29-36 Hz LFP power. However, mPFC and STN both showed peaks in the 45-55 Hz frequency range in LFP power and coherence during walking before and 21 days after dopamine depletion. Interestingly, power in this low gamma range was transiently reduced in both mPFC and STN after dopamine depletion but recovered by day 21. In contrast to the 45-55 Hz activity, the amplitude of the exaggerated 29-36 Hz rhythm in the STN was modulated by paw movement. Furthermore, as in PD patients, after dopamine treatment a third band (high gamma) emerged in the lesioned hemisphere. The results suggest that STN integrates activity from both motor and cognitive networks in a manner that varies with frequency, behavioral state, and the integrity of the dopamine system.

  14. Anorectic and motor activity effects of some 1-benzylcycloalkylamines in the rat.

    PubMed

    Mrongovius, R I; Ghosh, P; Bolt, A G

    1979-01-01

    1. A series of 1-benzylcycloalkylamines with cycloalkyl rings of five, six or seven carbons and with various benzyl ring substituents (3-Cl, 4-Cl, 4-F, 3-CF3) was prepared and tested for anorectic and motor activity effects in rats. 2. Two potent, non-stimulant, anorectics were found: 1-(3-chlorobenzyl)-cycloheptylamine, and its N-methyl analogue. The activity of these compounds resembled that of chlorphentermine.

  15. Impairments in prehension produced by early postnatal sensory motor cortex activity blockade.

    PubMed

    Martin, J H; Donarummo, L; Hacking, A

    2000-02-01

    This study examined the effects of blocking neural activity in sensory motor cortex during early postnatal development on prehension. We infused muscimol, either unilaterally or bilaterally, into the sensory motor cortex of cats to block activity continuously between postnatal weeks 3-7. After stopping infusion, we trained animals to reach and grasp a cube of meat and tested behavior thereafter. Animals that had not received muscimol infusion (unilateral saline infusion; age-matched) reached for the meat accurately with small end-point errors. They grasped the meat using coordinated digit flexion followed by forearm supination on 82.7% of trials. Performance using either limb did not differ significantly. In animals receiving unilateral muscimol infusion, reaching and grasping using the limb ipsilateral to the infusion were similar to controls. The limb contralateral to infusion showed significant increases in systematic and variable reaching end-point errors, often requiring subsequent corrective movements to contact the meat. Grasping occurred on only 14.8% of trials, replaced on most trials by raking without distal movements. Compensatory adjustments in reach length and angle, to maintain end-point accuracy as movements were started from a more lateral position, were less effective using the contralateral limb than ipsilateral limb. With bilateral inactivations, the form of reaching and grasping impairments was identical to that produced by unilateral inactivation, but the magnitude of the reaching impairments was less. We discuss these results in terms of the differential effects of unilateral and bilateral inactivation on corticospinal tract development. We also investigated the degree to which these prehension impairments after unilateral blockade reflect control by each hemisphere. In animals that had received unilateral blockade between postnatal weeks (PWs) 3 and 7, we silenced on-going activity (after PW 11) during task performance using continuous

  16. Respiratory pattern in awake rats: effects of motor activity and of alerting stimuli.

    PubMed

    Kabir, Muammar M; Beig, Mirza I; Baumert, Mathias; Trombini, Mimosa; Mastorci, Francesca; Sgoifo, Andrea; Walker, Frederick R; Day, Trevor A; Nalivaiko, Eugene

    2010-08-04

    Our aim was to assess the impact of motor activity and of arousing stimuli on respiratory rate in the awake rats. The study was performed in male adult Sprague-Dawley (SD, n=5) and Hooded Wistar (HW, n=5) rats instrumented for ECG telemetry. Respiratory rate was recorded using whole-body plethysmograph, with a piezoelectric sensor attached for the simultaneous assessment of motor activity. All motor activity was found to be associated with an immediate increase in respiratory rate that remained elevated for the whole duration of movement; this was reflected by: i) bimodal distribution of respiratory intervals (modes for slow peak: 336+/-19 and 532+/-80 ms for HW and SD, p<0.05; modes for fast peak 128+/-6 and 132+/-7 ms for HW and SD, NS); and ii) a tight correlation between total movement time and total time of tachypnoea, with an R(2) ranging 0.96-0.99 (n=10, p<0001). The extent of motor-related tachypnoea was significantly correlated with the intensity of associated movement. Mild alerting stimuli produced stereotyped tachypnoeic responses, without affecting heart rate: tapping the chamber raised respiratory rate from 117+/-7 to 430+/-15 cpm; sudden side move--from 134+/-13 to 487+/-16 cpm, and turning on lights--from 136+/-12 to 507+/-14 cpm (n=10; p<0.01 for all; no inter-strain differences). We conclude that: i) sniffing is an integral part of the generalized arousal response and does not depend on the modality of sensory stimuli; ii) tachypnoea is a sensitive index of arousal; and iii) respiratory rate is tightly correlated with motor activity.

  17. Ce-PROMOTED Bond Activation of Ethylene Probed by Mass-Analyzed Threshold Ionization Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yuchen; Kumari, Sudesh; Cao, Wenjin; Yang, Dong-Sheng

    2015-06-01

    Ce(C_2H_2) and Ce(C_4H_6) complexes were observed in the reaction of Ce atom with ethylene in a supersonic molecular beam source and investigated by mass-analyzed threshold ionization spectroscopy (MATI) and theoretical calculations. Preliminary data analysis shows that Ce(C_2H_2) has a triangle structure (C2v) with Ce binding to C_2H_2 in a two-fold mode and Ce(C_4H_6) has a five-membered metallacyclic structure (Cs) with Ce binding to the two terminal carbon atoms of butadiene. The ground states of both species are triplets with a 4f16s1 Ce-based electron configuration and those of the corresponding ions are doublets from the removal of the 6s1 electron. The Ce(C_2H_2) complex is formed by ethylene dehydrogenation, whereas Ce(C_4H_6) by ethylene dehydrogenation and carbon-carbon bond coupling. The MATI spectra of Ce(C_2H_2) and Ce(C_4H_6) are rather similar to those of the corresponding La complexes previously observed by our group, except that the spectra of the Ce complexes exhibit two electronic transitions with almost identical vibrational intervals. This observation suggests that the existence of a 4f electron results in an increased complexity of the electronic spectra and states of the lanthanide hydrocarbons.

  18. Proton and Electron Threshold Energy Measurements for Extravehicular Activity Space Suits. Chapter 2

    NASA Technical Reports Server (NTRS)

    Moyers, M. F.; Nelson, G. D.; Saganti, P. B.

    2003-01-01

    Construction of ISS will require more than 1000 hours of EVA. Outside of ISS during EVA, astronauts and cosmonauts are likely to be exposed to a large fluence of electrons and protons. Development of radiation protection guidelines requires the determination of the minimum energy of electrons and protons that penetrate the suits at various locations. Measurements of the water-equivalent thickness of both US. and Russian EVA suits were obtained by performing CT scans. Specific regions of interest of the suits were further evaluated using a differential range shift technique. This technique involved measuring thickness ionization curves for 6-MeV electron and 155-MeV proton beams with ionization chambers using a constant source-to-detector distance. The thicknesses were obtained by stacking polystyrene slabs immediately upstream of the detector. The thicknesses of the 50% ionizations relative to the maximum ionizations were determined. The detectors were then placed within the suit and the stack thickness adjusted until the 50% ionization was reestablished. The difference in thickness between the 50% thicknesses was then used with standard range-energy tables to determine the threshold energy for penetration. This report provides a detailed description of the experimental arrangement and results.

  19. Physical activity-associated gene expression signature in nonhuman primate motor cortex.

    PubMed

    Mitchell, Amanda C; Leak, Rehana K; Garbett, Krassimira; Zigmond, Michael J; Cameron, Judy L; Mirnics, Károly

    2012-03-01

    It has been established that weight gain and weight loss are heavily influenced by activity level. In this study, we hypothesized that the motor cortex exhibits a distinct physical activity-associated gene expression profile, which may underlie changes in weight associated with movement. Using DNA microarrays we profiled gene expression in the motor cortex of a group of 14 female rhesus monkeys (Macaca mulatta) with a wide range of stable physical activity levels. We found that neuronal growth factor signaling and nutrient sensing transcripts in the brain were highly correlated with physical activity. A follow-up of AKT3 expression changes (a gene at the apex of neuronal survival and nutrient sensing) revealed increased protein levels of total AKT, phosphorylated AKT, and forkhead box O3 (FOXO3), one of AKT's main downstream effectors. In addition, we successfully validated three other genes via quantitative polymerase chain reaction (qPCR) (cereblon (CRBN), origin recognition complex subunit 4-like, and pyruvate dehydrogenase 4 (PDK4)). We conclude that these genes are important in the physical activity-associated pathway in the motor cortex, and may be critical for physical activity-associated changes in body weight and neuroprotection.

  20. Reading stories activates neural representations of visual and motor experiences.

    PubMed

    Speer, Nicole K; Reynolds, Jeremy R; Swallow, Khena M; Zacks, Jeffrey M

    2009-08-01

    To understand and remember stories, readers integrate their knowledge of the world with information in the text. Here we present functional neuroimaging evidence that neural systems track changes in the situation described by a story. Different brain regions track different aspects of a story, such as a character's physical location or current goals. Some of these regions mirror those involved when people perform, imagine, or observe similar real-world activities. These results support the view that readers understand a story by simulating the events in the story world and updating their simulation when features of that world change.

  1. Reading Stories Activates Neural Representations of Visual and Motor Experiences

    PubMed Central

    Speer, Nicole K.; Reynolds, Jeremy R.; Swallow, Khena M.; Zacks, Jeffrey M.

    2010-01-01

    To understand and remember stories, readers integrate their knowledge of the world with information in the text. Here we present functional neuroimaging evidence that neural systems track changes in the situation described by a story. Different brain regions track different aspects of a story, such as a character’s physical location or current goals. Some of these regions mirror those involved when people perform, imagine, or observe similar real-world activities. These results support the view that readers understand a story by simulating the events in the story world and updating their simulation when features of that world change. PMID:19572969

  2. Active Transport of Nanomaterials Using Motor Proteins -Final Report

    SciTech Connect

    Hess, Henry

    2005-09-01

    During the six months of funding we have focused first on the completion of the research begun at the University of Washington in the previous funding cycle. Specifically, we developed a method to polymerize oriented networks of microtubules on lithographically patterned surfaces (M.S. thesis Robert Doot). The properties of active transport have been studied detail, yielding insights into the dispersion mechanisms (Nitta et al.). The assembly of multifunctional structures with a microtubule core has been investigated (Ramachandran et al.). Isaac Luria (B.S. in physics, U. of Florida 2005) worked on the directed assembly of nanoscale, non-equilibrium structures as a summer intern. He is now a graduate student in my group at the University of Florida. T. Nitta and H. Hess: Dispersion in Active Transport by Kinesin-Powered Molecular Shuttles, Nano Letters, 5, 1337-1342 (2005) S. Ramachandran, K.-H. Ernst, G. D. Bachand, V. Vogel, H. Hess*: Selective Loading of Kinesin-Powered Molecular Shuttles with Protein Cargo and its Application to Biosensing, submitted to Small (2005)

  3. A liquid phase based C. elegans behavioral analysis system identifies motor activity loss in a nematode Parkinson's disease model.

    PubMed

    Zheng, Maohua; Gorelenkova, Olga; Yang, Jiong; Feng, Zhaoyang

    2012-03-15

    Motor activity of Caenorhabditis elegans is widely used to study the mechanisms ranging from basic neuronal functions to human neurodegenerative diseases. It may also serve as a paradigm to screen for potential therapeutic reagents treating these diseases. Here, we developed an automated, 96-well plate and liquid phase based system that quantifies nematode motor activity in real time. Using this system, we identified an adult-onset, ageing-associated motor activity loss in a transgenic nematode line expressing human pathogenic G2019S mutant LRRK2 (leucine-rich repeat kinase 2), the leading genetic cause of Parkinson's disease characterized by dopaminergic neurodegeneration associated motor deficient mainly in elder citizens. Thus, our system may be used as a platform to screen for potential therapeutic drugs treating Parkinson's disease. It can also be used to monitor motor activity of nematodes in liquid phase at similar scenario.

  4. The effects of an early motor skill intervention on motor skills, levels of physical activity, and socialization in young children with autism spectrum disorder: A pilot study.

    PubMed

    Ketcheson, Leah; Hauck, Janet; Ulrich, Dale

    2017-05-01

    Despite evidence suggesting one of the earliest indicators of an eventual autism spectrum disorder diagnoses is an early motor delay, there remain very few interventions targeting motor behavior as the primary outcome for young children with autism spectrum disorder. The aim of this pilot study was to measure the efficacy of an intensive motor skill intervention on motor skills (Test of Gross Motor Development-2), physical activity (accelerometers), and socialization (Playground Observation of Peer Engagement) in young children with autism spectrum disorder. A total of 20 children with autism spectrum disorder aged 4-6 years participated. The experimental group ( n = 11) participated in an 8-week intervention consisting of motor skill instruction for 4 h/day, 5 days/week. The control group ( n = 9) did not receive the intervention. A repeated-measures analysis of covariance revealed statistically significant differences between groups in all three motor outcomes, locomotor ( F(1, 14) = 10.07, p < 0.001, partial η(2) = 0.42), object control ( F(1, 14) = 12.90, p < 0.001, partial η(2) = 0.48), and gross quotient ( F(1, 14) = 15.61, p < 0.01, partial η(2) = 0.53). Findings shed light on the importance of including motor programming as part of the early intervention services delivered to young children with autism spectrum disorder.

  5. A metal switch for controlling the activity of molecular motor proteins.

    PubMed

    Cochran, Jared C; Zhao, Yu Cheng; Wilcox, Dean E; Kull, F Jon

    2011-12-25

    Kinesins are molecular motors that require a divalent metal ion (for example, Mg(2+)) to convert the energy of ATP hydrolysis into directed force production along microtubules. Here we present the crystal structure of a recombinant kinesin motor domain bound to Mn(2+) and ADP and report on a serine-to-cysteine substitution in the switch 1 motif of kinesin that allows its ATP hydrolysis activity to be controlled by adjusting the ratio of Mn(2+) to Mg(2+). This mutant kinesin binds ATP similarly in the presence of either metal ion, but its ATP hydrolysis activity is greatly diminished in the presence of Mg(2+). In human kinesin-1 and kinesin-5 as well as Drosophila melanogaster kinesin-10 and kinesin-14, this defect is rescued by Mn(2+), providing a way to control both the enzymatic activity and force-generating ability of these nanomachines.

  6. Ce-PROMOTED Bond Activation of Propene Probed by Mass-Analyzed Threshold Ionization Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yuchen; Kumari, Sudesh; Yang, Dong-Sheng

    2016-06-01

    The reaction of Ce + propene (CH2=CH-CH3) was carried out in a laser-ablation supersonic molecular beam source. CeC_2H_2, CeC_3H_4, CeC_3H_6, CeC_4H_6, CeC_6H10, and CeC_6H12 were identified by photoionization time-of-flight mass spectrometric measurements, and their structures and electronic states were investigated with mass-analyzed threshold ionization (MATI) spectroscopy and theoretical calculations. The metal complexes containing two or three carbon atoms were formed by the C-C bond breakage (CeC_2H_2), dehydrogenation (CeC_3H_4), or metal insertion into a C-H bond (CeC_3H_6) of a propene molecule. The larger complexes with four to six carbons are formed through secondary reactions involving C-C bond coupling and dehydrogenation. The ground electronic states of the neutral CeC_2H_2, CeC_3H_4, CeC_3H_6, and CeC_4H_6 complexes are triplets with a 4f16s1 electron configuration on the Ce center, and those of the corresponding ions are doublet with a 4f1 configuration. Their MATI spectra are much more complex than those of the corresponding La species formed in the La + propene reaction previously observed by our group. The spectral complexity arises from possibly multiple electronic transitions due to the existence of a 4f electron of the Ce atom which could be located in any one of the seven f-atomic orbitals or involved in considerable spin-orbit interactions.

