Science.gov

Sample records for active mud volcanism

  1. Linked halokinesis and mud volcanism at the Mercator mud volcano, Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Perez-Garcia, Carolina; Berndt, Christian; Klaeschen, Dirk; Mienert, Jürgen; Haffert, Laura; Depreiter, Davy; Haeckel, Matthias

    2011-05-01

    Mud volcanoes are seafloor expressions of focused fluid flow that are common in compressional tectonic settings. New high-resolution 3-D seismic data from the Mercator mud volcano (MMV) and an adjacent buried mud volcano (BMV) image the internal structure of the top 800 m of sediment at both mud volcanoes, revealing that both are linked and have been active episodically. The total volumes of extruded mud range between 0.15 and 0.35 km3 and 0.02-0.05 km3 for the MMV and the BMV, respectively. The pore water composition of surface sediment samples suggests that halokinesis has played an important role in the evolution of the mud volcanoes. We propose that erosion of the top of the Vernadsky Ridge that underlies the mud volcanoes activated salt movement, triggering deep migration of fluids, dissolution of salt, and sediment liquefaction and mobilization since the end of the Pliocene. Since beginning of mud volcanism in this area, the mud volcanoes erupted four times while there was only one reactivation of salt tectonics. This implies that there are other mechanisms that trigger mud eruptions. The stratigraphic relationship of mudflows from the MMV and BMV indicates that the BMV was triggered by the MMV eruptions. This may either be caused by loading-induced hydrofracturing within the BMV or due to a common feeder system for both mud volcanoes. This study shows that the mud volcanoes in the El Arraiche mud volcano field are long-lived features that erupt with intervals of several tens of thousands of years.

  2. Volcanic Environments Monitoring by Drones Mud Volcano Case Study

    NASA Astrophysics Data System (ADS)

    Amici, S.; Turci, M.; Giulietti, F.; Giammanco, S.; Buongiorno, M. F.; La Spina, A.; Spampinato, L.

    2013-08-01

    Volcanic activity has often affected human life both at large and at small scale. For example, the 2010 Eyjafjallajokull eruption caused severe economic damage at continental scale due to its strong effect on air traffic. At a local scale, ash fall and lava flow emission can cause harm and disruption. Understanding precursory signals to volcanic eruptions is still an open and tricky challenge: seismic tremor and gas emissions, for example, are related to upcoming eruptive activity but the mechanisms are not yet completely understood. Furthermore, information related to gases emission mostly comes from the summit crater area of a volcano, which is usually hard to investigate with required accuracy. Although many regulation problems are still on the discussion table, an increasing interest in the application of cutting-edge technology like unmanned flying systems is growing up. In this sense, INGV (Istituto Nazionale di Geofisica e Vulcanologia) started to investigate the possibility to use unmanned air vehicles for volcanic environment application already in 2004. A flight both in visual- and radio-controlled mode was carried out on Stromboli volcano as feasibility test. In this work we present the preliminary results of a test performed by INGV in collaboration with the University of Bologna (aerospace division) by using a multi-rotor aircraft in a hexacopter configuration. Thermal camera observations and flying tests have been realised over a mud volcano located on its SW flank of Mt. Etna and whose activity proved to be related to early stages of magma accumulation within the volcano.

  3. Martian mud volcanism: Terrestrial analogs and implications for formational scenarios

    USGS Publications Warehouse

    Skinner, J.A.; Mazzini, A.

    2009-01-01

    The geology of Mars and the stratigraphic characteristics of its uppermost crust (mega-regolith) suggest that some of the pervasively-occurring pitted cones, mounds, and flows may have formed through processes akin to terrestrial mud volcanism. A comparison of terrestrial mud volcanism suggests that equivalent Martian processes likely required discrete sedimentary depocenters, volatile-enriched strata, buried rheological instabilities, and a mechanism of destabilization to initiate subsurface flow. We outline five formational scenarios whereby Martian mud volcanism might have occurred: (A) rapid deposition of sediments, (B) volcano-induced destabilization, (C) tectonic shortening, (D) long-term, load-induced subsidence, and (E) seismic shaking. We describe locations within and around the Martian northern plains that broadly fit the geological context of these scenarios and which contain mud volcano-like landforms. We compare terrestrial and Martian satellite images and examine the geological settings of mud volcano provinces on Earth in order to describe potential target areas for piercement structures on Mars. Our comparisons help to evaluate not only the role of water as a functional component of geological processes on Mars but also how Martian mud volcanoes could provide samples of otherwise inaccessible strata, some of which could contain astrobiological evidence.

  4. Application of mud volcanism for rocky and icy planetary bodies

    NASA Astrophysics Data System (ADS)

    Bradak, B.; Kereszturi, A.

    In this work we review our current knowledge on the two basic kinds of mud volcanism on Earth and its application to planetary environments. We emphasize the processes at the newly discovered submarine giant blueschit mud volcanoes around subductuion zones as a useful analogy for several processes on planetary surfaces. Because of the tectonically compressed environment where gas and liquid release cause diapiric rising of "mud" bodies without extremely high temperature, these are good models for several processes on the following planetary bodies: 1. volcanoes build up by low viscosity lavas on Venus, 2. subsurface water-clathrate decomposition driven break up of liquified matters on Mars, 3. pseudovolcanic cones on Mars, 4. cryo-like volcanoes on Mars, 5. cryovolcanism and diapiric model for the origin of the chaotic terrains on Europa, 6. origin of cantaloupe terrain and possible connection of explosive volcanism with insolation on Triton.

  5. Mud volcanism at the Manihiki-Plateau

    SciTech Connect

    Beiersdorf, H. )

    1990-06-01

    In February 1987 a complex of mud volcanoes was discovered on the northeastern edge of the Manihiki-Plateau during a cruise of R/V MOANA WAVE. Forty out of about 100 cones coalesce to form an edifice about 25 km in diameter, 1,900 m high, rising from a plateau depth of 3,200 m. SeaMARC II side-scan images suggest radial fluid sediment flow from the center of this feature. Recent foraminiferal ooze was cored from a satellite cone. One dredge haul from the summit of the edifice recovered burrowed limestone with embedded Middle Eocene foraminifera. It suggests that parts of the sedimentary basement cover of the Manihiki Plateau have been mobilized together with pore fluids and moved upward. The causes of the movement as well as its mechanism, however, remain unknown because of the lack of direct measurements. There is a likelihood that overpressured methane, generated from organic carbon-rich sediments, acts as driving force. Therefore, BGR submitted a proposal to the Federal Ministry of Research and Technology (BMFT) to investigate the mud volcano complex and reference area with the most relevant outcropping sedimentary sequence of the northeastern Manihiki Plateau in detail. The preliminary results from these investigations carried out with R/V SONNE in spring of 1990 are presented.

  6. Serpentinite mud volcanism: observations, processes, and implications.

    PubMed

    Fryer, Patricia

    2012-01-01

    Large serpentinite mud volcanoes form on the overriding plate of the Mariana subduction zone. Fluids from the descending plate hydrate (serpentinize) the forearc mantle and enable serpentinite muds to rise along faults to the seafloor. The seamounts are direct windows into subduction processes at depths far too deep to be accessed by any known technology. Fluid compositions vary with distance from the trench, signaling changes in chemical reactions as temperature and pressure increase. The parageneses of rocks in the mudflows permits us to constrain the physical conditions of the decollement region. If eruptive episodes are related to seismicity, seafloor observatories at these seamounts hold the potential to capture a subduction event and trace the effects of eruption on the biological communities that the slab fluids support, such as extremophile Archaea. The microorganisms that inhabit this high-pH, extreme environment support their growth by utilizing chemical constituents present in the slab fluids. Some researchers now contend that the serpentinization process itself may hold the key to the origin of life on Earth. PMID:22457979

  7. Serpentinite mud volcanism: observations, processes, and implications.

    PubMed

    Fryer, Patricia

    2012-01-01

    Large serpentinite mud volcanoes form on the overriding plate of the Mariana subduction zone. Fluids from the descending plate hydrate (serpentinize) the forearc mantle and enable serpentinite muds to rise along faults to the seafloor. The seamounts are direct windows into subduction processes at depths far too deep to be accessed by any known technology. Fluid compositions vary with distance from the trench, signaling changes in chemical reactions as temperature and pressure increase. The parageneses of rocks in the mudflows permits us to constrain the physical conditions of the decollement region. If eruptive episodes are related to seismicity, seafloor observatories at these seamounts hold the potential to capture a subduction event and trace the effects of eruption on the biological communities that the slab fluids support, such as extremophile Archaea. The microorganisms that inhabit this high-pH, extreme environment support their growth by utilizing chemical constituents present in the slab fluids. Some researchers now contend that the serpentinization process itself may hold the key to the origin of life on Earth.

  8. Serpentinite Mud Volcanism: Observations, Processes, and Implications

    NASA Astrophysics Data System (ADS)

    Fryer, Patricia

    2012-01-01

    Large serpentinite mud volcanoes form on the overriding plate of the Mariana subduction zone. Fluids from the descending plate hydrate (serpentinize) the forearc mantle and enable serpentinite muds to rise along faults to the seafloor. The seamounts are direct windows into subduction processes at depths far too deep to be accessed by any known technology. Fluid compositions vary with distance from the trench, signaling changes in chemical reactions as temperature and pressure increase. The parageneses of rocks in the mudflows permits us to constrain the physical conditions of the decollement region. If eruptive episodes are related to seismicity, seafloor observatories at these seamounts hold the potential to capture a subduction event and trace the effects of eruption on the biological communities that the slab fluids support, such as extremophile Archaea. The microorganisms that inhabit this high-pH, extreme environment support their growth by utilizing chemical constituents present in the slab fluids. Some researchers now contend that the serpentinization process itself may hold the key to the origin of life on Earth.

  9. Evidence for pervasive mud volcanism in Acidalia Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Oehler, Dorothy Z.; Allen, Carlton C.

    2010-08-01

    We have mapped 18,000+ circular mounds in a portion of southern Acidalia Planitia using their sizes, shapes, and responses in Nighttime IR. We estimate that 40,000+ of these features could occur in the area, with a distribution generally corresponding to the southern half of the proposed Acidalia impact basin. The mounds have average diameters of about 1 km and relief up to 180 m and most overlie units mapped as Early Amazonian. High resolution images of mound surfaces show relatively smooth veneers, apron-like extensions onto the plains, moats, and concentric circular crestal structures. Some images show lobate and flow-like features associated with the mounds. Albedo of the mounds is generally higher than that of the surrounding plains. Visible and near-infrared spectra suggest that the mounds and plains have subtle mineralogical differences, with the mounds having enhanced coatings or possibly greater quantities of crystalline ferric oxides. Multiple analogs for these structures were assessed in light of new orbital data and regional mapping. Mud volcanism is the closest terrestrial analogy, though the process in Acidalia would have had distinctly martian attributes. This interpretation is supported by the geologic setting of the Acidalia which sits at the distal end of the Chryse-Acidalia embayment into which large quantities of sediments were deposited through the Hesperian outflow channels. In its distal position, Acidalia would have been a depocenter for accumulation of mud and fluids from outflow sedimentation. Thus, the profusion of mounds in Acidalia is likely to be a consequence of this basin's unique geologic setting. Basinwide mud eruption may be attributable to overpressure (developed in response to rapid outflow deposition) perhaps aided by regional triggers for fluid expulsion related to events such as tectonic or hydrothermal pulses, destabilization of clathrates, or sublimation of a frozen body of water. Significant release of gas may have been

  10. Search of CH4 around the mud volcanism areas on Mars

    NASA Astrophysics Data System (ADS)

    Aoki, Shohei

    2012-06-01

    We propose the first measurement of CH4 specialized in the mud volcanism areas on Mars. Although the small amount of CH4 in the Martian atmosphere is remarkable because its source is potentially geological (or biological) activity, it is still open question. The high spectral and spatial resolution with high sensitivity and wide spectral coverage of IRCS/Subaru enable us the first mapping of CH4 on the localized mud volcanism areas. In the terrestrial case, mud volcanism vents about 25% of CH4 released from geological sources to the atmosphere. In such locations, CH4 can potentially combine with the infiltrated H2O and generate CH4-hydrate. While in the Martian case, the mud volcanism is expected the mounds in Acidalia Planitia and the Utopia/Isidis pitted cones. However, the releases of CH4 on these locations have not been discovered yet. Since the CH4-hydrate suggests the correlation of CH4 and H2O, high spatial resolution with simultaneous measurements of CH4 and H2O lines are essential. IRCS/Subaru can provide this opportunity. In addition, our observation will override the past one with CSHELL/IRTF in the following aspects, (1) less uncertainty by simultaneous measurement of multiple CH4 lines with wider spectral coverage, and (2) better spatial resolution.

  11. Mud Volcanism in the South East Caspian, Gorgon Plane, Iran

    NASA Astrophysics Data System (ADS)

    Mazzini, A.; Poludetkina, E. N.; Mehrabi, B.; Krueger, M.; Inguaggiato, S.; Etiope, G.

    2014-12-01

    Although numerous studies have been completed on the Western Caspian side (e.g. mainly Azerbaijan), very little is known about the hydrocarbon plumbing system of the deepest and southernmost basin. This region has great potentials for hydrocarbon exploration and the study of mud volcanoes located here represents the opportunity to access to an open window to better understand the stratigraphy and the mechanisms ongoing at great depth as well as the origin and signature of the seeping fluids. Three so far unexplored mud volcano structures (Sofikam, Gharniarigh, and Naftliche) have been mapped and sampled in the Golestan region in the south eastern Caspian Sea. All the structures have negative morphology (i.e. "pockmark like") with caldera collapse. A multidisciplinary workflow of analyses is being conducted including gas and water geochemistry, incubation of microbial colonies, petrography of the seeping mud and erupted mud breccia clasts. Sofikam consists of 5 distinct pools up to 4-5 m in diameter that forms an E-W oriented alignment. All of the pools display vigorous seepage of fluids and are either water- or denser mud-dominated. Gharniarigh is a large mud volcano up to ~600 m in diameter with a bulging island in the internal part of the crater where eroded gryphons ridges witness a palaeo vigorous activity. The outskirts of the "island" are almost entirely flooded with water and/or covered with salt crusts in the summer. Here are distributed several small water and gas seeps. Naftliche (~400 m wide) is filled with water with a main seep in the centre of the lake. Preliminary gas geochemistry indicates the seepage of methane-dominated gas in all structures with additional small portions of ethane and propane as well as iC4 in Gharniarigh and Naftliche. All samples collected for microbial colonies incubation reveal strong activity with CO2 production under aerobic and anaerobic conditions as well as production of biogenic methane. In particular, samples from

  12. Mud Volcanism and Fluid Venting In The Eastern Mediterranean Sea: Observations From Sidescan Sonar and Submersible Surveys

    NASA Astrophysics Data System (ADS)

    Zitter, T. A. C.; Huguen, C.; Woodside, J. M.; Mascle, J.; Scientific Party, Medineth/Medinaut

    Mud volcanoes in the eastern Mediterranean Sea have been identified by their distinctive acoustic signature as well as their morphology and sedimentology. They appear as circular regions of high backscatter believed to be caused principally by the clast content of the mud flows forming the mud volcano. Both the MEDINAUT and MEDINETH expeditions, conducted in 1998 and 1999 over two mud fields, the Olimpi field and the Anaximander Mountains area, in Eastern Mediterranean Sea, studied mud volcanism using a multidisciplinary approach in order to determine the relationships between the activity of the mud volcanoes (importance of degassing, associated fauna) and their geophysical signature. Mud volcanoes in Eastern Mediterranean Sea vary from conical and dome-shaped reliefs from 500m to 2km wide and 100 to 200m high to large "mud pie" types up to 6km wide. Sidescan sonar records give a very high resolution of the acoustic response, enabling to distinguish several mud flows, often flowing along tectonic lineations. A clear relationship between the occurrence of mud volcanism and cold seeps and both thrust and transcurrent faulting has been observed in both mud fields, although the tectonic settings vary from purely compressional to a more transpressional stress field. The faults are inferred to provide pathways for over- pressured fluids, and secondary faulting (transcurrent and extensional faults) may facilitate mud ascension. On the basis of sidescan sonar interpretation, other typical features have been inferred such as main feeder channels, eruptive cone centers, or brine pools. The in situ observations have been used to characterize the seafloor over numerous mud volcanoes and ground-truth the sonar data. They reveal an abundance of fluid seeps, mainly methane and methane-rich brines, as well as associated specific fauna such as tube worms, clams and chemosynthetic bacteria, and specific diagenetic phenomenon i.e. carbonate crusts. Video observations proved that

  13. Marine-to-lacustrine transition, mud volcanism, and slope instability in an active tectonic setting: the MIS 5 to 4 transition in the Sea of Marmara, Turkey

    NASA Astrophysics Data System (ADS)

    Grall, Céline; Henry, Pierre; Kendé, Julia; Namık Çaǧatay, M.; Kadir Eriş, K.; Paillès, Christine; Sorlien, Christopher; Shillington, Donna; McHugh, Cecilia; Steckler, Michael; Çifçi, Günay; Géli, Louis

    2016-04-01

    In the Sea of Marmara, glacio-eustatic cycles set the tempo of a complex history of disconnection and reconnection with the Black Sea and with the global ocean through the Mediterranean Sea. As a result, the sedimentary record consists of alternating high stand marine sediments and lowstand sea or lake sediments. The Sea of Marmara is also an active transtensional basin along the Northern branch of the North Anatolian Fault (NNAF), which accommodates most (~3/4) of the 21-27 mm/a dextral slip between Eurasia and Anatolia. This peculiar setting makes the Sea of Marmara an exceptional site to study the interplay of paleo-environmental factors and seismotectonic processes. Notably, Mass Transport Deposits (MTDs) crossing the faults provide offset markers although their age remains uncertain. A high resolution seismic stratigraphic model has been proposed for 100 ka glacial cycles, based on onlap sequences within basins, and paleo-deltas at shorelines. The sedimentation rate in basins decreases during episodes of sea-level rise and reach maximum values during low stands. Remarkably, seismic reflector sequences display nearly identical character for locations with similar sedimentation rate. The uppermost sequence boundary reflector (Red-H1) has been recently cored at several locations during MARSITECRUISE (Ifremer R/V Pourquoi Pas?, Oct-Nov. 2014), enabled us to correlate high resolution seismic data with core data. The Red-H1 reflector is regionally characterized by a high amplitude and a reverse polarity. Correlations between seismic data and piston core logs indicate that the reverse polarity of this reflector may be explained by a negative density contrast between lacustrine sediments above and a greenish sapropellic layer of several meters thickness below. On shelves, Red-H1 is on top of the low stand wedge. On slopes and topographic highs, Red-H1 appears as an erosional surface laterally correlative with an onlapping unit in basins and is frequently overlain by

  14. Evidence for Basinwide Mud Volcanism in Acidalia Planitia, Mars

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Allen, Carlton C.

    2010-01-01

    High-albedo mounds in Acidalia Planitia occur in enormous numbers. They have been variously interpreted as pseudocraters, cinder cones, tuff cones, pingos, ice disintegration features, or mud volcanoes. Our work uses regional mapping, basin analysis, and new data from the Context Camera (CTX), High Resolution Imaging Science Experiment (HiRISE), and Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) to re-assess the origin and significance of these structures.

  15. Changes of biogeochemical activities before and after significant mud displacement at the Håkon Mosby Mud Volcano (HMMV)

    NASA Astrophysics Data System (ADS)

    Felden, J.; Wenzhöfer, F.; Yoerger, D.; Camilli, R.; German, C.; Olu, K.; Feseker, T.; de Beer, D.; Boetius, A.

    2012-04-01

    The Håkon Mosby Mud Volcano (72°N, 14° 43' E, 1250 m water depth) was studied for a period of a year by the Long-term Observatory On Mud-volcano Eruptions (LOOME) in 2009-2010, to investigate temporal variations of mud volcanism and consequences for biogeochemical processes. The HMMV is a highly active methane cold seep ecosystem characterized by high rates of methane efflux. It hosts different chemosynthetic communities such as thiotrophic bacterial mats and siboglinid tubeworm assemblages. This study focuses on changes in community composition and biogeochemical activity such as methane emission, total benthic oxygen uptake, microbial methane and sulfate consumption before and after a major mud displacement recorded by LOOME. The sensor-enabled long-term observations of the HMMV habitats were combined with short-term analyses before and after the displacement events by ROVs QUEST (MARUM) and GENESIS (University of Gent), the AUV Sentry (WHOI) equipped with a multibeam and subbottom profiler, CTD and photographic unit as well as with a mass spectrometer. We found shifts in the distribution patterns of chemosynthetic communities and also substantial changes in their activity, consistent with changes in temperature gradients. This study was sponsored by the EU-Projects HERMIONE "Hotspot Ecosystem Research and Man's Impact on European Seas", and ESONET "European Seas Observatory Network" (Demonstration Mission LOOME "Long term observations on mud volcano eruptions").

  16. Possible earthquake precursor and drumbeat signal detected at the Nirano Mud Volcanic Field, Italy

    NASA Astrophysics Data System (ADS)

    Lupi, Matteo; Suski Ricci, Barbara; Kenkel, Johannes; Ricci, Tullio; Fuchs, Florian; Miller, Stephen A.; Kemna, Andreas; Conventi, Marzia

    2016-04-01

    We used the Nirano mud volcanic field as a natural laboratory to test pre- and post-seismic effects generated by distant earthquakes. Mud volcanoes are geological systems often characterized by elevated fluid pressures at depth deviating from hydrostatic conditions. This near-critical state makes mud volcanoes particularly sensitive to external forcing induced by natural or man-made perturbations. We first characterized the subsurface structure of the Nirano mud volcanic field with a geoelectrical study. Next, we deployed a broad-band seismic station to understand the typical seismic signal generated at depth. Seismic records show a background noise below 2 s, sometimes interrupted by pulses of drumbeat-like high-frequency signals lasting from several minutes to hours. Drumbeat signal was previously discovered in geysers and at magmatic volcanoes. To date this is the first observation of drumbeat signal observed in mud volcanoes. In 2013 June we recorded a M4.7 earthquake, that occurred approximately 60 km far from our seismic station. According to empirical estimations the Nirano mud volcanic field should not have been affected by the M4.7 earthquake. Yet, before the seismic event we recorded an increasing amplitude of the signal in the 10-20 Hz frequency band. The signal emerged approximately two hours before the earthquake and lasted for about three hours. We performed an analysis of the 95th percentile of the root mean square amplitude of the waveforms for the day of the earthquake. This statistical analysis suggests the presence of a possible precursory signal about 10 minutes before the earthquake indicating the occurrence of enhanced fluid flow in the subsurface that may be related to pressure build up in the preparation zone of the earthquake.

  17. Aerial monitoring in active mud volcano by UAV technique

    NASA Astrophysics Data System (ADS)

    Pisciotta, Antonino; Capasso, Giorgio; Madonia, Paolo

    2016-04-01

    UAV photogrammetry opens various new applications in the close range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives to the classical manned aerial photogrammetry. Between 2014 and 2015 tree aerial surveys have been carried out. Using a quadrotor drone, equipped with a compact camera, it was possible to generate high resolution elevation models and orthoimages of The "Salinelle", an active mud volcanoes area, located in territory of Paternò (South Italy). The main risks are related to the damages produced by paroxysmal events. Mud volcanoes show different cyclic phases of activity, including catastrophic events and periods of relative quiescence characterized by moderate activity. Ejected materials often are a mud slurry of fine solids suspended in liquids which may include water and hydrocarbon fluids, the bulk of released gases are carbon dioxide, with some methane and nitrogen, usually pond-shaped of variable dimension (from centimeters to meters in diameter). The scope of the presented work is the performance evaluation of a UAV system that was built to rapidly and autonomously acquire mobile three-dimensional (3D) mapping data in a volcanic monitoring scenario.

  18. Effects of remote earthquakes at the Nirano Mud Volcanic Field: insights from geophysical studies

    NASA Astrophysics Data System (ADS)

    Lupi, Matteo; Kenkel, Johannes; Fuchs, Florian; Ricci, Tullio; Suski, Barbara; Conventi, Marzia; Miller, Stephen A.

    2014-05-01

    Mud volcanoes are often characterized by elevated fluid pressures that deviate from hydrostatic conditions. This near-critical state makes mud volcanoes particularly sensitive to external perturbations and an ideal natural laboratory to test the effects of dynamic stress generated by remote seismic events. The Pede-Apennines Thrust, northern Italy, is characterized by several mud volcanic systems aligned along a narrow WNW-ESE trending band that runs sub-parallel to this part of the Apennine chain. We use the Nirano Mud Volcanic System as a natural laboratory to test if and how distant earthquakes may affect such geological systems. We first characterized the subsurface with a geoelectrical study and measurements of spontaneous potential. Next, we deployed a broadband seismic station (Trillium 240s equipped with a three-channel Reftek130 data-logger) inside the Nirano Mud Volcanic System to understand the typical seismic signal generated at depth. Seismic records show a background noise below 2 s period, sometimes interrupted by periods of repeated rhythmic high-frequency pulses that last from several minutes to hours. During such a period, each high-frequency pulse lasts approximately 20 s and individual pulses are separated by intervals of low frequency noise lasting from 40 s to 180 s. We identify such periods of high frequency (rhythmic) signals irregularly throughout our dataset, with no distinction between day or night hours. In the late June 2013 the aftershocks of the M5.3 Garfagnana earthquake (21st of June 2013) were still ongoing and we recorded a M4.4 event on the 30th of June, approximately 60 km from our station. The earthquake, dominated by frequencies between 1 Hz and 2 Hz, caused a maximum vertical and horizontal displacement at the surface of 0.7 mm and 0.48 mm, respectively. Before the earthquake, the frequency band between 10 Hz and 20 Hz was dominated by weaker signals while after the earthquake the same frequency band was characterized by much

  19. Evidence for and implications of sedimentary diapirism and mud volcanism in the southern Utopia highland-lowland boundary plain, Mars

    USGS Publications Warehouse

    Skinner, J.A.; Tanaka, K.L.

    2007-01-01

    Several types of spatially associated landforms in the southern Utopia Planitia highland-lowland boundary (HLB) plain appear to have resulted from localized geologic activity, including (1) fractured rises, (2) elliptical mounds, (3) pitted cones with emanating lobate materials, and (4) isolated and coalesced cavi (depressions). Stratigraphic analysis indicates these features are Hesperian or younger and may be associated with resurfacing that preferentially destroyed smaller (< 8 ?? km diameter) impact craters. Based on landform geomorphologies and spatial distributions, the documented features do not appear to be specifically related to igneous or periglacial processes or the back-wasting and erosion of the HLB scarp. We propose that these features are genetically related to and formed by sedimentary (mud) diapirs that ascended from zones of regionally confined, poorly consolidated, and mechanically weak material. We note morphologic similarities between the mounds and pitted cones of the southern Utopia boundary plain and terrestrial mud volcanoes in the Absheron Peninsula, Azerbaijan. These analogs provide a context for understanding the geological environments and processes that supported mud diapir-related modification of the HLB. In southern Utopia, mud diapirs near the Elysium volcanic edifice may have resulted in laccolith-like intrusions that produced the fractured rises, while in the central boundary plain mud diapirs could have extruded to form pitted cones, mounds, and lobate flows, perhaps related to compressional stresses that account for wrinkle ridges. The removal of material a few kilometers deep by diapiric processes may have resulted in subsidence and deformation of surface materials to form widespread cavi. Collectively, these inferences suggest that sedimentary diapirism and mud volcanism as well as related surface deformations could have been the dominant Hesperian mechanisms that altered the regional boundary plain. We discuss a model in

  20. Subsurface fluid distribution and possible seismic precursory signal at the Salse di Nirano mud volcanic field, Italy

    NASA Astrophysics Data System (ADS)

    Lupi, Matteo; Ricci, Barbara Suski; Kenkel, Johannes; Ricci, Tullio; Fuchs, Florian; Miller, Stephen A.; Kemna, Andreas

    2016-02-01

    Mud volcanoes are geological systems often characterized by elevated fluid pressures at depth deviating from hydrostatic conditions. This near-critical state makes mud volcanoes particularly sensitive to external forcing induced by natural or man-made perturbations. We used the Nirano mud volcanic field as a natural laboratory to test pre- and post-seismic effects generated by distant earthquakes. We first characterized the subsurface structure of the Nirano mud volcanic field with a geoelectrical study. Next, we deployed a broad-band seismic station in the area to understand the typical seismic signal generated by the mud volcano. Seismic records show a background noise below 2 s, sometimes interrupted by pulses of drumbeat-like high-frequency signals lasting from several minutes to hours. To date this is the first observation of drumbeat signal observed in mud volcanoes. In 2013 June we recorded a M4.7 earthquake, that occurred approximately 60 km far from our seismic station. According to empirical estimations the Nirano mud volcanic field should not have been affected by the M4.7 earthquake. Yet, before the seismic event we recorded an increasing amplitude of the signal in the 10-20 Hz frequency band. The signal emerged approximately two hours before the earthquake and lasted for about three hours. Our statistical analysis suggests the presence of a possible precursory signal about 10 min before the earthquake.

  1. Gravity anomalies of the active mud diapirs off southwest Taiwan

    NASA Astrophysics Data System (ADS)

    Doo, Wen-Bin; Hsu, Shu-Kun; Lo, Chung-Liang; Chen, Song-Chuen; Tsai, Ching-Hui; Lin, Jing-Yi; Huang, Yuan-Ping; Huang, Yin-Sheng; Chiu, Shye-Donq; Ma, Yu-Fang

    2015-12-01

    Overpressure and buoyant effect of underlying sediments are generally used to account for the upward motion or formation of submarine mud volcanoes and mud diapirs. In this study, we process and interpret the gravity anomalies associated with the active mud diapirs off SW Taiwan. Geologically, the mud diapirs are just formed and are still very active, thus we can better understand the initial process of the mud diapirs formation through the gravity analysis. Our results show that the density contrasts of the submarine mud diapirs with respect to the surroundings are generally positive. Because the study area is in a tectonically compressive regime and the gas plume venting from the submarine mud volcanoes is very active, we thus infer that mechanically the mud diapirs off SW Taiwan have been formed mainly due to the tectonic compression on the underlying sediments of high pore-fluid pressure, instead of the buoyancy of the buried sediments. The overpressured sediments and fluid are compressed and pushed upwards to pierce the overlying sediments and form the more compacted mud diapirs. The relatively denser material of the mud diapirs probably constrains the flowing courses of the submarine canyons off SW Taiwan, especially for the upper reaches of the Kaoping and Fangliao submarine canyons.

  2. Cellular immune responses and phagocytic activity of fishes exposed to pollution of volcano mud.

    PubMed

    Risjani, Yenny; Yunianta; Couteau, Jerome; Minier, Christophe

    2014-05-01

    Since May 29, 2006, a mud volcano in the Brantas Delta of the Sidoarjo district has emitted mud that has inundated nearby villages. Pollution in this area has been implicated in detrimental effects on fish health. In fishes, leukocyte and phagocytic cells play a vital role in body defenses. We report for the first time the effect of "LUSI" volcano mud on the immune systems of fish in the Brantas Delta. The aim of this study was to find biomarkers to allow the evaluation of the effects of volcanic mud and anthropogenic pollution on fish health in the Brantas Delta. The study took places at the Brantas Delta, which was polluted by volcano mud, and at reference sites in Karangkates and Pasuruan. Leukocyte numbers were determined using a Neubauer hemocytometer and a light microscope. Differential leukocyte counts were determined using blood smears stained with May Grunwald-Giemsa, providing neutrophil, lymphocyte and monocyte counts. Macrophages were taken from fish kidney, and their phagocytic activity was measured. In vitro analyses revealed that leukocyte and differential leukocyte counts (DLC) were higher in Channa striata and Chanos chanos caught from the polluted area. Macrophage numbers were higher in Oreochromis mossambicus than in the other species, indicating that this species is more sensitive to pollution. In areas close to volcanic mud eruption, all specimens had lower phagocytic activity. Our results show that immune cells were changed and phagocytic activity was reduced in the polluted area indicating cytotoxicity and alteration of the innate immune system in fishes exposed to LUSI volcano mud and anthropogenic pollution.

  3. Cellular immune responses and phagocytic activity of fishes exposed to pollution of volcano mud.

    PubMed

    Risjani, Yenny; Yunianta; Couteau, Jerome; Minier, Christophe

    2014-05-01

    Since May 29, 2006, a mud volcano in the Brantas Delta of the Sidoarjo district has emitted mud that has inundated nearby villages. Pollution in this area has been implicated in detrimental effects on fish health. In fishes, leukocyte and phagocytic cells play a vital role in body defenses. We report for the first time the effect of "LUSI" volcano mud on the immune systems of fish in the Brantas Delta. The aim of this study was to find biomarkers to allow the evaluation of the effects of volcanic mud and anthropogenic pollution on fish health in the Brantas Delta. The study took places at the Brantas Delta, which was polluted by volcano mud, and at reference sites in Karangkates and Pasuruan. Leukocyte numbers were determined using a Neubauer hemocytometer and a light microscope. Differential leukocyte counts were determined using blood smears stained with May Grunwald-Giemsa, providing neutrophil, lymphocyte and monocyte counts. Macrophages were taken from fish kidney, and their phagocytic activity was measured. In vitro analyses revealed that leukocyte and differential leukocyte counts (DLC) were higher in Channa striata and Chanos chanos caught from the polluted area. Macrophage numbers were higher in Oreochromis mossambicus than in the other species, indicating that this species is more sensitive to pollution. In areas close to volcanic mud eruption, all specimens had lower phagocytic activity. Our results show that immune cells were changed and phagocytic activity was reduced in the polluted area indicating cytotoxicity and alteration of the innate immune system in fishes exposed to LUSI volcano mud and anthropogenic pollution. PMID:24631200

  4. GPS-based crustal deformations in Azerbaijan and their influence on seismicity and mud volcanism

    NASA Astrophysics Data System (ADS)

    Kadirov, F. A.; Guliyev, I. S.; Feyzullayev, A. A.; Safarov, R. T.; Mammadov, S. K.; Babayev, G. R.; Rashidov, T. M.

    2014-11-01

    Using Shen's method (Shen et al., 1996), deformations of the Earth's crust in Azerbaijan were studied based on GPS measurements. For estimating the rate of deformation, we used the field of velocity vectors for Azerbaijan, Iran, Georgia, and Armenia that were derived from GPS measurements during 1998-2012. It is established that compression is observable along the Greater Caucasus, in Gobustan, the Kura depression, Nakhchyvan Autonomous Republic, and adjacent areas of Iran. The axes of compression/contraction of the crust in the Greater Caucasus region are oriented in the S-NE direction. The maximum strain rate (approximately 200 × 10-9 per annum) is documented in the zone of mud volcanism at the SHIK site (Shykhlar), which is marked by a sharp change in the direction of the compression axes (SW-NE). It is revealed that the deformation field also includes the zones where strain rates are very low approximating 5 × 10-9 per annum. These zones include the Caspian-Guba and northern Gobustan areas, characterized by extensive development of mud volcanism. The extension zones are confined to the Lesser Caucasus and are revealed in the Gedabek (GEDA) and Shusha (SHOU) areas, as well as in the zone located between the DAMO and PIRM sites (Iran), where the deformation rate amounts to 100 × 10-9 per annum. It is concluded that the predominant factor responsible for the eruption of mud volcanoes is the intensity of gas-generation processes in the earth's interior, while deformation processes play the role of a trigger. The zone of the epicenters of strong earthquakes is correlated to the gradient zone in the crustal strain rates.

  5. Morphologic evidence of subsurface sediment mobilization and mud volcanism in Candor and Coprates Chasmata, Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Okubo, Chris H.

    2016-05-01

    Populations of distinctive knobs, rings and lobate structures are observed in the Candor and Coprates Chasmata regions of Mars. To interpret the formation mechanisms of these landforms, I investigate their morphologies, facies, superposition and crosscutting relationships using data from the High Resolution Imaging Science Experiment (HiRISE) and the High Resolution Stereo Camera (HRSC). The knobs and rings have quasi-circular to elliptical shapes in map view, with basal diameters between several hundred meters and three kilometers. The knobs rise ∼10 to 350 m above the surrounding terrain, while the rings are ∼10 to 70 m tall. In three dimensions the knobs have a rounded cone shape, and some knobs exhibit a summit depression, which in some examples contains a subordinate mound. The rings have rounded to sharp crests and in some instances contain subordinate rings and mounds. The lobate structures are commonly ∼1 to 2 km wide, ∼3 to 5 km long and rise up to 50 m above the surrounding terrain. The lobate structures partially or completely encircle some knobs, rings and irregularly shaped rock masses. The knobs, rings and lobate structures exhibit massive and stratified facies, with some structures exhibiting both, such as a massive central rock mass surrounded by outwardly dipping layers. I interpret these landforms as mud volcanoes, injectites and mud flows based on superposition and cross-cutting relationships as well as similarities between the morphologies and facies of these landforms with terrestrial products of mud volcanism. I infer the source of sediment for this mud volcanism to be the Hesperian eolian deposits that occur within these chasmata. Further, I suggest that groundwater upwelling during the Hesperian to possibly the Early Amazonian facilitated the mobilization of these sediments within the subsurface and thereby contributed to the ensuing mud volcanism. Based on these results, I propose that the Candor Chaos formed through subsurface

  6. Io. [theories concerning volcanic activity

    NASA Technical Reports Server (NTRS)

    Johnson, T. V.; Soderblom, L. A.

    1983-01-01

    A report on the continuing investigation of Io is presented. Gravitational resonance is discussed as the cause of Io's volcanism, and the volcanic activity is explained in terms of sulfur chemistry. Theories concerning the reasons for the two main types of volcanic eruptions on Io are advanced and correlated with geographical features of the satellite. The sulfur and silicate models of the calderas are presented, citing the strengths and weaknesses of each. Problems of the gravitational resonance theory of Io's heat source are then described. Finally, observations of Io planned for the Galileo mission are summarized.

  7. Mud volcanism and authigenic carbonates related to methane-rich fluids migration in the late Neogene marls of S.E. Spain

    NASA Astrophysics Data System (ADS)

    Pierre, C.; Blanc-Valleron, M. M.; Rouchy, J. M.

    2015-12-01

    Methane-rich fluids that are generated at depth in organic-rich deposits migrate within the sediments to the seafloor where they are expelled to form mud volcanoes or pockmarks. Moreover, these migrating fluids are involved in diagenetic processes as authigenic carbonate formation and they may participate to gas hydrate formation. These features are well-known in the present-day continental margins but their fossil records are relatively scarce. The outcropping Tortonian and Messinian marls in S.E. Spain basins (Lorca, Fortuna, Columbares, Huercal Overa) contain abundant authigenic dolomite nodules. The oxygen and carbon isotopic compositions of these dolomites exhibit wide ranges (-1.4 < δ18O < +5.6 ; -25.6 < δ13C < +9.3) indicating that carbonate precipitation occurred within the marly sediments due to circulation of fluids modified by gas hydrates formation/dissociation, where anaerobic oxidation of methane and methanogenesis were active. In the Huercal Overa basin, there is a well-preserved mud volcano intruding vertically the Messinian marls. These two features, methane derived authigenic dolomites and mud volcanism, are testifying of the intense methane-rich fluid migration in the marly deposits of the western Mediterranean basins during the late Neogene, which was the time of major paleoenvironmental changes in the Mediterranean sea climaxing during the Messinian salinity crisis.

  8. The Geothermal Systems along the Watukosek fault system (East Java, Indonesia):The Arjuno-Welirang Volcanic Complex and the Lusi Mud-Eruption

    NASA Astrophysics Data System (ADS)

    Inguaggiato, Salvatore; Mazzini, Adriano; Vita, Fabio; Sciarra, Alessandra

    2016-04-01

    The Java Island is characterized by an intense volcanic activity with more then 100 active volcanoes. Moreover, this island is also known by the presence of many mud volcanoes and hydrothermal springs. In particular, in the 2006 several sudden hot mud eruptions, with fluids around 100° C, occurred in the NE side of the island resulting in a prominent eruption named Lusi (contraction of Lumpur Sidoarjo) located along the major Watukosek strike-slip fault zone. The Watukosek fault system, strikes from the Arjuno-Welirang volcanic complex, intersects Lusi and extends towards the NE of the Java island. Conversely of the normal mud eruptions (cold fluids emitted in a short time period of few days), the Lusi eruption was characterized by a persistent effusive hot fluids emissions for a long-time period of, so far, nearly a decade. Moreover, the isotopic composition of emitted gases like Helium showed a clear magmatic origin. For this reasons we decided to investigate the near Arjuno-Welirang complex located on the same strike-slip fault. Arjuno-Welirang is a twin strato-volcano system located in the East of Java along the Watukosek fault, at about 25 km SW respect to the Lusi volcano system. It features two main peaks: Arjuno (3339 masl) and Welirang (3156 masl). The last recorded eruptive activity took place in August 1950 from the flanks of Kawah Plupuh and in October 1950 from the NW part of the Gunung Welirang. This strato-volcano is characterized by a S-rich area, with high T-vent fumarole at least up to 220° C (and likely higher), located mainly in the Welirang crater. In addition, several hot springs vent from the flanks of the volcano, indicate the presence of a large hydrothermal system. During July 2015, in the framework of the Lusi Lab project (ERC grant n° 308126), we carried out a geochemical field campaign on the Arjuno-Welirang volcano hydrothermal system area, sampling water and dissolved gases from the thermal and cold springs located on the flanks of

  9. Cyclic activity of the LUSI mud volcano (East Java, Indonesia)

    NASA Astrophysics Data System (ADS)

    Vanderkluysen, L.; Clarke, A. B.; Hartnett, H. E.

    2011-12-01

    Mud volcanoes often release fluids in a pulsating fashion, with periodic timescales ranging from minutes to days. These oscillations, common in natural systems of multi-phase fluid flow, are thought to result from some combination of complex feedback mechanisms between conduit and source geometry, and such factors as: fluid compressibility, viscosity and density, changes in lithostatic stresses, reservoir pressure, or vent conditions. The LUSI mud volcano is in a densely populated district of the Sidoarjo regency (East Java, Indonesia), and has been erupting since May 2006. Crisis management workers and local residents have reported observations of pulsating eruptive cycles lasting a few hours during the first two years of the eruption, and possibly beyond. Since 2010, however, the activity has shifted to individual transient eruptions recurring at intervals of a few minutes. In the summer of 2011, we documented this cyclic behavior at LUSI using a combination of high-resolution time-lapse photography, webcam, and thermal infrared imagery. The imagery reveals that hot mud and gases were released from three individual sources within the 150 m wide vent pond. The mud, consisting of at least 70% water, is erupted at temperatures close to boiling. Released gases consist principally of water vapor, carbon dioxide and methane. Eruptions ejected mud some 20 m above the vent in an unsteady fountain and formed 50 m-high plumes of hot gas. Pulses, on average 50 s in duration, were characterized by sharp onsets and exponential decays in intensity. We observed explosion periods ranging from 1 to 3 minutes during this campaign, the median period was 100 s, and pulses were separated by periods of apparent quiescence. Each vent was characterized by a different dominant period, indicating that parameters controlling activity vary among the vents. Potential conceptual eruptive models are gas accumulation and release, slug flow, or oscillations in pressure at depth to account for

  10. Earthquake-induced seismic tremor explained by Krauklis wave resonance in fractured reservoir rocks: A case study of Salse di Nirano mud volcanic field (Italy)

    NASA Astrophysics Data System (ADS)

    Frehner, Marcel; Lupi, Matteo

    2014-05-01

    For seismic studies of fractured fluid-filled reservoir rocks, the so-called Krauklis wave is of particular interest. It is a special guided wave mode that is bound to and propagates along fluid-filled fractures. It can repeatedly propagate back and forth along a fracture and eventually fall into resonance. This resonant behavior has been speculated to be the source of narrow-band seismic tremor and long-period events in volcanic areas. However, it remains unstudied whether Krauklis waves may be initiated by body waves and therefore be relevant for active seismic surveys or earthquake signals in fractured reservoir rocks. The presented study consists of two parts: A combined theoretical-numerical study on the possible initiation of Krauklis wave resonance in fractures by an incident body wave Application of the theoretical resonance frequency of Krauklis waves to narrow-band seismic tremor signals recorded above a mud volcanic system to determine fracture size within the fluid-filled reservoir. In the first part, we study Krauklis wave initiation by an incident plane P- or S-wave using numerical finite-element simulations. Both wave modes initiate two Krauklis waves, one at each fracture tip, with significant amplitudes that strongly depend on the orientation of the facture. S-waves generally lead to larger-amplitude Krauklis waves, with maximum amplitudes at fracture angles of 50º, while P-waves initiate large-amplitude Krauklis waves at moderate (12°-40°) and high (>65°) fracture angles. The fact that large-amplitude Krauklis waves are initiated by body waves has severe implications for earthquake signals propagating through fractured reservoirs, because Krauklis wave-related signals are expected to be present in seismic recordings. The second part is a case study of the Salse di Nirano mud volcanic field in northern Italy. Immediately after a M4.4 earthquake with a dominant frequency of 2 Hz, the recorded seismic tremor increased significantly with a

  11. Active Volcanic Plumes on Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This color image, acquired during Galileo's ninth orbit around Jupiter, shows two volcanic plumes on Io. One plume was captured on the bright limb or edge of the moon (see inset at upper right), erupting over a caldera (volcanic depression) named Pillan Patera after a South American god of thunder, fire and volcanoes. The plume seen by Galileo is 140 kilometers (86 miles) high and was also detected by the Hubble Space Telescope. The Galileo spacecraft will pass almost directly over Pillan Patera in 1999 at a range of only 600 kilometers (373 miles).

    The second plume, seen near the terminator (boundary between day and night), is called Prometheus after the Greek fire god (see inset at lower right). The shadow of the 75-kilometer (45- mile) high airborne plume can be seen extending to the right of the eruption vent. The vent is near the center of the bright and dark rings. Plumes on Io have a blue color, so the plume shadow is reddish. The Prometheus plume can be seen in every Galileo image with the appropriate geometry, as well as every such Voyager image acquired in 1979. It is possible that this plume has been continuously active for more than 18 years. In contrast, a plume has never been seen at Pillan Patera prior to the recent Galileo and Hubble Space Telescope images.

    North is toward the top of the picture. The resolution is about 6 kilometers (3.7 miles) per picture element. This composite uses images taken with the green, violet and near infrared filters of the solid state imaging (CCD) system on NASA's Galileo spacecraft. The images were obtained on June 28, 1997, at a range of more than 600,000 kilometers (372,000 miles).

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page

  12. Prediction and monitoring of volcanic activities

    SciTech Connect

    Sudradjat, A.

    1986-07-01

    This paper summarizes the state of the art for predicting and monitoring volcanic activities, and it emphasizes the experience obtained by the Volcanological Survey Indonesia for active volcanoes. The limited available funds, the large number of active volcanoes to monitor, and the high population density of the volcanic area are the main problems encountered. Seven methods of volcano monitoring are applied to the active volcanoes of Indonesia: seismicity, ground deformation, gravity and magnetic studies, self-potential studies, petrochemistry, gas monitoring, and visual observation. Seismic monitoring augmented by gas monitoring has proven to be effective, particularly for predicting individual eruptions at the after-initial phase. However, the success of the prediction depends on the characteristics of each volcano. In general, the initial eruption phase is the most difficult phenomenon to predict. The preparation of hazard maps and the continuous awareness of the volcanic eruption are the most practical ways to mitigate volcanic danger.

  13. Active Volcanic Eruptions on Io

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Six views of the volcanic plume named Prometheus, as seen against Io's disk and near the bright limb (edge) of the satellite by the SSI camera on the Galileo spacecraft during its second (G2) orbit of Jupiter. North is to the top of each frame. To the south-southeast of Prometheus is another bright spot that appears to be an active plume erupting from a feature named Culann Patera. Prometheus was active 17 years ago during both Voyager flybys, but no activity was detected by Voyager at Culann. Both of these plumes were seen to glow in the dark in an eclipse image acquired by the imaging camera during Galileo's first (G1) orbit, and hot spots at these locations were detected by Galileo's Near-Infrared Mapping Spectrometer.

    The plumes are thought to be driven by heating sulfur dioxide in Io's subsurface into an expanding fluid or 'geyser'. The long-lived nature of these eruptions requires that a substantial supply of sulfur dioxide must be available in Io's subsurface, similar to groundwater. Sulfur dioxide gas condenses into small particles of 'snow' in the expanding plume, and the small particles scatter light and appear bright at short wavelengths. The images shown here were acquired through the shortest-wavelength filter (violet) of the Galileo camera. Prometheus is about 300 km wide and 75 km high and Culann is about 150 km wide and less than 50 km high. The images were acquired on September 4, 1996 at a range of 2,000,000 km (20 km/pixel resolution). Prometheus is named after the Greek fire god and Culann is named after the Celtic smith god.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the

  14. Amazonian volcanic activity at the Syrtis volcanic province, Mars

    NASA Astrophysics Data System (ADS)

    Platz, Thomas; Jodlowski, Piotr; Fawdon, Peter; Michael, Greg; Tanaka, Kenneth

    2014-05-01

    The Syrtis Major volcanic province, including the entire Syrtis Major Planum, is located near the Martian highland/lowland transitional zone west of Isidis Planitia. It covers ≡7.4×105 km2 and contains two low-shield volcanic edifices with N-S elongated calderas named Nili and Meroe Paterae. The estimated thickness of erupted material in the province ranges from approximately 0.5 km to 1.0 km with a total volume of about 1.6-3.2×105 km3 [1]. The timing of volcanic activity in the Syrtis Major volcanic province has been suggested to be restricted to the Hesperian Period [1-4]. In the geological map of Greeley and Guest [2], volcanic material of Syrtis Major was assigned an Hesperian age based on the density of observed craters larger than 5 km in diameter. Using the same crater density range, recent studies of Hiesinger et al. [1] and Tanaka et al. [3] and Tanaka et al. [4] assigned an Early Hesperian and Early to Late Hesperian age, respectively, for the entire province. In this study we mapped lava flows, lava channels, and major lava-flow margins and report model ages for lava-flow formation and caldera segments of Nili and Meroe Paterae. The objective of this ongoing survey is to better understand the eruption frequency of this volcanic province. In total, we mapped 67 lava flows, caldera segments, and intra-crater fillings of which 55 were dated. Crater size-frequency distributions (CSFD) were mapped on HRSC and CTX imagery using CraterTools [5]. CSFDs were analyzed and model ages determined in Craterstats [6] using the production and chronology functions of Ivanov [7] and Hartmann and Neukum [8], respectively. A detailed description of the utilization of the crater-counting technique and its limitations with respect to small-scale mapping is given in Platz et al. [9]. Model ages range between 838 Ma (Middle Amazonian) to 3.6 Ga (Late Hesperian). In our survey, a broad age peak occurs between 2 to 2.6 Ga, continuously declining thereafter. We note that

  15. Warm Brine Lakes in Craters of Active Mud Volcanoes, Menes Caldera off NW Egypt: Evidence for Deep-Rooted Thermogenic Processes

    NASA Astrophysics Data System (ADS)

    Dupré, S.; Mascle, J.; Foucher, J. P.; Woodside, J. M.; Pierre, C.

    2015-12-01

    The Menes caldera is a fault-controlled depression (~8 km in diameter) at ~3,000 m water depth in the western province of the Nile deep-sea fan off NW Egypt, comprising seven mud volcanoes (MVs) of which two are active. Based on multichannel and chirp seismic data, temperature profiles, and high-resolution bathymetric data collected during several oceanographic expeditions, the present study investigates factors controlling mud volcano morphology, the geometry of feeder channels, and the origin of emitted fluids (Dupré et al. 2014). The active Cheops and Chephren mud volcanoes are 1,500 m wide with subcircular craters at their summits, about 250 m in diameter, generally a few tens of metres deep, and filled with methane-rich muddy brines with temperatures reaching 42 °C and 57 °C respectively. Deployments of CTDs and corers with attached temperature sensors tracked these warm temperatures down to almost 0.5 km depth below the brine lake surface at the Cheops mud volcano, in a feeder channel probably only a few tens of metres wide. Thermogenic processes involve the dissolution of Messinian evaporites by warm fluids likely sourced even deeper, i.e. 1.7 and 2.6 km below the seabed at the Cheops and Chephren MVs respectively, and which ascend along listric faults. Seepage activity appears broadly persistent since the initiation of mud volcanism in the Early Pliocene, possibly accompanied by lateral migration of feeder channels.

  16. Hydrothermal changes related to earthquake activity at Mud Volcano, Yellowstone National Park, Wyoming

    SciTech Connect

    Pitt, A.M.; Hutchinson, R.A.

    1982-04-10

    The Mud Volcano hydrothermal area in Yellowstone National Park is near the intersection of a 20-km-long zone of northeast trending normal faults with the eastern resurgent dome within the 600,000-year-odd Yellowstone caldera. Recent crustal uplift along the northeast trending axis of the caldera is at a maximum (700 mm since 1923) near the Mud Volcano area. From 1973 through April 1978, less than 10 earthquakes (largest M 2.4) were located within 3 km of the Mud Volcano area. In May 1978, earthquakes began occurring beneath the hydrothermal area at depths of 1 to 5 km. The seismic activity continued until the end of November with intense swarms (100 events per hour) occurring on October 23 and November 7. The largest event (M 3.1) occured on November 14 and at least 8 events were M 2.5 or larger. In December 1978, heat flux in the Mud Volcano hydrothermal features began increasing along a 2-km-long northeast trending zone. Existing mud cauldrons became more active, new mud cauldrons and fumeroles were formed, and vegetation (primarily lodgepole pine) was killed by increased soil temperature. The increase in heat flux continued through July 1979 then gradually declined, reaching the early 1978 level by June 1980. The spatial and temporal association of earthquakes and increased hydrothermal activity at Mud Volcano suggests that the seismic activity expanded preexisting fracture systems, premitting increased fluid flow from depths of several kilometers.

  17. Seafloor distribution and last glacial to postglacial activity of mud volcanoes on the Calabrian accretionary prism, Ionian Sea

    NASA Astrophysics Data System (ADS)

    Ceramicola, Silvia; Praeg, Daniel; Cova, Andrea; Accettella, Daniela; Zecchin, Massimo

    2014-06-01

    Mud volcanoes (MVs) are abundant along the eastern Mediterranean subduction zones, recording mud breccia extrusion over long timescales (106 years), but to date relatively few have been recognised in the northern Ionian Sea on the Calabrian accretionary prism (CAP). In the present study, the seafloor distribution and recent activity of MVs is investigated across a 35,600 km2 sector of the CAP using a regional acoustic dataset (multibeam bathymetric and backscatter imagery, integrated with subbottom profiles) locally ground-truthed by sediment cores. A total of 54 MVs are identified across water depths of 150-2,750 m using up to four geophysical criteria: distinctive morphology, high backscatter, unstratified subbottom facies and, in one case, a hydroacoustic flare. Fourteen MVs are identified from 3-4 criteria, of which five have been previously proven by cores containing mud breccia beneath up to 1.6 m of hemipelagic sediments (Madonna dello Ionio MVs 1-3, Pythagoras MV and the newly named Sartori MV), while nine others are identified for the first time (Athena, Catanzaro, Cerere, Diana, Giunone, Minerva, `right foot', Venere 1 and 2). Forty other as yet unnamed MVs are inferred from 1-2 geophysical criteria (three from distinctive morphology alone). All but one possible MV lie on the inner plateau of the CAP, landwards of the Calabrian Escarpment in a zone up to 120 km wide that includes the inner pre-Messinian wedge and the fore-arc basins, where they are interpreted to record the ascent from depth of overpressured fluids that interacted with tectonic structures and with evaporitic or shale seals within the fore-arc basins. The rise of fluids may have been triggered by post-Messinian out-of-sequence tectonism that affected the entire pre-Messinian prism, but Plio-Quaternary sedimentation rates and depositional styles support the inference that significant mud volcanism has taken place only on the inner plateau. Sedimentation rates across the CAP applied to a 12

  18. Helium-3 emission related to volcanic activity

    SciTech Connect

    Sano, Y.; Nakamura, Y.; Wakita, H.; Urabe, A.; Tominaga, T.

    1984-04-13

    The helium-3/helium-4 ratio in bubbling gases from ten hot springs located around Mount Ontake, an active volcano in central Japan, ranges from 1.71 R/sub atm/ (1.71 times the atmospheric ratio of 1.40 x 10/sup -6/) to 6.15 R/sub atm/. The value of the ratio decreases with distance from the central cone of the volcano. Such a tendency may be a characteristic of helium-3 emission in volcanic areas and suggests more primitive helium-3 is carried with fluid flowing through a conduit during volcanic activity. 6 references, 1 figure, 1 table.

  19. Volcanic activity: a review for health professionals.

    PubMed Central

    Newhall, C G; Fruchter, J S

    1986-01-01

    Volcanoes erupt magma (molten rock containing variable amounts of solid crystals, dissolved volatiles, and gas bubbles) along with pulverized pre-existing rock (ripped from the walls of the vent and conduit). The resulting volcanic rocks vary in their physical and chemical characteristics, e.g., degree of fragmentation, sizes and shapes of fragments, minerals present, ratio of crystals to glass, and major and trace elements composition. Variability in the properties of magma, and in the relative roles of magmatic volatiles and groundwater in driving an eruption, determine to a great extent the type of an eruption; variability in the type of an eruption in turn influences the physical characteristics and distribution of the eruption products. The principal volcanic hazards are: ash and larger fragments that rain down from an explosion cloud (airfall tephra and ballistic fragments); flows of hot ash, blocks, and gases down the slopes of a volcano (pyroclastic flows); "mudflows" (debris flows); lava flows; and concentrations of volcanic gases in topographic depressions. Progress in volcanology is bringing improved long- and short-range forecasts of volcanic activity, and thus more options for mitigation of hazards. Collaboration between health professionals and volcanologists helps to mitigate health hazards of volcanic activity. Images FIGURE 1 FIGURE 2 FIGURE 6a-6e FIGURE 6a-6e FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 PMID:3946726

  20. Volcanic activity: a review for health professionals

    SciTech Connect

    Newhall, C.G.; Fruchter, J.S.

    1986-03-01

    Volcanoes erupt magma (molten rock containing variable amounts of solid crystals, dissolved volatiles, and gas bubbles) along with pulverized pre-existing rock (ripped from the walls of the vent and conduit). The resulting volcanic rocks vary in their physical and chemical characteristics, e.g., degree of fragmentation, sizes and shapes of fragments, minerals present, ratio of crystals to glass, and major and trace element composition. Variability in the properties of magma, and in the relative roles of magmatic volatiles and groundwater in driving an eruption, determine to a great extent the type of an eruption; variability in the type of an eruption in turn influences the physical characteristics and distribution of the eruption products. The principal volcanic hazards are: ash and larger fragments that rain down from an explosion cloud (airfall tephra and ballistic fragments); flows of hot ash, blocks, and gases down the slopes of a volcano (pyroclastic flows); mudflows (debris flows); lava flows; and concentrations of volcanic gases in topographic depressions. Progress in volcanology is bringing improved long- and short-range forecasts of volcanic activity, and thus more options for mitigation of hazards. Collaboration between health professionals and volcanologists helps to mitigate health hazards of volcanic activity.

  1. Monitoring and Characterizing the Geysering and Seismic Activity at the Lusi Mud Eruption Site, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Karyono, Karyono; Obermann, Anne; Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Abdurrokhim, Abdurrokhim; Masturyono, Masturyono; Hadi, Soffian

    2016-04-01

    The Lusi eruption began on May 29, 2006 in the northeast of Java Island, Indonesia, and to date is still active. Lusi is a newborn sedimentary-hosted hydrothermal system characterized by continuous expulsion of liquefied mud and breccias and geysering activity. Lusi is located upon the Watukosek fault system, a left lateral wrench system connecting the volcanic arc and the bakarc basin. This fault system is still periodically reactivated as shown by field data. In the framework of the Lusi Lab project (ERC grant n° 308126) we conducted several types of monitoring. Based on camera observations, we characterized the Lusi erupting activity by four main behaviors occurring cyclically: (1) Regular activity, which consists in the constant emission of water and mud breccias (i.e. viscous mud containing clay, silt, sand and clasts) associated with the constant expulsion of gas (mainly aqueous vapor with minor amounts of CO2 and CH4) (2) Geysering phase with intense bubbling, consisting in reduced vapor emission and more powerful bursting events that do not seem to have a regular pattern. (3) Geysering phase with intense vapor and degassing discharge and a typically dense plume that propagates up to 100 m height. (4) Quiescent phase marking the end of the geysering activity (and the observed cycle) with no gas emissions or bursts observed. To investigate the possible seismic activity beneath Lusi and the mechanisms controlling the Lusi pulsating behaviour, we deployed a network of 5 seismic stations and a HD camera around the Lusi crater. We characterize the observed types of seismic activity as tremor and volcano-tectonic events. Lusi tremor events occur in 5-10 Hz frequency band, while volcano tectonic events are abundant in the high frequencies range from 5 Hz until 25 Hz. We coupled the seismic monitoring with the images collected with the HD camera to study the correlation between the seismic tremor and the different phases of the geysering activity. Key words: Lusi

  2. Tellurium in active volcanic environments: Preliminary results

    NASA Astrophysics Data System (ADS)

    Milazzo, Silvia; Calabrese, Sergio; D'Alessandro, Walter; Brusca, Lorenzo; Bellomo, Sergio; Parello, Francesco

    2014-05-01

    Tellurium is a toxic metalloid and, according to the Goldschmidt classification, a chalcophile element. In the last years its commercial importance has considerably increased because of its wide use in solar cells, thermoelectric and electronic devices of the last generation. Despite such large use, scientific knowledge about volcanogenic tellurium is very poor. Few previous authors report result of tellurium concentrations in volcanic plume, among with other trace metals. They recognize this element as volatile, concluding that volcanic gases and sulfur deposits are usually enriched with tellurium. Here, we present some results on tellurium concentrations in volcanic emissions (plume, fumaroles, ash leachates) and in environmental matrices (soils and plants) affected by volcanic emissions and/or deposition. Samples were collected at Etna and Vulcano (Italy), Turrialba (Costa Rica), Miyakejima, Aso, Asama (Japan), Mutnovsky (Kamchatka) at the crater rims by using common filtration techniques for aerosols (polytetrafluoroethylene filters). Filters were both eluted with Millipore water and acid microwave digested, and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Volcanic ashes emitted during explosive events on Etna and Copahue (Argentina) were analyzed for tellurium bulk composition and after leaching experiments to evaluate the soluble fraction of tellurium. Soils and leaves of vegetation were also sampled close to active volcanic vents (Etna, Vulcano, Nisyros, Nyiragongo, Turrialba, Gorely and Masaya) and investigated for tellurium contents. Preliminary results showed very high enrichments of tellurium in volcanic emissions comparing with other volatile elements like mercury, arsenic, thallium and bismuth. This suggests a primary transport in the volatile phase, probably in gaseous form (as also suggested by recent studies) and/or as soluble salts (halides and/or sulfates) adsorbed on the surface of particulate particles and ashes. First

  3. Mud volcanism and morphology of impact craters in Utopia Planitia on Mars: Evidence for the ancient ocean

    NASA Astrophysics Data System (ADS)

    Ivanov, Mikhail A.; Hiesinger, H.; Erkeling, G.; Reiss, D.

    2014-01-01

    portion of Utopia Planitia were erupted from beneath of the surface of the VB. Their morphology and pattern of degradation, however, are inconsistent with lava and, instead, indicate formation of the flows due to mud volcanism. (7) Etched flows are spatially associated with giant polygons and there is evidence that these features populated the center portion of Utopia Planitia before it was covered by the Elysium-derived units. The outer (southern) edge of the zone of polygonal troughs and etched flows approximately corresponds to the transition from pancake-like ejecta to rampart ejecta. This suggest that the outer edge of the zone of the polygons and flows may outline the deeper portions of the large body (˜2000 km across) of water/ice that likely existed in the center of Utopia Planitia in late Hesperian.

  4. Active Volcanism on IO: Global Distribution and Variations in Activity

    NASA Technical Reports Server (NTRS)

    Lopes-Gautier, R.; McEwen, A.; Smythe, W.; Geissler, P.; Kamp, L.; Davies, A.; Spencer, J.; Keszthelyi, L.; Carlson, R.; Leader, F.; Mehlman, R.; Soderblom, L.

    1999-01-01

    Io's volcanic activity has been monitored by instruments aboard the Galileo spacecraft since June 28, 1996. We present results from observations by the Near-Infrared Mapping Spectrometer (NIM) for the first ten orbits of Galileo, correlate them with results from the Solid State Imaging System (SSI)and from ground-based observations, and compare them to what was known about Io's volcanic activity from observations made during the two Voyager fly-bys in 1979.

  5. High-resolution seismic structure analysis of an active submarine mud volcano area off SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Hsiao-Shan; Hsu, Shu-Kun; Tsai, Wan-Lin; Tsai, Ching-Hui; Lin, Shin-Yi; Chen, Song-Chuen

    2015-04-01

    In order to better understand the subsurface structure related to an active mud volcano MV1 and to understand their relationship with gas hydrate/cold seep formation, we conducted deep-towed side-scan sonar (SSS), sub-bottom profiler (SBP), multibeam echo sounding (MBES), and multi-channel reflection seismic (MCS) surveys off SW Taiwan from 2009 to 2011. As shown in the high-resolution sub-bottom profiler and EK500 sonar data, the detailed structures reveal more gas seeps and gas flares in the study area. In addition, the survey profiles show several submarine landslides occurred near the thrust faults. Based on the MCS results, we can find that the MV1 is located on top of a mud diapiric structure. It indicates that the MV1 has the same source as the associated mud diapir. The blanking of the seismic signal may indicate the conduit for the upward migration of the gas (methane or CO2). Therefore, we suggest that the submarine mud volcano could be due to a deep source of mud compressed by the tectonic convergence. Fluids and argillaceous materials have thus migrated upward along structural faults and reach the seafloor. The gas-charged sediments or gas seeps in sediments thus make the seafloor instable and may trigger submarine landslides.

  6. Morphometric, acoustic and lithofacies characterization of mud volcanoes in the Eastern Mediterranean: Toward a new approach and classification to constrain the regional distribution and activity of mud volcanoes?

    NASA Astrophysics Data System (ADS)

    Flore, Mary; Sébastien, Migeon; Elia, d'Acremont; Alain, Rabaute; Silvia, Ceramicola; Daniel, Praeg; Christian, Blanpied

    2015-04-01

    On continental margins, several types of seabed features recording fluid circulation within the sediment column have already been recognized, including mud volcanoes, pockmarks, carbonates pavements and/or mounds and brine lakes. They can be associated to (a) thermogenic or biogenic fluids migrating along tectonic conduits, (b) dissociation of gas hydrates, or (c) dewatering of turbidite channels and mass-transport deposits. Although fluid-escape structures have been analyzed for the last two decades using diverse and complementary data, many questions are still debated about their morphologies/architectures, origin and formation, their temporal dynamic and the impact of the geodynamical context on their location/formation. In the Eastern Mediterranean, fluid seepages and in particular mud volcanoes, were identified in three geodynamical contexts including active margins (Calabrian accretionary prism and Mediterranean ridge) and highly-sedimented passive margin (Nil deep-sea fan). In this study, we follow a new approach allowing to (1) better quantify a broad set of morphological parameters that characterize the seabed fluid-escape structures, (2) propose an advance classification of these structures, the final goal being to test whether one or several morphological types of fluid-escape structures can be characteristic of one tectonic and sedimentological setting in the Eastern Mediterranean basin. To achieve this classification based on geophysical and geological analysis (morphometry, reflectivity, seismic r and lithofacies features), we used a broad homogenous dataset at the scale of the Eastern Mediterranean, including multibeam bathymetry, acoustic backscatter, 2D/3D seismic reflection, and sediment cores description and analysis. More than 500 mud volcano-like structures were identified based on one criterion or on the association of several criteria, while 40 of them were clearly proved to be mud volcanoes by coring. These structures exhibit different

  7. Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Mediterranean Sea).

    PubMed

    Pachiadaki, Maria G; Lykousis, Vasilios; Stefanou, Euripides G; Kormas, Konstantinos A

    2010-06-01

    We investigated 16S rRNA gene diversity at a high sediment depth resolution (every 5 cm, top 30 cm) in an active site of the Kazan mud volcano, East Mediterranean Sea. A total of 242 archaeal and 374 bacterial clones were analysed, which were attributed to 38 and 205 unique phylotypes, respectively (> or = 98% similarity). Most of the archaeal phylotypes were related to ANME-1, -2 and -3 members originating from habitats where anaerobic oxidation of methane (AOM) occurs, although they occurred in sediment layers with no apparent AOM (below the sulphate depletion depth). Proteobacteria were the most abundant and diverse bacterial group, with the Gammaproteobacteria dominating in most sediment layers and these were related to phylotypes involved in methane cycling. The Deltaproteobacteria included several of the sulphate-reducers related to AOM. The rest of the bacterial phylotypes belonged to 15 known phyla and three unaffiliated groups, with representatives from similar habitats. Diversity index H was in the range 0.56-1.73 and 1.47-3.82 for Archaea and Bacteria, respectively, revealing different depth patterns for the two groups. At 15 and 20 cm below the sea floor, the prokaryotic communities were highly similar, hosting AOM-specific Archaea and Bacteria. Our study revealed different dominant phyla in proximate sediment layers. PMID:20370830

  8. Active and Recent Volcanism and Hydrogeothermal Activity on Mars

    NASA Astrophysics Data System (ADS)

    Edgett, Kenneth S.; Cantor, B. A.; Harrison, T. N.; Kennedy, M. R.; Lipkaman, L. J.; Malin, M. C.; Posiolova, L. V.; Shean, D. E.

    2010-10-01

    There are no active volcanoes or geysers on Mars today, nor in the very recent past. Since 1997, we have sought evidence from targeted narrow angle camera images and daily, global wide angle images for active or very recent (decades to < 10 Ma) volcanism or hydrogeothermal events on Mars. Despite > 11 years of daily global imaging and coverage of > 60% of Mars at ≤ 6 m/pixel (with the remaining < 40% largely outside of volcanic regions), we have found no such evidence, although one lava field in Aeolis (5°N, 220°W) stands out as possibly the site of the most recent volcanism. Authors of impact crater size-frequency studies suggest some volcanic landforms on Mars are as young as tens to hundreds of Ma. This interpreted youth has implications for understanding the internal geophysical state of Mars and has encouraged those seeking sources for trace gases (methane) in the atmosphere and those seeking "warm havens for life” (Jakosky 1996, New Scientist 150, 38-42). We targeted thousands of Mars Global Surveyor (MGS) MOC and Mars Reconnaissance Orbiter (MRO) CTX (and HiRISE) images to examine volcanic regions; we also studied every MGS MOC and MRO MARCI wide angle image. For evidence of active volcanism, we sought eruption plumes, new vents, new tephra deposits, and new volcanogenic flows not observed in earlier images. For recent volcanism, we sought volcanogenic flows with zero or few superposed impact craters and minimal regolith development or superposed eolian sediment. Targets included all volcanic landforms identified in research papers as "recent” as well as areas speculated to have exhibited eruptive plumes. An independent search for endogenic heat sources, a key Mars Odyssey THEMIS objective, has also not produced a positive result (Christensen et al. 2005, P24A-01, Eos, Trans. Am. Geophys. Union 86/52).

  9. Active hydrocarbon (methane) seepage at the Alboran Sea mud volcanoes indicated by specific lipid biomarkers.

    NASA Astrophysics Data System (ADS)

    Lopez-Rodriguez, C.; Stadnitskaia, A.; De Lange, G. J.; Martínez-Ruiz, F.; Comas, M.; Sinninghe Damsté, J. S.

    2012-04-01

    Mud volcanoes (MVs) and pockmark fields are known to occur in the Alboran Basin (Westernmost Mediterranean). These MVs occur above a major sedimentary depocenter that includes up to 7 km thick early Miocene to Holocene sequences. MVs located on the top of diapiric structures that originated from undercompacted Miocene clays and olistostromes. Here we provide results from geochemical data-analyses of four gravity cores acquired in the Northern Mud Volcano Field (north of the 36°N): i.e. Perejil, Kalinin and Schneiderś Heart mud expulsion structures. Extruded materials include different types of mud breccias. Specific lipid biomarkers (n-alkanes, hopanes, irregular isoprenoid hydrocarbons and Dialkyl Glycerol Diethers (DGDs) were analysed by gas chromatography (GC) and gas chromatography mass spectrometry (GC-MS). Determination of Glycerol Dialkyl Glycerol Tetraethers (GDGTs) by high performance liquid chromatography-spectrometry (HPLC-MS), and analysis of biomarker δ13C values were performed in selected samples. Lipid biomarker analysis from the three MVs revealed similar n-alkane distributions in all mud breccia intervals, showing significant hydrocarbon-derived signals and the presence of thermally immature organic-matter admixture. This suggests that similar strata fed these MVs. The hemipelagic drapes reveal comparable n-alkane distributions, suggesting that significant upward diffusion of fluids occurs. Distributions of GDGTs are generally accepted as usefull biomarkers to locate the anaerobic oxidation of methane (AOM) in marine sediments. However, our GDGT profiles only reflect the marine thaumarchaeotal signature. There seems to be no archaea producing specific GDGTs involved in AOM in the recovered interval. Evidence of recent activity (i.e., methane gas-bubbling and chemosynthetic fauna at the Perejil MV) and the presence of specific lipid biomarker related with methanotropic archaea (Irregular Isoprenoids and DGDs), however, suggest the existence of

  10. Active Volcanism on Io: Global Distribution and Variations in Activity

    USGS Publications Warehouse

    Lopes-Gautier, R.; McEwen, A.S.; Smythe, W.B.; Geissler, P.E.; Kamp, L.; Davies, A.G.; Spencer, J.R.; Keszthelyi, L.; Carlson, R.; Leader, F.E.; Mehlman, R.; Soderblom, L.

    1999-01-01

    Io's volcanic activity has been monitored by instruments aboard the Galileo spacecraft since June 28, 1996. We present results from observations by the near-infrared mapping spectrometer (NIMS) for the first 10 orbits of Galileo, correlate them with results from the Solid State Imaging System (SSI) and from groundbased observations, and compare them to what was known about Io's volcanic activity from observations made during the two Voyager flybys in 1979. A total of 61 active volcanic centers have been identified from Voyager, groundbased, and Galileo observations. Of these, 41 are hot spots detected by NIMS and/or SSI. Another 25 locations were identified as possible active volcanic centers, mostly on the basis of observed surface changes. Hot spots are correlated with surface colors, particularly dark and red deposits, and generally anti-correlated with white, SO2-rich areas. Surface features corresponding to the hot spots, mostly calderas or flows, were identified from Galileo and Voyager images. Hot spot temperatures obtained from both NIMS and SSI are consistent with silicate volcanism, which appears to be widespread on Io. Two types of hot spot activity are present: persistent-type activity, lasting from months to years, and sporadic events, which may represent either short-lived activity or low-level activity that occasionally flares up. Sporadic events are not often detected, but may make an important contribution to Io's heat flow and resurfacing. The distribution of active volcanic centers on the surface does not show any clear correlation with latitude, longitude, Voyager-derived global topography, or heat flow patterns predicted by the asthenosphere and deep mantle tidal dissipation models. However, persistent hot spots and active plumes are concentrated toward lower latitudes, and this distribution favors the asthenosphere rather than the deep mantle tidal dissipation model. ?? 1999 Academic Press.

  11. Methanogenic activity and diversity in the centre of the Amsterdam Mud Volcano, Eastern Mediterranean Sea.

    PubMed

    Lazar, Cassandre Sara; John Parkes, R; Cragg, Barry A; L'Haridon, Stephane; Toffin, Laurent

    2012-07-01

    Marine mud volcanoes are geological structures emitting large amounts of methane from their active centres. The Amsterdam mud volcano (AMV), located in the Anaximander Mountains south of Turkey, is characterized by intense active methane seepage produced in part by methanogens. To date, information about the diversity or the metabolic pathways used by the methanogens in active centres of marine mud volcanoes is limited. (14)C-radiotracer measurements showed that methylamines/methanol, H(2)/CO(2) and acetate were used for methanogenesis in the AMV. Methylotrophic methanogenesis was measured all along the sediment core, Methanosarcinales affiliated sequences were detected using archaeal 16S PCR-DGGE and mcrA gene libraries, and enrichments of methanogens showed the presence of Methanococcoides in the shallow sediment layers. Overall acetoclastic methanogenesis was higher than hydrogenotrophic methanogenesis, which is unusual for cold seep sediments. Interestingly, acetate porewater concentrations were extremely high in the AMV sediments. This might be the result of organic matter cracking in deeper hotter sediment layers. Methane was also produced from hexadecanes. For the most part, the methanogenic community diversity was in accordance with the depth distribution of the H(2)/CO(2) and acetate methanogenesis. These results demonstrate the importance of methanogenic communities in the centres of marine mud volcanoes.

  12. Methanogenic activity and diversity in the centre of the Amsterdam Mud Volcano, Eastern Mediterranean Sea.

    PubMed

    Lazar, Cassandre Sara; John Parkes, R; Cragg, Barry A; L'Haridon, Stephane; Toffin, Laurent

    2012-07-01

    Marine mud volcanoes are geological structures emitting large amounts of methane from their active centres. The Amsterdam mud volcano (AMV), located in the Anaximander Mountains south of Turkey, is characterized by intense active methane seepage produced in part by methanogens. To date, information about the diversity or the metabolic pathways used by the methanogens in active centres of marine mud volcanoes is limited. (14)C-radiotracer measurements showed that methylamines/methanol, H(2)/CO(2) and acetate were used for methanogenesis in the AMV. Methylotrophic methanogenesis was measured all along the sediment core, Methanosarcinales affiliated sequences were detected using archaeal 16S PCR-DGGE and mcrA gene libraries, and enrichments of methanogens showed the presence of Methanococcoides in the shallow sediment layers. Overall acetoclastic methanogenesis was higher than hydrogenotrophic methanogenesis, which is unusual for cold seep sediments. Interestingly, acetate porewater concentrations were extremely high in the AMV sediments. This might be the result of organic matter cracking in deeper hotter sediment layers. Methane was also produced from hexadecanes. For the most part, the methanogenic community diversity was in accordance with the depth distribution of the H(2)/CO(2) and acetate methanogenesis. These results demonstrate the importance of methanogenic communities in the centres of marine mud volcanoes. PMID:22458514

  13. Volcanic Activity at Tvashtar Catena, Io

    NASA Technical Reports Server (NTRS)

    Milazzo, M. P.; Keszthelyi, L. P.; Radebaugh, J.; Davies, A. G.; McEwen, A. S.

