Mud volcanoes of the Orinoco Delta, Eastern Venezuela
Aslan, A.; Warne, A.G.; White, W.A.; Guevara, E.H.; Smyth, R.C.; Raney, J.A.; Gibeaut, J.C.
2001-01-01
Mud volcanoes along the northwest margin of the Orinoco Delta are part of a regional belt of soft sediment deformation and diapirism that formed in response to rapid foredeep sedimentation and subsequent tectonic compression along the Caribbean-South American plate boundary. Field studies of five mud volcanoes show that such structures consist of a central mound covered by active and inactive vents. Inactive vents and mud flows are densely vegetated, whereas active vents are sparsely vegetated. Four out of the five mud volcanoes studied are currently active. Orinoco mud flows consist of mud and clayey silt matrix surrounding lithic clasts of varying composition. Preliminary analysis suggests that the mud volcano sediment is derived from underlying Miocene and Pliocene strata. Hydrocarbon seeps are associated with several of the active mud volcanoes. Orinoco mud volcanoes overlie the crest of a mud-diapir-cored anticline located along the axis of the Eastern Venezuelan Basin. Faulting along the flank of the Pedernales mud volcano suggests that fluidized sediment and hydrocarbons migrate to the surface along faults produced by tensional stresses along the crest of the anticline. Orinoco mud volcanoes highlight the proximity of this major delta to an active plate margin and the importance of tectonic influences on its development. Evaluation of the Orinoco Delta mud volcanoes and those elsewhere indicates that these features are important indicators of compressional tectonism along deformation fronts of plate margins. ?? 2001 Elsevier Science B.V. All rights reserved.
Linked halokinesis and mud volcanism at the Mercator mud volcano, Gulf of Cadiz
NASA Astrophysics Data System (ADS)
Perez-Garcia, Carolina; Berndt, Christian; Klaeschen, Dirk; Mienert, Jürgen; Haffert, Laura; Depreiter, Davy; Haeckel, Matthias
2011-05-01
Mud volcanoes are seafloor expressions of focused fluid flow that are common in compressional tectonic settings. New high-resolution 3-D seismic data from the Mercator mud volcano (MMV) and an adjacent buried mud volcano (BMV) image the internal structure of the top 800 m of sediment at both mud volcanoes, revealing that both are linked and have been active episodically. The total volumes of extruded mud range between 0.15 and 0.35 km3 and 0.02-0.05 km3 for the MMV and the BMV, respectively. The pore water composition of surface sediment samples suggests that halokinesis has played an important role in the evolution of the mud volcanoes. We propose that erosion of the top of the Vernadsky Ridge that underlies the mud volcanoes activated salt movement, triggering deep migration of fluids, dissolution of salt, and sediment liquefaction and mobilization since the end of the Pliocene. Since beginning of mud volcanism in this area, the mud volcanoes erupted four times while there was only one reactivation of salt tectonics. This implies that there are other mechanisms that trigger mud eruptions. The stratigraphic relationship of mudflows from the MMV and BMV indicates that the BMV was triggered by the MMV eruptions. This may either be caused by loading-induced hydrofracturing within the BMV or due to a common feeder system for both mud volcanoes. This study shows that the mud volcanoes in the El Arraiche mud volcano field are long-lived features that erupt with intervals of several tens of thousands of years.
Cyclic Activity of Mud Volcanoes: Evidences from Trinidad (SE Caribbean)
NASA Astrophysics Data System (ADS)
Deville, E.
2007-12-01
Fluid and solid transfer in mud volcanoes show different phases of activity, including catastrophic events followed by periods of relative quiescence characterized by moderate activity. This can be notably shown by historical data onshore Trinidad. Several authors have evoked a possible link between the frequencies of eruption of some mud volcanoes and seismic activity, but in Trinidad there is no direct correlation between mud eruptions and seisms. It appears that each eruptive mud volcano has its own period of catastrophic activity, and this period is highly variable from one volcano to another. The frequency of activity of mud volcanoes seems essentially controlled by local pressure regime within the sedimentary pile. At the most, a seism can, in some cases, activate an eruption close to its term. The dynamics of expulsion of the mud volcanoes during the quiescence phases has been studied notably from temperature measurements within the mud conduits. The mud temperature is concurrently controlled by, either, the gas flux (endothermic gas depressurizing induces a cooling effect), or by the mud flux (mud is a vector for convective heat transfer). Complex temperature distribution was observed in large conduits and pools. Indeed, especially in the bigger pools, the temperature distribution characterizes convective cells with an upward displacement of mud above the deep outlet, and ring-shaped rolls associated with the burial of the mud on the flanks of the pools. In simple, tube-like shaped, narrow conduits, the temperature is more regular, but we observed different types of profiles, with either downward increasing or decreasing temperatures. If the upward flow of mud would be regular, we should expect increasing temperatures and progressively decreasing gradient with depth within the conduits. However, the variable measured profiles from one place to another, as well as time-variable measured temperatures within the conduits and especially, at the base of the conduits, shows that the fluid flow expelled by the studied mud volcanoes is not constant but highly variable through short time-periods. We notably observed very short time-period cyclic variations with a frequency of about 10 minutes. These high frequencies temperature changes could be related to the dynamics of two-phase flows (gas and mud) through the mud volcano conduits. We also observed locally a significant daily changes of the temperature of the expelled mud which shows also that the mud flux is changing very rapidly from one day to another.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagunova, I.A.
A characteristic feature of the products of mud-volcano activity in the Kerch-Taman region is their high boron content. Distribution of boron in waters of mud volcanoes is characterized by restriction of anomalously high concentrations of boron to mud volcanoes actively operating at the present time in general, and to the most active period of operation of the individual volcano; there is a direct correlation between boron and the hydrocarbonate ion (r/sub B//HCO/sub 3// = 0.5), and between boron and carbon dioxide from the mud-volcano gases (r/sub B//CO/sub 2// = 0.4). The correlation is lacking between boron and mineralization, and betweenmore » boron and chlorine, the correlation is close to inverse. A spatial connection between areas of development of mud volcanism and belts of boron mineralization has been established. Anomalously high boron concentrations in the products of mud volcanism in the Kerch-Taman region are part of the overall increased boron capacity of the Crimea and the Caucasus, which has been controlled by recent magmatic activity.« less
Lazar, Cassandre Sara; Parkes, R John; Cragg, Barry A; L'Haridon, Stéphane; Toffin, Laurent
2011-08-01
Submarine mud volcanoes are a significant source of methane to the atmosphere. The Napoli mud volcano, situated in the brine-impacted Olimpi Area of the Eastern Mediterranean Sea, emits mainly biogenic methane particularly at the centre of the mud volcano. Temperature gradients support the suggestion that Napoli is a cold mud volcano with moderate fluid flow rates. Biogeochemical and molecular genetic analyses were carried out to assess the methanogenic activity rates, pathways and diversity in the hypersaline sediments of the centre of the Napoli mud volcano. Methylotrophic methanogenesis was the only significant methanogenic pathway in the shallow sediments (0-40 cm) but was also measured throughout the sediment core, confirming that methylotrophic methanogens could be well adapted to hypersaline environments. Hydrogenotrophic methanogenesis was the dominant pathway below 50 cm; however, low rates of acetoclastic methanogenesis were also present, even in sediment layers with the highest salinity, showing that these methanogens can thrive in this extreme environment. PCR-DGGE and methyl coenzyme M reductase gene libraries detected sequences affiliated with anaerobic methanotrophs (mainly ANME-1) as well as Methanococcoides methanogens. Results show that the hypersaline conditions in the centre of the Napoli mud volcano influence active biogenic methane fluxes and methanogenic/methylotrophic diversity. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink.
Niemann, Helge; Lösekann, Tina; de Beer, Dirk; Elvert, Marcus; Nadalig, Thierry; Knittel, Katrin; Amann, Rudolf; Sauter, Eberhard J; Schlüter, Michael; Klages, Michael; Foucher, Jean Paul; Boetius, Antje
2006-10-19
Mud volcanism is an important natural source of the greenhouse gas methane to the hydrosphere and atmosphere. Recent investigations show that the number of active submarine mud volcanoes might be much higher than anticipated (for example, see refs 3-5), and that gas emitted from deep-sea seeps might reach the upper mixed ocean. Unfortunately, global methane emission from active submarine mud volcanoes cannot be quantified because their number and gas release are unknown. It is also unclear how efficiently methane-oxidizing microorganisms remove methane. Here we investigate the methane-emitting Haakon Mosby Mud Volcano (HMMV, Barents Sea, 72 degrees N, 14 degrees 44' E; 1,250 m water depth) to provide quantitative estimates of the in situ composition, distribution and activity of methanotrophs in relation to gas emission. The HMMV hosts three key communities: aerobic methanotrophic bacteria (Methylococcales), anaerobic methanotrophic archaea (ANME-2) thriving below siboglinid tubeworms, and a previously undescribed clade of archaea (ANME-3) associated with bacterial mats. We found that the upward flow of sulphate- and oxygen-free mud volcano fluids restricts the availability of these electron acceptors for methane oxidation, and hence the habitat range of methanotrophs. This mechanism limits the capacity of the microbial methane filter at active marine mud volcanoes to <40% of the total flux.
The diversity of mud volcanoes in the landscape of Azerbaijan
NASA Astrophysics Data System (ADS)
Rashidov, Tofig
2014-05-01
As the natural phenomenon the mud volcanism (mud volcanoes) of Azerbaijan are known from the ancient times. The historical records describing them are since V century. More detail study of this natural phenomenon had started in the second half of XIX century. The term "mud volcano" (or "mud hill") had been given by academician H.W. Abich (1863), more exactly defining this natural phenomenon. All the previous definitions did not give such clear and capacious explanation of it. In comparison with magmatic volcanoes, globally the mud ones are restricted in distribution; they mainly locate within the Alpine-Himalayan, Pacific and Central Asian mobile belts, in more than 30 countries (Columbia, Trinidad Island, Italy, Romania, Ukraine, Georgia, Azerbaijan, Turkmenistan, Iran, Pakistan, Indonesia, Burma, Malaysia, etc.). Besides it, the zones of mud volcanoes development are corresponded to zones of marine accretionary prisms' development. For example, the South-Caspian depression, Barbados Island, Cascadia (N.America), Costa-Rica, Panama, Japan trench. Onshore it is Indonesia, Japan, and Trinidad, Taiwan. The mud volcanism with non-accretionary conditions includes the areas of Black Sea, Alboran Sea, the Gulf of Mexico (Louisiana coast), Salton Sea. But new investigations reveal more new mud volcanoes and in places which were not considered earlier as the traditional places of mud volcanoes development (e.g. West Nile Rive delta). Azerbaijan is the classic region of mud volcanoes development. From over 800 world mud volcanoes there are about 400 onshore and within the South-Caspian basin, which includes the territory of East Azerbaijan (the regions of Shemakha-Gobustan and Low-Kura River, Absheron peninsula), adjacent water area of South Caspian (Baku and Absheron archipelagoes) and SW Turkmenistan and represents an area of great downwarping with thick (over 25 km) sedimentary series. Generally, in the modern relief the mud volcanoes represent more or less large uplifts on surface, often of plane-conical shape, rising for 5 to 400 m and more over the country (for example, mud volcano Toragay, 400 m height). The base diameter is from 100 m to 3-4 km and more. Like the magmatic ones, the mud volcanoes are crowned with crater of convex-plane or deeply-seated shape. In Azerbaijan there are all types of mud volcanoes: active, extinct, buried, submarine, island, abundantly oil seeping. According to their morphology they are defined into cone-shaped, dome-shaped, ridge-shaped, plateau-shaped. The crater shapes are also various: conical, convex-plane, shield-shaped, deeply-seated, caldera-like. The most complete morphological classification was given in "Atlas of mud volcanoes of Azerbaijan" (Yakubov et al., 1971). Recently (Aliyev Ad. et al., 2003) it was proposed a quite new morphological classification of mud volcanoes of Azerbaijan. For the first time the mud volcanic manifestations had been defined. Volcanoes are ranged according to morphological signs, crater shape and type of activity.
NASA Astrophysics Data System (ADS)
Slack, John F.; Turner, Robert J. W.; Ware, Paul L. G.
1998-05-01
Large submarine mud volcanoes in the abyssal part of the Black Sea south of the Crimean Peninsula are similar in many respects to synsedimentary mud volcanoes in the Mesoproterozoic Belt-Purcell basin. One of the Belt-Purcell mud volcanoes directly underlies the giant Sullivan Pb-Zn-Ag deposit in southeastern British Columbia. Footwall rocks to the Sullivan deposit comprise variably tourmalinized siltstone, conglomerate, and related fragmental rock; local thin pyrrhotite-rich and spessartine-quartz beds are interpreted as Fe and Fe-Mn exhalites, respectively. Analogous Fe- and Mn-rich sediments occur near the abyssal Black Sea mud volcanoes. Massive pyrite crusts and associated carbonate chimneys discovered in relatively shallow waters (˜200 m depth) west of the Crimean Peninsula indicate an active sea-floor hydrothermal system. Subaerial mud volcanoes on the Kerch and Taman Peninsulas (˜100 km north of the abyssal mud volcanoes) contain saline thermal waters that locally have very high B contents (to 915 mg/L). These data suggest that tourmalinites might be forming in or near submarine Black Sea mud volcanoes, where potential may also exist for Sullivan-type Pb-Zn mineralization.
Slack, J.F.; Turner, R.J.W.; Ware, P.L.G.
1998-01-01
Large submarine mud volcanoes in the abyssal part of the Black Sea south of the Crimean Peninsula are similar in many respects to synsedimentary mud volcanoes in the Mesoproterozoic Belt-Purcell basin. One of the Belt-Purcell mud volcanoes directly underlies the giant Sullivan Pb-Zn-Ag deposit in southeastern British Columbia. Footwall rocks to the Sullivan deposit comprise variably tourmalinized siltstone, conglomerate, and related fragmental rock; local thin pyrrhotite-rich and spessartine-quartz beds are interpreted as Fe and Fe-Mn exhalites, respectively. Analogous Fe- and Mn-rich sediments occur near the abyssal Black Sea mud volcanoes. Massive pyrite crusts and associated carbonate chimneys discovered in relatively shallow waters (~200 m depth) west of the Crimean Peninsula indicate an active sea-floor-hydrothermal system. Subaerial mud volcanoes on the Kerch and Taman Peninsulas (~100 km north of the abyssal mud volcanoes) contain saline thermal waters that locally have very high B contents (to 915 mg/L). These data suggest that tourmalinites might be forming in or near submarine Black Sea mud volcanoes, where potential may also exist for Sullivan-type Pb-Zn mineralization.
Acoustic scattering from mud volcanoes and carbonate mounds.
Holland, Charles W; Weber, Thomas C; Etiope, Giuseppe
2006-12-01
Submarine mud volcanoes occur in many parts of the world's oceans and form an aperture for gas and fluidized mud emission from within the earth's crust. Their characteristics are of considerable interest to the geology, geophysics, geochemistry, and underwater acoustics communities. For the latter, mud volcanoes are of interest in part because they pose a potential source of clutter for active sonar. Close-range (single-interaction) scattering measurements from a mud volcano in the Straits of Sicily show scattering 10-15 dB above the background. Three hypotheses were examined concerning the scattering mechanism: (1) gas entrained in sediment at/near mud volcano, (2) gas bubbles and/or particulates (emitted) in the water column, (3) the carbonate bio-construction covering the mud volcano edifice. The experimental evidence, including visual, acoustic, and nonacoustic sensors, rules out the second hypothesis (at least during the observation time) and suggests that, for this particular mud volcano the dominant mechanism is associated with carbonate chimneys on the mud volcano. In terms of scattering levels, target strengths of 4-14 dB were observed from 800 to 3600 Hz for a monostatic geometry with grazing angles of 3-5 degrees. Similar target strengths were measured for vertically bistatic paths with incident and scattered grazing angles of 3-5 degrees and 33-50 degrees, respectively.
NASA Astrophysics Data System (ADS)
Loher, Markus; Ceramicola, Silvia; Wintersteller, Paul; Meinecke, Gerrit; Sahling, Heiko; Bohrmann, Gerhard
2018-02-01
Submarine mud volcanoes develop through the extrusion of methane-rich fluids and sediments onto the seafloor. The morphology of a mud volcano can record its extrusive history and processes of erosion and deformation affecting it. The study of offshore mud volcano dynamics is limited because only few have been mapped at resolutions that reveal their detailed surface structures. More importantly, rates and volumes of extruded sediment and methane are poorly constrained. The 100 m high twin cones of Venere mud volcano are situated at ˜1,600 m water depth within Squillace Canyon along the Ionian Calabrian margin, Mediterranean Sea. Seafloor bathymetry and backscatter data obtained by a ship-based system and an autonomous underwater vehicle (AUV) allow mapping of mudflow deposits of the mud volcano and bedforms in the surrounding canyon. Repeated surveying by AUV document active mud movement at the western summit in between 2014 and 2016. Through sediment coring and tephrochronology, ages of buried mudflow deposits are determined based on the sedimentation rate and the thickness of overlying hemipelagic sediments. An average extrusion rate of 27,000 m3/yr over the last ˜882 years is estimated. These results support a three-stage evolutionary model of Venere mud volcano since ˜4,000 years ago. It includes the onset of quiescence at the eastern cone (after ˜2,200 years ago), erosive events in Squillace Canyon (prior to ˜882 years ago), and mudflows from the eastern cone (since ˜882 years). This study reveals new interactions between a mud volcano and a canyon in the deep sea.
Liu, Chia-Chuan; Maity, Jyoti Prakash; Jean, Jiin-Shuh; Sracek, Ondra; Kar, Sandeep; Li, Zhaohui; Bundschuh, Jochen; Chen, Chien-Yen; Lu, Hsueh-Yu
2011-01-01
Fluid and mud samples collected from Hsiaokunshui (HKS), Wushanting (WST), Yenshuikeng (YSK), Kunshuiping (KSP), Liyushan (LYS), and Sinyangnyuhu (SYNH) mud volcanoes of southwestern Taiwan were characterized for major ions, humic substances (HS) and trace elements concentrations. The relationship between the release of arsenic (As) and activities of sulfate-reducing bacteria has been assessed to understand relevant geochemical processes in the mud volcanoes. Arsenic (0.02-0.06 mg/L) and humic substances (4.13 × 10(-4) to 1.64 × 10(-3) mM) in the fluids of mud volcanoes showed a positive correlation (r = 0.99, p < 0.05) except in Liyushan mud volcano. Arsenic and iron in mud sediments formed two separate groups i) high As, but low Fe in HKS, WST, and SYNH; and ii) low As, but high Fe in the YSK, KSP, and LYS mud volcanoes. The Eh(S.H.E.) values of the mud volcano liquids were characterized by mild to strongly reducing conditions. The HKS, SYNH, and WST mud volcanoes (near the Chishan Fault) belongs to strong reducing environment (-33 to -116 mV), whereas the LYS, YSK, and KSP mud volcanoes located near the coastal plain are under mild reducing environment (-11 to 172 mV). At low Eh values mud volcanoes, saturation index (SI) values of poorly crystalline phases such as amorphous ferric hydroxide indicate understaturation, whereas saturation is reached in relatively high Eh(S.H.E.) values mud volcanoes. Arsenic contents in sediments are low, presumably due to its release to fluids (As/Fe ratio in YSK, KSP, and LYS sediment: 4.86 × 10(-4)-6.20 × 10(-4)). At low Eh(S.H.E.) values (mild to strong reducing environment), arsenic may co-precipitate with sulfides as a consequence of sulfate reduction (As/Fe ratios in WST, HKS, and SYNH sediments: 0.42-0.69).
NASA Astrophysics Data System (ADS)
Tseng, Y.; Lin, S.; Hsieh, I. C.; Lien, K. L.
2016-12-01
Tsanyao mud volcano is a 400 meters high, 5 kilometers in diameter, a center crater of 50 meters width activing venting mud diapir. The gigantic size of mud volcano indicate massive transportation of material, i.e., gas, fluid, and breccia from deep to the sea floor in building up the mud volcano. The mud volcano is located at the upper slope of the accretionary wedge with a surrounding water depth of about xx m, offshore Southwestern Taiwan. On shore, a series of active mud volcanos also exist in a trend similar to those found offshore. In order to understand sources of gas, fluid, solid materials and the effect of gas migration and associate authigenic mineral formation, we have obtained multibeam bathymetry, water column echo sounding, together with sediment XRD and SEM and pore water composition of methane, sulfide, sulfate, chloride, potassium, lithium, boron, and water O-18 at the study mud volcano. We have observed more than 30 flares around the main cone within a perimeter of 10 square miles. δ13C values of methane in the pore water ranged from -30 to -50 ‰. The lower C13 ratios, together with high C2+/C1 ratios demonstrated that vent gas is mostly thermogenic in origin. Higher thermal gradient and water temperature indicated that cone top is unfavorable for gas-hydrate formation, however, gas hydrate may exist at a deeper part of the mud volcano system. High concentration of sulfide presence right near the sulfate-methane interface, a result of anoxic methane oxidation. However, low concentrations of pyrite in sediments indicated that AOM did not favor pyrite formation at depth. In addition, abundant siderite were found in the sediments collected in the mud volcano cone. Rapid consumption of sulfate through AOM reaction generated a condition favor the siderite fomation, instead of the typical pyrite formation commonly observed.
Comparison with Offshore and Onshore Mud Volcanoes in the Southwestern Taiwan
NASA Astrophysics Data System (ADS)
Chen, Y. H.; Su, C. C.; Chen, T. T.; Liu, C. S.; Paull, C. K.; Caress, D. W.; Gwiazda, R.; Lundsten, E. M.; Hsu, H. H.
2017-12-01
The offshore area southwest (SW) of Taiwan is on the convergent boundary between the Eurasian and Philippine Sea plates. The plate convergence manifests in this unique geological setting as a fold-and-thrust-belt. Multi-channel seismic profiles, and bathymetry and gravity anomaly data collected from Taiwan offshore to the SW show the presence of a large amount of mud volcanoes and diapirs with NE-SW orientations. In the absence of comprehensive sampling and detailed geochemistry data from submarine mud volcanoes, the relation between onshore and offshore mud volcanoes remains ambiguous. During two MBARI and IONTU joint cruises conducted in 2017 we collected high-resolution multibeam bathymetry data (1-m-resolution) and chirp sub-bottom profiles with an autonomous underwater vehicle (AUV) from submarine Mud Volcano III (MV3), and obtained precisely located samples and video observations with a remotely operated vehicle (ROV). MV3 is an active submarine mud volcano at 465 m water depth offshore SW Taiwan. This cone-shape mud volcano is almost 780 m wide, 150 m high, with 8° slopes, and a 30 m wide mound on the top. Several linear features are observed in the southwest of the mound, and these features are interpreted as a series of marks caused by rolling rocks that erupted from the top of MV3. We collected three rocks and push cores from MV3 and its top with the ROV, in order to compare their chemical and mineralogical composition to that of samples collected from mud volcanoes along the Chishan fault. The surface and X-radiography imaging, 210Pb chronology, grain size and X-ray diffractometer analyses were conducted to compare geochemical and sedimentary properties of offshore and onshore mud volcanoes. The results indicate that the offshore and onshore mud volcanoes have similar characteristics. We suggest that offshore and onshore mud volcanoes of SW Taiwan are no different in the source of their materials and their mechanism of creation and evolution.
Limitations of microbial hydrocarbon degradation at the Amon Mud Volcano (Nile Deep Sea Fan)
NASA Astrophysics Data System (ADS)
Felden, J.; Lichtschlag, A.; Wenzhöfer, F.; de Beer, D.; Feseker, T.; Pop Ristova, P.; de Lange, G.; Boetius, A.
2013-01-01
The Amon mud volcano (MV), located at 1250 m water depth on the Nile Deep Sea Fan, is known for its active emission of methane and non-methane hydrocarbons into the hydrosphere. Previous investigations showed a low efficiency of hydrocarbon-degrading anaerobic microbial communities inhabiting the Amon MV center in the presence of sulphate and hydrocarbons in the seeping subsurface fluids. By comparing spatial and temporal patterns of in situ biogeochemical fluxes, temperature gradients, pore water composition and microbial activities over three years, we investigated why the activity of anaerobic hydrocarbon degraders can be low despite high energy supplies. We found that the central dome of the Amon MV, as well as a lateral mud flow at its base, showed signs of recent exposure of hot subsurface muds lacking active hydrocarbon degrading communities. In these highly disturbed areas, anaerobic degradation of methane was less than 2% of the methane flux. Rather high oxygen consumption rates compared to low sulphide production suggest a faster development of more rapidly growing aerobic hydrocarbon degraders in highly disturbed areas. In contrast, the more stabilized muds surrounding the central gas and fluid conduits hosted active anaerobic hydrocarbon-degrading microbial communities. Furthermore, within three years, cell numbers and hydrocarbon degrading activity increased at the gas-seeping sites. The low microbial activity in the hydrocarbon-vented areas of Amon mud volcano is thus a consequence of kinetic limitations by heat and mud expulsion, whereas most of the outer mud volcano area is limited by hydrocarbon transport.
Prokaryotic diversity of an active mud volcano in the Usu City of Xinjiang, China.
Yang, Hong-Mei; Lou, Kai; Sun, Jian; Zhang, Tao; Ma, Xiao-Long
2012-02-01
The Usu mud volcanoes are the largest group of terrestrial mud volcanoes in China. The volcanoes are located in a typical arid and semi-arid region, and the group consists of 36 erupting active mud volcanoes. In this study, the prokaryotic diversity and community structure in the sediment of an active mud volcano were investigated by constructing bacterial and archaeal clone libraries of the 16S rRNA gene. A total of 100 bacterial and 100 archaeal clones were analysed and found to comprise 11 and 7 distinct phylotypes, respectively. The bacterial phylotypes were classified into three phyla (Proteobacteria, Actinobacteria, and Fusobacteria). Of these, Proteobacteria were the most abundant bacterial group, with Deltaproteobacteria dominating the sediment community, and these were affiliated with the order Desulfuromonadales. The archaeal phylotypes were all closely related to uncultivated species, and the majority of the members were related to the orders Methanosarcinales and Halobacteriales of the Euryarchaeota originating from methane hydrate bearing or alkaline sediments. The rest of the archaeal phylotypes belonged to the phylum Crenarchaeota, with representatives from similar habitats. These results suggested that a large number of novel microbial groups and potential methanogenesis may exist in this unique ecosystem. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Antonielli, Benedetta; Monserrat, Oriol; Bonini, Marco; Righini, Gaia; Sani, Federico; Luzi, Guido; Feyzullayev, Akper A.; Aliyev, Chingiz S.
2014-12-01
Mud volcanism is a process that leads to the extrusion of subsurface mud, fragments of country rocks, saline waters and gases. This mechanism is typically linked to hydrocarbon traps, and the extrusion of this material builds up a variety of conical edifices with a similar morphology to those of magmatic volcanoes, though smaller in size. The Differential Interferometry Synthetic Aperture Radar (DInSAR) technique has been used to investigate the ground deformation related to the activity of the mud volcanoes of Azerbaijan. The analysis of a set of wrapped and unwrapped interferograms, selected according to their coherence, allowed the detection of significant superficial deformation related to the activity of four mud volcanoes. The ground displacement patterns observed during the period spanning from October 2003 to November 2005 are dominated by uplift, which reach a cumulative value of up to 20 and 10 cm at the Ayaz-Akhtarma and Khara-Zira Island mud volcanoes, respectively. However, some sectors of the mud volcano edifices are affected by subsidence, which might correspond to deflation zones that coexist with the inflation zones characterized by the dominant uplift. Important deformation events, caused by fluid pressure and volume variations, have been observed both (1) in connection with main eruptive events in the form of pre-eruptive uplift, and (2) in the form of short-lived deformation pulses that interrupt a period of quiescence. Both deformation patterns show important similarities to those identified in some magmatic systems. The pre-eruptive uplift has been observed in many magmatic volcanoes as a consequence of magma intrusion or hydrothermal fluid injection. Moreover, discrete short-duration pulses of deformation are also experienced by magmatic volcanoes and are repeated over time as multiple inflation and deflation events.
NASA Astrophysics Data System (ADS)
Coratza, Paola; Albarello, Dario; Cipriani, Anna; Cantucci, Barbara; Castaldini, Doriano; Conventi, Marzia; Dadomo, Andrea; De Nardo, Maria Teresa; Macini, Paolo; Martinelli, Giovanni; Mesini, Ezio; Papazzoni, Cesare Andrea; Quartieri, Simona; Ricci, Tullio; Santagata, Tommaso; Sciarra, Alessandra; Vezzalini, Giovanna
2017-04-01
Mud volcanoes are emissions of cold mud due to the ascent to the surface of salty and muddy waters mixed with gaseous (methane) and, in minor part, fluid hydrocarbons (petroleum veils) along faults and fractures. In the Northern Apennines mud volcanoes are closely linked to the active tectonic compression associated with thrusts of regional importance. They are mostly cone-shaped and show variable geometry and size, ranging from one to few metres, and are located in 19 sites in the northwestern part of the Apennines. Particularly noteworthy is the Nirano mud volcano field, located in the Fiorano Modenese district, which, with a surface area of approximately 75,000 m2, is one of the best developed and largest mud volcano field of the entire Italian territory and among the largest in Europe; it is thus protected as natural reserve (Salse di Nirano) since 1982. The Nirano mud volcanoes are found at the bottom of an elliptical depression, interpreted as a collapse-like structure (caldera) that may have developed in response to the deflation of a shallow mud chamber triggered by several ejections and evacuation of fluid sediments. There are several individual or multiple cones within the field of the mud volcanoes of Nirano, with a rather discontinuous activity; apparatuses become dormant or even extinct whereas new vents can appear in other spots. In the research here presented about 50 vents have been mapped and few of them appeared in May 2016. The mud volcanoes of the region have been known since a long time and have always aroused great interest due to their outstanding scenic value, and, in the past the mud volcano emissions have been used in many ways. Beside their cultural value, the mud volcanoes of the study area represent a tourist attractiveness as testified by the increasing number of visitors (e.g. about 70,000 visitors in 2015 in the Salse di Nirano Natural Reserve). Numerous initiatives, targeted at various potential users, have been developed in the last decades. In particular, tourist environmental maps, geotourism maps, books in hard copy and digital format, videos, virtual flights, multimedia and audio CDs have been implemented. Although the hazard from mud volcanoes is generally low, sometimes they may lead to sudden and violent eruptions and isolated casualties have been reported. Very notable case in this regard is the event that occurred in September 2014 in the Natural Reserve of Macalube di Aragona in Sicily where a mud volcano erupted, with an ejection of mud up to about 20 m above the ground and causing the burial of two children killing them. When a given geological site acquires a tourism value, it is necessary to assess the possible natural hazard processes which might threaten the safety of visitors. In particular, fast-occurring processes might directly involve tourists in proximity of the site of interest or along access roads and footpaths. In this context, multidisciplinary research, aiming at analysing the causes and understanding triggering mechanisms of paroxysmal and dangerous phenomena in the Natural Reserve of Nirano, are in progress, funded by the Fiorano municipality. The research team is composed by experts of different disciplines (geology, geomorphology, geophysics, geochemistry, palaeontology, mineralogy, topography) from different institutions. The first results of the multidisciplinary research here presented seem to confirm that no significant and dangerous phenomena can affect visitors along the pathways of the Reserve.
Cellular immune responses and phagocytic activity of fishes exposed to pollution of volcano mud.
Risjani, Yenny; Yunianta; Couteau, Jerome; Minier, Christophe
2014-05-01
Since May 29, 2006, a mud volcano in the Brantas Delta of the Sidoarjo district has emitted mud that has inundated nearby villages. Pollution in this area has been implicated in detrimental effects on fish health. In fishes, leukocyte and phagocytic cells play a vital role in body defenses. We report for the first time the effect of "LUSI" volcano mud on the immune systems of fish in the Brantas Delta. The aim of this study was to find biomarkers to allow the evaluation of the effects of volcanic mud and anthropogenic pollution on fish health in the Brantas Delta. The study took places at the Brantas Delta, which was polluted by volcano mud, and at reference sites in Karangkates and Pasuruan. Leukocyte numbers were determined using a Neubauer hemocytometer and a light microscope. Differential leukocyte counts were determined using blood smears stained with May Grunwald-Giemsa, providing neutrophil, lymphocyte and monocyte counts. Macrophages were taken from fish kidney, and their phagocytic activity was measured. In vitro analyses revealed that leukocyte and differential leukocyte counts (DLC) were higher in Channa striata and Chanos chanos caught from the polluted area. Macrophage numbers were higher in Oreochromis mossambicus than in the other species, indicating that this species is more sensitive to pollution. In areas close to volcanic mud eruption, all specimens had lower phagocytic activity. Our results show that immune cells were changed and phagocytic activity was reduced in the polluted area indicating cytotoxicity and alteration of the innate immune system in fishes exposed to LUSI volcano mud and anthropogenic pollution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Eruption of a deep-sea mud volcano triggers rapid sediment movement.
Feseker, Tomas; Boetius, Antje; Wenzhöfer, Frank; Blandin, Jerome; Olu, Karine; Yoerger, Dana R; Camilli, Richard; German, Christopher R; de Beer, Dirk
2014-11-11
Submarine mud volcanoes are important sources of methane to the water column. However, the temporal variability of their mud and methane emissions is unknown. Methane emissions were previously proposed to result from a dynamic equilibrium between upward migration and consumption at the seabed by methane-consuming microbes. Here we show non-steady-state situations of vigorous mud movement that are revealed through variations in fluid flow, seabed temperature and seafloor bathymetry. Time series data for pressure, temperature, pH and seafloor photography were collected over 431 days using a benthic observatory at the active Håkon Mosby Mud Volcano. We documented 25 pulses of hot subsurface fluids, accompanied by eruptions that changed the landscape of the mud volcano. Four major events triggered rapid sediment uplift of more than a metre in height, substantial lateral flow of muds at average velocities of 0.4 m per day, and significant emissions of methane and CO₂ from the seafloor.
Eruption of a deep-sea mud volcano triggers rapid sediment movement
Feseker, Tomas; Boetius, Antje; Wenzhöfer, Frank; Blandin, Jerome; Olu, Karine; Yoerger, Dana R.; Camilli, Richard; German, Christopher R.; de Beer, Dirk
2014-01-01
Submarine mud volcanoes are important sources of methane to the water column. However, the temporal variability of their mud and methane emissions is unknown. Methane emissions were previously proposed to result from a dynamic equilibrium between upward migration and consumption at the seabed by methane-consuming microbes. Here we show non-steady-state situations of vigorous mud movement that are revealed through variations in fluid flow, seabed temperature and seafloor bathymetry. Time series data for pressure, temperature, pH and seafloor photography were collected over 431 days using a benthic observatory at the active Håkon Mosby Mud Volcano. We documented 25 pulses of hot subsurface fluids, accompanied by eruptions that changed the landscape of the mud volcano. Four major events triggered rapid sediment uplift of more than a metre in height, substantial lateral flow of muds at average velocities of 0.4 m per day, and significant emissions of methane and CO2 from the seafloor. PMID:25384354
2018-06-11
This image from NASA's Mars Reconnaissance Orbiter (MRO) shows a hill with a central crater. Such features have been interpreted as both mud volcanoes (really a sedimentary structure) and as actual volcanoes (the erupting lava kind). They occur on the floor of Valles Marineris below a closed topographic contour that could have held a lake, and the compaction of wet sediments may have created mud volcanoes. The fracture pattern of the bright flow unit surrounding the hill resembles mud cracks. However, there have also been observations from the CRISM instrument interpreted as high-temperature minerals, suggesting actual volcanism, although not necessarily at this location. Fine layers in the hill are consistent with either volcanism or mud flows. Either way, this activity is relatively recent in geologic time and may mark habitable subsurface environments. https://photojournal.jpl.nasa.gov/catalog/PIA22514
Multiphase modelling of mud volcanoes
NASA Astrophysics Data System (ADS)
Colucci, Simone; de'Michieli Vitturi, Mattia; Clarke, Amanda B.
2015-04-01
Mud volcanism is a worldwide phenomenon, classically considered as the surface expression of piercement structures rooted in deep-seated over-pressured sediments in compressional tectonic settings. The release of fluids at mud volcanoes during repeated explosive episodes has been documented at numerous sites and the outflows resemble the eruption of basaltic magma. As magma, the material erupted from a mud volcano becomes more fluid and degasses while rising and decompressing. The release of those gases from mud volcanism is estimated to be a significant contributor both to fluid flux from the lithosphere to the hydrosphere, and to the atmospheric budget of some greenhouse gases, particularly methane. For these reasons, we simulated the fluid dynamics of mud volcanoes using a newly-developed compressible multiphase and multidimensional transient solver in the OpenFOAM framework, taking into account the multicomponent nature (CH4, CO2, H2O) of the fluid mixture, the gas exsolution during the ascent and the associated changes in the constitutive properties of the phases. The numerical model has been tested with conditions representative of the LUSI, a mud volcano that has been erupting since May 2006 in the densely populated Sidoarjo regency (East Java, Indonesia), forcing the evacuation of 40,000 people and destroying industry, farmland, and over 10,000 homes. The activity of LUSI mud volcano has been well documented (Vanderkluysen et al., 2014) and here we present a comparison of observed gas fluxes and mud extrusion rates with the outcomes of numerical simulations. Vanderkluysen, L.; Burton, M. R.; Clarke, A. B.; Hartnett, H. E. & Smekens, J.-F. Composition and flux of explosive gas release at LUSI mud volcano (East Java, Indonesia) Geochem. Geophys. Geosyst., Wiley-Blackwell, 2014, 15, 2932-2946
NASA Technical Reports Server (NTRS)
Komar, Paul D.
1991-01-01
The term mud volcano is applied to a variety of landforms having in common a formation by extrusion of mud from beneath the ground. Although mud is the principal solid material that issues from a mud volcano, there are many examples where clasts up to boulder size are found, sometimes thrown high into the air during an eruption. Other characteristics of mud volcanoes (on Earth) are discussed. The possible presence of mud volcanoes, which are common and widespread on Earth, on Mars is considered.
Lazar, Cassandre Sara; John Parkes, R; Cragg, Barry A; L'Haridon, Stephane; Toffin, Laurent
2012-07-01
Marine mud volcanoes are geological structures emitting large amounts of methane from their active centres. The Amsterdam mud volcano (AMV), located in the Anaximander Mountains south of Turkey, is characterized by intense active methane seepage produced in part by methanogens. To date, information about the diversity or the metabolic pathways used by the methanogens in active centres of marine mud volcanoes is limited. (14)C-radiotracer measurements showed that methylamines/methanol, H(2)/CO(2) and acetate were used for methanogenesis in the AMV. Methylotrophic methanogenesis was measured all along the sediment core, Methanosarcinales affiliated sequences were detected using archaeal 16S PCR-DGGE and mcrA gene libraries, and enrichments of methanogens showed the presence of Methanococcoides in the shallow sediment layers. Overall acetoclastic methanogenesis was higher than hydrogenotrophic methanogenesis, which is unusual for cold seep sediments. Interestingly, acetate porewater concentrations were extremely high in the AMV sediments. This might be the result of organic matter cracking in deeper hotter sediment layers. Methane was also produced from hexadecanes. For the most part, the methanogenic community diversity was in accordance with the depth distribution of the H(2)/CO(2) and acetate methanogenesis. These results demonstrate the importance of methanogenic communities in the centres of marine mud volcanoes. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Episodic Deep Fluid Expulsion at Mud Volcanoes in the Kumano Forearc Basin, SE Offshore Japan
NASA Astrophysics Data System (ADS)
Hammerschmidt, S.; Kopf, A.
2014-12-01
Compressional forces at convergent margins govern a variety of processes, most prominently earthquakes, landslides and mud volcanoes in the forearc. Although all seem related to fluid pressure changes, mud volcanoes are not only characterized by expulsion of fluids, but also fluidized mud and clasts that got ripped-up during mud ascension. They hence provide information regarding mobilization depth, diagenetic overprint, and geodynamic pathways. At the Nankai Trough subduction zone, SE offshore Japan, mud volcanism id common and supposed to be related to seismogenic processes. During MARUM Expedition SO-222 with R/V SONNE, mud volcanoes in the Kumano forearc basin were mapped, cored and sampled. By extending the Integrated Ocean Drilling Program (IODP) Kumano transect landwards, 5 new mud volcanoes were identified by multibeam mapping. Cores revealed mud breccia with semi-consolidated silt- to claystone clasts and gaseous fluid escape structures, while the hemipelagic background sediments are characterized by intercalations of turbidites, ash layers and calcareous fossils. Clasts were subject to thin-section analyses, and the cores were sampled for XRD analyses and radiocarbon dating. Clasts showed prominent deformation structures, neomorphism and pores and fractures filled with polycrystalline quartz and/or calcite cement, probably formed during deep burial and early metamorphosis. Illite crystallinity based on XRD measurements varies between 0.24 and 0.38, which implies that the material originates from the Anchizone at depths ≥ 4 km. Radiocarbon dating revealed ages between 4450 and 30300 yr cal. BP, with age reversals occurring not earlier than 17000 yr cal. BP. Radiocarbon dating beneath turbidites and ash layers found at mud volcano #9 points to an episodic occurrence of these earthquake-related features in intervals of ca. 620 yr, while the mud volcano itself remained inactive. In summary, the preliminary results suggest that the mud volcanoes are nurtured from a reservoir within the older part of the accretionary prism, but that mud volcanic activity is less frequent than major earthquakes. Future models will focus on source depth and temperature, and might elucidate the prerequisites for fluid migration and its role in seismogenesis at the Nankai Trough subduction zone.
Triggering and dynamic evolution of the LUSI mud volcano, Indonesia
NASA Astrophysics Data System (ADS)
Mazzini, A.; Svensen, H.; Akhmanov, G. G.; Aloisi, G.; Planke, S.; Malthe-Sørenssen, A.; Istadi, B.
2007-09-01
Mud volcanoes are geologically important manifestations of vertical fluid flow and mud eruption in sedimentary basins worldwide. Their formation is predominantly ascribed to release of overpressure from clay- and organic-rich sediments, leading to impressive build-up of mud mountains in submarine and subaerial settings. Here we report on a newly born mud volcano appearing close to an active magmatic complex in a backarc sedimentary basin in Indonesia. The location of the mud volcano close to magmatic volcanoes results in a high background temperature gradient that triggers mineralogical transformations and geochemical reactions at shallow depth. The eruption of 100 °C mud and gas that started the 29th of May 2006 flooded a large area within the Sidoarjo village in Northeast Java. Thousands of people have so far been evacuated due to the mud flood hazards from the eruption. Since the initial eruption, the flow rate escalated from 5000 to 120,000 m 3/d during the first eleven weeks. Then the erupted volume started to pulsate between almost zero and 120,000 m 3/d in the period August 14 to September 10, whereas it increased dramatically following swarms of earthquakes in September, before reaching almost 180,000 m 3/d in December 2006. Sampling and observations were completed during two fieldwork campaigns on the site. The eruption of boiling water is accompanied by mud, aqueous vapour, CO 2 and CH 4. Based on geochemical and field results, we propose a mechanism where the eruptions started following the 27th of May earthquake due to fracturing and accompanied depressurization of > 100 °C pore fluids from > 1700 m depth. This resulted in the formation of a quasi-hydrothermal system with a geyser-like surface expression and with an activity influenced by the regional seismicity.
NASA Astrophysics Data System (ADS)
Lin, Saulwood; Tseng, Yi-Ting; Cheng, Wan-Yen; Chou, Cheng-Tien; Chen, NeiChen; Hsieh, I.-Chih
2016-04-01
TsanYao Mud Volcano (TYMV) is the largest mud volcano cone in the Hengchun Mud Volcano Group (HCMVG), located at the upper slope of the accrretionary wedge, southwest of Taiwan. The region is under active tectonic activity with the Philippine Plate, moving northwestward at a rate of ~8 cm/year. This region also receives huge quantity of suspended particle load of ~100 mT/year at present time from adjacent small rivers of the Island of Taiwan. Large loads of suspended sediments influx become a major source of organic carbon and later gas and other hydrocarbon. Gas and fluid in the mud volcano are actively venting from deep to the sea floor on the upper slope of the accretionary wedge. In order to understand venting on the HCMVG, echo sounder, towcam and coring were carried out. Pore water sulfate, chloride, potassium, calcium, stable isotope O-18, gas compositions, dissolved sulfide were analysed. The HCMVG consists of 12 volcano cones of different sizes. Large quantity of gas and fluid are venting directly from deep to the TYMV structure high, as well as 50+ other vents as appeared as flares on the echo sounder. Some flares are reaching to the atmosphere and likely a source of green house gases to the atmosphere. Venting fluids include gas bubbles, suspended particle, mud, and breccia. Breccia size could reach more than 12 cm in diameter. Circular bands in different color appeared around the cone may represent stages of vent eruptions. Compositions of vent gas include methane, ethane and propane. High proportions of ethane and propane in the vent gas demonstrated that source of gas are thermogenic in origin. Patchy authigenic carbonate, bacterial mats, bivalves, tube worms and other chemosynthesis organisms were supported by venting gas AOM process near the sea floor. Pore water chloride concentrations show distinct variation pattern from center cone to the side of the volcano, with low in the center and high away from the cone. Pore water with higher than seawater chloride indicated gas hydrate formation in sediments away from the mud volcano cone.
NASA Astrophysics Data System (ADS)
Magalhaes, V. H.; Freitas, M.; Azevedo, M. R.; Pinheiro, L. M.; Salgueiro, E.; Abrantes, F. F. G.
2017-12-01
On the Portuguese passive continental margin, active and past seepage processes form mud volcanoes and pockmarks at the seafloor. Often associated with these structures are extensive methane-derived authigenic carbonates that form from deep-sourced methane-rich fluids that ascend from deep to the upper sedimentary column and often discharge at the seafloor. These carbonates form within the sediments and are either dominated by dolomite and high-Mg calcites, when formed under a restricted seawater circulation environment, anoxic and low sulphate conditions; or by aragonite and calcite when formed close to or at the seafloor in a high sulphate system. The δ13C values (-56.2‰ VPDB) found on the carbonate-cemented material clearly indicates methane as the major carbon source. On the Yinazao serpentinite mud volcano at an active, non-accretionary, convergent margin, sediment samples from IODP Sites U1491 and U1492 (Exp. 366) contain authigenic minerals such as aragonite, calcite, brucite, gypsum among others. Authigenic aragonite occurs predominantly within the top meters of the cores where both oxidation and seawater circulation in the sedimentary column are higher. In this system, initial results indicate that the major carbon source is most probably not methane but seawater related. This work discusses and compares the major carbon sources in both systems: sedimentary mud volcanoes and pockmarks of a passive margin vs. a serpentinite mud volcano of an active, non-accretionary, convergent margin. We acknowledge the support from the PES project - Pockmarks and fluid seepage in the Estremadura Spur: implications for regional geology, biology, and petroleum systems (PTDC/GEOFIQ/5162/2014) financed by the Portuguese Foundation for Science and Technology (FCT).
Mud Volcanoes - Analogs to Martian Cones and Domes (by the Thousands!)
NASA Technical Reports Server (NTRS)
Allen, Carlton C.; Oehler, Dorothy
2010-01-01
Mud volcanoes are mounds formed by low temperature slurries of gas, liquid, sediments and rock that erupt to the surface from depths of meters to kilometers. They are common on Earth, with estimates of thousands onshore and tens of thousands offshore. Mud volcanoes occur in basins with rapidly-deposited accumulations of fine-grained sediments. Such settings are ideal for concentration and preservation of organic materials, and mud volcanoes typically occur in sedimentary basins that are rich in organic biosignatures. Domes and cones, cited as possible mud volcanoes by previous authors, are common on the northern plains of Mars. Our analysis of selected regions in southern Acidalia Planitia has revealed over 18,000 such features, and we estimate that more than 40,000 occur across the area. These domes and cones strongly resemble terrestrial mud volcanoes in size, shape, morphology, associated flow structures and geologic setting. Geologic and mineralogic arguments rule out alternative formation mechanisms involving lava, ice and impacts. We are studying terrestrial mud volcanoes from onshore and submarine locations. The largest concentration of onshore features is in Azerbaijan, near the western edge of the Caspian Sea. These features are typically hundreds of meters to several kilometers in diameter, and tens to hundreds of meters in height. Satellite images show spatial densities of 20 to 40 eruptive centers per 1000 square km. Many of the features remain active, and fresh mud flows as long as several kilometers are common. A large field of submarine mud volcanoes is located in the Gulf of Cadiz, off the Atlantic coasts of Morocco and Spain. High-resolution sonar bathymetry reveals numerous km-scale mud volcanoes, hundreds of meters in height. Seismic profiles demonstrate that the mud erupts from depths of several hundred meters. These submarine mud volcanoes are the closest morphologic analogs yet found to the features in Acidalia Planitia. We are also conducting laboratory analyses of surface samples collected from mud volcanoes in Azerbaijan, Taiwan and Japan. X-ray diffraction, visible / near infrared reflectance spectroscopy and Raman spectroscopy show that the samples are dominated by mixed-layer smectite clays, along with quartz, calcite and pyrite. Thin section analysis by optical and scanning electron microscopy confirms the mineral identifications. These samples also contain chemical and morphological biosignatures, including common microfossils, with evidence of partial replacement by pyrite. The bulk samples contain approximately 1 wt% total organic carbon and 0.4 mg / gm volatile hydrocarbons. The thousands of features in Acidalia Planitia cited as analogous to terrestrial mud volcanoes clearly represent an important element in the sedimentary record of Mars. Their location, in the distal depocenter for massive Hesperian-age floods, suggests that they contain fine-grained sediments from a large catchment area in the martian highlands. We have proposed these features as a new class of exploration target that can provide access to minimally-altered material from significant depth. By analogy to terrestrial mud volcanoes, these features may also be excellent sites for the sampling martian organics and subsurface microbial life, if such exist or ever existed.
Loher, M; Pape, T; Marcon, Y; Römer, M; Wintersteller, P; Praeg, D; Torres, M; Sahling, H; Bohrmann, G
2018-04-19
Submarine mud volcanoes release sediments and gas-rich fluids at the seafloor via deeply-rooted plumbing systems that remain poorly understood. Here the functioning of Venere mud volcano, on the Calabrian accretionary prism in ~1,600 m water depth is investigated, based on multi-parameter hydroacoustic and visual seafloor data obtained using ship-borne methods, ROVs, and AUVs. Two seepage domains are recognized: mud breccia extrusion from a summit, and hydrocarbon venting from peripheral sites, hosting chemosynthetic ecosystems and authigenic carbonates indicative of long-term seepage. Pore fluids in freshly extruded mud breccia (up to 13 °C warmer than background sediments) contained methane concentrations exceeding saturation by 2.7 times and chloride concentrations up to five times lower than ambient seawater. Gas analyses indicate an underlying thermogenic hydrocarbon source with potential admixture of microbial methane during migration along ring faults to the peripheral sites. The gas and pore water analyses point to fluids sourced deep (>3 km) below Venere mud volcano. An upward-branching plumbing system is proposed to account for co-existing mud breccia extrusion and gas seepage via multiple surface vents that influence the distribution of seafloor ecosystems. This model of mud volcanism implies that methane-rich fluids may be released during prolonged phases of moderate activity.
NASA Astrophysics Data System (ADS)
Dill, H. G.; Kaufhold, S.
2018-04-01
The Holocene mud volcano exposed at Totumo (younger than 4150 ± 50 yr BP) lines up together with some other landforms of its kind along the Caribbean Coast in northern Colombia. It currently vents a mud of the silicate-phosphate-bearing sulfur-sodium chloride type. The mud volcanoes evolved in an active continental margin setting of the South American Cordillera with high seismicity and affected by pervasive neotectonic structural disturbances. During the Neogene and Quaternary linear terrigenous shoreline sediments alternating with delta deposits evolved on this mobile crustal segment between the Andes and ancient Precambrian cratons. Meso- to microtidal sedimentary settings during transgression and progradation created meta- to instable sedimentary and petrophysical conditions (e.g. overpressure and gas-bearing bubble sands), favorable for the formation of mud volcanoes, whose lithofacies is subdivided into (1) footwall facies (detritus from metabasic, -pelitic source rocks), (2) mud volcano plus lateral facies (material from deep-seated hydrothermal sources, hydrocarbon plays, and brine reflux from the sea), (3) hanging wall facies, sand characterized by a strong longshore drift. The sedimentary volcanism in the area is characterized by different temperatures of formation: (1) pre-stage (<100 °C) and (2) recent stage (≈25 °C). Heavy (pyroxene, amphibole, epidote-clinozoisite, Fe-Ti silicates and oxides, garnet, alumosilicates, tourmaline, zircon, barite, Fe sulfides and -sulfates), light (Ca sulfates, calcite, quartz, feldspar) and clay minerals (kaolinite, mica, pyrophyllite, chlorite, vermiculite) are efficient tools to determine the source of mud, to subdivide the mud volcano system as to its facies and describe its physical-chemical regime as to the temperature of formation, pH and Eh values. The mud volcano system of Totumo bridges the gap between sedimentary "volcanism" and epithermal hot spring deposits of intermediate to high sulfidation and forms a useful "guide" to hydrocarbon accumulation.
Deep-biosphere methane production stimulated by geofluids in the Nankai accretionary complex
Kubo, Yusuke; Hoshino, Tatsuhiko; Sakai, Sanae; Arnold, Gail L.; Case, David H.; Lever, Mark A.; Morita, Sumito; Nakamura, Ko-ichi
2018-01-01
Microbial life inhabiting subseafloor sediments plays an important role in Earth’s carbon cycle. However, the impact of geodynamic processes on the distributions and carbon-cycling activities of subseafloor life remains poorly constrained. We explore a submarine mud volcano of the Nankai accretionary complex by drilling down to 200 m below the summit. Stable isotopic compositions of water and carbon compounds, including clumped methane isotopologues, suggest that ~90% of methane is microbially produced at 16° to 30°C and 300 to 900 m below seafloor, corresponding to the basin bottom, where fluids in the accretionary prism are supplied via megasplay faults. Radiotracer experiments showed that relatively small microbial populations in deep mud volcano sediments (102 to 103 cells cm−3) include highly active hydrogenotrophic methanogens and acetogens. Our findings indicate that subduction-associated fluid migration has stimulated microbial activity in the mud reservoir and that mud volcanoes may contribute more substantially to the methane budget than previously estimated. PMID:29928689
Lazar, Cassandre Sara; L'haridon, Stéphane; Pignet, Patricia; Toffin, Laurent
2011-05-01
Microbial mats in marine cold seeps are known to be associated with ascending sulfide- and methane-rich fluids. Hence, they could be visible indicators of anaerobic oxidation of methane (AOM) and methane cycling processes in underlying sediments. The Napoli mud volcano is situated in the Olimpi Area that lies on saline deposits; from there, brine fluids migrate upward to the seafloor. Sediments associated with a brine pool and microbial orange mats of the Napoli mud volcano were recovered during the Medeco cruise. Based on analysis of RNA-derived sequences, the "active" archaeal community was composed of many uncultured lineages, such as rice cluster V or marine benthic group D. Function methyl coenzyme M reductase (mcrA) genes were affiliated with the anaerobic methanotrophic Archaea (ANME) of the ANME-1, ANME-2a, and ANME-2c groups, suggesting that AOM occurred in these sediment layers. Enrichment cultures showed the presence of viable marine methylotrophic Methanococcoides in shallow sediment layers. Thus, the archaeal community diversity seems to show that active methane cycling took place in the hypersaline microbial mat-associated sediments of the Napoli mud volcano.
Gas hydrates and active mud volcanism on the South Shetland continental margin, Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Tinivella, U.; Accaino, F.; Della Vedova, B.
2008-04-01
During the Antarctic summer of 2003 2004, new geophysical data were acquired from aboard the R/V OGS Explora in the BSR-rich area discovered in 1996 1997 along the South Shetland continental margin off the Antarctic Peninsula. The objective of the research program, supported by the Italian National Antarctic Program (PNRA), was to verify the existence of a potential gas hydrate reservoir and to reconstruct the tectonic setting of the margin, which probably controls the extent and character of the diffused and discontinuous bottom simulating reflections. The new dataset, i.e. multibeam bathymetry, seismic profiles (airgun and chirp), and two gravity cores analysed by computer-aided tomography as well as for gas composition and content, clearly shows active mud volcanism sustained by hydrocarbon venting in the region: several vents, located mainly close to mud volcanoes, were imaged during the cruise and their occurrence identified in the sediment samples. Mud volcanoes, vents and recent slides border the gas hydrate reservoir discovered in 1996 1997. The cores are composed of stiff silty mud. In core GC01, collected in the proximity of a mud volcano ridge, the following gases were identified (maximum contents in brackets): methane (46 μg/kg), pentane (45), ethane (35), propane (34), hexane (29) and butane (28). In core GC02, collected on the flank of the Vualt mud volcano, the corresponding data are methane (0 μg/kg), pentane (45), ethane (22), propane (0), hexane (27) and butane (25).
NASA Astrophysics Data System (ADS)
Caress, D. W.; Paull, C. K.; Dallimore, S.; Lundsten, E. M.; Anderson, K.; Gwiazda, R.; Melling, H.; Lundsten, L.; Graves, D.; Thomas, H. J.; Cote, M.
2017-12-01
Two active submarine mud volcano sites located at 420 and 740 m depths on the margin of the Canadian Beaufort Sea were mapped in 2013 and again in 2016 using the same survey line pattern allowing detection of change over three years. The surveys were conducted using MBARI's mapping AUVs which fields a 200 kHz or 400 kHz multibeam sonar, a 1-6 kHz chirp sub-bottom profiler, and a 110 kHz chirp sidescan from a 50 m altitude. The resulting bathymetry has 1 m lateral resolution and 0.1 m vertical precision and sidescan mosaics have 1 m lateral resolution. Vertical changes of ≥0.2 m are observable by differencing repeat surveys. These features were also visited with MBARI's miniROV, which was outfitted for these dives with a manipulator mounted temperature probe. The 420 m mud volcano is nearly circular, 1100 m across, flat-topped, and superimposed on the pre-existing smooth slope. The central plateau has low relief <3 m consisting of concentric rings and ovoid mounds that appear to reflect distinct eruptions at shifting locations. The 740 m site contains 3 mud volcanoes, most prominently a 630 m wide, 30 m high flat-topped plateau with about 4 m of relief similar to the 420 m feature plus a 5 m high cone on the southern rim. North of this plateau is a smooth-textured conically shaped feature also standing about 30 m above the floor of the subsidence structure. Sidescan mosaics reveal significant changes in backscatter patterns at both mud volcano sites between surveys. Comparison of bathymetry also reveals new flows of up to 1.8 m thickness at both sites, as well as subtle spreading of the flat plateaus rims. An active mudflow was encountered during a miniROV dive on a high backscatter target at the 740 m site. This tongue of mud was observed to be slowly flowing downslope. The ROV temperature probe inserted 2 cm into the flow measured 23°C, compared to ambient water (-0.4°C), indicating the rapid ascent of the mud from considerable subsurface depths. Bubbles (presumably methane) were escaping from the active mudflow. Combining seafloor mapping with ROV observations indicates that new sediment flows with entrained methane bubbles exhibit very high backscatter which rapidly changes to very low backscatter following degassing of the smooth, bare mud. To our knowledge this is the first time an eruption on a submarine mud volcano has been observed.
Aerial monitoring in active mud volcano by UAV technique
NASA Astrophysics Data System (ADS)
Pisciotta, Antonino; Capasso, Giorgio; Madonia, Paolo
2016-04-01
UAV photogrammetry opens various new applications in the close range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives to the classical manned aerial photogrammetry. Between 2014 and 2015 tree aerial surveys have been carried out. Using a quadrotor drone, equipped with a compact camera, it was possible to generate high resolution elevation models and orthoimages of The "Salinelle", an active mud volcanoes area, located in territory of Paternò (South Italy). The main risks are related to the damages produced by paroxysmal events. Mud volcanoes show different cyclic phases of activity, including catastrophic events and periods of relative quiescence characterized by moderate activity. Ejected materials often are a mud slurry of fine solids suspended in liquids which may include water and hydrocarbon fluids, the bulk of released gases are carbon dioxide, with some methane and nitrogen, usually pond-shaped of variable dimension (from centimeters to meters in diameter). The scope of the presented work is the performance evaluation of a UAV system that was built to rapidly and autonomously acquire mobile three-dimensional (3D) mapping data in a volcanic monitoring scenario.
NASA Astrophysics Data System (ADS)
Hölz, Sebastian; Swidinsky, Andrei; Sommer, Malte; Jegen, Marion; Bialas, Jörg
2015-04-01
Submarine mud volcanos at the seafloor are surface expressions of fluid flow systems within the seafloor. Since the electrical resistivity of the seafloor is mainly determined by the amount and characteristics of fluids contained within the sediment's pore space, electromagnetic methods offer a promising approach to gain insight into a mud volcano's internal resistivity structure. To investigate this structure, we conducted a controlled source electromagnetic experiment, which was novel in the sense that the source was deployed and operated with a remotely operated vehicle, which allowed for a flexible placement of the transmitter dipole with two polarization directions at each transmitter location. For the interpretation of the experiment, we have adapted the concept of rotational invariants from land-based electromagnetics to the marine case by considering the source normalized tensor of horizontal electric field components. We analyse the sensitivity of these rotational invariants in terms of 1-D models and measurement geometries and associated measurement errors, which resemble the experiment at the mud volcano. The analysis shows that any combination of rotational invariants has an improved parameter resolution as compared to the sensitivity of the pure radial or azimuthal component alone. For the data set, which was acquired at the `North Alex' mud volcano, we interpret rotational invariants in terms of 1-D inversions on a common midpoint grid. The resulting resistivity models show a general increase of resistivities with depth. The most prominent feature in the stitched 1-D sections is a lens-shaped interface, which can similarly be found in a section from seismic reflection data. Beneath this interface bulk resistivities frequently fall in a range between 2.0 and 2.5 Ωm towards the maximum penetration depths. We interpret the lens-shaped interface as the surface of a collapse structure, which was formed at the end of a phase of activity of an older mud volcano generation and subsequently refilled with new mud volcano sediments during a later stage of activity. Increased resistivities at depth cannot be explained by compaction alone, but instead require a combination of compaction and increased cementation of the older sediments, possibly in connection to trapped, cooled down mud volcano fluids, which have a depleted chlorinity. At shallow depths (≤50 m) bulk resistivities generally decrease and for locations around the mud volcano's centre 1-D models show bulk resistivities in a range between 0.5 and 0.7 Ωm, which we interpret in terms of gas saturation levels by means of Archie's Law. After a detailed analysis of the material parameters contained in Archie's Law we derive saturation levels between 0 and 25 per cent, which is in accordance with observations of active degassing and a reflector with negative polarity in the seismics section just beneath the seafloor, which is indicative of free gas.
Mud volcanoes of trinidad as astrobiological analogs for martian environments.
Hosein, Riad; Haque, Shirin; Beckles, Denise M
2014-10-13
Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC) was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i) Digity; (ii) Piparo and (iii) Devil's Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region.
Mud Volcanoes of Trinidad as Astrobiological Analogs for Martian Environments
Hosein, Riad; Haque, Shirin; Beckles, Denise M.
2014-01-01
Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC) was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i) Digity; (ii) Piparo and (iii) Devil’s Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region. PMID:25370529
Large historical eruptions at subaerial mud volcanoes, Italy
NASA Astrophysics Data System (ADS)
Manga, M.; Bonini, M.
2012-11-01
Active mud volcanoes in the northern Apennines, Italy, currently have gentle eruptions. There are, however, historical accounts of violent eruptions and outbursts. Evidence for large past eruptions is also recorded by large decimeter rock clasts preserved in erupted mud. We measured the rheological properties of mud currently being erupted in order to evaluate the conditions needed to transport such large clasts to the surface. The mud is well-characterized by the Herschel-Bulkley model, with yield stresses between 4 and 8 Pa. Yield stresses of this magnitude can support the weight of particles with diameters up to several mm. At present, particles larger than this size are not being carried to the surface. The transport of larger clasts to the surface requires ascent speeds greater than their settling speed in the mud. We use a model for the settling of particles and rheological parameters from laboratory measurements to show that the eruption of large clasts requires ascent velocities > 1 m s-1, at least three orders of magnitude greater than during the present, comparatively quiescent, activity. After regional earthquakes on 20 May and 29 May 2012, discharge also increased at locations where the stress changes produced by the earthquakes would have unclamped feeder dikes below the mud volcanoes. The magnitude of increased discharge, however, is less than that inferred from the large clasts. Both historical accounts and erupted deposits are consistent in recording episodic large eruptions.
Genesis of mud volcano fluids in the Gulf of Cadiz - A novel model approach
NASA Astrophysics Data System (ADS)
Schmidt, Christopher; Burwicz, Ewa; Hensen, Christian; Martínez-Loriente, Sara; Wallmann, Klaus; Gràcia, Eulàlia
2017-04-01
Mud volcanism and fluid seepage are common phenomena on the continental margin in the Gulf of Cadiz, North East Atlantic Ocean. Over the past 2 decades more than 50 mud volcanoes have been discovered and investigated interdisciplinarily. Mud volcano fluids emanating at these sites are sourced at great depths and migration is often mediated by strike slip faults in a seismically active region. The geochemical signals of the mud volcano fluids are affected by widespread various processes such as clay mineral dehydration, but also the recrystallization of ancient carbonate rocks and the alteration of oceanic crust have been suggested (Hensen et al., 2015). We developed a novel fully-coupled, basin-scale, reaction-transport model with an adaptive numerical mesh to simulate the fluid genesis in this region. An advantage of this model is the coupling of a realistic geophysical and geochemical approach, considering a growing sediment column over time together with instant compaction of sediments as well as diffusion and advection of dissolved pore water species and chemical reactions. In this proof of concept study, we looked at various scenarios to identify the processes of fluid genesis for 4 mud volcanoes, representing combinations in different subsurface settings. We can reproduce the fluid signatures (chloride, strontium, 87Sr/86Sr) of all mud volcanoes. Furthermore, we can give additional evidence that alteration of oceanic crust by fluid flow is a likely process affecting the fluid composition. Hensen, C., Scholz, F., Nuzzo, M., Valadares, V., Gràcia, E., Terrinha, P., Liebetrau, V., Kaul, N., Silva, S., Martínez-Loriente, S., Bartolome, R., Piñero, E., Magalhães, V. H., Schmidt, M., Weise, S. M., Cunha, M., Hilario, A., Perea, H., Rovelli, L., and Lackschewitz, K., 2015, Strike-slip faults mediate the rise of crustal-derived fluids and mud volcanism in the deep sea: Geology, v. 43, no. 4, p. 339-342.
Automated Quantification of Gradient Defined Features
2008-09-01
defined features in submarine environments. The technique utilizes MATLAB scripts to convert bathymetry data into a gradient dataset, produce gradient...maps, and most importantly, automate the process of defining and characterizing gradient defined features such as flows, faults, landslide scarps, folds...convergent plate margin hosts a series of large serpentinite mud volcanoes (Fig. 1). One of the largest of these active mud volcanoes is Big Blue
NASA Astrophysics Data System (ADS)
Hsu, H. H.; Chen, T. T.; Liu, C. S.; Su, C. C.; Paull, C. K.; Caress, D. W.; Gwiazda, R.; Chen, Y. H.
2017-12-01
Mud Volcano V (MV5) is an active submarine mud volcano sitting on top of a mud diapir ridge at water depths of 600 m in the active margin offshore of southwestern Taiwan. This cone-shape mud volcano is almost 3-km-wide, 200-m-high, with 9.5° slopes, and explosively ejects streams of mud every 1.5-3 minutes. It was first mapped in 2013 with MBARI's mapping AUV (autonomous underwater vehicle). In 2017, a repeated AUV mapping survey was conducted to see if significant bathymetric changes took place since 2013, and to investigate the fluxes of fluids that pass through diapiric structures in an active continental margin. In addition to high-resolution bathymetry (1-m-resolution), sub-bottom profiling and side-scan sonar data acquired by the AUV, and videos and samples collected by MBARI's miniROV, we also incorporate multichannel seismic reflection data and gravity core sample analyses in this study. AUV bathymetry data reveal that there are two gryphons on the eastern slope of MV5. In the 2017 survey the mapped sizes of the two side cones were 80 m wide, 35 m long, 20 m relief and 40 m wide, 40 m long, 12 m relief, respectively. Comparing the bathymetry mapped in the 2017 AUV survey with that surveyed in 2013, no obvious overall morphological changes in MV5 are detected, except around the two gryphons. In the time period between the surveys, due to venting of mud from the two gryphons, two series of flow deposits which can be up to 5 meters thick are observed along the slope in the east side of both gryphons. The center depressions of these two gryphons have increased by 1-5 meters depth in their west side. Seismic and sub-bottom profiles reveal amplitude anomalies in the sub-strata of MV5 which indicate possible fluid migration paths of mud flows from deep. The trace of mud flow from the top of MV5 to its foot can be delineated from the side-scan sonar images. On the basis of 210Pbex chronology dating method, the sedimentation rate on the surface of MV5 is very slow (0.057 cm/y). High methane anomalies are discovered on MV5 based on the geochemical analysis results of gravity core samples, but the heat probe did not detect obvious temperature changes before and after venting episodes in the 2017 survey. Based on this comprehensive study, a three-step model is proposed to explain mud volcano venting processes in the active margin offshore of SW Taiwan.
Corinaldesi, Cinzia; Dell'Anno, Antonio; Danovaro, Roberto
2012-06-01
Mud volcanoes are geological structures in the oceans that have key roles in the functioning of the global ecosystem. Information on the dynamics of benthic viruses and their interactions with prokaryotes in mud volcano ecosystems is still completely lacking. We investigated the impact of viral infection on the mortality and assemblage structure of benthic prokaryotes of five mud volcanoes in the Mediterranean Sea. Mud volcano sediments promote high rates of viral production (1.65-7.89 × 10(9) viruses g(-1) d(-1)), viral-induced prokaryotic mortality (VIPM) (33% cells killed per day) and heterotrophic prokaryotic production (3.0-8.3 μgC g(-1) d(-1)) when compared with sediments outside the mud volcano area. The viral shunt (that is, the microbial biomass converted into dissolved organic matter as a result of viral infection, and thus diverted away from higher trophic levels) provides 49 mgC m(-2) d(-1), thus fuelling the metabolism of uninfected prokaryotes and contributing to the total C budget. Bacteria are the dominant components of prokaryotic assemblages in surface sediments of mud volcanoes, whereas archaea dominate the subsurface sediment layers. Multivariate multiple regression analyses show that prokaryotic assemblage composition is not only dependant on the geochemical features and processes of mud volcano ecosystems but also on synergistic interactions between bottom-up (that is, trophic resources) and top-down (that is, VIPM) controlling factors. Overall, these findings highlight the significant role of the viral shunt in sustaining the metabolism of prokaryotes and shaping their assemblage structure in mud volcano sediments, and they provide new clues for our understanding of the functioning of cold-seep ecosystems.
Corinaldesi, Cinzia; Dell'Anno, Antonio; Danovaro, Roberto
2012-01-01
Mud volcanoes are geological structures in the oceans that have key roles in the functioning of the global ecosystem. Information on the dynamics of benthic viruses and their interactions with prokaryotes in mud volcano ecosystems is still completely lacking. We investigated the impact of viral infection on the mortality and assemblage structure of benthic prokaryotes of five mud volcanoes in the Mediterranean Sea. Mud volcano sediments promote high rates of viral production (1.65–7.89 × 109 viruses g−1 d−1), viral-induced prokaryotic mortality (VIPM) (33% cells killed per day) and heterotrophic prokaryotic production (3.0–8.3 μgC g−1 d−1) when compared with sediments outside the mud volcano area. The viral shunt (that is, the microbial biomass converted into dissolved organic matter as a result of viral infection, and thus diverted away from higher trophic levels) provides 49 mgC m−2 d−1, thus fuelling the metabolism of uninfected prokaryotes and contributing to the total C budget. Bacteria are the dominant components of prokaryotic assemblages in surface sediments of mud volcanoes, whereas archaea dominate the subsurface sediment layers. Multivariate multiple regression analyses show that prokaryotic assemblage composition is not only dependant on the geochemical features and processes of mud volcano ecosystems but also on synergistic interactions between bottom-up (that is, trophic resources) and top-down (that is, VIPM) controlling factors. Overall, these findings highlight the significant role of the viral shunt in sustaining the metabolism of prokaryotes and shaping their assemblage structure in mud volcano sediments, and they provide new clues for our understanding of the functioning of cold-seep ecosystems. PMID:22170423
Near-specular acoustic scattering from a buried submarine mud volcano.
Gerig, Anthony L; Holland, Charles W
2007-12-01
Submarine mud volcanoes are objects that form on the seafloor due to the emission of gas and fluidized sediment from the Earth's interior. They vary widely in size, can be exposed or buried, and are of interest to the underwater acoustics community as potential sources of active sonar clutter. Coincident seismic reflection data and low frequency bistatic scattering data were gathered from one such buried mud volcano located in the Straits of Sicily. The bistatic data were generated using a pulsed piston source and a 64-element horizontal array, both towed over the top of the volcano. The purpose of this work was to appropriately model low frequency scattering from the volcano using the bistatic returns, seismic bathymetry, and knowledge of the general geoacoustic properties of the area's seabed to guide understanding and model development. Ray theory, with some approximations, was used to model acoustic propagation through overlying layers. Due to the volcano's size, scattering was modeled using geometric acoustics and a simple representation of volcano shape. Modeled bistatic data compared relatively well with experimental data, although some features remain unexplained. Results of an inversion for the volcano's reflection coefficient indicate that it may be acoustically softer than expected.
Source Signature of Sr Isotopes in Fluids Emitting From Mud volcanoes in Taiwan
NASA Astrophysics Data System (ADS)
Chung, C.; You, C.; Chao, H.
2003-12-01
Located at the boundary between the Philippine Sea Plate and the Asia Continental Plate, abundance of mud volcanoes were erupted on land in Taiwan. According to their occurrences and associated tectonic settings, these mud volcanoes were classified into four groupies. The group (I) mud volcanoes are located in the western coastal plane, whereas group (II) and (III) are situated near the Kutinkung anticline axis and the Chishan fault respectively. The group (IV) mud volcanoes are discovered at the Coastal Range. Although there are numerous studies focused on morphology, possible fluid migration paths and sources are poorly understood. We have collected and analyzed major ions and Sr isotopic ratios in fluids separated from various mud volcanoes in Taiwan. Chemical contents of these fluids were measured by IC and the emitted gasses were analyzed by GC. The Sr concentrations in these fluids were determined using AA and the isotopic compositions were analyzed by TIMS. The dominated ions in fluids are Na and Cl which account for 98% of dissolved materials. All fluids show similar Na/Cl ratios(0.7-0.8), slightly higher than seawater but each group has unique Sr isotopic signature. Waters expelled from group I mud volcanoes featured with low salinity and high Sr isotopic ratios ranged from 0.71150 to 0.71175. Groups II and III were outcroped in the Kutinkung formation but show distinctive chemical compositions. Group II fluids have four times Cl concentrations(358-522mM) compared with those of group III(85-162mM). The latter fluids appear to be more radiogenic(0.71012- 0.71075) indicating possible influence due to water-rock interactions. Low 87Sr/86Sr(0.70692-0.70939) is typical characteristic of mud volcano fluids in group IV where large Mg and K depletion were discovered, suggesting effects due to sediment diagenetic processes. The chemical compositions of mud volcano associated gasses show similar distribution pattern. The major gas constituents in mud volcano zones II and III are methane(>80%), air(1-10%) and carbon dioxide(1-5%). Gases collected from zone IV display significantly higher air content(5-20%) with low carbon dioxide(<0.2%). These results are useful for gaining a better understanding of mud volcano fluid sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guliyev, I.A.; Aliyev, A.A.; Rahmanov, R.R.
Azerbaijan is a classic region for the study of mud volcanism. Of the 700 mud volcanoes known in the world, 220 are in Azerbaijan. These are of great interest, not least in relation to oil and gas exploration since they give information on subsurface sediments beyond the reach of drilling. Mud volcanoes are clearly visible on satellite images. They are confined to structural lineaments and associated fractures. Changes in the morphology of some mud volcanoes post-eruption can be detected from a series of images pre-dating and post-dating eruptions. Mud volcanoes are notable for gradients of temperature that are by anmore » order of magnitude or a factor of 102 greater than the temperature gradients established elsewhere. The gases of mud volcanoes consist mainly of methane (95-100%). There are small amounts of C{sub 2-6}, CO{sub 2}, N{sub 2}, He and Ar. The isotopic composition of carbon (ICC) within the methane varies from -61.29. to -35.W{close_quotes} which is isotopically heavier than the methane from producing fields. The ICC of the CO{sub 2} has a very wide range (from -49.6% to +23.1%), indicating several sources of its formation. The isotopically superheavy CO{sub 2} (+5%) is especially interesting. Oils from mud volcanoes are typically severely biodegraded. Their ICC ranges from -24.76% to -28.2%. A relationship between {partial_derivative}{sup l3}C of oils and ages of accumulations has been established. Waters of mud volcanoes are lightly mineralised, containing chiefly bicarbonates and sodium. The hydrogen composition of the water is abnormally heavy. Ejected rocks from mud volcanoes range in age from Cretaceous - Pliocene. Their study suggests that deeply buried reservoirs maintain good poroperm characteristics because of relatively little catagenesis.« less
NASA Astrophysics Data System (ADS)
Zheng, Guodong; Ma, Xiangxian; Guo, Zhengfu; Hilton, David R.; Xu, Wang; Liang, Shouyun; Fan, Qiaohui; Chen, Wenxing
2017-11-01
There are many mud volcanoes in the southern margin of the Junggar Basin, northwest China, of which the Dushanzi area is the most typical and active one, emitting large amount of greenhouse gases associated with water and mud. The emitted gas is dominated by methane (average 90.1%), together with other gases, such as ethane (4.84-5.46%), propane (0.06-0.90%), CO2 (0.67-1.0%), and N2 (2.8-3.3%). The carbon (δ13C1) and hydrogen (δD) isotopic ratios of methane are in the ranges of -40.6‰ to -45.0‰ and -221‰ to -249‰, respectively, whereas carbon isotope ratios of ethane (δ13C2) are -25.2‰ to -27.6‰. Based on δ13C values, the released gas is characterized as a thermogenic coal-type and possibly originated from the middle-low Jurassic coal-bearing sequences according to the gas-source correlation and regional geology. Helium isotopes show a crustal source. The methane flux of Dushanzi mud volcanoes from both macro-seepage (craters/vents) and micro-seepage (ground soil exhalation) ranged over the orders of magnitude, from 0.4-2.7 kg d-1 and 4950 mg m-2 d-1 on average, respectively. Positive CH4 fluxes from dry soil were widespread throughout the investigated areas. The total CH4 emission from Dushanzi mud volcanoes is estimated to be at least 22.6 tons a-1, of which about 89% is from micro-seepage surrounding the mud volcano vents.