  7. Special Feature: Liquids and Structural Glasses Special Feature: An active biopolymer network controlled by molecular motors

    NASA Astrophysics Data System (ADS)

    Koenderink, Gijsje H.; Dogic, Zvonimir; Nakamura, Fumihiko; Bendix, Poul M.; MacKintosh, Frederick C.; Hartwig, John H.; Stossel, Thomas P.; Weitz, David A.

    2009-09-01

    We describe an active polymer network in which processive molecular motors control network elasticity. This system consists of actin filaments cross-linked by filamin A (FLNa) and contracted by bipolar filaments of muscle myosin II. The myosin motors stiffen the network by more than two orders of magnitude by pulling on actin filaments anchored in the network by FLNa cross-links, thereby generating internal stress. The stiffening response closely mimics the effects of external stress applied by mechanical shear. Both internal and external stresses can drive the network into a highly nonlinear, stiffened regime. The active stress reaches values that are equivalent to an external stress of 14 Pa, consistent with a 1-pN force per myosin head. This active network mimics many mechanical properties of cells and suggests that adherent cells exert mechanical control by operating in a nonlinear regime where cell stiffness is sensitive to changes in motor activity. This design principle may be applicable to engineering novel biologically inspired, active materials that adjust their own stiffness by internal catalytic control.

  8. Entrapment of adult fingers between window glass and seal entry of a motor vehicle side door: an experimental study for investigation of the force at the subjective pain threshold.

    PubMed

    Hohendorff, B; Weidermann, C; Pollinger, P; Burkhart, K J; Konerding, M A; Prommersberger, K J; Rommens, P M

    2011-07-28

    In modern motor vehicles with automatic power windows, a potential hazard exists for jam events of fingers between the window glass and seal entry. This study determined entrapment forces acting on adult fingers at the subjective maximum pain threshold during entrapment in such windows. The length and the girth of the proximal and distal interphalangeal joints of the triphalangeal fingers of the right hands of 109 participants (60 men, 49 women) were measured; the diameter was calculated from girth, which was assumed to be circular. The automatic power window system of a motor vehicle side door was changed to a mechanical system. During entrapment the force distributed across the four proximal interphalangeal joints (PIPs), and separately on the proximal interphalangeal (iPIP) and then the distal interphalangeal (iDIP) joints of the index finger was measured using a customized force sensor. The maximum bearable entrapment force was 97.2 ± 51.8 N for the PIPs, 43.4 ± 19.9 N for the iPIP, and 36.9 ± 17.8 N for the iDIP. The positive correlation between finger diameter and maximum entrapment force was significant. Particularly with regard to the risk to children's fingers, the 100 N statutory boundary value for closing force of electronic power windows should be reduced.

  9. Adaptive Cellular Interactions in the Immune System: The Tunable Activation Threshold and the Significance of Subthreshold Responses

    NASA Astrophysics Data System (ADS)

    Grossman, Zvi; Paul, William E.

    1992-11-01

    A major challenge for immunologists is to explain how the immune system adjusts its responses to the microenvironmental context in which antigens are recognized. We propose that lymphocytes achieve this by tuning and updating their responsiveness to recurrent signals. In particular, cellular anergy in vivo is a dynamic state in which the threshold for a stereotypic mode of activation has been elevated. Anergy is associated with other forms of cellular activity, not paralysis. Cells engaged in such subthreshold interactions mediate functions such as maintenance of immunological memory and control of infections. In such interactions, patterns of signals are recognized and classified and evoke selective responses. The robust mechanism proposed for segregation of suprathreshold and subthreshold immune responses allows lymphocytes to use recognition of self-antigens in executing physiological functions. Autoreactivity is allowed where it is dissociated from uncontrolled aggression.

  10. Regional vulnerability of the hippocampus to repeated motor activity deprivation.

    PubMed

    Faraji, Jamshid; Soltanpour, Nabiollah; Moeeini, Reza; Hosseini, Seyed Abedin; Pakdel, Shiva; Moharrerie, Alireza; Arjang, Kaveh; Soltanpour, Nasrin; Metz, Gerlinde A S

    2016-03-15

    Spontaneous vertical and horizontal exploratory movements are integral components of rodent behavior. Little is known, however, about the structural and functional consequences of restricted spontaneous exploration. Here, we report two experiments to probe whether restriction in vertical activity (rearing) in rats could induce neuro-hormonal and behavioral disturbances. Rearing movements in rats were deprived for 3h/day for 30 consecutive days by placing the animal into a circular tunnel task. Rats temporarily deprived of rearing behavior showed elevated plasma corticosterone levels but no detectable psychological distress and/or anxiety-related behavior within an elevated plus maze. However, rats emitted a greater number of 22-kHz ultrasonic vocalizations and spent significantly more time vocalizing than controls when deprived of their rearing behavior. Despite intact spatial performance within wet- and dry-land spatial tasks, rearing-deprived rats also exhibited a significant alteration in search strategies within both spatial tasks along with reduced volume and neuron number in the hippocampal subregion CA2. These data suggest a new approach to test the importance of free exploratory behavior in endocrine and structural manifestations. The results support a central role of the CA2 in spontaneous exploratory behavior and vulnerability to psychological stress.

  11. Nano-engineered living bacterial motors for active microfluidic mixing.

    PubMed

    Al-Fandi, M; Jaradat, M A K; Fandi, K; Beech, J P; Tegenfeldt, J O; Yih, T C

    2010-09-01

    Active micromixers with rotating elements are attractive microfluidic actuators in many applications because of their mixing ability at a short distance. However, miniaturising the impeller design poses technical challenges including the fabrication and driving means. As a possible solution inspired by macro magnetic bar-stirrers, this study proposes the use of tethered, rotating bacteria as mixing elements. A tethered cell is a genetically engineered, harmless Escherichia coli (E. coli) attached to a surface by a single, shortened flagellum. The tethered flagellum acts as a pivot around which the entire cell body smoothly rotates. Videomicroscopy, image analysis and computational fluid dynamics (CFD) are utilised to demonstrate a proof-of-concept for the micro mixing process. Flow visualisation experiments show that a approximately 3 microm long tethered E. coli rotating at approximately 240 rpm can circulate a 1 microm polystyrene bead in the adjacent area at an average speed of nearly 4 microm/s. The Peclet (Peb) number for the stirred bead is evaluated to approximately 4. CFD simulations show that the rotary motion of a tethered E. coli rotating at 240 rpm can generate fluid velocities, up to 37 microm/s bordering the cell envelop. Based on these simulations, the Strouhal number (St) is calculated to about 2. This hybrid bio-inorganic micromxer could be used as a local, disposable mixer.

  12. Understanding Threshold Effects of Organized Activity Involvement in Adolescents: Sex and Family Income as Moderators

    ERIC Educational Resources Information Center

    Randall, Edin T.; Bohnert, Amy M.

    2012-01-01

    The current study examined the curvilinear links between involvement in organized activities (OA) and sport activities specifically and various indicators of psychological and social development. Participants included 150 9th and 10th graders (57% females) from an urban, selective-enrollment high school. Eligibility for admission is based on city…

  13. Motor neuron cell bodies are actively positioned by Slit/Robo repulsion and Netrin/DCC attraction.

    PubMed

    Kim, Minkyung; Fontelonga, Tatiana; Roesener, Andrew P; Lee, Haeram; Gurung, Suman; Mendonca, Philipe R F; Mastick, Grant S

    2015-03-01

    Motor neurons differentiate from a ventral column of progenitors and settle in static clusters, the motor nuclei, next to the floor plate. Within these cell clusters, motor neurons receive afferent input and project their axons out to muscle targets. The molecular mechanisms that position motor neurons in the neural tube remain poorly understood. The floor plate produces several types of guidance cues with well-known roles in attracting and repelling axons, including the Slit family of chemorepellents via their Robo receptors, and Netrin1 via its DCC attractive receptor. In the present study we found that Islet1(+) motor neuron cell bodies invaded the floor plate of Robo1/2 double mutant mouse embryos or Slit1/2/3 triple mutants. Misplaced neurons were born in their normal progenitor column, but then migrated tangentially into the ventral midline. Robo1 and 2 receptor expression in motor neurons was confirmed by reporter gene staining and anti-Robo antibody labeling. Mis-positioned motor neurons projected their axons longitudinally within the floor plate, and failed to reach their normal exit points. To test for potential counteracting ventral attractive signals, we examined Netrin-1 and DCC mutants, and found that motor neurons shifted dorsally in the hindbrain and spinal cord, suggesting that Netrin-1/DCC signaling normally attracts motor neurons closer to the floor plate. Our results show that motor neurons are actively migrating cells, and are normally trapped in a static position by Slit/Robo repulsion and Netrin-1/DCC attraction.

  14. Interactive Effects of Dorsomedial Hypothalamic Nucleus and Time-Restricted Feeding on Fractal Motor Activity Regulation.

    PubMed

    Lo, Men-Tzung; Chiang, Wei-Yin; Hsieh, Wan-Hsin; Escobar, Carolina; Buijs, Ruud M; Hu, Kun

    2016-01-01

    One evolutionary adaptation in motor activity control of animals is the anticipation of food that drives foraging under natural conditions and is mimicked in laboratory with daily scheduled food availability. Food anticipation is characterized by increased activity a few hours before the feeding period. Here we report that 2-h food availability during the normal inactive phase of rats not only increases activity levels before the feeding period but also alters the temporal organization of motor activity fluctuations over a wide range of time scales from minutes up to 24 h. We demonstrate this multiscale alteration by assessing fractal patterns in motor activity fluctuations-similar fluctuation structure at different time scales-that are robust in intact animals with ad libitum food access but are disrupted under food restriction. In addition, we show that fractal activity patterns in rats with ad libitum food access are also perturbed by lesion of the dorsomedial hypothalamic (DMH)-a neural node that is involved in food anticipatory behavior. Instead of further disrupting fractal regulation, food restriction restores the disrupted fractal patterns in these animals after the DMH lesion despite the persistence of the 24-h rhythms. This compensatory effect of food restriction is more clearly pronounced in the same animals after the additional lesion of the suprachiasmatic nucleus (SCN)-the central master clock in the circadian system that generates and orchestrates circadian rhythms in behavior and physiological functions in synchrony with day-night cycles. Moreover, all observed influences of food restriction persist even when data during the food anticipatory and feeding period are excluded. These results indicate that food restriction impacts dynamics of motor activity at different time scales across the entire circadian/daily cycle, which is likely caused by the competition between the food-induced time cue and the light-entrained circadian rhythm of the SCN. The

  15. Interactive Effects of Dorsomedial Hypothalamic Nucleus and Time-Restricted Feeding on Fractal Motor Activity Regulation

    PubMed Central

    Lo, Men-Tzung; Chiang, Wei-Yin; Hsieh, Wan-Hsin; Escobar, Carolina; Buijs, Ruud M.; Hu, Kun

    2016-01-01

    One evolutionary adaptation in motor activity control of animals is the anticipation of food that drives foraging under natural conditions and is mimicked in laboratory with daily scheduled food availability. Food anticipation is characterized by increased activity a few hours before the feeding period. Here we report that 2-h food availability during the normal inactive phase of rats not only increases activity levels before the feeding period but also alters the temporal organization of motor activity fluctuations over a wide range of time scales from minutes up to 24 h. We demonstrate this multiscale alteration by assessing fractal patterns in motor activity fluctuations—similar fluctuation structure at different time scales—that are robust in intact animals with ad libitum food access but are disrupted under food restriction. In addition, we show that fractal activity patterns in rats with ad libitum food access are also perturbed by lesion of the dorsomedial hypothalamic (DMH)—a neural node that is involved in food anticipatory behavior. Instead of further disrupting fractal regulation, food restriction restores the disrupted fractal patterns in these animals after the DMH lesion despite the persistence of the 24-h rhythms. This compensatory effect of food restriction is more clearly pronounced in the same animals after the additional lesion of the suprachiasmatic nucleus (SCN)—the central master clock in the circadian system that generates and orchestrates circadian rhythms in behavior and physiological functions in synchrony with day-night cycles. Moreover, all observed influences of food restriction persist even when data during the food anticipatory and feeding period are excluded. These results indicate that food restriction impacts dynamics of motor activity at different time scales across the entire circadian/daily cycle, which is likely caused by the competition between the food-induced time cue and the light-entrained circadian rhythm of the

  16. Ankyrin domain of myosin 16 influences motor function and decreases protein phosphatase catalytic activity.

    PubMed

    Kengyel, András; Bécsi, Bálint; Kónya, Zoltán; Sellers, James R; Erdődi, Ferenc; Nyitrai, Miklós

    2015-05-01

    The unconventional myosin 16 (Myo16), which may have a role in regulation of cell cycle and cell proliferation, can be found in both the nucleus and the cytoplasm. It has a unique, eight ankyrin repeat containing pre-motor domain, the so-called ankyrin domain (My16Ank). Ankyrin repeats are present in several other proteins, e.g., in the regulatory subunit (MYPT1) of the myosin phosphatase holoenzyme, which binds to the protein phosphatase-1 catalytic subunit (PP1c). My16Ank shows sequence similarity to MYPT1. In this work, the interactions of recombinant and isolated My16Ank were examined in vitro. To test the effects of My16Ank on myosin motor function, we used skeletal muscle myosin or nonmuscle myosin 2B. The results showed that My16Ank bound to skeletal muscle myosin (K D ≈ 2.4 µM) and the actin-activated ATPase activity of heavy meromyosin (HMM) was increased in the presence of My16Ank, suggesting that the ankyrin domain can modulate myosin motor activity. My16Ank showed no direct interaction with either globular or filamentous actin. We found, using a surface plasmon resonance-based binding technique, that My16Ank bound to PP1cα (K D ≈ 540 nM) and also to PP1cδ (K D ≈ 600 nM) and decreased its phosphatase activity towards the phosphorylated myosin regulatory light chain. Our results suggest that one function of the ankyrin domain is probably to regulate the function of Myo16. It may influence the motor activity, and in complex with the PP1c isoforms, it can play an important role in the targeted dephosphorylation of certain, as yet unidentified, intracellular proteins.

  17. Predicting brain activation patterns associated with individual lexical concepts based on five sensory-motor attributes

    PubMed Central

    Fernandino, Leonardo; Humphries, Colin J.; Seidenberg, Mark S.; Gross, William L.; Conant, Lisa L.; Binder, Jeffrey R.

    2015-01-01

    While major advances have been made in uncovering the neural processes underlying perceptual representations, our grasp of how the brain gives rise to conceptual knowledge remains relatively poor. Recent work has provided strong evidence that concepts rely, at least in part, on the same sensory and motor neural systems through which they were acquired, but it is still unclear whether the neural code for concept representation uses information about sensory-motor features to discriminate between concepts. In the present study, we investigate this question by asking whether an encoding model based on five semantic attributes directly related to sensory-motor experience – sound, color, visual motion, shape, and manipulation – can successfully predict patterns of brain activation elicited by individual lexical concepts. We collected ratings on the relevance of these five attributes to the meaning of 820 words, and used these ratings as predictors in a multiple regression model of the fMRI signal associated with the words in a separate group of participants. The five resulting activation maps were then combined by linear summation to predict the distributed activation pattern elicited by a novel set of 80 test words. The encoding model predicted the activation patterns elicited by the test words significantly better than chance. As expected, prediction was successful for concrete but not for abstract concepts. Comparisons between encoding models based on different combinations of attributes indicate that all five attributes contribute to the representation of concrete concepts. Consistent with embodied theories of semantics, these results show, for the first time, that the distributed activation pattern associated with a concept combines information about different sensory-motor attributes according to their respective relevance. Future research should investigate how additional features of phenomenal experience contribute to the neural representation of conceptual

  18. Stage 2 Sleep EEG Sigma Activity and Motor Learning in Childhood ADHD: A Pilot Study.

    PubMed

    Saletin, Jared M; Coon, William G; Carskadon, Mary A

    2017-01-01

    Attention deficit hyperactivity disorder (ADHD) is associated with deficits in motor learning and sleep. In healthy adults, overnight improvements in motor skills are associated with sleep spindle activity in the sleep electroencephalogram (EEG). This association is poorly characterized in children, particularly in pediatric ADHD. Polysomnographic sleep was monitored in 7 children with ADHD and 14 typically developing controls. All children were trained on a validated motor sequence task (MST) in the evening with retesting the following morning. Analyses focused on MST precision (speed-accuracy trade-off). NREM Stage 2 sleep EEG power spectral analyses focused on spindle-frequency EEG activity in the sigma (12-15 Hz) band. The ADHD group demonstrated a selective decrease in power within the sigma band. Evening MST precision was lower in ADHD, yet no difference in performance was observed following sleep. Moreover, ADHD status moderated the association between slow sleep spindle activity (12-13.5 Hz) and overnight improvement; spindle-frequency EEG activity was positively associated with performance improvements in children with ADHD but not in controls. These data highlight the importance of sleep in supporting next-day behavior in ADHD while indicating that differences in sleep neurophysiology may contribute to deficits in this population.