    2004-01-01

    Tvashtar Catena (63 N, 120 W) is one of the most interesting features on Io. This chain of large paterae (caldera-like depressions) has exhibited highly variable volcanic activity in a series of observations. Tvashtar is the type example of a style of volcanism seen only at high latitudes, with short-lived Pele-type plumes and short-lived by intense thermal events. Evidence for a hot spot at Tvashtar was first detected in an eclipse observation in April 1997 (orbit G7) by the Solid State Imager (SSI) on the Galileo Spacecraft. Tvashtar was originally targeted for observation at higher resolution in the close flyby in November 1999 (I25) because of its interesting large-scale topography. There are relatively few but generally larger paterae at high latitudes on Io. I25 images revealed a 25 km long, 1-2 km high lava curtain via a pattern of saturation and bleeding in the CCD image, which requires very high temperatures.

  14. [Catalytic ozonation of nitrobenzene in water by acidification-activated red mud].

    PubMed

    Kang, Ya-ning; Li, Hua-nan; Xu, Bing-bing; Qi, Fei; Zhao, Lun

    2013-05-01

    Red mud as one kind of aluminum industrial wastes was used as raw material for catalyst preparation. It was activated by acidification in order to enhance its catalytic activity in the system of catalytic ozonation. Furthermore, removal performance and reaction mechanism in degradation of organic pollutants were discussed. Results showed that acid modified red mud had more significant catalytic activity than the raw red mud. The removal efficiency of nitrobenzene by catalytic ozonation with acidified red mud (RM6.0) increased with the increasing ozone concentration. When the ozone concentration was increased from 0.4 mg x L(-1) to 1.7 mg x L(-1), the removal efficiency of nitrobenzene increased from 45% to 92%. There was a consistent effect of water pH on the removal efficiency and the ozone concentration variation. The variation of the removal efficiency depended on the initial water pH. This was because the concentration of OH(-) led to ozone decomposition to generate hydroxyl radicals. The higher water pH value led to the quenching of hydroxyl radicals, resulting in the reduction of catalytic activity of RM6.0. The experimental results of aqueous ozone concentration variation in the presence of RM6.0 and inhibition by hydroxyl radicals indicated that the main reaction mechanism was catalytic ozonation of NB. Firstly, aqueous ozone was absorbed onto the surface of RM6.0, and then the concentrated ozone oxidized NB in water which was with a combination of direct and indirect oxidation. In catalytic reaction, hydroxyl radicals were present, which were generated during the oxidation of NB on the surface of RM6.0.

  15. [Catalytic ozonation of nitrobenzene in water by acidification-activated red mud].

    PubMed

    Kang, Ya-ning; Li, Hua-nan; Xu, Bing-bing; Qi, Fei; Zhao, Lun

    2013-05-01

    Red mud as one kind of aluminum industrial wastes was used as raw material for catalyst preparation. It was activated by acidification in order to enhance its catalytic activity in the system of catalytic ozonation. Furthermore, removal performance and reaction mechanism in degradation of organic pollutants were discussed. Results showed that acid modified red mud had more significant catalytic activity than the raw red mud. The removal efficiency of nitrobenzene by catalytic ozonation with acidified red mud (RM6.0) increased with the increasing ozone concentration. When the ozone concentration was increased from 0.4 mg x L(-1) to 1.7 mg x L(-1), the removal efficiency of nitrobenzene increased from 45% to 92%. There was a consistent effect of water pH on the removal efficiency and the ozone concentration variation. The variation of the removal efficiency depended on the initial water pH. This was because the concentration of OH(-) led to ozone decomposition to generate hydroxyl radicals. The higher water pH value led to the quenching of hydroxyl radicals, resulting in the reduction of catalytic activity of RM6.0. The experimental results of aqueous ozone concentration variation in the presence of RM6.0 and inhibition by hydroxyl radicals indicated that the main reaction mechanism was catalytic ozonation of NB. Firstly, aqueous ozone was absorbed onto the surface of RM6.0, and then the concentrated ozone oxidized NB in water which was with a combination of direct and indirect oxidation. In catalytic reaction, hydroxyl radicals were present, which were generated during the oxidation of NB on the surface of RM6.0. PMID:23914529

  16. The Online GVP/USGS Weekly Volcanic Activity Report: Providing Timely Information About Worldwide Volcanism

    NASA Astrophysics Data System (ADS)

    Mayberry, G. C.; Guffanti, M. C.; Luhr, J. F.; Venzke, E. A.; Wunderman, R. L.

    2001-12-01

    The awesome power and intricate inner workings of volcanoes have made them a popular subject with scientists and the general public alike. About 1500 known volcanoes have been active on Earth during the Holocene, approximately 50 of which erupt per year. With so much activity occurring around the world, often in remote locations, it can be difficult to find up-to-date information about current volcanism from a reliable source. To satisfy the desire for timely volcano-related information the Smithsonian Institution and US Geological Survey combined their strengths to create the Weekly Volcanic Activity Report. The Smithsonian's Global Volcanism Program (GVP) has developed a network of correspondents while reporting worldwide volcanism for over 30 years in their monthly Bulletin of the Global Volcanism Network. The US Geological Survey's Volcano Hazards Program studies and monitors volcanoes in the United States and responds (upon invitation) to selected volcanic crises in other countries. The Weekly Volcanic Activity Report is one of the most popular sites on both organization's websites. The core of the Weekly Volcanic Activity Report is the brief summaries of current volcanic activity around the world. In addition to discussing various types of volcanism, the summaries also describe precursory activity (e.g. volcanic seismicity, deformation, and gas emissions), secondary activity (e.g. debris flows, mass wasting, and rockfalls), volcanic ash hazards to aviation, and preventative measures. The summaries are supplemented by links to definitions of technical terms found in the USGS photoglossary of volcano terms, links to information sources, and background information about reported volcanoes. The site also includes maps that highlight the location of reported volcanoes, an archive of weekly reports sorted by volcano and date, and links to commonly used acronyms. Since the Weekly Volcanic Activity Report's inception in November 2000, activity has been reported at

  17. Integrating Multiple Space Ground Sensors to Track Volcanic Activity

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Davies, Ashley; Doubleday, Joshua; Tran, Daniel; Jones, Samuel; Kjartansson, Einar; Thorsteinsson, Hrobjartur; Vogfjord, Kristin; Guomundsson, Magnus; Thordarson, Thor; Mandl, Daniel

    2011-01-01

    Volcanic activity can occur with little or no warning. Increasing numbers of space borne assets can enable coordinated measurements of volcanic events to enhance both scientific study and hazard response. We describe the use of space and ground measurements to target further measurements as part of a worldwide volcano monitoring system. We utilize a number of alert systems including the MODVOLC, GOESVOLC, US Air Force Weather Advisory, and Volcanic Ash Advisory Center (VAAC) alert systems. Additionally we use in-situ data from ground instrumentation at a number of volcanic sites, including Iceland.

  18. Volcanic activity at Tvashtar Catena, Io

    USGS Publications Warehouse

    Milazzo, M.P.; Keszthelyi, L.P.; Radebaugh, J.; Davies, A.G.; Turtle, E.P.; Geissler, P.; Klaasen, K.P.; Rathbun, J.A.; McEwen, A.S.

    2005-01-01

    Galileo's Solid State Imager (SSI) observed Tvashtar Catena four times between November 1999 and October 2001, providing a unique look at a distinctive high latitude volcanic complex on Io. The first observation (orbit I25, November 1999) resolved, for the first time, an active extraterrestrial fissure eruption; the brightness temperature was at least 1300 K. The second observation (orbit I27, February 2000) showed a large (??? 500 km 2) region with many, small, hot, regions of active lava. The third observation was taken in conjunction with Cassini imaging in December 2000 and showed a Pele-like, annular plume deposit. The Cassini images revealed an ???400 km high Pele-type plume above Tvashtar Catena. The final Galileo SSI observation of Tvashtar (orbit I32, October 2001), revealed that obvious (to SSI) activity had ceased, although data from Galileo's Near Infrared Mapping Spectrometer (NIMS) indicated that there was still significant thermal emission from the Tvashtar region. In this paper, we primarily analyze the style of eruption during orbit I27 (February 2000). Comparison with a lava flow cooling model indicates that the behavior of the Tvashtar eruption during I27 does not match that of simple advancing lava flows. Instead, it may be an active lava lake or a complex set of lava flows with episodic, overlapping eruptions. The highest reliable color temperature is ???1300 K. Although higher temperatures cannot be ruled out, they do not need to be invoked to fit the observed data. The total power output from the active lavas in February 2000 was at least 1011 W. ?? 2005 Elsevier Inc. All rights reserved.

  19. Active volcanism on Venus in the Ganiki Chasma rift zone

    NASA Astrophysics Data System (ADS)

    Shalygin, E. V.; Markiewicz, W. J.; Basilevsky, A. T.; Titov, D. V.; Ignatiev, N. I.; Head, J. W.

    2015-06-01

    Venus is known to have been volcanically resurfaced in the last third of solar system history and to have undergone a significant decrease in volcanic activity a few hundred million years ago. However, fundamental questions remain: Is Venus still volcanically active today, and if so, where and in what geological and geodynamic environment? Here we show evidence from the Venus Express Venus Monitoring Camera for transient bright spots that are consistent with the extrusion of lava flows that locally cause significantly elevated surface temperatures. The very strong spatial correlation of the transient bright spots with the extremely young Ganiki Chasma, their similarity to locations of rift-associated volcanism on Earth, provide strong evidence for their volcanic origin and suggests that Venus is currently geodynamically active.

  20. Methanogenic diversity and activity in hypersaline sediments of the centre of the Napoli mud volcano, Eastern Mediterranean Sea.

    PubMed

    Lazar, Cassandre Sara; Parkes, R John; Cragg, Barry A; L'Haridon, Stéphane; Toffin, Laurent

    2011-08-01

    Submarine mud volcanoes are a significant source of methane to the atmosphere. The Napoli mud volcano, situated in the brine-impacted Olimpi Area of the Eastern Mediterranean Sea, emits mainly biogenic methane particularly at the centre of the mud volcano. Temperature gradients support the suggestion that Napoli is a cold mud volcano with moderate fluid flow rates. Biogeochemical and molecular genetic analyses were carried out to assess the methanogenic activity rates, pathways and diversity in the hypersaline sediments of the centre of the Napoli mud volcano. Methylotrophic methanogenesis was the only significant methanogenic pathway in the shallow sediments (0-40 cm) but was also measured throughout the sediment core, confirming that methylotrophic methanogens could be well adapted to hypersaline environments. Hydrogenotrophic methanogenesis was the dominant pathway below 50 cm; however, low rates of acetoclastic methanogenesis were also present, even in sediment layers with the highest salinity, showing that these methanogens can thrive in this extreme environment. PCR-DGGE and methyl coenzyme M reductase gene libraries detected sequences affiliated with anaerobic methanotrophs (mainly ANME-1) as well as Methanococcoides methanogens. Results show that the hypersaline conditions in the centre of the Napoli mud volcano influence active biogenic methane fluxes and methanogenic/methylotrophic diversity. PMID:21382146

  1. Methanogenic diversity and activity in hypersaline sediments of the centre of the Napoli mud volcano, Eastern Mediterranean Sea.

    PubMed

    Lazar, Cassandre Sara; Parkes, R John; Cragg, Barry A; L'Haridon, Stéphane; Toffin, Laurent

    2011-08-01

    Submarine mud volcanoes are a significant source of methane to the atmosphere. The Napoli mud volcano, situated in the brine-impacted Olimpi Area of the Eastern Mediterranean Sea, emits mainly biogenic methane particularly at the centre of the mud volcano. Temperature gradients support the suggestion that Napoli is a cold mud volcano with moderate fluid flow rates. Biogeochemical and molecular genetic analyses were carried out to assess the methanogenic activity rates, pathways and diversity in the hypersaline sediments of the centre of the Napoli mud volcano. Methylotrophic methanogenesis was the only significant methanogenic pathway in the shallow sediments (0-40 cm) but was also measured throughout the sediment core, confirming that methylotrophic methanogens could be well adapted to hypersaline environments. Hydrogenotrophic methanogenesis was the dominant pathway below 50 cm; however, low rates of acetoclastic methanogenesis were also present, even in sediment layers with the highest salinity, showing that these methanogens can thrive in this extreme environment. PCR-DGGE and methyl coenzyme M reductase gene libraries detected sequences affiliated with anaerobic methanotrophs (mainly ANME-1) as well as Methanococcoides methanogens. Results show that the hypersaline conditions in the centre of the Napoli mud volcano influence active biogenic methane fluxes and methanogenic/methylotrophic diversity.

  2. The diversity of mud volcanoes in the landscape of Azerbaijan

    NASA Astrophysics Data System (ADS)

    Rashidov, Tofig

    2014-05-01

    on surface, often of plane-conical shape, rising for 5 to 400 m and more over the country (for example, mud volcano Toragay, 400 m height). The base diameter is from 100 m to 3-4 km and more. Like the magmatic ones, the mud volcanoes are crowned with crater of convex-plane or deeply-seated shape. In Azerbaijan there are all types of mud volcanoes: active, extinct, buried, submarine, island, abundantly oil seeping. According to their morphology they are defined into cone-shaped, dome-shaped, ridge-shaped, plateau-shaped. The crater shapes are also various: conical, convex-plane, shield-shaped, deeply-seated, caldera-like. The most complete morphological classification was given in "Atlas of mud volcanoes of Azerbaijan" (Yakubov et al., 1971). Recently (Aliyev Ad. et al., 2003) it was proposed a quite new morphological classification of mud volcanoes of Azerbaijan. For the first time the mud volcanic manifestations had been defined. Volcanoes are ranged according to morphological signs, crater shape and type of activity.

  3. 1997 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Wallace, Kristi L.

    1999-01-01

    The Alaska Volcano Observatory (AVO) monitors over 40 historically active volcanoes along the Aleutian Arc. Twenty are seismically monitored and for the rest, the AVO monitoring program relies mainly on pilot reports, observations of local residents and ship crews, and daily analysis of satellite images. In 1997, AVO responded to eruptive activity or suspect volcanic activity at 11 volcanic centers: Wrangell, Sanford, Shrub mud volcano, Iliamna, the Katmai group (Martin, Mageik, Snowy, and Kukak volcanoes), Chiginagak, Pavlof, Shishaldin, Okmok, Cleveland, and Amukta. Of these, AVO has real-time, continuously recording seismic networks at Iliamna, the Katmai group, and Pavlof. The phrase “suspect volcanic activity” (SVA), used to characterize several responses, is an eruption report or report of unusual activity that is subsequently determined to be normal or enhanced fumarolic activity, weather-related phenomena, or a non-volcanic event. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) about the 1997 activity of 5 Russian volcanoes--Sheveluch, Klyuchevskoy, Bezymianny, Karymsky, and Alaid (SVA). This report summarizes volcanic activity and SVA in Alaska during 1997 and the AVO response, as well as information on the reported activity at the Russian volcanoes. Only those reports or inquiries that resulted in a “significant” investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of reports throughout the year of steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1997 response record.

  4. Using Volcanic Lightning Measurements to Discern Variations in Explosive Volcanic Activity

    NASA Astrophysics Data System (ADS)

    Behnke, S. A.; Thomas, R. J.; McNutt, S. R.; Edens, H. E.; Krehbiel, P. R.; Rison, W.

    2013-12-01

    VHF observations of volcanic lightning have been made during the recent eruptions of Augustine Volcano (2006, Alaska, USA), Redoubt Volcano (2009, Alaska, USA), and Eyjafjallajökull (2010, Iceland). These show that electrical activity occurs both on small scales at the vent of the volcano, concurrent with an eruptive event and on large scales throughout the eruption column during and subsequent to an eruptive event. The small-scale discharges at the vent of the volcano are often referred to as 'vent discharges' and are on the order of 10-100 meters in length and occur at rates on the order of 1000 per second. The high rate of vent discharges produces a distinct VHF signature that is sometimes referred to as 'continuous RF' radiation. VHF radiation from vent discharges has been observed at sensors placed as far as 100 km from the volcano. VHF and infrasound measurements have shown that vent discharges occur simultaneously with the onset of eruption, making their detection an unambiguous indicator of explosive volcanic activity. The fact that vent discharges are observed concurrent with explosive volcanic activity indicates that volcanic ejecta are charged upon eruption. VHF observations have shown that the intensity of vent discharges varies between eruptive events, suggesting that fluctuations in eruptive processes affect the electrification processes giving rise to vent discharges. These fluctuations may be variations in eruptive vigor or variations in the type of eruption; however, the data obtained so far do not show a clear relationship between eruption parameters and the intensity or occurrence of vent discharges. Further study is needed to clarify the link between vent discharges and eruptive behavior, such as more detailed lightning observations concurrent with tephra measurements and other measures of eruptive strength. Observations of vent discharges, and volcanic lightning observations in general, are a valuable tool for volcano monitoring, providing a

  5. Recent volcanic activity on Venus - Evidence from radiothermal emissivity measurements

    NASA Astrophysics Data System (ADS)

    Robinson, C. A.; Wood, J. A.

    1993-03-01

    Radiothermal emissivity measurements are analyzed in order to study large volcanic constructs on Venus and to correlate details of the reflectivity/emissivity patterns with geological landforms and stratigraphy visible in corresponding SAR images. There appears to be a correlation between locations on Venus where high emissivity at high altitudes and low emissivity at low altitudes are observed. These phenomena are attributed here to relatively recent volcanic activity: the former to summit eruptions that have not had time to weather to the low-emissivity state, the latter to continuing emission of volcanic gases from neighboring small plains volcanoes. The pattern of reflectivity and emissivity on Maat Mons is examined in the light of these findings. It is concluded that Maat Mons has undergone the most recent episode of volcanic activity of all the volcanoes studied here.

  6. Recent volcanic activity on Venus - Evidence from radiothermal emissivity measurements

    NASA Technical Reports Server (NTRS)

    Robinson, Cordula A.; Wood, John A.

    1993-01-01

    Radiothermal emissivity measurements are analyzed in order to study large volcanic constructs on Venus and to correlate details of the reflectivity/emissivity patterns with geological landforms and stratigraphy visible in corresponding SAR images. There appears to be a correlation between locations on Venus where high emissivity at high altitudes and low emissivity at low altitudes are observed. These phenomena are attributed here to relatively recent volcanic activity: the former to summit eruptions that have not had time to weather to the low-emissivity state, the latter to continuing emission of volcanic gases from neighboring small plains volcanoes. The pattern of reflectivity and emissivity on Maat Mons is examined in the light of these findings. It is concluded that Maat Mons has undergone the most recent episode of volcanic activity of all the volcanoes studied here.

  7. Evidence of the activity of dissimilatory sulfate-reducing prokaryotes in nonsulfidogenic tropical mobile muds.

    PubMed

    Madrid, Vanessa M; Aller, Robert C; Aller, Josephine Y; Chistoserdov, Andrei Y

    2006-08-01

    In spite of the nonsulfidic conditions and abundant reactive iron(III) commonly found in mobile tropical deltaic muds, genes encoding dissimilatory sulfite reductase (dsr) were successfully amplified from the upper approximately 1 m of coastal deposits sampled along French Guiana and in the Gulf of Papua. The dsr sequences retrieved were highly diverse, were generally represented in both study regions and fell into six large phylogenetic groupings: Deltaproteobacteria, Thermodesulfovibrio groups, Firmicutes and three groups without known cultured representatives. The spatial and temporal distribution of dsr sequences strongly supports the contention that the sulfate-reducing prokaryote communities in mobile mud environments are cosmopolitan and stable over a period of years. The decrease in the (35)SO(4) (2-) tracer demonstrates that, despite abundant reactive sedimentary iron(III) ( approximately 350-400 mumol g(-1)), the sulfate-reducing prokaryotes present are active, with the highest levels of sulfide being generated in the upper zones of the cores (0-30 cm). Both the time course of the (35)S-sulfide tracer activity and the lack of reduced sulfur in sediments demonstrate virtually complete anaerobic loss of solid phase sulfides. We propose a pathway of organic matter oxidation involving at least 5-25% of the remineralized carbon, wherein sulfide produced by sulfate-reducing prokaryotes is cyclically oxidized biotically or abiotically by metal oxides.

  8. Molecular characterization of thioredoxin-1 and thioredoxin reductase activity in mud crab Scylla paramamosain.

    PubMed

    Hu, J H; Zhang, F Y; Jiang, K J; Fang, Y B; Wang, J; Zhao, M; Qiao, Z G; Ma, L B

    2014-01-01

    The thioredoxin (Trx) system consists of thioredoxin reductase (TrxR), Trx, and nicotinamide adenine dinucleotide phosphate (NADPH). TrxR is an NADPH-dependent oxidoreductase. Trx is a ubiquitous small protein with a redox-active disulfide bridge that plays important regulatory roles in some vital metabolic reactions. In this study, a cDNA sequence (SpTrx1) showing high identity to the first Trx gene was isolated from a hepatopancreas cDNA library of the mud crab Scylla paramamosain. The full-length cDNA of SpTrx1 consisted of 672 bp and contained a complete open reading frame of 318 bp encoding a polypeptide of 105 amino acids. Quantitative real-time polymerase chain reaction analysis revealed that SpTrx1 expression was ubiquitous in various organs of S. paramamosain, including the gill, muscle, heart, hemolymph, testis, and hepatopancreas. SpTrx1 expression was upregulated significantly after Vibrio parahaemolyticus challenge: it obviously rose at 48 h and reached the highest level at 72 h. Furthermore, TrxR activity was detected in the gill, heart, muscle, hemolymph, and hepatopancreas. The relative TrxR activity in different tissues after V. parahaemolyticus injection had the same tendency in each tissue (P < 0.01) as SpTrx1 expression. The TrxR activity increased 2 h after injection, peaked at 8 h, slowly decreased from 12 to 24 h, and returned to normal levels at 48 h. The consistency of the expression between the Trx transcript and TrxR activity demonstrated that Trx was closely related to TrxR in the Trx system in S. paramamosain, suggesting that it may participate in the immune system of mud crabs. PMID:25501236

  9. The Physics of a Volcanic System: What is the Actual Role Played by Tectonic Setting in Controlling Volcanic Activity?

    NASA Astrophysics Data System (ADS)

    Canon-Tapia, E.

    2005-12-01

    Modern text-books commonly explain volcanic activity as a direct consequence of plate tectonics, overlooking the different scales characteristic of both types of processes. By acknowledging such differences, however, it is possible to envisage a model of a volcanic system that is based in the same principles of hydrostatics established by Blaise Pascal over 300 yrs ago. Such principles allow us to estimate the local conditions required for the occurrence of volcanism at a given location highlighting the importance of the rock strength and the density difference between melt and its surroundings. This model shows that the minimum thickness of the zone of partial melting in the mantle (or seismically defined Low Velocity Zone) that is required to feed volcanic activity might range from 5 to over 100 km, but also that under certain circumstances a rock strength < 200 MPa may suffice to keep magma trapped at depth whereas in other cases a strength > 600 MPa will not suffice to stop magma ascent resulting in volcanic activity at the surface. Consequently, the model of volcanism developed here explains why is that a given LVZ may lead to volcanic activity in some places whereas a completely identical LVZ may not result in volcanic activity in a different location. Consequently, this model provides a general framework that allows us to better understand the actual role played by tectonic setting in controlling volcanism at a planetary scale.

  10. Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico.

    PubMed

    Martinez, Robert J; Mills, Heath J; Story, Sandra; Sobecky, Patricia A

    2006-10-01

    In this study, ribosomes and genomic DNA were extracted from three sediment depths (0-2, 6-8 and 10-12 cm) to determine the vertical changes in the microbial community composition and identify metabolically active microbial populations in sediments obtained from an active seafloor mud volcano site in the northern Gulf of Mexico. Domain-specific Bacteria and Archaea 16S polymerase chain reaction primers were used to amplify 16S rDNA gene sequences from extracted DNA. Complementary 16S ribosomal DNA (crDNA) was obtained from rRNA extracted from each sediment depth that had been subjected to reverse transcription polymerase chain reaction amplification. Twelve different 16S clone libraries, representing the three sediment depths, were constructed and a total of 154 rDNA (DNA-derived) and 142 crDNA (RNA-derived) Bacteria clones and 134 rDNA and 146 crDNA Archaea clones obtained. Analyses of the 576 clones revealed distinct differences in the composition and patterns of metabolically active microbial phylotypes relative to sediment depth. For example, epsilon-Proteobacteria rDNA clones dominated the 0-2 cm clone library whereas gamma-Proteobacteria dominated the 0-2 cm crDNA library suggesting gamma to be among the most active in situ populations detected at 0-2 cm. Some microbial lineages, although detected at a frequency as high as 9% or greater in the total DNA library (i.e. Actinobacteria, alpha-Proteobacteria), were markedly absent from the RNA-derived libraries suggesting a lack of in situ activity at any depth in the mud volcano sediments. This study is one of the first to report the composition of the microbial assemblages and physiologically active members of archaeal and bacterial populations extant in a Gulf of Mexico submarine mud volcano. PMID:16958759

  11. Active mud volcanoes on the continental slope of the Canadian Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Dallimore, S. R.; Caress, D. W.; Gwiazda, R.; Melling, H.; Riedel, M.; Jin, Y. K.; Hong, J. K.; Kim, Y.-G.; Graves, D.; Sherman, A.; Lundsten, E.; Anderson, K.; Lundsten, L.; Villinger, H.; Kopf, A.; Johnson, S. B.; Hughes Clarke, J.; Blasco, S.; Conway, K.; Neelands, P.; Thomas, H.; Côté, M.

    2015-09-01

    Morphologic features, 600-1100 m across and elevated up to 30 m above the surrounding seafloor, interpreted to be mud volcanoes were investigated on the continental slope in the Beaufort Sea in the Canadian Arctic. Sediment cores, detailed mapping with an autonomous underwater vehicle, and exploration with a remotely operated vehicle show that these are young and actively forming features experiencing ongoing eruptions. Biogenic methane and low-chloride, sodium-bicarbonate-rich waters are extruded with warm sediment that accumulates to form cones and low-relief circular plateaus. The chemical and isotopic compositions of the ascending water indicate that a mixture of meteoric water, seawater, and water from clay dehydration has played a significant role in the evolution of these fluids. The venting methane supports extensive siboglinid tubeworms communities and forms some gas hydrates within the near seafloor. We believe that these are the first documented living chemosynthetic biological communities in the continental slope of the western Arctic Ocean.

  12. The recent seismo-volcanic activity at Deception Island volcano

    NASA Astrophysics Data System (ADS)

    Ibáñez, Jesús M.; Almendros, Javier; Carmona, Enrique; Martínez-Arévalo, Carmen; Abril, Miguel

    2003-06-01

    This paper reviews the recent seismic studies carried out at Deception Island, South Shetland Islands, Antarctica, which was monitored by the Argentinean and Spanish Antarctic Programs since 1986. Several types of seismic network have been deployed temporarily during each Antarctic summer. These networks have consisted of a variety of instruments, including radio-telemetered stations, autonomous digital seismic stations, broadband seismometers, and seismic arrays. We have identified two main types of seismic signals generated by the volcano, namely pure seismo-volcanic signals, such as volcanic tremor and long-period (LP) events, and volcano-tectonic (VT) earthquakes. Their temporal distributions are far from homogeneous. Volcanic tremors and LP events usually occur in seismic swarms lasting from a few hours to some days. The number of LP events in these swarms is highly variable, from a background level of less than 30/day to a peak activity of about 100 events/h. The occurrence of VT earthquakes is even more irregular. Most VT earthquakes at Deception Island have been recorded during two intense seismic crises, in 1992 and 1999, respectively. Some of these VT earthquakes were large enough to be felt by researchers working on the island. Analyses of both types of seismic events have allowed us to derive source locations, establish seismic source models, analyze seismic attenuation, calculate the energy and stress drop of the seismic sources, and relate the occurrence of seismicity to the volcanic activity. Pure seismo-volcanic signals are modelled as the consequence of hydrothermal interactions between a shallow aquifer and deeper hot materials, resulting in the resonance of fluid-filled fractures. VT earthquakes constitute the brittle response to changes in the distribution of stress in the volcanic edifice. The two VT seismic series are probably related to uplift episodes due to deep injections of magma that did not reach the surface. This evidence, however

  13. Ancient Tectonic and Volcanic Activity in the Tharsis Region

    NASA Astrophysics Data System (ADS)

    Werner, S. C.; Kronberg, P.; Hauber, E.; Grott, M.; Steinberger, B.; Torsvik, T. H.; Neukum, G.

    The two topographically dominating volcanic provinces on Mars are the Tharsis and the Elysium regions, situated close to the equator on the dichotomy boundary between the heavily cratered (older) highlands and the northern lowlands (about 100 degrees apart). The regions are characterized by volcanoes whose morphologies are analogous to volcanic landforms on Earth, and the huge volcanoes in the Tharsis region (Olympus Mons and Tharsis Montes) are prime examples resembling many characteristics of Hawaiian shield volcanoes. The main difference between the Martian and terrestrial volcanoes are their size and the length of the flows, possibly due to higher eruption rates, the "stationary" character of the source (no plate tectonics) and the lower gravity. The Tharsis plateau is the topographically most prominent region on Mars, and associated with an areoid high. On Earth, large geoid highs are related to longlived heterogeneities near the core-mantle boundary that are sources for large igneous provinces. The Tharsis' volcanic vent structures were active at least episodically over the past 4 billion years (based on crater count statistics), which indicates long-lived volcanic and magmatic activity. Two major groups of tectonic features are related to the Tharsis bulge: a concentric set of wrinkle ridges indicating compression radial to Tharsis,and several sets of extensional structures that radiate outward from different centers within Tharsis, indicating tension circumferential to Tharsis. No landforms imply ancient plate tectonics. Here, we present surface ages associated with volcanic and tectonic landforms with a special focus on the ancient magma-tectonic environment (see Grott et al. 2006, this volume). We will examine the long-lived volcanism and tectonic surface expressions and discuss whether Mars volcanism could represent deep mantle plumes.

  14. Regional Triggering of Volcanic Activity Following Large Magnitude Earthquakes

    NASA Astrophysics Data System (ADS)

    Hill-Butler, Charley; Blackett, Matthew; Wright, Robert

    2015-04-01

    There are numerous reports of a spatial and temporal link between volcanic activity and high magnitude seismic events. In fact, since 1950, all large magnitude earthquakes have been followed by volcanic eruptions in the following year - 1952 Kamchatka M9.2, 1960 Chile M9.5, 1964 Alaska M9.2, 2004 & 2005 Sumatra-Andaman M9.3 & M8.7 and 2011 Japan M9.0. While at a global scale, 56% of all large earthquakes (M≥8.0) in the 21st century were followed by increases in thermal activity. The most significant change in volcanic activity occurred between December 2004 and April 2005 following the M9.1 December 2004 earthquake after which new eruptions were detected at 10 volcanoes and global volcanic flux doubled over 52 days (Hill-Butler et al. 2014). The ability to determine a volcano's activity or 'response', however, has resulted in a number of disparities with <50% of all volcanoes being monitored by ground-based instruments. The advent of satellite remote sensing for volcanology has, therefore, provided researchers with an opportunity to quantify the timing, magnitude and character of volcanic events. Using data acquired from the MODVOLC algorithm, this research examines a globally comparable database of satellite-derived radiant flux alongside USGS NEIC data to identify changes in volcanic activity following an earthquake, February 2000 - December 2012. Using an estimate of background temperature obtained from the MODIS Land Surface Temperature (LST) product (Wright et al. 2014), thermal radiance was converted to radiant flux following the method of Kaufman et al. (1998). The resulting heat flux inventory was then compared to all seismic events (M≥6.0) within 1000 km of each volcano to evaluate if changes in volcanic heat flux correlate with regional earthquakes. This presentation will first identify relationships at the temporal and spatial scale, more complex relationships obtained by machine learning algorithms will then be examined to establish favourable

  15. The Extremes of Volcanic Activity: Earth and Jupiter's Moon Io

    NASA Astrophysics Data System (ADS)

    Lowes, L. L.; Lopes, R.

    2004-12-01

    Jupiter's moon Io is the solar system's most volcanically active body, and the only place that magmatic volcanic eruptions have been observed beyond Earth. One of the first images of Io obtained by NASA's Voyager 1 spacecraft in 1979 shows a plume above one of its volcanoes. The NASA Voyager and Galileo spacecraft imaged many explosive eruptions of plumes and deposits - which travel hundreds of kilometers (farther than on the Earth or the Moon). Very hot lavas that are erupting from volcanic vents on Io may be similar to lavas that erupted on Earth billions of years ago. Understanding the physical processes driving volcanic eruptions is important for the understanding of terrestrial volcanoes, not only because of their potential hazards, but also as geologic resources, biologic environments, and for their role in shaping the surface of Earth and other planets. Volcanic eruptions are perhaps the most dramatic events on Earth, and are of intrinsic interest to students, youth, and adults. Topics involving volcanoes are a part of the national science education benchmarks for understanding the Earth's composition and structure for grades 6-8 (the process of creating landforms) and grades 9-12 (the effects of movement of crustal plates). Natural events on Earth coupled with exciting discoveries in space can serve to heighten the awareness of these phenomena and provide learning opportunities for real world applications of science. Educational applications for youth to compare volcanic activity on Io and Earth have been done through NASA-sponsored field trip workshops to places such as Yellowstone National Park (allowing educators to experience environments similar to those on other worlds), targeted classroom and hands-on activities, special interest books, and other resources. A sampling of such activities will be presented, and discussion invited on other related developmentally appropriate resources and activities.

  16. Classifying Volcanic Activity Using an Empirical Decision Making Algorithm

    NASA Astrophysics Data System (ADS)

    Junek, W. N.; Jones, W. L.; Woods, M. T.

    2012-12-01

    Detection and classification of developing volcanic activity is vital to eruption forecasting. Timely information regarding an impending eruption would aid civil authorities in determining the proper response to a developing crisis. In this presentation, volcanic activity is characterized using an event tree classifier and a suite of empirical statistical models derived through logistic regression. Forecasts are reported in terms of the United States Geological Survey (USGS) volcano alert level system. The algorithm employs multidisciplinary data (e.g., seismic, GPS, InSAR) acquired by various volcano monitoring systems and source modeling information to forecast the likelihood that an eruption, with a volcanic explosivity index (VEI) > 1, will occur within a quantitatively constrained area. Logistic models are constructed from a sparse and geographically diverse dataset assembled from a collection of historic volcanic unrest episodes. Bootstrapping techniques are applied to the training data to allow for the estimation of robust logistic model coefficients. Cross validation produced a series of receiver operating characteristic (ROC) curves with areas ranging between 0.78-0.81, which indicates the algorithm has good predictive capabilities. The ROC curves also allowed for the determination of a false positive rate and optimum detection for each stage of the algorithm. Forecasts for historic volcanic unrest episodes in North America and Iceland were computed and are consistent with the actual outcome of the events.

  17. Mud volcanoes: Indicators of stress orientation and tectonic controls

    NASA Astrophysics Data System (ADS)

    Bonini, Marco

    2012-11-01

    This study examines the use of specific mud volcano features (i.e., elongated calderas, aligned vents and elongated volcanoes) as potential indicators of tectonic stress orientation. The stress indicator principles, widely recognised for magmatic systems, have been discussed and applied to mud volcano settings such as in the Northern Apennines and the Azerbaijan Greater Caucasus, as well as in other instances where the analysis was fully based on a remote sensing study. The results of these applications are promising, the obtained maximum horizontal stress (SH) directions generally showing a good correlation with those determined in the upper crust by classical methods (i.e., earthquake focal mechanism solutions, well bore breakouts). Therefore, stress information from mud volcanoes could be used as a proxy for stress orientation (1) where stress data is lacking, (2) where settings are inaccessible (i.e., underwater or the surface of planets), or simply (3) as supplementary stress indicators. This study also pays special attention to structural elements that may control fluid expulsion at various length scales, and pathways that should have spawned the mud volcanoes and controlled their paroxysmal events and eruptions. Different types of sub-planar brittle elements have been found to focus fluid flow rising up-through fold cores, where the vertical zonation of stresses may take part in this process by creating distinctive feeder fracture/fault sets. On a regional scale, mud volcanoes in active fold-and-thrust belts may occur over wider areas, such as the prolific mud volcanism in Azerbaijan, or may cluster along discrete structures like the steep Pede-Apennine thrust in the Northern Apennines, where the generation of overpressures is expected to establish a positive feedback loop allowing for fault movement and mud volcanism.

  18. Explosive Volcanic Activity at Extreme Depths: Evidence from the Charles Darwin Volcanic Field, Cape Verdes

    NASA Astrophysics Data System (ADS)

    Kwasnitschka, T.; Devey, C. W.; Hansteen, T. H.; Freundt, A.; Kutterolf, S.

    2013-12-01

    Volcanic eruptions on the deep sea floor have traditionally been assumed to be non-explosive as the high-pressure environment should greatly inhibit steam-driven explosions. Nevertheless, occasional evidence both from (generally slow-) spreading axes and intraplate seamounts has hinted at explosive activity at large water depths. Here we present evidence from a submarine field of volcanic cones and pit craters called Charles Darwin Volcanic Field located at about 3600 m depth on the lower southwestern slope of the Cape Verdean Island of Santo Antão. We examined two of these submarine volcanic edifices (Tambor and Kolá), each featuring a pit crater of 1 km diameter, using photogrammetric reconstructions derived from ROV-based imaging followed by 3D quantification using a novel remote sensing workflow, aided by sampling. The measured and calculated parameters of physical volcanology derived from the 3D model allow us, for the first time, to make quantitative statements about volcanic processes on the deep seafloor similar to those generated from land-based field observations. Tambor cone, which is 2500 m wide and 250 m high, consists of dense, probably monogenetic medium to coarse-grained volcaniclastic and pyroclastic rocks that are highly fragmented, probably as a result of thermal and viscous granulation upon contact with seawater during several consecutive cycles of activity. Tangential joints in the outcrops indicate subsidence of the crater floor after primary emplacement. Kolá crater, which is 1000 m wide and 160 m deep, appears to have been excavated in the surrounding seafloor and shows stepwise sagging features interpreted as ring fractures on the inner flanks. Lithologically, it is made up of a complicated succession of highly fragmented deposits, including spheroidal juvenile lapilli, likely formed by spray granulation. It resembles a maar-type deposit found on land. The eruption apparently entrained blocks of MORB-type gabbroic country rocks with

  19. Organic geochemical signatures controlling methane outgassing at active mud volcanoes in the Canadian Beaufort Sea

    NASA Astrophysics Data System (ADS)

    DongHun, Lee; YoungKeun, Jin; JungHyun, Kim; Heldge, Niemann; JongKu, Gal; BoHyung, Choi

    2016-04-01

    Based on the water column acoustic anomalies related to active methane (CH4) venting, numerous active Mud Volcanoes (MVs) were recently identified at ~282, ~420, and ~740 m water depths on the continental slope of the Canadian Beaufort Sea (Paull et al., 2015). While geophysical aspects such as the multibeam bathymetric mapping are thoroughly investigated, biogeochemical processes controlling outgassing CH4 at the active MVs are not well constrained. Here, we investigated three sediment cores from the active MVs and one sediment core from a non-methane influenced reference site recovered during the ARA-05C expedition with the R/V ARAON in 2014. We analyzed lipid biomarkers and their stable carbon isotopic values (δ13C) in order to determine key biogeochemical processes involved in CH4 cycling in the MV sediments. Downcore CH4 and sulphate (SO42-) concentration measurements revealed a distinct sulfate-methane transition zone (SMTZ) at the shallow sections of the cores (15 - 45 cm below seafloor (cm bsf) at 282 m MV, 420 m MV, and 740 m MV). The most abundant diagnostic lipid biomarkers in the SMTZ were sn-2-hydroxyarchaeol (-94‰) and archaeol (-66‰) with the sn-2-hydroxyarchaeol: archaeol ratio of 1.1 to 5, indicating the presence of ANME-2 or -3. However, we also found substantial amounts of monocyclic biphytane-1 (BP-1, -118‰), which is rather indicative for ANME-1. Nevertheless, the concentration of sn-2-hydroxyarchaeol was 2-fold higher than any other archaeal lipids, suggesting a predominant ANME-2 or -3 rather than ANME-1 as a driving force for the anaerobic methane oxidation (AOM) in these systems. We will further investigate the microbial community at the active MVs using nucleic acid (RNA and DNA) sequence analyses in near future. Our study provides first biogeochemical data set of the active MVs in the Canadian Beaufort Sea, which helps to better understand CH4 cycling mediated in these systems. Reference Paull, C.K., et al. (2015), Active mud

  20. Multidimensional analysis and probabilistic model of volcanic and seismic activities

    NASA Astrophysics Data System (ADS)

    Fedorov, V.

    2009-04-01

    A search for space and time regularities in volcanic and seismic events for the purpose of forecast method development seems to be of current concern, both scientifically and practically. The seismic and volcanic processes take place in the Earth's field of gravity which in turn is closely related to gravitational fields of the Moon, the Sun, and the planets of the Solar System. It is mostly gravity and tidal forces that exercise control over the Earth's configuration and relief. Dynamic gravitational interaction between the Earth and other celestial bodies makes itself evident in tidal phenomena and other effects in the geospheres (including the Earth's crust). Dynamics of the tidal and attractive forces is responsible for periodical changes in gravity force, both in value and direction [Darwin, 1965], in the rate of rotation and orbital speed; that implies related changes in the endogenic activity of the Earth. The Earth's rotation in the alternating gravitational field accounts to a considerable extent for regular pattern of crustal deformations and dislocations; it is among principal factors that control the Earth's form and structure, distribution of oceans and continents and, probably, continental drift [Peive, 1969; Khain, 1973; Kosygin, 1983]. The energy of gravitational interaction is transmitted through the tidal energy to planetary spheres and feeds various processes there, including volcanic and seismic ones. To determine degree, character and special features of tidal force contribution to the volcanic and seismic processes is of primary importance for understanding of genetic and dynamic aspects of volcanism and seismicity. Both volcanic and seismic processes are involved in evolution of celestial bodies; they are operative on the planets of the Earth group and many satellites [Essays…, 1981; Lukashov, 1996]. From this standpoint, studies of those processes are essential with a view to development of scenarios of the Earth's evolution as a celestial

  1. Frequency Based Volcanic Activity Detection through Remotely Sensed Data

    NASA Astrophysics Data System (ADS)

    Worden, A. K.; Dehn, J.; Webley, P. W.

    2015-12-01

    Satellite remote sensing has proved to offer a useful and relatively inexpensive method for monitoring large areas where field work is logistically unrealistic, and potentially dangerous. Current sensors are able to detect the majority of explosive volcanic activity; those that tend to effect and represent larger scale changes in the volcanic systems, eventually relating to ash producing periods of extended eruptive activity, and effusive activity. As new spaceborne sensors are developed, the ability to detect activity improves so that a system to gauge the frequency of volcanic activity can be used as a useful monitoring tool. Four volcanoes were chosen for development and testing of a method to monitor explosive activity: Stromboli (Italy); Shishaldin and Cleveland (Alaska, USA); and Karymsky (Kamchatka, Russia). Each volcano studied had similar but unique signatures of pre-cursory and eruptive activity. This study has shown that this monitoring tool could be applied to a wide range of volcanoes and still produce useful and robust data. Our method deals specifically with the detection of small scale explosive activity. The method described here could be useful in an operational setting, especially at remote volcanoes that have the potential to impact populations, infrastructure, and the aviation community. A number of important factors will affect the validity of application of this method. They are: (1) the availability of a continuous and continually populated dataset; (2) appropriate and reasonable sensor resolutions; (3) a recorded history of the volcano's previous activity; and, if available, (4) some ground-based monitoring system. We aim to develop the method further to be able to capture and evaluate the frequency of other volcanic processes such as lava flows, phreatomagmatic eruptions and dome growth and collapse. The work shown here has served to illustrate the capability of this method and monitoring tool for use at remote, un-instrumented volcanoes.

  2. Detection from Space of Active Volcanism on Earth and, Potentially, on Venus and Rocky Exoplanets

    NASA Astrophysics Data System (ADS)

    Mouginis-Mark, P. J.

    2015-05-01

    Volcanic eruptions (lava flows, lava lakes, and explosive activity) on Earth have been monitored from space for >3 decades. Such observations are extrapolated to understand how volcanic activity on Venus and rocky exoplanets may be detected.

  3. Glass shards, pumice fragments and volcanic aerosol particles - diagenesis a recorder of volcanic activity?

    NASA Astrophysics Data System (ADS)

    Obenholzner, J. H.; Schroettner, H.; Poelt, P.; Delgado, H.

    2003-04-01

    Detailed SEM/EDS studies of Triassic (Southern Alps, A, I, Sl) and Miocene (Mixteca Alta, Mexico) tuffs revealed that volcanic glass shards can be replaced by zeolites (analcite), chlorites and smectites preserving the shape of primary shards (1). The Triassic pyroclastic deposits have been incorporated in the pre-Alpine burial diagenesis, the Miocene pyroclastic deposits are bentonites. The volcanologist is impressed by the circumstances that million years old pyroclast relict textures can be sized. Shape parameters obtained by image analysis can be compared with much younger pyroclastic deposits (2). Both deposits have not been effected by shearing. The alteration of pumice fragments of Triassic age is not a simple replacement process. Intergrowth of different illites and chlorites and probably vesicle filling by SiO2 and subsequent overgrowth make a reconstruction sometimes difficult. These processes are accompanied by the formation of REE-, Y- and Zr-bearing minerals as well as with the alteration of zircons. Studies of recently erupted ash from Popocatepetl volcano reveal the presence of a variety of µm-sized contact-metamorphosed clasts being a part of the volcanic ash (3). Such clasts should be present in many older pyroclastic deposits, especially where volcanoes had been situated on massive sedimentary units providing contact metamorphism in the realm of a magma chamber or during magma ascent. Volcanic aerosol particles collected in 1997 from the passively degassing plume of Popocatepetl volcano revealed in FESEM/EDS analysis (H. Schroettner and P. Poelt) a wide spectrum of fluffy, spherical and coagulated spherical particles (µm-sized). Under pre-vacuum conditions they remained stable for ca. 3 years (3). In nature the fate of these particles in the atmosphere is unknown. Are there relicts in marine, lacustrine sediments and ice cores, which could be used as proxies of volcanic activity? (1) Obenholzner &Heiken,1999. Ann.Naturhist.Mus.Wien, 100 A, 13

  4. Active Volcanism on Io as Seen by Galileo SSI

    USGS Publications Warehouse

    McEwen, A.S.; Keszthelyi, L.; Geissler, P.; Simonelli, D.P.; Carr, M.H.; Johnson, T.V.; Klaasen, K.P.; Breneman, H.H.; Jones, T.J.; Kaufman, J.M.; Magee, K.P.; Senske, D.A.; Belton, M.J.S.; Schubert, G.

    1998-01-01

    Active volcanism on Io has been monitored during the nominal Galileo satellite tour from mid 1996 through late 1997. The Solid State Imaging (SSI) experiment was able to observe many manifestations of this active volcanism, including (1) changes in the color and albedo of the surface, (2) active airborne plumes, and (3) glowing vents seen in eclipse. About 30 large-scale (tens of kilometers) surface changes are obvious from comparison of the SSI images to those acquired by Voyager in 1979. These include new pyroclastic deposits of several colors, bright and dark flows, and caldera-floor materials. There have also been significant surface changes on Io during the Galileo mission itself, such as a new 400-km-diameter dark pyroclastic deposit around Pillan Patera. While these surface changes are impressive, the number of large-scale changes observed in the four months between the Voyager 1 and Voyager 2 flybys in 1979 suggested that over 17 years the cumulative changes would have been much more impressive. There are two reasons why this was not actually the case. First, it appears that the most widespread plume deposits are ephemeral and seem to disappear within a few years. Second, it appears that a large fraction of the volcanic activity is confined to repeated resurfacing of dark calderas and flow fields that cover only a few percent of Io's surface. The plume monitoring has revealed 10 active plumes, comparable to the 9 plumes observed by Voyager. One of these plumes was visible only in the first orbit and three became active in the later orbits. Only the Prometheus plume has been consistently active and easy to detect. Observations of the Pele plume have been particularly intriguing since it was detected only once by SSI, despite repeated attempts, but has been detected several times by the Hubble Space Telescope at 255 nm. Pele's plume is much taller (460 km) than during Voyager 1 (300 km) and much fainter at visible wavelengths. Prometheus-type plumes (50

  5. Active Volcanism on Io as Seen by Galileo SSI

    NASA Astrophysics Data System (ADS)

    McEwen, Alfred S.; Keszthelyi, Laszlo; Geissler, Paul; Simonelli, Damon P.; Carr, Michael H.; Johnson, Torrence V.; Klaasen, Kenneth P.; Breneman, H. Herbert; Jones, Todd J.; Kaufman, James M.; Magee, Kari P.; Senske, David A.; Belton, Michael J. S.; Schubert, Gerald

    1998-09-01

    Active volcanism on Io has been monitored during the nominal Galileo satellite tour from mid 1996 through late 1997. The Solid State Imaging (SSI) experiment was able to observe many manifestations of this active volcanism, including (1) changes in the color and albedo of the surface, (2) active airborne plumes, and (3) glowing vents seen in eclipse. About 30 large-scale (tens of kilometers) surface changes are obvious from comparison of the SSI images to those acquired by Voyager in 1979. These include new pyroclastic deposits of several colors, bright and dark flows, and caldera-floor materials. There have also been significant surface changes on Io during the Galileo mission itself, such as a new 400-km-diameter dark pyroclastic deposit around Pillan Patera. While these surface changes are impressive, the number of large-scale changes observed in the four months between the Voyager 1 and Voyager 2 flybys in 1979 suggested that over 17 years the cumulative changes would have been much more impressive. There are two reasons why this was not actually the case. First, it appears that the most widespread plume deposits are ephemeral and seem to disappear within a few years. Second, it appears that a large fraction of the volcanic activity is confined to repeated resurfacing of dark calderas and flow fields that cover only a few percent of Io's surface. The plume monitoring has revealed 10 active plumes, comparable to the 9 plumes observed by Voyager. One of these plumes was visible only in the first orbit and three became active in the later orbits. Only the Prometheus plume has been consistently active and easy to detect. Observations of the Pele plume have been particularly intriguing since it was detected only once by SSI, despite repeated attempts, but has been detected several times by the Hubble Space Telescope at 255 nm. Pele's plume is much taller (460 km) than during Voyager 1 (300 km) and much fainter at visible wavelengths. Prometheus-type plumes (50

  6. Mud Volcanoes as Exploration Targets on Mars

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Oehler, Dorothy Z.

    2010-01-01

    Tens of thousands of high-albedo mounds occur across the southern part of the Acidalia impact basin on Mars. These structures have geologic, physical, mineralogic, and morphologic characteristics consistent with an origin from a sedimentary process similar to terrestrial mud volcanism. The potential for mud volcanism in the Northern Plains of Mars has been recognized for some time, with candidate mud volcanoes reported from Utopia, Isidis, northern Borealis, Scandia, and the Chryse-Acidalia region. We have proposed that the profusion of mounds in Acidalia is a consequence of this basin's unique geologic setting as the depocenter for the tune fraction of sediments delivered by the outflow channels from the highlands.

  7. Sensor web enables rapid response to volcanic activity

    USGS Publications Warehouse

    Davies, Ashley G.; Chien, Steve; Wright, Robert; Miklius, Asta; Kyle, Philip R.; Welsh, Matt; Johnson, Jeffrey B.; Tran, Daniel; Schaffer, Steven R.; Sherwood, Robert

    2006-01-01

    Rapid response to the onset of volcanic activity allows for the early assessment of hazard and risk [Tilling, 1989]. Data from remote volcanoes and volcanoes in countries with poor communication infrastructure can only be obtained via remote sensing [Harris et al., 2000]. By linking notifications of activity from ground-based and spacebased systems, these volcanoes can be monitored when they erupt.Over the last 18 months, NASA's Jet Propulsion Laboratory (JPL) has implemented a Volcano Sensor Web (VSW) in which data from ground-based and space-based sensors that detect current volcanic activity are used to automatically trigger the NASA Earth Observing 1 (EO-1) spacecraft to make highspatial-resolution observations of these volcanoes.

  8. Volcanic Activities of Hakkoda Volcano after the 2011 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.; Miura, S.

    2014-12-01

    The 2011 Tohoku Earthquake of 11 March 2011 generated large deformation in and around the Japanese islands, and the large crustal deformation raises fear of further disasters including triggered volcanic activities. In this presentation, as an example of such potential triggered volcanic activities, we report the recent seismic activities of Hakkoda volcano, and discuss the relation to the movement of volcanic fluids. Hakkoda volcano is a group of stratovolcanoes at the northern end of Honshu Island, Japan. There are fumaroles and hot springs around the volcano, and phreatic eruptions from Jigoku-numa on the southwestern flank of Odake volcano, which is the highest peak of the volcanic group, were documented in its history. Since just after the occurrence of the Tohokui Earthquake, the seismicity around the volcano became higher, and the migration of hypocenters of volcano-tectonic (VT) earthquakes was observed.In addition to these VT earthquakes, long-period (LP) events started occurring beneath Odake at a depth of about 2-3 km since February, 2013, and subtle crustal deformation caused by deep inflation source was also detected by the GEONET GNSS network around the same time. The spectra of LP events are common between events irrespective of the magnitude of events, and they have several spectral peaks at 6-7 sec, 2-3 sec, 1 sec, and so on. These LP events sometimes occur like a swarm with an interval of several minutes. The characteristics of observed LP events at Hakkoda volcano are similar to those of LP events at other active volcanoes and hydrothermal area in the world, where abundant fluids exist. Our further analysis using far-field Rayleigh radiation pattern observed by NIED Hi-net stations reveals that the source of LP events is most likely to be a nearly vertical tensile crack whose strike is NE-SW direction. The strike is almost perpendicular to the direction of maximum extensional strain estimated from the geodetic analysis, and is almost parallel to

  9. Multidimensional analysis and probabilistic model of volcanic and seismic activities

    NASA Astrophysics Data System (ADS)

    Fedorov, V.

    2009-04-01

    A search for space and time regularities in volcanic and seismic events for the purpose of forecast method development seems to be of current concern, both scientifically and practically. The seismic and volcanic processes take place in the Earth's field of gravity which in turn is closely related to gravitational fields of the Moon, the Sun, and the planets of the Solar System. It is mostly gravity and tidal forces that exercise control over the Earth's configuration and relief. Dynamic gravitational interaction between the Earth and other celestial bodies makes itself evident in tidal phenomena and other effects in the geospheres (including the Earth's crust). Dynamics of the tidal and attractive forces is responsible for periodical changes in gravity force, both in value and direction [Darwin, 1965], in the rate of rotation and orbital speed; that implies related changes in the endogenic activity of the Earth. The Earth's rotation in the alternating gravitational field accounts to a considerable extent for regular pattern of crustal deformations and dislocations; it is among principal factors that control the Earth's form and structure, distribution of oceans and continents and, probably, continental drift [Peive, 1969; Khain, 1973; Kosygin, 1983]. The energy of gravitational interaction is transmitted through the tidal energy to planetary spheres and feeds various processes there, including volcanic and seismic ones. To determine degree, character and special features of tidal force contribution to the volcanic and seismic processes is of primary importance for understanding of genetic and dynamic aspects of volcanism and seismicity. Both volcanic and seismic processes are involved in evolution of celestial bodies; they are operative on the planets of the Earth group and many satellites [Essays…, 1981; Lukashov, 1996]. From this standpoint, studies of those processes are essential with a view to development of scenarios of the Earth's evolution as a celestial

  10. Utilization of activated CO2-neutralized red mud for removal of arsenate from aqueous solutions.

    PubMed

    Sahu, Ramesh Chandra; Patel, Rajkishore; Ray, Bankim Chandra

    2010-07-15

    A laboratory study was conducted to investigate the ability of activated CO(2)-neutralized red mud (ANRM) for the removal of arsenate from the aqueous solutions. The batch adsorption experiments were conducted with respect to adsorbent dose, equilibrium pH, contact time, initial arsenate concentration, kinetics, Langmuir isotherms. The mechanisms involved in adsorption of arsenate ions on ANRM were characterized by using XRD, FT-IR, UV-vis, SEM/EDX, and chemical methods. The percentage removal was found to increase gradually with decrease of pH and maximum removal was achieved at pH approximately 4. Adsorption kinetic studies revealed that the adsorption process followed pseudo-second-order kinetics and equilibrates within 24 h. FT-IR spectra of ANRM before and after adsorption reveals the binding of arsenate to the adsorbent. The adsorption data were fitted to linearly transformed Langmuir isotherm with R(2) (correlation coefficient)>0.99. Arsenate adsorbed ANRM can be regenerated using NaOH solution at pH 12.0.

  11. Active Volcanic and Hydrothermal Processes at NW Rota-1 Submarine Volcano: Mariana Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Baker, E. T.; Butterfield, D. A.; Chadwick, W. W.; de Ronde, C.; Dower, J.; Evans, L.; Hein, J.; Juniper, K.; Lebon, G.; Lupton, J. E.; Merle, S.; Metaxas, A.; Nakamura, K.; Resing, J. E.; Roe, K.; Stern, R.; Tunnicliffe, V.

    2004-12-01

    Dives with the remotely operated vehicle ROPOS in March/April 2004 documented a volcanic eruption at NW Rota-1, a submarine volcano of basaltic composition located at 14\\deg 36.0'N, 144\\deg 46.5'E lying 65 km northwest of Rota Island in the Commonwealth of the Northern Mariana Islands. The site was chosen as a dive target because of the of the high concentrations of H2S and alunite in the hydrothermal plume overlying its summit in February 2003. The summit of the volcano is composed of curvilinear volcanic ridge oriented NW-SE bounded by NE-SW trending normal faults. Lavas collected on the upper part of the edifice are primitive to moderately fractionated basalts (Mg# = 51-66). The eruptive activity is occurring within a small crater (Brimstone Pit) located on the upper south flank of the volcano at 550 m, about 30 m below the summit. The crater is approximately 15 m wide and at least 20 meters deep. The ROPOS's cameras observed billowing clouds of sulfur-rich fluid rising out of the crater, punctuated by frequent bursts of several minutes duration that entrained glassy volcanic ejecta up to at least 2 cm in diameter. ROPOS recorded a temperature of 38\\degC within the plume. The volcanic activity had substantial temporal variability on the scale of minutes. ROPOS was sometimes completely enveloped by the plume while on the rim of the crater, and its surfaces were coated with large sulfur droplets. Black glassy fragments were entrained in the plume up to least 50 m above the crater and deposits of this material were on ledges and tops of outcrops up to several hundred meters from Brimstone Pit. The pit crater fluids have an extremely high content of particulate sulfur and extremely acidic, with pH around 2.0. This strongly implicates magmatic degassing of SO2 and disproportionation into elemental S and sulfuric acid. Diffuse venting of clear fluids was also present on the summit of the volcano, with temperatures exceeding 100\\degC in volcaniclastic sands

  12. Active sulfur cycling by diverse mesophilic and thermophilic microorganisms in terrestrial mud volcanoes of Azerbaijan.

    PubMed

    Green-Saxena, A; Feyzullayev, A; Hubert, C R J; Kallmeyer, J; Krueger, M; Sauer, P; Schulz, H-M; Orphan, V J

    2012-12-01

    Terrestrial mud volcanoes (TMVs) represent geochemically diverse habitats with varying sulfur sources and yet sulfur cycling in these environments remains largely unexplored. Here we characterized the sulfur-metabolizing microorganisms and activity in four TMVs in Azerbaijan. A combination of geochemical analyses, biological rate measurements and molecular diversity surveys (targeting metabolic genes aprA and dsrA and SSU ribosomal RNA) supported the presence of active sulfur-oxidizing and sulfate-reducing guilds in all four TMVs across a range of physiochemical conditions, with diversity of these guilds being unique to each TMV. The TMVs varied in potential sulfate reduction rates (SRR) by up to four orders of magnitude with highest SRR observed in sediments where in situ sulfate concentrations were highest. Maximum temperatures at which SRR were measured was 60°C in two TMVs. Corresponding with these trends in SRR, members of the potentially thermophilic, spore-forming, Desulfotomaculum were detected in these TMVs by targeted 16S rRNA analysis. Additional sulfate-reducing bacterial lineages included members of the Desulfobacteraceae and Desulfobulbaceae detected by aprA and dsrA analyses and likely contributing to the mesophilic SRR measured. Phylotypes affiliated with sulfide-oxidizing Gamma- and Betaproteobacteria were abundant in aprA libraries from low sulfate TMVs, while the highest sulfate TMV harboured 16S rRNA phylotypes associated with sulfur-oxidizing Epsilonproteobacteria. Altogether, the biogeochemical and microbiological data indicate these unique terrestrial habitats support diverse active sulfur-cycling microorganisms reflecting the in situ geochemical environment.

  13. Active sulfur cycling by diverse mesophilic and thermophilic microorganisms in terrestrial mud volcanoes of Azerbaijan.

    PubMed

    Green-Saxena, A; Feyzullayev, A; Hubert, C R J; Kallmeyer, J; Krueger, M; Sauer, P; Schulz, H-M; Orphan, V J

    2012-12-01

    Terrestrial mud volcanoes (TMVs) represent geochemically diverse habitats with varying sulfur sources and yet sulfur cycling in these environments remains largely unexplored. Here we characterized the sulfur-metabolizing microorganisms and activity in four TMVs in Azerbaijan. A combination of geochemical analyses, biological rate measurements and molecular diversity surveys (targeting metabolic genes aprA and dsrA and SSU ribosomal RNA) supported the presence of active sulfur-oxidizing and sulfate-reducing guilds in all four TMVs across a range of physiochemical conditions, with diversity of these guilds being unique to each TMV. The TMVs varied in potential sulfate reduction rates (SRR) by up to four orders of magnitude with highest SRR observed in sediments where in situ sulfate concentrations were highest. Maximum temperatures at which SRR were measured was 60°C in two TMVs. Corresponding with these trends in SRR, members of the potentially thermophilic, spore-forming, Desulfotomaculum were detected in these TMVs by targeted 16S rRNA analysis. Additional sulfate-reducing bacterial lineages included members of the Desulfobacteraceae and Desulfobulbaceae detected by aprA and dsrA analyses and likely contributing to the mesophilic SRR measured. Phylotypes affiliated with sulfide-oxidizing Gamma- and Betaproteobacteria were abundant in aprA libraries from low sulfate TMVs, while the highest sulfate TMV harboured 16S rRNA phylotypes associated with sulfur-oxidizing Epsilonproteobacteria. Altogether, the biogeochemical and microbiological data indicate these unique terrestrial habitats support diverse active sulfur-cycling microorganisms reflecting the in situ geochemical environment. PMID:23116231

  14. Characterization of the circulating hemocytes in mud crab (Scylla olivacea) revealed phenoloxidase activity.

    PubMed

    Mangkalanan, Seksan; Sanguanrat, Piyachat; Utairangsri, Tanatchaporn; Sritunyalucksana, Kallaya; Krittanai, Chartchai

    2014-05-01

    This study focused on an isolation and characterization of the circulating hemocytes in mud crab, Scylla olivacea. Isolation of specific cell types of hemocytes from crab hemolymph was accomplished by using 60% Percoll density gradient centrifugation. Four separated bands of the hemocytes were successfully obtained. Characterization of these isolated hemocytes by light microscope using trypan blue-rose bengal staining, rose bengal-hematoxilin staining, and phase contrast revealed four distinct types of hemocyte cells. Using their specific morphology and granularity, they were identified as hyaline cell (HC), small granular cell (SGC), large granular cell (LGC) and mixed granular cell (MGC). Transmission electron microscopy (TEM) revealed more details on specific cell size, size of cytoplasmic granule, and nuclear to cytoplasmic ratio, and confirmed the classification. Relative abundance of these cells types in the hemolymph of an adult crab were 15.50±8.22% for HC, 55.50±7.15% for SGC, 13.50±5.28% for LGC, and 15.50±3.50% for MGC. Proteomic analysis of protein expression for each specific cell types by two-dimensional electrophoresis identified two highly abundant proteins, prophenoloxidase (ProPO) and peroxinectin in LGC. Determination of phenoloxidase (PO) activity in each isolated cell types using in vitro and in situ chemical assays confirmed the presence of PO activity only in LGC. Based on an increased PO activity of crab hemolymph during the course of White Spot Syndrome Virus (WSSV) infection, these results suggest that prophenoloxidase pathway was employed for host defense mechanism against WSSV and it may link to the role of large granular hemocyte.

  15. 3D Subsoil Model of the San Biagio `Salinelle' Mud Volcanoes (Belpasso, Sicily) derived from Geophysical Surveys

    NASA Astrophysics Data System (ADS)

    Imposa, S.; Grassi, S.; De Guidi, G.; Battaglia, F.; Lanaia, G.; Scudero, S.

    2016-07-01

    Mud volcanoes are common in active mountain fronts. At Mt. Etna, located just between the Apennine front in Sicily and its foredeep, there are some manifestations of mud volcanism in the lower border of the volcanic edifice. The activity of these mud volcanoes is characterized by persistent emission of muddy water mixed with salts, which rises to the surface due to the gas pressure in the subsoil. The San Biagio Salinelle is one of the three mud volcano fields located around the Paternò eruptive monogenic apparatus; this old volcanic structure was one of the first subaerial volcanic manifestations that formed in the pre-Etnean phase. It is not fully clear whether and how the activity of the mud fields is connected with the volcanic activity of Mt. Etna. Noninvasive geophysical surveys were carried out in the area of the active cone of the San Biagio Salinelle, in order to identify the probable ascent path of the emitted products. Seismic ambient noise records were collected at the nodes of a specially designed grid and, subsequently, the V s values were obtained from an active seismic survey. A digital elevation model (DEM) of the area was obtained by a topographic survey, carried out with the GNSS technique (global navigation satellite system), in real-time kinematic mode. The DEM and the topographic benchmark installed will represent the reference surface for future periodic monitoring of the ongoing deformation in the area. Our results provide an accurate and detailed 3D subsurface model showing the shallower feeding system of the investigated mud volcano.

  16. Mud Volcanoes Formation And Occurrence

    NASA Astrophysics Data System (ADS)

    Guliyev, I. S.

    2007-12-01

    Mud volcanoes are natural phenomena, which occur throughout the globe. They are found at a greater or lesser scale in Azerbaijan, Turkmenistan, Georgia, on the Kerch and Taman peninsulas, on Sakhalin Island, in West Kuban, Italy, Romania, Iran, Pakistan, India, Burma, China, Japan, Indonesia, Malaysia, New Zealand, Mexico, Colombia, Trinidad and Tobago, Venezuela and Ecuador. Mud volcanoes are most well-developed in Eastern Azerbaijan, where more than 30% of all the volcanoes in the world are concentrated. More than 300 mud volcanoes have already been recognized here onshore or offshore, 220 of which lie within an area of 16,000 km2. Many of these mud volcanoes are particularly large (up to 400 m high). The volcanoes of the South Caspian form permanent or temporary islands, and numerous submarine banks. Many hypotheses have been developed regarding the origin of mud volcanoes. Some of those hypotheses will be examined in the present paper. Model of spontaneous excitation-decompaction (proposed by Ivanov and Guliev, 1988, 2002). It is supposed that one of major factors of the movement of sedimentary masses and formation of hydrocarbon deposits are phase transitions in sedimentary basin. At phase transitions there are abnormal changes of physical and chemical parameters of rocks. Abnormal (high and negative) pressure takes place. This process is called as excitation of the underground environment with periodicity from several tens to several hundreds, or thousand years. The relationship between mud volcanism and the generation of hydrocarbons, particularly methane, is considered to be a critical factor in mud volcano formation. At high flow rates the gas and sediment develops into a pseudo-liquid state and as flow increases the mass reaches the "so-called hover velocity" where mass transport begins. The mass of fluid moves as a quasi-uniform viscous mass through the sediment pile in a piston like manner until expelled from the surface as a "catastrophic eruption

  17. Marvelous Mud

    ERIC Educational Resources Information Center

    Keeler, Rusty

    2011-01-01

    The author visited the Open Spaces Preschool in Whangarei, New Zealand and was surprised to see the most amazing natural preschool play. There were six preschoolers stripped down to tee shirts and underpants slipping, slopping, and sliding in the dirt spot which had now become the most lovely, silky-smooth deep-brown mud ever. Studies have…

  18. Discovery of an Active Submarine Mud Volcano Along the Nootka Fault West of Vancouver Island

    NASA Astrophysics Data System (ADS)

    Riedel, M.; Riedel, M.; Kelly, D. S.; Delaney, J. R.; Spence, G. D.; Hyndman, R. D.; Hyndman, R. D.; Mayer, L.; Calder, B.; Lilley, M. D.; Olson, E. O.; Schrenk, M. O.; Coffin, R.

    2001-12-01

    Submarine mud volcanoes are a common feature in margin environments, but few of them have been documented in the Northeast Pacific. However, during a Hydrosweep bathymetric survey in July, 2001, and a follow-on sub-surface seismic survey in August two mud volcanoes were imaged along the Nootka Fault, 16-18 km west of Vancouver Island at a water depth of 2500 m. The southern volcano, called Maquinna, lies directly along the southern expression of the left lateral, strike slip Nootka Fault. It is 1.5 km across, has a breached caldera and two small summit craters, and it stands about 30 m above the seafloor. The base is bounded by a narrow moat, partially filled by Holocene sediments that are flat lying; older, underlying sediments show steep downwarping towards the sides of the volcano. Subsurface imaging shows a dramatic loss of reflectivity beneath the volcano mound, which may indicate significant mobilization of material. However, a very bright reflector is seen at about 400 m depth below the volcano. This reflector is too deep for stability of methane clathrate, and is interpreted as a zone of high fluid content. A CTD vertical cast above the summit of the volcano showed strong, co-registered thermal, particulate, and oxygen anomalies that extend 50 m up into the overlying water column. These data indicate that the volcano is actively venting warm hydrothermal fluids. The fluids are depleted in CO2, contain background concentrations of CH4, but show elevated H2 concentrations above ocean background water. Microscopic examination of the Nootka hydrothermal samples shows that they contain dense and morphologically diverse microbial communities in comparison to background seawater with cell densities of 106 cells/ml. Enrichment culturing indicates that these communities include both anaerobic and aerobic organisms, some of which are thermophilic with optimal growth temperatures in excess of 50 deg C. Some of these cultures can use methane oxidation as an energy

  19. CHARACTERIZATION OF MUD/DIRT CARRYOUT ONTO PAVED ROADS FROM CONSTRUCTION AND DEMOLITION ACTIVITIES

    EPA Science Inventory

    The report characterizes fugitive dust generated by vehicular traffic on paved streets and highways resulting from mud/dirt carryout from unpaved areas as a primary source of PM-10 (particles = or < 10 micrometers in aerodynamic diameter), and evaluates three technologies for eff...

  20. Jovian dust streams: A monitor of Io's volcanic plume activity

    USGS Publications Warehouse

    Kruger, H.; Geissler, P.; Horanyi, M.; Graps, A.L.; Kempf, S.; Srama, R.; Moragas-Klostermeyer, G.; Moissl, R.; Johnson, T.V.; Grun, E.

    2003-01-01

    Streams of high speed dust particles originate from Jupiter's moon Io. After release from Io, the particles collect electric charges in the Io plasma torus, gain energy from the co-rotating electric field of Jupiter's magnetosphere, and leave the Jovian system into interplanetary space with escape speeds over 200 km s-1. The Galileo spacecraft has continuously monitored the dust streams during 34 revolutions about Jupiter between 1996 and 2002. The observed dust fluxes exhibit large orbit-to-orbit variability due to systematic and stochastic changes. After removal of the systematic variations, the total dust emission rate of Io has been calculated. It varies between 10-3 and 10 kg s-1, and is typically in the range of 0.1 to 1 kg s-1. We compare the dust emission rate with other markers of volcanic activity on Io like large-area surface changes caused by volcanic deposits and sightings of volcanic plumes. Copyright 2003 by the American Geophysical Union.

  1. Volcanic activity within the Vestmannaeyjar archipelago, south of Iceland

    NASA Astrophysics Data System (ADS)

    Hoskuldsson, A.; Kjartansson, E.; Hey, R.; Driscoll, N.

    2006-12-01

    Bathymetric research with multibeam techniques and chirp profiles reveal the volcanic topography of the Vestmannaeyjar archipelago just off the south coast of Iceland. Within the archipelago two historic eruptions have occurred, Surtsey 1963-1967 and the one of Heimaey in 1973. Five other eruptive vents have been identified as Holocene, Storhöfdi ~8000 BP, Sæfell ~6220 BP, Helgafell ~5900 BP and the islands Bjarnarey and Ellirey ~4500 BP. High precision multibeam data reveal several other eruptive vents and their geometry in the area. From the geometry it can be concluded that prehistoric volcanic activity in the area is dominated by phreatomagmatic activity. Tuff cones up to 2 km in diameter are observed in the area of Heimaey. Eustatic sea level changes can be inferred from these volcanic formations (Rofubodi vent) , indicating that a rise of up to 80 m has occurred since late Pleistocene times (~12000 years BP). Further our data show that sea level rise occurred in steps, as is manifested by the Alsey reef, now submerged and extending north of that island. The data also allow us to identify four major submarine lava flows in the area. One from the Eldfell eruption in 1973, one from the Helgafell eruption 5900 BP, one from the Storhofdi eruption ~8000BP and finally a lava flow that is extending from Faxasker towards the north west. The Vestmannaeyjar archipelago is forming a ridge extending NE to SW. The ridge is about 5 km wide and 30 km long. The ridge rises from a depth of some 72 m in the west but falls off to about 130 m in the east. The eastern border is more prominent than the western one. The Vestmannaeyjar ridge ends abruptly in the north, just prior to reaching the main outwash delta from the main island Iceland. A narrow trough has been formed in the area, Allinn, as the outwash delta propagates towards the ridge. Our data also allow for interpretation on relative timing of the volcanic formations. It has been shown that the LGM ice sheet extended to

  2. The search for active release of volcanic gases on Mars

    NASA Astrophysics Data System (ADS)

    Khayat, Alain; Villanueva, Geronimo; Mumma, Michael; Tokunaga, Alan

    2015-11-01

    The study of planetary atmospheres by means of spectroscopy is important for understanding their origin and evolution. The presence of short-lived trace gases in the martian atmosphere would imply recent production, for example, by ongoing geologic activity. On Earth, sulfur dioxide (SO2), sulfur monoxide (SO) and hydrogen sulfide (H2S) are the main sulfur-bearing gases released during volcanic outgassing. Carbonyl sulfide (OCS), also released from some volcanoes on Earth (e.g., Erebus and Nyiragongo), could be formed by reactions involving SO2 or H2S inside magma chambers. We carried out the first ground-based, semi-simultaneous, multi-band and multi-species search for such gases above the Tharsis and Syrtis volcanic regions on Mars. The submillimeter search extended between 23 November 2011 and 13 May 2012 which corresponded to Mars’ mid Northern Spring and early Northern Summer seasons (Ls = 34-110°). The strong submillimeter rotational transitions of SO2, SO and H2S were targeted using the high-resolution heterodyne receiver (aka Barney) on the Caltech Submillimeter Observatory. We reached sensitivities sufficient to detect a volcanic release on Mars that is 4% of the SO2 released continuously from Kilauea volcano in Hawaii, or 5% that of the Masaya volcano in Nicaragua. The infrared search covered OCS in its combination band (ν2+ν3) at 3.42 μm at two successive Mars years, during Mars’ late Northern Spring and mid Northern Summer seasons, spanning Ls= 43º and Ls= 147º. The targeted volcanic districts were observed during the two intervals, 14 Dec. 2011 to 6 Jan. 2012 in the first year, and 30 May 2014 to 16 June 2014 in the second year, using the high resolution infrared spectrometer (CSHELL) on NASA’s Infrared Telescope Facility (NASA/IRTF). We will present our results and discuss their implications for current volcanic outgassing activity on the red planet. We gratefully acknowledge support from the NASA Planetary Astronomy Program under NASA

  3. Thyroid cancer incidence in relation to volcanic activity

    SciTech Connect

    Arnbjoernsson, E.A.; Arnbjoernsson, A.O.; Olafsson, A.

    1986-01-01

    Environmental or genetic factors are sought to explain the high incidence of thyroid cancer in Iceland. At present, it is impossible to cite any environmental factor, particularly one related to the volcanic activity in the country, which could explain the high incidence of thyroid cancer in Iceland. However, the thyroid gland in Icelanders is very small due to the high intake of iodine from seafood. It is, therefore, easier for physicians to find thyroid tumors. Furthermore, genetic factors are very likely to be of great importance in the small, isolated island of Iceland.

  4. Episodic Deep Fluid Expulsion at Mud Volcanoes in the Kumano Forearc Basin, SE Offshore Japan

    NASA Astrophysics Data System (ADS)

    Hammerschmidt, S.; Kopf, A.