CO2 flux from Javanese mud volcanism
NASA Astrophysics Data System (ADS)
Queißer, M.; Burton, M. R.; Arzilli, F.; Chiarugi, A.; Marliyani, G. I.; Anggara, F.; Harijoko, A.
2017-06-01
Studying the quantity and origin of CO2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO2 with a volume fraction of at least 16 vol %. A lower limit CO2 flux of 1.4 kg s-1 (117 t d-1) was determined, in line with the CO2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO2 flux of 3 kt d-1, comparable with the expected back-arc efflux of magmatic CO2. After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO2, with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man-portable active remote sensing instruments for probing natural gas releases, enabling bottom-up quantification of CO2 fluxes.
Linking geochemical processes in mud volcanoes with arsenic mobilization driven by organic matter.
Liu, Chia-Chuan; Kar, Sandeep; Jean, Jiin-Shuh; Wang, Chung-Ho; Lee, Yao-Chang; Sracek, Ondra; Li, Zhaohui; Bundschuh, Jochen; Yang, Huai-Jen; Chen, Chien-Yen
2013-11-15
The present study deals with geochemical characterization of mud fluids and sediments collected from Kunshuiping (KSP), Liyushan (LYS), Wushanting (WST), Sinyangnyuhu (SYNH), Hsiaokunshui (HKS) and Yenshuikeng (YSK) mud volcanoes in southwestern Taiwan. Chemical constituents (cations, anions, trace elements, organic carbon, humic acid, and stable isotopes) in both fluids and mud were analyzed to investigate the geochemical processes and spatial variability among the mud volcanoes under consideration. Analytical results suggested that the anoxic mud volcanic fluids are highly saline, implying connate water as the probable source. The isotopic signature indicated that δ(18)O-rich fluids may be associated with silicate and carbonate mineral released through water-rock interaction, along with dehydration of clay minerals. Considerable amounts of arsenic in mud irrespective of fluid composition suggested possible release through biogeochemical processes in the subsurface environment. Sequential extraction of As from the mud indicated that As was mostly present in organic and sulphidic phases, and adsorbed on amorphous Mn oxyhydroxides. Volcanic mud and fluids are rich in organic matter (in terms of organic carbon), and the presence of humic acid in mud has implications for the binding of arsenic. Functional groups of humic acid also showed variable sources of organic matter among the mud volcanoes being examined. Because arsenate concentration in the mud fluids was found to be independent from geochemical factors, it was considered that organic matter may induce arsenic mobilization through an adsorption/desorption mechanism with humic substances under reducing conditions. Organic matter therefore plays a significant role in the mobility of arsenic in mud volcanoes. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valysaev, B.M.; Erokhin, V.E.; Grinchenko, Y.I.
A study has been made of the isotopic composition of the carbon in methane and carbon dioxide, as well as hydrogen in the methane, in the gases of mud volcanoes, for all main mud volcano areas in the USSR. The isotopic composition of carbon and hydrogen in methane shows that the gases resemble those of oil and gas deposits, while carbon dioxide of these volcanoes has a heavier isotopic composition with a greater presence of ''ultraheavy'' carbon dioxide. By the chemical and isotopic composition of gases, Azerbaidzhan and South Sakhalin types of mud volcano gases have been identified, as wellmore » as Bulganak subtypes and Akhtala and Kobystan varieties. Correlations are seen between the isotopic composition of gases and the geological build of mud volcano areas.« less
NASA Astrophysics Data System (ADS)
Thomas, Adam; Holley, Rachel; Burren, Richard; Meikle, Chris; Shilston, David
2010-03-01
The Lampur Sidoarjo mud volcano (Java, Indonesia), colloquially called LUSI, first appeared in May 2006. Its cause, whether the result of natural or anthropogenic activities (or a combination of both), is still being debated within the academic, engineering and political communities.The mud volcano expels up to 150,000 m3 of mud per day; and over time, this large volume of mud has had a major environmental and economic impact on the region. The mud flow from LUSI has now covered 6 km2 to depths some tens of metres, displacing approximately 30,000 residents; and continues to threaten local communities, businesses and industry. With such a large volume of mud being expelled each day it is inevitable (as with onshore oil and gas production fields) that there will be some ground surface movement and instability issues at the mud source (the main vent), and in the vicinity of the mud volcano footprint.Due to the dynamic ground surface conditions, engineers and academics alike have found it difficult to reliably monitor ground surface movements within the effected region using conventional surveying techniques. Consequently, engineers responsible for the risk assessment of ground surface instabilities within the proximity of LUSI have called upon the use of satellite interferometry to continually monitor the hazard.The Advanced Land Observing Satellite (ALOS), launched on 24th January 2006, carries onboard an L- band Synthetic Aperture Radar (SAR) instrument called PALSAR (Phased Array type L-band Synthetic Aperture Radar). In contrast to established C-band (5.6cm wavelength) SAR instruments onboard ERS-1 & -2, Envisat, Radarsat-1, and the recently launched Radarsat-2 satellite, PALSAR's (L-band/23.8cm wavelength) instrument presents a number of advantages, including the ability to map larger-scale ground motions, over relatively short timeframes, in tropical environments, without suffering as significantly from signal decorrelation associated with C-band imagery.This paper presents the results of a 2-year ALOS PALSAR Differential Interferometric (DifSAR) monitoring campaign across the LUSI mud volcano. DifSAR processing was applied to a sequence of images acquired on a 3 to 6-month basis between May 2006 and May 2008. The results highlight the capability of ALOS PALSAR in detecting decimetres of coherent ground subsidence to assist engineers in their analysis of the structure, dynamics and overall stability of the mud volcano and the surrounding region.
Limitations of microbial hydrocarbon degradation at the Amon mud volcano (Nile deep-sea fan)
NASA Astrophysics Data System (ADS)
Felden, J.; Lichtschlag, A.; Wenzhöfer, F.; de Beer, D.; Feseker, T.; Pop Ristova, P.; de Lange, G.; Boetius, A.
2013-05-01
The Amon mud volcano (MV), located at 1250 m water depth on the Nile deep-sea fan, is known for its active emission of methane and non-methane hydrocarbons into the hydrosphere. Previous investigations showed a low efficiency of hydrocarbon-degrading anaerobic microbial communities inhabiting the Amon MV center in the presence of sulfate and hydrocarbons in the seeping subsurface fluids. By comparing spatial and temporal patterns of in situ biogeochemical fluxes, temperature gradients, pore water composition, and microbial activities over 3 yr, we investigated why the activity of anaerobic hydrocarbon degraders can be low despite high energy supplies. We found that the central dome of the Amon MV, as well as a lateral mud flow at its base, showed signs of recent exposure of hot subsurface muds lacking active hydrocarbon degrading communities. In these highly disturbed areas, anaerobic degradation of methane was less than 2% of the methane flux. Rather high oxygen consumption rates compared to low sulfide production suggest a faster development of more rapidly growing aerobic hydrocarbon degraders in highly disturbed areas. In contrast, the more stabilized muds surrounding the central gas and fluid conduits hosted active anaerobic hydrocarbon-degrading microbial communities. The low microbial activity in the hydrocarbon-vented areas of Amon MV is thus a consequence of kinetic limitations by heat and mud expulsion, whereas most of the outer MV area is limited by hydrocarbon transport.
Geochemistry and microbiology at gas hydrate and mud volcano sites in the black sea
NASA Astrophysics Data System (ADS)
Drews, M.; Schmaljohann, R.; Wallmann, K.
2003-04-01
We present geochemical and microbiological results which were obtained from sediments at gas hydrate and mud volcano sites in the Sorokin Trough (northern Black Sea, south east of the Crimean peninsula) at water depths of about 1800 to 2100 m during the METEOR cruise 52-1. The surface near sub-bottom accumulations of gas hydrates (occuring at depths of several meters or less beneath the sea floor) in the Black Sea are associated with numerous mud volcanos. At stations we investigated gas hydrates occurred below 10 cm to 100 cm with a significant influence on the sediment biochemistry. Analyses revealed high methane concentrations, anoxic and sulfidic conditions, a steep sulfate gradient, carbonate precipitation, and high anaerobic methane oxidation rates. In proximity of the so called Odessa mud volcano one investigated sampling station showed maximum methane oxidation rates in the depth horizon of a firm 2 cm thick carbonate crust layer, adhered to by a bacterial mat. This observation is taken to indicate that the bacteria are causing or mediating the crust formation by their anaerobic methane oxidation metabolism. The station was further characterised by two layers of gas hydrate fragments and lenses below 1 m depth. A 2 to 4 cm thick carbonate crust with attached bacterial mat from a Yalta mud vulcano sample (2124 m water depth) was investigated under the scanning electron microscope. The stiff gelatinous mat showed a dense and morphologically uniform population of rod shaped bacteria with only a few nests of coccoid cells. Purified mat material exhibited anaerobic methane oxidation activity. These mats resemble the type previously found in the shallow NW methane seep area of the Black Sea, where it covers carbonate chimneys. Samples from two sites atop the summit of the active but flat-topped Dvurechenskii mud volcano were characterised by very high methane oxidation rates (up to 563 nmol/cm3/d) at the sediment surface. Strong pore water gradients of chloride, bromide, ammonium, methane, and temperature proved the existence of a rich upward flow of warm fluids from the deeper sediment. At both stations no carbonate crusts or bacterial mats were found. The lack of hemipelagic sediments and at the same time abundance of mud breccia gives ample evidence of the recency of the mud flow.
NASA Astrophysics Data System (ADS)
Naudts, L.; Khlystov, O.; Khabuev, A.; Seminskiy, I.; Casier, R.; Cuylaerts, M.; 'chenko, P., General; Synaeve, J.; Vlamynck, N.; de Batist, M. A.; Grachev, M. A.
2009-12-01
Lake Baikal is a large rift lake in Southern Siberia (Russian Federation). It occupies the three central depressions of the Baikal Rift Zone (BRZ): i.e. the Southern, Central and Northern Baikal Basins. Rifting started ca. 30 Ma ago and is still active with a present-day average extension rate of about 4 mm/yr. With a depth of 1637 m, Lake Baikal is the deepest lake in the World. It also holds 20 % of the world’s liquid surface fresh water, which makes it the largest lake in the World in terms of volume. Lake Baikal is also the only freshwater lake in the World with demonstrated occurrences of gas hydrates in its sedimentary infill. Methane hydrates are stable at water depths below 375 m. The presence of hydrates in the sedimentary infill is evidenced by a widespread BSR. Hydrates have also been encountered locally, in the near-bottom sediments of mud-volcano-like structures. In the summer of 2009, the lake floor has been mapped with multibeam swath bathymetry for the first time during a two-month-long survey with RV Titov. Swath bathymetry data were acquired with RCMG’s mobile 50 kHz SeaBeam 1050 multibeam system. In total 12600 km of echosounder tracks were sailed covering 15000 km2, including the Academician Ridge Accommodation Zone, the Central Baikal Basin, the Selenga Delta Accommodation Zone en the South Baikal Basin. In general, the lake floor was mapped starting from water depths of about -200 m to -1637 m, with an average survey depth of -1000 m. The new bathymetric data image the lake-floor morphology in unprecedented detail, revealing many small- and large-scall morphosedimentary, morphostructural and fluid-flow-related features, many of which were hitherto unknown. Known mud-volcano provinces in the Southern and Central Baikal Basins (i.e. the Posolsky Bank mud-volcano province, the Kukuy Canyon mud volcano province and the Olkhon Gate mud-volcano province) were mapped in detail, and several new, often isolated, mud-volcano-like structures were discovered. In addition, different possible fluid-flow features were identified in front of the Selenga Delta. Also the gas-hydrate-bearing areas around the oil seeps of Gorevoi Utes and the methane seeps of Goloustnoye have been mapped in detail, revealing that these hydrate occurrences are not associated with mud-volcano-like structures. The multibeam mapping survey coincided with the 2nd season of exploration of the lake floor by manned MIR submersibles (http://baikalfund.ru/eng/projects/expedition/index.wbp). Several of the MIR dives focused on features imaged by the new bathymetry data, such as gas-hydrate occurrences at methane seeps and oil seeps and in the mud-volcano-like structures, and gas seeps and fluid-flow phenomena along active fault scarps. The multibeam mapping survey was conducted in the framework of SBRAS project 17.8 and FWO Flanders project 1.5.198.09.
NASA Astrophysics Data System (ADS)
Wan, Z.; Xu, X.; Wang, X.
2016-12-01
The mud diapir/volcano is an important indicator for gas hydrate exploration, which develops widely in continental slopes. There are many mud diapirs/volcanoes developed in northern South China Sea continental slope. Guangzhou Marine Geological Survey (GMGS) of the Chinese Ministry of Land and Resources targeted mud diapirs/volcanoes and deployed gas hydrate drilling in the Shenhu area. An obvious mud diapir developed below borehole number SH5, and bottom-simulating reflection (BSR) was also detected, but no gas hydrates were found at this borehole. We analyzed the thermal structure of mud diapirs and their relationship to the occurrence of gas hydrates. The in situ temperature at the seafloor is approximately 2.2 2.5oC in the study area. Seafloor heat flow values of SH5 is 71.4mW/m2. Temperature increases rapidly to 17oC from 40 m to 100 m and stays in the range of 17 to 19oC below 100 m. And the thermal conductivity value of SH5 is approximately 1.0 W/m·k from top to bottom. The evolution of the mud diapir/volcanoes can be divided into three stages within a continuous geological process controlling the gas hydrate reservoir. During the late stage, liquid from the mud diapir/volcanoes begins to invade the gas hydrate stability zone . Because of the high unit heat capacity of liquid, the whole temperature field of the surrounding layers increases significantly when the mud diapir/volcanoes pierces upwards. This high heat flow leads to decomposition of the gas hydrates. Therefore, the reason of SH5 did not find gas hydrates may be that the mud diapir had pierced through during the late stage, leading to gas hydrate decomposition, even though there is an obvious BSR. This work was supported by Science and Technology Program of Guangzhou (No. 201607010214) and National Nature Science Foundation of China (No. 91128203,41102077).
CO2 flux from Javanese mud volcanism.
Queißer, M; Burton, M R; Arzilli, F; Chiarugi, A; Marliyani, G I; Anggara, F; Harijoko, A
2017-06-01
Studying the quantity and origin of CO 2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO 2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO 2 with a volume fraction of at least 16 vol %. A lower limit CO 2 flux of 1.4 kg s -1 (117 t d -1 ) was determined, in line with the CO 2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO 2 flux of 3 kt d -1 , comparable with the expected back-arc efflux of magmatic CO 2 . After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO 2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO 2 , with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man-portable active remote sensing instruments for probing natural gas releases, enabling bottom-up quantification of CO 2 fluxes.
CO2 flux from Javanese mud volcanism
Burton, M. R.; Arzilli, F.; Chiarugi, A.; Marliyani, G. I.; Anggara, F.; Harijoko, A.
2017-01-01
Abstract Studying the quantity and origin of CO2 emitted by back‐arc mud volcanoes is critical to correctly model fluid‐dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO2 with a volume fraction of at least 16 vol %. A lower limit CO2 flux of 1.4 kg s−1 (117 t d−1) was determined, in line with the CO2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO2 flux of 3 kt d−1, comparable with the expected back‐arc efflux of magmatic CO2. After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO2, with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man‐portable active remote sensing instruments for probing natural gas releases, enabling bottom‐up quantification of CO2 fluxes. PMID:28944134
DTM-based automatic mapping and fractal clustering of putative mud volcanoes in Arabia Terra craters
NASA Astrophysics Data System (ADS)
Pozzobon, R. P.; Mazzarini, F. M.; Massironi, M. M.; Cremonese, G. C.; Rossi, A. P. R.; Pondrelli, M. P.; Marinangeli, L. M.
2017-09-01
Arabia Terra is a region of Mars where occurrence of past-water manifests at surface and subsurface. To date, several landforms associated with this activity were recognized and mapped, directly influencing the models of fluid circulation. In particular, within several craters such as Firsoff and an unnamed southern crater, putative mud volcanoes were described by several authors. In fact, numerous mounds (from 30 m of diameter in the case of monogenic cones, up to 3-400 m in the case of coalescing mounds) present an apical vent-like depression, resembling subaerial Azerbaijan mud volcanoes and gryphons. To this date, landform analysis through topographic position index and curvatures based on topography was never attempted. We hereby present a landform classification method suitable for mounds automatic mapping. Their resulting spatial distribution is then studied in terms of self-similar clustering.
Mud Volcanoes - A New Class of Sites for Geological and Astrobiological Exploration of Mars
NASA Technical Reports Server (NTRS)
Allen, C.C.; Oehler, D.Z.; Baker, D.M.
2009-01-01
Mud volcanoes provide a unique low-temperature window into the Earth s subsurface - including the deep biosphere - and may prove to be significant sources of atmospheric methane. The identification of analogous features on Mars would provide an important new class of sites for geological and astrobiological exploration. We report new work suggesting that features in Acidalia Planitia are most consistent with their being mud volcanoes.
Systematics of Alkali Metals in Pore Fluids from Serpentinite Mud Volcanoes: IODP Expedition 366
NASA Astrophysics Data System (ADS)
Wheat, C. G.; Ryan, J.; Menzies, C. D.; Price, R. E.; Sissmann, O.
2017-12-01
IODP Expedition 366 focused, in part, on the study of geochemical cycling, matrix alteration, material and fluid transport, and deep biosphere processes within the subduction channel in the Mariana forearc. This was accomplished through integrated sampling of summit and flank regions of three active serpentinite mud volcanoes (Yinazao (Blue Moon), Asùt Tesoro (Big Blue), and Fantangisña (Celestial) Seamounts). These edifices present a transect of depths to the Pacific Plate, allowing one to characterize thermal, pressure and compositional effects on processes that are associated with the formation of serpentinite mud volcanoes and continued activity below and within them. Previous coring on ODP Legs 125 and 195 at two other serpentinite mud volcanoes (Conical and South Chamorro Seamounts) and piston, gravity, and push cores from several other Mariana serpentinite mud volcanoes add to this transect of sites where deep-sourced material is discharged at the seafloor. Pore waters (149 samples) were squeezed from serpentinite materials to determine the composition of deep-sourced fluid and to assess the character, extent, and effect of diagenetic reactions and mixing with seawater on the flanks of the seamounts as the serpentinite matrix weathers. In addition two Water Sampler Temperature Tool (WSTP) fluid samples were collected within two of the cased boreholes, each with at least 30 m of screened casing that allows formations fluids to discharge into the borehole. Shipboard results for Na and K record marked seamount-to-seamount differences in upwelling summit fluids, and complex systematics in fluids obtained from flank sites. Here we report new shore-based Rb and Cs measurements, two elements that have been used to constrain the temperature of the deep-sourced fluid. Data are consistent with earlier coring and drilling expeditions, resulting in systematic changes with depth (and by inference temperature) to the subduction channel.
NASA Astrophysics Data System (ADS)
Kalogeropoulou, V.; Keklikoglou, K.; Lampadariou, N.
2015-04-01
Spatial patterns in deep sea nematode biological trait composition and functional diversity were investigated between chemosynthetic and typical deep sea ecosystems as well as between different microhabitats within the chemosynthetic ecosystems, in the Eastern Mediterranean. The chemosynthetic ecosystems chosen were two mud volcanoes, Napoli at 1950 m depth and Amsterdam at 2040 m depth which are cold seeps characterized by high chemosynthetic activity and spatial heterogeneity. Typical deep sea ecosystems consisted of fine-grained silt-clay sediments which were collected from three areas located in the south Ionian Sea at 2765 to 2840 m depth, the southern Cretan margin at 1089 to 1998 m depth and the Levantine Sea at 3055 to 3870 m depth. A range of biological traits (9 traits; 31 categories) related to buccal morphology, tail shape, body size, body shape, life history strategy, sediment position, cuticle morphology, amphid shape and presence of somatic setae were combined to identify patterns in the functional composition of nematode assemblages between the two habitats, the two mud volcanoes (macroscale) and between the microhabitats within the mud volcanoes (microscale). Data on trait correspondence was provided by biological information on species and genera. A total of 170 nematode species were allocated in 67 different trait combinations, i.e. functional groups, based on taxonomic, morphological and behavioral characteristics. The Biological Trait Analysis (BTA) revealed significant differences between the mud volcanoes and the typical deep sea sediments indicating the presence of different biological functions in ecologically very different environments. Moreover, chemosynthetic activity and habitat heterogeneity within mud volcanoes enhance the presence of different biological and ecological functions in nematode assemblages of different microhabitats. Functional diversity and species richness patterns varied significantly across the different environmental gradients prevailing in the study areas. Biological trait analysis, with the addition of newly introduced trait categories, and functional diversity outcomes provided greater explanatory power of ecosystem functioning than species richness and taxonomic diversity.
Deep-sea mud volcanoes - a window to alteration processes in old oceanic crust?
NASA Astrophysics Data System (ADS)
Hensen, Christian; Scholz, Florian; Nuzzo, Marianne; Valadares, Vasco; Terrinha, Pedro; Liebetrau, Volker; Kaul, Norbert; Manzoni, Sonia; Schmidt, Mark; Gràcia, Eulàlia
2013-04-01
A number of deep sea mud volcanoes (>4700 m water depth) were discovered during a recent expedition with the German research vessel Meteor along a prominent WSW-ENE trending strike-slip fault (SWIM 1; Zitellini et al., 2009) in the western extension of the Gulf of Cadiz (NE Atlantic). Mud volcanism was unambiguously related to tectonic activity along the fault and fluids expelled at these sites show a very distinct geochemical composition that has not been reported from any other mud volcano to date. In previous studies on deep-water mud volcanoes in the Western Gulf of Cadiz accretionary wedge it was hypothesized that the discharge fluids were affected by alteration processes occurring in the old (>140 Ma) and deeply buried (>4 km) oceanic crust (Scholz et al., 2009; Sallarès et al, 2011). This hypothesis is supported by recent findings at the mud volcanoes located to the west of the realm of tectonic deformation driven by the accretionary wedge of the Gulf of Cadiz. Pore water geochemical analyses revealed fluid sources from oceanic crust and oldest sedimentary strata. Regardless of the ultimate source, these findings suggest that large strike-slip faults may play a significant, yet unrecognized role in terms of fluid circulation and element redistribution. To date, hot vents and cold seeps occurring at active spreading centers and forearcs of subduction zones have been pinpointed as hotspots of fluid activity. However, bearing in mind that transform-type plate boundaries are equal in length compared to other types of plate boundaries, fluid exchange at this type of plate boundary may provide a similarly important pathway for water and element exchange between the lithosphere and ocean. Sallarès V., Gailler A., Gutscher M.-A., Graindorge D., Bartolomé R., Gràcia E., Díaz J., Dañobeitia J.J. and Zitellini N. (2011) Seismic evidence for the presence of Jurassic oceanic crust in the central Gulf of Cadiz (SW Iberian margin), Earth and Planetary Science Letters 311(1-2), 112-123. Scholz F., Hensen C., Reitz A., Romer R.L., Liebetrau V., Meixner A., Weise S.M., and Haeckel M. (2009) Isotopic evidence (87Sr/86Sr, δ7Li) for alteration of the oceanic crust at deep-rooted mud volcanoes in the Gulf of Cadiz, NE Atlantic Ocean. Geochimica et Cosmochimica Acta 73, 5444-5459. Zitellini N., Gràcia E., Matias L., Terrinha P., Abreu M.A., Dealteriis G., Henriet J.P., Dañobeitia J.J., Masson D.G., Mulder T., Ramella R., Somoza L., and Diez S. (2009) The quest for the Africa-Eurasia plate boundary west of the Strait of Gibraltar. Earth and Planetary Science Letters 280, 13-50.
NASA Astrophysics Data System (ADS)
Tong, Hongpeng; Fryer, Patricia; Feng, Dong; Chen, Duofu
2017-04-01
Serpetinization of forearc mantle along deep faults in the Mariana convergent plate margin permits formation of large active serpentinite mud volcanoes on the overiding plate within 90 km of the trench. Fluid seepage on summits of the mud volcanoes lead to the formation of authigenic carbonate chimneys close to the seafloor. Such carbonate chimneys are unique archives of past fluid seepage and assciated envrionemtnal parameters. Here, we report U/Th dating and stable carbon and oxygen isotopes of the chimneys from Quaker and Conical serpentine mud volcanoes. The resulting U/Th ages of samples from Quaker Seamount show three time intervals of 11,081 to10,542 yBP, 5,857 to 5,583 yBP, and 781 to 164 yBP, respectively. By comparison, carbonates from Conical Seamount have U/Th ages between 3,070 yBP and 1,623 yBP. Our results suggest that fluid seepage on the summits of serpentine mud volcanoes are episodic and probably locally controlled. Samples from Quaker seamount show depletion of 13C (δ13C=-7.0-0.4‰ V-PDB), indicating contribution of carbon from anoxic oxidation of abiogenic methane. By contrast, samples from Conical seamount have positive δ18O values (0.6-6.3), suggesting enrichment of 18O in the seepage fluid. The data obtained provide time integrated variation of seepage fluids and seepage dynamics that are archived in authigenic carbonates. This finding adds to the ongoing multidisciplinary effort to better constrain the environment in the Mariana forearc region and to determine the locally dominant biogeochemical processes. Acknowlegment: This study was funded by the CAS (Grant No. XDB06030102).
Parsia, Yasaman; Sorooshian, Shahryar
2017-12-01
The data presented in this article is related to the Master thesis; entitled "Survey Aerobic Microbial Diversity Mud Volcanoes in Chabahar and Khash Ports in Southern Iran" by the first author of this article, year 2011, Islamic Azad University, Iran (reference number (Parsia, 2011) [1] of this article). This article shows microbial biodiversity and evaluates bio-emulsifier and bio-demulsifier abilities of capnophile isolates, in order to introduce a superior isolate for the Microbial Enhanced Oil Recovery (MEOR) process in the petrochemical industry.
Martian mud volcanism: Terrestrial analogs and implications for formational scenarios
Skinner, J.A.; Mazzini, A.
2009-01-01
The geology of Mars and the stratigraphic characteristics of its uppermost crust (mega-regolith) suggest that some of the pervasively-occurring pitted cones, mounds, and flows may have formed through processes akin to terrestrial mud volcanism. A comparison of terrestrial mud volcanism suggests that equivalent Martian processes likely required discrete sedimentary depocenters, volatile-enriched strata, buried rheological instabilities, and a mechanism of destabilization to initiate subsurface flow. We outline five formational scenarios whereby Martian mud volcanism might have occurred: (A) rapid deposition of sediments, (B) volcano-induced destabilization, (C) tectonic shortening, (D) long-term, load-induced subsidence, and (E) seismic shaking. We describe locations within and around the Martian northern plains that broadly fit the geological context of these scenarios and which contain mud volcano-like landforms. We compare terrestrial and Martian satellite images and examine the geological settings of mud volcano provinces on Earth in order to describe potential target areas for piercement structures on Mars. Our comparisons help to evaluate not only the role of water as a functional component of geological processes on Mars but also how Martian mud volcanoes could provide samples of otherwise inaccessible strata, some of which could contain astrobiological evidence.
Long- and short-term triggering and modulation of mud volcano eruptions by earthquakes
NASA Astrophysics Data System (ADS)
Bonini, Marco; Rudolph, Maxwell L.; Manga, Michael
2016-03-01
Earthquakes can trigger the eruption of mud. We use eruptions in Azerbaijan, Italy, Romania, Japan, Andaman Islands, Pakistan, Taiwan, Indonesia, and California to probe the nature of stress changes that induce new eruptions and modulate ongoing eruptions. Dynamic stresses produced by earthquakes are usually inferred to be the dominant triggering mechanism; however static stress changes acting on the feeder systems of mud volcanoes may also play a role. In Azerbaijan, eruptions within 2-10 fault lengths from the epicenter are favored in the year following earthquakes where the static stress changes cause compression of the mud source and unclamp feeder dikes. In Romania, Taiwan, and some Italian sites, increased activity is also favored where the static stress changes act to unclamp feeder dikes, but responses occur within days. The eruption in the Andaman Islands, and those of the Niikappu mud volcanoes, Japan are better correlated with amplitude of dynamic stresses produced by seismic waves. Similarly, a new island that emerged off the coast of Pakistan in 2013 was likely triggered by dynamic stresses, enhanced by directivity. At the southern end of the Salton Sea, California earthquakes increase the gas flux at small mud volcanoes. Responses are best correlated with dynamic stresses. The comparison of responses in these nine settings indicates that dynamic stresses are most often correlated with triggering, although permanent stress changes as small as, and possibly smaller than, 0.1 bar may be sufficient to also influence eruptions. Unclamping stresses with magnitude similar to Earth tides (0.01 bar) persist over time and may play a role in triggering delayed responses. Unclamping stresses may be important contributors to short-term triggering only if they exceed 0.1-1 bar.
NASA Astrophysics Data System (ADS)
León, Ricardo; Somoza, Luis; Medialdea, Teresa; Vázquez, Juan Tomás; González, Francisco Javier; López-González, Nieves; Casas, David; del Pilar Mata, María; del Fernández-Puga, María Carmen; Giménez-Moreno, Carmen Julia; Díaz-del-Río, Víctor
2012-12-01
During the MVSEIS-08 cruise of 2008, ten new mud volcanoes (MVs) were discovered on the offshore Moroccan continental margin (Gulf of Cádiz) at water depths between 750 and 1,600 m, using multibeam bathymetry, backscatter imagery, high-resolution seismic and gravity core data. Mud breccias were recovered in all cases, attesting to the nature of extrusion of these cones. The mud volcanoes are located in two fields: the MVSEIS, Moundforce, Pixie, Las Negras, Madrid, Guadix, Almanzor and El Cid MVs in the western Moroccan field, where mud volcanoes have long been suspected but to date not identified, and the Boabdil and Al Gacel MVs in the middle Moroccan field. Three main morphologies were observed: asymmetric, sub-circular and flat-topped cone-shaped types, this being the first report of asymmetric morphologies in the Gulf of Cádiz. Based on morpho-structural analysis, the features are interpreted to result from (1) repeated constructive (expulsion of fluid mud mixtures) and destructive (gravity-induced collapse and submarine landsliding) episodes and (2) interaction with bottom currents.
On the carcinogenic polycyclic aromatic hydrocarbon benzo(a)pyrene in volcano exhausts.
Ilnitsky, A P; Belitsky, G A; Shabad, L M
1976-05-01
The content of benzo(a)pyrene in the juvenile ashes of the volcano Tyatya (Kunashir Island, Kuriles) and in the soil, vegetation and volcanic mud collected near volcanos in Kamchatka was studied. It was concluded that volcanic activity does not play a large role in forming the background level of this carcinogen in the human environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beeunas, M.A.; Schoell, M.; Beroiz, C.
Mud volcanoes and natural gas seeps are common in the southwest-northeast-trending Sinu Atlantico basin (SAB) and San Jacinto Fold Belt (SJFB) of NW-Colombia. The structural subunits are part of a highly complex active continental margin where the sediments become increasingly younger to the west from Late Cretaceous to Early Tertiary in the SJFB to Late Tertiary in the SAB. Some of the mud volcanoes are permanently active and form huge structures and are often aligned along major faults. Both seep and mud volcano gases are with low C{sub 2}-C{sub 4} and CO{sub 2} contents. Carbon and hydrogen isotope concentrations allowmore » the subdivision into four groups of gas. These gases can be divided into four genetic based on their carbon and hydrocarbon isotope compositions. The isotopic variability of the different groups attests to the fact that very different gas-forming processes are or have been operating in the subsurface ranging from low-temperature thermogenesis. The various groups show, with few exceptions, a distinct regional distribution: Mud volcanoes and seeps with bacterial gases are restricted to the southern part of the SAB where the greatest thickness of young sediments is observed; gases of mixed thermogenic and bacterial origin are found in the coastal areas of the northern SAB; gases of thermogenic origin are predominantly observed in the SJFB; the thermogenic gases of Group 3 are restricted to two locations in the north of the SJFB. This regional association of genetic gas types with specific geotectonic units reflects different thermal histories of the respective tectonic areas and allowed the authors to delineate prospective areas for oil in NW-Colombia.« less
NASA Astrophysics Data System (ADS)
Sun, W.; Lin, L.; Wang, P.
2012-12-01
Terrestrial mud volcano is thought to be one of the most important natural sources of methane emission. Previous studies have shown that methane cycling in terrestrial mud volcanoes involves a complex reaction network driven by the interactions between subsurface and surface abiotic and microbial processes. In situ methanogenesis appears to produce methane at quantities exceeding those of deeply-sourced thermogenic methane and the capacities of anaerobic methanotrophy at shallow depth levels, thereby contributing significantly to the methane emission. Various degrees of evaporation at surface also lead to the enhancement of chloride concentrations in pore water, favoring the proliferation of halo-tolerant and/or halophilic methanogens. The goal of this study is to investigate the extent of methanogenesis in terrestrial mud volcanoes by incubating mud slurries with various precursors (H2/CO2, acetate, methanol, and methylamine) at different salinities (up to 2000 mM) and temperatures (up to 50 oC). Methane concentrations were monitored through time and molecular analyses were applied to investigate the changes of methanogenic communities. Methanogenesis was stimulated by any investigated precursor at room temperature. However, the methanogenic response to salinity varied. Of the investigated precursors, H2/CO2 and methyl-compounds (methanol and methylamine) stimulated methanogenesis at all investigated salinities. The rates and yields of hydrogen- and methyl-utilizing methanogenesis declined significantly at salinities greater than 1500 mM. Acetate-utilizing methanogenesis proceeded at salinities less than 700 mM. At 40 oC, methanogenesis was stimulated by all investigated precursors at the in situ salinity (~400 mM). At 50 oC, only H2-utilizing methanogenesis was stimulated. Analyses of terminal restriction fragment length polymorphism (TRFLP) for 16S rRNA genes revealed various patterns upon different precursors and salinities. The TRFLP results combined with clone library analyses indicated that major RFs recovered from incubations with methyl-compounds at room temperature and 40 oC were represented by sequences affiliated with Methanococcoides spp., Methanosarcina spp., and Methanolobus spp. In particular, only Methanosarcina- and Methanococcoides-related members were detected at salinities greater than 1000 mM or at 40 oC. RFs recovered from incubations with H2/CO2 at room temperature and 40 oC were represented by sequences related to different Methanococcus spp. Overall, methanogens utilizing H2/CO2 and methyl-compounds appear to be capable of actively producing methane at salinities greater than acetate-utilizing methanogens could tolerate. These methanogens might adapt better to the fluctuation of salinity or extremely high salinity induced by the surface evaporation in terrestrial mud volcanoes. When considering the overall methane emission from terrestrial mud volcanoes, these halo-tolerant methanogens become a significant factor. Key words: mud volcano, Methane, Methanogenesis, Salinity
NASA Astrophysics Data System (ADS)
Inguaggiato, Salvatore; Mazzini, Adriano; Vita, Fabio; Sciarra, Alessandra
2016-04-01
The Java Island is characterized by an intense volcanic activity with more then 100 active volcanoes. Moreover, this island is also known by the presence of many mud volcanoes and hydrothermal springs. In particular, in the 2006 several sudden hot mud eruptions, with fluids around 100° C, occurred in the NE side of the island resulting in a prominent eruption named Lusi (contraction of Lumpur Sidoarjo) located along the major Watukosek strike-slip fault zone. The Watukosek fault system, strikes from the Arjuno-Welirang volcanic complex, intersects Lusi and extends towards the NE of the Java island. Conversely of the normal mud eruptions (cold fluids emitted in a short time period of few days), the Lusi eruption was characterized by a persistent effusive hot fluids emissions for a long-time period of, so far, nearly a decade. Moreover, the isotopic composition of emitted gases like Helium showed a clear magmatic origin. For this reasons we decided to investigate the near Arjuno-Welirang complex located on the same strike-slip fault. Arjuno-Welirang is a twin strato-volcano system located in the East of Java along the Watukosek fault, at about 25 km SW respect to the Lusi volcano system. It features two main peaks: Arjuno (3339 masl) and Welirang (3156 masl). The last recorded eruptive activity took place in August 1950 from the flanks of Kawah Plupuh and in October 1950 from the NW part of the Gunung Welirang. This strato-volcano is characterized by a S-rich area, with high T-vent fumarole at least up to 220° C (and likely higher), located mainly in the Welirang crater. In addition, several hot springs vent from the flanks of the volcano, indicate the presence of a large hydrothermal system. During July 2015, in the framework of the Lusi Lab project (ERC grant n° 308126), we carried out a geochemical field campaign on the Arjuno-Welirang volcano hydrothermal system area, sampling water and dissolved gases from the thermal and cold springs located on the flanks of the volcano and from two high-T fumaroles located on the summit area of Welirang. Hydrothermal springs reveal temperatures up to 53° C and pH between 6.2 and 8.2. The hydrothermal springs show a volatile content (mainly CO2 and He) that is several order of magnitude higher than the Air Saturated Waters values (ASW) indicating a strong gas/water interaction processes between waters of meteoric origin and deep volatiles of volcanic origin. The hydrothermal springs have dissolved helium isotopic values with clear magmatic signature (R/Ra around 7) that is remarkably close to the helium isotope values from the fumaroles (R/Ra= 7.30). The isotopic composition of helium measured in the fluids emitted from the Lusi mud-volcano around 6.5R/Ra is very similar to the Welirang volcanic fluids indicating the presence of magmatic gases in the Lusi emitted fluids. While the isotopic composition of waters in the Welirang and Lusi fluids are markedly different suggesting a different origin and/or recharge areas for these two hydrothermal systems. These data support the hypothesis that the presence of volcanic gases could have triggered and conveyed the hot and persistent mud fluids emissions of Lusi volcano.
Lazar, Cassandre Sara; L'Haridon, Stéphane; Pignet, Patricia; Toffin, Laurent
2011-01-01
Microbial mats in marine cold seeps are known to be associated with ascending sulfide- and methane-rich fluids. Hence, they could be visible indicators of anaerobic oxidation of methane (AOM) and methane cycling processes in underlying sediments. The Napoli mud volcano is situated in the Olimpi Area that lies on saline deposits; from there, brine fluids migrate upward to the seafloor. Sediments associated with a brine pool and microbial orange mats of the Napoli mud volcano were recovered during the Medeco cruise. Based on analysis of RNA-derived sequences, the “active” archaeal community was composed of many uncultured lineages, such as rice cluster V or marine benthic group D. Function methyl coenzyme M reductase (mcrA) genes were affiliated with the anaerobic methanotrophic Archaea (ANME) of the ANME-1, ANME-2a, and ANME-2c groups, suggesting that AOM occurred in these sediment layers. Enrichment cultures showed the presence of viable marine methylotrophic Methanococcoides in shallow sediment layers. Thus, the archaeal community diversity seems to show that active methane cycling took place in the hypersaline microbial mat-associated sediments of the Napoli mud volcano. PMID:21335391
THE "MUD VOLCANO," A STINKY THERMAL FEATURE ON THE GRAND ...
THE "MUD VOLCANO," A STINKY THERMAL FEATURE ON THE GRAND LOOP ROAD. ACIDIC HOT SPRINGS HAVE REDUCED THE UNDERLYING LAVA TO A FINE CLAY, PRODUCING AN AREA OF BOILING MUD. THE ODOR OF ROTTEN EGGS IS FROM HYDROGEN SULFIDE GAS. - Grand Loop Road, Forming circuit between Mammoth Hot Springs, Norris Junction, Madison Junction, Old Faithful, Mammoth, Park County, WY
Gas hydrate accumulation at the Hakon Mosby Mud Volcano
Ginsburg, G.D.; Milkov, A.V.; Soloviev, V.A.; Egorov, A.V.; Cherkashev, G.A.; Vogt, P.R.; Crane, K.; Lorenson, T.D.; Khutorskoy, M.D.
1999-01-01
Gas hydrate (GH) accumulation is characterized and modeled for the Hakon Mosby mud volcano, ca. 1.5 km across, located on the Norway-Barents-Svalbard margin. Pore water chemical and isotopic results based on shallow sediment cores as well as geothermal and geomorphological data suggest that the GH accumulation is of a concentric pattern controlled by and formed essentially from the ascending mud volcano fluid. The gas hydrate content of sediment peaks at 25% by volume, averaging about 1.2% throughout the accumulation. The amount of hydrate methane is estimated at ca. 108 m3 STP, which could account for about 1-10% of the gas that has escaped from the volcano since its origin.
Talas, Ezgi; Duman, Muhammet; Küçüksezgin, Filiz; Brennan, Michael L; Raineault, Nicole A
2015-06-15
Investigations carried out on surface sediments collected from the Anaximander mud volcanoes in the Eastern Mediterranean Sea to determine sedimentary and geochemical properties. The sediment grain size distribution and geochemical contents were determined by grain size analysis, organic carbon, carbonate contents and element analysis. The results of element contents were compared to background levels of Earth's crust. The factors that affect element distribution in sediments were calculated by the nine push core samples taken from the surface of mud volcanoes by the E/V Nautilus. The grain size of the samples varies from sand to sandy silt. Enrichment and Contamination factor analysis showed that these analyses can also be used to evaluate of deep sea environmental and source parameters. It is concluded that the biological and cold seep effects are the main drivers of surface sediment characteristics from the Anaximander mud volcanoes. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Iio, K.; Furuya, M.
2017-12-01
Interferometric synthetic aperture radar (InSAR) allows us to image a wide area with dense spatial resolution without a need for ground-based measurement tools with a precision on the order of a few centimeters. This technique has been mainly used to investigate such ground deformation associated with earthquakes, volcanic eruptions and ground subsidence due to water pumping. However there have been few cases that applied the technique to the activity of mud volcanos. Azerbaijan, located on the western edge of the Caspian Sea in Central Asia, is one of the most abundant countries in term of the population of mud volcanoes over the land. We focused on an especially large and unique mud volcano known as the Ayaz-Akhtarma because the deformation signals are the most evident and peculiar. Antonielli et al., (2014) detected the ground deformation of this mud volcano, using ENVISAT/ASAR C-band SAR data spanning from 2003 to 2005 only along descending path. While the ground displacement at the volcano was 20 cm in line of sight (LOS) for the two years, Antonielli et al., (2014) attributed the observed LOS changes to the uplift and subsidence in the eastern half and western half, respectively, whereas no source model was presented in the study. In the previous study, however, the 3D displacements were totally uncertain because of the restricted looking geometry. We could observe the displacements, based not only on the ALOS data along the ascending path that is the opposite look direction from the previous study but also on the ALOS-2 data for ascending and descending paths. Our observed LOS change data indicated more active and larger horizontal displacements. The cumulative LOS displacement is up to nearly 300 cm for four years by ALOS and 100 cm for two years by ALOS-2. In addition to InSAR, we performed MAI analysis. MAI is a technique for measuring ground displacement along flight direction, which is not sensitive to the InSAR measurement. The result of MAI showed a few meters displacement and also indicated mostly horizontal displacement. Our preliminary source modeling indicates that a fault with normal faulting and tensile opening could account for the observed LOS changes. The more precise source modeling by simultaneous inversion to explain both the InSAR and MAI displacements is under construction.
Lösekann, Tina; Knittel, Katrin; Nadalig, Thierry; Fuchs, Bernhard; Niemann, Helge; Boetius, Antje; Amann, Rudolf
2007-05-01
Submarine mud volcanoes are formed by expulsions of mud, fluids, and gases from deeply buried subsurface sources. They are highly reduced benthic habitats and often associated with intensive methane seepage. In this study, the microbial diversity and community structure in methane-rich sediments of the Haakon Mosby Mud Volcano (HMMV) were investigated by comparative sequence analysis of 16S rRNA genes and fluorescence in situ hybridization. In the active volcano center, which has a diameter of about 500 m, the main methane-consuming process was bacterial aerobic oxidation. In this zone, aerobic methanotrophs belonging to three bacterial clades closely affiliated with Methylobacter and Methylophaga species accounted for 56%+/-8% of total cells. In sediments below Beggiatoa mats encircling the center of the HMMV, methanotrophic archaea of the ANME-3 clade dominated the zone of anaerobic methane oxidation. ANME-3 archaea form cell aggregates mostly associated with sulfate-reducing bacteria of the Desulfobulbus (DBB) branch. These ANME-3/DBB aggregates were highly abundant and accounted for up to 94%+/-2% of total microbial biomass at 2 to 3 cm below the surface. ANME-3/DBB aggregates could be further enriched by flow cytometry to identify their phylogenetic relationships. At the outer rim of the mud volcano, the seafloor was colonized by tubeworms (Siboglinidae, formerly known as Pogonophora). Here, both aerobic and anaerobic methane oxidizers were found, however, in lower abundances. The level of microbial diversity at this site was higher than that at the central and Beggiatoa species-covered part of the HMMV. Analysis of methyl-coenzyme M-reductase alpha subunit (mcrA) genes showed a strong dominance of a novel lineage, mcrA group f, which could be assigned to ANME-3 archaea. Our results further support the hypothesis of Niemann et al. (54), that high methane availability and different fluid flow regimens at the HMMV provide distinct niches for aerobic and anaerobic methanotrophs.
Lösekann, Tina; Knittel, Katrin; Nadalig, Thierry; Fuchs, Bernhard; Niemann, Helge; Boetius, Antje; Amann, Rudolf
2007-01-01
Submarine mud volcanoes are formed by expulsions of mud, fluids, and gases from deeply buried subsurface sources. They are highly reduced benthic habitats and often associated with intensive methane seepage. In this study, the microbial diversity and community structure in methane-rich sediments of the Haakon Mosby Mud Volcano (HMMV) were investigated by comparative sequence analysis of 16S rRNA genes and fluorescence in situ hybridization. In the active volcano center, which has a diameter of about 500 m, the main methane-consuming process was bacterial aerobic oxidation. In this zone, aerobic methanotrophs belonging to three bacterial clades closely affiliated with Methylobacter and Methylophaga species accounted for 56% ± 8% of total cells. In sediments below Beggiatoa mats encircling the center of the HMMV, methanotrophic archaea of the ANME-3 clade dominated the zone of anaerobic methane oxidation. ANME-3 archaea form cell aggregates mostly associated with sulfate-reducing bacteria of the Desulfobulbus (DBB) branch. These ANME-3/DBB aggregates were highly abundant and accounted for up to 94% ± 2% of total microbial biomass at 2 to 3 cm below the surface. ANME-3/DBB aggregates could be further enriched by flow cytometry to identify their phylogenetic relationships. At the outer rim of the mud volcano, the seafloor was colonized by tubeworms (Siboglinidae, formerly known as Pogonophora). Here, both aerobic and anaerobic methane oxidizers were found, however, in lower abundances. The level of microbial diversity at this site was higher than that at the central and Beggiatoa species-covered part of the HMMV. Analysis of methyl-coenzyme M-reductase alpha subunit (mcrA) genes showed a strong dominance of a novel lineage, mcrA group f, which could be assigned to ANME-3 archaea. Our results further support the hypothesis of Niemann et al. (54), that high methane availability and different fluid flow regimens at the HMMV provide distinct niches for aerobic and anaerobic methanotrophs. PMID:17369343
Pachiadaki, Maria G; Kallionaki, Argyri; Dählmann, Anke; De Lange, Gert J; Kormas, Konstantinos Ar
2011-10-01
We investigated the top 30-cm sediment prokaryotic community structure in 5-cm spatial resolution, at an active site of the Amsterdam mud volcano, East Mediterranean Sea, based on the 16S rRNA gene diversity. A total of 339 and 526 sequences were retrieved, corresponding to 25 and 213 unique (≥98% similarity) phylotypes of Archaea and Bacteria, respectively, in all depths. The Shannon-Wiener diversity index H was higher for Bacteria (1.92-4.03) than for Archaea (0.99-1.91) and varied differently between the two groups. Archaea were dominated by anaerobic methanotrophs ANME-1, -2 and -3 groups and were related to phylotypes involved in anaerobic oxidation of methane from similar habitats. The much more complex Bacteria community consisted of 20 phylogenetic groups at the phylum/candidate division level. Proteobacteria, in particular δ-Proteobacteria, was the dominant group. In most sediment layers, the dominant phylotypes of both the Archaea and Bacteria communities were found in neighbouring layers, suggesting some overlap in species richness. The similarity of certain prokaryotic communities was also depicted by using four different similarity indices. The direct comparison of the retrieved phylotypes with those from the Kazan mud volcano of the same field revealed that 40.0% of the Archaea and 16.9% of the Bacteria phylotypes are common between the two systems. The majority of these phylotypes are closely related to phylotypes originating from other mud volcanoes, implying a degree of endemicity in these systems.
Measuring H2O and CO2 Emissions in the Mud Volcano region of Yellowstone using Open Path FTIR
NASA Astrophysics Data System (ADS)
Moyer, D. K.; Sealing, C. R.; Carn, S. A.; Vanderkluysen, L.
2017-12-01
Magma degassing is an important factor in many aspects of monitoring active volcanic zones and mitigating associated hazards. The monitoring of these emissions in concentration, flux, and species ratios is important for detecting signs of unrest as well as understanding the natural cycle and budget of volatile species. However, standard gas measurement methods suffer from either low temporal resolution (e.g., direct sampling of fumaroles) or are limited to measuring a small range of species (e.g., MiniDOAS, MultiGAS). In order to establish a carbon budget of active gas sources at a volcano with a dynamic hydrothermal system, we carried out a survey of mud pots and fumaroles at Yellowstone National Park using Open-Path Fourier Transform Infrared Spectroscopy, or OP-FTIR, which allows for a temporal resolution as low as one measurement every 10 seconds. We placed an active infrared (IR) source behind the target gas plume and identified gas species from the presence of their absorption feature in measured spectra in the 2.5 to 25 µm range. From these, we derived pathlength concentrations for a wide range of gases, including: water vapor, carbon dioxide, and methane. During our September 2016 campaign in the Mud Volcano thermal area, we measured CO2 concentrations of 400 ppm in emissions from the Churning Cauldron acid-sulfate mud pot, with an H2O/CO2 ratio of 8; at Sulphur Cauldron and One Hundred Springs Plain, CO2 concentrations reached 200 ppm above background atmospheric values. We derived a CO2 flux of 8.15 T/d, 0.43 T/d and .00025 T/d, respectively, at these three acid-sulfate sources, within range of gas channeling-based estimates from the late 1990s. Previous accumulation chamber studies estimate the CO2 soil diffuse degassing in the Mud Volcano thermal region at 283.15 T/d, indicating that mud pots are minor contributors of CO2 emissions in this area, representing 3% of diffuse emissions. Due to the high acquisition rate and the abundance of water droplets in the plume, spectra were too noisy to reliably detect methane at these locations. Future work will focus on the measurement of trace gases at these same locations by increasing the acquisition time.
Pozzolanic Activity Assessment of LUSI (LUmpur SIdoarjo) Mud in Semi High Volume Pozzolanic Mortar
Hardjito, Djwantoro; Antoni; Wibowo, Gunadi M.; Christianto, Danny
2012-01-01
LUSI mud obtained from the mud volcano in Sidoarjo, Indonesia, is a viable aluminosilicate material to be utilized as pozzolanic material. LUSI is an abbreviation of the local name of the mud, i.e., Lumpur Sidoarjo, meaning Sidoarjo mud. This paper reports the results of an investigation to assess the pozzolanic activity of LUSI mud, especially in semi high volume pozzolanic mortar. In this case, the amount of mud incorporated is between 30% to 40% of total cementitious material, by mass. The content of SiO2 in the mud is about 30%, whilst the total content of SiO2, Fe2O3 and Al2O3 is more than 70%. Particle size and degree of partial cement replacement by treated LUSI mud affect the compressive strength, the strength activity index (SAI), the rate of pozzolanic activity development, and the workability of mortar incorporating LUSI mud. Manufacturing semi high volume LUSI mud mortar, up to at least 40% cement replacement, is a possibility, especially with a smaller particle size of LUSI mud, less than 63 μm. The use of a larger percentage of cement replacement by LUSI mud does not show any adverse effect on the water demand, as the flow of the fresh mortar increased with the increase of percentage of LUSI mud usage.
NASA Astrophysics Data System (ADS)
Jang, U. G.; Kang, S. G.; Hong, J. K.; Jin, Y. K.; Dallimore, S.; Riedel, M.; Paull, C. K.
2017-12-01
2014 Expedition ARA05C was a multidisciplinary undertaking conducted in the Canadian Beaufort Sea, Arctic Ocean on the Korean ice breaker IBRV ARAON from August 30 to September 19, 2014. The program was carried out as collaboration between the Korea Polar Research Institute (KOPRI), Geological Survey of Canada (GSC), Monterey Bay Aquarium Research Institute (MBARI), Department of Fisheries and Ocean (DFO) with participation by Bremen University (BARUM). During this expedition, multi-channel seismic (MCS) data were acquired on the outer continental shelf and upper slope of the Canadian Beaufort Sea, totaling 20 lines with 1,000 line-kilometers from September 1 to September 13, 2014. Three MCS survey lines was designed to cross the three submarine mud volcanoes found in the slope at approximate water depth of 290 m, 460 m and 740 m. Submarine mud volcanoes are seafloor structures with positive topography formed by a combination of mud eruption, gas emission, and water seepage from the subsurface. MCS data will allow image subsurface structures of mud volcanoes as identification of fluid migration pathways, however, imaging its subsurface structure is difficult by using conventional seismic data processing procedure, because it is seismically characterized by acoustically transparent facies. Full waveform inversion (FWI) is non-linear data-fitting procedure to estimate the physical properties of the subsurface by minimizing the difference between the observed and modelled data. FWI uses the two-wave wave equation to compute forward/backward wavefield to calculate the gradient direction, therefore it can derive more detailed velocity model beyond travel-time tomography techniques, which use only the kinematics of seismic data, by additional information provided by the amplitude and phase of the seismic waveform. In this study, we suggest P-wave structure of mud volcanos, which were inverted by 2D acoustic FWI. It will be useful to understand the characterization of mud volcanoes on the slope of Canadian Beaufort Sea.
Lahar—River of volcanic mud and debris
Major, Jon J.; Pierson, Thomas C.; Vallance, James W.
2018-05-09
Lahar, an Indonesian word for volcanic mudflow, is a mixture of water, mud, and volcanic rock flowing swiftly along a channel draining a volcano. Lahars can form during or after eruptions, or even during periods of inactivity. They are among the greatest threats volcanoes pose to people and property. Lahars can occur with little to no warning, and may travel great distances at high speeds, destroying or burying everything in their paths.Lahars form in many ways. They commonly occur when eruptions melt snow and ice on snow-clad volcanoes; when rains fall on steep slopes covered with fresh volcanic ash; when crater lakes, volcano glaciers or lakes dammed by volcanic debris suddenly release water; and when volcanic landslides evolve into flowing debris. Lahars are especially likely to occur at erupting or recently active volcanoes.Because lahars are so hazardous, U.S. Geological Survey scientists pay them close attention. They study lahar deposits and limits of inundation, model flow behavior, develop lahar-hazard maps, and work with community leaders and governmental authorities to help them understand and minimize the risks of devastating lahars.
Triggering and dynamic evolution of the LUSI mud volcano, Indonesia
NASA Astrophysics Data System (ADS)
Svensen, H.; Mazzini, A.; Akhmanov, G. G.; Aloisi, G.; Planke, S.; Sørenssen, A.; Istadi, B.
2007-12-01
Mud volcanoes are geologically important manifestations of vertical fluid flow and mud eruption in sedimentary basins worldwide. Their formation is predominantly ascribed to release of overpressure from clay- and organic- rich sediments, leading to impressive buildup of mud mountains in submarine and subaerial settings. Here we report data from two fieldworks on a newly born mud volcano named LUSI eruption in Eastern Java (Indonesia). The eruption site appears close to an active magmatic complex in a backarc sedimentary basin in Indonesia. Its specific location results in a high background temperature gradient that triggers mineralogical transformations and geochemical reactions at shallow depth. The eruption of 100 deg.C mud and gas that started the 29th of May 2006 flooded a large area within the Sidoarjo village in Northeast Java. Thousands of people have so far been evacuated and, since the initial eruption, the flow rate escalated from 5000 to 120,000 m3/d during the first eleven weeks. Then the erupted volume started to pulsate between almost zero and 120,000 m3/d in the period August-September, whereas it increased dramatically following swarms of earthquakes in September, before reaching almost 180,000 m3/d in December 2006. Fifteen months after the initial burst, LUSI is still vigorously erupting up to 111,000 m3/d, the average subsidence of the area reached 11 m. Seismic images show that a pre-existing structure was present before the eruption. Based on geochemical and field results, we propose a mechanism where the eruptions started following the 27th of May earthquake due to fracturing and accompanied depressurization of >100 deg.C pore fluids from > 1700 m depth released from a structure in already critical conditions. This resulted in the formation of a quasi-hydrothermal system with a geyser-like surface expression and with an activity influenced by the regional seismicity.
Chen, Sheng-Chung; Chen, Mei-Fei; Weng, Chieh-Yin; Lai, Mei-Chin; Wu, Sue-Yao
2016-04-21
Here, we announce the genome sequence of ITALIC! Methanoculleus sediminisS3Fa(T)(DSM 29354(T)), a strict anaerobic methanoarchaeon, which was isolated from sediments near the submarine mud volcano MV4 located offshore in southwestern Taiwan. The 2.49-Mb genome consists of 2,459 predicted genes, 3 rRNAs, 48 tRNAs, and 1 ncRNA. The sequence of this novel strain may provide more information for species delineation and the roles that this strain plays in the unique marine mud volcano habitat. Copyright © 2016 Chen et al.
NASA Astrophysics Data System (ADS)
Toyos, María H.; Medialdea, Teresa; León, Ricardo; Somoza, Luis; González, Francisco Javier; Meléndez, Nieves
2016-06-01
High-resolution single channel and multichannel seismic reflection profiles and multibeam bathymetric and backscatter data collected during several cruises over the period 1999 to 2007 have enabled characterising not only the seabed morphology but also the subsurface structural elements of the Yuma, Ginsburg, Jesús Baraza and Tasyo mud volcanoes (MVs) in the Gulf of Cádiz at 1,050-1,250 m water depth. These MVs vary strongly in morphology and size. The data reveal elongated cone-shaped edifices, rimmed depressions, and scarps interpreted as flank failures developed by collapse, faulting, compaction and gravitational processes. MV architecture is characterised by both extrusive and intrusive complexes, comprising stacked edifices (including seabed cones and up to four buried bicones) underlain by chaotic vertical zones and downward-tapering cones suggesting feeder systems. These intrusive structures represent the upper layer of the feeder system linking the fluid mud sources with the constructional edifices. The overall architecture is interpreted to be the result of successive events of mud extrusion and outbuilding alternating with periods of dormancy. Each mud extrusion phase is connected with the development of an edifice, represented by a seabed cone or a buried bicone. In all four MVs, the stacked edifices and the intrusive complexes penetrate Late Miocene-Quaternary units and are rooted in the Gulf of Cádiz wedge emplaced during the late Tortonian. Major phases of mud extrusion and outbuilding took place since the Late Pliocene, even though in the Yuma and Jesús Baraza MVs mud volcanism started in the Late Miocene shortly after the emplacement of the Gulf of Cádiz wedge. This study shows that fluid venting in the eastern sector of the Gulf of Cádiz promoted the outbuilding of large long-lived mud volcanoes active since the Late Miocene, and which have been reactivated repeatedly until recent times.
Plumlee, Geoffrey S.; Casadevall, Thomas J.; Wibowo, Handoko T.; Rosenbauer, Robert J.; Johnson, Craig A.; Breit, George N.; Lowers, Heather; Wolf, Ruth E.; Hageman, Philip L.; Goldstein, Harland L.; Anthony, Michael W.; Berry, Cyrus J.; Fey, David L.; Meeker, Gregory P.; Morman, Suzette A.
2008-01-01
On May 29, 2006, mud and gases began erupting unexpectedly from a vent 150 meters away from a hydrocarbon exploration well near Sidoarjo, East Java, Indonesia. The eruption, called the LUSI (Lumpur 'mud'-Sidoarjo) mud volcano, has continued since then at rates as high as 160,000 m3 per day. At the request of the United States Department of State, the U.S. Geological Survey (USGS) has been providing technical assistance to the Indonesian Government on the geological and geochemical aspects of the mud eruption. This report presents initial characterization results of a sample of the mud collected on September 22, 2007, as well as inerpretive findings based on the analytical results. The focus is on characteristics of the mud sample (including the solid and water components of the mud) that may be of potential environmental or human health concern. Characteristics that provide insights into the possible origins of the mud and its contained solids and waters have also been evaluated.
Mud Volcanoes in the Martian Lowlands: Potential Windows to Fluid-Rich Samples from Depth
NASA Technical Reports Server (NTRS)
Oehler, Dorothy Z.; Allen, Carlton C.
2009-01-01
The regional setting of the Chryse-Acidalia area augurs well for a fluid-rich subsurface, accumulation of diverse rock types reflecting the wide catchment area, astrobiological prospectivity, and mud volcanism. This latter provides a mechanism for transporting samples from relatively great depth to the surface. Since mud volcanoes are not associated with extreme heat or shock pressures, materials they transport to the surface are likely to be relatively unaltered; thus such materials could contain interpretable remnants of potential martian life (e.g., organic chemical biomarkers, mineral biosignatures, or structural remains) as well as unmetamorphosed rock samples. None of the previous landings on Mars was located in an area with features identified as potential mud volcanoes (Fig. 3), but some of these features may offer targets for future missions aimed at sampling deep fluid-rich strata with potential habitable zones.
Origin of lipid biomarkers in mud volcanoes from the Alboran Sea, western Mediterranean
NASA Astrophysics Data System (ADS)
López-Rodríguez, C.; Stadnitskaia, A.; De Lange, G. J.; Martínez-Ruíz, F.; Comas, M.; Sinninghe Damsté, J. S.
2013-11-01
Mud volcanoes (MVs) are the most prominent indicators of active methane/hydrocarbon venting at the seafloor on both passive and active continental margins. Their occurrence in the Western Mediterranean is patent at the West Alboran Basin, where numerous MVs develop overlaying a major sedimentary depocenter containing overpressured shales. Although some of these MVs have been studied, the detailed biogeochemistry of expelled mud so far has not been examined in detail. This work provides the first results on the composition and origin of organic matter, Anaerobic Oxidation of Methane (AOM) processes and general characteristics on MV dynamics using lipid biomarkers as the main tool. Lipid biomarker analysis was performed on MV expelled material (mud breccias) and interbedded hemipelagic sediments from Perejil, Kalinin and Schneider's Heart MVs located in the northwest margin of the Alboran Sea. The n-alkane-distributions and n-alkane-derived indices (CPI and ACL), in combination with the epimerization degree of hopanes (22S/(22S + 22R)) indicate that all studied mud breccia have a similar biomarker composition consisting of mainly thermally immature organic matter with an admixture of petroleum-derived compounds. This concordant composition indicates that common source strata must feed all three studied MVs. The past or present AOM activity was established using lipid biomarkers specific for anaerobic methanotropic archaea (irregular isoprenoids and DGDs) and the depleted carbon isotope composition (δ13C) of crocetane/phytane. The presence of these lipid biomarkers, together with the low amounts of detected GDGTs, is consistent with the dominance of anaerobic methanotrophs of the ANME-2 over ANME-1, at least in mud breccia from Perejil MVs. In contrast, the scarce presence or lack of these AOM-related lipid biomarkers in sediments from Kalinin and Schneider's Heart MVs, suggest no recent active methane seepage has occurred at these sites. Moreover, the observed methane concentrations support the current activity of Perejil MV, and the very low methane seepage activity in Kalinin and Schneider's Heart MVs.
NASA Astrophysics Data System (ADS)
Brueckmann, W.; Linke, P.; Pieper, M.; Hensen, C.; Tuerk, M.
2006-12-01
Research in the cooperative research center (SFB) 574 "Volatiles and Fluids in Subduction Zones" at the University Kiel focuses on volatile and fluid exchange processes at subduction zones. These have a significant impact on the long-term geochemical evolution of the hydrosphere and atmosphere. In the SFB 574 working area off Central America more than 120 mud volcanoes, mud diapirs and cold seeps have been identified and sampled. To better understand the internal dynamics of these structures and the temporal variability of fluid expulsion an in-situ tool for monitoring shallow pore pressure variations was devised. The tool (PWPL) monitors pore pressure variations along a 2m profile in the shallow subsurface using a stinger with 4 pressure ports. Positioned with a video-guided lander the stinger is gently pushed into the seafloor where it remains for several weeks or months in autonomous mode before being retrieved. While particular emphasis was placed on the convergent margin of Central America, mud volcanoes in other tectonic settings suitable for long-term observations of fluid flux are used for comparison. Here we will present data and interpretations from two mud volcanoes off Costa Rica and in the Gulf of Cadiz where we have conducted successful tests. Pore pressure data from short-term tests on Mound 11 on the continental slope off Costa Rica are compared with new results from a long-term (3-month) campaign on the Captain Arutjunov deep water mud volcano in the Gulf of Cadiz. Rates of fluid flow at both structures have been thoroughly characterized and quantified with geochemical methods providing a frame of reference for judging the significance of dynamic pore pressure variations.
Mud Volcanoes as Exploration Targets on Mars
NASA Technical Reports Server (NTRS)
Allen, Carlton C.; Oehler, Dorothy Z.
2010-01-01
Tens of thousands of high-albedo mounds occur across the southern part of the Acidalia impact basin on Mars. These structures have geologic, physical, mineralogic, and morphologic characteristics consistent with an origin from a sedimentary process similar to terrestrial mud volcanism. The potential for mud volcanism in the Northern Plains of Mars has been recognized for some time, with candidate mud volcanoes reported from Utopia, Isidis, northern Borealis, Scandia, and the Chryse-Acidalia region. We have proposed that the profusion of mounds in Acidalia is a consequence of this basin's unique geologic setting as the depocenter for the tune fraction of sediments delivered by the outflow channels from the highlands.
NASA Astrophysics Data System (ADS)
Gontharet, S.; Pierre, C.; Blanc Valleron, M.; Rouchy, J.; Fouquet, Y.; Bayon, G.
2004-12-01
During the NAUTINIL cruise (September -October 2003), 22 submersible dives have been realized in the Nile deep-sea fan area to investigate by a multidisciplinary approach, selected mud volcanoes which are very abundant and of various morphologies in the whole area (Loncke et al., 2004). The deepest site (3019 m) located in the western part of the deep-sea fan, corresponds to a large caldera (about 8 km of diameter) where brines are seeping along the flanks of the structure and are sometimes collected in pools and lakes. The other sites in the central and eastern parts of the Nile deep-sea fan correspond respectively to pock-marks located at 2120 m and to a mud volcano located at 1130 m where active fluid ventings were identified by the presence of living benthic organisms (mainly vestimentiferan worms; rarely bivalves). At these three sites, hard carbonate crusts cover irregularly the sea floor and are sometimes present as dispersed fragments within the topmost sediments. The sediments from the venting areas are organic-rich and have a strong H2S smell which is indicative of active sulfate reduction. Petrographic observations and XRD analyses of the carbonate crusts indicate that aragonite, calcite, Mg-calcite are the dominant authigenic carbonate phases with a minor contribution of dolomite ; small concretions of ankerite occur occasionally in the sediments of the eastern delta. Millimeter sized barite concretions have also been discovered in the pock-marks sediments. The oxygen and carbon isotopic compositions of the bulk carbonate from crusts and concretions exibit large variations : -0.67 < \\delta18O\\permil PDB < 4.66 -44.17< \\delta13C \\permil PDB < 3.10 The distribution of the isotopic values is explained by the mixing of the authigenic carbonates with the sedimentary matrix which corresponds itself to a mixture of pelagic sediments and mud breccia issued from the mud volcano activity. The rather large range of \\delta18O values might reflect variable sources of diagenetic fluids. Typically, the very low \\delta13C values of the authigenic carbonates indicate that CH4 was the major source of carbon which was oxidized as CO2, either through bacterial sulfate reduction within the sediment, or via bacterial aerobic oxidation at the sea floor. Similar isotopic values were previously measured in the diagenetic carbonate crusts from the mud volcanoes of the Mediterranean Ridge area (Aloisi et al., 2000) as well as in other areas of cold seeps outside the Mediterranean sea (for instance Gulf of Mexico, Cascadia margin, Barbados prism). References: Aloisi G., Pierre C., Rouchy J.M., Foucher J.P., Woodside J. and the Medinaut Scientific Party, 2000. E.P.S.L., 184, 321-338. Loncke L., Gaullier V., Bellaiche G., and Mascle J., 2004. A.A.P.G. Bull
NASA Astrophysics Data System (ADS)
Carvalho, Lina; Monteiro, Rui; Figueira, Paula; Mieiro, Cláudia; Almeida, Joana; Pereira, Eduarda; Magalhães, Vítor; Pinheiro, Luís; Vale, Carlos
2018-01-01
Mud volcanoes are feature of the coastal margins where anaerobic oxidation of methane triggers geochemical signals. Elemental composition, percentage of fine particles and loss on ignition were determined in sediment layers of eleven gravity cores retrieved from four mud volcanoes (Sagres, Bonjardim, Soloviev and Porto) and three undefined structures located on the deep Portuguese margin of the Gulf of Cadiz. Calcium was positively correlated to Sr and inversely to Al as well as to most of the trace elements. Vertical profiles of Ba, Cd and As concentrations, and their ratios to Al, in Porto and Soloviev showed pronounced enhancements in the top 50-cm depth. Sub-surface enhancements were less pronounced in other mud volcanoes and were absent in sediments from the structures. These profiles were interpreted as diagenetic enrichments related to the anaerobic oxidation of methane originated from upward methane-rich fluxes. The observed barium fronts were most likely caused by the presence of barite which precipitated at the sulphate-methane transition zone. Cd and As enrichments have probably resulted from successive dissolution/precipitation of sulphides in response to vertical shifts of redox boundaries.
Analysis of mechanism for formation of diapiric structures of Tersko-Caspian Foretrough
NASA Astrophysics Data System (ADS)
Gatsaeva, S. S.; Hasanov, M. A.; Eljayev, A. S.; Ezirbaev, T. B.; Aleksandrov, B. L.
2017-10-01
The article delivers a comparative analysis of the diapir structures of the Tersko-Sunzhenskaya oil-and-gas region of the Eastern Ciscaucasia, which are represented in the form of quasi-muddy, young (not yet ripe) volcanoes, and mud volcano structures on the territory of the southeastern end of the Caucasian ridge (Apsheron peninsula and other territories of Azerbaijan) and the northwestern end of the Caucasian ridge (Kerch and Taman peninsulas). It is shown that the formation of the diapir structure is not a sufficient condition for its degeneration into a mud volcano even when there is a high thickness of clayey strata in the section. The paramount significance in such geological conditions is determined not only by the thickness of the clay stratum, but also by the degree of its water-saturated porosity, which forms viscous-plastic and fluid properties that facilitate the transition of the rock to the phase of active flow and outflow onto the surface.
Olive, Graham; Rodrigues, Clara F; Cunha, Marina R
2011-01-01
The chemosymbiotic bivalves collected from the mud volcanoes of the Gulf of Cadiz are reviewed. Of the thirteen species closely associated with chemosynthetic settings two Solemyidae, Solemya (Petrasma) elarraichensissp. n. and Acharax gadiraesp. n., one Lucinidae, Lucinoma asapheussp. n., and one Vesicomyidae, Isorropodon megadesmussp. n. are described and compared to close relatives of their respective families. The biodiversity and distribution of the chemosymbiotic bivalves in the Gulf of Cadiz are discussed and compared to the available information from other cold seeps in the Eastern Atlantic and Mediterranean. Although there is considerable similarity at the genus level between seep/mud volcano fields in the Eastern Atlantic and Mediterranean, there is little overlap at the species level. This indicates a high degree of endemism within chemosymbiotic bivalve assemblages.
Lahar hazards at Agua volcano, Guatemala
Schilling, S.P.; Vallance, J.W.; Matías, O.; Howell, M.M.
2001-01-01
At 3760 m, Agua volcano towers more than 3500 m above the Pacific coastal plain to the south and 2000 m above the Guatemalan highlands to the north. The volcano is within 5 to 10 kilometers (km) of Antigua, Guatemala and several other large towns situated on its northern apron. These towns have a combined population of nearly 100,000. It is within about 20 km of Escuintla (population, ca. 100,000) to the south. Though the volcano has not been active in historical time, or about the last 500 years, it has the potential to produce debris flows (watery flows of mud, rock, and debris—also known as lahars when they occur on a volcano) that could inundate these nearby populated areas.
Origin of lipid biomarkers in mud volcanoes from the Alboran Sea, western Mediterranean
NASA Astrophysics Data System (ADS)
López-Rodríguez, C.; Stadnitskaia, A.; De Lange, G. J.; Martínez-Ruíz, F.; Comas, M.
2014-06-01
Mud volcanoes (MVs) are the most prominent indicators of active methane/hydrocarbon venting at the seafloor on both passive and active continental margins. Their occurrence in the western Mediterranean is patent at the West Alboran Basin, where numerous MVs develop overlaying a major sedimentary depocentre containing overpressured shales. Although some of these MVs have been studied, the detailed biogeochemistry of expelled mud so far has not been examined in detail. This work provides the first results on the composition and origin of organic matter, anaerobic oxidation of methane (AOM) processes and general characteristics on MV dynamics using lipid biomarkers as the main tool. Lipid biomarker analysis was performed on MV expelled material (mud breccias) and interbedded hemipelagic sediments from Perejil, Kalinin and Schneider's Heart MVs located in the northwest margin of the Alboran Sea. The n alkane distributions and n alkane-derived indices (CPI and ACL), in combination with the epimerization degree of hopanes (22S/(22S+22R)) indicate that all studied mud breccia have a similar biomarker composition consisting of mainly thermally immature organic matter with an admixture of petroleum-derived compounds. This concordant composition indicates that common source strata must feed all three studied MVs. The past or present AOM activity was established using lipid biomarkers specific for anaerobic methanotrophic archaea (irregular isoprenoids and dialkyl glycerol diethers) and the depleted carbon isotope composition (δ13C) of crocetane/phytane. The presence of these lipid biomarkers, together with the low amounts of detected glycerol dialkyl glycerol tetraethers, is consistent with the dominance of anaerobic methanotrophs of the ANME-2 over ANME-1, at least in mud breccia from Perejil MVs. In contrast, the scarce presence or lack of these AOM-related lipid biomarkers in sediments from Kalinin and Schneider's Heart MVs, suggests that no recent active methane seepage has occurred at these sites. Moreover, the observed methane concentrations support the current activity of Perejil MV, and the very low methane seepage activity in Kalinin and Schneider's Heart MVs.
Methane Hydrate Recovered From A Mud Volcano in Santa Monica Basin, Offshore Southern California
NASA Astrophysics Data System (ADS)
Normark, W. R.; Hein, J. R.; Powell, C. L.; Lorenson, T. D.; Lee, H. J.; Edwards, B. D.
2003-12-01
In July 2003, a short (2.1 m) piston core from the summit of a mud volcano recovered methane hydrate at a water depth of 813 m in Santa Monica Basin. The discovery core penetrated into in the hydrate as evidenced by chunks of ice and violent degassing of the core section between 162 and 212 cm depth. The core consists of shell hash and carbonate clasts (to 7-cm long) in silty mud. The methanogenic carbonates are of two types: massive, recrystallized nodular masses with an outer mm-thick sugary patina and a bivalve coquina with carbonate cement. Living clams including the genus Vesicomya, commonly found at cold-seep sites elsewhere, were recovered from the top of the core. Further sampling attempts using piston, gravity, and box corers, all of which were obtained within 15 m of the discovery core, recovered olive-brown silty mud with variable amounts of whole and fragmented bivalve shells and methanogenic carbonate fragments characteristic of cold-seep environments. Gases collected in cores adjacent to the discovery core contain elevated amounts of methane and trace amounts of heavier hydrocarbon gases, indicating some component from thermogenic sources. Hydrogen sulfide was also detected in these sediment samples. Vertical channels in one core may have served as fluid pathways. The existence of hydrate at such a shallow depth in the sediment was unexpected, however, the presence of Vesicomya and hydrogen sulfide indicate that the mud volcano is a site of active methane venting. The mud volcano, which is about 24 km west-southwest of Redondo Beach, is about 300 m in diameter at the base. No internal structure is resolved on either high resolution deep-tow boomer or single-channel air-gun profiles, most likely as a result of the gas content and sediment deformation. The diapiric structure has ascended through well-bedded sediment on the lower slope of the basin, producing as much as 30 m of bathymetric relief. It is located in an area where strike-slip motion along the San Pedro Basin fault zone to the south is replaced by convergent motion to the north. The source horizon for the gas in the hydrate is unknown but appears to be collecting in beds as shallow as 200 m below the regional seafloor based on the presence of a strong and irregular reflection interval.
NASA Astrophysics Data System (ADS)
Coelho, Francisco J. R. C.; Louvado, António; Domingues, Patrícia M.; Cleary, Daniel F. R.; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R.; Cunha, Ângela; Gomes, Newton C. M.
2016-10-01
The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults.
Coelho, Francisco J. R. C.; Louvado, António; Domingues, Patrícia M.; Cleary, Daniel F. R.; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R.; Cunha, Ângela; Gomes, Newton C. M.
2016-01-01
The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults. PMID:27762306
Coelho, Francisco J R C; Louvado, António; Domingues, Patrícia M; Cleary, Daniel F R; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R; Cunha, Ângela; Gomes, Newton C M
2016-10-20
The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults.
NASA Astrophysics Data System (ADS)
Karyono, Karyono; Obermann, Anne; Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Abdurrokhim, Abdurrokhim; Masturyono, Masturyono; Hadi, Soffian
2016-04-01
The Lusi eruption began on May 29, 2006 in the northeast of Java Island, Indonesia, and to date is still active. Lusi is a newborn sedimentary-hosted hydrothermal system characterized by continuous expulsion of liquefied mud and breccias and geysering activity. Lusi is located upon the Watukosek fault system, a left lateral wrench system connecting the volcanic arc and the bakarc basin. This fault system is still periodically reactivated as shown by field data. In the framework of the Lusi Lab project (ERC grant n° 308126) we conducted several types of monitoring. Based on camera observations, we characterized the Lusi erupting activity by four main behaviors occurring cyclically: (1) Regular activity, which consists in the constant emission of water and mud breccias (i.e. viscous mud containing clay, silt, sand and clasts) associated with the constant expulsion of gas (mainly aqueous vapor with minor amounts of CO2 and CH4) (2) Geysering phase with intense bubbling, consisting in reduced vapor emission and more powerful bursting events that do not seem to have a regular pattern. (3) Geysering phase with intense vapor and degassing discharge and a typically dense plume that propagates up to 100 m height. (4) Quiescent phase marking the end of the geysering activity (and the observed cycle) with no gas emissions or bursts observed. To investigate the possible seismic activity beneath Lusi and the mechanisms controlling the Lusi pulsating behaviour, we deployed a network of 5 seismic stations and a HD camera around the Lusi crater. We characterize the observed types of seismic activity as tremor and volcano-tectonic events. Lusi tremor events occur in 5-10 Hz frequency band, while volcano tectonic events are abundant in the high frequencies range from 5 Hz until 25 Hz. We coupled the seismic monitoring with the images collected with the HD camera to study the correlation between the seismic tremor and the different phases of the geysering activity. Key words: Lusi mud eruption, geysering activity, seismic activity
Olive, Graham; Rodrigues, Clara F.; Cunha, Marina R.