  19. AGE-DEPENDENT EFFECTS OF STRESS ON ETHANOL-INDUCED MOTOR ACTIVITY IN RATS

    PubMed Central

    Acevedo, María Belén; Pautassi, Ricardo Marcos; Spear, Norman E.; Spear, Linda P.

    2013-01-01

    Rationale It is important to study age-related differences that may put adolescents at risk for alcohol-related problems. Adolescents seem less sensitive to the aversive effects of ethanol than adults. Less is known of appetitive effects of ethanol and stress-modulation of these effects. Objectives To describe effects of acute social or restraint stress on ethanol-precipitated locomotor activity (LMA), in adolescent and adult rats. Effects of activation of the kappa system on ethanol-induced LMA were also evaluated. Methods Adolescent or adult rats were restrained for 90 min, exposed to social deprivation stress for 90 or 180 min or administered the kappa agonist U62,066E before being given ethanol and assessed for LMA. Results Adolescents were significantly more sensitive to the stimulating, and less sensitive to the sedative, effects of ethanol than adults. Basal locomotion was significantly increased by social deprivation stress in adult, but not in adolescent, rats. U62,066E significantly reduced basal and ethanol-induced locomotion in the adolescents. Corticosterone and progesterone levels were significantly higher in adolescents than in adults. Conclusions Adolescents exhibit greater sensitivity to ethanol-induced LMA and reduced sensitivity to ethanol-induced motor sedation than adult rats. Ethanol’s effects on motor activity were not affected by acute stress. Unlike adults, adolescents were insensitive to acute restraint and social deprivation stress, but exhibited motor depression after activation of the endogenous kappa opioid receptor system. PMID:23775530

  20. Functional aging in the nervous system contributes to age-dependent motor activity decline in C. elegans.

    PubMed

    Liu, Jie; Zhang, Bi; Lei, Haoyun; Feng, Zhaoyang; Liu, Jianfeng; Hsu, Ao-Lin; Xu, X Z Shawn

    2013-09-03

    Aging is characterized by a progressive decline in multiple physiological functions (i.e., functional aging). As animals age, they exhibit a gradual loss in motor activity, but the underlying mechanisms remain unclear. Here we approach this question in C. elegans by functionally characterizing its aging nervous system and muscles. We find that motor neurons exhibit a progressive functional decline, beginning in early life. Surprisingly, body-wall muscles, which were previously thought to undergo functional aging, do not manifest such a decline until mid-late life. Notably, motor neurons first develop a deficit in synaptic vesicle fusion followed by that in quantal size and vesicle docking/priming, revealing specific functional deteriorations in synaptic transmission. Pharmacological stimulation of synaptic transmission can improve motor activity in aged animals. These results uncover a critical role for the nervous system in age-dependent motor activity decline in C. elegans and provide insights into how functional aging occurs in this organism.

  1. Causal interaction following the alteration of target region activation during motor imagery training using real-time fMRI

    PubMed Central

    Zhao, Xiaojie; Zhang, Hang; Song, Sutao; Ye, Qing; Guo, Jia; Yao, Li

    2013-01-01

    Motor imagery training is an effective approach for motor skill learning and motor function rehabilitation. As a novel method of motor imagery training, real-time fMRI (rtfMRI) enables individuals to acquire self-control of localized brain activation, achieving desired changes in behavior. The regulation of target region activation by rtfMRI often alters the activation of related brain regions. However, the interaction between the target region and these related regions is unclear. The Granger causality model (GCM) is a data-driven method that can explore the causal interaction between brain regions. In this study, we employed rtfMRI to train subjects to regulate the activation of the ipsilateral dorsal premotor area (dPMA) during motor imagery training, and we calculated the causal interaction of the dPMA with other motor-related regions based on the GCM. The results demonstrated that as the activity of the dPMA changed during rtfMRI training, the interaction of the target region with other related regions became significantly altered, and behavioral performance was improved after training. The altered interaction primarily exhibited as an increased unidirectional interaction from the dPMA to the other regions. These findings support the dominant role of the dPMA in motor skill learning via rtfMRI training and may indicate how activation of the target region interacts with the activation of other related regions. PMID:24379775

  2. Developmental Sequences of Perceptual-Motor Tasks, Movement Activities for Neurologically Handicapped and Retarded Children and Youth.

    ERIC Educational Resources Information Center

    Cratty, Bryant J.

    Intended for special education and physical education teachers, the handbook presents selected developmental sequences of activities based on the analysis of perceptual motor characteristics of groups of retarded and neurologically handicapped children. Four classifications of children and their perceptual motor characteristics are discussed: the…

  3. Motor learning in individuals with autism spectrum disorder: activation in superior parietal lobule related to learning and repetitive behaviors.

    PubMed

    Travers, Brittany G; Kana, Rajesh K; Klinger, Laura G; Klein, Christopher L; Klinger, Mark R

    2015-02-01

    Motor-linked implicit learning is the learning of a sequence of movements without conscious awareness. Although motor symptoms are frequently reported in individuals with autism spectrum disorder (ASD), recent behavioral studies have suggested that motor-linked implicit learning may be intact in ASD. The serial reaction time (SRT) task is one of the most common measures of motor-linked implicit learning. The present study used a 3T functional magnetic resonance imaging scanner to examine the behavioral and neural correlates of real-time motor sequence learning in adolescents and adults with ASD (n = 15) compared with age- and intelligence quotient-matched individuals with typical development (n = 15) during an SRT task. Behavioral results suggested less robust motor sequence learning in individuals with ASD. Group differences in brain activation suggested that individuals with ASD, relative to individuals with typical development, showed decreased activation in the right superior parietal lobule (SPL) and right precuneus (Brodmann areas 5 and 7, and extending into the intraparietal sulcus) during learning. Activation in these areas (and in areas such as the right putamen and right supramarginal gyrus) was found to be significantly related to behavioral learning in this task. Additionally, individuals with ASD who had more severe repetitive behavior/restricted interest symptoms demonstrated greater decreased activation in these regions during motor learning. In conjunction, these results suggest that the SPL may play an important role in motor learning and repetitive behavior in individuals with ASD.

  4. Influence of seasonality on circadian motor activity rhythm in common marmosets during puberty.

    PubMed

    Melo, Paula R; Belísio, Aline S; Menezes, Alexandre A L; Azevedo, Carolina V M

    2010-08-01

    The effect of puberty on circadian rhythmicity in nonhuman primates has been little studied, even though it has been demonstrated that puberty-related changes in circadian activity rhythm occur in a number of species, including humans. To characterize the motor activity rhythm during puberty in common marmosets (Callithrix jacchus), six animals was continuously monitored by actimeters between their 5th and 12th months of age. The animals were housed with their families in outdoor cages under seminatural conditions. Onset of puberty was determined from fecal estrogen and progesterone levels in females and androgen levels in males. The spectral power of the circadian component stabilized later in the last two animals to enter puberty. The bimodal characteristic of the active phase in this species became progressively more apparent over the course of the months in which the mean temperature was highest, irrespective of the animal's age. Although the onset of activity advanced after entry into puberty, this parameter showed a strong correlation with sunrise, indicating that seasonality influences this variable. Neither age nor climatic factors included in the regression model influenced the differences in phase angles between sunrise and onset of activity, and between sunset and offset of activity. Total activity was the only parameter influenced by age in the regression model, showing an increase after entry into puberty. Despite the evidence of pubertal influence on both the circadian component and total activity, under seminatural conditions seasonal factors may have a more important effect on motor activity rhythm in common marmosets.

  5. Body side-specific control of motor activity during turning in a walking animal

    PubMed Central

    Gruhn, Matthias; Rosenbaum, Philipp; Bockemühl, Till; Büschges, Ansgar

    2016-01-01

    Animals and humans need to move deftly and flexibly to adapt to environmental demands. Despite a large body of work on the neural control of walking in invertebrates and vertebrates alike, the mechanisms underlying the motor flexibility that is needed to adjust the motor behavior remain largely unknown. Here, we investigated optomotor-induced turning and the neuronal mechanisms underlying the differences between the leg movements of the two body sides in the stick insect Carausius morosus. We present data to show that the generation of turning kinematics in an insect are the combined result of descending unilateral commands that change the leg motor output via task-specific modifications in the processing of local sensory feedback as well as modification of the activity of local central pattern generating networks in a body-side-specific way. To our knowledge, this is the first study to demonstrate the specificity of such modifications in a defined motor task. DOI: http://dx.doi.org/10.7554/eLife.13799.001 PMID:27130731

  6. Increasing MuSK activity delays denervation and improves motor function in ALS mice.

    PubMed

    Pérez-García, María J; Burden, Steven J

    2012-09-27

    Amyotrophic lateral sclerosis (ALS) is a devastating disease that progresses from detachment of motor nerve terminals to complete muscle paralysis and lethal respiratory failure within 5 years of diagnosis. Genetic studies have linked mutations in several genes to ALS, and mice bearing mutations in SOD1 recapitulate hallmark features of the disease. We investigated whether disease symptoms can be ameliorated by co-opting the retrograde signaling pathway that promotes attachment of nerve terminals to muscle. We crossed SOD1G93A mice with transgenic mice that express MuSK, a receptor tyrosine kinase that is required for retrograde signaling, and we used histological and behavioral assays to assess motor innervation and behavior. A 3-fold increase in MuSK expression delayed the onset and reduced the extent of muscle denervation, improving motor function for more than a month without altering survival. These findings suggest that increasing MuSK activity by pharmacological means has the potential to improve motor function in ALS.

  7. Motor activity as an unbiased variable to assess anaphylaxis in allergic rats.

    PubMed

    Abril-Gil, Mar; Garcia-Just, Alba; Cambras, Trinitat; Pérez-Cano, Francisco J; Castellote, Cristina; Franch, Àngels; Castell, Margarida

    2015-10-01

    The release of mediators by mast cells triggers allergic symptoms involving various physiological systems and, in the most severe cases, the development of anaphylactic shock compromising mainly the nervous and cardiovascular systems. We aimed to establish variables to objectively study the anaphylactic response (AR) after an oral challenge in an allergy model. Brown Norway rats were immunized by intraperitoneal injection of ovalbumin with alum and toxin from Bordetella pertussis. Specific immunoglobulin (Ig) E antibodies were developed in immunized animals. Forty days after immunization, the rats were orally challenged with the allergen, and motor activity, body temperature and serum mast cell protease concentration were determined. The anaphylaxis induced a reduction in body temperature and a decrease in the number of animal movements, which was inversely correlated with serum mast cell protease release. In summary, motor activity is a reliable tool for assessing AR and also an unbiased method for screening new anti-allergic drugs.

  8. Cannabinoid-induced stimulation of motor activity in planaria through an opioid receptor-mediated mechanism.

    PubMed

    Buttarelli, Francesca R; Pontieri, Francesco E; Margotta, Vito; Palladini, Guido

    2002-01-01

    Planaria, the most primitive example of centralization and cephalization of the nervous system along phylogeny, shows specific stereotyped behavioral patterns following exposure to drugs acting on neural transmission. In this study, the authors investigated the effects of exposure to the synthetic cannabinoid receptor agonist WTN55212.2 on motor activity in planaria. WTN55212.2 produced dose-dependent stimulation of motor behavior. High doses of the drug caused stereotyped activities identical to those seen previously with opioid agonists. These effects were antagonized by coexposure to cannabinoid or opioid receptor antagonists. The results indicate that functional interactions between cannabinoid and opioid systems are highly conserved along phylogeny, at least at the behavioral level.

  9. Does Physical Self-Concept Mediate the Relationship between Motor Abilities and Physical Activity in Adolescents and Young Adults?

    PubMed

    Jekauc, Darko; Wagner, Matthias Oliver; Herrmann, Christian; Hegazy, Khaled; Woll, Alexander

    2017-01-01

    The purpose of this study is to examine the reciprocal relationship between motor abilities and physical activity and the mediation effects of physical self-concept in this relationship using longitudinal data. We expect that the effects of motor abilities on physical activity are rather indirect via physical self-concept and that the effects of physical activity on motor abilities are rather direct without involvement of the motor ability self-concept. Data was obtained from the Motorik-Modul (MoMo) Longitudinal Study in which 335 boys and 363 girls aged 11-17 years old at Baseline were examined twice in a period of six years. Physical activity was assessed by the MoMo Physical Activity Questionnaire for adolescents, physical self-concept by Physical Self-Description Questionnaire and motor abilities by MoMo Motor Test which comprised of the dimensions strength, endurance, coordination and flexibility. Multiple regression analyses were used to analyse the direct and indirect effects. The results of the multiple regression analyses show that the effects of motor abilities on physical activity were only indirect for the dimensions strength, coordination, and flexibility. For the dimension endurance, neither direct nor indirect effects were significant. In the opposite direction, the effects of physical activity on motor abilities were partially mediated by the self-concept of strength. For the dimensions endurance, coordination and flexibility, only indirect were significant. The results of this study support the assumption that the relationship between motor abilities and physical activity is mediated by physical self-concept in both directions. Physical self-concept seems to be an important determinant of adolescents´ physical activity.

  10. Does Physical Self-Concept Mediate the Relationship between Motor Abilities and Physical Activity in Adolescents and Young Adults?

    PubMed Central

    Jekauc, Darko; Wagner, Matthias Oliver; Herrmann, Christian; Hegazy, Khaled; Woll, Alexander

    2017-01-01

    The purpose of this study is to examine the reciprocal relationship between motor abilities and physical activity and the mediation effects of physical self-concept in this relationship using longitudinal data. We expect that the effects of motor abilities on physical activity are rather indirect via physical self-concept and that the effects of physical activity on motor abilities are rather direct without involvement of the motor ability self-concept. Data was obtained from the Motorik-Modul (MoMo) Longitudinal Study in which 335 boys and 363 girls aged 11–17 years old at Baseline were examined twice in a period of six years. Physical activity was assessed by the MoMo Physical Activity Questionnaire for adolescents, physical self-concept by Physical Self-Description Questionnaire and motor abilities by MoMo Motor Test which comprised of the dimensions strength, endurance, coordination and flexibility. Multiple regression analyses were used to analyse the direct and indirect effects. The results of the multiple regression analyses show that the effects of motor abilities on physical activity were only indirect for the dimensions strength, coordination, and flexibility. For the dimension endurance, neither direct nor indirect effects were significant. In the opposite direction, the effects of physical activity on motor abilities were partially mediated by the self-concept of strength. For the dimensions endurance, coordination and flexibility, only indirect were significant. The results of this study support the assumption that the relationship between motor abilities and physical activity is mediated by physical self-concept in both directions. Physical self-concept seems to be an important determinant of adolescents´ physical activity. PMID:28045914

  11. Metabolic Thresholds and Validated Accelerometer Cutoff Points for the Actigraph GT1M in Young Children Based on Measurements of Locomotion and Play Activities

    ERIC Educational Resources Information Center

    Jimmy, Gerda; Dossegger, Alain; Seiler, Roland; Mader, Urs

    2012-01-01

    The purpose of the current study was to determine metabolic thresholds and subsequent activity intensity cutoff points for the ActiGraph GT1M with various epochs spanning from 5 to 60 sec in young children. Twenty-two children, aged 4 to 9 years, performed 10 different activities including locomotion and play activities. Energy expenditure was…

  12. Pattern of trauma determines the threshold for epileptic activity in a model of cortical deafferentation

    PubMed Central

    Volman, Vladislav; Bazhenov, Maxim; Sejnowski, Terrence J.