    2014-12-01

    from a reservoir within the older part of the accretionary prism, but that mud volcanic activity is less frequent than major earthquakes. Future models will focus on source depth and temperature, and might elucidate the prerequisites for fluid migration and its role in seismogenesis at the Nankai Trough subduction zone.

  5. Boron geochemistry of mud volcano products and their significance for global B cycling

    NASA Astrophysics Data System (ADS)

    Deyhle, A.; Kopf, A.

    2003-04-01

    Mud volcanism is a global phenomenon in mostly convergent margin settings, whose nature has long been subject to scientific investigation. However, only recently its significance has been unravelled by quantitative studies in well-investigated submarine environments, like large accretionary complexes. The fluid flux through active mud volcanoes has been estimated to exceed that of the frontal accretionary prism (Kopf et al. 2001, EPSL 189), and may have done so in earlier earth history. We report results from a systematic B geochemical study of pore fluids, muds and clasts of onshore and offshore mud volcanoes all over the world (Kopf and Deyhle, 2002, Chem. Geol., 192). When tied into results from hydrothermal geochemical experiments in the laboratory (You et al. 1996, EPSL 140), the B geochemistry proofs to be a powerful tracer to estimate the depth of fluid and mud mobilization below ground. Boron adsorbed to clay minerals is preferably donated to the fluid when either tectonic stress (vertical and/or lateral compaction) or temperature increase. Here, we report variations in B content and B isotopes in mud volcano deposits as a result of different history of the material prior to extrusion. Results reflect the regional geology of the study areas, ranging from dewatering of undercompacted marine sediments in accretionary prisms (Barbados, Makran, Mediterranean Sea) to diagenetic reactions in mud volcanoes of orogenic belts (Malaysia, Pakistan, Georgia, Taman Peninsula, Western Alps). Boron shows maximum enrichment in the fluid phase (owing to desorption in the mud) when faulting roots deepest and deformation is strongest. Mud domes juxtaposing out-of-sequence faults in the Caucasus orogenic wedge show mud B contents 8x marine sediment and fluid B contents up to 25x seawater. Deep-seated, B-rich fluids liquefy clay-bearing strata to facilitate mud extrusion, allowing the clay to re-adsorb B in the process. B isotopic composition of the mud decreases with incipient

  6. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink.

    PubMed

    Niemann, Helge; Lösekann, Tina; de Beer, Dirk; Elvert, Marcus; Nadalig, Thierry; Knittel, Katrin; Amann, Rudolf; Sauter, Eberhard J; Schlüter, Michael; Klages, Michael; Foucher, Jean Paul; Boetius, Antje

    2006-10-19

    Mud volcanism is an important natural source of the greenhouse gas methane to the hydrosphere and atmosphere. Recent investigations show that the number of active submarine mud volcanoes might be much higher than anticipated (for example, see refs 3-5), and that gas emitted from deep-sea seeps might reach the upper mixed ocean. Unfortunately, global methane emission from active submarine mud volcanoes cannot be quantified because their number and gas release are unknown. It is also unclear how efficiently methane-oxidizing microorganisms remove methane. Here we investigate the methane-emitting Haakon Mosby Mud Volcano (HMMV, Barents Sea, 72 degrees N, 14 degrees 44' E; 1,250 m water depth) to provide quantitative estimates of the in situ composition, distribution and activity of methanotrophs in relation to gas emission. The HMMV hosts three key communities: aerobic methanotrophic bacteria (Methylococcales), anaerobic methanotrophic archaea (ANME-2) thriving below siboglinid tubeworms, and a previously undescribed clade of archaea (ANME-3) associated with bacterial mats. We found that the upward flow of sulphate- and oxygen-free mud volcano fluids restricts the availability of these electron acceptors for methane oxidation, and hence the habitat range of methanotrophs. This mechanism limits the capacity of the microbial methane filter at active marine mud volcanoes to <40% of the total flux. PMID:17051217

  7. Volcanic activity in the Acambay Graben: a < 25 Ka subplinian eruption from the Temascalcingo volcano and implications for volcanic hazard.

    NASA Astrophysics Data System (ADS)

    Pedrazzi, Dario; Aguirre Díaz, Gerardo; Sunyé Puchol, Ivan; Bartolini, Stefania; Geyer, Adelina

    2016-04-01

    The Trans-Mexican Volcanic Belt (TMVB) contains a large number of stratovolcanoes, some well-known, as Popocatepetl, Iztaccihuatl, Nevado de Toluca, or Colima and many others of more modest dimensions that are not well known but constitute the majority in the TMVB. Such volcanoes are, for example, Tequila, San Juan, Sangangüey, Cerro Culiacán, Cerro Grande, El Zamorano, La Joya, Palo Huerfano, Jocotitlán, Altamirano and Temascalcingo, among many others. The Temascalcingo volcano (TV) is an andesitic-dacitic stratovolcano located in the Trans-Mexican Volcanic Belt (TMVB) at the eastern part of the Acambay Graben (northwest portion of Estado de México). The TV is composed mainly by dacitic, porphyritic lavas, block and ash deposits and subordinate pumice fall deposits and ignimbrites (Roldán-Quintana et al., 2011). The volcanic structure includes a summit caldera that has a rectangular shape, 2.5×3.5 km, with the largest side oriented E-W, parallel to major normal faults affecting the edifice. The San Mateo Pumice eruption is one of the greatest paroxysmal episodes of this volcano with pumice deposits mainly exposed at the scarp of the Acambay-Tixmadeje fault and at the northern and northeastern flanks of TV. It overlies a paleosol dated at 25 Ka. A NE-trending dispersion was obtained from field data covering an area of at least 80 km2. These deposits overlie older lava flows and mud flows and are discontinuously covered and eroded by younger reworked deposits of Temascalcingo volcano. This event represents a highly explosive phase that generated a relatively thick and widespread pumice fallout deposit that may occur again in future eruptions. A similar eruption today would have a significantly impact in the region, overall due to the fact that there has been no systematic assessment of the volcanic hazard in any of the studies that have been conducted so far in the area. So, this is a pending and urgent subject that must be tackled without delay. Financed by

  8. Preparation of Granular Red Mud Adsorbent using Different Binders by Microwave Pore - Making and Activation Method

    NASA Astrophysics Data System (ADS)

    Le, Thiquynhxuan; Wang, Hanrui; Ju, Shaohua; Peng, Jinhui; Zhou, Liexing; Wang, Shixing; Yin, Shaohua; Liu, Chao

    2016-04-01

    In this work, microwave energy is used for preparing a granular red mud (GRM) adsorbent made of red mud with different binders, such as starch, sodium silicate and cement. The effects of the preparation parameters, such as binder type, binder addition ratio, microwave heating temperature, microwave power and holding time, on the absorption property of GRM are investigated. The BET surface area, strength, pore structure, XRD and SEM of the GRM absorbent are analyzed. The results show that the microwave roasting has a good effect on pore-making of GRM, especially when using organic binder. Both the BET surface area and the strength of GRM obtained by microwave heating are significantly higher than that by conventional heating. The optimum conditions are obtained as follows: 6:100 (w/w) of starch to red mud ratio, microwave roasting with a power of 2.6 kW at 500℃ for holding time of 30 min. The BET surface area, pore volume and average pore diameter of GRM prepared at the optimum conditions are 15.58 m2/g, 0.0337 cm3/g and 3.1693 A0, respectively.

  9. Galileo SSI Observations of Volcanic Activity at Tvashtar Catena, Io

    NASA Technical Reports Server (NTRS)

    Milazzo, M. P.; Keszthely, L. P.; Radebaugh, J.; Davies, A. G.; Turtle, E. P.; Geissler, P.; Klaasen, K. P.; McEwen, A. S.

    2005-01-01

    Introduction: We report on the analysis of the Galileo SSI's observations of the volcanic activity at Tvashtar Catena, Io as discussed by Milazzo et al. Galileo's Solid State Imager (SSI) observed Tvashtar Catena (63 deg N, 120 deg W) four times between November 1999 and October 2001, providing a unique look at the distinctive high latitude volcanism on Io. The November 1999 observation spatially resolved, for the first time, an active extraterrestrial fissure eruption. The brightness temperature of the lavas at the November 1999 fissure eruption was 1300 K. The second observation (orbit I27, February 2000) showed a large (approx. 500 sq km) region with many, small spots of hot, active lava. The third observation was taken in conjunction with a Cassini observation in December 2000 and showed a Pele-like plume deposition ring, while the Cassini images revealed a 400 km high Pele-type plume above the Catena. The final Galileo SSI observation of Tvashtar was acquired in October 2001, and all obvious (to SSI) activity had ceased, although data from Galileo's Near Infrared Mapping Spectrometer (NIMS) indicated that there was still significant thermal emission from the Tvashtar region. We have concentrated on analyzing the style of eruption during orbit I27 (February 2000). Comparison with a lava flow cooling model indicates that the behavior of the Tvashtar eruption during I27 does not match that of "simple" advancing lava flows. Instead, it may be an active lava lake or a complex set of lava flows with episodic, overlapping (in time and space) eruptions.

  10. Mud Flow - Slow and Fast

    NASA Astrophysics Data System (ADS)

    Mei, C. C.; Liu, K.-F.; Yuhi, M.

    Heavy and persistent rainfalls in mountainous areas can loosen the hillslope and induce mud flows which can move stones, boulders and even trees, with destructive power on their path. In China where 70% of the land surface is covered by mountains, debris flows due to landslides or rainfalls affect over 18.6% of the nation. Over 10,000 debris flow ravines have been identified; hundreds of lives are lost every year [1]. While accurate assessment is still pending, mud flows caused by Hurr icane Mitch in 1998 have incurred devastating floods in Central America. In Honduras alone more than 6000 people perished. Half of the nation's infrastructures were damaged. Mud flows can also be the result of volcanic eruption. Near the volcano, lava and pyroclastic flows dominate. Further downstream solid particles become smaller and can mix with river or lake water, rainfall, melting snow or ice, or eroded soil, resulting in hyperconcentrated mud mixed with rocks. The muddy debris can travel at high speeds over tens of miles down the hill slopes and devastate entire communities. In 1985 the catastrophic eruption of Nevado del Ruiz in Colombia resulted in mud flows which took the life of 23,000 inhabitants in the town of Amero [2]. During the eruption of Mt. Pinatubo in Phillipnes in 1991, one cubic mile of volcanic ash and rock fragments fell on the mountain slopes. Seasonal rain in the following months washed down much of the loose deposits, causing damage to 100,000 villages. These catastrophes have been vividly recorded in the film documentary by Lyons [3].

  11. The effects of the Yogyakarta earthquake at LUSI mud volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Lupi, M.; Saenger, E. H.; Fuchs, F.; Miller, S. A.

    2013-12-01

    The M6.3 Yogyakarta earthquake shook Central Java on May 27th, 2006. Forty seven hours later, hot mud outburst at the surface near Sidoarjo, approximately 250 km from the earthquake epicentre. The mud eruption continued and originated LUSI, the youngest mud volcanic system on earth. Since the beginning of the eruption, approximately 30,000 people lost their homes and 13 people died due to the mud flooding. The causes that initiated the eruption are still debated and are based on different geological observations. The earthquake-triggering hypothesis is supported by the evidence that at the time of the earthquake ongoing drilling operations experienced a loss of the drilling mud downhole. In addition, the eruption of the mud began only 47 hours after the Yogyakarta earthquake and the mud reached the surface at different locations aligned along the Watukosek fault, a strike-slip fault upon which LUSI resides. Moreover, the Yogyakarta earthquake also affected the volcanic activity of Mt. Semeru, located as far as Lusi from the epicentre of the earthquake. However, the drilling-triggering hypothesis points out that the earthquake was too far from LUSI for inducing relevant stress changes at depth and highlight how upwelling fluids that reached the surface first emerged only 200 m far from the drilling rig that was operative at the time. Hence, was LUSI triggered by the earthquake or by drilling operations? We conducted a seismic wave propagation study on a geological model based on vp, vs, and density values for the different lithologies and seismic profiles of the crust beneath LUSI. Our analysis shows compelling evidence for the effects produced by the passage of seismic waves through the geological formations and highlights the importance of the overall geological structure that focused and reflected incoming seismic energy.

  12. Controlled reduction of red mud waste to produce active systems for environmental applications: heterogeneous Fenton reaction and reduction of Cr(VI).

    PubMed

    Costa, Regina C C; Moura, Flávia C C; Oliveira, Patrícia E F; Magalhães, Fabiano; Ardisson, José D; Lago, Rochel M

    2010-02-01

    In this work, controlled reduction of red mud with H(2) was used to produce active systems for two different environmental applications, i.e. the heterogeneous Fenton reaction and the reduction of Cr(VI). Mössbauer, powder X-ray diffraction, thermal analyses and scanning electron microscopy analyses showed that at different temperatures, i.e. 300, 400, 500 and 600 degrees C, H(2) reduces red mud to different phases, mainly Fe(3)O(4), Fe(0)/Fe(3)O(4) and Fe(0). These Fe phases are dispersed on Al, Si and Ti oxides present in the red mud and show high reactivity towards two environmental applications, i.e. the heterogeneous Fenton reaction and the reduction of Cr(VI). Reduction with H(2) at 400 degrees C showed the best results for the oxidation of the model dye methylene blue with H(2)O(2) at neutral pH due to the presence of the composite Fe(0)/Fe(3)O(4). The reduced red mud at 500-600 degrees C produced Fe(0) highly active for the reduction of Cr(VI) in aqueous medium. Another feature of these red mud based system is that after deactivation due to extensive use they can be completely regenerated by simple treatment with H(2).

  13. Crustal deformation and volcanism at active plate boundaries

    NASA Astrophysics Data System (ADS)

    Geirsson, Halldor

    Most of Earth's volcanoes are located near active tectonic plate boundaries, where the tectonic plates move relative to each other resulting in deformation. Likewise, subsurface magma movement and pressure changes in magmatic systems can cause measurable deformation of the Earth's surface. The study of the shape of Earth and therefore studies of surface deformation is called geodesy. Modern geodetic techniques allow precise measurements (˜1 mm accuracy) of deformation of tectonic and magmatic systems. Because of the spatial correlation between tectonic boundaries and volcanism, the tectonic and volcanic deformation signals can become intertwined. Thus it is often important to study both tectonic and volcanic deformation processes simultaneously, when one is trying to study one of the systems individually. In this thesis, I present research on crustal deformation and magmatic processes at active plate boundaries. The study areas cover divergent and transform plate boundaries in south Iceland and convergent and transform plate boundaries in Central America, specifically Nicaragua and El Salvador. The study is composed of four main chapters: two of the chapters focus on the magma plumbing system of Hekla volcano, Iceland and the plate boundary in south Iceland; one chapter focuses on shallow controls of explosive volcanism at Telica volcano, Nicaragua; and the fourth chapter focuses on co- and post-seismic deformation from a Mw = 7.3 earthquake which occurred offshore El Salvador in 2012. Hekla volcano is located at the intersection of a transform zone and a rift zone in Iceland and thus is affected by a combination of shear and extensional strains, in addition to co-seismic and co-rifting deformation. The inter-eruptive deformation signal from Hekla is subtle, as observed by a decade (2000-2010) of GPS data in south Iceland. A simultaneous inversion of this data for parameters describing the geometry and source characteristics of the magma chamber at Hekla, and

  14. Measuring volcanic gases at Taal Volcano Main Crater for monitoring volcanic activity and possible gas hazard

    NASA Astrophysics Data System (ADS)

    Arpa, M.; Hernandez Perez, P. A.; Reniva, P.; Bariso, E.; Padilla, G.; Melian Rodriguez, G.; Barrancos, J.; Calvo, D.; Nolasco, D.; Padron, E.; Garduque, R.; Villacorte, E.; Fajiculay, E.; Perez, N.; Solidum, R.

    2012-12-01

    Taal is an active volcano located in southwest Luzon, Philippines. It consists of mainly tuff cones which have formed an island at the center of a 30 km wide Taal Caldera. Most historical eruptions, since 1572 on Taal Volcano Island, have been characterized as hydromagmatic eruptions. Taal Main Crater, produced during the 1911 eruption, is the largest crater in the island currently filled by a 1.2 km wide, 85 m deep acidic lake. The latest historical eruption occurred in 1965-1977. Monitoring of CO2 emissions from the Main Crater Lake (MCL) and fumarolic areas within the Main Crater started in 2008 with a collaborative project between ITER and PHIVOLCS. Measurements were done by accumulation chamber method using a Westsystem portable diffuse fluxmeter. Baseline total diffuse CO2 emissions of less than 1000 t/d were established for the MCL from 3 campaign-type surveys between April, 2008 to March, 2010 when seismicity was within background levels. In May, 2010, anomalous seismic activity from the volcano started and the total CO2 emission from the MCL increased to 2716±54 t/d as measured in August, 2010. The CO2 emission from the lake was highest last March, 2011 at 4670±159 t/d when the volcano was still showing signs of unrest. Because CO2 emissions increased significantly (more than 3 times the baseline value) at this time, this activity may be interpreted as magmatic and not purely hydrothermal. Most likely deep magma intrusions occurred but did not progress further to shallower depths and no eruption occurred. No large increase in lake water temperature near the surface (average for the whole lake area) during the period when CO2 was above background, it remained at 30-34°C and a few degrees lower than average ambient temperature. Total CO2 emissions from the MCL have decreased to within baseline values since October, 2011. Concentrations of CO2, SO2 and H2S in air in the fumarolic area within the Main Crater also increased in March, 2011. The measurements

  15. Hydrothermal reservoir beneath Taal Volcano (Philippines): Implications to volcanic activity

    NASA Astrophysics Data System (ADS)

    Nagao, T.; Alanis, P. B.; Yamaya, Y.; Takeuchi, A.; Bornas, M. V.; Cordon, J. M.; Puertollano, J.; Clarito, C. J.; Hashimoto, T.; Mogi, T.; Sasai, Y.

    2012-12-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The first recorded eruption was in 1573. Since then it has erupted 33 times resulting in thousands of casualties and large damages to property. In 1995, it was declared as one of the 15 Decade Volcanoes. Beginning in the early 1990s it has experienced several phases of abnormal activity, including seismic swarms, episodes of ground deformation, ground fissuring and hydrothermal activities, which continues up to the present. However, it has been noted that past historical eruptions of Taal Volcano may be divided into 2 distinct cycles, depending on the location of the eruption center, either at Main Crater or at the flanks. Between 1572-1645, eruptions occurred at the Main Crater, in 1707 to 1731, they occurred at the flanks. In 1749, eruptions moved back to the Main Crater until 1911. During the 1965 and until the end of the 1977 eruptions, eruptive activity once again shifted to the flanks. As part of the PHIVOLCS-JICA-SATREPS Project magnetotelluric and audio-magnetotelluric surveys were conducted on Volcano Island in March 2011 and March 2012. Two-dimensional (2-D) inversion and 3-D forward modeling reveals a prominent and large zone of relatively high resistivity between 1 to 4 kilometers beneath the volcano almost directly beneath the Main Crater, surrounded by zones of relatively low resistivity. This anomalous zone of high resistivity is hypothesized to be a large hydrothermal reservoir filled with volcanic fluids. The presence of this large hydrothermal reservoir could be related to past activities of Taal Volcano. In particular we believe that the catastrophic explosion described during the 1911 eruption was the result of the hydrothermal reservoir collapsing. During the cycle of Main Crater eruptions, this hydrothermal reservoir is depleted, while during a cycle of flank eruptions this reservoir is replenished with hydrothermal fluids.

  16. Gish Bar Patera, Io: Geology and Volcanic Activity, 1996-2001

    NASA Technical Reports Server (NTRS)

    Perry, Jason; Radebaugh, Jani; Lopes, Rosaly; McEwen, Alfred; Keszthelyi, Laszlo

    2003-01-01

    Since the two Voyagers passed by Jupiter in 1979, it has been known that volcanic activity is ubiquitous on the surface of Io. With over 400 volcanic centers, Io is even more volcanically active than the earth with massive flood basalt-style eruptions and komatitite lavas a common occurrence. Additionally, some volcanoes appear to be giant lava lakes, with violent activity churning the crust of the lake for periods of 20 years or more. Finally, sulfur is believed to play a large role in Io's volcanism, be it as a primary lava or as a secondary product of large, high-temperature eruptions. By studying one volcano in particular, Gish Bar Patera, one can observe many of these characteristics in one volcanic center.

  17. Evidence for late tertiary volcanic activity in the northern black hills, South dakota.

    PubMed

    Kirchner, J G

    1977-05-27

    Rhyolitic volcanic rock in the northern Black Hills has a potassium-argon isotopic age of 10.5 +/- 1.5 million years. This is considerably younger than any previously reported igneous activity in this or adjacent areas and indicates that the renewed uplift of the Black Hills, which occurred after the Oligocene epoch, was also accompanied by some volcanism. PMID:17778711

  18. 2011 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Maharrey, J. Zebulon; Neal, Christina A.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near three separate volcanic centers in Alaska during 2011. The year was highlighted by the unrest and eruption of Cleveland Volcano in the central Aleutian Islands. AVO annual summaries no longer report on activity at Russian volcanoes.

  19. Io's Diverse Styles of Volcanic Activity: Results from Galileo NIMS

    NASA Technical Reports Server (NTRS)

    Lopes, R. M. C.; Smythe, W. D.; Kamp, L. W.; Doute, S.; Carlson, R.; McEwen, A.; Geissler, P.

    2001-01-01

    Observations by Galileo's Near-Infrared Mapping Spectrometer were used to map the thermal structure of several of Io's hot spots, revealing different styles of volcanism Additional information is contained in the original extended abstract..

  20. Complex explosive volcanic activity on the Moon within Oppenheimer crater

    NASA Astrophysics Data System (ADS)

    Bennett, Kristen A.; Horgan, Briony H. N.; Gaddis, Lisa R.; Greenhagen, Benjamin T.; Allen, Carlton C.; Hayne, Paul O.; Bell, James F.; Paige, David A.

    2016-07-01

    Oppenheimer crater is a floor-fractured crater located within the South Pole-Aitken basin on the Moon, and exhibits more than a dozen localized pyroclastic deposits associated with the fractures. Localized pyroclastic volcanism on the Moon is thought to form as a result of intermittently explosive Vulcanian eruptions under low effusion rates, in contrast to the higher-effusion rate, Hawaiian-style fire fountaining inferred to form larger regional deposits. We use Lunar Reconnaissance Orbiter Camera images and Diviner Radiometer mid-infrared data, Chandrayaan-1 orbiter Moon Mineralogy Mapper near-infrared spectra, and Clementine orbiter Ultraviolet/visible camera images to test the hypothesis that the pyroclastic deposits in Oppenheimer crater were emplaced via Vulcanian activity by constraining their composition and mineralogy. Mineralogically, we find that the deposits are variable mixtures of orthopyroxene and minor clinopyroxene sourced from the crater floor, juvenile clinopyroxene, and juvenile iron-rich glass, and that the mineralogy of the pyroclastics varies both across the Oppenheimer deposits as a whole and within individual deposits. We observe similar variability in the inferred iron content of pyroclastic glasses, and note in particular that the northwest deposit, associated with Oppenheimer U crater, contains the most iron-rich volcanic glass thus far identified on the Moon, which could be a useful future resource. We propose that this variability in mineralogy indicates variability in eruption style, and that it cannot be explained by a simple Vulcanian eruption. A Vulcanian eruption should cause significant country rock to be incorporated into the pyroclastic deposit; however, large areas within many of the deposits exhibit spectra consistent with high abundances of juvenile phases and very little floor material. Thus, we propose that at least the most recent portion of these deposits must have erupted via a Strombolian or more continuous fire

  1. Diffuse CO2 degassing and volcanic activity at Cape Verde islands, West Africa

    NASA Astrophysics Data System (ADS)

    Dionis, Samara M.; Pérez, Nemesio M.; Hernández, Pedro A.; Melián, Gladys; Rodríguez, Fátima; Padrón, Eleazar; Sumino, Hirochika; Barrrancos, Jose; Padilla, Germán D.; Fernandes, Paulo; Bandomo, Zuleyka; Silva, Sónia; Pereira, Jose M.; Semedo, Hélio; Cabral, Jeremias

    2015-04-01

    Diffuse CO2 emission surveys were carried out at São Vicente, Brava, and Fogo islands, Cape Verde, archipelago to investigate the relationship between diffuse CO2 degassing and volcanic activity. Total amounts of diffuse CO2 discharged through the surface environment of the islands of São Vicente, Brava, and Fogo were estimated in 226, 50, and 828 t d-1, respectively. The highest CO2 efflux values of the three volcanic islands systems were observed at the summit crater of Pico do Fogo (up to 15.7 kg m-2 d-1). Statistical graphical analysis of the data suggests two geochemical populations for the diffuse CO2 emission surveys. The geometric mean of the peak population, expressed as a multiple of the geometric mean of the background population, seems to be the best diffuse CO2 emission geochemical parameter to correlate with the volcanic activity (age of the volcanism) for these three island volcanic systems at Cape Verde. This observation is also supported by helium isotopic signature observed in the Cape Verde's fluids, fumaroles, and ground waters. This study provides useful information about the relationship between diffuse CO2 degassing and volcanic activity at Cape Verde enhancing the use of diffuse CO2 emission as a good geochemical tool, for volcanic monitoring at Cape Verde as well as other similar volcanic systems.

  2. Catastrophic volcanism

    NASA Technical Reports Server (NTRS)

    Lipman, Peter W.

    1988-01-01

    Since primitive times, catastrophes due to volcanic activity have been vivid in the mind of man, who knew that his activities in many parts of the world were threatened by lava flows, mudflows, and ash falls. Within the present century, increasingly complex interactions between volcanism and the environment, on scales not previously experienced historically, have been detected or suspected from geologic observations. These include enormous hot pyroclastic flows associated with collapse at source calderas and fed by eruption columns that reached the stratosphere, relations between huge flood basalt eruptions at hotspots and the rifting of continents, devastating laterally-directed volcanic blasts and pyroclastic surges, great volcanic-generated tsunamis, climate modification from volcanic release of ash and sulfur aerosols into the upper atmosphere, modification of ocean circulation by volcanic constructs and attendent climatic implications, global pulsations in intensity of volcanic activity, and perhaps triggering of some intense terrestrial volcanism by planetary impacts. Complex feedback between volcanic activity and additional seemingly unrelated terrestrial processes likely remains unrecognized. Only recently has it become possible to begin to evaluate the degree to which such large-scale volcanic processes may have been important in triggering or modulating the tempo of faunal extinctions and other evolutionary events. In this overview, such processes are examined from the viewpoint of a field volcanologist, rather than as a previous participant in controversies concerning the interrelations between extinctions, impacts, and volcanism.

  3. Early Detection of Volcanic Eruptions Using Lightning Activity in South America

    NASA Astrophysics Data System (ADS)

    Nicora, M. G.; Bürgesser, R. E.; Quel, E. J.; Avila, E.

    2013-05-01

    A study of the lightning activity produced by the eruption of the Cordón Caulle volcano during June 2011 was performed by using the World Wide Lightning Location Network data. The observed lightning activity corresponds to the electrical activity of the volcanic plume with a good correlation between the amount of lightning detected and the volcanic plume height. Although the detected lightning activity was low, the results agree with previous studies and show that lightning activity could be use as a proxy of the volcanic activity. This study also shows the feasibility on the use of the network for early detection of volcanic eruptions. The Global Volcanic Lightning Monitor is an experimental research project, based on the World Wide Lightning Location Network data, which sent an alert of the eruption of the Cordón Caulle volcanic complex before the report of the National Service of Geology and Mining (SERNAGEOMIN) of Chile. This demonstrate the relevance of the system as support of national warning systems (if any) and, where there are no continuous monitoring of eruptive systems, as early warning of volcanic eruptions.

  4. Study of novel mechano-chemical activation process of red mud to optimize nitrate removal from water.

    PubMed

    Alighardashi, A; Gharibi, H R; Raygan, Sh; Akbarzadeh, A

    2016-01-01

    Red mud (RM) is the industrial waste of alumina production and causes serious environmental risks. In this paper, a novel activation procedure for RM (mechano-chemical processing) is proposed in order to improve the nitrate adsorption from water. High-energy milling and acidification were selected as mechanical and chemical activation methods, respectively. Synthesized samples of adsorbent were produced considering two parameters of activation: acid concentrations and acidification time in two selected milling times. Optimization of the activation process was based on nitrate removal from a stock solution. Experimental data were analyzed with two-way analysis of variance and Kruskal-Wallis methods to verify and discover the accuracy and probable errors. Best conditions (acceptable removal percentage > 75) were 17.6% w/w for acid concentrate and 19.9 minutes for acidification time in 8 hours for milling time. A direct relationship between increase in nitrate removal and increasing the acid concentration and acidification time was observed. The adsorption isotherms were studied and compared with other nitrate adsorbents. Characterization tests (X-ray fluorescence, X-ray diffraction, Fourier transform infrared spectrophotometry, dynamic light scattering, surface area analysis and scanning electron microscopy) were conducted for both raw and activated adsorbents. Results showed noticeable superiority in characteristics after activation: higher specific area and porosity, lower particle size and lower agglomeration in structure. PMID:26901734

  5. Study of novel mechano-chemical activation process of red mud to optimize nitrate removal from water.

    PubMed

    Alighardashi, A; Gharibi, H R; Raygan, Sh; Akbarzadeh, A

    2016-01-01

    Red mud (RM) is the industrial waste of alumina production and causes serious environmental risks. In this paper, a novel activation procedure for RM (mechano-chemical processing) is proposed in order to improve the nitrate adsorption from water. High-energy milling and acidification were selected as mechanical and chemical activation methods, respectively. Synthesized samples of adsorbent were produced considering two parameters of activation: acid concentrations and acidification time in two selected milling times. Optimization of the activation process was based on nitrate removal from a stock solution. Experimental data were analyzed with two-way analysis of variance and Kruskal-Wallis methods to verify and discover the accuracy and probable errors. Best conditions (acceptable removal percentage > 75) were 17.6% w/w for acid concentrate and 19.9 minutes for acidification time in 8 hours for milling time. A direct relationship between increase in nitrate removal and increasing the acid concentration and acidification time was observed. The adsorption isotherms were studied and compared with other nitrate adsorbents. Characterization tests (X-ray fluorescence, X-ray diffraction, Fourier transform infrared spectrophotometry, dynamic light scattering, surface area analysis and scanning electron microscopy) were conducted for both raw and activated adsorbents. Results showed noticeable superiority in characteristics after activation: higher specific area and porosity, lower particle size and lower agglomeration in structure.

  6. 1996 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.

    1997-01-01

    During 1996, the Alaska Volcano Observatory (AVO) responded to eruptive activity, anomalous seismicity, or suspected volcanic activity at 10 of the approximately 40 active volcanic centers in the state of Alaska. As part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also disseminated information about eruptions and other volcanic unrest at six volcanic centers on the Kamchatka Peninsula and in the Kurile Islands, Russia.

  7. SO2 on Venus: IUE, HST and ground-based measurements, and the active volcanism connection

    NASA Technical Reports Server (NTRS)

    Na, C. Y.; Barker, E. S.; Stern, S. A.; Esposito, L. W.

    1993-01-01

    Magellan images have shown that the volcanic features are widespread over the surface of Venus. The question of whether there is active volcanism is important for understanding both the atmospheric and the geological processes on Venus. The thick cloud cover of Venus precludes any direct observation of active volcanoes even if they exist. The only means of monitoring the active volcanism on Venus at present seems to be remote sensing from Earth. Continuous monitoring of SO2 is important to establish the long term trend of SO2 abundance and to understand the physical mechanism responsible for the change.

  8. Mud volcanoes on Mars?

    NASA Technical Reports Server (NTRS)

    Komar, Paul D.

    1991-01-01

    The term mud volcano is applied to a variety of landforms having in common a formation by extrusion of mud from beneath the ground. Although mud is the principal solid material that issues from a mud volcano, there are many examples where clasts up to boulder size are found, sometimes thrown high into the air during an eruption. Other characteristics of mud volcanoes (on Earth) are discussed. The possible presence of mud volcanoes, which are common and widespread on Earth, on Mars is considered.

  9. Rapid response of a hydrologic system to volcanic activity: Masaya volcano, Nicaragua

    USGS Publications Warehouse

    Pearson, S.C.P.; Connor, C.B.; Sanford, W.E.

    2008-01-01

    Hydrologic systems change in response to volcanic activity, and in turn may be sensitive indicators of volcanic activity. Here we investigate the coupled nature of magmatic and hydrologic systems using continuous multichannel time series of soil temperature collected on the flanks of Masaya volcano, Nicaragua, one of the most active volcanoes in Central America. The soil temperatures were measured in a low-temperature fumarole field located 3.5 km down the flanks of the volcano. Analysis of these time series reveals that they respond extremely rapidly, on a time scale of minutes, to changes in volcanic activity also manifested at the summit vent. These rapid temperature changes are caused by increased flow of water vapor through flank fumaroles during volcanism. The soil temperature response, ~5 °C, is repetitive and complex, with as many as 13 pulses during a single volcanic episode. Analysis of the frequency spectrum of these temperature time series shows that these anomalies are characterized by broad frequency content during volcanic activity. They are thus easily distinguished from seasonal trends, diurnal variations, or individual rainfall events, which triggered rapid transient increases in temperature during 5% of events. We suggest that the mechanism responsible for the distinctive temperature signals is rapid change in pore pressure in response to magmatism, a response that can be enhanced by meteoric water infiltration. Monitoring of distal fumaroles can therefore provide insight into coupled volcanic-hydrologic-meteorologic systems, and has potential as an inexpensive monitoring tool.

  10. Walking through volcanic mud: the 2,100 year-old Acahualinca footprints (Nicaragua) II: the Acahualinca people, environmental conditions and motivation

    NASA Astrophysics Data System (ADS)

    Schmincke, Hans-Ulrich; Rausch, Juanita; Kutterolf, Steffen; Freundt, Armin

    2010-10-01

    We analyzed bare human footprints in Holocene tuff preserved in two pits in the Acahualinca barrio in the northern outskirts of Managua (Nicaragua). Lithology, volcanology, and age of the deposits are discussed in a companion paper (Schmincke et al. Bull Volcanol doi: 10.1007/s00445-008-0235-9 , 2008). The footprint layer occurs within a series of rapidly accumulated basaltic-andesitic tephra that is regionally correlated to the Masaya Triple Layer Tephra. The people were probably trying to escape from a powerful volcanic eruption at Masaya Caldera 20 km farther south that occurred at 2.1 ka BP. We subdivided the swath of footprints, up to 5.6 m wide, in the northern pit (Pit I) into (1) a central group of footprints made by about six individuals, the total number being difficult to determine because people walked in each other’s footsteps one behind the other and (2) two marginal groups on either side of the central group with more widely spaced tracks. The western band comprises tracks of three adjacent individuals and an isolated single footprint farther out. The eastern marginal area comprises an inner band of deep footprints made by three individuals and, farther out, three clearly separated individuals. We estimate the total number of people as 15-16. In the southern narrow and smaller pit (Pit II), we recognize tracks of ca. 12 individuals, no doubt made by the same group. The group represented in both pits probably comprised male and female adults, teenagers and children based on differences in length of footprints and of strides and depth of footprints made in the soft wet ash. The smallest footprints (probably made by children) occur in the central group, where protection was most effective. The footprint layer is composed of a lower 5-15-cm thick, coarse-grained vesicle tuff capped by a medium to fine-grained tuff up to 3 cm thick. The

  11. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz

    PubMed Central

    Coelho, Francisco J. R. C.; Louvado, António; Domingues, Patrícia M.; Cleary, Daniel F. R.; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R.; Cunha, Ângela; Gomes, Newton C. M.

    2016-01-01

    The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults. PMID:27762306

  12. Mud volcanoes of the Orinoco Delta, Eastern Venezuela

    USGS Publications Warehouse

    Aslan, A.; Warne, A.G.; White, W.A.; Guevara, E.H.; Smyth, R.C.; Raney, J.A.; Gibeaut, J.C.

    2001-01-01

    Mud volcanoes along the northwest margin of the Orinoco Delta are part of a regional belt of soft sediment deformation and diapirism that formed in response to rapid foredeep sedimentation and subsequent tectonic compression along the Caribbean-South American plate boundary. Field studies of five mud volcanoes show that such structures consist of a central mound covered by active and inactive vents. Inactive vents and mud flows are densely vegetated, whereas active vents are sparsely vegetated. Four out of the five mud volcanoes studied are currently active. Orinoco mud flows consist of mud and clayey silt matrix surrounding lithic clasts of varying composition. Preliminary analysis suggests that the mud volcano sediment is derived from underlying Miocene and Pliocene strata. Hydrocarbon seeps are associated with several of the active mud volcanoes. Orinoco mud volcanoes overlie the crest of a mud-diapir-cored anticline located along the axis of the Eastern Venezuelan Basin. Faulting along the flank of the Pedernales mud volcano suggests that fluidized sediment and hydrocarbons migrate to the surface along faults produced by tensional stresses along the crest of the anticline. Orinoco mud volcanoes highlight the proximity of this major delta to an active plate margin and the importance of tectonic influences on its development. Evaluation of the Orinoco Delta mud volcanoes and those elsewhere indicates that these features are important indicators of compressional tectonism along deformation fronts of plate margins. ?? 2001 Elsevier Science B.V. All rights reserved.

  13. Boron and B Isotopes in Mud Volcanoes and Their Significance for Mobilization Depth and Global B Cycling

    NASA Astrophysics Data System (ADS)

    Kopf, A. J.; Deyhle, A.

    2001-12-01

    Mud volcanism is a global phenomenon in mostly convergent margin settings, whose nature has long been subject to scientific investigation. However, only recently its significance has been unravelled by quantitative studies in well-investigated submarine environments, like large acretionary complexes. The fluid flux through active mud volcanoes has been estimated to exceed that of the frontal accretionary prism (Kopf et al. 2001, EPSL 189, p295-313), and may have done so in earlier Earth`s history. Pore fluids as well as muds and clasts of onshore and offshore mud volcanoes all over the world have undergone a systematic geochemical study using contents and stable isotopes of the mobile element boron. When tied into results from hydrothermal geochemical experiments in the laboratory (You et al. 1996, EPSL 140, p41-52), the B geochemistry proofs to be a powerful tracer to estimate the depth of fluid and mud mobilization below ground. Boron adsorbed to clay minerals is preferably donated to the fluid when either tectonic stress (vertical and/or lateral compaction) or temperature increase. Here, we report variations in B content and B isotope ratios in mud volcano deposits as a result of different history of the material prior to extrusion. Results reflect the regional geology of the study areas, ranging from dewatering of undercompacted marine sediment in accretionary prisms (Barbados, Makran, Mediterranean Sea) to diagenetic reactions in mud volcanoes of orogenic belts (Malaysia, Pakistan, Georgia, Taman Peninsula, Western Alps). Boron shows maximum enrichment in the fluid phase (owing to desorption in the mud) when faulting roots deepest and deformation is strongest. Mud domes juxtaposing out-of-sequence faults in the Caucasus orogenic wedge show mud B contents 8x marine sediment, and fluid B contents up to 25x seawater. Deep-seated, B-rich fluids liquefy clay-bearing strata to facilitate mud extrusion, allowing the clay to re-adsorb B in the process. B isotopic

  14. 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Herrick, Julie; Girina, O.A.; Chibisova, Marina; Rybin, Alexander; McGimsey, Robert G.; Dixon, Jim

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  15. - and Syn-Eruptive Surface Movements of Azerbaijan Mud Volcanoes Detected Through Insar Analysis: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Antonielli, Benedetta; Monserrat, Oriol; Bonini, Marco; Righini, Gaia; Sani, Federico; Luzi, Guido; Feyzullayev, Akper; Aliyev, Chingiz

    2014-05-01

    Mud volcanism is a process that consists in the extrusion of mud, fragments or blocks of country rocks, saline waters and gases, mostly methane. This mechanism is typically linked to in-depth hydrocarbon traps, and it builds up a variety of conical edifices with dimension and morphology similar to those of magmatic volcanoes. Interferometry by Satellite Aperture Radar (InSAR) techniques have been commonly used to monitor and investigate the ground deformation connected to the eruptive phases of magmatic volcanoes. InSAR techniques have also been employed to explore the ground deformation associated with the LUSI mud volcano in Java (Indonesia). We aim to carry out a study on the paroxysmal activities of the Azerbaijan mud volcanoes, among the largest on Earth, using similar techniques. In particular the deformations of the mud volcanic systems were analyzed through the technique of satellite differential interferometry (DInSAR), thanks to the acquisition of 16 descending and 4 ascending Envisat images, spanning about 4 years (October 2003-November 2007); these data were provided by the European Space Agency. The preliminary analysis of a set of 77 interferograms and the unwrapping process elaboration of some of them selected according to the best coherence values, allowed the detection of significant deformations in correspondence of Ayaz-Akhtarma and Khara Zira Island mud volcanoes. This analysis has allowed to identify relevant ground deformations of the volcanic systems in connection with the main eruptive events in 2005 and in 2006 respectively, that are recorded by the catalogue of Azerbaijan mud volcano eruptions until 2007. The preliminary analysis of the interferograms of the Ayaz-Akhtarma and the Khara Zira mud volcanoes shows that the whole volcano edifice or part of it is subject to a ground displacement before or in coincidence with the eruption. Assuming that the movement is mainly vertical, we suppose that deformation is due to bulging of the volcanic

  16. Hydrothermal Mineralization Along the Volcanically Active Mariana Arc

    NASA Astrophysics Data System (ADS)

    de Ronde, C. E.; Hein, J. R.; Embley, R. W.; Stern, R. J.

    2004-12-01

    In March and April, 2004, ROPOS ROV dives took place from the R/V T.G. Thompson along the volcanically active Mariana arc to ground truth CTD data collected a year earlier that indicated hydrothermal activity. Dives took place on seven volcanoes, six of which showed hydrothermal activity. We present data on samples collected from NW Rota-1 (14° , 36'N, 144° , 46'E), E. Diamante (15° , 56'N, 145° , 41'E), and NW Eifuku (21° , 29'N, 144° , 03'E), the three sites most studied. All the hydrothermal systems found are associated with volcano summits, or with resurgent domes inside a caldera. Brimstone vent at NW Rota-1 provided a dramatic display of thick, bellowing, yellow plumes that contained ash and molten sulfur. This site occurs at 500 m water depth and clearly shows closely associated magmatic-hydrothermal discharge. Sulfur was the dominant hydrothermal mineral deposited around the vent and occurs as spheres in the surrounding volcaniclastic sediment, fracture fill and veins, and massive deposits. The Black Forest vent field at E Diamante consists of a sulfide-sulfate chimney system developed at about 650 m water depth. This is the only mature system discovered and consists of numerous tall (up to 9 m) chimneys. The measured fluid temperature of 240° C produces boiling at the depth of the vents. The chimneys and mounds are composed of varying amounts of pyrite, sphalerite, chalcopyrite, barite, and anhydrite. Hydrothermal Mn oxides occur on the surface of inactive chimneys. This mineralogy contrasts with the other two systems, which deposit sulfur as the dominant hydrothermal product. The Cu-Zn-Fe-Ba mineralization is perhaps largely controlled by water/rock interaction. A unique hydrothermal field (Champagne field) was found at NW Eifuku where liquid CO2 is discharging from focused- and diffuse-flow vents at 1600 m water depth. The focused-flow vents consist of small chimneys and mounds up to a meter high that are composed of sulfur and yet to be

  17. G-EVER Activities and the Next-generation Volcanic Hazard Assessment System

    NASA Astrophysics Data System (ADS)

    Takarada, S.

    2013-12-01

    The Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER) is a consortium of Asia-Pacific geohazard research institutes that was established in 2012. G-EVER aims to formulate strategies to reduce the risks of disasters worldwide caused by the occurrence of earthquakes, tsunamis and volcanic eruptions. G-EVER is working on enhancing collaboration, sharing of resources, and making information on the risks of earthquakes and volcanic eruptions freely available and understandable. The 1st G-EVER International Symposium was held in Tsukuba, Japan in March 11, 2013. The 2nd Symposium is scheduled in Sendai, Tohoku Japan, in Oct. 19-20, 2013. Currently, 4 working groups were proposed in the G-EVER Consortium. The next-generation volcano hazard assessment WG is developing a useful system for volcanic eruption prediction, risk assessment, and evacuation at various eruption stages. The assessment system is based on volcanic eruption history datasets, volcanic eruption database, and numerical simulations. Volcanic eruption histories including precursor phenomena leading to major eruptions of active volcanoes are very important for future prediction of volcanic eruptions. A high quality volcanic eruption database, which contains compilations of eruption dates, volumes, and types, is important for the next-generation volcano hazard assessment system. Proposing international standards on how to estimate the volume of volcanic products is important to make a high quality volcanic eruption database. Spatial distribution database of volcanic products (e.g. tephra and pyroclastic flow distributions), encoded into a GIS based database is necessary for more precise area and volume estimation and risk assessments. The volcanic eruption database is developed based on past eruption results, which only represents a subset of possible future scenarios. Therefore, numerical simulations with controlled parameters are needed for more precise volcanic eruption

  18. Teaching Ecological Interactions with Mud Dauber Nests.

    ERIC Educational Resources Information Center

    Matthews, Robert W.

    1997-01-01

    Describes the use of mud dauber wasp nests in laboratory activities in ecology and behavior and life science classes. Provides students with an opportunity to develop and practice basic skills including dissection, identification, observation, measurement, and communication. Discusses the life of mud daubers, obtaining and storing nests,…

  19. Mud volcanoes and mud domes of the Central Mediterranean Ridge: Near-bottom and in situ observations

    NASA Astrophysics Data System (ADS)

    Huguen, C.; Mascle, J.; Woodside, J.; Zitter, T.; Foucher, J. P.

    2005-10-01

    The first high-resolution mapping of mud volcanoes and mud domes of the Central Mediterranean Ridge (Eastern Mediterranean) presented here is based on successive in situ observations from the Nautile submersible [MEDINAUT (1998) and NAUTINIL (2003) surveys] and near-bottom side-scan sonar data (MEDINETH cruise, 1999). Data were obtained over two types of clay-kinetic-related features previously identified south of Crete: the Olimpi field mud volcanoes and the Southern belt mud domes, characterized by highly contrasting morpho-acoustic characteristics. Using the new data we can better define the morphological and backscatter characteristics of both mud volcanoes and mud domes and illustrate their similarities and differences; and establish ground truth, in terms of the presence or not of mud flows, diagenetic carbonate pavements, active seepage and macro-and microbiology. This study reveals strong contrasts between: (1) large mud volcanoes, made of successive mud flows, and associated with diagenetic carbonates and fluid venting activity, and (2) smaller mud domes, characterized by steep slopes affected by sedimentary instabilities, and without any evidence of mud flow, specific fluid seepage activity, authigenic carbonate pavement, or biologic communities. From these results we demonstrate a strong variability of clay-kinetic structures from the central domain of the Mediterranean Ridge accretionary complex to its northern thrust boundary against the Cretan continental backstop. From an integration of the high-resolution results to the Mediterranean Ridge geologic and structural settings, a qualitative model is finally proposed to explain the mud volcano and mud dome emplacement.

  20. Characterization of volcanic activity using observations of infrasound, volcanic emissions, and thermal imagery at Karymsky Volcano, Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Lopez, T.; Fee, D.; Prata, F.

    2012-04-01

    Karymsky Volcano is one of the most active and dynamic volcanoes in Kamchatka, with activity ranging from vigorous degassing, frequent ash emissions, and apparent vent sealing, all punctuated by daily to weekly explosive magmatic eruptions. Recent studies have highlighted the strengths in using complementary infrasound measurements and remote volcanic emission measurements to characterize volcanic activity, with the potential to discriminate emission-type, approximate ash-cloud height, and estimate SO2 emission mass. Here we use coincident measurements of infrasound, SO2, ash, and thermal radiation collected over a ten day period at Karymsky Volcano in August 2011 to characterize the observed activity and elucidate vent processes. The ultimate goal of this project is to enable different types of volcanic activity to be identified using only infrasound data, which would significantly improve our ability to continuously monitor remote volcanoes. Four types of activity were observed. Type 1 activity is characterized by discrete ash emissions occurring every 1 - 5 minutes that either jet or roil out of the vent, by plumes from 500 - 1500 m (above vent) altitudes, and by impulsive infrasonic onsets. Type 2 activity is characterized by periodic pulses of gas emission, little or no ash, low altitude (100 - 200 m) plumes, and strong audible jetting or roaring. Type 3 activity is characterized by sustained emissions of ash and gas, with multiple pulses lasting from ~1 - 3 minutes, and by plumes from 300 - 1500 m. Type 4 activity is characterized by periods of relatively long duration (~30 minutes to >1 hour) quiescence, no visible plume and weak SO2 emissions at or near the detection limit, followed by an explosive, magmatic eruption, producing ash-rich plumes to >2000 m, and centimeter to meter (or greater) sized pyroclastic bombs that roll down the flanks of the edifice. Eruption onset is accompanied by high-amplitude infrasound and occasionally visible shock

  1. Volcanic features of Io

    USGS Publications Warehouse

    Carr, M.H.; Masursky, H.; Strom, R.G.; Terrile, R.J.

    1979-01-01

    Volcanic activity is apparently higher on Io than on any other body in the Solar System. Its volcanic landforms can be compared with features on Earth to indicate the type of volcanism present on Io. ?? 1979 Nature Publishing Group.

  2. Volcanic eruption source parameters from active and passive microwave sensors

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario; Marzano, Frank S.; Cimini, Domenico; Mereu, Luigi

    2016-04-01

    It is well known, in the volcanology community, that precise information of the source parameters characterising an eruption are of predominant interest for the initialization of the Volcanic Transport and Dispersion Models (VTDM). Source parameters of main interest would be the top altitude of the volcanic plume, the flux of the mass ejected at the emission source, which is strictly related to the cloud top altitude, the distribution of volcanic mass concentration along the vertical column as well as the duration of the eruption and the erupted volume. Usually, the combination of a-posteriori field and numerical studies allow constraining the eruption source parameters for a given volcanic event thus making possible the forecast of ash dispersion and deposition from future volcanic eruptions. So far, remote sensors working at visible and infrared channels (cameras and radiometers) have been mainly used to detect, track and provide estimates of the concentration content and the prevailing size of the particles propagating within the ash clouds up to several thousand of kilometres far from the source as well as track back, a-posteriori, the accuracy of the VATDM outputs thus testing the initial choice made for the source parameters. Acoustic wave (infrasound) and microwave fixed scan radar (voldorad) were also used to infer source parameters. In this work we want to put our attention on the role of sensors operating at microwave wavelengths as complementary tools for the real time estimations of source parameters. Microwaves can benefit of the operability during night and day and a relatively negligible sensitivity to the presence of clouds (non precipitating weather clouds) at the cost of a limited coverage and larger spatial resolution when compared with infrared sensors. Thanks to the aforementioned advantages, the products from microwaves sensors are expected to be sensible mostly to the whole path traversed along the tephra cloud making microwaves particularly

  3. Geologic evolution of the Jemez Mountains and their potential for future volcanic activity

    SciTech Connect

    Burton, B.W.

    1982-01-01

    Geophysical and geochemical data and the geologic history of the Rio Grande rift and the vicinity of the Jemez Mountains are summarized to determine the probability of future volcanic activity in the Los Alamos, New Mexico area. The apparent cyclic nature of volcanism in the Jemez Mountains may be related to intermittent thermal inputs into the volcanic system beneath the region. The Jemez lineament, an alignment of late Cenozoic volcanic centers that crosses the rift near Los Alamos, has played an important role in the volcanic evolution of the Jemez Mountains. Geophysical data suggest that there is no active shallow magma body beneath the Valles caldera, though magma probably exists at about 15 km beneath this portion of the rift. The rate of volcanism in the Jemez Mountains during the last 10 million years has been 5 x 10/sup -9//km/sup 2//y. Lava or ash flows overriding Laboratory radioactive waste disposal sites would have little potential to release radionuclides to the environment. The probability of a new volcano intruding close enough to a radioactive waste disposal site to effect radionuclide release is 2 x 10/sup -7//y.

  4. Seismic Activity at tres Virgenes Volcanic and Geothermal Field

    NASA Astrophysics Data System (ADS)

    Antayhua, Y. T.; Lermo, J.; Quintanar, L.; Campos-Enriquez, J. O.

    2013-05-01

    The volcanic and geothermal field Tres Virgenes is in the NE portion of Baja California Sur State, Mexico, between -112°20'and -112°40' longitudes, and 27°25' to 27°36' latitudes. Since 2003 Power Federal Commission and the Engineering Institute of the National Autonomous University of Mexico (UNAM) initiated a seismic monitoring program. The seismograph network installed inside and around the geothermal field consisted, at the beginning, of Kinemetrics K2 accelerometers; since 2009 the network is composed by Guralp CMG-6TD broadband seismometers. The seismic data used in this study covered the period from September 2003 - November 2011. We relocated 118 earthquakes with epicenter in the zone of study recorded in most of the seismic stations. The events analysed have shallow depths (≤10 km), coda Magnitude Mc≤2.4, with epicentral and hypocentral location errors <2 km. These events concentrated mainly below Tres Virgenes volcanoes, and the geothermal explotation zone where there is a system NW-SE, N-S and W-E of extensional faults. Also we obtained focal mechanisms for 38 events using the Focmec, Hash, and FPFIT methods. The results show normal mechanisms which correlate with La Virgen, El Azufre, El Cimarron and Bonfil fault systems, whereas inverse and strike-slip solutions correlate with Las Viboras fault. Additionally, the Qc value was obtained for 118 events. This value was calculated using the Single Back Scattering model, taking the coda-waves train with window lengths of 5 sec. Seismograms were filtered at 4 frequency bands centered at 2, 4, 8 and 16 Hz respectively. The estimates of Qc vary from 62 at 2 Hz, up to 220 at 16 Hz. The frequency-Qc relationship obtained is Qc=40±2f(0.62±0.02), representing the average attenuation characteristics of seismic waves at Tres Virgenes volcanic and geothermal field. This value correlated with those observed at other geothermal and volcanic fields.

  5. Sulfur dioxide - Episodic injection shows evidence for active Venus volcanism

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.

    1984-03-01

    Pioneer Venus ultraviolet spectra from the first 5 years of operation show a decline (by more than a factor of 10) in sulfur dioxide abundance at the cloud tops and in the amount of submicron haze above the clouds. At the time of the Pioneer Venus encounter, the values for both parameters greatly exceeded earlier upper limits. However, Venus had a similar appearance in the late 1950's, implying the episodic injection of sulfur dioxide possibly caused by episodic volcanism. The amount of haze in the Venus middle atmosphere is about ten times that found in earth's stratosphere after the most recent major volcanic eruptions, and the thermal energy required for this injection on Venus is greater by about an order of magnitude than the largest of these recent earth eruptions and about as large as the Krakatoa eruption of 1883. The episodic behavior of sulfur dioxide implies that steady-state models of the chemistry and dynamics of cloud-top regions may be of limited use.

  6. Sulfur dioxide: episodic injection shows evidence for active venus volcanism.

    PubMed

    Esposito, L W

    1984-03-01

    Pioneer Venus ultraviolet spectra from the first 5 years of operation show a decline (by more than a factor of 10) in sulfur dioxide abundance at the cloud tops and in the amount of submicron haze above the clouds. At the time of the Pioneer Venus encounter, the values for both parameters greatly exceeded earlier upper limits. However, Venus had a similar appearance in the late 1950's, implying the episodic injection of sulfur dioxide possibly caused by episodic volcanism. The amount of haze in the Venus middle atmosphere is about ten times that found in Earth's stratosphere after the most recent major volcanic eruptions, and the thermal energy required for this injection on Venus is greater by about an order of magnitude than the largest of these recent Earth eruptions and about as large as the Krakatoa eruption of 1883. The episodic behavior of sulfur dioxide implies that steady-state models of the chemistry and dynamics of cloud-top regions may be of limited use.

  7. U.S. Geological Survey's Alert Notification System for Volcanic Activity

    USGS Publications Warehouse

    Gardner, Cynthia A.; Guffanti, Marianne C.

    2006-01-01

    The United States and its territories have about 170 volcanoes that have been active during the past 10,000 years, and most could erupt again in the future. In the past 500 years, 80 U.S. volcanoes have erupted one or more times. About 50 of these recently active volcanoes are monitored, although not all to the same degree. Through its five volcano observatories, the U.S. Geological Survey (USGS) issues information and warnings to the public about volcanic activity. For clarity of warnings during volcanic crises, the USGS has now standardized the alert-notification system used at its observatories.

  8. Mud volcanoes of trinidad as astrobiological analogs for martian environments.

    PubMed

    Hosein, Riad; Haque, Shirin; Beckles, Denise M

    2014-01-01

    Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC) was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i) Digity; (ii) Piparo and (iii) Devil's Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region.

  9. Mud volcanoes of trinidad as astrobiological analogs for martian environments.

    PubMed

    Hosein, Riad; Haque, Shirin; Beckles, Denise M

    2014-01-01

    Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC) was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i) Digity; (ii) Piparo and (iii) Devil's Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region. PMID:25370529

  10. Mud Volcanoes of Trinidad as Astrobiological Analogs for Martian Environments

    PubMed Central

    Hosein, Riad; Haque, Shirin; Beckles, Denise M.

    2014-01-01

    Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC) was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i) Digity; (ii) Piparo and (iii) Devil’s Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region. PMID:25370529

  11. Volcan de Fuego de Colima, review of the 2003 explosion activity and its morfological changes

    NASA Astrophysics Data System (ADS)

    Juan Jose, R. R.

    2003-12-01

    Volcan de Fuego de Colima, Mexico, (19§30'44 '' N and 103§37'02 '' W) is an stratovolcano located in the western front of the Trans Mexican volcanic belt. It shows 3 explosive events at least during the last 500 years (VEI=4), being the nearest those happened in 1818 and 1913. In the year 2002, after a stage of dome growth and later collapses of incandescent material on the volcanic edifice, its activity suffered changes during the first months of the year 2003. The volcanic activity during this period is characterized by the occurrence of lava collapses concentrated at west and south-west flanks of the edifice. During this period, a lava emission rate of 0.15 m3/s is taking place. The material collapses occurred from the summit reaches an average 250 per day. After this behavior the lava movement decrease and obstruct the lava conduct changing the volcanic activity during this period to an explosive scenario. During the months of May, June, July and August of 2003 several explosive events have been presented, being the most significant those happened the days July 17th (05:27) August 2 (15:41) and August 28th (11:52). These three events in particular, have been those that bigger changes have caused in the morphology of the summit. A description of the eruptive development of this stage is presented in the one that the main explosions and their reaches can be identified.

  12. Characterization and expression analysis of the prophenoloxidase activating factor from the mud crab Scylla paramamosain.

    PubMed

    Wang, J; Jiang, K J; Zhang, F Y; Song, W; Zhao, M; Wei, H Q; Meng, Y Y; Ma, L B

    2015-01-01

    Prophenoloxidase activating factors (PPAFs) are a group of clip domain serine proteinases that can convert prophenoloxidase (pro-PO) to the active form of phenoloxidase (PO), causing melanization of pathogens. Here, two full-length PPAF cDNAs from Scylla paramamosain (SpPPAF1 and SpPPAF2) were cloned and characterized. The full-length SpPPAF1 cDNA was 1677 bp in length, including a 5'-untranslated region (UTR) of 52 bp, an open reading frame (ORF) of 1131 bp coding for a polypeptide of 376 amino acids, and a 3'-UTR of 494 bp. The full-length SpPPAF2 cDNA was 1808 bp in length, including a 5'-UTR of 88 bp, an ORF of 1125 bp coding for a polypeptide of 374 amino acids, and a 3'-UTR of 595 bp. The estimated molecular weight of SpPPAF1 and SpPPAF2 was 38.43 and 38.56 kDa with an isoelectric point of 7.54 and 7.14, respectively. Both SpPPAF1 and SpPPAF2 proteins consisted of a signal peptide, a characteristic structure of clip domain, and a carboxyl-terminal trypsin-like serine protease domain. Expression analysis by qRT-PCR showed that SpPPAF1 mRNA was mainly expressed in the gill, testis, and hemocytes, and SpPPAF2 mRNA was mainly expressed in hemocytes. In addition, SpPPAF1 and SpPPAF2 mRNA was expressed in a time-dependent manner after Vibrio parahaemolyticus challenge. The results showed that expression of both SpPPAF1 and SpPPAF2 was related to the bacterial challenge but the expression patterns differed. These findings suggest that SpPPAF is a serine proteinase and may be involved in the pro-PO activation pathway of the crab innate immune system. PMID:26345816

  13. Mud Flow Characteristics Occurred in Izuoshima Island, 2013

    NASA Astrophysics Data System (ADS)

    Takebayashi, H.; Egashira, S.; Fujita, M.

    2015-12-01

    Landslides and mud flows were occurred in the west part of the Izuoshima Island, Japan on 16 October 2013. The Izuoshima Island is a volcanic island and the land surface is covered by the volcanic ash sediment in 1m depth. Hence, the mud flow with high sediment concentration was formed. The laminar layer is formed in the debris flow from the bed to the fluid surface. On the other hand, the laminar flow is restricted near the bed in the mud flow and the turbulence flow is formed on the laminar flow layer. As a result, the equilibrium slope of the mud flow becomes smaller comparing to the debris flow. In this study, the numerical analysis mud flow model considering the effect of turbulence flow on the equilibrium slope of the mud flow is developed. Subsequently, the model is applied to the mud flow occurred in the Izuoshima Island and discussed the applicability of the model and the flow characteristics of the mud flow. The differences of the horizontal flow areas between the simulated results and the field data are compared and it was found that the outline of the horizontal shape of the flow areas is reproduced well. Furthermore, the horizontal distribution of the erosion and deposition area is reproduced by the numerical analysis well except for the residential area (Kandachi area). Kandachi area is judged as the erosion area by the field observation, but the sediment was deposited in the numerical analysis. It is considered that the 1.5hour heavy rain over 100mm/h after the mud flow makes the discrepancy. The difference of the horizontal distribution of the maximum flow surface elevation between the simulated results and the field data are compared and it was found that the simulated flow depth is overestimated slightly, because of the wider erosion area due to the coarse resolution elevation data. The averaged velocity and the depth of the mud flow was enough large to collapse the houses.

  14. Recurring Swarms of Deep Long Period Earthquakes in the Denali Volcanic Gap Suggest a Continuation of Volcanic Processes in the Absence of Active Volcanism

    NASA Astrophysics Data System (ADS)

    Holtkamp, S. G.; Ruppert, N. A.; Silwal, V.; Christensen, D. H.; Nye, C. J.

    2014-12-01

    Seismicity in the northern segment of the Denali Volcanic Gap clusters bimodally with depth, with dense clusters of earthquakes occurring in the subducting slab at >100 km depth beneath Denali, and within the crust north of the Denali fault at <20 km depth. On January 22, 2014, the Alaska Earthquake Center recorded a Deep Long Period earthquake (DLP), magnitude 1.7, at 40 km depth north of the Denali Fault. The epicenter for this event was <5 km of broadband station TRF, so the depth is well constrained. The DLP event is almost devoid of energy above 5 Hz. Receiver functions for stations TRF and SBL, both <10 km of the epicenter, show Moho depths of 36-40 km.We used waveforms of this DLP as a template event for network matched filtering, which identifies similar signals in continuous time series. We processed this template event from June 1999 to July 2014. We use several matches produced by this template as additional templates, iterating the process. Using this methodology, we identify over 300 DLP's. Events typically come in swarms lasting hours to days with no events exceeding magnitude 2. Swarms are separated by months to years of little detectable activity. A swarm of events on June 30, 2001 coincides with the Broadband Experiment Across the Alaska Range (BEAAR) seismic deployment, and was recorded by 15 broadband seismometers within 100 km of the epicenter. A preliminary waveform inversion for the focal mechanism of this event results in isotropic (implosive) and double couple components.We argue that these DLP's are evidence of magmatic or volatile movement through the sub-arc mantle wedge, even though there is no active volcanism at the surface. Relative relocations, utilizing cross correlated p- and s- waveforms, highlight a nest of seismicity with no structures such as planes or conduits. Lack of planar features, as well as the isotopic component and lack of strike slip to the focal mechanism, may argue against a deep extension of the Hines Creek or

  15. 2013 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Dixon, James P.; Cameron, Cheryl; McGimsey, Robert G.; Neal, Christina A.; Waythomas, Chris

    2015-08-14

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2013. Beginning with the 2013 AVO Summary of Events, the annual description of the AVO seismograph network and activity, once a stand-alone publication, is now part of this report. Because of this change, the annual summary now contains an expanded description of seismic activity at Alaskan volcanoes. Eruptions occurred at three volcanic centers in 2013: Pavlof Volcano in May and June, Mount Veniaminof Volcano in June through December, and Cleveland Volcano throughout the year. None of these three eruptive events resulted in 24-hour staffing at AVO facilities in Anchorage or Fairbanks.

  16. 2013 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Dixon, James P.; Cameron, Cheryl; McGimsey, Robert G.; Neal, Christina A.; Waythomas, Chris

    2015-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2013. Beginning with the 2013 AVO Summary of Events, the annual description of the AVO seismograph network and activity, once a stand-alone publication, is now part of this report. Because of this change, the annual summary now contains an expanded description of seismic activity at Alaskan volcanoes. Eruptions occurred at three volcanic centers in 2013: Pavlof Volcano in May and June, Mount Veniaminof Volcano in June through December, and Cleveland Volcano throughout the year. None of these three eruptive events resulted in 24-hour staffing at AVO facilities in Anchorage or Fairbanks.

  17. A geophysical survey of active volcanism in the Central and Southern Andes

    NASA Astrophysics Data System (ADS)

    Jay, Jennifer Ann

    The subduction of the Nazca plate beneath the South American plate results in great earthquakes and active volcanism along the Andean margin. The Central Volcanic Zone (CVZ) between 15°S and 28°S and the Southern Volcanic Zone (SVZ) between 33°S and 46°S are separated by a zone of flat slab subduction and differ significantly in the manifestation of current volcanic activity. The CVZ has been considered less hazardous due to the few number of historical volcanic eruptions compared to the SVZ, yet it contains the largest mid-crustal magma body on Earth and erupted at least 10,000 km 3 of ignimbrite in the Late Miocene (10-1 Ma). In this dissertation, I use InSAR (interferometric synthetic aperture radar), thermal remote sensing, and seismology to investigate active volcanism in the Central and Southern Andes. InSAR and thermal remote sensing provide synoptic coverage along the volcanic arc, and seismic experiments allow further examination of selected volcanoes. I establish the first catalog of seismicity at Uturuncu volcano in Bolivia, where InSAR has observed continuous uplift since 1992, and find an unusually high seismicity rate for a Pleistocene volcano as well as swarm activity and triggered earthquakes. I then conduct a survey using satellite thermal infrared data to detect thermal hotspots related to volcanic activity throughout the CVZ and SVZ. I find hotspots at many volcanoes that had not previously been documented, with the CVZ containing more volcanoes with hotspots than the SVZ. One of the most thermally active volcanoes in the SVZ, Cordon Caulle volcano, experienced a large rhyodacitic eruption from 2011-2012. I use InSAR and petrology to model the pre-eruptive conditions at depth and co-eruptive processes and find that a large, long-lived crustal magma reservoir must be present beneath Cordon Caulle. Finally, I carry out an InSAR survey of volcanoes in southern Peru, completing a regional study of volcano deformation in the CVZ and allowing for a

  18. Predicting mud toxicity

    SciTech Connect

    Bleler, R. )

    1991-10-01

    Acute toxicity of drilling muds is measured in the U.S. by the mysid shrimp test. Drilling muds that fail the test cannot be discharged into the Gulf of Mexico, and such muds and their cuttings must be brought onshore for disposal. Discharge of water-based muds that pass the test is permitted in most instances. Because of the economic implications associated with hauling cuttings and fluids, a model that predicts test results on the basis of mud composition is clearly desirable. This paper focuses on the modeling of mysid shrimp test data. European laboratories use different test species and procedures. It seems plausible to expect, however, that the line of reasoning used here could apply to the modeling of aquatic data on other test species once a sufficient quantity of such data becomes available.

  19. Enrichment of heavy metals in the inner shelf mud of the East China Sea and its indication to human activity

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Fan, Dejiang; Li, Weiran; Wang, Liang; Zhang, Xilin; Liu, Ming; Guo, Zhigang

    2014-11-01

    The Yangtze River Basin, which has a population of 0.4 billion and an economic output accounting for 50% of China's Gross Domestic Product (GDP), is one of the most developed regions in China. With dramatic developments in the economy, large quantities of pollutants have entered the Yangtze River and have eventually been discharged into the East China Sea (ECS), and then most of them were preserved in the inner shelf coastal mud areas of the ECS. The inner shelf costal mud areas of the ECS, with sedimentation rate ranging from 0.8 cm/a to 1.2 cm/a, are an ideal place to obtain the high-resolution heavy metal record. In this work, two sediment cores collected in the inner shelf of the coastal mud areas of the ECS in 2009 were used to reconstruct historical records of anthropogenic heavy metal input from the Yangtze River Basin. The temporal distribution of enrichment factors (EFs) is in good accordance with social development of Yangtze River Basin. Before the 1930s, the EFs of Pb and Zn are considered as the background level of study area, according to the agricultural country of China in that time. The much higher EFs of Pb and Zn from the 1930s to 1980s were associated with significant improvement of industry of the Yangtze River Basin. After 1983, the dramatical incensement of EFs of Pb and Zn responded to the remarkable economic development of the Yangtze River Basin. Of particular interest, the construction of the Three Gorges Dam (TGD) in 2003 possibly induced a significant increase in the heavy metal levels in the coastal ECS, and the ban on leaded gasoline in China induced a remarkable decrease in Pb levels. Although heavy metal levels have increased since the 1930s, the coastal mud area of the ECS remains under low ecological risk.

  20. Multiple episodes of hydrothermal activity and epithermal mineralization in the southwestern Nevada volcanic field and their relations to magmatic activity, volcanism and regional extension

    SciTech Connect

    Weiss, S.I.; Noble, D.C.; Jackson, M.C.

    1994-12-31

    Volcanic rocks of middle Miocene age and underlying pre-Mesozoic sedimentary rocks host widely distributed zones of hydrothermal alteration and epithermal precious metal, fluorite and mercury deposits within and peripheral to major volcanic and intrusive centers of the southwestern Nevada volcanic field (SWNVF) in southern Nevada, near the southwestern margin of the Great Basin of the western United States. Radiometric ages indicate that episodes of hydrothermal activity mainly coincided with and closely followed major magmatic pulses during the development of the field and together spanned more than 4.5 m.y. Rocks of the SWNVF consist largely of rhyolitic ash-flow sheets and intercalated silicic lava domes, flows and near-vent pyroclastic deposits erupted between 15.2 and 10 Ma from vent areas in the vicinity of the Timber Mountain calderas, and between about 9.5 and 7 Ma from the outlying Black Mountain and Stonewall Mountain centers. Three magmatic stages can be recognized: the main magmatic stage, Mountain magmatic stage (11.7 to 10.0 Ma), and the late magmatic stage (9.4 to 7.5 Ma).

  1. Soil radon measurements as a potential tracer of tectonic and volcanic activity.

    PubMed

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-04-15

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009-2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.

  2. Soil radon measurements as a potential tracer of tectonic and volcanic activity

    PubMed Central

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-01-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009–2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes. PMID:27079264

  3. Soil radon measurements as a potential tracer of tectonic and volcanic activity

    NASA Astrophysics Data System (ADS)

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-04-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009–2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.

  4. Soil radon measurements as a potential tracer of tectonic and volcanic activity.

    PubMed

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-01-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009-2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes. PMID:27079264

  5. Significance of an Active Volcanic Front in the Far Western Aleutian Arc

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G. M.; Kelemen, P. B.; Hoernle, K.

    2015-12-01

    Discovery of a volcanic front west of Buldir Volcano, the western-most emergent Aleutian volcano, demonstrates that the surface expression of Aleutian volcanism falls below sea level just west of 175.9° E longitude, but is otherwise continuous from mainland Alaska to Kamchatka. The newly discovered sites of western Aleutian seafloor volcanism are the Ingenstrem Depression, a 60 km-long structural depression just west of Buldir, and an unnamed area 300 km further west, referred to as the Western Cones. These locations fall along a volcanic front that stretches from Buldir to Piip Seamount near the Komandorsky Islands. Western Aleutian seafloor volcanic rocks include large quantities of high-silica andesite and dacite, which define a highly calc-alkaline igneous series and carry trace element signatures that are unmistakably subduction-related. This indicates that subducting oceanic lithosphere is present beneath the westernmost Aleutian arc. The rarity of earthquakes below depths of 200 km indicates that the subducting plate is unusually hot. Some seafloor volcanoes are 6-8 km wide at the base, and so are as large as many emergent Aleutian volcanoes. The seafloor volcanoes are submerged in water depths >3000 m because they sit on oceanic lithosphere of the Bering Sea. The volcanic front is thus displaced to the north of the ridge of arc crust that underlies the western Aleutian Islands. This displacement, which developed since approximately 6 Ma when volcanism was last active on the islands, must be a consequence of oblique convergence in a system where the subducting plate and large blocks of arc crust are both moving primarily in an arc-parallel sense. The result is a hot-slab system where low subduction rates probably limit advection of hot mantle to the subarc, and produce a relatively cool and perhaps stagnant mantle wedge. The oceanic setting and highly oblique subduction geometry also severely limit rates of sediment subduction, so the volcanic rocks, which

  6. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 2--morphological and mineralogical features.

    PubMed

    Calabrese, S; D'Alessandro, W

    2015-01-01

    Volcanic emissions were studied at Mount Etna (Italy) by using moss-bags technique. Mosses were exposed around the volcano at different distances from the active vents to evaluate the impact of volcanic emissions in the atmosphere. Morphology and mineralogy of volcanic particulate intercepted by mosses were investigated using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS). Particles emitted during passive degassing activity from the two active vents, Bocca Nuova and North East Crater (BNC and NEC), were identified as silicates, sulfates and halide compounds. In addition to volcanic particles, we found evidences also of geogenic, anthropogenic and marine spray input. The study has shown the robustness of this active biomonitoring technique to collect particles, very useful in active volcanic areas characterized by continuous degassing and often not easily accessible to apply conventional sampling techniques.

  7. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 2--morphological and mineralogical features.

    PubMed

    Calabrese, S; D'Alessandro, W

    2015-01-01

    Volcanic emissions were studied at Mount Etna (Italy) by using moss-bags technique. Mosses were exposed around the volcano at different distances from the active vents to evaluate the impact of volcanic emissions in the atmosphere. Morphology and mineralogy of volcanic particulate intercepted by mosses were investigated using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS). Particles emitted during passive degassing activity from the two active vents, Bocca Nuova and North East Crater (BNC and NEC), were identified as silicates, sulfates and halide compounds. In addition to volcanic particles, we found evidences also of geogenic, anthropogenic and marine spray input. The study has shown the robustness of this active biomonitoring technique to collect particles, very useful in active volcanic areas characterized by continuous degassing and often not easily accessible to apply conventional sampling techniques. PMID:25311770

  8. Exploratory Data Analysis Using a Dedicated Visualization App: Looking for Patterns in Volcanic Activity

    NASA Astrophysics Data System (ADS)

    van Manen, S. M.; Chen, S.

    2015-12-01

    Here we present an App designed to visualize and identify patterns in volcanic activity during the last ten years. It visualizes VEI (volcanic explosivity index) levels, population size, frequency of activity, and geographic region, and is designed to address the issue of oversampling of data. Often times, it is difficult to access a large set of data that can be scattered at first glance and hard to digest without visual aid. This App serves as a model that solves this issue and can be applied to other data. To enable users to quickly assess the large data set it breaks down the apparently chaotic abundance of information into categories and graphic indicators: color is used to indicate the VEI level, size for population size within 5 km of a volcano, line thickness for frequency of activity, and a grid to pinpoint a volcano's latitude. The categories and layers within them can be turned on and off by the user, enabling them to scroll through and compare different layers of data. By visualising the data this way, patterns began to emerge. For example, certain geographic regions had more explosive eruptions than others. Another good example was that low frequency larger impact volcanic eruptions occurred more irregularly than smaller impact volcanic eruptions, which had a more stable frequencies. Although these findings are not unexpected, the easy to navigate App does showcase the potential of data visualization for the rapid appraisal of complex and abundant multi-dimensional geoscience data.

  9. Chemistry of ash-leachates: a reliable monitoring tool for volcanic activity

    NASA Astrophysics Data System (ADS)

    Armienta, M. A.; De la Cruz-Reyna, S.; Soler, A.; Ceniceros, N.; Cruz, O.; Aguayo, A.

    2012-04-01

    Real-time volcanic hazard assessment requires the integrated interpretation of data obtained with different monitoring methods, particularly when people may be at risk. One of the methods rendering earliest precursory variations reflecting the internal state of a volcano is the geochemical analysis of gases, ground or lake waters related to volcanic systems, and volcanic ash. At Popocatépetl volcano, Central México, chemical fluctuations of the soluble cover of volcanic ash particles has proved to reflect diverse characteristics of the eruption types. Chloride, sulfate and fluoride concentrations of ash leachates have been consistently measured within the current eruptive episode beginning in December 1994. Particularly, main anions presented diverse relative concentrations in periods of dome extrusions, contrasting with hydrothermal activity or quiescence. Multivariate statistical analysis revealed that higher proportions of fluoride in the leachates corresponded to new dome emplacements and relatively higher sulfate concentrations to hydrothermal ashes, although these results may be ambiguous at times. However, different sulfur isotopic ratios were measured in sulfate from ashes erupted during periods dominated by hydrothermal activity to those emitted during dome emplacement. Additionally, ascent of fresh magma was reflected on high fluoride concentrations jointly with low 34S-SO4 isotopic values. It is thus recommended to maintain persistent analyses of ash-leachates from on-going eruptions as a monitoring tool at active volcanoes.