2011-01-01
Abstract The chemosymbiotic bivalves collected from the mud volcanoes of the Gulf of Cadiz are reviewed. Of the thirteen species closely associated with chemosynthetic settings two Solemyidae, Solemya (Petrasma) elarraichensis sp. n. and Acharax gadirae sp. n., one Lucinidae, Lucinoma asapheus sp. n., and one Vesicomyidae, Isorropodon megadesmus sp. n. are described and compared to close relatives of their respective families. The biodiversity and distribution of the chemosymbiotic bivalves in the Gulf of Cadiz are discussed and compared to the available information from other cold seeps in the Eastern Atlantic and Mediterranean. Although there is considerable similarity at the genus level between seep/mud volcano fields in the Eastern Atlantic and Mediterranean, there is little overlap at the species level. This indicates a high degree of endemism within chemosymbiotic bivalve assemblages. PMID:21976991
The "Mud-volcanoes route" (Emilia Apennines, northern Italy)
NASA Astrophysics Data System (ADS)
Coratza, Paola; Castaldini, Doriano
2016-04-01
In the present paper the "Mud-volcanoes route" (MVR), an itinerary unfolds across the districts of Viano, Sassuolo, Fiorano Modenese and Maranello, in which part of the Emilia mud volcanoes fields are located, is presented. The Mud-volanoes route represents an emotional journey that connects places and excellences through the geological phenomenon of mud volcanoes, known with the local name "Salse". The Mud Volcanoes are created by the surfacing of salt water and mud mixed with gaseous and liquid hydrocarbons along faults and fractures of the ground. The name "Salsa"- from Latin salsus - results from the"salt" content of these muddy waters, ancient heritage of the sea that about a million years ago was occupying the current Po Plain. The "Salse" may take the shape of a cone or a level-pool according to the density of the mud. The Salse of Nirano, in the district of Fiorano Modenese, is one of the most important in Italy and among the most complex in Europe. Less extensive but equally charming and spectacular, are the "Salse" located in the districts of Maranello (locality Puianello), Sassuolo (locality Montegibbio) and Viano (locality Casola Querciola and Regnano). These fascinating lunar landscapes have always attracted the interest of researchers and tourist.The presence on the MVR territory of ancient settlements, Roman furnaces and mansions, fortification systems and castles, besides historic and rural buildings, proves the lasting bond between this land and its men. In these places, where the culture of good food has become a resource, we can find wine cellars, dairy farms and Balsamic vinegar factories that enable us to appreciate unique worldwide products. This land gave also birth to some personalities who created unique worldwide famous values, such as the myth of the Ferrrari, the ceramic industry and the mechatronics. The MVR is represented in a leaflet containing, short explanation, photos and a map in which are located areas with mud volcanoes, castles, archaeological sites, historic and holy buildings and represent an initiative for the promotion of the environment, art, wellness, tastes, technology and talent of the territory of districts of Viano, Sassuolo, Fiorano Modenese and Maranello. The MVR presented in this article is an example of how geology can be a starting point and provide continuity for a journey offering close encounters with our region's science, art, history, culture. This research aimed to transform geomorphological sites into a culturally accessible and shared heritage and therefore into a resource for social and economic development in their own territory. Indeed geological sites are considered as new elements that can catalyse the potentialities of a territory which are often neglected or pass unnoticed. In this way the proposal become an instrument for territorial upgrading, by means of qualified measures on abandoned or secondary areas, thus promoting them to the rank of development models.
Volcano fact sheet; glacier-generated debris flows at Mount Rainier
Walder, J.S.; Driedger, C.L.
1993-01-01
Mount Rainier is a young volcano whose slopes are undergoing rapid change by a variety of geologic processes, including debris flows. Debris flows are churning masses of water, rock and mud that travel rapidly down the volcano's steep, glacially carved valleys, leaving in their wake splintered trees, picnic sites buried in mud, and damaged roads. Debris flows typically contain as much as 65 to 70 percent rock and soil by volume and have the appearance of wet concrete. At Mount Rainier National Park, these flows invariably begin in remote areas nearly inaccessible to people, but may move rapidly downstream into areas frequented by visitors.
Singh, Aditya; Sreenivas, Ara; Sathyanarayana Reddy, Gundlapally; Pinnaka, Anil Kumar; Shivaji, Sisinthy
2014-07-24
The 4.3-Mb genome of Lutibaculum baratangense strain AMV1(T), isolated from a soil sample collected from a mud volcano in Andamans, India, is reported. The draft genome of strain Lutibaculum baratangense AMV1(T) consists of 4,300,776 bp with a G+C content of 66.93 mol% and 4,198 predicted coding regions, including 56 RNAs. Copyright © 2014 Singh et al.
IODP Expedition 366 Reveals Widespread Seamount Subduction Effects in the Mariana Forearc
NASA Astrophysics Data System (ADS)
Fryer, P. B.; Wheat, C. G.; Williams, T.
2017-12-01
Numerous studies of the subduction of seamounts at accretionary convergent plate margins show considerable vertical tectonic deformation in the forearc region. This includes embayment of the trench axis, steepening of the inner trench slope, the creation of troughs in the wake of the seamount track beneath the forearc sediment wedge, but hypotheses regarding the seismogenic consequences of these processes are frequently at odds. In the nonaccretionary Mariana convergent plate margin, it is clear that ridges crosscut the entire forearc region in commensurate dimensions with thicker areas of subducting Pacific plate. Furthermore, to-date deep-sea drilling results on ODP Legs 125 and 195 and on IODP Expedition 366 recovered seamount materials from 5 serpentinite mud volcanoes over a 640 km along-strike distance, within 90 km west of the trench axis, and from 13 to 19 km depth to slab. The location of the serpentinite mud volcanoes is always associated with fault lineaments. The faulting creates the conduits for eruption of mixtures of fluids from the subduction channel and fault gouge from both the subduction channel and the forearc lithosphere. Cores from IODP 366 confirm that seamount subduction and deformation is a temporally and spatially pervasive process on the Mariana forearc. The new findings provide windows on a continuum of the evolution of plate and seamount subduction from the trench to nearly 20 km depth within the subduction channel. Cased boreholes were deployed at the summits of three active serpentinite mud volcanoes (Yinazao (Blue Moon), Asùt Tesoro (Big Blue), and Fantangisña (Celestial) Seamounts) during Expedition 366. These, plus the existing borehole observatory at ODP Site 1200C on the active summit of Conical Seamount provide a means to monitor processes of subduction related to serpentinite mud volcanism of the Mariana forearc. Such drilling results and borehole observations impact current paradigms of lithospheric deformation, mass cycling, and physical conditions within the subduction channel.
NASA Astrophysics Data System (ADS)
Okay, S.; Cifci, G.; Ozel, S.; Atgin, O.; Ozel, O.; Barin, B.; Er, M.; Dondurur, D.; Kucuk, M.; Gurcay, S.; Choul Kim, D.; Sung-Ho, B.
2012-04-01
Recently, the continental margins of Black Sea became important for its gas content. There are no scientific researches offshore Trabzon-Giresun area except the explorations of oil companies. This is the first survey that performed in that area. 1700 km high resolution multichannel seismic and chirp data simultaneously were collected onboard R/V K.Piri Reis . The seismic data reveal BSRs, bright spots and acoustic maskings especially on the eastern part of the survey area. The survey area in the Eastern Black Sea includes continental slope, apron and deep basin. Two mud volcanoes are discovered and named as Busan and Izmir. The observed fold belt is believed to be the main driving force for the growth of mud volcanoes.Faults are developed at the flanks of diapiric uplift. Seismic attributes and AVO analysis are applied to 9 seismic sections which have probable gassy sediments and BSR zones. In the seismic attribute analysis high amplitude horzions with reverse polarity are observed in instantaneous frequency, envelope and apparent polarity sections also with low frequency at instantaneous frequency sections. These analysis verify existence of gas accumulations in the sediments. AVO analysis and cross section drawing and Gradient analysis show Class 1 AVO anomaly and indicate gas in sediments. Keywords: BSR, Bright spot, Mud volcano, Seismic Attributes, AVO
Metabolic stratification driven by surface and subsurface interactions in a terrestrial mud volcano.
Cheng, Ting-Wen; Chang, Yung-Hsin; Tang, Sen-Lin; Tseng, Ching-Hung; Chiang, Pei-Wen; Chang, Kai-Ti; Sun, Chih-Hsien; Chen, Yue-Gau; Kuo, Hung-Chi; Wang, Chun-Ho; Chu, Pao-Hsuan; Song, Sheng-Rong; Wang, Pei-Ling; Lin, Li-Hung
2012-12-01
Terrestrial mud volcanism represents the prominent surface geological feature, where fluids and hydrocarbons are discharged along deeply rooted structures in tectonically active regimes. Terrestrial mud volcanoes (MVs) directly emit the major gas phase, methane, into the atmosphere, making them important sources of greenhouse gases over geological time. Quantification of methane emission would require detailed insights into the capacity and efficiency of microbial metabolisms either consuming or producing methane in the subsurface, and establishment of the linkage between these methane-related metabolisms and other microbial or abiotic processes. Here we conducted geochemical, microbiological and genetic analyses of sediments, gases, and pore and surface fluids to characterize fluid processes, community assemblages, functions and activities in a methane-emitting MV of southwestern Taiwan. Multiple lines of evidence suggest that aerobic/anaerobic methane oxidation, sulfate reduction and methanogenesis are active and compartmentalized into discrete, stratified niches, resembling those in marine settings. Surface evaporation and oxidation of sulfide minerals are required to account for the enhanced levels of sulfate that fuels subsurface sulfate reduction and anaerobic methanotrophy. Methane flux generated by in situ methanogenesis appears to alter the isotopic compositions and abundances of thermogenic methane migrating from deep sources, and to exceed the capacity of microbial consumption. This metabolic stratification is sustained by chemical disequilibria induced by the mixing between upward, anoxic, methane-rich fluids and downward, oxic, sulfate-rich fluids.
Metabolic stratification driven by surface and subsurface interactions in a terrestrial mud volcano
Cheng, Ting-Wen; Chang, Yung-Hsin; Tang, Sen-Lin; Tseng, Ching-Hung; Chiang, Pei-Wen; Chang, Kai-Ti; Sun, Chih-Hsien; Chen, Yue-Gau; Kuo, Hung-Chi; Wang, Chun-Ho; Chu, Pao-Hsuan; Song, Sheng-Rong; Wang, Pei-Ling; Lin, Li-Hung
2012-01-01
Terrestrial mud volcanism represents the prominent surface geological feature, where fluids and hydrocarbons are discharged along deeply rooted structures in tectonically active regimes. Terrestrial mud volcanoes (MVs) directly emit the major gas phase, methane, into the atmosphere, making them important sources of greenhouse gases over geological time. Quantification of methane emission would require detailed insights into the capacity and efficiency of microbial metabolisms either consuming or producing methane in the subsurface, and establishment of the linkage between these methane-related metabolisms and other microbial or abiotic processes. Here we conducted geochemical, microbiological and genetic analyses of sediments, gases, and pore and surface fluids to characterize fluid processes, community assemblages, functions and activities in a methane-emitting MV of southwestern Taiwan. Multiple lines of evidence suggest that aerobic/anaerobic methane oxidation, sulfate reduction and methanogenesis are active and compartmentalized into discrete, stratified niches, resembling those in marine settings. Surface evaporation and oxidation of sulfide minerals are required to account for the enhanced levels of sulfate that fuels subsurface sulfate reduction and anaerobic methanotrophy. Methane flux generated by in situ methanogenesis appears to alter the isotopic compositions and abundances of thermogenic methane migrating from deep sources, and to exceed the capacity of microbial consumption. This metabolic stratification is sustained by chemical disequilibria induced by the mixing between upward, anoxic, methane-rich fluids and downward, oxic, sulfate-rich fluids. PMID:22739492
NASA Astrophysics Data System (ADS)
Sumintadireja, Prihadi; Irawan, Diky
2017-06-01
Mud volcano remnants are identified in Surabaya and adjacent areas. The people in East Java based on historical report are custom and able to adjust with the natural phenomena within their areas. Sidoarjo mud volcano phenomena which coincident with drilling activity in 29 May 2006 is making people and government anxious for development a new infrastructure such as high rise building, toll road etc. An understanding of a geological hazard which can be single, sequential or combined events in their origin is the main key importance in subsurface imaging. Geological hazard can be identified by geophysical, geological, geotechnical method. The prompt selection of geophysical method to reveal subsurface condition is very important factor instead of survey design and field data acquisition. Revealing subsurface condition is very important information for site investigation consists of geological, geophysical and geotechnical data, whereas data analysis will help civil engineer design and calculate the construction safety.
Ravara, Ascensão; Cunha, Marina R
2016-03-31
Two new species of scale worms are described from the Gulf of Cadiz (NE Atlantic), at depths between 1100 and 2230 m. Australaugeneria iberica sp. nov. (Polynoidae) was obtained from an alcyonarian colony collected at the flank of Carlos Ribeiro mud volcano; it is characterized by the presence of neuropodial hooks only on segment two and by having the first parapodia not enlarged. This is the first report of the genus for the deep sea. The diagnosis of Australaugeneria is emended and a table comparing all species of the genus is provided. Pholoe petersenae sp. nov. (Pholoidae) was collected from the crater of three mud volcanoes (Darwin, Captain Arutyunov and Carlos Ribeiro) in areas of active seepage. This species is characterized by the presence of prostomial peaks and parapodia stylodes and the absence of eyes.
NASA Astrophysics Data System (ADS)
Svensen, Henrik; Mazzini, Adriano; Planke, Sverre; Hadi, Soffian
2016-04-01
The Lusi eruption started in northeast Java, Indonesia, on May 29th 2006, and it has been erupting rocks, mud, water, and gas ever since. We have been doing field work and research on Lusi ever since the eruption commenced. This work was initially motivated from studying the initiation of a mud volcano. However, the longevity of the eruption has made it possible to describe and monitor the lifespan of this unique piercement structure. . One of the first-order questions regarding the eruption is how it should be classified and if there are any other modern or fossil analogues that can place Lusi in a relevant geological context. During the initial stages of eruption, Lusi was classified as a mud volcano, but following geochemical studies the eruption did not show the typical CH4-dominated gas composition of other mud volcanoes and the temperature was also too high. Moreover, mud volcano eruptions normally last a few days, but Lusi never stopped during the past decade. In particular, the crater fluid geochemistry suggests a connection to the neighboring volcanic complex. Lusi represent a sedimentary hosted hydrothermal system. This opens up new possibilities for understanding fossil hydrothermal systems in sedimentary basins, such as hydrothermal vent complexes and breccia-pipes found in sedimentary basins affected by the formation of Large igneous provinces. We will present examples from the Karoo Basin (South Africa) and the Vøring Basin (offshore Norway) and discuss how Lusi can be used to refine existing formation models. Finally, by comparing Lusi to fossil hydrothermal systems we may get insight into the processes operating at depth where the Lusi system interacts with the igneous rocks of the neighbouring volcanic arc.
Bonanno, Giuseppe; Lo Giudice, Rosa; Pavone, Pietro
2012-08-01
Trace element impact was assessed using mosses in a densely inhabited area affected by mud volcanoes. Such volcanoes, locally called Salinelle, are phenomena that occur around Mt. Etna (Sicily, Italy) and are interpreted as the surface outflow of a hydrothermal system located below Mt. Etna, releasing sedimentary fluids (hydrocarbons and NaCl brines) along with magmatic gases (mainly CO(2) and He). To date, scarce data are available about the presence of trace elements, and no biomonitoring campaigns are reported about the cumulative effects of such emissions. In this study, concentrations of Al, As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, V, and Zn were detected in the moss Bryum argenteum, in soil and water. Results showed that the trace element contribution of the Salinelle to the general pollution was significant for Al, Mn, Ni, and Zn. The comparison of trace concentrations in mosses from Salinelle and Etna showed that the mud volcanoes release a greater amount of Al and Mn, whereas similar values of Ni were found. Natural emissions of trace elements could be hazardous in human settlements, in particular, the Salinelle seem to play an important role in environmental pollution.
Bonanno, Giuseppe
2013-10-01
Nitrogen emissions were assessed by using mosses as bioindicators in a densely inhabited area affected by mud volcanoes. Such volcanoes, locally called Salinelle, are phenomena that occur around Mt. Etna (Sicily, Italy), and are interpreted as the surface outflow of a hydrothermal system located below Mt. Etna, which releases sedimentary fluids (hydrocarbons and Na-Cl brines) along with magmatic gases (mainly CO2 and He). To date, N emissions from such mud volcanoes have been only quantitatively assessed, and no biomonitoring campaigns are reported about the cumulative effects of these emissions. This study analyzed N concentrations in moss, water and soil samples, collected in a 4-year monitoring campaign. The bryophyte Bryum argenteum, a species widely adopted in surveys of atmospheric pollution, was used as a biological indicator. N concentrations in biomonitors showed relatively low values in the study sites. However, the results of this study suggest that N emissions from Salinelle may have an impact on surrounding ecosystems because N values in moss and water showed a significant correlation. N oxides, in particular, contribute to acidification of ecosystems, thus multitemporal biomonitoring is recommended, especially in those areas where N emitting sources are anthropogenic and natural.
Rodrigues, Clara F; Hilário, Ana; Cunha, Marina R; Weightman, Andrew J; Webster, Gordon
2011-06-01
Frenulates are a group of gutless marine annelids belonging to the Siboglinidae that are nutritionally dependent upon endosymbiotic bacteria. We have characterized the bacteria associated with several frenulate species from mud volcanoes in the Gulf of Cadiz by PCR-DGGE of bacterial 16S rRNA genes, coupled with analysis of 16S rRNA gene libraries. In addition to the primary symbiont, bacterial consortia (microflora) were found in all species analysed. Phylogenetic analyses indicate that the primary symbiont in most cases belongs to the Gammaproteobacteria and were related to thiotrophic and methanotrophic symbionts from other marine invertebrates, whereas members of the microflora were related to multiple bacterial phyla. This is the first molecular evidence of methanotrophic bacteria in at least one frenulate species. In addition, the occurrence of the same bacterial phylotype in different Frenulata species, from different depths and mud volcanoes suggests that there is no selection for specific symbionts and corroborates environmental acquisition as previously proposed for this group of siboglinids.
NASA Astrophysics Data System (ADS)
Krueger, Martin; Straaten, Nontje; Mazzini, Adriano
2015-04-01
The Lusi eruption represents one of the largest ongoing sedimentary hosted geothermal systems. This eruption started in 2006 following to a 6.3 M earthquake that stroke Java Island. Since then it has been spewing boiling mud from a central crater with peaks reaching 180.000 m3 per day. Today an area of about 8 km2 is covered by locally dried mud breccia where a network of hundreds of satellite seeping pools is active. Numerous investigations focused on the study of offshore microbial colonies that commonly thrive at offshore methane seeps and mud volcanoes, however very little has been done for onshore seeping structures. Lusi represents a unique opportunity to complete a comprehensive study of onshore microbial communities fed by the seepage of CH4 and CO2 as well as of heavier liquid hydrocarbons originating from several km below the surface. We conducted a sampling campaign at the Lusi site collecting samples of fresh mud close to the erupting crater using a remote controlled drone. In addition we completed a transect towards outer parts of the crater to collect older, weathered samples for comparison. In all samples active microorganisms were present. The highest activities for CO2 and CH4 production as well as for CH4 oxidation and hydrocarbon degradation were observed in medium-age mud samples collected roughly in the middle of the transect. Rates for aerobic methane oxidation were high, as was the potential of the microbial communities to degrade hydrocarbons (oils, alkanes, BTEX tested). The data suggests a transition of microbial populations from an anaerobic, hydrocarbon-driven metabolism in fresher samples from center or from small seeps to more generalistic, aerobic microbial communities in older, more consolidated sediments. Currently, the microbial communities in the different sediment samples are analyzed using quantitative PCR and T-RFLP combined with MiSeq sequencing. This study represents an initial step to better understand onshore seepage systems and provides an ideal analogue for comparison with the better investigated offshore structures.
NASA Astrophysics Data System (ADS)
Greinert, Jens; Artemov, Yuriy; Egorov, Viktor; De Batist, Marc; McGinnis, Daniel
2006-04-01
A mud volcano area in the deep waters (> 2000 m) of the Black Sea was studied by hydroacoustic measurements during several cruises between January 2002 and June 2004. Gas bubbles in the water column give strong backscatter signals and thus can be detected even in great water depths by echosounders as the 38 kHz EK500 scientific split-beam system that was used during the surveys. Because of their shape in echograms and to differentiate against geochemical plumes and real upwelling bubble-water plumes, we call these hydroacoustic manifestations of bubbles in the water column 'flares'. Digital recording and processing of the data allows a 3D visualization and data comparison over the entire observation period, without artefacts caused by changing system settings. During our surveys, we discovered bubble release from three separate mud volcanoes, Dvurechenskiy (DMV), Vodianitskiy (VMV) and the Nameless Seep Site (NSS), in about 2080 m water depth simultaneously. Bubble release was observed between 9 June 2003 and 5 June 2004. The most frequently surveyed, DMV, was found to be inactive during very intensive studies in January 2002. The first activity was observed on 27 June 2002, which finally ceased between 5 and 15 June 2004 after a period of continuously decreasing activity. This observed 2-yr bubble-release period at a mud volcano may give an indication for the duration of active periods. The absence of short-term variations (within days or hours) may indicate that the bubble release from the observed mud volcanoes does not undergo rapid changes. The recorded echograms show that bubbles rise about 1300 m high through the water column, to a final water depth of about 770 m, which is ˜75 m below the phase boundary of pure methane hydrate in the Black Sea. With a release depth from 2068 m and a detected rise height of 1300 m, the flare at VMV is among the deepest and highest reported so far, and gives evidence of highly extended bubble life times (up to 108 min) in deep marine environments. To better understand how a methane bubble (gas analyses of the pore water and gas hydrate gave 99.4% methane) can rise so high without dissolving, we applied a recently developed bubble dissolution model that takes into account a decreased mass transfer due to an immediately formed gas-hydrate rim. Using the hydroacoustically determined bubble rising speeds (19-22 cm/s at the bottom; 12-14 cm/s at the flare top) and the relation between the rising speed of 'dirty'/gas hydrate rimmed bubbles and the bubble size, we could validate that a gas-hydrate-rimmed bubble with a diameter of 9 mm could survive the 1300-m-rise through the water column, before it is finally dissolved. A diameter of about 9 mm is reasonable for bubbles released at seep sites and the coincidence between the observed bubble rising speed and the model approach of a 9-mm bubble supports the assumption of gas-hydrate-rimmed bubbles.
NASA Astrophysics Data System (ADS)
DongHun, Lee; YoungKeun, Jin; JungHyun, Kim; Heldge, Niemann; JongKu, Gal; BoHyung, Choi
2016-04-01
Based on the water column acoustic anomalies related to active methane (CH4) venting, numerous active Mud Volcanoes (MVs) were recently identified at ~282, ~420, and ~740 m water depths on the continental slope of the Canadian Beaufort Sea (Paull et al., 2015). While geophysical aspects such as the multibeam bathymetric mapping are thoroughly investigated, biogeochemical processes controlling outgassing CH4 at the active MVs are not well constrained. Here, we investigated three sediment cores from the active MVs and one sediment core from a non-methane influenced reference site recovered during the ARA-05C expedition with the R/V ARAON in 2014. We analyzed lipid biomarkers and their stable carbon isotopic values (δ13C) in order to determine key biogeochemical processes involved in CH4 cycling in the MV sediments. Downcore CH4 and sulphate (SO42-) concentration measurements revealed a distinct sulfate-methane transition zone (SMTZ) at the shallow sections of the cores (15 - 45 cm below seafloor (cm bsf) at 282 m MV, 420 m MV, and 740 m MV). The most abundant diagnostic lipid biomarkers in the SMTZ were sn-2-hydroxyarchaeol (-94‰) and archaeol (-66‰) with the sn-2-hydroxyarchaeol: archaeol ratio of 1.1 to 5, indicating the presence of ANME-2 or -3. However, we also found substantial amounts of monocyclic biphytane-1 (BP-1, -118‰), which is rather indicative for ANME-1. Nevertheless, the concentration of sn-2-hydroxyarchaeol was 2-fold higher than any other archaeal lipids, suggesting a predominant ANME-2 or -3 rather than ANME-1 as a driving force for the anaerobic methane oxidation (AOM) in these systems. We will further investigate the microbial community at the active MVs using nucleic acid (RNA and DNA) sequence analyses in near future. Our study provides first biogeochemical data set of the active MVs in the Canadian Beaufort Sea, which helps to better understand CH4 cycling mediated in these systems. Reference Paull, C.K., et al. (2015), Active mud volcanoes on the continental slope of the Canadian Beaufort Sea. Geochemistry, Geophysics, Geosystems 16, doi:10.1002/2015GC005928.
Lahar hazards at Mombacho Volcano, Nicaragua
Vallance, J.W.; Schilling, S.P.; Devoli, G.
2001-01-01
Mombacho volcano, at 1,350 meters, is situated on the shores of Lake Nicaragua and about 12 kilometers south of Granada, a city of about 90,000 inhabitants. Many more people live a few kilometers southeast of Granada in 'las Isletas de Granada and the nearby 'Peninsula de Aseses. These areas are formed of deposits of a large debris avalanche (a fast moving avalanche of rock and debris) from Mombacho. Several smaller towns with population, in the range of 5,000 to 12,000 inhabitants are to the northwest and the southwest of Mombacho volcano. Though the volcano has apparently not been active in historical time, or about the last 500 years, it has the potential to produce landslides and debris flows (watery flows of mud, rock, and debris -- also known as lahars when they occur on a volcano) that could inundate these nearby populated areas. -- Vallance, et.al., 2001
McGimsey, Robert G.; Wallace, Kristi L.
1999-01-01
The Alaska Volcano Observatory (AVO) monitors over 40 historically active volcanoes along the Aleutian Arc. Twenty are seismically monitored and for the rest, the AVO monitoring program relies mainly on pilot reports, observations of local residents and ship crews, and daily analysis of satellite images. In 1997, AVO responded to eruptive activity or suspect volcanic activity at 11 volcanic centers: Wrangell, Sanford, Shrub mud volcano, Iliamna, the Katmai group (Martin, Mageik, Snowy, and Kukak volcanoes), Chiginagak, Pavlof, Shishaldin, Okmok, Cleveland, and Amukta. Of these, AVO has real-time, continuously recording seismic networks at Iliamna, the Katmai group, and Pavlof. The phrase “suspect volcanic activity” (SVA), used to characterize several responses, is an eruption report or report of unusual activity that is subsequently determined to be normal or enhanced fumarolic activity, weather-related phenomena, or a non-volcanic event. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) about the 1997 activity of 5 Russian volcanoes--Sheveluch, Klyuchevskoy, Bezymianny, Karymsky, and Alaid (SVA). This report summarizes volcanic activity and SVA in Alaska during 1997 and the AVO response, as well as information on the reported activity at the Russian volcanoes. Only those reports or inquiries that resulted in a “significant” investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of reports throughout the year of steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1997 response record.
Ascent velocity and dynamics of the Fiumicino mud eruption, Rome, Italy
NASA Astrophysics Data System (ADS)
Vona, A.; Giordano, G.; De Benedetti, A. A.; D'Ambrosio, R.; Romano, C.; Manga, M.
2015-08-01
In August 2013 drilling triggered the eruption of mud near the international airport of Fiumicino (Rome, Italy). We monitored the evolution of the eruption and collected samples for laboratory characterization of physicochemical and rheological properties. Over time, muds show a progressive dilution with water; the rheology is typical of pseudoplastic fluids, with a small yield stress that decreases as mud density decreases. The eruption, while not naturally triggered, shares several similarities with natural mud volcanoes, including mud componentry, grain-size distribution, gas discharge, and mud rheology. We use the size of large ballistic fragments ejected from the vent along with mud rheology to compute a minimum ascent velocity of the mud. Computed values are consistent with in situ measurements of gas phase velocities, confirming that the stratigraphic record of mud eruptions can be quantitatively used to infer eruption history and ascent rates and hence to assess (or reassess) mud eruption hazards.
Ramalho, LaÍs V; LÓpez-fÉ, Carlos M; Rueda, JosÉ Luis
2018-01-23
Diapirs and mud volcanoes (MVs) are formed by the migration and extrusion of fluids and mud to the seafloor, respectively. In the Gulf of Cádiz there are ca. 60 MVs and several diapirs with different environmental conditions and seepage activity. Previous studies, mainly on MVs, have demonstrated that the invertebrate fauna associated with these seafloor structures can be very diverse, including chemosymbiotic species, mostly mollusks and frenulate polychaetes, as well as vulnerable suspension feeders, such as cold-water corals and sponges, among others. Previous studies of the bryozoan fauna in this area have recorded species belonging to 28 families. One of these families is Phidoloporidae, which comprises 27 genera worldwide, including the common Rhynchozoon, Reteporellina, and Reteporella. In the present study, two species belonging to Reteporella are redescribed, and a new species is described from diapirs and MVs on the shelf and slope of the Gulf of Cádiz. The samples were collected during several oceanographic expeditions carried out by the Instituto Español de Oceanografia. This genus is well represented in the NE Atlantic Ocean and the Mediterranean Sea, and our study extends its occurrence on MVs and diapirs fields of the Gulf of Cádiz.
NASA Astrophysics Data System (ADS)
Mazzini, A.; Husein, A.; Karyono, K.; Lupi, M.; Obermann, A.; Hadi, S.
2015-12-01
The Lusi eruption started the 29th of May 2006 in Eastern Java, Indonesia. Since its birth Lusi presented a pulsating behaviour with geyser-like activity. To date Lusi is still active and never stopped erupting enormous amounts of mud, clasts, water and gas with peaks of activity reaching 180.000 km3/day. The erupting activity is characterized by[ML1] three main behaviours: 1) regular activity, which consists in the constant emission of mud breccia (i.e. viscous mud containing clay, silt, sand and clasts up to 10 cm in diameter) associated with the expulsion of water both in a liquid and vapour state as well as other gasses (i.e. mostly CO2 and CH4). Occasional powerful bursts of mud may reach up ten meters in height. 2) geysering activity consisting in more powerful eruptive events that do not seem to have a regular pattern. These typically lasts up to five minutes and comprise an initial phase marked by an elevated bubbling in the crater zone followed by an increasing amount of vapour released throughout the geysering phase. 3) quasi-absence of degassing from the main crater(s). This phase follows the geysering activity and is generally short-lived In order to investigate the mechanisms controlling Lusi pulsating behaviour, we deployed a network of five seismometers around the crater. The seismic records highlight that the seismic signal of Lusi is characterised by tremor and volcano-tectonic events. Tremor events occur in 1 Hz and 3 Hz frequency bands while volcano tectonic events are rich in high frequencies (i.e. 2-15 Hz). We also identify an emerging signal lasting from approximately one to ten minutes. This signal appears throughout the dataset and it is characterized by a frequency content between 5 Hz and 10 Hz. To verify whether such long-lasting signal could be associated to the geysering phase we coupled the seismic monitoring with a HD camera to record the crater activity. Results reveal that the onset of such signal precedes the visual evidence of geysering activity at the surface. This implies that the signal is not originated in the immediate subsurface. We argue that such signal is generated by the geysering activity and it is caused by the discrete collapse of gas pockets rising through a super-heated fluid column filled with hot mud. [ML1]Comprises??
Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life.
Pons, Marie-Laure; Quitté, Ghylaine; Fujii, Toshiyuki; Rosing, Minik T; Reynard, Bruno; Moynier, Frederic; Douchet, Chantal; Albarède, Francis
2011-10-25
The Isua Supracrustal Belt, Greenland, of Early Archean age (3.81-3.70 Ga) represents the oldest crustal segment on Earth. Its complex lithology comprises an ophiolite-like unit and volcanic rocks reminiscent of boninites, which tie Isua supracrustals to an island arc environment. We here present zinc (Zn) isotope compositions measured on serpentinites and other rocks from the Isua supracrustal sequence and on serpentinites from modern ophiolites, midocean ridges, and the Mariana forearc. In stark contrast to modern midocean ridge and ophiolite serpentinites, Zn in Isua and Mariana serpentinites is markedly depleted in heavy isotopes with respect to the igneous average. Based on recent results of Zn isotope fractionation between coexisting species in solution, the Isua serpentinites were permeated by carbonate-rich, high-pH hydrothermal solutions at medium temperature (100-300 °C). Zinc isotopes therefore stand out as a pH meter for fossil hydrothermal solutions. The geochemical features of the Isua fluids resemble the interstitial fluids sampled in the mud volcano serpentinites of the Mariana forearc. The reduced character and the high pH inferred for these fluids make Archean serpentine mud volcanoes a particularly favorable setting for the early stabilization of amino acids.
Proceedings of the 2nd Columbia River Basalt Symposium: Maar volcanoes
NASA Technical Reports Server (NTRS)
Waters, A. C.; Fisher, R. V.
1971-01-01
Examination of maar-type volcanic cones, including tuff rings, from more than 40 localities in western North America indicates that water had access to volcano orifices during their activity. The most convincing evidence is the abundance of sideromelane (chilled basaltic glass) or its palagonitic decomposition products in the ejecta. Moreover, the volcanoes which were examined erupted in basins that either contained surface water, or else they grew above highly permeable aquifers at shallow dept. Characteristic features of maar ejecta are continuous thin beds, undulations and antidunes characteristic of base surge stratification, abundant accretionary lapilli or mud-armored rock particles, bedding sags that show soft sediment deformation, and in the subaqueous parts of the maar ramparts, great piles of subtly graded thin lenses of hyaloclastic debris.
NASA Spacecraft Views Erupting Chilean Volcano
2015-03-13
On March 3, 2015, Chile's Villarrica volcano erupted, forcing the evacuation of thousands of people. The eruption deposited a layer of ash over the volcano's eastern slope, blanketing and darkening the normal winter snow cover. The eruption and its effects were captured by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft on March 9. Black flows on the other flanks are mud and ash flows. Vegetation is displayed in red colors. The thermal infrared image shows hot spots (white colored) at the summit crater, indicating continuing volcanic activity. The ash blanket is warmer (brighter) than the cold snow (black). The image covers an area of 13.5 by 16.5 kilometers, and is located at 39.4 degrees south, 71.9 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19241
DOE Office of Scientific and Technical Information (OSTI.GOV)
Techtmann, Stephen M.; Fortney, Julian L.; Ayers, Kati A.
The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA) analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbialmore » community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Furthermore, our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly affect microbial community structure in the Eastern Mediterranean water column.« less
Wang, Pei-Ling; Chiu, Yi-Ping; Cheng, Ting-Wen; Chang, Yung-Hsin; Tu, Wei-Xain; Lin, Li-Hung
2014-01-01
This study analyzed cored sediments retrieved from sites distributed across a transect of the Lei-Gong-Hou mud volcanoes in eastern Taiwan to uncover the spatial distributions of biogeochemical processes and community assemblages involved in methane cycling. The profiles of methane concentration and carbon isotopic composition revealed various orders of the predominance of specific methane-related metabolisms along depth. At a site proximal to the bubbling pool, the methanogenic zone was sandwiched by the anaerobic methanotrophic zones. For two sites distributed toward the topographic depression, the methanogenic zone overlaid the anaerobic methanotrophic zone. The predominance of anaerobic methanotrophy at specific depth intervals is supported by the enhanced copy numbers of the ANME-2a 16S rRNA gene and coincides with high dissolved Fe/Mn concentrations and copy numbers of the Desulfuromonas/Pelobacter 16S rRNA gene. Assemblages of 16S rRNA and mcrA genes revealed that methanogenesis was mediated by Methanococcoides and Methanosarcina. pmoA genes and a few 16S rRNA genes related to aerobic methanotrophs were detected in limited numbers of subsurface samples. While dissolved Fe/Mn signifies the presence of anaerobic metabolisms near the surface, the correlations between geochemical characteristics and gene abundances, and the absence of aerobic methanotrophs in top sediments suggest that anaerobic methanotrophy is potentially dependent on iron/manganese reduction and dominates over aerobic methanotrophy for the removal of methane produced in situ or from a deep source. Near-surface methanogenesis contributes to the methane emissions from mud platform. The alternating arrangements of methanogenic and methanotrophic zones at different sites suggest that the interactions between mud deposition, evaporation, oxidation and fluid transport modulate the assemblages of microbial communities and methane cycling in different compartments of terrestrial mud volcanoes.
Earth observations taken from Space Shuttle Columbia during STS-80 mission
1996-11-24
STS080-706-044 (19 Nov.-7 Dec. 1996) --- This view shows Mount Pinatubo, an active volcano in the Zambales Mountains range of western Luzon, the main island of the Philippines. Mud flows radiate out from the active volcano, which has erupted in recent years, coming down the mountain. After the eruption a lot of the vegetation was removed, causing the mountain to erode at a more rapid pace than an older mountain that has its vegetation in place. In two cases the flows reach the South China Sea, and flow down three valleys to the east. The now abandoned Clark Air Force Base is to the upper left corner. Pinatubo is about 80 miles northwest of Manila.
NASA Astrophysics Data System (ADS)
Edwards, M. J.; Kennedy, B. M.; Jolly, A. D.; Scheu, B.; Jousset, P.
2017-02-01
White Island volcano, New Zealand was a host to multiple hydrothermal eruptive episodes within a mud-sulphur pool in 2013. Although hydrothermal activity is common at White Island, past events have largely gone undescribed in favour of the larger phreatomagmatic and magmatic eruptions. Here, we detail the first and longest hydrothermal episode of 2013, lasting from 15 January to 7 February using video and photo analysis from tour operators and staff responsible for monitoring the volcano. Differences in the dominant bubble burst style across this episode led to the classification of four distinct eruption regimes: (1) multiple irregular bursts on the pool surface, (2) larger distinct symmetric hemispheres with starbursts and/or followed by mud heaves, (3) no initial pool surface deformation but a vertical steam jet followed by a sometimes large directed mud heave and (4) no lake and continuous pulsating dry ash and block venting. The progression through these regimes is associated with a lowering lake level and a concomitantly increasing viscosity of the pool, which initially comprises a low viscosity muddy water, and partially evaporates to yield a shallow layer of high viscosity mud that ends with the complete drying up of the mud pool. Formation of primary mud hemispheres or gas jets is followed by heaves or secondary upheaval events. The heights of these heaves are used as a measure of explosivity. Heights increase from ˜8 m during regime 1 on 15 January to ˜102 m during regime 3 on 28 January. Venting of dry mud during regime 4 developed on 29 January before a regression back to regime 1 took place on 7 February as the pool re-established. Through observations of the shapes of ejected mud clots, we propose that the increasing explosivity of higher number regimes is primarily due to increasing slug bubble lengths teamed with increasing mud pool viscosity. We attribute a lesser control to the decreasing depth of the pool during its progressive desiccation, which may in turn influence the bubble burst depth. Occasionally, visible yellowing of the steam/gas plume led us to suggest that elemental sulphur may also be present in the conduit and may also play a role in regulating bubble release dynamics. Although, evidence for magmatic/phreatomagmatic eruptions was present during eruptions later in 2013, we found no evidence for juvenile magma in the January-February eruption episode described here. However, we concur with other investigators that magma was probably intruded to shallow levels and may have driven heat and gas flux. Our explanation for the correlation of pool depth, mud viscosity and eruption regime is based on a conceptual model in which a pool is perched above a two phase hydrothermal system and is sensitive to changes in the heat and gas flux from shallow magma. The variable release of gas and thermal perturbations in the course of the January-February eruptive episode impacted the pool level, the water to sediment ratio in the pool, and thus its viscosity, and in turn modulated the eruption regime. The varying degree of explosivity throughout this episode calls for a new consideration of pool properties in assessing eruption hazards at this frequently visited volcano. We additionally emphasise that ballistic hazards from small eruptions exist coupled with a range of seismic signals and that the hazard was greatest during infrasound tremor.
Venkadesaperumal, Gopu; Amaresan, Natrajan; Kumar, Krishna
2014-01-01
Twenty four bacterial strains from four different regions of mud volcano and lime cave were isolated to estimate their diversity, plant growth promoting and biocontrol activities to use them as inoculant strains in the fields. An excellent antagonistic effect against four plant pathogens and plant growth promoting properties such as IAA production, HCN production, phosphate solubilization, siderophore production, starch hydrolysis and hydrolytic enzymes syntheses were identified in OM5 (Pantoea agglomerans) and EM9 (Exiguobacterium sp.) of 24 studied isolates. Seeds (Chili and tomato) inoculation with plant growth promoting strains resulted in increased percentage of seedling emergence, root length and plant weight. Results indicated that co-inoculation gave a more pronounced effects on seedling emergence, secondary root numbers, primary root length and stem length, while inoculation by alone isolate showed a lower effect. Our results suggest that the mixed inocula of OM5 and EM9 strains as biofertilizers could significantly increase the production of food crops in Andaman archipelago by means of sustainable and organic agricultural system. PMID:25763031
Venkadesaperumal, Gopu; Amaresan, Natrajan; Kumar, Krishna
2014-01-01
Twenty four bacterial strains from four different regions of mud volcano and lime cave were isolated to estimate their diversity, plant growth promoting and biocontrol activities to use them as inoculant strains in the fields. An excellent antagonistic effect against four plant pathogens and plant growth promoting properties such as IAA production, HCN production, phosphate solubilization, siderophore production, starch hydrolysis and hydrolytic enzymes syntheses were identified in OM5 (Pantoea agglomerans) and EM9 (Exiguobacterium sp.) of 24 studied isolates. Seeds (Chili and tomato) inoculation with plant growth promoting strains resulted in increased percentage of seedling emergence, root length and plant weight. Results indicated that co-inoculation gave a more pronounced effects on seedling emergence, secondary root numbers, primary root length and stem length, while inoculation by alone isolate showed a lower effect. Our results suggest that the mixed inocula of OM5 and EM9 strains as biofertilizers could significantly increase the production of food crops in Andaman archipelago by means of sustainable and organic agricultural system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pancost, R.D.; Damste, J.S.S.; Lint, S. De
Although abundant geochemical data indicate that anaerobic methane oxidation occurs in marine sediments, the linkage to specific microorganisms remains unclear. In order to examine processes of methane consumption and oxidation, sediment samples from mud volcanoes at two distinct sites on the Mediterranean consumption and oxidation, sediment samples from mud volcanoes at two distinct sites on the Mediterranean Ridge were collected via the submersible Nautile. Geochemical data strongly indicate that methane is oxidized under aerobic conditions, and compound-specific carbon isotope analyses indicate that methane is oxidized under anaerobic conditions, and compound-specific carbon isotope analyses indicate that this reaction is facilitated bymore » a consortium of archaea and bacteria. Specifically, these methane-rich sediments contain high abundances of methanogen-specific biomarkers that are significantly depleted in {sup 13}C ({delta}{sup 13}C values are as low as {minus}95%). Biomarkers inferred to derive from sulfate-reducing bacteria and other heterotrophic bacteria are similarly depleted. Consistent with previous work, such depletion can be explained by consumption of {sup 13}C-depleted methane by methanogens operating in reverse and as part a consortium of organisms in which sulfate serves as the terminal electron acceptor. Moreover, their results indicate that this process is widespread in Mediterranean mud volcanoes and in some localized settings in the predominant microbiological process.« less
NASA Astrophysics Data System (ADS)
Jerosch, K.; Lüdtke, A.; Schlüter, M.; Ioannidis, G. T.
2007-02-01
The combination of new underwater technology as remotely operating vehicles (ROVs), high-resolution video imagery, and software to compute georeferenced mosaics of the seafloor provides new opportunities for marine geological or biological studies and applications in offshore industry. Even during single surveys by ROVs or towed systems large amounts of images are compiled. While these underwater techniques are now well-engineered, there is still a lack of methods for the automatic analysis of the acquired image data. During ROV dives more than 4200 georeferenced video mosaics were compiled for the HÅkon Mosby Mud Volcano (HMMV). Mud volcanoes as HMMV are considered as significant source locations for methane characterised by unique chemoautotrophic communities as Beggiatoa mats. For the detection and quantification of the spatial distribution of Beggiatoa mats an automated image analysis technique was developed, which applies watershed transformation and relaxation-based labelling of pre-segmented regions. Comparison of the data derived by visual inspection of 2840 video images with the automated image analysis revealed similarities with a precision better than 90%. We consider this as a step towards a time-efficient and accurate analysis of seafloor images for computation of geochemical budgets and identification of habitats at the seafloor.
Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life
Pons, Marie-Laure; Quitté, Ghylaine; Fujii, Toshiyuki; Rosing, Minik T.; Reynard, Bruno; Moynier, Frederic; Douchet, Chantal; Albarède, Francis
2011-01-01
The Isua Supracrustal Belt, Greenland, of Early Archean age (3.81–3.70 Ga) represents the oldest crustal segment on Earth. Its complex lithology comprises an ophiolite-like unit and volcanic rocks reminiscent of boninites, which tie Isua supracrustals to an island arc environment. We here present zinc (Zn) isotope compositions measured on serpentinites and other rocks from the Isua supracrustal sequence and on serpentinites from modern ophiolites, midocean ridges, and the Mariana forearc. In stark contrast to modern midocean ridge and ophiolite serpentinites, Zn in Isua and Mariana serpentinites is markedly depleted in heavy isotopes with respect to the igneous average. Based on recent results of Zn isotope fractionation between coexisting species in solution, the Isua serpentinites were permeated by carbonate-rich, high-pH hydrothermal solutions at medium temperature (100–300 °C). Zinc isotopes therefore stand out as a pH meter for fossil hydrothermal solutions. The geochemical features of the Isua fluids resemble the interstitial fluids sampled in the mud volcano serpentinites of the Mariana forearc. The reduced character and the high pH inferred for these fluids make Archean serpentine mud volcanoes a particularly favorable setting for the early stabilization of amino acids. PMID:22006301
NASA Astrophysics Data System (ADS)
Gilhooly, W. P.; Ruppel, C. D.; Dickens, G. R.; Berg, P.; Macko, S. A.
2010-12-01
Chloride and sulfate pore water analyses were performed on a total of 29 piston and gravity cores collected along center to flank transects across 3 mud volcanoes, which were located on the Louisiana continental slope in Garden Banks (GB425), Green Canyon (CG185), and Mississippi Canyon (MC852). All three sites are known areas of oil and gas discharge. In addition, seepage at GC185 and GB425 supports highly developed chemosynthetic communities, whereas no known communities have been observed at MC852. Comparison of pore water chemistry (sulfur concentrations and sulfur isotope compositions) among these 3 sites provides initial insight about fluid migration processes and advection rates and about the connection between fluid flux and the establishment of chemosynthetic communities. Pore water advection velocities were calculated from chloride profiles using a steady-state one dimensional advection-diffusion model. In general, chloride concentrations increased with depth to more than four times seawater concentrations. Incidences of pore water freshening are likely associated with hydrate dissociation. Chloride profiles show characteristic concave-up shapes at the center of each mud volcano and concave-down shapes along the flanks, a pattern that we previously interpreted and modeled (doi:10.1029/2004GL021909; doi:10.1111/j.1468-8123.2007.00191.x) in terms of seawater recharge-discharge. The depth of the sulfate-methane interface (SMI) shoals toward the center of the mud volcanoes, indicating potentially rapid anaerobic methane oxidation in these areas. Where the SMI is shallow, pore water sulfide S-isotope values are correspondingly elevated (~ +10 ‰) relative to seawater sulfate (δ34S = +21‰) and presumably represent near-quantitative reduction of pore water sulfate at GB425 and MC852. There is no such pattern at GC185. Such differences potentially reflect advection rates, the ages of the fluids, timing of fluid efflux, and differences in their chemistry.
Seismo-Geochemical Variations in SW Taiwan: Multi-Parameter Automatic Gas Monitoring Results
NASA Astrophysics Data System (ADS)
Yang, T. F.; Fu, C.-C.; Walia, V.; Chen, C.-H.; Chyi, L. L.; Liu, T.-K.; Song, S.-R.; Lee, M.; Lin, C.-W.; Lin, C.-C.
2006-04-01
Gas variations of many mud volcanoes and hot springs distributed along the tectonic sutures in southwestern Taiwan are considered to be sensitive to the earthquake activity. Therefore, a multi-parameter automatic gas station was built on the bank of one of the largest mud-pools at an active fault zone of southwestern Taiwan, for continuous monitoring of CO2, CH4, N2 and H2O, the major constituents of its bubbling gases. During the year round monitoring from October 2001 to October 2002, the gas composition, especially, CH4 and CO2, of the mud pool showed significant variations. Taking the CO2/CH4 ratio as the main indicator, anomalous variations can be recognized from a few days to a few weeks before earthquakes and correlated well with those with a local magnitude >4.0 and local intensities >2. It is concluded that the gas composition in the area is sensitive to the local crustal stress/strain and is worthy to conduct real-time monitoring for the seismo-geochemical precursors.
NASA Astrophysics Data System (ADS)
Ryan, J. G.
2007-12-01
Students today have online access to nearly unlimited scientific information in an entirely unfiltered state. As such, they need guidance and training in identifying and assessing high-quality information resources for educational and research use. The extensive research data resources available online for the Izu-Bonin-Mariana (IBM) subduction system that have been developed with MARGINS Program and related NSF funding are an ideal venue for focused Web research exercises that can be tailored to a range of undergraduate geoscience courses. This presentation highlights student web research activities examining: a) The 2003-2005 eruptions of Anatahan Volcano in the Mariana volcanic arc. MARGINS-supported geophysical research teams were in the region when the eruption initiated, permitting a unique "event response" data collection and analysis process, with preliminary results presented online at websites linked to the MARGINS homepage, and ultimately published in a special issue of the Journal of Volcanology and Geothermal Research. In this activity, students will conduct a directed Web surf/search effort for information on and datasets from the Anatahan arc volcano, which they will use in an interpretive study of recent magmatic activity in the Mariana arc. This activity is designed as a homework exercise for use in a junior-senior level Petrology course, but could easily be taken into greater depth for the benefit of graduate-level volcanology or geochemistry offerings. b) Geochemical and mineralogical results from ODP Legs 125 and 195 focused on diapiric serpentinite mud volcanoes, which erupt cold, high pH fluids, serpentine muds, and serpentinized ultramafic clasts at a number of sites in the forearc region of the Mariana subduction zone. The focus of this activity is an examination of the trace element chemistry of the forearc serpentines and their associated upwelling porefluids as a means of understanding the roles of ionic radius, valence, and system abundance in the formation and trace element systematics of serpentine group minerals.
NASA Astrophysics Data System (ADS)
Nuzzo, Marianne; Elvert, Marcus; Heuer, Verena; Schmidt, Mark; Hinrichs, Kai-Uwe; Scholz, Florian; Reitz, Anja; Hensen, Christian
2010-05-01
The West Nile Delta Project is a multi-disciplinary research project lead at IFM-GEOMAR (Kiel, Germany) and funded by RWE-DEA (Hamburg, Germany). It aims at investigating the sources and transport mechanisms of fluids and hydrocarbon gases seeping at two mud volcanoes (MVs) of the western Nile Deep-Sea Fan: North Alex and Giza MVs, and at the long-term monitoring of the seepage activity at these sites [1,2]. A comparative study of the organic geochemistry of sediments, gases and fluids was carried out in order to constrain (i) the sources of fluids, mud and gases erupted at these cold seeps, and (ii) the microbial hydrocarbon-oxidation processes associated with the extrusion of mud and gases. The molecular and stable isotope composition of light volatile hydrocarbon gases stripped from pore fluids reveal a clear thermogenic origin at the less active Giza MV and at the active centre of N. Alex MV. However, they probably originate from different sources, as shown by the distinct 13C-CH4 values of ~ -45‰ and -37‰VPDB at North Alex and Giza MVs, respectively, while 2H-CH4 values are similar (~ -228‰VSMOW). Away from the centre at North Alex MV the gases have variable compositions and are mainly produced by Archaea microbes. The microbial production of CH4 is probably sustained by the high content of the mud breccia sediments in labile organic matter. Indeed Total Organic Carbon content values are high (~ 1 and 2%weight) in MV sediments from both sites as well as at the reference site away from Giza MV, suggesting a main shallow (Plio-Pleistocene) sedimentary source. Consistently, the sedimentary lipids contain high amounts of compounds typically issued from terrestrial plants such as -amyrin and nC26:0 to nC30:0 fatty acids & alkenols. The hypothesis that labile terrestrial organic matter sustains intense microbial activity in the mud volcano sediments is supported by the extreme enrichment of pore fluids in a suite of Volatile Fatty Acids, in particular in acetic acid with values as high as 1 to 2mM at and near the centre of N. Alex MV. Additionally, the lipids extracted from MV sediments contain long-chain n-alkanes and biomarker compounds typically related to the presence of petroleum or bitumen as well as compounds associated with microbial communities living from the Anaerobic Oxidation of Methane. A large variety of these compounds have however been observed at the MVs, and their concentrations are quite variable as well. Here we present the results of multivariate statistical analyses applied to an extensive data set. Complementarily, Compound-Specific-Isotope-Analysis techniques have been used to study the origin of pore water Volatile Fatty Acids and of selected lipid biomarkers at Giza and North Alex MVs. Last, the information provided by geophysical imaging and heat flux measurements performed in the context of the West Nile Delta Project [1] has been taken into account to interpret the complex biogeochemical processes taking place at the MVs. [1] Feseker et al. (2008) RV Poseidon cruise report ISSN 1614-6298, IFM-GEOMAR, Kiel (Germany). [2] Bialas & Brϋckmann (2008) RV Pelagia 64PE298 WND Project cruise report, IFM-GEOMAR, Kiel (Germany), 52p.
Wang, Pei-Ling; Chiu, Yi-Ping; Cheng, Ting-Wen; Chang, Yung-Hsin; Tu, Wei-Xain; Lin, Li-Hung
2014-01-01
This study analyzed cored sediments retrieved from sites distributed across a transect of the Lei-Gong-Hou mud volcanoes in eastern Taiwan to uncover the spatial distributions of biogeochemical processes and community assemblages involved in methane cycling. The profiles of methane concentration and carbon isotopic composition revealed various orders of the predominance of specific methane-related metabolisms along depth. At a site proximal to the bubbling pool, the methanogenic zone was sandwiched by the anaerobic methanotrophic zones. For two sites distributed toward the topographic depression, the methanogenic zone overlaid the anaerobic methanotrophic zone. The predominance of anaerobic methanotrophy at specific depth intervals is supported by the enhanced copy numbers of the ANME-2a 16S rRNA gene and coincides with high dissolved Fe/Mn concentrations and copy numbers of the Desulfuromonas/Pelobacter 16S rRNA gene. Assemblages of 16S rRNA and mcrA genes revealed that methanogenesis was mediated by Methanococcoides and Methanosarcina. pmoA genes and a few 16S rRNA genes related to aerobic methanotrophs were detected in limited numbers of subsurface samples. While dissolved Fe/Mn signifies the presence of anaerobic metabolisms near the surface, the correlations between geochemical characteristics and gene abundances, and the absence of aerobic methanotrophs in top sediments suggest that anaerobic methanotrophy is potentially dependent on iron/manganese reduction and dominates over aerobic methanotrophy for the removal of methane produced in situ or from a deep source. Near-surface methanogenesis contributes to the methane emissions from mud platform. The alternating arrangements of methanogenic and methanotrophic zones at different sites suggest that the interactions between mud deposition, evaporation, oxidation and fluid transport modulate the assemblages of microbial communities and methane cycling in different compartments of terrestrial mud volcanoes. PMID:24723919
NASA Astrophysics Data System (ADS)
Plumlee, G. S.; Casadevall, T. J.; Wibowo, H. T.; Rosenbauer, R. J.; Johnson, C. A.; Breit, G. N.; Hageman, P. L.; Wolf, R. E.; Morman, S. A.
2009-12-01
On May 29, 2006, mud and gases began erupting from a vent 150 meters away from a gas exploration well near Sidoarjo, East Java, Indonesia. The eruption, called the LUSI mud volcano, has continued at rates as high as 160,000 m3 per day. At the request of the United States Department of State, the U.S. Geological Survey (USGS) has been providing technical assistance to the Indonesian Government on the geological and geochemical aspects of the mud eruption. This paper will present analytical results of mud samples collected in Sept. 2007 and Nov. 2008, and interpretive findings based on the analytical results. The 2007 mud sample contains high proportions of particles that could be ingestible by hand-mouth transmission (~98 vol % <250 microns,), inhalable into the upper respiratory tract (~80 vol % <10 microns), and respirable into the lung alveoli (~ 40 vol % <2.5 microns), so the mud and dust from the dried mud could be readily taken up by exposed individuals. Our results confirm those of a previous study that the levels of potentially toxic heavy metals or metalloids in the mud are low. A complex mixture of organic compounds in the mud is likely derived from petroleum source rocks. Although the 2007 mud sample contains several percent iron sulfides, net acid production tests indicate that enough carbonate material is also present to prevent the mud from becoming acid-generating due to weathering and sulfide oxidation in the near-surface environment. Water derived from settling mud deposits may have the potential to adversely affect the quality of surface- or groundwater sources for drinking water, due to high levels of fluoride, nitrate, iron, manganese, aluminum, sulfate, chloride, and total dissolved solids. The very high nitrate levels in the waters contained within the mud may present a source of nutrients that could enhance algal blooms and resulting adverse impacts such as hypoxia in fresh-water and marine ecosystems into which some of the mud is being discharged. In agreement with previous studies, water separated from the 2007 mud sample is compositionally and isotopically compatible with an origin as sedimentary formation water. The iron disulfide fraction of the mud sample is isotopically light, and likely formed by bacterial sulfate reduction during diagenesis of clay-rich rocks from which the mud was derived. A smaller, isotopically heavy monosulfide fraction likely formed later by thermogenic reduction of formation-water sulfate to sulfide and reaction of the resulting sulfide with reactive iron in the mud. Additional linked earth science and public health studies are needed to more fully understand eruption processes, and the potential environmental and health consequences of the erupting mud, waters, and gases, and of the accumulating mud deposits.
Origins of hydrocarbon gas seeping out from offshore mud volcanoes in the Nile delta
NASA Astrophysics Data System (ADS)
Prinzhofer, Alain; Deville, Eric
2013-04-01
This paper discusses the origin of gas seepages (free gas or dissolved gas in ground water or brine) sampled with the Nautile submarine during the Nautinil cruise at the seafloor of the deep water area of the Nile turbiditic system on different mud volcanoes and brine pools. Generally, the gas is wet and includes C1, C2, C3, iC4, nC4, CO2. These gas samples show no evidence of biodegradation which is not the case of the gas present in the deep hydrocarbon accumulations at depth. It indicates that the gas expelled by the mud volcanoes is not issued from direct leakages from deep gas fields. The collected gas samples mainly have a thermogenic origin and show different maturities. Some samples show very high maturities indicating that these seepages are sourced from great depths, below the Messinian salt. Moreover, the different chemical compositions of the gas samples reflect not only differences in maturity but also the fact that the gas finds its origin in different deep source rocks. Carbon dioxide has an organic signature and cannot result from carbonate decomposition or mantle fluids. The crustal-derived radiogenic isotopes show that the analyzed gas samples have suffered a fractionation processes after the production of the radiogenic isotopes, due either to oil occurrence at depth interacting with the flux of gas, and/or fractionation during the fluid migration.
Techtmann, Stephen M; Fortney, Julian L; Ayers, Kati A; Joyner, Dominique C; Linley, Thomas D; Pfiffner, Susan M; Hazen, Terry C
2015-01-01
The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA) analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbial community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly affect microbial community structure in the Eastern Mediterranean water column.
Techtmann, Stephen M.; Fortney, Julian L.; Ayers, Kati A.; Joyner, Dominique C.; Linley, Thomas D.; Pfiffner, Susan M.; Hazen, Terry C.
2015-01-01
The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA) analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbial community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly affect microbial community structure in the Eastern Mediterranean water column. PMID:25807542
Techtmann, Stephen M.; Fortney, Julian L.; Ayers, Kati A.; ...
2015-03-25
The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA) analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbialmore » community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Furthermore, our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly affect microbial community structure in the Eastern Mediterranean water column.« less
Evidence for Basinwide Mud Volcanism in Acidalia Planitia, Mars
NASA Technical Reports Server (NTRS)
Oehler, Dorothy Z.; Allen, Carlton C.
2010-01-01
High-albedo mounds in Acidalia Planitia occur in enormous numbers. They have been variously interpreted as pseudocraters, cinder cones, tuff cones, pingos, ice disintegration features, or mud volcanoes. Our work uses regional mapping, basin analysis, and new data from the Context Camera (CTX), High Resolution Imaging Science Experiment (HiRISE), and Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) to re-assess the origin and significance of these structures.
Solution mining and resultant evaporite karst development in Tully Valley, New York
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, P.A.; Ayers, J.C.; Grady, K.A.
1991-01-01
A solution mining operation was conducted in Tully Valley, New York from 1889 to 1988. In excess of 37 million m{sup 3} of halite was removed from 335 to 518 meters below the ground surface. An interbedded sequence of gypsum, shales, limestones, and sandstone overlie the halite beds. This sequence is capped by thick, unconsolidated deposits of till, sand and gravel, and lacustrine clay. As a result of this mining, large void cavities were created, followed by numerous fractures extending upward to the ground surface. The resulting settlement area is in excess of 550 hectares. Within this area sinkholes formed,more » gaping fractures developed and streams were pirated into the subsurface. Interformational mixing of groundwater now occurs between formerly separate flow systems, providing substantial recharge to deep formations. Some 2 kms downvalley of the brine fields, in a smaller settlement area, and volcanos'' effuse weakly saline groundwater that flows into Onondaga Creek. The clay fraction of the effluent gives Onondaga Creek the appearance of chocolate milk for the {approx}26 kms it takes to reach Onondaga Lake. The location of the mud volcanos appears to coincide with an upvalley moving salt front. The number of mud boils and their areal extent has substantially increased since the onset of brining operations. By characterizing the chemistry of groundwaters in local formations and performing mixing calculations based on mass balance, the volcano effluents were shown to represent a mixture of groundwaters from 3--4 formations. Several working hypotheses are advanced and critically evaluated in an effort to define the dynamics necessary for rapid mud volcano growth in a karst setting.« less
Solution mining and resultant evaporite karst development in Tully Valley, New York
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, P.A.; Ayers, J.C.; Grady, K.A.
1991-12-31
A solution mining operation was conducted in Tully Valley, New York from 1889 to 1988. In excess of 37 million m{sup 3} of halite was removed from 335 to 518 meters below the ground surface. An interbedded sequence of gypsum, shales, limestones, and sandstone overlie the halite beds. This sequence is capped by thick, unconsolidated deposits of till, sand and gravel, and lacustrine clay. As a result of this mining, large void cavities were created, followed by numerous fractures extending upward to the ground surface. The resulting settlement area is in excess of 550 hectares. Within this area sinkholes formed,more » gaping fractures developed and streams were pirated into the subsurface. Interformational mixing of groundwater now occurs between formerly separate flow systems, providing substantial recharge to deep formations. Some 2 kms downvalley of the brine fields, in a smaller settlement area, and ``volcanos`` effuse weakly saline groundwater that flows into Onondaga Creek. The clay fraction of the effluent gives Onondaga Creek the appearance of chocolate milk for the {approx}26 kms it takes to reach Onondaga Lake. The location of the mud volcanos appears to coincide with an upvalley moving salt front. The number of mud boils and their areal extent has substantially increased since the onset of brining operations. By characterizing the chemistry of groundwaters in local formations and performing mixing calculations based on mass balance, the volcano effluents were shown to represent a mixture of groundwaters from 3--4 formations. Several working hypotheses are advanced and critically evaluated in an effort to define the dynamics necessary for rapid mud volcano growth in a karst setting.« less
The effects of the Yogyakarta earthquake at LUSI mud volcano, Indonesia
NASA Astrophysics Data System (ADS)
Lupi, M.; Saenger, E. H.; Fuchs, F.; Miller, S. A.
2013-12-01
The M6.3 Yogyakarta earthquake shook Central Java on May 27th, 2006. Forty seven hours later, hot mud outburst at the surface near Sidoarjo, approximately 250 km from the earthquake epicentre. The mud eruption continued and originated LUSI, the youngest mud volcanic system on earth. Since the beginning of the eruption, approximately 30,000 people lost their homes and 13 people died due to the mud flooding. The causes that initiated the eruption are still debated and are based on different geological observations. The earthquake-triggering hypothesis is supported by the evidence that at the time of the earthquake ongoing drilling operations experienced a loss of the drilling mud downhole. In addition, the eruption of the mud began only 47 hours after the Yogyakarta earthquake and the mud reached the surface at different locations aligned along the Watukosek fault, a strike-slip fault upon which LUSI resides. Moreover, the Yogyakarta earthquake also affected the volcanic activity of Mt. Semeru, located as far as Lusi from the epicentre of the earthquake. However, the drilling-triggering hypothesis points out that the earthquake was too far from LUSI for inducing relevant stress changes at depth and highlight how upwelling fluids that reached the surface first emerged only 200 m far from the drilling rig that was operative at the time. Hence, was LUSI triggered by the earthquake or by drilling operations? We conducted a seismic wave propagation study on a geological model based on vp, vs, and density values for the different lithologies and seismic profiles of the crust beneath LUSI. Our analysis shows compelling evidence for the effects produced by the passage of seismic waves through the geological formations and highlights the importance of the overall geological structure that focused and reflected incoming seismic energy.
NASA Astrophysics Data System (ADS)
De Toffoli, Barbara; Pozzobon, Riccardo; Mazzarini, Francesco; Massironi, Matteo; Cremonese, Gabriele
2017-04-01
We mapped around 6000 mounds in three different portions of the Martian surface on an average area of about 90.000 Km2 for each region. The study areas are located in Hellas basin, Utopia basin and a portion of the Northern Plains lying north of Arabia Terra, between Acidalia and Utopia Planitia. The aim of the study was to understand the nature of the observed features, particularly if they could be interpreted as mud volcanoes or not, and improve our knowledge about the Martian mound fields origin. The analysis of Context Camera (onboard Mars Reconnaissance Orbiter) images showed circular, elliptical and coalescent mounds with central and/or distal pits and flow features such as concentric annular lobes around the source pits and apron-like extensions. We produced DTMs and then high-to-diameter morphometric analysis on two groups of mounds located in Utopia and Hellas basins to enhance the geomorphological observations. We inferred, by means of cluster and fractal analyses, the thickness of the medium cracked by connected fractures and, consequently, the depths of reservoirs that fed the mounds. We found that the fields, which are seated at different latitudes, has been fed, at least partially, by reservoirs located at the base of the gas hydrate stability zone according to Clifford et al., 2010. This evidence produces a meaningful relationship between the clathrates distribution underneath the Martian surface and the occurrence of mound fields on the surface leading to the assumption that the involvement of water, ostensibly as a result of gas hydrate dissociation, plays a key role in the subsurface processes that potentially worked as triggers. These outcomes corroborate the hypothesis that the mapped mounds are actually mud volcanoes and make these structures outstanding targets for astrobiology and habitability studies. In fact, mud volcanoes, extruding material from depths that are still not affordable by our present-day instrumentations, could have sampled and brought to the surface with the sediments a putative extinct or extant deep biosphere. In conclusion, on the base of this study, emerged that: (i) mud volcanoes are the best terrestrial analogs for the considered Martian mounds, (ii) there is a recurrent specific subsurface environment where the phenomenon may be triggered and it is the base of gas hydrate-rich cryosphere for all the study areas and (iii) mud volcanism seems to be, at least partially, a geologically recent event in terms of planet thermal evolution timespan. In light of these results, the CaSSIS camera, onboard the Trace Gas Orbiter ExoMARS mission, will provide new images of these features to improve and widen the understanding of the mechanisms that lie behind this phenomenon.
Gaia's breath - Global methane exhalations
Kvenvolden, K.A.; Rogers, B.W.
2005-01-01
Methane (CH4) is the most abundant organic compound in the Earth's atmosphere, where it acts as a greenhouse gas and thus has implications for global climate change. The current atmospheric CH4 budget, however, does not take into account geologically-sourced CH4 seepage. Geological sources of CH4 include natural macro- and micro-seeps, mud volcanoes, and other miscellaneous sources such as gas hydrates, magmatic volcanoes, geothermal regions, and mid-ocean ridges. Macro-seeps contribute ???25 Tg (teragrams) CH4/yr to the atmosphere, whereas, micro-seepage contributes perhaps 7 Tg CH4/yr. Mud volcanoes emit ???5 Tg CH4/yr, and miscellaneous sources emit ???8 Tg CH4/yr to the atmosphere. Thus, the total contribution to the atmosphere from geological sources is estimated to be 45 Tg CH4/yr, which is significant to the atmospheric organic carbon cycle and should be included in any global inventory of atmospheric CH4. We argue that the atmospheric CH4 global inventory of the Interplanetary Panel on Climate Change must be adjusted in order to incorporate geologically-sourced CH4 from naturally occurring seepage.
Hydrocarbon seeps in petroliferous basins in China: A first inventory
NASA Astrophysics Data System (ADS)
Zheng, Guodong; Xu, Wang; Etiope, Giuseppe; Ma, Xiangxian; Liang, Shouyun; Fan, Qiaohui; Sajjad, Wasim; Li, Yang
2018-01-01
Natural hydrocarbon seepage is a widespread phenomenon in sedimentary basins, with important implications in petroleum exploration and emission of greenhouse gases to the atmosphere. China has vast petroleum (oil and gas) bearing sedimentary basins, but hydrocarbon seepage has rarely been the object of systematic studies and measurements. Based on the available Chinese literature, we report a first inventory of 932 hydrocarbon seeps or seepage zones (710 onshore seeps and 222 offshore seeps), including 81 mud volcanoes, 449 oil seeps, 215 gas seeps, and 187 solid seeps (bitumen outcrops). The seeps are located within the main 20 Mesozoic-Cenozoic petroliferous sedimentary basins, especially along the marginal, regional and local faults. The type of manifestations (oil, gas or mud volcano) reflects the type and maturity of the subsurface petroleum system and the sedimentary conditions of the basin. Oil seeps are particularly abundant in the Junggar Basin. Gas seeps mostly developed in the Lunpola Basin, in smaller basins of the eastern Guizhou and Yunnan provinces, onshore Taiwan and in the offshore Yinggehai Basin. Mud volcanoes developed in basins (Junggar, Qaidam, Qiangtang, onshore and offshore Taiwan) that experienced rapid sedimentation, which induced gravitative instability of shales and diapirism. In comparison to available global onshore seep data-bases, China results to be the country with the highest number of seeps in the world. The massive gas seepage in China could represent a considerable natural source of methane to the atmosphere, and a key process that may drive future hydrocarbon exploration.
Green-Saxena, A; Feyzullayev, A; Hubert, C R J; Kallmeyer, J; Krueger, M; Sauer, P; Schulz, H-M; Orphan, V J
2012-12-01
Terrestrial mud volcanoes (TMVs) represent geochemically diverse habitats with varying sulfur sources and yet sulfur cycling in these environments remains largely unexplored. Here we characterized the sulfur-metabolizing microorganisms and activity in four TMVs in Azerbaijan. A combination of geochemical analyses, biological rate measurements and molecular diversity surveys (targeting metabolic genes aprA and dsrA and SSU ribosomal RNA) supported the presence of active sulfur-oxidizing and sulfate-reducing guilds in all four TMVs across a range of physiochemical conditions, with diversity of these guilds being unique to each TMV. The TMVs varied in potential sulfate reduction rates (SRR) by up to four orders of magnitude with highest SRR observed in sediments where in situ sulfate concentrations were highest. Maximum temperatures at which SRR were measured was 60°C in two TMVs. Corresponding with these trends in SRR, members of the potentially thermophilic, spore-forming, Desulfotomaculum were detected in these TMVs by targeted 16S rRNA analysis. Additional sulfate-reducing bacterial lineages included members of the Desulfobacteraceae and Desulfobulbaceae detected by aprA and dsrA analyses and likely contributing to the mesophilic SRR measured. Phylotypes affiliated with sulfide-oxidizing Gamma- and Betaproteobacteria were abundant in aprA libraries from low sulfate TMVs, while the highest sulfate TMV harboured 16S rRNA phylotypes associated with sulfur-oxidizing Epsilonproteobacteria. Altogether, the biogeochemical and microbiological data indicate these unique terrestrial habitats support diverse active sulfur-cycling microorganisms reflecting the in situ geochemical environment. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
Digital Data for Volcano Hazards in the Mount Jefferson Region, Oregon
Schilling, S.P.; Doelger, S.; Walder, J.S.; Gardner, C.A.; Conrey, R.M.; Fisher, B.J.
2008-01-01
Mount Jefferson has erupted repeatedly for hundreds of thousands of years, with its last eruptive episode during the last major glaciation which culminated about 15,000 years ago. Geologic evidence shows that Mount Jefferson is capable of large explosive eruptions. The largest such eruption occurred between 35,000 and 100,000 years ago. If Mount Jefferson erupts again, areas close to the eruptive vent will be severely affected, and even areas tens of kilometers (tens of miles) downstream along river valleys or hundreds of kilometers (hundreds of miles) downwind may be at risk. Numerous small volcanoes occupy the area between Mount Jefferson and Mount Hood to the north, and between Mount Jefferson and the Three Sisters region to the south. These small volcanoes tend not to pose the far-reaching hazards associated with Mount Jefferson, but are nonetheless locally important. A concern at Mount Jefferson, but not at the smaller volcanoes, is the possibility that small-to-moderate sized landslides could occur even during periods of no volcanic activity. Such landslides may transform as they move into lahars (watery flows of rock, mud, and debris) that can inundate areas far downstream. The geographic information system (GIS) volcano hazard data layer used to produce the Mount Jefferson volcano hazard map in USGS Open-File Report 99-24 (Walder and others, 1999) is included in this data set. Both proximal and distal hazard zones were delineated by scientists at the Cascades Volcano Observatory and depict various volcano hazard areas around the mountain.
Lahar Hazards at Concepción volcano, Nicaragua
Vallance, J.W.; Schilling, S.P.; Devoli, G.; Howell, M.M.
2001-01-01
Concepción is one of Nicaragua’s highest and most active volcanoes. The symmetrical cone occupies the northeastern half of a dumbbell shaped island called Isla Ometepa. The dormant volcano, Maderas, occupies the southwest half of the island. A narrow isthmus connects Concepción and Maderas volcanoes. Concepción volcano towers more than 1600 m above Lake Nicaragua and is within 5 to 10 km of several small towns situated on its aprons at or near the shoreline. These towns have a combined population of nearly 5,000. The volcano has frequently produced debris flows (watery flows of mud, rock, and debris—also known as lahars when they occur on a volcano) that could inundate these nearby populated areas. Concepción volcano has erupted more than 25 times in the last 120 years. Its first recorded activity was in AD 1883. Eruptions in the past century, most of which have originated from a small summit crater, comprise moderate explosions, ash that falls out of eruption plumes (called tephra), and occasional lava flows. Near the summit area, there are accumulations of rock that were emplaced hot (pyroclastic deposits), most of which were hot enough to stick together during deposition (a process called welding). These pyroclastic rocks are rather weak, and tend to break apart easily. The loose volcanic rock remobilizes during heavy rain to form lahars. Volcanic explosions have produced blankets of tephra that are distributed downwind, which on Isla Ometepe is mostly to the west. Older deposits at the west end of the island that are up to 1 m thick indicate larger explosive events have happened at Concepción volcano in prehistoric time. Like pyroclastic-flow deposits, loose tephra on the steep slopes of the volcano provides source material that heavy rainstorms and earthquakes can mobilize to trigger debris flow.
Yakimov, Michail M; Giuliano, Laura; Cappello, Simone; Denaro, Renata; Golyshin, Peter N
2007-04-01
The composition of a metabolically active prokaryotic community thriving in hydrothermal mud fluids of the deep-sea hypersaline anoxic Western Urania Basin was characterized using rRNA-based phylogenetic analysis of a clone library. The physiologically active prokaryotic assemblage in this extreme environment showed a great genetic diversity. Most members of the microbial community appeared to be affiliated to yet uncultured organisms from similar ecosystems, i.e., deep-sea hypersaline basins and hydrothermal vents. The bacterial clone library was dominated by phylotypes affiliated with the epsilon-Proteobacteria subdivision recognized as an ecologically significant group of bacteria inhabiting deep-sea hydrothermal environments. Almost 18% of all bacterial clones were related to delta-Proteobacteria, suggesting that sulfate reduction is one of the dominant metabolic processes occurring in warm mud fluids. The remaining bacterial phylotypes were related to alpha- and beta-Proteobacteria, Actinobacteria, Bacteroides, Deinococcus-Thermus, KB1 and OP-11 candidate divisions. Moreover, a novel monophyletic clade, deeply branched with unaffiliated 16S rDNA clones was also retrieved from deep-sea sediments and halocline of Urania Basin. Archaeal diversity was much lower and detected phylotypes included organisms affiliated exclusively with the Euryarchaeota. More than 96% of the archaeal clones belonged to the MSBL-1 candidate order recently found in hypersaline anoxic environments, such as endoevaporitic microbial mats, Mediterranean deep-sea mud volcanoes and anoxic basins. Two phylotypes, represented by single clones were related to uncultured groups DHVE-1 and ANME-1. Thus, the hydrothermal mud of hypersaline Urania Basin seems to contain new microbial diversity. The prokaryotic community was significantly different from that occurring in the upper layers of the Urania Basin since 60% of all bacterial and 40% of all archaeal phylotypes were obtained only from mud fluids. The uniqueness of the composition of the active prokaryotic community could be explained by the complex environmental conditions at the site. The interaction of oxygenated warm mud fluids with the cold hypersaline brine of the Urania Basin seems to simultaneously select for various metabolic processes, such as aerobic and anaerobic heterotrophy, sulfide- and methane-dependent chemotrophy along with anaerobic oxidation of methane, sulfate- and metal-reduction.