    2011-01-01

    Epileptic activity often occurs in the cortex after a latent period after head trauma; this delay has been attributed to the destabilizing influence of homeostatic synaptic scaling and changes in intrinsic properties. However, the impact of the spatial organization of cortical trauma on epileptogenesis is poorly understood. We addressed this question by analyzing the dynamics of a large-scale biophysically realistic cortical network model subjected to different patterns of trauma. Our results suggest that the spatial pattern of trauma can greatly affect the propensity for developing posttraumatic epileptic activity. For the same fraction of lesioned neurons, spatially compact trauma resulted in stronger posttraumatic elevation of paroxysmal activity than spatially diffuse trauma. In the case of very severe trauma, diffuse distribution of a small number of surviving intact neurons alleviated posttraumatic epileptogenesis. We suggest that clinical evaluation of the severity of brain trauma should take into account the spatial pattern of the injured cortex. PMID:21896754

  13. Combined Action Observation and Motor Imagery Neurofeedback for Modulation of Brain Activity

    PubMed Central

    Friesen, Christopher L.; Bardouille, Timothy; Neyedli, Heather F.; Boe, Shaun G.

    2017-01-01

    Motor imagery (MI) and action observation have proven to be efficacious adjuncts to traditional physiotherapy for enhancing motor recovery following stroke. Recently, researchers have used a combined approach called imagined imitation (II), where an individual watches a motor task being performed, while simultaneously imagining they are performing the movement. While neurofeedback (NFB) has been used extensively with MI to improve patients' ability to modulate sensorimotor activity and enhance motor recovery, the effectiveness of using NFB with II to modulate brain activity is unknown. This project tested the ability of participants to modulate sensorimotor activity during electroencephalography-based II-NFB of a complex, multi-part unilateral handshake, and whether this ability transferred to a subsequent bout of MI. Moreover, given the goal of translating findings from NFB research into practical applications, such as rehabilitation, the II-NFB system was designed with several user interface and user experience features, in an attempt to both drive user engagement and match the level of challenge to the abilities of the subjects. In particular, at easy difficulty levels the II-NFB system incentivized contralateral sensorimotor up-regulation (via event related desynchronization of the mu rhythm), while at higher difficulty levels the II-NFB system incentivized sensorimotor lateralization (i.e., both contralateral up-regulation and ipsilateral down-regulation). Thirty-two subjects, receiving real or sham NFB attended four sessions where they engaged in II-NFB training and subsequent MI. Results showed the NFB group demonstrated more bilateral sensorimotor activity during sessions 2–4 during II-NFB and subsequent MI, indicating mixed success for the implementation of this particular II-NFB system. Here we discuss our findings in the context of the design features included in the II-NFB system, highlighting limitations that should be considered in future designs

  14. Evolution of fMRI Activation in the Perilesional Primary Motor Cortex and Cerebellum With Rehabilitation Training-Related Motor Gains After Stroke: A Pilot Study

    PubMed Central

    Dong, Yun; Winstein, Carolee J.; Albistegui-DuBois, Richard; Dobkin, Bruce H.

    2014-01-01

    Background Previous studies report that motor recovery after partial destruction of the primary motor cortex (M1) may be associated with adaptive functional reorganization within spared M1. Objective To test feasible methodologies for evaluating relationships between behavioral gains facilitated by rehabilitative training and functional adaptations in perilesional M1 and the cerebellum. Methods Four patients with hemiparesis for more than 3 months after a cortical lesion partially within M1 and 12 healthy volunteers participated. Functional magnetic resonance imaging (fMRI) using a finger-tapping task and concurrent behavioral assessments, including the Fugl-Meyer Motor Assessment of the upper extremity and the Wolf Motor Function Test, were conducted before and after 2 weeks of arm-focused training; 2 patients were further examined 6 and 12 months later to evaluate long-term persistence of brain-behavior adaptations. Results All patients showed higher activation magnitude in perilesional M1 than healthy controls before and after therapy. Further long-term functional gains paralleled the decrease of activation magnitude in perilesional M1 in the 2 more impaired cases. Conclusion The evolution of suggestive correlations between serial scans of fMRI adaptive activity within the primary motor cortex and the cerebellum in relation to relevant behavioral changes over the course of 2 weeks of task-specific therapy and then no formal therapy suggests that repeated assessments may be best for monitoring therapy-induced neuroplasticity. This approach may help develop optimal rehabilitation strategies to maximize poststroke motor recovery as well as improve the search for brain-behavior correlations in functional neuroimaging research. PMID:17369516

  15. Electrical stimulation and motor recovery.

    PubMed

    Young, Wise

    2015-01-01

    In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical

  16. Modulation of the inter-hemispheric asymmetry of motor-related brain activity using brain-computer interfaces.

    PubMed

    Pereira, Michael; Sobolewski, Aleksander; Millan, Jose Del R

    2015-01-01

    Non-invasive brain stimulation has shown promising results in neurorehabilitation for motor-impaired stroke patients, by rebalancing the relative involvement of each hemisphere in movement generation. Similarly, brain-computer interfaces have been used to successfully facilitate movement-related brain activity spared by the infarct. We propose to merge both approaches by using BCI to train stroke patients to rebalance their motor-related brain activity during motor tasks, through the use of online feedback. In this pilot study, we report results showing that some healthy subjects were able to learn to spontaneously up- and/or down-regulate their ipsilateral brain activity during a single session.

  17. Tapping into Active Learning and Multiple Intelligences With Interactive Multimedia: A Low-Threshold Classroom Approach

    ERIC Educational Resources Information Center

    Schrand, Tom

    2008-01-01

    Educational technology is seldom used to facilitate more active student learning in the classroom. Instructors who have mastered PowerPoint, however, could just as easily learn to create simple pieces of interactive multimedia that encourage student participation in learning tasks and that appeal to multiple intelligences and learning styles.…

  18. Active Learning and Threshold Concepts in Multiple Testing That Can Further Develop Student Critical Statistical Thinking

    ERIC Educational Resources Information Center

    White, Desley

    2015-01-01

    Two practical activities are described, which aim to support critical thinking about statistics as they concern multiple outcomes testing. Formulae are presented in Microsoft Excel spreadsheets, which are used to calculate the inflation of error associated with the quantity of tests performed. This is followed by a decision-making exercise, where…

  19. Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Phil; Simeral, John D.; Hochberg, Leigh R.; Donoghue, John P.; Black, Michael J.

    2008-12-01

    Computer-mediated connections between human motor cortical neurons and assistive devices promise to improve or restore lost function in people with paralysis. Recently, a pilot clinical study of an intracortical neural interface system demonstrated that a tetraplegic human was able to obtain continuous two-dimensional control of a computer cursor using neural activity recorded from his motor cortex. This control, however, was not sufficiently accurate for reliable use in many common computer control tasks. Here, we studied several central design choices for such a system including the kinematic representation for cursor movement, the decoding method that translates neuronal ensemble spiking activity into a control signal and the cursor control task used during training for optimizing the parameters of the decoding method. In two tetraplegic participants, we found that controlling a cursor's velocity resulted in more accurate closed-loop control than controlling its position directly and that cursor velocity control was achieved more rapidly than position control. Control quality was further improved over conventional linear filters by using a probabilistic method, the Kalman filter, to decode human motor cortical activity. Performance assessment based on standard metrics used for the evaluation of a wide range of pointing devices demonstrated significantly improved cursor control with velocity rather than position decoding. Disclosure. JPD is the Chief Scientific Officer and a director of Cyberkinetics Neurotechnology Systems (CYKN); he holds stock and receives compensation. JDS has been a consultant for CYKN. LRH receives clinical trial support from CYKN.

  20. Fetal heart rate and motor activity associations with maternal organochlorine levels: results of an exploratory study.

    PubMed

    DiPietro, Janet A; Davis, Meghan F; Costigan, Kathleen A; Barr, Dana Boyd

    2014-01-01

    Contemporaneous associations between circulating maternal organochlorines (OCs) and measures of fetal heart rate and motor activity were evaluated. A panel of 47 OCs, including pesticides and polychlorinated biphenyls (PCBs), was analyzed from serum of 50 pregnant women at 36 weeks gestation. Data were empirically reduced into four factors and six individual compounds. All participants had detectable concentrations of at least one-quarter of the assayed OCs and, in general, higher socioeconomic level was associated with higher OC concentrations. Fetal heart rate measures were not consistently associated with maternal OCs. In contrast, one or more indicators of greater fetal motor activity were significantly associated with higher levels of the DDT and low chlorinated OC factors and five of the six individual compounds (heptachlor epoxide, trans nonachlor, oxychlordane, and PCBs 18 and 52). This preliminary demonstration of associations between fetal motor activity and maternal concentrations of persistent and pervasive environmental contaminants suggests that fetal assessment may be useful in ascertaining the potential early effects of these compounds on development.

  1. Fetal heart rate and motor activity associations with maternal organochlorine levels: Results of an exploratory study

    PubMed Central

    DiPietro, Janet A.; Davis, Meghan F.; Costigan, Kathleen A; Barr, Dana Boyd

    2015-01-01

    Contemporaneous associations between circulating maternal organochlorines and measures of fetal heart rate and motor activity were evaluated. A panel of 47 organochlorines (OCs), including pesticides and polychlorinated biphenyls (PCBs), was analyzed from serum of 50 pregnant women at 36 weeks gestation. Data were empirically reduced into four factors and six individual compounds. All participants had detectable concentrations of at least one-quarter of the assayed OCs and, in general, higher socioeconomic level was associated with higher OC concentrations. Fetal heart rate measures were not consistently associated with maternal OCs. In contrast, one or more indicators of greater fetal motor activity were significantly associated with higher levels of the DDT and low chlorinated OC factors and five of the six individual compounds (heptachlor epoxide, trans nonachlor, oxychlordane, and PCBs 18 and 52). This preliminary demonstration of associations between fetal motor activity and maternal concentrations of persistent and pervasive environmental contaminants suggests that fetal assessment may be useful in ascertaining the potential early effects of these compounds on development. PMID:23591698

  2. UCS protein Rng3p is essential for myosin-II motor activity during cytokinesis in fission yeast.

    PubMed

    Stark, Benjamin C; James, Michael L; Pollard, Luther W; Sirotkin, Vladimir; Lord, Matthew

    2013-01-01

    UCS proteins have been proposed to operate as co-chaperones that work with Hsp90 in the de novo folding of myosin motors. The fission yeast UCS protein Rng3p is essential for actomyosin ring assembly and cytokinesis. Here we investigated the role of Rng3p in fission yeast myosin-II (Myo2p) motor activity. Myo2p isolated from an arrested rng3-65 mutant was capable of binding actin, yet lacked stability and activity based on its expression levels and inactivity in ATPase and actin filament gliding assays. Myo2p isolated from a myo2-E1 mutant (a mutant hyper-sensitive to perturbation of Rng3p function) showed similar behavior in the same assays and exhibited an altered motor conformation based on limited proteolysis experiments. We propose that Rng3p is not required for the folding of motors per se, but instead works to ensure the activity of intrinsically unstable myosin-II motors. Rng3p is specific to conventional myosin-II and the actomyosin ring, and is not required for unconventional myosin motor function at other actin structures. However, artificial destabilization of myosin-I motors at endocytic actin patches (using a myo1-E1 mutant) led to recruitment of Rng3p to patches. Thus, while Rng3p is specific to myosin-II, UCS proteins are adaptable and can respond to changes in the stability of other myosin motors.

  3. The NCA sodium leak channel is required for persistent motor circuit activity that sustains locomotion.

    PubMed

    Gao, Shangbang; Xie, Lin; Kawano, Taizo; Po, Michelle D; Guan, Sihui; Zhen, Mei; Pirri, Jennifer K; Alkema, Mark J

    2015-02-26

    Persistent neural activity, a sustained circuit output that outlasts the stimuli, underlies short-term or working memory, as well as various mental representations. Molecular mechanisms that underlie persistent activity are not well understood. Combining in situ whole-cell patch clamping and quantitative locomotion analyses, we show here that the Caenorhabditis elegans neuromuscular system exhibits persistent rhythmic activity, and such an activity contributes to the sustainability of basal locomotion, and the maintenance of acceleration after stimulation. The NALCN family sodium leak channel regulates the resting membrane potential and excitability of invertebrate and vertebrate neurons. Our molecular genetics and electrophysiology analyses show that the C. elegans NALCN, NCA, activates a premotor interneuron network to potentiate persistent motor circuit activity and to sustain C. elegans locomotion. Collectively, these results reveal a mechanism for, and physiological function of, persistent neural activity using a simple animal model, providing potential mechanistic clues for working memory in other systems.

  4. Thresholds of copper phytotoxicity in field-collected agricultural soils exposed to copper mining activities in Chile.

    PubMed

    Verdejo, José; Ginocchio, Rosanna; Sauvé, Sébastien; Salgado, Eduardo; Neaman, Alexander

    2015-12-01

    It has been argued that the identification of the phytotoxic metal thresholds in soil should be based on field-collected soil rather than on artificially-contaminated soils. However, the use of field-collected soils presents several difficulties for interpretation because of mixed contamination and unavoidable covariance of metal contamination with other soil properties that affect plant growth. The objective of this study was to estimate thresholds of copper phytotoxicity in topsoils of 27 agricultural areas historically contaminated by mining activities in Chile. We performed emergence and early growth (21 days) tests (OECD 208 and ISO 11269-2) with perennial ryegrass (Lolium perenne L.). The total Cu content in soils was the best predictor of plant growth and shoot Cu concentrations, while soluble Cu and pCu(2+) did not well correlate with these biological responses. The effects of Pb, Zn, and As on plant responses were not significant, suggesting that Cu is a metal of prime concern for plant growth in soils exposed to copper mining activities in Chile. The effects of soil nutrient availability and shoot nutrient concentrations on ryegrass response were not significant. It was possible to determine EC10, EC25 and EC50 of total Cu in the soil of 327 mg kg(-1), 735 mg kg(-1) and 1144 mg kg(-1), respectively, using the shoot length as a response variable. However, the derived 95% confidence intervals for EC10, EC25 and EC50 values of total soil Cu were wide, and thus not allowing a robust assessment of metal toxicity for agricultural crops, based on total soil Cu concentrations. Thus, plant tests might need to be performed for metal toxicity assessment. This study suggests shoot length of ryegrass as a robust response variable for metal toxicity assessment in contaminated soils with different nutrient availability.

  5. The influence of social evaluation on cerebral cortical activity and motor performance: a study of "Real-Life" competition.

    PubMed

    Hatfield, Bradley D; Costanzo, Michelle E; Goodman, Ronald N; Lo, Li-Chuan; Oh, Hyuk; Rietschel, Jeremy C; Saffer, Mark; Bradberry, Trent; Contreras-Vidal, Jose; Haufler, Amy

    2013-11-01

    Motor performance in a social evaluative environment was examined in participants (N = 19) who completed a pistol shooting task under both performance-alone (PA) and competitive (C) conditions. Electroencephalographic (EEG), autonomic, and psychoendocrine activity were recorded in addition to kinematic measures of the aiming behavior. State anxiety, heart rate, and cortisol were modestly elevated during C and accompanied by relative desynchrony of high-alpha power, increased cortico-cortical communication between motor and non-motor regions, and degradation of the fluency of aiming trajectory, but maintenance of performance outcome (i.e., score). The findings reveal that performance in a complex social-evaluative environment characterized by competition results in elevated cortical activity beyond that essentially required for motor performance that translated as less efficient motor behavior.