  10. The Volcanic Ash Strategic Initiative Team (VAST) - operational testing activities and exercises

    NASA Astrophysics Data System (ADS)

    Wotawa, Gerhard; Arnold, Delia; Eckhardt, Sabine; Kristiansen, Nina; Maurer, Christian; Prata, Fred; Stohl, Andreas; Zehner, Claus

    2013-04-01

    The project VAST performs its activities within an ESA (European Space Agency) initiative to enhance the use of Earth Observation (EO) data in volcanic ash monitoring and forecasting. The VAST project aims at further exploring the suitability of EO data for such activities and to improve volcanic ash atmospheric transport forecasting services through exercises and demonstration activities in operational environments. Previous to the in-house deployment of the demonstration service, several exercises on operations and communication exchange are needed and first results are presented here. These exercises include technical in-house settings and conceptual planning of the operations with procedure development, volcanic eruptions drills that trigger the acquiring of data and dispersion/forecasting calculations with preliminary estimates of source terms and finally, an international exercise that provides a test case volcanic event to evaluate response times and the usefulness of the different products obtained. Products also include ensemble dispersion forecasts, on one hand multi-input ensembles utilizing the ECMWF EPS system, and on the other hand multi-model ensembles based on different dispersion models driven with different input data. As part of the work, socio-economic aspects need to be taken into account as well. This includes also the identification of best practices on how results can be presented to the stakeholders, including national authorities and policy makers, and the general public.

  11. The STRATegy COLUMN for Precollege Science Teachers: Volcanic Activity.

    ERIC Educational Resources Information Center

    Metzger, Ellen Pletcher

    1995-01-01

    Describes resources for information and activities involving volcanoes. Includes an activity that helps students become familiar with the principal types of volcanoes and explores how the viscosity of magma affects the way a volcano erupts. (MKR)

  12. Planetary Volcanism

    NASA Technical Reports Server (NTRS)

    Antonenko, I.; Head, J. W.; Pieters, C. W.

    1998-01-01

    The final report consists of 10 journal articles concerning Planetary Volcanism. The articles discuss the following topics: (1) lunar stratigraphy; (2) cryptomare thickness measurements; (3) spherical harmonic spectra; (4) late stage activity of volcanoes on Venus; (5) stresses and calderas on Mars; (6) magma reservoir failure; (7) lunar mare basalt volcanism; (8) impact and volcanic glasses in the 79001/2 Core; (9) geology of the lunar regional dark mantle deposits; and (10) factors controlling the depths and sizes of magma reservoirs in Martian volcanoes.

  13. Microbial community of a saline mud volcano at San Biagio-Belpasso, Mt. Etna (Italy).

    PubMed

    Yakimov, Michail M; Giuliano, Laura; Crisafi, Ermanno; Chernikova, Tatyana N; Timmis, Kenneth N; Golyshin, Peter N

    2002-05-01

    In San Biagio of Belpasso, approximately 20 km south of Mt. Etna, in the area of contact between volcanic and sedimentary formations, a number of small (3- 60 cm in diameter) active mud eruptions discharge CO2-rich gases, mud and NaCl brines. They can be described as mini-volcanoes owing to their typical conic shapes and continuously bubbling peak craters. Samples were collected from the active peak craters at a depth of 20 cm and DNA was immediately extracted and amplified with universal 16S rRNA gene-specific primers, followed by cloning procedure. A total of 140 bacterial clones obtained were screened and clustered by restriction fragment length polymorphism (RFLP) analysis. The pool of 16S rRNA sequences representing each RFLP cluster was subjected to phylogenetic analysis. All of the 33 sequences analysed were affiliated with the kingdom of Eubacteria; 28 sequences (77% of all clones) affiliated with the Proteobacteria, two sequences (19% of all clones) were affiliated with Actinobacteria and three sequences (4% of all clones) were affiliated with the Flexibacter-Cytophaga-Bacteroides division. The data obtained suggest that the microorganisms phylogenetically affiliated to autotrophic methane oxidizers and heterotrophic hydrocarbon degraders belonging to the gamma-subclass of Proteobacteria are major constituents of the microbial communities of the saline volcanic muds. Overall, the composition of the microbial community of the San Biagio mud volcano resembles the compositions of marine microbial communities, which might indicate that wind-blown seawater vapour acted as an inoculum for microbial community described in present work.

  14. Observing Active Volcanism on Earth and Beyond With an Autonomous Science Investigation Capability

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; Mjolsness, E. D.; Fink, W.; Castano, R.; Park, H. G.; Zak, M.; Burl, M. C.

    2001-12-01

    Operational constraints imposed by restricted downlink and long communication delays make autonomous systems a necessity for exploring dynamic processes in the Solar System and beyond. Our objective is to develop an onboard, modular, automated science analysis tool that will autonomously detect unexpected events, identify rare events at predicted sites, quantify the processes under study, and prioritize the science data and analyses as they are collected. A primary target for this capability is terrestrial active volcanism. Our integrated, science-driven command and control package represents the next stage of the automatic monitoring of volcanic activity pioneered by GOES. The resulting system will maximize science return from day-to-day instrument use and provide immediate reaction to capture the fullest information from infrequent events. For example, a sensor suite consisting of a Galileo-like multi-filter visible wavelength camera and an infrared spectrometer, can acquire high-spatial resolution data of eruptions of lava and volcanic plumes and identify large concentrations of volcanic SO2. After image/spectrum formation, software is applied to the data which is capable of change detection (in the visible and infrared), feature identification (both in imagery and spectra), and novelty detection. In this particular case, the latter module detects change in the parameter space of an advanced multi-component black-body volcanic thermal emission model by means of a novel technique called the "Grey-Box" method which analyzes time series data through a combination of deterministic and stochastic models. This approach can be demonstrated using data obtained by the Galileo spacecraft of ionian volcanism. The system autonomously identifies the most scientifically important targets and prioritizes data and analyses for return. All of these techniques have been successfully demonstrated in laboratory experiments, and are ready to be tested in an operational environment

  15. High resolution DEM from Tandem-X interferometry: an accurate tool to characterize volcanic activity

    NASA Astrophysics Data System (ADS)

    Albino, Fabien; Kervyn, Francois

    2013-04-01

    Tandem-X mission was launched by the German agency (DLR) in June 2010. It is a new generation high resolution SAR sensor mainly dedicated to topographic applications. For the purpose of our researches focused on the study of the volcano-tectonic activity in the Kivu Rift area, a set of Tandem-X bistatic radar images were used to produce a high resolution InSAR DEM of the Virunga Volcanic Province (VVP). The VVP is part of the Western branch of the African rift, situated at the boundary between D.R. Congo, Rwanda and Uganda. It has two highly active volcanoes, Nyiragongo and Nyamulagira. A first task concerns the quantitative assessment of the vertical accuracy that can be achieved with these new data. The new DEMs are compared to other space borne datasets (SRTM, ASTER) but also to field measurements given by differential GPS. Multi-temporal radar acquisitions allow us to produce several DEM of the same area. This appeared to be very useful in the context of an active volcanic context where new geomorphological features (faults, fissures, volcanic cones and lava flows) appear continuously through time. For example, since the year 2000, time of the SRTM acquisition, we had one eruption at Nyiragongo (2002) and six eruptions at Nyamulagira (2001, 2002, 2004, 2006, 2010 and 2011) which all induce large changes in the landscape with the emplacement of new lava fields and scoria cones. From our repetitive Tandem-X DEM production, we have a tool to identify and also quantify in term of size and volume all the topographic changes relative to this past volcanic activity. These parameters are high value information to improve the understanding of the Virunga volcanoes; the accurate estimation of erupted volume and knowledge of structural features associated to past eruptions are key parameters to understand the volcanic system, to ameliorate the hazard assessment, and finally contribute to risk mitigation in a densely populated area.

  16. Evidence of recent deep magmatic activity at Cerro Bravo-Cerro Machín volcanic complex, central Colombia. Implications for future volcanic activity at Nevado del Ruiz, Cerro Machín and other volcanoes

    NASA Astrophysics Data System (ADS)

    Londono, John Makario

    2016-09-01

    In the last nine years (2007-2015), the Cerro Bravo-Cerro Machín volcanic complex (CBCMVC), located in central Colombia, has experienced many changes in volcanic activity. In particular at Nevado del Ruiz volcano (NRV), Cerro Machin volcano (CMV) and Cerro Bravo (CBV) volcano. The recent activity of NRV, as well as increasing seismic activity at other volcanic centers of the CBCMVC, were preceded by notable changes in various geophysical and geochemical parameters, that suggests renewed magmatic activity is occurring at the volcanic complex. The onset of this activity started with seismicity located west of the volcanic complex, followed by seismicity at CBV and CMV. Later in 2010, strong seismicity was observed at NRV, with two small eruptions in 2012. After that, seismicity has been observed intermittently at other volcanic centers such as Santa Isabel, Cerro España, Paramillo de Santa Rosa, Quindío and Tolima volcanoes, which persists until today. Local deformation was observed from 2007 at NRV, followed by possible regional deformation at various volcanic centers between 2011 and 2013. In 2008, an increase in CO2 and Radon in soil was observed at CBV, followed by a change in helium isotopes at CMV between 2009 and 2011. Moreover, SO2 showed an increase from 2010 at NRV, with values remaining high until the present. These observations suggest that renewed magmatic activity is currently occurring at CBCMVC. NRV shows changes in its activity that may be related to this new magmatic activity. NRV is currently exhibiting the most activity of any volcano in the CBCMVC, which may be due to it being the only open volcanic system at this time. This suggests that over the coming years, there is a high probability of new unrest or an increase in volcanic activity of other volcanoes of the CBCMVC.

  17. International Collaboration on Building Local Technical Capacities for Monitoring Volcanic Activity at Pacaya Volcano, Guatemala.

    NASA Astrophysics Data System (ADS)

    Escobar-Wolf, R. P.; Chigna, G.; Morales, H.; Waite, G. P.; Oommen, T.; Lechner, H. N.

    2015-12-01

    Pacaya volcano is a frequently active and potentially dangerous volcano situated in the Guatemalan volcanic arc. It is also a National Park and a major touristic attraction, constituting an important economic resource for local municipality and the nearby communities. Recent eruptions have caused fatalities and extensive damage to nearby communities, highlighting the need for risk management and loss reduction from the volcanic activity. Volcanic monitoring at Pacaya is done by the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia (INSIVUMEH), instrumentally through one short period seismic station, and visually by the Parque Nacional Volcan de Pacaya y Laguna de Calderas (PNVPLC) personnel. We carry out a project to increase the local technical capacities for monitoring volcanic activity at Pacaya. Funding for the project comes from the Society of Exploration Geophysicists through the Geoscientists Without Borders program. Three seismic and continuous GPS stations will be installed at locations within 5 km from the main vent at Pacaya, and one webcam will aid in the visual monitoring tasks. Local educational and outreach components of the project include technical workshops on data monitoring use, and short thesis projects with the San Carlos University in Guatemala. A small permanent exhibit at the PNVPLC museum or visitor center, focusing on the volcano's history, hazards and resources, will also be established as part of the project. The strategy to involve a diverse group of local collaborators in Guatemala aims to increase the chances for long term sustainability of the project, and relies not only on transferring technology but also the "know-how" to make that technology useful. Although not a primary research project, it builds on a relationship of years of joint research projects at Pacaya between the participants, and could be a model of how to increase the broader impacts of such long term collaboration partnerships.

  18. Radioactivity of peat mud used in therapy.

    PubMed

    Karpińska, Maria; Mnich, Krystian; Kapała, Jacek; Bielawska, Agnieszka; Kulesza, Grzegorz; Mnich, Stanisław

    2016-02-01

    The aim of the study was to determine the contents of natural and artificial isotopes in peat mud and to estimate the radiation dose absorbed via skin in patients during standard peat mud treatment. The analysis included 37 samples collected from 8 spas in Poland. The measurements of isotope concentration activity were conducted with the use of gamma spectrometry methods. The skin dose in a standard peat mud bath therapy is approximately 300 nSv. The effective dose of such therapy is considered to be 22 nSv. The doses absorbed during peat mud therapy are 5 orders of magnitude lower than effective annual dose absorbed from the natural radiation background by a statistical Pole (3.5 mSv). Neither therapeutic nor harmful effect is probable in case of such a small dose of ionising radiation.

  19. Factors limiting microbial activity in volcanic tuff at Yucca Mountain

    SciTech Connect

    Kieft, T.L.; Kovacik, W.P.; Taylor, J.

    1996-09-01

    Samples of tuff aseptically collected from 10 locations in the Exploratory Shaft Facility at the site of the proposed high-level nuclear waste repository at Yucca Mountain, Nevada Test Site were analyzed for microbiological populations, activities, and factors limiting microbial activity. Radiotracer assays ({sup 14}C-labeled organic substrate mineralization), direct microscopic counts, and plate counts were used. Radiolabeled substrates were glucose, acetate, and glutamate. Radiotracer experiments were carried out with and without moisture and inorganic nutrient amendments to determine factors limiting to microbial activities. Nearly all samples showed the presence of microorganisms with the potential to mineralize organic substrates. Addition of inorganic nutrients stimulated activities in a small number of samples. The presence of viable microbial communities within the tuff has implications for transport of contaminants.

  20. Cordon Caulle: an active volcanic-geothermal extensional system of Southern Andes of Chile

    NASA Astrophysics Data System (ADS)

    Sepulveda, F.

    2013-05-01

    Cordon Caulle (CC; 40.5° S) is an active volcanic-geothermal system of the Southern Volcanic Zone (SVZ; 37°-44°S). Morphologically, the CC system is a 6 km x 13 km volcanic plateau bordered by NW-trending structures, limited by Puyehue Volcano to the SE and by Caldera Nevada Caldera to the NW. While the SVZ is dominantly basaltic, CC is unique in that it has produced a wide compositional spectrum from basalt to rhyolite. The most recent volcanic activity of Puyehue-CC (last 70 ky) is dominantly silicic, including two historic fissure eruptions (1921-1922; 1960) and a recent central eruption from Puyehue Volcano (2011). Abnormally silicic volcanism was formerly attributed to a localized compression and long-term magma residence and differentiation, resulting from the NW orientation of underlying CC structures with respect to a NE-oriented σ1 (linked to regional strike-slip stress state). However, later studies, including examination of morpho-tectonic features; detailed structural analysis of the 1960 eruption (triggered by Mw 9.5 1960 Chilean Earthquake); InSAR deformation and gravity surveys, point to both historic and long-term extension at CC with σhmax oriented NNW to NW. The pre-2011 (i.e. Puyehue Volcano eruption) geothermal features of CC included boiling hot springs and geysers (Caldera Nevada) and fumaroles (CC and Puyehue Volcano). Both water and gas chemistry surveys were undertaken to assess the source fluid composition and equilibrium temperature. The combination of water and gas geothermometers led to a conceptual model of a stratified geothermal reservoir, with shallow, low-chloride, steam-heated aquifers equilibrated at temperatures between 150°-180°C, overlying a deeper, possibly dominated reservoir with temperatures in excess of 280°C. Gas chemistry also produced the highest He ratios of the SVZ, in agreement with a relatively pure, undiluted magmatic signature and heat source fueling the geothermal system. Other indicators such as N2/Ar

  1. Molecular cloning, genomic organization and antibacterial activity of a second isoform of antilipopolysaccharide factor (ALF) from the mud crab, Scylla paramamosain.

    PubMed

    Imjongjirak, Chanprapa; Amparyup, Piti; Tassanakajon, Anchalee

    2011-01-01

    Antimicrobial peptides (AMPs) serve a major role in host defense systems against microbial invasion. In this study, a novel isoform (ALFSp2) of antilipopolysaccharide factors (ALFs) was cloned from the mud crab, Scylla paramamosain. The open reading frame of the ALFSp2 cDNA is 348 bp and encodes for a predicted 115 amino acid residues (12.92 kDa), and a mature protein of 94 amino acids and a molecular mass of 10.79 kDa. The amino acid sequence of ALFSp2 has an overall similarity of 74%, 66% and 52% to those of Eriocheir sinensis ALF, Penaeus monodon ALFPm3 and S. paramamosain ALFSp1, respectively. The genomic organization of the ALFSp2 gene consists of three exons and two introns, whilst the upstream region contains multiple putative transcription factor binding sites. In healthy crabs, ALFSp2 transcript levels were high in the hemocytes and gill tissues, intermediate levels in the intestine and muscles and at a low level in the hepatopancreas, as determined by RT-PCR. To characterize the in vitro antimicrobial activities of ALFSp2, the 24 amino acid LPS-binding domain encoding peptide was synthesized and revealed an antimicrobial activity against Gram-positive (Aerococcus viridans and Micrococcus luteus) and Gram-negative (Vibrio harveyi and Vibrio anguillarum) bacteria. Altogether these results suggest a potential involvement for ALFSp2 in the defense mechanism of the mud crab, S. paramamosain. PMID:20883796

  2. Underground structure of terrestrial mud volcanoes and abnormal water pressure formation in Niigata, Central JAPAN

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Shinya, T.; Miyata, Y.; Tokuyasu, S.

    2005-12-01

    and 800 m in diameter under the mud volcanoes. Moreover, low resistivity zone is continuing to the ground surface along the rim of the basin structure similar to volcanic caldera where mud volcanoes are active. As a result, it is concluded the abnormal water pressure was generated 4000 m in depth by the dehydration by the smectite-illite transition. Saline water chamber was generated 600 m in depth. Then, pressurized water and gas were erupted and the caldera structure was formed. After that, the ground surface was subsided and the basin was formed. Mud and groundwater is erupting along the caldera wall now. The trouble section in the tunnel excavation corresponds to the caldera wall where pressurized saline water and gas was filled.

  3. Red mud product development

    SciTech Connect

    Kirkpatrick, D.B.

    1996-10-01

    Kaiser Alumina and Chemical Co. impounds red mud, the byproduct of alumina production, behind levees. Kaiser recognizes that this action cannot be maintained indefinitely. Therefore, a project is in progress to produce useful products from red mud that increase the profitability of the Gramercy facility. Before products could be developed, an obstacle had to be overcome. The annual rainfall in South Louisiana prevents evaporative drying of the mud lakes. Innovative methods were applied to dry the lake mud. Two products have been developed. A daily landfill cover and an absorbant, which are marketed under the Cajunite{trademark} banner. Both products are currently being tested by potential customers at their sites. Environmental concerns were addressed during development. Extensive TCLP results show no metal leachate problems. All pilot tests and plant trials received LADEQ approval. Products that are under development include levee core, road base, fertilizer fillers and synthetic soils. State and Federal agencies are interested in using red mud to remediate coastal erosion. Kaiser is also pursuing the recovery of metals from red mud.

  4. Compilation of Disruptions to Airports by Volcanic Activity (Version 1.0, 1944-2006)

    USGS Publications Warehouse

    Guffanti, Marianne; Mayberry, Gari C.; Casadevall, Thomas J.; Wunderman, Richard

    2008-01-01

    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. To more fully characterize the nature and scope of volcanic hazards to airports, we collected data on incidents of airports throughout the world that have been affected by volcanic activity, beginning in 1944 with the first documented instance of damage to modern aircraft and facilities in Naples, Italy, and extending through 2006. Information was gleaned from various sources, including news outlets, volcanological reports (particularly the Smithsonian Institution's Bulletin of the Global Volcanism Network), and previous publications on the topic. This report presents the full compilation of the data collected. For each incident, information about the affected airport and the volcanic source has been compiled as a record in a Microsoft Access database. The database is incomplete in so far as incidents may not have not been reported or documented, but it does present a good sample from diverse parts of the world. Not included are en-route diversions to avoid airborne ash clouds at cruise altitudes. The database has been converted to a Microsoft Excel spreadsheet. To make the PDF version of table 1 in this open-file report resemble the spreadsheet, order the PDF pages as 12, 17, 22; 13, 18, 23; 14, 19, 24; 15, 20, 25; and 16, 21, 26. Analysis of the database reveals that, at a minimum, 101 airports in 28 countries were impacted on 171 occasions from 1944 through 2006 by eruptions at 46 volcanoes. The number of affected airports (101) probably is better constrained than the number of incidents (171) because recurring disruptions at a given airport may have been lumped together or not reported by news agencies, whereas the initial disruption likely is noticed and reported and thus the airport correctly counted.

  5. Analysis of Focal Mechanism and Microseismicity around the Lusi Mud Eruption Site, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Karyono, Karyono; Obermann, Anne; Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Abdurrokhim, Abdurrokhim; Masturyono, Masturyono; Hadi, Soffian

    2016-04-01

    The 29th of May 2006 numerous eruption sites started in northeast Java, Indonesia following to a M6.3 earthquake striking the island.Within a few weeks an area or nearly 2 km2 was covered by boiling mud and rock fragments and a prominent central crater (named Lusi) has been erupting for the last 9.5 years. The M.6.3 seismic event also triggered the activation of the Watukosek strike slip fault system that originates from the Arjuno-Welirang volcanic complex and extends to the northeast of Java hosting Lusi and other mud volcanoes. Since 2006 this fault system has been reactivated in numerous instances mostly following to regional seismic and volcanic activity. However the mechanism controlling this activity have never been investigated and remain poorly understood. In order to investigate the relationship existing between seismicity, volcanism, faulting and Lusi activity, we have deployed a network of 31 seismometers in the framework of the ERC-Lusi Lab project. This network covers a large region that monitors the Lusi activity, the Watukosek fault system and the neighboring Arjuno-Welirang volcanic complex. In particular, to understand the consistent pattern of the source mechanism, relative to the general tectonic stress in the study area, a detailed analysis has been carried out by performing the moment tensor inversion for the near field data collected from the network stations. Furthermore these data have been combined with the near field data from the regional network of the Meteorological, Climatological and Geophysical Agency of Indonesia that covers the whole country on a broader scale. Keywords: Lusi, microseismic event, focal mechanism

  6. Double, double, (but mostly) toil, and trouble: A multidisciplinary approach to quantify the permeability of an active volcanic hydrothermal system (Whakaari volcano, New Zealand)

    NASA Astrophysics Data System (ADS)

    Heap, Michael; Kennedy, Ben; Farquharson, Jamie; Ashworth, James; Mayer, Klaus; Letham-Brake, Mark; Reuschlé, Thierry; Gilg, Albert; Scheu, Betty; Lavallée, Yan; Siratovich, Paul; Cole, Jim; Jolly, Art; Dingwell, Donald

    2016-04-01

    Our multidisciplinary approach, which combines field techniques and traditional laboratory methods, aims to better understand the permeability of an active volcanic hydrothermal system, a vital prerequisite for understanding and modelling the behaviour of hydrothermal systems worldwide. Whakaari volcano (an active stratovolcano located 48 km off New Zealand's North Island) hosts an open, highly reactive hydrothermal system (hot springs and mud pools, fumaroles, acid streams and lakes) and represents an ideal natural laboratory to undertake such a study. We first gained an appreciation of the different lithologies at Whakaari and (where possible) their lateral and vertical extent through reconnaissance by land, sea, and air. Due to the variable nature of these altered lithologies (mainly lavas and tuffs), we measured porosity-permeability for in excess of a hundred rock hand samples using field techniques. We also measured the permeability of recent, unconsolidated deposits using a field soil permeameter. Our field measurements were then groundtruthed on a subset of these samples (~40-50) using traditional laboratory techniques: helium pycnometry and measurements of permeability using a benchtop permeameter, including measurements under increasing confining pressure (i.e., depth). In all, our measurements highlight that the porosity of the materials at Whakaari can vary from ~0.01 to ~0.6, and permeability can vary by eight orders of magnitude. However, our data show no discernable trend between porosity and permeability. A combination of macroscopic and microscopic observations, chemistry (XRF), mineralogy (XRD), and mercury porosimetry highlight that the absence of a robust porosity-permeability relationship is the product of an insane variability in alteration and microstructure (pore size, particle size, pore connectivity, presence/absence of microcracks, layering, amongst others). While our systematic study offers the most complete porosity-permeability dataset

  7. Electrical activity during the 2006 Mount St. Augustine volcanic eruptions

    USGS Publications Warehouse

    Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Edens, H. E.; Aulich, G. D.; McNutt, S.R.; Tytgat, Guy; Clark, E.

    2007-01-01

    By using a combination of radio frequency time-of-arrival and interferometer measurements, we observed a sequence of lightning and electrical activity during one of Mount St. Augustine's eruptions. The observations indicate that the electrical activity had two modes or phases. First, there was an explosive phase in which the ejecta from the explosion appeared to be highly charged upon exiting the volcano, resulting in numerous apparently disorganized discharges and some simple lightning. The net charge exiting the volcano appears to have been positive. The second phase, which followed the most energetic explosion, produced conventional-type discharges that occurred within plume. Although the plume cloud was undoubtedly charged as a result of the explosion itself, the fact that the lightning onset was delayed and continued after and well downwind of the eruption indicates that in situ charging of some kind was occurring, presumably similar in some respects to that which occurs in normal thunderstorms.

  8. Electrical activity during the 2006 Mount St. Augustine volcanic eruptions.

    PubMed

    Thomas, R J; Krehbiel, P R; Rison, W; Edens, H E; Aulich, G D; Winn, W P; McNutt, S R; Tytgat, G; Clark, E

    2007-02-23

    By using a combination of radio frequency time-of-arrival and interferometer measurements, we observed a sequence of lightning and electrical activity during one of Mount St. Augustine's eruptions. The observations indicate that the electrical activity had two modes or phases. First, there was an explosive phase in which the ejecta from the explosion appeared to be highly charged upon exiting the volcano, resulting in numerous apparently disorganized discharges and some simple lightning. The net charge exiting the volcano appears to have been positive. The second phase, which followed the most energetic explosion, produced conventional-type discharges that occurred within plume. Although the plume cloud was undoubtedly charged as a result of the explosion itself, the fact that the lightning onset was delayed and continued after and well downwind of the eruption indicates that in situ charging of some kind was occurring, presumably similar in some respects to that which occurs in normal thunderstorms. PMID:17322054

  9. Explosive activity associated with the growth of volcanic domes

    USGS Publications Warehouse

    Newhall, C.G.; Melson, W.G.

    1983-01-01

    Domes offer unique opportunities to measure or infer the characteristics of magmas that, at domes and elsewhere, control explosive activity. A review of explosive activity associated with historical dome growth shows that: 1. (1) explosive activity has occurred in close association with nearly all historical dome growth; 2. (2) whole-rock SiO2 content, a crude but widely reported indicator of magma viscosity, shows no systematic relationship to the timing and character of explosions; 3. (3) the average rate of dome growth, a crude indicator of the rate of supply of magma and volatiles to the near-surface enviornment, shows no systematic relationship to the timing or character of explosions; and 4. (4) new studies at Arenal and Mount St. Helens suggest that water content is the dominant control on explosions from water-rich magmas, whereas the crystal content and composition of the interstitial melt (and hence magma viscosity) are equally or more important controls on explosions from water-poor magmas. New efforts should be made to improve current, rather limited techniques for monitoring pre-eruption volatile content and magma viscosity, and thus the explosive potential of magmas. ?? 1983.

  10. Pre-eruptive ground deformation of Azerbaijan mud volcanoes detected through satellite radar interferometry (DInSAR)

    NASA Astrophysics Data System (ADS)

    Antonielli, Benedetta; Monserrat, Oriol; Bonini, Marco; Righini, Gaia; Sani, Federico; Luzi, Guido; Feyzullayev, Akper A.; Aliyev, Chingiz S.

    2014-12-01

    Mud volcanism is a process that leads to the extrusion of subsurface mud, fragments of country rocks, saline waters and gases. This mechanism is typically linked to hydrocarbon traps, and the extrusion of this material builds up a variety of conical edifices with a similar morphology to those of magmatic volcanoes, though smaller in size. The Differential Interferometry Synthetic Aperture Radar (DInSAR) technique has been used to investigate the ground deformation related to the activity of the mud volcanoes of Azerbaijan. The analysis of a set of wrapped and unwrapped interferograms, selected according to their coherence, allowed the detection of significant superficial deformation related to the activity of four mud volcanoes. The ground displacement patterns observed during the period spanning from October 2003 to November 2005 are dominated by uplift, which reach a cumulative value of up to 20 and 10 cm at the Ayaz-Akhtarma and Khara-Zira Island mud volcanoes, respectively. However, some sectors of the mud volcano edifices are affected by subsidence, which might correspond to deflation zones that coexist with the inflation zones characterized by the dominant uplift. Important deformation events, caused by fluid pressure and volume variations, have been observed both (1) in connection with main eruptive events in the form of pre-eruptive uplift, and (2) in the form of short-lived deformation pulses that interrupt a period of quiescence. Both deformation patterns show important similarities to those identified in some magmatic systems. The pre-eruptive uplift has been observed in many magmatic volcanoes as a consequence of magma intrusion or hydrothermal fluid injection. Moreover, discrete short-duration pulses of deformation are also experienced by magmatic volcanoes and are repeated over time as multiple inflation and deflation events.

  11. Quantifying unsteadiness and dynamics of pulsatory volcanic activity

    NASA Astrophysics Data System (ADS)

    Dominguez, L.; Pioli, L.; Bonadonna, C.; Connor, C. B.; Andronico, D.; Harris, A. J. L.; Ripepe, M.

    2016-06-01

    Pulsatory eruptions are marked by a sequence of explosions which can be separated by time intervals ranging from a few seconds to several hours. The quantification of the periodicities associated with these eruptions is essential not only for the comprehension of the mechanisms controlling explosivity, but also for classification purposes. We focus on the dynamics of pulsatory activity and quantify unsteadiness based on the distribution of the repose time intervals between single explosive events in relation to magma properties and eruptive styles. A broad range of pulsatory eruption styles are considered, including Strombolian, violent Strombolian and Vulcanian explosions. We find a general relationship between the median of the observed repose times in eruptive sequences and the viscosity of magma given by η ≈ 100 ṡtmedian. This relationship applies to the complete range of magma viscosities considered in our study (102 to 109 Pa s) regardless of the eruption length, eruptive style and associated plume heights, suggesting that viscosity is the main magma property controlling eruption periodicity. Furthermore, the analysis of the explosive sequences in terms of failure time through statistical survival analysis provides further information: dynamics of pulsatory activity can be successfully described in terms of frequency and regularity of the explosions, quantified based on the log-logistic distribution. A linear relationship is identified between the log-logistic parameters, μ and s. This relationship is useful for quantifying differences among eruptive styles from very frequent and regular mafic events (Strombolian activity) to more sporadic and irregular Vulcanian explosions in silicic systems. The time scale controlled by the parameter μ, as a function of the median of the distribution, can be therefore correlated with the viscosity of magmas; while the complexity of the erupting system, including magma rise rate, degassing and fragmentation efficiency

  12. Hawaiian oral tradition describes 400 years of volcanic activity at Kīlauea

    USGS Publications Warehouse

    Swanson, Donald A.

    2008-01-01

    Culturally significant oral tradition involving Pele, the Hawaiian volcano deity, and her youngest sister Hi'iaka may involve the two largest volcanic events to have taken place in Hawai'i since human settlement: the roughly 60-year-long ‘Ailā’au eruption during the 15th century and the following development of Kīlauea's caldera. In 1823, Rev. William Ellis and three others became the first Europeans to visit Kīlauea's summit and were told stories about Kīlauea's activity that are consistent with the Pele–Hi'iaka account and extend the oral tradition through the 18th century. Recent geologic studies confirm the essence of the oral traditions and illustrate the potential value of examining other Hawaiian chants and stories for more information about past volcanic activity in Hawai‘i.

  13. First volcanic CO2 budget estimate for three actively degassing volcanoes in the Central American Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Robidoux, Philippe; Aiuppa, Alessandro; Conde, Vladimir; Galle, Bo; Giudice, Gaetano; Avard, Geoffroy; Muñoz, Angélica

    2014-05-01

    CO2 is a key chemical tracer for exploring volcanic degassing mechanisms of basaltic magmatic systems (1). The rate of CO2 release from sub-aerial volcanism is monitored via studies on volcanic plumes and fumaroles, but information is still sparse and incomplete for many regions of the globe, including the majority of the volcanoes in the Central American Volcanic Arc (2). Here, we use a combination of remote sensing techniques and in-situ measurements of volcanic gas plumes to provide a first estimate of the CO2 output from three degassing volcanoes in Central America: Turrialba, in Costa Rica, and Telica and San Cristobal, in Nicaragua. During a field campaign in March-April 2013, we obtained (for the three volcanoes) a simultaneous record of SO2 fluxes (from the NOVAC network (3)) and CO2 vs. SO2 concentrations in the near-vent plumes (obtained via a temporary installed fully-automated Multi-GAS instrument (4)). The Multi-GAS time-series allowed to calculate the plume CO2/SO2 ratios for different intervals of time, showing relatively stable gas compositions. Distinct CO2 - SO2 - H2O proportions were observed at the three volcanoes, but still within the range of volcanic arc gas (5). The CO2/SO2 ratios were then multiplied by the SO2 flux in order to derive the CO2 output. At Turrialba, CO2/SO2 ratios fluctuated, between March 12 and 19, between 1.1 and 5.7, and the CO2flux was evaluated at ~1000-1350 t/d (6). At Telica, between March 23 and April 8, a somewhat higher CO2/SO2 ratio was observed (3.3 ± 1.0), although the CO2 flux was evaluated at only ~100-500 t/d (6). At San Cristobal, where observations were taken between April 11 and 15, the CO2/SO2 ratio ranged between 1.8 and 7.4, with a mean CO2 flux of 753 t/d. These measurements contribute refining the current estimates of the total CO2 output from the Central American Volcanic Arc (7). Symonds, R.B. et al., (2001). J. Volcanol. Geotherm. Res., 108, 303-341 Burton, M. R. et al. (2013). Reviews in

  14. Satellite measurements of recent volcanic activity at Oldoinyo Lengai, Tanzania

    NASA Astrophysics Data System (ADS)

    Vaughan, R. Greg; Kervyn, Matthieu; Realmuto, Vince; Abrams, Michael; Hook, Simon J.

    2008-06-01

    Oldoinyo Lengai (OL) is the only active volcano in the world that produces natrocarbonatite lava. These carbonate-rich lavas are unique in that they have relatively low temperatures (495-590 °C) and very low viscosity. OL has been erupting intermittently since 1983, mostly with small lava flows, pools and spatter cones (hornitos) confined to the summit crater. Explosive, ash-producing eruptions are rare, however, on September 4, 2007 the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) captured the first satellite image of an ash plume erupting from OL, which may be indicative of a new phase of more silica-rich products and explosive activity that has not occurred since 1966-1967. In the months prior to the eruption, thermal infrared (TIR) satellite monitoring detected an increasing number of thermal anomalies around OL. Data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor analyzed with the MODLEN algorithm detected more than 30 hot spots in the last week of August and first week of September 2007, some of which were from bush fires ignited by lava flows or spatter around the volcano. Higher-resolution ASTER data confirmed the location of these burn scars associated with lava flows. ASTER also detected the appearance of an anomalous hot spot at the summit of OL in mid-June with temperatures ~ 440 °C, the presence of several new lava flows in the crater in July and August, and on September 4 measured higher temperatures (~ 550 °C) possibly suggesting a more silicate-rich eruption. ASTER spectral emissivity data were interpreted to indicate a mixture of carbonate and silicate ash in the eruption plume from September 4. Based on the analysis of both ASTER and MODIS data combined with occasional field observations, there appear to have been 2 distinct eruptive events so far in 2007: a typical natrocarbonatite eruption confined to the summit crater in June-July, and a more intense eruption in August-September consisting of

  15. Middle Miocene hiatus in volcanic activity in the Great Basin area of the Western United States

    USGS Publications Warehouse

    McKee, E.H.; Noble, D.C.; Silberman, M.L.

    1970-01-01

    A summary of potassium-argon dates shows that a high level of igneous activity in the Great Basin and adjacent regions during middle Tertiary time (40 to 20 my ago) was followed by a period of relative quiescence in middle Miocene time that lasted for several million years (from 20 to 17 my ago). Volcanism resumed 16 my ago mainly at the margins of the region and has continued to the present. ?? 1970.

  16. Evidence of volcanic and glacial activity in Chryse and Acidalia Planitiae, Mars

    USGS Publications Warehouse

    Martinez-Alonso, Sara; Mellon, Michael T.; Banks, Maria E.; Keszthelyi, Laszlo P.; McEwen, Alfred S.

    2011-01-01

    Chryse and Acidalia Planitiae show numerous examples of enigmatic landforms previously interpreted to have been influenced by a water/ice-rich geologic history. These landforms include giant polygons bounded by kilometer-scale arcuate troughs, bright pitted mounds, and mesa-like features. To investigate the significance of the last we have analyzed in detail the region between 60°N, 290°E and 10°N, 360°E utilizing HiRISE (High Resolution Imaging Science Experiment) images as well as regional-scale data for context. The mesas may be analogous to terrestrial tuyas (emergent sub-ice volcanoes), although definitive proof has not been identified. We also report on a blocky unit and associated landforms (drumlins, eskers, inverted valleys, kettle holes) consistent with ice-emplaced volcanic or volcano-sedimentary flows. The spatial association between tuya-like mesas, ice-emplaced flows, and further possible evidence of volcanism (deflated flow fronts, volcanic vents, columnar jointing, rootless cones), and an extensive fluid-rich substratum (giant polygons, bright mounds, rampart craters), allows for the possibility of glaciovolcanic activity in the region.Landforms indicative of glacial activity on Chryse/Acidalia suggest a paleoclimatic environment remarkably different from today's. Climate changes on Mars (driven by orbital/obliquity changes) or giant outflow channel activity could have resulted in ice-sheet-related landforms far from the current polar caps.

  17. Can vesicle size distributions predict eruption intensity during volcanic activity?

    NASA Astrophysics Data System (ADS)

    LaRue, A.; Baker, D. R.; Polacci, M.; Allard, P.; Sodini, N.

    2013-06-01

    We studied three-dimensional (3-D) vesicle size distributions by X-ray microtomography in scoria collected during the relatively quiescent Phase II of the 2010 eruption at Eyjafjallajökull volcano, Iceland. Our goal was to compare the vesicle size distributions (VSDs) measured in these samples with those found in Stromboli volcano, Italy. Stromboli was chosen because its VSDs are well-characterized and show a correlation with eruption intensity: typical Strombolian activity produces VSDs with power-law exponents near 1, whereas larger and more energetic Vulcanian-type explosions and Plinian eruptions produce VSDs with power-law exponents near 1.5. The hypothesis to be tested was whether or not the samples studied in this work would contain VSDs similar to normal Strombolian products, display higher power-law exponents, or be described by exponential functions. Before making this comparison we tested the hypothesis that the phreatomagmatic nature of the Eyjafjallajökull eruption might have a significant effect on the VSDs. We performed 1 atm bubble-growth experiments in which the samples were inundated with water and compared them to similar, control, experiments without water inundation. No significant differences between the VSDs of the two sets of experiments were found, and the hypothesis is not supported by the experimental evidence; therefore, VSDs of magmatic and phreatomagmatic eruptions can be directly compared. The Phase II Eyjafjallajökull VSDs are described by power law exponents of ~ 0.8, typical of normal Strombolian eruptions. The comparable VSDs and behavior of Phase II of the Eyjafjallajökull 2010 eruption to Stromboli are interpreted to be a reflection of similar conduit systems in both volcanoes that are being constantly fed by the ascent of deep magma that mixes with resident magma at shallow depths. Such behavior implies that continued activity during Phase II of the Eyjafjallajökull eruption could be expected and would have been predicted

  18. Hydrothermal activity and carbon-dioxide discharge at Shrub and upper Klawasi mud volcanoes, Wrangell Mountains, Alaska

    USGS Publications Warehouse

    Sorey, Michael L.; Werner, Cindy; McGimsey, Robert G.; Evans, William C.

    2000-01-01

    Shrub mud volcano, one of three mud volcanoes of the Klawasi group in the Copper River Basin, Alaska, has been discharging warm mud and water and CO2?rich gas since 1996. A field visit to Shrub in June 1999 found the general level of hot-spring discharge to be similar, but somewhat more widespread, than in the previous two years. Evidence of recent animal and vegetation deaths from CO2 exposure were confined to localized areas around various gas and fluid vents. Maximum fluid temperatures in each of three main discharge areas, ranging from 48-54?C, were equal to or higher than those measured in the two previous years; such temperatures are significantly higher than those observed intermittently over the past 30 years. At Upper Klawasi mud volcano, measured temperatures of 23-26?C and estimated rates of gas and water discharge in the summit crater lake were also similar to those observed in the previous two years. Gas discharging at Shrub and Upper Klawasi is composed of over 98% CO2 and minor amounts of meteoric gases (N2, O2, Ar) and gases partly of deeper origin (CH4 and He). The rate of CO2 discharge from spring vents and pools at Shrub is estimated to be ~10 metric tonnes per day. This discharge, together with measured concentrations of bicarbonate, suggest that a total CO2 upflow from depth of 20-40 metric tonnes per day at Shrub.Measurements were made of diffuse degassing rates from soil at one ~300 m2 area near the summit of Shrub that included vegetation kill suggestive of high CO2 concentrations in the root zone. Most of measured gas flow rates in this area were significantly higher than background values, and a CO2 concentration of 26 percent was measured at a depth of 10 cm where the gas flow rate was highest. Although additional measurements of diffuse gas flow were made elsewhere at Shrub, no other areas of vegetation kill related to diffuse degassing and high soil-gas CO2 concentrations could be seen from the air.Chemical and isotopic compositions of

  19. Relationship between the latest activity of mare volcanism and topographic features of the Moon

    NASA Astrophysics Data System (ADS)

    Kato, Shinsuke; Morota, Tomokatsu; Yamaguchi, Yasushi; Watanabe, Sei-ichiro; Otake, Hisashi; Ohtake, Makiko

    2016-04-01

    Lunar mare basalts provide insights into compositions and thermal history of lunar mantle. According to crater counting analysis with remote sensing data, the model ages of mare basalt units indicate a second peak of magma activity at the end of mare volcanism (~2 Ga), and the latest eruptions were limited in the Procellarum KREEP Terrane (PKT), which has high abundances of heat-producing elements. In order to understand the mechanism for causing the second peak and its magma source, we examined the correlation between the titanium contents and eruption ages of mare basalt units using compositional and chronological data updated by SELENE/Kaguya. Although no systematic relationship is observed globally, a rapid increase in mean titanium (Ti) content occurred at 2.3 Ga in the PKT, suggesting that the magma source of mare basalts changed at that time. The high-Ti basaltic eruption, which occurred at the late stage of mare volcanism, can be correlated with the second peak of volcanic activity at ~2 Ga. The latest volcanic activity can be explained by a high-Ti hot plume originated from the core-mantle boundary. If the hot plume was occurred, the topographic features formed by the hot plume may be remained. We calculated the difference between topography and selenoid and found the circular feature like a plateau in the center of the PKT, which scale is ~1000 km horizontal and ~500 m vertical. We investigated the timing of ridge formation in the PKT by using stratigraphic relationship between mare basalts and ridges. The ridges were formed before and after the high-Ti basaltic eruptions and seem to be along with the plateau. These results suggest that the plateau formation is connected with the high-Ti basaltic eruptions.

  20. 2009 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.; Girina, Olga A.; Chibisova, Marina; Rybin, Alexander

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, and reports of unusual activity at or near eight separate volcanic centers in Alaska during 2009. The year was highlighted by the eruption of Redoubt Volcano, one of three active volcanoes on the western side of Cook Inlet and near south-central Alaska's population and commerce centers, which comprise about 62 percent of the State's population of 710,213 (2010 census). AVO staff also participated in hazard communication and monitoring of multiple eruptions at ten volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  1. 1995 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.

    1996-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity (SVA) at 6 volcanic centers in 1995: Mount Martin (Katmai Group), Mount Veniaminof, Shishaldin, Makushin, Kliuchef/Korovin, and Kanaga. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) on the 1995 eruptions of 2 Russian volcanoes: Bezymianny and Karymsky. This report summarizes volcanic activity in Alaska during 1995 and the AVO response, as well as information on the 2 Kamchatkan eruptions. Only those reports or inquiries that resulted in a "significant" investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of phone calls throughout the year reporting steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1995 response record.

  2. Multi-Source Autonomous Response for Targeting and Monitoring of Volcanic Activity

    NASA Technical Reports Server (NTRS)

    Davies, Ashley G.; Doubleday, Joshua R.; Tran, Daniel Q.

    2014-01-01

    The study of volcanoes is important for both purely scientific and human survival reasons. From a scientific standpoint, volcanic gas and ash emissions contribute significantly to the terrestrial atmosphere. Ash depositions and lava flows can also greatly affect local environments. From a human survival standpoint, many people live within the reach of active volcanoes, and therefore can be endangered by both atmospheric (ash, debris) toxicity and lava flow. There are many potential information sources that can be used to determine how to best monitor volcanic activity worldwide. These are of varying temporal frequency, spatial regard, method of access, and reliability. The problem is how to incorporate all of these inputs in a general framework to assign/task/reconfigure assets to monitor events in a timely fashion. In situ sensing can provide a valuable range of complementary information such as seismographic, discharge, acoustic, and other data. However, many volcanoes are not instrumented with in situ sensors, and those that have sensor networks are restricted to a relatively small numbers of point sensors. Consequently, ideal volcanic study synergistically combines space and in situ measurements. This work demonstrates an effort to integrate spaceborne sensing from MODIS (Terra and Aqua), ALI (EO-1), Worldview-2, and in situ sensing in an automated scheme to improve global volcano monitoring. Specifically, it is a "sensor web" concept in which a number of volcano monitoring systems are linked together to monitor volcanic activity more accurately, and this activity measurement automatically tasks space assets to acquire further satellite imagery of ongoing volcanic activity. A general framework was developed for evidence combination that accounts for multiple information sources in a scientist-directed fashion to weigh inputs and allocate observations based on the confidence of an events occurrence, rarity of the event at that location, and other scientists

  3. Acoustic waves in the atmosphere and ground generated by volcanic activity

    SciTech Connect

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru

    2012-09-04

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  4. Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory 1993

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Doukas, Michael P.

    1996-01-01

    During 1993, the Alaska Volcano Observatory (AVO) responded to episodes of eruptive activity or false alarms at nine volcanic centers in the state of Alaska. Additionally, as part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also responded to eruptions on the Kamchatka Peninsula, details of which are summarized in Miller and Kurianov (1993). In 1993, AVO maintained seismic instrumentation networks on four volcanoes of the Cook Inlet region--Spurr, Redoubt, Iliamna, and Augustine--and two stations at Dutton Volcano near King Cove on the Alaska Peninsula. Other routine elements of AVO's volcano monitoring program in Alaska include periodic airborne measurement of volcanic SO2 and CO2 at Cook Inlet volcanoes (Doukas, 1995) and maintenance of a lightning detection system in Cook Inlet (Paskievitch and others, 1995).

  5. Overview of electromagnetic methods applied in active volcanic areas of western United States

    NASA Astrophysics Data System (ADS)

    Skokan, Catherine K.

    1993-06-01

    A better understanding of active volcanic areas in the United States through electromagnetic geophysical studies received foundation from the many surveys done for geothermal exploration in the 1970's. Investigations by governmental, industrial, and academic agencies include (but are not limited to) mapping of the Cascades. Long Valley/Mono area, the Jemez volcanic field, Yellowstone Park, and an area in Colorado. For one example — Mt. Konocti in the Mayacamas Mountains, California — gravity, magnetic, and seismic, as well as electromagnetic methods have all been used in an attempt to gain a better understanding of the subsurface structure. In each of these volcanic regions, anomalous zones were mapped. When conductive, these anomalies were interpreted to be correlated with hydrothermal activity and not to represent a magma chamber. Electrical and electromagnetic geophysical methods can offer valuable information in the understanding of volcanoes by being the method which is most sensitive to change in temperature and, therefore, can best map heat budget and hydrological character to aid in prediction of eruptions.

  6. Lake-floor sediment texture and composition of a hydrothermally-active, volcanic lake, Lake Rotomahana

    NASA Astrophysics Data System (ADS)

    Pittari, A.; Muir, S. L.; Hendy, C. H.

    2016-03-01

    Young volcanic lakes undergo a transition from rapid, post-eruptive accumulation of volcaniclastic sediment to slower pelagic settling under stable lake conditions, and may also be influenced by sublacustrine hydrothermal systems. Lake Rotomahana is a young (129 year-old), hydrothermally-active, volcanic lake formed after the 1886 Tarawera eruption, and provides a unique insight into the early evolution of volcanic lake systems. Lake-bottom sediment cores, 20-46 cm in length, were taken along a transect across the lake and characterised with respect to stratigraphy, facies characteristics (i.e., grain size, componentry) and pore water silica concentrations. The sediments generally comprise two widespread facies: (i) a lower facies of light grey to grey, very fine lacustrine silt derived from the unconsolidated pyroclastic deposits that mantled the catchment area immediately after the eruption, which were rapidly reworked and redeposited into the lake basin; and (ii) an upper facies of dark, fine-sandy diatomaceous silt, that settled from the pelagic zone of the physically stable lake. Adjacent to sublacustrine hydrothermal vents, the upper dark facies is absent, and the upper part of the light grey to grey silt is replaced by a third localised facies comprised of hydrothermally altered pale yellow to yellowish brown, laminated silt with surface iron-rich encrustations. Microspheres, which are thought to be composed of amorphous silica, although some may be halloysite, have precipitated from pore water onto sediment grains, and are associated with a decrease in pore water silicon concentration. Lake Rotomahana is an example of a recently-stabilised volcanic lake, with respect to sedimentation, that shows signs of early sediment silicification in the presence of hydrothermal activity.

  7. Explosive volcanic activity on Venus: The roles of volatile contribution, degassing, and external environment

    NASA Astrophysics Data System (ADS)

    Airey, M. W.; Mather, T. A.; Pyle, D. M.; Glaze, L. S.; Ghail, R. C.; Wilson, C. F.

    2015-08-01

    We investigate the conditions that will promote explosive volcanic activity on Venus. Conduit processes were simulated using a steady-state, isothermal, homogeneous flow model in tandem with a degassing model. The response of exit pressure, exit velocity, and degree of volatile exsolution was explored over a range of volatile concentrations (H2O and CO2), magma temperatures, vent altitudes, and conduit geometries relevant to the Venusian environment. We find that the addition of CO2 to an H2O-driven eruption increases the final pressure, velocity, and volume fraction gas. Increasing vent elevation leads to a greater degree of magma fragmentation, due to the decrease in the final pressure at the vent, resulting in a greater likelihood of explosive activity. Increasing the magmatic temperature generates higher final pressures, greater velocities, and lower final volume fraction gas values with a correspondingly lower chance of explosive volcanism. Cross-sectionally smaller, and/or deeper, conduits were more conducive to explosive activity. Model runs show that for an explosive eruption to occur at Scathach Fluctus, at Venus' mean planetary radius (MPR), 4.5% H2O or 3% H2O with 3% CO2 (from a 25 m radius conduit) would be required to initiate fragmentation; at Ma'at Mons (~9 km above MPR) only ~2% H2O is required. A buoyant plume model was used to investigate plume behaviour. It was found that it was not possible to achieve a buoyant column from a 25 m radius conduit at Scathach Fluctus, but a buoyant column reaching up to ~20 km above the vent could be generated at Ma'at Mons with an H2O concentration of 4.7% (at 1300 K) or a mixed volatile concentration of 3% H2O with 3% CO2 (at 1200 K). We also estimate the flux of volcanic gases to the lower atmosphere of Venus, should explosive volcanism occur. Model results suggest explosive activity at Scathach Fluctus would result in an H2O flux of ~107 kg s-1. Were Scathach Fluctus emplaced in a single event, our model

  8. SpALF4: a newly identified anti-lipopolysaccharide factor from the mud crab Scylla paramamosain with broad spectrum antimicrobial activity.

    PubMed

    Zhu, Lei; Lan, Jiang-Feng; Huang, Yan-Qing; Zhang, Chao; Zhou, Jun-Fang; Fang, Wen-Hong; Yao, Xiao-Juan; Wang, Hao; Li, Xin-Cang

    2014-01-01

    Anti-lipopolysaccharide factors (ALFs) are antimicrobial peptides with binding and neutralizing activities to lipopolysaccharide (LPS) in crustaceans. This study identified and characterized a novel ALF homolog (SpALF4) from the mud crab Scylla paramamosain. The complete cDNA of SpALF4 had 756 bp with a 381 bp open reading frame encoding a protein with 126 aa. The deduced protein contained a signal peptide and a LPS-binding domain. SpALF4 shared the highest identity with PtALF5 at amino acid level but exhibited low similarity with most of other crustacean ALFs. Furthermore, different from the previously identified three SpALF homologs and most of other ALFs, SpALF4 had a low isoelectric point (pI) for the mature peptide and the LPS-binding domain with the values of 6.93 and 6.74, respectively. These results indicate that SpALF4 may be a unique ALF homolog with special biological function in the mud crab. Similar to the spatial structure of ALFPm3, SpALF4 contains three α-helices packed against a four-strand β-sheet, and an amphipathic loop formed by a disulphide bond between two conserved cysteine residues in LPS-binding domain. SpALF4, mainly distributed in hemocytes, could be upregulated by Vibrio harveyi, Staphylococcus aureus, or white spot syndrome virus. Recombinant SpALF4 could inhibit the growth of Gram-negative bacteria (V. harveyi, Vibrio anguillarum, Vibrio alginolyticus, Aeromonas hydrophila, Pseudomonas putida), Gram-positive bacteria (S. aureus and Bacillus megaterium), and a fungus Candida albicans to varying degrees. Further study showed that it could also bind to all the aforementioned microorganisms except S. aureus. These results demonstrate that SpALF4 is a unique ALF homolog with potent antimicrobial activity against bacteria and fungi. This characteristic suggests SpALF4 plays an essential function in immune defense against pathogen invasion in mud crab. PMID:24239582

  9. Fluid seepage in mud volcanoes of the northern Apennines: An integrated geophysical and geological study

    NASA Astrophysics Data System (ADS)

    Accaino, Flavio; Bratus, Antonio; Conti, Stefano; Fontana, Daniela; Tinivella, Umberta

    2007-10-01

    An integrated geophysical and geological study of small mud volcanoes occurring along the external compressive margin of the chain in the northern Apennines was carried out in order to investigate the fluid pathways and the mud reservoir. Results obtained by tomographic inversion of first arrivals of 3D seismic data, and models obtained by 2D geo-electrical data, allow determination of the geometry of the buried shallow structures, and the details of the fluid seepage down to 50 m below the mud volcano surface. Seismic and geo-electrical investigations clearly detected the sub-vertical structures of the superficial outlet of the volcanic conduits and chimneys. A mud chamber was identified at a depth of 25 m. This shallow reservoir could represent the last phase of mud accumulation before final emission. Comparison with other mud volcanoes of the northern Apennines suggests a close relationship between extruded materials and substratum typology.

  10. Temporal and geochemical constraints on active volcanism in southeastern Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Catalano, J. P.; Baldwin, S.; Fitzgerald, P. G.; Webb, L. E.; Hollocher, K.

    2010-12-01

    Active volcanism in southeastern Papua New Guinea occurs on the Papuan Peninsula (Mt. Lamington and Mt. Victory), in the Woodlark Rift (Dobu Island, SE Goodenough Island, and Western Fergusson Island), and in the Woodlark Basin. In the Woodlark Basin seafloor spreading is active and decompression melting of the mantle produces basalts. However, the cause of volcanism on the Papuan Peninsula and immediately west of active seafloor spreading rift tip in the Woodlark Basin is controversial. Previous studies have suggested active volcanism there results from 1) southward subduction of Solomon Sea lithosphere at the Trobriand Trough or 2) decompression melting as the lithosphere is extended and eventually ruptures. To evaluate these possibilities 20 samples were collected from a bimodal basalt-rhyolite suite in the D’Entrecasteaux Islands approximately 80 km west of the sea floor spreading rift tip. Siliceous ash flow tuffs on Dobu Island, Sanaroa Island, and Eastern Fergusson Island consist of sanidine/anorthoclase + Fe/Ti oxides (illmenite/ magnetite) ± quartz ± nepheline ± clinopyroxene ± xenocrystic olivine. Sanidine and K-feldspar from these ash flow tuffs yielded flat age spectra with 40Ar/39Ar isochron ages of 0.008 ± 0.002 Ma and 0.553 ± 0.001 Ma. ICP-MS trace and REE geochemistry on felsic rocks from Dobu Island and Eastern Fergusson Island yielded multi-element diagrams with enriched incompatible elements, and corresponding negative Nb, Sr, Eu, and Ti anomalies. In contrast, mafic volcanics from SE Goodenough Island are comprised of plagioclase + olivine + Fe/Ti oxides ± orthopyroxene ± clinopyroxene ± hornblende ± biotite. Biotite yielded a 40Ar/39Ar isochron age of 0.376 ± 0.05 Ma. MORB-normalized multi-element diagrams of mafic rocks from SE Goodenough Island are LREE-enriched patterns with negative Nb and positive Sr anomalies. In comparison, multi-element diagrams from previous work on mafic rocks from the New Britain arc to the north also

  11. The ELSA tephra stack: Volcanic activity in the Eifel during the last 500,000 years

    NASA Astrophysics Data System (ADS)

    Förster, Michael W.; Sirocko, Frank

    2016-07-01

    Tephra layers of individual volcanic eruptions are traced in several cores from Eifel maar lakes, drilled between 1998 and 2014 by the Eifel Laminated Sediment Archive (ELSA). All sediment cores are dated by 14C and tuned to the Greenland interstadial succession. Tephra layers were characterized by the petrographic composition of basement rock fragments, glass shards and characteristic volcanic minerals. 10 marker tephra, including the well-established Laacher See Tephra and Dümpelmaar Tephra can be identified in the cores spanning the last glacial cycle. Older cores down to the beginning of the Elsterian, show numerous tephra sourced from Strombolian and phreatomagmatic eruptions, including the 40Ar/39Ar dated differentiated tephra from Glees and Hüttenberg. In total, at least 91 individual tephra can be identified since the onset of the Eifel volcanic activity at about 500,000 b2k, which marks the end of the ELSA tephra stack with 35 Strombolian, 48 phreatomagmatic and 8 tephra layers of evolved magma composition. Many eruptions cluster near timings of the global climate transitions at 140,000, 110,000 and 60,000 b2k. In total, the eruptions show a pattern, which resembles timing of phases of global sea level and continental ice sheet changes, indicating a relation between endogenic and exogenic processes.

  12. Infrasound Monitoring of the Volcanic Activities of Japanese Volcanoes in Korea

    NASA Astrophysics Data System (ADS)

    Lee, H. I.; Che, I. Y.; Shin, J. S.

    2015-12-01

    Since 1999 when our first infrasound array station(CHNAR) has been installed at Cheolwon, Korea Institute of Geoscience and Mineral Resources(KIGAM) is continuously observing infrasound signals with an infrasound array network, named KIN(Korean Infrasound Network). This network is comprised of eight seismo-acoustic array stations(BRDAR, YPDAR, KMPAR, CHNAR, YAGAR, KSGAR, ULDAR, TJIAR). The aperture size of the smallest array is 300m and the largest is about 1.4km. The number of infrasound sensors are between 4(TJIAR) and 18(YAGAR), and 1~5 seismometers are collocated with infrasound sensors. Many interesting infrasound signals associated with different type of sources, such as blasting, large earthquake, bolide, volcanic explosion are detected by KIN in the past 15 years. We have analyzed the infrasound signals possibly associated with the japanese volcanic explosions with reference to volcanic activity report published by Japanese Meteorological Agency. Analysis results of many events, for example, Asama volcano explosion in 2004 and Shinmoe volcano in 2011, are well matched with the official report. In some cases, however, corresponding infrasound signals are not identified. By comparison of the infrasound signals from different volcanoes, we also found that the characteristics of signals are distinguishing. It may imply that the specific volcano has its own unique fingerprint in terms of infrasound signal. It might be investigated by long-term infrasound monitoring for a specific volcano as a ground truth generating repetitive infrasound signal.

  13. Environmental impact of mud volcano inputs on the anthropogenically altered Porong River and Madura Strait coastal waters, Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Jennerjahn, Tim C.; Jänen, Ingo; Propp, Claudia; Adi, Seno; Nugroho, Sutopo Purwo

    2013-09-01

    Increasing human modifications of the coastal zone are endangering the integrity of coastal ecosystems. This is of particular importance in SE Asia where large parts of the population live in the coastal zone and are economically dependent on its resources. The region is also affected by a high frequency of extreme natural events like storms, earthquakes and volcanic eruptions. The eruption of a mud volcano, nicknamed "Lusi", near the city of Sidoarjo in eastern Java, Indonesia, on May 29, 2006 represents such an event. One of the measures to minimize the potential detrimental effects to the environment and the local population was to channelise part of the mud into the nearby Porong River, the major distributary of the Brantas River, which is affected by intensive land use and hydrological alterations in a densely populated catchment. Here we report for the first time on the effects of the mud volcano on the aquatic environment. The "Lusi" input more than doubled the suspended matter and particulate organic carbon load of the river. Moreover, we found decomposition of the additional organic matter worsening oxygen depletion in the river and adjacent coastal waters that can severely affect the well-being of aquatic organisms. We conclude that the mud volcano input adds to the adverse effects of human activities in the river catchment on the ecology and biogeochemistry of the estuary and Madura Strait coastal waters.

  14. Trace elements in scalp hair of children chronically exposed to volcanic activity (Mt. Etna, Italy).

    PubMed

    Varrica, D; Tamburo, E; Dongarrà, G; Sposito, F

    2014-02-01

    The aim of this survey was to use scalp hair as a biomonitor to evaluate the environmental exposure to metals and metalloids of schoolchildren living around the Mt. Etna area, and to verify whether the degree of human exposure to trace elements is subject to changes in local environmental factors. Twenty trace elements were determined in 376 samples of scalp hair from schoolboys (11-13 years old) of both genders, living in ten towns located around the volcanic area of Mt. Etna (Sicily). The results were compared with those (215 samples) from children living in areas of Sicily characterized by a different geological setting (reference site). As, U and V showed much higher concentrations at the volcanic site whereas Sr was particularly more abundant at the reference site. Linear Discriminant Analysis (LDA) indicated an Etna factor, made up of V, U and Mn, and a second factor, concerning the reference site, characterized by Ni and Sr, and to a lesser extent by Mo and Cd. Significant differences in element concentrations were also observed among three different sectors of Mt. Etna area. Young people living in the Mt. Etna area are naturally exposed to enhanced intakes of some metals (V, U, Mn) and non-metals (e.g., As) than individuals of the same age residing in other areas of Sicily, characterized by different lithologies and not influenced by volcanic activity. The petrographic nature of local rocks and the dispersion of the volcanic plume explain the differences, with ingestion of water and local food as the most probable exposure pathways.

  15. Assessing microbial activities in metal contaminated agricultural volcanic soils--An integrative approach.

    PubMed

    Parelho, C; Rodrigues, A S; Barreto, M C; Ferreira, N G C; Garcia, P

    2016-07-01

    Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals. Trace metal contaminated soils have significant effects on soil microbial activities and hence on soil quality. The aim of this study is to determine the soil microbial responses to metal contamination in volcanic soils under different agricultural land use practices (conventional, traditional and organic), based on a three-tier approach: Tier 1 - assess soil microbial activities, Tier 2 - link the microbial activity to soil trace metal contamination and, Tier 3 - integrate the microbial activity in an effect-based soil index (Integrative Biological Response) to score soil health status in metal contaminated agricultural soils. Our results showed that microbial biomass C levels and soil enzymes activities were decreased in all agricultural soils. Dehydrogenase and β-glucosidase activities, soil basal respiration and microbial biomass C were the most sensitive responses to trace metal soil contamination. The Integrative Biological Response value indicated that soil health was ranked as: organic>traditional>conventional, highlighting the importance of integrative biomarker-based strategies for the development of the trace metal "footprint" in Andosols. PMID:27057992

  16. 2005 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, R.G.; Neal, C.A.; Dixon, J.P.; Ushakov, Sergey

    2008-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity at or near 16 volcanoes in Alaska during 2005, including the high profile precursory activity associated with the 2005?06 eruption of Augustine Volcano. AVO continues to participate in distributing information about eruptive activity on the Kamchatka Peninsula, Russia, and in the Kurile Islands of the Russian Far East, in conjunction with the Kamchatkan Volcanic Eruption Response Team (KVERT) and the Sakhalin Volcanic Eruption Response Team (SVERT), respectively. In 2005, AVO helped broadcast alerts about activity at 8 Russian volcanoes. The most serious hazard posed from volcanic eruptions in Alaska, Kamchatka, or the Kurile Islands is the placement of ash into the atmosphere at altitudes traversed by jet aircraft along the North Pacific and Russian Trans East air routes. AVO, KVERT, and SVERT work collaboratively with the National Weather Service, Federal Aviation Administration, and the Volcanic Ash Advisory Centers to provide timely warnings of volcanic eruptions and the production and movement of ash clouds.

  17. Linking geochemical processes in mud volcanoes with arsenic mobilization driven by organic matter.

    PubMed

    Liu, Chia-Chuan; Kar, Sandeep; Jean, Jiin-Shuh; Wang, Chung-Ho; Lee, Yao-Chang; Sracek, Ondra; Li, Zhaohui; Bundschuh, Jochen; Yang, Huai-Jen; Chen, Chien-Yen

    2013-11-15

    The present study deals with geochemical characterization of mud fluids and sediments collected from Kunshuiping (KSP), Liyushan (LYS), Wushanting (WST), Sinyangnyuhu (SYNH), Hsiaokunshui (HKS) and Yenshuikeng (YSK) mud volcanoes in southwestern Taiwan. Chemical constituents (cations, anions, trace elements, organic carbon, humic acid, and stable isotopes) in both fluids and mud were analyzed to investigate the geochemical processes and spatial variability among the mud volcanoes under consideration. Analytical results suggested that the anoxic mud volcanic fluids are highly saline, implying connate water as the probable source. The isotopic signature indicated that δ(18)O-rich fluids may be associated with silicate and carbonate mineral released through water-rock interaction, along with dehydration of clay minerals. Considerable amounts of arsenic in mud irrespective of fluid composition suggested possible release through biogeochemical processes in the subsurface environment. Sequential extraction of As from the mud indicated that As was mostly present in organic and sulphidic phases, and adsorbed on amorphous Mn oxyhydroxides. Volcanic mud and fluids are rich in organic matter (in terms of organic carbon), and the presence of humic acid in mud has implications for the binding of arsenic. Functional groups of humic acid also showed variable sources of organic matter among the mud volcanoes being examined. Because arsenate concentration in the mud fluids was found to be independent from geochemical factors, it was considered that organic matter may induce arsenic mobilization through an adsorption/desorption mechanism with humic substances under reducing conditions. Organic matter therefore plays a significant role in the mobility of arsenic in mud volcanoes.

  18. A new model for the development of the active Afar volcanic margin

    NASA Astrophysics Data System (ADS)

    Pik, Raphaël; Stab, Martin; Bellahsen, Nicolas; Leroy, Sylvie

    2016-04-01

    Volcanic passive margins, that represent more than the three quarters of continental margins worldwide, are privileged witnesses of the lithospheric extension processes thatform new oceanic basins. They are characterized by voluminous amounts of underplated, intruded and extruded magmas, under the form of massive lavas prisms (seaward-dipping reflectors, or SDR) during the course of thinning and stretching of the lithosphere, that eventually form the ocean-continent transition. The origin and mechanisms of formation of these objects are still largely debated today. We have focussed our attention in the last few years on the Afar volcanic province which represents an active analogue of such volcanic margins. We explored the structural and temporal relationships that exist between the development of the major thinning and stretching structures and the magmatic production in Central Afar. Conjugate precise fieldwork analysis along with lavas geochronology allowed us to revisit the timing and style of the rift formation, since the early syn-rift period of time in the W-Afar marginal area to present days. Extension is primarily accommodated over a wide area at the surface since the very initial periods of extension (~ 25 Ma) following the emplacement of Oligocene CFBs. We propose in our reconstruction of central Afar margin history that extension has been associated with important volumes of underplated mafic material that compensate crustal thinning. This has been facilitated by major crustal-scale detachments that help localize the thinning and underplating at depth. In line with this 'magmatic wide-rift' mode of extension, we demonstrate that episodic extension steps alternate with more protracted magmatic phases. The production of syn-rift massive flood basalts (~ 4 Ma) occurs after early thinning of both the crust and the lithosphere, which suggests that SDR formation, is controlled by previous tectonic event. We determined how the melting regime evolved in

  19. Extensive and Diverse Submarine Volcanism and Hydrothermal Activity in the NE Lau Basin

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Merle, S. G.; Lupton, J. E.; Resing, J.; Baker, E. T.; Lilley, M. D.; Arculus, R. J.; Crowhurst, P. V.

    2009-12-01

    The northeast Lau basin, the NE “corner” of the Tonga subduction zone, has an unusual concentration of young submarine volcanism and hydrothermal activity. The area is bounded on the west by overlapping spreading centers opening at rates up to 120 mm/yr, on the north by the E-W trending Tonga trench and on the east by the Tofua arc front. From the south, the Fonualei rift spreading center (FRSC) overlaps with the southern rift of The Mangatolo triple junction spreading center (MTJSC). The northern arm of the MTJSC overlaps with the northeast Lau spreading center (NELSC). Surveys of the area with an EM300 sonar system in November 2008 show high backscatter over the 10-20 km wide neovolcanic zones of the FRSC, MTJSC and NELSC. High backscatter is also associated with: (1) a 10-km diameter, hydrothermally active, volcanic caldera/cone (Volcano “O”) lying between the NELSC and the northern Tofua arc front; (2) a rift zone extending north from volcano “O” and intersecting the NELSC near the Tonga trench; and (3) a series of volcanoes constructed along SW-NE trending crustal tears in the northernmost backarc near the east-west portion of the Tonga Trench. Two eruptions were detected in November 2008 during hydrothermal plume surveys of the area. Subsequent dives with the remotely operated vehicle Jason 2 in May 2009 revealed that the southern NELSC eruption was a short-lived, primarily effusive eruption. The second eruption was detected on the summit of the largest SW-NE trending volcano (West Mata) and was ongoing when Jason 2 arrived on site more than 6 months later. It was producing both pillow lavas and abundant volcaniclastic debris streams that have a characteristic appearance on the sonar backscatter map. There is also an unusual series of lava flows emanating from ridges and scarps between Volcano “O” and West Mata. These flows contain drained-out lava ponds up to 2 km in diameter. The apparent high level of volcanic activity in the NE Lau basin

  20. Evidence of episodic long-lived eruptions in the Yuma, Ginsburg, Jesús Baraza and Tasyo mud volcanoes, Gulf of Cádiz

    NASA Astrophysics Data System (ADS)

    Toyos, María H.; Medialdea, Teresa; León, Ricardo; Somoza, Luis; González, Francisco Javier; Meléndez, Nieves

    2016-06-01

    High-resolution single channel and multichannel seismic reflection profiles and multibeam bathymetric and backscatter data collected during several cruises over the period 1999 to 2007 have enabled characterising not only the seabed morphology but also the subsurface structural elements of the Yuma, Ginsburg, Jesús Baraza and Tasyo mud volcanoes (MVs) in the Gulf of Cádiz at 1,050-1,250 m water depth. These MVs vary strongly in morphology and size. The data reveal elongated cone-shaped edifices, rimmed depressions, and scarps interpreted as flank failures developed by collapse, faulting, compaction and gravitational processes. MV architecture is characterised by both extrusive and intrusive complexes, comprising stacked edifices (including seabed cones and up to four buried bicones) underlain by chaotic vertical zones and downward-tapering cones suggesting feeder systems. These intrusive structures represent the upper layer of the feeder system linking the fluid mud sources with the constructional edifices. The overall architecture is interpreted to be the result of successive events of mud extrusion and outbuilding alternating with periods of dormancy. Each mud extrusion phase is connected with the development of an edifice, represented by a seabed cone or a buried bicone. In all four MVs, the stacked edifices and the intrusive complexes penetrate Late Miocene-Quaternary units and are rooted in the Gulf of Cádiz wedge emplaced during the late Tortonian. Major phases of mud extrusion and outbuilding took place since the Late Pliocene, even though in the Yuma and Jesús Baraza MVs mud volcanism started in the Late Miocene shortly after the emplacement of the Gulf of Cádiz wedge. This study shows that fluid venting in the eastern sector of the Gulf of Cádiz promoted the outbuilding of large long-lived mud volcanoes active since the Late Miocene, and which have been reactivated repeatedly until recent times.

  1. ASI-Volcanic Risk System (SRV): a pilot project to develop EO data processing modules and products for volcanic activity monitoring, first results.

    NASA Astrophysics Data System (ADS)

    Silvestri, M.; Musacchio, M.; Buongiorno, M. F.; Dini, L.

    2009-04-01

    The Project called Sistema Rischio Vulcanico (SRV) is funded by the Italian Space Agency (ASI) in the frame of the National Space Plan 2003-2005 under the Earth Observations section for natural risks management. The SRV Project is coordinated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) which is responsible at national level for the volcanic monitoring. The project philosophy is to implement, by incremental versions, specific modules which allow to process, store and visualize through Web GIS tools geophysical parameters suitable for volcanic risk management. The ASI-SRV is devoted to the development of an integrated system based on Earth Observation (EO) data to respond to specific needs of the Italian Civil Protection Department (DPC) and improve the monitoring of Italian active volcanoes during all the risk phases (Pre Crisis, Crisis and Post Crisis). The ASI-SRV system provides support to risk managers during the different volcanic activity phases and its results are addressed to the Italian Civil Protection Department (DPC). SRV provides the capability to manage the import many different EO data into the system, it maintains a repository where the acquired data have to be stored and generates selected volcanic products. The processing modules for EO Optical sensors data are based on procedures jointly developed by INGV and University of Modena. This procedures allow to estimate a number of parameters such as: surface thermal proprieties, gas, aerosol and ash emissions and to characterize the volcanic products in terms of composition and geometry. For the analysis of the surface thermal characteristics, the available algorithms allow to extract information during the prevention phase and during the Warning and Crisis phase. In the prevention phase the thermal analysis is directed to the identification of temperature variation on volcanic structure which may indicate a change in the volcanic activity state. At the moment the only sensor that

  2. Optimization of NaOH Molarity, LUSI Mud/Alkaline Activator, and Na2SiO3/NaOH Ratio to Produce Lightweight Aggregate-Based Geopolymer.

    PubMed

    Razak, Rafiza Abdul; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Ismail, Khairul Nizar; Hardjito, Djwantoro; Yahya, Zarina

    2015-05-21

    This paper presents the mechanical function and characterization of an artificial lightweight geopolymer aggregate (ALGA) using LUSI (Sidoarjo mud) and alkaline activator as source materials. LUSI stands for LU-Lumpur and SI-Sidoarjo, meaning mud from Sidoarjo which erupted near the Banjarpanji-1 exploration well in Sidoarjo, East Java, Indonesia on 27 May 2006. The effect of NaOH molarity, LUSI mud/Alkaline activator (LM/AA) ratio, and Na2SiO3/NaOH ratio to the ALGA are investigated at a sintering temperature of 950 °C. The results show that the optimum NaOH molarity found in this study is 12 M due to the highest strength (lowest AIV value) of 15.79% with lower water absorption and specific gravity. The optimum LUSI mud/Alkaline activator (LM/AA) ratio of 1.7 and the Na2SiO3/NaOH ratio of 0.4 gives the highest strength with AIV value of 15.42% with specific gravity of 1.10 g/cm3 and water absorption of 4.7%. The major synthesized crystalline phases were identified as sodalite, quartz and albite. Scanning Electron Microscope (SEM) image showed more complete geopolymer matrix which contributes to highest strength of ALGA produced.

  3. Optimization of NaOH Molarity, LUSI Mud/Alkaline Activator, and Na2SiO3/NaOH Ratio to Produce Lightweight Aggregate-Based Geopolymer.

    PubMed

    Razak, Rafiza Abdul; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Ismail, Khairul Nizar; Hardjito, Djwantoro; Yahya, Zarina

    2015-01-01

    This paper presents the mechanical function and characterization of an artificial lightweight geopolymer aggregate (ALGA) using LUSI (Sidoarjo mud) and alkaline activator as source materials. LUSI stands for LU-Lumpur and SI-Sidoarjo, meaning mud from Sidoarjo which erupted near the Banjarpanji-1 exploration well in Sidoarjo, East Java, Indonesia on 27 May 2006. The effect of NaOH molarity, LUSI mud/Alkaline activator (LM/AA) ratio, and Na2SiO3/NaOH ratio to the ALGA are investigated at a sintering temperature of 950 °C. The results show that the optimum NaOH molarity found in this study is 12 M due to the highest strength (lowest AIV value) of 15.79% with lower water absorption and specific gravity. The optimum LUSI mud/Alkaline activator (LM/AA) ratio of 1.7 and the Na2SiO3/NaOH ratio of 0.4 gives the highest strength with AIV value of 15.42% with specific gravity of 1.10 g/cm3 and water absorption of 4.7%. The major synthesized crystalline phases were identified as sodalite, quartz and albite. Scanning Electron Microscope (SEM) image showed more complete geopolymer matrix which contributes to highest strength of ALGA produced. PMID:26006238

  4. Optimization of NaOH Molarity, LUSI Mud/Alkaline Activator, and Na2SiO3/NaOH Ratio to Produce Lightweight Aggregate-Based Geopolymer

    PubMed Central

    Abdul Razak, Rafiza; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Ismail, Khairul Nizar; Hardjito, Djwantoro; Yahya, Zarina

    2015-01-01

    This paper presents the mechanical function and characterization of an artificial lightweight geopolymer aggregate (ALGA) using LUSI (Sidoarjo mud) and alkaline activator as source materials. LUSI stands for LU-Lumpur and SI-Sidoarjo, meaning mud from Sidoarjo which erupted near the Banjarpanji-1 exploration well in Sidoarjo, East Java, Indonesia on 27 May 2006. The effect of NaOH molarity, LUSI mud/Alkaline activator (LM/AA) ratio, and Na2SiO3/NaOH ratio to the ALGA are investigated at a sintering temperature of 950 °C. The results show that the optimum NaOH molarity found in this study is 12 M due to the highest strength (lowest AIV value) of 15.79% with lower water absorption and specific gravity. The optimum LUSI mud/Alkaline activator (LM/AA) ratio of 1.7 and the Na2SiO3/NaOH ratio of 0.4 gives the highest strength with AIV value of 15.42% with specific gravity of 1.10 g/cm3 and water absorption of 4.7%. The major synthesized crystalline phases were identified as sodalite, quartz and albite. Scanning Electron Microscope (SEM) image showed more complete geopolymer matrix which contributes to highest strength of ALGA produced. PMID:26006238

  5. Adsorption of dichromate ions on the red mud surface

    NASA Astrophysics Data System (ADS)

    Terekhova, M. V.; Gorichev, I. G.; Lainer, Yu. A.; Artamonova, I. V.; Rusakova, S. M.