NASA Astrophysics Data System (ADS)
Vidischeva, Olesya; Akhmanov, Grigorii; Khlystov, Oleg; Giliazetdinova, Dina
2016-04-01
In July 2015 the research cruise in the waters of Lake Baikal was carried out onboard RV "G.Yu. Vereshchagin". The expedition was organized by Lomonosov Moscow State University and Limnological Institute of Russian Academy of Sciences. The main purpose of the expedition was to study the modern sedimentation and natural geological processes on the bottom of Lake Baikal. One of the tasks of the cruise was to conduct gas-geochemical survey of bottom sediments. The samples of hydrocarbon gases were collected during the cruise. Subsequent study of the composition and origin of the sampled gas was carried out in the laboratories of Moscow State University. 708 samples from 61 bottom sampling stations were studied. Analyzed samples are from seven different areas located in the southern and central depressions of the lake: (1) "Goloustnoe" seepage area; (2) Bolshoy mud volcano; (3) Elovskiy Area; (4) "Krasny Yar" Seep; (5) "St. Petersburg" Seep; (6) Khuray deep-water depositional system; and (7) Kukuy Griva (Ridge) area. The results of molecular composition analysis indicate that hydrocarbon gases in bottom sediments from almost all sampling stations are represented mostly by pure methane. Ethane was detected only in some places within "Krasny Yar", "Goloustnoe" and "St. Petersburg" seepage areas. The highest concentrations of methane were registered in the sediments from the "Krasny Yar" area - 14 457 μl/l (station TTR-BL15-146G) - and from the "St. Petersburg" area - 13 684 μl/l (station TTR-BL15-125G). The sediments with high concentrations of gases were sampled from active fluid discharge areas, which also can be well distinguished on the seismic profiles. Gas hydrates were obtained in the areas of "Krasny Yar", "Goloustnoe", and "St. Petersburg" seeps and in the area of the Bolshoy mud volcano. Isotopic composition δ13C(CH4) was studied for 100 samples of hydrocarbon gases collected in areas with high methane concentration in bottom sediments. The average value is -53‰. Overall bottom sediments of the Baikal Lake are very saturated in biogenic shallow methane. However, some evidences of thermogenic methane contribution can be recorded in the areas of focused fluid flows from deeper strata (e.g. mud volcanoes, seepage sites, etc.). Scrupulous examination of gas composition data results in understanding of scope of activity of individual structure and rough estimation of thermogenic gas flow input.
A Possible Origin of the Gas Hydrate in Southwest Taiwan Offshore Area
NASA Astrophysics Data System (ADS)
Lee, C.; Lee, J.; Oung, J.
2003-12-01
The southwest Taiwan locate at the eastward subduction zone of the Eurasian plate, which is currently converging with the Philippine Sea plate at a rate of several few centimeters per year. The geological setting of this region is characterized by the appearance of thick accreted sediments up to several kilometers, numerous submarine canyons, active faults, and mud diapirs/volcanoes. The origin of mud diapir/volcano is probably related to the plate convergence. During the tectonic processes, the organic matters were "cooked" thermogenically and biogenically to produce the natural gases, and possibly the oil in the sediment. Beneath the seafloor, if the natural gases were at the appropriate temperature and pressure condition, they would become the gas hydrate, and preserved in the top sediment layers. The formation of gas hydrate is situated under the water depth at about 300 to 3000 meters in this region. In the seismic profiles, the Bottom Simulation Reflector (BSR) probably represents the boundary between the solid-state and gas-state natural gas. The BSR is also regarded as an important marker as an existence of gas hydrate. It is extensively distributed in the continental margin off southwest Taiwan, but unstable, especially along the active fault zones. The natural gas as well as the mud and hydraulic fluid in the deep sediment are pushed into the surface layer. In order to investigate the relationship between mud diapir and gas hydrate, we conduct the geophysical and geological methods: using a 38/150 kHz high-frequency echo sounder system to guide and select the sites for mud diapirs, and take 1-3 m gravity core samples. We, then, adopt an up-side-down "headspace" tin-can technique to preserve the gases, and use a gas chromatography to analyze its contents. Oil companies commonly use the method. The first result shows that the existence of methane, ethane, propane and possible other higher hydrocarbon contents in the core samples. The methane is the most abundant gas, up to 1859 parts per million in volume (ppm); the others are not significant, probably due to a leaking in the sampling and transportation. We have reduced the "headspace" in order to preserve more concentrated gases in the second attempt, and the result shows similar. Nonetheless, our results suggest that the gases are probably a mixture of thermogenic and biogenic origin. Due to the existence of higher hydrocarbon contents, we believe that the thermogenic gases are produced in the deep source sediments, while the shallow biogenic methane is mixing with them in the top sediment. In the mud diapir/volcano area, the contents of natural gases are usually higher than that in a flat seafloor. As several high gas values have been founded in the near shore area (e.g., 1604 ppm of C1 plus C2 and C3 found at a water depth of 23 m), we suggest that the 300-3000 m gas hydrate zone is probably in a dynamic balance of which the deep gases are continuously migrating to the BSR and the free gases are being evaporating from this zone. Our data illustrate the potential existence of natural gases in this region; however, we cannot quantify the reserve at this time. Further investigations with a long core and better-improved techniques are needed.
Drake, Phillip
2016-04-01
The Lapindo mudflow is one of the most controversial disasters in Indonesian history. Despite its unique biophysical features, most consider the mudflow a social disaster as scientific conflicts about its main trigger have evolved into legal disputes over accountability and rights. This paper examines this 'trigger debate', the stakes of scientific contention and the broader social and natural dynamics that shape the terms of this debate. A Latourian impulse drives this analysis, which aims to improve both understandings of--and responses to--complex disasters. This paper also notes that the stakes of representation extend to constructions of its stakeholders, especially to victims. As socionatural disasters become an increasingly common feature of the contemporary world, from mud volcanoes to extreme weather events caused by global warming, it is more important than ever to understand the dynamics of representing disasters and stakeholders. © 2016 The Author(s). Disasters © Overseas Development Institute, 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barber, A.J.; Tjokrosapoetro, S.; Charlton, T.R.
In Timor, eastern Indonesia, where the northern margin of the Australian continent is colliding with the Banda Arc, Australian continental margin sediments are being incorporated into an imbricate wedge, which passes northward into a foreland fold and thrust belt. Field mapping in Timor has shown that scale clays, containing irregularly shaped or phacoidal blocks (up to several meters long) and composed of a wide range of lithologies derived from local stratigraphic units, occur in three environments: along wrench faults, as crosscutting shale diapirs, and associated with mud volcanoes. A model is proposed linking these phenomena. Shales become overpressured as amore » result of overthrusting; this overpressure is released along vertical wrench faults, which cut through the overthrust units; overpressured shales containing blocks of consolidated units rise along the fault zones as shale diapirs; and escaping water, oil, and gas construct mud volcanoes at the surface. 6 figures, 1 table.« less
NOAA Deepwater Exploration of the Marianas 2016: Pacific Plate, Mariana Trench, and Mariana Forearc
NASA Astrophysics Data System (ADS)
Fryer, P. B.; Glickson, D.; Kelley, C.; Drazen, J.; Stern, R. J.
2016-12-01
Legs 1 and 3 of NOAA Okeanos Explorer EX1605 made 18 (ROV) dives exploring the following: 7 Cretaceous-age, Pacific Plate guyots east of the Trench; 1 small volcano on a Pacific Plate fracture; 3 areas of the inner trench slope; 2 forearc serpentinite mud volcanoes; and 5 forearc fault blocks. The Pacific Plate guyots are heavily manganese encrusted. Part of the rationale for those dives was to make baseline characterization of biota and habitats before potential mining. These guyots had striking diversity and abundance of fauna. Dives on 2 guyots examined high-relief scarps, formed when both down-going plate and edifices fractured outboard of the trench. The scarp on one had Cretaceous reef sequences, whereas the other exposed layers of volcanics. The dive on a small (1 km diameter, 141 m high) volcano on a plate fracture near the trench affirmed that it was relatively young, maybe like Petit-Spot volcanoes east of the Japan Trench. A dive in a canyon west of Guam transitioned from a steep slope of volcanic talus to a gentle sediment-covered slope. The inner trench slope opposite the subducting guyot that exposes reef deposits, revealed similar sequences, suggesting that the guyot is being incorporated into the Mariana forearc. The other inner slope dive traversed talus with fragments of serpentinized peridotite and lies near a chain of forearc serpentinite mud volcanoes. The 2 serpentinite mud volcanoes explored have sedimented, apparently inactive, surfaces, though we recovered a serpentinized peridotite sample from one of them. Dives on the forearc fault blocks attest to dynamic vertical tectonism. Three in the northern forearc show sediment sequences of varying types and textures, all dipping trenchward. Spectacular mid-forearc fault scarps strike east-west, stair-stepping down southward and were traversed on 2 dives. We saw many sequences of indurated sediments. Mapping on Legs 2 and 3 of the expedition showed that these fault scarps are mirrored to the south by north-facing scarps. Thus, vertical tectonics on a grand scale has formed an immense and previously unknown graben across the forearc. These dive results provide a wealth of information for future research into the history of plate convergence processes associated with formation of the Mariana Trench in this Marine National Monument area.
NASA Astrophysics Data System (ADS)
Lee, Y. M.; Lee, D. H.; Hwang, K.; Hong, S. G.; Jin, Y. K.
2016-12-01
The prokaryotic microorganisms inhabiting Mud Volcanoes (MVs) play an important role for mitigation of methane (CH4) emission. Despite the identification of active MVs in the continental slope of the Canadian Beaufort Sea, little is known about the distribution and functions of prokaryotic community in this region. Hence, we investigated the prokaryotic diversity of four sediment cores (three from the active MVs and one from a non-methane influenced reference site) of the Canadian Beaufort Sea using 454-pyrosequencing of 16S rRNA genes as the first step to understand the prokaryotic roles in controlling outgassing methane. Bacterial and archaeal communities of MVs were distinctive from those of the reference site, and the communities of MVs were similar to each other at deeper depth levels. Chloroflexi, Actinobacteria, unclassified bacterial groups, and MCG_c of Crenarchaeota were predominant in the MVs, while Firmicutes, Deltaproteobacteria, and unclassified class of Thaumarchaeota were dominant in reference site. The relative abundance of dominant bacterial groups varied at sulfate-methane transition zone (SMTZ) of individual MVs. However, certain microbial taxa such as members of SAGMEG_o or Methanosarcinales of Euryarcheaota and Dehalococcoidales of Chloroflexi were predominant at SMTZs. Since they are not the classical representative taxa known to be involved in anaerobic oxidation of methane, their dominance implicates that they could be playing important roles in methane cycling using unrevealed mechanisms. We will further perform the phylogenetic and network analyses to infer mechanisms and interactions of dominant operational taxonomic units in controlling methane flux.
Alain, Karine; Holler, Thomas; Musat, Florin; Elvert, Marcus; Treude, Tina; Krüger, Martin
2006-04-01
Paclele Mici is a terrestrial mud volcano field located in the Carpathian Mountains (Romania), where thermal alteration of sedimentary organic compounds leads to methane, higher hydrocarbons and other petroleum compounds that are continuously released into the environment. The hydrocarbons represent potential substrates for microorganisms. We studied lipid biomarkers, stable isotope ratios, the effect of substrate (methane, other organic compounds) addition and 16S rRNA genes to gain insights into the hitherto unknown microbial community at this site. Quantitative real-time polymerase chain reaction analysis demonstrated that bacteria were much more abundant than archaea. Phylogenetic analyses of 16S rDNA clone sequences indicated the presence of bacterial and archaeal lineages generally associated with the methane cycle (methanogens, aerobic and anaerobic methanotrophs), the sulfur cycle (sulfate reducers), and groups linked to the anaerobic degradation of alkanes or aromatic hydrocarbons. The presence of sulfate reducers, methanogens and methanotrophs in this habitat was also confirmed by concurrent surveys of lipid biomarkers and their isotopic signatures. Incubation experiments with several common and complex substrates revealed the potential of the indigenous microbial community for sulfate reduction, methanogenesis and aerobic methanotrophy. Additionally, consistently to the detection of methane-oxidizing archaea (ANME) and 13C-depleted archaeal lipids, a weak but significant activity of anaerobic methane oxidation was measured by radiotracer techniques and in vitro. This survey is the first to report the presence and activity of ANME in a terrestrial environment.
2017-12-08
All around the world, people live in places where the threat of natural disaster is high. On the North Island of New Zealand, the Mount Ruapehu volcano is just such a threat. A towering, active stratovolcano (the classic cone-shaped volcano), snow-capped Ruapehu Volcano is pictured in this enhanced-color image. The image is made from topography data collected by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000, and imagery collected by the Landsat satellite on October 23, 2002. Ruapehu is one of New Zealand’s most active volcanoes, with ten eruptions since 1861. The eruptions aren’t the only threat from the volcano, however. Among the most serious threats is a volcanic mudflow called a lahar. In between eruptions, a lake forms in the volcano’s caldera from melting snow. If a previous eruption has deposited a dam of ash, rocks and mud in the lake’s natural overflow point, then the lake becomes dangerously full, held back only by the temporary dam. In this scene, the lake is nestled among the ridges at the top of the volcano. Eventually, the dam gives way and a massive flow of mud and debris churns down the mountain toward farmland and towns below. Scientists estimate that Ruapehu has experienced 60 lahars in the last 150 years. A devastating lahar in 1953 killed more than 150 people, who died when a passenger train plunged into a ravine when a railroad bridge was taken out by the lahar. The flank of the volcano below the lake is deeply carved by the path of previous lahars; the gouge can be seen just left of image center. Currently scientists in the region are predicting that the lake will overflow in a lahar sometime in the next year. There is great controversy about how to deal with the threat. News reports from the region indicate that the government is planning to invest in a high-tech warning system that will alert those who might be affected well in advance of any catastrophic release. Others feel that the government should combat the threat through engineering at the top of the mountain, for example, by undertaking a controlled release of the lake. Credit Landsat data provided courtesy of the University of Maryland Global Land Cover Facility Landsat processing by Laura Rocchio, Landsat Project Science Office SRTM 3-arcsecond elevation data courtesy of SRTM Team NASA/JPL/NIMA Visualization created by Earth Observatory staff. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
Hein, J.R.; Normark, W.R.; McIntyre, B.R.; Lorenson, T.D.; Powell, C.L.
2006-01-01
Methane and hydrogen sulfide vent from a cold seep above a shallowly buried methane hydrate in a mud volcano located 24 km offshore southern California in?? 800 m of water. Bivalves, authigenic calcite, and methane hydrate were recovered in a 2.1 m piston core. Aragonite shells of two bivalve species are unusually depleted in 13C (to -91??? ??13C), the most 13C-depleted shells of marine macrofauna yet discovered. Carbon isotopes for both living and dead specimens indicate that they used, in part, carbon derived from anaerobically oxidized methane to construct their shells. The ??13C values are highly variable, but most are within the range -12??? to -91???. This variability may be diagnostic for identifying cold-seep-hydrate systems in the geologic record. Authigenic calcite is abundant in the cores down to ???1.5 m subbottom, the top of the methane hydrate. The calcite is depleted in 13C (??13C = -46??? to -58???), indicating that carbon produced by anaerobically oxidized methane is the main source of the calcite. Methane sources include a geologic hydrocarbon reservoir from Miocene source rocks, and biogenic and thermogenic degradation of organic matter in basin sediments. Oxygen isotopes indicate that most calcite formed out of isotopic equilibrium with ambient bottom water, under the influence of gas hydrate dissociation and strong methane flux. High metal content in the mud volcano sediment indicates leaching of basement rocks by fluid circulating along an underlying fault, which also allows for a high flux of fossil methane. ?? 2006 Geological Society of America.
Sittenfeld, Ana; Mora, Marielos; Ortega, José María; Albertazzi, Federico; Cordero, Andrés; Roncel, Mercedes; Sánchez, Ethel; Vargas, Maribel; Fernández, Mario; Weckesser, Jürgen; Serrano, Aurelio
2002-10-01
Abstract Conspicuous green patches on the surface of an acidic hot mud pool located near the Rincón de la Vieja volcano (northwestern Costa Rica) consisted of apparently unialgal populations of a chloroplast-bearing euglenoid. Morphological and physiological studies showed that it is a non-flagellated photosynthetic Euglena strain able to grow in defined mineral media at temperatures up to 40 degrees C and exhibiting higher thermotolerance than Euglena gracilis SAG 5/15 in photosynthetic activity analyses. Molecular phylogeny studies using 18S rDNA and GapC genes indicated that this strain is closely related to Euglena mutabilis, another acid-tolerant photosynthetic euglenoid, forming a clade deeply rooted in the Euglenales lineage. To our knowledge this is the most thermotolerant euglenoid described so far and the first Euglenozoan strain reported to inhabit acidic hot aquatic habitats.
Preliminary volcano-hazard assessment for Great Sitkin Volcano, Alaska
Waythomas, Christopher F.; Miller, Thomas P.; Nye, Christopher J.
2003-01-01
Great Sitkin Volcano is a composite andesitic stratovolcano on Great Sitkin Island (51°05’ N latitude, 176°25’ W longitude), a small (14 x 16 km), circular volcanic island in the western Aleutian Islands of Alaska. Great Sitkin Island is located about 35 kilometers northeast of the community of Adak on Adak Island and 130 kilometers west of the community of Atka on Atka Island. Great Sitkin Volcano is an active volcano and has erupted at least eight times in the past 250 years (Miller and others, 1998). The most recent eruption in 1974 caused minor ash fall on the flanks of the volcano and resulted in the emplacement of a lava dome in the summit crater. The summit of the composite cone of Great Sitkin Volcano is 1,740 meters above sea level. The active crater is somewhat lower than the summit, and the highest point along its rim is about 1,460 meters above sea level. The crater is about 1,000 meters in diameter and is almost entirely filled by a lava dome emplaced in 1974. An area of active fumaroles, hot springs, and bubbling hot mud is present on the south flank of the volcano at the head of Big Fox Creek (see the map), and smaller ephemeral fumaroles and steam vents are present in the crater and around the crater rim. The flanking slopes of the volcano are gradual to steep and consist of variously weathered and vegetated blocky lava flows that formed during Pleistocene and Holocene eruptions. The modern edifice occupies a caldera structure that truncates an older sequence of lava flows and minor pyroclastic rocks on the east side of the volcano. The eastern sector of the volcano includes the remains of an ancestral volcano that was partially destroyed by a northwest-directed flank collapse. In winter, Great Sitkin Volcano is typically completely snow covered. Should explosive pyroclastic eruptions occur at this time, the snow would be a source of water for volcanic mudflows or lahars. In summer, much of the snowpack melts, leaving only a patchy distribution of snow on the volcano. Glacier ice is no longer present on the volcano or on other parts of Great Sitkin Island as previously reported by Simons and Mathewson (1955). Great Sitkin Island is presently uninhabited and is part of the Alaska Maritime National Wildlife Refuge, managed by the U.S. Fish and Wildlife Service.
NASA Astrophysics Data System (ADS)
Carlowicz, Michael
On a recent cruise of the Russian research ship Professor Logachev, scientists from the U.S. Naval Research Laboratory (NRL), the Russian research institute VNI-IOkeangeologia (St. Petersburg), and other institutions found what they believe to be thin white sheets of methane hydrates. The white layer (possibly also mats of chemosynthetic bacteria) covers the center of a deep-sea mud volcano in the Norwegian-Greenland Sea. The Haakon Mosby mud volcano—a “cow-pie-shaped” cold seep that is 1 km in diameter—lies at 1250-m depth and south of Spitsbergen, Norway.
NASA Technical Reports Server (NTRS)
Burr, Devon M.; Bruno, Barbara C.; Lanagan, Peter D.; Glaze, Lori; Jaeger, Windy L.; Soare, Richard J.; Tseung, Jean-Michel Wan Bun; Skinner, James A. Jr.; Baloga, Stephen M.
2008-01-01
Fields of mesoscale raised rim depressions (MRRDs) of various origins are found on Earth and Mars. Examples include rootless cones, mud volcanoes, collapsed pingos, rimmed kettle holes, and basaltic ring structures. Correct identification of MRRDs on Mars is valuable because different MRRD types have different geologic and/or climatic implications and are often associated with volcanism and/or water, which may provide locales for biotic or prebiotic activity. In order to facilitate correct identification of fields of MRRDs on Mars and their implications, this work provides a review of common terrestrial MRRD types that occur in fields. In this review, MRRDs by formation mechanism, including hydrovolcanic (phreatomagmatic cones, basaltic ring structures), sedimentological (mud volcanoes), and ice-related (pingos, volatile ice-block forms) mechanisms. For each broad mechanism, we present a comparative synopsis of (i) morphology and observations, (ii) physical formation processes, and (iii) published hypothesized locations on Mars. Because the morphology for MRRDs may be ambiguous, an additional tool is provided for distinguishing fields of MRRDs by origin on Mars, namely, spatial distribution analyses for MRRDs within fields on Earth. We find that MRRDs have both distinguishing and similar characteristics, and observation that applies both to their mesoscale morphology and to their spatial distribution statistics. Thus, this review provides tools for distinguishing between various MRRDs, while highlighting the utility of the multiple working hypotheses approach.
Hoshino, Tatsuhiko; Toki, Tomohiro; Ijiri, Akira; Morono, Yuki; Machiyama, Hideaki; Ashi, Juichiro; Okamura, Kei; Inagaki, Fumio
2017-01-01
Submarine mud volcanoes (SMVs) are formed by muddy sediments and breccias extruded to the seafloor from a source in the deep subseafloor and are characterized by the discharge of methane and other hydrocarbon gasses and deep-sourced fluids into the overlying seawater. Although SMVs act as a natural pipeline connecting the Earth's surface and subsurface biospheres, the dispersal of deep-biosphere microorganisms and their ecological roles remain largely unknown. In this study, we investigated the microbial communities in sediment and overlying seawater at two SMVs located on the Ryukyu Trench off Tanegashima Island, southern Japan. The microbial communities in mud volcano sediments were generally distinct from those in the overlying seawaters and in the well-stratified Pacific margin sediments collected at the Peru Margin, the Juan de Fuca Ridge flank off Oregon, and offshore of Shimokita Peninsula, northeastern Japan. Nevertheless, in-depth analysis of different taxonomic groups at the sub-species level revealed that the taxon affiliated with Atribacteria , heterotrophic anaerobic bacteria that typically occur in organic-rich anoxic subseafloor sediments, were commonly found not only in SMV sediments but also in the overlying seawater. We designed a new oligonucleotide probe for detecting Atribacteria using the catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). CARD-FISH, digital PCR and sequencing analysis of 16S rRNA genes consistently showed that Atribacteria are abundant in the methane plumes of the two SMVs (0.58 and 1.5 × 10 4 cells/mL, respectively) but not in surrounding waters, suggesting that microbial cells in subseafloor sediments are dispersed as "deep-biosphere seeds" into the ocean. These findings may have important implications for the microbial transmigration between the deep subseafloor biosphere and the hydrosphere.
Hoshino, Tatsuhiko; Toki, Tomohiro; Ijiri, Akira; Morono, Yuki; Machiyama, Hideaki; Ashi, Juichiro; Okamura, Kei; Inagaki, Fumio
2017-01-01
Submarine mud volcanoes (SMVs) are formed by muddy sediments and breccias extruded to the seafloor from a source in the deep subseafloor and are characterized by the discharge of methane and other hydrocarbon gasses and deep-sourced fluids into the overlying seawater. Although SMVs act as a natural pipeline connecting the Earth’s surface and subsurface biospheres, the dispersal of deep-biosphere microorganisms and their ecological roles remain largely unknown. In this study, we investigated the microbial communities in sediment and overlying seawater at two SMVs located on the Ryukyu Trench off Tanegashima Island, southern Japan. The microbial communities in mud volcano sediments were generally distinct from those in the overlying seawaters and in the well-stratified Pacific margin sediments collected at the Peru Margin, the Juan de Fuca Ridge flank off Oregon, and offshore of Shimokita Peninsula, northeastern Japan. Nevertheless, in-depth analysis of different taxonomic groups at the sub-species level revealed that the taxon affiliated with Atribacteria, heterotrophic anaerobic bacteria that typically occur in organic-rich anoxic subseafloor sediments, were commonly found not only in SMV sediments but also in the overlying seawater. We designed a new oligonucleotide probe for detecting Atribacteria using the catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). CARD-FISH, digital PCR and sequencing analysis of 16S rRNA genes consistently showed that Atribacteria are abundant in the methane plumes of the two SMVs (0.58 and 1.5 × 104 cells/mL, respectively) but not in surrounding waters, suggesting that microbial cells in subseafloor sediments are dispersed as “deep-biosphere seeds” into the ocean. These findings may have important implications for the microbial transmigration between the deep subseafloor biosphere and the hydrosphere. PMID:28676800
NASA Astrophysics Data System (ADS)
López-Rodríguez, Carmina; Martínez-Ruíz, Francisca; Mogollón, José M.; Comas, Menchu; Nieto, Fernando; Böning, Philipp; Pahnke, Katharina; Sapart, Célia; De Lange, Gert J.
2017-04-01
Recent studies have demonstrated the occurrence of active mud volcanism in the West Alboran Basin. Though most of the mud volcanoes (MVs) discovered in this region are dormant, a few structures evidence active hydrocarbon venting, as Carmen MV. This study focuses on sedimentological and geochemical investigations on one piston core, GP05PC, recovered from the summit of Carmen MV during the Gasalb-Pelagia cruise (2011). Although the full core consists of mud breccia sediments, a dramatic change occurs between enhanced methane concentrations in its lowermost and dissolved SO42- in its uppermost sediments. At the boundary of 150 cm, methane is oxidized and sulphate reduced. In the lowermost interval, the depletion of major elements (i.e., Ca2+ and Mg2+), the enrichment of trace species (i.e., Li+ and B) and the radiogenic 87Sr all point to a deep fluid source. The δ18Opw and δDpw compositions of pore water (5.7‰ and -10‰ VSMOW, respectively) together with the mineralogical results (presence of randomly insterstrafied (R0) illite-smectite minerals (I/S) to more illitic (>50% I) and ordered ones (R1-R3)) indicate smectite to illite transformation at greater depth and support smectite dehydration as the main porewater freshening mechanism. Water formation temperatures calculated through the application of empirical geo-thermometers (K-Na, K-Mg and K-Ca) together with the presence from I/S mixed layers (R3) suggest that fluids were generated at temperatures 100-200°C. This temperature indicates that, under a regional geothermal gradient, the fluid source originates from 8 km depth. From an adjacent borehole it is known that sedimentary units of Early to Middle Miocene age occur at that depth (Jurado and Comas et al., 1992). The δ13Cmethane and δDmethane composition of methane (-59‰ VPDB and -184‰ VSMOW, respectively) of the deepest sample also may be associated to a thermogenic origin. The absence of hemipelagic sediment draping, the distinctive seawater-like pore water composition in the uppermost part of the mud breccia together with the abrupt transition to the interval with typical deep-source fluid composition, all point to a very recent mud and associated gas-expulsion. Such outburst leads to the downward intrusion of seawater coincident with the episode of gas-bubble expulsion. A numerical transport-reaction model has been applied to the distinctively kink-shaped pore water Cl, SO42-CH4, and other profiles in core GP05PC, to derive the very recent timing for this eruption event (López-Rodríguez et al., 2017). References: Jurado, M. J. and Comas, M. C. (1992). Well log interpretation and seismic character of the Cenozoic sequence in the Northern Alboran Sea, Geo-Marine Letters, 12, 129-136. López-Rodríguez, C., Martínez-Ruíz, F., Mogollón, J.M., Comas, M. Nieto, F, Böning P.H., Pahnke, K., Sapart, C. and De Lange, G.J. (2017). Evidence for a 2000 AD +/- 3 yr mud/methane discharge event in the westernmost Mediterranean (based on sediment/pore water data and modelling). Manuscript submitted for publication.
Water, ice and mud: Lahars and lahar hazards at ice- and snow-clad volcanoes
Waythomas, Christopher F.
2014-01-01
Large-volume lahars are significant hazards at ice and snow covered volcanoes. Hot eruptive products produced during explosive eruptions can generate a substantial volume of melt water that quickly evolves into highly mobile flows of ice, sediment and water. At present it is difficult to predict the size of lahars that can form at ice and snow covered volcanoes due to their complex flow character and behaviour. However, advances in experiments and numerical approaches are producing new conceptual models and new methods for hazard assessment. Eruption triggered lahars that are ice-dominated leave behind thin, almost unrecognizable sedimentary deposits, making them likely to be under-represented in the geological record.
Mount Pinatubo, Philippine Islands as seen from STS-59
1994-04-10
STS059-L14-170 (9-20 April 1994) --- Orient with the sea at the left. Then Subic Bay is at the lower left corner, and Clark Air Force Base (abandoned after the eruption) is to the lower right of the volcano. A turquoise lake occupies the caldera just below the center of the photograph. Mount Pinatubo erupted in June, 1991 after several hundred years of quiescence. Eruptive activity has nearly ceased, but every torrential rain in this monsoonal climate causes renewed mud flows of a viscous slurry composed of volcanic ash and pumice. Shuttle crews have been photographing the mountain at every opportunity, to add documentation to unmanned-satellite, aerial, and ground-based observations of changes. SRL scientists will use the excellent radar imagery obtained during STS-59 to help discriminate among different kinds of volcanic material, and to extend their observations to other volcanoes around the world using future, perhaps unmanned, radar satellites. Linhof photograph.
Volcano hazards in the Three Sisters region, Oregon
Scott, William E.; Iverson, R.M.; Schilling, S.P.; Fisher, B.J.
2001-01-01
Three Sisters is one of three potentially active volcanic centers that lie close to rapidly growing communities and resort areas in Central Oregon. Two types of volcanoes exist in the Three Sisters region and each poses distinct hazards to people and property. South Sister, Middle Sister, and Broken Top, major composite volcanoes clustered near the center of the region, have erupted repeatedly over tens of thousands of years and may erupt explosively in the future. In contrast, mafic volcanoes, which range from small cinder cones to large shield volcanoes like North Sister and Belknap Crater, are typically short-lived (weeks to centuries) and erupt less explosively than do composite volcanoes. Hundreds of mafic volcanoes scattered through the Three Sisters region are part of a much longer zone along the High Cascades of Oregon in which birth of new mafic volcanoes is possible. This report describes the types of hazardous events that can occur in the Three Sisters region and the accompanying volcano-hazard-zonation map outlines areas that could be at risk from such events. Hazardous events include landslides from the steep flanks of large volcanoes and floods, which need not be triggered by eruptions, as well as eruption-triggered events such as fallout of tephra (volcanic ash) and lava flows. A proximal hazard zone roughly 20 kilometers (12 miles) in diameter surrounding the Three Sisters and Broken Top could be affected within minutes of the onset of an eruption or large landslide. Distal hazard zones that follow river valleys downstream from the Three Sisters and Broken Top could be inundated by lahars (rapid flows of water-laden rock and mud) generated either by melting of snow and ice during eruptions or by large landslides. Slow-moving lava flows could issue from new mafic volcanoes almost anywhere within the region. Fallout of tephra from eruption clouds can affect areas hundreds of kilometers (miles) downwind, so eruptions at volcanoes elsewhere in the Cascade Range also contribute to volcano hazards in Central Oregon. This report is intended to aid scientists, government officials, and citizens as they work together to reduce the risk from volcano hazards through public education and emergency-response planning.
Detecting debris flows using ground vibrations
LaHusen, Richard G.
1998-01-01
Debris flows are rapidly flowing mixtures of rock debris, mud, and water that originate on steep slopes. During and following volcanic eruptions, debris flows are among the most destructive and persistent hazards. Debris flows threaten lives and property not only on volcanoes but far downstream in valleys that drain volcanoes where they arrive suddenly and inundate entire valley bottoms. Debris flows can destroy vegetation and structures in their path, including bridges and buildings. Their deposits can cover roads and railways, smother crops, and fill stream channels, thereby reducing their flood-carrying capacity and navigability.
Digital Data for Volcano Hazards of the Three Sisters Region, Oregon
Schilling, S.P.; Doelger, S.; Scott, W.E.; Iverson, R.M.
2008-01-01
Three Sisters is one of three active volcanic centers that lie close to rapidly growing communities and resort areas in Central Oregon. The major composite volcanoes of this area are clustered near the center of the region and include South Sister, Middle Sister, and Broken Top. Additionally, hundreds of mafic volcanoes are scattered throughout the Three Sisters area. These range from small cinder cones to large shield volcanoes like North Sister and Belknap Crater. Hazardous events include landslides from the steep flanks of large volcanoes and floods, which need not be triggered by eruptions, as well as eruption-triggered events such as fallout of tephra (volcanic ash) and lava flows. A proximal hazard zone roughly 20 kilometers (12 miles) in diameter surrounding the Three Sisters and Broken Top could be affected within minutes of the onset of an eruption or large landslide. Distal hazard zones that follow river valleys downstream from the Three Sisters and Broken Top could be inundated by lahars (rapid flows of water-laden rock and mud) generated either by melting of snow and ice during eruptions or by large landslides. Slow-moving lava flows could issue from new mafic volcanoes almost anywhere within the region. Fallout of tephra from eruption clouds can affect areas hundreds of kilometers (miles) downwind, so eruptions at volcanoes elsewhere in the Cascade Range also contribute to volcano hazards in Central Oregon. Scientists at the Cascades Volcano Observatory created a geographic information system (GIS) data set which depicts proximal and distal lahar hazard zones as well as a regional lava flow hazard zone for Three Sisters (USGS Open-File Report 99-437, Scott and others, 1999). The various distal lahar zones were constructed from LaharZ software using 20, 100, and 500 million cubic meter input flow volumes. Additionally, scientists used the depositional history of past events in the Three Sisters Region as well as experience and judgment derived from the study of volcanoes to help construct the regional hazard zone.
NASA Astrophysics Data System (ADS)
Cunha, M. R.; Rodrigues, C. F.; Génio, L.; Hilário, A.; Ravara, A.; Pfannkuche, O.
2012-12-01
The Gulf of Cadiz is an extensive seepage area in the South Iberian Margin (NE Atlantic) encompassing over 40 mud volcanoes (MVs) at depths ranging from 200 to 4000 m. The area has a long geologic history and a central biogeographic location with a complex circulation assuring oceanographic connectivity with the Mediterranean Sea, Equatorial and Northern Atlantic regions. The geodynamics of the region promotes a notorious diversity in the seep regime despite the relatively low fluxes of hydrocarbon-rich gases. We analyse quantitative samples taken during the cruises TTR14, TTR15 and MSM01-03 in seven mud volcanoes grouped into Shallow MVs (Mercator: 350 m, Kidd: 500 m, Meknès: 700 m) and Deep MVs (Captain Arutyunov: 1300 m, Carlos Ribeiro: 2200 m, Bonjardim: 3000 m, Porto: 3900 m) and two additional reference sites (ca. 550 m). Macrofauna (retained by a 500 μm sieve) was identified to species level whenever possible. The samples yielded modest abundances (70-1567 ind. per 0.25 m2) but a number of species among the highest ever reported for cold seeps. Among the 366 recorded species, 22 were symbiont-hosting bivalves (Thyasiridae, Vesicomyidae, Solemyidae) and tubeworms (Siboglinidae). The multivariate analyses indicated significant differences between Shallow and Deep MVs: The environmental conditions at the Shallow MVs makes them highly permeable to the penetration of background fauna leading to high diversity of the attendant assemblages (H': 2.92-3.94; ES(100): 28.3-45.0; J': 0.685-0.881). The Deep MVs showed, in general, contrasting features but were more heterogeneous (H': 1.41-3.06; ES(100): 10.5-30.5; J': 0.340-0.852) and often dominated by one or more siboglinid species. The rarefaction curves confirmed the differences in biodiversity of Deep and Shallow MVs as well as the approximation of the latter to the reference sites. The Bray-Curtis dissimilarity demonstrated the high β-diversity of the assemblages, especially in pairwise comparisons involving samples from the deeper MVs. Diversity partitioning assessed for species richness, Hurlbert's expected number of species and Shannon-Wiener index confirmed the high β-diversity across different spatial scales (within MVs, between MVs, between Deep and Shallow MVs). We suggest that historical and contemporary factors with differential synergies at different depths contribute to the high α-, β- and γ-diversity of the mud volcano faunal assemblages in the Gulf of Cadiz.
NASA Astrophysics Data System (ADS)
Cunha, M. R.; Rodrigues, C. F.; Génio, L.; Hilário, A.; Ravara, A.; Pfannkuche, O.
2013-04-01
The Gulf of Cadiz is an extensive seepage area in the south Iberian margin (NE Atlantic) encompassing over 40 mud volcanoes (MVs) at depths ranging from 200 to 4000 m. The area has a long geologic history and a central biogeographic location with a complex circulation ensuring oceanographic connectivity with the Mediterranean Sea, equatorial and North Atlantic regions. The geodynamics of the region promotes a notorious diversity in the seep regime despite the relatively low fluxes of hydrocarbon-rich gases. We analyse quantitative samples taken during the cruises TTR14, TTR15 and MSM01-03 in seven mud volcanoes grouped into Shallow MVs (Mercator: 350 m, Kidd: 500 m, Meknès: 700 m) and Deep MVs (Captain Arutyunov: 1300 m, Carlos Ribeiro: 2200 m, Bonjardim: 3000 m, Porto: 3900 m) and two additional Reference sites (ca. 550 m). Macrofauna (retained by a 500 μm sieve) was identified to species level whenever possible. The samples yielded modest abundances (70-1567 individuals per 0.25 m2), but the local and regional number of species is among the highest ever reported for cold seeps. Among the 366 recorded species, 22 were symbiont-hosting bivalves (Thyasiridae, Vesicomyidae, Solemyidae) and tubeworms (Siboglinidae). The multivariate analyses supported the significant differences between Shallow and Deep MVs: The environmental conditions at the Shallow MVs make them highly permeable to the penetration of background fauna leading to high diversity of the attendant assemblages (H': 2.92-3.94; ES(100): 28.3-45.0; J': 0.685-0.881). The Deep MV assemblages showed, in general, contrasting features but were more heterogeneous (H': 1.41-3.06; ES(100): 10.5-30.5; J': 0.340-0.852) and often dominated by one or more siboglinid species. The rarefaction curves confirmed the differences in biodiversity of Deep and Shallow MVs as well as the convergence of the latter to the Reference sites. The Bray-Curtis dissimilarity demonstrated the high β-diversity of the assemblages, especially in pairwise comparisons involving samples from the Deep MVs. Diversity partitioning assessed for species richness, Hurlbert's expected number of species and Shannon-Wiener index confirmed the high β-diversity across different spatial scales (within MVs, between MVs, between Deep and Shallow MVs). We suggest that historical and contemporary factors with differential synergies at different depths contribute to the high α-, β- and γ-diversity of the mud volcano faunal assemblages in the Gulf of Cadiz.
Hill, David P.; Prejean, Stephanie; Schubert, Gerald
2015-01-01
Dynamic stresses propagating as seismic waves from large earthquakes trigger a spectrum of responses at global distances. In addition to locally triggered earthquakes in a variety of tectonic environments, dynamic stresses trigger tectonic (nonvolcanic) tremor in the brittle–plastic transition zone along major plate-boundary faults, activity changes in hydrothermal and volcanic systems, and, in hydrologic domains, changes in spring discharge, water well levels, soil liquefaction, and the eruption of mud volcanoes. Surface waves with periods of 15–200 s are the most effective triggering agents; body-wave trigger is less frequent. Triggering dynamic stresses can be < 1 kPa.
Seabed Geoacoustic Planning Support for the QPE Uncertainty DRI
2007-09-30
40% CaCO3 from planktonic foraminfera and pteropod shells associated with upwelling. • Rock fragments are common and abundant constituents of...variable over seasonal time scales. • On outer shelf and slope, presence of deep thermogenic methane leads to mud volcanoes (5-40 m in height; radii ~20
A microtremor survey to define the subsoil structure in a mud volcano areas
NASA Astrophysics Data System (ADS)
Panzera, Francesco; D'Amico, Sebastiano; Lupi, Matteo; Karyono, Karyono; Mazzini, Adriano
2017-04-01
Mud erupting systems have been observed and studied in different localities on the planet. They are characterized by emissions of fluids and fragmented sedimentary rocks creating large structures with different morphologies. This is mainly due to the presence of clay-bearing strata that can be buoyant in the surrounding regions and over-pressured fluids that facilitate the formation of diapirs through sedimentary rocks. In this study, we investigate the Lusi mud erupting system mainly by using ambient vibration methods. In particular, thickness of the sediments and the body wave velocities have been investigated. Results are integrated with gravimetry and electrical resistivity data in order to locate the main geological discontinuities in the area as well as to reconstruct a 3D model of the buried structure. The approach commonly used for this type of studies is based on the ratio of the horizontal to vertical components of ground motion (HVSR) and on passive array techniques. The HVSR generally enables to recognize peaks that point out to the fundamental frequency of the site, which usually fit quite well the theoretical resonance curves. The combination of HVSR and shear wave velocity, coming from passive array techniques, enables to collect valuable information about the subsurface structures. Here we present new data collected at the mud volcano and sedimentary hosted hydrothermal system sites in order to investigate the depths of the main discontinuities and of the hypothesized hydrocarbon reservoirs. We present the case study of Salse di Nirano (northen Italy), Salinelle (Mt. Etna, Sicily) and Lusi hydrothermal systems (Indonesia). Our results indicate that the ambient vibrations study approach represents a swift and simplified methods that provides quick information on the shallow subsoil structure of the investigated areas.
Burr, D.M.; Bruno, B.C.; Lanagan, P.D.; Glaze, L.S.; Jaeger, W.L.; Soare, R.J.; Wan, Bun Tseung J.-M.; Skinner, J.A.; Baloga, S.M.
2009-01-01
Fields of mesoscale raised rim depressions (MRRDs) of various origins are found on Earth and Mars. Examples include rootless cones, mud volcanoes, collapsed pingos, rimmed kettle holes, and basaltic ring structures. Correct identification of MRRDs on Mars is valuable because different MRRD types have different geologic and/or climatic implications and are often associated with volcanism and/or water, which may provide locales for biotic or prebiotic activity. In order to facilitate correct identification of fields of MRRDs on Mars and their implications, this work provides a review of common terrestrial MRRD types that occur in fields. In this review, MRRDs by formation mechanism, including hydrovolcanic (phreatomagmatic cones, basaltic ring structures), sedimentological (mud volcanoes), and ice-related (pingos, volatile ice-block forms) mechanisms. For each broad mechanism, we present a comparative synopsis of (i) morphology and observations, (ii) physical formation processes, and (iii) published hypothesized locations on Mars. Because the morphology for MRRDs may be ambiguous, an additional tool is provided for distinguishing fields of MRRDs by origin on Mars, namely, spatial distribution analyses for MRRDs within fields on Earth. We find that MRRDs have both distinguishing and similar characteristics, and observation that applies both to their mesoscale morphology and to their spatial distribution statistics. Thus, this review provides tools for distinguishing between various MRRDs, while highlighting the utility of the multiple working hypotheses approach. ?? 2008 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Karyono, Karyono; Obermann, Anne; Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Abdurrokhim, Abdurrokhim; Masturyono, Masturyono; Hadi, Soffian
2016-04-01
The 29th of May 2006 numerous eruption sites started in northeast Java, Indonesia following to a M6.3 earthquake striking the island.Within a few weeks an area or nearly 2 km2 was covered by boiling mud and rock fragments and a prominent central crater (named Lusi) has been erupting for the last 9.5 years. The M.6.3 seismic event also triggered the activation of the Watukosek strike slip fault system that originates from the Arjuno-Welirang volcanic complex and extends to the northeast of Java hosting Lusi and other mud volcanoes. Since 2006 this fault system has been reactivated in numerous instances mostly following to regional seismic and volcanic activity. However the mechanism controlling this activity have never been investigated and remain poorly understood. In order to investigate the relationship existing between seismicity, volcanism, faulting and Lusi activity, we have deployed a network of 31 seismometers in the framework of the ERC-Lusi Lab project. This network covers a large region that monitors the Lusi activity, the Watukosek fault system and the neighboring Arjuno-Welirang volcanic complex. In particular, to understand the consistent pattern of the source mechanism, relative to the general tectonic stress in the study area, a detailed analysis has been carried out by performing the moment tensor inversion for the near field data collected from the network stations. Furthermore these data have been combined with the near field data from the regional network of the Meteorological, Climatological and Geophysical Agency of Indonesia that covers the whole country on a broader scale. Keywords: Lusi, microseismic event, focal mechanism
Soufriere Hills, Montserrat, West Indies
NASA Technical Reports Server (NTRS)
2002-01-01
Volcanic activity on the West Indian island of Montserrat has remained high for several years-the current activity started in 1995. However, remote sensing of the island has been difficult because of frequent cloud cover. The International Space Station crew flew north of the island on a clear day in early July (July 9, 2001) and recorded a vigorous steam plume emanating from the summit of Soufriere Hills. The image also reveals the extensive volcanic mud flows (lahars) and new deltas built out from the coast from the large amounts of volcanic debris delivered downstream by the rivers draining the mountain. As a small island (only 13 x 8 km), all of Montserrat has been impacted by the eruptions. Sources of Information: Smithsonian Global Volcanism Program Italy's Volcanoes Montserrat Volcano Observatory Digital photograph number ISS002-E-9309 was taken on 9 July 2001 from Space Station Alpha and was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.
Mud volcano monitoring and seismic events along the North Anatolian Fault (Sea of Marmara)
NASA Astrophysics Data System (ADS)
Javad Fallahi, Mohammad; Lupi, Matteo; Mazzini, Adriano; Polonia, Alina; D'Alessandro, Antonino; D'Anna, Giuseppe; Gasperini, Luca
2017-04-01
The Sea of Marmara, a pull-apart basin formed along the northern strand of the North Anatolian Fault (NAF) system, is considered a seismic gap, that will be filled in the next decades by a large magnitude (M>7) earthquake, close to the Istanbul Metropolitan area (12 million inhabitants). For this reason, several marine geological and geophysical studies have been carried out in this region, starting from the destructive 1999 Mw 7.4 Izmit earthquake, to gather information relative to seismogenic potential of major fault strands. Together with these studies, in the frame of EC projects (i.e., MarmESONET and Marsite, among others), an intensive program of long-term monitoring of seismogenic faults was carried out using seafloor observatories deployed during several expeditions led by Italian, French and Turkish groups. These expeditions included MARM2013, on board of the R/V Urania, of the Italian CNR, when four ocean bottom seismometers (OBS) were deployed in the central part of the Sea of Marmara, at depths between 550 and 1000 m. One of the main aims of the experiment was to assess the long-term seismic activity along an active segment of the NAF, which connects the central and the western basins (depocenters), where the principal deformation zone appears relatively narrow and almost purely strike-slip. The present study shows the results of processing and analysis of continuous data records from these OBS stations during 50 days. We were able to detect seismic signal produced by an active mud volcano located close to the NAF trace, from about 3 to 6 km of distance from the OBS stations. Additionally, we captured the May 24, 2014, Mw 6.9 strike-slip earthquake occurred in the northern Aegean Sea between Greece and Turkey, which caused serious damage on the Turkish island of Imbros and the cities of Edirne and Çanakkale, as well as on the Greek island of Lemnos. The earthquake nucleated on the westward continuation of the NAF system in the NE Aegean Sea, and was felt in Bulgaria and southern Romania. Several aftershocks followed the main shock, the strongest measuring 5.3 of magnitude. To verify the effects of this external forcing on the activity of the submarine mud volcano in Marmara, we calculated the root-mean-square (RMS) and standard deviation (STD) on three-minute waveform segments in a period from 2014.04.11 to 2014.05.31 in the 10-25 Hz frequency band. In addition, we also calculated auto- and cross-correlation of seismic ambient noise in the same time-period and frequency range to assess the variations of waveform coherency prior to the earthquake. Preliminary results show periodic changes of RMS and STD amplitudes, which may result from the effects of tides, but no short- or long-term precursory signs of the earthquake detected by our approach.
Cold seeps and splay faults on Nankai margin
NASA Astrophysics Data System (ADS)
Henry, P.; Ashi, J.; Tsunogai, U.; Toki, T.; Kuramoto, S.; Kinoshita, M.; Lallemant, S. J.
2003-04-01
Cold seeps (bacterial mats, specific fauna, authigenic carbonates) are common on the Nankai margin and considered as evidence for seepage of methane bearing fluids. Camera and submersible surveys performed over the years have shown that cold seeps are generally associated with active faults. One question is whether part of the fluids expelled originate from the seismogenic zone and migrate along splay faults to the seafloor. The localisation of most cold seeps on the hanging wall of major thrusts may, however, be interpreted in various ways: (a) footwall compaction and diffuse flow (b) fluid channelling along the fault zone at depths and diffuse flow near the seafloor (c) erosion and channelling along permeable strata. In 2002, new observations and sampling were performed with submersible and ROV (1) on major thrusts along the boundary between the Kumano forearc basin domain and the accretionary wedge domain, (2) on a fault affecting the forearc (Kodaiba fault), (3) on mud volcanoes in the Kumano basin. In area (1) tsunami and seismic inversions indicate that the targeted thrusts are in the slip zone of the To-Nankai 1944 earthquakes. In this area, the largest seep zone, continuous over at least 2 km, coincides with the termination of a thrust trace, indicating local fluid channelling along the edge of the fault zone. Kodaiba fault is part of another splay fault system, which has both thrusting and strike-slip components and terminates westward into an en-echelon fold system. Strong seepage activity with abundant carbonates was found on a fold at the fault termination. One mud volcano, rooted in one of the en-echelon fold, has exceptionally high seepage activity compared with the others and thick carbonate crusts. These observations suggest that fluid expulsion along fault zones is most active at fault terminations and may be enhanced during fault initiation. Preliminary geochemical results indicate signatures differ between seep sites and suggests that the two fault systems tap in different sources.
Bhattarai, Susma; Cassarini, Chiara; Rene, Eldon R; Zhang, Yu; Esposito, Giovanni; Lens, Piet N L
2018-07-01
This study was performed to enrich anaerobic methane-oxidizing archaea (ANME) present in sediment from the Ginsburg Mud Volcano (Gulf of Cadiz) in a polyurethane foam packed biotrickling filter (BTF). The BTF was operated at 20 (±2) °C, ambient pressure with continuous supply of methane for 248 days. Sulfate reduction with simultaneous sulfide production (accumulating ∼7 mM) after 200 days of BTF operation evidenced anaerobic oxidation of methane (AOM) coupled to sulfate reduction. High-throughput sequence analysis of 16S rRNA genes showed that after 248 days of BTF operation, the ANME clades enriched to more than 50% of the archaeal sequences, including ANME-1b (40.3%) and ANME-2 (10.0%). Enrichment of the AOM community was beneficial to Desulfobacteraceae, which increased from 0.2% to 1.8%. Both the inoculum and the BTF enrichment contained large populations of anaerobic sulfur oxidizing bacteria, suggesting extensive sulfur cycling in the BTF. Copyright © 2018 Elsevier Ltd. All rights reserved.
Organic chemical composition of mud from the LUSI mud volcano, Sidoarjo, East Java, Indonesia
NASA Astrophysics Data System (ADS)
Rosenbauer, R. J.; Campbell, P.; Lam, A.
2009-12-01
Sidoarjo, East Java, Indonesia is the site of LUSI, a terrestrial mud volcano that has been erupting since May 29, 2006. In response to a U.S. Department of State request, the U.S. Geological Survey has been assisting the Indonesian Government to describe the geological and geochemical aspects and potential health risk of the mud eruption. We report here on the organic chemical composition of the mud. Organic chemical analyses were carried out by gas chromatography/mass spectroscopy following organic extraction by microwave-assisted solvent extraction and compound fractionation by adsorption chromatography. There is a petroliferous component in the mud that is fresh, immature, and nonbiodegraded. There is a complete suite of n-alkanes with a bell-shaped pattern typical of fresh petroleum with a Cmax around C20. The alkane content ranges from 0.12 to 1.01 mg/kg dry mud. The presence of certain hopanes (i.e. 17 α,21β(H)-30-norhopane and 17α,21β(H)-hopane) is also indicative of the presence of oil. The proportions of other biomarker compounds (pristane/phytane = 2.4) and the dominance of the C27 sterane (5α(H),14α(H),17α(H)-chlolestane) suggest that oil formed under oxic conditions and has a likely coastal marine or terrigenous source. The presence of oleanane indicates a Cretaceous or younger age for the petrogenic material. These geochemical parameters are consistent with Indonesian oil derived from Tertiary marlstone source rocks that contained kerogen deposited under oxic conditions, probably the upper Miocene Klasafet Formation. Polycyclic aromatic hydrocarbons (PAHs) are present and range in content from 0.1 to 2.2 mg/kg dry mud. The low molecular weight (LMW) PAHs, in particular, naphthalene and methyl-naphthalene are dominant except for perylene which is ubiquitous in the environment. The presence of both parent and higher homologue PAHs indicate a petrogenic rather than combustion source. PAHs are known carcinogens but toxicity data in sediments are sparse and often qualitative, depending on the PAH matrix and thus bioavailability. The distribution and content of PAHs measured in the LUSI mud do exceed USEPA recommended interim sediment quality criteria. In addition, judging sediment toxicity on the basis of single PAH compounds risks underestimating effects because mixtures of PAHs tend to aggregate toxicity. Further studies are needed to determine whether or not PAHs are present in levels that exceed soil remediation or aquatic guidelines. The mud contains low levels (tens of ppb) of the higher plant sterols including stigmasterol and β-sitosterol. Also, 22-dehydrocholesterol (generally ascribed to algal material) is present at 39 ppb. These compounds are derived from natural sources, are non-hazardous, and were likely entrained in the mud during ascent to the surface or mixed with the mud post-eruption. The organic compounds identified to date will exhibit a variety of environmental behaviors and effects. Some compounds will volatilize and photo-oxidize or biodegrade relatively quickly (i.e. n-alkanes), and are relatively nontoxic. LMW PAHs are sparingly soluble in water but heavier PAHs will likely persist in the environment and represent potential toxicity to biota because PAHs are bio-accumulative. But the overall toxicity of the mud appears low.
NASA Astrophysics Data System (ADS)
Stadnitskaia, Alina; Baas, Marianne; de Haas, Henk; van Weering, Tjeerd C. E.; Kreulen, Rob R.; Sinninghe Damsté, Jaap S.
2010-05-01
For more than decade, the formation of carbonate mounds, related ecosystem development and organization/functioning of the entire mound habitats are subjects for a growing amount of studies and discussions. Carbonate mounds from the Gulf of Cadiz are of special interest due to their association with active mud volcanoes within the El Arraiche mud volcano field. Such co-occurrence of ecologically contrasting phenomena anticipates complex biogeochemical interactions between a carbonate mound interior and seeping through hydrocarbon-rich fluids. To get closer in understanding of how methane affects a carbonate mound development in the gulf, a combination of inorganic and organic geochemical techniques was applied to two sedimentary cores collected from summits of Alfa and Beta mounds. These mounds were found at the NW slope of the Gimini MV at the Pen Duick Mound Province. We analyzed vertical distribution profiles of sulfate, sulfide, chlorinity, DIC in combination with hydrocarbon gas measurements and lipid biomarker study. To have estimates of Sea Surface Temperature (SST) during the carbonate mound formation, we applied the TEX86 (TetraEther indeX of tetraethers with 86 carbon atoms; Schouten et al., 2002) and the alkenone-based UK37 index (Müller et al., 1998). The pore-water data revealed the presence of brine inflow, which is consistent with the data of Hensen et al., (2007). The behavior of sulfide distribution profiles and δ13C values from dissolved inorganic carbon (DIC) indicated that most of the sulfide and DIC are resulted from the microbial anaerobic oxidation of methane (AOM) processes. In contrast, the analysis of archaeal membrane lipids from distinct clades of AOM-mediating anaerobic methanotrophs showed exceedingly low concentrations of specific biomarkers, which is in contradiction with pore-water and gas chemistry data. Besides, AOM is the main cause for the increase of sedimentary alkalinity that leads to carbonate precipitation. Instead, some sedimentary intervals associated with pore-water-detected AOM zone showed the presence of semi-dissolved coral branches, indicating thus rather acidic intra-environments. In this paper we discuss a potential "consecutive order" of biogeochemical processes in the close subsurface of Alfa and Beta carbonate mounds and outline the importance of careful interpretation of biogeochemical signatures related to past, modern and post seepage episodes. References: Hensen, C, Nuzzo, M, Hornibrook, E, Pinheiro, L M, Bock, B, Magalhães, V, W Bruckmann (2007). Sources of mud volcano fluids in the Gulf of Cadiz: indications for hydrothermal imprint. Geochim. Cosmochimica Acta, 71, 1232-1248. Schouten, S., Hopmans, E.C., Schefub, E., and Sinninghe Damsté, J.S., 2002, Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?: Earth and Planetary Science Letters, v. 204, p. 265-274. Somoza, L., Gardner, J.M., Diaz-del-Rio, V., Vazquez, J.T., Pinheiro, L.M.,Herna‘ndez-Molina, F.J.the TASYO/Anastasya shipboard parties, 2002. Numerous methane gas-related sea floor structures identified in the Gulf of Cadis. EOS, p. 541. Müller, P.J., Kirst, G., Ruhland, G., von Storch I. and A. Rosell-Melé (1998). Calibration of the alkenone paleotemperature index UK'37 based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S). Geochimica et Cosmochimica Acta 62, pp. 1757-1772. Van Rensbergen, P., Depreiter, D., Pannemans, B. and Henriet, J.-P. (2005) Seafloor expression of sediment extrusion and intrusion at the El Arraiche mud volcano field,Gulf of Cadiz. J. Geophys. Res.110, No. F2, F02010.
The Biggest Tuya or Table Mountain in the North Atlantic?
NASA Astrophysics Data System (ADS)
Helgadottir, G.; Reynisson, P.
2012-12-01
Multibeam mapping in cruise A201206 of the Marine Research Institute in June 2012 revealed a huge submarine mountain with a striking look of a tuya. Tuya is by defenition a subrectangular or circular, constructional, flat-topped mountain, made up of hyaloclastites and/or pillow lava, usually with cap lava (Mathews 1947). The mountain lies at 950-1.400 waterdepth some 120 nautical miles west of the Snaefellsnes peninsula and the mapped part of it is around 300 km2. For comparison, the largest tuya in Iceland is Eiriksjokull with a basal area of 77 km2 (Jakobsson and Gudmundsson 2008). Above the mountains edge at 1.100 m waterdepth the hight increases gradually towards the top of the mountain were some craters are exposed. The mountain has a a youthful apperance. Analysing of rock samples are needed to find out if that is the case or if it is connected with an old rifting zone. The goal of the survey was to map fishing areas (f. ex. of the Greenland halibut); to explore the environment of the strong ocean currents coming from north through the Greenland Strait (also called Denmark Strait) but also to gain additional bathymetrical data in the vicinity of what we believe are mud volcanoes, discovered in a fairly recent MRI's mapping cruise. Now, like erlier on, several mud volcanoes appeared, some of them up to 350 m high. If this proves to be right, this is the first finding of these features in Icelandic waters. The research area coincides largely with sediments of the Snorri drift. Seismic lines through this sediment show possible diapir formation (Egloff and Johnson 1978) which strengthens the idea of those features beeing mud volcanoes. The current 9.000 km2 mapping with EM 300 has added significantly to our knowledge of the morphology of the seafloor around Iceland. References: Mathews, W. H. 1947: "Tuyas": Flat-topped volcanoes in northern Brithish Columbia. Amer. J. Sci. 245, 560-570. Jakobsson, S. P. and Gudmundsson, M. T. 2008: Subglacial and intraglacial volcanic formations in Iceland. Jokull no. 58, 179-196. Egloff, J. and Johnson, G. L. 1978: Erosional and Depositional Structures of the Southwest Iceland Insular Margin: Thirteen Geophysical Profiles. AAPG Mem. Vol. 29, 43-63.
NASA Astrophysics Data System (ADS)
Kurz, W.; Micheuz, P.; Grunert, P.; Auer, G.; Reuter, M.
2017-12-01
IODP Expedition 366 recovered core from three serpentinite mud volcanoes at increasing distances from the Mariana trench subduction zone along a south-to-north transect: Yinazao (Blue Moon), Fantangisña (Celestial), and Asùt Tesoru (Big Blue). Cores consist of serpentinite mud containing lithic clasts and minerals derived from the underlying forearc lithosphere, and from the subducting Pacific Plate. A preliminary screening for micro- and nannofossils from Asùt Tesoru revealed assemblages of planktic and benthic foraminifera and calcareous nannoplankton containing biostratigraphic marker species (e.g., Globigerinella calida, Globorotalia flexuosa, Gr. truncatulinoides Gr. tumida, Sphaeroidinella dehiscens amongst planktic foraminifera; Gephyrocapsa spp., Pseudoemiliania lacunosa, Reticulosfenestra asanoi amongst calcareous nannoplankton). This provides a robust stratigraphic framework and age assessment (from ca. 0.2 to 8.0 Ma from top to bottom) of distinct sediment and serpentinite mud flow layers. Recycled materials from the subducted slab include fault rocks, metamorphosed pelagic sediments, diagenetic shallow water reef assemblages, and metavolcanic rocks. The recycled materials are found at all three mud volcanoes and are interpreted to be parts of subducted Pacific plate seamounts, presumably Cretaceous in age. Core U1491C (Yinazao) recovered a Miogypsina rudstone cobble that could have derived from more than 10 km beneath the forearc sea floor, with lithoclasts and coralline, red-algal grainstone matrix, altogether showing diagenetic overprint. Although parts of subducted Pacific plate seamounts are assumed be Cretaceous in age, the presence of Miogypsina suggests a Miocene age, thus may represent the latest, uppermost part of a Pacific Plate seamount. The assemblage represents a shallow water (photic zone) environment. Assuming a Pacific plate velocity of 5 cm per year the hypothetical Guyot was several hundred kilometers east of the trench at Late Miocene times (500 to 750 km), most likely outside the fore-trench bulge. Taking the recent Pacific plate WNW movement direction, and tracing back these 500 or more kilometers, it would have been located in the area of today's Micronesia atolls where comparable shallow water conditions exist.
The Onset of Channelling in a Fluidized Mud Layer
NASA Astrophysics Data System (ADS)
Papanicolaou, T.; Tsakiris, A. G.; Billing, B. M.
2012-12-01
Fluidization of a soil occurs when the drag force exerted on the soil grains by upwelling water equals the submerged weight of the soil grains, hence reducing the effective (or contact) stress between the soil grains to zero. In nature, fluidization is commonly encountered in localized portions of highly saturated mud layers found in tidal flats, estuaries and lakes, where upward flow is initiated by significant pore water pressure gradients triggered by wave or tidal action. The water propagates through the fluidized mud layer by forming channels (or vents), carrying the fluidized mud to the surface and forming mud volcano structures. The presence of these fluidization channels alters the mud layer structure with implications on its hydraulic and geotechnical properties, such as the hydraulic conductivity. Despite the importance of these channels, the conditions that lead to their formation and their effects on the mud layer structure still remain poorly documented. The present study couples experimental and theoretical methods aimed at quantifying the conditions, under which fluidization of a saturated mud layer is accompanied by the formation of channels, and assessing the effects of channeling on the mud layer structure. Fluidization and channel formation in a mud layer were reproduced in the laboratory using a carefully designed fluidization column attached to a pressurized vessel (plenum). To eliminate any effects of the material, the mud was produced from pure kaolin clay and deionized water. Local porosity measurements along the mud layer prior, during and after fluidization were conducted using an Americium-241 gamma source placed on a fully automated carriage. Different water inflow rates, q, were applied to the base of the mud layer and the plenum pressure was monitored throughout the experiment. These experiments revealed that for high q values, a single vertical channel formed and erupted at the center of the fluidization column. Instead for low q values, the experiments suggested that a channel network formed within the mud layer leading to the eruption of multiple channels on the mud layer surface. The gamma source measurements captured quantitatively the porosity increase as the channel formed. The experiments were complemented with a theoretical analysis using the two-phase, flow mass and momentum governing equations. This analysis aims to establish a relation between the applied pressure, the fluid velocity and the local porosity of mud during the formation of the channels.
Space Radar Image of Kiluchevskoi, Volcano, Russia
1999-05-01
This is an image of the area of Kliuchevskoi volcano, Kamchatka, Russia, which began to erupt on September 30, 1994. Kliuchevskoi is the blue triangular peak in the center of the image, towards the left edge of the bright red area that delineates bare snow cover. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 88th orbit on October 5, 1994. The image shows an area approximately 75 kilometers by 100 kilometers (46 miles by 62 miles) that is centered at 56.07 degrees north latitude and 160.84 degrees east longitude. North is toward the bottom of the image. The radar illumination is from the top of the image. The Kamchatka volcanoes are among the most active volcanoes in the world. The volcanic zone sits above a tectonic plate boundary, where the Pacific plate is sinking beneath the northeast edge of the Eurasian plate. The Endeavour crew obtained dramatic video and photographic images of this region during the eruption, which will assist scientists in analyzing the dynamics of the recent activity. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In addition to Kliuchevskoi, two other active volcanoes are visible in the image. Bezymianny, the circular crater above and to the right of Kliuchevskoi, contains a slowly growing lava dome. Tolbachik is the large volcano with a dark summit crater near the upper right edge of the red snow covered area. The Kamchatka River runs from right to left across the bottom of the image. The current eruption of Kliuchevskoi included massive ejections of gas, vapor and ash, which reached altitudes of 15,000 meters (50,000 feet). Melting snow mixed with volcanic ash triggered mud flows on the flanks of the volcano. Paths of these flows can be seen as thin lines in various shades of blue and green on the north flank in the center of the image. http://photojournal.jpl.nasa.gov/catalog/PIA01765
Pancost, Richard D.; Sinninghe Damsté, Jaap S.; de Lint, Saskia; van der Maarel, Marc J. E. C.; Gottschal, Jan C.
2000-01-01
Although abundant geochemical data indicate that anaerobic methane oxidation occurs in marine sediments, the linkage to specific microorganisms remains unclear. In order to examine processes of methane consumption and oxidation, sediment samples from mud volcanoes at two distinct sites on the Mediterranean Ridge were collected via the submersible Nautile. Geochemical data strongly indicate that methane is oxidized under anaerobic conditions, and compound-specific carbon isotope analyses indicate that this reaction is facilitated by a consortium of archaea and bacteria. Specifically, these methane-rich sediments contain high abundances of methanogen-specific biomarkers that are significantly depleted in 13C (δ13C values are as low as −95‰). Biomarkers inferred to derive from sulfate-reducing bacteria and other heterotrophic bacteria are similarly depleted. Consistent with previous work, such depletion can be explained by consumption of 13C-depleted methane by methanogens operating in reverse and as part a consortium of organisms in which sulfate serves as the terminal electron acceptor. Moreover, our results indicate that this process is widespread in Mediterranean mud volcanoes and in some localized settings is the predominant microbiological process. PMID:10698781
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ware, P.
Mud volcanoes have been widely documented in areas of overpressure where explosive expansion of trapped methane has occurred during argillokinesis. In an area with high sedimentation rate, such as the Gulf of Mexico, there may be no time for fine-grained sediment to de-water before being covered by impermeable material. In an accretionary wedge this process is complicated by overthrusting of off-scraped material which increases the overburden pressure and provides many more avenues for the migration of fluids through the system. In some cases, such as is seen in the Caribbean, the fluids may escape directly to the surface (or seabottom)more » through high permeability beds. When this happens there may be no diapirism. In other cases, such as in Venezuela, the forearc may be the site of rapid, laterally-derived, sedimentation, and fluids from the overthrusted rocks may be forced to escape through several kilometers of recent deltaic sediments. Since these fluids may include petroleum, this has obvious exploration potential. If there are no suitable reservoir rocks, such as in Timor, there may be no commercial accumulations. However, many giant fields are associated, world-wide, with mud volcanoes, such as those in Azerbaijan.« less
Serpentinite Mud Volcanism: Observations, Processes, and Implications
NASA Astrophysics Data System (ADS)
Fryer, Patricia
2012-01-01
Large serpentinite mud volcanoes form on the overriding plate of the Mariana subduction zone. Fluids from the descending plate hydrate (serpentinize) the forearc mantle and enable serpentinite muds to rise along faults to the seafloor. The seamounts are direct windows into subduction processes at depths far too deep to be accessed by any known technology. Fluid compositions vary with distance from the trench, signaling changes in chemical reactions as temperature and pressure increase. The parageneses of rocks in the mudflows permits us to constrain the physical conditions of the decollement region. If eruptive episodes are related to seismicity, seafloor observatories at these seamounts hold the potential to capture a subduction event and trace the effects of eruption on the biological communities that the slab fluids support, such as extremophile Archaea. The microorganisms that inhabit this high-pH, extreme environment support their growth by utilizing chemical constituents present in the slab fluids. Some researchers now contend that the serpentinization process itself may hold the key to the origin of life on Earth.
Serpentinite mud volcanism: observations, processes, and implications.
Fryer, Patricia
2012-01-01
Large serpentinite mud volcanoes form on the overriding plate of the Mariana subduction zone. Fluids from the descending plate hydrate (serpentinize) the forearc mantle and enable serpentinite muds to rise along faults to the seafloor. The seamounts are direct windows into subduction processes at depths far too deep to be accessed by any known technology. Fluid compositions vary with distance from the trench, signaling changes in chemical reactions as temperature and pressure increase. The parageneses of rocks in the mudflows permits us to constrain the physical conditions of the decollement region. If eruptive episodes are related to seismicity, seafloor observatories at these seamounts hold the potential to capture a subduction event and trace the effects of eruption on the biological communities that the slab fluids support, such as extremophile Archaea. The microorganisms that inhabit this high-pH, extreme environment support their growth by utilizing chemical constituents present in the slab fluids. Some researchers now contend that the serpentinization process itself may hold the key to the origin of life on Earth.
Santa Maria Volcano, Guatemala
NASA Technical Reports Server (NTRS)
2002-01-01
The eruption of Santa Maria volcano in 1902 was one of the largest eruptions of the 20th century, forming a large crater on the mountain's southwest flank. Since 1922, a lava-dome complex, Santiaguito, has been forming in the 1902 crater. Growth of the dome has produced pyroclastic flows as recently as the 2001-they can be identified in this image. The city of Quezaltenango (approximately 90,000 people in 1989) sits below the 3772 m summit. The volcano is considered dangerous because of the possibility of a dome collapse such as one that occurred in 1929, which killed about 5000 people. A second hazard results from the flow of volcanic debris into rivers south of Santiaguito, which can lead to catastrophic flooding and mud flows. More information on this volcano can be found at web sites maintained by the Smithsonian Institution, Volcano World, and Michigan Tech University. ISS004-ESC-7999 was taken 17 February 2002 from the International Space Station using a digital camera. The image is provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Searching and viewing of additional images taken by astronauts and cosmonauts is available at the NASA-JSC Gateway to
“Can LUSI be stopped? - A case study and lessons learned from the relief wells”
NASA Astrophysics Data System (ADS)
Sutrisna, E.
2009-12-01
Since May 2006, in East Java, Indonesia, the LUSI mud volcano has been erupting huge volumes of mixture of predominately mud and water, with little sign of slowing down. It has disrupted social and economic life in this highly populated region. Most geologists believe LUSI is a naturally-occurring mud volcano (MV), like other MV in the Java island of particular interest are the MV along the Watukosek fault, such as, Kalang Anyar, Pulungan, Gunung Anyar, and Socah MV. All of these MV lie in the vicinity of the SSW/NNE trending Watukosek fault that passes through LUSI. The Porong collapse structure is an ancient MV closest to LUSI approx. 7 km away, which on seismic sections demonstrate its complex multi-branching plumbing system. Assuming that the mudflow passed through the wellbore due to an underground blowout, relief wells (RW) were planned to kill the mudflow and carried out in 3 stages, these were: 1. Re-entering the original Banjarpanji-1 (BJP-1) well to obtain accurate survey data so the relief wells could be steered into intersect this original well. 2. Drilling a monitoring well (M-1) to ascertain whether the soil had sufficient strength to support relief wells. 3. Drilling RW-1 and RW-2. Both RW-1 and RW-2 suffered of surface and subsurface problems never achieved their objectives and had to be aborted. Numbers of good lessons were learned from the relief well initiative, such as: 1. No gas or liquid flowed from the wellhead area when it was excavated one month after the eruption started. The wellhead remained intact and totally dead suggesting that the mud flowed to surface through a fault zone or a fracture network instead of up the wellbore. 2. The ‘fish’ in BJP-1 wellbore was found at its original location and not eroded away. This suggests that the mud flow did not pass through the wellbore. 3. The Temperature log showed lower temp. than surface mud temp. The Sonan log response was quiet. These results suggest that there was no near casing mudflow. 4. Dynamic subsurface conditions of the area with shear movement at a depth of 1,100 ft to 1,500 ft. 5. The RW-1 experienced alternate loss and kicks at a depth of around 3,200 ft. as it entered the unstable fault zone and fracture network which likely served as the mud flow conduit. Drilling in the zone of instability around the mudflow conduit cannot be avoided and is full of hazards. 6. The area suffers a dynamic geological condition. The subsidence rate at the rig site of more than 100 cm in a month. The subsidence also had a lateral component. 7. LUSI has multiple mudflow conduits as reflected in the more than 100 gas bubbles currently occurring within a radius of 1.5 km. Although the relief wells did not achieve their intended purpose to stop the mudflow, they allowed the collection of valuable data, all of which suggests that the mudflow did not originate from the BJP-1 wellbore as originally assumed. The use of relief wells to kill the mudflow is a futile attempt since in such complex plumbing system. New conduits or the two dormant mudflow centers along the fault line that appeared at the beginning of LUSI may reactivate if the currently active conduit is blocked. In conclusion, LUSI appears to be another naturally occurring MV that is impossible to kill using relief wells.
Skinner, J.A.; Tanaka, K.L.
2007-01-01
Several types of spatially associated landforms in the southern Utopia Planitia highland-lowland boundary (HLB) plain appear to have resulted from localized geologic activity, including (1) fractured rises, (2) elliptical mounds, (3) pitted cones with emanating lobate materials, and (4) isolated and coalesced cavi (depressions). Stratigraphic analysis indicates these features are Hesperian or younger and may be associated with resurfacing that preferentially destroyed smaller (< 8 ?? km diameter) impact craters. Based on landform geomorphologies and spatial distributions, the documented features do not appear to be specifically related to igneous or periglacial processes or the back-wasting and erosion of the HLB scarp. We propose that these features are genetically related to and formed by sedimentary (mud) diapirs that ascended from zones of regionally confined, poorly consolidated, and mechanically weak material. We note morphologic similarities between the mounds and pitted cones of the southern Utopia boundary plain and terrestrial mud volcanoes in the Absheron Peninsula, Azerbaijan. These analogs provide a context for understanding the geological environments and processes that supported mud diapir-related modification of the HLB. In southern Utopia, mud diapirs near the Elysium volcanic edifice may have resulted in laccolith-like intrusions that produced the fractured rises, while in the central boundary plain mud diapirs could have extruded to form pitted cones, mounds, and lobate flows, perhaps related to compressional stresses that account for wrinkle ridges. The removal of material a few kilometers deep by diapiric processes may have resulted in subsidence and deformation of surface materials to form widespread cavi. Collectively, these inferences suggest that sedimentary diapirism and mud volcanism as well as related surface deformations could have been the dominant Hesperian mechanisms that altered the regional boundary plain. We discuss a model in which detritus would have accumulated thickly in the annular spaces between impact-generated structural rings of Utopia basin. We envision that these materials, and perhaps buried ejecta of Utopia basin, contained volatile-rich, low-density material that could provide the source material for the postulated sedimentary diapirs. Thick, water-rich, low-density sediments buried elsewhere along the HLB and within the lowland plains may account for similar landforms and resurfacing histories. ?? 2006 Elsevier Inc. All rights reserved.
Geomorphological assemblages in Arcadia Planitia: clues about a global scale event?
NASA Astrophysics Data System (ADS)
De Toffoli, B.; Pozzobon, R.; Mazzarini, F.; Massironi, M.; Cremonese, G.
2017-09-01
Mound-like features have been detected in the Arcadia Planitia region in the Northern hemisphere of Mars. Particularly, we investigated landforms that, due to their morphological characteristics and surface distribution, could be interpreted as water related features, such as mud volcanoes or spring vents. Additionally, the collected evidence suggests that a putative single phenomenon acted as trigger to such resurgences on global scale.
2017-12-08
NASA image acquired Sept 7, 2010 Shiveluch (also spelled Sheveluch) is one of the largest and most active volcanoes on Russia’s Kamchatka Peninsula. It has been spewing ash and steam intermittently—with occasional dome collapses, pyroclastic flows, and lava flows, as well—for the past decade. Shiveluch is a stratovolcano, a steep-sloped formation of alternating layers of hardened lava, ash, and rocks thrown out by earlier eruptions. A lava dome has been growing southwest of the 3,283-meter (10,771-foot) summit. The Advanced Land Imager (ALI) on NASA’s Earth Observing-1 (EO-1) satellite acquired this image on September 7, 2010. Brown and tan debris—perhaps ash falls, perhaps mud from lahars—covers the southern landscape of the volcano, while the hills on the northern side remain covered in snow and ice. The Kamchatkan Volcanic Eruption Response Team (KVERT) reported that seismic activity at Shiveluch was "above background levels" from September 3-10. Ash plumes rose to an altitude of 6.5 kilometers (21,300 feet) on September 3-4, and gas-and-ash plumes were reported on September 7, when this image was acquired. According to the Smithsonian Institution's volcano program, at least 60 large eruptions of Shiveluch have occurred during the current Holocene Epoch of geological history. Intermittent explosive eruptions began in the 1990s, and the largest historical eruptions from Shiveluch occurred in 1854 and 1964. NASA Earth Observatory image created by Jesse Allen and Robert Simmon, using EO-1 ALI data provided courtesy of the NASA EO-1 team. Caption by Mike Carlowicz. Instrument: EO-1 - ALI Credit: NASA Earth Observatory NASA Goddard Space Flight Center contributes to NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s endeavors by providing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
NASA Astrophysics Data System (ADS)
Krabbenhoeft, A.; Papenberg, C. A.; Klaeschen, D.; Bialas, J.