  6. Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer's disease

    PubMed Central

    Di, L; Oliviero, A; Pilato, F; Saturno, E; Dileone, M; Marra, C; Daniele, A; Ghirlanda, S; Gainotti, G; Tonali, P

    2004-01-01

    Objectives: Recent transcranial magnetic stimulation (TMS) studies demonstrate that motor cortex excitability is increased in Alzheimer's disease (AD) and that intracortical inhibitory phenomena are impaired. The aim of the present study was to determine whether hyperexcitability is due to the impairment of intracortical inhibitory circuits or to an independent abnormality of excitatory circuits. Methods: We assessed the excitability of the motor cortex with TMS in 28 patients with AD using several TMS paradigms and compared the data of cortical excitability (evaluated by measuring resting motor threshold) with the amount of motor cortex disinhibition as evaluated using the test for motor cortex cholinergic inhibition (short latency afferent inhibition) and GABAergic inhibition (short latency intracortical inhibition). The data in AD patients were also compared with that from 12 age matched healthy individuals. Results: The mean resting motor threshold was significantly lower in AD patients than in controls. The amount of short latency afferent inhibition was significantly smaller in AD patients than in normal controls. There was also a tendency for AD patients to have less pronounced short latency intracortical inhibition than controls, but this difference was not significant. There was no correlation between resting motor threshold and measures of either short latency afferent or intracortical inhibition (r = -0.19 and 0.18 respectively, NS). In 14 AD patients the electrophysiological study was repeated after a single oral dose of the cholinesterase inhibitor rivastigmine. Resting motor threshold was not significantly modified by the administration of rivastigmine. In contrast, short latency afferent inhibition from the median nerve was significantly increased by the administration of rivastigmine. Conclusions: The change in threshold did not seem to correlate with dysfunction of inhibitory intracortical cholinergic and GABAergic circuits, nor with the central

  7. Activation of the Hypoglossal to Tongue Musculature Motor Pathway by Remote Control

    PubMed Central

    Horton, Garret A.; Fraigne, Jimmy J.; Torontali, Zoltan A.; Snow, Matthew B.; Lapierre, Jennifer L.; Liu, Hattie; Montandon, Gaspard; Peever, John H.; Horner, Richard L.

    2017-01-01

    Reduced tongue muscle tone precipitates obstructive sleep apnea (OSA), and activation of the tongue musculature can lessen OSA. The hypoglossal motor nucleus (HMN) innervates the tongue muscles but there is no pharmacological agent currently able to selectively manipulate a channel (e.g., Kir2.4) that is highly restricted in its expression to cranial motor pools such as the HMN. To model the effect of manipulating such a restricted target, we introduced a “designer” receptor into the HMN and selectively modulated it with a “designer” drug. We used cre-dependent viral vectors (AAV8-hSyn-DIO-hM3Dq-mCherry) to transduce hypoglossal motoneurons of ChAT-Cre+ mice with hM3Dq (activating) receptors. We measured sleep and breathing in three conditions: (i) sham, (ii) after systemic administration of clozapine-N-oxide (CNO; 1 mg/kg) or (iii) vehicle. CNO activates hM3Dq receptors but is otherwise biologically inert. Systemic administration of CNO caused significant and sustained increases in tongue muscle activity in non-REM (261 ± 33% for 10 hrs) and REM sleep (217 ± 21% for 8 hrs), both P < 0.01 versus controls. Responses were specific and selective for the tongue with no effects on diaphragm or postural muscle activities, or sleep-wake states. These results support targeting a selective and restricted “druggable” target at the HMN (e.g., Kir2.4) to activate tongue motor activity during sleep. PMID:28383527

  8. Body stability and muscle and motor cortex activity during walking with wide stance

    PubMed Central

    Farrell, Brad J.; Bulgakova, Margarita A.; Beloozerova, Irina N.; Sirota, Mikhail G.

    2014-01-01

    Biomechanical and neural mechanisms of balance control during walking are still poorly understood. In this study, we examined the body dynamic stability, activity of limb muscles, and activity of motor cortex neurons [primarily pyramidal tract neurons (PTNs)] in the cat during unconstrained walking and walking with a wide base of support (wide-stance walking). By recording three-dimensional full-body kinematics we found for the first time that during unconstrained walking the cat is dynamically unstable in the forward direction during stride phases when only two diagonal limbs support the body. In contrast to standing, an increased lateral between-paw distance during walking dramatically decreased the cat's body dynamic stability in double-support phases and prompted the cat to spend more time in three-legged support phases. Muscles contributing to abduction-adduction actions had higher activity during stance, while flexor muscles had higher activity during swing of wide-stance walking. The overwhelming majority of neurons in layer V of the motor cortex, 82% and 83% in the forelimb and hindlimb representation areas, respectively, were active differently during wide-stance walking compared with unconstrained condition, most often by having a different depth of stride-related frequency modulation along with a different mean discharge rate and/or preferred activity phase. Upon transition from unconstrained to wide-stance walking, proximal limb-related neuronal groups subtly but statistically significantly shifted their activity toward the swing phase, the stride phase where most of body instability occurs during this task. The data suggest that the motor cortex participates in maintenance of body dynamic stability during locomotion. PMID:24790167

  9. Dynamical changes and temporal precision of synchronized spiking activity in monkey motor cortex during movement preparation.

    PubMed

    Riehle, A; Grammont, F; Diesmann, M; Grün, S

    2000-01-01

    Movement preparation is considered to be based on central processes which are responsible for improving motor performance. For instance, it has been shown that motor cortical neurones change their activity selectively in relation to prior information about movement parameters. However, it is not clear how groups of neurones dynamically organize their activity to cope with computational demands. The aim of the study was to compare the firing rate of multiple simultaneously recorded neurones with the interaction between them by describing not only the frequency of occurrence of epochs of significant synchronization, but also its modulation in time and its changes in temporal precision during an instructed delay. Multiple single-neurone activity was thus recorded in monkey motor cortex during the performance of two different delayed multi-directional pointing tasks. In order to detect conspicuous spike coincidences in simultaneously recorded spike trains by tolerating temporal jitter ranging from 0 to 20 ms and to calculate their statistical significance, a modified method of the 'Unitary Events' analysis was used. Two main results were obtained. First, simultaneously recorded neurones synchronize their spiking activity in a highly dynamic way. Synchronization becomes significant only during short periods (about 100 to 200 ms). Several such periods occurred during a behavioural trial more or less regularly. Second, in many pairs of neurones, the temporal precision of synchronous activity was highest at the end of the preparatory period. As a matter of fact, at the beginning of this period, after the presentation of the preparatory signal, neurones significantly synchronize their spiking activity, but with low temporal precision. As time advances, significant synchronization becomes more precise. Data indicate that not only the discharge rate is involved in preparatory processes, but also temporal aspects of neuronal activity as expressed in the precise synchronization

  10. Mapping Horizontal Spread of Activity in Monkey Motor Cortex Using Single Pulse Microstimulation

    PubMed Central

    Riehle, Alexa; Brochier, Thomas G.

    2016-01-01

    Anatomical studies have demonstrated that distant cortical points are interconnected through long range axon collaterals of pyramidal cells. However, the functional properties of these intrinsic synaptic connections, especially their relationship with the cortical representations of body movements, have not been systematically investigated. To address this issue, we used multielectrode arrays chronically implanted in the motor cortex of two rhesus monkeys to analyze the effects of single-pulse intracortical microstimulation (sICMS) applied at one electrode on the neuronal activities recorded at all other electrodes. The temporal and spatial distribution of the evoked responses of single and multiunit activities was quantified to determine the properties of horizontal propagation. The typical responses were characterized by a brief excitatory peak followed by inhibition of longer duration. Significant excitatory responses to sICMS could be evoked up to 4 mm away from the stimulation site, but the strength of the response decreased exponentially and its latency increased linearly with the distance. We then quantified the direction and strength of the propagation in relation to the somatotopic organization of the motor cortex. We observed that following sICMS the propagation of neural activity is mainly directed rostro-caudally near the central sulcus but follows medio-lateral direction at the most anterior electrodes. The fact that these interactions are not entirely symmetrical may characterize a critical functional property of the motor cortex for the control of upper limb movements. Overall, these results support the assumption that the motor cortex is not functionally homogeneous but forms a complex network of interacting subregions. PMID:28018182

  11. Self-powered suspension criterion and energy regeneration implementation scheme of motor-driven active suspension

    NASA Astrophysics Data System (ADS)

    Yan, Shuai; Sun, Weichao

    2017-09-01

    Active suspension systems have advantages on mitigating the effects of vehicle vibration caused by road roughness, which are one of the most important component parts in influencing the performances of vehicles. However, high amount of energy consumption restricts the application of active suspension systems. From the point of energy saving, this paper presents a self-powered criterion of the active suspension system to judge whether a motor-driven suspension can be self-powered or not, and then a motor parameter condition is developed as a reference to design a self-powered suspension. An energy regeneration implementation scheme is subsequently proposed to make the active suspension which has the potential to be self-powered achieve energy-saving target in the real application. In this implementation scheme, operating electric circuits are designed based on different working status of the actuator and power source and it is realizable to accumulate energy from road vibration and supply energy to the actuator by switching corresponding electric circuits. To apply the self-powered suspension criterion and energy regeneration implementation scheme, an active suspension system is designed with a constrained H∞ controller and calculation results indicate that it has the capability to be self-powered. Simulation results show that the performances of the self-powered active suspension are nearly the same as those of the active suspension with an external energy source and can achieve energy regeneration at the same time.

  12. A threshold level of NFATc1 activity facilitates thymocyte differentiation and opposes notch-driven leukaemia development

    PubMed Central

    Klein-Hessling, Stefan; Rudolf, Ronald; Muhammad, Khalid; Knobeloch, Klaus-Peter; Maqbool, Muhammad Ahmad; Cauchy, Pierre; Andrau, Jean-Christophe; Avots, Andris; Talora, Claudio; Ellenrieder, Volker; Screpanti, Isabella; Serfling, Edgar; Patra, Amiya Kumar

    2016-01-01

    NFATc1 plays a critical role in double-negative thymocyte survival and differentiation. However, the signals that regulate Nfatc1 expression are incompletely characterized. Here we show a developmental stage-specific differential expression pattern of Nfatc1 driven by the distal (P1) or proximal (P2) promoters in thymocytes. Whereas, preTCR-negative thymocytes exhibit only P2 promoter-derived Nfatc1β expression, preTCR-positive thymocytes express both Nfatc1β and P1 promoter-derived Nfatc1α transcripts. Inducing NFATc1α activity from P1 promoter in preTCR-negative thymocytes, in addition to the NFATc1β from P2 promoter impairs thymocyte development resulting in severe T-cell lymphopenia. In addition, we show that NFATc1 activity suppresses the B-lineage potential of immature thymocytes, and consolidates their differentiation to T cells. Further, in the pTCR-positive DN3 cells, a threshold level of NFATc1 activity is vital in facilitating T-cell differentiation and to prevent Notch3-induced T-acute lymphoblastic leukaemia. Altogether, our results show NFATc1 activity is crucial in determining the T-cell fate of thymocytes. PMID:27312418

  13. Casein kinase 1 controls the activation threshold of an α-arrestin by multisite phosphorylation of the interdomain hinge

    PubMed Central

    Herrador, Antonio; Livas, Daniela; Soletto, Lucía; Becuwe, Michel; Léon, Sébastien; Vincent, Olivier

    2015-01-01

    α-Arrestins play a key role as trafficking adaptors in both yeast and mammals. The yeast Rim8/Art9 α-arrestin mediates the recruitment of endosomal sorting complex required for transport (ESCRT) to the seven-transmembrane protein Rim21 in the ambient pH signaling RIM pathway. ESCRT is believed to function as a signaling platform that enables the proteolytic activation of the Rim101 transcription factor upon external alkalization. Here we provide evidence that the pH signal promotes the stable association of Rim8 with Rim21 at the plasma membrane. We show that Rim8 is phosphorylated in a pH-independent but Rim21-dependent manner by the plasma membrane–associated casein kinase 1 (CK1). We further show that this process involves a cascade of phosphorylation events within the hinge region connecting the arrestin domains. Strikingly, loss of casein kinase 1 activity causes constitutive activation of the RIM pathway, and, accordingly, pH signaling is activated in a phosphodeficient Rim8 mutant and impaired in the corresponding phosphomimetic mutant. Our results indicate that Rim8 phosphorylation prevents its accumulation at the plasma membrane at acidic pH and thereby inhibits RIM signaling. These findings support a model in which CK1-mediated phosphorylation of Rim8 contributes to setting a signaling threshold required to inhibit the RIM pathway at acidic pH. PMID:25851600

  14. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson's disease.

    PubMed

    Weiss, Daniel; Klotz, Rosa; Govindan, Rathinaswamy B; Scholten, Marlieke; Naros, Georgios; Ramos-Murguialday, Ander; Bunjes, Friedemann; Meisner, Christoph; Plewnia, Christian; Krüger, Rejko; Gharabaghi, Alireza

    2015-03-01

    Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson's disease. Here, we set out to address the motor network activity and synchronization in Parkinson's disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic Parkinson's disease with subthalamic nucleus stimulation were analysed on externally cued right hand finger movements with 1.5-s interstimulus interval. Simultaneous recordings were obtained from electromyography on antagonistic muscles (right flexor digitorum and extensor digitorum) together with 64-channel electroencephalography. Time-frequency event-related spectral perturbations were assessed to determine cortical and muscular activity. Next, cross-spectra in the time-frequency domain were analysed to explore the cortico-cortical synchronization. The time-frequency modulations enabled us to select a time-frequency range relevant for motor processing. On these time-frequency windows, we developed an extension of the phase synchronization index to quantify the global cortico-cortical synchronization and to obtain topographic differentiations of distinct electrode sites with respect to their contributions to the global phase synchronization index. The spectral measures were used to predict clinical and reaction time outcome using regression analysis. We found that movement-related desynchronization of cortical activity in the upper alpha and beta range was significantly facilitated with 'stimulation on' compared to 'stimulation off' on electrodes over the bilateral parietal, sensorimotor, premotor, supplementary-motor, and prefrontal areas, including the bilateral inferior prefrontal areas. These spectral modulations enabled us to predict both clinical and reaction time improvement from subthalamic stimulation. With 'stimulation on', interhemispheric cortico

  15. Self-controlled feedback facilitates motor learning in both high and low activity individuals.

    PubMed

    Fairbrother, Jeffrey T; Laughlin, David D; Nguyen, Timothy V

    2012-01-01

    The purpose of this study was to determine if high and low activity individuals differed in terms of the effects of self-controlled feedback on the performance and learning of a movement skill. The task consisted of a blindfolded beanbag toss using the non-preferred arm. Participants were pre-screened according to their physical activity level using the International Physical Activity Questionnaire. An equal number of high activity (HA) and low activity (LA) participants were assigned to self-control (SC) and yoked (YK) feedback conditions, creating four groups: Self-Control-High Activity; Self-Control-Low Activity; Yoked-High Activity; and Yoked-Low Activity. SC condition participants were provided feedback whenever they requested it, while YK condition participants received feedback according to a schedule created by their SC counterpart. Results indicated that the SC condition was more accurate than the YK condition during acquisition and transfer phases, and the HA condition was more accurate than the LA condition during all phases of the experiment. A post-training questionnaire indicated that participants in the SC condition asked for feedback mostly after what they perceived to be "good" trials; those in the YK condition indicated that they would have preferred to receive feedback after "good" trials. This study provided further support for the advantages of self-controlled feedback when learning motor skills, additionally showing benefits for both active and less active individuals. The results suggested that the provision of self-controlled feedback to less active learners may be a potential avenue to teaching motor skills necessary to engage in greater amounts of physical activity.