    2014-07-01

    The possibility of using a red mud (waste of alumina production) as a sorbent of dichromate ions from aqueous solutions is studied. A method for the activation of red mud by hydrochloric acid is proposed. The dependences of the amount adsorbed of dichromate ions on the pH and initial concentration of aqueous solutions are studied.

  6. The Cenozoic volcanism in the Kivu rift: Assessment of the tectonic setting, geochemistry, and geochronology of the volcanic activity in the South-Kivu and Virunga regions

    NASA Astrophysics Data System (ADS)

    Pouclet, A.; Bellon, H.; Bram, K.

    2016-09-01

    The Kivu rift is part of the western branch of the East African Rift system. From Lake Tanganyika to Lake Albert, the Kivu rift is set in a succession of Precambrian zones of weakness trending NW-SE, NNE-SSW and NE-SW. At the NW to NNE turn of the rift direction in the Lake Kivu area, the inherited faults are crosscut by newly born N-S fractures which developed during the late Cenozoic rifting and controlled the volcanic activity. From Lake Kivu to Lake Edward, the N-S faults show a right-lateral en echelon pattern. Development of tension gashes in the Virunga area indicates a clockwise rotation of the constraint linked to dextral oblique motion of crustal blocks. The extensional direction was W-E in the Mio-Pliocene and ENE-WSW in the Pleistocene to present time. The volcanic rocks are assigned to three groups: (1) tholeiites and sodic alkali basalts in the South-Kivu, (2) sodic basalts and nephelinites in the northern Lake Kivu and western Virunga, and (3) potassic basanites and potassic nephelinites in the Virunga area. South-Kivu magmas were generated by melting of spinel + garnet lherzolite from two sources: an enriched lithospheric source and a less enriched mixed lithospheric and asthenospheric source. The latter source was implied in the genesis of the tholeiitic lavas at the beginning of the South-Kivu tectono-volcanic activity, in relationships with asthenosphere upwelling. The ensuing outpouring of alkaline basaltic lavas from the lithospheric source attests for the abortion of the asthenospheric contribution and a change of the rifting process. The sodic nephelinites of the northern Lake Kivu originated from low partial melting of garnet peridotite of the sub-continental mantle due to pressure release during swell initiation. The Virunga potassic magmas resulted from the melting of garnet peridotite with an increasing degree of melting from nephelinite to basanite. They originated from a lithospheric source enriched in both K and Rb, suggesting the

  7. A spaceborne inventory of volcanic activity in Antarctica and southern oceans, 2000-10

    USGS Publications Warehouse

    Patrick, Matthew R.; Smellie, John L.

    2015-01-01

    Of the more than twenty historically active volcanoes in Antarctica and the sub-Antarctic region only two, to our knowledge, host any ground-based monitoring instruments. Moreover, because of their remoteness, most of the volcanoes are seldom visited, thus relegating the monitoring of volcanism in this region almost entirely to satellites. In this study, high temporal resolution satellite data from the Hawaii Institute of Geophysics and Planetology's MODVOLC system using MODIS (Moderate Resolution Imaging Spectroradiometer) are complemented with high spatial resolution data (ASTER, or Advanced Spaceborne Thermal Emission and Reflection Radiometer, and similar sensors) to document volcanic activity throughout the region during the period 2000–10. Five volcanoes were observed in eruption (Mount Erebus, Mount Belinda, Mount Michael, Heard Island and McDonald Island), which were predominantly low-level and effusive in nature. Mount Belinda produced tephra, building a cinder cone in addition to an extensive lava field. Five volcanoes exhibited detectable thermal, and presumed fumarolic, activity (Deception, Zavodovski, Candlemas, Bristol, and Bellingshausen islands). A minor eruption reported at Marion Island was not detected in our survey due to its small size. This study also discovered a new active vent on Mount Michael, tracked dramatic vent enlargement on Heard Island, and provides an improved picture of the morphology of some of the volcanoes.

  8. Hydrological Modeling of Groundwater Disturbance to Gravity Signal for High-accuracy Monitoring of Volcanic Activity

    NASA Astrophysics Data System (ADS)

    Kazama, T.; Okubo, S.

    2007-12-01

    Gravity observation is one of the effective methods to detect magma movements in volcanic eruptions [e.g., Furuya et al., J. Geoph. Res., 2003]. Groundwater-derived disturbances have to be corrected from gravity variations for highly accurate monitoring of volcanic activities. They have been corrected with empirical methods, such as tank models and regression curves [e.g., Imanishi et al., J. Geodyn., 2006]. These methods, however, are not based on hydrological background, and are very likely to eliminate volcanic signals excessively. The correction method of groundwater disturbance has to be developed with hydrological and quantitative approach. We thus estimate the gravity disturbance arising from groundwater as follows. (1) Groundwater distributions are simulated on a hydrological model, utilizing groundwater flow equations. (2) Groundwater-derived gravity value is estimated for each instant of time, by integrating groundwater distributions spatially. (3) The groundwater-derived gravity, as the correction value, is subtracted from observed gravity data. In this study, we simulated groundwater flow and groundwater-derived gravity value on the east part of the Asama volcano, central Japan. A simple hydrological model was supposed, consisting of homogeneous soil, lying on a flat impermeable basement. Hydraulic conductivity, which defines groundwater velocity, was set as 2.0×10-6[m/s], which is consistent with typical volcanic soils. We also observed time variations of watertable height, soil moisture and gravity simultaneously during the summer of 2006 at Asama volcano, and compared the observations with the theoretical values. Both simulated groundwater distributions and gravity changes agree fairly well with observed values. On variations of water level and moisture content, rapid increase at the time of rainfalls and exponential decrease after rainfalls were illustrated. Theoretical gravity changes explained 90% of the observed gravity increase (+20μgals) for

  9. Red mud characterization using nuclear analytical techniques

    SciTech Connect

    Obhodas, J.; Sudac, D.; Matjacic, L.; Valkovic, V.

    2011-07-01

    Red mud is a toxic waste left as a byproduct in aluminum production Bayer process. Since it contains significant concentrations of other chemical elements interesting for industry, including REE, it is also potential secondary ore source. Recent events in some countries have shown that red mud presents a serious environmental hazard if not properly stored. The subject of our study is the red mud from an ex-aluminum plant in Obrovac, Croatia, left from processing of bauxite mined during late 70's and early 80's at the eastern Adriatic coast and since than stored in open concrete basins for more than 30 years. We have used energy dispersive x-ray fluorescence analysis (both tube and radioactive source excitation), fast neutron activation analysis and passive gamma spectrometry to identify a number of elements present in the red mud, their concentration levels and radioactivity in the red mud. The high concentrations of Al, Si, Ca, Ti and Fe have been measured. Chemical elements Sc, Cr, Mn, Co, Ni, Cu, Zn, Ga, As, Se, Br, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Pb, Th and U were found in lower concentrations. No significant levels of radioactivity have been measured. (authors)

  10. Evidence of lightning and volcanic activity on Venus - Pro and con

    NASA Astrophysics Data System (ADS)

    Scarf, F. L.; Russell, C. T.

    1988-04-01

    It is argued that the impulsive 100-Hz noise bursts detected with the use of the electric field antenna on the Pioneer Venus Orbiter (PVO) have plasma wave charcteristics that can only be explained if they are whistler mode signals of a type that can be produced by atmospheric discharges. It is further argued that these data are evidence for lightning and volcanic activity on Venus. A reply contends that the PVO electric field measurements are unrelated to either the lower atmosphere or the surface of Venus.

  11. Evidence of lightning and volcanic activity on Venus - Pro and con

    NASA Technical Reports Server (NTRS)

    Scarf, Frederick L.; Russell, Christopher T.

    1988-01-01

    It is argued that the impulsive 100-Hz noise bursts detected with the use of the electric field antenna on the Pioneer Venus Orbiter (PVO) have plasma wave charcteristics that can only be explained if they are whistler mode signals of a type that can be produced by atmospheric discharges. It is further argued that these data are evidence for lightning and volcanic activity on Venus. A reply contends that the PVO electric field measurements are unrelated to either the lower atmosphere or the surface of Venus.

  12. Temporal monitoring of Bardarbunga volcanic activity with TanDEM-X

    NASA Astrophysics Data System (ADS)

    Rossi, C.; Minet, C.; Fritz, T.; Eineder, M.; Erten, E.

    2015-12-01

    On August 29, 2014, a volcanic activity started in the lava field of Holuhraun, at the north east of the Bardarbunga caldera in Iceland. The activity was declared finished on February 27, 2015, thus lasting for about 6 months. During these months the magma chamber below the caldera slowly emptied, causing the rare event of caldera collapse. In this scenario, TanDEM-X remote sensing data is of particular interest. By producing high-resolution and accurate elevation models of the caldera, it is possible to evaluate volume losses and topographical changes useful to increase the knowledge about the volcanic activity dynamics. 5 TanDEM-X InSAR acquisitions have been commanded between August 01, 2014 and November 08, 2014. 2 acquisitions have been commanded before the eruption and 3 acquisitions afterwards. To fully cover the volcanic activity, also the lava flow area at the north-west of the caldera has been monitored and a couple of acquisitions have been employed to reveal the subglacial graben structure and the lava path. In this context, the expected elevation accuracy is studied on two levels. Absolute height accuracy is analyzed by inspecting the signal propagation at X-band in the imaged medium. Relative height accuracy is analyzed by investigating the InSAR system parameters and the local geomorphology. It is shown how the system is very well accurate with mean height errors below the meter. Moreover, neither InSAR processing issues, e.g. phase unwrapping errors, nor complex DEM calibration aspects are problems to tackle. Caldera is imaged in its entirety and new cauldron formations and, in general, the complete restructuring of the glacial volcanic system is well represented. An impressive caldera volume loss of about 1 billion cubic meters is measured in about two months. The dyke propagation from the Bardarbunga cauldron to the Holuhraun lava field is also revealed and a graben structure with a width of up to 1 km and a sinking of a few meters is derived

  13. Probabilistic constraints from existing and future radar imaging on volcanic activity on Venus

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.

    2015-11-01

    We explore the quantitative limits that may be placed on Venus' present-day volcanic activity by radar imaging of surface landforms. The apparent nondetection of new lava flows in the areas observed twice by Magellan suggests that there is a ~60% chance that the eruption rate is ~1 km3/yr or less, using the eruption history and area/volume flow geometry of terrestrial volcanoes (Etna, Mauna Loa and Merapi) as a guide. However, if the detection probability of an individual flow is low (e.g. ~10%) due to poor resolution or quality and unmodeled viewing geometry effects, the constraint (<10 km3/yr) is not useful. Imaging at Magellan resolution or better of only ~10% of the surface area of Venus on a new mission (30 years after Magellan) would yield better than 99% chance of detecting a new lava flow, even if the volcanic activity is at the low end of predictions (~0.01 km3/yr) and is expressed through a single volcano with a stochastic eruption history. Closer re-examination of Magellan data may be worthwhile, both to search for new features, and to establish formal (location-dependent) limits on activity against which data from future missions can be tested. While Magellan-future and future-future comparisons should offer much lower detection thresholds for erupted volumes, a probabilistic approach will be required to properly understand the implications.

  14. A preliminary comparison of RST and MODVOLC techniques for satellite monitoring of thermal volcanic activity

    NASA Astrophysics Data System (ADS)

    Lacava, Teodosio; Coviello, Irina; Marchese, Francesco; Mazzeo, Giuseppe; Pergola, Nicola; Tramutoli, Valerio

    2010-05-01

    The potential of satellite sensors working in middle infrared (MIR) region of the electromagnetic spectrum for the detection of hotspots related to active lava flows has been largely demonstrated. Among current available sensors useful for such an application, MODIS (Moderate Resolution Imaging Spectroradiometer), on board NASA-EOS satellites, offers a good compromise between spatial resolution and temporal coverage together with a high dynamic range in MIR region. Based on such satellite data, the MODVOLC algorithm has shown good performances in detecting thermal volcanic features at a global scale. This method has been implemented in an automatic processing chain for near real time monitoring of active volcanoes, with hotspot products continuously posted on the web. On the other hand, the RST (Robust Satellite Techniques) approach has already been successfully used to monitor volcanoes at different geographic locations, under different environmental and observational conditions. An advanced version of RST has recently been proposed, in order to further improve detection and monitoring of thermal volcanic features both in terms of reliability and sensitivity. In this paper, results of a preliminary comparison between RST, implemented on MODIS data, and MODVOLC techniques will be presented. Results of this study, carried out on Mount Etna area during recent lava effusion episodes, will be analyzed and discussed also by validating satellite products with independent and detailed bulletins of eruptive activity.

  15. Hydrothermal Activity and Volcanism on the Southern Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Haase, K. M.; Scientific Party, M.

    2005-12-01

    In April 2005 four recently discovered different hydrothermal fields on the slow-spreading Mid-Atlantic Ridge (MAR) south of the Equator were studied and sampled using a remotely operated vehicle (ROV) during cruise METEOR 64/1. Three of these hydrothermally active fields (called Turtle Pits, Red Lion, and Wideawake) occur at about 3000 m water depth in the centre of a MAR segment at 4° 48'S which appears to be volcanically very active. The youngest lava flow partly covers the low-temperature, diffuse flow Wideawake mussel field and is thus probably only a few years old. The high-temperature Turtle Pits hydrothermal field with four active vent structures lies some 300 m west of the diffuse vent field and is characterized by boiling fluids with temperatures close to 400° C. The mineral assemblage recovered from inactive hydrothermal mounds includes massive magnetite+hematite+sulfate and differs from that of the presently active vents and indicates more oxidizing conditions during the earlier activity. The vent fluids at Turtle Pits contain relatively high contents of hydrogen which may have formed during iron oxidation processes when basaltic magmas crystallized. The high fluid temperatures, the change to more reducing conditions, and the relatively high hydrogen contents in the fluids are most likely due to the ascent of magmas from the mantle that fed the very recent eruption. The high-temperature Red Lion hydrothermal field lies some 2 km north of the Turtle Pits field and consists of at least four active black smokers surrounded by several inactive sulfide mounds. The composition of the Red Lion fluids differs significantly from the Turtle Pits fluids, possibly owing largely to a difference in the temperature of the two systems. The fourth hydrothermally active field on the southern MAR, the Liliput field, was discovered near 9° 33'S in a water depth of 1500 m and consists of several low-temperature vents. A shallow hydrothermal plume in the water column

  16. Results From NICLAKES Survey of Active Faulting Beneath Lake Nicaragua, Central American Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Funk, J.; Mann, P.; McIntosh, K.; Wulf, S.; Dull, R.; Perez, P.; Strauch, W.

    2006-12-01

    In May of 2006 we used a chartered ferry boat to collect 520 km of seismic data, 886 km of 3.5 kHz subbottom profiler data, and 35 cores from Lake Nicaragua. The lake covers an area of 7700 km2 within the active Central American volcanic arc, forms the largest lake in Central America, ranks as the twentieth largest freshwater lake in the world, and has never been previously surveyed or cored in a systematic manner. Two large stratovolcanoes occupy the central part of the lake: Concepcion is presently active, Maderas was last active less than 2000 years ago. Four zones of active faulting and doming of the lake floor were mapped with seismic and 3.5 kHz subbottom profiling. Two of the zones consist of 3-5-km-wide, 20-30-km-long asymmetric rift structures that trend towards the inactive cone of Maderas Volcano in a radial manner. The northeastern rift forms a 20-27-m deep depression on the lake bottom that is controlled by a north-dipping normal fault. The southwestern rift forms a 25-35-m deep depression controlled by a northeast-dipping normal fault. Both depressions contain mound-like features inferred to be hydrothermal deposits. Two zones of active faulting are associated with the active Concepcion stratovolcano. A 600-m-wide and 6-km-long fault bounded horst block extends westward beneath the lake from a promontory on the west side of the volcano. Like the two radial rift features of Maderas, the horst points roughly towards the active caldera of Concepcion. A second north-south zone of active faulting, which also forms a high, extends off the north coast of Concepcion and corresponds to a localized zone of folding and faulting mapped by previous workers and inferred by them to have formed by gravitational spreading of the flank of the volcano. The close spatial relation of these faults to the two volcanic cones in the lake suggests that the mechanism for faulting is a result of either crustal movements related to magma intrusion or gravitational sliding and is

  17. 2007 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.; Dixon, James P.; Malik, Nataliya; Chibisova, Marina

    2011-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2007. The year was highlighted by the eruption of Pavlof, one of Alaska's most frequently active volcanoes. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the autumn of 2006 and continued to emit copious amounts of steam and volcanic gas into 2007. Redoubt Volcano showed the first signs of the unrest that would unfold in 2008-09. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  18. 2008 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Cameron, Cheryl E.; Nuzhdaev, Anton A.; Chibisova, Marina

    2011-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest or suspected unrest at seven separate volcanic centers in Alaska during 2008. Significant explosive eruptions at Okmok and Kasatochi Volcanoes in July and August dominated Observatory operations in the summer and autumn. AVO maintained 24-hour staffing at the Anchorage facility from July 12 through August 28. Minor eruptive activity continued at Veniaminof and Cleveland Volcanoes. Observed volcanic unrest at Cook Inlet's Redoubt Volcano presaged a significant eruption in the spring of 2009. AVO staff also participated in hazard communication regarding eruptions or unrest at nine volcanoes in Russia as part of a collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  19. An actinomycete isolate from solitary wasp mud nest having strong antibacterial activity and kills the Candida cells due to the shrinkage and the cytosolic loss.

    PubMed

    Kumar, Vijay; Naik, Bindu; Gusain, Omprakash; Bisht, Gajraj S

    2014-01-01

    An actinomycetes strain designated as MN 2(6) was isolated from the solitary wasp mud nest. The isolate was identified using polyphasic taxonomy. It produced the extensive branched brown substrate and white aerial hyphae that changed into grayish black. The aerial mycelia produced the spiral spore chains with rugose spore surface. The growth was observed between temperature range of 27-37°C, pH 8-10 and below salt concentration of 6% (w/v). The comparative analysis of 16S rRNA gene sequence and phylogenetic relationship showed that strain MN 2(6) lies in clade with Streptomyces hygroscopicus subsp. hygroscopicus NRRL 2387(T), Streptomyces sporocinereus NBRC 100766(T) and Streptomyces demainii NRRL B-1478(T) with which it shares a 16S rRNA gene sequence similarity of 99.3%. The strain MN 2(6) can be differentiated from type strains based on phenotypic characteristics. The strain MN 2(6) showed most promising activity against Gram-positive, Gram-negative bacteria, acid-fast bacilli and Candida species suggesting broad-spectrum characteristics of the active metabolite. Evaluation of anti-candidal activity of the metabolite of strain MN 2(6) by scanning electron microscopy (SEM) revealed changed external morphology of yeast. It kills the Candida cells due to the shrinkage and the cytosolic loss. However, further studies are required to elucidate the structure of the active metabolite produced by the isolate MN 2(6).

  20. An actinomycete isolate from solitary wasp mud nest having strong antibacterial activity and kills the Candida cells due to the shrinkage and the cytosolic loss

    PubMed Central

    Kumar, Vijay; Naik, Bindu; Gusain, Omprakash; Bisht, Gajraj S.

    2014-01-01

    An actinomycetes strain designated as MN 2(6) was isolated from the solitary wasp mud nest. The isolate was identified using polyphasic taxonomy. It produced the extensive branched brown substrate and white aerial hyphae that changed into grayish black. The aerial mycelia produced the spiral spore chains with rugose spore surface. The growth was observed between temperature range of 27–37°C, pH 8–10 and below salt concentration of 6% (w/v). The comparative analysis of 16S rRNA gene sequence and phylogenetic relationship showed that strain MN 2(6) lies in clade with Streptomyces hygroscopicus subsp. hygroscopicus NRRL 2387T, Streptomyces sporocinereus NBRC 100766T and Streptomyces demainii NRRL B-1478T with which it shares a 16S rRNA gene sequence similarity of 99.3%. The strain MN 2(6) can be differentiated from type strains based on phenotypic characteristics. The strain MN 2(6) showed most promising activity against Gram-positive, Gram-negative bacteria, acid-fast bacilli and Candida species suggesting broad-spectrum characteristics of the active metabolite. Evaluation of anti-candidal activity of the metabolite of strain MN 2(6) by scanning electron microscopy (SEM) revealed changed external morphology of yeast. It kills the Candida cells due to the shrinkage and the cytosolic loss. However, further studies are required to elucidate the structure of the active metabolite produced by the isolate MN 2(6). PMID:25191320

  1. Volcanic hazard management in dispersed volcanism areas

    NASA Astrophysics Data System (ADS)

    Marrero, Jose Manuel; Garcia, Alicia; Ortiz, Ramon

    2014-05-01

    Traditional volcanic hazard methodologies were developed mainly to deal with the big stratovolcanoes. In such type of volcanoes, the hazard map is an important tool for decision-makers not only during a volcanic crisis but also for territorial planning. According to the past and recent eruptions of a volcano, all possible volcanic hazards are modelled and included in the hazard map. Combining the hazard map with the Event Tree the impact area can be zoned and defining the likely eruptive scenarios that will be used during a real volcanic crisis. But in areas of disperse volcanism is very complex to apply the same volcanic hazard methodologies. The event tree do not take into account unknown vents, because the spatial concepts included in it are only related with the distance reached by volcanic hazards. The volcanic hazard simulation is also difficult because the vent scatter modifies the results. The volcanic susceptibility try to solve this problem, calculating the most likely areas to have an eruption, but the differences between low and large values obtained are often very small. In these conditions the traditional hazard map effectiveness could be questioned, making necessary a change in the concept of hazard map. Instead to delimit the potential impact areas, the hazard map should show the expected behaviour of the volcanic activity and how the differences in the landscape and internal geo-structures could condition such behaviour. This approach has been carried out in La Palma (Canary Islands), combining the concept of long-term hazard map with the short-term volcanic scenario to show the expected volcanic activity behaviour. The objective is the decision-makers understand how a volcanic crisis could be and what kind of mitigation measurement and strategy could be used.

  2. Drilling mud dispersants

    SciTech Connect

    Gleason, P. A.; Brase, I. E.

    1985-05-21

    Dispersants useful in aqueous drilling mud formulations employed in the drilling of subterranean wells where high temperature and high pressure environments are encountered are disclosed. The dispersants, when used in amounts of about 0.1 to 25 ppb provide muds containing colloidal material suspended in an aqueous medium with improved high temperature and high pressure stability. The dispersants are water soluble sulfonated vinyl toluene-maleic anhydride copolymers which have a molar ratio of vinyl toluene to maleic anhydride of about 1:1 to less than about 2:1, a molecular weight of 1,000 to 25,000 and at least about 0.7 sulfonic acid groups per vinyl toluene unit.

  3. Active fault systems and tectono-topographic configuration of the central Trans-Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Szynkaruk, Ewa; Graduño-Monroy, Víctor Hugo; Bocco, Gerardo

    2004-07-01

    The central Trans-Mexican Volcanic Belt (TMVB) reflects the interplay between three regional fault systems: the NNW-SSE to NW-SE striking Taxco-Querétaro fault system, the NE-SW striking system, and the E-W striking Morelia-Acambay fault system. The latter is the youngest and consists of fault scarps up to 500 m high, whose formation caused structural and morphological reorganization of the region. In this paper, we investigate possible activity of the three systems within the central TMVB, and assess the role that they play in controlling the tectono-topographic configuration of the area. Our study is based on DEM-derived morphometric maps, longitudinal river profiles, geomorphologic mapping, and structural field data concerning recent faulting. We find that all three regional fault systems are active within the central TMVB, possibly with different displacement rates and/or type of motion; and that NNW-SSE and NE-SW striking faults control the major tectono-topographic elements that build up the region, which are being re-shaped by E-W striking faults. We also find that tectonic information can be deciphered from the topography of the youthful volcanic arc in question, regardless its complexity.

  4. Ultra-long-range hydroacoustic observations of submarine volcanic activity at Monowai, Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Metz, D.; Watts, A. B.; Grevemeyer, I.; Rodgers, M.; Paulatto, M.

    2016-02-01

    Monowai is an active submarine volcanic center in the Kermadec Arc, Southwest Pacific Ocean. During May 2011, it erupted over a period of 5 days, with explosive activity directly linked to the generation of seismoacoustic T phases. We show, using cross-correlation and time-difference-of-arrival techniques, that the eruption is detected as far as Ascension Island, equatorial South Atlantic Ocean, where a bottom moored hydrophone array is operated as part of the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty Organization. Hydroacoustic phases from the volcanic center must therefore have propagated through the Sound Fixing and Ranging channel in the South Pacific and South Atlantic Oceans, a source-receiver distance of ~15,800 km. We believe this to be the furthest documented range of a naturally occurring underwater signal above 1 Hz. Our findings, which are consistent with observations at regional broadband stations and long-range, acoustic parabolic equation modeling, have implications for submarine volcano monitoring.

  5. Autonomous Volcanic Activity Detection with ASE on EO-1 Hyperion: Applications for Planetary Missions

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; Baker, V.; Castano, R.; Chien, S.; Cichy, B.; Doggett, T.; Dohm, J.; Greeley, R.; Rabideau, G.; Sherwood, R.; Williams, K.; ASE Project Team

    2003-05-01

    The New Millennium Program (NMP) Space Technology 6 (ST-6) Autonomous Sciencecraft Experiment (ASE) will fly two scene classifiers on the Earth Orbiting 1 (EO-1) spacecraft in the fall of 2003, and will demonstrate autonomous, onboard processing of Hyperion imager 0.4-2.4 micron hyperspectral data, and autonomous, science-driven planning and acquisition of subsequent observations. ASE is an experiment to meet NASA's call for systems with reduced downlink and onboard data processing to enable autonomous missions. ASE software is divided into three classes: (1) spacecraft command and control; (2) an onboard planner (CASPER); and (3) modular science algorithms, which are used to process raw data to search out specific features and spectral signatures. The ASE Science Team has developed scene classifiers to detect thermal emission in both day and nighttime Hyperion data, and are continuing to develop other scene classifiers for ice, snow, water and land for future release and flight on EO-1. Once uploaded, the thermal scene classifier effectively turns the EO-1 spacecraft into an autonomously operating and reacting volcanic activity detector. It is possible to envision such a capability on spacecraft observing volcanism on Io and Triton, autonomously identifying and classifying activity, identifying sites deserving of closer scrutiny, and retasking the spacecraft to observe them, thus fulfilling NASA's goal of fully-autonomous, science-driven spacecraft. This work was carried out at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA.

  6. Spatial distribution of intrinsic and scattering seismic attenuation in active volcanic islands - II: Deception Island images

    NASA Astrophysics Data System (ADS)

    Prudencio, Janire; Ibáñez, Jesús M.; García-Yeguas, Araceli; Del Pezzo, Edoardo; Posadas, Antonio M.

    2013-12-01

    In this work, we present regional maps of the inverse intrinsic quality factor (Qi-1), the inverse scattering quality factor (Qs-1) and total inverse quality factor (Qt-1) for the volcanic environment of Deception Island (Antarctica). Our attenuation study is based on diffusion approximation, which permits us to obtain the attenuation coefficients for every single couple source-receiver separately. The data set used in this research is derived from an active seismic experiment using more than 5200 offshore shots (air guns) recorded at 32 onshore seismic stations and four ocean bottom seismometers. To arrive at a regional distribution of these values, we used a new mapping technique based on a Gaussian space probability function. This approach led us to create `2-D probabilistic maps' of values of intrinsic and scattering seismic attenuation. The 2-D tomographic images confirm the existence of a high attenuation body below an inner bay of Deception Island. This structure, previously observed in 2-D and 3-D velocity tomography of the region, is associated with a massive magma reservoir. Magnetotelluric studies reach a similar interpretation of this strong anomaly. Additionally, we observed areas with lower attenuation effects that bear correlation with consolidated structures described in other studies and associated with the crystalline basement of the area. Our calculations of the transport mean-free path and absorption length for intrinsic attenuation gave respective values of ≈ 950 m and 5 km, which are lower than the values obtained in tectonic regions or volcanic areas such as Tenerife Island. However, as observed in other volcanic regions, our results indicate that scattering effects dominate strongly over the intrinsic attenuation.

  7. Evidence for Subglacial Volcanic Activity Beneath the area of the Divide of the West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.

    2013-12-01

    There is an increasing body of aeromagnetic, radar ice-sounding, heat flow, subglacial volcanic earthquakes, several exposed active and subglacial volcanoes and other lines of evidence for volcanic activity associated with the West Antarctic Rift System (WR) since the origin (~25 Ma) of the West Antarctic Ice Sheet (WAIS), which flows through it. Exposed late Cenozoic, alkaline volcanic rocks, 34 Ma to present concentrated in Marie Byrd Land (LeMasurier and Thomson, 1990), but also exposed along the rift shoulder on the Transantarctic Mountains flank of the WR, and >1 million cubic kilometers, of mostly subglacially erupted 'volcanic centers' beneath the WAIS inferred from aeromagnetic data, have been interpreted as evidence of a magmatic plume. About 18 high relief, (~600-2000 m) 'volcanic centers' presently beneath the WAIS surface, probably were erupted subaerially when the WAIS was absent, based on the 5-km orthogonally line spaced Central West Antarctica aerogeophysical survey. All would be above sea level after ice removal and isostatic adjustment. Nine of these high relief peaks are in the general area beneath the divide of the WAIS. This high bed relief topography was first interpreted in the 1980s as the volcanic 'Sinuous Ridge ' based on a widely spaced aeromagnetic -radar ice sounding survey (Jankowski et al,. 1983). A 70-km wide, circular ring of interpreted subglacial volcanic rocks was cited as evidence of a volcanic caldera underlying the ice sheet divide based on the CWA survey (Behrendt et al., 1998). A broad magnetic 'low' surrounding the caldera area possibly is evidence of a shallow Curie isotherm. High heat flow reported from temperature logging (Clow et al., 2012) in the WAISCORE and a thick volcanic ash layer in the core (Dunbar et al., 2012) are consistent with this interpretation. A 2 km-high subaerially erupted volcano (subglacial Mt Thiel, ~78.5 degrees S, 111 degrees W) ~ 100 km north from the WAISCORE could be the source of the ash

  8. Connecting Io's volcanic activity to the Io plasma torus: comparison of Galileo/NIMS volcanic and ground-based torus observations

    NASA Astrophysics Data System (ADS)

    Magalhaes, F. P.; Lopes, R. M. C.; Rathbun, J. A.; Gonzalez, W. D.; Morgenthaler, J. P.; Echer, E.; Echer, M. P. D. S.

    2015-12-01

    Io, the innermost of the Jupiter's four Galilean moons, is a remarkable object in the Solar System, due to its intense and energetic volcanic activity. The volcanic sulfur and oxygen in Io's tenuous atmosphere escapes forming an extended neutral cloud around Io and Jupiter. Subsequently, by ionization and pickup ions, a ring of charged particles encircling Jupiter is created, forming the Io plasma torus. Considering this scenario, it is reasonable to expect that the Io plasma torus should be affected by changes in Io's volcanism. Interactions between Io and the Jovian environment is unique and yet not very well understood. Here we present two sets of observations. One from the Galileo Near-Infrared Imaging Spectrograph (NIMS) instrument, which obtained spectral image cubes between 0.7 and 5.2 microns. The other dataset is from ground-based observations of the [SII] 6731 Å emission lines from the Io plasma torus, obtained at McMath-Pierce Solar Telescope, at Kitt Peak. Our dataset from the [SII] 6731 Å emission lines cover more years than the one from the NIMS data. The years presented in this work for a comparative study are from 1998 through 2001. Using the NIMS instrument we were able to identify which volcanoes were active and measure their level of activity. From the [SII] 6731 Å emission lines we were able to trace the densest part of the torus and also the brightness of both ansa. By comparing the results from the Galileo instrument and the ground-based observations, we are exploring how the Io plasma torus responds to large eruptions from Io. We aim with this study to help improve our understanding of this complex coupled system, Jupiter-Io.

  9. Corrective Action Decision Document/Closure Report for Corrective Action Unit 234: Mud Pits, Cellars, and Mud Spills Nevada Test Site, Nevada, Revision 0

    SciTech Connect

    Grant Evenson

    2008-05-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 234, Mud Pits, Cellars, and Mud Spills, located in Areas 2, 3, 4, 12, and 15 at the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996; as amended February 2008). Corrective Action Unit 234 is comprised of the following 12 corrective action sites: •02-09-48, Area 2 Mud Plant #1 •02-09-49, Area 2 Mud Plant #2 •02-99-05, Mud Spill •03-09-02, Mud Dump Trenches •04-44-02, Mud Spill •04-99-02, Mud Spill •12-09-01, Mud Pit •12-09-04, Mud Pit •12-09-08, Mud Pit •12-30-14, Cellar •12-99-07, Mud Dump •15-09-01, Mud Pit The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 234 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 234: Mud Pits, Cellars, and Mud Spills (NNSA/NSO, 2007). The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: •Determine whether contaminants of concern are present. •If contaminants of concern are present, determine their extent. •Provide sufficient information and data to complete appropriate corrective actions. The CAU 234 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs.

  10. Acoustic scattering from mud volcanoes and carbonate mounds.

    PubMed

    Holland, Charles W; Weber, Thomas C; Etiope, Giuseppe

    2006-12-01

    Submarine mud volcanoes occur in many parts of the world's oceans and form an aperture for gas and fluidized mud emission from within the earth's crust. Their characteristics are of considerable interest to the geology, geophysics, geochemistry, and underwater acoustics communities. For the latter, mud volcanoes are of interest in part because they pose a potential source of clutter for active sonar. Close-range (single-interaction) scattering measurements from a mud volcano in the Straits of Sicily show scattering 10-15 dB above the background. Three hypotheses were examined concerning the scattering mechanism: (1) gas entrained in sediment at/near mud volcano, (2) gas bubbles and/or particulates (emitted) in the water column, (3) the carbonate bio-construction covering the mud volcano edifice. The experimental evidence, including visual, acoustic, and nonacoustic sensors, rules out the second hypothesis (at least during the observation time) and suggests that, for this particular mud volcano the dominant mechanism is associated with carbonate chimneys on the mud volcano. In terms of scattering levels, target strengths of 4-14 dB were observed from 800 to 3600 Hz for a monostatic geometry with grazing angles of 3-5 degrees. Similar target strengths were measured for vertically bistatic paths with incident and scattered grazing angles of 3-5 degrees and 33-50 degrees, respectively. PMID:17225386

  11. Acoustic scattering from mud volcanoes and carbonate mounds.

    PubMed

    Holland, Charles W; Weber, Thomas C; Etiope, Giuseppe

    2006-12-01

    Submarine mud volcanoes occur in many parts of the world's oceans and form an aperture for gas and fluidized mud emission from within the earth's crust. Their characteristics are of considerable interest to the geology, geophysics, geochemistry, and underwater acoustics communities. For the latter, mud volcanoes are of interest in part because they pose a potential source of clutter for active sonar. Close-range (single-interaction) scattering measurements from a mud volcano in the Straits of Sicily show scattering 10-15 dB above the background. Three hypotheses were examined concerning the scattering mechanism: (1) gas entrained in sediment at/near mud volcano, (2) gas bubbles and/or particulates (emitted) in the water column, (3) the carbonate bio-construction covering the mud volcano edifice. The experimental evidence, including visual, acoustic, and nonacoustic sensors, rules out the second hypothesis (at least during the observation time) and suggests that, for this particular mud volcano the dominant mechanism is associated with carbonate chimneys on the mud volcano. In terms of scattering levels, target strengths of 4-14 dB were observed from 800 to 3600 Hz for a monostatic geometry with grazing angles of 3-5 degrees. Similar target strengths were measured for vertically bistatic paths with incident and scattered grazing angles of 3-5 degrees and 33-50 degrees, respectively.

  12. Long term validation of Robust Satellite Techniques (RST) for thermal volcanic activity monitoring

    NASA Astrophysics Data System (ADS)

    Marchese, Francesco; Filizzola, Carolina; Genzano, Nicola; Mazzeo, Giuseppe; Paciello, Rossana; Pergola, Nicola; Tramutoli, Valerio

    2010-05-01

    A multi-temporal scheme of satellite data analysis, named RST (Robust Satellite Techniques), already successfully used to study and monitor several active volcanoes, has recently been tested on a long time series of NOAA-AVHRR records acquired over Mount Etna area for a full assessment of its performances. Satellite records acquired at different time of pass (e.g. day/night, winter/summer), from 1995 to 2008 (14 years of satellite records analyzed), processed following RST prescriptions, have been strictly validated using ground based information reported in the volcano bulletins freely available on the web. In this work results of this detailed validation analysis will be presented, discussing performances of such an approach for an automatic satellite monitoring of thermal volcanic features. Moreover, RST capabilities in detecting even abrupt changes in thermal signal related to the beginning of new eruptive events, by using data provided by geostationary satellite like MSG-SEVIRI, will be investigated, for a possible implementation of such an approach within an integrated Early Warning System devoted to volcanic hazard mitigation.

  13. Interactions between active faulting, volcanism, and sedimentary processes at an island arc: Insights from Les Saintes channel, Lesser Antilles arc

    NASA Astrophysics Data System (ADS)

    Leclerc, F.; Feuillet, N.; Deplus, C.

    2016-07-01

    New high-resolution marine geophysical data allow to characterize a large normal fault system in the Lesser Antilles arc, and to investigate the interactions between active faulting, volcanism, sedimentary, and mass-wasting processes. Les Saintes fault system is composed of several normal faults that form a 30 km wide half-graben accommodating NE-SW extension. It is bounded by the Roseau fault, responsible for the destructive Mw 6.3 21 November 2004 earthquake. The Roseau fault has been identified from the island of Basse-Terre to Dominica. It is thus 40 km long, and it could generate Mw 7 earthquakes in the future. Several submarine volcanoes are also recognized. We show that the fault system initiated after the main volcanic construction and subsequently controls the emission of volcanic products. The system propagates southward through damage zones. At the tip of the damage zones, several volcanic cones were recently emplaced probably due to fissures opening in an area of stress increase. A two-way interaction is observed between active faulting and sedimentary processes. The faults control the development of the main turbiditic system made of kilometer-wide canyons, as well as the location of sediment ponding. In turn, erosion and sedimentation prevent scarp growth at the seafloor. Faulting also enhances mass-wasting processes. Since its initiation, the fault system has consequently modified the morphologic evolution of the arc through perturbation of the sedimentary processes and localization of the more recent volcanic activity.

  14. Volcanic Gas

    MedlinePlus

    ... Hazards Tephra/Ash Lava Flows Lahars Volcanic Gas Climate Change Pyroclastic Flows Volcanic Landslides Preparedness Volcano Hazard Zones ... Please see our discussion of volcanic gases and climate change for additional information. Hydrogen sulfide (H 2 S) is ...

  15. Analysis of radar images of the active volcanic zone at Krafla, Iceland: The effects of look azimuth biasing

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Williams, R. S., Jr.

    1989-01-01

    The geomorphic expression of Mid-Ocean-Ridge (MOR) volcanism in a subaerial setting occurs uniquely on Earth in Iceland, and the most recent MOR eruptive activity has been concentrated in the Northeastern Volcanic Zone in an area known as Krafla. Within the Krafla region are many of the key morphologic elements of MOR-related basaltic volcanism, as well as volcanic explosion craters, subglacial lava shields, tectonic fissure swarms known as gjar, and basaltic-andesite flows with well developed ogives (pressure-ridges). The objective was to quantify the degree to which the basic volcanic and structural features can be mapped from directional SAR imagery as a function of the look azimuth. To accomplish this, the current expression of volcanic and tectonic constructs was independently mapped within the Krafla region on the E, W, and N-looking SAR images, as well as from SPOT Panchromatic imagery acquired in 1987. The initial observations of the E, W, and N images indicates that fresh a'a lava surfaces are extremely radar bright (rough at 3 cm to meter scales) independent of look direction; this suggests that these flows do not have strong flow direction related structures at meter and cm scales, which is consistent with typical Icelandic a'a lava surfaces in general. The basic impression from a preliminary analysis of the effects of look azimuth biasing on interpretation of the geology of an active MOR volcanic zone is that up to 30 percent of the diagnostic features can be missed at any given look direction, but that having two orthogonal look direction images is probably sufficient to prevent gross misinterpretation.

  16. Multi-Sensor Mud Detection

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L.; Matthies, Larry H.

    2010-01-01

    Robust mud detection is a critical perception requirement for Unmanned Ground Vehicle (UGV) autonomous offroad navigation. A military UGV stuck in a mud body during a mission may have to be sacrificed or rescued, both of which are unattractive options. There are several characteristics of mud that may be detectable with appropriate UGV-mounted sensors. For example, mud only occurs on the ground surface, is cooler than surrounding dry soil during the daytime under nominal weather conditions, is generally darker than surrounding dry soil in visible imagery, and is highly polarized. However, none of these cues are definitive on their own. Dry soil also occurs on the ground surface, shadows, snow, ice, and water can also be cooler than surrounding dry soil, shadows are also darker than surrounding dry soil in visible imagery, and cars, water, and some vegetation are also highly polarized. Shadows, snow, ice, water, cars, and vegetation can all be disambiguated from mud by using a suite of sensors that span multiple bands in the electromagnetic spectrum. Because there are military operations when it is imperative for UGV's to operate without emitting strong, detectable electromagnetic signals, passive sensors are desirable. JPL has developed a daytime mud detection capability using multiple passive imaging sensors. Cues for mud from multiple passive imaging sensors are fused into a single mud detection image using a rule base, and the resultant mud detection is localized in a terrain map using range data generated from a stereo pair of color cameras.

  17. Major Regional Earthquake as a Trigger for Enhanced Volcanic Activity: Evidence from Satellite Thermal Data

    NASA Astrophysics Data System (ADS)

    Harris, A.; Ripepe, M.; Wright, R.; Dell Donne, D.

    2006-12-01

    Data output by the Moderate Resolution Imaging Spectroradiometer (MODIS) Volcanic hot spot detection algorithm (MODVOLC), as given on http://hotspot.higp.hawaii.edu, allow construction of heat and volume flux time-series for on-going effusive volcanic eruptions. Using MODVOLC-derived time-series we were able to track an immediate eruptive response at two Javanese volcanic systems, Merapi and Semeru, to the magnitude 6.3 earthquake that occurred just off-shore of Java on 26 May 2006. Both volcanoes were active at the time of the earthquake, with the two volcanoes being ~50 km north and ~280 km east of the earthquake epicenter, respectively. Between 10 May and 14 June hot spot activity at Merapi and Semeru was detected by MODVOLC on twenty occasions. From these MODIS data we were able to identify three phases of activity. The first phase spanned 17-29 May and was characterized by relatively low volume fluxes of 5±2 and 4±2 x 104 m3/d at Merapi and Semeru, respectively. The second phase began on 30 May, lasted until 7 June, and was characterized by increased volume fluxes (11±5 and 11±8 x 104 m3/d). The final phase was underway by 8 June and was characterized by a return to lower volume fluxes (8±4 and 7±5 x 104 m3/d). At both systems, we thus recorded a coupled response to the earthquake, beginning 3 days after the event, lasting 9 days and involving a doubling in the rate of volumetric output. The response felt in eruptive activity appears to have lagged ~72 hours behind the trigger event. This no doubt relects the time it takes the change in stress field felt by the deep chamber at the two active systems to be transmitted to the surface. The effect, however, was short-lived, with the volume fluxes returning to values typical of those prior to the earthquake after ~9 days, indicating that the effect (change in the pressure differential) and symptom (increase in erupted volume flux) was transient and short-lived. Previous work has focused on attempting to draw

  18. Characterizing active volcanic processes at Kilauea volcano using LiDAR scanning

    NASA Astrophysics Data System (ADS)

    LeWinter, A. L.; Finnegan, D. C.; Patrick, M. R.; Anderson, S. W.; Orr, T. R.

    2012-12-01

    Active craters and lava lakes evolve in response to a variety of volcanic processes. Quantifying those changes can be difficult or even impossible, for safety reasons, due to the technical limitations of sensors that require a minimum standoff distance. In recent years, advancements in ground-based Light Detection and Ranging (LiDAR) scanners and accessibility to these systems have enhanced our ability to capture data in a diversity of volcanic settings at the highest spatial and temporal resolutions yet seen. Moreover, advancements in full-waveform digitization have significantly improved the ability to acquire data in environments where ash, steam, and sulfur dioxide emissions have historically hampered efforts. Kilauea's ongoing summit eruption, which began in March 2008, has been characterized in part by the evolution of its vent into a 160-meter diameter collapse crater holding an active lava lake. This process has been documented in detail by field and webcam observations, but has not been accurately quantified. Our research focuses on acquiring repeat, high-resolution full-waveform LiDAR data throughout 2012 to monitor changes in the geometry of Kilauea's active lava lake and the crater to which it is confined. We collected LiDAR data in February and July 2012, with plans for an additional survey in October 2012. Our results show changes in the shape of the vent walls and the shape and level of the confined lava lake. Specifically, the LiDAR data has revealed 1) changes in the lava lake level, corresponding to tiltmeter observations of pressure fluctuations in the summit magma reservoir, 2) enlargement of the vent cavity, due to frequent rock falls, and 3) modifications to the lake size and surrounding lava ledges due to competing processes of accretion and collapse. The rapid acquisition of repeat, high-resolution topographic data enables researchers to more accurately characterize shape and volume changes involved in a range of eruptive systems, while

  19. Anatomy Of The ‘LuSi’ Mud Eruption, East Java

    NASA Astrophysics Data System (ADS)

    Tingay, M. R.

    2009-12-01

    Early in the morning of the 29th of May 2006, hot mud started erupting from the ground in the densely populated Porong District of Sidoarjo, East Java. With initial flow rates of ~5000 cubic meters per day, the mud quickly inundated neighbouring villages. Over two years later and the ‘Lusi’ eruption has increased in strength, expelling over 90 million cubic meters of mud at an average rate of approximately 100000 cubic meters per day. The mud flow has now covered over 700 hectares of land to depths of over 25 meters, engulfing a dozen villages and displacing approximately 40000 people. In addition to the inundated areas, other areas are also at risk from subsidence and distant eruptions of gas. However, efforts to stem the mud flow or monitor its evolution are hampered by our overall lack of knowledge and consensus on the subsurface anatomy of the Lusi mud volcanic system. In particular, the largest and most significant uncertainties are the source of the erupted water (shales versus deep carbonates), the fluid flow pathways (purely fractures versus mixed fracture and wellbore) and disputes over the subsurface geology (nature of deep carbonates, lithology of rocks between shale and carbonates). This study will present and overview of the anatomy of the Lusi mud volcanic system with particular emphasis on these critical uncertainties and their influence on the likely evolution of disaster.

  20. Discovery of Active Hydrothermal Sites Along the Mariana Volcanic Arc, Western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Baker, E. T.; Embley, R. W.; Resing, J. A.; Lupton, J. E.; Massoth, G. J.; de Ronde, C. E.; Nakamura, K.; Walker, S. L.

    2003-12-01

    Some 20,000 km of volcanic arcs, roughly one-third the total length of the global midocean ridge (MOR) system, rim the western Pacific Ocean. But compared to 25 years of hydrothermal investigations along MORs, exploration of similar activity on the estimated 600 submarine arc volcanoes is only beginning. In February 2003, as part of the Submarine Ring of Fire project funded by NOAA's Ocean Exploration Program, we made the first systematic survey of hydrothermal activity along the 1270-km-long Mariana intraoceanic volcanic arc, which lies almost entirely within the US EEZ. Prior fieldwork had documented active (but low-temperature) hydrothermal discharge on only three volcanoes: Kasuga 2, Kasuga 3, and Esmeralda Bank. During the cruise, we conducted 70 CTD operations over more than 50 individual volcanoes from 13° N to 23° N, plus a continuous CTD survey along 75 km of the back-arc spreading center (13° 15'N to 13° 41'N) adjacent to the southern end of the arc. We found evidence for active hydrothermal venting at 11 submarine volcanoes with summit (or caldera floor) depths ranging from 50 to 1550 m. Two additional sites were identified on the back-arc spreading center. Ongoing analyses of collected water samples could increase these totals. Our results confirmed continuing hydrothermal activity at Kasuga 2 (but not Kasuga 3) and Esmeralda Bank, in addition to newly discovered sites on nine other volcanoes. Many of these sites produce intense and widely dispersed plumes indicative of vigorous, high-temperature discharge. The volcanoes with active hydrothermal systems are about equally divided between those with and without summit calderas. The addition of the Marianas data greatly improves our view of hydrothermal sources along arcs. The 20,000 km of Pacific arcs can be divided between 6380 km of intraoceanic (i.e., mostly submarine) arcs and 13,880 km of island (i.e., mostly subaerial) arcs. At present, ˜15% of the total length of Pacific arcs has been surveyed

  1. California's potential volcanic hazards

    SciTech Connect

    Jorgenson, P. )

    1989-01-01

    Although volcanic eruptions have occurred infrequently in California during the last few thousand years, the potential danger to life and property from volcanoes in the state is great enough to be of concern, according to a recent U.S. Geological Survey (USGS) publication. The 17-page bulletin, Potential Hazards from Future Volcanic Eruptions in California, gives a brief history of volcanic activity in California during the past 100,000 years, descriptions of the types of volcanoes in the state, the types of potentially hazardous volcanic events that could occur, and hazard-zonation maps and tables depicting six areas of the state where volcanic eruptions might occur. The six areas and brief descriptions of their past volcanic history and potential for future volcanic hazards are briefly summarized here.

  2. High resolution infrared acquisitions droning over the LUSI mud eruption.

    NASA Astrophysics Data System (ADS)

    Di Felice, Fabio; Romeo, Giovanni; Di Stefano, Giuseppe; Mazzini, Adriano

    2016-04-01

    The use of low-cost hand-held infrared (IR) thermal cameras based on uncooled micro-bolometer detector arrays became more widespread during the recent years. Thermal cameras have the ability to estimate temperature values without contact and therefore can be used in circumstances where objects are difficult or dangerous to reach such as volcanic eruptions. Since May 2006 the Indonesian LUSI mud eruption continues to spew boiling mud, water, aqueous vapor, CO2, CH4 and covers a surface of nearly 7 km2. At this locality we performed surveys over the unreachable erupting crater. In the framework of the LUSI Lab project (ERC grant n° 308126), in 2014 and 2015, we acquired high resolution infrared images using a specifically equipped remote-controlled drone flying at an altitude of m 100. The drone is equipped with GPS and an autopilot system that allows pre-programming the flying path or designing grids. The mounted thermal camera has peak spectral sensitivity in LW wavelength (μm 10) that is characterized by low water vapor and CO2 absorption. The low distance (high resolution) acquisitions have a temperature detail every cm 40, therefore it is possible to detect and observe physical phenomena such as thermodynamic behavior, hot mud and fluids emissions locations and their time shifts. Despite the harsh logistics and the continuously varying gas concentrations we managed to collect thermal images to estimate the crater zone spatial thermal variations. We applied atmosphere corrections to calculate infrared absorption by high concentration of water vapor. Thousands of images have been stitched together to obtain a mosaic of the crater zone. Regular monitoring with heat variation measurements collected, e.g. every six months, could give important information about the volcano activity estimating its evolution. A future data base of infrared high resolution and visible images stored in a web server could be a useful monitoring tool. An interesting development will be

  3. Aspects of historical eruptive activity and volcanic unrest at Mt. Tongariro, New Zealand: 1846-2013

    NASA Astrophysics Data System (ADS)

    Scott, Bradley J.; Potter, Sally H.

    2014-10-01

    The 6 August and 21 November 2012 eruptions from Upper Te Maari crater have heightened interest in past activity at Mt. Tongariro, New Zealand. Risks caused by volcanic hazards are increasingly being quantified by using probability estimates through expert elicitation, partly based on the frequency of past eruptions. To maximise the accuracy of these risk values at Mt. Tongariro, a historical eruption catalogue is required. This paper presents the findings of a detailed historical chronology of unrest and eruptions at Mt. Tongariro between 1846 AD and 2013 AD. It builds on the findings of previous researchers, highlighting that volcanic eruptions and unrest have occurred frequently from this volcano. Eruptions are now thought to have occurred at Mt. Tongariro in 1869, 1892, 1896-97, 1899, 1926, 1927, 1934 and 2012. Eruptions also potentially occurred in 1846, 1855, 1886, and 1928, in addition to frequent eruptions from neighbouring Mt. Ngauruhoe. The number of recognised eruptions during the 1896-97 episode has increased to 18, and the Red Crater area has been found to be more active than previously appreciated. Multiple episodes of unrest not resulting in eruptions have also been identified. New eruption recurrence rates are derived from this catalogue, with the baseline probability of the onset of an eruption episode calculated to be 0.07 per year (if 1896-97 and 2012 are considered as one episode each, and all others separately), and the maximum eruption rate within an eruption episode is 18 per year. These new data contribute towards risk assessments for future eruptions at Mt. Tongariro.

  4. Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera.

    PubMed

    Neukum, G; Jaumann, R; Hoffmann, H; Hauber, E; Head, J W; Basilevsky, A T; Ivanov, B A; Werner, S C; van Gasselt, S; Murray, J B; McCord, T

    2004-12-23

    The large-area coverage at a resolution of 10-20 metres per pixel in colour and three dimensions with the High Resolution Stereo Camera Experiment on the European Space Agency Mars Express Mission has made it possible to study the time-stratigraphic relationships of volcanic and glacial structures in unprecedented detail and give insight into the geological evolution of Mars. Here we show that calderas on five major volcanoes on Mars have undergone repeated activation and resurfacing during the last 20 per cent of martian history, with phases of activity as young as two million years, suggesting that the volcanoes are potentially still active today. Glacial deposits at the base of the Olympus Mons escarpment show evidence for repeated phases of activity as recently as about four million years ago. Morphological evidence is found that snow and ice deposition on the Olympus construct at elevations of more than 7,000 metres led to episodes of glacial activity at this height. Even now, water ice protected by an insulating layer of dust may be present at high altitudes on Olympus Mons.

  5. Chemical evolution at the coasts of active volcanic islands in a primordial salty ocean

    NASA Astrophysics Data System (ADS)

    Strasdeit, H.; Fox, S.

    2008-09-01

    The Prebiotic Hot-Volcanic-Coast Scenario It has been suggested that in the Hadean eon (4.5-3.8 Ga before present) no permanent continents but volcanic islands and short-lived protocontinents protruded from the first ocean [1, 2]. As the geothermal heat production was considerably higher than today, it is reasonable to assume that hot volcanic coasts were much more abundant. The salinity of the ocean was probably up to two times higher than the modern value [3]. Under these conditions, the evaporation of seawater at active volcanic coasts must have produced sea salt crusts - a process that can still be observed today [4]. On the hot lava rock, the salt crusts can subsequently experience temperatures up to some hundred degrees Celsius. The seawater probably contained abiotically formed organic molecules such as amino acids, which were inevitably embedded into the sea salt crusts. Different prebiotic sources of amino acids have been discussed: (i) comets and meteorites [5], electrical discharges in the atmosphere [6, 7], and deep-sea hydrothermal vents [8]. We undertook a systematic study of solid salt-amino acid mixtures, especially of their formation and thermal behavior under simulated conditions of the hotvolcanic- coast scenario. Laboratory Experiments Amino acids@salts Artificial Hadean seawater was prepared by dissolving NaCl (705 mmol), MgCl2 (80 mmol), KCl (15 mmol), CaCl2 (15 mmol), and an α-amino acid (5-10 mmol) or a mixture of α-amino acids. In order to model the first step of the hot-volcanic-coast scenario, the solutions were evaporated to dryness. Vibrational spectroscopy (IR, Raman) and X-ray powder diffraction showed that the resulting solid residues were not heterogeneous mixtures of salt and amino acid crystals. Instead the amino acid molecules were coordinated in calcium or magnesium complexes. We have studied the rac-alanine ( + H3NCH(CH3)COO -, Hala) system in more detail and found that the complex that is present in the mixture has the

  6. Characterising volcanic activity of Piton de la Fournaise volcano by the spatial distribution of seismic velocity changes

    NASA Astrophysics Data System (ADS)

    Sens-Schoenfelder, C.; Pomponi, E.

    2013-12-01

    We apply Passive Image Interferometry to investigate the seismic noise recorded from October 2009 until December 2011 by 21 stations of the IPGP/OVPF seismic network installed on Piton de la Fournaise volcano within the UnderVolc project. The analyzed period contains three eruptions in 2009 and January 2010, two eruptions plus one dyke intrusion in late 2010, and a seismic crises in 2011. Seismic noise of vertical and horizontal components is cross-correlated to measure velocity changes as apparent stretching of the coda. For some station pairs the apparent velocity changes exceed 1% and a decorrelation of waveforms is observed at the time of volcanic activity. This distorts monitoring results if changes are measured with respect to a global reference. To overcome this we present a method to estimate changes using multiple references that stabilizes the quality of estimated velocity changes. We observe abrupt changes that occur coincident with volcanic events as well as long term transient signals. Using a simple assumption about the spatial sensitivity of our measurements we can map the spatial distribution of velocity changes for selected periods. Comparing these signals with volcanic activity and GPS derived surface deformation we can identify patterns of the velocity changes that appear characteristic for the type of volcanic activity. We can differentiate intrusive processes associated with inflation and increased seismic activity, periods of relaxation without seismicity and eruptions solely based on the velocity signal. This information can help to assess the processes acting in the volcano.

  7. Igneous activity and related ore deposits in the western and southern Tushar Mountains, Marysvale volcanic field, west-central Utah

    USGS Publications Warehouse

    Steven, Thomas A.

    1984-01-01

    PART A: Igneous activity in the Marysvale volcanic field of western Utah can be separated into many episodes of extrusion, intrusion, and hydrothermal activity. The rocks of the western Tushar Mountains, near the western part of the volcanic field, include intermediate-composition, calc-alkalic volcanic rocks erupted from scattered volcanoes in Oligocene through earliest Miocene time and related monzonitic intrusions emplaced 24-23 m.y. ago. Beginning 22-21 m.y. ago and extending through much of the later Cenozoic, a bimodal basalt-rhyolite assemblage was erupted widely throughout the volcanic field. Only volcanic and intrusive rocks belonging to the rhyolitic end member of this bimodal assemblage are present in the western Tushar Mountains; most of these rocks either fill the Mount Belknap caldera (19 m.y. old) or are part of the rhyolite of Gillies Hill (9---8 m.y. old). Episodic hydrothermal activity altered and mineralized rocks at many places in the western Tushar Mountains during Miocene time. The earliest activity took place in and adjacent to monzonitic calcalkalic intrusions emplaced in the vicinity of Indian Creek and Cork Ridge. These rocks were widely propylitized, and gold-bearing quartz-pyrite-carbonate veins formed in local fractures. Hydrothermal activity associated with the Mount Belknap caldera mobilized and redeposited uranium contained in the caldera-fill rocks and formed primary concentrations of lithophile elements (including molybdenum and uranium) in the vicinity of intrusive bodies. Hydrothermal activity associated with the rhyolite of Gillies Hill altered and mineralized rocks at several places along the fault zone that marks the western margin of the Tushar Mountains; the zoned alunite and gold deposits at Sheep Rock, the gold deposit at the Sunday Mine, and an alunite deposit near Indian Creek were thus produced. Resetting of isotopic ages suggests that another center of hydrothermally altered rocks associated with a buried pluton about

  8. Autonomous Sensorweb Operations for Integrated Space, In-Situ Monitoring of Volcanic Activity

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.; Doubleday, Joshua; Kedar, Sharon; Davies, Ashley G.; Lahusen, Richard; Song, Wenzhan; Shirazi, Behrooz; Mandl, Daniel; Frye, Stuart

    2010-01-01

    We have deployed and demonstrated operations of an integrated space in-situ sensorweb for monitoring volcanic activity. This sensorweb includes a network of ground sensors deployed to the Mount Saint Helens volcano as well as the Earth Observing One spacecraft. The ground operations and space operations are interlinked in that ground-based intelligent event detections can cause the space segment to acquire additional data via observation requests and space-based data acquisitions (thermal imagery) can trigger reconfigurations of the ground network to allocate increased bandwidth to areas of the network best situated to observe the activity. The space-based operations are enabled by an automated mission planning and tasking capability which utilizes several Opengeospatial Consortium (OGC) Sensorweb Enablement (SWE) standards which enable acquiring data, alerts, and tasking using web services. The ground-based segment also supports similar protocols to enable seamless tasking and data delivery. The space-based segment also supports onboard development of data products (thermal summary images indicating areas of activity, quicklook context images, and thermal activity alerts). These onboard developed products have reduced data volume (compared to the complete images) which enables them to be transmitted to the ground more rapidly in engineering channels.

  9. Unraveling the lipolytic activity of thermophilic bacteria isolated from a volcanic environment.

    PubMed

    Stathopoulou, Panagiota M; Savvides, Alexander L; Karagouni, Amalia D; Hatzinikolaou, Dimitris G

    2013-01-01

    In a bioprospecting effort towards novel thermostable lipases, we assessed the lipolytic profile of 101 bacterial strains isolated from the volcanic area of Santorini, Aegean Sea, Greece. Screening of lipase activity was performed both in agar plates and liquid cultures using olive oil as carbon source. Significant differences were observed between the two screening methods with no clear correlation between them. While the percentage of lipase producing strains identified in agar plates was only 17%, lipolytic activity in liquid culture supernatants was detected for 74% of them. Nine strains exhibiting elevated extracellular lipase activities were selected for lipase production and biochemical characterization. The majority of lipase producers revealed high phylogenetic similarity with Geobacillus species and related genera, whilst one of them was identified as Aneurinibacillus sp. Lipase biosynthesis strongly depended on the carbon source that supplemented the culture medium. Olive oil induced lipase production in all strains, but maximum enzyme yields for some of the strains were also obtained with Tween-80, mineral oil, and glycerol. Partially purified lipases revealed optimal activity at 70-80°C and pH 8-9. Extensive thermal stability studies revealed marked thermostability for the majority of the lipases as well as a two-step thermal deactivation pattern.

  10. Unraveling the lipolytic activity of thermophilic bacteria isolated from a volcanic environment.

    PubMed

    Stathopoulou, Panagiota M; Savvides, Alexander L; Karagouni, Amalia D; Hatzinikolaou, Dimitris G

    2013-01-01

    In a bioprospecting effort towards novel thermostable lipases, we assessed the lipolytic profile of 101 bacterial strains isolated from the volcanic area of Santorini, Aegean Sea, Greece. Screening of lipase activity was performed both in agar plates and liquid cultures using olive oil as carbon source. Significant differences were observed between the two screening methods with no clear correlation between them. While the percentage of lipase producing strains identified in agar plates was only 17%, lipolytic activity in liquid culture supernatants was detected for 74% of them. Nine strains exhibiting elevated extracellular lipase activities were selected for lipase production and biochemical characterization. The majority of lipase producers revealed high phylogenetic similarity with Geobacillus species and related genera, whilst one of them was identified as Aneurinibacillus sp. Lipase biosynthesis strongly depended on the carbon source that supplemented the culture medium. Olive oil induced lipase production in all strains, but maximum enzyme yields for some of the strains were also obtained with Tween-80, mineral oil, and glycerol. Partially purified lipases revealed optimal activity at 70-80°C and pH 8-9. Extensive thermal stability studies revealed marked thermostability for the majority of the lipases as well as a two-step thermal deactivation pattern. PMID:23738330

  11. Quantitative Modeling of Volcanic SO2: Integrated Monitoring of Precursory Activity

    NASA Astrophysics Data System (ADS)

    Reath, K. A.; Watson, M.; Ramsey, M. S.

    2015-12-01

    Many volcanoes produce some level of precursory activity prior to a large eruption. However, this activity may only be detected depending on the available monitoring system in place. In certain cases, precursors can be interpreted to make forecasts about the timing and magnitude of the impending eruption. Furthermore, changes in this activity are used to determine the style of the eruption provided the mechanics producing these precursory signals are properly understood. One important precursory measurement is the rate of volcanic gas exsolution. In particular CO2 and SO2 are measured to predict changes in the magma depth as well as its composition. Another important precursory measurement is the thermal flux discharged from summit vents. For example, three precursory periods at Kliuchevskoi volcano in 2005, 2007, and 2009 were studied using thermal infrared (TIR) satellite data obtained from both the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Advanced Very High Resolution Radiometer (AVHRR) sensors. TIR data is also sensitive to the spectral absorbance of volcanogenic SO2. Software to detect and model SO2 flux has now been applied to previously-acquired ASTER data of these three eruptions at Kliuchevskoi. By directly comparing the measured thermal flux and the modelled SO2 flux during the precursory period, the mechanisms leading to the larger eruption are better resolved. Applying these same techniques to future precursory activity would allow the type and duration until onset of the impending eruption to be better predicted in the precursory phase.

  12. Antilipopolysaccharide factor (ALF) of mud crab Scylla paramamosain: molecular cloning, genomic organization and the antimicrobial activity of its synthetic LPS binding domain.

    PubMed

    Imjongjirak, Chanprapa; Amparyup, Piti; Tassanakajon, Anchalee; Sittipraneed, Siriporn

    2007-05-01

    Antilipopolysaccharide factors (ALFs) are small basic proteins that can bind and neutralize lipopolysaccharide (LPS) and have broad spectrum antimicrobial activities. In this study, we describe the isolation of the full-length cDNA encoding for ALF peptide (ALFSp) of mud crab, Scylla paramamosain by sequencing a hemocyte cDNA library and using the rapid amplification cDNA end (RACE) method. A full-length ALFSp cDNA of 614 bp contains an open reading frame (ORF) of 372 bp, encoding 123 amino acid protein with 26 residues signal sequence. The calculated molecular mass of the mature protein is 11.18 kDa. The highly two conserve cysteine residues and putative LPS binding domain were observed in ALFSp peptide. Comparison of amino acid sequences revealed that ALFSp shared high identity with other known ALFs and had an overall similarity of 65, 64, 63, 61 and 59% to those of Fenneropenaeus chinensis, Litopenaeus vannamei, Marsupenaeus japonicus, Limulus polyphemus, and Tachypleus tridentatus, respectively. A neighbour-joining tree showed a clear differentiation of each species and also indicated that ALF from S. paramamosain, Carcinus maenas and Callinectes sapidus are closely related phylogenetically. The genomic DNA sequence of ALFSp gene consists of 1075 bp containing three exons and two introns. Tissue distribution analysis revealed that ALFSp was abundantly expressed in hemocytes, intestine, and muscle but not in eyestalk. The synthetic ALFSp peptide containing putative LPS binding domain revealed a strong antimicrobial activity against several bacteria especially on the growth of Gram-positive bacteria, Micrococcus luteus and Gram-negative bacteria, Vibrio harveyi suggested that ALFSp could play an essential role in defense mechanism in S. paramamosain. PMID:17368541

  13. Metabolic stratification driven by surface and subsurface interactions in a terrestrial mud volcano.

    PubMed

    Cheng, Ting-Wen; Chang, Yung-Hsin; Tang, Sen-Lin; Tseng, Ching-Hung; Chiang, Pei-Wen; Chang, Kai-Ti; Sun, Chih-Hsien; Chen, Yue-Gau; Kuo, Hung-Chi; Wang, Chun-Ho; Chu, Pao-Hsuan; Song, Sheng-Rong; Wang, Pei-Ling; Lin, Li-Hung

    2012-12-01

    Terrestrial mud volcanism represents the prominent surface geological feature, where fluids and hydrocarbons are discharged along deeply rooted structures in tectonically active regimes. Terrestrial mud volcanoes (MVs) directly emit the major gas phase, methane, into the atmosphere, making them important sources of greenhouse gases over geological time. Quantification of methane emission would require detailed insights into the capacity and efficiency of microbial metabolisms either consuming or producing methane in the subsurface, and establishment of the linkage between these methane-related metabolisms and other microbial or abiotic processes. Here we conducted geochemical, microbiological and genetic analyses of sediments, gases, and pore and surface fluids to characterize fluid processes, community assemblages, functions and activities in a methane-emitting MV of southwestern Taiwan. Multiple lines of evidence suggest that aerobic/anaerobic methane oxidation, sulfate reduction and methanogenesis are active and compartmentalized into discrete, stratified niches, resembling those in marine settings. Surface evaporation and oxidation of sulfide minerals are required to account for the enhanced levels of sulfate that fuels subsurface sulfate reduction and anaerobic methanotrophy. Methane flux generated by in situ methanogenesis appears to alter the isotopic compositions and abundances of thermogenic methane migrating from deep sources, and to exceed the capacity of microbial consumption. This metabolic stratification is sustained by chemical disequilibria induced by the mixing between upward, anoxic, methane-rich fluids and downward, oxic, sulfate-rich fluids.

  14. Metabolic stratification driven by surface and subsurface interactions in a terrestrial mud volcano

    PubMed Central

    Cheng, Ting-Wen; Chang, Yung-Hsin; Tang, Sen-Lin; Tseng, Ching-Hung; Chiang, Pei-Wen; Chang, Kai-Ti; Sun, Chih-Hsien; Chen, Yue-Gau; Kuo, Hung-Chi; Wang, Chun-Ho; Chu, Pao-Hsuan; Song, Sheng-Rong; Wang, Pei-Ling; Lin, Li-Hung

    2012-01-01

    Terrestrial mud volcanism represents the prominent surface geological feature, where fluids and hydrocarbons are discharged along deeply rooted structures in tectonically active regimes. Terrestrial mud volcanoes (MVs) directly emit the major gas phase, methane, into the atmosphere, making them important sources of greenhouse gases over geological time. Quantification of methane emission would require detailed insights into the capacity and efficiency of microbial metabolisms either consuming or producing methane in the subsurface, and establishment of the linkage between these methane-related metabolisms and other microbial or abiotic processes. Here we conducted geochemical, microbiological and genetic analyses of sediments, gases, and pore and surface fluids to characterize fluid processes, community assemblages, functions and activities in a methane-emitting MV of southwestern Taiwan. Multiple lines of evidence suggest that aerobic/anaerobic methane oxidation, sulfate reduction and methanogenesis are active and compartmentalized into discrete, stratified niches, resembling those in marine settings. Surface evaporation and oxidation of sulfide minerals are required to account for the enhanced levels of sulfate that fuels subsurface sulfate reduction and anaerobic methanotrophy. Methane flux generated by in situ methanogenesis appears to alter the isotopic compositions and abundances of thermogenic methane migrating from deep sources, and to exceed the capacity of microbial consumption. This metabolic stratification is sustained by chemical disequilibria induced by the mixing between upward, anoxic, methane-rich fluids and downward, oxic, sulfate-rich fluids. PMID:22739492

  15. Metabolic stratification driven by surface and subsurface interactions in a terrestrial mud volcano.

    PubMed

    Cheng, Ting-Wen; Chang, Yung-Hsin; Tang, Sen-Lin; Tseng, Ching-Hung; Chiang, Pei-Wen; Chang, Kai-Ti; Sun, Chih-Hsien; Chen, Yue-Gau; Kuo, Hung-Chi; Wang, Chun-Ho; Chu, Pao-Hsuan; Song, Sheng-Rong; Wang, Pei-Ling; Lin, Li-Hung

    2012-12-01

    Terrestrial mud volcanism represents the prominent surface geological feature, where fluids and hydrocarbons are discharged along deeply rooted structures in tectonically active regimes. Terrestrial mud volcanoes (MVs) directly emit the major gas phase, methane, into the atmosphere, making them important sources of greenhouse gases over geological time. Quantification of methane emission would require detailed insights into the capacity and efficiency of microbial metabolisms either consuming or producing methane in the subsurface, and establishment of the linkage between these methane-related metabolisms and other microbial or abiotic processes. Here we conducted geochemical, microbiological and genetic analyses of sediments, gases, and pore and surface fluids to characterize fluid processes, community assemblages, functions and activities in a methane-emitting MV of southwestern Taiwan. Multiple lines of evidence suggest that aerobic/anaerobic methane oxidation, sulfate reduction and methanogenesis are active and compartmentalized into discrete, stratified niches, resembling those in marine settings. Surface evaporation and oxidation of sulfide minerals are required to account for the enhanced levels of sulfate that fuels subsurface sulfate reduction and anaerobic methanotrophy. Methane flux generated by in situ methanogenesis appears to alter the isotopic compositions and abundances of thermogenic methane migrating from deep sources, and to exceed the capacity of microbial consumption. This metabolic stratification is sustained by chemical disequilibria induced by the mixing between upward, anoxic, methane-rich fluids and downward, oxic, sulfate-rich fluids. PMID:22739492

  16. Water-quality effects on Baker Lake of recent volcanic activity at Mount Baker, Washington

    USGS Publications Warehouse

    Bortleson, Gilbert Carl; Wilson, Reed T.; Foxworthy, B.L.

    1976-01-01

    Increased volcanic activity on Mount Baker, which began in March 1975, represents the greatest known activity of a Cascade Range volcano since eruptions at Lassen Peak, Calif. during 1914-17. Emissions of dust and increased emanations of steam, other gases, and heat from the Sherman Crater area of the mountain focused attention on the possibility of hazardous events, including lava flows, pyroclastic eruptions, avalanches, and mudflows. However, the greatest undesirable natural results that have been observed after one year of the increased activity are an increase in local atmospheric pollution and a decrease in the quality of some local water resources, including Baker Lake. Baker Lake, a hydropower reservoir behind Upper Baker Dam, supports a valuable fishery resource and also is used for recreation. The lake's feedwater is from Baker River and many smaller streams, some of which, like Boulder Creek, drain parts of Mount Baker. Boulder Creek receives water from Sherman Crater, and its channel is a likely route for avalanches or mudflows that might originate in the crater area. Boulder Creek drains only about 5 percent of the total drainage area of Baker Lake, but during 1975 carried sizeable but variable loads of acid and dissolved minerals into the lake. Sulfurous gases and the fumarole dust from Sherman Crater are the main sources for these materials, which are brought into upper Boulder Creek by meltwater from the crater. In September 1973, before the increased volcanic activity, Boulder Creek near the lake had a pH of 6.0-6.6; after the increase the pH ranged as low as about 3.5. Most nearby streams had pH values near 7. On April 29, in Boulder Creek the dissolved sulfate concentration was 6 to 29 times greater than in nearby creeks or in Baker River; total iron was 18-53 times greater than in nearby creeks; and other major dissolved constituents generally 2 to 7 times greater than in the other streams. The short-term effects on Baker Lake of the acidic

  17. Violent Gas Venting on the Heng-Chun Mud Volcano, South China Sea Active Continental Margin offshore SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, S.; Cheng, W. Y.; Tseng, Y. T.; Chen, N. C.; Hsieh, I. C.; Yang, T. F.

    2014-12-01

    Accumulation of methane as gas hydrate under the sea floor has been considered a major trap for both thermal and biogenic gas in marine environment. Aided by rapid AOM process near the sea floor, fraction of methane escaping the sea floor has been considered at minuscule. However, most studies focused mainly on deepwater gas hydrate systems where gas hydrate remain relatively stable. We have studied methane seeps on the active margin offshore Taiwan, where rapid tectonic activities occur. Our intention is to evaluate the scale and condition of gas seeps in the tectonic active region. Towcam, coring, heat probe, chirp, multibeam bathymetric mapping and echo sounding were conducted at the study areas. Our results showed that gas is violently venting at the active margin, not only through sediments, but also through overlying sea water, directly into the atmosphere. Similar ventings, but, not in this scale, have also been identified previously in the nearby region. High concentrations of methane as well as traces of propane were found in sediments and in waters with flares. In conjunction, abundant chemosynthetic community, life mussel, clams, tube worms, bacterial mats together with high concentrations of dissolve sulfide, large authigenic carbonate buildups were also found. Our results indicate that methane could be another major green house gas in the shallow water active margin region.

  18. Volcanic gas

    USGS Publications Warehouse

    McGee, Kenneth A.; Gerlach, Terrance M.

    1995-01-01

    In Roman mythology, Vulcan, the god of fire, was said to have made tools and weapons for the other gods in his workshop at Olympus. Throughout history, volcanoes have frequently been identified with Vulcan and other mythological figures. Scientists now know that the “smoke" from volcanoes, once attributed by poets to be from Vulcan’s forge, is actually volcanic gas naturally released from both active and many inactive volcanoes. The molten rock, or magma, that lies beneath volcanoes and fuels eruptions, contains abundant gases that are released to the surface before, during, and after eruptions. These gases range from relatively benign low-temperature steam to thick hot clouds of choking sulfurous fume jetting from the earth. Water vapor is typically the most abundant volcanic gas, followed by carbon dioxide and sulfur dioxide. Other volcanic gases are hydrogen sulfide, hydrochloric acid, hydrogen, carbon monoxide, hydrofluoric acid, and other trace gases and volatile metals. The concentrations of these gas species can vary considerably from one volcano to the next.