2016-12-01
The goal of this study is to image the sub-seafloor structure beneath the Sevastopol mud volcano (SMV), Sorokin Trough, SE of the Crimean peninsula, Black Sea. The focus lies on structures of/within the feeder channel, the distribution of gas and gas hydrates, and their relation to fluid migration zones in sediments. This study concentrates on a 3D high resolution seismic grid (7 km x 2.5 km) recorded with 13 ocean bottom stations (OBS). The 3D nature of the experiment results from the geometry of 68 densely spaced (25/50 m) profiles, as well as the cubical configuration of the densely spaced receivers on the seafloor ( 300 m station spacing). The seismic profiles are typically longer than 6 km which results in large offsets for the reflections of the OBS. This enables the study of the seismic velocities of the sub-seafloor sediments and additionally large offset incident analysis.The 3D Kirchhoff mirror image time migration, applied to all OBS sections including all shots from all profiles, leads to a spatial image of the sub-seafloor. Here, the migration was applied with the velocity distribution of 1.49 km/s in the water column, 1.5 km/s below the seafloor (bsf) increasing to 2 km/s for the deeper sediments at 2 s bsf. Acoustic blanking occurs beneath the south-easterly located OBS and is associated with the feeder channel of the mud volcano. There, gas from depth can vertically migrate to the seafloor and on its way to the surface horizontally distribute patchily within sediment layers. High amplitude reflections are not observed as continuous reflections, but in a patchy distribution. They are associated with accumulations of gas. Also structures exist within the feeder channel of the SMV.3D mirror imaging proves to be a good tool to seismically image structures compared with 2D streamer seismics, especially steep dipping reflectors and structures which are otherwise obscured by signal scattering, i.e structures associated with fluid migration paths.
Geochemistry of mineral waters and associated gases of the Sakhalin Island (Far East of Russia)
NASA Astrophysics Data System (ADS)
Chelnokov, George A.; Bragin, Ivan V.; Kharitonova, Natalia A.
2018-04-01
Isotopic and chemical data on the mineral water, mud volcanoes fluid and associated gases from the biggest Russian island Sakhalin, together with previous stable isotope data (d18O, dD, 13C), allow elucidation of their origin and general evolution. The water fluid circulation is mainly related to marine environment inducing three distinct types: Na-HCO3-Cl alkali carbonate groundwaters, Na-Cl-HCO3 highly evolved saline and Na-Cl mature groundwaters, indicating different evolution. Chemical evolution of groundwater on Sakhalin Island demonstrated cation exchange and salinization as dominant evolutionary pathways. Isotopic composition of groundwaters varies from meteoric to metamorphic waters. These metamorphic waters consist of water hydration from the clay and seawater are traced in fluids of Yuzhno-Sakhalin mud volcano despite modification by mixing with meteoric waters and water-rock interaction processes. Fault systems that define the areas of highly mineralized water circulation appear to play a major role in the CO2 migration to the surface and CH4 generation. The δ13C(CO2) values have pointed that gas phase in high-pCO2 waters mostly consists of mantle-derived CO2. The carbon isotope signature of methane δ13C(CH4) and δD(CH4) indicates its distinct origin which is specified by tectonics. Methane manifestation in the south of the Sakhalin Island is mainly related to thermogenic reservoirs as they are more often dislocate by tectonics, and crossed by active and permeable faults. The sources of biogenous methane in the north of Sakhalin Island is related to younger and shallower reservoirs, and less affected by tectonic processes. The determinations of 222Rn have allowed observing that maximal radon flux is associated with high pCO2 waters.
Aquipuribacter nitratireducens sp. nov., isolated from a soil sample of a mud volcano.
Srinivas, T N R; Anil Kumar, P; Tank, M; Sunil, B; Poorna, Manasa; Zareena, Begum; Shivaji, S
2015-08-01
A novel Gram-stain-positive, coccoid, non-motile bacterium, designated strain AMV4T, was isolated from a soil sample collected from a mud volcano located in the Andaman Islands, India. The colony was pale orange. Strain AMV4T was positive for oxidase, aesculinase, lysine decarboxylase and ornithine decarboxylase activities and negative for amylase, catalase, cellulase, protease, urease and lipase activities. 16S rRNA gene sequence analysis indicated that strain AMV4T was a member of the order Actinomycetales and was closely related to Aquipuribacter hungaricus with a sequence similarity of 97.13% (pairwise alignment). Phylogenetic analyses showed that strain AMV4T clustered with Aquipuribacter hungaricus and was distantly related to the other genera of the family Intrasporangiaceae. DNA-DNA hybridization between strains AMV4T and Aquipuribacter hungaricus IV-75T showed a relatedness of 28%. The predominant cellular fatty acids were iso-C15 : 0 (6.9%), anteiso-C15 : 0 (25.3%), C16 : 0 (12.9%), anteiso-C16 : 0 (5.6%), C18 : 1ω9c (19.8%) and C18 : 3ω6,9,12c (9.1%). The diagnostic diamino acid in the cell-wall peptidoglycan of strain AMV4T was meso-diaminopimelic acid. Strain AMV4T contained MK-10(H4) as the predominant respiratory quinone. The polar lipids consisted of phosphatidylglycerol, one unidentified glycolipid, two unidentified phospholipids and five unidentified lipids. The DNA G+C content of strain AMV4T was 74.3 mol%. Based on data from this taxonomic study using a polyphasic approach, it is proposed that strain AMV4T represents a novel species of the genus Aquipuribacter, with the suggested name Aquipuribacter nitratireducens sp. nov. The type strain is AMV4T ( = CCUG 58430T = DSM 22863T = NBRC 107137T).
Time-dependent source model of the Lusi mud volcano
NASA Astrophysics Data System (ADS)
Shirzaei, M.; Rudolph, M. L.; Manga, M.
2014-12-01
The Lusi mud eruption, near Sidoarjo, East Java, Indonesia, began erupting in May 2006 and continues to erupt today. Previous analyses of surface deformation data suggested an exponential decay of the pressure in the mud source, but did not constrain the geometry and evolution of the source(s) from which the erupting mud and fluids ascend. To understand the spatiotemporal evolution of the mud and fluid sources, we apply a time-dependent inversion scheme to a densely populated InSAR time series of the surface deformation at Lusi. The SAR data set includes 50 images acquired on 3 overlapping tracks of the ALOS L-band satellite between May 2006 and April 2011. Following multitemporal analysis of this data set, the obtained surface deformation time series is inverted in a time-dependent framework to solve for the volume changes of distributed point sources in the subsurface. The volume change distribution resulting from this modeling scheme shows two zones of high volume change underneath Lusi at 0.5-1.5 km and 4-5.5km depth as well as another shallow zone, 7 km to the west of Lusi and underneath the Wunut gas field. The cumulative volume change within the shallow source beneath Lusi is ~2-4 times larger than that of the deep source, whilst the ratio of the Lusi shallow source volume change to that of Wunut gas field is ~1. This observation and model suggest that the Lusi shallow source played a key role in eruption process and mud supply, but that additional fluids do ascend from depths >4 km on eruptive timescales.
NASA Astrophysics Data System (ADS)
Mei, C. C.; Liu, K.-F.; Yuhi, M.
Heavy and persistent rainfalls in mountainous areas can loosen the hillslope and induce mud flows which can move stones, boulders and even trees, with destructive power on their path. In China where 70% of the land surface is covered by mountains, debris flows due to landslides or rainfalls affect over 18.6% of the nation. Over 10,000 debris flow ravines have been identified; hundreds of lives are lost every year [1]. While accurate assessment is still pending, mud flows caused by Hurr icane Mitch in 1998 have incurred devastating floods in Central America. In Honduras alone more than 6000 people perished. Half of the nation's infrastructures were damaged. Mud flows can also be the result of volcanic eruption. Near the volcano, lava and pyroclastic flows dominate. Further downstream solid particles become smaller and can mix with river or lake water, rainfall, melting snow or ice, or eroded soil, resulting in hyperconcentrated mud mixed with rocks. The muddy debris can travel at high speeds over tens of miles down the hill slopes and devastate entire communities. In 1985 the catastrophic eruption of Nevado del Ruiz in Colombia resulted in mud flows which took the life of 23,000 inhabitants in the town of Amero [2]. During the eruption of Mt. Pinatubo in Phillipnes in 1991, one cubic mile of volcanic ash and rock fragments fell on the mountain slopes. Seasonal rain in the following months washed down much of the loose deposits, causing damage to 100,000 villages. These catastrophes have been vividly recorded in the film documentary by Lyons [3].
NASA Astrophysics Data System (ADS)
Rowden, A. A.; Jones, M. B.; Morris, A. W.
1998-09-01
The mud shrimp Callianassa subterranea (Montagu) is a common member of the macrobenthic community at the site in the North Sea selected to study the dynamics of suspended sediment behaviour. The extensive burrowing habit of this deposit-feeding species makes it an important contributor to the degree of bioturbation experienced at the site. Individuals recovered from the site were returned to the laboratory to investigate the influence of body size and temperature upon the amount of sediment expelled. A clear relationship between these variables and the quantity of expelled sediment was identified, and a well-defined temporal pattern of expulsion activity and inactivity was demonstrated. These experimental data, together with field information on seawater temperatures and aspects of mud shrimp population dynamics, allow the construction of an estimated annual sediment turnover budget of 11 kg (dry weight) m -2 yr -1. Field observations at the North Sea site show that the sediment expelled by the mud shrimp forms unconsolidated volcano-like mounds, which significantly modify seabed surface topography. The dimensions of these surface features were measured from bottom photographs of the site and used to determine values of boundary roughness length ( Zo). In January Zo was 0.0007 cm, whilst in September Zo equaled 0.79 cm. Callianassa subterranea's maximum contribution to resuspension was assessed by calculating a derived lateral sediment transport rate of 7 kg m -1 month -1 (from values of near-bed current velocity, modified boundary roughness length and sediment turnover rate).
[Effects of volcanic eruptions on environment and health].
Zuskin, Eugenija; Mustajbegović, Jadranka; Doko Jelinić, Jagoda; Pucarin-Cvetković, Jasna; Milosević, Milan
2007-12-01
Volcanoes pose a threat to almost half a billion people; today there are approximately 500 active volcanoes on Earth, and every year there are 10 to 40 volcanic eruptions. Volcanic eruptions produce hazardous effects for the environment, climate, and the health of the exposed persons, and are associated with the deterioration of social and economic conditions. Along with magma and steam (H2O), the following gases surface in the environment: carbon dioxide (CO2) and sulphur dioxide (SO2), carbon monoxide (CO), hydrogen sulphide (H2S), carbon sulphide (CS), carbon disulfide (CS2), hydrogen chloride (HCl), hydrogen (H2), methane (CH4), hydrogen fluoride (HF), hydrogen bromide (HBr) and various organic compounds, as well as heavy metals (mercury, lead, gold).Their unfavourable effects depend on the distance from a volcano, on magma viscosity, and on gas concentrations. The hazards closer to the volcano include pyroclastic flows, flows of mud, gases and steam, earthquakes, blasts of air, and tsunamis. Among the hazards in distant areas are the effects of toxic volcanic ashes and problems of the respiratory system, eyes and skin, as well as psychological effects, injuries, transport and communication problems, waste disposal and water supplies issues, collapse of buildings and power outage. Further effects are the deterioration of water quality, fewer periods of rain, crop damages, and the destruction of vegetation. During volcanic eruptions and their immediate aftermath, increased respiratory system morbidity has been observed as well as mortality among those affected by volcanic eruptions. Unfavourable health effects could partly be prevented by timely application of safety measures.
Landslides density map of S. Miguel Island, Azores archipelago
NASA Astrophysics Data System (ADS)
Valadão, P.; Gaspar, J. L.; Queiroz, G.; Ferreira, T.
The Azores archipelago is located in the Atlantic Ocean and is composed of nine volcanic islands. S. Miguel, the largest one, is formed by three active, E-W trending, trachytic central volcanoes with caldera (Sete Cidades, Fogo and Furnas). Chains of basaltic cinder cones link those major volcanic structures. An inactive trachytic central volcano (Povoação) and an old basaltic volcanic complex (Nordeste) comprise the easternmost part of the island. Since the settlement of the island early in the 15th century, several destructive landslides triggered by catastrophic rainfall episodes, earthquakes and volcanic eruptions occurred in different areas of S. Miguel. One unique event killed thousands of people in 1522. Houses and bridges were destroyed, roads were cut, communications, water and energy supply systems became frequently disrupted and areas of fertile land were often buried by mud. Based on (1) historical documents, (2) aerial photographs and (3) field observations, landslide sites were plotted on a topographic map, in order to establish a landslide density map for the island. Data obtained showed that landslide hazard is higher on (1) the main central volcanoes where the thickness of unconsolidated pyroclastic deposits is considerable high and (2) the old basaltic volcanic complex, marked by deep gullies developed on thick sequences of lava flows. In these areas, caldera walls, fault scarps, steep valley margins and sea cliffs are potentially hazardous.
Choline and N,N-dimethylethanolamine as direct substrates for methanogens.
Watkins, Andrew J; Roussel, Erwan G; Webster, Gordon; Parkes, R John; Sass, Henrik
2012-12-01
Choline (N,N,N-trimethylethanolamine), which is widely distributed in membrane lipids and is a component of sediment biota, has been shown to be utilized anaerobically by mixed prokaryote cultures to produce methane but not by pure cultures of methanogens. Here, we show that five recently isolated Methanococcoides strains from a range of sediments (Aarhus Bay, Denmark; Severn Estuary mudflats at Portishead, United Kingdom; Darwin Mud Volcano, Gulf of Cadiz; Napoli mud volcano, eastern Mediterranean) can directly utilize choline for methanogenesis producing ethanolamine, which is not further metabolized. Di- and monomethylethanolamine are metabolic intermediates that temporarily accumulate. Consistent with this, dimethylethanolamine was shown to be another new growth substrate, but monomethylethanolamine was not. The specific methanogen inhibitor 2-bromoethanesulfonate (BES) inhibited methane production from choline. When choline and trimethylamine are provided together, diauxic growth occurs, with trimethylamine being utilized first, and then after a lag (∼7 days) choline is metabolized. Three type strains of Methanococcoides (M. methylutens, M. burtonii, and M. alaskense), in contrast, did not utilize choline. However, two of them (M. methylutens and M. burtonii) did metabolize dimethylethanolamine. These results extend the known substrates that can be directly utilized by some methanogens, giving them the advantage that they would not be reliant on bacterial syntrophs for their substrate supply.
Choline and N,N-Dimethylethanolamine as Direct Substrates for Methanogens
Watkins, Andrew J.; Roussel, Erwan G.; Webster, Gordon; Parkes, R. John
2012-01-01
Choline (N,N,N-trimethylethanolamine), which is widely distributed in membrane lipids and is a component of sediment biota, has been shown to be utilized anaerobically by mixed prokaryote cultures to produce methane but not by pure cultures of methanogens. Here, we show that five recently isolated Methanococcoides strains from a range of sediments (Aarhus Bay, Denmark; Severn Estuary mudflats at Portishead, United Kingdom; Darwin Mud Volcano, Gulf of Cadiz; Napoli mud volcano, eastern Mediterranean) can directly utilize choline for methanogenesis producing ethanolamine, which is not further metabolized. Di- and monomethylethanolamine are metabolic intermediates that temporarily accumulate. Consistent with this, dimethylethanolamine was shown to be another new growth substrate, but monomethylethanolamine was not. The specific methanogen inhibitor 2-bromoethanesulfonate (BES) inhibited methane production from choline. When choline and trimethylamine are provided together, diauxic growth occurs, with trimethylamine being utilized first, and then after a lag (∼7 days) choline is metabolized. Three type strains of Methanococcoides (M. methylutens, M. burtonii, and M. alaskense), in contrast, did not utilize choline. However, two of them (M. methylutens and M. burtonii) did metabolize dimethylethanolamine. These results extend the known substrates that can be directly utilized by some methanogens, giving them the advantage that they would not be reliant on bacterial syntrophs for their substrate supply. PMID:23001649
Chemosynthetic bacteria found in bivalve species from mud volcanoes of the Gulf of Cadiz.
Rodrigues, Clara F; Webster, Gordon; Cunha, Marina R; Duperron, Sébastien; Weightman, Andrew J
2010-09-01
As in other cold seeps, the dominant bivalves in mud volcanoes (MV) from the Gulf of Cadiz are macrofauna belonging to the families Solemyidae (Acharax sp., Petrasma sp.), Lucinidae (Lucinoma sp.), Thyasiridae (Thyasira vulcolutre) and Mytilidae (Bathymodiolus mauritanicus). The delta(13)C values measured in solemyid, lucinid and thyasirid specimens support the hypothesis of thiotrophic nutrition, whereas isotopic signatures of B. mauritanicus suggest methanotrophic nutrition. The indication by stable isotope analysis that chemosynthetic bacteria make a substantial contribution to the nutrition of the bivalves led us to investigate their associated bacteria and their phylogenetic relationships based on comparative 16S rRNA gene sequence analysis. PCR-denaturing gradient gel electrophoresis analysis and cloning of bacterial 16S rRNA-encoding genes confirmed the presence of sulfide-oxidizing symbionts within gill tissues of many of the studied specimens. Phylogenetic analysis of bacterial 16S rRNA gene sequences demonstrated that most bacteria were related to known sulfide-oxidizing endosymbionts found in other deep-sea chemosynthetic environments, with the co-occurrence of methane-oxidizing symbionts in Bathymodiolus specimens. This study confirms the presence of several chemosynthetic bivalves in the Gulf of Cadiz and further highlights the importance of sulfide- and methane-oxidizing symbionts in the trophic ecology of macrobenthic communities in MV.
Role of naturally occurring gas hydrates in sediment transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
McIver, R.D.
1982-06-01
Naturally occurring gas hydrates have the potential to store enormous volumes of both gas and water in semi-solid form in ocean-bottom sediments and then to release that gas and water when the hydrate's equilibrium condition are disturbed. Therefore, hydrates provide a potential mechanism for transporting large volumes of sediments. Under the combined low bottom-water temperatures and moderate hydrostatic pressures that exist over most of the continental slopes and all of the continental rises and abyssal plains, hydrocarbon gases at or near saturation in the interstitial waters of the near-bottom sediments will form hydrates. The gas can either be autochthonous, microbiallymore » produced gas, or allochthonous, catagenic gas from deeper sediments. Equilibrium conditions that stabilize hydrated sediments may be disturbed, for example, by continued sedimentation or by lowering of sea level. In either case, some of the solid gas-water matrix decomposes. Released gas and water volume exceeds the volume occupied by the hydrate, so the internal pressure rises - drastically if large volumes of hydrate are decomposed. Part of the once rigid sediment is converted to a gas- and water-rich, relatively low density mud. When the internal pressure, due to the presence of the compressed gas or to buoyancy, is sufficiently high, the overlying sediment may be lifted and/or breached, and the less dense, gas-cut mud may break through. Such hydrate-related phenomena can cause mud diapirs, mud volcanos, mud slides, or turbidite flows, depending on sediment configuration and bottom topography. 4 figures.« less
Multi-Channel Seismic Images of the Mariana Forearc: EW0202 Initial Results
NASA Astrophysics Data System (ADS)
Oakley, A. J.; Goodliffe, A. M.; Taylor, B.; Moore, G. F.; Fryer, P.
2002-12-01
During the Spring of 2002, the Mariana Subduction Factory was surveyed using multi-channel seismics (MCS) as the first major phase of a US-Japanese collaborative NSF-MARGINS funded project. The resulting geophysical transects extend from the Pacific Plate to the West Mariana remnant arc. For details of this survey, including the results from the back-arc, refer to Taylor et al. (this session). The incoming Pacific Plate and its accompanying seamounts are deformed by plate flexure, resulting in extension of the upper crust as it enters the subduction zone. The resultant trench parallel faults dominate the bathymetry and MCS data. Beneath the forearc, in the southern transects near Saipan, the subducting slab is imaged to a distance of 50-60 km arcward. In addition to ubiquitous trench parallel normal faulting, a N-S transect of the forearc clearly shows normal faults perpendicular to the trench resulting from N-S extension. On the east side of the Mariana Ridge, thick sediment packages extend into the forearc. Directly east of Saipan and Tinian, a large, deeply scouring slide mass is imaged. Several serpentine mud volcanoes (Big Blue, Turquoise and Celestial) were imaged on the Mariana Forearc. Deep horizontal reflectors (likely original forearc crust) are imaged under the flanks of some of these seamounts. A possible "throat" reflector is resolved on multiple profiles at the summit of Big Blue, the northern-most seamount in the study area. The flanks of Turquoise seamount terminate in toe thrusts that represent uplift and rotation of surrounding sediments as the volcano grows outward. These thrusts form a basal ridge around the seamount similar to that previously noted encircling Conical Seamount. Furthermore, MCS data has revealed that some forearc highs previously thought to be fault blocks are in actuality mud volcanoes.
NASA Astrophysics Data System (ADS)
Kahl, Wolf-Achim; Jöns, Niels; Bach, Wolfgang; Klein, Frieder; Alt, Jeffrey C.
2015-06-01
Serpentine seamounts located on the outer half of the pervasively fractured Mariana forearc provide an excellent window into the forearc devolatilization processes, which can strongly influence the cycling of volatiles and trace elements in subduction zones. Serpentinized ultramafic clasts recovered from an active mud volcano in the Mariana forearc reveal microstructures, mineral assemblages and compositions that are indicative of a complex polyphase alteration history. Petrologic phase relations and oxygen isotopes suggest that ultramafic clasts were serpentinized at temperatures below 200 °C. Several successive serpentinization events represented by different vein generations with distinct trace element contents can be recognized. Measured in situ Rb/Cs ratios are fairly uniform ranging between 1 and 10, which is consistent with Cs mobilization from sediments at lower temperatures and lends further credence to the low-temperature conditions proposed in models of the thermal structure in forearc settings. Late veins show lower fluid mobile element (FME) concentrations than early veins, suggesting a decreasing influence of fluid discharge from the subducting slab on the composition of the serpentinizing fluids. The continuous microfabric and mineral chemical evolution observed in the ultramafic clasts may have implications as to the origin and nature of the serpentinizing fluids. We hypothesize that opal and smectite dehydration produce quartz-saturated fluids with high FME contents and Rb/Cs between 1 and 4 that cause the early pervasive serpentinization. The partially serpentinized material may then be eroded from the basal plane of the suprasubduction mantle wedge. Serpentinization continued but the interacting fluids did not carry a pronounced sedimentary signature, either because FMEs were no longer released from the slab, or due to an en route loss of FMEs. Late chrysotile veins that document the increased access of fluids in a now fluid-dominated regime are characterized by reduced trace element contents with a slightly increased Rb/Cs ratio near 10. This lack of sediment-dominated geochemical signatures consistently displayed in all late serpentinization stages may indicate that the sediment-derived fluids have been completely reset (i.e. the FME excesses were removed) by continued water-rock reaction within the subduction channel. The final stage of buoyant rise of matrix and clasts in the conduits is characterized by brucite-dominated alteration of the clasts from the clast rim inward (independent of the intra-clast fabric relations), which corresponds to re-equilibration with alkaline, low-silica activity fluids in the rising mud.
NASA Astrophysics Data System (ADS)
Collignon, Marine; Hammer, Øyvind; Fallahi, Mohammad J.; Lupi, Matteo; Schmid, Daniel W.; Alwi, Husein; Hadi, Soffian; Mazzini, Adriano
2017-04-01
The 29th May 2006, gas water and mud breccia started to erupt at several localities along the Watukosek fault system in the Sidoarjo Regency in East Java Indonesia. The most prominent eruption site, named Lusi, is still active and the emitted material now covers a surface of nearly 7 km2, resulting in the displacement of 60.000 people (up to date). Due to its social and economic impacts, as well as its spectacular dimensions, the Lusi eruption still attracts the attention of international media and scientists. In the framework of the Lusi Lab project (ERC grant n° 308126), many efforts were made to develop a quasi-constant monitoring of the site and the regional areas. Several studies attempted to predict the flow rate evolution or ground deformation, resulting in either overestimating or underestimating the longevity of the eruption. Models have failed because Lusi is not a mud volcano but a sedimentary hosted hydrothermal system that became apparent after the M6.3 Yogyakarta earthquake. Another reason is because such models usually assume that the flow will decrease pacing the overpressure reduction during the deflation of the chamber. These models typically consider a closed system with a unique chamber that is not being recharged. Overall the flow rate has decreased over the past ten years, although it has been largely fluctuating with monthly periods of higher mud breccia discharge. Monitoring of the eruption has revealed that numerous anomalous events are temporally linked to punctual events such as earthquakes or volcanic eruptions. Nevertheless, the quantification of these events has never been investigated in details. In this study, we present a compilation of anomalous events observed at the Lusi site during the last 10 years. Using Monte Carlo simulations, we then statistically compare the displacement, recorded at different seismic stations around Lusi, with the regional and global earthquakes catalogue to test the probability that an earthquake striking the coast of Java affects the plumbing system at Lusi and triggers anomalous events.
NASA Astrophysics Data System (ADS)
Ryan, J. G.; Menzies, C. D.; Teagle, D. A. H.; Price, R. E.; Sissmann, O.; Wheat, C. G.; Boyce, A.
2017-12-01
Geological processes at subduction zone margins control seismicity, plutonism/ volcanism, and geochemical cycling between the oceans, crust, and mantle. The down-going plate experiences dehydration, and associated metamorphism alters the physical properties of the plate interface and mantle wedge. The Mariana convergent margin is non-accretionary, and serpentinite mud volcanoes in the pervasively faulted forearc mark loci of fluid and material egress from the subducting slab and forearc mantle. IODP Expedition 366 drilled into three serpentinite mud volcanoes: Yinazao (13 km depth-to-slab); Fantangisña (14 km) and Asùt Tesoru (18 km), allowing comparison with the previously drilled South Chamorro (18 km) and Conical (19 km) Seamounts. We use the changes in chemistry and isotopic composition of porefluids between seamounts to trace the evolution of the downgoing slab and water-rock interactions in the overlying mantle wedge. Boron isotopes allow investigation of the processes governing prograde metamorphism in the downgoing slab, and combined with O, D/H and Sr isotopes are used to assess the balance between seawater and dehydration fluids during mantle wedge serpentinization. The shallowest depth-to-slab seamounts, Yinazao and Fantangisña, are associated with Ca and Sr-enriched, but otherwise solute poor, low alkalinity fluids of pH 11. In contrast, the Asùt Tesoru seamount fluids are markedly higher in Na and Cl, as well as in tracers like B and K, which are associated with the breakdown of slab sheet silicate phases, and are depleted in Ca and Sr compared to seawater. Higher DIC at this site is attributed to slab carbonate decomposition. The elevated pH ( 12.5) is likely due to Fe2+ oxidation, producing H2 and OH- during serpentinization. Asùt Tesoru porefluids are similar to those studied at South Charmorro and Conical Seamounts that have similar depths to slab, although those sites have distinctly lower Na and Cl, but 3-4 times higher B concentrations. These changes between sites reflect metamorphic prograde reactions on the downgoing plate with increasing depth (P-T°). At shallow depths sediment compaction and opal CT dehydration dominate; intermediate depths are characterised by clay diagenesis and desorbed water release; and at greater depths decarbonation and clay decomposition are dominant.
Rare earth element content of thermal fluids from Surprise Valley, California
Andrew Fowler
2015-09-23
Rare earth element measurements for thermal fluids from Surprise Valley, California. Samples were collected in acid washed HDPE bottles and acidified with concentrated trace element clean (Fisher Scientific) nitric acid. Samples were pre-concentratated by a factor of approximately 10 using chelating resin with and IDA functional group and measured on magnetic sector ICP-MS. Samples include Seyferth Hot Springs, Surprise Valley Resort Mineral Well, Leonard's Hot Spring, and Lake City Mud Volcano Boiling Spring.
2006-09-30
DRDC-A, and the NATO Undersea Research Centre, La Spezia Italy (this is ongoing). Under these main topics, accomplishments included: a...associated with clutter from an undersea ridge and mud volcano cluster. RESULTS A constrained comparison of waveguide reverberation theory and...1000 Hz c) 0 10 20 −70 −60 −50 −40 −30 −20 −10 Angle (deg) S ca tte rin g S tr en gt h (d B ) 900 Hz a) Figure 1. Measured (x) seabed a
Thermalism in Argentina. Alternative or complementary dermatologic therapy.
Ubogui, J; Stengel, F M; Kien, M C; Sevinsky, L; Rodríguez Lupo, L
1998-11-01
Our study took place in the region of the Copahue Volcano in the Andes Mountain range, 1900 m above sea level. Fifty-five patients who came to the Copahue Thermal Basin Complex (Neuquén, Argentina) for treatment of psoriasis vulgaris were clinically evaluated for participation in this study. Thermal products--waters, mud, and/or algae--were the only therapeutic agents used, except for bland emollients for xerosis. Treatment for brief periods (10 +/- 3 days) resulted in notable improvement.
Lee, Jerry Y; Iglesias, Brenda; Chu, Caleb E; Lawrence, Daniel J P; Crane, Edward Jerome
2017-06-01
A novel anaerobic, hyperthermophilic archaeon was isolated from a mud volcano in the Salton Sea geothermal system in southern California, USA. The isolate, named strain 521T, grew optimally at 90 °C, at pH 5.5-7.3 and with 0-2.0 % (w/v) NaCl, with a generation time of 10 h under optimal conditions. Cells were rod-shaped and non-motile, ranging from 2 to 7 µm in length. Strain 521T grew only in the presence of thiosulfate and/or Fe(III) (ferrihydrite) as terminal electron acceptors under strictly anaerobic conditions, and preferred protein-rich compounds as energy sources, although the isolate was capable of chemolithoautotrophic growth. 16S rRNA gene sequence analysis places this isolate within the crenarchaeal genus Pyrobaculum. To our knowledge, this is the first Pyrobaculum strain to be isolated from an anaerobic mud volcano and to reduce only either thiosulfate or ferric iron. An in silico genome-to-genome distance calculator reported <25 % DNA-DNA hybridization between strain 521T and eight other Pyrobaculum species. Due to its genotypic and phenotypic differences, we conclude that strain 521T represents a novel species, for which the name Pyrobaculum igneiluti sp. nov. is proposed. The type strain is 521T (=DSM 103086T=ATCC TSD-56T).
Ren, Ge; Ma, Anzhou; Zhang, Yanfen; Deng, Ye; Zheng, Guodong; Zhuang, Xuliang; Zhuang, Guoqiang; Fortin, Danielle
2018-04-06
Mud volcanoes (MVs) emit globally significant quantities of methane into the atmosphere, however, methane cycling in such environments is not yet fully understood, as the roles of microbes and their associated biogeochemical processes have been largely overlooked. Here, we used data from high-throughput sequencing of microbial 16S rRNA gene amplicons from six MVs in the Junggar Basin in northwest China to quantify patterns of diversity and characterize the community structure of archaea and bacteria. We found anaerobic methanotrophs and diverse sulfate- and iron-reducing microbes in all of the samples, and the diversity of both archaeal and bacterial communities was strongly linked to the concentrations of sulfate, iron and nitrate, which could act as electron acceptors in anaerobic oxidation of methane (AOM). The impacts of sulfate/iron/nitrate on AOM in the MVs were verified by microcosm experiments. Further, two representative MVs were selected to explore the microbial interactions based on phylogenetic molecular ecological networks. The sites showed distinct network structures, key species and microbial interactions, with more complex and numerous linkages between methane-cycling microbes and their partners being observed in the iron/sulfate-rich MV. These findings suggest that electron acceptors are important factors driving the structure of microbial communities in these methane-rich environments. © 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Small-scale volcanoes on Mars: distribution and types
NASA Astrophysics Data System (ADS)
Broz, Petr; Hauber, Ernst
2015-04-01
Volcanoes differ in sizes, as does the amount of magma which ascends to a planetary surface. On Earth, the size of volcanoes is anti-correlated with their frequency, i.e. small volcanoes are much more numerous than large ones. The most common terrestrial volcanoes are scoria cones (
Volcano hazards in the San Salvador region, El Salvador
Major, J.J.; Schilling, S.P.; Sofield, D.J.; Escobar, C.D.; Pullinger, C.R.
2001-01-01
San Salvador volcano is one of many volcanoes along the volcanic arc in El Salvador (figure 1). This volcano, having a volume of about 110 cubic kilometers, towers above San Salvador, the country’s capital and largest city. The city has a population of approximately 2 million, and a population density of about 2100 people per square kilometer. The city of San Salvador and other communities have gradually encroached onto the lower flanks of the volcano, increasing the risk that even small events may have serious societal consequences. San Salvador volcano has not erupted for more than 80 years, but it has a long history of repeated, and sometimes violent, eruptions. The volcano is composed of remnants of multiple eruptive centers, and these remnants are commonly referred to by several names. The central part of the volcano, which contains a large circular crater, is known as El Boquerón, and it rises to an altitude of about 1890 meters. El Picacho, the prominent peak of highest elevation (1960 meters altitude) to the northeast of the crater, and El Jabali, the peak to the northwest of the crater, represent remnants of an older, larger edifice. The volcano has erupted several times during the past 70,000 years from vents central to the volcano as well as from smaller vents and fissures on its flanks [1] (numerals in brackets refer to end notes in the report). In addition, several small cinder cones and explosion craters are located within 10 kilometers of the volcano. Since about 1200 A.D., eruptions have occurred almost exclusively along, or a few kilometers beyond, the northwest flank of the volcano, and have consisted primarily of small explosions and emplacement of lava flows. However, San Salvador volcano has erupted violently and explosively in the past, even as recently as 800 years ago. When such eruptions occur again, substantial population and infrastructure will be at risk. Volcanic eruptions are not the only events that present a risk to local communities. Another concern is a landslide and an associated debris flow (a watery flow of mud, rock, and debris--also known as a lahar) that could occur during periods of no volcanic activity. An event of this type occurred in 1998 at Casita volcano in Nicaragua when extremely heavy rainfall from Hurricane Mitch triggered a landslide that moved down slope and transformed into a rapidly moving debris flow that destroyed two villages and killed more than 2000 people. Historical landslides up to a few hundred thousand cubic meters in volume have been triggered on San Salvador volcano by torrential rainstorms and earthquakes, and some have transformed into debris flows that have inundated populated areas down stream. Destructive rainfall- and earthquake-triggered landslides and debris flows on or near San Salvador volcano in September 1982 and January 2001 demonstrate that such mass movements in El Salvador have also been lethal. This report describes the kinds of hazardous events that occur at volcanoes in general and the kinds of hazardous geologic events that have occurred at San Salvador volcano in the past. The accompanying volcano-hazards-zonation maps show areas that are likely to be at risk when hazardous events occur again.
Tu, Tzu-Hsuan; Wu, Li-Wei; Lin, Yu-Shih; Imachi, Hiroyuki; Lin, Li-Hung; Wang, Pei-Ling
2017-01-01
Terrestrial mud volcanoes (MVs) are an important natural source of methane emission. The role of microbial processes in methane cycling and organic transformation in such environments remains largely unexplored. In this study, we aim to uncover functional potentials and community assemblages across geochemical transitions in a ferruginous, sulfate-depleted MV of eastern Taiwan. Geochemical profiles combined with 16S rRNA gene abundances indicated that anaerobic oxidation of methane (AOM) mediated by ANME-2a group coincided with iron/manganese reduction by Desulfuromonadales at shallow depths deprived of sulfate. The activity of AOM was stimulated either by methane alone or by methane and a range of electron acceptors, such as sulfate, ferrihydrite, and artificial humic acid. Metagenomic analyses revealed that functional genes for AOM and metal reduction were more abundant at shallow intervals. In particular, genes encoding pili expression and electron transport through multi-heme cytochromes were prevalent, suggesting potential intercellular interactions for electron transport involved in AOM. For comparison, genes responsible for methanogenesis and degradation of chitin and plant-derived molecules were more abundant at depth. The gene distribution combined with the enhanced proportions of 16S rRNA genes related to methanogens and heterotrophs, and geochemical characteristics suggest that particulate organic matter was degraded into various organic entities that could further fuel in situ methanogenesis. Finally, genes responsible for aerobic methane oxidation were more abundant in the bubbling pool and near-surface sediments. These methane oxidizers account for the ultimate attenuation of methane discharge into the atmosphere. Overall, our results demonstrated that various community members were compartmentalized into stratified niches along geochemical gradients. These community members form a metabolic network that cascades the carbon transformation from the upstream degradation of recalcitrant organic carbon with fermentative production of labile organic entities and methane to downstream methane oxidation and metal reduction near the surface. Such a metabolic architecture enables effective methane removal under ferruginous, sulfate-depleted conditions in terrestrial MVs. PMID:29163423
Tu, Tzu-Hsuan; Wu, Li-Wei; Lin, Yu-Shih; Imachi, Hiroyuki; Lin, Li-Hung; Wang, Pei-Ling
2017-01-01
Terrestrial mud volcanoes (MVs) are an important natural source of methane emission. The role of microbial processes in methane cycling and organic transformation in such environments remains largely unexplored. In this study, we aim to uncover functional potentials and community assemblages across geochemical transitions in a ferruginous, sulfate-depleted MV of eastern Taiwan. Geochemical profiles combined with 16S rRNA gene abundances indicated that anaerobic oxidation of methane (AOM) mediated by ANME-2a group coincided with iron/manganese reduction by Desulfuromonadales at shallow depths deprived of sulfate. The activity of AOM was stimulated either by methane alone or by methane and a range of electron acceptors, such as sulfate, ferrihydrite, and artificial humic acid. Metagenomic analyses revealed that functional genes for AOM and metal reduction were more abundant at shallow intervals. In particular, genes encoding pili expression and electron transport through multi-heme cytochromes were prevalent, suggesting potential intercellular interactions for electron transport involved in AOM. For comparison, genes responsible for methanogenesis and degradation of chitin and plant-derived molecules were more abundant at depth. The gene distribution combined with the enhanced proportions of 16S rRNA genes related to methanogens and heterotrophs, and geochemical characteristics suggest that particulate organic matter was degraded into various organic entities that could further fuel in situ methanogenesis. Finally, genes responsible for aerobic methane oxidation were more abundant in the bubbling pool and near-surface sediments. These methane oxidizers account for the ultimate attenuation of methane discharge into the atmosphere. Overall, our results demonstrated that various community members were compartmentalized into stratified niches along geochemical gradients. These community members form a metabolic network that cascades the carbon transformation from the upstream degradation of recalcitrant organic carbon with fermentative production of labile organic entities and methane to downstream methane oxidation and metal reduction near the surface. Such a metabolic architecture enables effective methane removal under ferruginous, sulfate-depleted conditions in terrestrial MVs.
Microbial life in a liquid asphalt desert.
Schulze-Makuch, Dirk; Haque, Shirin; de Sousa Antonio, Marina Resendes; Ali, Denzil; Hosein, Riad; Song, Young C; Yang, Jinshu; Zaikova, Elena; Beckles, Denise M; Guinan, Edward; Lehto, Harry J; Hallam, Steven J
2011-04-01
Pitch Lake in Trinidad and Tobago is a natural asphalt reservoir nourished by pitch seepage, a form of petroleum that consists of mostly asphaltines, from the surrounding oil-rich region. During upward seepage, pitch mixes with mud and gases under high pressure, and the lighter portion evaporates or is volatilized, which produces a liquid asphalt residue characterized by low water activity, recalcitrant carbon substrates, and noxious chemical compounds. An active microbial community of archaea and bacteria, many of them novel strains (particularly from the new Tar ARC groups), totaling a biomass of up to 10(7) cells per gram, was found to inhabit the liquid hydrocarbon matrix of Pitch Lake. Geochemical and molecular taxonomic approaches revealed diverse, novel, and deeply branching microbial lineages with the potential to mediate anaerobic hydrocarbon degradation processes in different parts of the asphalt column. In addition, we found markers for archaeal methane metabolism and specific gene sequences affiliated with facultative and obligate anaerobic sulfur- and nitrite-oxidizing bacteria. The microbial diversity at Pitch Lake was found to be unique when compared to microbial communities analyzed at other hydrocarbon-rich environments, which included Rancho Le Brea, a natural asphalt environment in California, USA, and an oil well and a mud volcano in Trinidad and Tobago, among other sites. These results open a window into the microbial ecology and biogeochemistry of recalcitrant hydrocarbon matrices and establish the site as a terrestrial analogue for modeling the biotic potential of hydrocarbon lakes such as those found on Saturn's largest moon Titan.
Microbial Life in a Liquid Asphalt Desert
NASA Astrophysics Data System (ADS)
Schulze-Makuch, Dirk; Haque, Shirin; de Sousa Antonio, Marina Resendes; Ali, Denzil; Hosein, Riad; Song, Young C.; Yang, Jinshu; Zaikova, Elena; Beckles, Denise M.; Guinan, Edward; Lehto, Harry J.; Hallam, Steven J.
2011-04-01
Pitch Lake in Trinidad and Tobago is a natural asphalt reservoir nourished by pitch seepage, a form of petroleum that consists of mostly asphaltines, from the surrounding oil-rich region. During upward seepage, pitch mixes with mud and gases under high pressure, and the lighter portion evaporates or is volatilized, which produces a liquid asphalt residue characterized by low water activity, recalcitrant carbon substrates, and noxious chemical compounds. An active microbial community of archaea and bacteria, many of them novel strains (particularly from the new Tar ARC groups), totaling a biomass of up to 107 cells per gram, was found to inhabit the liquid hydrocarbon matrix of Pitch Lake. Geochemical and molecular taxonomic approaches revealed diverse, novel, and deeply branching microbial lineages with the potential to mediate anaerobic hydrocarbon degradation processes in different parts of the asphalt column. In addition, we found markers for archaeal methane metabolism and specific gene sequences affiliated with facultative and obligate anaerobic sulfur- and nitrite-oxidizing bacteria. The microbial diversity at Pitch Lake was found to be unique when compared to microbial communities analyzed at other hydrocarbon-rich environments, which included Rancho Le Brea, a natural asphalt environment in California, USA, and an oil well and a mud volcano in Trinidad and Tobago, among other sites. These results open a window into the microbial ecology and biogeochemistry of recalcitrant hydrocarbon matrices and establish the site as a terrestrial analogue for modeling the biotic potential of hydrocarbon lakes such as those found on Saturn's largest moon Titan.
Modelling fluid flow in clastic eruptions: application to the Lusi mud eruption.
NASA Astrophysics Data System (ADS)
Collignon, Marine; Schmid, Daniel W.; Galerne, Christophe; Lupi, Matteo; Mazzini, Adriano
2017-04-01
Clastic eruptions involve the rapid ascension of clasts together with fluids, gas and/or liquid phases that may deform and brecciate the host rocks. These fluids transport the resulting mixture, called mud breccia, to the surface. Such eruptions are often associated with geological structures such as mud volcanoes, hydrothermal vent complexes and more generally piercement structures. They involve various processes, acting over a wide range of scales which makes them a complex and challenging, multi-phase system to model. Although piercement structures have been widely studied and discussed, only few attempts have been made to model the dynamics of such clastic eruptions. The ongoing Lusi mud eruption, in the East Java back-arc basin, which began in May 2006, is probably the most spectacular clastic eruption. Lusi's eruptive behaviour has been extensively studied over the past decade and thus represents a unique opportunity to better understand the dynamics driving clastic eruptions, including fossil clastic systems. We use both analytical formulations and numerical models to simulate Lusi's eruptive dynamics and to investigate simple relationships between the mud breccia properties (density, viscosity, gas and clast content) and the volumetric flow rate. Our results show that the conduit radius of such piercement system cannot exceeds a few meters at depth, and that clasts, if not densely packed, will not affect the flow rate when they are smaller than a fifth of the conduit size. Using published data for the annual gas fluxes at Lusi, we infer a maximal depth at which exsolution starts. This occurs between 1800 m and 3200 m deep for the methane and between 750 m and 1000 m for the carbon dioxide.
Use of Archival Sources to Improve Water-Related Hazard Assessments at Volcán de Agua, Guatemala
NASA Astrophysics Data System (ADS)
Hutchison, A. A.; Cashman, K. V.; Rust, A.; Williams, C. A.
2013-12-01
This interdisciplinary study focuses on the use of archival sources from the 18th Century Spanish Empire to develop a greater understanding of mudflow trigger mechanisms at Volcán de Agua in Guatemala. Currently, hazard assessments of debris flows at Volcán de Agua are largely based on studies of analogous events, such as the mudflow at Casita Volcano in 1998 caused by excessive rainfall generated by Hurricane Mitch. A preliminary investigation of Spanish archival sources, however, indicates that a damaging mudflow from the volcano in 1717 may have been triggered by activity at the neighbouring Volcán de Fuego. A VEI 4 eruption of Fuego in late August 1717 was followed by 33 days of localized 'retumbos' and then a major local earthquake with accompanying mudflows from several 'bocas' on the southwest flank of Agua. Of particular importance for this study is an archival source from Archivos Generales de Centro América (AGCA) that consists of a series of letters, petitions and witness statements that were written and gathered following the catastrophic events of 1717. Their purpose was to argue for royal permission to relocate the capital city, which at the time was located on the lower flanks of Volcán de Agua. Within these documents there are accounts of steaming 'avenidas' of water with sulphurous smells, and quantitative descriptions that suggest fissure formation related to volcanic activity at Volcán de Fuego. Clear evidence for volcano-tectonic activity at the time, combined with the fact there is no mention of rainfall in the documents, suggest that outbursts of mud from Agua's south flank may have been caused by a volcanic perturbation of a hydrothermal system. This single example suggests that further analysis of archival documents will provide a more accurate and robust assessment of water related hazards at Volcán de Agua than currently exists.
Removal of hexavalent chromium by using red mud activated with cetyltrimethylammonium bromide.
Li, Deliang; Ding, Ying; Li, Lingling; Chang, Zhixian; Rao, Zhengyong; Lu, Ling
2015-01-01
The removal of hexavalent chromium [Cr(VI)] from aqueous solution by using red mud activated with cetyltrimethylammonium bromide (CTAB) was studied. The optimum operation parameters, such as CTAB concentration, pH values, contact time, and initial Cr(VI) concentration, were investigated. The best concentration of CTAB for modifying red mud was found to be 0.50% (mCTAB/VHCl,0.6 mol/L). The lower pH (<2) was found to be much more favourable for the removal of Cr(VI). Red mud activated with CTAB can greatly improve the removal ratio of Cr(VI) as high as four times than that of original red mud. Adsorption equilibrium was reached within 30 min under the initial Cr(VI) concentration of 100 mg L(-1). The isotherm data were analysed using Langmuir and Freundlich models. The adsorption of Cr(VI) on activated red mud fitted well to the Langmuir isotherm model, and the maximum adsorption capacity was estimated as 22.20 mg g(-1) (Cr/red mud). The adsorption process could be well described using the pseudo-second-order model. The result shows that activated red mud is a promising agent for low-cost water treatment.
The LUSI LAB project: a multidisciplinary study of focussed fluid flow
NASA Astrophysics Data System (ADS)
Mazzini, A.
2012-12-01
The 29th of May 2006 several gas and mud eruption sites suddenly appeared along a fault in the NE of Java, Indonesia. Within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. To date Lusi is still active. This disaster has forced 50.000 people to be evacuated and an area of more than 7 km2 is covered by mud. The social impact of the eruption and its spectacular dimensions still attract the attention of international media reporting on the "largest mud eruption site on Earth". Our investigations revealed that the Watukosek fault system reactivated after the 27-05-2006 Yogyakarta earthquake allowing the release of overpressured fluids along the fault planes. Sampling results indicate that the main source of clay and fluids was traced from the overpressured units located at ~1500 m depth. Further, analyses and modelling indicate that Lusi gas was generated at high temperatures (>220°C) with maturity and isotopic characteristics corresponding to the oil-prone Eocene, Ngimbang shales situated at 4,400 m. Hydrocarbon, CO2 and helium analyses are consistent with a scenario of deep sited (>4000 m) magmatic intrusions and hydrothermal fluids responsible for the enhanced heat that altered source rocks and/or gas reservoirs. The neighbouring magmatic Arjuno complex and its fluid-pressure system combined with high seismic activity could have played a key role in the Lusi genesis and evolution. Despite the work done, still many unanswered questions remain. What lies beneath Lusi? If Lusi is not a mud volcano, how large is the connected hydrothermal system? How do the frequent seismic activity and the neighbouring Arjuno Welirang volcanic complex effect pulsating Lusi behaviour? What are the mechanisms triggering the eruption? How long will the eruption last? Are more eruptions like this one likely to occur? LUSI LAB is an ambitious project that aims to answer these questions and to perform a multidisciplinary study using Lusi as a unique natural laboratory. Due to its relatively easy accessibility, the geological setting, and the vast scale, the Lusi eruption represents an unprecedented opportunity to study and learn from an ongoing active eruptive system. Detailed investigations on erupting features are difficult and have never been carried out before. The results will be crucial for understanding focused fluid flow systems in other sedimentary basins world-wide, and to unravel issues related to geohazards and palaeoclimate aspects. In order to achieve the aims, the project will use the deployment of multisensory sampling devices within the active feeder channel coupled with a remote-controlled raft and flying device to access and sample the crater and the erupted gases. UV-gas camera imaging will be used to measure the rate and composition of the erupted gases. These data together with a new network of seismometers, will allow the evaluation of the impact that seismicity, local faulting and the neighbouring Arjuno-Welirang volcanic complex have on the long-lasting Lusi activity. The acquired information will provide robust constraints to model the pulsating Lusi behaviour and will be used as initial step to estimate the longevity of the eruption.
Analysis of Vulnerability Around The Colima Volcano, MEXICO
NASA Astrophysics Data System (ADS)
Carlos, S. P.
2001-12-01
The Colima volcano located in the western of the Trasmexican Volcanic Belt, in the central portion of the Colima Rift Zone, between the Mexican States of Jalisco and Colima. The volcano since January of 1998 presents a new activity, which has been characterized by two stages: the first one was an effusive phase that begin on 20 November 1998 and finish by the middle of January 1999. On February 10of 1999 a great explosion in the summit marked the beginning of an explosive phase, these facts implies that the eruptive process changes from an effusive model to an explosive one. Suárez-Plascencia et al, 2000, present hazard maps to ballistic projectiles, ashfalls and lahars for this scenario. This work presents the evaluation of the vulnerability in the areas identified as hazardous in the maps for ballistic, ashfalls and lahars, based on the economic elements located in the middle and lower sections of the volcano building, like agriculture, forestry, agroindustries and communication lines (highways, power, telephonic, railroad, etc). The method is based in Geographic Information Systems, using digital cartography scale 1:50,000, digital orthophotos from the Instituto Nacional de Estadística, Geografía e Informática, SPOT and Landsat satellite images from 1997 and 2000 in the bands 1, 2 and 3. The land use maps obtained for 1997 and 2000, were compared with the land use map reported by Suárez in 1992, from these maps an increase of the 5 porcent of the sugar cane area and corn cultivations were observed compared of those of 1990 (1225.7 km2) and a decrease of the forest surface, moving the agricultural limits uphill, and showing also some agave cultivation in the northwest and north hillslopes of the Nevado de Colima. This increment of the agricultural surface results in bigger economic activity in the area, which makes that the vulnerability also be increased to different volcanic products emitted during this phase of activity. The degradation of the soil by the agriculture and forestry, mainly in the east hillslope of the volcano is another factor that generate remoulded material that in the event of an extraordinary rainsfall during an explosive events, could increase the size of the lahar or generate flows of mud that may affect the towns, villages (like Atenquique, which has been affected in 1957 by a large lahar), and could generate strong damages to the communication lines affecting distant places as Guadalajara city and the Port of Manzanillo.
Paraformaldehyde-Resistant Starch-Fermenting Bacteria in “Starch-Base” Drilling Mud
Myers, G. E.
1962-01-01
Starch-fermenting bacteria were found in each of 12 samples of nonfermenting starch-base drilling mud examined. Of the 12 samples, 3 contained very active starch-fermenting gram-positive spore-bearing bacilli closely resembling Bacillus subtilis. Similar active starch-fermenting bacteria were found in fermenting starch-base drilling mud and in corn starch and slough water used to prepare such mud. The active starch-fermenting microorganisms completely hydrolyzed 1% (w/v) corn starch within 24 hr at 37.5 C. The active starch-fermenting bacteria isolated from fermenting drilling mud were capable of surviving 12 hr of continuous exposure to 0.1% (w/w) paraformaldehyde or 1 hr of continuous exposure to 0.5% (w/w) paraformaldehyde, with no diminution in starch-fermenting ability. The same organisms fermented starch after 3 hr of continuous exposure to 0.5% (w/w) paraformaldehyde, but not after 4 hr of exposure. The phenomenon of rapid disappearance of paraformaldehyde from fermenting drilling mud was observed in the laboratory using a modified sodium sulfite test. Paraformaldehyde, initially present in a concentration of 0.192 lb per barrel of mud, completely disappeared in 9 hr at 22 to 23 C. A significant decrease in paraformaldehyde concentration was detected 0.5 hr after preparation of the mud. It is suggested that the presence of relatively high concentrations of ammonia and chloride in the mud may facilitate the disappearance of paraformaldehyde. The failure of 0.1% (w/w) paraformaldehyde to inhibit the strong starch-fermenting microorganisms isolated from fermenting drilling mud, and the rapid disappearance of paraformaldehyde from the mud, explains the fermentation of starch which occurred in this mud, despite the addition of paraformaldehyde. PMID:13936949
NASA Astrophysics Data System (ADS)
Pedrazzi, Dario; Aguirre Díaz, Gerardo; Sunyé Puchol, Ivan; Bartolini, Stefania; Geyer, Adelina
2016-04-01
The Trans-Mexican Volcanic Belt (TMVB) contains a large number of stratovolcanoes, some well-known, as Popocatepetl, Iztaccihuatl, Nevado de Toluca, or Colima and many others of more modest dimensions that are not well known but constitute the majority in the TMVB. Such volcanoes are, for example, Tequila, San Juan, Sangangüey, Cerro Culiacán, Cerro Grande, El Zamorano, La Joya, Palo Huerfano, Jocotitlán, Altamirano and Temascalcingo, among many others. The Temascalcingo volcano (TV) is an andesitic-dacitic stratovolcano located in the Trans-Mexican Volcanic Belt (TMVB) at the eastern part of the Acambay Graben (northwest portion of Estado de México). The TV is composed mainly by dacitic, porphyritic lavas, block and ash deposits and subordinate pumice fall deposits and ignimbrites (Roldán-Quintana et al., 2011). The volcanic structure includes a summit caldera that has a rectangular shape, 2.5×3.5 km, with the largest side oriented E-W, parallel to major normal faults affecting the edifice. The San Mateo Pumice eruption is one of the greatest paroxysmal episodes of this volcano with pumice deposits mainly exposed at the scarp of the Acambay-Tixmadeje fault and at the northern and northeastern flanks of TV. It overlies a paleosol dated at 25 Ka. A NE-trending dispersion was obtained from field data covering an area of at least 80 km2. These deposits overlie older lava flows and mud flows and are discontinuously covered and eroded by younger reworked deposits of Temascalcingo volcano. This event represents a highly explosive phase that generated a relatively thick and widespread pumice fallout deposit that may occur again in future eruptions. A similar eruption today would have a significantly impact in the region, overall due to the fact that there has been no systematic assessment of the volcanic hazard in any of the studies that have been conducted so far in the area. So, this is a pending and urgent subject that must be tackled without delay. Financed by grant DGAPA-PAPIIT IN-104615.
NASA Astrophysics Data System (ADS)
Mannen, Kazutaka; Yukutake, Yohei; Kikugawa, George; Harada, Masatake; Itadera, Kazuhiro; Takenaka, Jun
2018-04-01
The 2015 eruption of Hakone volcano was a very small phreatic eruption, with total erupted ash estimated to be in the order of only 102 m3 and ballistic blocks reaching less than 30 m from the vent. Precursors, however, had been recognized at least 2 months before the eruption and mitigation measures were taken by the local governments well in advance. In this paper, the course of precursors, the eruption and the post-eruptive volcanic activity are reviewed, and a preliminary model for the magma-hydrothermal process that caused the unrest and eruption is proposed. Also, mitigation measures taken during the unrest and eruption are summarized and discussed. The first precursors observed were an inflation of the deep source and deep low-frequency earthquakes in early April 2015; an earthquake swarm then started in late April. On May 3, steam wells in Owakudani, the largest fumarolic area on the volcano, started to blowout. Seismicity reached its maximum in mid-May and gradually decreased; however, at 7:32 local time on June 29, a shallow open crack was formed just beneath Owakudani as inferred from sudden tilt change and InSAR analysis. The same day mud flows and/or debris flows likely started before 11:00 and ash emission began at about 12:30. The volcanic unrest and the eruption of 2015 can be interpreted as a pressure increase in the hydrothermal system, which was triggered by magma replenishment to a deep magma chamber. Such a pressure increase was also inferred from the 2001 unrest and other minor unrests of Hakone volcano during the twenty-first century. In fact, monitoring of repeated periods of unrest enabled alerting prior to the 2015 eruption. However, since open crack formation seems to occur haphazardly, eruption prediction remains impossible and evacuation in the early phase of volcanic unrest is the only way to mitigate volcanic hazard.[Figure not available: see fulltext.
High resolution infrared acquisitions droning over the LUSI mud eruption.
NASA Astrophysics Data System (ADS)
Di Felice, Fabio; Romeo, Giovanni; Di Stefano, Giuseppe; Mazzini, Adriano
2016-04-01
The use of low-cost hand-held infrared (IR) thermal cameras based on uncooled micro-bolometer detector arrays became more widespread during the recent years. Thermal cameras have the ability to estimate temperature values without contact and therefore can be used in circumstances where objects are difficult or dangerous to reach such as volcanic eruptions. Since May 2006 the Indonesian LUSI mud eruption continues to spew boiling mud, water, aqueous vapor, CO2, CH4 and covers a surface of nearly 7 km2. At this locality we performed surveys over the unreachable erupting crater. In the framework of the LUSI Lab project (ERC grant n° 308126), in 2014 and 2015, we acquired high resolution infrared images using a specifically equipped remote-controlled drone flying at an altitude of m 100. The drone is equipped with GPS and an autopilot system that allows pre-programming the flying path or designing grids. The mounted thermal camera has peak spectral sensitivity in LW wavelength (μm 10) that is characterized by low water vapor and CO2 absorption. The low distance (high resolution) acquisitions have a temperature detail every cm 40, therefore it is possible to detect and observe physical phenomena such as thermodynamic behavior, hot mud and fluids emissions locations and their time shifts. Despite the harsh logistics and the continuously varying gas concentrations we managed to collect thermal images to estimate the crater zone spatial thermal variations. We applied atmosphere corrections to calculate infrared absorption by high concentration of water vapor. Thousands of images have been stitched together to obtain a mosaic of the crater zone. Regular monitoring with heat variation measurements collected, e.g. every six months, could give important information about the volcano activity estimating its evolution. A future data base of infrared high resolution and visible images stored in a web server could be a useful monitoring tool. An interesting development will be to use a multi-spectral thermal camera to perform a complete near remote sensing to detect, not only temperature, but gas, sensitive to particular wavelengths.
NASA Astrophysics Data System (ADS)
Martin, A. L.; Nieto, A.; Portocarrero, J.; Jaimes-Viera, M. D. C.; Fonseca, R.
2014-12-01
Popocatepetl Volcano in central Mexico has been erupting since 1994 with relatively small Strombolian and Vulcanian eruptions, expect for the 2 larger eruptions in 1997 and 2001 that produced more widespread pumice and ash fall, mud flows and in 2001, pumice flows. As part of the recent studies that have focused on monitoring eruptive behavior for risk reduction in this heavily populated area, we are updating the Hazard Map (1995). Here we present the results of the new data for the northwestern sector of the volcano where large mudflows reached 40km from the volcano toward Mexico City (14Ka). The 5Ka mudflows are overlain by several flows that covered pre-Columbian pre-classic settlements at around 2Ka BP. Buildings with ceramics from the classic and postclassic periods (around 1.5Ka and 0.9Ka BP) also indicate that settlements were abandoned and resettled several hundred years later. So far, it seems that inhabitants fled at the beginning of these larger eruptions, since no bodies have been found in the excavations. Since the XVI century, several smaller mudflows have reached the towns, but many are related with secondary deposits (for example, the Nexapa 2010 mudflow reached 15 km from the crater). Although this area has been inhabited for thousands of years, increased population shows that risk is considerable.
The biogeochemistry of anchialine caves: Progress and possibilities
Pohlman, John W.
2011-01-01
Recent investigations of anchialine caves and sinkholes have identified complex food webs dependent on detrital and, in some cases, chemosynthetically produced organic matter. Chemosynthetic microbes in anchialine systems obtain energy from reduced compounds produced during organic matter degradation (e.g., sulfide, ammonium, and methane), similar to what occurs in deep ocean cold seeps and mud volcanoes, but distinct from dominant processes operating at hydrothermal vents and sulfurous mineral caves where the primary energy source is mantle derived. This review includes case studies from both anchialine and non-anchialine habitats, where evidence for in situ chemosynthetic production of organic matter and its subsequent transfer to higher trophic level metazoans is documented. The energy sources and pathways identified are synthesized to develop conceptual models for elemental cycles and energy cascades that occur within oligotrophic and eutrophic anchialine caves. Strategies and techniques for testing the hypothesis of chemosynthesis as an active process in anchialine caves are also suggested.
The Guadalquivir Diapiric Ridge: Deep Tectonics and Related Gas Structures
NASA Astrophysics Data System (ADS)
Fernández-Puga, M. C.; Somoza, L.; Pinheiro, L. M.; Magalhães, V.; Vázquez, J. T.; Díaz-del-Río, V.; Ivanov, M.
Cooperation between the Spanish TASYO project during the cruises Tasyo/2000, Anastasya/99, Anastasya/00 and Anastasya/01 and the UNESCO-IOC Trainning Trough Research Programme during the TTR9, TTR10 and TTR-11 cruises have per- mitted to identify numerous structures related to hydrocarbon seepages in the Gulf of Cadiz, located between the Africa and Eurasia plate. The interpretation of multibeam bathymetry and a large database of reflection seismic profiles shows two important morphotectonics structures: the Cadiz Diapiric Ridge (CDR) and the Guadalquivir Di- apiric Ridge (GDR). The CDR is a diapiric elongate structure located between 400 and 700m water depth, with a N-S direction. The GDR is an elongated ridge, situated west- ward of this structure and located along the shelf and slope between 300-1100m depth. This highly deformed ridge, formed by several diapirs oriented in NE-SW direction, has been mapped using industrial multifold seismic, core logs, gravity cores, dredge samples and photographs, obtained during the ANASTASYA 01/09 cruise. This data has shown that it is composed of early-middle Miocene blue marls (Maldonado et al, 1999), mud breccias and calcarenites. In fact, this diapiric structure is associated with a complex tectono-sedimentary history related to along slope gravity gliding and tec- tonic compression westward the fronts of the deformed wedges of the SOlistostromic & cedil;allochtonous unitsT (Somoza et al., 1999). According to the observed and sampled structures along the GDR, this ridge can be divided in three areas: (a) The NE area is characterized by the existence of a series of wide single sub-circular mud volcanoes (Anastasya, Tarsis and Pipoca), surrounded by a ring shaped seafloor depression. Mud breccia has been collected from these mud volcanoes (ANAS00-TG5,TG6,TG7,TG8 and ANAS01-TG2); (b) a central sector with long rounded-like crater structures, of unknown origin, from which calcarenites were collected (ANAS01-DA13); and (c) a SW sector, between 8zW and 7z40`W, that is caracterized by a series of mud mounds boundarying the Cadiz channel: Iberico, Cornide and Hormigas. In this area, abundant carbonate chimneys, slab and calcarenites were collected (ANAS00-DA10, ANAS01-DA1,DA2,DA15). All these seabed structures suggest high-pressure expul- sion of methane-enriched muds along thrusting faults. This research has been supported by the "TASYO" project (Tecto-sedimentary transfer 1 from shelf to Horseshoe and Seine abyssal plains in the Gulf of Cadiz) of the Spanish- funded Marine Science and Technology programme (CYTMAR 98-0209) in the frame of the Spanish-Portuguese agreement for scientific co-operation. References: Maldonado, A.,Somoza, L., Pallarés, L., 1999. The Betic orogen and the Iberian- African boundary in the Gulf of Cadiz : geological evolution (Central North Atlantic). Mar. Geol., 155, 9-43. Somoza, L., Maestro, A., Lowrie, A., 1999. Allochtonous Blocks as Hydrocarbon Traps in the Gulf of Cadiz. Offshore Technology Conference OTC 10889, 571-577. 2
Permafrost features on Earth and Mars: Similarities, differences
NASA Technical Reports Server (NTRS)
Joens, H. P.
1985-01-01
Typical permafrost features on Earth are polygonal structures, pingos and soli-/gelifluxion features. In areas around the poles and in mountain ranges the precipitation accumulates to inland ice or ice streams. On Mars the same features were identified: polygonal features cover the larger part of the northern lowlands indicating probably an ice wedge-/sand wedge system or desiccation cracks. These features indicate the extend of large mud accumulations which seem to be related to large outflow events of the chaotic terrains. The shore line of this mud accumulation is indicated by a special set of relief types. In some areas large pingo-like hills were identified. In the vicinity of the largest martian volcano, Olympus Mons, the melting of underlying permafrost and/or ground ice led to the downslope sliding of large parts of the primary shield which formed the aureole around Olympus Mons. Glacier-like features are identified along the escarpment which separates the Southern Uplands from the Northern Lowlands.
Subduction zone forearc serpentinites as incubators for deep microbial life
NASA Astrophysics Data System (ADS)
Plümper, Oliver; King, Helen E.; Geisler, Thorsten; Liu, Yang; Pabst, Sonja; Savov, Ivan P.; Rost, Detlef; Zack, Thomas
2017-04-01
Serpentinization-fueled systems in the cool, hydrated forearc mantle of subduction zones may provide an environment that supports deep chemolithoautotrophic life. Here, we examine serpentinite clasts expelled from mud volcanoes above the Izu-Bonin-Mariana subduction zone forearc (Pacific Ocean) that contain complex organic matter and nanosized Ni-Fe alloys. Using time-of-flight secondary ion mass spectrometry and Raman spectroscopy, we determined that the organic matter consists of a mixture of aliphatic and aromatic compounds and functional groups such as amides. Although an abiotic or subduction slab-derived fluid origin cannot be excluded, the similarities between the molecular signatures identified in the clasts and those of bacteria-derived biopolymers from other serpentinizing systems hint at the possibility of deep microbial life within the forearc. To test this hypothesis, we coupled the currently known temperature limit for life, 122 °C, with a heat conduction model that predicts a potential depth limit for life within the forearc at ˜10,000 m below the seafloor. This is deeper than the 122 °C isotherm in known oceanic serpentinizing regions and an order of magnitude deeper than the downhole temperature at the serpentinized Atlantis Massif oceanic core complex, Mid-Atlantic Ridge. We suggest that the organic-rich serpentinites may be indicators for microbial life deep within or below the mud volcano. Thus, the hydrated forearc mantle may represent one of Earth’s largest hidden microbial ecosystems. These types of protected ecosystems may have allowed the deep biosphere to thrive, despite violent phases during Earth’s history such as the late heavy bombardment and global mass extinctions.
L'Haridon, Stéphane; Chalopin, Morgane; Colombo, Delphine; Toffin, Laurent
2014-06-01
A novel, strictly anaerobic, methylotrophic marine methanogen, strain SLH33(T), was isolated from deep sediment samples covered by an orange microbial mat collected from the Napoli Mud Volcano. Cells of strain SLH33(T) were Gram-stain-negative, motile, irregular cocci that occurred singly. Cells utilized trimethylamine, dimethylamine, monomethylamine, methanol, betaine, N,N-dimethylethanolamine and choline (N,N,N-trimethylethanolamine) as substrates for growth and methanogenesis. The optimal growth temperature was 30 °C; maximum growth rate was obtained at pH 7.0 in the presence of 0.5 M Na(+). The DNA G+C content of strain SLH33(T) was 43.4 mol%. Phylogenetic analyses based on 16S rRNA gene sequences placed strain SLH33(T) within the genus Methanococcoides. The novel isolate was related most closely to Methanococcoides methylutens TMA-10(T) (98.8% 16S rRNA gene sequence similarity) but distantly related to Methanococcoides burtonii DSM 6242(T) (97.6%) and Methanococcoides alaskense AK-5(T) (97.6%). DNA-DNA hybridization studies indicated that strain SLH33(T) represents a novel species, given that it shared less than 16% DNA-DNA relatedness with Methanococcoides methylutens TMA-10(T). The name Methanococcoides vulcani sp. nov. is proposed for this novel species, with strain SLH33(T) ( = DSM 26966(T) = JCM 19278(T)) as the type strain. An emended description of the genus Methanococcoides is also proposed. © 2014 IUMS.
Methanoculleus sediminis sp. nov., a methanogen from sediments near a submarine mud volcano.
Chen, Sheng-Chung; Chen, Mei-Fei; Lai, Mei-Chin; Weng, Chieh-Yin; Wu, Sue-Yao; Lin, Saulwood; Yang, Tsanyao F; Chen, Po-Chun
2015-07-01
A mesophilic, hydrogenotrophic methanogen, strain S3Fa(T), was isolated from sediments collected by Ocean Researcher I cruise ORI-934 in 2010 near the submarine mud volcano MV4 located at the upper slope of south-west Taiwan. The methanogenic substrates utilized by strain S3Fa(T) were formate and H2/CO2 but not acetate, secondary alcohols, methylamines, methanol or ethanol. Cells of strain S3Fa(T) were non-motile, irregular cocci, 0.5-1.0 μm in diameter. The surface-layer protein showed an Mr of 128,000.The optimum growth conditions were 37 °C, pH 7.1 and 0.17 M NaCl. The DNA G+C content of the genome of strain S3Fa(T) was 62.3 mol%. Phylogenetic analysis revealed that strain S3Fa(T) was most closely related to Methanoculleus marisnigri JR1(T) (99.3% 16S rRNA gene sequence similarity). Genome relatedness between strain S3Fa(T) and Methanoculleus marisnigri JR1(T) was computed using both genome-to-genome distance analysis (GGDA) and average nucleotide identity (ANI) with values of 46.3-55.5% and 93.08%, respectively. Based on morphological, phenotypic, phylogenetic and genomic relatedness data, it is evident that strain S3Fa(T) represents a novel species of the genus Methanoculleus, for which the name Methanoculleus sediminis sp. nov. is proposed. The type strain is S3Fa(T) ( = BCRC AR10044(T) = DSM 29354(T)).
Subduction zone forearc serpentinites as incubators for deep microbial life.
Plümper, Oliver; King, Helen E; Geisler, Thorsten; Liu, Yang; Pabst, Sonja; Savov, Ivan P; Rost, Detlef; Zack, Thomas
2017-04-25
Serpentinization-fueled systems in the cool, hydrated forearc mantle of subduction zones may provide an environment that supports deep chemolithoautotrophic life. Here, we examine serpentinite clasts expelled from mud volcanoes above the Izu-Bonin-Mariana subduction zone forearc (Pacific Ocean) that contain complex organic matter and nanosized Ni-Fe alloys. Using time-of-flight secondary ion mass spectrometry and Raman spectroscopy, we determined that the organic matter consists of a mixture of aliphatic and aromatic compounds and functional groups such as amides. Although an abiotic or subduction slab-derived fluid origin cannot be excluded, the similarities between the molecular signatures identified in the clasts and those of bacteria-derived biopolymers from other serpentinizing systems hint at the possibility of deep microbial life within the forearc. To test this hypothesis, we coupled the currently known temperature limit for life, 122 °C, with a heat conduction model that predicts a potential depth limit for life within the forearc at ∼10,000 m below the seafloor. This is deeper than the 122 °C isotherm in known oceanic serpentinizing regions and an order of magnitude deeper than the downhole temperature at the serpentinized Atlantis Massif oceanic core complex, Mid-Atlantic Ridge. We suggest that the organic-rich serpentinites may be indicators for microbial life deep within or below the mud volcano. Thus, the hydrated forearc mantle may represent one of Earth's largest hidden microbial ecosystems. These types of protected ecosystems may have allowed the deep biosphere to thrive, despite violent phases during Earth's history such as the late heavy bombardment and global mass extinctions.
Subduction zone forearc serpentinites as incubators for deep microbial life
Plümper, Oliver; Geisler, Thorsten; Liu, Yang; Pabst, Sonja; Savov, Ivan P.; Rost, Detlef; Zack, Thomas
2017-01-01
Serpentinization-fueled systems in the cool, hydrated forearc mantle of subduction zones may provide an environment that supports deep chemolithoautotrophic life. Here, we examine serpentinite clasts expelled from mud volcanoes above the Izu–Bonin–Mariana subduction zone forearc (Pacific Ocean) that contain complex organic matter and nanosized Ni–Fe alloys. Using time-of-flight secondary ion mass spectrometry and Raman spectroscopy, we determined that the organic matter consists of a mixture of aliphatic and aromatic compounds and functional groups such as amides. Although an abiotic or subduction slab-derived fluid origin cannot be excluded, the similarities between the molecular signatures identified in the clasts and those of bacteria-derived biopolymers from other serpentinizing systems hint at the possibility of deep microbial life within the forearc. To test this hypothesis, we coupled the currently known temperature limit for life, 122 °C, with a heat conduction model that predicts a potential depth limit for life within the forearc at ∼10,000 m below the seafloor. This is deeper than the 122 °C isotherm in known oceanic serpentinizing regions and an order of magnitude deeper than the downhole temperature at the serpentinized Atlantis Massif oceanic core complex, Mid-Atlantic Ridge. We suggest that the organic-rich serpentinites may be indicators for microbial life deep within or below the mud volcano. Thus, the hydrated forearc mantle may represent one of Earth’s largest hidden microbial ecosystems. These types of protected ecosystems may have allowed the deep biosphere to thrive, despite violent phases during Earth’s history such as the late heavy bombardment and global mass extinctions. PMID:28396389
Biological properties of mud extracts derived from various spa resorts.
Spilioti, Eliana; Vargiami, Margarita; Letsiou, Sophia; Gardikis, Konstantinos; Sygouni, Varvara; Koutsoukos, Petros; Chinou, Ioanna; Kassi, Eva; Moutsatsou, Paraskevi
2017-08-01
Spa resorts are known for thousands of years for their healing properties and have been empirically used for the treatment of many inflammatory conditions. Mud is one of the most often used natural materials for preventive, healing and cosmetic reasons and although it has been used since the antiquity, little light has been shed on its physical, chemical and biological properties. In this study we examined the effect of mud extracts on the expression of adhesion molecules (CAMs) by endothelial cells as well as their effects on monocyte adhesion to activated endothelial cells. Most of mud extracts inhibited the expression of VCAM-1 by endothelial cells and reduced monocyte adhesion to activated endothelial cells, indicating a potent anti-inflammatory activity. Furthermore, the mud extracts were tested for their antimicrobial activity; however, most of them appeared inactive against S. aureus and S. epidermidis. One of the mud extracts (showing the best stabilization features) increased significantly the expression of genes involved in cell protection, longevity and hydration of human keratinocytes, such as, collagen 6A1, forkhead box O3, sirtuin-1, superoxide dismutase 1 and aquaporin-3. The present study reveals that mud exerts important beneficial effects including anti-inflammatory and anti-aging activity as well as moisturizing effects, implicating important cosmeceutical applications.
NASA Astrophysics Data System (ADS)
Asada, M.
2017-12-01
Mud volcanoes (MV) are geological features that are observed all over the world, especially along plate convergent margins. MVs bring fluid and sediment to the surface from depth. MVs around Japan are expected to transport of information from the shallow portions of the seismogenic zone. The Kumano forearc basin (FAB) in the Nankai region is the most studied area in Japan. It is bounded by a shelf on the north, and the Kumano Basin edge fault zone (KBEFZ) on the south. The Kumano FAB has 1-2 km of sediment and overlies the accretionary prism. There are at least 14 MVs in the Kumano Basin. Most of them are found over the northern basin floor, and at least one MV is at the KBEFZ. The MV at the KBEFZ is imaged on a 3D seismic data set as a small topographic feature on seafloor with a disrupted BSR below it. On high-resolution acoustic imagery, it is an 80 100m-high hill with a crater-like depression. It is characterized by a negative ph anomaly detected just above it. High-backscatter seafloor recognized around the MV suggests that harder seafloor exists in that area. To determine whether large subseafloor diapirs exist below active MVs, we try to detect the gravity contrast between the allochthonous materials and basin sediment. Gravity data were collected by research vessels over the area in 2012 2017. After corrections of drift and Etovos effects, absolute gravity, free-air and Bouguer gravity anomalies were calculated. The gravity data do not always show anomalies directly on MVs over the northern basin, thus suggesting that larger diapirs which have gravity contrast over a few milli-Gals do not exist below most of MVs in this basin. Instead, a large negative gravity anomaly is found at the northeastern end of the Kumano Basin. Localized positive anomalies exist along the KBEFZ in the area of theMV. The positive anomaly may suggest that an allochthonous high-density sediment body intrudes along the highly deformed, weak, fault zone.
Space Radar Image of Kiluchevskoi, Volcano, Russia
NASA Technical Reports Server (NTRS)
1994-01-01
This is an image of the area of Kliuchevskoi volcano, Kamchatka, Russia, which began to erupt on September 30, 1994. Kliuchevskoi is the blue triangular peak in the center of the image, towards the left edge of the bright red area that delineates bare snow cover. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 88th orbit on October 5, 1994. The image shows an area approximately 75 kilometers by 100 kilometers (46 miles by 62 miles) that is centered at 56.07 degrees north latitude and 160.84 degrees east longitude. North is toward the bottom of the image. The radar illumination is from the top of the image. The Kamchatka volcanoes are among the most active volcanoes in the world. The volcanic zone sits above a tectonic plate boundary, where the Pacific plate is sinking beneath the northeast edge of the Eurasian plate. The Endeavour crew obtained dramatic video and photographic images of this region during the eruption, which will assist scientists in analyzing the dynamics of the recent activity. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In addition to Kliuchevskoi, two other active volcanoes are visible in the image. Bezymianny, the circular crater above and to the right of Kliuchevskoi, contains a slowly growing lava dome. Tolbachik is the large volcano with a dark summit crater near the upper right edge of the red snow covered area. The Kamchatka River runs from right to left across the bottom of the image. The current eruption of Kliuchevskoi included massive ejections of gas, vapor and ash, which reached altitudes of 15,000 meters (50,000 feet). Melting snow mixed with volcanic ash triggered mud flows on the flanks of the volcano. Paths of these flows can be seen as thin lines in various shades of blue and green on the north flank in the center of the image. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.