  16. Broadband activation by white-opsin lowers intensity threshold for cellular stimulation.

    PubMed

    Batabyal, Subrata; Cervenka, Gregory; Birch, David; Kim, Young-tae; Mohanty, Samarendra

    2015-12-14

    Photoreceptors, which initiate the conversion of ambient light to action potentials via retinal circuitry, degenerate in retinal diseases such as retinitis pigmentosa and age related macular degeneration leading to loss of vision. Current prosthetic devices using arrays consisting of electrodes or LEDs (for optogenetic activation of conventional narrow-band opsins) have limited spatial resolution and can cause damage to retinal circuits by mechanical or photochemical (by absorption of intense narrow band light) means. Here, we describe a broad-band light activatable white-opsin for generating significant photocurrent at white light intensity levels close to ambient daylight conditions. White-opsin produced an order of magnitude higher photocurrent in response to white light as compared to narrow-band opsin channelrhodopsin-2, while maintaining the ms-channel kinetics. High fidelity of peak-photocurrent (both amplitude and latency) of white-opsin in response to repetitive white light stimulation of varying pulse width was observed. The significantly lower intensity stimulation required for activating white-opsin sensitized cells may facilitate ambient white light-based restoration of vision for patients with widespread photoreceptor degeneration.

  17. Broadband activation by white-opsin lowers intensity threshold for cellular stimulation

    PubMed Central

    Batabyal, Subrata; Cervenka, Gregory; Birch, David; Kim, Young-tae; Mohanty, Samarendra

    2015-01-01

    Photoreceptors, which initiate the conversion of ambient light to action potentials via retinal circuitry, degenerate in retinal diseases such as retinitis pigmentosa and age related macular degeneration leading to loss of vision. Current prosthetic devices using arrays consisting of electrodes or LEDs (for optogenetic activation of conventional narrow-band opsins) have limited spatial resolution and can cause damage to retinal circuits by mechanical or photochemical (by absorption of intense narrow band light) means. Here, we describe a broad-band light activatable white-opsin for generating significant photocurrent at white light intensity levels close to ambient daylight conditions. White-opsin produced an order of magnitude higher photocurrent in response to white light as compared to narrow-band opsin channelrhodopsin-2, while maintaining the ms-channel kinetics. High fidelity of peak-photocurrent (both amplitude and latency) of white-opsin in response to repetitive white light stimulation of varying pulse width was observed. The significantly lower intensity stimulation required for activating white-opsin sensitized cells may facilitate ambient white light-based restoration of vision for patients with widespread photoreceptor degeneration. PMID:26658483

  18. The activation of IgM- or isotype-switched IgG- and IgE-BCR exhibits distinct mechanical force sensitivity and threshold

    PubMed Central

    Wan, Zhengpeng; Chen, Xiangjun; Chen, Haodong; Ji, Qinghua; Chen, Yingjia; Wang, Jing; Cao, Yiyun; Wang, Fei; Lou, Jizhong; Tang, Zhuo; Liu, Wanli

    2015-01-01

    B lymphocytes use B cell receptors (BCRs) to sense the physical features of the antigens. However, the sensitivity and threshold for the activation of BCRs resulting from the stimulation by mechanical forces are unknown. Here, we addressed this question using a double-stranded DNA-based tension gauge tether system serving as a predefined mechanical force gauge ranging from 12 to 56 pN. We observed that IgM-BCR activation is dependent on mechanical forces and exhibits a multi-threshold effect. In contrast, the activation of isotype-switched IgG- or IgE-BCR only requires a low threshold of less than 12 pN, providing an explanation for their rapid activation in response to antigen stimulation. Mechanistically, we found that the cytoplasmic tail of the IgG-BCR heavy chain is both required and sufficient to account for the low mechanical force threshold. These results defined the mechanical force sensitivity and threshold that are required to activate different isotyped BCRs. DOI: http://dx.doi.org/10.7554/eLife.06925.001 PMID:26258882

  19. Assessing Upper Extremity Motor Function in Practice of Virtual Activities of Daily Living

    PubMed Central

    Adams, Richard J.; Lichter, Matthew D.; Krepkovich, Eileen T.; Ellington, Allison; White, Marga; Diamond, Paul T.

    2015-01-01

    A study was conducted to investigate the criterion validity of measures of upper extremity (UE) motor function derived during practice of virtual activities of daily living (ADLs). Fourteen hemiparetic stroke patients employed a Virtual Occupational Therapy Assistant (VOTA), consisting of a high-fidelity virtual world and a Kinect™ sensor, in four sessions of approximately one hour in duration. An Unscented Kalman Filter-based human motion tracking algorithm estimated UE joint kinematics in real-time during performance of virtual ADL activities, enabling both animation of the user’s avatar and automated generation of metrics related to speed and smoothness of motion. These metrics, aggregated over discrete sub-task elements during performance of virtual ADLs, were compared to scores from an established assessment of UE motor performance, the Wolf Motor Function Test (WMFT). Spearman’s rank correlation analysis indicates a moderate correlation between VOTA-derived metrics and the time-based WMFT assessments, supporting the criterion validity of VOTA measures as a means of tracking patient progress during an UE rehabilitation program that includes practice of virtual ADLs. PMID:25265612

  20. Examination of Hand Muscle Activation and Motor Unit Indices Derived from Surface EMG in Chronic Stroke

    PubMed Central

    Li, Xiaoyan; Liu, Jie; Li, Sheng; Wang, Ying-Chih

    2014-01-01

    In this study, we used muscle and motor unit indices, derived from convenient surface electromyography (EMG) measurements, for examination of paretic muscle changes post stroke. For 12 stroke subjects, compound muscle action potential and voluntary surface EMG signals were recorded from paretic and contralateral first dorsal interosseous, abductor pollicis brevis, and abductor digiti minimi muscles. Muscle activation index (AI), motor unit number index (MUNIX), and motor unit size index (MUSIX) were then calculated for each muscle. There was a significant AI reduction for all the three muscles in paretic side compared with contralateral side, providing an evidence of muscle activation deficiency after stroke. The hand MUNIX (defined by summing the values from the three muscles) was significantly reduced in paretic side compared with contralateral side, whereas the hand MUSIX was not significantly different. Furthermore, diverse changes in MUNIX and MUSIX were observed from the three muscles. A major feature of the present examinations is the primary reliance on surface EMG, which offers practical benefits because it is noninvasive, induces minimal discomfort and can be performed quickly. PMID:24967982

  1. The development of hindlimb motor activity studied in the isolated spinal cord of the chick embryo.

    PubMed

    O'Donovan, M J; Landmesser, L

    1987-10-01

    The development of hindlimb motor activity was studied in an isolated preparation of the chick spinal cord. The motor output from lumbosacral segments was characterized by recording the pattern of ventral root and muscle nerve discharge in 6-14-d-old embryos. In addition, the synaptic drive underlying motoneuron activity was monitored electrotonically from the ventral roots. Spontaneous motor activity consisted of recurring episodes of cyclical motoneuron discharge. During development, both the number of cycles in each episode and the intensity of discharge in each cycle progressively increased. Monophasic, positive ventral root potentials accompanied each cycle of motoneuron discharge. Prior to the innervation of hindlimb muscles at stage 26, ventral root discharge was barely detectable despite the presence of large ventral root potentials. Following hindlimb muscle innervation, each cycle of activity was initiated by a brief, intense discharge that coincided with the rising phase of the ventral root potential. In embryos older than stage 30, the initial discharge was followed, after a delay, by a more prolonged discharge. The duration of ventral root potentials was shortest in the stage 26 embryos, but was similar in embryos at stage 29 and older. The developmental changes in the coordination of antagonist activity were documented by recording the pattern of discharge in sartorius (flexor) and caudilioflexorius (extensor) muscle nerves between stage 30 and stage 36. At stage 30 both sets of motoneurons were coactivated during the brief discharge that initiated each cycle. By stage 31 a second discharge occurred in each cycle. The second discharge was delayed in flexor, but not in extensor, motoneurons, which led to an alternating pattern of activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Responses of human sensory and motor axons to the release of ischaemia and to hyperpolarizing currents.

    PubMed

    Lin, Cindy S-Y; Kuwabara, Satoshi; Cappelen-Smith, Cecilia; Burke, David

    2002-06-15

    This study compared directly the post-ischaemic behaviour of sensory and motor axons in the human median nerve, focusing on the excitability changes produced by ischaemia and its release and by continuous polarizing DC. The decrease in threshold during ischaemia for 13 min was greater, the post-ischaemic increase in threshold was more rapid, and the return to the pre-ischaemic excitability took longer in sensory axons. However, a transient depolarizing threshold shift developed in sensory axons a few minutes after release of ischaemia. This pattern could not be reproduced by polarizing currents designed to mimic the probable pump-induced changes in membrane potential, even though the applied currents produced greater changes in threshold. Hyperpolarizing currents of equivalent intensity produced a greater increase in threshold for motor axons than sensory axons and, in studies of threshold electrotonus using graded hyperpolarizing DC, accommodation was greater in sensory than motor axons. The post-ischaemic changes in threshold were not uniform for axons of different threshold, whether sensory or motor, the threshold increase was usually less prominent for low-threshold axons. A transient post-ischaemic depolarization could be produced in motor axons with ischaemia of 20 min duration. Greater ischaemic and post-ischaemic changes in threshold for sensory axons could reflect greater dependence on the electrogenic Na+-K+ pump to maintain resting membrane potential and/or greater extracellular K+ accumulation in ischaemic sensory axons. Inward K+ currents due to extracellular K+ accumulation would then be more likely to trigger a depolarizing shift in membrane potential, the degree of K+ accumulation and pump activity being dependent on the duration of ischaemia. In sensory axons the greater tendency to accommodate to hyperpolarizing stimuli presumably contributes to shaping their post-ischaemic behaviour but is probably insufficient to explain why their behaviour

  3. Activation and integration of motor components in a short-term priming paradigm.

    PubMed

    Labeye, Elodie; Oker, Ali; Badard, Guillemette; Versace, Rémy

    2008-09-01

    The aim of the present research was to study the processes involved in knowledge emergence. In a short-term priming paradigm, participants had to categorize pictures of objects as either "kitchen objects" or "do-it-yourself tools". The primes and targets represented objects belonging to either the same semantic category or different categories (object category similarity), and their use involved gestures that were either similar or very different (gesture similarity). The condition with a SOA of 100 ms revealed additive effects of motor similarity and object category similarity, whereas another condition with a SOA of 300 ms showed an interaction between motor and category similarity. These results were interpreted in terms of the activation and integration processes involved in the emergence of mental representations.

  4. Laterality of brain activity during motor imagery is modulated by the provision of source level neurofeedback.

    PubMed

    Boe, Shaun; Gionfriddo, Alicia; Kraeutner, Sarah; Tremblay, Antoine; Little, Graham; Bardouille, Timothy

    2014-11-01

    Motor imagery (MI) may be effective as an adjunct to physical practice for motor skill acquisition. For example, MI is emerging as an effective treatment in stroke neurorehabilitation. As in physical practice, the repetitive activation of neural pathways during MI can drive short- and long-term brain changes that underlie functional recovery. However, the lack of feedback about MI performance may be a factor limiting its effectiveness. The provision of feedback about MI-related brain activity may overcome this limitation by providing the opportunity for individuals to monitor their own performance of this endogenous process. We completed a controlled study to isolate neurofeedback as the factor driving changes in MI-related brain activity across repeated sessions. Eighteen healthy participants took part in 3 sessions comprised of both actual and imagined performance of a button press task. During MI, participants in the neurofeedback group received source level feedback based on activity from the left and right sensorimotor cortex obtained using magnetoencephalography. Participants in the control group received no neurofeedback. MI-related brain activity increased in the sensorimotor cortex contralateral to the imagined movement across sessions in the neurofeedback group, but not in controls. Task performance improved across sessions but did not differ between groups. Our results indicate that the provision of neurofeedback during MI allows healthy individuals to modulate regional brain activity. This finding has the potential to improve the effectiveness of MI as a tool in neurorehabilitation.

  5. Biomechanics of the vibrissa motor plant in rat: rhythmic whisking consists of triphasic neuromuscular activity.

    PubMed

    Hill, Dan N; Bermejo, Roberto; Zeigler, H Philip; Kleinfeld, David

    2008-03-26

    The biomechanics of a motor plant constrain the behavioral strategies that an animal has available to extract information from its environment. We used the rat vibrissa system as a model for active sensing and determined the pattern of muscle activity that drives rhythmic exploratory whisking. Our approach made use of electromyography to measure the activation of all relevant muscles in both head-fixed and unrestrained rats and two-dimensional imaging to monitor the position of the vibrissae in head-fixed rats. Our essential finding is that the periodic motion of the vibrissae and mystacial pad during whisking results from three phases of muscle activity. First, the vibrissae are thrust forward as the rostral extrinsic muscle, musculus (m.) nasalis, contracts to pull the pad and initiate protraction. Second, late in protraction, the intrinsic muscles pivot the vibrissae farther forward. Third, retraction involves the cessation of m. nasalis and intrinsic muscle activity and the contraction of the caudal extrinsic muscles m. nasolabialis and m. maxillolabialis to pull the pad and the vibrissae backward. We developed a biomechanical model of the whisking motor plant that incorporates the measured muscular mechanics along with movement vectors observed from direct muscle stimulation in anesthetized rats. The results of simulations of the model quantify how the combination of extrinsic and intrinsic muscle activity leads to an enhanced range of vibrissa motion than would be available from the intrinsic muscles alone.

  6. Complex Intrinsic Membrane Properties and Dopamine Shape Spiking Activity in a Motor Axon

    PubMed Central

    Ballo, Aleksander W.; Bucher, Dirk

    2009-01-01

    We studied the peripheral motor axons of the two pyloric dilator (PD) neurons of the stomatogastric ganglion in the lobster, Homarus americanus. Intracellular recordings from the motor nerve showed both fast and slow voltage- and activity-dependent dynamics. During rhythmic bursts, the PD axons displayed changes in spike amplitude and duration. Pharmacological experiments and the voltage-dependence of these phenomena suggest that inactivation of sodium and A-type potassium channels are responsible. In addition, the “resting” membrane potential was dependent on ongoing spike or burst activity, with more hyperpolarized values when activity was strong. Nerve stimulations, pharmacological block and current clamp experiments suggest that this is due to a functional antagonism between a slow after-hyperpolarization (sAHP) and inward rectification through hyperpolarization-activated current (IH). Dopamine application resulted in modest depolarization and “ectopic” peripheral spike initiation in the absence of centrally generated activity. This effect was blocked by CsCl and ZD7288, consistent with a role of IH. High frequency nerve stimulation inhibited peripheral spike initiation for several seconds, presumably due to the sAHP. Both during normal bursting activity and antidromic nerve stimulation, the conduction delay over the length of the peripheral nerve changed in a complex manner. This suggests that axonal membrane dynamics can have a substantial effect on the temporal fidelity of spike patterns propagated from a spike initiation site to a synaptic target, and that neuromodulators can influence the extent to which spike patterns are modified. PMID:19386902

  7. Motor skill learning enhances the expression of activity-regulated cytoskeleton-associated protein in the rat cerebellum.