  19. Recent Fluvial, Volcanic, and Tectonic Activity on the Cerberus Plains of Mars

    NASA Astrophysics Data System (ADS)

    Berman, Daniel C.; Hartmann, William K.

    2002-09-01

    Athabasca and Marte Valles lie on the Cerberus plains, between the young, lava-covered plains of Elysium Planitia and Amazonis Planitia. To test pre- MGS ( Mars Global Surveyor) suggestions of extremely young volcanic and fluvial activity, we present the first crater counts from MGS imagery, at resolutions (˜2-20 m/pixel) much higher than previously available. The most striking result, based on morphologic relations as well as crater counts from different stratigraphic units, is to confirm quantitatively that these channel systems are much younger than most other major outflow channels. The general region has an average model age for lava and fluvial surfaces of ≤200 Myr, and has possibly seen localized water releases, interspersed with lava flows, within the past 20 Myr. The youngest lavas may be no more than a few megayears old. Access of lava and liquid brines to the surface may be favored by openings of the Cerberus Fossae fracture system, but, as shown in the new images, the fractures appear to have continued developing more recently than the most recent lavas or fluvial activity. The Cerberus Fossae system may be an analog to an early stage of Valles Marineris, and its youthful activity raises questions about regional tectonic history. Large-volume water delivery to the surface of young lava flows in recent martian history puts significant boundary conditions on the storage and history of water on Mars.

  20. Alkalic (ocean-island basalt type) and calc-alkalic volcanism in the Mexican volcanic belt: A case for plume-related magmatism and propagating rifting at an active margin?

    NASA Astrophysics Data System (ADS)

    Márquez, Alvaro; Oyarzun, Roberto; Doblas, Miguel; Verma, Surendra P.

    1999-01-01

    The Mexican volcanic belt has been traditionally regarded as a classic case of subduction-related calc-alkalic volcanism. However, a series of geologic, geophysical, and petrological arguments makes this simple relationship doubtful. A seismic gap beneath the belt, a large-scale mantle anomaly, a graben triple-junction domain, and the presence of volumetrically important oceanic-island basalt (OIB) volcanism throughout the belt suggest a more complex tectonic scenario involving plume- and subduction-related processes. We here propose a model involving the development of a propagating rift opening from west to east in response to plume activity. The process started in Miocene time within the western sector of the belt (Guadalajara) and gave rise to a graben triple junction and OIB-type and calc-alkalic volcanism. Extension and volcanism proceeded to the east, giving rise to progressively younger ages for the initiation of OIB-type volcanism: (1) Miocene in the west (e.g., Guadalajara), (2) Pliocene in the central zone (e.g., Michoacán-Guanajuato), and (3) Quaternary farther east (e.g., Chichinautzin). Geochemical evidence suggests that part of the modern calc-alkalic volcanism (e.g., Chichinautzin) may be derived from magma mixing between the OIB mafic magmas and silicic, crust-derived magmas. However, we do not preclude some influence of the subducting slab in the generation of other (e.g., Jorullo) calc-alkalic volcanic rocks. Our model suggests a currently unrooted upper plume attached to the subcontinental lithosphere, which defines a hot zone beneath the Mexican volcanic belt.

  1. Terrestrial volcanism in space and time

    NASA Technical Reports Server (NTRS)

    Simkin, Tom

    1993-01-01

    A survey is presented of current volcanic activity around the world and of dated volcanism over the past 10,000 yrs. The patterns in the data are described. The hazard presented by volcanism is briefly examined.

  2. Results from NICLAKES Survey of Active Faulting Beneath Lake Managua,Central American Volcanic arc

    NASA Astrophysics Data System (ADS)

    McIntosh, K.; Funk, J.; Mann, P.; Perez, P.; Strauch, W.

    2006-12-01

    Lake Managua covers an area of 1,035 km2 of the Central American volcanic arc and is enclosed by three major stratovolcanoes: Momotombo to the northwest was last active in AD 1905, Apoyeque in the center on the Chiltepe Peninsula was last active ca. 4600 years BP, and Masaya to the southeast was last active in AD 2003. A much smaller volcano in the lake (Momotombito) is thought to have been active <4500 yrs B.P. In May of 2006, we used a chartered barge to collect 330 km of 3.5 kHz profiler data along with coincident 274 km of sidescan sonar and 27 km of seismic reflection data. These data identify three zones of faulting on the lake floor: 1) A zone of north-northeast-striking faults in the shallow (2.5-7.5 m deep) eastern part of the lake that extends from the capital city of Managua, which was severely damaged by shallow, left-lateral strike-slip displacements on two of these faults in 1931 (M 5.6) and 1972 (M 6.2): these faults exhibit a horst and graben character and include possible offsets on drowned river valleys 2) a semicircular rift zone that is 1 km wide and can be traced over a distance of 30 km in the central part of the lake; the rift structure defines the deepest parts of the lake ranging from 12 to 18 m deep and is concentric about the Apoyeque stratocone/Chiltepe Peninsula; and 3) a zone of fault scarps defining the northwestern lake shore that may correlate to the northwestern extension of the Mateare fault zone, a major scarp-forming fault that separates the Managua lowlands from the highlands south and west of the city. Following previous workers, we interpret the northeast- trending group of faults in the eastern part of the lake as part of a 15-km-long discontinuity where the trend of the volcanic arc is offset in a right-lateral sense. The semi-circular pattern of the rift zone that is centered on Chiltepe Peninsula appears to have formed as a distal effect of either magma intrusion or withdrawal from beneath this volcanic complex. The

  3. Methanotrophic activity and bacterial diversity in volcanic-geothermal soils at Pantelleria island (Italy)

    NASA Astrophysics Data System (ADS)

    Gagliano, A. L.; D'Alessandro, W.; Tagliavia, M.; Parello, F.; Quatrini, P.

    2014-04-01

    Volcanic and geothermal systems emit endogenous gases by widespread degassing from soils, including CH4, a greenhouse gas twenty-five times as potent as CO2. Recently, it has been demonstrated that volcanic/geothermal soils are source of methane, but also sites of methanotrophic activity. Methanotrophs are able to consume 10-40 Tg of CH4 a-1 and to trap more than 50% of the methane degassing through the soils. We report on methane microbial oxidation in the geothermally most active site of Pantelleria island (Italy), Favara Grande, whose total methane emission was previously estimated in about 2.5 t a-1. Laboratory incubation experiments with three top-soil samples from Favara Grande indicated methane consumption values up to 950 ng g-1 dry soil h-1. One of the three sites, FAV2, where the highest oxidation rate was detected, was further analysed on a vertical soil profile and the maximum methane consumption was measured in the top-soil layer but values > 100 ng g-1 h-1 were maintained up to a depth of 15 cm. The highest consumption rate was measured at 37 °C, but a still recognizable consumption at 80 °C (> 20 ng g-1 h-1) was recorded. In order to estimate the bacterial diversity, total soil DNA was extracted from Favara Grande and analysed using a Temporal Temperature Gradient gel Electrophoresis (TTGE) analysis of the amplified bacterial 16S rRNA gene. The three soil samples were probed by PCR using standard proteobacterial primers and newly designed verrucomicrobial primers targeting the unique methane monooxygenase gene pmoA; the presence of methanotrophs was detected in sites FAV2 and FAV3, but not in FAV1, where harsher chemical-physical conditions and negligible methane oxidation were detected. The pmoA gene libraries from the most active site FAV2 pointed out a high diversity of gammaproteobacterial methanotrophs distantly related to Methylococcus/Methylothermus genera and the presence of the newly discovered acido-thermophilic methanotrophs

  4. Methanotrophic activity and diversity of methanotrophs in volcanic geothermal soils at Pantelleria (Italy)

    NASA Astrophysics Data System (ADS)

    Gagliano, A. L.; D'Alessandro, W.; Tagliavia, M.; Parello, F.; Quatrini, P.

    2014-10-01

    Volcanic and geothermal systems emit endogenous gases by widespread degassing from soils, including CH4, a greenhouse gas twenty-five times as potent as CO2. Recently, it has been demonstrated that volcanic or geothermal soils are not only a source of methane, but are also sites of methanotrophic activity. Methanotrophs are able to consume 10-40 Tg of CH4 a-1 and to trap more than 50% of the methane degassing through the soils. We report on methane microbial oxidation in the geothermally most active site of Pantelleria (Italy), Favara Grande, whose total methane emission was previously estimated at about 2.5 Mg a-1 (t a-1). Laboratory incubation experiments with three top-soil samples from Favara Grande indicated methane consumption values of up to 59.2 nmol g-1 soil d.w. h-1. One of the three sites, FAV2, where the highest oxidation rate was detected, was further analysed on a vertical soil profile, the maximum methane consumption was measured in the top-soil layer, and values greater than 6.23 nmol g-1 h-1 were still detected up to a depth of 13 cm. The highest consumption rate was measured at 37 °C, but a still detectable consumption at 80 °C (> 1.25 nmol g-1 h-1) was recorded. The soil total DNA extracted from the three samples was probed by Polymerase Chain Reaction (PCR) using standard proteobacterial primers and newly designed verrucomicrobial primers, targeting the unique methane monooxygenase gene pmoA; the presence of methanotrophs was detected at sites FAV2 and FAV3, but not at FAV1, where harsher chemical-physical conditions and negligible methane oxidation were detected. The pmoA gene libraries from the most active site (FAV2) pointed to a high diversity of gammaproteobacterial methanotrophs, distantly related to Methylocaldum-Metylococcus genera, and the presence of the newly discovered acido-thermophilic Verrucomicrobia methanotrophs. Alphaproteobacteria of the genus Methylocystis were isolated from enrichment cultures under a methane

  5. Influence of explosive volcanic events on the activation versus de-activation of a modern turbidite system: the example of the Dohrn canyon-fan in the continental slope of the Campania volcanic district (Naples Bay, Italy - Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Roca, M.; Budillon, F.; Pappone, G.; Insinga, D.

    2015-12-01

    The interplay between volcanic activity, volcano-clastic yield and activation/deactivation of a turbidite system can be evaluated along the continental margin of Campania region (Tyrrhenian Sea - Italy), an active volcanic area, where three wide canyon-fans occur at short distances one to another. Actually, the Dohrn, Magnaghi and Cuma canyons cut the continental slope and shelf off Ischia and Procida volcanic islands and off the Campania Plain where Phlegraean Field and Mt. Vesuvius active vents are located. This research, partly supported by the Italian Flagship Project Ritmare, is based on single-channel, high-resolution seismic profiles (Sparker-One 16 kJ, 0.5 s twtt), swath-bathymetry and litho- and tephra-stratigraphy of gravity cores. We focused on the stratigraphic constraint of paleo-thalweg features and channel/levees deposits in seismics, debris flow, turbidites and hemipelagites in cores, to learn more on the activation/deactivation stages of the canyon Dohrn, in the frame of relative eustatic sea level variations over the Middle Pleistocene-Holocene time span.Preliminary outcomes suggest that even major volcanic events occurred in the last 300 ky, such as ignimbrite eruptions or large fallouts, have caused the infilling of the canyon head and the cover of pre-existing seabed morphology. As a consequence, the temporary deactivation of the turbidite system has occurred, despite the volcano-clastic overload in the coastal environment. Phases of renewed activities of the thalweg are observed to be in step with falling stages of sea level, which have driven the re-incision of canyon valleys through continuous volcano-clastic debris and turbidites down-flows. Since Holocene, the quiescence of the Dohrn Canyon has been documented, despite the intense volcano-tectonic activity in the area.

  6. Soil gas radon and volcanic activity at El Hierro (Canary Islands) before and after the 2011-2012 submarine eruption

    NASA Astrophysics Data System (ADS)

    Barrancos, J.; Padilla, G.; Hernandez Perez, P. A.; Padron, E.; Perez, N.; Melian Rodriguez, G.; Nolasco, D.; Dionis, S.; Rodriguez, F.; Calvo, D.; Hernandez, I.

    2012-12-01

    El Hierro is the youngest and southernmost island of the Canarian archipelago and represents the summit of a volcanic shield elevating from the surrounding seafloor at depth of 4000 m to up to 1501 m above sea level. The island is believed to be near the present hotspot location in the Canaries with the oldest subaerial rocks dated at 1.12 Ma. The subaerial parts of the El Hierro rift zones (NE, NW and S Ridges) are characterized by tightly aligned dyke complexes with clusters of cinder cones as their surface expressions. Since July 16, 2011, an anomalous seismicity at El Hierro Island was recorded by IGN seismic network. Volcanic tremor started at 05:15 hours on October 10, followed on the afternoon of October 12 by a green discolouration of seawater, strong bubbling and degassing indicating the initial stage of submarine volcanic eruption at approximately 2 km off the coast of La Restinga, El Hierro. Soil gas 222Rn and 220Rn activities were continuously measured during the period of the recent volcanic unrest occurred at El Hierro, at two different geochemical stations, HIE02 and HIE03. Significant increases in soil 222Rn activity and 222Rn/220Rn ratio from the soil were observed at both stations prior the submarine eruption off the coast of El Hierro, showing the highest increases before the eruption onset and the occurrence of the strongest seismic event (M=4.6). A statistical analysis showed that the long-term trend of the filtered data corresponded closely to the seismic energy released during the volcanic unrest. The observed increases of 222Rn are related to the rock fracturing processes (seismic activity) and the magmatic CO2 outflow increase, as observed in HIE03 station. Under these results, we find that continuous soil radon studies are important for evaluating the volcanic activity of El Hierro and they demonstrate the potential of applying continuous monitoring of soil radon to improve and optimize the detection of early warning signals of future

  7. Acute health effects associated with exposure to volcanic air pollution (vog) from increased activity at Kilauea Volcano in 2008.

    PubMed

    Longo, Bernadette M; Yang, Wei; Green, Joshua B; Crosby, Frederick L; Crosby, Vickie L

    2010-01-01

    In 2008, the Kilauea Volcano on the island of Hawai'i increased eruption activity and emissions of sulfurous volcanic air pollution called vog. The purpose of this study was to promptly assess for a relative increase in cases of medically diagnosed acute illnesses in an exposed Hawaiian community. Using a within-clinic retrospective cohort design, comparisons were made for visits of acute illnesses during the 14 wk prior to the increased volcanic emissions (low exposure) to 14 wk of high vog exposure when ambient sulfur dioxide was threefold higher and averaged 75 parts per billion volume per day. Logistic regression analysis estimated effect measures between the low- and high-exposure cohorts for age, gender, race, and smoking status. There were statistically significant positive associations between high vog exposure and visits for medically diagnosed cough, headache, acute pharyngitis, and acute airway problems. More than a sixfold increase in odds was estimated for visits with acute airway problems, primarily experienced by young Pacific Islanders. These findings suggest that the elevated volcanic emissions in 2008 were associated with increased morbidity of acute illnesses in age and racial subgroups of the general Hawaiian population. Continued investigation is crucial to fully assess the health impact of this natural source of sulfurous air pollution. Culturally appropriate primary- and secondary-level health prevention initiatives are recommended for populations in Hawai'i and volcanically active areas worldwide. PMID:20818536

  8. Active volcanism beneath the West Antarctic ice sheet and implications for ice-sheet stability

    USGS Publications Warehouse

    Blankenship, D.D.; Bell, R.E.; Hodge, S.M.; Brozena, J.M.; Behrendt, John C.; Finn, C.A.

    1993-01-01

    IT is widely understood that the collapse of the West Antarctic ice sheet (WAIS) would cause a global sea level rise of 6 m, yet there continues to be considerable debate about the detailed response of this ice sheet to climate change1-3. Because its bed is grounded well below sea level, the stability of the WAIS may depend on geologically controlled conditions at the base which are independent of climate. In particular, heat supplied to the base of the ice sheet could increase basal melting and thereby trigger ice streaming, by providing the water for a lubricating basal layer of till on which ice streams are thought to slide4,5. Ice streams act to protect the reservoir of slowly moving inland ice from exposure to oceanic degradation, thus enhancing ice-sheet stability. Here we present aerogeophysical evidence for active volcanism and associated elevated heat flow beneath the WAIS near the critical region where ice streaming begins. If this heat flow is indeed controlling ice-stream formation, then penetration of ocean waters inland of the thin hot crust of the active portion of the West Antarctic rift system could lead to the disappearance of ice streams, and possibly trigger a collapse of the inland ice reservoir.

  9. Evidence of explosive seafloor volcanic activity from the Walvis Ridge, South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Haxel, J. H.; Dziak, R. P.

    2005-07-01

    Hydrophones moored in the North Atlantic Ocean recorded a sequence of explosive, volcano-acoustic signals originated at the Walvis Ridge in the South Atlantic Ocean. 365 explosive signals were detected from the Walvis Ridge beginning 24 November 2001 continuing through March 2002. The largest swarm began on 19 December at 2329 GMT, and lasted 1.25 hrs producing 32 locatable events. Swarm locations are centered on the northern flank of an unnamed seamount (-32.96°S -5.22°W), northwest of Wüst Seamount. These signals are interpreted as volcanogenic explosions due to similarities with acoustic signals recorded from a confirmed submarine eruption in the Caribbean in 2001 (Kick'em Jenny volcano). The observations presented suggest recent magmatic activity along the Walvis Ridge may be unrelated to the Tristan da Cunha mantle plume. Furthermore, these events lend support for an extensional fracture-zone model resulting in the recurrence of volcanic activity along older segments of large-scale sea floor lineaments.

  10. Development of an automatic volcanic ash sampling apparatus for active volcanoes

    NASA Astrophysics Data System (ADS)

    Shimano, Taketo; Nishimura, Takeshi; Chiga, Nobuyuki; Shibasaki, Yoshinobu; Iguchi, Masato; Miki, Daisuke; Yokoo, Akihiko

    2013-12-01

    We develop an automatic system for the sampling of ash fall particles, to be used for continuous monitoring of magma ascent and eruptive dynamics at active volcanoes. The system consists of a sampling apparatus and cameras to monitor surface phenomena during eruptions. The Sampling Apparatus for Time Series Unmanned Monitoring of Ash (SATSUMA-I and SATSUMA-II) is less than 10 kg in weight and works automatically for more than a month with a 10-kg lead battery to obtain a total of 30 to 36 samples in one cycle of operation. The time range covered in one cycle varies from less than an hour to several months, depending on the aims of observation, allowing researchers to target minute-scale fluctuations in a single eruptive event, as well as daily to weekly trends in persistent volcanic activity. The latest version, SATSUMA-II, also enables control of sampling parameters remotely by e-mail commands. Durability of the apparatus is high: our prototypes worked for several months, in rainy and typhoon seasons, at windy and humid locations, and under strong sunlight. We have been successful in collecting ash samples emitted from Showa crater almost everyday for more than 4 years (2008-2012) at Sakurajima volcano in southwest Japan.

  11. Aerogeophysical evidence for active volcanism beneath the West Antarctic Ice Sheet

    NASA Technical Reports Server (NTRS)

    Blankenship, Donald D.; Bell, Robin E.; Hodge, Steven M.; Brozena, John M.; Behrendt, John C.

    1993-01-01

    Although it is widely understood that the collapse of the West Antarctic Ice Sheet (WAIS) would cause a global sea-level rise of 6 m, there continues to be considerable debate about the response of this ice sheet to climate change. The stability of the WAIS, which is characterized by a bed grounded well below sea level, may depend on geologically controlled conditions at the base, which are independent of climate. Ice streams moving up to 750 m/yr disperse material from the interior through to the oceans. As these ice streams tend to buffer the reservoir of slow-moving inland ice from exposure to oceanic degradation, understanding the ice-streaming process is important for evaluating WAIS stability. There is strong evidence that ice streams slide on a lubricating layer of water-saturated till. Development of this basal layer requires both water and easily eroded sediments. Active lithospheric extension may elevate regional heat flux, increase basal melting, and trigger ice streaming. If a geologically defined boundary with a sharp contrast in geothermal flux exists beneath the WAIS, ice streams may only be capable of operating as a buffer over a restricted region. Should ocean waters penetrate beyond this boundary, the ice-stream buffer would disappear, possibly triggering a collapse of the inland ice reservoir. Aerogeophysical evidence for active volcanism and elevated heat flux beneath the WAIS near the critical region where ice streaming begins is presented.

  12. Volcanic activity and satellite-detected thermal anomalies at Central American volcanoes

    NASA Technical Reports Server (NTRS)

    Stoiber, R. E. (Principal Investigator); Rose, W. I., Jr.

    1973-01-01

    The author has identified the following significant results. A large nuee ardente eruption occurred at Santiaguito volcano, within the test area on 16 September 1973. Through a system of local observers, the eruption has been described, reported to the international scientific community, extent of affected area mapped, and the new ash sampled. A more extensive report on this event will be prepared. The eruption is an excellent example of the kind of volcanic situation in which satellite thermal imagery might be useful. The Santiaguito dome is a complex mass with a whole series of historically active vents. It's location makes access difficult, yet its activity is of great concern to large agricultural populations who live downslope. Santiaguito has produced a number of large eruptions with little apparent warning. In the earlier ground survey large thermal anomalies were identified at Santiaguito. There is no way of knowing whether satellite monitoring could have detected changes in thermal anomaly patterns related to this recent event, but the position of thermal anomalies on Santiaguito and any changes in their character would be relevant information.

  13. Stress fields of the overriding plate at convergent margins and beneath active volcanic arcs.

    PubMed

    Apperson, K D

    1991-11-01

    Tectonic stress fields in the overriding plate at convergent plate margins are complex and vary on local to regional scales. Volcanic arcs are a common element of overriding plates. Stress fields in the volcanic arc region are related to deformation generated by subduction and to magma generation and ascent processes. Analysis of moment tensors of shallow and intermediate depth earthquakes in volcanic arcs indicates that the seismic strain field in the arc region of many convergent margins is subhorizontal extension oriented nearly perpendicular to the arc. A process capable of generating such a globally consistent strain field is induced asthenospheric corner flow below the arc region. PMID:17774792

  14. Lateral Dispersion of Volcanic Ash From the Flanks of an Actively Erupting Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Baker, E. T.; Resing, J. A.; Lebon, G. T.; Lupton, J. E.; Greene, R. R.

    2006-12-01

    NW Rota-1 is an actively erupting submarine volcano along the Mariana Arc, rising some 2500 m from the local seafloor. Eruptions at Brimstone Pit, located about 30 m below the summit on the south side of the volcano at 550 m water depth, have been directly observed since 2004. Water column surveys (using CTD-O vertical cast and tow methods) in 2003, 2004 and 2006 mapped the distribution of both persistent and variable particle plumes over the summit and down the flanks. In all years, there was a non-buoyant laterally dispersing plume over the summit that was optically intense and very thin (25-30 m plume maximum), measurable up to 2-3 km from the summit. The plume was most intense in 2003 and 2004 with dNTU values reaching 5 (the upper limit of the optical backscatter sensor). High concentrations of particulate sulfur in the plume contribute to these unusually intense optical signals, as sulfur particles are efficient optical backscatters. The plume maxima depth has steadily declined over 3 years: 460 m in 2003, 485 m in 2004, and 505-530 m in 2006. In 2003, both hydrothermal and volcanic components were detected in the plume, so it is not certain that the 2003 data represent pre-eruption conditions. Deeper layers of turbidity were absent in 2003, but were observed in multiple layers surrounding the volcano in 2004 and 2006 from depths of about 700 m extending to >2500 m, and were detectable at distances up to 18 km from the summit. Microscopy and chemical analysis indicates that the particles in these layers are overwhelmingly glass fragments rather than hydrothermal precipitates. Over the scale of 3-6 days, repeat tows showed significant decreases in particle concentrations, implying some of the particles settled rapidly from these plumes. The most likely source of these layers is gravity flow of volcanic ash down the flanks, fed by violent eruptions at the summit. Detachment from the seafloor may be controlled by turbulence from current flow or internal waves

  15. 2012 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Herrick, Julie A.; Neal, Christina A.; Cameron, Cheryl E.; Dixon, James P.; McGimsey, Robert G.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, or suspected unrest at 11 volcanic centers in Alaska during 2012. Of the two verified eruptions, one (Cleveland) was clearly magmatic and the other (Kanaga) was most likely a single phreatic explosion. Two other volcanoes had notable seismic swarms that probably were caused by magmatic intrusions (Iliamna and Little Sitkin). For each period of clear volcanic unrest, AVO staff increased monitoring vigilance as needed, reviewed eruptive histories of the volcanoes in question to help evaluate likely outcomes, and shared observations and interpretations with the public. 2012 also was the 100th anniversary of Alaska’s Katmai-Novarupta eruption of 1912, the largest eruption on Earth in the 20th century and one of the most important volcanic eruptions in modern times. AVO marked this occasion with several public events.

  16. Mud Pit Identification Report, Nevada Test Site, Nevada (September 2001, Rev. No. 0)

    SciTech Connect

    NNSA /NV

    2001-09-20

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) and the Nevada Division of Environmental Protection completed the Mud Pit Strategy, Nevada Test Site (NTS), Nevada (DOE/NV, 2001) to document a systematic process for identifying and categorizing potentially contaminated mud pits located on the NTS, and systematically evaluating them for inclusion in the Federal Facility Agreement and Consent Order (FFACO). The objectives of this report are to summarize the process used to define the six mud pit categories, identify mud pits, discuss the mud pits that do not meet FFACO entry criteria, identify mud pits for proposed FFACO entry, and describe the general mud pit distribution. Underground nuclear testing conducted since 1951 at the NTS has produced mud pits that were used for the transfer and collection of drilling mud, rock cuttings, and drilling fluids. This report documents the execution of the strategy document by examining the identification process and documenting these results. For clarification purposes, this document uses the term ''entry'' to indicate inclusion of mud pits into the FFACO and ''exclusion'' to indicate those mud pits which do not meet the ''entry'' criteria defined in this report. Based on this criteria, 257 mud pits identified that have been proposed for FFACO entry were found in 14 separate areas of the NTS. Each of the 257 mud pits proposed for FFACO entry will need to be located in the field, photographed, and documented during future Industrial Sites Project, Preliminary Assessment activities. If the field review determines that a mud pit was misidentified or improperly categorized, the appropriate FFACO modification request will be submitted for review and approval.

  17. Source evolution and longevity of the Lusi mud eruption, Indonesia

    NASA Astrophysics Data System (ADS)

    Rudolph, M. L.; Shirzaei, M.; Manga, M.; Fukushima, Y.

    2012-12-01

    The ongoing eruption of the Lusi mud volcano (East Java, Indonesia), which began on May 29, 2006, has displaced more than 60,000 people and cost billions of US dollars in economic losses. We measured ground deformation near Lusi using interferometric processing of 46 L-band synthetic aperture radar images acquired by the ALOS satellite between 2006 and 2011. We analyzed the ground deformation using principal component analysis (PCA) and found that the dominant spatial mode of ground deformation is decreasing exponentially in amplitude with a timescale of 2.1+0.5-0.3 years, implying that the eruption rate will decrease by an order of magnitude, to less than 1000 m3/day, by 2016±1 year, much sooner than previously anticipated (Istadi et al. 2009, Davies et al. 2011, Rudolph et al. 2011). We also modeled the observed ground deformation to determine the mud chamber radius and pressure time history subject to geologic constraints on depth and thickness. The co-evolution of the mud chamber geometry and pressure suggest progressive mobilization of mud during the eruption, a process analogous to one that may occur in large explosive silicic volcanic eruptions.

  18. The interplay between deformation and volcanic activity: new data from the central sector of the Campi Flegrei caldera

    NASA Astrophysics Data System (ADS)

    Isaia, Roberto; Sabatino, Ciarcia; Enrico, Iannuzzi; Ernesto, Prinzi; D'Assisi, Tramparulo Francesco; Stefano, Vitale

    2016-04-01

    The new excavation of a tunnel in the central sector of the Campi Flegrei caldera allowed us to collect new stratigraphic and structural data shedding light on the volcano-tectonic evolution of the last 10 ka. The analyzed sequences are composed by an alternation of volcanic, lacustrine, fluvial and marine sediments hosting several deformation structures such as faults, sedimentary dykes and fractures. A review of available well log togheter with the new data were used to perform a 3D reconstruction of paleo-surfaces resulted after the main volcanic and deformation episodes. Results show as the paleo-morphology was strictly controlled by faults and fractures that formed meso-scale channels and depressions subsequently filled by tephra and volcanoclastic sediments. The measured structures indicate an extensional deformation accompanying the ground uplift occurred in various stages of the caldera evolution. Stratigraphic relationships between structures and volcanic deposits further constrain the timing of the deformation phases. Presently an unrest phase of the Campi Flegrei caldera is marked by variations of different parameters such as ground deformation activities well recorded by GPS data, topographic leveling and satellite surveys. The results of this study provide further insight into the long term deformation pattern of the caldera and provide a key to interpret the ground deformation scenarios accompanying a possible resumption of volcanism.

  19. Complex explosive volcanic activity on the Moon within Oppenheimer crater, Icarus

    USGS Publications Warehouse

    Bennett, Kristen A; Horgan, Briony H N; Gaddis, Lisa R.; Greenhagen, Benjamin T; Allen, Carlton C.; Hayne, Paul O; Bell, James F III; Paige, David A.

    2016-01-01

    Oppenheimer Crater is a floor-fractured crater located within the South Pole-Aitken basin on the Moon, and exhibits more than a dozen localized pyroclastic deposits associated with the fractures. Localized pyroclastic volcanism on the Moon is thought to form as a result of intermittently explosive Vulcanian eruptions under low effusion rates, in contrast to the higher-effusion rate, Hawaiian-style fire fountaining inferred to form larger regional deposits. We use Lunar Reconnaissance Orbiter Camera images and Diviner Radiometer mid-infrared data, Chandrayaan-1 orbiter Moon Mineralogy Mapper near-infrared spectra, and Clementine orbiter Ultraviolet/Visible camera images to test the hypothesis that the pyroclastic deposits in Oppenheimer crater were emplaced via Vulcanian activity by constraining their composition and mineralogy. Mineralogically, we find that the deposits are variable mixtures of orthopyroxene and minor clinopyroxene sourced from the crater floor, juvenile clinopyroxene, and juvenile iron-rich glass, and that the mineralogy of the pyroclastics varies both across the Oppenheimer deposits as a whole and within individual deposits. We observe similar variability in the inferred iron content of pyroclastic glasses, and note in particular that the northwest deposit, associated with Oppenheimer U crater, contains the most iron-rich volcanic glass thus far identified on the Moon, which could be a useful future resource. We propose that this variability in mineralogy indicates variability in eruption style, and that it cannot be explained by a simple Vulcanian eruption. A Vulcanian eruption should cause significant country rock to be incorporated into the pyroclastic deposit; however, large areas within many of the deposits exhibit spectra consistent with high abundances of juvenile phases and very little floor material. Thus, we propose that at least the most recent portion of these deposits must have erupted via a Strombolian or more continuous fire

  20. Integrating science and education during an international, multi-parametric investigation of volcanic activity at Santiaguito volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Lavallée, Yan; Johnson, Jeffrey; Andrews, Benjamin; Wolf, Rudiger; Rose, William; Chigna, Gustavo; Pineda, Armand

    2016-04-01

    In January 2016, we held the first scientific/educational Workshops on Volcanoes (WoV). The workshop took place at Santiaguito volcano - the most active volcano in Guatemala. 69 international scientists of all ages participated in this intensive, multi-parametric investigation of the volcanic activity, which included the deployment of seismometers, tiltmeters, infrasound microphones and mini-DOAS as well as optical, thermographic, UV and FTIR cameras around the active vent. These instruments recorded volcanic activity in concert over a period of 3 to 9 days. Here we review the research activities and present some of the spectacular observations made through this interdisciplinary efforts. Observations range from high-resolution drone and IR footage of explosions, monitoring of rock falls and quantification of the erupted mass of different gases and ash, as well as morphological changes in the dome caused by recurring explosions (amongst many other volcanic processes). We will discuss the success of such integrative ventures in furthering science frontiers and developing the next generation of geoscientists.

  1. Multiple late Triassic carbon cycle perturbations preceding intensified volcanic activity in the Central Atlantic Magmatic Province

    NASA Astrophysics Data System (ADS)

    Ruhl, Micha; Kürschner, Wolfram M.

    2010-05-01

    The end-Triassic mass extinction (~201.5 Ma), marked by terrestrial ecosystem changes and a 50% loss in marine biodiversity, coincides with a major disruption of the global carbon cycle. These events closely coincide with the onset of Central Atlantic Magmatic Province emplacement (Deenen et al., 2010) and the subsequent release of isotopically depleted carbon as gaseous CO2 and from the methane hydrate reservoir. Here we show that the end-Triassic C-cycle perturbation is preceded by two successive 2-3‰ Rhaetian negative excursions in marine and continental δ13CTOC records from the western Tethys and north-west European sections. A coinciding, albeit slightly smaller, negative excursion in a δ13C leaf-record (Lepidopteris ottonis) further suggests successive 13C depletion of the late Triassic global atmosphere. Extensive dyke and sill systems that allowed major flood basalt emplacement in the Central Atlantic Magmatic Province, already intruded sedimentary basins over large parts of Pangea during the late Triassic. Subsurface thermal metamorphism of organic rich strata potentially led to oxidation of organic carbon and the transfer of isotopically depleted carbon to the exogenic carbon pool. In this way causing changes in the global C-cycle already before the onset of major volcanic activity.

  2. Paterae on Io: Volcanic Activity Observed by Galileo's NIMS and SSI

    NASA Technical Reports Server (NTRS)

    Lopes, Rosaly; Kamp, Lucas; Smythe, W. D.; Carlson, R.; Radebaugh, Jani; Gregg, Tracy K.

    2003-01-01

    Paterae are the most ubiquitous volcanic construct on Io s surface. Paterae are irregular craters, or complex craters with scalloped edges, interpreted as calderas or pit craters. Data from Galileo has shown that the activity of Ionian paterae is often confined to its interior and that generally lava flows are not seen spilling out over the edges. We use observations from Galileo s Near-Infrared Mapping Spectrometer (NIMS) to study the thermal emission from several Ionian paterae and compare them with images in visible wavelengths obtained by Galileo s Solid State Imaging System (SSI). Galileo s close fly-bys of Io from 1999 to 2001 have allowed NIMS to image the paterae at high spatial resolution (1-30 km pixel). At these scales, several of these features reveal greater thermal emission around the edges, which can be explained as the crust of a lava lake breaking up against the paterae walls. Comparisons with imaging data show that lower albedo areas (which are indicative of young lavas) coincide with higher thermal emission areas on NIMS data. Other paterae, however, show thermal emission and features in the visible that are more consistent with lava flows over a solid patera floor. Identifying eruption styles on Io is important for constraining eruption and interior models on Io.

  3. Intumescence and pore structure of alkali-activated volcanic glasses upon exposure to high temperatures

    NASA Astrophysics Data System (ADS)

    Erdogan, S. T.

    2015-12-01

    Structures formed with ground perlite, a natural volcanic glass, activated with NaOH solutions, are shown to possess the ability to expand up to ~225 % of their original volumes upon exposure to temperatures in the 200-600 °C range. Porous solid with 3-7 MPa compressive strength and ˜450 kg/m3 or higher density are obtained. The observed expansion is believed to occur due to a loss of silanol condensation water, as vapor and is accompanied by an up to ~20 % loss in mass. A drop in pH to near-neutral values supports this idea. The size and total amount of pores in the final solid are controlled by concentration of the NaOH solution and thermal processing conditions. The pores formed are observed to be ~1-10 μm to mm-sized. The ability of perlite-based solids to intumesce over specific temperature ranges could be beneficial in applications where absorption of thermal energy is necessary, such as passive fire protection.

  4. Authigenic carbonates related to active seepage of methane-rich hot brines at the Cheops mud volcano, Menes caldera (Nile deep-sea fan, eastern Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Pierre, Catherine; Bayon, Germain; Blanc-Valleron, Marie-Madeleine; Mascle, Jean; Dupré, Stéphanie

    2014-06-01

    On the passive margin of the Nile deep-sea fan, the active Cheops mud volcano (MV; ca. 1,500 m diameter, ~20-30 m above seafloor, 3,010-3,020 m water depth) comprises a crater lake with hot (up to ca. 42 °C) methane-rich muddy brines in places overflowing down the MV flanks. During the Medeco2 cruise in fall 2007, ROV dives enabled detailed sampling of the brine fluid, bottom lake sediments at ca. 450 m lake depth, sub-surface sediments from the MV flanks, and carbonate crusts at the MV foot. Based on mineralogical, elemental and stable isotope analyses, this study aims at exploring the origin of the brine fluid and the key biogeochemical processes controlling the formation of these deep-sea authigenic carbonates. In addition to their patchy occurrence in crusts outcropping at the seafloor, authigenic carbonates occur as small concretions disseminated within sub-seafloor sediments, as well as in the bottom sediments and muddy brine of the crater lake. Aragonite and Mg-calcite dominate in the carbonate crusts and in sub-seafloor concretions at the MV foot, whereas Mg-calcite, dolomite and ankerite dominate in the muddy brine lake and in sub-seafloor concretions near the crater rim. The carbonate crusts and sub-seafloor concretions at the MV foot precipitated in isotopic equilibrium with bottom seawater temperature; their low δ13C values (-42.6 to -24.5‰) indicate that anaerobic oxidation of methane was the main driver of carbonate precipitation. By contrast, carbonates from the muddy lake brine, bottom lake concretions and crater rim concretions display much higher δ13C (up to -5.2‰) and low δ18O values (down to -2.8‰); this is consistent with their formation in warm fluids of deep origin characterized by 13C-rich CO2 and, as confirmed by independent evidence, slightly higher heavy rare earth element signatures, the main driver of carbonate precipitation being methanogenesis. Moreover, the benthic activity within the seafloor sediment enhances aerobic

  5. Triggering and dynamic evolution of the LUSI mud volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Mazzini, A.; Svensen, H.; Akhmanov, G. G.; Aloisi, G.; Planke, S.; Malthe-Sørenssen, A.; Istadi, B.

    2007-09-01

    Mud volcanoes are geologically important manifestations of vertical fluid flow and mud eruption in sedimentary basins worldwide. Their formation is predominantly ascribed to release of overpressure from clay- and organic-rich sediments, leading to impressive build-up of mud mountains in submarine and subaerial settings. Here we report on a newly born mud volcano appearing close to an active magmatic complex in a backarc sedimentary basin in Indonesia. The location of the mud volcano close to magmatic volcanoes results in a high background temperature gradient that triggers mineralogical transformations and geochemical reactions at shallow depth. The eruption of 100 °C mud and gas that started the 29th of May 2006 flooded a large area within the Sidoarjo village in Northeast Java. Thousands of people have so far been evacuated due to the mud flood hazards from the eruption. Since the initial eruption, the flow rate escalated from 5000 to 120,000 m 3/d during the first eleven weeks. Then the erupted volume started to pulsate between almost zero and 120,000 m 3/d in the period August 14 to September 10, whereas it increased dramatically following swarms of earthquakes in September, before reaching almost 180,000 m 3/d in December 2006. Sampling and observations were completed during two fieldwork campaigns on the site. The eruption of boiling water is accompanied by mud, aqueous vapour, CO 2 and CH 4. Based on geochemical and field results, we propose a mechanism where the eruptions started following the 27th of May earthquake due to fracturing and accompanied depressurization of > 100 °C pore fluids from > 1700 m depth. This resulted in the formation of a quasi-hydrothermal system with a geyser-like surface expression and with an activity influenced by the regional seismicity.

  6. Sediments of Lake Van - a high-resolution archive of changing climate, volcanic events and seismic activity in Eastern Anatolia for the last 500'000 yrs

    NASA Astrophysics Data System (ADS)

    Stockhecke, M.; Anselmetti, F. S.; Sturm, M.; Paleovan Scientific Party

    2012-04-01

    Varved sedimentary records have shown their high potential to reconstruct abrupt and global climate change within the marine realm (e.g. Cariaco Basin, Santa Barbara Basin). Continental counterparts, consisting of long and varved lacustrine records can be found in the subsurface of some deep lakes, such as Lake Van. Lake Van is a 440 m deep closed soda lake situated in a climatically sensitive semiarid and tectonically active region in Eastern Anatolia, Turkey. The ICDP project Paleovan aims to reconstruct the climatic, tectonic and volcanic history of Lake Van. Driven by an international and interdisciplinary scientific team, two sites, Ahlat Ridge (AR) and Northern Basin (NB) were drilled in summer 2010 recovering sedimentary records of 220 and 140 m, respectively. A total of 800 m of sediment-cores were opened, described and photographed in spring 2011 at the IODP core repository in Bremen. Lithologies of up to five parallel cores (multiple coring) were correlated and a composite profile was defined giving priority to core quality and continuity. Preliminary Ar/Ar dates of the core catcher yielded a basal ages of ~500´000 years. Using this rough age model, geochemical measurements (every 20 cm) indicate that TOC is high in warmer periods (interglacials) and low in colder periods (glacials). These TOC fluctuations match marine isotope stages and extrapolated Holocene sedimentation rates. The 219 m long AR composite profile consists of ~80 % lacustrine sediments, ~10 % of volcaniclastic deposits and 10 % gaps interpreted to be coarse-grained volcaniclastic that are difficult to be recovered. The lacustrine mud, i.e., clayey silt composed of mainly clay minerals and carbonate. Based on major macroscopic sediment features eight major lacustrine sediment types (~900 layer) were differentiated and separated from the volcaniclastic deposits (300 layer). Impressive color transitions and a repetitive pattern of similar lithological successions occur throughout the

  7. Can we detect, monitor, and characterize volcanic activity using 'off the shelf' webcams and low-light cameras?

    NASA Astrophysics Data System (ADS)

    Harrild, M.; Webley, P. W.; Dehn, J.

    2015-12-01

    The ability to detect and monitor precursory events, thermal signatures, and ongoing volcanic activity in near-realtime is an invaluable tool. Volcanic hazards often range from low level lava effusion to large explosive eruptions, easily capable of ejecting ash to aircraft cruise altitudes. Using ground based remote sensing to detect and monitor this activity is essential, but the required equipment is often expensive and difficult to maintain, which increases the risk to public safety and the likelihood of financial impact. Our investigation explores the use of 'off the shelf' cameras, ranging from computer webcams to low-light security cameras, to monitor volcanic incandescent activity in near-realtime. These cameras are ideal as they operate in the visible and near-infrared (NIR) portions of the electromagnetic spectrum, are relatively cheap to purchase, consume little power, are easily replaced, and can provide telemetered, near-realtime data. We focus on the early detection of volcanic activity, using automated scripts that capture streaming online webcam imagery and evaluate each image according to pixel brightness, in order to automatically detect and identify increases in potentially hazardous activity. The cameras used here range in price from 0 to 1,000 and the script is written in Python, an open source programming language, to reduce the overall cost to potential users and increase the accessibility of these tools, particularly in developing nations. In addition, by performing laboratory tests to determine the spectral response of these cameras, a direct comparison of collocated low-light and thermal infrared cameras has allowed approximate eruption temperatures to be correlated to pixel brightness. Data collected from several volcanoes; (1) Stromboli, Italy (2) Shiveluch, Russia (3) Fuego, Guatemala (4) Popcatépetl, México, along with campaign data from Stromboli (June, 2013), and laboratory tests are presented here.

  8. Volcanism on Io

    NASA Astrophysics Data System (ADS)

    Davies, Ashley Gerard

    2014-03-01

    Preface; Introduction; Part I. Io, 1610 to 1995: Galileo to Galileo: 1. Io, 1610-1979; 2. Between Voyager and Galileo: 1979-95; 3. Galileo at Io; Part II. Planetary Volcanism: Evolution and Composition: 4. Io and Earth: formation, evolution, and interior structure; 5. Magmas and volatiles; Part III. Observing and Modeling Volcanic Activity: 6. Observations: thermal remote sensing of volcanic activity; 7. Models of effusive eruption processes; 8. Thermal evolution of volcanic eruptions; Part IV. Galileo at Io: the Volcanic Bestiary: 9. The view from Galileo; 10. The lava lake at Pele; 11. Pillan and Tvashtar: lava fountains and flows; 12. Prometheus and Amirani: Effusive activity and insulated flows; 13. Loki Patera: Io's powerhouse; 14. Other volcanoes and eruptions; Part V. Volcanism on Io: The Global View: 15. Geomorphology: paterae, shields, flows and mountains; 16. Volcanic plumes; 17. Hot spots; Part VI. Io after Galileo: 18. Volcanism on Io: a post-Galileo view; 19. The future of Io observations; Appendix 1; Appendix 2; References; Index.

  9. Fractal dimension analysis of the magnetic time series associated with the volcanic activity of Popocatépetl

    NASA Astrophysics Data System (ADS)

    Flores-Marquez, E. L.; Galvez-Coyt, G.; Cifuentes-Nava, G.

    2012-12-01

    Fractal analysis of the total magnetic field (TMF) time series from 1997 to 2003 at Popocatépetl Volcano is performed and compared with the TMF-series of the Teoloyucan Magnetic Observatory, 100 km away. Using Higuchi's fractal dimension method (D). The D changes over time for both series were computed. It was observed, when the time windows used to compute D increase in length, both series show nearly the same behavior. Some criteria of comparison were employed to discriminate the local effects inherent to volcano-magnetism. The simultaneous maximum in D (1.8) of the TMF series at Popocatépetl Volcano and the recovered volcanic activity indicates a scaling relation of the TMF at Popocatépetl Volcano and demonstrates a link between the magnetic field and volcanic activity.

  10. Intracaldera volcanic activity, Toledo caldera and embayment, Jemez Mountains, New Mexico

    SciTech Connect

    Heiken, G.; Goff, F.; Stix, J.; Shafiqullah, M.; Garcia, S.; Hagan, R.

    1986-02-10

    The Toledo caldera was formed at 1.47 +- 0.06 Ma during the catastrophic eruption of the lower member, Bandelier Tuff. The caldera was obscured at 1.12 +- 0.03 Ma during eruption of the equally voluminous upper member of the Bandelier Tuff that led to formation of the Valles caldera. Earlier workers interpreted a 9-km-diameter embayment, located NE of the Valles caldera (Toledo embayment), to be a remnant of the Toledo caldera. Drill hole data and new K-Ar dates of Toledo intracaldera domes redefine the position of Toledo caldera, nearly coincident with and of the same dimensions as the younger Valles caldera. the Toledo embayment may be of tectonic origin or a small Tschicoma volcanic center caldera. This interpretation is consistent with distribution of the lower member of the Bandelier Tuff and with several other field and drilling-related observations. Explosive activity associated with Cerro Toledo Rhyolite domes is recorded in tuff deposits located between the lower and upper members of the Bandelier Tuff on the northeast flank of the Jemez Mountains. Recorded in the tuff deposits are seven cycles of explosive activity. Most cycles consists of phreatomagmatic tuffs that grade upward into Plinian pumice beds. A separate deposit, of the same age and consisting of pyroclastic surges and flows, is associated with Rabbit Mountain, located on the southeast rim of the Valles-Toledo caldera complex. These are the surface expression of what may be a thicker, more voluminous intracaldera tuff sequence. The combined deposits of the lower and upper members of the Bandelier Tuff, Toledo and Valles intracaldera sediments, tuffs, and dome lavas form what we interpret to be a wedge-shaped caldera fill. This sequence is confirmed by deep drill holes and gravity surveys.

  11. Active submarine volcanism on the Society hotspot swell (west Pacific): A geochemical study

    SciTech Connect

    Devey, C.W.; Albarede, F.; Michard, A. ); Cheminee, J.L. ); Muehe, R.; Stoffers, P. )

    1990-04-10

    The present work deals with the petrography and geochemistry of lavas dredged from five active submarine volcanoes (named Mehetia, Moua Pihaa, Rocard, Teahitia, and Cyana) from the southeast end of the Society Islands hotspot trace. Most samples are basic and alkaline. Fractionation modelling based on major and minor compatible element variations suggests that olivine and minor clinopyroxene were the major fractionating phases. Rocard and Cyana have yielded more evolved, trachy-phonolitic, glassy samples. Both basaltic and phonolitic samples are incompatible-element enriched. The trachy-phonolite patterns show middle (REE) depletion and negative Eu anomalies. The Moua Pihaa basalts have flatter patterns than the other basalts. All smaples, with the exception of a sample from Moua Pihaa which has elevated {sup 206}Pb/{sup 204}Pb, fall on linear Sr-Nd-Pb isotopic arrays, suggesting two end-member mixing. The Sr isotopic variations in the samples excluding Moua Pihaa correlate positively with Rb/Nb, Pb/Ce, and SiO{sub 2} variations, idicating a component of mantle enriched by injection of material from a subducted oceanic slab. Correlation of {sup 207}Pb/{sup 204}Pb with {sup 87}Sr/{sup 86}Sr suggests that the subducted material is geochemically old. The absence of a MORB component in the Society magmatism, the small volumes of the Polynesian hotspot volcanoes, and the lack of more intense volcanic activity near the center of the Pacific Superswell, all lead to the conclusion that the latter is unlikely to be caused by a large convective plume.

  12. Evolution of Popocatépetl volcano's glaciers in Mexico with and without volcanic activity: diagnosis from a minimal mass balance model

    NASA Astrophysics Data System (ADS)

    Ontiveros-Gonzalez, G.; Cortes Ramos, J.; Delgado Granados, H.

    2013-05-01

    This work describes the influence of eruptive activity on the evolution of the glacial cover on Popocatepetl volcano. Here, we try to answer a simple question: what had happened if this glacier had not been affected by the volcanic activity? In order to answer this question we modeled the mass balance evolution of this glacier using meteorological data and a minimal mass balance model developed for glaciers elsewhere. For this model we assumed no volcanic activity. These results were compared with measurements available for the actual situation at Popocatépetl Volcano. It was possible to separate the influence of the volcanic activity on the evolution of this glacier system considering two scenarios: one was modeled with a simulation of the mass balance where volcanic activity does not affect, and a second scenario is based on the documented studies developed around the glacial disappearance of the glaciers.

  13. Monitoring and analyses of volcanic activity using remote sensing data at the Alaska Volcano Observatory: Case study for Kamchatka, Russia, December 1997

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.; Dean, K., G.; Dehn, J.; Miller, T., P.; Kirianov, V. Yu.

    There are about 100 potentially active volcanoes in the North Pacific Ocean region that includes Alaska, the Kamchatka Peninsula, and the Kurile Islands, but fewer than 25% are monitored seismically. The region averages about five volcanic eruptions per year, and more than 20,000 passengers and millions of dollars of cargo fly the air routes in this region each day. One of the primary public safety objectives of the Alaska Volcano Observatory (AVO) is to mitigate the hazard posed by volcanic ash clouds drifting into these busy air traffic routes. The AVO uses real-time remote sensing data (AVHRR, GOES, and GMS) in conjunction with other methods (primarily seismic) to monitor and analyze volcanic activity in the region. Remote sensing data can be used to detect volcanic thermal anomalies and to provide unique information on the location, movement, and composition of volcanic eruption clouds. Satellite images are routinely analyzed twice each day at AVO and many times per day during crisis situations. As part of its formal working relationship with the Kamchatka Volcanic Eruption Response Team (KVERT), the AVO provides satellite observations of volcanic activity in Kamchatka and distributes notices of volcanic eruptions from KVERT to non-Russian users in the international aviation community. This paper outlines the current remote sensing capabilities and operations of the AVO and describes the responsibilities and procedures of federal agencies and international aviation organizations for volcanic eruptions in the North Pacific region. A case study of the December 4, 1997, eruption of Bezymianny volcano, Russia, is used to illustrate how real-time remote sensing and hazard communication are used to mitigate the threat of volcanic ash to aircraft.

  14. Effects of mud supply on large-scale estuarine morphology

    NASA Astrophysics Data System (ADS)

    Braat, Lisanne; Kleinhans, Maarten; van Kessel, Thijs; Wongsoredjo, Samor; Bergsma, Laura

    2016-04-01

    Sandy river estuaries have great economic and ecologic values, but a better understanding is required about the effect of mud on large-scale morphodynamics to optimise maintenance strategies. Very few studies actually include sand-mud interaction effects on morphodynamics on decadal and centennial timescales due to model limitations and lack of spatially and temporally dense data of mud in the bed. Here we study effects of cohesive sediment supply on equilibrium estuary shape, bar-channel patterns and dynamics, during formation from idealised initial conditions over a time scale of centuries and millennia. On the basis of related modelling and experimentation of river and delta patterns we hypothesise that mud will settle into mud flats flanking the estuary that resist erosion and thus self-confine and narrow the estuary and reduce braiding index and channel-bar mobility. We applied the process-based numerical model Delft3D in depth-averaged mode starting from idealised convergent estuaries. Mixed sediment was modelled with an active layer and storage module with fluxes predicted by the Partheniades-Krone relations for the cohesive regime, and Engelund-Hansen for the non-cohesive regime depending on the fraction of mud. This was subjected to a range of different mud inputs from the river or from the sea and a range of river discharge and tidal amplitudes. Our modelling results show that mud is predominantly stored in mudflats on the sides of the estuary. Higher mud concentration at the river inflow leads to narrower and shorter estuaries. Channels within the estuary also become narrower due to increased cohesion in the channel banks. This trend is confirmed in preliminary experiments. However, channels do not increase in depth; this is in contrast with what is observed in rivers and we do not yet fully understand this. Migration rates of channels and bars and bar splitting and merging also reduce with increasing mud concentration. For higher discharge channel

  15. Volcanic Catastrophes

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.

    2003-12-01

    volcanism on humankind in the North Pacific, where Holocene time saw many caldera-forming eruptions in an area of comparatively intense human activity.

  16. Time variability of Io's volcanic activity from near-IR adaptive optics observations on 100 nights in 2013-2015

    NASA Astrophysics Data System (ADS)

    de Kleer, Katherine; de Pater, Imke

    2016-12-01

    Jupiter's moon Io is a dynamic target, exhibiting extreme and time-variable volcanic activity powered by tidal forcing from Jupiter. We have conducted a campaign of high-cadence observations of Io with the goal of characterizing its volcanic activity. Between Aug 2013 and the end of 2015, we imaged Io on 100 nights in the near-infrared with adaptive optics on the Keck and Gemini N telescopes, which resolve emission from individual volcanic hot spots. During our program, we made over 400 detections of 48 distinct hot spots, some of which were detected 30+ times. We use these observations to derive a timeline of global volcanic activity on Io, which exhibits wide variability from month to month. The timelines of thermal activity at individual volcanic centers have geophysical implications, and will permit future characterization by others. We evaluate hot spot detection limits and give a simple parameterization of the minimum detectable intensity as a function of emission angle, which can be applied to other analyses. We detected three outburst eruptions in August 2013, but no other outburst-scale events were observed in the subsequent ∼90 observations. Either the cluster of events in August 2013 was a rare occurrence, or there is a mechanism causing large events to occur closely-spaced in time. We also detected large eruptions (though not of outburst scale) within days of one another at Kurdalagon Patera and Sethlaus/Gabija Paterae in 2015. As was also seen in the Galileo dataset, the hot spots we detected can be separated into two categories based on their thermal emission: those that are persistently active for 1 year or more at moderate intensity, and those that are only briefly active, are time-variable, and often reach large intensities. A small number of hot spots in the latter category appear and subside in a matter of days, reaching particularly high intensities; although these are not bright enough to qualify as outbursts, their thermal signatures follow

  17. Using IMS hydrophone data for detecting submarine volcanic activity: Insights from Monowai, 26°S Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Metz, Dirk; Watts, Anthony B.; Grevemeyer, Ingo; Rodgers, Mel; Paulatto, Michele

    2016-04-01

    Only little is known on active volcanism in the ocean. As eruptions are attenuated by seawater and fallout does not regularly reach the sea surface, eruption rates and mechanisms are poorly understood. Estimations on the number of active volcanoes across the modern seas range from hundreds to thousands, but only very few active sites are known. Monowai is a submarine volcanic centre in the northern Kermadec Arc, Southwest Pacific Ocean. During May 2011, it erupted over a period of five days, with explosive activity directly linked to the generation of seismoacoustic tertiary waves ('T-phases'), recorded at three broadband seismic stations in the region. We show, using windowed cross-correlation and time-difference-of-arrival techniques, that T-phases associated with this eruption are detected as far as Ascension Island, South Atlantic Ocean, where two bottom-moored hydrophone arrays are operated as part of the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). We observe a high incidence of T-phase arrivals during the time of the eruption, with the angle of arrival stabilizing at the geodesic azimuth between the IMS arrays and Monowai. T-phases from the volcanic centre must therefore have propagated through the Sound Fixing And Ranging (SOFAR) channel in the South Pacific and South Atlantic Oceans and over a total geodesic range of approximately 15,800 km, one of the longest source-receiver distances of any naturally occurring underwater signal ever observed. Our findings, which are consistent with observations at regional broadband stations and two dimensional, long-range, parabolic equation modelling, highlight the exceptional capabilities of the hydroacoustic waveform component of the IMS for remotely detecting episodes of submarine volcanic activity. Using Monowai and the hydrophone arrays at Ascension Island as a natural laboratory, we investigate the long-term eruptive record of a submarine volcano from

  18. Morpho-structural evolution of a volcanic island developed inside an active oceanic rift: S. Miguel Island (Terceira Rift, Azores)

    NASA Astrophysics Data System (ADS)

    Sibrant, A. L. R.; Hildenbrand, A.; Marques, F. O.; Weiss, B.; Boulesteix, T.; Hübscher, C.; Lüdmann, T.; Costa, A. C. G.; Catalão, J. C.

    2015-08-01

    The evolution of volcanic islands is generally marked by fast construction phases alternating with destruction by a variety of mass-wasting processes. More specifically, volcanic islands located in areas of intense regional deformation can be particularly prone to gravitational destabilisation. The island of S. Miguel (Azores) has developed during the last 1 Myr inside the active Terceira Rift, a major tectonic structure materializing the present boundary between the Eurasian and Nubian lithospheric plates. In this work, we depict the evolution of the island, based on high-resolution DEM data, stratigraphic and structural analyses, high-precision K-Ar dating on separated mineral phases, and offshore data (bathymetry and seismic profiles). The new results indicate that: (1) the oldest volcanic complex (Nordeste), composing the easternmost part of the island, was dominantly active between ca. 850 and 750 ka, and was subsequently affected by a major south-directed flank collapse. (2) Between at least 500 ka and 250 ka, the landslide depression was massively filled by a thick lava succession erupted from volcanic cones and domes distributed along the main E-W collapse scar. (3) Since 250 kyr, the western part of this succession (Furnas area) was affected by multiple vertical collapses; associated plinian eruptions produced large pyroclastic deposits, here dated at ca. 60 ka and less than 25 ka. (4) During the same period, the eastern part of the landslide scar was enlarged by retrogressive erosion, producing the large Povoação valley, which was gradually filled by sediments and young volcanic products. (5) The Fogo volcano, in the middle of S. Miguel, is here dated between ca. 270 and 17 ka, and was affected by, at least, one southwards flank collapse. (6) The Sete Cidades volcano, in the western end of the island, is here dated between ca. 91 and 13 ka, and experienced mutliple caldera collapses; a landslide to the North is also suspected from the presence of a

  19. Review of magnetic field monitoring near active faults and volcanic calderas in California: 1974-1995

    USGS Publications Warehouse

    Mueller, R.J.; Johnston, M.J.S.

    1998-01-01

    Differential magnetic fields have been monitored along the San Andreas fault and the Long Valley caldera since 1974. At each monitoring location, proton precession magnetometers sample total magnetic field intensity at a resolution of 0.1 nT or 0.25 nT. Every 10 min, data samples are transmitted via satellite telemetry to Menlo Park, CA for processing and analysis. The number of active magnetometer sites has varied during the past 21 years from 6 to 25, with 12 sites currently operational. We use this network to identify magnetic field changes generated by earthquake and volcanic processes. During the two decades of monitoring, five moderate earthquakes (M5.9 to M7.3) have occurred within 20 km of magnetometer sites located along the San Andreas fault and only one preseismic signal of 1.5 nT has been observed. During moderate earthquakes, coseismic magnetic signals, with amplitudes from 0.7 nT to 1.3 nT, have been identified for 3 of the 5 events. These observations are generally consistent with those calculated from simple seismomagnetic models of these earthquakes and near-fault coseismic magnetic field disturbances rarely exceed one nanotesla. These data are consistent with the concept of low shear stress and relatively uniform displacement of the San Andreas fault system as expected due to high pore fluid pressure on the fault. A systematic decrease of 0.8-1 nT/year in magnetic field has occurred in the Long Valley caldera since 1989. These magnetic field data are similar in form to observed geodetically measured displacements from inflation of the resurgent dome. A simple volcanomagnetic model involving pressure increase of 50 MPa/a at a depth of 7 km under the resurgent dome can replicate these magnetic field observations. This model is derived from the intrusion model that best fits the surface deformation data. ?? 1998 Elsevier Science B.V.

  20. Mesozooplankton distribution near an active volcanic island in the Andaman Sea (Barren Island).

    PubMed

    Pillai, Honey U K; Jayaraj, K A; Rafeeq, M; Jayalakshmi, K J; Revichandran, C

    2011-05-01

    The study addresses the distribution and diversity of mesozooplankton near the active volcano-Barren Island (Andaman Sea) in the context of persistent volcanic signature and warm air pool existing for the last few months. Sampling was done from the stations along the west and east side of the volcano up to a depth of 1,000 m during the inter monsoon (April) of 2006. Existence of feeble warm air pool was noticed around the Island (Atm. Temp. 29°C). Sea surface temperature recorded as 29.9°C on the west and 29.6°C on the east side stations. High mesozooplankton biomass was observed in the study area than the earlier reports. High density and biomass observed in the surface layer decreased significantly to the deeper depths. Lack of correlation was observed between mesozooplankton biomass and density with chl. a. Twenty-three mesozooplankton taxa were observed with copepoda as the dominant taxa followed by chaetognatha. The relative abundance of chaetognatha considerably affected the copepod population density in the surface layer. A noticeable feature was the presence of cumaceans, a hyperbenthic fauna in the surface, mixed layer and thermocline layer on the western side station where the volcano discharges in to the sea. The dominant order of copepoda, the calanoida was represented by 52 species belonging to 17 families. The order poecilostomatoida also had a significant contribution. Copepods exhibited a clear difference in their distribution pattern in different depth layers. The families Calanidae and Pontellidae showed a clear dominance in the surface whereas small-sized copepods belonging to the families Clausocalanidae and Paracalanidae were observed as the predominant community in the mixed layer and thermocline layer depth. Families Metridinidae, Augaptilidae and Aetideidae were observed as dominant in deeper layers.

  1. Maximizing Mission Science Return Through use of Spacecraft Autonomy: Active Volcanism and the Autonomous Sciencecraft Experiment

    NASA Astrophysics Data System (ADS)

    Chien, S.; Davies, A. G.; Sherwood, R.; ASE Science Team

    2005-08-01

    Deep-space missions have been unable to react to dynamic events as encounter observation sequences are planned well in advance. In the case of planet, asteroid and comet fly-bys, the limited resources available are allocated to individual instruments long beforehand. However, for monitoring or mapping mission phases, alternative strategies and technologies are now available. Now, onboard data processing allows greater spacecraft and instrument flexibility, affording the ability to react rapidly to dynamic events, and increasing the science content of returned data. Such new technology has already been successfully demonstrated in the form of the New Millennium Program Autonomous Sciencecraft Experiment (ASE). In 2004 ASE successfully demonstrated advanced autonomous science data acquisition, processing, and product downlink prioritization, as well as autonomous fault detection and spacecraft command and control. ASE is software onboard the EO-1 spacecraft, in Earth-orbit. ASE controlled the Hyperion instrument, a hyperspectral imager with 220 wavelengths from 0.4 to 2.5 μm and 30 m/pixel spatial resolution. ASE demonstrated that spacecraft autonomy will be advantageous to future missions by making the best use of limited downlink, e.g., by increasing science content per byte of returned data, and by avoiding the return of null (no-change/no feature) datasets. and by overcoming communication delays through decision-making onboard enabling fast reaction to dynamic events. We envision this flight-proven science-driven spacecraft command-and-control technology being used on a wide range of missions to search for and monitor dynamic events, such as active, high-temperature volcanism on Earth and Io, and cryovolcanism on Triton and possibly other icy satellites. Acknowledgements: Part of this work was carried out at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. We thank the EO-1 Flight Management Team and Chris Stevens and Art

  2. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)

    NASA Astrophysics Data System (ADS)

    Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.

    2015-09-01

    other active volcanic systems on Earth.

  3. Volcanic Activity on lo at the Time of the Ulysses Encounter.

    PubMed

    Spencer, J R; Howell, R R; Clark, B E; Klassen, D R; O'connor, D

    1992-09-11

    The population of heavy ions in lo's torus is ultimately derived from lo volcanism. Groundbased infrared observations of lo between October 1991 and March 1992, contemporaneous with the 8 February 1992 Ulysses observations of the lo torus, show that volcanic thermal emission was at the low end of the normal range at all lo longitudes during this period. In particular, the dominant hot spot Loki was quiescent. Resolved images show that there were at least four hot spots on lo's Jupiter-facing hemisphere, including Loki and a long-lived spot on the leading hemisphere (Kanehekili), of comparable 3.5-micrometer brightness but higher temperature.

  4. Monitoring Io volcanic activity using the Keck AO system: 2-5μm sunlit and eclipse observations

    NASA Astrophysics Data System (ADS)

    Marchis, F.; de Pater, I.; Le Mignant, D.; Roe, H. G.; Fusco, T.; Graham, J. R.; Prange, R.; Macintosh, B.

    2002-12-01

    Galileo provided us with spectacular images of the volcanically active Io moon over the last 7 years, but we understand little about the physical processes occurring on this moon. Groundbased monitoring programs help characterize the long time evolution of Io's volcanic activity, such as the frequency, spatial distribution and temperature of hot spots and outbursts. Our group started a monitoring program of Io's volcanic activity using the Keck II Adaptive Optics (AO) system and its recently installed near-infrared camera NIRC2. Here we report groundbased observations of Io conducted in December 2001 (UT), at 0.05" resolution (120-140 km on Io) in K', i.e., ~4 times better than HST and than global Galileo NIMS images. Our 1-5 micron data enable us to determine the temperature of individual hot spots, a key parameter for geophysical/volcanic flow models. We will present: i) Io in reflected sunlight in K', L', and M bands. We used Io itself as reference source for the wavefront sensor of the AO system. Our L and M-band images show both reflected sunlight and thermal emission from volcanic hot spots. The contrast of images is enhanced using the MISTRAL deconvolution algorithme. The 12 images taken on 10 days provides a complete survey of Io surface during one full rotation. 26 active hot spots were detected on the entire surface in L band (3.8μm), approximatively three times more in M band (4.7μm). One active hot spot is seen in K band (2.2μm) in the Pele area. A study of individual hot spot (temperature, emission area, nature) will be presented. ii) Io in eclipse. While Io is in Jupiter's shadow, it is invisible to the wavefront sensor, but its hot spots are easily visible in the near-infrared. We imaged Io during the 18 Dec. 2001 eclipse using Ganymede (30" from Io, moving relative to Io at ~0.5"/min) as a reference source. A dozen of faint hot spots are detected at both K' and L', allowing temperature estimates for each of them. Keck Science team is composed of

  5. Comparative analysis of core drilling and rotary drilling in volcanic terrane

    SciTech Connect

    Flynn, T.; Trexler, D.T.; Wallace, R.H. Jr.

    1987-04-01

    Initially, the goal of this report is to compare and contrast penetration rates of rotary-mud drilling and core drilling in young volcanic terranes. It is widely recognized that areas containing an abundance of recent volcanic rocks are excellent targets for geothermal resources. Exploration programs depend heavily upon reliable subsurface information, because surface geophysical methods may be ineffective, inconclusive, or both. Past exploration drilling programs have mainly relied upon rotary-mud rigs for virtually all drilling activity. Core-drilling became popular several years ago, because it could deal effectively with two major problems encountered in young volcanic terranes: very hard, abrasive rock and extreme difficulty in controlling loss of circulation. In addition to overcoming these difficulties, core-drilling produced subsurface samples (core) that defined lithostratigraphy, structure and fractures far better than drill-chips. It seemed that the only negative aspect of core drilling was cost. The cost-per-foot may be two to three times higher than an ''initial quote'' for rotary drilling. In addition, penetration rates for comparable rock-types are often much lower for coring operations. This report also seeks to identify the extent of wireline core drilling (core-drilling using wireline retrieval) as a geothermal exploration tool. 25 refs., 21 figs., 13 tabs.

  6. Metal Concentrations in Two Commercial Tuna Species from an Active Volcanic Region in the Mid-Atlantic Ocean.

    PubMed

    Torres, Paulo; Rodrigues, Armindo; Soares, Lília; Garcia, Patrícia

    2016-02-01

    Concentrations of cadmium (Cd), mercury (Hg), and lead [Pb (µg g(-1) wet weight)] were determined in liver and muscle samples of 15 bigeye (Thunnus obesus) and 15 skipjack tunas (Katsuwonus pelamis) caught over an active volcanic region in the Mid-Atlantic Ocean (Azores, Portugal) and evaluated regarding consumption safety. None of the muscle samples (edible part) exceeded the European Union (EU) maximum limits (MLs) for Hg and Pb. Cd concentrations in muscle were much greater than EU MLs with 53 and 26 % of the bigeye tuna and skipjack tuna, respectively, in exceedance of the limits. Results obtained in this work, together with other studies in the same region, support the existence of an important volcanic source of Cd in waters of the Mid-Atlantic region, which should be carefully monitored given the importance of many commercial marine species for human consumption, mainly in Europe. PMID:26681184

  7. Metal Concentrations in Two Commercial Tuna Species from an Active Volcanic Region in the Mid-Atlantic Ocean.

    PubMed

    Torres, Paulo; Rodrigues, Armindo; Soares, Lília; Garcia, Patrícia

    2016-02-01

    Concentrations of cadmium (Cd), mercury (Hg), and lead [Pb (µg g(-1) wet weight)] were determined in liver and muscle samples of 15 bigeye (Thunnus obesus) and 15 skipjack tunas (Katsuwonus pelamis) caught over an active volcanic region in the Mid-Atlantic Ocean (Azores, Portugal) and evaluated regarding consumption safety. None of the muscle samples (edible part) exceeded the European Union (EU) maximum limits (MLs) for Hg and Pb. Cd concentrations in muscle were much greater than EU MLs with 53 and 26 % of the bigeye tuna and skipjack tuna, respectively, in exceedance of the limits. Results obtained in this work, together with other studies in the same region, support the existence of an important volcanic source of Cd in waters of the Mid-Atlantic region, which should be carefully monitored given the importance of many commercial marine species for human consumption, mainly in Europe.

  8. On the statistics of El Nino occurrences and the relationship of El Nino to volcanic and solar/geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1989-01-01

    El Nino is conventionally defined as an anomalous and persistent warming of the waters off the coasts of Ecuador and Peru in the eastern equatorial Pacific, having onset usually in Southern Hemispheric summer/fall. Some of the statistical aspects of El Nino occurrences are examined, especially as they relate to the normal distribution and to possible associations with volcanic, solar, and geomagnetic activity. With regard to the very strong El Nino of 1982 to 1983, it is noted that, although it may very well be related to the 1982 eruptions of El Chichon, the event occurred essentially on time (with respect to the past behavior of elapsed times between successive El Nino events; a moderate-to-stronger El Nino was expected during the interval 1978 to 1982, assuming that El Nino occurrences are normally distributed, having a mean elapsed time between successive onsets of 4 years and a standard deviation of 2 years and a last known occurrence in 1976). Also, although not widely recognized, the whole of 1982 was a record year for geomagnetic activity (based on the aa geomagnetic index, with the aa index registering an all time high in February 1982), perhaps, important for determining a possible trigger for this and other El Nino events. A major feature is an extensive bibliography (325 entries) on El Nino and volcanic-solar-geomagnetic effects on climate. Also, included is a tabular listing of the 94 major volcanic eruptions of 1835 to 1986.

  9. Development of a portable active long-path differential optical absorption spectroscopy system for volcanic gas measurements

    USGS Publications Warehouse

    Vita, Fabio; Kern, Christoph; Inguaggiato, Salvatore

    2014-01-01

    Active long-path differential optical absorption spectroscopy (LP-DOAS) has been an effective tool for measuring atmospheric trace gases for several decades. However, instruments were large, heavy and power-inefficient, making their application to remote environments extremely challenging. Recent developments in fibre-coupling telescope technology and the availability of ultraviolet light emitting diodes (UV-LEDS) have now allowed us to design and construct a lightweight, portable, low-power LP-DOAS instrument for use at remote locations and specifically for measuring degassing from active volcanic systems. The LP-DOAS was used to measure sulfur dioxide (SO2) emissions from La Fossa crater, Vulcano, Italy, where column densities of up to 1.2 × 1018 molec cm−2 (~ 500 ppmm) were detected along open paths of up to 400 m in total length. The instrument's SO2 detection limit was determined to be 2 × 1016 molec cm−2 (~ 8 ppmm), thereby making quantitative detection of even trace amounts of SO2 possible. The instrument is capable of measuring other volcanic volatile species as well. Though the spectral evaluation of the recorded data showed that chlorine monoxide (ClO) and carbon disulfide (CS2) were both below the instrument's detection limits during the experiment, the upper limits for the X / SO2 ratio (X = ClO, CS2) could be derived, and yielded 2 × 10−3 and 0.1, respectively. The robust design and versatility of the instrument make it a promising tool for monitoring of volcanic degassing and understanding processes in a range of volcanic systems.

  10. Eruption of a deep-sea mud volcano triggers rapid sediment movement.

    PubMed

    Feseker, Tomas; Boetius, Antje; Wenzhöfer, Frank; Blandin, Jerome; Olu, Karine; Yoerger, Dana R; Camilli, Richard; German, Christopher R; de Beer, Dirk

    2014-01-01

    Submarine mud volcanoes are important sources of methane to the water column. However, the temporal variability of their mud and methane emissions is unknown. Methane emissions were previously proposed to result from a dynamic equilibrium between upward migration and consumption at the seabed by methane-consuming microbes. Here we show non-steady-state situations of vigorous mud movement that are revealed through variations in fluid flow, seabed temperature and seafloor bathymetry. Time series data for pressure, temperature, pH and seafloor photography were collected over 431 days using a benthic observatory at the active Håkon Mosby Mud Volcano. We documented 25 pulses of hot subsurface fluids, accompanied by eruptions that changed the landscape of the mud volcano. Four major events triggered rapid sediment uplift of more than a metre in height, substantial lateral flow of muds at average velocities of 0.4 m per day, and significant emissions of methane and CO₂ from the seafloor.

  11. Ten Years of Monitoring the Eruption of Shrub Mud Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    McGimsey, R. G.; Evans, W. C.; Bergfeld, D.; McCarthy, S. H.; Hagstrum, J. T.

    2007-12-01

    Shrub mud volcano, one of three in the Klawasi group on the eastern flank of Mount Drum volcano in the Wrangell volcanic field of eastern Alaska, has been erupting warm, saline mud and CO2-rich gas continuously since at least the summer of 1997, following 40 years of repose. The initial eruption in early summer of 1997, documented by Richter and others (1998), involved violent fountaining of mud, up to 6-8 m high, from nearly a dozen vents located near the summit, and quiet effusion from vents located about mid-way down the north flank of the 100-m-high cone. Guided by topography, early emissions of copious amounts of CO2 gas flowed in narrow streams through brushy foliage leaving behind stripes of brown, dead vegetation along the flow paths. The hazard posed by the CO2 emissions was evident from dead birds and mammals found near the vents. Initial surveys of the activity in 1997 recorded water temperatures up to 46°C. A survey in 1999 by Sorey and others (2000) found numerous active vents-many in different locations than those two years earlier-a maximum water temperature of 54°C, and an estimated total discharge of warm water of 50 l/s. Measured CO2 emissions were extrapolated to a discharge rate of 6-12 tonnes/day. The highest water temperature recorded was 57.3°C in 2000, with temperatures gradually declining since. From year to year, we found that eruptive activity migrated amongst clusters of vents, some new and some continuing from 1997. Between the summer of 2003 and the spring of 2004, the system changed dramatically when a large collapse pit formed a few tens of meters from the main summit vents and all previously active vents became inactive. This water-filled circular pit measured 28 m in diameter, up to 9 m deep, and encompassed an area that had previously been unaffected by the eruptive activity. In July 2004, water temperature and discharge at the outlet channel was 37.2°C and 9.4 l/s, respectively. The total CO2 discharge from the roiling pool

  12. Volcanology 2020: How will thermal remote sensing of volcanic surface activity evolve over the next decade?

    NASA Astrophysics Data System (ADS)

    Ramsey, Michael S.; Harris, Andrew J. L.

    2013-01-01

    Volcanological remote sensing spans numerous techniques, wavelength regions, data collection strategies, targets, and applications. Attempting to foresee and predict the growth vectors in this broad and rapidly developing field is therefore exceedingly difficult. However, we attempted to make such predictions at both the American Geophysical Union (AGU) meeting session entitled Volcanology 2010: How will the science and practice of volcanology change in the coming decade? held in December 2000 and the follow-up session 10 years later, Looking backward and forward: Volcanology in 2010 and 2020. In this summary paper, we assess how well we did with our predictions for specific facets of volcano remote sensing in 2000 the advances made over the most recent decade, and attempt a new look ahead to the next decade. In completing this review, we only consider the subset of the field focused on thermal infrared remote sensing of surface activity using ground-based and space-based technology and the subsequent research results. This review keeps to the original scope of both AGU presentations, and therefore does not address the entire field of volcanological remote sensing, which uses technologies in other wavelength regions (e.g., ultraviolet, radar, etc.) or the study of volcanic processes other than the those associated with surface (mostly effusive) activity. Therefore we do not consider remote sensing of ash/gas plumes, for example. In 2000, we had looked forward to a "golden age" in volcanological remote sensing, with a variety of new orbital missions both planned and recently launched. In addition, exciting field-based sensors such as hand-held thermal cameras were also becoming available and being quickly adopted by volcanologists for both monitoring and research applications. All of our predictions in 2000 came true, but at a pace far quicker than we predicted. Relative to the 2000-2010 timeframe, the coming decade will see far fewer new orbital instruments with

  13. The geological and geochemical study of the mud volcanoes of Azerbaijan

    SciTech Connect

    Guliyev, I.A.; Aliyev, A.A.; Rahmanov, R.R.