NASA Astrophysics Data System (ADS)
Hamaekers, Helen; Foubert, Anneleen; Wienberg, Claudia; Hebbeln, Dierk; Swennen, Rudy
2010-05-01
Cold-water coral carbonate mounds occur in patches along the continental margin of the North Atlantic Ocean, from northern Norway down to Mauretania. Recent research has been focused on carbonate mounds in the Gulf of Cadiz, especially along the Moroccan margin. The Pen Duick, the Renard and the Vernadsky carbonate mound provinces in the Gulf of Cádiz are only some of the mound provinces which have been the subject of several recent research projects (Foubert et al., 2008; Wienberg et al., 2009). No living scleractinians could be found on top of those carbonate mounds. During cruise 64PE284 of RV Pelagia, gravity cores have been taken through carbonate mounds in the Carbonate Mound Provinces (CMP) SE of Yuma mud volcano and N of Meknes mud volcano. These cores have been analysed by several methods such as Magnetic Susceptibility (MS), X-Ray Fluorescence (XRF), Inductive Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and X-Ray Diffraction (XRD) to determine the geochemical characteristics of carbonate mounds, which can be used to quantify the effects of early diagenetic processes which may have altered the palaeo-environmental characteristics of the carbonate mounds. Dating has been done with 14C and U/Th methods pointing to mound growth phases being restricted to glacial periods. XRF and ICP-OES measurements give both qualitative and quantitative data of the chemical composition of the core. The main elements that have been analysed are Ca, Si, Fe, Sr, Al, K, Mg, Ti. According to the trend they follow, they can be devided in two groups, representative for the two encountered fraction types. These two fraction types (biogenic carbonate-rich fraction and terrigenous silicate-rich fraction) can be coupled to interglacial/glacial palaeo-environmental conditions. XRD measurements give an overview of the mineralogical composition of the cores. Thin sections, analysed by cathodeluminescence and classical optical petrography, and micro-CT scans are used to investigate the influence of early diagenesis. Along with the dating that has been performed, the obtained geochemical data give an overview of the extent to which palaeo-environmental conditions and diagenesis have influenced the carbonate mound sediments in the Gulf of Cádiz. References Foubert, A., Depreiter, D., Beck, T., Maignien, L., Pannemans, B., Frank, N., Blamart, D., Henriet, J.P., 2008. Carbonate mounds in a mud volcano province off north-west Morocco: Key to processes and controls. Marine Geology, 248, 74-96. Wienberg, C., Hebbeln, D., Fink, H.G., Mienis, F., Dorschel, B., Vertino, A., López Correa, M., Freiwald, A., 2009. Scleractinian cold-water corals in the Gulf of Cádiz - First clues about their spatial and temporal distribution, Deep-Sea Research I, 56, 1873-1893.
NASA Astrophysics Data System (ADS)
Kiyokawa, S.; Suzuki, T.; Ikehara, M.; Horie, K.; Takehara, M.; Abd-Elmonem, H.; Dawoud, A. D. M.; El-Hasan, M. M.
2017-12-01
El-Dabbah area Central Eastern Desert of the Nubia Shield preserved Neoproterozoic lower green schist faces volcaniclastics greenstone sequence and covered strike-slip deformation related subaerial sedimentary sequence (Hammamat Group). The volcaniclastics greenstone sequence (El-Dabbah Formation) preserved several iron beds bearing well stratified sequence. Four tectonic deformation identified as this area; thrust deformation (D1), strike-slip deformation with transtension normal fault and strong left-lateral shear (D2), subaerial pull apart sediments basin formed strike-slip deformations (D3), and extensional deformation after the Hammamat Group sedimentation (D4). New age data from intrusions identified about 638 Ma white granite and about 660 Ma quartz porphyry. Based on the detail mapping, we reconstruct more than 5000m thick volcano sedimentary succession. At least, 10 iron rich sections were identified within 3500m thick volcano-sedimentary sequence. There are 14 iron formation sequence identified in this greenstone sequence. Each Iron sequences are bedded with greenish-black shales within massive volcaniclastics and lava flow. Iron formation is formed mostly fine grain magnetite deposited within volcanic mudstone and siltstone with gradual distribution. Timing of this iron sediment is identified within Sturtian glaciation (730-700Ma). However, there is no geological direct support evidence in the Snowball earth event at this greenstone sequence. The volcanic activities at this ocean already produced many Fe2+ to ocean water. Repeated iron precipitation occur during volcanic activity interphase period which produced oxidation of iron and produce oxyhydroxide with mud-silt sediment at bottom of ocean.
Geochemical modeling of subsurface fluid generation in the Gulf of Cadiz
NASA Astrophysics Data System (ADS)
Schmidt, Christopher; Hensen, Christian; Wallmann, Klaus
2016-04-01
During RV METEOR cruise M86/5 in 2012 a number of deep-sea mud volcanoes were discovered at about 4500 m water depth west of the deformation front of the accretionary wedge in the Gulf of Cadiz (NE Atlantic). Fluid flow at these locations is mediated by an active strike-slip fault marking the transcurrent plate boundary between Africa and Eurasia. Geochemical signals of emanating fluids have been interpreted as being a mixture of various deep-sourced processes such as the alteration of oceanic crust, clay-mineral dehydration, and recrystallization of carbonaceous, Upper Jurassic sediments (Hensen et al. 2015). In the current study we present results of a geochemical reactive-transport model that was designed to simulate major fluid-affecting processes, such as the smectite to illite transformation or recrystallization of carbonates in order to provide a proof of concept. Preliminary results show that the model is able to reproduce pore water signatures (e.g. for chloride, strontium, 87Sr/86Sr) in subsurface sediments that are similar to those of MV fluids. Hensen, C., Scholz, F., Nuzzo, M., Valadares, V., Gràcia, E., Terrinha, P., Liebetrau, V., Kaul, N., Silva, S., Martínez-Loriente, S., Bartolome, R., Piñero, E., Magalhães, V.H., Schmidt, M., Weise, S.M., Cunha, M., Hilario, A., Perea, H., Rovelli, L. and Lackschewitz, K. (2015) Strike-slip faults mediate the rise of crustal-derived fluids and mud volcanism in the deep sea. Geology 43, 339-342.
Preventing volcanic catastrophe; the U.S. International Volcano Disaster Assistance Program
Ewert, J.W.; Murray, T.L.; Lockhart, A. B.; Miller, C.D.
1993-01-01
Unfortunately, a storm on November 13, 1985, obscured the glacier-clad summit of Nevado del Ruiz. On that night an explosive eruption tore through the summit and spewed approximately 20 million cubic meters of hot ash and rocks across the snow-covered glacier. These materials were transported across the snow pack by avalanches of hot volcanic debris (pyroclastic flows) and fast-moving, hot, turbulent clouds of gas and ash (pyroclastic surges). The hot pyroclastic flows and surges caused rapid melting of the snow and ice and created large volumes of water that swept down canyons leading away from the summit. As these floods of water descended the volcano, they picked up loose debris and soil from the canyon floors and walls, growing both in volume and density, to form hot lahars. In the river valleys farther down the volcano's flanks, the lahars were as much as 40 m thick and traveled at velocities as fast as 50 km/h. Two and a half hours after the start of the eruption one of the lahars reachered Armero, 74 km from the explosion crater. In a few short minutes most of the town was swept away or buried in a torrent of mud and boulders, and three quaters of the townspeople perished.
NASA Astrophysics Data System (ADS)
Akhter, S. H.; Seeber, L.; Steckler, M. S.
2015-12-01
Bangladesh is one of the most densely populated countries in the world. It occupies a major part of the Bengal Basin, which contains the Ganges-Brahmaputra Delta (GBD), the largest and one of the most active of world deltas, and is located along the Alpine-Himalayan seismic belt. As such it is vulnerable to many natural hazards, especially earthquakes. The country sits at the junction of three tectonic plates - Indian, Eurasian, and the Burma 'sliver' of the Sunda plate. These form two boundaries where plates converge- the India-Eurasia plate boundary to the north forming the Himalaya Arc and the India-Burma plate boundary to the east forming the Indo-Burma Arc. The India-Burma plate boundary is exceptionally wide because collision with the GBD feeds an exception amount of sediment into the subduction zone. Thus the Himalayan continent collision orogeny along with its syntaxes to the N and NE of Bangladesh and the Burma Arc subduction boundary surround Bangladesh on two sides with active faults of regional scale, raising the potential for high-magnitude earthquakes. In recent years Bangladesh has experienced minor to moderate earthquakes. Historical records show that major and great earthquakes have ravaged the country and the neighboring region several times over the last 450 years. Field observations of Tertiary structures along the Chittagong-Teknaf coast reveal that the rupture of 1762 Arakan megathrust earthquake extended as far north as the Sitakund anticline to the north of the city of Chittagong. This earthquake brought changes to the landscape, uplifting the Teknaf peninsula and St. Martin's Island by about 2-2.5 m, and activated two mud volcanos along the axis of the Sitakund anticline, where large tabular blocks of exotic crystalline limestone, were tectonically transported from a deep-seated formation along with the eruptive mud. Vast area of the coast including inland areas east of the lower Meghna River were inundated. More than 500 peoples died near Dhaka as the tsunami or a seiche destroyed mud bamboo houses and capsized boats. The St. Martin's Island is believed to have been an unpopulated shoal before the 1762 earthquake. The presence of three uplifted terraces in the Teknaf coast suggest similar earthquakes of great magnitude have ruptured the Chittagong-Arakan coast in the historic past.
NASA Astrophysics Data System (ADS)
Grall, C.; Henry, P.; Thomas, Y.; Marsset, B.; Westbrook, G.; Saritas, H.; Géli, L.; Ruffine, L.; Dupré, S.; Scalabrin, C.; Augustin, J. M.; Cifçi, G.; Zitter, T.
2012-04-01
Along the northern branch of the North Anatolian Fault Zone (NAFZ) within the Sea of Marmara, numerous gas seeps occur. A large part of the gas origin is biogenic but on the Western High, gas bubbles and gas hydrate with a thermogenic signature have been sampled. The expulsion of deep fluids opened new perspective about the permeability, the mechanical properties and the monitoring of the NAFZ. Consequently, the Western High was selected for the deployment of a 3D seismic acquisition layout during the MARMESONET cruise (2009). Thirty-three km2 of high resolution seismic data (with a frequency content of 50-180 Hz) have been collected within the shear band of the fault. The SIMRAD EM-302 was also operated to detect acoustic anomalies related to the presence of gas bubbles in the water column. Within the upper sedimentary cover (seismic penetration ranges from 100 to 500 m bsf), high seismic amplitude variations of the reflectors allow to identify gas traps and gas pathways. Local high amplitude of negative polarity, such as flat spots and bright spots, are observed. Amplitude anomalies are located above and within anticlines and along normal faults. They often correlate with seafloor manifestations of fluid outflow and gas plumes in the water column. This suggests that gas migrates from depth towards the seafloor along normal faults and permeable strata, and part of it is trapped in anticlines. North of the NAF, seabed mounds, corresponding to active hydrocarbon gas seeps, are aligned along a NE-SW direction. They are linked in depth to buried mud volcanoes with an episodic activity. The last mud eruption activity apparently just before or during the Red-H1 horizon deposition which is a prominent reflector of high amplitude and negative polarity occurring all over the Sea of Marmara. It has been interpreted as a stratigraphic horizon, corresponding to slow sedimentation and high sea-level interglacial period.
Thermal mud maturation: organic matter and biological activity.
Centini, M; Tredici, M R; Biondi, N; Buonocore, A; Maffei Facino, R; Anselmi, C
2015-06-01
Many of the therapeutic and cosmetic treatments offered in spas are centred on mud therapy, to moisturize the skin and prevent skin ageing and rheumatic diseases. Thermal mud is a complex matrix composed of organic and inorganic elements which contribute to its functions. It is a natural product derived from the long mixing of clay and thermal water. During its maturation, organic substances are provided by the microalgae, which develop characteristic of the composition of thermal water. The aim of this study was to identify methods for introducing objective parameters as a basis for characterizing thermal mud and assessing its efficacy. Samples of thermal mud were collected at the Saturnia spa, where there are several sulphureous pools. The maturation of the mud was evaluated by organic component determination using extractive methods and chromatographic analysis (HPLC, GC-MS, SPME). We also studied the radical scavenging activity of mud samples at different stages of maturation, in a homogeneous phase, using several tests (DPPH, ORAC, ABTS). We identified several classes of compounds: saturated and unsaturated fatty acids, hydroxyl acids, dicarboxylic acids, ketoacids, alcohols and others. SPME analysis showed the presence of various hydrocarbons compounds (C(11) -C(17)) and long-chain alcohols (C(12) -C(16)). Six or seven months seemed appropriate to complete the process of maturation, and the main effect of maturation time was the increase of lipids. Six-month mud showed the highest activity. The hydrophilic extract was more active than the lipophilic extract. The results indicate that maturation of thermal mud can be followed on the basis of the changes in its organic composition and antioxidant properties along the time. They also highlight the need to develop reference standards for thermal muds in relation to assess their use for therapeutic and cosmetic purposes. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
The LUSI Seismic Experiment: Deployment of a Seismic Network around LUSI, East Java, Indonesia
NASA Astrophysics Data System (ADS)
Karyono, Karyono; Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Haryanto, Iyan; Masturyono, Masturyono; Hadi, Soffian; Rohadi, Suprianto; Suardi, Iman; Rudiyanto, Ariska; Pranata, Bayu
2015-04-01
The spectacular Lusi eruption started in northeast Java, Indonesia the 29 of May 2006 following a M6.3 earthquake striking the island. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. Lusi is located few kilometres to the NE of the Arjuno-Welirang volcanic complex. Lusi sits upon the Watukosek fault system. From this volcanic complex originates the Watukosek fault system that was reactivated by the M6.3 earthquake in 2006 and is still periodically reactivated by the frequent seismicity. To date Lusi is still active and erupting gas, water, mud and clasts. Gas and water data show that the Lusi plumbing system is connected with the neighbouring Arjuno-Welirang volcanic complex. This makes the Lusi eruption a "sedimentary hosted geothermal system". To verify and characterise the occurrence of seismic activity and how this perturbs the connected Watukosek fault, the Arjuno-Welirang volcanic system and the ongoing Lusi eruption, we deployed 30 seismic stations (short-period and broadband) in this region of the East Java basin. The seismic stations are more densely distributed around LUSI and the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. Fewer stations are positioned around the volcanic arc. Our study sheds light on the seismic activity along the Watukosek fault system and describes the waveforms associated to the geysering activity of Lusi. The initial network aims to locate small event that may not be captured by the Indonesian Agency for Meteorology, Climatology and Geophysics (BMKG) seismic network and it will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-Arjuno Welirang region and temporal variations of vp/vs ratios. Such variations will then be ideally related to large-magnitude seismic events. This project is an unprecedented monitoring of a multi component system including an Lusi active eruption, an unlocked strike slip fault, a neighbouring volcanic arc all affected by frequent seismicity. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. The seismic experiment suggested in this study enforces our knowledge about Lusi and will represent a step further towards the reconstruction of a society devastated by Lusi disaster.
Applying Unmanned Airborne Sampling Technology to Active Volcanoes: Successes, Challenges, and Plans
NASA Astrophysics Data System (ADS)
Pieri, D. C.; Diaz, J. A.; Buongiorno, M. F.
2016-12-01
Over the last three years, we have conducted in situ sampling of airborne volcanic emissions for the calibration and validation of remote sensing data and derivative ash and gas transport models, as well as for proximal and distal hazard evaluations. We are collaboratively operating currently in three main locales: (a) Costa Rica: Turrialba Volcano; (b) Italy: Vulcano Island and La Sofatara Crater; and (c) the United States: Kilauea Volcano and the Salton Sea Geothermal Zone. During 2014-2016 we systematically deployed fixed wing UAVs and aerostats into the phreato-magmatic plume at Turrialba Volcano in Costa Rica, for time-series 3D SO2 profiles during overpasses of the ASTER radiometer onboard the NASA Terra platform. To date we have completed more than 50 aerostat and/or unmanned fixed and/or rotary wing sampling missions. Preliminary science results have been published by Pieri and Diaz (2015; DyDESS), Diaz et al. (2015; JASMS), and Xi et al. (2016, JVGR). We conducted field measurements of H2S, CO2, and SO2 and other species with INGV quad-copters to lift a UCR Multi-gas sensor into the phreatic gas jet at La Sofatara Crater, Pozzuoli, Italy in October 2014 and at Isole Vulcano in August 2015. At La Solfatara, our results documented 8000ppmv (max) up to 200 ft above the vent, and at Vulcano we noted CO2 concentrations approximately 2x ambient up to 100ft above the main crater. Deployment of the ARC SIERRA-B UAV and Dragon Eye mini-UAVs is now planned for the Salton Sea Geothermal Field in October 2016. We have integrated the UCR 20kg mass-spectrometer into SIERRA-B for flight certification in August 2016. We will also conduct near simultaneous airborne sensor-web observations with Dragon Eye UAVs using targeted electrochemical sensors, including sensors for SO2, H2S, CO2, and NH3, along with simultaneous aerostat (tethered balloon/kite-borne) observations using electrochemical sensors, focused on gas emissions from sub-aerial mud volcano fields. Finally, we will deploy Dragon Eye over Kilauea Volcano in January-February 2017 to measure volcanogenic SO2 emissions, the rate of SO2 to H2SO4 hydrolysis, and the emission of CO2This work was carried out in part at the Jet Propulsion Laboratory of CA Institute of Technology, under contract to the Earth Surface & Interior Focus Area within the NASA Science Mission Directorate.
NASA Astrophysics Data System (ADS)
Lauer, Rachel M.; Saffer, Demian M.
2015-04-01
Observations of seafloor seeps on the continental slope of many subduction zones illustrate that splay faults represent a primary hydraulic connection to the plate boundary at depth, carry deeply sourced fluids to the seafloor, and are in some cases associated with mud volcanoes. However, the role of these structures in forearc hydrogeology remains poorly quantified. We use a 2-D numerical model that simulates coupled fluid flow and solute transport driven by fluid sources from tectonically driven compaction and smectite transformation to investigate the effects of permeable splay faults on solute transport and pore pressure distribution. We focus on the Nicoya margin of Costa Rica as a case study, where previous modeling and field studies constrain flow rates, thermal structure, and margin geology. In our simulations, splay faults accommodate up to 33% of the total dewatering flux, primarily along faults that outcrop within 25 km of the trench. The distribution and fate of dehydration-derived fluids is strongly dependent on thermal structure, which determines the locus of smectite transformation. In simulations of a cold end-member margin, smectite transformation initiates 30 km from the trench, and 64% of the dehydration-derived fluids are intercepted by splay faults and carried to the middle and upper slope, rather than exiting at the trench. For a warm end-member, smectite transformation initiates 7 km from the trench, and the associated fluids are primarily transmitted to the trench via the décollement (50%), and faults intercept only 21% of these fluids. For a wide range of splay fault permeabilities, simulated fluid pressures are near lithostatic where the faults intersect overlying slope sediments, providing a viable mechanism for the formation of mud volcanoes.
Sánchez, Ethel; Vargas, Maribel; Mora, Marielos; Ortega, José Maria; Serrano, Aurelio; Freer, Enrique; Sittenfeld, Ana
2004-03-01
The euglenoids are unicellular eukaryotic flagellates living in a diversity of soils and aquatic environments and ecosystems. This study describes the ultrastructure of an euglenoid isolated from the surface of a boiling mud pool with temperatures ranging from 38 to 98 degrees C and pH 2 - 4. The hot mud pool is located in Area de Pailas de Barro, Las Pailas, Rincón de la Vieja Volcano, Guanacaste, Costa Rica. The morphological characterization of the Euglena pailasensis was performed by SEM and TEM. It was determined that, although the euglenoid was obtained from an extreme volcanic environment, the general morphology corresponds to that of a typical member of Euglena of 30-45 microm long and 8-10 microm wide, with membrane, pellicle, chloroplasts, mitochondria, nucleus, pigments and other cytoplasmic organelles. E. pailasensis is delimited by a membrane and by 40 to 90 pellicle strips. It was observed up to 5 elongated chloroplasts per cell. The chloroplast contains several osmiophilic globules and a pyrenoid penetrated by few thylakoid pairs. The nutritious material is reserved in numerous small paramylon grains located at the center of the cell, mitocondria are characterized by the presence of crests in radial disposition toward the interior of the lumen. It was also observed around the external surface "pili" like filaments originating from the pellicle strips. There is no evidence for the presence of flagella in the ampulla (reservoir/canal area), a fact confirmed by negative staining, and a difference regarding other species of Euglena. The observed ultrastructural characteristics are not sufficient to explain the adaptation of this species to acid and hot environments.
Portable Laser Spectrometer for Airborne and Ground-Based Remote Sensing of Geological CO2 Emissions
NASA Technical Reports Server (NTRS)
Queisser, Manuel; Burton, Mike; Allan, Graham R.; Chiarugi, Antonio
2017-01-01
A 24 kilogram, suitcase-sized, CW (Continuous Wave) Laser Remote Sensing Spectrometer (LARSS) with an approximately 2-kilometer range has been developed. It has demonstrated its flexibility in measuring both atmospheric CO2 from an airborne platform and terrestrial emission of CO2 from a remote mud volcano, Bledug Kuwu, Indonesia, from a ground-based sight. This system scans the CO2 absorption line with 20 discrete wavelengths, as opposed to the typical two-wavelength online-offline instrument. This multi-wavelength approach offers an effective quality control, bias control, and confidence estimate of measured CO2 concentrations via spectral fitting. The simplicity, ruggedness, and flexibility in the design allow for easy transportation and use on different platforms with a quick setup in some of the most challenging climatic conditions. While more refinement is needed, the results represent a stepping stone towards widespread use of active one-sided gas remote sensing in the earth sciences.
Queisser, Manuel; Burton, Mike; Allan, Graham R; Chiarugi, Antonio
2017-07-15
A 24 kg, suitcase sized, CW laser remote sensing spectrometer (LARSS) with a ~2 km range has been developed. It has demonstrated its flexibility in measuring both atmospheric CO2 from an airborne platform and terrestrial emission of CO2 from a remote mud volcano, Bledug Kuwu, Indonesia, from a ground-based sight. This system scans the CO2 absorption line with 20 discrete wavelengths, as opposed to the typical two-wavelength online offline instrument. This multi-wavelength approach offers an effective quality control, bias control, and confidence estimate of measured CO2 concentrations via spectral fitting. The simplicity, ruggedness, and flexibility in the design allow for easy transportation and use on different platforms with a quick setup in some of the most challenging climatic conditions. While more refinement is needed, the results represent a stepping stone towards widespread use of active one-sided gas remote sensing in the earth sciences.
Reducing risk from lahar hazards: concepts, case studies, and roles for scientists
Pierson, Thomas C.; Wood, Nathan J.; Driedger, Carolyn L.
2014-01-01
Lahars are rapid flows of mud-rock slurries that can occur without warning and catastrophically impact areas more than 100 km downstream of source volcanoes. Strategies to mitigate the potential for damage or loss from lahars fall into four basic categories: (1) avoidance of lahar hazards through land-use planning; (2) modification of lahar hazards through engineered protection structures; (3) lahar warning systems to enable evacuations; and (4) effective response to and recovery from lahars when they do occur. Successful application of any of these strategies requires an accurate understanding and assessment of the hazard, an understanding of the applicability and limitations of the strategy, and thorough planning. The human and institutional components leading to successful application can be even more important: engagement of all stakeholders in hazard education and risk-reduction planning; good communication of hazard and risk information among scientists, emergency managers, elected officials, and the at-risk public during crisis and non-crisis periods; sustained response training; and adequate funding for risk-reduction efforts. This paper reviews a number of methods for lahar-hazard risk reduction, examines the limitations and tradeoffs, and provides real-world examples of their application in the U.S. Pacific Northwest and in other volcanic regions of the world. An overriding theme is that lahar-hazard risk reduction cannot be effectively accomplished without the active, impartial involvement of volcano scientists, who are willing to assume educational, interpretive, and advisory roles to work in partnership with elected officials, emergency managers, and vulnerable communities.
Karpińska, Maria; Kapała, Jacek; Raciborska, Agnieszka; Kulesza, Grzegorz; Milewska, Anna; Mnich, Stanisław
2017-08-01
In this work were identified and measured the activity of radioactive isotopes present in medicinal preparations from peat mud and estimated the doses obtained from them during therapy. Radioactivity of 22 preparations from peat mud and 20 water samples from water of the North-East region of Poland was studied. The median of the total activity was 24.8 Bq kg -1 . Total maximal isotope activity was observed in the Iwonicka Cube 146 Bq kg -1 while considerable amounts of isotopes were found in the Kolobrzeska Peat Mud Paste 112 Bq kg -1 . The doses obtained during therapy were within the range of 11 nSv-13 μSv depending on extracts of medicinal preparations from peat mud. The probability that such a small dose would stimulate biological effects is low. However, some clinicians believe that one of the possible therapeutic mechanisms in the treatment of rheumatoid disorders is the induction of immune response by ionising radiation.
NASA Astrophysics Data System (ADS)
Joseph, Erouscilla P.; Beckles, Denise M.; Cox, Leonette; Jackson, Viveka B.; Alexander, Dominic
2015-10-01
Sulphur Springs Park in Saint Lucia is a site of energetic geothermal activity associated with the potentially active Soufrière Volcanic Centre. The Park is one of Saint Lucia's most important tourist attractions, and is marketed as the 'world's only drive-in volcano'. It has an on-site staff of tour guides and vendors, as well as over 200,000 visitors annually. There are also a number of residents living in the areas bordering the Park. Recreational use is made of the geothermal waters for bathing, application of mud masques, and in some cases drinking. As part of the University of the West Indies, Seismic Research Centre's (UWI-SRC's) overall volcano monitoring programme for Saint Lucia, the volcanic emissions at Sulphur Springs (hot springs, mud pools and fumaroles) have been regularly monitored since 2001. In recent years, visitors, staff, and management at the Park have expressed concern about the health effects of exposure to volcanic emissions from the hydrothermal system. In response to this, SRC has expanded its regular geothermal monitoring programme to include a preliminary evaluation of ambient sulphur dioxide (SO2) concentrations in and around the Park, to assess the possible implications for human health. Passive diffusion tubes were used to measure the atmospheric SO2 concentrations at various sites in Sulphur Springs Park (SSP), in the town of Soufrière and in the capital of Castries. Measurements of average monthly ambient SO2 with the passive samplers indicated that during the dry season period of April to July 2014 concentration at sites closest to the main vents at SSP (Group 1), which are routinely used by staff and visitors, frequently exceeded the WHO 10-minute AQG for SO2 of 500 μg/m3. However, for sites that were more distal to the main venting area (Groups 2 and 3), the average monthly ambient SO2 did not exceed the WHO 10-minute AQG for SO2 of 500 μg/m3 during the entire monitoring period. The measured concentrations and dispersion patterns of ambient SO2 at SSP appear to be influenced by rainfall, proximity to the fumarolic vents, altitude (local topography), local atmospheric circulation and plume dispersion, and anthropogenic sources. Brochures and posters were prepared, for public distribution and display, on possible gas hazards that may be encountered at SSP and precautionary measures that may be taken by visitors to help minimise potential risk from elevated exposure to volcanic gases.
Hydration kinetics of cementitious materials composed of red mud and coal gangue
NASA Astrophysics Data System (ADS)
Zhang, Na; Li, Hong-xu; Liu, Xiao-ming
2016-10-01
To elucidate the intrinsic reaction mechanism of cementitious materials composed of red mud and coal gangue (RGC), the hydration kinetics of these cementitious materials at 20°C was investigated on the basis of the Krstulović-Dabić model. An isothermal calorimeter was used to characterize the hydration heat evolution. The results show that the hydration of RGC is controlled by the processes of nucleation and crystal growth (NG), interaction at phase boundaries (I), and diffusion (D) in order, and the pozzolanic reactions of slag and compound-activated red mud-coal gangue are mainly controlled by the I process. Slag accelerates the clinker hydration during NG process, whereas the compound-activated red mud-coal gangue retards the hydration of RGC and the time required for I process increases with increasing dosage of red mud-coal gangue in RGC.
Teaching Ecological Interactions with Mud Dauber Nests.
ERIC Educational Resources Information Center
Matthews, Robert W.
1997-01-01
Describes the use of mud dauber wasp nests in laboratory activities in ecology and behavior and life science classes. Provides students with an opportunity to develop and practice basic skills including dissection, identification, observation, measurement, and communication. Discusses the life of mud daubers, obtaining and storing nests,…
The interplinian activity at Somma-Vesuvius in the last 3500 years
Rolandi, G.; Petrosino, P.; Mc, Geehin J.
1998-01-01
Between 1884 B.C. and A.D. 472, eruptive activity at Somma-Vesuvius was dominated by the three plinian eruptions of Avellino (3550 yr B.P.), Pompei (A.D. 79) and A.D. 472 and, as a result, little attention has been given to the intervening interplinian activity. The interplinian events are here reconstructed using new data from twenty stratigraphic sections around the lower flanks of the volcano. Three main eruptions have been identified fro the protohistoric period (3550 yr B.P.-A.D. 79). The first two occurred shortly after the Avellino event and both show a progression from magmatic to phreatomagmatic behaviour. The third eruption (2700 B.P.) consisted of five phreatomagmetic episodes separated by the emplacement of mud flows. Only one event, the explosive erupton of A.D. 203, has been identified for the ancient historic period (A.D. 79-472). In contrast, the A.D. 472 eruption was followed during the medievel period (A.D. 472-1631) by comparatively vigorous interplinian activity, including four strombolian-phreatomagmatic events and extensive lava effusion, which formed a summit cone (destroyed in A.D. 1631) similar to that on Vesuvius today. Such regular alternations of plinian and interplinian events are evident only since 3550 yr B.P. and provide important constraints for forecasting future behaviour at Somma-Vesuvius.
Active Deformation of Etna Volcano Combing IFSAR and GPS data
NASA Technical Reports Server (NTRS)
Lundgren, Paul
1997-01-01
The surface deformation of an active volcano is an important indicator of its eruptive state and its hazard potential. Mount Etna volcano in Sicily is a very active volcano with well documented eruption episodes.
Telepresence-enabled research and developing work practices
NASA Astrophysics Data System (ADS)
Mirmalek, Z.
2016-02-01
In the fall of 2014, a group of scientists and students conducted two weeks of telepresence-enabled research from the University of Rhode Island Inner Space Center and Woods Hole Oceanographic Institution with the Exploration Vessel Nautilus, which was at sea studying the Kick'em Jenny submarine volcano and Barbados Mud Volcanoes. The way that they conducted their work was not so different from other telepresence-enabled ocean science exploration. As a group, they spanned geographic distance, science expertise, exploration experience, and telepresence-enabled research experience. They were connected through technologies and work culture (e.g., shared habits, values, and practices particular to a community). Uniquely, their project included an NSF-sponsored cultural study on the workgroups' own use of technologies and social processes. The objective of the cultural study was, in part, to identify social and technical features of the work environment that present opportunities to better support science exploration via telepresence. Drawing from this case, and related research, I present some analysis on the developing work culture of telepresence-enabled research and highlight potential adjustments.
Inscuteable Regulates the Pins-Mud Spindle Orientation Pathway
Mauser, Jonathon F.; Prehoda, Kenneth E.
2012-01-01
During asymmetric cell division, alignment of the mitotic spindle with the cell polarity axis ensures that the cleavage furrow separates fate determinants into distinct daughter cells. The protein Inscuteable (Insc) is thought to link cell polarity and spindle positioning in diverse systems by binding the polarity protein Bazooka (Baz; aka Par-3) and the spindle orienting protein Partner of Inscuteable (Pins; mPins or LGN in mammals). Here we investigate the mechanism of spindle orientation by the Insc-Pins complex. Previously, we defined two Pins spindle orientation pathways: a complex with Mushroom body defect (Mud; NuMA in mammals) is required for full activity, whereas binding to Discs large (Dlg) is sufficient for partial activity. In the current study, we have examined the role of Inscuteable in mediating downstream Pins-mediated spindle orientation pathways. We find that the Insc-Pins complex requires Gαi for partial activity and that the complex specifically recruits Dlg but not Mud. In vitro competition experiments revealed that Insc and Mud compete for binding to the Pins TPR motifs, while Dlg can form a ternary complex with Insc-Pins. Our results suggest that Insc does not passively couple polarity and spindle orientation but preferentially inhibits the Mud pathway, while allowing the Dlg pathway to remain active. Insc-regulated complex assembly may ensure that the spindle is attached to the cortex (via Dlg) before activation of spindle pulling forces by Dynein/Dynactin (via Mud). PMID:22253744
NASA Astrophysics Data System (ADS)
Di Vito, Mauro A.; de Vita, Sandro; Rucco, Ilaria; Bini, Monica; Zanchetta, Giovanni; Aurino, Paola; Cesarano, Mario; Ebanista, Carlo; Rosi, Mauro; Ricciardi, Giovanni
2017-04-01
There is a growing number of evidences in the surrounding plain of Somma-Vesuvius volcano which indicate that along with primary volcanic processes (i.e. fallout, pyroclastic density currents) the syn-eruptive and post-eruptive volcaniclastic remobilization has severely impacted the ancient civilizations, which flourished in the area. This represents an important starting point for understanding the future hazard related to a potential (and not remote) renewal of volcanic activity of the Campaniana volcanoes. We present geoarcheological and stratigraphic data obtained from the analysis of more than 160 sections in the Campanian plain showing the widespread impact of volcaniclastic debris flows and floods originated from the rapid remobilization of the products of the AD 472 eruption of Somma-Vesuvius, both on the environment and on the human landscape. This eruption was one of the two sub-Plinian historical events of Somma Vesuvius. This event largely impacted the northern and eastern territory surrounding the volcano with deposition of a complex sequence of pyroclastic-fallout and -current deposits. These sequences were variably affected by syn- and post-eruptive mobilization both along the Somma-Vesuvius slopes and the Apennine valleys with the emplacement of thick mud- and debris-flows which strongly modified the preexisting paleogeography of the Plain with irretrievable damages to the agricultural and urban landscape. The multidisciplinary approach to the study of the sequences permitted to reconstruct the palaeoenvironment before the eruption and the timing of the emplacement of both pyroclastic and volcanoclastic deposits. The preexisting landscape was characterized by intense human occupation, although showing strong evidences of degradation and abandonment due to the progressive decline of the Roman Empire. The impact of volcaniclastic flows continued for decades after the eruption as highlighted in the studied sequences by stratigraphic and archaeologic data. In fact the volcanoclastic flows emplacement continued at least until the following AD 512 eruption of Somma-Vesuvius, and likely contributed to the final decline of the Roman civilization in the area.
Geologic Map of The Volcanoes Quadrangle, Bernalillo and Sandoval Counties, New Mexico
Thompson, Ren A.; Shroba, Ralph R.; Menges, Christopher M.; Schmidt, Dwight L.; Personius, Stephen F.; Brandt, Theodore R.
2009-01-01
This geologic map, in support of the U.S. Geological Survey Middle Rio Grande Basin Geologic Mapping Project, shows the spatial distribution of surficial deposits, lava flows, and related sediments of the Albuquerque volcanoes, upper Santa Fe Group sediments, faults, and fault-related structural features. These deposits are on, along, and beneath the Llano de Albuquerque (West Mesa) west of Albuquerque, New Mexico. Some of these deposits are in the western part of Petroglyph National Monument. Artificial fill deposits are mapped chiefly beneath and near the City of Albuquerque Soil Amendment Facility and the Double Eagle II Airport. Alluvial deposits were mapped in and along stream channels, beneath terrace surfaces, and on the Llano de Albuquerque and its adjacent hill slopes. Deposits composed of alluvium and colluvium are also mapped on hill slopes. Wedge-shaped deposits composed chiefly of sandy sheetwash deposits, eolian sand, and intercalated calcic soils have formed on the downthrown-sides of faults. Deposits of active and inactive eolian sand and sandy sheetwash deposits mantle the Llano de Albuquerque. Lava flows and related sediments of the Albuquerque volcanoes were mapped near the southeast corner of the map area. They include eleven young lava flow units and, where discernable, associated vent and near-vent pyroclastic deposits associated with cinder cones. Upper Santa Fe Group sediments are chiefly fluvial in origin, and are well exposed near the western boundary of the map area. From youngest to oldest they include a gravel unit, pebbly sand unit, tan sand and mud unit, tan sand unit, tan sand and clay unit, and silty sand unit. Undivided upper Santa Fe Group sediments are mapped in the eastern part of the map area. Faults were identified on the basis of surface expression determined from field mapping and interpretation of aeromagnetic data where concealed beneath surficial deposits. Fault-related structural features are exposed and were mapped near the western boundary of the map area.
Comparison of Copper Scavenging Capacity between Two Different Red Mud Types
Ma, Yingqun; Si, Chunhua; Lin, Chuxia
2012-01-01
A batch experiment was conducted to compare the Cu scavenging capacity between two different red mud types: the first one was a highly basic red mud derived from a combined sintering and Bayer process, and the second one was a seawater-neutralized red mud derived from the Bayer process. The first red mud contained substantial amounts of CaCO3, which, in combination with the high OH− activity, favored the immobilization of water-borne Cu through massive formation of atacamite. In comparison, the seawater-neutralized red mud had a lower pH and was dominated by boehmite, which was likely to play a significant role in Cu adsorption. Overall, it appears that Cu was more tightly retained by the CaCO3-dominated red mud than the boehmite-dominated red mud. It is concluded that the heterogeneity of red mud has marked influences on its capacity to immobilize water-borne Cu and maintain the long-term stability of the immobilized Cu species. The research findings obtained from this study have implications for the development of Cu immobilization technology by using appropriate waste materials generated from the aluminium industry.
The effects of drilling muds on marine invertebrate larvae and adults
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raimondi, P.T.; Barnett, A.M.; Krause, P.R.
1997-06-01
A series of laboratory experiments tested the effects of drilling muds from an active platform off southern California on larvae and adults of marine invertebrates. Red abalone (Haliotis rufescens) were used to determine effects of drilling muds on fertilization, early development, survivorship, and settlement, and experiments on adult brown cup corals (Paracyathus stearnsii) tested effects on adult survivorship, viability, and tissue loss. Exposures to drilling muds did not have an effect on abalone fertilization or early development. However, several exposures to drilling muds resulted in weak, but significant, positive effects of drilling muds on settlement of competent larvae. In contrast,more » settlement of red abalone larvae on natural coralline algal crusts decreased with increasing concentrations of drilling muds. This suggests that drilling muds affect either the abalone`s ability to detect natural settlement inducers, or they affect the inducer itself. Exposure of brown cup corals to concentrations of drilling muds adversely impacted their survivorship and viability. These effects were likely caused by increased tissue mortality of the coral polyps.« less
Environmental dust effects on aluminum surfaces in humid air ambient.
Yilbas, Bekir Sami; Hassan, Ghassan; Ali, Haider; Al-Aqeeli, Nasser
2017-04-05
Environmental dusts settle on surfaces and influence the performance of concentrated solar energy harvesting devices, such as aluminum troughs. The characteristics of environmental dust and the effects of mud formed from the dust particles as a result of water condensing in humid air conditions on an aluminum wafer surface are examined. The dissolution of alkaline and alkaline earth compounds in water condensate form a chemically active mud liquid with pH 8.2. Due to gravity, the mud liquid settles at the interface of the mud and the aluminum surface while forming locally scattered patches of liquid films. Once the mud liquid dries, adhesion work to remove the dry mud increases significantly. The mud liquid gives rise to the formation of pinholes and local pit sites on the aluminum surface. Morphological changes due to pit sites and residues of the dry mud on the aluminum surface lower the surface reflection after the removal of the dry mud from the surface. The characteristics of the aluminum surface can address the dust/mud-related limitations of reflective surfaces and may have implications for the reductions in the efficiencies of solar concentrated power systems.
Environmental dust effects on aluminum surfaces in humid air ambient
Yilbas, Bekir Sami; Hassan, Ghassan; Ali, Haider; Al-Aqeeli, Nasser
2017-01-01
Environmental dusts settle on surfaces and influence the performance of concentrated solar energy harvesting devices, such as aluminum troughs. The characteristics of environmental dust and the effects of mud formed from the dust particles as a result of water condensing in humid air conditions on an aluminum wafer surface are examined. The dissolution of alkaline and alkaline earth compounds in water condensate form a chemically active mud liquid with pH 8.2. Due to gravity, the mud liquid settles at the interface of the mud and the aluminum surface while forming locally scattered patches of liquid films. Once the mud liquid dries, adhesion work to remove the dry mud increases significantly. The mud liquid gives rise to the formation of pinholes and local pit sites on the aluminum surface. Morphological changes due to pit sites and residues of the dry mud on the aluminum surface lower the surface reflection after the removal of the dry mud from the surface. The characteristics of the aluminum surface can address the dust/mud-related limitations of reflective surfaces and may have implications for the reductions in the efficiencies of solar concentrated power systems. PMID:28378798
The use of red mud as an immobiliser for metal/metalloid-contaminated soil: A review.
Hua, Yumei; Heal, Kate V; Friesl-Hanl, Wolfgang
2017-03-05
This review focuses on the applicability of red mud as an amendment for metal/metalloid-contaminated soil. The varying properties of red muds from different sources are presented as they influence the potentially toxic element (PTE) concentration in amended soil. Experiments conducted worldwide from the laboratory to the field scale are screened and the influencing parameters and processes in soils are highlighted. Overall red mud amendment is likely to contribute to lowering the PTE availability in contaminated soil. This is attributed to the high pH, Fe and Al oxide/oxyhydroxide content of red mud, especially hematite, boehmite, gibbsite and cancrinite phases involved in immobilising metals/metalloids. In most cases red mud amendment resulted in a lowering of metal concentrations in plants. Bacterial activity was intensified in red mud-amended contaminated soil, suggesting the toxicity from PTEs was reduced by red mud, as well as indirect effects due to changes in soil properties. Besides positive effects of red mud amendment, negative effects may also appear (e.g. increased mobility of As, Cu) which require site-specific risk assessments. Red mud remediation of metal/metalloid contaminated sites has the potential benefit of reducing red mud storage and associated problems. Copyright © 2016 Elsevier B.V. All rights reserved.
Clueless Newbies in the MUDs: An Introduction to Multiple-User Environments.
ERIC Educational Resources Information Center
LeNoir, W. David
1998-01-01
Describes Multiple-User Dungeons (MUDs), multiple-user computer programs that allow participants to interact with others in "real time" exchanges. Discusses their potential in the writing classroom and beyond, and notes their potential for faculty development activities. Offers a list of Internet resources, some actual MUD addresses, and other…
Valorisation of waste ilmenite mud in the manufacture of sulphur polymer cement.
Contreras, Manuel; Gázquez, Manuel Jesús; García-Díaz, Irene; Alguacil, Francisco J; López, Félix A; Bolívar, Juan Pedro
2013-10-15
This paper reports the preparation of sulphur polymer cements (SPCs) incorporating waste ilmenite mud for use in concrete construction works. The ilmenite mud raw material and the mud-containing SPCs (IMC-SPCs) were characterised physico-chemically and radiologically. The optimal IMC-SPC mixture had a sulphur/mud ratio (w/w) of 1.05 (mud dose 20 wt%); this cement showed the greatest compressive strength (64 MPa) and the lowest water absorption coefficient (0.4 g cm(-2) at 28 days). Since ilmenite mud is enriched in natural radionuclides, such as radium isotopes (2.0·10(3) Bq kg(-1)(228)Ra and 5.0·10(2) Bq kg(-1)(226)Ra), the IMC-SPCs were subjected to leaching experiments, which showed their environmental impact to be negligible. The activity concentration indices for the different radionuclides in the IMC-SPCs containing 10% and 20% ilmenite mud met the demands of international standards for materials used in the construction of non-residential buildings. Copyright © 2013 Elsevier Ltd. All rights reserved.
Toxicity of used drilling fluids to mysids (Mysidopsis bahia)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaetz, C.T.; Montgomery, R.; Duke, T.W.
1986-01-01
Static, acute toxicity tests were conducted with mysids (Mysidopsis bahia) and 11 used drilling fluids (also called drilling muds) obtained from active drilling platforms in the Gulf of Mexico, U.S.A. Each whole mud was tested, along with three phases of each mud: a liquid phase with all particulate materials removed; a suspended particulate phase composed of soluble and lighter particulate fractions; and a solid phase composed mainly of drill cuttings and rapidly settling particulates. These muds represented seven of the eight generic mud types described by the U.S. Environmental Protection Agency for use on the U.S. Outer Continental Shelf. Themore » toxicity of the 11 muds tested was apparently enhanced by the presence of aromatics. Furthermore, one mud tested repeatedly showed loss of toxicity with time, possibly from volatilization of aromatic fractions. The data demonstrated that aromatics in the drilling fluids affected their toxicity to M. bahia.« less
Hydrogeochemical exploration of geothermal prospects in the Tecuamburro Volcano region, Guatemala
Janik, C.J.; Goff, F.; Fahlquist, L.; Adams, A.I.; Alfredo, Roldan M.; Chipera, S.J.; Trujillo, P.E.; Counce, D.
1992-01-01
Chemical and isotopic analyses of thermal and nonthermal waters and of gases from springs and fumaroles are used to evaluate the geothermal potential of the Tecuamburro Volcano region, Guatemala. Chemically distinct geothermal surface manifestations generally occur in separate hydrogeologic areas within this 400 km2 region: low-pressure fumaroles with temperatures near local boiling occur at 1470 m elevation in a sulfur mine near the summit of Tecuamburro Volcano; non-boiling acid-sulfate hot springs and mud pots are restricted to the Laguna Ixpaco area, about 5 km NNW of the sulfur mine and 350-400 m lower in elevation; steam-heated and thermal-meteoric waters are found on the flanks of Tecuamburro Volcano and several kilometers to the north in the andesitic highland, where the Infernitos fumarole (97??C at 1180 m) is the primary feature; neutral-chloride hot springs discharge along Rio Los Esclavos, principally near Colmenares at 490 m elevation, about 8-10 km SE of Infernitos. Maximum geothermometer temperatures calculated from Colmenares neutral-chloride spring compositions are ???180??C, whereas maximum subsurface temperatures based on Laguna Ixpaco gas compositions are ???310??C. An exploration core hole drilled to a depth of 808 m about 0.3 km south of Laguna Ixpaco had a bottom-hole temperature of 238??C but did not produce sufficient fluids to confirm or chemically characterize a geothermal reservoir. Hydrogeochemical data combined with regional geologic interpretations indicate that there are probably two hydrothermal-convection systems, which are separated by a major NW-trending structural boundary, the Ixpaco fault. One system with reservoir temperatures near 300??C lies beneath Tecuamburro Volcano and consists of a large vapor zone that feeds steam to the Laguna Ixpaco area, with underlying hot water that flows laterally to feed a small group of warm, chloriderich springs SE of Tecuamburro Volcano. The other system is located beneath the Infernitos area in the andesitic highland and consists of a lower-temperature (150-190??C) reservoir with a large natural discharge that feeds the Colmenares hot springs. ?? 1992.
Rassulova, M A; Siziakova, L A; Aĭrapetova, N S
2009-01-01
The influence of application of naftalan and therapeutic muds on clinical and roentgenological parameters, external respiration function, biochemical and immunological characteristics of the inflammatory process was studied in 82 patients presenting with protracted pneumonia and compared with the outcome of therapy using no physical factors. The application of naftalan and therapeutic muds was shown to reduce activity of inflammatory processes, improve airway patency and the state ofbronchial mucosa. Naftalan produced better therapeutic effect than muds.
Mars Habitability, Biosignature Preservation, and Mission Support
NASA Technical Reports Server (NTRS)
Oehler, Dorothy Z.; Allen, Carlton C.
2014-01-01
Our work has elucidated a new analog for the formation of giant polygons on Mars, involving fluid expulsion in a subaqueous environment. That work is based on three-dimensional (3D) seismic data on Earth that illustrate the mud volcanoes and giant polygons that result from sediment compaction in offshore settings. The description of this process has been published in the journal Icarus, where it will be part of a special volume on Martian analogs. These ideas have been carried further to suggest that giant polygons in the Martian lowlands may be the signature of an ancient ocean and, as such, could mark a region of enhanced habitability. A paper describing this hypothesis has been published in the journal Astrobiology.
Volcanology by Courier: Science in Stamps.
ERIC Educational Resources Information Center
Glenn, William H.
1981-01-01
Summarized are five activities involving collection of postage stamps picturing volcanoes or related scenes for use as part of or at the conclusion of the study of volcanoes. Activity topics include volcanic features, location of volcanoes, related land features where volcanoes are not located, and making one's own volcano stamps. (DS)
Chronology and References of Volcanic Eruptions and Selected Unrest in the United States, 1980-2008
Diefenbach, Angela K.; Guffanti, Marianne; Ewert, John W.
2009-01-01
The United States ranks as one of the top countries in the world in the number of young, active volcanoes within its borders. The United States, including the Commonwealth of the Northern Mariana Islands, is home to approximately 170 geologically active (age <10,000 years) volcanoes. As our review of the record shows, 30 of these volcanoes have erupted since 1980, many repeatedly. In addition to producing eruptions, many U.S. volcanoes exhibit periods of anomalous activity, unrest, that do not culminate in eruptions. Monitoring volcanic activity in the United States is the responsibility of the U.S. Geological Survey (USGS) Volcano Hazards Program (VHP) and is accomplished with academic, Federal, and State partners. The VHP supports five Volcano Observatories - the Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Yellowstone Volcano Observatory (YVO), Long Valley Observatory (LVO), and Hawaiian Volcano Observatory (HVO). With the exception of HVO, which was established in 1912, the U.S. Volcano Observatories have been established in the past 27 years in response to specific volcanic eruptions or sustained levels of unrest. As understanding of volcanic activity and hazards has grown over the years, so have the extent and types of monitoring networks and techniques available to detect early signs of anomalous volcanic behavior. This increased capability is providing us with a more accurate gauge of volcanic activity in the United States. The purpose of this report is to (1) document the range of volcanic activity that U.S. Volcano Observatories have dealt with, beginning with the 1980 eruption of Mount St. Helens, (2) describe some overall characteristics of the activity, and (3) serve as a quick reference to pertinent published literature on the eruptions and unrest documented in this report.
NASA Astrophysics Data System (ADS)
Johnston, R.; Ryan, J. G.
2017-12-01
In the Mariana subduction system, active serpentinite mud volcanoes are associated with the subduction of the Pacific plate beneath the Philippine Sea plate in a non-accretionary convergent plate margin. We are examining the systematics of As and other fluid-mobile trace elements (FME: Cs, Rb, Pb, B, Li) in serpentinized ultramafic clasts and serpentinite muds recovered during IODP Expedition 366 and previous ODP Legs (125, 195) to constrain the role of slab-derived fluids and the P-T° conditions at which fluids are mobilized. Arsenic concentrations in Exp. 366 serpentinites range from 0.08-2 ppm, while Cs varies from 0.001-0.9 ppm, Rb from 0.05-20 ppm and Pb varies from 0.02-10 ppm. The two different seamount summit sites examined (Yinazao: 55 km distance to trench; Asut Tesoru: 72 km to trench) (Hulme, 2010) show marked mobile element abundance differences, with Yinazao serpentinites showing lower As, Cs and Rb, and higher Pb contents than those from Asut Tesoru. Serpentinite mud samples from each seamount are on average higher in FME abundances than are associated serpentinized clasts, though their ranges overlap. Entrained mafic clasts are as high or higher in FME than the serpentinites, perhaps pointing to greater affinities for many of these elements during fluid-rock exchange. Asut Tesoru serpentinites are similar in As, Cs, and Rb abundances to those from S. Chamorro and Conical Seamounts (Savov et al 2005;2007), which also reflect greater distances to trench (78 and 86 km, respectively)(Hulme, 2010). The patterns of serpentinite FME abundances from seamount to seamount mimic to a great degree the dichotomy in cation abundances observed in their associated porefluids, where B and K are markedly lower, and Sr and Ca are markedly higher in Yinazao summit fluids than at the summits of Asut Tesoru, S. Chamorro, or Conical. These abrupt changes in serpentinite and fluid compositions likely reflect the initiation of carbonate and clay breakdown reactions on the downgoing plate in the earliest stages of subduction metamorphism.
NASA Astrophysics Data System (ADS)
Zimmermann, Mark; Ruggerone, Gregory T.; Freymueller, Jeffrey T.; Kinsman, Nicole; Ward, David H.; Hogrefe, Kyle R.
2018-03-01
We quantified the shallowing of the seafloor in five of six bays examined in the Chignik region of the Alaska Peninsula, confirming National Ocean Service observations that 1990s hydrographic surveys were shallower than previous surveys from the 1920s. Castle Bay, Chignik Lagoon, Hook Bay, Kujulik Bay and Mud Bay lost volume as calculated from Mean Lower Low Water (Chart Datum) to the deepest depths and four of these sites lost volume from Mean High Water to the deepest depths. Calculations relative to each datum were made because tidal datum records exhibited an increase in tidal range in this region from the 1920s to the 1990s. Our analysis showed that Mud Bay is quickly disappearing while Chignik Lagoon is being reduced to narrow channels. Anchorage Bay was the only site that increased in depth over time, perhaps due to erosion. Volcanoes dominate the landscape of the Chignik area. They have blanketed the region in deep ash deposits before the time frame of this study, and some have had smaller ash-producing eruptions during the time frame of this study. Remobilization of land-deposited ash and redeposition in marine areas - in some locations facilitated by extensive eelgrass (Zostera marina) beds (covering 54% of Chignik Lagoon and 68% of Mud Bay in 2010) - is the most likely cause of shallowing in the marine environment. Loss of shallow water marine habitat may alter future abundance and distribution of several fish, invertebrate and avian species.
Three active volcanoes in China and their hazards
NASA Astrophysics Data System (ADS)
Wei, H.; Sparks, R. S. J.; Liu, R.; Fan, Q.; Wang, Y.; Hong, H.; Zhang, H.; Chen, H.; Jiang, C.; Dong, J.; Zheng, Y.; Pan, Y.
2003-02-01
The active volcanoes in China are located in the Changbaishan area, Jingbo Lake, Wudalianchi, Tengchong and Yutian. Several of these volcanoes have historical records of eruption and geochronological evidence of Holocene activity. Tianchi Volcano is a well-preserved Cenozoic polygenetic central volcano, and, due to its recent history of powerful explosive eruptions of felsic magmas, with over 100,000 people living on its flanks is a high-risk volcano. Explosive eruptions at 4000 and 1000 years BP involved plinian and ignimbrite phases. The Millennium eruption (1000 years BP) involved at least 20-30 km 3 of magma and was large enough to have a global impact. There are 14 Cenozoic monogenetic scoria cones and associated lavas with high-K basalt composition in the Wudalianchi volcanic field. The Laoheishan and Huoshaoshan cones and related lavas were formed in 1720-1721 and 1776 AD. There are three Holocene volcanoes, Dayingshan, Maanshan, and Heikongshan, among the 68 Quaternary volcanoes in the Tengchong volcanic province. Three of these volcanoes are identified as active, based on geothermal activity, geophysical evidence for magma, and dating of young volcanic rocks. Future eruptions of these Chinese volcanoes pose a significant threat to hundreds of thousands of people and are likely to cause substantial economic losses.
The New USGS Volcano Hazards Program Web Site
NASA Astrophysics Data System (ADS)
Venezky, D. Y.; Graham, S. E.; Parker, T. J.; Snedigar, S. F.
2008-12-01
The U.S. Geological Survey's (USGS) Volcano Hazard Program (VHP) has launched a revised web site that uses a map-based interface to display hazards information for U.S. volcanoes. The web site is focused on better communication of hazards and background volcano information to our varied user groups by reorganizing content based on user needs and improving data display. The Home Page provides a synoptic view of the activity level of all volcanoes for which updates are written using a custom Google® Map. Updates are accessible by clicking on one of the map icons or clicking on the volcano of interest in the adjacent color-coded list of updates. The new navigation provides rapid access to volcanic activity information, background volcano information, images and publications, volcanic hazards, information about VHP, and the USGS volcano observatories. The Volcanic Activity section was tailored for emergency managers but provides information for all our user groups. It includes a Google® Map of the volcanoes we monitor, an Elevated Activity Page, a general status page, information about our Volcano Alert Levels and Aviation Color Codes, monitoring information, and links to monitoring data from VHP's volcano observatories: Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Long Valley Observatory (LVO), Hawaiian Volcano Observatory (HVO), and Yellowstone Volcano Observatory (YVO). The YVO web site was the first to move to the new navigation system and we are working on integrating the Long Valley Observatory web site next. We are excited to continue to implement new geospatial technologies to better display our hazards and supporting volcano information.
Heterogeneous Catalysts for VOC Oxidation from Red Mud and Bagasse Ash Carbon
NASA Astrophysics Data System (ADS)
Pande, Gaurav
A range of VOC oxidation catalysts have been prepared in this study from agricultural and industrial waste as the starting point. The aim is to prepare catalysts with non-noble metal oxides as the active catalytic component (iron in red mud). The same active component was also supported on activated carbon obtained from unburned carbon in bagasse ash. Red mud which is an aluminum industry waste and rich in different phases of iron as oxide and hydroxide is used as the source for the catalytically active species. It is our aim to enhance the catalytic performance of red mud which though high in iron concentration has a low surface area and may not have the properties of an ideal catalyst by itself. In one of the attempts to enhance the catalytic performance, we have tried to leach red mud for which we have explored a range of leaching acids for effecting the leaching most efficiently and then precipitated the iron from the leachate as its hydroxide by precipitating with alkali solution followed by drying and calcination to give high surface area metal oxide material. Extensive surface characterization and VOC oxidation catalytic testing were performed for these solids. In a step to further enhance the catalytic activity towards oxidation, copper was introduced by taking another industrial waste from the copper tubing industry viz. the pickling acid. Copper has a more favourable redox potential making it catalytically more effective than iron. To make the mixed metal oxide, red mud leachate was mixed with the pickling acid in a pre-decided ratio before precipitating with alkali solution followed by drying and calcination as was done with the red mud leachate. The results from these experiments are encouraging. The temperature programmed reduction (TPR) of the solids show that the precipitate of red mud leachates show hydrogen uptake peak at a lower temperature than for just the calcined red mud. This could be due to the greatly enhanced surface area of the prepared solids. The highest surface area of 311 m2/g was for the sample prepared from oxalic acid and l-ascorbic acid as the leaching acid; as received red mud has a surface area of 11.5 m2/g. This sample showed better catalytic performance than the ones made from hydrochloric acid as the leaching acid in spite of a similar increase in surface area. High temperature XRD shows the reason for this difference in catalytic properties could be due to both the solids reducing in a different way to give different phases though they are both derived from red mud as the starting material. Also, the sample prepared with oxalic acid leachate had higher surface iron concentration. For the best catalyst (oxalic acid derived) the light off temperature is about 300 °C for toluene oxidation. For solids prepared from red mud leachate for iron source and pickling acid for copper source, it was seen that the TPR gave hydrogen absorption at temperatures even lower than that for red mud leachate precipitates. In another set of experiments, iron oxide impregnated on activated carbon supports were prepared. Activated carbon is known for its adsorption properties which could give a better access of the impregnated metal oxide catalyst to perform the catalytic oxidation on the adsorbed substrate. Unburned carbon in bagasse ash which is a sugar industry agricultural waste was used to get the activated carbon. This material was separated from the ash and further modified to enhance the activity and increase the porosity. To this effect steam activation was performed. To impart thermal stability for oxidation reaction, the carbon was impregnated by phosphoric acid at activated at high temperatures in inert atmosphere. These carbons were thermally stable due to the surface C--O--P groups. Toluene adsorption studies were also performed for both the steam activated as well as phosphoric acid activated carbon and it was found that the steam activated carbons with less surface oxygen had reasonable adsorption attributes. For iron impregnation onto the prepared bagasse ash carbons, two different methods of impregnation viz. incipient wetness method as well as impregnation by precipitation of the red mud leachate by adding alkali to a slurry of carbon and leachate (Pratt method) was used. It was found that impregnation by precipitation led to better butanol oxidation performing catalyst than the one prepared by impregnating by incipient wetness method. The best performing catalyst amongst the iron impregnated on carbon types was found to give 100% butanol conversion at 200 °C. It was also observed that red mud leachate precipitated catalyst performed well for toluene oxidation and not for butanol oxidation while carbon supported iron oxide catalysts worked better for butanol oxidation than for toluene oxidation.
In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments.
Lee, Sang-Hwan; Lee, Jin-Soo; Choi, Youn Jeong; Kim, Jeong-Gyu
2009-11-01
Chemical stabilization is an in situ remediation method that uses inexpensive amendments to reduce contaminant availability in polluted soil. We tested the effects of several amendments (limestone, red-mud, and furnace slag) on the extractability of heavy metals, microbial activities, phytoavailability of soil metals (assessed using lettuce, Lactuca sativa L.), and availability of heavy metals in ingested soil to the human gastrointestinal system (assessed using the physiologically based extraction test). The application of soil amendments significantly decreased the amount of soluble and extractable heavy metals in the soil (p<0.05). The decreased extractable metal content of soil was accompanied by increased microbial activity and decreased plant uptake of heavy metals. Soil microbial activities (soil respiration, urease, and dehydrogenase activity) significantly increased in limestone and red-mud-amended soils. Red-mud was the most effective treatment in decreasing heavy-metal concentrations in lettuce. Compared to non-amended control soil, lettuce uptake of Cd, Pb, and Zn was reduced 86%, 58%, and 73%, respectively, by the addition of red-mud.
Volcanic hazards at Atitlan volcano, Guatemala
Haapala, J.M.; Escobar Wolf, R.; Vallance, James W.; Rose, William I.; Griswold, J.P.; Schilling, S.P.; Ewert, J.W.; Mota, M.
2006-01-01
Atitlan Volcano is in the Guatemalan Highlands, along a west-northwest trending chain of volcanoes parallel to the mid-American trench. The volcano perches on the southern rim of the Atitlan caldera, which contains Lake Atitlan. Since the major caldera-forming eruption 85 thousand years ago (ka), three stratovolcanoes--San Pedro, Toliman, and Atitlan--have formed in and around the caldera. Atitlan is the youngest and most active of the three volcanoes. Atitlan Volcano is a composite volcano, with a steep-sided, symmetrical cone comprising alternating layers of lava flows, volcanic ash, cinders, blocks, and bombs. Eruptions of Atitlan began more than 10 ka [1] and, since the arrival of the Spanish in the mid-1400's, eruptions have occurred in six eruptive clusters (1469, 1505, 1579, 1663, 1717, 1826-1856). Owing to its distance from population centers and the limited written record from 200 to 500 years ago, only an incomplete sample of the volcano's behavior is documented prior to the 1800's. The geologic record provides a more complete sample of the volcano's behavior since the 19th century. Geologic and historical data suggest that the intensity and pattern of activity at Atitlan Volcano is similar to that of Fuego Volcano, 44 km to the east, where active eruptions have been observed throughout the historical period. Because of Atitlan's moderately explosive nature and frequency of eruptions, there is a need for local and regional hazard planning and mitigation efforts. Tourism has flourished in the area; economic pressure has pushed agricultural activity higher up the slopes of Atitlan and closer to the source of possible future volcanic activity. This report summarizes the hazards posed by Atitlan Volcano in the event of renewed activity but does not imply that an eruption is imminent. However, the recognition of potential activity will facilitate hazard and emergency preparedness.
Abdul Razak, Rafiza; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Ismail, Khairul Nizar; Hardjito, Djwantoro; Yahya, Zarina
2015-01-01
This paper presents the mechanical function and characterization of an artificial lightweight geopolymer aggregate (ALGA) using LUSI (Sidoarjo mud) and alkaline activator as source materials. LUSI stands for LU-Lumpur and SI-Sidoarjo, meaning mud from Sidoarjo which erupted near the Banjarpanji-1 exploration well in Sidoarjo, East Java, Indonesia on 27 May 2006. The effect of NaOH molarity, LUSI mud/Alkaline activator (LM/AA) ratio, and Na2SiO3/NaOH ratio to the ALGA are investigated at a sintering temperature of 950 °C. The results show that the optimum NaOH molarity found in this study is 12 M due to the highest strength (lowest AIV value) of 15.79% with lower water absorption and specific gravity. The optimum LUSI mud/Alkaline activator (LM/AA) ratio of 1.7 and the Na2SiO3/NaOH ratio of 0.4 gives the highest strength with AIV value of 15.42% with specific gravity of 1.10 g/cm3 and water absorption of 4.7%. The major synthesized crystalline phases were identified as sodalite, quartz and albite. Scanning Electron Microscope (SEM) image showed more complete geopolymer matrix which contributes to highest strength of ALGA produced. PMID:26006238
NASA Technical Reports Server (NTRS)
Francis, P. W.; De Silva, S. L.
1989-01-01
A systematic study of the potentially active volcanoes in the Central Andes (14 deg S to 28 deg S) was carried out on the basis of Landsat Thematic Mapper images which provided consistent coverage of the area. More than 60 major volcanoes were identified as potentially active, as compared to 16 that are listed in the Catalog of Active Volcanoes of the World (Casertano, 1963; Hantke and Parodi, 1966). Most of these volcanoes are large (up to 6000 m in height) composite cones. Some of them could threaten nearby settlements, especially those in southern Peru, where the volcanoes rise above deep canyons with settlements along them.
Giant polygons and mounds in the lowlands of Mars: signatures of an ancient ocean?
Oehler, Dorothy Z; Allen, Carlton C
2012-06-01
This paper presents the hypothesis that the well-known giant polygons and bright mounds of the martian lowlands may be related to a common process-a process of fluid expulsion that results from burial of fine-grained sediments beneath a body of water. Specifically, we hypothesize that giant polygons and mounds in Chryse and Acidalia Planitiae are analogous to kilometer-scale polygons and mud volcanoes in terrestrial, marine basins and that the co-occurrence of masses of these features in Chryse and Acidalia may be the signature of sedimentary processes in an ancient martian ocean. We base this hypothesis on recent data from both Earth and Mars. On Earth, 3-D seismic data illustrate kilometer-scale polygons that may be analogous to the giant polygons on Mars. The terrestrial polygons form in fine-grained sediments that have been deposited and buried in passive-margin, marine settings. These polygons are thought to result from compaction/dewatering, and they are commonly associated with fluid expulsion features, such as mud volcanoes. On Mars, in Chryse and Acidalia Planitiae, orbital data demonstrate that giant polygons and mounds have overlapping spatial distributions. There, each set of features occurs within a geological setting that is seemingly analogous to that of the terrestrial, kilometer-scale polygons (broad basin of deposition, predicted fine-grained sediments, and lack of significant horizontal stress). Regionally, the martian polygons and mounds both show a correlation to elevation, as if their formation were related to past water levels. Although these observations are based on older data with incomplete coverage, a similar correlation to elevation has been established in one local area studied in detail with newer higher-resolution data. Further mapping with the latest data sets should more clearly elucidate the relationship(s) of the polygons and mounds to elevation over the entire Chryse-Acidalia region and thereby provide more insight into this hypothesis.
NASA Astrophysics Data System (ADS)
Casadevall, T. J.
2009-12-01
In June 2007, the US Department of State (DOS) requested assistance from the USGS to provide technical guidance and advice to the US Mission in Indonesia regarding the Lumpur Sidoarjo (LUSI) mud crisis. In May 2006, LUSI began as a mud eruption from a series of mud springs adjacent to an oil and gas exploration well being drilled near Surabaya, East Java, Indonesia. The production of mud and waters from the LUSI crater area has now continued for more than 3 years with no significant change in mud production rate (~110,000 cubic meters per day) nor in temperature of the mud (70-80 degrees C). Engineers suggest that mud production will continue at these rates for years to decades to come. Regardless of future activity at LUSI, the current mud accumulation of more than 100 million cubic meters poses a physical and environmental hazard which requires continuous monitoring and observation. The first response to the 2007 DOS request involved a site visit to Indonesia in September 2007. The result of that visit was to recommend to the Government of Indonesia (GOI) that they focus on long-term management of the mud rather than focus on the controversy as to the cause of the eruption or the debate about stopping the flow. Other recommendations from the initial 2007 technical visit included contracting for a US scientist to be co-located with engineers of the Sidoarjo Mud Management Board (BPLS) in Surabaya, East Java, to advise and consult on day-to-day developments at the site of the mud eruption. A second technical team visit by USGS scientists and an engineer from the US Army Corps of Engineers in October-November 2008 made additional recommendations on the long-term management of the mud and was followed in December by the start of a 6 month contract for the US mud adviser. From the start of activity in mid-2006 through late-2008, there was a clear sense of urgency at the US Mission in Indonesia to provide guidance and advice and included the personal intervention of the new US Ambassador. The USGS has completed the requests made in the June 2007 DOS cable, including an initial characterization of the mud and fluids; an analysis of land surface changes using the INSAR method; and an assessment of the seismic hazards in East Java. In the coming year, USGS will assist DOI agencies in the geophysical monitoring of the LUSI area and in the continued characterization of mud and fluids produced by the eruption.
Preliminary Reconnaissance of West Astringent Creek Thermal Area, Yellowstone National Park
NASA Astrophysics Data System (ADS)
Fairley, J. P., Jr.; Villegas, G.; Aunan, M. M.; Lindsey, C.; Sorensen, A.; Larson, P. B.
2016-12-01
The West Astringent Creek Thermal Area (WACTA) is one of the newest thermal areas in Yellowstone National Park (YNP). Thermal activity in the headwaters region of Astringent Creek, on the southeast edge of Sour Creek Dome, was rst noted in 1985; subsequent developments included the appearance of a high-temperature (104C) hydrothermal fumarole (which later metamorphosed into a mud volcano) and an area of tree-kill due to rising ground temperatures [Hutchinson, 1996]. We conducted a preliminary exploration of the hydrothermal area through visual evaluation of the spatial extent, location of the features, and nature of the hydrothermal area. 16 features were chosen based upon the following criteria: 1) initial appearance, 2) location in the thermal area, 3) location with respect to each other, and 4) accessibility. From these features we collected in-situ temperature and pH, as well as aqueous samples for geochemical analysis of cations, and deuterium and oxygen isotopes. With the information collected we will make a brief description of the thermal area and present a basis to conduct future research to obtain an amplified characterization of the WACTA.
NASA Astrophysics Data System (ADS)
Krueger, Martin; Mazzini, Adriano; Scheeder, Georg; Blumenberg, Martin
2017-04-01
The Lusi eruption represents one of the largest ongoing sedimentary hosted geothermal systems, which started in 2006 following an earthquake on Java Island. Since then it has been continuously producing hot and hydrocarbon rich mud from a central crater with peaks reaching 180.000 m3 per day. Numerous investigations focused on the study of microbial communities which thrive at offshore methane and oil seeps and mud volcanoes, however very little has been done on onshore seeping structures. Lusi represents a unique opportunity to complete a comprehensive study of onshore microbial communities fed by the seepage of CH4 as well as of liquid hydrocarbons originating from one or more km below the surface. While the source of the methane at Lusi is unambiuous, the origin of the seeping oil is still discussed. Both, source and maturity estimates from biomarkers, are in favor of a type II/III organic matter source. Likely the oils were formed from the studied black shales (deeper Ngimbang Fm.) which contained a Type III component in the Type II predominated organic matter. In all samples large numbers of active microorganisms were present. Rates for aerobic methane oxidation were high, as was the potential of the microbial communities to degrade different hydrocarbons. The data suggests a transition of microbial populations from an anaerobic, hydrocarbon-driven metabolism in fresher samples from center or from small seeps to more generalistic, aerobic microbial communities in older, more consolidated sediments. Ongoing microbial activity in crater sediment samples under high temperatures (80-95C) indicate a deep origin of the involved microorganisms. First results of molecular analyses of the microbial community compositions confirm the above findings. This study represents an initial step to better understand onshore seepage systems and provides an ideal analogue for comparison with the better investigated offshore structures.
Living on Active Volcanoes - The Island of Hawai'i
Heliker, Christina; Stauffer, Peter H.; Hendley, James W.
1997-01-01
People on the Island of Hawai'i face many hazards that come with living on or near active volcanoes. These include lava flows, explosive eruptions, volcanic smog, damaging earthquakes, and tsunamis (giant seawaves). As the population of the island grows, the task of reducing the risk from volcano hazards becomes increasingly difficult. To help protect lives and property, U.S. Geological Survey (USGS) scientists at the Hawaiian Volcano Observatory closely monitor and study Hawai'i's volcanoes and issue timely warnings of hazardous activity.
Feigl, Viktória; Ujaczki, Éva; Vaszita, Emese; Molnár, Mónika
2017-10-01
Red mud can be applied as soil ameliorant to acidic, sandy and micronutrient deficient soils. There are still knowledge gaps regarding the effects of red mud on the soil microbial community. The Biolog EcoPlate technique is a promising tool for community level physiological profiling. This study presents a detailed evaluation of Biolog EcoPlate data from two case studies. In experiment "A" red mud from Ajka (Hungary) was mixed into acidic sandy soil in soil microcosms at 5-50 w/w%. In experiement "B" red mud soil mixture was mixed into low quality subsoil in a field experiment at 5-50 w/w%. According to average well color development, substrate average well color development and substrate richness 5-20% red mud increased the microbial activity of the acidic sandy soil over the short term, but the effect did not last for 10months. Shannon diversity index showed that red mud at up to 20% did not change microbial diversity over the short term, but the diversity decreased by the 10th month. 30-50% red mud had deteriorating effect on the soil microflora. 5-20% red mud soil mixture in the low quality subsoil had a long lasting enhancing effect on the microbial community based on all Biolog EcoPlate parameters. However, 50% red mud soil mixture caused a decrease in diversity and substrate richness. With the Biolog EcoPlate we were able to monitor the changes of the microbial community in red mud affected soils and to assess the amount of red mud and red mud soil mixture applicable for soil treatment in these cases. Copyright © 2017 Elsevier B.V. All rights reserved.
Dewey, Evan B.; Sanchez, Desiree; Johnston, Christopher A.
2015-01-01
SUMMARY Multicellular animals have evolved conserved signaling pathways that translate cell polarity cues into mitotic spindle positioning to control the orientation of cell division within complex tissue structures. These oriented cell divisions are essential for the development of cell diversity and the maintenance of tissue homeostasis. Despite intense efforts, the molecular mechanisms that control spindle orientation remain incompletely defined. Here we describe a role for the Hippo (Hpo) kinase complex in promoting Partner of Inscuteable (Pins)-mediated spindle orientation. Knockdown of Hpo, Salvador (Sav), or Warts (Wts) each result in a partial loss of spindle orientation, a phenotype previously described following loss of the Pins-binding protein Mushroom body defect (Mud). Similar to orthologs spanning yeast to mammals, Wts kinase localizes to mitotic spindle poles, a prominent site of Mud localization. Wts directly phosphorylates Mud in vitro within its C-terminal coiled-coil domain. This Mud coiled-coil domain directly binds the adjacent Pins-binding domain to dampen the Pins/Mud interaction, and Wts-mediated phosphorylation uncouples this intramolecular Mud interaction. Loss of Wts prevents cortical Pins/Mud association without affecting Mud accumulation at spindle poles, suggesting phosphorylation acts as a molecular switch to specifically activate cortical Mud function. Finally, loss of Wts in Drosophila imaginal disc epithelial cells results in diminished cortical Mud and defective planar spindle orientation. Our results provide new insights into the molecular basis for dynamic regulation of the cortical Pins/Mud spindle positioning complex and highlight a novel link with an essential, evolutionarily-conserved cell proliferation pathway. PMID:26592339
Dewey, Evan B; Sanchez, Desiree; Johnston, Christopher A
2015-11-02
Multicellular animals have evolved conserved signaling pathways that translate cell polarity cues into mitotic spindle positioning to control the orientation of cell division within complex tissue structures. These oriented cell divisions are essential for the development of cell diversity and the maintenance of tissue homeostasis. Despite intense efforts, the molecular mechanisms that control spindle orientation remain incompletely defined. Here, we describe a role for the Hippo (Hpo) kinase complex in promoting Partner of Inscuteable (Pins)-mediated spindle orientation. Knockdown of Hpo, Salvador (Sav), or Warts (Wts) each result in a partial loss of spindle orientation, a phenotype previously described following loss of the Pins-binding protein Mushroom body defect (Mud). Similar to orthologs spanning yeast to mammals, Wts kinase localizes to mitotic spindle poles, a prominent site of Mud localization. Wts directly phosphorylates Mud in vitro within its C-terminal coiled-coil domain. This Mud coiled-coil domain directly binds the adjacent Pins-binding domain to dampen the Pins/Mud interaction, and Wts-mediated phosphorylation uncouples this intramolecular Mud interaction. Loss of Wts prevents cortical Pins/Mud association without affecting Mud accumulation at spindle poles, suggesting phosphorylation acts as a molecular switch to specifically activate cortical Mud function. Finally, loss of Wts in Drosophila imaginal disc epithelial cells results in diminished cortical Mud and defective planar spindle orientation. Our results provide new insights into the molecular basis for dynamic regulation of the cortical Pins/Mud spindle positioning complex and highlight a novel link with an essential, evolutionarily conserved cell proliferation pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kamchatka and North Kurile Volcano Explosive Eruptions in 2015 and Danger to Aviation
NASA Astrophysics Data System (ADS)
Girina, Olga; Melnikov, Dmitry; Manevich, Alexander; Demyanchuk, Yury; Nuzhdaev, Anton; Petrova, Elena
2016-04-01
There are 36 active volcanoes in the Kamchatka and North Kurile, and several of them are continuously active. In 2015, four of the Kamchatkan volcanoes (Sheveluch, Klyuchevskoy, Karymsky and Zhupanovsky) and two volcanoes of North Kurile (Alaid and Chikurachki) had strong and moderate explosive eruptions. Moderate gas-steam activity was observing of Bezymianny, Kizimen, Avachinsky, Koryaksky, Gorely, Mutnovsky and other volcanoes. Strong explosive eruptions of volcanoes are the most dangerous for aircraft because they can produce in a few hours or days to the atmosphere and the stratosphere till several cubic kilometers of volcanic ash and aerosols. Ash plumes and the clouds, depending on the power of the eruption, the strength and wind speed, can travel thousands of kilometers from the volcano for several days, remaining hazardous to aircraft, as the melting temperature of small particles of ash below the operating temperature of jet engines. The eruptive activity of Sheveluch volcano began since 1980 (growth of the lava dome) and is continuing at present. Strong explosive events of the volcano occurred in 2015: on 07, 12, and 15 January, 01, 17, and 28 February, 04, 08, 16, 21-22, and 26 March, 07 and 12 April: ash plumes rose up to 7-12 km a.s.l. and extended more 900 km to the different directions of the volcano. Ashfalls occurred at Ust'-Kamchatsk on 16 March, and Klyuchi on 30 October. Strong and moderate hot avalanches from the lava dome were observing more often in the second half of the year. Aviation color code of Sheveluch was Orange during the year. Activity of the volcano was dangerous to international and local aviation. Explosive-effusive eruption of Klyuchevskoy volcano lasted from 01 January till 24 March. Strombolian explosive volcanic activity began from 01 January, and on 08-09 January a lava flow was detected at the Apakhonchich chute on the southeastern flank of the volcano. Vulcanian activity of the volcano began from 10 January. Ashfalls occurred on 11 and 28 January, and 07 February at Kozyrevsk; and on 21 and 27 January, 05, 11, and 13-16 February at Klyuchi. Paroxysmal phase of the eruption displayed on 15 February: explosions sent ash up to 8 km a.s.l. during five hours, ash plumes drifted for about 1000 km mainly to the eastern directions of the volcano. A thermal anomaly began to noting at satellite images again from 28 August; and it was registering time to time till 31 December. Aviation color code of the volcano was Yellow on 01-11 January; Orange from 11 January to 15 February; Red on 15 February; Orange from 15 February to 25 March; Yellow from 25 March till 06 April; Green on 06-14 April; Yellow on 14-18 April; Orange on 18-26 April; Yellow from 26 April to 05 May; Orange on 05-13 May; Yellow from 13 May to 20 July; Green from 20 July to 28 August; Yellow from 28 August to 31 December. Activity of the volcano was dangerous to international and local aviation. Karymsky volcano has been in a state of explosive eruption since 1996. The moderate ash explosions of this volcano were noting during the year, ash plumes rose up to 5 km a.s.l. and extended more 300 km mainly to the eastern directions of the volcano. Aviation color code of the volcano was Orange during the year. Activity of the volcano was dangerous to local aviation. Explosive eruption of Zhupanovsky volcano began on 06 June, 2014, and finished 30 November, 2015. Explosions sent ash up to 8-11 km a.s.l. on 07-08 and 25 March, 12 July, and 30 November; and in the other days - up to 3.5-6 km a.s.l. Ash plumes extended for about 1200 km mainly to the eastern directions of the volcano. In the periods from 26 January to 06 February, 09-15 February, 23 February - 01 March, from 25 March to 03 April, from 04 April to 20 May, from 21 May to 08 June, from 16 June to 12 July, from 15 July to 27 November, the volcano was in a state of relative calm. The culminations of the 2014-2015 eruption of the volcano were explosions and collapses of parts of Priemysh active cone on 12 and 14 July, and 30 November, 2015. Aviation color code of the volcano was Orange from 01 January to 16 May; Yellow from 16 May to 08 June; Orange from 08 June to 19 July; Yellow on 19-20 July; Green from 20 July to 27 November; Orange from 27 November to 10 December; Yellow on 10-17 December; and Green on 17-31 December. Activity of the volcano was dangerous to international and local aviation. The eruptive activity of Chikurachki volcano lasted on 15-19 February. First explosions sent ash up to 7.5 km a.s.l., but later ash plumes drifted on the height about 3-4 km a.s.l. from the volcano. Aviation color code of the volcano was Orange during 16-22 February, and Yellow on 22-26 February. Activity of the volcano was dangerous to local aviation. The intensive thermal anomaly over Alaid volcano was detecting at satellite images from 01 October till 31 December. Aviation color code of the volcano was Yellow during this time. A strong gas-steam activity of the volcano sometimes was observing. Activity of the volcano was dangerous to local aviation.