    PubMed

    Wang, Dean-Chuan; Lin, Yu-Yi; Chen, Tsan-Ju; Lin, Hwai-Ting

    2014-11-01

    Motor skill learning is essential for environmental adaptations during everyday life. It has been shown that the cerebellum plays an important role in both the adaptation of eye movements and the motor skill learning. However, the neuronal substrates responsible for consolidation of complex motor skills rather than simple reflexes are still uncertain. Because the induction of immediate-early genes activity-regulated cytoskeleton-associated protein (Arc) and zinc finger binding protein clone 268 (Zif268) has been regarded as a marker for recent neuronal activity, therefore, in the present study, a rat paradigm of motor skill learning was used to investigate the protein expression of Arc and zif268 in the cerebellum after motor skill learning. Rats were trained to traverse the runway apparatus for 5 days. Protein samples were collected from the cerebellar cortices 1 hour after the training on days 1, 3, and 5, and analyzed by western blotting. The results showed that the expression of Arc, but not zif268, was significantly increased in the cerebellum following motor skill learning. These findings suggest that motor skill learning induces Arc expression in the cerebellum, which may play a role in acquiring complex motor skills.

  8. Suboptimal Muscle Synergy Activation Patterns Generalize their Motor Function across Postures.

    PubMed

    Sohn, M Hongchul; Ting, Lena H

    2016-01-01

    We used a musculoskeletal model to investigate the possible biomechanical and neural bases of using consistent muscle synergy patterns to produce functional motor outputs across different biomechanical conditions, which we define as generalizability. Experimental studies in cats demonstrate that the same muscle synergies are used during reactive postural responses at widely varying configurations, producing similarly-oriented endpoint force vectors with respect to the limb axis. However, whether generalizability across postures arises due to similar biomechanical properties or to neural selection of a particular muscle activation pattern has not been explicitly tested. Here, we used a detailed cat hindlimb model to explore the set of feasible muscle activation patterns that produce experimental synergy force vectors at a target posture, and tested their generalizability by applying them to different test postures. We used three methods to select candidate muscle activation patterns: (1) randomly-selected feasible muscle activation patterns, (2) optimal muscle activation patterns minimizing muscle effort at a given posture, and (3) generalizable muscle activation patterns that explicitly minimized deviations from experimentally-identified synergy force vectors across all postures. Generalizability was measured by the deviation between the simulated force direction of the candidate muscle activation pattern and the experimental synergy force vectors at the test postures. Force angle deviations were the greatest for the randomly selected feasible muscle activation patterns (e.g., >100°), intermediate for effort-wise optimal muscle activation patterns (e.g., ~20°), and smallest for generalizable muscle activation patterns (e.g., <5°). Generalizable muscle activation patterns were suboptimal in terms of effort, often exceeding 50% of the maximum possible effort (cf. ~5% in minimum-effort muscle activation patterns). The feasible muscle activation ranges of individual

  9. Suboptimal Muscle Synergy Activation Patterns Generalize their Motor Function across Postures

    PubMed Central

    Sohn, M. Hongchul; Ting, Lena H.

    2016-01-01

    We used a musculoskeletal model to investigate the possible biomechanical and neural bases of using consistent muscle synergy patterns to produce functional motor outputs across different biomechanical conditions, which we define as generalizability. Experimental studies in cats demonstrate that the same muscle synergies are used during reactive postural responses at widely varying configurations, producing similarly-oriented endpoint force vectors with respect to the limb axis. However, whether generalizability across postures arises due to similar biomechanical properties or to neural selection of a particular muscle activation pattern has not been explicitly tested. Here, we used a detailed cat hindlimb model to explore the set of feasible muscle activation patterns that produce experimental synergy force vectors at a target posture, and tested their generalizability by applying them to different test postures. We used three methods to select candidate muscle activation patterns: (1) randomly-selected feasible muscle activation patterns, (2) optimal muscle activation patterns minimizing muscle effort at a given posture, and (3) generalizable muscle activation patterns that explicitly minimized deviations from experimentally-identified synergy force vectors across all postures. Generalizability was measured by the deviation between the simulated force direction of the candidate muscle activation pattern and the experimental synergy force vectors at the test postures. Force angle deviations were the greatest for the randomly selected feasible muscle activation patterns (e.g., >100°), intermediate for effort-wise optimal muscle activation patterns (e.g., ~20°), and smallest for generalizable muscle activation patterns (e.g., <5°). Generalizable muscle activation patterns were suboptimal in terms of effort, often exceeding 50% of the maximum possible effort (cf. ~5% in minimum-effort muscle activation patterns). The feasible muscle activation ranges of individual

  10. Calorigenic effect of adrenaline in rats under conditions of restricted motor activity

    NASA Technical Reports Server (NTRS)

    Tomaszewska, L.; Kaciuba-Uscilko, H.; Kozlowski, S.

    1980-01-01

    In previous studies, it was demonstrated that long term restricted motor activity in rats induces a decrease in body weight, an increase in release of adrenaline, and a decrease in the release of noradrenaline with the urine, as well as a reduction in activity of the thymus gland and level of thyroxin in the blood. At the same time, a decrease was found in the internal body temperature that was accompanied by an increase in the rate of metabolism in the state of rest. An investigation is presented which attempts to clarify whether the calorigenic effect of adrenaline under conditions of increased metabolism in the period of immobility is exposed to changes.

  11. Comparison of the anorectic and motor activity effects of some aminoindanes, 2-aminotetralin and amphetamine in the rat.

    PubMed

    Mrongovius, R I; Bolt, A G; Hellyer, R O

    1978-01-01

    1. The anorectic and motor activity effects of 1-aminoindane, 2-aminoindane, some N-substituted 2-aminoindanes, 2-aminotetralin, amphetamine and fenfluramine were determined in rats. 2. The two compounds with structures most like the extended conformation of amphetamine, 2-aminotetralin and 2-aminoindane, were potent anorectics. At dosages which halved the intake of food over 1 h, amphetamine increased motor activity, 2-aminotetralin had no effect, and 2-aminoindane reduced motor activity. 3. Both the anorectic and central stimulant actions of 2-aminoindane were absent in N-ethyl- and N-isopropyl-2-aminoindane. 4. 1-Aminoindane, whose structure is like the folded conformation of amphetamine, produced a small anorectic effect and depressed motor activity.

  12. Modeling the impact of spinal cord stimulation paddle lead position on impedance, stimulation threshold, and activation region.

    PubMed

    Xiaoyi Min; Kent, Alexander R

    2015-08-01

    The effectiveness of spinal cord stimulation (SCS) for chronic pain treatment depends on selection of appropriate stimulation settings, which can be especially challenging following posture change or SCS lead migration. The objective of this work was to investigate the feasibility of using SCS lead impedance for determining the location of a SCS lead and for detecting lead migration, as well as the impact of axial movement and rotation of the St. Jude Medical PENTA™ paddle in the dorsal-ventral or medial-lateral directions on dorsal column (DC) stimulation thresholds and neural activation regions. We used a two-stage computational model, including a finite element method model of field potentials in the spinal cord during stimulation, coupled to a biophysical cable model of mammalian, myelinated nerve fibers to calculate tissue impedance and nerve fiber activation within the DC. We found that SCS lead impedance was highly sensitive to the distance between the lead and cerebrospinal fluid (CSF) layer. In addition, among all the lead positions studied, medial-lateral movement resulted in the most substantial changes to SC activation regions. These results suggest that impedance can be used for detecting paddle position and lead migration, and therefore for guiding SCS programming.

  13. Effects of 50 Hz electromagnetic fields on electroencephalographic alpha activity, dental pain threshold and cardiovascular parameters in humans.

    PubMed

    Ghione, Sergio; Seppia, Cristina Del; Mezzasalma, Lorena; Bonfiglio, Luca

    Recent studies indicate that exposure to extremely low frequency magnetic fields (ELF MFs) influences human electroencephalographic (EEG) alpha activity and pain perception. In the present study we analyse the effect on electrical EEG activity in the alpha band (8-13 Hz) and on nociception in 40 healthy male volunteers after 90-min exposure of the head to 50 Hz ELF MFs at a flux density of 40 or 80 microT in a double-blind randomized sham-controlled study. Since cardiovascular regulation is functionally related to pain modulation, we also measured blood pressure (BP) and heart rate (HR) during treatment. Alpha activity after 80 microT magnetic treatment almost doubled compared to sham treatment. Pain threshold after 40 microT magnetic treatment was significantly lower than after sham treatment. No effects were found for BP and HR. We suggest that these results may be explained by a modulation of sensory gating processes through the opioidergic system, that in turn is influenced by magnetic exposure.

  14. Modulation of voltage-gated sodium channels hyperpolarizes the voltage threshold for activation in spinal motoneurones.

    PubMed

    Power, Kevin E; Carlin, Kevin P; Fedirchuk, Brent

    2012-03-01

    Previous work has shown that motoneurone excitability is enhanced by a hyperpolarization of the membrane potential at which an action potential is initiated (V(th)) at the onset, and throughout brainstem-evoked fictive locomotion in the adult decerebrate cat and neonatal rat. Modeling work has suggested the modulation of Na(+) conductance as a putative mechanism underlying this state-dependent change in excitability. This study sought to determine whether modulation of voltage-gated sodium channels could induce V(th) hyperpolarization. Whole-cell patch-clamp recordings were made from antidromically identified lumbar spinal motoneurones in an isolated neonatal rat spinal cord preparation. Recordings were made with and without the bath application of veratridine, a plant alkaloid neurotoxin that acts as a sodium channel modulator. As seen in HEK 293 cells expressing Nav1.2 channels, veratridine-modified channels demonstrated a hyperpolarizing shift in their voltage-dependence of activation and a slowing of inactivation that resulted in an enhanced inward current in response to voltage ramp stimulations. In the native rat motoneurones, veratridine-modified sodium channels induced a hyperpolarization of V(th) in all 29 neonatal rat motoneurones examined (mean hyperpolarization: -6.6 ± 4.3 mV). V(th) hyperpolarization was not due to the effects on Ca(2+) and/or K(+) channels as blockade of these currents did not alter V(th). Veratridine also significantly increased the amplitude of persistent inward currents (PICs; mean increase: 72.5 ± 98.5 pA) evoked in response to slow depolarizing current ramps. However, the enhancement of the PIC amplitude had a slower time course than the hyperpolarization of V(th), and the PIC onset voltage could be either depolarized or hyperpolarized, suggesting that PIC facilitation did not mediate the V(th) hyperpolarization. We therefore suggest that central neuronal circuitry in mammals could affect V(th) in a mechanism similar to that of

  15. Meat Feeding Restricts Rapid Cold Hardening Response and Increases Thermal Activity Thresholds of Adult Blow Flies, Calliphora vicina (Diptera: Calliphoridae).

    PubMed

    Coleman, Paul C; Bale, Jeffrey S; Hayward, Scott A L

    2015-01-01

    Virtually all temperate insects survive the winter by entering a physiological state of reduced metabolic activity termed diapause. However, there is increasing evidence that climate change is disrupting the diapause response resulting in non-diapause life stages encountering periods of winter cold. This is a significant problem for adult life stages in particular, as they must remain mobile, periodically feed, and potentially initiate reproductive development at a time when resources should be diverted to enhance stress tolerance. Here we present the first evidence of protein/meat feeding restricting rapid cold hardening (RCH) ability and increasing low temperature activity thresholds. No RCH response was noted in adult female blow flies (Calliphora vicina Robineau-Desvoidy) fed a sugar, water and liver (SWL) diet, while a strong RCH response was seen in females fed a diet of sugar and water (SW) only. The RCH response in SW flies was induced at temperatures as high as 10°C, but was strongest following 3h at 0°C. The CTmin (loss of coordinated movement) and chill coma (final appendage twitch) temperature of SWL females (-0.3 ± 0.5°C and -4.9 ± 0.5°C, respectively) was significantly higher than for SW females (-3.2 ± 0.8°C and -8.5 ± 0.6°C). We confirmed this was not directly the result of altered extracellular K+, as activity thresholds of alanine-fed adults were not significantly different from SW flies. Instead we suggest the loss of cold tolerance is more likely the result of diverting resource allocation to egg development. Between 2009 and 2013 winter air temperatures in Birmingham, UK, fell below the CTmin of SW and SWL flies on 63 and 195 days, respectively, suggesting differential exposure to chill injury depending on whether adults had access to meat or not. We conclude that disruption of diapause could significantly impact on winter survival through loss of synchrony in the timing of active feeding and reproductive development with favourable

  16. Meat Feeding Restricts Rapid Cold Hardening Response and Increases Thermal Activity Thresholds of Adult Blow Flies, Calliphora vicina (Diptera: Calliphoridae)

    PubMed Central

    2015-01-01

    Virtually all temperate insects survive the winter by entering a physiological state of reduced metabolic activity termed diapause. However, there is increasing evidence that climate change is disrupting the diapause response resulting in non-diapause life stages encountering periods of winter cold. This is a significant problem for adult life stages in particular, as they must remain mobile, periodically feed, and potentially initiate reproductive development at a time when resources should be diverted to enhance stress tolerance. Here we present the first evidence of protein/meat feeding restricting rapid cold hardening (RCH) ability and increasing low temperature activity thresholds. No RCH response was noted in adult female blow flies (Calliphora vicina Robineau-Desvoidy) fed a sugar, water and liver (SWL) diet, while a strong RCH response was seen in females fed a diet of sugar and water (SW) only. The RCH response in SW flies was induced at temperatures as high as 10°C, but was strongest following 3h at 0°C. The CTmin (loss of coordinated movement) and chill coma (final appendage twitch) temperature of SWL females (-0.3 ± 0.5°C and -4.9 ± 0.5°C, respectively) was significantly higher than for SW females (-3.2 ± 0.8°C and -8.5 ± 0.6°C). We confirmed this was not directly the result of altered extracellular K+, as activity thresholds of alanine-fed adults were not significantly different from SW flies. Instead we suggest the loss of cold tolerance is more likely the result of diverting resource allocation to egg development. Between 2009 and 2013 winter air temperatures in Birmingham, UK, fell below the CTmin of SW and SWL flies on 63 and 195 days, respectively, suggesting differential exposure to chill injury depending on whether adults had access to meat or not. We conclude that disruption of diapause could significantly impact on winter survival through loss of synchrony in the timing of active feeding and reproductive development with favourable

  17. Sustaining sleep spindles through enhanced SK2-channel activity consolidates sleep and elevates arousal threshold.

    PubMed

    Wimmer, Ralf D; Astori, Simone; Bond, Chris T; Rovó, Zita; Chatton, Jean-Yves; Adelman, John P; Franken, Paul; Lüthi, Anita

    2012-10-03

    Sleep spindles are synchronized 11-15 Hz electroencephalographic (EEG) oscillations predominant during nonrapid-eye-movement sleep (NREMS). Rhythmic bursting in the reticular thalamic nucleus (nRt), arising from interplay between Ca(v)3.3-type Ca(2+) channels and Ca(2+)-dependent small-conductance-type 2 (SK2) K(+) channels, underlies spindle generation. Correlative evidence indicates that spindles contribute to memory consolidation and protection against environmental noise in human NREMS. Here, we describe a molecular mechanism through which spindle power is selectively extended and we probed the actions of intensified spindling in the naturally sleeping mouse. Using electrophysiological recordings in acute brain slices from SK2 channel-overexpressing (SK2-OE) mice, we found that nRt bursting was potentiated and thalamic circuit oscillations were prolonged. Moreover, nRt cells showed greater resilience to transit from burst to tonic discharge in response to gradual depolarization, mimicking transitions out of NREMS. Compared with wild-type littermates, chronic EEG recordings of SK2-OE mice contained less fragmented NREMS, while the NREMS EEG power spectrum was conserved. Furthermore, EEG spindle activity was prolonged at NREMS exit. Finally, when exposed to white noise, SK2-OE mice needed stronger stimuli to arouse. Increased nRt bursting thus strengthens spindles and improves sleep quality through mechanisms independent of EEG slow waves (<4 Hz), suggesting SK2 signaling as a new potential therapeutic target for sleep disorders and for neuropsychiatric diseases accompanied by weakened sleep spindles.