    1995-08-01

    Azerbaijan is a classic region for the study of mud volcanism. Of the 700 mud volcanoes known in the world, 220 are in Azerbaijan. These are of great interest, not least in relation to oil and gas exploration since they give information on subsurface sediments beyond the reach of drilling. Mud volcanoes are clearly visible on satellite images. They are confined to structural lineaments and associated fractures. Changes in the morphology of some mud volcanoes post-eruption can be detected from a series of images pre-dating and post-dating eruptions. Mud volcanoes are notable for gradients of temperature that are by an order of magnitude or a factor of 102 greater than the temperature gradients established elsewhere. The gases of mud volcanoes consist mainly of methane (95-100%). There are small amounts of C{sub 2-6}, CO{sub 2}, N{sub 2}, He and Ar. The isotopic composition of carbon (ICC) within the methane varies from -61.29. to -35.W{close_quotes} which is isotopically heavier than the methane from producing fields. The ICC of the CO{sub 2} has a very wide range (from -49.6% to +23.1%), indicating several sources of its formation. The isotopically superheavy CO{sub 2} (+5%) is especially interesting. Oils from mud volcanoes are typically severely biodegraded. Their ICC ranges from -24.76% to -28.2%. A relationship between {partial_derivative}{sup l3}C of oils and ages of accumulations has been established. Waters of mud volcanoes are lightly mineralised, containing chiefly bicarbonates and sodium. The hydrogen composition of the water is abnormally heavy. Ejected rocks from mud volcanoes range in age from Cretaceous - Pliocene. Their study suggests that deeply buried reservoirs maintain good poroperm characteristics because of relatively little catagenesis.

  14. Chemical evolution of thermal springs at Arenal Volcano, Costa Rica: Effect of volcanic activity, precipitation, seismic activity, and Earth tides

    NASA Astrophysics Data System (ADS)

    López, D. L.; Bundschuh, J.; Soto, G. J.; Fernández, J. F.; Alvarado, G. E.

    2006-09-01

    Arenal Volcano in NW Costa Rica, Central America has been active during the last 37 years. However, only relatively low temperature springs have been identified on its slopes with temperatures less than around 60 °C. The springs are clustered on the NE and NW slopes of the volcano, close to contacts between the recent and older volcanic products or at faults that intercept the volcano. This volcano is located in a rain forest region with annual rainfall averaging around 5 m. During the last 15 years, the temperature and chemical composition of 4 hot springs and 2 cold springs have been monitored approximately every 3 months. In addition, two more thermal sites were identified recently and sampled, as well as two boreholes located on a fault NE of the volcano. Scatter plots of chemical species such as Cl and B suggest that the waters in these discharges belong to the same aquifer with a saline end member similar to Río Tabacón at the beginning of the study period (1990) and the deeper borehole (B-2) in 2004. The waters of Quebrada Bambú and Quebrada Fría represent a more dilute end member. Both long-term (over the 15 years) and short-term or seasonal decreases in concentration and steady or decreasing temperature are noted in NW springs. Springs located at the NE show increasing temperatures and ion concentrations, except for bicarbonate that has decreased in concentration for all the springs. This behavior is likely associated with a shallow source for the solutes and heat for this aquifer. To the NW the early lavas and pyroclastic flows have been cooling down, decreasing the contribution of leaching products to the infiltrating waters. To the NE, pyroclastic flows to the N during the last decade are contributing increasing concentrations of solutes and heat throughout water infiltration and circulation within the faults and the surficial drainage that has a NE regional trend. For the short-term or seasonal variations, concentrations of chemical constituents

  15. Long-term risk in a recently active volcanic system: Evaluation of doses and indoor radiological risk in the quaternary Vulsini Volcanic District (Central Italy)

    NASA Astrophysics Data System (ADS)

    Capaccioni, B.; Cinelli, G.; Mostacci, D.; Tositti, L.

    2012-12-01

    Volcanic rocks in the Vulsini Volcanic District (Central Italy) contain high concentrations of 238U, 232Th and 40K due to subduction-related metasomatic enrichment of incompatible elements in the mantle source coupled with magma differentiation within the upper crust. Due to their favorable mechanical properties they have been extensively used for construction since the Etruscan age. In the old buildings of the Bolsena village, one of the most populated ancient village in the area, the major source of indoor radioactivity is 222Rn, a radioactive noble gas descendant of 238U. Direct 222Rn indoor measurements have detected extremely high values in the old center due to the combined effect of building materials, radon fluxes from the volcanic basement and low air exchange rates. In these cases the evaluated risk of developing lung cancer within a 75 year lifetime reaches up to 40% for ever smokers. Simulations of "standard rooms" built with different tuffs and lavas collected from the Vulsini Volcanic District have also provided estimations of the effective doses and lifetime risk for radiogenic cancer. Other than by the method adopted for calculation, the total evaluated risk for each volcanic rock depends on different parameters, such as: radionuclide content, radon emanation power, occupancy factor and air exchange rate. Occupancy factor and air exchange rate appear as the only controlling parameters able to mitigate the indoor radiological risk.

  16. Aerosol disturbances of the stratosphere over Tomsk according to data of lidar observations in volcanic activity period 2006-2011

    NASA Astrophysics Data System (ADS)

    Makeev, Andrey P.; Burlakov, Vladimir D.; Dolgii, Sergey I.; Nevzorov, Aleksey V.; Trifonov, Dimitar A.

    2012-11-01

    We summarize and analyze the lidar measurements (Tomsk: 56.5°N; 85.0°E) of the optical characteristics of the stratospheric aerosol layer (SAL) in the volcanic activity period 2006-2011. The background SAL state with minimal aerosol content, which was observed since 1997 under the conditions of long-term volcanically quiescent period, was interrupted in October 2006 by a series of explosive eruptions of volcanoes of the Pacific Ring of Fire: Rabaul (October 2006, New Guinea); Okmok and Kasatochi (July-August 2008, Aleutian Islands); Redoubt (March-April 2009, Alaska); Sarychev Peak (June 2009, Kuril Islands), and Grimsvötn (May 2011, Iceland). A short-term and minor disturbance of the lower stratosphere was also observed in April 2010 after eruption of the Icelandic volcano Eyjafjallajokull. The developed regional empirical model of the vertical distribution of background SAL optical characteristics was used to identify the periods of elevated stratospheric aerosol content after each of the volcanic eruptions.

  17. Cenozoic volcanic rocks of Saudi Arabia

    USGS Publications Warehouse

    Coleman, R.G.; Gregory, R.T.; Brown, G.F.

    2016-01-01

    The historical record of volcanic activity in Saudi Arabia suggests that volcanism is dormant. The harrats should be evaluated for their potential as volcanic hazards and as sources of geothermal energy. The volcanic rocks are natural traps for groundwater; thus water resources for agriculture may be significant and should be investigated.

  18. Volcanic and Hydrothermal Activity of the North Su Volcano: New Insights from Repeated Bathymetric Surveys and ROV Observations

    NASA Astrophysics Data System (ADS)

    Thal, J.; Bach, W.; Tivey, M.; Yoerger, D.

    2013-12-01

    Bathymetric data from cruises in 2002, 2006, and 2011 were combined and compared to determine the evolution of volcanic activity, seafloor structures, erosional features and to identify and document the distribution of hydrothermal vents on North Su volcano, SuSu Knolls, eastern Manus Basin (Papua New Guinea). Geologic mapping based on ROV observations from 2006 (WHOI Jason-2) and 2011 (MARUM Quest-4000) combined with repeated bathymetric surveys from 2002 and 2011 are used to identify morphologic features on the slopes of North Su and to track temporal changes. ROV MARUM Quest-4000 bathymetry was used to develop a 10 m grid of the top of North Su to precisely depict recent changes. In 2006, the south slope of North Su was steeply sloped and featured numerous white smoker vents discharging acid sulfate waters. These vents were covered by several tens of meters of sand- to gravel-sized volcanic material in 2011. The growth of this new cone changed the bathymetry of the south flank of North Su up to ~50 m and emplaced ~0.014 km3 of clastic volcanic material. This material is primarily comprised of fractured altered dacite and massive fresh dacite as well as crystals of opx, cpx, olivine and plagioclase. There is no evidence for pyroclastic fragmentation, so we hypothesize that the fragmentation is likely related to hydrothermal explosions. Hydrothermal activity varies over a short (~50 m) lateral distance from 'flashing' black smokers to acidic white smoker vents. Within 2 weeks of observation time in 2011, the white smoker vents varied markedly in activity suggesting a highly episodic hydrothermal system. Based on ROV video recordings, we identified steeply sloping (up to 30°) slopes exposing pillars and walls of hydrothermal cemented volcaniclastic material representing former fluid upflow zones. These features show that hydrothermal activity has increased slope stability as hydrothermal cementation has prevented slope collapse. Additionally, in some places

  19. Lake-level rise in the late Pleistocene and active subaquatic volcanism since the Holocene in Lake Kivu, East African Rift

    NASA Astrophysics Data System (ADS)

    Ross, Kelly Ann; Smets, Benoît; De Batist, Marc; Hilbe, Michael; Schmid, Martin; Anselmetti, Flavio S.

    2014-09-01

    The history of Lake Kivu is strongly linked to the activity of the Virunga volcanoes. Subaerial and subaquatic volcanoes, in addition to lake-level changes, shape the subaquatic morphologic and structural features in Lake Kivu's Main Basin. Previous studies revealed that volcanic eruptions blocked the former outlet of the lake to the north in the late Pleistocene, leading to a substantial rise in the lake level and subsequently the present-day thermohaline stratification. Additional studies have speculated that volcanic and seismic activities threaten to trigger a catastrophic release of the large amount of gases dissolved in the lake. The current study presents a bathymetric mapping and seismic profiling survey that covers the volcanically active area of the Main Basin at a resolution that is unprecedented for Lake Kivu. New geomorphologic features identified on the lake floor can accurately describe related lake-floor processes for the first time. The late Pleistocene lowstand is observed at 425 m depth, and volcanic cones, tuff rings, and lava flows observed above this level indicate both subaerial and subaquatic volcanic activities during the Holocene. The geomorphologic analysis yields new implications on the geologic processes that have shaped Lake Kivu's basin, and the presence of young volcanic features can be linked to the possibility of a lake overturn.

  20. [Effects of volcanic eruptions on environment and health].

    PubMed

    Zuskin, Eugenija; Mustajbegović, Jadranka; Doko Jelinić, Jagoda; Pucarin-Cvetković, Jasna; Milosević, Milan

    2007-12-01

    Volcanoes pose a threat to almost half a billion people; today there are approximately 500 active volcanoes on Earth, and every year there are 10 to 40 volcanic eruptions. Volcanic eruptions produce hazardous effects for the environment, climate, and the health of the exposed persons, and are associated with the deterioration of social and economic conditions. Along with magma and steam (H2O), the following gases surface in the environment: carbon dioxide (CO2) and sulphur dioxide (SO2), carbon monoxide (CO), hydrogen sulphide (H2S), carbon sulphide (CS), carbon disulfide (CS2), hydrogen chloride (HCl), hydrogen (H2), methane (CH4), hydrogen fluoride (HF), hydrogen bromide (HBr) and various organic compounds, as well as heavy metals (mercury, lead, gold).Their unfavourable effects depend on the distance from a volcano, on magma viscosity, and on gas concentrations. The hazards closer to the volcano include pyroclastic flows, flows of mud, gases and steam, earthquakes, blasts of air, and tsunamis. Among the hazards in distant areas are the effects of toxic volcanic ashes and problems of the respiratory system, eyes and skin, as well as psychological effects, injuries, transport and communication problems, waste disposal and water supplies issues, collapse of buildings and power outage. Further effects are the deterioration of water quality, fewer periods of rain, crop damages, and the destruction of vegetation. During volcanic eruptions and their immediate aftermath, increased respiratory system morbidity has been observed as well as mortality among those affected by volcanic eruptions. Unfavourable health effects could partly be prevented by timely application of safety measures.

  1. [Effects of volcanic eruptions on environment and health].

    PubMed

    Zuskin, Eugenija; Mustajbegović, Jadranka; Doko Jelinić, Jagoda; Pucarin-Cvetković, Jasna; Milosević, Milan

    2007-12-01

    Volcanoes pose a threat to almost half a billion people; today there are approximately 500 active volcanoes on Earth, and every year there are 10 to 40 volcanic eruptions. Volcanic eruptions produce hazardous effects for the environment, climate, and the health of the exposed persons, and are associated with the deterioration of social and economic conditions. Along with magma and steam (H2O), the following gases surface in the environment: carbon dioxide (CO2) and sulphur dioxide (SO2), carbon monoxide (CO), hydrogen sulphide (H2S), carbon sulphide (CS), carbon disulfide (CS2), hydrogen chloride (HCl), hydrogen (H2), methane (CH4), hydrogen fluoride (HF), hydrogen bromide (HBr) and various organic compounds, as well as heavy metals (mercury, lead, gold).Their unfavourable effects depend on the distance from a volcano, on magma viscosity, and on gas concentrations. The hazards closer to the volcano include pyroclastic flows, flows of mud, gases and steam, earthquakes, blasts of air, and tsunamis. Among the hazards in distant areas are the effects of toxic volcanic ashes and problems of the respiratory system, eyes and skin, as well as psychological effects, injuries, transport and communication problems, waste disposal and water supplies issues, collapse of buildings and power outage. Further effects are the deterioration of water quality, fewer periods of rain, crop damages, and the destruction of vegetation. During volcanic eruptions and their immediate aftermath, increased respiratory system morbidity has been observed as well as mortality among those affected by volcanic eruptions. Unfavourable health effects could partly be prevented by timely application of safety measures. PMID:18063533

  2. Frequent underwater volcanism in the central Aegean Sea

    NASA Astrophysics Data System (ADS)

    Huebscher, C.; Ruhnau, M.; Dehghani, G. A.

    2012-04-01

    The extinction of the Minoan culture in the mid second millennium BCE is a well known consequence of the Plinian eruption of Thera volcano (Santorini Island). Santorini is a member of the South Aegean arc forming a chain from the Gulf of Saronikos (Susaki, Egina, Poros, Methana) at West, to an area close to the Anatolian coast at East (Kos, Nisyros and minor islands), through the central part (Milos and Santorini island groups). Underwater volcanic activity was manifested historically only once. During 1649-1650 CE the Kolumbo underwater volcano evolved about 8 km northeast of Santorini. As a consequence of this eruption volcanic ash covered the entire Aegean area and a hazardous tsunami was triggered. Here we show by means of reflection seismic and magnetic data that underwater volcanism occurred more frequently in the central Aegean Sea than previously assumed. Seismic data show that Kolumbo constitutes of five vertically stacked cones of pyroclastic sediment plus at least four smaller cones on the flank of the volcano. The formation of Kolumbo started synchronous with Santorini Island. The entire volume of the Kolumbo pyroclastic cones is estimated to more than 15 cubic-kilometers. Several small-scale cones have been detected in the Anyhdros Basin some km north-east of Kolumbo, being previously interpreted as mud volcanoes by other authors. However, the similarity of seismic and magnetic signatures of these cones and Kolumbo strongly suggest that these cones were also created by underwater volcanism. Volcanic cones, Kolumbo and Santorini are situated along a NE-SW striking graben system that evolved during five extensional tectonic pulses in the Pliocene.

  3. Magmatic activity beneath the quiescent Three Sisters volcanic center, central Oregon Cascade Range, USA

    USGS Publications Warehouse

    Wicks, Charles W.; Dzurisin, Daniel; Ingebritsen, Steven E.; Thatcher, Wayne R.; Lu, Zhong; Iverson, Justin

    2002-01-01

    Images from satellite interferometric synthetic aperture radar (InSAR) reveal uplift of a broad ???10 km by 20 km area in the Three Sisters volcanic center of the central Oregon Cascade Range, ???130 km south of Mt. St. Helens. The last eruption in the volcanic center occurred ???1500 years ago. Multiple satellite images from 1992 through 2000 indicate that most if not all of ???100 mm of observed uplift occurred between September 1998 and October 2000. Geochemical (water chemistry) anomalies, first noted during 1990, coincide with the area of uplift and suggest the existence of a crustal magma reservoir prior to the uplift. We interpret the uplift as inflation caused by an ongoing episode of magma intrusion at a depth of ???6.5 km.

  4. Localization of Volcanic Activity: Topographic Effects on Dike Propagation, Eruption and COnduit Formation

    SciTech Connect

    E.S. Gaffney; B. Damjanac

    2006-05-12

    Magma flow in a dike rising in a crack whose strike runs from a highland or a ridge to an adjacent lowland has been modeled to determine the effect of topography on the flow. It is found that there is a distinct tendency for the flow to be diverted away from the highland end of the strike toward the lowland. Separation of the geometric effect of the topography from its effect on lateral confining stresses on the crack indicates that both contribute to the effect but that the effect of stress is less important. Although this analysis explains a tendency for volcanic eruptions to occur in low lands, it does not preclude eruptions on highlands. The particular configuration modeled mimics topography around the proposed nuclear waste repository at Yucca Mountain, Nevada, so that the results may indicate some reduction in the volcanic hazard to the site.

  5. Biogeochemical interactions among the arsenic, iron, humic substances, and microbes in mud volcanoes in southern Taiwan.

    PubMed

    Liu, Chia-Chuan; Maity, Jyoti Prakash; Jean, Jiin-Shuh; Sracek, Ondra; Kar, Sandeep; Li, Zhaohui; Bundschuh, Jochen; Chen, Chien-Yen; Lu, Hsueh-Yu

    2011-01-01

    Fluid and mud samples collected from Hsiaokunshui (HKS), Wushanting (WST), Yenshuikeng (YSK), Kunshuiping (KSP), Liyushan (LYS), and Sinyangnyuhu (SYNH) mud volcanoes of southwestern Taiwan were characterized for major ions, humic substances (HS) and trace elements concentrations. The relationship between the release of arsenic (As) and activities of sulfate-reducing bacteria has been assessed to understand relevant geochemical processes in the mud volcanoes. Arsenic (0.02-0.06 mg/L) and humic substances (4.13 × 10(-4) to 1.64 × 10(-3) mM) in the fluids of mud volcanoes showed a positive correlation (r = 0.99, p < 0.05) except in Liyushan mud volcano. Arsenic and iron in mud sediments formed two separate groups i) high As, but low Fe in HKS, WST, and SYNH; and ii) low As, but high Fe in the YSK, KSP, and LYS mud volcanoes. The Eh(S.H.E.) values of the mud volcano liquids were characterized by mild to strongly reducing conditions. The HKS, SYNH, and WST mud volcanoes (near the Chishan Fault) belongs to strong reducing environment (-33 to -116 mV), whereas the LYS, YSK, and KSP mud volcanoes located near the coastal plain are under mild reducing environment (-11 to 172 mV). At low Eh values mud volcanoes, saturation index (SI) values of poorly crystalline phases such as amorphous ferric hydroxide indicate understaturation, whereas saturation is reached in relatively high Eh(S.H.E.) values mud volcanoes. Arsenic contents in sediments are low, presumably due to its release to fluids (As/Fe ratio in YSK, KSP, and LYS sediment: 4.86 × 10(-4)-6.20 × 10(-4)). At low Eh(S.H.E.) values (mild to strong reducing environment), arsenic may co-precipitate with sulfides as a consequence of sulfate reduction (As/Fe ratios in WST, HKS, and SYNH sediments: 0.42-0.69).

  6. Evidence of recent volcanic activity on the ultraslow-spreading Gakkel ridge.

    PubMed

    Edwards, M H; Kurras, G J; Tolstoy, M; Bohnenstiehl, D R; Coakley, B J; Cochran, J R

    2001-02-15

    Seafloor spreading is accommodated by volcanic and tectonic processes along the global mid-ocean ridge system. As spreading rate decreases the influence of volcanism also decreases, and it is unknown whether significant volcanism occurs at all at ultraslow spreading rates (<1.5 cm yr(-1)). Here we present three-dimensional sonar maps of the Gakkel ridge, Earth's slowest-spreading mid-ocean ridge, located in the Arctic basin under the Arctic Ocean ice canopy. We acquired this data using hull-mounted sonars attached to a nuclear-powered submarine, the USS Hawkbill. Sidescan data for the ultraslow-spreading (approximately 1.0 cm yr(-1)) eastern Gakkel ridge depict two young volcanoes covering approximately 720 km2 of an otherwise heavily sedimented axial valley. The western volcano coincides with the average location of epicentres for more than 250 teleseismic events detected in 1999, suggesting that an axial eruption was imaged shortly after its occurrence. These findings demonstrate that eruptions along the ultraslow-spreading Gakkel ridge are focused at discrete locations and appear to be more voluminous and occur more frequently than was previously thought.

  7. Evidence of recent volcanic activity on the ultraslow-spreading Gakkel ridge.

    PubMed

    Edwards, M H; Kurras, G J; Tolstoy, M; Bohnenstiehl, D R; Coakley, B J; Cochran, J R

    2001-02-15

    Seafloor spreading is accommodated by volcanic and tectonic processes along the global mid-ocean ridge system. As spreading rate decreases the influence of volcanism also decreases, and it is unknown whether significant volcanism occurs at all at ultraslow spreading rates (<1.5 cm yr(-1)). Here we present three-dimensional sonar maps of the Gakkel ridge, Earth's slowest-spreading mid-ocean ridge, located in the Arctic basin under the Arctic Ocean ice canopy. We acquired this data using hull-mounted sonars attached to a nuclear-powered submarine, the USS Hawkbill. Sidescan data for the ultraslow-spreading (approximately 1.0 cm yr(-1)) eastern Gakkel ridge depict two young volcanoes covering approximately 720 km2 of an otherwise heavily sedimented axial valley. The western volcano coincides with the average location of epicentres for more than 250 teleseismic events detected in 1999, suggesting that an axial eruption was imaged shortly after its occurrence. These findings demonstrate that eruptions along the ultraslow-spreading Gakkel ridge are focused at discrete locations and appear to be more voluminous and occur more frequently than was previously thought. PMID:11236991

  8. Ten years of soil CO2 continuous monitoring on Mt. Etna: Exploring the relationship between processes of soil degassing and volcanic activity

    NASA Astrophysics Data System (ADS)

    Liuzzo, Marco; Gurrieri, Sergio; Giudice, Gaetano; Giuffrida, Giovanni

    2013-08-01

    The measurement of soil CO2 flux variations is a well-established practice in many volcanic areas around the world. Until recently, however, most of these were made using direct sampling methods. These days, a variety of automatic devices providing real-time data now make the continuous monitoring of volcanic areas possible. A network of automatic geochemical monitoring stations (EtnaGas network) was developed by INGV Palermo and installed at various sites on the flanks of Mt. Etna. Here, we present a large set of soil CO2 flux data recorded by the network, dating back 10 years, a period in which several noteworthy eruptive phenomena occurred. Our statistical analysis strongly suggests that anomalous measurements of soil CO2 flux are attributable to volcanic origin and in almost all cases precede volcanic activity. Here, we present the actual data series recorded by EtnaGAS and an interpretative model of the expected behavior of soil CO2 flux (in terms of increase-decrease cycles), which corresponded well with the volcanic activity during this period. Through the use of a comparative approach, incorporating both volcanological and geochemical data, the global soil CO2 flux trends are put into a coherent framework, highlighting close links between the time flux variations and volcanic activities. These insights, made possible from 10 years of uninterrupted data, confirm the importance of continuous monitoring of volcanic soil degassing, and may contribute in the forecasting of imminent eruptive activity or the temporal evolution of an in-progress eruption, therefore facilitating Civil Defense planning in volcanic areas under high-hazard conditions.

  9. Eighteen years of geochemical monitoring at the oceanic active volcanic island of El Hierro (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Asensio-Ramos, María; Alonso, Mar; Sharp, Emerson; Woods, Hannah; Barrancos, José; Pérez, Nemesio M.

    2016-04-01

    We report herein the latest results of a diffuse CO2 efflux survey at El Hierro volcanic system carried out during the summer period of 2015 to constrain the total CO2 output from the studied area a during post-eruptive period. El Hierro Island (278 km2) is the youngest and the SW-most of the Canary Islands. On July 16, 2011, a seismic-volcanic crisis started with the occurrence of more than 11,900 seismic events and significant deformation along the island. On October 10, 2011, the dominant character of seismicity changed dramatically from discrete earthquakes to continuous tremor, a clear indication that magma was rapidly approaching the surface immediately before the onset of the eruption, October 12. Eruption was declared over on 5 March, 2012. In order to monitor the volcanic activity of El Hierro Island, from 1998 to 2015 diffuse CO2 emission studies have been performed at El Hierro volcanic system in a yearly basis (˜600 observation sites) according to the accumulation chamber method. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. To quantify the total CO2 emission from the studied area, 100 simulations for each survey have been performed. During the eruption period, soil CO2 efflux values range from non-detectable (˜0.5 g m-2 d-1) up to 457 g m-2 d-1, reaching in November 27, 2011, the maximum CO2 output estimated value of all time series, 2,398 t d-1, just before the episodes of maximum degassing observed as vigorous bubbling at the sea surface and an increment in the amplitude of the tremor signal. During the 2015 survey, soil CO2 efflux values ranged from non-detectable up to 41 g m-2 d-1. The spatial distribution of diffuse CO2 emission values seemed to be controlled by the main volcano structural features of the island. The total diffuse CO2 output released to atmosphere was estimated at 575 ± 24 t d-1, value slightly higher that the background CO2 emission estimated at 422 t d-1 (Melián et

  10. Eighteen years of geochemical monitoring at the oceanic active volcanic island of El Hierro (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Asensio-Ramos, María; Alonso, Mar; Sharp, Emerson; Woods, Hannah; Barrancos, José; Pérez, Nemesio M.

    2016-04-01

    We report herein the latest results of a diffuse CO2 efflux survey at El Hierro volcanic system carried out during the summer period of 2015 to constrain the total CO2 output from the studied area a during post-eruptive period. El Hierro Island (278 km2) is the youngest and the SW-most of the Canary Islands. On July 16, 2011, a seismic-volcanic crisis started with the occurrence of more than 11,900 seismic events and significant deformation along the island. On October 10, 2011, the dominant character of seismicity changed dramatically from discrete earthquakes to continuous tremor, a clear indication that magma was rapidly approaching the surface immediately before the onset of the eruption, October 12. Eruption was declared over on 5 March, 2012. In order to monitor the volcanic activity of El Hierro Island, from 1998 to 2015 diffuse CO2 emission studies have been performed at El Hierro volcanic system in a yearly basis (˜600 observation sites) according to the accumulation chamber method. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. To quantify the total CO2 emission from the studied area, 100 simulations for each survey have been performed. During the eruption period, soil CO2 efflux values range from non-detectable (˜0.5 g m‑2 d‑1) up to 457 g m‑2 d‑1, reaching in November 27, 2011, the maximum CO2 output estimated value of all time series, 2,398 t d‑1, just before the episodes of maximum degassing observed as vigorous bubbling at the sea surface and an increment in the amplitude of the tremor signal. During the 2015 survey, soil CO2 efflux values ranged from non-detectable up to 41 g m‑2 d‑1. The spatial distribution of diffuse CO2 emission values seemed to be controlled by the main volcano structural features of the island. The total diffuse CO2 output released to atmosphere was estimated at 575 ± 24 t d‑1, value slightly higher that the background CO2 emission estimated at 422 t

  11. Influence of seismic processes and volcanic activity on the formation of disastrous floods

    NASA Astrophysics Data System (ADS)

    Trifonov, Dmitriy

    2014-05-01

    models of hydraulic systems, but ultimately due to difference of pressures in their respective segments and areas of the transport network. At the exit of the groundwater on the surface such change in pressure is connected both with the state of the actual water flow in underground cavities, or violations of the structure (topology) of 3D-network. As one of the major and sudden reasons of change of pressure in the underground system can serve seismic processes, including volcanic eruptions (as magmatic and ash). During these processes enormous underground space can be freed from the dense rock. This leads to rapid changes in pressure and that, in principle, a new topology of 3D network and water flows in it. It is important that such dynamic processes occur over huge distances in underground basins of thousands of kilometers [3], of course, with a certain time delay. In the result of the analysis of large-scale flooding in Russia in 2001-2002, as well as the catastrophic floods in Western Europe, in the Amur region of Russia and in the state of Colorado USA in 2013, a correlation between seismic and volcanic activities and floods, expressed by specific numerical correlation coefficients, has been revealed. For example, knowing the date, location and magnitude of an earthquake, we can identify potentially dangerous territories in the aspect of the probability of occurrence of floods, because the stresses in the crust, spreading from the hypocenter of earthquakes, and their subsequent relaxation are one of the most important factors of floods. Mechanisms of distribution of these stresses are well-studied today [2] unlike their influence on the groundwater. The defined boundaries of potentially dangerous sites are broad enough; with regard to the direction of distribution of stress, it is about the sectors in 40 degrees (from the line of the movement of the crustal plate) in the direction from the boundaries of lithospheric plates. Distribution of this impact occurs, as a

  12. Investigating Geothermal Activity, Volcanic Systems, and Deep Tectonic Tremor on Akutan Island, Alaska, with Array Seismology

    NASA Astrophysics Data System (ADS)

    Haney, M. M.; Prejean, S. G.; Ghosh, A.; Power, J. A.; Thurber, C. H.

    2012-12-01

    In addition to hosting one of the most active volcanoes in the Aleutian Arc, Akutan Island, Alaska, is the site of a significant geothermal resource within Hot Springs Bay Valley (HSBV). We deployed 15 broadband (30 s to 50 Hz) seismometers in and around HSBV during July 2012 as part of an effort to establish a baseline for background seismic activity in HSBV prior to geothermal production on the island. The stations recorded data on-site and were retrieved in early September 2012. Additional targets for the array include the tracking of deep tectonic tremor known to occur within the Aleutian subduction zone and the characterization of volcano-tectonic (VT) and deep long period (DLP) earthquakes from Akutan Volcano. Because 13 of the stations in the array sit within an area roughly 1.5 km by 1.5 km, we plan to apply methods based on stacking and beamforming to analyze the waveforms of extended signals lacking clear phase arrivals (e.g., tremor). The average spacing of the seismometers, roughly 350 m, provides sensitivity to frequencies between 2-8 Hz. The stacking process also increases the signal-to-noise ratio of small amplitude signals propagating across the array (e.g., naturally occurring geothermal seismicity). As of August 2012, several episodes of tectonic tremor have been detected in the vicinity of Akutan Island during the array deployment based on recordings from nearby permanent stations operated by the Alaska Volcano Observatory (AVO). This is the first small-aperture array deployed in the Aleutian Islands and the results should serve as a guide for future array deployments along the Aleutian Arc as part of the upcoming EarthScope and GeoPRISMS push into Alaska. We demonstrate the power of array methods based on stacking at Akutan Volcano using a sequence of DLP earthquakes from June 11, 2012 that were recorded on the permanent AVO stations. We locate and characterize the lowest frequency portion of the signals at 0.5 Hz. At these low frequencies, the

  13. Mud/gas separator sizing and evaluation

    SciTech Connect

    MacDougall, G.R. )

    1991-12-01

    Recent wellsite disasters have led to an increased emphasis on properly sized mud/gas separators. This paper reviews and analyzes existing mud/gas separator technology and recommends separator configuration, components, design considerations, and a sizing procedure. A simple method of evaluating mud/gas separation within the separator vessel has been developed as a basis for the sizing procedure. A mud/gas separator sizing worksheet will assist drilling personnel with the sizing calculations. The worksheet provides a quick and easy evaluation of most mud/gas separators for a specific well application. A brief discussion of other mud/gas separator considerations is provided, including separator components, testing, materials, and oil-based-mud considerations.

  14. Volcanic mesocyclones.

    PubMed

    Chakraborty, Pinaki; Gioia, Gustavo; Kieffer, Susan W

    2009-03-26

    A strong volcanic plume consists of a vertical column of hot gases and dust topped with a horizontal 'umbrella'. The column rises, buoyed by entrained and heated ambient air, reaches the neutral-buoyancy level, then spreads radially to form the umbrella. In classical models of strong volcanic plumes, the plume is assumed to remain always axisymmetric and non-rotating. Here we show that the updraught of the rising column induces a hydrodynamic effect not addressed to date-a 'volcanic mesocyclone'. This volcanic mesocyclone sets the entire plume rotating about its axis, as confirmed by an unprecedented analysis of satellite images from the 1991 eruption of Mount Pinatubo. Destabilized by the rotation, the umbrella loses axial symmetry and becomes lobate in plan view, in accord with satellite records of recent eruptions on Mounts Pinatubo, Manam, Reventador, Okmok, Chaiten and Ruang. The volcanic mesocyclone spawns waterspouts or dust devils, as seen in numerous eruptions, and groups the electric charges about the plume to form the 'lightning sheath' that was so prominent in the recent eruption of Mount Chaiten. The concept of a volcanic mesocyclone provides a unified explanation for a disparate set of poorly understood phenomena in strong volcanic plumes. PMID:19325632

  15. Microbiology of methanogenesis in thermal, volcanic environments.

    PubMed

    Zeikus, J G; Ben-Bassat, A; Hegge, P W

    1980-07-01

    Microbial methanogenesis was examined in thermal waters, muds, and decomposing algal-bacterial mats associated with volcanic activity in Yellowstone National Park. Radioactive tracer studies with [(14)C]glucose, acetate, or carbonate and enrichment culture techniques demonstrated that methanogenesis occurred at temperatures near 70 degrees C but below 80 degrees C and correlated with hydrogen production from either geothermal processes or microbial fermentation. Three Methanobacterium thermoautotrophicum strains (YT1, YTA, and YTC) isolated from diverse volcanic habitats differed from the neotype sewage strain DeltaH in deoxyribonucleic acid guanosine-plus-cytosine content and immunological properties. Microbial methanogenesis was characterized in more detail at a 65 degrees C site in the Octopus Spring algal-bacterial mat ecosystem. Here methanogenesis was active, was associated with anaerobic microbial decomposition of biomass, occurred concomitantly with detectable microbial hydrogen formation, and displayed a temperature activity optimum near 65 degrees C. Enumeration studies estimated more than 10(9) chemoorganotrophic hydrolytic bacteria and 10(6) chemolithotrophic methanogenic bacteria per g (dry weight) of algal-bacterial mat. Enumeration, enrichment, and isolation studies revealed that the microbial population was predominantly rod shaped and asporogenous. A prevalent chemoorganotrophic organism in the mat that was isolated from an end dilution tube was a taxonomically undescribed gram-negative obligate anaerobe (strain HTB2), whereas a prevalent chemolithotrophic methanogen isolated from an end dilution tube was identified as M. thermoautotrophicum (strain YTB). Taxonomically recognizable obligate anaerobes that were isolated from glucose and xylose enrichment cultures included Thermoanaerobium brockii strain HTB and Clostridium thermohydrosulfuricum strain 39E. The nutritional properties, growth temperature optima, growth rates, and fermentation products

  16. Fracturing and earthquake activity within the Prestahnúkur fissure swarm in the Western Volcanic Rift Zone of Iceland

    NASA Astrophysics Data System (ADS)

    Hjartardóttir, Ásta Rut; Hjaltadóttir, Sigurlaug; Einarsson, Páll; Vogfjörd, Kristín.; Muñoz-Cobo Belart, Joaquín.

    2015-12-01

    The Prestahnúkur fissure swarm is located within the ultraslowly spreading Western Volcanic Zone in Iceland. The fissure swarm is characterized by normal faults, open fractures, and evidence of subglacial fissure eruptions (tindars). In this study, fractures and faults within the Prestahnúkur fissure swarm were mapped in detail from aerial photographs to determine the extent and activity of the fissure swarm. Earthquakes during the last ~23 years were relocated to map the subsurface fault planes that they delineate. The Prestahnúkur fissure swarm is 40-80 km long and up to ~20 km wide. Most of the areas of the fissure swarm have been glacially eroded, although a part of it is covered by postglacial lava flows. The fissure swarm includes numerous faults with tens of meters vertical offset within the older glacially eroded part, whereas open fractures are found within postglacial lava flows. Comparison of relocated earthquakes and surface fractures indicates that some of the surface fractures have been activated at depth during the last ~23 years, although no dike intrusions have been ongoing. The existence of tindars nevertheless indicates that dike intrusions and rifting events do occur within the Prestahnúkur fissure swarm. The low-fracture density within postglacial lava flows and low density of postglacial eruptive fissures indicate that rifting episodes occur less often than in the faster spreading Northern Volcanic Zone.

  17. Geosphere-biosphere interactions in bio-activity volcanic lakes: evidences from Hule and Rìo Cuarto (Costa Rica).

    PubMed

    Cabassi, Jacopo; Tassi, Franco; Mapelli, Francesca; Borin, Sara; Calabrese, Sergio; Rouwet, Dmitri; Chiodini, Giovanni; Marasco, Ramona; Chouaia, Bessem; Avino, Rosario; Vaselli, Orlando; Pecoraino, Giovannella; Capecchiacci, Francesco; Bicocchi, Gabriele; Caliro, Stefano; Ramirez, Carlos; Mora-Amador, Raul

    2014-01-01

    Hule and Río Cuarto are maar lakes located 11 and 18 km N of Poás volcano along a 27 km long fracture zone, in the Central Volcanic Range of Costa Rica. Both lakes are characterized by a stable thermic and chemical stratification and recently they were affected by fish killing events likely related to the uprising of deep anoxic waters to the surface caused by rollover phenomena. The vertical profiles of temperature, pH, redox potential, chemical and isotopic compositions of water and dissolved gases, as well as prokaryotic diversity estimated by DNA fingerprinting and massive 16S rRNA pyrosequencing along the water column of the two lakes, have highlighted that different bio-geochemical processes occur in these meromictic lakes. Although the two lakes host different bacterial and archaeal phylogenetic groups, water and gas chemistry in both lakes is controlled by the same prokaryotic functions, especially regarding the CO2-CH4 cycle. Addition of hydrothermal CO2 through the bottom of the lakes plays a fundamental priming role in developing a stable water stratification and fuelling anoxic bacterial and archaeal populations. Methanogens and methane oxidizers as well as autotrophic and heterotrophic aerobic bacteria responsible of organic carbon recycling resulted to be stratified with depth and strictly related to the chemical-physical conditions and availability of free oxygen, affecting both the CO2 and CH4 chemical concentrations and their isotopic compositions along the water column. Hule and Río Cuarto lakes were demonstrated to contain a CO2 (CH4, N2)-rich gas reservoir mainly controlled by the interactions occurring between geosphere and biosphere. Thus, we introduced the term of bio-activity volcanic lakes to distinguish these lakes, which have analogues worldwide (e.g. Kivu: D.R.C.-Rwanda; Albano, Monticchio and Averno: Italy; Pavin: France) from volcanic lakes only characterized by geogenic CO2 reservoir such as Nyos and Monoun (Cameroon). PMID

  18. Geosphere-biosphere interactions in bio-activity volcanic lakes: evidences from Hule and Rìo Cuarto (Costa Rica).

    PubMed

    Cabassi, Jacopo; Tassi, Franco; Mapelli, Francesca; Borin, Sara; Calabrese, Sergio; Rouwet, Dmitri; Chiodini, Giovanni; Marasco, Ramona; Chouaia, Bessem; Avino, Rosario; Vaselli, Orlando; Pecoraino, Giovannella; Capecchiacci, Francesco; Bicocchi, Gabriele; Caliro, Stefano; Ramirez, Carlos; Mora-Amador, Raul

    2014-01-01

    Hule and Río Cuarto are maar lakes located 11 and 18 km N of Poás volcano along a 27 km long fracture zone, in the Central Volcanic Range of Costa Rica. Both lakes are characterized by a stable thermic and chemical stratification and recently they were affected by fish killing events likely related to the uprising of deep anoxic waters to the surface caused by rollover phenomena. The vertical profiles of temperature, pH, redox potential, chemical and isotopic compositions of water and dissolved gases, as well as prokaryotic diversity estimated by DNA fingerprinting and massive 16S rRNA pyrosequencing along the water column of the two lakes, have highlighted that different bio-geochemical processes occur in these meromictic lakes. Although the two lakes host different bacterial and archaeal phylogenetic groups, water and gas chemistry in both lakes is controlled by the same prokaryotic functions, especially regarding the CO2-CH4 cycle. Addition of hydrothermal CO2 through the bottom of the lakes plays a fundamental priming role in developing a stable water stratification and fuelling anoxic bacterial and archaeal populations. Methanogens and methane oxidizers as well as autotrophic and heterotrophic aerobic bacteria responsible of organic carbon recycling resulted to be stratified with depth and strictly related to the chemical-physical conditions and availability of free oxygen, affecting both the CO2 and CH4 chemical concentrations and their isotopic compositions along the water column. Hule and Río Cuarto lakes were demonstrated to contain a CO2 (CH4, N2)-rich gas reservoir mainly controlled by the interactions occurring between geosphere and biosphere. Thus, we introduced the term of bio-activity volcanic lakes to distinguish these lakes, which have analogues worldwide (e.g. Kivu: D.R.C.-Rwanda; Albano, Monticchio and Averno: Italy; Pavin: France) from volcanic lakes only characterized by geogenic CO2 reservoir such as Nyos and Monoun (Cameroon).

  19. Secondary fractionation processes of dissolved inorganic carbon and CO2 in thermal waters from active and quiescent volcanic systems

    NASA Astrophysics Data System (ADS)

    Tassi, F.; Venturi, S.; Vaselli, O.; Cabassi, J.; Capecchiacci, F.

    2015-12-01

    Carbon dioxide is the main component of the dry gas phase in hydrothermal and volcanic fluids, being mainly produced by mantle degassing and thermometamorphic reactions on limestone at which a shallow contribution from microbial activity is commonly added. These three different sources can be recognized on the basis of the d13C values, since biogenic CO2 typically shows an isotopic signature significantly more negative (<-20‰ V-PDB) than that originated at depth (>-7‰ V-PDB). Intermediate d13C values are commonly interpreted as due to mixing processes between deep and shallow sources. In this study, the d13C values of CO2 and total dissolved inorganic carbon (TDIC) in thermal waters from distinct hydrothermal/volcanic systems, located in Italy (Campi Flegrei and Vulcano Island) and Chilean Andes (El Tatio), are reported. This dataset includes several carbon isotopic ratios that are not consistent with a pure shallow or deep CO2 origin. Nevertheless the relatively high CO2 concentrations and the water chemistry of these samples clearly indicate that they are not resulting by mixing between the deep and shallow end-members. Calcite deposition, which produces a strong isotopic fractionation on the pristine CO2, seems to represent a reliable alternative explanation for the observed data. It is worth noting that these peculiar isotopic and chemical features have recurrently been recognized in thermal water discharges from different volcanic areas. These results demonstrate that the release of CO2 from primary sources is strongly affected by secondary processes since they act as sinks of CO2. As a consequence, they play an important role for the evaluation of the global budget of CO2 discharged from these natural systems.

  20. A statistical method linking geological and historical eruption time series for volcanic hazard estimations: Applications to active polygenetic volcanoes

    NASA Astrophysics Data System (ADS)

    Mendoza-Rosas, Ana Teresa; De la Cruz-Reyna, Servando

    2008-09-01

    The probabilistic analysis of volcanic eruption time series is an essential step for the assessment of volcanic hazard and risk. Such series describe complex processes involving different types of eruptions over different time scales. A statistical method linking geological and historical eruption time series is proposed for calculating the probabilities of future eruptions. The first step of the analysis is to characterize the eruptions by their magnitudes. As is the case in most natural phenomena, lower magnitude events are more frequent, and the behavior of the eruption series may be biased by such events. On the other hand, eruptive series are commonly studied using conventional statistics and treated as homogeneous Poisson processes. However, time-dependent series, or sequences including rare or extreme events, represented by very few data of large eruptions require special methods of analysis, such as the extreme-value theory applied to non-homogeneous Poisson processes. Here we propose a general methodology for analyzing such processes attempting to obtain better estimates of the volcanic hazard. This is done in three steps: Firstly, the historical eruptive series is complemented with the available geological eruption data. The linking of these series is done assuming an inverse relationship between the eruption magnitudes and the occurrence rate of each magnitude class. Secondly, we perform a Weibull analysis of the distribution of repose time between successive eruptions. Thirdly, the linked eruption series are analyzed as a non-homogeneous Poisson process with a generalized Pareto distribution as intensity function. As an application, the method is tested on the eruption series of five active polygenetic Mexican volcanoes: Colima, Citlaltépetl, Nevado de Toluca, Popocatépetl and El Chichón, to obtain hazard estimates.

  1. Geosphere-Biosphere Interactions in Bio-Activity Volcanic Lakes: Evidences from Hule and Rìo Cuarto (Costa Rica)

    PubMed Central

    Cabassi, Jacopo; Tassi, Franco; Mapelli, Francesca; Borin, Sara; Calabrese, Sergio; Rouwet, Dmitri; Chiodini, Giovanni; Marasco, Ramona; Chouaia, Bessem; Avino, Rosario; Vaselli, Orlando; Pecoraino, Giovannella; Capecchiacci, Francesco; Bicocchi, Gabriele; Caliro, Stefano; Ramirez, Carlos; Mora-Amador, Raul

    2014-01-01

    Hule and Río Cuarto are maar lakes located 11 and 18 km N of Poás volcano along a 27 km long fracture zone, in the Central Volcanic Range of Costa Rica. Both lakes are characterized by a stable thermic and chemical stratification and recently they were affected by fish killing events likely related to the uprising of deep anoxic waters to the surface caused by rollover phenomena. The vertical profiles of temperature, pH, redox potential, chemical and isotopic compositions of water and dissolved gases, as well as prokaryotic diversity estimated by DNA fingerprinting and massive 16S rRNA pyrosequencing along the water column of the two lakes, have highlighted that different bio-geochemical processes occur in these meromictic lakes. Although the two lakes host different bacterial and archaeal phylogenetic groups, water and gas chemistry in both lakes is controlled by the same prokaryotic functions, especially regarding the CO2-CH4 cycle. Addition of hydrothermal CO2 through the bottom of the lakes plays a fundamental priming role in developing a stable water stratification and fuelling anoxic bacterial and archaeal populations. Methanogens and methane oxidizers as well as autotrophic and heterotrophic aerobic bacteria responsible of organic carbon recycling resulted to be stratified with depth and strictly related to the chemical-physical conditions and availability of free oxygen, affecting both the CO2 and CH4 chemical concentrations and their isotopic compositions along the water column. Hule and Río Cuarto lakes were demonstrated to contain a CO2 (CH4, N2)-rich gas reservoir mainly controlled by the interactions occurring between geosphere and biosphere. Thus, we introduced the term of bio-activity volcanic lakes to distinguish these lakes, which have analogues worldwide (e.g. Kivu: D.R.C.-Rwanda; Albano, Monticchio and Averno: Italy; Pavin: France) from volcanic lakes only characterized by geogenic CO2 reservoir such as Nyos and Monoun (Cameroon). PMID

  2. Assessing the volcanic hazard for Rome: 40Ar/39Ar and In-SAR constraints on the most recent eruptive activity and present-day uplift at Colli Albani Volcanic District

    NASA Astrophysics Data System (ADS)

    Marra, F.; Gaeta, M.; Giaccio, B.; Jicha, B. R.; Palladino, D. M.; Polcari, M.; Sottili, G.; Taddeucci, J.; Florindo, F.; Stramondo, S.

    2016-07-01

    We present new 40Ar/39Ar data which allow us to refine the recurrence time for the most recent eruptive activity occurred at Colli Albani Volcanic District (CAVD) and constrain its geographic area. Time elapsed since the last eruption (36 kyr) overruns the recurrence time (31 kyr) in the last 100 kyr. New interferometric synthetic aperture radar data, covering the years 1993-2010, reveal ongoing inflation with maximum uplift rates (>2 mm/yr) in the area hosting the most recent (<200 ka) vents, suggesting that the observed uplift might be caused by magma injection within the youngest plumbing system. Finally, we frame the present deformation within the structural pattern of the area of Rome, characterized by 50 m of regional uplift since 200 ka and by geologic evidence for a recent (<2000 years) switch of the local stress-field, highlighting that the precursors of a new phase of volcanic activity are likely occurring at the CAVD.

  3. Experimental research of drilling mud influence on mud motor mechanical rubber components

    NASA Astrophysics Data System (ADS)

    Epikhin, A. V.; Ushakov, A. V.; Barztaikin, V. V.; Melnikov, V. V.; Ulyanova, S.

    2015-11-01

    The paper describes the experimental research of drilling mud influence on engineering parameters of mud motor mechanical rubber components. It is believed to be urgent due to increase in using mud motors in oil and gas well construction now, and, consequently, the issue of increasing their exploitation is becoming current. The development test results of elastomer IRP-1226 dependent on the mud type (alkaline, hydrocarbon or salt- saturated ones) and the temperature are shown in the paper. It is proved that the type of drilling mud and the temperature in bottom-hole zone have an influence on wear of mud motors elastomers.

  4. Mud Volcanoes in the Martian Lowlands: Potential Windows to Fluid-Rich Samples from Depth

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Allen, Carlton C.

    2009-01-01

    The regional setting of the Chryse-Acidalia area augurs well for a fluid-rich subsurface, accumulation of diverse rock types reflecting the wide catchment area, astrobiological prospectivity, and mud volcanism. This latter provides a mechanism for transporting samples from relatively great depth to the surface. Since mud volcanoes are not associated with extreme heat or shock pressures, materials they transport to the surface are likely to be relatively unaltered; thus such materials could contain interpretable remnants of potential martian life (e.g., organic chemical biomarkers, mineral biosignatures, or structural remains) as well as unmetamorphosed rock samples. None of the previous landings on Mars was located in an area with features identified as potential mud volcanoes (Fig. 3), but some of these features may offer targets for future missions aimed at sampling deep fluid-rich strata with potential habitable zones.

  5. Mud pulse MWD systems report

    SciTech Connect

    Gearhart, M.; Ziemer, K.A.; Knight, O.M.

    1981-12-01

    Measurement-while-drilling (MWD) systems, using mud pulse telemetry, are now available to the industry. The most popular sensor package is for directional drilling measurements. Accuracy of such measurements has been proved under field conditions and has resulted in considerable savings in rig time. This acceptance and usage has increased the demand for other sensors for improved drilling efficiency, kick detection, and formation evaluation.

  6. River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA

    USGS Publications Warehouse

    Hurwitz, S.; Evans, William C.; Lowenstern, J. B.

    2010-01-01

    In the past few decades numerous studies have quantified the load of dissolved solids in large rivers to determine chemical weathering rates in orogenic belts and volcanic areas, mainly motivated by the notion that over timescales greater than ~100kyr, silicate hydrolysis may be the dominant sink for atmospheric CO2, thus creating a feedback between climate and weathering. Here, we report the results of a detailed study during water year 2007 (October 1, 2006 to September 30, 2007) in the major rivers of the Yellowstone Plateau Volcanic Field (YPVF) which hosts Earth's largest "restless" caldera and over 10,000 thermal features. The chemical compositions of rivers that drain thermal areas in the YPVF differ significantly from the compositions of rivers that drain non-thermal areas. There are large seasonal variations in river chemistry and solute flux, which increases with increasing water discharge. The river chemistry and discharge data collected periodically over an entire year allow us to constrain the annual solute fluxes and to distinguish between low-temperature weathering and hydrothermal flux components. The TDS flux from Yellowstone Caldera in water year 2007 was 93t/km2/year. Extensive magma degassing and hydrothermal interaction with rocks accounts for at least 82% of this TDS flux, 83% of the cation flux and 72% of the HCO3- flux. The low-temperature chemical weathering rate (17t/km2/year), calculated on the assumption that all the Cl- is of thermal origin, could include a component from low-temperature hydrolysis reactions induced by CO2 ascending from depth rather than by atmospheric CO2. Although this uncertainty remains, the calculated low-temperature weathering rate of the young rhyolitic rocks in the Yellowstone Caldera is comparable to the world average of large watersheds that drain also more soluble carbonates and evaporates but is slightly lower than calculated rates in other, less-silicic volcanic regions. Long-term average fluxes at

  7. Interactions between human activity, volcanic eruptions and vegetation during the Holocene at Garua and Numundo, West New Britain, PNG

    NASA Astrophysics Data System (ADS)

    Boyd, W. E.; Lentfer, C. J.; Parr, J.

    2005-11-01

    This paper reviews recent fossil phytolith analysis from wet tropical West New Britain (Papua New Guinea). The Holocene vegetation has been influenced by spatially and temporally diverse patterns of both prehistoric human settlement and catastrophic volcanic events. We have hypothesized different landscape responses and recovery pathways to events during the last six millennia. Phytolith sequences on the coastal lowlands, the Willaumez Peninsula, and nearby island of Garua provide details of vegetational change and human interactions at different landscape scales since c. 5900 cal yr B.P. During this period four major volcanic eruptions (c. 5900, 3600, 1700 and 1400 cal yr B.P.) have disrupted the landscape. The evidence provides detailed descriptions of temporal and spatial patterning in the impacts and changes in the vegetation. In particular, vegetation responded differently from one event to another, reflecting both forest recovery from seed bank and shooting, and the influence of prehistoric people on recovering vegetation. Furthermore, after some events landscape recovery was moderately uniform, while after others there was considerable landscape partitioning. Although these differences largely relate to airfall tephra type, distribution and magnitude, the partitioning is more strongly influenced by human activity.

  8. 3D-Reconstruction of recent volcanic activity from ROV-video, Charles Darwin Seamounts, Cape Verdes

    NASA Astrophysics Data System (ADS)

    Kwasnitschka, T.; Hansteen, T. H.; Kutterolf, S.; Freundt, A.; Devey, C. W.

    2011-12-01

    As well as providing well-localized samples, Remotely Operated Vehicles (ROVs) produce huge quantities of visual data whose potential for geological data mining has seldom if ever been fully realized. We present a new workflow to derive essential results of field geology such as quantitative stratigraphy and tectonic surveying from ROV-based photo and video material. We demonstrate the procedure on the Charles Darwin Seamounts, a field of small hot spot volcanoes recently identified at a depth of ca. 3500m southwest of the island of Santo Antao in the Cape Verdes. The Charles Darwin Seamounts feature a wide spectrum of volcanic edifices with forms suggestive of scoria cones, lava domes, tuff rings and maar-type depressions, all of comparable dimensions. These forms, coupled with the highly fragmented volcaniclastic samples recovered by dredging, motivated surveying parts of some edifices down to centimeter scale. ROV-based surveys yielded volcaniclastic samples of key structures linked by extensive coverage of stereoscopic photographs and high-resolution video. Based upon the latter, we present our workflow to derive three-dimensional models of outcrops from a single-camera video sequence, allowing quantitative measurements of fault orientation, bedding structure, grain size distribution and photo mosaicking within a geo-referenced framework. With this information we can identify episodes of repetitive eruptive activity at individual volcanic centers and see changes in eruptive style over time, which, despite their proximity to each other, is highly variable.

  9. Volcanology and volcanic activity with a primary focus on potential hazard impacts for the Hawaii geothermal project

    SciTech Connect

    Moore, R.B.; Delaney, P.T.; Kauahikaua, J.P.

    1993-10-01

    This annotated bibliography reviews published references about potential volcanic hazards on the Island of Hawaii that are pertinent to drilling and operating geothermal wells. The first two sections of this annotated bibliography list the most important publications that describe eruptions of Kilauea volcano, with special emphasis on activity in and near the designated geothermal subzones. References about historic eruptions from Mauna Loa`s northeast rift zone, as well as the most recent activity on the southern flank of dormant Mauna Kea, adjacent to the Humu`ula Saddle are described. The last section of this annotated bibliography lists the most important publications that describe and analyze deformations of the surface of Kilauea and Mauna Loa volcanoes.

  10. Quantitative Studies in Planetary Volcanism

    NASA Technical Reports Server (NTRS)

    Baloga, Stephen M.

    2004-01-01

    Proxemy Research has a research grant to perform scientific investigations of volcanism and volcanic-related process on other planets. Part of this research involves mathematical modeling of specific volcanic transport processes and the use of terrestrial analogs. This report contains a summary of activities conducted over the time period indicated. In addition, a synopsis of science research conducted during the period is given. A complete listing of publications and scientific abstracts that were presented at scientific conferences is contained in the report.

  11. Volcanic gas emissions during active dome growth at Mount Cleveland, Alaska, August 2015

    NASA Astrophysics Data System (ADS)

    Werner, Cynthia; Kern, Christoph; Lyons, John; Kelly, Peter; Schneider, David; Wallace, Kristi; Wessels, Rick

    2016-04-01

    Volcanic gas emissions and chemistry data were measured for the first time at Mount Cleveland (1730 m) in the Central Aleutian arc, Alaska, on August 14-15, 2015 as part of the NSF-GeoPRISMS initiative, and co-funded by the Deep Carbon Observatory (DCO) and the USGS Alaska Volcano Observatory. The measurements were made in the month following two explosive events (July 21 and August 7, 2015) that destroyed a small dome (˜50x85 m), which had experienced episodic growth in the crater since November, 2014. These explosions resulted in the elevation of the aviation color code and alert level from Yellow/Advisory to Orange/Watch on July 21, 2015. Between the November, 2014 and July, 2015 dome-destroying explosions, the volcano experienced: (1) frequent periods of elevated surface temperatures in the summit region (based on Mid-IR satellite observations), (2) limited volcano-seismic tremor, (3) visible degassing as recorded in webcam images with occasionally robust plumes, and (4) at least one aseismic volcanic event that deposited small amounts of ash on the upper flanks of the volcano (detected by infrasound, observed visually and in Landsat 8 images). Intermittent plumes were also sometimes detectable up to 60 km downwind in Mid-IR satellite images, but this was not typical. Lava extrusion resumed following the explosion as indicated in satellite data by highly elevated Mid-IR surface temperatures, but was not identifiable in seismic data. By early-mid August, 2015, a new dome growing in the summit crater had reached 80 m across with temperatures of 550-600 C as measured on August 4 with a helicopter-borne thermal IR camera. A semitransparent plume extended several kilometers downwind of the volcano during the field campaign. A helicopter instrumented with an upward-looking UV spectrometer (mini DOAS) and a Multi-GAS was used to measure SO2 emission rates and in situ mixing ratios of H2O, CO2, SO2, and H2S in the plume. On August 14 and 15, 2015, a total of 14

  12. 1994 Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Doukas, Michael P.; McGimsey, Robert G.

    1995-01-01

    During 1994, the Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, or false alarms at nine volcanic centers-- Mount Sanford, Iliamna, the Katmai group, Kupreanof, Mount Veniaminof, Shishaldin, Makushin, Mount Cleveland and Kanaga (table 1). Of these volcanoes, AVO has a real time, continuously recording seismic network only at Iliamna, which is located in the Cook Inlet area of south-central Alaska (fig. 1). AVO has dial-up access to seismic data from a 5-station network in the general region of the Katmai group of volcanoes. The remaining unmonitored volcanoes are located in sparsely populated areas of the Wrangell Mountains, the Alaska Peninsula, and the Aleutian Islands (fig. 1). For these volcanoes, the AVO monitoring program relies chiefly on receipt of pilot reports, observations of local residents and analysis of satellite imagery.

  13. Catalytic hydrodechlorination of tetrachloroethylene over red mud.

    PubMed

    Ordóñez, S; Sastre, H; Díez, F V

    2001-01-29

    Hydrodechlorination of tetrachloroethylene was investigated using red mud (RM, a by-product in the production of alumina by the Bayer process) as the catalyst. Use of RM as a hydrodechlorination catalyst is of interest from an industrial point of view because its cost is much lower than that of commercial catalysts. Hydrodechlorination reactions were carried out in a continuous fixed bed reactor. The influence of catalyst sulfiding, temperature (50-350 degrees C), pressure (2-10MPa), hydrogen flow rate and the presence of solvents (hexane, heptane, benzene and toluene) on the reaction was studied. Sulfided red mud is active as a hydrodechlorination catalyst, conversion of tetrachloroethylene increases as the pressure and temperature increase. The solvents did not influence the conversion, nor were side reactions involving the solvent observed. The kinetics of the reaction was studied at 350 degrees C and 10MPa, conditions for which mass transfer limitations were negligible. A good fit of a Langmuir-Hinselwood model to the experimental data was obtained.

  14. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 1--major and trace element composition.

    PubMed

    Calabrese, S; D'Alessandro, W; Bellomo, S; Brusca, L; Martin, R S; Saiano, F; Parello, F

    2015-01-01

    Active biomonitoring using moss-bags was applied to an active volcanic environment for the first time. Bioaccumulation originating from atmospheric deposition was evaluated by exposing mixtures of washed and air-dried mosses (Sphagnum species) at 24 sites on Mt. Etna volcano (Italy). Concentrations of major and a large suite of trace elements were analysed by inductively coupled mass and optical spectrometry (ICP-MS and ICP-OES) after total acid digestion. Of the 49 elements analysed those which closely reflect summit volcanic emissions were S, Tl, Bi, Se, Cd, As, Cu, B, Na, Fe, Al. Enrichment factors and cluster analysis allowed clear distinction between volcanogenic, geogenic and anthropogenic inputs that affect the local atmospheric deposition. This study demonstrates that active biomonitoring with moss-bags is a suitable and robust technique for implementing inexpensive monitoring in scarcely accessible and harsh volcanic environments, giving time-averaged quantitative results of the local exposure to volcanic emissions. This task is especially important in the study area because the summit area of Mt. Etna is visited by nearly one hundred thousand tourists each year who are exposed to potentially harmful volcanic emissions.

  15. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 1--major and trace element composition.

    PubMed

    Calabrese, S; D'Alessandro, W; Bellomo, S; Brusca, L; Martin, R S; Saiano, F; Parello, F

    2015-01-01

    Active biomonitoring using moss-bags was applied to an active volcanic environment for the first time. Bioaccumulation originating from atmospheric deposition was evaluated by exposing mixtures of washed and air-dried mosses (Sphagnum species) at 24 sites on Mt. Etna volcano (Italy). Concentrations of major and a large suite of trace elements were analysed by inductively coupled mass and optical spectrometry (ICP-MS and ICP-OES) after total acid digestion. Of the 49 elements analysed those which closely reflect summit volcanic emissions were S, Tl, Bi, Se, Cd, As, Cu, B, Na, Fe, Al. Enrichment factors and cluster analysis allowed clear distinction between volcanogenic, geogenic and anthropogenic inputs that affect the local atmospheric deposition. This study demonstrates that active biomonitoring with moss-bags is a suitable and robust technique for implementing inexpensive monitoring in scarcely accessible and harsh volcanic environments, giving time-averaged quantitative results of the local exposure to volcanic emissions. This task is especially important in the study area because the summit area of Mt. Etna is visited by nearly one hundred thousand tourists each year who are exposed to potentially harmful volcanic emissions. PMID:25262949

  16. Volcanic history of the Colorado River extensional corridor: Active or passive rifting

    SciTech Connect

    Howard, K.A. )

    1993-04-01

    Magmatism and extension began nearly simultaneously in the Colorado River extensional corridor (CREC) between 34 and 35[degree] N. Initial eruptions of basanite at 23--19.5 Ma were low-volume but spanned a region now twice as wide as the 100-km-wide corridor. Extensional tilting of this age was local. A large flux of calc-alkaline basalt, andesite, dacite, and rhyolite was erupted at 22--18.5 Ma. They accumulated to average thicknesses of [approximately]1 km in the early CREC basin, and were accompanied by extensional tilting. Dike swarms, necks, and plutons represent intrusive equivalents. Plutons concentrate in the central belt of metamorphic core complexes, the most highly extended areas. Massive eruption at 18.5 Ma of the rhyolitic Peach Springs Tuff marked an ensuing lowered rate of volcanic output, a change to bimodal volcanism, much tilting and extension, and deposition of thick (to [approximately]2 km) synextensional clastic sediments 18--14 Ms. By 14--12 Ma, extensional tilting had largely ceased, and eruptions were sparse and basaltic only, as they have been since. Basalt compositions reveal changing patterns of trace-element composition that bear on sources. The early basanites have OIB-like compositions on spidergram plots, suggesting origin from the asthenosphere as would be expected from initiation of rifting driven by hot mantle upwelling. Basalts 20--12 Ma show low concentrations of Nb and Ta as in subduction-related arc magmas. Post-extensional basalts erupted 15--10 Ma exhibit a transition back toward primitive compositions seen in Quaternary alkalic basalts.

  17. The effects of drilling muds on marine invertebrate larvae and adults

    SciTech Connect

    Raimondi, P.T.; Barnett, A.M.; Krause, P.R.

    1997-06-01

    A series of laboratory experiments tested the effects of drilling muds from an active platform off southern California on larvae and adults of marine invertebrates. Red abalone (Haliotis rufescens) were used to determine effects of drilling muds on fertilization, early development, survivorship, and settlement, and experiments on adult brown cup corals (Paracyathus stearnsii) tested effects on adult survivorship, viability, and tissue loss. Exposures to drilling muds did not have an effect on abalone fertilization or early development. However, several exposures to drilling muds resulted in weak, but significant, positive effects of drilling muds on settlement of competent larvae. In contrast, settlement of red abalone larvae on natural coralline algal crusts decreased with increasing concentrations of drilling muds. This suggests that drilling muds affect either the abalone`s ability to detect natural settlement inducers, or they affect the inducer itself. Exposure of brown cup corals to concentrations of drilling muds adversely impacted their survivorship and viability. These effects were likely caused by increased tissue mortality of the coral polyps.

  18. Active spreading processes at ultraslow mid-ocean ridges: The 1999-2001 seismo-volcanic episode at 85°E Gakkel ridge, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Schlindwein, Vera; Riedel, Carsten; Korger, Edith; Läderach, Christine

    2010-05-01

    The rate of magma and crustal production at mid-ocean ridges is thought to decrease with decreasing spreading rate. At ultraslow spreading rates below 10-20 mm/y full rate, heat loss by conduction greatly reduces melt production with less melt produced at increasingly greater depths. Gakkel Ridge, the actively spreading mid-ocean ridge in the Arctic Ocean, opens at rates of 14 mm/y in the west decreasing to less than 6 mm/y at its eastern termination and demonstrates that magma production is not only a function of spreading rate. Whereas amagmatic spreading takes place at rates of about 12-10 mm/y, focussed melt production occurs at even lower spreading rates in long-lived discrete volcanic centres. One such centre is the 85°E volcanic complex at eastern Gakkel ridge where in 1999 a teleseismically recorded earthquake swarm consisting of more than 250 earthquakes over 9 months signalled the onset of an active spreading episode. The earthquake swarm is believed to be associated with volcanic activity although no concurrent lava effusion was found. We analysed the teleseismic earthquake swarm together with visual observation and microseismic data recorded at this site in 2001 and 2007 and noted the following characteristics which may be indicative for volcanic spreading events at the still poorly explored ultraslow spreading ridges: - unusual duration: The 1999 earthquake swarm lasted over 9 months rather than a few weeks as observed on faster spreading ridges. In addition, in 2001 seismoacoustic sounds which we interpret as gas discharge in Strombolian eruptions and a giant event plume maintained over more than one year indicate waxing and waning volcanic activity since 1999. - unusual strength: The earthquake swarm was detected at teleseismic distances of more than 1000 km and included 11 events with a magnitude >5. No other confirmed mid-ocean ridge eruption released a comparable seismic moment. Rather than focussing in a narrow area or showing pronounced

  19. Long duration (>4 Ma) and steady-state volcanic activity in the early Cretaceous Paraná-Etendeka Large Igneous Province: New palaeomagnetic data from Namibia

    NASA Astrophysics Data System (ADS)

    Dodd, Sarah C.; Mac Niocaill, Conall; Muxworthy, Adrian R.

    2015-03-01

    There is long-standing correlation between Large Igneous Provinces (LIPs) and major mass extinction events in the Geological Record, postulated to be due to the emission of large quantities of volcanic gases over a geologically short period of time causing major climatic perturbations within the Earth system. The ∼135 Ma Paraná-Etendeka volcanic province of Brazil and Namibia represents something of an enigma amongst LIPs. Despite an erupted volume (>1 Mkm3) comparable to other LIPs associated with mass extinctions, such as the Siberian or Deccan traps, it is not linked to a known mass extinction event. This suggests that the Paraná-Etendeka volcanic province was emplaced over longer timescales than other LIPs, and/or emitted a lower concentration of volatiles, directly or indirectly during its emplacement. We present a new, detailed magnetostratigraphy for the Etendeka portion of the province that suggests emplacement took place over longer timescales (>4 Ma) than those associated with other LIPs. Palaeomagnetic analysis of 893 specimens from 99 sites, in sections that encompass nearly the complete Etendeka stratigraphy, yielded high-quality data from 70 sites (612 specimens). These record 16 individual polarity intervals, which can be correlated with Chrons 15 to 11 of the geomagnetic polarity time scale (GPTS) while also providing two new, high quality palaeopoles for South Africa at 130-135 Ma. Our magnetostratigraphy reveals a minimum period of volcanic activity in excess of 4 Myrs and, importantly, we find no evidence for major changes in the rates of volcanic activity through that time period, in contrast to other LIPs where volcanism seems to be concentrated in major pulses. This suggests that the anomalously feeble environmental impact of Paraná-Etendeka volcanism may be due to lower effusion rates reducing the atmospheric loading due to volcanogenic volatiles.

  20. Small edifice features in Chryse Planitia, Mars: Assessment of a mud volcano hypothesis

    NASA Astrophysics Data System (ADS)

    Komatsu, Goro; Okubo, Chris H.; Wray, James J.; Ojha, Lujendra; Cardinale, Marco; Murana, Alessio; Orosei, Roberto; Chan, Marjorie A.; Ormö, Jens; Gallagher, Ronnie

    2016-04-01

    Small edifice features that are less than a few kilometers in diameter and up to a few hundred meters in height are widely distributed in Chryse Planitia on Mars. They exhibit a broad range of morphological properties that are here classified as Type 1 (steep-sided cones typically with a summit crater), Type 2 (nearly flat features with single or multiple central/summit craters or cones) and Type 3 (nearly circular features in plan view, characterized by steep sides and a broadly flat summit area). Their origins have not been determined with certainty, but our study utilizing the High Resolution Imaging Science Experiment (HiRISE) images supports the interpretation of mud volcanism, based on the observed morphological characteristics of these small edifices and comparisons with terrestrial analogs. Additionally, hydrated minerals detected on these edifice features in data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), further support the mud volcano hypothesis. Injection features such as clastic mega-pipes and sand blow features may coexist with the mud volcanoes. Alternative mechanisms such as magmatic volcanism are not excluded, but they have less support from our remote sensing observations. Further confirmation or rejection of the mud volcano hypothesis will require in-situ investigation by landers or rovers.

  1. Volcanic hazards to airports

    USGS Publications Warehouse

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.

    2009-01-01

    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies

  2. Evidence from acoustic imaging for submarine volcanic activity in 2012 off the west coast of El Hierro (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Pérez, Nemesio M.; Somoza, Luis; Hernández, Pedro A.; de Vallejo, Luis González; León, Ricardo; Sagiya, Takeshi; Biain, Ander; González, Francisco J.; Medialdea, Teresa; Barrancos, José; Ibáñez, Jesús; Sumino, Hirochika; Nogami, Kenji; Romero, Carmen

    2014-12-01

    We report precursory geophysical, geodetic, and geochemical signatures of a new submarine volcanic activity observed off the western coast of El Hierro, Canary Islands. Submarine manifestation of this activity has been revealed through acoustic imaging of submarine plumes detected on the 20-kHz chirp parasound subbottom profiler (TOPAS PS18) mounted aboard the Spanish RV Hespérides on June 28, 2012. Five distinct "filament-shaped" acoustic plumes emanating from the flanks of mounds have been recognized at water depth between 64 and 88 m on a submarine platform located NW El Hierro. These plumes were well imaged on TOPAS profiles as "flares" of high acoustic contrast of impedance within the water column. Moreover, visible plumes composed of white rafts floating on the sea surface and sourcing from the location of the submarine plumes were reported by aerial photographs on July 3, 2012, 5 days after acoustic plumes were recorded. In addition, several geophysical and geochemical data support the fact that these submarine vents were preceded by several precursory signatures: (i) a sharp increase of the seismic energy release and the number of daily earthquakes of magnitude ≥2.5 on June 25, 2012, (ii) significant vertical and horizontal displacements observed at the Canary Islands GPS network (Nagoya University-ITER-GRAFCAN) with uplifts up to 3 cm from June 25 to 26, 2012, (iii) an anomalous increase of the soil gas radon activity, from the end of April until the beginning of June reaching peak values of 2.7 kBq/m3 on June 3, 2012, and (iv) observed positive peak in the air-corrected value of 3He/4He ratio monitored in ground waters (8.5 atmospheric 3He/4He ratio ( R A)) at the northwestern El Hierro on June 16, 2012. Combining these submarine and subaerial information, we suggest these plumes are the consequence of submarine vents exhaling volcanic gas mixed with fine ash as consequence of an event of rapid rise of volatile-rich magma beneath the NW submarine ridge

  3. Volcanism on Mars. Chapter 41

    NASA Technical Reports Server (NTRS)

    Zimbelman, J. R.; Garry, W. B.; Bleacher, J. E.; Crown, D. A.

    2015-01-01

    Spacecraft exploration has revealed abundant evidence that Mars possesses some of the most dramatic volcanic landforms found anywhere within the solar system. How did a planet half the size of Earth produce volcanoes like Olympus Mons, which is several times the size of the largest volcanoes on Earth? This question is an example of the kinds of issues currently being investigated as part of the space-age scientific endeavor called "comparative planetology." This chapter summarizes the basic information currently known about volcanism on Mars. The volcanoes on Mars appear to be broadly similar in overall morphology (although, often quite different in scale) to volcanic features on Earth, which suggests that Martian eruptive processes are not significantly different from the volcanic styles and processes on Earth. Martian volcanoes are found on terrains of different age, and Martian volcanic rocks are estimated to comprise more than 50% of the Martian surface. This is in contrast to volcanism on smaller bodies such as Earth's Moon, where volcanic activity was mainly confined to the first half of lunar history (see "Volcanism on the Moon"). Comparative planetology supports the concept that volcanism is the primary mechanism for a planetary body to get rid of its internal heat; smaller bodies tend to lose their internal heat more rapidly than larger bodies (although, Jupiter's moon Io appears to contradict this trend; Io's intense volcanic activity is powered by unique gravitational tidal forces within the Jovian system; see "Volcanism on Io"), so that volcanic activity on Mars would be expected to differ considerably from that found on Earth and the Moon.

  4. Volcanism in Eastern Africa

    NASA Technical Reports Server (NTRS)

    Cauthen, Clay; Coombs, Cassandra R.

    1996-01-01

    In 1891, the Virunga Mountains of Eastern Zaire were first acknowledged as volcanoes, and since then, the Virunga Mountain chain has demonstrated its potentially violent volcanic nature. The Virunga Mountains lie across the Eastern African Rift in an E-W direction located north of Lake Kivu. Mt. Nyamuragira and Mt. Nyiragongo present the most hazard of the eight mountains making up Virunga volcanic field, with the most recent activity during the 1970-90's. In 1977, after almost eighty years of moderate activity and periods of quiescence, Mt. Nyamuragira became highly active with lava flows that extruded from fissures on flanks circumscribing the volcano. The flows destroyed vast areas of vegetation and Zairian National Park areas, but no casualties were reported. Mt. Nyiragongo exhibited the same type volcanic activity, in association with regional tectonics that effected Mt. Nyamuragira, with variations of lava lake levels, lava fountains, and lava flows that resided in Lake Kivu. Mt. Nyiragongo, recently named a Decade volcano, presents both a direct and an indirect hazard to the inhabitants and properties located near the volcano. The Virunga volcanoes pose four major threats: volcanic eruptions, lava flows, toxic gas emission (CH4 and CO2), and earthquakes. Thus, the volcanoes of the Eastern African volcanic field emanate harm to the surrounding area by the forecast of volcanic eruptions. During the JSC Summer Fellowship program, we will acquire and collate remote sensing, photographic (Space Shuttle images), topographic and field data. In addition, maps of the extent and morphology(ies) of the features will be constructed using digital image information. The database generated will serve to create a Geographic Information System for easy access of information of the Eastem African volcanic field. The analysis of volcanism in Eastern Africa will permit a comparison for those areas from which we have field data. Results from this summer's work will permit

  5. Dynamical parameter analysis of continuous seismic signals of Popocatépetl volcano (Central Mexico): A case of tectonic earthquakes influencing volcanic activity

    NASA Astrophysics Data System (ADS)

    Tárraga, Marta; Cruz-Reyna, Servando; Mendoza-Rosas, Ana; Carniel, Roberto; Martínez-Bringas, Alicia; García, Alicia; Ortiz, Ramon

    2012-06-01

    The continuous background seismic activity contains information on the internal state of a volcanic system. Here, we report the influence of major regional tectonic earthquakes (M > 5 in most cases) on such state, reflected as changes in the spectral and dynamical parameters of the volcano continuous seismic data. Although changes do not always occur, analysis of five cases of earthquake-induced variations in the signals recorded at Popocatépetl volcano in central México reveal significant fluctuations following the tectonic earthquakes. External visible volcanic activity, such as small to moderate explosions and ash emissions, were related to those fluctuations. We briefly discuss possible causes of the variations. We conclude that recognition of fluctuations in the dynamical parameters in volcano monitoring seismic signals after tectonic earthquakes, even those located in the far field, hundreds of kilometers away, may provide an additional criterion for eruption forecasting, and for decision making in the definition of volcanic alert levels.