Geologic evidence of earthquakes at the Snohomish Delta, Washington, in the past 1200 yr
Bourgeois, Joanne; Johnson, Samuel Y.
2001-01-01
Exposed channel banks along distributaries of the lower Snohomish delta in the Puget Lowland of Washingtonreveal evidence of at least three episodes of liquefaction, at least one event of abrupt subsidence, and at least one tsunami since ca. A.D. 800. The 45 measured stratigraphic sections consist mostly of 2-4 m of olive- gray, intertidal mud containing abundant marsh plant rhizomes. The most distinctive stratigraphic unit is a couplet comprising a 0.5-3-cm-thick, laminated, fining-upward, tsunami-laid sand bed overlain by 2-10 cm of gray clay. We correlated the couplet, which is generally approximately 2 m below the modern marsh surface, across an approximately 20 km (super 2) area. Sand dikes and sand-filled cracks to 1 m wide, which terminate upward at the couplet, and sand volcanoes preserved at the level of the sand bed record liquefaction at the same time as couplet deposition. Differences in the type and abundance of marsh plant rhizomes across the couplet horizon, as well as the gray clay layer, suggest that compaction during this liquefaction led to abrupt, local lowering of the marsh surface by as much as 50-75 cm. Radiocarbon ages show that the tsunami and liquefaction date from ca. A.D. 800 to 980, similar to the age of a large earthquake on the Seattle fault, 50 km to the south. We have found evidence for at least two, and possibly as many as five, other earthquakes in the measured sections. At two or more stratigraphic levels above the couplet, sand dikes locally feed sand volcanoes. Radiocarbon ages and stratigraphic position suggest that one set of these dikes formed ca. A.D. 910-990; radiocarbon ages on a younger set indicate a limiting maximum age of A.D. 1400-1640. We also interpret a sharp lithologic change, from olive-gray, rhizome-rich mud to grayer, rhizome-poor mud, approximately 1 m above the couplet, to indicate a second abrupt lowering of the marsh surface during an earthquake ca. A.D. 1040-1400, but no conclusive liquefaction structures have been identified at this horizon. Two distinctive coarse-sand laminae, 30-80 cm below the couplet, may record tsunamis older than A.D. 800. Thus, study shows that in the past approximately 1200 yr, this part of Washington's Puget Lowland has been subjected to stronger ground shaking than in historic times, since ca. 1870.
The STRATegy COLUMN for Precollege Science Teachers: Volcanic Activity.
ERIC Educational Resources Information Center
Metzger, Ellen Pletcher
1995-01-01
Describes resources for information and activities involving volcanoes. Includes an activity that helps students become familiar with the principal types of volcanoes and explores how the viscosity of magma affects the way a volcano erupts. (MKR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokoyama, I.
One may assume a center of volcanic activities beneath the edifice of an active volcano, which is here called the focus of the volcano. Sometimes it may be a ''magma reservoir''. Its depth may differ with types of magma and change with time. In this paper, foci of volcanoes are discussed from the viewpoints of four items: (1) Geomagnetic changes related with volcanic activities; (2) Crustal deformations related with volcanic activities; (3) Magma transfer through volcanoes; and (4) Subsurface structure of calderas.
Volcanoes: Nature's Caldrons Challenge Geochemists.
ERIC Educational Resources Information Center
Zurer, Pamela S.
1984-01-01
Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.…
Venezky, Dina Y.; Murray, Tom; Read, Cyrus
2008-01-01
Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.
Ubinas Volcano Activity in Peruvian Andes
2014-05-01
On April 28, 2014, NASA Terra spacecraft spotted signs of activity at Ubinas volcano in the Peruvian Andes. The appearance of a new lava dome in March 2014 and frequent ash emissions are signs of increasing activity at this volcano.
NASA Astrophysics Data System (ADS)
Bellaiche, Gilbert; Loncke, Lies; Gaullier, Virginie; Mascle, Jean; Courp, Thierry; Moreau, Alain; Radan, Silviu; Sardou, Olivier
2001-10-01
The meandrous leveed channels of the Nile Cone show clear evidence of avulsions. Their sedimentary architecture is founded on numerous stacked lens-shaped acoustic units. In the areas of the distal fan, lobe deposits are apparent from multichannel imagery. Huge debris flow deposits, sometimes associated with pockmarks, are recognized. Mud volcanoes and gas seeping are closely associated with faulting. In the East, a very long north-trending channel, originating from the Egyptian coast, merges with a network of channels, very probably originating from the Levantine coasts. Both networks outlet in the sedimentary basin located south of Cyprus.
Coupling at Mauna Loa and Kīlauea by stress transfer in an asthenospheric melt layer
Gonnermann, Helge M.; Foster, James H.; Poland, Michael; Wolfe, Cecily J.; Brooks, Benjamin A.; Miklius, Asta
2012-01-01
The eruptive activity at the neighbouring Hawaiian volcanoes, Kīlauea and Mauna Loa, is thought to be linked despite both having separate lithospheric magmatic plumbing systems. Over the past century, activity at the two volcanoes has been anti-correlated, which could reflect a competition for the same magma supply. Yet, during the past decade Kīlauea and Mauna Loa have inflated simultaneously. Linked activity between adjacent volcanoes in general remains controversial. Here we present a numerical model for the dynamical interaction between Kīlauea and Mauna Loa, where both volcanoes are coupled by pore-pressure diffusion, occurring within a common, asthenospheric magma supply system. The model is constrained by measurements of gas emission rates indicative of eruptive activity, and it is calibrated to match geodetic measurements of surface deformation at both volcanoes, inferred to reflect changes in shallow magma storage. Although an increase in the asthenospheric magma supply can cause simultaneous inflation of Kīlauea and Mauna Loa, we find that eruptive activity at one volcano may inhibit eruptions of the adjacent volcano, if there is no concurrent increase in magma supply. We conclude that dynamic stress transfer by asthenospheric pore pressure is a viable mechanism for volcano coupling at Hawai‘i, and perhaps for adjacent volcanoes elsewhere.
2014 volcanic activity in Alaska: Summary of events and response of the Alaska Volcano Observatory
Cameron, Cheryl E.; Dixon, James P.; Neal, Christina A.; Waythomas, Christopher F.; Schaefer, Janet R.; McGimsey, Robert G.
2017-09-07
The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2014. The most notable volcanic activity consisted of intermittent ash eruptions from long-active Cleveland and Shishaldin Volcanoes in the Aleutian Islands, and two eruptive episodes at Pavlof Volcano on the Alaska Peninsula. Semisopochnoi and Akutan volcanoes had seismic swarms, both likely the result of magmatic intrusion. The AVO also installed seismometers and infrasound instruments at Mount Cleveland during 2014.
SmallWorld Behavior of the Worldwide Active Volcanoes Network: Preliminary Results
NASA Astrophysics Data System (ADS)
Spata, A.; Bonforte, A.; Nunnari, G.; Puglisi, G.
2009-12-01
We propose a preliminary complex networks based approach in order to model and characterize volcanoes activity correlation observed on a planetary scale over the last two thousand years. Worldwide volcanic activity is in fact related to the general plate tectonics that locally drives the faults activity, that in turn controls the magma upraise beneath the volcanoes. To find correlations among different volcanoes could indicate a common underlying mechanism driving their activity and could help us interpreting the deeper common dynamics controlling their unrest. All the first evidences found testing the procedure, suggest the suitability of this analysis to investigate global volcanism related to plate tectonics. The first correlations found, in fact, indicate that an underlying common large-scale dynamics seems to drive volcanic activity at least around the Pacific plate, where it collides and subduces beneath American, Eurasian and Australian plates. From this still preliminary analysis, also more complex relationships among volcanoes lying on different tectonic margins have been found, suggesting some more complex interrelationships between different plates. The understanding of eventually detected correlations could be also used to further implement warning systems, relating the unrest probabilities of a specific volcano also to the ongoing activity to the correlated ones. Our preliminary results suggest that, as for other many physical and biological systems, an underlying organizing principle of planetary volcanoes activity might exist and it could be a small-world principle. In fact we found that, from a topological perspective, volcanoes correlations are characterized by the typical features of small-world network: a high clustering coefficient and a low characteristic path length. These features confirm that global volcanoes activity is characterized by both short and long-range correlations. We stress here the fact that numerical simulation carried out in this work seems to agree with geological evidences (eg. the Pacific plate, South America volcanoes activity and so on). However a detailed analysis of numerical correlation pointed out in this work and geological implication requires a lot of effort and is still running. Thus this work represents preliminary contribution to better understand and clarify, from a geophysical point of view, the nature of planetary correlations among active volcanoes. Further work is still needed.
... Oregon have the most active volcanoes, but other states and territories have active volcanoes, too. A volcanic eruption may involve lava and other debris that can flow up to 100 mph, destroying everything in their ...
GPS-derived crustal deformation in Azerbaijan
NASA Astrophysics Data System (ADS)
Safarov, Rafig; Mammadov, Samir; Kadirov, Fakhraddin
2017-04-01
Crustal deformations of the Earth's crust in Azerbaijan were studied based on GPS measurements. The GPS velocity vectors for Azerbaijan, Iran, Georgia, and Armenia were used in order to estimate the deformation rates. It is found that compression is observable along the Greater Caucasus, in Gobustan, the Kura depression, Nakhchyvan Autonomous Republic, and adjacent areas of Iran. The axes of compression/contraction of the crust in the Greater Caucasus region are oriented in the S-NE direction. The maximum strain rate is observed in the zone of mud volcanism at the SHIK site (Shykhlar), which is marked by a sharp change in the direction of the compression axes (SW-NE). It is revealed that the deformation field also includes the zones where strain rates are very low. These zones include the Caspian-Guba and northern Gobustan areas, characterized by extensive development of mud volcanism. The extension zones are confined to the Lesser Caucasus and are revealed in the Gyadabei (GEDA) and Shusha (SHOU) areas. The analysis of GPS data for the territory of Azerbaijan and neighboring countries reveals the heterogeneous patterns of strain field in the region. This fact suggests that the block model is most adequate for describing the structure of the studied region. The increase in the number of GPS stations would promote increasing the degree of detail in the reconstructions of the deformation field and identifying the microplate boundaries.It is concluded that the predominant factor responsible for the eruption of mud volcanoes is the intensity of gasgeneration processes in the earth's interior, while deformation processes play the role of a trigger. The zone of the epicenters of strong earthquakes is correlated to the gradient zone in the crustal strain rates.
A Volcano Exploration Project Pu`u `O`o (VEPP) Exercise: Is Kilauea in Volcanic Unrest? (Invited)
NASA Astrophysics Data System (ADS)
Schwartz, S. Y.
2010-12-01
Volcanic activity captures the interest and imagination of students at all stages in their education. Analysis of real data collected on active volcanoes can further serve to engage students in higher-level inquiry into the complicated physical processes associated with volcanic eruptions. This exercise takes advantage of both student fascination with volcanoes and the recognized benefits of incorporating real, internet-accessible data to achieve its goals of enabling students to: 1) navigate a scientific website; 2) describe the physical events that produce volcano monitoring data; 3) identify patterns in geophysical time-series and distinguish anomalies preceding and synchronous with eruptive events; 4) compare and contrast geophysical time series and 5) integrate diverse data sets to assess the eruptive state of Kilauea volcano. All data come from the VEPP website (vepp.wr.usgs.gov) which provides background information on the historic activity and volcano monitoring methods as well as near-real time volcano monitoring data from the Pu`u `O`o eruptive vent on Kilauea Volcano. This exercise, designed for geology majors, has students initially work individually to acquire basic skills with volcano monitoring data interpretation and then together in a jigsaw activity to unravel the events leading up to and culminating in the July 2007 volcanic episode. Based on patterns established prior to the July 2007 event, students examine real-time volcano monitoring data to evaluate the present activity level of Kilauea volcano. This exercise will be used for the first time in an upper division Geologic Hazards class in fall 2010 and lessons learned including an exercise assessment will be presented.
Liu, James T; Hsu, Ray T; Yang, Rick J; Wang, Ya Ping; Wu, Hui; Du, Xiaoqin; Li, Anchun; Chien, Steven C; Lee, Jay; Yang, Shouye; Zhu, Jianrong; Su, Chih-Chieh; Chang, Yi; Huh, Chih-An
2018-03-09
Globally mud areas on continental shelves are conduits for the dispersal of fluvial-sourced sediment. We address fundamental issues in sediment dynamics focusing on how mud is retained on the seabed on shallow inner shelves and what are the sources of mud. Through a process-based comprehensive study that integrates dynamics, provenance, and sedimentology, here we show that the key mechanism to keep mud on the seabed is the water-column stratification that forms a dynamic barrier in the vertical that restricts the upward mixing of suspended sediment. We studied the 1000 km-long mud belt that extends from the mouth of the Changjiang (Yangtze) River along the coast of Zhejiang and Fujian Provinces of China and ends on the west coast of Taiwan. This mud belt system is dynamically attached to the fluvial sources, of which the Changjiang River is the primary source. Winter is the constructive phase when active deposition takes place of fine-grained sediment carried mainly by the Changjiang plume driven by Zhe-Min Coastal Currents southwestward along the coast.
Ambae Island, Vanuatu (South Pacific)
NASA Technical Reports Server (NTRS)
2005-01-01
The recently active volcano Mt. Manaro is the dominant feature in this shaded relief image of Ambae Island, part of the Vanuatu archipelago located 1400 miles northeast of Sydney, Australia. About 5000 inhabitants, half the island's population, were evacuated in early December from the path of a possible lahar, or mud flow, when the volcano started spewing clouds of steam and toxic gases 10,000 feet into the atmosphere. Last active in 1996, the 1496 meter (4908 ft.) high Hawaiian-style basaltic shield volcano features two lakes within its summit caldera, or crater. The ash and gas plume is actually emerging from a vent at the center of Lake Voui (at left), which was formed approximately 425 years ago after an explosive eruption. Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise,Washington, D.C. Location: 15.4 degree south latitude, 167.9 degrees east longitude Orientation: North toward the top, Mercator projection Size: 36.8 by 27.8 kilometers (22.9 by 17.3 miles) Image Data: shaded and colored SRTM elevation model Date Acquired: February 2000Li, Yuan-Cheng; Min, Xiao-Bo; Ke, Yong; Chai, Li-Yuan; Shi, Mei-Qing; Tang, Chong-Jian; Wang, Qing-Wei; Liang, Yan-Jie; Lei, Jie; Liu, De-Gang
2018-02-15
A new method in which Pb/Zn smelter waste containing arsenic and heavy metals (arsenic sludge), red mud and lime are utilized to prepare red mud-based cementitious material (RCM) is proposed in this study. XRD, SEM, FTIR and unconfined compressive strength (UCS) tests were employed to assess the physicochemical properties of RCM. In addition, ettringite and iron oxide-containing ettringite were used to study the hydration mechanism of RCM. The results show that the UCS of the RCM (red mud+arsenic sludge+lime) was higher than that of the binder (red mud+arsenic sludge). When the mass ratio of m (binder): m (lime) was 94:6 and then maintained 28days at ambient temperature, the UCS reached 12.05MPa. The red mud has potential cementitious characteristics, and the major source of those characteristics was the aluminium oxide. In the red mud-arsenic sludge-lime system, aluminium oxide was effectively activated by lime and gypsum to form complex hydration products. Some of the aluminium in ettringite was replaced by iron to form calcium sulfoferrite hydrate. The BCR and leaching toxicity results show that the leaching concentration was strongly dependent on the chemical speciation of arsenic and the hydration products. Therefore, the investigated red mud and arsenic sludge can be successfully utilized in cement composites to create a red mud-based cementitious material. Copyright © 2017 Elsevier B.V. All rights reserved.
Sensor web enables rapid response to volcanic activity
Davies, Ashley G.; Chien, Steve; Wright, Robert; Miklius, Asta; Kyle, Philip R.; Welsh, Matt; Johnson, Jeffrey B.; Tran, Daniel; Schaffer, Steven R.; Sherwood, Robert
2006-01-01
Rapid response to the onset of volcanic activity allows for the early assessment of hazard and risk [Tilling, 1989]. Data from remote volcanoes and volcanoes in countries with poor communication infrastructure can only be obtained via remote sensing [Harris et al., 2000]. By linking notifications of activity from ground-based and spacebased systems, these volcanoes can be monitored when they erupt.Over the last 18 months, NASA's Jet Propulsion Laboratory (JPL) has implemented a Volcano Sensor Web (VSW) in which data from ground-based and space-based sensors that detect current volcanic activity are used to automatically trigger the NASA Earth Observing 1 (EO-1) spacecraft to make highspatial-resolution observations of these volcanoes.
2011 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory
McGimsey, Robert G.; Maharrey, J. Zebulon; Neal, Christina A.
2014-01-01
The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near three separate volcanic centers in Alaska during 2011. The year was highlighted by the unrest and eruption of Cleveland Volcano in the central Aleutian Islands. AVO annual summaries no longer report on activity at Russian volcanoes.
Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2003
Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sanchez, John J.; McNutt, Stephen R.; Estes, Steve; Paskievitch, John
2004-01-01
The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988. The primary objectives of this program are the near real time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the calculated earthquake hypocenter and phase arrival data, and changes in the seismic monitoring program for the period January 1 through December 31, 2003.The AVO seismograph network was used to monitor the seismic activity at twenty-seven volcanoes within Alaska in 2003. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai volcanic cluster (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Okmok Caldera, Great Sitkin Volcano, Kanaga Volcano, Tanaga Volcano, and Mount Gareloi. Monitoring highlights in 2003 include: continuing elevated seismicity at Mount Veniaminof in January-April (volcanic unrest began in August 2002), volcanogenic seismic swarms at Shishaldin Volcano throughout the year, and low-level tremor at Okmok Caldera throughout the year. Instrumentation and data acquisition highlights in 2003 were the installation of subnetworks on Tanaga and Gareloi Islands, the installation of broadband installations on Akutan Volcano and Okmok Caldera, and the establishment of telemetry for the Okmok Caldera subnetwork. AVO located 3911 earthquakes in 2003.This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a description of earthquake detection, recording, analysis, and data archival systems; (3) a description of velocity models used for earthquake locations; (4) a summary of earthquakes located in 2003; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, and location quality statistics; daily station usage statistics; and all HYPOELLIPSE files used to determine the earthquake locations in 2003.
2013 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory
Dixon, James P.; Cameron, Cheryl; McGimsey, Robert G.; Neal, Christina A.; Waythomas, Chris
2015-08-14
The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2013. Beginning with the 2013 AVO Summary of Events, the annual description of the AVO seismograph network and activity, once a stand-alone publication, is now part of this report. Because of this change, the annual summary now contains an expanded description of seismic activity at Alaskan volcanoes. Eruptions occurred at three volcanic centers in 2013: Pavlof Volcano in May and June, Mount Veniaminof Volcano in June through December, and Cleveland Volcano throughout the year. None of these three eruptive events resulted in 24-hour staffing at AVO facilities in Anchorage or Fairbanks.
NASA Astrophysics Data System (ADS)
Mayberry, G. C.; Guffanti, M. C.; Luhr, J. F.; Venzke, E. A.; Wunderman, R. L.
2001-12-01
The awesome power and intricate inner workings of volcanoes have made them a popular subject with scientists and the general public alike. About 1500 known volcanoes have been active on Earth during the Holocene, approximately 50 of which erupt per year. With so much activity occurring around the world, often in remote locations, it can be difficult to find up-to-date information about current volcanism from a reliable source. To satisfy the desire for timely volcano-related information the Smithsonian Institution and US Geological Survey combined their strengths to create the Weekly Volcanic Activity Report. The Smithsonian's Global Volcanism Program (GVP) has developed a network of correspondents while reporting worldwide volcanism for over 30 years in their monthly Bulletin of the Global Volcanism Network. The US Geological Survey's Volcano Hazards Program studies and monitors volcanoes in the United States and responds (upon invitation) to selected volcanic crises in other countries. The Weekly Volcanic Activity Report is one of the most popular sites on both organization's websites. The core of the Weekly Volcanic Activity Report is the brief summaries of current volcanic activity around the world. In addition to discussing various types of volcanism, the summaries also describe precursory activity (e.g. volcanic seismicity, deformation, and gas emissions), secondary activity (e.g. debris flows, mass wasting, and rockfalls), volcanic ash hazards to aviation, and preventative measures. The summaries are supplemented by links to definitions of technical terms found in the USGS photoglossary of volcano terms, links to information sources, and background information about reported volcanoes. The site also includes maps that highlight the location of reported volcanoes, an archive of weekly reports sorted by volcano and date, and links to commonly used acronyms. Since the Weekly Volcanic Activity Report's inception in November 2000, activity has been reported at over 60 volcanoes, with an average of 10 volcanoes discussed each week. Notable volcanic activity during November 2000-November 2001 included an eruption beginning on 6 February at Nyamuragira in the Democratic Republic of the Congo; it issued low-viscosity lava flows that traveled towards inhabited towns, and also produced ash clouds that adversely effected the health of residents and livestock near the volcano. Eruptions at Mayon in the Philippines on 24 June and 25 July caused local authorities to raise the alert to the highest level, close area airports, and evacuate thousands of residents near the volcano. Most recently a large flank eruption at Etna in Italy began on 17 July and gained worldwide attention as extensive lava flows threatened a small town and a tourist complex. While the information found in the Weekly Volcanic Activity Report, ranging from large eruptions to small precursory events, is of interest to the general public, it has also proven to be a valuable resource to volcano observatory staff, universities, researchers, secondary schools, and the aviation community.
Ye, Jie; Hu, Andong; Ren, Guoping; Zhou, Ting; Zhang, Guangming; Zhou, Shungui
2018-01-01
The role of red mud in the improvement of methanogenesis during sludge anaerobic digestion was innovatively investigated in this study. The results demonstrated that the addition of 20g/L red mud resulted in a 35.5% increase in methane accumulation. Red mud effectively promoted the hydrolysis-acidification of organic compounds in the sludge, which resulted in the increase of protein, polysaccharide, and VFAs by 5.1-94.5%. The activities of key enzymes were improved by 41.4-257.3%. Electrochemical measurements presented direct evidence that the electrical conductivity was significantly improved with red mud. More conductive magnetite was formed during the secondary mineralization after Fe(III) reduction by Fe (III)-reducing genes such as Clostridiaceae and Ruminococcaceae. The higher conductivity enhanced the electron transfer between the syntrophic bacteria (Geobacteraceae) and methanogens (Methanosaeta and Methanosarcina), and then improved the methanogenesis. This research provides a novel perspective on the synergism between sludge and red mud for methane production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Galileo Near-Infrared Mapping Spectrometer Detects Active Lava Flows at Prometheus Volcano, Io
1999-11-04
The active volcano Prometheus on Jupiter moon Io was imaged by NASA Galileo spacecraft during the close flyby of Io on Oct.10, 1999. The spectrometer can detect active volcanoes on Io by measuring their heat in the near-infrared wavelengths.
Explosions within a Deep Crater: Detection from Land and Space
NASA Astrophysics Data System (ADS)
Worden, A. K.; Dehn, J.; De Angelis, S.
2012-12-01
Many volcanoes in the North Pacific exhibit small scale explosive activity. This activity is typified by small explosions throwing ash, blocks, and spatter out of a central vent located within a crater. This material can be thrown out onto the flanks of the volcano if the vent is near enough to the crater rim. However, at some volcanoes, the vent is tens to hundreds of meters below the crater rim. The crater walls constrain the erupted material, causing it to fall back into the vent. Infill of material clogs the vent and can cause future explosions to become muffled. The depth of the crater also inhibits clear views of the vent for satellite remote sensing. In order for a satellite to record an image of a very deep vent, it requires very near vertical pass angle (satellite zenith angle). This viewing geometry is rare, meaning that the majority of images at such volcanoes will show the flanks or the crater walls, not the actual vent or crater floor. A method was developed for using satellite data to monitor the frequency of small explosive activity at numerous volcanoes. By determining the frequency of small explosions seen as thermal features in satellite imagery, a baseline of activity was determined. Any changes from this baseline are then used to indicate possible changes in the volcanic system or eruptive activity of the volcano. This method was used on data collected at Mt. Chuginadak (Cleveland) in Alaska, Karymsky Volcano in Russia, and Stromboli Volcano in Italy with good results. The method was then applied to Shishaldin Volcano in Alaska but was not as useful in determining the activity of the volcano due to the depth of Shishaldin's central crater (400m). This highlights the importance of multi-disciplinary and multi-sensor research to determine the actual activity at a volcano. For this project, explosions at Shishaldin Volcano were counted in both satellite data (thermal anomalies) and seismic data (explosion signals) for a time period from 2008-2010. These datasets are then compared to determine if there is a relationship that can be carried through the data, or if there is any other connecting factor to aid in the detection and monitoring of small scale explosive activity at volcanoes with vents deep within a crater. If a distinguishing factor can be verified by looking at a location with both satellite and seismic monitoring, it may aid in the monitoring of volcanoes where land based monitoring is not safe or financially viable.
The Alaska Volcano Observatory - Expanded Monitoring of Volcanoes Yields Results
Brantley, Steven R.; McGimsey, Robert G.; Neal, Christina A.
2004-01-01
Recent explosive eruptions at some of Alaska's 52 historically active volcanoes have significantly affected air traffic over the North Pacific, as well as Alaska's oil, power, and fishing industries and local communities. Since its founding in the late 1980s, the Alaska Volcano Observatory (AVO) has installed new monitoring networks and used satellite data to track activity at Alaska's volcanoes, providing timely warnings and monitoring of frequent eruptions to the aviation industry and the general public. To minimize impacts from future eruptions, scientists at AVO continue to assess volcano hazards and to expand monitoring networks.
Rainfall Generated Debris flows on Mount Shasta: July 21, 2015
NASA Astrophysics Data System (ADS)
Mikulovsky, R. P.; De La Fuente, J. A.; Courtney, A.; Bachmann, S.; Rodriguez, H.; Rust, B.; Schneider, F.; Veich, D.
2015-12-01
Convective storms on the evening of July 21, 2015 generated a number of debris flows on the SE flank of Mount Shasta Volcano, Shasta-Trinity National Forest. Widespread rilling, gullying and sheet erosion occurred throughout the affected area. These storms damaged roads by scouring drainage ditches, blocking culverts, eroding road prisms, and depositing debris where streams emerged from their incised channels and flowed over their alluvial fans. Effects were limited geographically to a narrow band about 6 miles wide trending in a northeasterly direction. Debris flows were identified at Pilgrim Creek and nearby channels, and Mud Creek appears to have experienced sediment laden flows rather than debris flows. Doppler radar data reveal that the storm cells remained nearly stationary for two hours before moving in a northeasterly direction. Debris flows triggered by convective storms occur often at Mount Shasta, with a similar event recorded in 2003 and a larger one in 1935, which also involved glacial melt. The 1935 debris flow at Whitney Creek buried Highway 97 north of Weed, CA, and took out the railroad above the highway. In September, 2014, a large debris flow occurred in Mud Creek, but it was associated solely with glacial melt and was not accompanied by rain. The 2014 event at Mud Creek filled the channel and parts of the floodplain with debris. This debris was in turn reworked and eroded by sediment laden flows on July 21, 2015. This study was initiated in August, 2015, and began with field inventories to identify storm effects. Lidar data will be used to identify possible avulsion points that could result in unexpected flash flooding outside of the main Mud Creek channel and on adjacent streams. The results of this study will provide critical information that can be used to assess flash flood risk and better understand how to manage those risks. Finally, some conclusions may be drawn on the kinds of warning systems that may be appropriate for possible flash flood events and possible effective road designs for stream crossings and road surface drainage.
NASA Astrophysics Data System (ADS)
Balagizi, Charles M.; Mahinda, Celestin K.; Yalire, Mathieu M.; Ciraba, Honoré M.; Mavonga, Georges T.
2017-04-01
Located within the western branch of the East African Rift System (EARS), the Virunga Volcanic Province is a young highly volcanically and seismically active region. It provides a unique opportunity to study deep mantle upwelling through the crust. Several Geohazards are encountered in this highly populated region, and include volcanic hazards (lava flows, volcanic gases and ash, …), earthquake hazard; landslide, mud flows and floods hazards. In addition, the overturn of Lake Kivu (which lies in the Kivu Graben, western branch of the EARS) could release huge CO2 and CH4 into the atmosphere. A few days after the January 17, 2002 Nyiragongo eruption whose lava flows devastated Goma city, destroying the houses of ˜120,000 people, forced a mass self-evacuation of ˜300,000 people of Goma (of estimated ˜400,000 inhabitants), and killed ˜140 people; the international scientific community deployed a "dream scientific team" to evaluate the state of Geohazards in the Virunga region. Particularly, the team had to check whether the stability of Lake Kivu that dissolves ˜300 and ˜60 km3 of CO2 and CH4 (at 0˚ C and 1 atm.) in its deep water was not disturbed due to Nyiragongo lava that entered the lake. Since 2002 several projects were funded with the main goal of accompanying the local scientific team to set up a more professional team to assess and continuous monitor Geohazards in the Virunga. For the time being, while Nyiragongo volcano solely threatens ˜1.5 million inhabitants of Goma (DR Congo) and Gisenyi (Rwanda) cities in addition to people living in the surrounding villages, and Lake Kivu threatening ˜3 million inhabitants of its catchment, the local scientists remain less qualified and equipped. Here we show that collaboration between Virunga local scientists and international scientists through the Geohazards Supersites network could be a most efficient pathway to improve Geohazards assessment and monitoring in the Virunga, and hence yield Disaster Risk Reduction in the region. Furthermore, the large amount of expected scientific results will provide new insights on the understanding of the continental rift process, thus promoting the advance of scientific research. The supersites initiative promotes broad international scientific collaboration and open access to a variety of space- and ground-based data, and hence improves geophysical scientific research and Geohazards assessment in support of Disaster Risk Reduction. Presently, the Goma Volcano Observatory collects ground-based seismic, geochemical (SO2, CO2, Rn, temperature) and ground-deformation (GPS, EDM and Extensometry) data, which, together with remote and additional ground-based data that could be collected through the supersites network; may improve Geohazards assessment and monitoring in the Virunga region.
NASA Astrophysics Data System (ADS)
Khan, A.
2016-12-01
Pitch Lake is located in the southwest peninsula of the island near La Brea in Trinidad and Tobago, covering an area of approximately 46 hectares. It was discovered in the year 1595 and is the largest of three natural asphalt lakes that exist on Earth. Pitch Lake is a large oval shaped reservoir composed of dominantly hydrocarbon compounds, but also includes minor amounts of clay and muddy water. It is a natural liquid asphalt desert, which is nourished by a form of petroleum consisting of mostly asphaltines from the surrounding oil-rich region. The hydrocarbons mix with mud and gases under high pressure during upward seepage, and the lighter portion evaporates or is volatilized, which produces a high-viscosity liquid asphalt residue. The residue on and near the surface is a hydrocarbon matrix, which poses extremely challenging environmental conditions to microorganisms characterized by an average low water activity in the range of 0.49 to 0.75, recalcitrant carbon substrates, and toxic chemical compounds. Nevertheless, an active microbial community of archaea and bacteria, many of them novel strains, was found to inhabit the liquid hydrocarbon matrix of Pitch Lake. Geochemical analyses of minerals, done by our team, which revealed sulfates, sulfides, silicates, and metals, normally associated with deep-water hydrothermal vents leads to our new hypothetical model to describe the origins of Pitch Lake and its importance to atmospheric and earth sciences. Pitch Lake is likely the terrestrial equivalent of an offshore submarine asphalt volcano just as La Brea Tar Pits are in some ways an on-land version of the asphalt volcanoes discovered off shore of Santa Barbara by Valentine et al. in 2010. Asphalt volcanism possibly also creates the habitat for chemosynthetic life that is widespread in this lake, as reported by Schulze-Makuch et al. in 2011 and Meckenstock et al. in 2014.
NASA Astrophysics Data System (ADS)
Gresse, Marceau; Vandemeulebrouck, Jean; Byrdina, Svetlana; Chiodini, Giovanni; Revil, André; Johnson, Timothy C.; Ricci, Tullio; Vilardo, Giuseppe; Mangiacapra, Annarita; Lebourg, Thomas; Grangeon, Jacques; Bascou, Pascale; Metral, Laurent
2017-11-01
The Solfatara volcano is the main degassing area of the Campi Flegrei caldera, characterized by 60 years of unrest. Assessing such renewal activity is a challenging task because hydrothermal interactions with magmatic gases remain poorly understood. In this study, we decipher the complex structure of the shallow Solfatara hydrothermal system by performing the first 3-D, high-resolution, electrical resistivity tomography of the volcano. The 3-D resistivity model was obtained from the inversion of 43,432 resistance measurements performed on an area of 0.68 km2. The proposed interpretation of the multiphase hydrothermal structures is based on the resistivity model, a high-resolution infrared surface temperature image, and 1,136 soil CO2 flux measurements. In addition, we realized 27 soil cation exchange capacity and pH measurements demonstrating a negligible contribution of surface conductivity to the shallow bulk electrical conductivity. Hence, we show that the resistivity changes are mainly controlled by fluid content and temperature. The high-resolution tomograms identify for the first time the structure of the gas-dominated reservoir at 60 m depth that feeds the Bocca Grande fumarole through a 10 m thick channel. In addition, the resistivity model reveals a channel-like conductive structure where the liquid produced by steam condensation around the main fumaroles flows down to the Fangaia area within a buried fault. The model delineates the emplacement of the main geological structures: Mount Olibano, Solfatara cryptodome, and tephra deposits. It also reveals the anatomy of the hydrothermal system, especially two liquid-dominated plumes, the Fangaia mud pool and the Pisciarelli fumarole, respectively.
Poland, Michael P.; Hamburger, Michael W.; Newman, Andrew V.
2006-01-01
At the very heart of volcanology lies the search for the 'plumbing systems' that form the inner workings of Earth’s active volcanoes. By their very nature, however, the magmatic reservoirs and conduits that underlie these active volcanic systems are elusive; mostly they are observable only through circumstantial evidence, using indirect, and often ambiguous, surficial measurements. Of course, we can infer much about these systems from geologic investigation of materials brought to the surface by eruptions and of the exposed roots of ancient volcanoes. But how can we study the magmatic processes that are occurring beneath Earth’s active volcanoes? What are the geometry, scale, physical, and chemical characteristics of magma reservoirs? Can we infer the dynamics of magma transport? Can we use this information to better forecast the future behavior of volcanoes? These questions comprise some of the most fundamental, recurring themes of modern research in volcanology. The field of volcano geodesy is uniquely situated to provide critical observational constraints on these problems. For the past decade, armed with a new array of technological innovations, equipped with powerful computers, and prepared with new analytical tools, volcano geodesists have been poised to make significant advances in our fundamental understanding of the behavior of active volcanic systems. The purpose of this volume is to highlight some of these recent advances, particularly in the collection and interpretation of geodetic data from actively deforming volcanoes. The 18 papers that follow report on new geodetic data that offer valuable insights into eruptive activity and magma transport; they present new models and modeling strategies that have the potential to greatly increase understanding of magmatic, hydrothermal, and volcano-tectonic processes; and they describe innovative techniques for collecting geodetic measurements from remote, poorly accessible, or hazardous volcanoes. To provide a proper context for these studies, we offer a short review of the evolution of volcano geodesy, as well as a case study that highlights recent advances in the field by comparing the geodetic response to recent eruptive episodes at Mount St. Helens. Finally, we point out a few areas that continue to challenge the volcano geodesy community, some of which are addressed by the papers that follow and which undoubtedly will be the focus of future research for years to come.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark Krauss
2010-07-01
This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 544, Cellars, Mud Pits, and Oil Spills, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 544 comprises the following 20 corrective action sites (CASs) located in Areas 2, 7, 9, 10, 12, 19, and 20 of the Nevada Test Site (NTS): • 02-37-08, Cellar & Mud Pit • 02-37-09, Cellar & Mud Pit • 07-09-01, Mud Pit • 09-09-46, U-9itsx20 PS #1A Mud Pit • 10-09-01, Mud Pit • 12-09-03, Mud Pit • 19-09-01, Mudmore » Pits (2) • 19-09-03, Mud Pit • 19-09-04, Mud Pit • 19-25-01, Oil Spill • 19-99-06, Waste Spill • 20-09-01, Mud Pits (2) • 20-09-02, Mud Pit • 20-09-03, Mud Pit • 20-09-04, Mud Pits (2) • 20-09-06, Mud Pit • 20-09-07, Mud Pit • 20-09-10, Mud Pit • 20-25-04, Oil Spills • 20-25-05, Oil Spills This plan provides the methodology for field activities needed to gather the necessary information for closing each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 544 using the SAFER process. Using the approach approved for previous mud pit investigations (CAUs 530–535), 14 mud pits have been identified that • are either a single mud pit or a system of mud pits, • are not located in a radiologically posted area, and • have no evident biasing factors based on visual inspections. These 14 mud pits are recommended for no further action (NFA), and further field investigations will not be conducted. For the sites that do not meet the previously approved closure criteria, additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible recommendation for closure of the remaining CASs in CAU 544. This will be presented in a closure report (CR) that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval. The sites will be investigated based on the data quality objectives (DQOs) developed on April 27, 2010, by representatives of NDEP and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for each CAS in CAU 544. The DQO process developed for this CAU identified the following expected closure options: (1) investigation and confirmation that no contamination exists above the final action levels (FALs) leading to an NFA declaration, (2) characterization of the nature and extent of contamination leading to closure in place with use restrictions, (3) clean closure by remediation and verification, (4) closure in place with use restrictions with no investigation if CASs are in crater areas that have been determined to be unsafe to enter, or (5) NFA if the mud pit CAS meets the criteria established during the CAUs 530–535 SAFER investigation. The following summarizes the SAFER activities that will support the closure of CAU 544: • Perform visual inspection of all CASs. • Perform site preparation activities (e.g., utilities clearances, construction of temporary site exclusion zones). • Removal of easily managed, nonhazardous, and nonradioactive debris, including vegetation (e.g., tumbleweeds), at various CASs that interfere with sampling, if required to inspect soil surface or collect soil sample. • Collect environmental samples from designated target populations (e.g., mud pits, cellars, stained soil) to confirm or disprove the presence of contaminants of concern (COCs) as necessary to supplement existing information. • If no COCs are present at a CAS, establish NFA as the corrective action. • If COCs exist, collect environmental samples from designated target populations (e.g., clean soil adjacent to contaminated soil) and submit for laboratory analyses to define the extent of COC contamination. • If a COC is present at a CAS, either - Establish clean closure as the corrective action. The material to be remediated will be removed, disposed of as waste, and verification samples will be collected from remaining soil, or - Establish closure in place as the corrective action and implement the appropriate use restrictions. • Confirm the preferred closure option is sufficient to protect human health and the environment.« less
Thematic mapper studies of Andean volcanoes
NASA Technical Reports Server (NTRS)
Francis, P. W.
1986-01-01
The primary objective was to identify all the active volcanoes in the Andean region of Bolivia. Morphological features of the Tata Sabaya volcano, Bolivia, were studied with the thematic mapper. Details include marginal levees on lava and pyroclastic flows, and summit crater structure. Valley glacier moraine deposits, not easily identified on the multispectral band scanner, were also unambiguous, and provide useful marker horizons on large volcanic edifices which were built up in preglacial times but which were active subsequently. With such high resolution imagery, it is not only possible to identify potentially active volcanoes, but also to use standard photogeological interpretation to outline the history of individual volcanoes.
Klyuchevskaya, Volcano, Kamchatka Peninsula, CIS
1991-05-06
STS039-151-179 (28 April-6 May 1991) --- A large format frame of one of the USSR's volcanic complex (Kamchatka area) with the active volcano Klyuchevskaya (Kloo-chevs'-ska-ya), 15,584 feet in elevation. The last reported eruption of the volcano was on April 8, but an ash and steam plume extending to the south was observed by the STS-39 crew almost three weeks later. The south side of the volcano is dirty from the ash fall and landslide activity. The summit is clearly visible, as is the debris flow from an earlier eruption. Just north of the Kamchatka River is Shiveluch, a volcano which was active in early April. There are more than 100 volcanic edifices recognized on Kamchatka, with 15 classified as active.
NASA Astrophysics Data System (ADS)
Yilbas, Bekir Sami.; Ali, Haider; Khaled, Mazen M.; Al-Aqeeli, Nasser; Abu-Dheir, Numan; Varanasi, Kripa K.
2015-10-01
Recent developments in climate change have increased the frequency of dust storms in the Middle East. Dust storms significantly influence the performances of solar energy harvesting systems, particularly (photovoltaic) PV systems. The characteristics of the dust and the mud formed from this dust are examined using various analytical tools, including optical, scanning electron, and atomic force microscopies, X-ray diffraction, energy spectroscopy, and Fourier transform infrared spectroscopy. The adhesion, cohesion and frictional forces present during the removal of dry mud from the glass surface are determined using a microtribometer. Alkali and alkaline earth metal compounds in the dust dissolve in water to form a chemically active solution at the glass surface. This solution modifies the texture of the glass surface, thereby increasing the microhardness and decreasing the transmittance of the incident optical radiation. The force required to remove the dry mud from the glass surface is high due to the cohesive forces that result from the dried mud solution at the interface between the mud and the glass. The ability altering the characteristics of the glass surface could address the dust/mud-related limitations of protective surfaces and has implications for efficiency enhancements in solar energy systems.
Yilbas, Bekir Sami; Ali, Haider; Khaled, Mazen M; Al-Aqeeli, Nasser; Abu-Dheir, Numan; Varanasi, Kripa K
2015-10-30
Recent developments in climate change have increased the frequency of dust storms in the Middle East. Dust storms significantly influence the performances of solar energy harvesting systems, particularly (photovoltaic) PV systems. The characteristics of the dust and the mud formed from this dust are examined using various analytical tools, including optical, scanning electron, and atomic force microscopies, X-ray diffraction, energy spectroscopy, and Fourier transform infrared spectroscopy. The adhesion, cohesion and frictional forces present during the removal of dry mud from the glass surface are determined using a microtribometer. Alkali and alkaline earth metal compounds in the dust dissolve in water to form a chemically active solution at the glass surface. This solution modifies the texture of the glass surface, thereby increasing the microhardness and decreasing the transmittance of the incident optical radiation. The force required to remove the dry mud from the glass surface is high due to the cohesive forces that result from the dried mud solution at the interface between the mud and the glass. The ability altering the characteristics of the glass surface could address the dust/mud-related limitations of protective surfaces and has implications for efficiency enhancements in solar energy systems.
UAVSAR Acquires False-Color Image of Galeras Volcano, Colombia
2013-04-03
This false-color image of Colombia Galeras Volcano, was acquired by UAVSAR on March 13, 2013. A highly active volcano, Galeras features a breached caldera and an active cone that produces numerous small to moderate explosive eruptions.
Klyuchevskaya, Volcano, Kamchatka Peninsula, CIS
NASA Technical Reports Server (NTRS)
1991-01-01
Klyuchevskaya, Volcano, Kamchatka Peninsula, CIS (56.0N, 160.5E) is one of several active volcanoes in the CIS and is 15,584 ft. in elevation. Fresh ash fall on the south side of the caldera can be seen as a dirty smudge on the fresh snowfall. Just to the north of the Kamchatka River is Shiveluch, a volcano which had been active a short time previously. There are more than 100 volcanic edifices recognized on Kamchatka, 15 of which are still active.
Neal, Christina A.; Herrick, Julie; Girina, O.A.; Chibisova, Marina; Rybin, Alexander; McGimsey, Robert G.; Dixon, Jim
2014-01-01
The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.
Giampieri, Francesca; Quiles, José L; Orantes-Bermejo, Francisco J; Gasparrini, Massimiliano; Forbes-Hernandez, Tamara Y; Sánchez-González, Cristina; Llopis, Juan; Rivas-García, Lorenzo; Afrin, Sadia; Varela-López, Alfonso; Cianciosi, Danila; Reboredo-Rodriguez, Patricia; Fernández-Piñar, Cristina Torres; Iglesias, Ruben Calderón; Ruiz, Roberto; Aparicio, Silvia; Crespo, Jorge; Dzul Lopez, Luis; Xiao, Jianbo; Battino, Maurizio
2018-02-01
During the process of beeswax recycling, many industrial derivatives are obtained. These matrices may have an interesting healthy and commercial potential but to date they have not been properly studied. The aim of the present work was to evaluate the proximal and phytochemical composition, the antioxidant capacity and cytotoxic effects of two by-products from beeswax recycling process named MUD 1 and MUD 2 on liver hepatocellular carcinoma. Our results showed that MUD 1 presented the highest (P < .05) fiber, protein, carbohydrate, polyphenol and flavonoid concentration, as well as the highest (P < .05) total antioxidant capacity than the MUD 2 samples. MUD1 exerted also anticancer activity on HepG2 cells, by reducing cellular viability, increasing intracellular ROS levels and affecting mitochondrial functionality in a dose-dependent manner. We showed for the first time that by-products from beeswax recycling process can represent a rich source of phytochemicals with high total antioxidant capacity and anticancer activity; however, further researches are necessary to evaluate their potentiality for human health by in vivo studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-19
... Aleutian arc chain of volcanoes. Landforms include mountains, active volcanoes, U-shaped valleys, glacial...-foot Shishaldin Volcano. Shishaldin Volcano is a designated National Natural Landmark. Alaska Maritime...
STS-68 radar image: Mt. Rainier, Washington
1994-10-01
STS068-S-052 (3 October 1994) --- This is a radar image of Mount Rainier in Washington state. The volcano last erupted about 150 years ago and numerous large floods and debris flows have originated on its slopes during the last century. Today the volcano is heavily mantled with glaciers and snow fields. More than 100,000 people live on young volcanic mud flows less than 10,000 years old and, are within the range of future, devastating mud slides. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the Space Shuttle Endeavour on its 20th orbit on October 1, 1994. The area shown in the image is approximately 59 by 60 kilometers (36.5 by 37 miles). North is toward the top left of the image, which was composed by assigning red and green colors to the L-Band, horizontally transmitted and vertically, and the L-Band, horizontally transmitted and vertically received. Blue indicates the C-Band, horizontally transmitted and vertically received. In addition to highlighting topographic slopes facing the Space Shuttle, SIR-C records rugged areas as brighter and smooth areas as darker. The scene was illuminated by the Shuttle's radar from the northwest so that northwest-facing slopes are brighter and southeast-facing slopes are dark. Forested regions are pale green in color, clear cuts and bare ground are bluish or purple; ice is dark green and white. The round cone at the center of the image is the 14,435 feet (4,399 meters) active volcano, Mount Rainier. On the lower slopes is a zone of rock ridges and rubble (purple to reddish) above coniferous forests (in yellow/green). The western boundary of Mount Rainier National Park is seen as a transition from protected, old-growth forest to heavily logged private land, a mosaic of recent clear cuts (bright purple/blue) and partially re-grown timber plantations (pale blue). The prominent river seen curving away from the mountain at the top of the image (to the northwest) is the White River, and the river leaving the mountain at the bottom right of the image (south) is the Nisqually River, which flows out of the Nisqually glacier on the mountain. The river leaving to the left of the mountain is the Carbon River, leading west and north toward heavily populated regions near Tacoma. The dark patch at the top right of the image is Bumping Lake. Other dark areas seen to the right of ridges throughout the image are radar shadow zones. Radar images can be used to study the volcanic structure and the surrounding regions with linear rock boundaries and faults. In addition, the recovery of forested lands from natural disasters and the success of re-forestation programs can also be monitored. Ultimately this data may be used to study the advance and retreat of glaciers and other forces of global change. Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. (P-44703)
NASA Astrophysics Data System (ADS)
Iacopini, David; Maestrelli, Daniele; Jihad, Ali; Bond, Clare; Bonini, Marco
2017-04-01
In recent years enormous attention has been paid to the understanding of the process and mechanism controlling the gas seepage and more generally the fluid expulsion affecting the earth system from onshore to offshore environment. This is because of their demonstrated impact to our environment, climate change and during subsea drilling operation. Several example from active and paleo system has been so far characterized and proposed using subsurface exploration, geophysical and geochemical monitoring technology approaches with the aims to explore what trigger and drive the overpressure necessary maintain the fluid/gas/material expulsion and what are the structure that act as a gateway for gaseous fluid and unconsolidated rock. In this contribution we explore a series of fluid escape structure (ranging from seepage pipes to large blowout pipes structure of km length) using 3D and partial stack seismic data from two distinctive passive margin from the north sea (Loyal field, West Shetland) and the Equatorial Brazil (Ceara' Basin). We will focuses on the characterization of the plumbing system internal architecture and, for selected example, exploring the AVO response (using partial stack) of the internal fluid/unconsolidated rock. The detailed seismic mapping and seismic attributes analysis of the conduit system helped us to recover some detail from the signal response of the chimney internal structures. We observed: (1) small to medium seeps and pipes following structural or sedimentary discontinuities (2) large pipes (probably incipient mud volcanoes) and blowup structures propagating upward irrespective of pre-existing fault by hydraulic fracturing and assisted by the buoyancy of a fluidised and mobilised mud-hydrocarbon mixture. The reflector termination observed inside the main conduits, the distribution of stacked bright reflectors and the AVO analysis suggests an evolution of mechanisms (involving mixture of gas, fluid and probably mud) during pipe birth and development, cycling through classical fluid escape pipes evoking non-Darcy flow to Darcy flow exploiting surrounding permeable bodies (during low fluid recharge period). Limit and uncertainty of the seismic data imaging the internal structure are still controlled by illumination factor, the lateral and vertical resolution (Fresnel. Tuning thickness) and scattering/noise effect of seismic wave when they interact with the plumbing system.
Fine-Scale Volume Heterogeneity in a Mixed Sand/Mud Sediment Off Fort Walton Beach, FL
2010-07-01
by Vaughan et al. [4]. Subsequent to the mud drape, wind-wave activity mobilized sediment and some of the mud layer was resuspended, and sand from...hardening effects, which is a common issue with polychromatic energy sources, such as the HD-500 and medical CT systems. Beam hardening is a process...provides a convenient characterization of levels of heterogeneity. The CV is defined as the standard devi - ation divided by the mean and multiplied by
Earth Observations taken by the Expedition 15 Crew
2007-07-10
ISS015-E-16913 (10 July 2007) --- Shiveluch Volcano, Kamchatka, Russian Far East is featured in this image photographed by an Expedition 15 crewmember on the International Space Station. Shiveluch is one of the biggest and most active of a line of volcanoes along the spine of the Kamchatka peninsula in easternmost Russia. In turn the volcanoes and peninsula are part of the tectonically active "Ring of Fire" that almost surrounds the Pacific Ocean, denoted by active volcanoes and frequent earthquakes. Shiveluch occupies the point where the northeast-trending Kamchatka volcanic line intersects the northwest-trending Aleutian volcanic line. Junctions such as this are typically points of intense volcanic activity. According to scientists, the summit rocks of Shiveluch have been dated at approximately 65,000 years old. Lava layers on the sides of the volcano reveal at least 60 major eruptions in the last 10,000 years, making it the most active volcano in the 2,200 kilometer distance that includes the Kamchatka peninsula and the Kuril island chain. Shiveluch rises from almost sea level to well above 3,200 miles (summit altitude 3,283 miles) and is often capped with snow. In this summer image however, the full volcano is visible, actively erupting ash and steam in late June or early July, 2007. The dull brown plume extending from the north of the volcano summit is most likely a combination of ash and steam (top). The two larger white plumes near the summit are dominantly steam, a common adjunct to eruptions, as rain and melted snow percolate down to the hot interior of the volcano. The sides of the volcano show many eroded stream channels. The south slope also reveals a long sloping apron of collapsed material, or pyroclastic flows. Such debris flows have repeatedly slid down and covered the south side of the volcano during major eruptions when the summit lava domes explode and collapse (this occurred during major eruptions in 1854 and 1964). Regrowth of the forest on the south slope (note the contrast with the eastern slope) has been foiled by the combined effects of continued volcanic activity, instability of the debris flows and the short growing season.
NASA Astrophysics Data System (ADS)
Cannavo, F.; Cannata, A.; Cassisi, C.
2017-12-01
The importance of assessing the ongoing status of active volcanoes is crucial not only for exposures to the local population but due to possible presence of tephra also for airline traffic. Adequately monitoring of active volcanoes, hence, plays a key role for civil protection purposes. In last decades, in order to properly monitor possible threats, continuous measuring networks have been designed and deployed on most of potentially hazardous volcanos. Nevertheless, at the present, volcano real-time surveillance is basically delegated to one or more human experts in volcanology, who interpret data coming from different kind of monitoring networks using their experience and non-measurable information (e.g. information from the field) to infer the volcano status. In some cases, raw data are used in some models to obtain more clues on the ongoing activity. In the last decades, with the development of volcano monitoring networks, huge amount of data of different geophysical, geochemical and volcanological types have been collected and stored in large databases. Having such big data sets with many examples of volcanic activity allows us to study volcano monitoring from a machine learning perspective. Thus, exploiting opportunities offered by the abundance of volcano monitoring time-series data we can try to address the following questions: Are the monitored parameters sufficient to discriminate the volcano status? Is it possible to infer/distinguish the volcano status only from the multivariate patterns of measurements? Are all the kind of measurements in the pattern equally useful for status assessment? How accurate would be an automatic system of status inference based only on pattern recognition of data? Here we present preliminary results of the data analysis we performed on a set of data and activity covering the period 2011-2017 at Mount Etna (Italy). In the considered period, we had 52 events of lava fountaining and long periods of Strombolian activity. We consider different state-of-the-art techniques of pattern recognition to try to answer the above questions. Results are objectively evaluated by using a cross-validation approach.
Radioactivity of peat mud used in therapy.
Karpińska, Maria; Mnich, Krystian; Kapała, Jacek; Bielawska, Agnieszka; Kulesza, Grzegorz; Mnich, Stanisław
2016-02-01
The aim of the study was to determine the contents of natural and artificial isotopes in peat mud and to estimate the radiation dose absorbed via skin in patients during standard peat mud treatment. The analysis included 37 samples collected from 8 spas in Poland. The measurements of isotope concentration activity were conducted with the use of gamma spectrometry methods. The skin dose in a standard peat mud bath therapy is approximately 300 nSv. The effective dose of such therapy is considered to be 22 nSv. The doses absorbed during peat mud therapy are 5 orders of magnitude lower than effective annual dose absorbed from the natural radiation background by a statistical Pole (3.5 mSv). Neither therapeutic nor harmful effect is probable in case of such a small dose of ionising radiation. Copyright © 2015 Elsevier Ltd. All rights reserved.
U.S. Geological Survey's Alert Notification System for Volcanic Activity
Gardner, Cynthia A.; Guffanti, Marianne C.
2006-01-01
The United States and its territories have about 170 volcanoes that have been active during the past 10,000 years, and most could erupt again in the future. In the past 500 years, 80 U.S. volcanoes have erupted one or more times. About 50 of these recently active volcanoes are monitored, although not all to the same degree. Through its five volcano observatories, the U.S. Geological Survey (USGS) issues information and warnings to the public about volcanic activity. For clarity of warnings during volcanic crises, the USGS has now standardized the alert-notification system used at its observatories.
July 1973 ground survey of active Central American volcanoes
NASA Technical Reports Server (NTRS)
Stoiber, R. E. (Principal Investigator); Rose, W. I., Jr.
1973-01-01
The author has identified the following significant results. Ground survey has shown that thermal anomalies of various sizes associated with volcanic activity at several Central American volcanoes should be detectable from Skylab. Anomalously hot areas of especially large size (greater than 500 m in diameter) are now found at Santiaguito and Pacaya volcanoes in Guatemala and San Cristobal in Nicaragua. Smaller anomalous areas are to be found at least seven other volcanoes. This report is completed after ground survey of eleven volcanoes and ground-based radiation thermometry mapping at these same points.
Science at the policy interface: volcano-monitoring technologies and volcanic hazard management
NASA Astrophysics Data System (ADS)
Donovan, Amy; Oppenheimer, Clive; Bravo, Michael
2012-07-01
This paper discusses results from a survey of volcanologists carried out on the Volcano Listserv during late 2008 and early 2009. In particular, it examines the status of volcano monitoring technologies and their relative perceived value at persistently and potentially active volcanoes. It also examines the role of different types of knowledge in hazard assessment on active volcanoes, as reported by scientists engaged in this area, and interviewees with experience from the current eruption on Montserrat. Conclusions are drawn about the current state of monitoring and the likely future research directions, and also about the roles of expertise and experience in risk assessment on active volcanoes; while local knowledge is important, it must be balanced with fresh ideas and expertise in a combination of disciplines to produce an advisory context that is conducive to high-level scientific discussion.
Iceland's Grímsvötn volcano erupts
NASA Astrophysics Data System (ADS)
Showstack, Randy
2011-05-01
About 13 months after Iceland's Eyjafjallajökull volcano began erupting on 14 April 2010, which led to extensive air traffic closures over Europe, Grímsvötn volcano in southeastern took its turn. Iceland's most active volcano, which last erupted in 2004 and lies largely beneath the Vatnajökull ice cap, began its eruption activity on 21 May, with the ash plume initially reaching about 20 kilometers in altitude, according to the Icelandic Meteorological Office. Volcanic ash from Grímsvötn has cancelled hundreds of airplane flights and prompted U.S. president Barack Obama to cut short his visit to Ireland. As Eos went to press, activity at the volcano was beginning to subside.
McGimsey, Robert G.; Neal, Christina A.; Girina, Olga A.; Chibisova, Marina; Rybin, Alexander
2014-01-01
The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, and reports of unusual activity at or near eight separate volcanic centers in Alaska during 2009. The year was highlighted by the eruption of Redoubt Volcano, one of three active volcanoes on the western side of Cook Inlet and near south-central Alaska's population and commerce centers, which comprise about 62 percent of the State's population of 710,213 (2010 census). AVO staff also participated in hazard communication and monitoring of multiple eruptions at ten volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.
Nighttime Look at Ambrym Volcano, Vanuatu by NASA Spacecraft
2014-02-12
Ambrym volcano in Vanuatu is one of the most active volcanoes in the world. A large summit caldera contains two active vent complexes, Marum and Benbow is seen in this February 12, 2014 nighttime thermal infrared image from NASA Terra spacecraft.
A Scientific Excursion: Volcanoes.
ERIC Educational Resources Information Center
Olds, Henry, Jr.
1983-01-01
Reviews an educationally valuable and reasonably well-designed simulation of volcanic activity in an imaginary land. VOLCANOES creates an excellent context for learning information about volcanoes and for developing skills and practicing methods needed to study behavior of volcanoes. (Author/JN)
Effects of mud supply on large-scale estuary morphology and development over centuries to millennia
NASA Astrophysics Data System (ADS)
Braat, Lisanne; van Kessel, Thijs; Leuven, Jasper R. F. W.; Kleinhans, Maarten G.
2017-10-01
Alluvial river estuaries consist largely of sand but are typically flanked by mudflats and salt marshes. The analogy with meandering rivers that are kept narrower than braided rivers by cohesive floodplain formation raises the question of how large-scale estuarine morphology and the late Holocene development of estuaries are affected by cohesive sediment. In this study we combine sand and mud transport processes and study their interaction effects on morphologically modelled estuaries on centennial to millennial timescales. The numerical modelling package Delft3D was applied in 2-DH starting from an idealised convergent estuary. The mixed sediment was modelled with an active layer and storage module with fluxes predicted by the Partheniades-Krone relations for mud and Engelund-Hansen for sand. The model was subjected to a range of idealised boundary conditions of tidal range, river discharge, waves and mud input. The model results show that mud is predominantly stored in mudflats on the side of the estuary. Marine mud supply only influences the mouth of the estuary, whereas fluvial mud is distributed along the whole estuary. Coastal waves stir up mud and remove the tendency to form muddy coastlines and the formation of mudflats in the downstream part of the estuary. Widening continues in estuaries with only sand, while mud supply leads to a narrower constant width and reduced channel and bar dynamics. This self-confinement eventually leads to a dynamic equilibrium in which lateral channel migration and mudflat expansion are balanced on average. However, for higher mud concentrations, higher discharge and low tidal amplitude, the estuary narrows and fills to become a tidal delta.
NASA Astrophysics Data System (ADS)
Taran, Yuri; Tassi, Franco; Varekamp, Johan; Inguaggiato, Salvatore; Kalacheva, Elena
2017-10-01
Many volcanoes at any tectonic settings host hydrothermal systems. Volcano-hydrothermal systems (VHS) are result of interaction of the upper part of plumbing systems of active volcanoes with crust, hydrosphere and atmosphere. They are heated by magma, fed by magmatic fluids and meteoric (sea) water, transport and re-distribute magmatic and crustal material. VHS are sensitive to the activity of a host volcano. VHS may have specific features depending on the regional and local tectonic, geologic and geographic settings. The studies reported in this volume help to illustrate the diversity of the approaches and investigations that are being conducting at different volcano-hydrothermal systems over the world and the results of which will be of important value in furthering our understanding of the complex array of the processes accompanying hydrothermal activity of volcanoes. About 60 papers were submitted to a special session of "Volcano-Hydrothermal Systems" at the 2015 fall meeting of the American Geophysical Union. The papers in this special issue of the Journal of Volcanology and Geothermal Research were originally presented at that session.
Huang, Wen-Shu; Duan, Li-Peng; Huang, Bei; Wang, Ke-Jian; Zhang, Cai-Liang; Jia, Qin-Qin; Nie, Pin; Wang, Tiehui
2016-03-01
The macrophage migration inhibitory factor (MIF) family, consisting of MIF and D-dopachrome tautomerase (DDT) in vertebrates, is evolutionarily ancient and has been found across Kingdoms including vertebrates, invertebrates, plants and bacteria. The mammalian MIF family are chemokines at the top of the inflammatory cascade in combating infections. They also possess enzymatic activities, e.g. DDT catalysis results in the production of 5,6-dihydroxyindole (DHI), a precursor of eumelanin. MIF-like genes are widely distributed, but DDT-like genes have only been described in vertebrates and a nematode. In this report, we cloned a DDT-like gene, for the first time in arthropods, and a second MIF in mud crab. The mud crab MIF family have a three exon/two intron structure as seen in vertebrates. The identification of a DDT-like gene in mud crab and other arthropods suggests that the separation of MIF and DDT preceded the divergence of protostomes and deuterostomes. The MIF family is differentially expressed in tissues of adults and during embryonic development and early life. The high level expression of the MIF family in immune tissues, such as intestine and hepatopancreas, suggests an important role in mud crab innate immunity. Mud crab DDT is highly expressed in early embryos, in megalops and crablets and this coincides with the requirement for melanisation in egg chorion tanning and cuticular hardening in arthropods, suggesting a potential novel role of DDT in melanogenesis via its tautomerase activity to produce DHI in mud crab. The clarification of the presence of both MIF and DDT in this report paves the way for further investigation of their functional roles in immunity and in melanogenesis in mud crab and other arthropods. Copyright © 2016 Elsevier Ltd. All rights reserved.
75 FR 6215 - Agency Information Collection Activity
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-08
.... SUPPLEMENTARY INFORMATION: I. Abstract During FY10, the Volcano Hazards Program (VHP) will provide funding under the American Recovery and Reinvestment Act (ARRA) for improvement of the volcano and other monitoring systems and other monitoring- related activities that contribute to mitigation of volcano hazards. This...
[Methanotrophic bacteria in cold seeps of the floodplains of northern rivers].
Belova, S É; Oshkin, I Iu; Glagolev, M V; Lapshina, E D; Maksiutov, Sh Sh; Dedysh, S N
2013-01-01
Small mud volcanoes (cold seeps), which are common in the floodplains of northern rivers, are a potentially important, although poorly studied sources of atmospheric methane. Field research on the cold seeps of the Mukhrina River (Khanty-Mansiysk Autonomous okrug, Russia) revealed methane fluxes from these structures to be orders of magnitude higher than from equivalent areas of the mid-taiga bogs. Microbial communities developing around the seeps were formed under conditions of high methane concentrations, low temperatures (3-5 degrees C), and near-neutral pH. Molecular identification of methane-oxidizing bacteria from this community by analysis of the pmoA gene encoding particulate methane monooxygenase revealed both type I and type II methanotrophs (classes Gammaproteobacteria and Alphaproteobacteria, respectively), with predomination of type I methanotrophs. Among the latter, microorganisms related to Methylobacterpsychrophilus and Methylobacter tundripaludum, Crenothrix polyspora (a stagnant water dweller), and a number of methanotrophs belonging to unknown taxa were detected. Growth characteristics of two isolates were determined. Methylobactersp. CMS7 exhibited active growth at 4-10 degrees C, while Methylocystis sp. SB12 grew better at 20 degrees C. Experimental results confirmed the major role ofmethanotrophic gammaproteobacteria in controlling the methane emission from cold river seeps.
The 2014 eruptions of Pavlof Volcano, Alaska
Waythomas, Christopher F.; Haney, Matthew M.; Wallace, Kristi; Cameron, Cheryl E.; Schneider, David J.
2017-12-22
Pavlof Volcano is one of the most frequently active volcanoes in the Aleutian Island arc, having erupted more than 40 times since observations were first recorded in the early 1800s . The volcano is located on the Alaska Peninsula (lat 55.4173° N, long 161.8937° W), near Izembek National Wildlife Refuge. The towns and villages closest to the volcano are Cold Bay, Nelson Lagoon, Sand Point, and King Cove, which are all within 90 kilometers (km) of the volcano (fig. 1). Pavlof is a symmetrically shaped stratocone that is 2,518 meters (m) high, and has about 2,300 m of relief. The volcano supports a cover of glacial ice and perennial snow roughly 2 to 4 cubic kilometers (km3) in volume, which is mantled by variable amounts of tephra fall, rockfall debris, and pyroclastic-flow deposits produced during historical eruptions. Typical Pavlof eruptions are characterized by moderate amounts of ash emission, lava fountaining, spatter-fed lava flows, explosions, and the accumulation of unstable mounds of spatter on the upper flanks of the volcano. The accumulation and subsequent collapse of spatter piles on the upper flanks of the volcano creates hot granular avalanches, which erode and melt snow and ice, and thereby generate watery debris-flow and hyperconcentrated-flow lahars. Seismic instruments were first installed on Pavlof Volcano in the early 1970s, and since then eruptive episodes have been better characterized and specific processes have been documented with greater certainty. The application of remote sensing techniques, including the use of infrasound data, has also aided the study of more recent eruptions. Although Pavlof Volcano is located in a remote part of Alaska, it is visible from Cold Bay, Sand Point, and Nelson Lagoon, making distal observations of eruptive activity possible, weather permitting. A busy air-travel corridor that is utilized by a numerous transcontinental and regional air carriers passes near Pavlof Volcano. The frequency of air travel across the region results in a relatively large number of airborne observations of eruptive activity. During the 2014 Pavlof eruptions, the Alaska Volcano Observatory received observations and photographs from pilots and local observers, which aided evaluation of the eruptive activity and the areas affected by eruptive products.This report outlines the chronology of events associated with the 2014 eruptive activity at Pavlof Volcano, provides documentation of the style and character of the eruptive episodes, and reports briefly on the eruptive products and impacts. The principal observations are described and portrayed on maps and photographs, and the 2014 eruptive activity is compared to historical eruptions.
Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 2000 through December 31, 2001
Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; Moran, Seth C.; Paskievitch, John; McNutt, Stephen R.
2002-01-01
The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at potentially active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996; Jolly and others, 2001). The primary objectives of this program are the seismic surveillance of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog reflects the status and evolution of the seismic monitoring program, and presents the basic seismic data for the time period January 1, 2000, through December 31, 2001. For an interpretation of these data and previously recorded data, the reader should refer to several recent articles on volcano related seismicity on Alaskan volcanoes in Appendix G.The AVO seismic network was used to monitor twenty-three volcanoes in real time in 2000-2001. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). AVO located 1551 and 1428 earthquakes in 2000 and 2001, respectively, on and around these volcanoes.Highlights of the catalog period (Table 1) include: volcanogenic seismic swarms at Shishaldin Volcano between January and February 2000 and between May and June 2000; an eruption at Mount Cleveland between February and May 2001; episodes of possible tremor at Makushin Volcano starting March 2001 and continuing through 2001, and two earthquake swarms at Great Sitkin Volcano in 2001.This catalog includes: (1) earthquake origin times, hypocenters, and magnitudes with summary statistics describing the earthquake location quality; (2) a description of instruments deployed in the field and their locations; (3) a description of earthquake detection, recording, analysis, and data archival systems; (4) station parameters and velocity models used for earthquake locations; (5) a summary of daily station usage throughout the catalog period; and (6) all HYPOELLIPSE files used to determine the earthquake locations presented in this report.
NASA Technical Reports Server (NTRS)
2001-01-01
An Expedition Two crewmember aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.
Comparing the efficacy of mature mud pack and hot pack treatments for knee osteoarthritis.
Sarsan, Ayşe; Akkaya, Nuray; Ozgen, Merih; Yildiz, Necmettin; Atalay, Nilgun Simsir; Ardic, Fusun
2012-01-01
The objective of this study is to compare the efficacy of mature mud pack and hot pack therapies on patients with knee osteoarthritis. This study was designed as a prospective, randomized-controlled, and single-blinded clinical trial. Twenty-seven patients with clinical and radiologic evidence of knee osteoarthritis were randomly assigned into two groups and were treated with mature mud packs (n 15) or hot packs (n=12). Patients were evaluated for pain [based on the visual analog scale (VAS)], function (WOMAC, 6 min walking distance), quality of life [Short Form-36 (SF-36)], and serum levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and insulin-like growth factor-1 (IGF-1) at baseline, post-treatment, and 3 and 6~months after treatment. The mud pack group shows a significant improvement in VAS, pain, stifness, and physical function domains of WOMAC. The difference between groups of pain and physical activity domains is significant at post-treatment in favor of mud pack. For a 6 min walking distance, mud pack shows significant improvement, and the difference is significant between groups in favor of mud pack at post-treatment and 3 and 6 months after treatment. Mud pack shows significant improvement in the pain subscale of SF-36 at the third month continuing until the sixth month after the treatment. Significant improvements are found for the social function, vitality/energy, physical role disability, and general health subscales of SF-36 in favor of the mud pack compared with the hot pack group at post-treatment. A significant increase is detected for IGF-1 in the mud pack group 3 months after treatment compared with the baseline, and the difference is significant between groups 3 months after the treatment. Mud pack is a favorable option compared with hotpack for pain relief and for the improvement of functional conditions in treating patients with knee osteoarthritis.
CHARACTERIZATION OF MUD/DIRT CARRYOUT ONTO PAVED ROADS FROM CONSTRUCTION AND DEMOLITION ACTIVITIES
The report characterizes fugitive dust generated by vehicular traffic on paved streets and highways resulting from mud/dirt carryout from unpaved areas as a primary source of PM-10 (particles = or < 10 micrometers in aerodynamic diameter), and evaluates three technologies for eff...
CLEW: A Cooperative Learning Environment for the Web.
ERIC Educational Resources Information Center
Ribeiro, Marcelo Blois; Noya, Ricardo Choren; Fuks, Hugo
This paper outlines CLEW (collaborative learning environment for the Web). The project combines MUD (Multi-User Dimension), workflow, VRML (Virtual Reality Modeling Language) and educational concepts like constructivism in a learning environment where students actively participate in the learning process. The MUD shapes the environment structure.…
Capping hazardous red mud using acidic soil with an embedded layer of zeolite for plant growth.
Ma, Yingqun; Si, Chunhua; Lin, Chuxia
2014-01-01
A nearly three-year microcosm experiment was conducted to test the effectiveness of capping red mud using acidic soil with an embedded layer of zeolite in sustaining the growth of a grass species. This 'sandwich-structured' design allowed self-sustaining growth of the plants under rain-fed conditions no matter whether the underlying red mud was neutralized or not. During the initial stage, the plants grew better when the red mud was not neutralized with MgCl2 probably due to pH rise in the root zone. Neutralization of red mud led to salinization and pH decrease in the root zone. However, the difference in plant growth performance between these scenarios became less remarkable over time due to gradual improvement of soil conditions in the neutralized scenarios. Continuous leaching of soluble salts and alkali by rainwater extended the root zone to the red mud layer. As a result of vegetative production, soil organic matter rapidly accumulated. This, combined with increase in pH and decrease in salinity, markedly facilitated microbial activities and consequently improved the supply of nutrients. This study provides abasis for field-scale experimental design that will have implications for effectively establishing vegetative cover in red mud disposal sites to control dust hazards.
Yilbas, Bekir Sami.; Ali, Haider; Khaled, Mazen M.; Al-Aqeeli, Nasser; Abu-Dheir, Numan; Varanasi, Kripa K.
2015-01-01
Recent developments in climate change have increased the frequency of dust storms in the Middle East. Dust storms significantly influence the performances of solar energy harvesting systems, particularly (photovoltaic) PV systems. The characteristics of the dust and the mud formed from this dust are examined using various analytical tools, including optical, scanning electron, and atomic force microscopies, X-ray diffraction, energy spectroscopy, and Fourier transform infrared spectroscopy. The adhesion, cohesion and frictional forces present during the removal of dry mud from the glass surface are determined using a microtribometer. Alkali and alkaline earth metal compounds in the dust dissolve in water to form a chemically active solution at the glass surface. This solution modifies the texture of the glass surface, thereby increasing the microhardness and decreasing the transmittance of the incident optical radiation. The force required to remove the dry mud from the glass surface is high due to the cohesive forces that result from the dried mud solution at the interface between the mud and the glass. The ability altering the characteristics of the glass surface could address the dust/mud-related limitations of protective surfaces and has implications for efficiency enhancements in solar energy systems. PMID:26514102
Digital Data for Volcano Hazards at Newberry Volcano, Oregon
Schilling, S.P.; Doelger, S.; Sherrod, D.R.; Mastin, L.G.; Scott, W.E.
2008-01-01
Newberry volcano is a broad shield volcano located in central Oregon, the product of thousands of eruptions, beginning about 600,000 years ago. At least 25 vents on the flanks and summit have been active during the past 10,000 years. The most recent eruption 1,300 years ago produced the Big Obsidian Flow. Thus, the volcano's long history and recent activity indicate that Newberry will erupt in the future. Newberry Crater, a volcanic depression or caldera has been the focus of Newberry's volcanic activity for at least the past 10,000 years. Newberry National Volcanic Monument, which is managed by the U.S. Forest Service, includes the caldera and extends to the Deschutes River. Newberry volcano is quiet. Local earthquake activity (seismicity) has been trifling throughout historic time. Subterranean heat is still present, as indicated by hot springs in the caldera and high temperatures encountered during exploratory drilling for geothermal energy. The report USGS Open-File Report 97-513 (Sherrod and others, 1997) describes the kinds of hazardous geologic events that might occur in the future at Newberry volcano. A hazard-zonation map is included to show the areas that will most likely be affected by renewed eruptions. When Newberry volcano becomes restless, the eruptive scenarios described herein can inform planners, emergency response personnel, and citizens about the kinds and sizes of events to expect. The geographic information system (GIS) volcano hazard data layers used to produce the Newberry volcano hazard map in USGS Open-File Report 97-513 are included in this data set. Scientists at the USGS Cascades Volcano Observatory created a GIS data layer to depict zones subject to the effects of an explosive pyroclastic eruption (tephra fallout, pyroclastic flows, and ballistics), lava flows, volcanic gasses, and lahars/floods in Paulina Creek. A separate GIS data layer depicts drill holes on the flanks of Newberry Volcano that were used to estimate the probability of coverage by future lava flows.
NASA Technical Reports Server (NTRS)
Francis, P. W.; Rothery, D. A.