  18. Sustaining sleep spindles through enhanced SK2 channel activity consolidates sleep and elevates arousal threshold

    PubMed Central

    Wimmer, Ralf D.; Astori, Simone; Bond, Chris T.; Rovó, Zita; Chatton, Jean-Yves; Adelman, John P.; Franken, Paul; Lüthi, Anita

    2013-01-01

    Sleep spindles are synchronized 11–15 Hz electroencephalographic (EEG) oscillations predominant during non-rapid-eye-movement sleep (NREMS). Rhythmic bursting in the reticular thalamic nucleus (nRt), arising from interplay between Cav3.3-type Ca2+ channels and Ca2+-dependent small-conductance-type 2 (SK2) K+ channels, underlies spindle generation. Correlative evidence indicates that spindles contribute to memory consolidation and protection against environmental noise in human NREMS. Here, we describe a molecular mechanism through which spindle power is selectively extended and we probed the actions of intensified spindling in the naturally sleeping mouse. Using electrophysiological recordings in acute brain slices from SK2 channel-over-expressing (SK2-OE) mice, we found that nRt bursting was potentiated and thalamic circuit oscillations were prolonged. Moreover, nRt cells showed greater resilience to transit from burst to tonic discharge in response to gradual depolarization, mimicking transitions out of NREMS. Compared to wild-type littermates, chronic EEG recordings of SK2-OE mice contained less fragmented NREMS, while the NREMS EEG power spectrum was conserved. Furthermore, EEG spindle activity was prolonged at NREMS exit. Finally, when exposed to white noise, SK2-OE mice needed stronger stimuli to arouse. Increased nRt bursting thus strengthens spindles and improves sleep quality through mechanisms independent of EEG slow-waves (< 4 Hz), suggesting SK2 signaling as a new potential therapeutic target for sleep disorders and for neuropsychiatric diseases accompanied by weakened sleep spindles. PMID:23035101

  19. Altered activation of the antagonist muscle during practice compromises motor learning in older adults.

    PubMed

    Chen, Yen-Ting; Kwon, MinHyuk; Fox, Emily J; Christou, Evangelos A

    2014-08-15

    Aging impairs the activation of muscle; however, it remains unclear whether it contributes to deficits in motor learning in older adults. The purpose of this study was to determine whether altered activation of antagonistic muscles in older adults during practice inhibits their ability to transfer a motor task ipsilaterally. Twenty young (25.1 ± 3.9 yr; 10 men, 10 women) and twenty older adults (71.5 ± 4.8 yr; 10 men, 10 women) participated. Half of the subjects practiced 100 trials of a rapid goal-directed task with ankle dorsiflexion and were tested 1 day later with elbow flexion (transfer). The rest did not perform any ankle practice and only performed the task with elbow flexion. The goal-directed task consisted of rapid movement (180 ms) to match a spatiotemporal target. For each limb, we recorded the EMG burst activity of the primary agonist and antagonist muscles. The rate of improvement during task acquisition (practice) was similar for young and older adults (P > 0.3). In contrast, only young adults were able to transfer the task to the upper limb. Specifically, young adults who practiced ankle dorsiflexion exhibited ∼30% (P < 0.05) lower movement error and ∼60% (P < 0.05) lower antagonist EMG burst activity compared with older adults who received equal practice and young adults who did not receive any ankle dorsiflexion practice. These results provide novel evidence that the deficient motor learning in older adults may be related to a differential activation of the antagonist muscle, which compromises their ability to acquire the task during practice.

  20. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo

    PubMed Central

    Ward, Patricia J.; Jones, Laura N.; Mulligan, Amanda; Goolsby, William; Wilhelm, Jennifer C.; English, Arthur W.

    2016-01-01

    Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation) that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2), we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2) to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555) was greater in mice that received optical treatment. Thus, the acute (1 hour), one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-). We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons. PMID:27152611

  1. Nonlinear dose-dependent impact of D1 receptor activation on motor cortex plasticity in humans.

    PubMed

    Fresnoza, Shane; Paulus, Walter; Nitsche, Michael A; Kuo, Min-Fang

    2014-02-12

    The neuromodulator dopamine plays an important role in synaptic plasticity. The effects are determined by receptor subtype specificity, concentration level, and the kind of neuroplasticity induced. D1-like receptors have been proposed to be involved in cognitive processes via their impact on plasticity. Cognitive studies in humans and animals revealed a dosage-dependent effect of D1-like receptor activation on task performance. In humans, D1-like receptor activation re-establishes plasticity under D2 receptor block. However, a dosage-dependent effect has not been explored so far. To determine the impact of the amount of D1-like receptor activation on neuroplasticity in humans, we combined sulpiride, a selective D2 receptor antagonist, with the dopamine precursor l-DOPA (25, 100, and 200 mg) or applied placebo medication. The impact on plasticity induced by anodal and cathodal transcranial direct current stimulation (tDCS) was compared with the impact on plasticity induced by excitatory and inhibitory paired associative stimulation (PAS) at the primary motor cortex of healthy humans. Stimulation-generated cortical excitability alterations were monitored by transcranial magnetic stimulation-induced motor-evoked potential amplitudes. D1-like receptor activation produced an inverted U-shaped dose-response curve on plasticity induced by both facilitatory tDCS and PAS. For excitability-diminishing tDCS and PAS, aftereffects were abolished or converted trendwise into facilitation. These data extend findings of dose-dependent inverted U-shaped effects of D1 receptor activation on neuroplasticity of the motor cortex.

  2. Neuromagnetic Abnormality of Motor Cortical Activation and Phases of Headache Attacks in Childhood Migraine

    PubMed Central

    Xiang, Jing; deGrauw, Xinyao; Korman, Abraham M.; Allen, Janelle R.; O'Brien, Hope L.; Kabbouche, Marielle A.; Powers, Scott W.; Hershey, Andrew D.

    2013-01-01

    The cerebral cortex serves a primary role in the pathogenesis of migraine. This aberrant brain activation in migraine can be noninvasively detected with magnetoencephalography (MEG). The objective of this study was to investigate the differences in motor cortical activation between attacks (ictal) and pain free intervals (interictal) in children and adolescents with migraine using both low- and high-frequency neuromagnetic signals. Thirty subjects with an acute migraine and 30 subjects with a history of migraine, while pain free, were compared to age- and gender-matched controls using MEG. Motor cortical activation was elicited by a standardized, validated finger-tapping task. Low-frequency brain activation (1∼50 Hz) was analyzed with waveform measurements and high-frequency oscillations (65–150 Hz) were analyzed with wavelet-based beamforming. MEG waveforms showed that the ictal latency of low-frequency brain activation was significantly delayed as compared with controls, while the interictal latency of brain activation was similar to that of controls. The ictal amplitude of low-frequency brain activation was significantly increased as compared with controls, while the interictal amplitude of brain activation was similar to that of controls. The ictal source power of high-frequency oscillations was significantly stronger than that of the controls, while the interictal source power of high-frequency oscillations was significantly weaker than that of controls. The results suggest that aberrant low-frequency brain activation in migraine during a headache attack returned to normal interictally. However, high-frequency oscillations changed from ictal hyper-activation to interictal hypo-activation. Noninvasive assessment of cortical abnormality in migraine with MEG opens a new window for developing novel therapeutic strategies for childhood migraine by maintaining a balanced cortical excitability. PMID:24386250

  3. Spinal 5-HT7 receptor activation induces long-lasting phrenic motor facilitation.

    PubMed

    Hoffman, M S; Mitchell, G S

    2011-03-15

    Acute intermittent hypoxia elicits a form of serotonin-dependent respiratory plasticity known as phrenic long term facilitation (pLTF). Episodic spinal serotonin-2 (5-HT2) receptor activation on or near phrenic motor neurons is necessary for pLTF. A hallmark of pLTF is the requirement for serotonin-dependent synthesis of brain-derived neurotrophic factor (BDNF), and activation of its high affinity receptor, TrkB. Activation of spinal Gs protein-coupled adenosine 2A receptors (GsPCRs) elicits a unique form of long-lasting phrenic motor facilitation (PMF), but via unique mechanisms (BDNF independent TrkB trans-activation).We hypothesized that other GsPCRs elicit PMF, specifically serotonin-7 (5-HT7) receptors, which are expressed in phrenic motor neurons. Cervical spinal (C4) injections of a selective 5-HT7 receptor agonist, AS-19 (10 μM, 5 μl; 3 × 5 min), in anaesthetized, vagotomized and ventilated male Sprague-Dawley rats elicited long-lasting PMF (>120 min), an effect prevented by pretreatment with a 5-HT7 receptor antagonist (SB 269970; 5mM, 7 μl).GsPCR activation 'trans-activates'TrkB by increasing synthesis of an immature TrkB isoform. Spinal injection of a TrkB inhibitor (k252a) and siRNAs that prevent TrkB (but not BDNF) mRNA translation both blocked 5-HT7 agonist-induced PMF, confirming a requirement for TrkB synthesis and activity. k252a affected late PMF (≥ 90 min) only. Spinal inhibition of the PI3K/AKT pathway blocked 5-HT7 agonist-induced PMF, whereas MEK/ERK inhibition delayed, but did not block, PMF. An understanding of signalling mechanisms giving rise to PMF may guide development of novel therapeutic strategies to treat ventilatory control disorders associated with respiratory insufficiency, such as spinal injury and motor neuron disease.

  4. [Analysis of hemodynamics in late ontogenesis in subjects with different regimes of motor activity].

    PubMed

    Bykov, A T; Miakotnykh, V V; Khodasevich, L S; Zaĭtsev, I A

    2011-01-01

    Th present study was designed to examine 409 practically healthy men at the age of 50 to 79 years differing in terms of daily locomotor activities. They were divided into 4 groups each comprising subjects whose age differed within 10 years. Group 1 included former high-class athletes continuing physical exercises. Group 2 consisted of former high-class athletes practicing sedentary lifestyle. Group 3 contained subjects regularly doing health-improving physical exercises and group 4 those who had never been engaged in sports activities. The main parameters measured in all the subjects included the heart rate, arterial pressure, stroke volume, pulse pressure, minute blood volume, cardiac index, total peripheral vascular resistance, and mean dynamic arterial pressure. It was shown that both the routine regime of motor activity and its history in the preceding period have significant influence on hemodynamic characteristics in late ontogenesis. The high level of routine motor activity in the former high-class athletes enabled them to maintain for a long time good functional state of the cadiovascular system compared with the former athletes practicing sedentary lifestyle and the subjects who had never been engaged in sports activities. The former athletes practicing sedentary lifestyle developed the hypokinetic type of hemodynamics by the age of 60-69 years.

  5. Histamine and spontaneous motor activity: biphasic changes, receptors involved and participation of the striatal dopamine system.

    PubMed

    Chiavegatto, S; Nasello, A G; Bernardi, M M

    1998-01-01

    The time- and dose-related effects of exogenous histamine on spontaneous motor activity and receptors involved were evaluated in male rats. Intracerebroventricular administration of histamine (5.4 and 54.3 nmol) produced a biphasic effect with initial transitory hypoactivity and later hyperactivity expressed by locomotion frequency in an open-field. The rearing frequencies were only reduced by all doses of histamine used. The histamine-induced hypoactivity was inhibited by the H3-antagonist thioperamide and was also induced by the H3-agonist N-alpha-methylhistamine. The histamine-induced hyperactivity phase was blocked by the H1-antagonist mepyramine. The H2-antagonist ranitidine increased locomotion and rearing frequencies. The participation of other neurotransmitters in the persistent hypokinetic effect induced by 135.8 nmol of histamine was determined by HPLC in the striatum and hypothalamus as counter-proof. A decreased DOPAC/DA ratio was observed only in the striatum. In the hypothalamus, low levels of 5HT were detected, probably not correlated with motor activity. In conclusion, the present results suggest that the exogenous histamine-induced hypoactivity response is probably due to activation of H3-receptors as heteroreceptors reducing the activity of the striatal dopaminergic system. This effect can partially overlap with the expression of the hyperactivity induced by H1-receptor activation. The participation of H2-receptors requires further investigation.

  6. Controlling the motor activity of a transcription-repair coupling factor: autoinhibition and the role of RNA polymerase.

    PubMed

    Smith, Abigail J; Szczelkun, Mark D; Savery, Nigel J

    2007-01-01

    Motor proteins that couple ATP hydrolysis to movement along nucleic acids play a variety of essential roles in DNA metabolism. Often these enzymes function as components of macromolecular complexes, and DNA translocation by the motor protein drives movement of other components of the complex. In order to understand how the activity of motor proteins is regulated within multi-protein complexes we have studied the bacterial transcription-repair coupling factor, Mfd, which is a helicase superfamily 2 member that binds to RNA polymerase (RNAP) and removes stalled transcription complexes from DNA. Using an oligonucleotide displacement assay that monitors protein movement on double-stranded DNA we show that Mfd has little motor activity in isolation, but exhibits efficient oligonucleotide displacement activity when bound to a stalled transcription complex. Deletion of the C-terminal domain of Mfd increases the ATPase activity of the protein and allows efficient oligo-displacement in the absence of RNAP. Our results suggest that an autoinhibitory domain ensures the motor activity of Mfd is only functional within the correct macromolecular context: recruitment of Mfd to a stalled transcription complex relieves the autoinhibition and unmasks the motor activity.

  7. Molecular motors

    NASA Astrophysics Data System (ADS)

    Allemand, Jean François Desbiolles, Pierre

    2015-10-01

    How do we move? More precisely, what are the molecular mechanisms that can explain that our muscles, made of very small components can move at a osopic scale? To answer these questions we must introduce molecular motors. Those motors are proteins, or small protein assemblies that, in our cells, transform chemical energy into mechanical work. Then, like we could do for a oscopic motor, used in a car or in a fan, we are going to study the basic behavior of these molecular machines, present what are their energy sources, calculate their power, their yield. If molecular motors are crucial for our oscopic movements, we are going to see that they are also essential to cellular transport and that considering the activity of some enzymes as molecular motors bring some interesting new insights on their activity.

  8. Neural Activity during Voluntary Movements in Each Body Representation of the Intracortical Microstimulation-Derived Map in the Macaque Motor Cortex

    PubMed Central

    Kunori, Nobuo; Murata, Yumi

    2016-01-01

    In order to accurately interpret experimental data using the topographic body map identified by conventional intracortical microstimulation (ICMS), it is important to know how neurons in each division of the map respond during voluntary movements. Here we systematically investigated neuronal responses in each body representation of the ICMS map during a reach-grasp-retrieval task that involves the movements of multiple body parts. The topographic body map in the primary motor cortex (M1) generally corresponds to functional divisions of voluntary movements; neurons at the recording sites in each body representation with movement thresholds of 10 μA or less were differentially activated during the task, and the timing of responses was consistent with the movements of the body part represented. Moreover, neurons in the digit representation responded differently for the different types of grasping. In addition, the present study showed that neural activity depends on the ICMS current threshold required to elicit body movements and the location of the recording on the cortical surface. In the ventral premotor cortex (PMv), no correlation was found between the response properties of neurons and the body representation in the ICMS map. Neural responses specific to forelimb movements were often observed in the rostral part of PMv, including the lateral bank of the lower arcuate limb, in which ICMS up to 100 μA evoked no detectable movement. These results indicate that the physiological significance of the ICMS-derived maps is different between, and even within, areas M1 and PMv. PMID:27494282

  9. Differential Neural Processing during Motor Imagery of Daily Activities in Chronic Low Back Pain Patients

    PubMed Central

    Vrana, Andrea; Hotz-Boendermaker, Sabina; Stämpfli, Philipp; Hänggi, Jürgen; Seifritz, Erich; Humphreys, B. Kim; Meier, Michael L.

    2015-01-01

    Chronic low back pain (chronic LBP) is both debilitating for patients but also a major burden on the health care system. Previous studies reported various maladaptive structural and functional changes among chronic LBP patients on spine- and supraspinal levels including behavioral alterations. However, evidence for cortical reorganization in the sensorimotor system of chronic LBP patients is scarce. Motor Imagery (MI) is suitable for investigating the cortical sensorimotor network as it serves as a proxy for motor execution. Our aim was to investigate differential MI-d