  6. Tectonic Windows Reveal Off-axis Volcanic and Hydrothermal Activity and Along-strike Variations in Eruption Effusion Rates

    NASA Astrophysics Data System (ADS)

    MacDonald, K. C.

    2005-12-01

    Alvin transects of faulted escarpments 50-500m high provide tectonic windows to investigate the top 500m of oceanic crustal structure and lava stratigraphy. The Alvin archives were used to review dives from the East Pacific Rise, the Mid-Atlantic Ridge, the Juan de Fuca Ridge, the Blanco Trough, Cayman Trough and the Galapagos Spreading Center. A spreading rate dependence in lava morphology based solely on areal coverage(Bonatti and Harrison, 1988) was confirmed in scarp transects: mostly pillow lavas at slow spreading rates and sheet flows/lobate flows at faster spreading rates. More interestingly; there is a systematic variation within first, second and third order segments on intermediate and fast-spreading centers such that sheet/lobate flows dominate at segment centers and pillow flows and lava domes are more common at segment ends. This confirms earlier studies which were based on areal coverage (White et al, 2000, 2002, Soule et al 2005). This suggests higher eruption effusion rates and perhaps higher magma pressure and lower magma viscosity at segment centers relative to segment ends. This has important implications for the relationship between segmentation, magma supply, volcanism and hydrothermal activity (Haymon and White 2005). A conundrum remains; based on areal photographic surveys, why are pillow lavas so much more common off-axis than on-axis for intermediate to fast-spreading ridges? If there is an eruption cycle in which sheeted and lobate flows dominate early on, and pillow lavas dominate the waning stages of eruption (e.g. Ballard et al 1979), then more pillow lavas should be seen on axis than are seen on-axis in either areal or transect data. Another explanation is that pillow lavas off-axis are primarily produced by off-axis eruptions (except near segment ends, they may also occur as the pillowed terminations of channeled sheet and lobate flows; the association with channels will make this obvious.) Off-axis volcanism is also indicated by a

  7. Fluid escape structures in the Graham Bank region (Sicily Channel, Central Mediterranean) revealing volcanic and neotectonic activity.

    NASA Astrophysics Data System (ADS)

    Spatola, Daniele; Pennino, Valentina; Basilone, Luca; Interbartolo, Francesco; Micallef, Aaron; Sulli, Attilio; Basilone, Walter

    2016-04-01

    In the Sicily Channel, (Central Mediterranean), two geodynamic processes overlap each other, the Maghrebides-Apennines accretionary prism and the Sicily Channel rift. Moreover, the northwestern sector (Banks sector) is characterised by an irregular seafloor morphology linked to the recent volcanic and tectonic activity.In order to discriminate the role exerted by both the processes in the morphostructural setting of the area we used a dataset of both high and very high resolution single-channel and multi-channel profiles, acquired in the frame of the RITMARE project respectively with CHIRP and sparker, and airgun sources, and high resolution (5 m cell) morpho-bathymetric data. The data allowed us to identify and characterise two areas where different geological features (sedimentary and volcanic) are prevailing. They present fluid escaping evidence, which often appears to be active and generating different types of morphologies (both positive and negative). In the western sector we recognised pockmarks at water depths of 195 to 317 m, with diameters from 25 to 580 m, depths from 1.3 to 15 m, and slope up to 23°. They show sub-circular shape in plan-view and reflectors with upward concavity in cross section, and are oriented along a NW-SE trend.The CHIRP and multichannel profiles highlight fluids that affect the Plio-Quaternary succession, especially in areas where the top surface of the Messinian succession is shallower. Conversely, wipe-out acoustic facies were recognised in proximity of: i) extensional faults of Mesozoic age with NW-SE trend; ii) dip/strike slip faults of Cenozoic age with NW-SE, N-S and about NNE-SSW trends, and iii) extensional neo-tectonic faults with NW-SE and NNW-SSE trends. We cannot exclude that they could feed the shallower reservoir producing a mixing between the two. In the eastern sector we recognised a cluster of volcanoes composed of seven cone-shaped structures (SCV1-7), pertaining to a wide area known as Graham Bank. A detailed

  8. Recurrence rates of volcanism in basaltic volcanic fields: An example from the Springerville volcanic field, Arizona

    SciTech Connect

    Condit, C.D.; Connor, C.B.

    1996-10-01

    A spatio-temporal near-neighbor model is used to identify and map variations in the recurrence rate of volcanism in the Springerville volcanic field, Arizona, a large field on the Colorado Plateau boundary. Detailed mapping of individual lava flows and their associated vents, together with radiometric and paleomagnetic dating, demonstrates that 366 volcanic events have formed the Springerville volcanic field. A near-neighbor spatio-temporal recurrence-rate model using seven near-neighbor volcanoes and a 0.5 m.y. time window reveals that (1) areas of waxing and waning magmatism in the Springerville volcanic field are much more localized and (2) volcanic activity within these areas is much more intense than implied by field-wide temporal trends. Because volcanic activity is spatially and temporally clustered, forecasting subsequent activity is more successful if the spatio-temporal recurrence-rate model is used, rather than the average recurrence rates. This success indicates that spatio-temporal recurrence-rate models are useful tools for the quantification of long-term volcanic hazards in basaltic volcanic fields. 61 refs., 13 figs., 2 tabs.

  9. Characteristics of suspended sediment and river discharge during the beginning of snowmelt in volcanically active mountainous environments

    NASA Astrophysics Data System (ADS)

    Mouri, Goro; Ros, Faizah Che; Chalov, Sergey

    2014-05-01

    To better understand instream suspended sediment delivery and transformation processes, we conducted field measurements and laboratory experiments to study the natural function of spatial and temporal variation, sediment particles, stable isotopes, particle size, and aspect ratio from tributary to mainstream flows of the Sukhaya Elizovskaya River catchment at the beginning of and during snowmelt. The Sukhaya Elizovskaya River is located in the Kamchatka Peninsula of Russia and is surrounded by active volcanic territory. The study area has a range of hydrological features that determine the extreme amounts of washed sediments. Sediment transported to the river channels in volcanic mountainous terrain is believed to be strongly influenced by climate conditions, particularly when heavy precipitation and warmer climate trigger mudflows in association with the melting snow. The high porosity of the channel bottom material also leads to interactions with the surface water, causing temporal variability in the daily fluctuations in water and sediment flow. Field measurements revealed that suspended sediment behaviour and fluxes decreased along the mainstream Sukhaya Elizovskaya River from inflows from a tributary catchment located in the volcanic mountain range. In laboratory experiments, water samples collected from tributaries were mixed with those from the mainstream flow of the Sukhaya Elizovskaya River to examine the cause of debris flow and characteristics of suspended sediment in the mainstream. These findings and the geological conditions of the tributary catchments studied led us to conclude that halloysite minerals likely comprise the majority of suspended sediments and play a significant role in phosphate adsorption. The experimental results were upscaled and verified using field measurements. Our results indicate that the characteristics of suspended sediment and river discharge in the Sukhaya Elizovskaya River can be attributed primarily to the beginning of

  10. Search for ongoing volcanic activity on Venus: Case study of Maat Mons, Sapas Mons and Ozza Mons volcanoes

    NASA Astrophysics Data System (ADS)

    Shalygin, E. V.; Basilevsky, A. T.; Markiewicz, W. J.; Titov, D. V.; Kreslavsky, M. A.; Roatsch, Th.

    2012-12-01

    We report on attempts to find the ongoing volcanic activity from near-infrared night-time observations with the Venus Monitoring Camera (VMC) onboard of Venus Express. Here we consider VMC images of the areas of Maat Mons volcano and its vicinities, which, as it follows from analysis of the Magellan data, show evidence of geologically very recent volcanism. Analysis of VMC images taken in 12 observation sessions during the time period from 31 October 2007 to 15 June 2009 did not reveal any suspicious high-emission spots which could be signatures of the presently ongoing volcanic eruptions. We compare this time sequence of observations with the history of eruptions of volcano Mauna Loa, Hawaii, in the 20th century. This comparison shows that if Maat Mons volcano had the eruption history similar to that of Mauna Loa, the probability to observe an eruption in this VMC observation sequence would be about 8%, meaning that the absence of detection does not mean that Maat is not active in the present epoch. These estimates do not consider the effect of absorption and blurring of the thermal radiation coming from Venus surface by the planet atmosphere and clouds, which decreases detectability of thermal signature of fresh lavas. To assess the role of this effect we simulated near-infrared images of the study area with artificially added circular and rectangular (with different aspect ratios) lava flows having surface temperature 1000 K and various areas. These simulations showed that 1 km2 lava flows should be marginally seen by VMC. An increase of the lava surface area to 2-3 km2 makes them visible on the plains and increase of the area to 4-5 km2 makes them visible even in deep rift zones. Typical individual lava flows on Mauna Loa are a few km2, however, they often have been formed during weeks to months and the instantaneous size of the hot flow surface was usually much smaller. Thus the detection probability is significantly lower than 8%, but it is far from

  11. Elastic flexure explains the offset of primary volcanic activity upstream of the Réunion and Hawaii plume axis

    NASA Astrophysics Data System (ADS)

    Gerbault, Muriel; Fontaine, Fabrice; Rabinowicz, Michel; Bystricky, Micha

    2016-04-01

    Recent tomography reveals that surface volcanism at la Réunion and Hawaii develops offset by 150-180 km upstream to the plume axis with respect to plate motion. We use elasto-visco-plastic 2D numerical models to describe the development of compressional stresses at the base of the lithosphere, resulting from elastic plate bending above the upward load exerted by the plume head. This horizontal compression is ~20 km thick, has a ~ 150 km radius and lays around ~50-70 km depth where temperature varies from ~600°C to ~750°C. It is suggested that the buoyant melts percolating in the plume head pond below this zone of compression and eventually spread laterally to the extent where compression vanishes. There, melts resume their ascension and propagate through dikes up to ~35 km depth where the field stress rotates again due to plate curvature change. Flexural compression is a transient phenomenon that depends: (i) on the relaxation time of elasto-plastic stresses between ~600° and ~750°C, (ii) on the thermal erosion of the lithosphere induced by the plume, and (iii) on the ratio of the normal versus tangential stress exerted by the plume on the lithosphere. We find that for a plate 70 My old, this horizontal compression lasts for about 5 Myrs. This time span exceeds the time during which both the Indian and Pacific plates drift over the Reunion and Hawaii plumes, respectively. Accordingly, our model explains i) the ~150 km shift between the surface volcanism and the axis of the plume, ii) the ~5 Myrs synchronous activity of the volcanoes of la Réunion and Mauritius, and (iii) the present pounding of melts at 35 km depth detected below the Reunion and Mauritius Islands. Plume-lithosphere interaction is one of the numerous subjects that Genia Burov studied and modeled; the present study uses a similar code to the one he used, and is inspired by several of his assumptions. In support of his own goals and worries, we show here the importance of thermo

  12. Spatial distribution of intrinsic and scattering seismic attenuation in active volcanic islands - I: model and the case of Tenerife Island

    NASA Astrophysics Data System (ADS)

    Prudencio, Janire; Del Pezzo, Edoardo; García-Yeguas, Araceli; Ibáñez, Jesús M.

    2013-12-01

    The complex volcanic system of Tenerife Island is known to have a highly heterogeneous character, as recently confirmed by velocity tomography. We present new information derived from intrinsic quality factor inverse maps (Qi-1), scattering quality factor inverse maps (Qs-1) and total quality factor inverse maps (Qt-1) obtained for the same region. The data set used in this work is the result of the analysis of an active seismic experiment carried out, using offshore shots (air guns) recorded at over 85 onshore seismic stations. The estimates of the attenuation parameters are based on the assumption that the seismogram energy envelopes are determined by seismic energy diffusion processes occurring inside the island. Diffusion model parameters, proportional to Qi-1 and to Qs-1, are estimated from the inversion of the energy envelopes for any source-receiver couple. They are then weighted with a new graphical approach based on a Gaussian space probability function, which allowed us to create `2-D probabilistic maps' representing the space distribution of the attenuation parameters. The 2-D images obtained reveal the existence of a zone in the centre of the island characterized by the lowest attenuation effects. This effect is interpreted as highly rigid and cooled rocks. This low-attenuation region is bordered by zones of high attenuation, associated with the recent historical volcanic activity. We calculate the transport mean free path obtaining a value of around 4 km for the frequency range 6-12 Hz. This result is two orders of magnitude smaller than values calculated for the crust of the Earth. An absorption length between 10 and 14 km is associated with the average intrinsic attenuation parameter. These values, while small in the context of tectonic regions, are greater than those obtained in volcanic regions such as Vesuvius or Merapi. Such differences may be explained by the magnitude of the region of study, over three times larger than the aforementioned study

  13. Volcview: A Web-Based Platform for Satellite Monitoring of Volcanic Activity and Eruption Response

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.; Randall, M.; Parker, T.

    2014-12-01

    The U.S. Geological Survey (USGS), in cooperation with University and State partners, operates five volcano observatories that employ specialized software packages and computer systems to process and display real-time data coming from in-situ geophysical sensors and from near-real-time satellite sources. However, access to these systems both inside and from outside the observatory offices are limited in some cases by factors such as software cost, network security, and bandwidth. Thus, a variety of Internet-based tools have been developed by the USGS Volcano Science Center to: 1) Improve accessibility to data sources for staff scientists across volcano monitoring disciplines; 2) Allow access for observatory partners and for after-hours, on-call duty scientists; 3) Provide situational awareness for emergency managers and the general public. Herein we describe VolcView (volcview.wr.usgs.gov), a freely available, web-based platform for display and analysis of near-real-time satellite data. Initial geographic coverage is of the volcanoes in Alaska, the Russian Far East, and the Commonwealth of the Northern Mariana Islands. Coverage of other volcanoes in the United States will be added in the future. Near-real-time satellite data from NOAA, NASA and JMA satellite systems are processed to create image products for detection of elevated surface temperatures and volcanic ash and SO2 clouds. VolcView uses HTML5 and the canvas element to provide image overlays (volcano location and alert status, annotation, and location information) and image products that can be queried to provide data values, location and measurement capabilities. Use over the past year during the eruptions of Pavlof, Veniaminof, and Cleveland volcanoes in Alaska by the Alaska Volcano Observatory, the National Weather Service, and the U.S. Air Force has reinforced the utility of shared situational awareness and has guided further development. These include overlay of volcanic cloud trajectory and

  14. Global positioning system survey data for active seismic and volcanic areas of eastern Sicily, 1994 to 2013.

    PubMed

    Bonforte, Alessandro; Fagone, Sonia; Giardina, Carmelo; Genovese, Simone; Aiesi, Gianpiero; Calvagna, Francesco; Cantarero, Massimo; Consoli, Orazio; Consoli, Salvatore; Guglielmino, Francesco; Puglisi, Biagio; Puglisi, Giuseppe; Saraceno, Benedetto

    2016-01-01

    This work presents and describes a 20-year long database of GPS data collected by geodetic surveys over the seismically and volcanically active eastern Sicily, for a total of more than 6300 measurements. Raw data were initially collected from the various archives at the Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania-Osservatorio Etneo and organized in a single repository. Here, quality and completeness checks were performed, while all necessary supplementary information were searched, collected, validated and organized together with the relevant data. Once all data and information collections were completed, raw binary data were converted into the universal ASCII RINEX format; all data are provided in this format with the necessary information for precise processing. In order to make the data archive readily consultable, we developed software allowing the user to easily search and obtain the needed data by simple alphanumeric and geographic queries. PMID:27479914

  15. Global positioning system survey data for active seismic and volcanic areas of eastern Sicily, 1994 to 2013.

    PubMed

    Bonforte, Alessandro; Fagone, Sonia; Giardina, Carmelo; Genovese, Simone; Aiesi, Gianpiero; Calvagna, Francesco; Cantarero, Massimo; Consoli, Orazio; Consoli, Salvatore; Guglielmino, Francesco; Puglisi, Biagio; Puglisi, Giuseppe; Saraceno, Benedetto

    2016-08-01

    This work presents and describes a 20-year long database of GPS data collected by geodetic surveys over the seismically and volcanically active eastern Sicily, for a total of more than 6300 measurements. Raw data were initially collected from the various archives at the Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania-Osservatorio Etneo and organized in a single repository. Here, quality and completeness checks were performed, while all necessary supplementary information were searched, collected, validated and organized together with the relevant data. Once all data and information collections were completed, raw binary data were converted into the universal ASCII RINEX format; all data are provided in this format with the necessary information for precise processing. In order to make the data archive readily consultable, we developed software allowing the user to easily search and obtain the needed data by simple alphanumeric and geographic queries.

  16. Modeling crustal deformation near active faults and volcanic centers: a catalog of deformation models and modeling approaches

    USGS Publications Warehouse

    Battaglia, Maurizio; ,; Peter, F.; Murray, Jessica R.

    2013-01-01

    This manual provides the physical and mathematical concepts for selected models used to interpret deformation measurements near active faults and volcanic centers. The emphasis is on analytical models of deformation that can be compared with data from the Global Positioning System (GPS) receivers, Interferometric synthetic aperture radar (InSAR), leveling surveys, tiltmeters and strainmeters. Source models include pressurized spherical, ellipsoidal, and horizontal penny-shaped geometries in an elastic, homogeneous, flat half-space. Vertical dikes and faults are described following the mathematical notation for rectangular dislocations in an elastic, homogeneous, flat half-space. All the analytical expressions were verified against numerical models developed by use of COMSOL Multyphics, a Finite Element Analysis software (http://www.comsol.com). In this way, typographical errors present were identified and corrected. Matlab scripts are also provided to facilitate the application of these models.

  17. Mars: Volcanism in the Valles Marineris overlooked

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1988-01-01

    Do volcanic rocks exist in the Valles Marineris. This question is pertinent because the Valles Marineris are gigantic grabens, rivaling rift valleys on earth in size and depth. The Valles Marineris were interpreted as extensional tectonic structures, perhaps incipient rifts. On earth, rift valleys commonly contain volcanic deposits. On Mars, deposits inside the Valles Marineris grabens do not have the morphologic signature of such easily identified volcanic features as shield volcanoes or lava flows. Therefore, many researchers have not recognized the deposits inside the Valles Marineris as volcanic. Is Mars, then, different from earth in having formed riftlike grabens unaccompanied by volcanism. Overall, results from the study suggest that volcanism was present in the Valles Marineris; the volcanism was explosive in places; some volcanism was more felsic than that generally assumed elsewhere; and the younger sequence of interior beds was emplaced so late in Martian history that the planet may be considered to be still volcanically active.

  18. Sensitivity to volcanic field boundary

    NASA Astrophysics Data System (ADS)

    Runge, Melody; Bebbington, Mark; Cronin, Shane; Lindsay, Jan; Rashad Moufti, Mohammed

    2016-04-01

    Volcanic hazard analyses are desirable where there is potential for future volcanic activity to affect a proximal population. This is frequently the case for volcanic fields (regions of distributed volcanism) where low eruption rates, fertile soil, and attractive landscapes draw populations to live close by. Forecasting future activity in volcanic fields almost invariably uses spatial or spatio-temporal point processes with model selection and development based on exploratory analyses of previous eruption data. For identifiability reasons, spatio-temporal processes, and practically also spatial processes, the definition of a spatial region is required to which volcanism is confined. However, due to the complex and predominantly unknown sub-surface processes driving volcanic eruptions, definition of a region based solely on geological information is currently impossible. Thus, the current approach is to fit a shape to the known previous eruption sites. The class of boundary shape is an unavoidable subjective decision taken by the forecaster that is often overlooked during subsequent analysis of results. This study shows the substantial effect that this choice may have on even the simplest exploratory methods for hazard forecasting, illustrated using four commonly used exploratory statistical methods and two very different regions: the Auckland Volcanic Field, New Zealand, and Harrat Rahat, Kingdom of Saudi Arabia. For Harrat Rahat, sensitivity of results to boundary definition is substantial. For the Auckland Volcanic Field, the range of options resulted in similar shapes, nevertheless, some of the statistical tests still showed substantial variation in results. This work highlights the fact that when carrying out any hazard analysis on volcanic fields, it is vital to specify how the volcanic field boundary has been defined, assess the sensitivity of boundary choice, and to carry these assumptions and related uncertainties through to estimates of future activity and

  19. Slag/mud mixtures improve cementing operations in China

    SciTech Connect

    Wu, D.; Peiyan; Huang, B.

    1996-12-23

    The use of blast furnace slag, which is inexpensive and widely available throughout China, can with proper activators and retarders, solidify mud into an excellent cementing material. The use of slag-mix has been somewhat controversial. Some experts claim slag-mix is the most important progress to date in mud-to-cement conversion and has become another choice for cementing practices.They also believed there were no fundamental limitations to its application downhole, and conceivably the material could be used for any well cemented. Other experts have different points of view and thought it might have limits for oil field use. In their studies, the basic mud had to be diluted by 60% or more with water before the blast furnace slag (BFS) was added. Their slag slurries showed a high incidence of cracking and apparent brittle nature, bad settling stability, and volume shrinkage. To date, the Chinese National petroleum Corp. (CNPC) has used mud solidification by slag successfully on 22 cementing jobs in the Sichun, Changqing, Jidong, and Shengli oil fields.The major purpose of these investigations was to determine the application of slag-mix technology to various cementing operations.

  20. Search for ongoing volcanic activity on Venus: Case study of Maat Mons, Sapas Mons and Ozza Mons

    NASA Astrophysics Data System (ADS)

    Basilevsky, A. T.; Shalygin, E. V.; Markiewicz, W. J.; Titov, D. V.; Roatsch, Th.; Kreslavsky, M. A.

    2012-04-01

    Maat Mons volcano and its vicinities show evidence of geologically very recent volcanism. We consider Venus Monitoring Camera (VMC) night-side images of this area. Analysis of VMC images taken in 12 observation sessions during the time period from 31 Oct 2007 to 15 Jun 2009 did not reveal any suspicious high-emission spots which could be signatures of the presently ongoing volcanic eruptions. If Maat Mons volcano had the eruption history similar to that of Mauna Loa, Hawaii, in the 20th century, the probability to observe an eruption in this VMC observation sequence would be about 8%, meaning that the absence of detection does not mean that Maat is not active in the present epoch. Blurring of the thermal radiation coming from Venus surface by the planet atmosphere decreases detectability of thermal signature of fresh lavas. We simulated near-infrared images of the study area with artificially added lava flows having surface temperature 1000 K and various areas. These simulations showed that 1 km2 lava flows should be marginally seen by VMC. An increase of the lava surface area to 2 - 3 km2 makes them visible on the plains and increase of the area to 4 - 5 km2 makes them visible even in deep rift zones. Typical individual lava flows on Mauna Loa are a few km2, however, they often have been formed during weeks to months and the instantaneous size of the hot flow surface was usually much smaller. Thus the detection probability is significantly lower than 8%, but it is far from negligible. Our consideration suggests that further search of Maat Mons area and other areas including young rift zones makes sense and should be continued. More effective search could be done if observations simultaneously cover most part of the night side of Venus for relatively long (years) time of continuous observations.

  1. Triggering and dynamic evolution of the LUSI mud volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Svensen, H.; Mazzini, A.; Akhmanov, G. G.; Aloisi, G.; Planke, S.; Sørenssen, A.; Istadi, B.

    2007-12-01

    Mud volcanoes are geologically important manifestations of vertical fluid flow and mud eruption in sedimentary basins worldwide. Their formation is predominantly ascribed to release of overpressure from clay- and organic- rich sediments, leading to impressive buildup of mud mountains in submarine and subaerial settings. Here we report data from two fieldworks on a newly born mud volcano named LUSI eruption in Eastern Java (Indonesia). The eruption site appears close to an active magmatic complex in a backarc sedimentary basin in Indonesia. Its specific location results in a high background temperature gradient that triggers mineralogical transformations and geochemical reactions at shallow depth. The eruption of 100 deg.C mud and gas that started the 29th of May 2006 flooded a large area within the Sidoarjo village in Northeast Java. Thousands of people have so far been evacuated and, since the initial eruption, the flow rate escalated from 5000 to 120,000 m3/d during the first eleven weeks. Then the erupted volume started to pulsate between almost zero and 120,000 m3/d in the period August-September, whereas it increased dramatically following swarms of earthquakes in September, before reaching almost 180,000 m3/d in December 2006. Fifteen months after the initial burst, LUSI is still vigorously erupting up to 111,000 m3/d, the average subsidence of the area reached 11 m. Seismic images show that a pre-existing structure was present before the eruption. Based on geochemical and field results, we propose a mechanism where the eruptions started following the 27th of May earthquake due to fracturing and accompanied depressurization of >100 deg.C pore fluids from > 1700 m depth released from a structure in already critical conditions. This resulted in the formation of a quasi-hydrothermal system with a geyser-like surface expression and with an activity influenced by the regional seismicity.

  2. Kelly mud saver valve sub

    SciTech Connect

    Reddoch, J.A.

    1986-12-02

    A mud saver valve is described for preventing drilling mud from escaping from a kelly when a drill string is broken below the kelly, the valve comprising: a tubular valve body having first and second ends, the first end being provided with means for attachment in fluid communicating relationship with the kelly, the second end being provided with means for attachment to the drill string; an annular seat fixed in the interior of the valve body adjacent its first end; a tubular closure member within the valve body. The closure member is provided with a selectively closed seating end for seating in valve closing engagement with the annular seat, an open non-seating end in fluid communicating relationship with the drill string, and an annular expansion in the outer diameter of the closure member adjacent the seating end; a top and bottom spacer ring disposed in sliding relationship around the tubular closure member intermediate the annular expansion and the non-seating end of the closure member. The spacer ring and annular expansion cooperatively define an annular chamber around the closure member; and a helical spring disposed around the closure member towards the annular seat.

  3. Volcanic passive margins

    NASA Astrophysics Data System (ADS)

    Geoffroy, Laurent

    2005-12-01

    Compared to non-volcanic ones, volcanic passive margins mark continental break-up over a hotter mantle, probably subject to small-scale convection. They present distinctive genetic and structural features. High-rate extension of the lithosphere is associated with catastrophic mantle melting responsible for the accretion of a thick igneous crust. Distinctive structural features of volcanic margins are syn-magmatic and continentward-dipping crustal faults accommodating the seaward flexure of the igneous crust. Volcanic margins present along-axis a magmatic and tectonic segmentation with wavelength similar to adjacent slow-spreading ridges. Their 3D organisation suggests a connection between loci of mantle melting at depths and zones of strain concentration within the lithosphere. Break-up would start and propagate from localized thermally-softened lithospheric zones. These 'soft points' could be localized over small-scale convection cells found at the bottom of the lithosphere, where adiabatic mantle melting would specifically occur. The particular structure of the brittle crust at volcanic passive margins could be interpreted by active and sudden oceanward flow of both the unstable hot mantle and the ductile part of the lithosphere during the break-up stage. To cite this article: L. Geoffroy, C. R. Geoscience 337 (2005).

  4. Dynamics of Bubble Ascent in Mud Volcanoes

    NASA Astrophysics Data System (ADS)

    Tran, A.; Rudolph, M. L.; Manga, M.

    2011-12-01

    Bubble ascent controls the eruption style of both magmatic and mud volcanoes, and is influenced by the rheology of the continuous phase. Mud and some magmas are non-Newtonian, and bubble ascent in non-Newtonian fluids remains incompletely characterized. We performed laboratory experiments using mud obtained from mud volcanoes adjacent to the Salton Sea, in Southern California. The erupting mud is well-described as a Herschel-Bulkley (shear-thinning, yield stress) fluid. We measured the rise speed of bubbles with volumes between 5 and 20 cc, varied the conduit diameter, and controlled for hysteresis in the mud to estimate upper and lower bounds on terminal velocity. Bubbles smaller than about 6 cc are unable to rise due to the mud's yield strength. We made rheological measurements (power-law exponent, yield strength, and consistency index) of the mud to compare the observed bubble rise speed to several empirical fits to laboratory data. We also quantify the rate of coalescence of bubbles as a function of their concentration and hence gas mass flux.

  5. 40 CFR 230.42 - Mud flats.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Mud flats. 230.42 Section 230.42 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1... are inundated, wind and wave action may resuspend bottom sediments. Coastal mud flats are exposed...

  6. 40 CFR 230.42 - Mud flats.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Mud flats. 230.42 Section 230.42 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1... are inundated, wind and wave action may resuspend bottom sediments. Coastal mud flats are exposed...

  7. 30 CFR 250.1614 - Mud program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Mud program. 250.1614 Section 250.1614 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Sulphur Operations § 250.1614 Mud program....

  8. 30 CFR 250.1614 - Mud program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Mud program. 250.1614 Section 250.1614 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Sulphur Operations § 250.1614 Mud program....

  9. 30 CFR 250.1614 - Mud program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Mud program. 250.1614 Section 250.1614 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Sulphur Operations § 250.1614 Mud program....

  10. Numerical simulation of mud erosion rate in sand-mud alternate layer and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Yamaguchi, T.; Oyama, H.; Sato, T.

    2015-12-01

    For gas production from methane hydrates in sand-mud alternate layers, depressurization method is expected as feasible. After methane hydrate is dissociated, gas and water flow in pore space. There is a concern about the erosion of mud surface and it may result in flow blockage that disturbs the gas production. As a part of a Japanese National hydrate research program (MH21, funded by METI), we developed a numerical simulation of water-induced mud erosion in pore-scale sand-mud domains to model such mud erosion. The size of which is of the order of 100 micro meter. Water flow is simulated using a lattice Boltzmann method (LBM) and mud surface is treated as solid boundary with arbitrary shape, which changes with time. Periodic boundary condition is adopted at the domain boundaries, except for the surface of mud layers and the upper side. Shear stress acting on the mud surface is calculated using a momentum-exchange method. Mud layer is eroded when the shear stress exceeds a threshold coined a critical shear stress. In this study, we compared the simulated mud erosion rate with experimental data acquired from an experiment using artificial sand-mud core. As a result, the simulated erosion rate agrees well with that of the experiment.

  11. Low levels of toxic elements in Dead Sea black mud and mud-derived cosmetic products.

    PubMed

    Abdel-Fattah, Ahmad; Pingitore, Nicholas E

    2009-08-01

    Natural muds used as or in cosmetics may expose consumers to toxic metals and elements via absorption through the skin, inhalation of the dried product, or ingestion (by children). Despite the extensive therapeutic and cosmetic use of the Dead Sea muds, there apparently has been no assessment of the levels of such toxic elements as Pb, As, or Cd in the mud and mud-based products. Inductively coupled plasma mass spectrometry analysis of eight toxic elements in samples collected from three black mud deposits (Lisan Marl, Pleistocene age) on the eastern shore of the Dead Sea in Jordan revealed no special enrichment of toxic elements in the mud. A similar analysis of 16 different commercial Dead Sea mud cosmetics, including packaged mud, likewise revealed no toxic elements at elevated levels of concern. From a toxic element standpoint, the Dead Sea black muds and derivative products appear to be safe for the consumer. Whatever the therapeutic benefits of the mud, our comparison of the elemental fingerprints of the consumer products with those of the field samples revealed one disturbing aspect: Dead Sea black mud should not be a significant component of such items as hand creams, body lotions, shampoo, and moisturizer.

  12. Precambrian lunar volcanic protolife.

    PubMed

    Green, Jack

    2009-06-01

    Five representative terrestrial analogs of lunar craters are detailed relevant to Precambrian fumarolic activity. Fumarolic fluids contain the ingredients for protolife. Energy sources to derive formaldehyde, amino acids and related compounds could be by flow charging, charge separation and volcanic shock. With no photodecomposition in shadow, most fumarolic fluids at 40 K would persist over geologically long time periods. Relatively abundant tungsten would permit creation of critical enzymes, Fischer-Tropsch reactions could form polycyclic aromatic hydrocarbons and soluble volcanic polyphosphates would enable assembly of nucleic acids. Fumarolic stimuli factors are described. Orbital and lander sensors specific to protolife exploration including combined Raman/laser-induced breakdown spectrocsopy are evaluated.

  13. Precambrian Lunar Volcanic Protolife

    PubMed Central

    Green, Jack

    2009-01-01

    Five representative terrestrial analogs of lunar craters are detailed relevant to Precambrian fumarolic activity. Fumarolic fluids contain the ingredients for protolife. Energy sources to derive formaldehyde, amino acids and related compounds could be by flow charging, charge separation and volcanic shock. With no photodecomposition in shadow, most fumarolic fluids at 40 K would persist over geologically long time periods. Relatively abundant tungsten would permit creation of critical enzymes, Fischer-Tropsch reactions could form polycyclic aromatic hydrocarbons and soluble volcanic polyphosphates would enable assembly of nucleic acids. Fumarolic stimuli factors are described. Orbital and lander sensors specific to protolife exploration including combined Raman/laser-induced breakdown spectrocsopy are evaluated. PMID:19582224

  14. Precambrian lunar volcanic protolife.

    PubMed

    Green, Jack

    2009-06-01

    Five representative terrestrial analogs of lunar craters are detailed relevant to Precambrian fumarolic activity. Fumarolic fluids contain the ingredients for protolife. Energy sources to derive formaldehyde, amino acids and related compounds could be by flow charging, charge separation and volcanic shock. With no photodecomposition in shadow, most fumarolic fluids at 40 K would persist over geologically long time periods. Relatively abundant tungsten would permit creation of critical enzymes, Fischer-Tropsch reactions could form polycyclic aromatic hydrocarbons and soluble volcanic polyphosphates would enable assembly of nucleic acids. Fumarolic stimuli factors are described. Orbital and lander sensors specific to protolife exploration including combined Raman/laser-induced breakdown spectrocsopy are evaluated. PMID:19582224

  15. Volcanism in the Classroom.

    ERIC Educational Resources Information Center

    Albin, Edward F.

    1993-01-01

    Presents activities to familiarize junior high school students with the processes behind and reasons for volcanism, which is generally a planet's way of releasing excessive internal heat and pressure. Students participate in the creation of four important volcano-related simulations: a lava flow, a shield volcano, a cinder-cone volcano, and a…

  16. Factors controlling mud accumulation in the Heuksan mud belt off southwestern Korea

    NASA Astrophysics Data System (ADS)

    Chang, Tae Soo; Ha, Hun Jun; Chun, Seung Soo

    2015-12-01

    The Heuksan mud belt (hereafter HMB) is 20~50 km wide, ~200 km long, and ~50 m thick, having accumulated in the course of the Holocene transgression on the tide-dominated epicontinental shelf southwest of Korea. The internal architecture of the HMB is characterized by offshore prograding clinoforms. Of particular interest are the depositional processes responsible for this anomalously thick mud accumulation within a relatively short period of time. Tidal currents are important in the dispersal of mud in the HMB, although these alone cannot explain such an enormous mud deposit. In order to understand the formative processes of the HMB, a detailed sedimentary facies analysis, including high-resolution grain-size measurements, has been conducted on more than 30 short cores and three long drill cores recovered from the mud belt. Five major mud facies were identified. Of these, mud sequences showing a thickening-thinning trend of alternating silt and clay laminae suggestive of a tidal origin occur dominantly at inner to mid shelf locations. By contrast, internally structureless muds with sharp bases and no bioturbation, which are interpreted of representing fluid-mud deposits, are widespread at mid to outer shelf locations. Wave-generated mud ripples and storm beds on the inner shelf suggest that storm waves in winter resuspend previously deposited mud to form near-bed fluid-mud suspensions with resulting gravity-driven mud transport across the low-gradient outer shelf. This previously not recognized process is probably a major factor controlling depositional processes on the giant mud belt, enabling rapid accumulation and offshore progradation even during transgression, i.e., at times of sea-level rise.

  17. Assessment of the biomass hydrolysis potential in bacterial isolates from a volcanic environment: biosynthesis of the corresponding activities.

    PubMed

    Stathopoulou, Panagiota M; Galanopoulou, Anastasia P; Anasontzis, George E; Karagouni, Amalia D; Hatzinikolaou, Dimitris G

    2012-09-01

    The biomass degrading enzymatic potential of 101 thermophilic bacterial strains isolated from a volcanic environment (Santorini, Aegean Sea, Greece) was assessed. 80 % of the strains showed xylanolytic activity in Congo Red plates, while only eight could simultaneously hydrolyze cellulose. Fifteen isolates were selected on the basis of their increased enzyme production, the majority of which was identified as Geobacilli through 16S rDNA analysis. In addition, the enzymatic profile was evaluated in liquid cultures using various carbon sources, a procedure that revealed lack of correlation on xylanase levels between the two cultivation modes and the inability of solid CMC cultures to fully unravel the cellulose degrading potential of the isolates. Strain SP24, showing more than 99 % 16S DNA similarity with Geobacillus sp. was further studied for its unique ability to simultaneously exhibit cellulase, xylanase, β-glucosidase and β-xylosidase activities. The first two enzymes were produced mainly extracellularly, while the β-glycosidic activities were primarily detected in the cytosol. Maximum enzyme production by this strain was attained using a combination of wheat bran and xylan in the growth medium. Bioreactor cultures showed that aeration was necessary for both enhanced growth and enzyme production. Aeration had a strong positive effect on cellulase production while it negatively affected expression of β-glucosidase. Xylanase and β-xylosidase production was practically unaffected by aeration levels.

  18. Lava lakes on Io: Observations of Io's volcanic activity from Galileo NIMS during the 2001 fly-bys

    USGS Publications Warehouse

    Lopes, R.M.C.; Kamp, L.W.; Smythe, W.D.; Mouginis-Mark, P.; Kargel, J.; Radebaugh, J.; Turtle, E.P.; Perry, J.; Williams, D.A.; Carlson, R.W.; Doute, S.

    2004-01-01

    Galileo's Near-Infrared Mapping Spectrometer (NIMS) obtained its final observations of Io during the spacecraft's fly-bys in August (I31) and October 2001 (I32). We present a summary of the observations and results from these last two fly-bys, focusing on the distribution of thermal emission from Io's many volcanic regions that give insights into the eruption styles of individual hot spots. We include a compilation of hot spot data obtained from Galileo, Voyager, and ground-based observations. At least 152 active volcanic centers are now known on Io, 104 of which were discovered or confirmed by Galileo observations, including 23 from the I31 and I32 Io fly-by observations presented here. We modify the classification scheme of Keszthelyi et al. (2001, J. Geophys. Res. 106 (E12) 33 025-33 052) of Io eruption styles to include three primary types: promethean (lava flow fields emplaced as compound pahoehoe flows with small plumes 200 km high plumes and rapidly-emplaced flow fields), and a new style we call "lokian" that includes all eruptions confined within paterae with or without associated plume eruptions). Thermal maps of active paterae from NIMS data reveal hot edges that are characteristic of lava lakes. Comparisons with terrestrial analogs show that Io's lava lakes have thermal properties consistent with relatively inactive lava lakes. The majority of activity on Io, based on locations and longevity of hot spots, appears to be of this third type. This finding has implications for how Io is being resurfaced as our results imply that eruptions of lava are predominantly confined within paterae, thus making it unlikely that resurfacing is done primarily by extensive lava flows. Our conclusion is consistent with the findings of Geissler et al. (2004, Icarus, this issue) that plume eruptions and deposits, rather than the eruption of copious amounts of effusive lavas, are responsible for Io's high resurfacing rates. The origin and longevity of islands within ionian

  19. Valorisation of waste ilmenite mud in the manufacture of sulphur polymer cement.

    PubMed

    Contreras, Manuel; Gázquez, Manuel Jesús; García-Díaz, Irene; Alguacil, Francisco J; López, Félix A; Bolívar, Juan Pedro

    2013-10-15

    This paper reports the preparation of sulphur polymer cements (SPCs) incorporating waste ilmenite mud for use in concrete construction works. The ilmenite mud raw material and the mud-containing SPCs (IMC-SPCs) were characterised physico-chemically and radiologically. The optimal IMC-SPC mixture had a sulphur/mud ratio (w/w) of 1.05 (mud dose 20 wt%); this cement showed the greatest compressive strength (64 MPa) and the lowest water absorption coefficient (0.4 g cm(-2) at 28 days). Since ilmenite mud is enriched in natural radionuclides, such as radium isotopes (2.0·10(3) Bq kg(-1)(228)Ra and 5.0·10(2) Bq kg(-1)(226)Ra), the IMC-SPCs were subjected to leaching experiments, which showed their environmental impact to be negligible. The activity concentration indices for the different radionuclides in the IMC-SPCs containing 10% and 20% ilmenite mud met the demands of international standards for materials used in the construction of non-residential buildings. PMID:23845955

  20. Valorisation of waste ilmenite mud in the manufacture of sulphur polymer cement.

    PubMed

    Contreras, Manuel; Gázquez, Manuel Jesús; García-Díaz, Irene; Alguacil, Francisco J; López, Félix A; Bolívar, Juan Pedro

    2013-10-15

    This paper reports the preparation of sulphur polymer cements (SPCs) incorporating waste ilmenite mud for use in concrete construction works. The ilmenite mud raw material and the mud-containing SPCs (IMC-SPCs) were characterised physico-chemically and radiologically. The optimal IMC-SPC mixture had a sulphur/mud ratio (w/w) of 1.05 (mud dose 20 wt%); this cement showed the greatest compressive strength (64 MPa) and the lowest water absorption coefficient (0.4 g cm(-2) at 28 days). Since ilmenite mud is enriched in natural radionuclides, such as radium isotopes (2.0·10(3) Bq kg(-1)(228)Ra and 5.0·10(2) Bq kg(-1)(226)Ra), the IMC-SPCs were subjected to leaching experiments, which showed their environmental impact to be negligible. The activity concentration indices for the different radionuclides in the IMC-SPCs containing 10% and 20% ilmenite mud met the demands of international standards for materials used in the construction of non-residential buildings.

  1. Geochemical characterization of the Nirano Mud Volcano Field

    NASA Astrophysics Data System (ADS)

    Sciarra, Alessandra; Cantucci, Barbara; Ricci, Tullio; Conventi, Marzia

    2016-04-01

    Mud volcanoes, among fluid venting structures, are the most important phenomena related to natural seepage from the Earth's surface. The occurrence of mud volcanoes is controlled by several factors, such as tectonic activity and continuous hydrocarbon accumulation in a reservoir. Mud volcanoes in Italy occur along the external compressive margin of the Apennine chain. These mud volcanoes are usually small and unspectacular, when compared to other world examples. They rarely exhibit the periodic explosions, which is often related to important seismic activity. The Nirano Mud Volcano Field (NMVF) is located in the western sector of the Modena Apennine margin (Italy), which belongs to the Northern Apennines. The NMVF occurs over the crest of a thrust anticline associated with the main Pede-Apennine thrust and represents a good example of an onshore relationship between a mud volcano caldera structure and active thrust deformation, even if the fluid pathways are still not well understood at depth. The mud volcanoes are distributed along an area of about 10 ha, inside of the wider Natural Reserve, and are situated at the bottom of a wide sub-circular depression. The NMVF is currently formed by four main vents composed of a number of individual active cones (or gryphons) defining structural alignments trending ENE-WSW. A geochemical soil gas survey of 230 CO2 and CH4 fluxes and 150 CO2, CH4, Rn, He, H2 concentration measurements has been carried out inside the NMVF. Moreover, the fluid emissions from 4 active cones located in different sectors of NMVF have been sampled for chemical and isotopical analysis of water and free gas. The distribution of pathfinder elements as 222Rn, He e H2 has been studied in order to identify potential faults and/or fractures related to preferential migration pathways and the possible interactions between reservoir and surface. Soil gas data highlight two zones characterized by higher values, localized in the WSW and ENE of the NMVF area. In

  2. Exploring a long-lasting volcanic eruption by means of in-soil radon measurements and seismic activity

    NASA Astrophysics Data System (ADS)

    Falsaperla, Susanna; Neri, Marco; Di Grazia, Giuseppe; Langer, Horst; Spampinato, Salvatore

    2016-04-01

    We analyze in-soil radon (Rn) emission and ambient parameters (barometric pressure and air temperature measurements) along with seismic activity during the longest flank eruption of this century at Mt. Etna, Italy. This eruption occurred between 14 May 2008 and 6 July 2009, from a N120-140°E eruptive fissure extending between 3050 and 2620 m above sea level. It was heralded by a short-lived (~5 hours) episode of lava fountaining three days before a dike-forming intrusion fed a lava emission, which affected the summit area of the volcano over ~15 months. The peculiar position of the station for the Rn measurement, which was at an altitude of 2950 m above sea level and near (~1 km) the summit active craters, offered us the uncommon chance: i) to explore the temporal development of the gas emission close (<2 km) to the 2008-2009 eruptive vents in the long term, and ii) to analyze the relationship between in-soil Rn fluxes and seismic signals (in particular, local earthquakes and volcanic tremor) during the uninterrupted lava emission. This approach reveals important details about the recharging phases characterizing the 2008-2009 eruption, which are not visible with other methods of investigation. Our study benefitted from the application of methods of pattern classification developed in the framework of the European MEDiterrranean Supersite Volcanoes (MED­SUV) project.

  3. The relative influences of climate and volcanic activity on Holocene lake development inferred from a mountain lake in central Kamchatka

    NASA Astrophysics Data System (ADS)

    Self, A. E.; Klimaschewski, A.; Solovieva, N.; Jones, V. J.; Andrén, E.; Andreev, A. A.; Hammarlund, D.; Brooks, S. J.

    2015-11-01

    A sediment sequence was taken from a closed, high altitude lake (informal name Olive-backed Lake) in the central mountain range of Kamchatka, in the Russian Far East. The sequence was dated by radiocarbon and tephrochronology and used for multi-proxy analyses (chironomids, pollen, diatoms). Although the evolution of Beringian climate through the Holocene is primarily driven by global forcing mechanisms, regional controls, such as volcanic activity or vegetation dynamics, lead to a spatial heterogeneous response. This study aims to reconstruct past changes in the aquatic and terrestrial ecosystems and to separate the climate-driven response from a response to regional or localised environmental change. Radiocarbon dates from plant macrophytes gave a basal date of 7800 cal yr BP. Coring terminated in a tephra layer, so sedimentation at the lake started prior to this date, possibly in the early Holocene following local glacier retreat. Initially the catchment vegetation was dominated by Betula and Alnus woodland with a mosaic of open, wet, aquatic and semi-aquatic habitats. Between 7800 and 6000 cal yr BP the diatom-inferred lake water was pH 4.4-5.3 and chironomid and diatom assemblages in the lake were initially dominated by a small number of acidophilic/acid tolerant taxa. The frequency of Pinus pumila (Siberian dwarf pine) pollen increased from 5000 cal yr BP and threshold analysis indicates that P. pumila arrived in the catchment between 4200 and 3000 cal yr BP. Its range expansion was probably mediated by strengthening of the Aleutian Low pressure system and increased winter snowfall. The diatom-inferred pH reconstructions show that after an initial period of low pH, pH gradually increased from 5500 cal yr BP to pH 5.8 at 1500 cal yr BP. This trend of increasing pH through the Holocene is unusual in lake records, but the initially low pH may have resulted directly or indirectly from intense regional volcanic activity during the mid-Holocene. The chironomid

  4. Seasonality of volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Mason, B. G.; Pyle, D. M.; Dade, W. B.; Jupp, T.

    2004-04-01

    An analysis of volcanic activity during the last three hundred years reveals that volcanic eruptions exhibit seasonality to a statistically significant degree. This remarkable pattern is observed primarily along the Pacific "Ring of Fire" and locally at some individual volcanoes. Globally, seasonal fluctuations amount to 18% of the historical average monthly eruption rate. In some regions, seasonal fluctuations amount to as much as 50% of the average eruption rate. Seasonality principally reflects the temporal distribution of the smaller, dated eruptions (volcanic explosivity index of 0-2) that dominate the eruption catalog. We suggest that the pattern of seasonality correlates with the annual Earth surface deformation that accompanies the movement of surface water mass during the annual hydrological cycle and illustrate this with respect to global models of surface deformation and regional measurements of annual sea level change. For example, seasonal peaks in the eruption rate of volcanoes in Central America, the Alaskan Peninsula, and Kamchatka coincide with periods of falling regional sea level. In Melanesia, in contrast, peak numbers of volcanic eruptions occur during months of maximal regional sea level and falling regional atmospheric pressure. We suggest that the well-documented slow deformation of Earth's surface that accompanies the annual movements of water mass from oceans to continents acts to impose a fluctuating boundary condition on volcanoes, such that volcanic eruptions tend to be concentrated during periods of local or regional surface change rather than simply being distributed randomly throughout the year. Our findings have important ramifications for volcanic risk assessment and volcanoclimate feedback mechanisms.

  5. Hydration kinetics of cementitious materials composed of red mud and coal gangue

    NASA Astrophysics Data System (ADS)

    Zhang, Na; Li, Hong-xu; Liu, Xiao-ming

    2016-10-01

    To elucidate the intrinsic reaction mechanism of cementitious materials composed of red mud and coal gangue (RGC), the hydration kinetics of these cementitious materials at 20°C was investigated on the basis of the Krstulović-Dabić model. An isothermal calorimeter was used to characterize the hydration heat evolution. The results show that the hydration of RGC is controlled by the processes of nucleation and crystal growth (NG), interaction at phase boundaries (I), and diffusion (D) in order, and the pozzolanic reactions of slag and compound-activated red mud-coal gangue are mainly controlled by the I process. Slag accelerates the clinker hydration during NG process, whereas the compound-activated red mud-coal gangue retards the hydration of RGC and the time required for I process increases with increasing dosage of red mud-coal gangue in RGC.

  6. Relationship between heavy metals in mud sediments and beach soil of the River Nile

    SciTech Connect

    Awadallah, R.M.; Soltan, M.E.; Rashed, M.N.

    1996-08-01

    the chemical partitioning of selected inorganic ions was investigated in mud sediments taken from the bottom of the main stream of the River Nile by means of sediment sampler and beach soil samples collected from seven sectors (three subsamples from each location) between Aswan and Giza (Aswan, Qena, Sohag, Assiut, El Menya, Beni Suef, and Giza). These samples were analyzed by an atomic absorption spectrophotometer. The results showed that iron and lead were found at higher levels in beach soil than in the river sediments at all sites except for iron sediments of Aswan where the region was subjected to volcanic activities in the ancient geological eras (granites,.....etc.). At some sites, some heavy-metal concentrations seemed to be higher in sediment than in beach soil as a result of weathering of beach soil by the effect of wind and currents of water. In other sites, sediment pollution by these metals might be attributed to inputs from industrial effluents and domestic wastewater drained directly into the Nile. Statistical analysis of data shows significant correlation coefficient values (r= up to 0.915) 30 refs., 1 fig., 2 tabs.

  7. 2006 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Manevich, Alexander; Rybin, Alexander

    2008-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2006. A significant explosive eruption at Augustine Volcano in Cook Inlet marked the first eruption within several hundred kilometers of principal population centers in Alaska since 1992. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the fall of 2006 and continued to emit copious amounts of volcanic gas into 2007. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  8. Reducing volcanic risk

    USGS Publications Warehouse

    Decker, R.; Decker, B.

    1991-01-01

    The last two decades have brought major advances in research on how volcanoes work and how to monitor their changing habits. Geologic mapping as well as studies of earthquake patterns and surface deformation associated with underground movement of magma have given scientists a better view of the inner structure and dynamics of active volcanoes. With the next decade, the time has come to focuses more on applying this knowledge toward reducing the risk from volcanic activity on a worldwide basis. 

  9. Gas and aerosol emissions from Lascar volcano (Northern Chile): Insights into the origin of gases and their links with the volcanic activity

    NASA Astrophysics Data System (ADS)

    Menard, G.; Moune, S.; Vlastélic, I.; Aguilera, F.; Valade, S.; Bontemps, M.; González, R.

    2014-10-01

    This study focuses on the chemical compositions of volcanic gases and aerosols emitted by Lascar volcano (Northern Chile). The sustained volcanic plume was sampled in April 2009, April 2011 and November 2012 through filter packs and analyzed for major gaseous species (SO2, HCl, and HF) and trace elements. During fieldwork, SO2 flux measurements were also performed by UV spectrometry (DOAS). The Lascar volcano is a significant and sustained emitter of SO2 (between 150 and 940 t/d), HCl (between 170 t/d and 210 t/d) and HF (up to 100 t/d). Combining the SO2-normalized trace element concentrations and the SO2 emission rates, we evaluate that the quiescent degassing of Lascar is an important local source of trace metals to the atmosphere with contributions to global volcanic fluxes generally less than 2%. Our data were used to infer the origin of the gas emitted at Lascar. Two major degassing sources were identified: a deep magmatic reservoir and a shallow hydrothermal system. The variable interaction between these two sources is the most likely scenario for explaining the compositional ranges in acid gases but also in a volatile and fluid-mobile trace element such as B. These variations are related to changes in volcanic activity: an extensive interaction between the hot ascending magmatic gases and the shallow aquifer occurred in 2009, possibly due to a long period of quiescence, before magmatic activity renewed in 2011 and 2012. Our study highlights, therefore, that filter-pack measurements may be used to study changes in subsurface processes that probably play a key role in triggering volcanic eruptions.

  10. Deglaciation, ground temperature and volcanic activity in Popocatépetl (México).

    NASA Astrophysics Data System (ADS)

    Andrés, N.; Palacios, D.; Zamorano, J. J.; Mendoza-Margáin, C. E.; Vázquez-Selem, L.

    2012-04-01

    From 2001 to 2011 we monitored the soil temperature at different depths down to 1 m and the air temperature from 4100 to 5000 m asl over the Northern slope of the active volcano Popocatépetl (19°02´N, 98°62´W; 5.424 m asl). During this time period the volcano has been active, especially until the end of 2003, presenting periods of short activity thereafter. This eruptive activity has triggered the melting of the glacier situated on the Northern slope, frequently generating lahars. Finally, the glacier has been reduced to isolated ice islets. In this work we have analysed air and soil temperature data in order to differentiate the influence of solar and geothermal energies on the soil energy balance. We also compared these data to the soil temperature data from the nearby Iztaccíhuatl volcano, located just 15 km away and inactive since the late Pleistocene. The disappearance of the glacier has left large areas exposed on the Northern slope. Snow remains very few days per year and does not isolate the slope from periglacial processes. The results indicate a certain influence of geothermal activity on the soil related to periglacial processes and to the distribution of permafrost. As an example, the models elaborated to study the distribution of permafrost on Popocatépetl from soil temperature data indicate the existence of discontinuous permafrost above 5100/5200m asl, 200 m higher than on Iztaccíhuatl. However, the disappearance of glaciers on these altitudes could be favouring the formation of permafrost, also promoted by the relative eruptive calm of the last few years. In any case, the influence of geothermal activity on the superficial soil temperature of the volcano is vague as we have not detected specific warming events directly related to the most intensive eruptive periods. Research funded by CGL2009-7343 project, Government of Spain.

  11. 46 CFR 128.450 - Liquid-mud systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Liquid-mud systems. 128.450 Section 128.450 Shipping...: EQUIPMENT AND SYSTEMS Design Requirements for Specific Systems § 128.450 Liquid-mud systems. (a) Liquid-mud... this chapter. (b) Tanks for oil-based liquid mud must be fitted with tank vents equipped with...

  12. 46 CFR 128.450 - Liquid-mud systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Liquid-mud systems. 128.450 Section 128.450 Shipping...: EQUIPMENT AND SYSTEMS Design Requirements for Specific Systems § 128.450 Liquid-mud systems. (a) Liquid-mud... this chapter. (b) Tanks for oil-based liquid mud must be fitted with tank vents equipped with...

  13. 46 CFR 128.450 - Liquid-mud systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Liquid-mud systems. 128.450 Section 128.450 Shipping...: EQUIPMENT AND SYSTEMS Design Requirements for Specific Systems § 128.450 Liquid-mud systems. (a) Liquid-mud... this chapter. (b) Tanks for oil-based liquid mud must be fitted with tank vents equipped with...

  14. 46 CFR 128.450 - Liquid-mud systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Liquid-mud systems. 128.450 Section 128.450 Shipping...: EQUIPMENT AND SYSTEMS Design Requirements for Specific Systems § 128.450 Liquid-mud systems. (a) Liquid-mud... this chapter. (b) Tanks for oil-based liquid mud must be fitted with tank vents equipped with...

  15. 46 CFR 128.450 - Liquid-mud systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Liquid-mud systems. 128.450 Section 128.450 Shipping...: EQUIPMENT AND SYSTEMS Design Requirements for Specific Systems § 128.450 Liquid-mud systems. (a) Liquid-mud... this chapter. (b) Tanks for oil-based liquid mud must be fitted with tank vents equipped with...

  16. Diffuse H_{2} emission: a useful geochemical tool to monitor the volcanic activity at El Hierro volcano system

    NASA Astrophysics Data System (ADS)

    Pérez, Nemesio M.; Melián, Gladys; González-Santana, Judit; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Padrón, Eleazar; Hernández, Pedro A.

    2016-04-01

    The occurrence of interfering processes affecting reactive gases as CO2 during its ascent from magmatic bodies or hydrothermal systems toward the surface environment hinders the interpretation of their enrichments in the soil atmosphere and fluxes for volcano monitoring purposes (Marini and Gambardella, 2005). These processes include gas scrubbing by ground-waters and interaction with rocks, decarbonatation processes, biogenic production, etc. Within the rest of the soil gases, particularly interest has been addressed to light and highly mobile gases. They offer important advantages for the detection of vertical permeability structures, because their interaction with the surrounding rocks or fluids during the ascent toward the surface is minimum. H2 is one of the most abundant trace species in volcano-hydrothermal systems and is a key participant in many redox reactions occurring in the hydrothermal reservoir gas (Giggenbach, 1987). Although H2 can be produced in soils by N2-fixing and fertilizing bacteria, soils are considered nowadays as sinks of molecular hydrogen (Smith-Downey et al., 2006). Because of its chemical and physical characteristics, H2 generated within the crust moves rapidly and escapes to the atmosphere. These characteristics make H2 one of the best geochemical indicators of magmatic and geothermal activity at depth. El Hierro is the youngest and the SW-most of the Canary Islands and the scenario of the last volcanic eruption of the archipelago, a submarine eruption that took place 2 km off the southern coast of the island from October 2011 to March 2012. Since at El Hierro Island there are not any surface geothermal manifestations (fumaroles, etc), we have focused our studies on soil degassing surveys. Here we show the results of soil H2 emission surveys that have been carried out regularly since mid-2012. Soil gas samples were collected in ˜600 sites selected based on their accessibility and geological criteria. Soil gases were sampled at ˜40

  17. Diffuse H_{2} emission: a useful geochemical tool to monitor the volcanic activity at El Hierro volcano system

    NASA Astrophysics Data System (ADS)

    Pérez, Nemesio M.; Melián, Gladys; González-Santana, Judit; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Padrón, Eleazar; Hernández, Pedro A.

    2016-04-01

    The occurrence of interfering processes affecting reactive gases as CO2 during its ascent from magmatic bodies or hydrothermal systems toward the surface environment hinders the interpretation of their enrichments in the soil atmosphere and fluxes for volcano monitoring purposes (Marini and Gambardella, 2005). These processes include gas scrubbing by ground-waters and interaction with rocks, decarbonatation processes, biogenic production, etc. Within the rest of the soil gases, particularly interest has been addressed to light and highly mobile gases. They offer important advantages for the detection of vertical permeability structures, because their interaction with the surrounding rocks or fluids during the ascent toward the surface is minimum. H2 is one of the most abundant trace species in volcano-hydrothermal systems and is a key participant in many redox reactions occurring in the hydrothermal reservoir gas (Giggenbach, 1987). Although H2 can be produced in soils by N2-fixing and fertilizing bacteria, soils are considered nowadays as sinks of molecular hydrogen (Smith-Downey et al., 2006). Because of its chemical and physical characteristics, H2 generated within the crust moves rapidly and escapes to the atmosphere. These characteristics make H2 one of the best geochemical indicators of magmatic and geothermal activity at depth. El Hierro is the youngest and the SW-most of the Canary Islands and the scenario of the last volcanic eruption of the archipelago, a submarine eruption that took place 2 km off the southern coast of the island from October 2011 to March 2012. Since at El Hierro Island there are not any surface geothermal manifestations (fumaroles, etc), we have focused our studies on soil degassing surveys. Here we show the results of soil H2 emission surveys that have been carried out regularly since mid-2012. Soil gas samples were collected in ˜600 sites selected based on their accessibility and geological criteria. Soil gases were sampled at ˜40

  18. dMODELS: A MATLAB software package for modeling crustal deformation near active faults and volcanic centers

    NASA Astrophysics Data System (ADS)

    Battaglia, Maurizio; Cervelli, Peter F.; Murray, Jessica R.

    2013-03-01

    We have developed a MATLAB software package for the most common models used to interpret deformation measurements near faults and active volcanic centers. The emphasis is on analytical models of deformation that can be compared with data from the Global Positioning System (GPS), InSAR, tiltmeters and strainmeters. Source models include pressurized spherical, ellipsoidal and sill-like magma chambers in an elastic, homogeneous, flat half-space. Dikes and faults are described following the mathematical notation for rectangular dislocations in an elastic, homogeneous, flat half-space. All the expressions have been checked for typographical errors that might have been present in the original literature, extended to include deformation and strain within the Earth's crust (as opposed to only the Earth's surface) and verified against finite element models. A set of GPS measurements from the 2006 eruption at Augustine Volcano (Alaska) is used to test the software package. The results show that the best fit source to the GPS data is a spherical intrusion (ΔV=5×10 km3), about 880 m beneath the volcano's summit.

  19. Disruptive event analysis: volcanism and igneous intrusion

    SciTech Connect

    Crowe, B.M.

    1980-08-01

    An evaluation is made of the disruptive effects of volcanic activity with respect to long term isolation of radioactive waste through deep geologic storage. Three major questions are considered. First, what is the range of disruption effects of a radioactive waste repository by volcanic activity. Second, is it possible, by selective siting of a repository, to reduce the risk of disruption by future volcanic activity. And third, can the probability of repository disruption by volcanic activity be quantified. The main variables involved in the evaluation of the consequences of repository disruption by volcanic activity are the geometry of the magma-repository intersection (partly controlled by depth of burial) and the nature of volcanism. Potential radionuclide dispersal by volcanic transport within the biosphere ranges in distance from several kilometers to global. Risk from the most catastrophic types of eruptions can be reduced by careful site selection to maximize lag time prior to the onset of activity. Certain areas or volcanic provinces within the western United States have been sites of significant volcanism and should be avoided as potential sites for a radioactive waste repository. Examples of projection of future sites of active volcanism are discussed for three areas of the western United States. Probability calculations require two types of data: a numerical rate or frequency of volcanic activity and a numerical evaluation of the areal extent of volcanic disruption for a designated region. The former is clearly beyond the current state of art in volcanology. The latter can be approximated with a reasonable degree of satisfaction. In this report, simplified probability calculations are attempted for areas of past volcanic activity.

  20. Bubble mobility in mud and magmatic volcanoes

    NASA Astrophysics Data System (ADS)

    Tran, Aaron; Rudolph, Maxwell L.; Manga, Michael

    2015-03-01

    The rheology of particle-laden fluids with a yield stress, such as mud or crystal-rich magmas, controls the mobility of bubbles, both the size needed to overcome the yield stress and their rise speed. We experimentally measured the velocities of bubbles and rigid spheres in mud sampled from the Davis-Schrimpf mud volcanoes adjacent to the Salton Sea, Southern California. Combined with previous measurements in the polymer gel Carbopol, we obtained an empirical model for the drag coefficient and bounded the conditions under which bubbles overcome the yield stress. Yield stresses typical of mud and basaltic magmas with sub-mm particles can immobilize millimeter to centimeter sized bubbles. At Stromboli volcano, Italy, a vertical yield stress gradient in the shallow conduit may immobilize bubbles with diameter ≲ 1 cm and hinder slug coalescence.

  1. Treatment of a mud pit by bioremediation.

    PubMed

    Avdalović, Jelena; Đurić, Aleksandra; Miletić, Srdjan; Ilić, Mila; Milić, Jelena; Vrvić, Miroslav M

    2016-08-01

    The mud generated from oil and natural gas drilling, presents a considerable ecological problem. There are still insufficient remedies for the removal and minimization of these very stable emulsions. Existing technologies that are in use, more or less successfully, treat about 20% of generated waste drilling mud, while the rest is temporarily deposited in so-called mud pits. This study investigated in situ bioremediation of a mud pit. The bioremediation technology used in this case was based on the use of naturally occurring microorganisms, isolated from the contaminated site, which were capable of using the contaminating substances as nutrients. The bioremediation was stimulated through repeated inoculation with a zymogenous microbial consortium, along with mixing, watering and biostimulation. Application of these bioremediation techniques reduced the concentration of total petroleum hydrocarbons from 32.2 to 1.5 g kg(-1) (95% degradation) during six months of treatment. PMID:27354013

  2. 40 CFR 230.42 - Mud flats.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... extremely low tides and inundated at high tides with the water table at or near the surface of the substrate... dewater the mud flat or disrupt periodic inundation, resulting in an increase in the rate of erosion...

  3. 40 CFR 230.42 - Mud flats.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... extremely low tides and inundated at high tides with the water table at or near the surface of the substrate... dewater the mud flat or disrupt periodic inundation, resulting in an increase in the rate of erosion...

  4. 40 CFR 230.42 - Mud flats.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... extremely low tides and inundated at high tides with the water table at or near the surface of the substrate... dewater the mud flat or disrupt periodic inundation, resulting in an increase in the rate of erosion...

  5. Episodes of volcanic activity and their environmental effects in the Okinawa Trough during the last 150 ka

    NASA Astrophysics Data System (ADS)

    Li, Tiegang; Zhao, Jingtao; Li, Anchun

    2005-12-01

    A piston core Z14-6 was used in this study. The core, 896 cm long, was collected from eastern slope of the Okinawa Trough (27°07'N, 127°27'E, water depth 739m). The δ18O and δ13C values of the sediment bearing planktonic foraminifera G. sacculifer and N. dutertrei were determined; and the abundance of volcanic glass was analyzed. The volcanic glass content high occurred in early stage of polar ice-sheet growth period, or the beginning of cold climate periods corresponding to Milankovitch cycles (Peak I, II and V are corresponding to the beginnings of oxygen isotopic stages 2, 4 and 6, and Peak III and IV are matching oxygen isotopic stage 5b 5d.). It might be possible that volcanic episodes and climate changes were responding to orbital forcing in the Okinawa Trough in late Quaternary. The δ18O difference between N. dutertrei and G. sacculifer shows no clear correlation to the volcanic glass content high, which suggests that the volcanic eruptions did not influence the structure of upper water column. However, the low δ13C difference between G. sacculifer and N. dutertrei is coeval with the volcanic glass high or sub-high content. This fact suggests that volcanic eruptions might influence the reduction in vertical nutritional gradient and carbon cycle process in upper water column. A possible mechanism is that huge quantity of ash and dust had weakened the light intensity, resulting in photosynthesis reduction, productivity decrease, and biological pumping.

  6. Methane production and consumption in an active volcanic environment of Southern Italy.

    PubMed

    Castaldi, Simona; Tedesco, Dario

    2005-01-01

    Methane fluxes were measured, using closed chambers, in the Crater of Solfatara volcano, Campi Flegrei (Southern Italy), along eight transects covering areas of the crater presenting different landscape physiognomies. These included open bare areas, presenting high geothermal fluxes, and areas covered by vegetation, which developed along a gradient from the central open area outwards, in the form of maquis, grassland and woodland. Methane fluxes decreased logarithmically (from 150 to -4.5 mg CH4 m(-2)day(-1)) going from the central part of the crater (fangaia) to the forested edges, similarly to the CO2 fluxes (from 1500 g CO2 m(-2)day(-1) in the centre of the crater to almost zero flux in the woodlands). In areas characterized by high emissions, soil presented elevated temperature (up to 70 degrees C at 0-10 cm depth) and extremely low pH (down to 1.8). Conversely, in woodland areas pH was higher (between 3.7 and 5.1) and soil temperature close to air values. Soil (0-10 cm) was sampled, in two different occasions, along the eight transects, and was tested for methane oxidation capacity in laboratory. Areas covered by vegetation mostly consumed CH4 in the following order woodland>macchia>grassland. Methanotrophic activity was also measured in soil from the open bare area. Oxidation rates were comparable to those measured in the plant covered areas and were significantly correlated with field CH4 emissions. The biological mechanism of uptake was demonstrated by the absence of activity in autoclaved replicates. Thus results suggest the existence of a population of micro-organisms adapted to this extreme environment, which are able to oxidize CH4 and whose activity could be stimulated and supported by elevated concentrations of CH4.

  7. The geochemistry of lithium-bearing geothermal water, Taupo Volcanic Zone, and shallow fluid processes in a very active silicic volcanic arc

    NASA Astrophysics Data System (ADS)

    Dean, A. S.; Hoskin, P. W.; Rudnick, R. L.; Liu, X.; Boseley, C.

    2011-12-01

    The Li abundances and isotopic systematics of Taupo Volcanic Zone (TVZ) geothermal fluids preserves a record of processes occurring within shallow portions of geothermal reservoirs as well as deeper portions of the arc crust. Understanding Li cycling and isotopic fractionation in TVZ geothermal systems contributes to a more refined understanding of physicochemical processes affecting New Zealand's geothermal resources. A comprehensive dataset of 73 samples was compiled, with samples collected from geothermal surface features (springs, spouters, geysers, etc.) and electric-power industry production wells, collectively representing18 geothermal fields across the breadth and width the TVZ. No comparable dataset of fluid analyses exists. Ion chromatography, AAS, and quadrupole ICP-MS analyses were done for Li, Cl-, SiO2, SO42- K, Na, Ca, Mg, B, Sr and Pb concentrations. Lithium abundance in geothermal fluids from the TVZ have a dataset-wide average of 5.9 mg/L and range 4 μg/L to 29 mg/L. The Li abundance and Li/Cl ratios for geothermal water and steam condensates vary systematically as a result of boiling, mixing, and water/rock reaction. Lithium abundance and Li/Cl ratios are, therefore, indicators of shallow (above 2.5 km) and locally variable reservoir processes. δ7Li analysis of 63 samples was performed at the University of Maryland, College Park. Data quality was controlled by measurement of L-SVEC as a calibration standard and by multiple analysis of selected samples. The average δ7Li value for TVZ geothermal fluids is -0.8%. Most δ7Li values for geothermal water fall within a small range of about -3% to+2% indicating similar processes are causing similar isotopic fractionation throughout the region. Considered together, Li aundances and δ7Li values, in combination with numerical models, indicate possible evolution pathways and water/rock reactions in TVZ geothermal systems. Models based on rocks and surface water analysis indicate that Li cycles and

  8. Closure Report for Corrective Action Unit 357: Mud Pits and Waste Dump, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect

    Laura A. Pastor

    2005-04-01

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 357: Mud Pits and Waste Dump, Nevada Test Site (NTS), Nevada. The CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada, U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). Corrective Action Unit 357 is comprised of 14 Corrective Action Sites (CASs) located in Areas 1, 4, 7, 8, 10, and 25 of the NTS (Figure 1-1). The NTS is located approximately 65 miles (mi) northwest of Las Vegas, Nevada. Corrective Action Unit 357 consists of 11 CASs that are mud pits located in Areas 7, 8, and 10. The mud pits were associated with drilling activities conducted on the NTS in support of the underground nuclear weapons testing. The remaining three CASs are boxes and pipes associated with Building 1-31.2el, lead bricks, and a waste dump. These CAS are located in Areas 1, 4, and 25, respectively. The following CASs are shown on Figure 1-1: CAS 07-09-02, Mud Pit; CAS 07-09-03, Mud Pit; CAS 07-09-04, Mud Pit; CAS 07-09-05, Mud Pit; CAS 08-09-01, Mud Pit; CAS 08-09-02, Mud Pit; CAS 08-09-03, Mud Pit; CAS 10-09-02, Mud Pit; CAS 10-09-04, Mud Pit; CAS 10-09-05, Mud Pit; CAS 10-09-06, Mud Pit, Stains, Material; CAS 01-99-01, Boxes, Pipes; CAS 04-26-03, Lead Bricks; and CAS 25-15-01, Waste Dump. The purpose of the corrective action activities was to obtain analytical data that supports the closure of CAU 357. Environmental samples were collected during the investigation to determine whether contaminants exist and if detected, their extent. The investigation and sampling strategy was designed to target locations and media most likely to be contaminated (biased sampling). A general site conceptual model was developed for each CAS to support and guide the investigation as outlined in the Streamlined Approach for Environmental Restoration (SAFER) Plan (NNSA/NSO, 2003b). This CR

  9. Volcanic activities in the Southern part of East African rift initiation: Melilitites and nephelinites from the Manyara Basin (North Tanzania rift axis)

    NASA Astrophysics Data System (ADS)

    Baudouin, Celine; Parat, Fleurice; Tiberi, Christel; Gautier, Stéphanie; Peyrat, Sophie

    2016-04-01

    The East African Rift exposes different stages of plate boundary extension, from the initiation of the rift (North (N) Tanzania) to oceanic accretion (Afar). The N Tanzania rift-axis (north-south (S) trend) is divided into 2 different volcanic and seismic activities: (1) the Natron basin (N) with shallow seismicity and intense volcanism and (2) the Manyara basin (S) with deep crustal earthquakes and sparse volcanism. The Natron basin is characterized by extinct volcanoes (2 Ma-0.75 Ma) and active volcano (Oldoinyo Lengai) and a link between seismicity and volcanism has been observed during the Oldoinyo Lengai crisis in 2007. In the S part of the N Tanzanian rift, volcanoes erupted in the Manyara basin between 0.4 and 0.9 Ma. In this study, we used geochemical signature of magmas and deep fluids that percolate into the lithosphere beneath Manyara basin, to define the compositions of magmas and fluids at depth beneath the S part of the N Tanzania rift, compare to the Natron basin and place constrain on the volcanic and seismic activities. The Manyara basin has distinct volcanic activities with mafic magmas as melilitites (Labait) and Mg-nephelinites (carbonatite, Kwaraha), and more differentiated magmas as Mg-poor nephelinites (Hanang). Melilitites and Mg-nephelinites are primary magmas with olivine, clinopyroxene (cpx), and phlogopite recording high-pressure crystallization environment, (melilitites >4 GPa and Mg-nephelinites>1 GPa) with high volatile contents (whole rock: 0.7-4.6 wt% CO2, 0.1-0.3 wt% F and 0.1 wt% Cl). FTIR analyses of olivine constrained the water content of Labait and Kwaraha magmas at 0.1 and 0.4 wt% H2O, respectively. Geochemical modelling suggests that mafic magmas result from a low degree of partial melting (1-2%) of a peridotitic source with garnet and phlogopite (high Tb/Yb (>0.6) and Rb/Sr (0.03-0.12) ratio). Mg-poor nephelinites from Hanang volcano crystallized cpx, Ti-garnet, and nepheline as phenocrysts. Magmas result from fractional

  10. Lava and Life: New investigations into the Carson Volcanics, lower Kimberley Basin, north Western Australia

    NASA Astrophysics Data System (ADS)

    Orth, Karin; Phillips, Chris; Hollis, Julie

    2014-05-01

    The Carson Volcanics are the only volcanic unit in the Paleoproterozoic Kimberley Basin and are part of a poorly studied Large Igneous Province (LIP) that was active at 1790 Ma. New work focussing on this LIP in 2012 and 2013 involved helicopter-supported traverses and sampling of the Carson Volcanics in remote areas near Kalumburu in far north Western Australia's Kimberley region. The succession is widespread and flat lying to gently dipping. It consists of three to six basalt units with intercalated sandstone and siltstone. The basalts are 20-40 m thick, but can be traced up to 60 km along strike. The basalt can be massive or amygdaloidal and commonly display polygonal to subhorizontal and rare vertical columnar jointing. Features of the basalt include ropy lava tops and basal pipe vesicles consistent with pahoehoe lavas. The intercalated cross-bedded quartzofeldspathic sandstone and siltstone vary in thickness up to 40 m and can be traced up to 40 km along strike. Peperite is common and indicates interaction between wet, unconsolidated sediment and hot lava. Stromatolitic chert at the top of the formation represents the oldest life found within the Kimberley region. Mud cracks evident in the sedimentary rocks, and stromatolites suggest an emergent broad tidal flat environment. The volcanics were extruded onto a wide marginal margin setting subject to frequent flooding events. Thickening of the volcanic succession south and the palaeocurrents in the underlying King Leopold Sandstone and the overlying Warton Sandstone suggest that this shelf sloped to the south. The type of basalt and the basalt morphology indicate a low slope gradient of about 1°.

  11. Monitoring volcanic thermal activity by Robust Satellite Techniques: achievements and perspectives

    NASA Astrophysics Data System (ADS)

    Tramutoli, V.; Marchese, F.; Mazzeo, G.; Pergola, N.

    2009-12-01

    Satellite data have been increasingly used in last decades to study active volcanoes and to monitor thermal activity variation in space-time domain. Several satellite techniques and original methods have been developed and tested, devoted to hotspot detection and thermal monitoring. Among them, a multi-temporal approach, named RST (Robust Satellite Techniques), has shown high performances in detecting hotspots, with a low false positive rate under different observational and atmospheric conditions, providing also a potential toward low-level thermal anomalies which may announce incoming eruptions. As the RST scheme is intrinsically exportable on different geographic areas and satellite sensors, it has been applied and tested on a number of volcanoes and in different environmental conditions. This work presents major results and outcomes of studies carried out on Etna and Stromboli (Italy), Merapi (Java Indonesia), Asamayama (Japan), Jebel Al Tair (Yemen) by using different satellite systems and sensors (e.g. NOAA-AVHRR, EOS-MODIS, MSG-SEVIRI). Performances on hotspot detection, early warning and real-time monitoring, together with capab