1987-01-01
The Landsat Thematic Mapper (TM) offers a means of detecting and monitoring thermal features of active volcanoes. Using the TM, a prominent thermal anomaly has been discovered on Lascar volcano, northern Chile. Data from two short-wavelength infrared channels of the TM show that material within a 300-m-diameter pit crater was at a temperature of at least 380 C on two dates in 1985. The thermal anomaly closely resembles in size and radiant temperature the anomaly over the active lava lake at Erta'ale in Ethiopia. An eruption took place at Lascar on Sept. 16, 1986. TM data acquired on Oct. 27, 1986, revealed significant changes within the crater area. Lascar is in a much more active state than any other volcano in the central Andes, and for this reason it merits further careful monitoring. Studies show that the TM is capable of confidently identifying thermal anomalies less than 100 m in size, at temperatures of above 150 C, and thus it offers a valuable means of monitoring the conditions of active or potentially active volcanoes, particularly those in remote regions.
Imaging an Active Volcano Edifice at Tenerife Island, Spain
NASA Astrophysics Data System (ADS)
Ibáñez, Jesús M.; Rietbrock, Andreas; García-Yeguas, Araceli
2008-08-01
An active seismic experiment to study the internal structure of Teide volcano is being carried out on Tenerife, a volcanic island in Spain's Canary Islands archipelago. The main objective of the Tomography at Teide Volcano Spain (TOM-TEIDEVS) experiment, begun in January 2007, is to obtain a three-dimensional (3-D) structural image of Teide volcano using seismic tomography and seismic reflection/refraction imaging techniques. At present, knowledge of the deeper structure of Teide and Tenerife is very limited, with proposed structural models based mainly on sparse geophysical and geological data. The multinational experiment-involving institutes from Spain, the United Kingdom, Italy, Ireland, and Mexico-will generate a unique high-resolution structural image of the active volcano edifice and will further our understanding of volcanic processes.
Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory 1993
Neal, Christina A.; McGimsey, Robert G.; Doukas, Michael P.
1996-01-01
During 1993, the Alaska Volcano Observatory (AVO) responded to episodes of eruptive activity or false alarms at nine volcanic centers in the state of Alaska. Additionally, as part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also responded to eruptions on the Kamchatka Peninsula, details of which are summarized in Miller and Kurianov (1993). In 1993, AVO maintained seismic instrumentation networks on four volcanoes of the Cook Inlet region--Spurr, Redoubt, Iliamna, and Augustine--and two stations at Dutton Volcano near King Cove on the Alaska Peninsula. Other routine elements of AVO's volcano monitoring program in Alaska include periodic airborne measurement of volcanic SO2 and CO2 at Cook Inlet volcanoes (Doukas, 1995) and maintenance of a lightning detection system in Cook Inlet (Paskievitch and others, 1995).
An active dealkalization of red mud with roasting and water leaching.
Zhu, Xiaobo; Li, Wang; Guan, Xuemao
2015-04-09
The research has focused on the dealkalization of red mud after active roasting and water leaching, which is obtained from bauxite during alumina production. The main factors such as roasting temperature, roasting time, water leaching stage, leaching temperature, leaching reaction time and liquid to solid ratio were investigated. The mechanism of dealkalization was in-depth studied by using ICP-AES, XRD, TG-DSC, SEM-EDS and leaching kinetic. The results show that the dealkalization rate reached 82% under the condition of roasting temperature of 700 °C, roasting time of 30 min, four stage water leaching, liquid to solid ratio of 7 mL/g, leaching temperature of 90 °C and reaction time of 60 min. The diffraction peak of Na6CaAl6Si6(CO3)O24 · 2H2O in red mud was decreased during the active roasting process, whereas the mineral phases of NaOH · H2O and Na2Ca(CO3)2 were appeared. The content of alkali obviously decreased and the grade of other elements increased during the process of active roasting and water leaching, which was in favor of next application process of red mud. The water leaching was controlled by internal diffusion of SCM and the apparent activation energy was 22.63 kJ/mol. Copyright © 2014 Elsevier B.V. All rights reserved.
Antimicrobial Activity of Bacillus Persicus 24-DSM Isolated from Dead Sea Mud.
Al-Karablieh, Nehaya
2017-01-01
Dead Sea is a hypersaline lake with 34% salinity, gains its name due to the absence of any living macroscopic creatures. Despite the extreme hypersaline environment, it is a unique ecosystem for various halophilic microorganisms adapted to this environment. Halophilic microorganisms are known for various potential biotechnological applications, the purpose of the current research is isolation and screening of halophilic bacteria from Dead Sea mud for potential antimicrobial applications. Screening for antagonistic bacteria was conducted by bacterial isolation from Dead Sea mud samples and agar plate antagonistic assay. The potential antagonistic isolates were subjected to biochemical characterization and identification by 16S-rRNA sequencing. Among the collected isolates, four isolates showed potential antagonistic activity against Bacillus subtilis 6633 and Escherichia coli 8739. The most active isolate (24-DSM) was subjected for antagonistic activity and minimal inhibitory concentration against different gram positive and negative bacterial strains after cultivation in different salt concentration media. Results: The results of 16S-rRNA analysis revealed that 24-DSM is very closely related to Bacillus persicus strain B48, which was isolated from hypersaline lake in Iran. Therefore, the isolate 24-DSM is assigned as a new strain of B. persicusi isolated from the Dead Sea mud. B. persicusi 24-DSM showed higher antimicrobial activity, when it was cultivated with saline medium, against all tested bacterial strains, where the most sensitive bacterial strain was Corynebacterium diphtheria 51696.
"Mediterranean volcanoes vs. chain volcanoes in the Carpathians"
NASA Astrophysics Data System (ADS)
Chivarean, Radu
2017-04-01
Volcanoes have always represent an attractive subject for students. Europe has a small number of volcanoes and Romania has none active ones. The curricula is poor in the study of volcanoes. We want to make a parallel between the Mediterranean active volcanoes and the old extinct ones in the Oriental Carpathians. We made an comparison of the two regions in what concerns their genesis, space and time distribution, the specific relief and the impact in the landscape, consequences of their activities, etc… The most of the Mediterranean volcanoes are in Italy, in the peninsula in Napoli's area - Vezuviu, Campi Flegrei, Puzzoli, volcanic islands in Tirenian Sea - Ischia, Aeolian Islands, Sicily - Etna and Pantelleria Island. Santorini is located in Aegean Sea - Greece. Between Sicily and Tunisia there are 13 underwater volcanoes. The island called Vulcano, it has an active volcano, and it is the origin of the word. Every volcano in the world is named after this island, just north of Sicily. Vulcano is the southernmost of the 7 main Aeolian Islands, all volcanic in origin, which together form a small island arc. The cause of the volcanoes appears to be a combination of an old subduction event and tectonic fault lines. They can be considered as the origin of the science of volcanology. The volcanism of the Carpathian region is part of the extensive volcanic activity in the Mediterranean and surrounding regions. The Carpathian Neogene/Quaternary volcanic arc is naturally subdivided into six geographically distinct segments: Oas, Gutai, Tibles, Calimani, Gurghiu and Harghita. It is located roughly between the Carpathian thrust-and-fold arc to the east and the Transylvanian Basin to the west. It formed as a result of the convergence between two plate fragments, the Transylvanian micro-plate and the Eurasian plate. Volcanic edifices are typical medium-sized andesitic composite volcanoes, some of them attaining the caldera stage, complicated by submittal or peripheral domes or dome complexes. Dacitic volcanoes are smaller in size and consist of lava dome complexes, in places with associated pyroclastic cones and volcanic aprons. The volcanic history of Carpathian volcanic chain lasts since ca. 15 Ma, with the youngest occurring in the southern chain-terminus; the last eruption of Ciomadu volcano (Harghita) was ca. 10000 years ago. Using the knowledge acquired during the compulsory curriculum and complementary activities we we consider that the outdoor education is the best way to establish a relationship between the theory and the landscape reality in the field. As a follow up to our theoretical approach for the Earth's crust we organized two study trips in our region. During the first one the students could walk in a real crater, see scoria deposits and admire the basalt columns from Racos. In the second activity they could climb the Ciomadu volcano and go down to observe the crater lake St. Anna, the single volcanic lake in central Europe.
GlobVolcano: Earth Observation Services for Global Monitroing of Active Volcanoes
NASA Astrophysics Data System (ADS)
Borgstrom, S.; Bianchi, M.; Bronson, W.; Tampellini, M. L.; Ratti, R.; Seifert, F. M.; Komorowski, J. C.; Kaminski, E.; Peltier, A.; Van der Voet, P.
2010-03-01
The GlobVolcano project (2007-2010) is part of the Data User Element (DUE) programme of the European Space Agency (ESA).The objective of the project is to demonstrate EO-based (Earth Observation) services able to support the Volcano Observatories and other mandate users (Civil Protection, volcano scientific community) in their monitoring activities.The set of offered EO based information products is the following:- Deformation Mapping- Surface Thermal Anomalies- Volcanic Gas Emission- Volcanic Ash TrackingThe Deformation Mapping service is performed exploiting either PSInSARTM or Conventional DInSAR (EarthView® InSAR). The processing approach is selected according to the availability of SAR data and users' requests.The information services are assessed in close cooperation with the user organizations for different types of volcano, from various geographical areas in various climatic zones. Users are directly and actively involved in the validation of the Earth Observation products, by comparing them with ground data available at each site.In a first phase, the GlobVolcano Information System was designed, implemented and validated, involving a limited number of test areas and respective user organizations (Colima in Mexico, Merapi in Indonesia, Soufrière Hills in Montserrat Island, Piton de la Fournaise in La Reunion Island, Karthala in Comore Islands, Stromboli and Volcano in Italy). In particular Deformation Mapping results obtained for Piton de la Fournaise were compared with deformation rates measured by the volcano observatory using GPS stations and tiltmeters. IPGP (Institut de Physique du Globe de Paris) is responsible for the validation activities.The second phase of the project (currently on-going) concerns the service provision on pre-operational basis. Fifteen volcanic sites located in four continents are monitored and as many user organizations are involved and cooperating with the project team.In addition to the proprietary tools mentioned before, in phase two also the ROI_PAC software will be testsed for PALSAR processing on the Arenal volcano (Costa Rica).The GlobVolcano Information System includes two main elements:-The GlobVolcano Data Processing System, which consists of EO data processing subsystems located at each respective service centre.-The GlobVolcano Information Service, which is the provision infrastructure, including three elements: GlobV olcano Products Archives, GlobVolcano Metadata Catalogue, GlobVolcano User Interface (GVUI). The GlobVolcano Information System represents a significant step ahead towards the implementation of an operational, global observatory of volcanoes by a synergetic use of data from currently available Earth Observational satellites.
NASA Astrophysics Data System (ADS)
Yıldız, Ayşegül; Gürel, Ali; Dursun, Yusuf Gökhan
2017-10-01
The diatom community and palaeoenvironmental properties of volcano genetic diatomite deposits that outcrop in the Karacaören (Nevşehir) area are described. Two stratigraphic sections were measured in the study area. One of these sections was measured in Quaternary lake units (K1), and the other in lacustrine sediments of the late Miocene-Pliocene Ürgüp Formation's Bayramhacılı Member (K2). According to stratigraphic and chemical characteristics of the sections, two distinct paleogeographic domains were determined in the study area. One of these, the shallow lacustrine to fluvial area (Quaternary) which is represented by an alternating sequence of diatomite, silt/mud, and tuffite. The other was the deeper lacustrine stage (late Miocene) which is represented by diatomites with some interbedded mud facies, chert and volcanics. From the diatomite samples of these sections, twenty-five species of 10 different diatom genera were identified. When evaluated together, the ecological properties and the distribution of numerical values of the determined diatom genera and species, showed that the study area's diatomite was generally deposited in shallow, high temperature, nutrient-rich water, where nitrogen and phosphorus were abundant and which was an alkaline (pH > 7) freshwater lake environment. Over time the pH value of the environment decreased (pH < 7), and the environment became acidic.
Initiative for the creation of an integrated infrastructure of European Volcano Observatories
NASA Astrophysics Data System (ADS)
Puglisi, G.; Bachelery, P.; Ferreira, T. J. L.; Vogfjörd, K. S.
2012-04-01
Active volcanic areas in Europe constitute a direct threat to millions of European citizens. The recent Eyjafjallajökull eruption also demonstrated that indirect effects of volcanic activity can present a threat to the economy and the lives of hundreds of million of people living in the whole continental area even in the case of activity of volcanoes with sporadic eruptions. Furthermore, due to the wide political distribution of the European territories, major activities of "European" volcanoes may have a worldwide impact (e.g. on the North Atlantic Ocean, West Indies included, and the Indian Ocean). Our ability to understand volcanic unrest and forecast eruptions depends on the capability of both the monitoring systems to effectively detect the signals generated by the magma rising and on the scientific knowledge necessary to unambiguously interpret these signals. Monitoring of volcanoes is the main focus of volcano observatories, which are Research Infrastructures in the ESFRI vision, because they represent the basic resource for researches in volcanology. In addition, their facilities are needed for the design, implementation and testing of new monitoring techniques. Volcano observatories produce a large amount of monitoring data and represent extraordinary and multidisciplinary laboratories for carrying out innovative joint research. The current distribution of volcano observatories in Europe and their technological state of the art is heterogeneous because of different types of volcanoes, different social requirements, operational structures and scientific background in the different volcanic areas, so that, in some active volcanic areas, observatories are lacking or poorly instrumented. Moreover, as the recent crisis of the ash in the skies over Europe confirms, the assessment of the volcanic hazard cannot be limited to the immediate areas surrounding active volcanoes. The whole European Community would therefore benefit from the creation of a network of volcano observatories, which would enable strengthening and sharing the technological and scientific level of current infrastructures. Such a network could help to achieve the minimum goal of deploying an observatory in each active volcanic area, and lay the foundation for an efficient and effective volcanic monitoring system at the European level.
Mauna Loa--history, hazards and risk of living with the world's largest volcano
Trusdell, Frank A.
2012-01-01
Mauna Loa on the Island Hawaiʻi is the world’s largest volcano. People residing on its flanks face many hazards that come with living on or near an active volcano, including lava flows, explosive eruptions, volcanic smog, damaging earthquakes, and local tsunami (giant seawaves). The County of Hawaiʻi (Island of Hawaiʻi) is the fastest growing County in the State of Hawaii. Its expanding population and increasing development mean that risk from volcano hazards will continue to grow. U.S. Geological Survey (USGS) scientists at the Hawaiian Volcano Observatory (HVO) closely monitor and study Mauna Loa Volcano to enable timely warning of hazardous activity and help protect lives and property.
Lime-mud layers in high-energy tidal channels: A record of hurricane deposition
NASA Astrophysics Data System (ADS)
Shinn, Eugene A.; Steinen, Randolph P.; Dill, Robert F.; Major, Richard
1993-07-01
During or immediately following the transit of Hurricane Andrew (August 23-24, 1992) across the northern part of the Great Bahama Bank, thin laminated beds of carbonate mud were deposited in high-energy subtidal channels (4 m depth) through the ooid shoals of south Cat Cay and Joulters Cays. During our reconnaissance seven weeks later, we observed lime-mud beds exposed in the troughs of submarine oolite dunes and ripples. The mud layers were underlain and locally covered by ooid sand. The mud beds were lenticular and up to 5 cm thick. Their bases cast the underlying rippled surface. The layers were composed of soft silt- and sand-sized pellets and peloids and in some areas contained freshly preserved Thalassia blades and other organic debris along planes of lamination. The beds had a gelatinous consistency and locally had been penetrated by burrowers and plants. Layers of lime mud had also settled on bioturbated, plant-stabilized flats and in lagoonal settings but were quickly reworked and made unrecognizable by the burrowing of organisms. Thicker, more cohesive (and therefore older) mud beds and angular mud fragments associated with ooids from Joulters Cays have similar characteristics but lack fresh plant fragments. We infer that these older beds were similarly deposited and thus record the passage of previous hurricanes or tropical storms. Storm layers are preserved within channel sediments because migrating ooids prevent attack by the burrowing activity off organisms.
NASA Astrophysics Data System (ADS)
Kuznetsov, Pavel; Koulakov, Ivan
2014-05-01
A number of active volcanoes are observed in different parts of the world, and they attract great interest of scientists. Comparing their characteristics helps in understanding the origin and mechanisms of their activity. One of the most effective methods for studying the deep structure beneath volcanoes is passive source seismic tomography. In this study we present results of tomographic inversions for two active volcanoes located in different parts of the world: Popocatepetl (Mexico) and Gorely (Kamchatka, Russia). In the past century both volcanoes were actively erupted that explains great interest to their detailed investigations. In both cases we made the full data analysis starting from picking the arrival times from local events. In the case of the Popocatepetl study, a temporary seismological network was deployed by GFZ for the period from December 1999 to July 2000. Note that during this period there were a very few events recorded inside the volcano. Most of recorded earthquakes occurred in surrounding areas and they probably have the tectonic nature. We performed a special analysis to ground the efficiency of using these data for studying seismic structure beneath the network installed on the volcano. The tomographic inversion was performed using the LOTOS code by Koulakov (2009). Beneath the Popocatepetl volcano we have found a zone of strong anti-correlation between P- and S-velocities that leaded to high values of Vp/Vs ratio. Similar features were found for some other volcanoes in previous studies. We interpret these anomalies as zones of high content of fluids and melts that are related to active magma sources. For the case of Gorely volcano we used the data of a temporary network just deployed in summer 2013 by our team from IPGG, Novosibirsk. Luckily, during the field works, the volcano started to manifest strong seismic activity. In this period, 100 - 200 volcanic events occurred daily. We collected the continuous seismic records from 20 stations for 5-7 days that gives us the possibility to locate several hundreds of events and to build a preliminary seismic model beneath the Gorely volcano. We found a zone of low S-velocity located beneath the SE flank of the volcano, just between the Gorely and Mutnovsky volcanoes. This may serve as an argument for feeding these volcanoes from a single source. Although Popocatepetl and Gorely volcanoes are considerably different in their size and eruption characteristics, we found some similar features in the seismic structures, such as anti-correlation of P- and S- anomalies and high Vp/Vs ratio patterns below summits. This provides common patterns that give us the keys for understanding the general mechanism of working the volcanic systems. This study was partly supported by the projects #7.3 of BES RAS, IP SB RAS #20 and IP SB-FEB RAS #42
Mount Rainier active cascade volcano
NASA Technical Reports Server (NTRS)
1994-01-01
Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.
Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2005
Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; McNutt, Stephen R.
2006-01-01
The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988 (Figure 1). The primary objectives of the seismic program are the real-time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents calculated earthquake hypocenters and seismic phase arrival data, and details changes in the seismic monitoring program for the period January 1 through December 31, 2005.The AVO seismograph network was used to monitor the seismic activity at thirty-two volcanoes within Alaska in 2005 (Figure 1). The network was augmented by two new subnetworks to monitor the Semisopochnoi Island volcanoes and Little Sitkin Volcano. Seismicity at these volcanoes was still being studied at the end of 2005 and has not yet been added to the list of permanently monitored volcanoes in the AVO weekly update. Following an extended period of monitoring to determine the background seismicity at the Mount Peulik, Ukinrek Maars, and Korovin Volcano, formal monitoring of these volcanoes began in 2005. AVO located 9,012 earthquakes in 2005.Monitoring highlights in 2005 include: (1) seismicity at Mount Spurr remaining above background, starting in February 2004, through the end of the year and into 2006; (2) an increase in seismicity at Augustine Volcano starting in May 2005, and continuing through the end of the year into 2006; (3) volcanic tremor and seismicity related to low-level strombolian activity at Mount Veniaminof in January to March and September; and (4) a seismic swarm at Tanaga Volcano in October and November.This catalog includes: (1) descriptions and locations of seismic instrumentation deployed in the field in 2005; (2) a description of earthquake detection, recording, analysis, and data archival systems; (3) a description of seismic velocity models used for earthquake locations; (4) a summary of earthquakes located in 2005; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, and location quality statistics; daily station usage statistics; and all HYPOELLIPSE files used to determine the earthquake locations in 2005.
NASA Astrophysics Data System (ADS)
Natland, J. H.; Atlas, Z.
2003-12-01
During ODP Leg 200 in December, 2002, a series of thinly bedded volcaniclastic turbidites and silty muds interbedded with two thicker and strongly indurated vitric tuffs was drilled at Site 1223 on the crest of the Hawaiian arch east of the island of Oahu. The massive Nu`uanu landslide debris field, derived from a massive collapse of the eastern half of Oahu at about 2 Ma, lies in the flexural moat between the site and the island. The shipboard interpretation (1) was that the muds and silts are typical turbidites derived by redeposition from beaches and nearshore benches, but that the tuffs represent the distal portions of large submarine pyroclastic eruptions that may have attended the landslide. We report electron probe microanalyses of basaltic glass, olivine, Cr-spinel, palagonite and secondary minerals in the tuffs supporting the shipboard interpretation. In particular, the glass compositions from individual thin sections match precisely the range of compositions obtained from numerous samples of coarse volcaniclastic breccia sampled from the steep flanks of landslide blocks in the moat (2). This includes somewhat higher SiO2 and lower total iron as FeO(T) at given MgO than similar basaltic glasses from other Hawaiian volcanoes, a distinctive attribute of tholeiitic basalt from Oahu's Ko`olau volcano. Key attributes of the glasses in the tuffs and the minerals in them are that they are poly-compositional and they are strongly differentiated, with a range of compositions typical of those erupted from modern Hawaiian volcanic rift systems supplied by lateral diking from central conduits. The finer-grained tuffs at Site 1223 thus are indeed a distal pyroclastic facies that seemingly tapped much of the suddenly exposed, magma-inflated, deep flanking rift system of Ko`olau volcano. Over-steepening of the NE flank of the volcano coupled with internal weakening provided by near saturation of its rift system with magma may have triggered the landslide. This was almost immediately followed by massive submarine pyroclastic eruptions of magma mainly at submarine levels in the rift that, accelerated by steep downslope descent, were directed all the way to the ENE in rapidly-moving debris flows. These sorted themselves by size (mass) with the coarsest material plastering the sides of the landslide blocks, and the finer grained material, mainly glass and olivine grains, reaching the crest of the Hawaiian arch. The palagonite is compositionally-modified glass that probably formed by leaching in response to lateral migration of warm hydrothermal fluids from beneath thicker and still hot proximal pyroclastic material that was abruptly deposited in the moat to the west following the landslide. (1)Shipboard Scientific Party, 2003. Site 1223. In Stephen, R.A., Kasahara, J., Acton, G.D., et al., Proc. ODP, Init. Rept. 200 [CD-ROM], College Station, TX (Ocean Drill. Prog), 1-159. (2)Clague, D.A., Moore, J.G., and Davis, A.S., 2002. In Takahashi, E.,Lipman, P., Garcia, M.O., and Aramaki, S., (Eds.), Geophys. Monog. 128: Washington (AGU), 279-296.
NASA Astrophysics Data System (ADS)
Kumagai, H.; Lacson, R. _Jr., Jr.; Maeda, Y.; Figueroa, M. S., II; Yamashina, T.
2014-12-01
Taal volcano, Philippines, is one of the world's most dangerous volcanoes given its history of explosive eruptions and its close proximity to populated areas. A key feature of these eruptions is that the eruption vents were not limited to Main Crater but occurred on the flanks of Volcano Island. This complex eruption history and the fact that thousands of people inhabit the island, which has been declared a permanent danger zone, together imply an enormous potential for disasters. The Philippine Institute of Volcanology and Seismology (PHIVOLCS) constantly monitors Taal, and international collaborations have conducted seismic, geodetic, electromagnetic, and geochemical studies to investigate the volcano's magma system. Realtime broadband seismic, GPS, and magnetic networks were deployed in 2010 to improve monitoring capabilities and to better understand the volcano. The seismic network has recorded volcano-tectonic (VT) events beneath Volcano Island. We located these VT events based on high-frequency seismic amplitudes, and found that some events showed considerable discrepancies between the amplitude source locations and hypocenters determined by using onset arrival times. Our analysis of the source location discrepancies points to the existence of a region of strong S-wave attenuation near the ground surface beneath the east flank of Volcano Island. This region is beneath the active fumarolic area and above sources of pressure contributing inflation and deflation, and it coincides with a region of high electrical conductivity. The high-attenuation region matches that inferred from an active-seismic survey conducted at Taal in 1993. Our results, synthesized with previous results, suggest that this region represents actively degassing magma near the surface, and imply a high risk of future eruptions on the east flank of Volcano Island.
The Evolution of Galápagos Volcanoes: An Alternative Perspective
NASA Astrophysics Data System (ADS)
Harpp, Karen S.; Geist, Dennis J.
2018-05-01
The older eastern Galápagos are different in almost every way from the historically active western Galápagos volcanoes. The western Galápagos volcanoes have steep upper slopes and are topped by large calderas, whereas none of the older islands has a caldera, an observation that is supported by recent gravity measurements. Moreover, the eastern islands tend to have been constructed by linear fissure systems and many are cut by faults. Most of the western volcanoes erupt evolved basalts with an exceedingly small range of Mg#, Lan/Smn, and Smn/Ybn. This is attributed to homogenization in a crustal-scale magmatic mush column, which is maintained in a thermochemical steady state, owing to high magma supply directly over the Galápagos mantle plume. The exceptions are volcanoes at the leading edge of the hotspot, which have yet to develop mush columns, and volcanoes that are waning in activity, because they are being carried away from the plume. In contrast, the eastern volcanoes erupt relatively primitive magmas, with a large range in Mg#, Lan/Smn, and Smn/Ybn. This is attributed to isolated, ephemeral magmatic plumbing systems supplied by smaller magmatic fluxes throughout their histories. Consequently, each batch of magma follows an independent course of evolution, owing to the low volume of hypersolidus material beneath these volcanoes. The magmatic flux to Galápagos volcanoes negatively correlates with the distance to the Galápagos Spreading Center (GSC). When the ridge was close to the plume, most of the plume-derived magma was directed to the ridge. Currently, the active volcanoes are much farther from the GSC, thus most of the plume-derived magma erupts on the Nazca Plate and can be focused beneath the large young shields. We define an intermediate sub-province comprising Rabida, Santiago and Pinzon volcanoes, which were most active about 1 Ma. They have all erupted dacites, rhyolites, and trachytes, similar to the dying stage of the western volcanoes, indicating that there was a relatively large volume of mush beneath them. Morphologically, however, they are more like the eastern volcanoes, and have erupted lavas with a large range in composition.
Catalogue of satellite photography of the active volcanoes of the world
NASA Technical Reports Server (NTRS)
Heiken, G.
1976-01-01
A catalogue is presented of active volcanoes as viewed from Earth-orbiting satellites. The listing was prepared of photographs, which have been screened for quality, selected from the earth resources technology satellite (ERTS) and Skylab, Apollo and Gemini spacecraft. There is photography of nearly every active volcano in the world; the photographs are particularly useful for regional studies of volcanic fields.
Alaska volcanoes guidebook for teachers
Adleman, Jennifer N.
2011-01-01
Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at the beginning of each activity. A complete explanation, including the format of the Alaska State Science Standards and Grade Level Expectations, is available at the beginning of each grade link at http://www.eed.state.ak.us/tls/assessment/GLEHome.html.
ERIC Educational Resources Information Center
Tilling, Robert I.
One of a series of general interest publications on science topics, this booklet provides a non-technical introduction to the subject of volcanoes. Separate sections examine the nature and workings of volcanoes, types of volcanoes, volcanic geological structures such as plugs and maars, types of eruptions, volcanic-related activity such as geysers…
The hydrogeology of the Tully Valley, Onondaga County, New York: an overview of research, 1992-2012
Kappel, William M.
2014-01-01
Onondaga Creek begins approximately 15 miles south of Syracuse, New York, and flows north through the Onondaga Indian Nation, then through Syracuse, and finally into Onondaga Lake in central New York. Tully Valley is in the upper part of the Onondaga Creek watershed between U.S. Route 20 and the Valley Heads end moraine near Tully, N.Y. Tully Valley has a history of several unusual hydrogeologic phenomena that affected past land use and the water quality of Onondaga Creek; the phenomena are still present and continue to affect the area today (2014). These phenomena include mud volcanoes or mudboils, landslides, and land-surface subsidence; all are considered to be naturally occurring but may also have been influenced by human activity. The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency and the Onondaga Lake Partnership, began a study of the Tully Valley mudboils beginning in October 1991 in hopes of understanding (1) what drives mudboil activity in order to remediate mudboil influence on the water quality of Onondaga Creek, and (2) land-surface subsidence issues that have caused a road bridge to collapse, a major pipeline to be rerouted, and threatened nearby homes. Two years into this study, the 1993 Tully Valley landslide occurred just over 1 mile northwest of the mudboils. This earth slump-mud flow was the largest landslide in New York in more than 70 years (Fickies, 1993); this event provided additional insight into the geology and hydrology of the valley. As the study of the Tully Valley mudboils progressed, other unusual hydrogeologic phenomena were found within the Tully Valley and provided the opportunity to perform short-term, small-scale studies, some of which became graduate student theses—Burgmeier (1998), Curran (1999), Morales-Muniz (2000), Baldauf (2003), Epp (2005), Hackett, (2007), Tamulonis (2010), and Sinclair (2013). The unusual geology and hydrology of the Tully Valley, having been investigated for more than two decades, provides the basis for this report.
Sidoarjo mudflow phenomenon and its mitigation efforts
NASA Astrophysics Data System (ADS)
Wibowo, H. T.; Williams, V.
2009-12-01
Hot mud first erupted in Siring village, Porong, Sidoarjo May 29th 2006. The mud first appeared approximately 200 meters from Banjarpanji-1 gas-drilling well. The mud volume increased day by day, from 5000 cubic meters per day on June 2006 to 50,000 cubic meters per day during the last of 2006, and then increased to 100,000-120,000 cubic meters per day during 2007. Flow still continues at a high rate. Moreover, as the water content has gone down, the clast content has gone up. Consequently, there is now the threat of large amounts of solid material being erupted throughout the area. Also, there is the issue of subsurface collapse and ground surface subsidence. The Indonesian government has set up a permanent team to support communities affected by the mudflow that has swamped a number of villages near LUSI. Toll roads, railway tracks and factories also have been submerged and over 35,000 people have been displaced to date. The Sidoarjo Mudflow Mitigation Agency [SMMA, BPLS (Indonesia)] replaces a temporary team called National Team PSLS which was installed for seven months and ended their work on 7 April 2007. BPLS was set up by Presidential Regulation No. 14 / 2007, and it will have to cover the costs related to the social impact of the disaster, especially outside the swamped area. BPLS is the central government institution designated to handle the disaster by coordination with both the drilling company and local (provincial and district) governments. It takes a comprehensive, integrated and holistic approach for its mission and challenges. Those are: 1) How to stop the mudflow, 2) How to mitigate the impacts of the mudflow, and 3) How to minimize the social, economic, environmental impacts, and infrastructure impacts. The mudflow mitigation efforts were constrained by dynamic geology conditions, as well as resistance to certain measures by residents of impacted areas. Giant dykes were built to retain the spreading mud, and the mudflow from the main vent was diverted into the Porong River through a mud pump system. Also we continuously monitor changes in eruption behavior and try to anticipate the consequences, particularly after the Ring Dyke (of main vent) collapsed and became useless in controlling the flow. In September 2009 spectacular eruption intensity with kick and wave developed and is continuing. Surface and subsurface investigations continue ceaselessly to try to understand the forces driving the eruption. There are no precedents for mitigation of such a large scale mud volcano in a densely populated area that seems destined to continue for a very long time. This makes all efforts to stop eruption together with the emergency efforts, which have to be conducted simultaneously with recovery and reconstruction efforts that cover all basic needs of people live in the area. This is why BPLS has to develop innovative and creative efforts, mainly by applying the basic principle of learning by doing.
NASA Astrophysics Data System (ADS)
Passarelli, Luigi; Cesca, Simone; Heryandoko, Nova; Lopez Comino, Jose Angel; Strollo, Angelo; Rivalta, Eleonora; Rohadi, Supryianto; Dahm, Torsten; Milkereit, Claus
2017-04-01
Magmatic unrest is challenging to detect when monitoring is sparse and there is little knowledge about the volcano. This is especially true for long-dormant volcanoes. Geophysical observables like seismicity, deformation, temperature and gas emission are reliable indicators of ongoing volcanic unrest caused by magma movements. Jailolo volcano is a Holocene volcano belonging to the Halmahera volcanic arc in the Northern Moluccas Islands, Indonesia. Global databases of volcanic eruptions have no records of its eruptive activity and no geological investigation has been carried out to better assess the past eruptive activity at Jailolo. It probably sits on the northern rim of an older caldera which now forms the Jailolo bay. Hydrothermal activity is intense with several hot-springs and steaming ground spots around the Jailolo volcano. In November 2015 an energetic seismic swarm started and lasted until late February 2016 with four earthquakes with M>5 recorded by global seismic networks. At the time of the swarm no close geophysical monitoring network was available around Jailolo volcano except for a broadband station at 30km distant. We installed last summer a local dense multi-parametric monitoring network with 36 seismic stations, 6 GPS and 2 gas monitoring stations around Jailolo volcano. We revised the focal mechanisms of the larger events and used single station location methods in order to exploit the little information available at the time of the swarm activity. We also combined the old sparse data with our local dense network. Migration of hypocenters and inversion of the local stress field derived by focal mechanisms analysis indicate that the Nov-Feb seismicity swarm may be related to a magmatic intrusion at shallow depth. Data from our dense network confirms ongoing micro-seismic activity underneath Jailolo volcano but there are no indications of new magma intrusion. Our findings indicate that magmatic unrest occurred at Jailolo volcano and call for a revision of the volcanic hazard.
Living with a volcano in your backyard: an educator's guide with emphasis on Mount Rainier
Driedger, Carolyn L.; Doherty, Anne; Dixon, Cheryl; Faust, Lisa M.
2005-01-01
The National Park Service and the U.S. Geological Survey’s Volcano Hazards Program (USGS-VHP) support development and publication of this educator’s guide as part of their mission to educate the public about volcanoes. The USGS-VHP studies the dynamics of volcanoes, investigates eruption histories, develops hazard assessments, monitors volcano-related activity, and collaborates with local officials to lower the risk of disruption when volcanoes become restless.
Volcanic hazards and remote sensing in Pacific Latin America
NASA Astrophysics Data System (ADS)
Lyons, John; Rose, Bill; Escobar, Rüdiger
2011-06-01
PASI Workshop on Open Vent Volcanoes; San José, Costa Rica, 10-24 January 2011 ; Open-vent volcanoes are a class of volcano that contain a relatively open path from the subsurface to the atmosphere without a major vent obstruction. Their persistent, low-level activity, which poses little danger to communities, may be punctuated by violent activity without warning. These complex systems challenge and provide opportunity for observatories and national and international investigators. Long-lived eruptions are also laboratories for students and scientists and a locus for developing collaborations and field testing new instrumentation and methods. Pacific Latin America hosts a high density of active volcanoes, and many are under-monitored and under-researched despite the efforts of local volcano observatories and their accessibility to U.S. and European scientists.
NASA Astrophysics Data System (ADS)
Mont'Alverne, Renata; Moraes, Leonardo E.; Rodrigues, Fábio L.; Vieira, João P.
2012-05-01
Using fluid mud deposition events which occur regularly at Cassino Beach in south Brazil, we evaluated the influence of such events on the structure of the ichthyofauna inhabiting its shallow surf zone. Wave action was the dominant factor in differentiating between sampling sites, being lower or even absent at the mud-influenced sectors compared to beach area without mud. Samples were collected using a beach seine net at two control locations (A1 and A2), and at three locations influenced by mud deposition (B1, B2, and B3). During the study period (21 April-04 August 2009), 15,245 fishes were captured and separated into 26 taxonomic groups, from species to family. Individuals of a total length (TL) up to 50 mm accounted for 65% of the catch, while individuals of TL < 30 mm were the most numerous and more responsible for the total abundance spatial pattern. The area with higher wave action (A2) had the lowest relative species abundance and greatest diversity, whereas the areas with mud-forced lowest wave action (B2 and B3) had the highest species abundance values. Three hypotheses were proposed to explain the higher concentration and capture of juvenile fishes at mud locations. First, longshore currents may be responsible for the displacement of juvenile aggregations toward areas of lower energy. Second, individuals may select habitats with turbid waters, which may provide greater protection from predators and increased food availability. Third, areas under the influence of fluid mud deposition show higher values of viscosity, which may reduce swimming activity and hinder the escape of juvenile fishes from nets, resulting in an increased capture of individuals compared to areas without mud.
Earth Observations taken by the Expedition 16 Crew
2007-11-17
ISS016-E-010894 (17 Nov. 2007) --- Cosiguina Volcano, Nicaragua is featured in this image photographed by an Expedition 16 crewmember on the International Space Station. Three Central American countries (El Salvador, Honduras, and Nicaragua) include coastline along the Gulf of Fonseca that opens into the Pacific Ocean. The southern boundary of the Gulf is a peninsula formed by the Cosiguina volcano illustrated in this view. Cosiguina is a stratovolcano, typically tall cone-shaped structures formed by alternating layers of solidified lava and volcanic rocks (ash, pyroclastic flows, breccias) produced by explosive eruptions. The summit crater is filled with a lake (Laguna Cosiguina). The volcano last erupted in 1859, but its most famous activity occurred in 1835 when it produced the largest historical eruption in Nicaragua. Ash from the 1835 eruption has been found in Mexico, Costa Rica, and Jamaica. The volcano has been quiet since 1859, only an instant in terms of geological time. An earthquake swarm was measured near Cosiguina in 2002, indicating that tectonic forces are still active in the region although the volcano is somewhat isolated from the line of more recently active Central American volcanoes to the northwest and southeast. Intermittently observed gas bubbles in Laguna Cosiguina, and a hot spring along the eastern flank of the volcano are the only indicators of hydrothermal activity at the volcano. The fairly uniform vegetation cover (green) on the volcano's sides also attest to a general lack of gas emissions or "hot spots" on the 872 meter high cone, according to NASA scientists who study the photos downlinked from the orbital outpost.
Bosveld, Floris; Ainslie, Anna; Bellaïche, Yohanns
2017-10-15
Centrosomes nucleate microtubules and are tightly coupled to the bipolar spindle to ensure genome integrity, cell division orientation and centrosome segregation. While the mechanisms of centrosome-dependent microtubule nucleation and bipolar spindle assembly have been the focus of numerous works, less is known about the mechanisms ensuring the centrosome-spindle coupling. The conserved NuMA protein (Mud in Drosophila ) is best known for its role in spindle orientation. Here, we analyzed the role of Mud and two of its interactors, Asp and Dynein, in the regulation of centrosome numbers in Drosophila epithelial cells. We found that Dynein and Mud mainly initiate centrosome-spindle coupling prior to nuclear envelope breakdown (NEB) by promoting correct centrosome positioning or separation, while Asp acts largely independently of Dynein and Mud to maintain centrosome-spindle coupling. Failure in the centrosome-spindle coupling leads to mis-segregation of the two centrosomes into one daughter cell, resulting in cells with supernumerary centrosomes during subsequent divisions. Altogether, we propose that Dynein, Mud and Asp operate sequentially during the cell cycle to ensure efficient centrosome-spindle coupling in mitosis, thereby preventing centrosome mis-segregation to maintain centrosome number. © 2017. Published by The Company of Biologists Ltd.
Road guide to volcanic deposits of Mount St. Helens and vicinity, Washington
Doukas, Michael P.
1990-01-01
Mount St. Helens, the most recently active and most intensively studied Cascades volcano, is in southwestern Washington. The volcano is a superb outdoor laboratory for studying volcanic processes, deposits of observed events, and deposits whose origins are inferred by classic geologic techniques, including analogy to recent deposits. During the past 4,500 years, Mount St. Helens has been more active and more explosive than any other volcano in the conterminous United States. Mount St. Helens became active in mid-March 1980, and eruptive activity began on March 27. Since the climactic eruption of May 18, 1980, the volcano has continued to be active at least until 1988. The 1890 activity of Mount St. Helens is summarized in U.S. Geological Survey Professional Papers 1249 and 1250. This road guide is a tour of Mount St. Helens volcano and vicinity, with emphasis on the effects and deposits of the 1980 eruption. The road log starts from the U.S. Geological Survey's David A. Johnston Cascades Volcano Observatory, Vancouver, Washington. The guide is organized around two primary routes. LEG I is on paved and gravel roads from Vancouver to areas east of Mount St. Helens, including Windy Ridge Overlook near Spirit Lake. This is possibly the most scenic route described in the guide, including a transect of the devastated zone of May 18, 1980, Spirit Lake, and numerous vistas of the volcano. LEG II leads to areas west of the volcano from Vancouver via U.S. Interstate Highway 5, then on a paved ... road along the Toutle River. Highlights include the spectacular effects of mudflows and a view of the huge debris-avalanche deposit that was formed on May 18, 1980.
Costa Rica's Chain of laterally collapsed volcanoes.
NASA Astrophysics Data System (ADS)
Duarte, E.; Fernandez, E.
2007-05-01
From the NW extreme to the SW end of Costa Rica's volcanic backbone, a number of laterally collapsed volcanoes can be observed. Due to several factors, attention has been given to active volcanoes disregarding the importance of collapsed features in terms of assessing volcanic hazards for future generations around inhabited volcanoes. In several cases the typical horseshoe shape amphitheater-like depression can be easily observed. In other cases due to erosion, vegetation, topography, seismic activity or drastic weather such characteristics are not easily recognized. In the order mentioned above appear: Orosi-Cacao, Miravalles, Platanar, Congo, Von Frantzius, Cacho Negro and Turrialba volcanoes. Due to limited studies on these structures it is unknown if sector collapse occurred in one or several phases. Furthermore, in the few studied cases no evidence has been found to relate collapses to actual eruptive episodes. Detailed studies on the deposits and materials composing dome-like shapes will shed light on unsolved questions about petrological and chemical composition. Volume, form and distance traveled by deposits are part of the questions surrounding most of these collapsed volcanoes. Although most of these mentioned structures are extinct, at least Irazú volcano (active volcano) has faced partial lateral collapses recently. It did presented strombolian activity in the early 60s. Collapse scars show on the NW flank show important mass removal in historic and prehistoric times. Moreover, in 1994 a minor hydrothermal explosion provoked the weakening of a deeply altered wall that holds a crater lake (150m diameter, 2.6x106 ). A poster will depict images of the collapsed volcanoes named above with mayor descriptive characteristics. It will also focus on the importance of deeper studies to assess the collapse potential of Irazú volcano with related consequences. Finally, this initiative will invite researchers interested in such topic to join future studies in these Costarrican volcanoes.
Soil gas anomalies along the Watukosek fault system, East Java, Indonesia
NASA Astrophysics Data System (ADS)
Sciarra, A.; Ruggiero, L.; Bigi, S.; Mazzini, A.
2017-12-01
Two soil gas surveys were carried out in the Sidoarjo district (East Java, Indonesia) to investigate the gas leaking properties along fractured zones that coincide with a strike-slip system in NE Java, the Watukosek Fault System. This structure has been the focus of attention since the beginning of the spectacular Lusi mud eruption on the 29th May 2006. This fault system appear to be a sinistral strike-slip system that originates from the Arjuno-Welirang volcanic complex, intersects the active Lusi eruption site displaying a system of antithetic faults, and extends towards the NE of Java where mud volcanic structures reside. In the Lusi region we completed two geochemical surveys (222Rn and 220Rn activity, CO2 and CH4 flux and concentration) along four profiles crossing the Watukosek fault system. In May 2015 two profiles ( 1.2 km long) were performed inside the 7 km2 embankment area framing the erupted mud breccia zone and across regions characterized by intense fracturing and surface deformation. In April 2017 two additional profiles ( 4 km long) were carried out in the northern and southern part outside the Lusi embankment mud eruption area, intersecting the direction of main Watukosek fault system. All the profiles highlight that the fractured zones have the highest 222Rn activity, CO2 and CH4 flux and concentration values. The relationship existing among the measured parameters suggest that the Watukosek fault system acts as a preferential pathway for active rise of deep fluids. In addition the longer profiles outside the embankment show very high average values of CO2 (5 - 8 %,v/v) and 222Rn (17 - 11.5 kBq/m3), while soil gas collected along the profiles inside the Lusi mud eruption are CH4-dominant (up to 4.5%,v/v).This suggests that inside the embankment area (i.e. covered by tens of meters thick deposits of erupted mud breccia) the seepage is overall methane-dominated. This is likely the result of microbial reactions ongoing in the organic-rich sediments producing shallow gas that gets mixed with deeper rising fluids. In contrasts profiles collected in areas not covered by the organic rich mud breccia, and that are crossing the main Watukosek fault system, have the highest 222Rn activity and CO2 concentration values. We suggest that at these localities the rise of deep fluids is not affected by shallower gas production.
Spreading and collapse of big basaltic volcanoes
NASA Astrophysics Data System (ADS)
Puglisi, Giuseppe; Bonforte, Alessandro; Guglielmino, Francesco; Peltier, Aline; Poland, Michael
2016-04-01
Among the different types of volcanoes, basaltic ones usually form the most voluminous edifices. Because volcanoes are growing on a pre-existing landscape, the geologic and structural framework of the basement (and earlier volcanic landforms) influences the stress regime, seismicity, and volcanic activity. Conversely, the masses of these volcanoes introduce a morphological anomaly that affects neighboring areas. Growth of a volcano disturbs the tectonic framework of the region, clamps and unclamps existing faults (some of which may be reactivated by the new stress field), and deforms the substratum. A volcano's weight on its basement can trigger edifice spreading and collapse that can affect populated areas even at significant distance. Volcano instability can also be driven by slow tectonic deformation and magmatic intrusion. The manifestations of instability span a range of temporal and spatial scales, ranging from slow creep on individual faults to large earthquakes affecting a broad area. In the frame of MED-SVU project, our work aims to investigate the relation between basement setting and volcanic activity and stability at three Supersite volcanoes: Etna (Sicily, Italy), Kilauea (Island of Hawaii, USA) and Piton de la Fournaise (La Reunion Island, France). These volcanoes host frequent eruptive activity (effusive and explosive) and share common features indicating lateral spreading and collapse, yet they are characterized by different morphologies, dimensions, and tectonic frameworks. For instance, the basaltic ocean island volcanoes of Kilauea and Piton de la Fournaise are near the active ends of long hotspot chains while Mt. Etna has developed at junction along a convergent margin between the African and Eurasian plates and a passive margin separating the oceanic Ionian crust from the African continental crust. Magma supply and plate velocity also differ in the three settings, as to the sizes of the edifices and the extents of their rift zones. These Supersite volcanoes, due to their similarities and differences, coupled with their long-time and high-level monitoring networks, represent the best natural laboratories for investigating the manifestations and mechanisms of spreading and collapse, the feedback process between spreading and eruptive activity (especially along rift zones), and the role of the regional geodynamics.
Cardoso, Silvana S. S.; Cartwright, Julyan H. E.
2016-01-01
High speeds have been measured at seep and mud-volcano sites expelling methane-rich fluids from the seabed. Thermal or solute-driven convection alone cannot explain such high velocities in low-permeability sediments. Here we demonstrate that in addition to buoyancy, osmotic effects generated by the adsorption of methane onto the sediments can create large overpressures, capable of recirculating seawater from the seafloor to depth in the sediment layer, then expelling it upwards at rates of up to a few hundreds of metres per year. In the presence of global warming, such deep recirculation of seawater can accelerate the melting of methane hydrates at depth from timescales of millennia to just decades, and can drastically increase the rate of release of methane into the hydrosphere and perhaps the atmosphere. PMID:27807343
Sittenfeld, Ana; Vargas, Maribelle; Sánchez, Ethel; Mora, Marielos; Serrano, Aurelio
2004-03-01
A new species of euglena isolated from a hot and acid mud pool located in Las Pailas de Barro, Volcán Rincón de la Vieja, Costa Rica is described. This species inhabits hot and acid environments. Euglena pailasensis sp. nov. main features are: the absence of flagella, the presence filaments like "pilis", the presence of chloroplasts with pyrenoids crossed by several tylakoids, and acid and heat tolerance. Molecular phylogeny studies using 18S rDNA and Gap C genes indicated that the new species is related to E. mutabilis. Its taxonomic characters based on morphology, biology and sequence of the 18S rDNA and Gap C genes are discussed and compared with other closely related species of the genus.
Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Cameron, Cheryl E.; Nuzhdaev, Anton A.; Chibisova, Marina
2011-01-01
The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest or suspected unrest at seven separate volcanic centers in Alaska during 2008. Significant explosive eruptions at Okmok and Kasatochi Volcanoes in July and August dominated Observatory operations in the summer and autumn. AVO maintained 24-hour staffing at the Anchorage facility from July 12 through August 28. Minor eruptive activity continued at Veniaminof and Cleveland Volcanoes. Observed volcanic unrest at Cook Inlet's Redoubt Volcano presaged a significant eruption in the spring of 2009. AVO staff also participated in hazard communication regarding eruptions or unrest at nine volcanoes in Russia as part of a collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.
McGimsey, Robert G.; Neal, Christina A.; Dixon, James P.; Malik, Nataliya; Chibisova, Marina
2011-01-01
The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2007. The year was highlighted by the eruption of Pavlof, one of Alaska's most frequently active volcanoes. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the autumn of 2006 and continued to emit copious amounts of steam and volcanic gas into 2007. Redoubt Volcano showed the first signs of the unrest that would unfold in 2008-09. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.
Ground survey of active Central American volcanoes in November - December 1973
NASA Technical Reports Server (NTRS)
Stoiber, R. E. (Principal Investigator); Rose, W. I., Jr.
1974-01-01
The author has identified the following significant results. Thermal anomalies at two volcanoes, Santiaguito and Izalco, have grown in size in the past six months, based on repeated ground survey. Thermal anomalies at Pacaya volcano have became less intense in the same period. Large (500 m diameter) thermal anomalies exist at 3 volcanoes presently, and smaller scale anomalies are found at nine other volcanoes.
Research of Helium Isotopes in Taiwan: The Legacy of Dr. Tsanyao Frank Yang
NASA Astrophysics Data System (ADS)
Yang, Tsanyao Frank; Lan, Tefang; Lee, Hsiao-Fen; Fu, Ching-Chou; Chuang, Pei-Chuan; Hong, Wei-Li; Walia, Vivek; Chen, Hsuan-Wen; Wen, Hsin-Yi; Chen, Ai-Ti; Chen, Hsiao-Chi; Chiu, Chun-Ming; Cheng, Chun-Yuan; Wu, Nian-Ru; Cheng, Yu-Chen; Chuang, Jin-Lun; Kao, Li-Hsin; Chen, Cheng-Hong; Sano, Yuji
2016-04-01
Helium isotope systematics is a powerful proxy to distinguish fluid origins and conveys fruitful geological information. In the past several decades, this robust isotope systematics had offered pivotal knowledge on many key issues in Earth and planetary sciences. It revealed essential geological information of Taiwan as well. Taiwan is located on the junction of two subduction systems-Ryukyu Arc and Luzon Arc. The geotectonic setting is complex and intriguing. Dr. Tsanyao Frank Yang was the pioneer of gas geochemistry studies in Taiwan. He established the first gas geochemistry laboratory in National Taiwan University in 1998 and started exploring all possible research topics on and around this tectonic-active island. In the past two decades, his research covered volcanic/hydrothermal gas studies, volcanic activity monitoring, gas hydrate exploration, soil gas as a tool to locate fault traces, soil gas flux measurement, earthquake precursory, mud volcanoes, low-temperature geochronology and many more. He died of pancreas cancer in March 2015. He was a warm and enthusiastic mentor, a prolific scientist and a great friend. He will always be remembered. Here we present Dr. Yang's achievement on helium isotopes studies in Taiwan throughout his research career. We integrate all the research results from his team and summarize the observations. We will show the distribution of helium isotope ratios in Taiwan and its implications on tectonic settings.
Molecular Simulation Study on Modification Mechanism of Red Mud Modified Asphalt
NASA Astrophysics Data System (ADS)
Tao, FU; Hui-ming, BAO; xing-xing, Duan
2017-12-01
This article used red mud, the aluminum industrial wastes, as modified asphalt material, through the study of the routine test of modified asphalt properties, and the micro test of electron microscope scanning, infrared spectrum and differential scanning calorimetry analysis etc. to discuss its performance and modification mechanism . The test results show that after mixing red mud, asphalt’s penetration index and 15 °C ductility reduced, softening point enhanced, thus the temperature sensitivity and high temperature stability of asphalt improved; Red mud after mixing the matrix asphalt, can form a uniform, stable and matrix asphalt blending system, and improve the asphalt’s thermal stability. Using molecular simulation technology to analyze the asphalt with the temperature change of energy and find in the process of asphalt melting, the largest is the key to influence on bituminous, and van der waals energy is small. It concludes that red mud -modified asphalt material is mainly controlled by bond energy, in order to obtain its favorable property of modification mechanism, red mud of senior activation and molecular bond energy of asphalt is needed to be enhanced.The results of molecular simulation show that the main component of hematite in red mud is the most adsorbed in the asphalt, the asphaltene is the second, the colloid is the worst, but the adsorption capacity of the colloid is the highest.
NASA Technical Reports Server (NTRS)
Ward, P. L.; Endo, E.; Harlow, D. H.; Allen, R.; Eaton, J. P.
1974-01-01
The ERTS Data Collection System makes it feasible for the first time to monitor the level of activity at widely separated volcanoes and to relay these data rapidly to one central office for analysis. While prediction of specific eruptions is still an evasive goal, early warning of a reawakening of quiescent volcanoes is now a distinct possibility. A prototypical global volcano surveillance system was established under the ERTS program. Instruments were installed in cooperation with local scientists on 15 volcanoes in Alaska, Hawaii, Washington, California, Iceland, Guatemala, El Salvador and Nicaragua. The sensors include 19 seismic event counters that count four different sizes of earthquakes and six biaxial borehole tiltmeters that measure ground tilt with a resolution of 1 microradian. Only seismic and tilt data are collected because these have been shown in the past to indicate most reliably the level of volcano activity at many different volcanoes. Furthermore, these parameters can be measured relatively easily with new instrumentation.
The distribution and quantity of organic sulfur and iron sulfur species were determined in the
Holocene sediments from Mud Lake, Florida. The sediments of this shallow, sinkhole lake are characterized by high sulfur and organic carbon contents as well as active sulfate reducti...
Yakimov, Michail M; La Cono, Violetta; Denaro, Renata; D'Auria, Giuseppe; Decembrini, Franco; Timmis, Kenneth N; Golyshin, Peter N; Giuliano, Laura
2007-12-01
Meso- and bathypelagic ecosystems represent the most common marine ecological niche on Earth and contain complex communities of microorganisms that are for the most part ecophysiologically poorly characterized. Gradients of physico-chemical factors (for example, depth-related gradients of light, temperature, salinity, nutrients and pressure) constitute major forces shaping ecosystems at activity 'hot spots' on the ocean floor, such as hydrothermal vents, cold seepages and mud volcanoes and hypersaline lakes, though the relationships between community composition, activities and environmental parameters remain largely elusive. We report here results of a detailed study of primary producing microbial communities in the deep Eastern Mediterranean Sea. The brine column of the deep anoxic hypersaline brine lake, L'Atalante, the overlying water column and the brine-seawater interface, were characterized physico- and geochemically, and microbiologically, in terms of their microbial community compositions, functional gene distributions and [(14)C]bicarbonate assimilation activities. The depth distribution of genes encoding the crenarchaeal ammonia monooxygenase alpha subunit (amoA), and the bacterial ribulose-1,5-biphosphate carboxylase/oxygenase large subunit (RuBisCO), was found to coincide with two different types of chemoautotrophy. Meso- and bathypelagic microbial communities were enriched in ammonia-oxidizing Crenarchaeota, whereas the autotrophic community at the oxic/anoxic interface of L'Atalante lake was dominated by Epsilonproteobacteria and sulfur-oxidizing Gammaproteobacteria. These autotrophic microbes are thus the basis of the food webs populating these deep-sea ecosystems.
Translating Volcano Hazards Research in the Cascades Into Community Preparedness
NASA Astrophysics Data System (ADS)
Ewert, J. W.; Driedger, C. L.
2015-12-01
Research by the science community into volcanic histories and physical processes at Cascade volcanoes in the states of Washington, Oregon, and California has been ongoing for over a century. Eruptions in the 20th century at Lassen Peak and Mount St. Helen demonstrated the active nature of Cascade volcanoes; the 1980 eruption of Mount St. Helens was a defining moment in modern volcanology. The first modern volcano hazards assessments were produced by the USGS for some Cascade volcanoes in the 1960s. A rich scientific literature exists, much of which addresses hazards at these active volcanoes. That said community awareness, planning, and preparation for eruptions generally do not occur as a result of a hazard analyses published in scientific papers, but by direct communication with scientists. Relative to other natural hazards, volcanic eruptions (or large earthquakes, or tsunami) are outside common experience, and the public and many public officials are often surprised to learn of the impacts volcanic eruptions could have on their communities. In the 1980s, the USGS recognized that effective hazard communication and preparedness is a multi-faceted, long-term undertaking and began working with federal, state, and local stakeholders to build awareness and foster community action about volcano hazards. Activities included forming volcano-specific workgroups to develop coordination plans for volcano emergencies; a concerted public outreach campaign; curriculum development and teacher training; technical training for emergency managers and first responders; and development of hazard information that is accessible to non-specialists. Outcomes include broader ownership of volcano hazards as evidenced by bi-national exchanges of emergency managers, community planners, and first responders; development by stakeholders of websites focused on volcano hazards mitigation; and execution of table-top and functional exercises, including evacuation drills by local communities.
The First Historical Eruption of Kambalny Volcano in 2017 .
NASA Astrophysics Data System (ADS)
Gordeev, E.
2017-12-01
The first historical eruption at Kambalny volcano began about 21:20 UTC on March 24, 2017 with powerful ash emissions up to 6 km above sea level from the pre-summit crater. According to tephrochronological data, it is assumed that the strong eruptions of the volcano occurred 200 (?) and 600 years ago. KVERT (Kamchatka Volcanic Eruption Response Team) of the Institute of Volcanology and Seismology FEB RAS has been monitoring Kambalny volcano since 2002. KVERT worked closely with AMC Elizovo and Tokyo VAAC during the eruption at Kambalny volcano in 2017. The maximum intensity of ash emissions occurred on 25-26 March: a continuous plume laden with ash particles spread over several thousand kilometers, changing the direction of propagation from the volcano from the south-west to the south and south-east. On 27-29 March, the ash plume extended to the west, on 30 March - to the southeast of the volcano. On March 31 and April 01, the volcano was relatively quiet. The resumption of the volcano activity after two days of rest was expressed in powerful ash emissions up to 7 km above sea level. Gas-steam plumes containing some amount of ash were noted on 02-05 April, and powerful ash emissions up to 7 km above sea level occurred on 09 April. The explosive activity at the volcano ended on 11 April. The area of ash deposits was about 1500 km2, the total area covered by ash falls, for example, on 25 March, was about 650 thousand km2. To monitor and study the Kambalny volcano eruption we mainly used satellite images of medium resolution available in the information system "Monitoring volcanic activity in Kamchatka and Kurile Islands" (VolSatView). This work was supported by the Russian Science Foundation, project No. 16-17-00042.
NASA Astrophysics Data System (ADS)
Sheldrake, T. E.; Aspinall, W. P.; Odbert, H. M.; Wadge, G.; Sparks, R. S. J.
2017-07-01
Following a cessation in eruptive activity it is important to understand how a volcano will behave in the future and when it may next erupt. Such an assessment can be based on the volcano's long-term pattern of behaviour and insights into its current state via monitoring observations. We present a Bayesian network that integrates these two strands of evidence to forecast future eruptive scenarios using expert elicitation. The Bayesian approach provides a framework to quantify the magmatic causes in terms of volcanic effects (i.e., eruption and unrest). In October 2013, an expert elicitation was performed to populate a Bayesian network designed to help forecast future eruptive (in-)activity at Soufrière Hills Volcano. The Bayesian network was devised to assess the state of the shallow magmatic system, as a means to forecast the future eruptive activity in the context of the long-term behaviour at similar dome-building volcanoes. The findings highlight coherence amongst experts when interpreting the current behaviour of the volcano, but reveal considerable ambiguity when relating this to longer patterns of volcanism at dome-building volcanoes, as a class. By asking questions in terms of magmatic causes, the Bayesian approach highlights the importance of using short-term unrest indicators from monitoring data as evidence in long-term forecasts at volcanoes. Furthermore, it highlights potential biases in the judgements of volcanologists and identifies sources of uncertainty in terms of magmatic causes rather than scenario-based outcomes.
NASA Astrophysics Data System (ADS)
Solikhin, Akhmad; Thouret, Jean-Claude; Gupta, Avijit; Harris, Andy J. L.; Liew, Soo Chin
2012-02-01
The paper illustrates the application of high-spatial resolution satellite images in interpreting volcanic structures and eruption impacts in the Tengger-Semeru massif in east Java, Indonesia. We use high-spatial resolution images (IKONOS and SPOT 5) and aerial photos in order to analyze the structures of Semeru volcano and map the deposits. Geological and tectonic mapping is based on two DEMs and on the interpretation of aerial photos and four SPOT and IKONOS optical satellite images acquired between 1996 and 2002. We also compared two thermal Surface Kinetic Temperature ASTER images before and after the 2002-2003 eruption in order to delineate and evaluate the impacts of the pyroclastic density currents. Semeru's principal structural features are probably due to the tectonic setting of the volcano. A structural map of the Tengger-Semeru massif shows four groups of faults orientated N40, N160, N75, and N105 to N140. Conspicuous structures, such as the SE-trending horseshoe-shaped scar on Semeru's summit cone, coincide with the N160-trending faults. The direction of minor scars on the east flank parallels the first and second groups of faults. The Semeru composite cone hosts the currently active Jonggring-Seloko vent. This is located on, and buttressed against, the Mahameru edifice at the head of a large scar that may reflect a failure plane at shallow depth. Dipping 35° towards the SE, this failure plane may correspond to a weak basal layer of weathered volcaniclastic rocks of Tertiary age. We suggest that the deformation pattern of Semeru and its large scar may be induced by flank spreading over the weak basal layer of the volcano. It is therefore necessary to consider the potential for flank and summit collapse in the future. The last major eruption took place in December 2002-January 2003, and involved emplacement of block-and-ash flows. We have used the 2003 ASTER Surface Kinetic Temperature image to map the 2002-2003 pyroclastic density current deposits. We have also compared two 10 m-pixel images acquired before and after the event to describe the extent and impact of an estimated volume of 5.45 × 10 6 m 3 of block-and-ash flow deposits. An ash-rich pyroclastic surge escaped from one of the valley-confined block-and ash flows at 5 to 8 km distance from the crater and swept across the forest and tilled land on the SW side of the Bang River Valley. Downvalley, the temperature of the pyroclastic surge decreased and a mud-rich deposit coated the banks of the Bang River Valley. Thus, hazard mitigation at Semeru should combine: (1) continuous monitoring of the eruptive activity through an early-warning system, and (2) continuous remote sensing of the morphological changes in the drainage system due to the impact of frequent pyroclastic density currents and lahars.
Volcano hazards at Newberry Volcano, Oregon
Sherrod, David R.; Mastin, Larry G.; Scott, William E.; Schilling, Steven P.
1997-01-01
Newberry volcano is a broad shield volcano located in central Oregon. It has been built by thousands of eruptions, beginning about 600,000 years ago. At least 25 vents on the flanks and summit have been active during several eruptive episodes of the past 10,000 years. The most recent eruption 1,300 years ago produced the Big Obsidian Flow. Thus, the volcano's long history and recent activity indicate that Newberry will erupt in the future. The most-visited part of the volcano is Newberry Crater, a volcanic depression or caldera at the summit of the volcano. Seven campgrounds, two resorts, six summer homes, and two major lakes (East and Paulina Lakes) are nestled in the caldera. The caldera has been the focus of Newberry's volcanic activity for at least the past 10,000 years. Other eruptions during this time have occurred along a rift zone on the volcano's northwest flank and, to a lesser extent, the south flank. Many striking volcanic features lie in Newberry National Volcanic Monument, which is managed by the U.S. Forest Service. The monument includes the caldera and extends along the northwest rift zone to the Deschutes River. About 30 percent of the area within the monument is covered by volcanic products erupted during the past 10,000 years from Newberry volcano. Newberry volcano is presently quiet. Local earthquake activity (seismicity) has been trifling throughout historic time. Subterranean heat is still present, as indicated by hot springs in the caldera and high temperatures encountered during exploratory drilling for geothermal energy. This report describes the kinds of hazardous geologic events that might occur in the future at Newberry volcano. A hazard-zonation map is included to show the areas that will most likely be affected by renewed eruptions. In terms of our own lifetimes, volcanic events at Newberry are not of day-to-day concern because they occur so infrequently; however, the consequences of some types of eruptions can be severe. When Newberry volcano becomes restless, be it tomorrow or many years from now, the eruptive scenarios described herein can inform planners, emergency response personnel, and citizens about the kinds and sizes of events to expect.
NASA Astrophysics Data System (ADS)
Manea, M.; Norini, G.; Capra, L.; Manea, V. C.
2009-04-01
The Colima Volcano is currently the most active Mexican volcano. After the 1913 plinian activity the volcano presented several eruptive phases that lasted few years, but since 1991 its activity became more persistent with vulcanian eruptions, lava and dome extrusions. During the last 15 years the volcano suffered several eruptive episodes as in 1991, 1994, 1998-1999, 2001-2003, 2004 and 2005 with the emplacement of pyroclastic flows. During rain seasons lahars are frequent affecting several infrastructures such as bridges and electric towers. Researchers from different institutions (Mexico, USA, Germany, Italy, and Spain) are currently working on several aspects of the volcano, from remote sensing, field data of old and recent deposits, structural framework, monitoring (rain, seismicity, deformation and visual observations) and laboratory experiments (analogue models and numerical simulations). Each investigation is focused to explain a single process, but it is fundamental to visualize the global status of the volcano in order to understand its behavior and to mitigate future hazards. The Colima Volcano WebGIS represents an initiative aimed to collect and store on a systematic basis all the data obtained so far for the volcano and to continuously update the database with new information. The Colima Volcano WebGIS is hosted on the Computational Geodynamics Laboratory web server and it is based entirely on Open Source software. The web pages, written in php/html will extract information from a mysql relational database, which will host the information needed for the MapBender application. There will be two types of intended users: 1) researchers working on the Colima Volcano, interested in this project and collaborating in common projects will be provided with open access to the database and will be able to introduce their own data, results, interpretation or recommendations; 2) general users, interested in accessing information on Colima Volcano will be provided with restricted access and will be able to visualize maps, images, diagrams, and current activity. The website can be visited at: http://www.geociencias.unam.mx/colima
McGimsey, R.G.; Neal, C.A.; Dixon, J.P.; Ushakov, Sergey
2008-01-01
The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity at or near 16 volcanoes in Alaska during 2005, including the high profile precursory activity associated with the 2005?06 eruption of Augustine Volcano. AVO continues to participate in distributing information about eruptive activity on the Kamchatka Peninsula, Russia, and in the Kurile Islands of the Russian Far East, in conjunction with the Kamchatkan Volcanic Eruption Response Team (KVERT) and the Sakhalin Volcanic Eruption Response Team (SVERT), respectively. In 2005, AVO helped broadcast alerts about activity at 8 Russian volcanoes. The most serious hazard posed from volcanic eruptions in Alaska, Kamchatka, or the Kurile Islands is the placement of ash into the atmosphere at altitudes traversed by jet aircraft along the North Pacific and Russian Trans East air routes. AVO, KVERT, and SVERT work collaboratively with the National Weather Service, Federal Aviation Administration, and the Volcanic Ash Advisory Centers to provide timely warnings of volcanic eruptions and the production and movement of ash clouds.
NASA Astrophysics Data System (ADS)
Jay, J.; Pritchard, M. E.; Mares, P. J.; Mnich, M. E.; Welch, M. D.; Melkonian, A. K.; Aguilera, F.; Naranjo, J.; Sunagua, M.; Clavero, J. E.
2011-12-01
We examine 153 volcanoes and geothermal areas in the central, southern, and austral Andes for temperature anomalies between 2000-2011 from two different spacebourne sensors: 1) those automatically detected by the MODVOLC algorithm (Wright et al., 2004) from MODIS and 2) manually identified hotspots in nighttime images from ASTER. Based on previous work, we expected to find 8 thermal anomalies (volcanoes: Ubinas, Villarrica, Copahue, Láscar, Llaima, Chaitén, Puyehue-Cordón Caulle, Chiliques). We document 31 volcanic areas with pixel integrated temperatures of 4 to more than 100 K above background in at least two images, and another 29 areas that have questionable hotspots with either smaller anomalies or a hotspot in only one image. Most of the thermal anomalies are related to known activity (lava and pyroclastic flows, growing lava domes, fumaroles, and lakes) while others are of unknown origin or reflect activity at volcanoes that were not thought to be active. A handful of volcanoes exhibit temporal variations in the magnitude and location of their temperature anomaly that can be related to both documented and undocumented pulses of activity. Our survey reveals that low amplitude volcanic hotspots detectable from space are more common than expected (based on lower resolution data) and that these features could be more widely used to monitor changes in the activity of remote volcanoes. We find that the shape, size, magnitude, and location on the volcano of the thermal anomaly vary significantly from volcano to volcano, and these variations should be considered when developing algorithms for hotspot identification and detection. We compare our thermal results to satellite InSAR measurements of volcanic deformation and find that there is no simple relationship between deformation and thermal anomalies - while 31 volcanoes have continuous hotspots, at least 17 volcanoes in the same area have exhibited deformation, and these lists do not completely overlap. In order to investigate the relationship between seismic and thermal volcanic activity, we examine seismic data for 5 of the volcanoes (Uturuncu, Olca-Paruma, Ollague, Irruputuncu, and Sol de Mañana) as well as seismological reports from the Chilean geological survey SERNAGEOMIN for 11 additional volcanoes. Although there were 7 earthquakes with Mw > 7 in our study area from 2000-2010, there is essentially no evidence from ASTER or MODVOLC that the thermal anomalies were affected by seismic shaking.
Geochemical surveys in the Lusi mud eruption
NASA Astrophysics Data System (ADS)
Sciarra, Alessandra; Mazzini, Adriano; Etiope, Giuseppe; Inguaggiato, Salvatore; Hussein, Alwi; Hadi J., Soffian
2016-04-01
The Lusi mud eruption started in May 2006 following to a 6.3 M earthquake striking the Java Island. In the framework of the Lusi Lab project (ERC grant n° 308126) we carried out geochemical surveys in the Sidoarjo district (Eastern Java Island, Indonesia) to investigate the gas bearing properties of the Watukosek fault system that crosses the Lusi mud eruption area. Soil gas (222Rn, CO2, CH4) concentration and flux measurements were performed 1) along two detailed profiles (~ 1km long), trending almost W-E direction, and 2) inside the Lusi embankment (about 7 km2) built to contain the erupted mud. Higher gas concentrations and fluxes were detected at the intersection with the Watukosek fault and the antithetic fault system. These zones characterized by the association of higher soil gas values constitute preferential migration pathways for fluids towards surface. The fractures release mainly CO2 (with peaks up to 400 g/m2day) and display higher temperatures (up to 41°C). The main shear zones are populated by numerous seeps that expel mostly CH4. Flux measurements in the seeping pools reveal that φCO2 is an order of magnitude higher than that measured in the fractures, and two orders of magnitude higher for φCH4. An additional geochemical profile was completed perpendicularly to the Watukosek fault escarpement (W-E direction) at the foots of the Penanngungang volcano. Results reveal CO2 and CH4 flux values significantly lower than those measured in the embankment, however an increase of radon and flux measurements is observed approaching the foots of the escarpment. These measurements are complemented with a database of ~350 CH4 and CO2 flux measurements and some soil gas concentrations (He, H2, CO2, CH4 and C2H6) and their isotopic analyses (δ13C-CH4, δD-CH4 and δ13C-CO2). Results show that the whole area is characterized by diffused gas release through seeps, fractures, microfractures and soil degassing. The collected results shed light on the origin of the seeping gases. Statistical analyses over the 7 km2 area allowed us to estimate the full amount of gas currently released. Flux estimates from the crater zone suggest an order of magnitude higher than those measured from the surrounding region.
NASA Astrophysics Data System (ADS)
Londono, John Makario
2016-09-01
In the last nine years (2007-2015), the Cerro Bravo-Cerro Machín volcanic complex (CBCMVC), located in central Colombia, has experienced many changes in volcanic activity. In particular at Nevado del Ruiz volcano (NRV), Cerro Machin volcano (CMV) and Cerro Bravo (CBV) volcano. The recent activity of NRV, as well as increasing seismic activity at other volcanic centers of the CBCMVC, were preceded by notable changes in various geophysical and geochemical parameters, that suggests renewed magmatic activity is occurring at the volcanic complex. The onset of this activity started with seismicity located west of the volcanic complex, followed by seismicity at CBV and CMV. Later in 2010, strong seismicity was observed at NRV, with two small eruptions in 2012. After that, seismicity has been observed intermittently at other volcanic centers such as Santa Isabel, Cerro España, Paramillo de Santa Rosa, Quindío and Tolima volcanoes, which persists until today. Local deformation was observed from 2007 at NRV, followed by possible regional deformation at various volcanic centers between 2011 and 2013. In 2008, an increase in CO2 and Radon in soil was observed at CBV, followed by a change in helium isotopes at CMV between 2009 and 2011. Moreover, SO2 showed an increase from 2010 at NRV, with values remaining high until the present. These observations suggest that renewed magmatic activity is currently occurring at CBCMVC. NRV shows changes in its activity that may be related to this new magmatic activity. NRV is currently exhibiting the most activity of any volcano in the CBCMVC, which may be due to it being the only open volcanic system at this time. This suggests that over the coming years, there is a high probability of new unrest or an increase in volcanic activity of other volcanoes of the CBCMVC.
NASA Astrophysics Data System (ADS)
Garcia-Yeguas, A.; Ibañez, J. M.; Rietbrock, A.; Tom-Teidevs, G.
2008-12-01
An active seismic experiment to study the internal structure of Teide Volcano was carried out on Tenerife, a volcanic island in Spain's Canary Islands. The main objective of the TOM-TEIDEVS experiment is to obtain a 3-dimensional structural image of Teide Volcano using seismic tomography and seismic reflection/refraction imaging techniques. At present, knowledge of the deeper structure of Teide and Tenerife is very limited, with proposed structural models mainly based on sparse geophysical and geological data. This multinational experiment which involves institutes from Spain, Italy, the United Kingdom, Ireland, and Mexico will generate a unique high resolution structural image of the active volcano edifice and will further our understanding of volcanic processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. B. Campbell
The following site closure activities were performed at the 34 Corrective Action Sites (CASs) comprising Corrective Action Unit (CAU) 417 and are documented in this report: (1) No closure action was taken at 13 CASs (17 sites): 58-05-01,58-07-01,58-05-04, 58-09-05 (Mud Pits C and D only), 58-35-01,58-05-02,58-09-06 (Mud Pits A, B, C, and D), 58-10-06,58-19-01,58-35-02,58-44-04,58-05-04, and 58-09-03 (Mud Pit E only). (2) Housekeeping activities, collecting scrap materials, and transporting to approved landfill sites at the NTS were used to close seven CASs: 58-44-01,58-44-02,58-44-05, 58-98-03,58-98-01,58-98-02, and 58-98-04. (3) Two CASs (58-05-03 and 58-99-01) were closed by excavation and removal of USTs. (4)more » Two septic tanks (CASs 58-05-05 and 58-05-06) were closed by backfilling with clean fill. (5) Site posting with above-grade monuments and attached warning signs and land-use restrictions were used to close seven CASs (nine sites): 58-09-02,58-09-05 (Mud Pit E only), 58-09-06 (Mud Pit E only), 58-10-01,58-25-01,58-09-03 (Mud Pits A, B, and D), and 58-10-05. (6) Clean closure by excavation soil with TPH levels greater than the NDEP action level of 100 mg/kg and limited regrading was used to close five CASs: 58-10-03,58-44-06, 58-44-03,58-10-02, and 58-10-04. (7) Construction of engineered covers was used to close in place two CASs: 58-09-01 and 58-09-03 (Mud Pit C only). Following construction, a fence was constructed around each cover to prevent damage to the cover or intrusion by wildlife.« less
Gravitational sliding of the Mt. Etna massif along a sloping basement
NASA Astrophysics Data System (ADS)
Murray, John B.; van Wyk de Vries, Benjamin; Pitty, Andy; Sargent, Phil; Wooller, Luke
2018-04-01
Geological field evidence and laboratory modelling indicate that volcanoes constructed on slopes slide downhill. If this happens on an active volcano, then the movement will distort deformation data and thus potentially compromise interpretation. Our recent GPS measurements demonstrate that the entire edifice of Mt. Etna is sliding to the ESE, the overall direction of slope of its complex, rough sedimentary basement. We report methods of discriminating the sliding vector from other deformation processes and of measuring its velocity, which averaged 14 mm year-1 during four intervals between 2001 and 2012. Though sliding of one sector of a volcano due to flank instability is widespread and well-known, this is the first time basement sliding of an entire active volcano has been directly observed. This is important because the geological record shows that such sliding volcanoes are prone to devastating sector collapse on the downslope side, and whole volcano migration should be taken into account when assessing future collapse hazard. It is also important in eruption forecasting, as the sliding vector needs to be allowed for when interpreting deformation events that take place above the sliding basement within the superstructure of the active volcano, as might occur with dyke intrusion or inflation/deflation episodes.
NASA Astrophysics Data System (ADS)
Siebert, L.; Simkin, T.; Kimberly, P.
2010-12-01
The 3rd edition of the Smithsonian Institution’s Volcanoes of the World incorporates data on the world’s volcanoes and their eruptions compiled since 1968 by the Institution’s Global Volcanism Program (GVP). Published this Fall jointly by the Smithsonian and the University of California Press, it supplements data from the 1994 2nd edition and includes new data on the number of people living in proximity to volcanoes, the dominant rock lithologies at each volcano, Holocene caldera-forming eruptions, and preliminary lists of Pleistocene volcanoes and large-volume Pleistocene eruptions. The 3rd edition contains data on nearly 1550 volcanoes of known or possible Holocene age, including chronologies, characteristics, and magnitudes for >10,400 Holocene eruptions. The standard 20 eruptive characteristics of the IAVCEI volcano catalog series have been modified to include dated vertical edifice collapse events due to magma chamber evacuation following large-volume explosive eruptions or mafic lava effusion, and lateral sector collapse. Data from previous editions of Volcanoes of the World are also supplemented by listings of up to the 5 most dominant lithologies at each volcano, along with data on population living within 5, 10, 30, and 100 km radii of each volcano or volcanic field. Population data indicate that the most populated regions also contain the most frequently active volcanoes. Eruption data document lava and tephra volumes and Volcanic Explosivity Index (VEI) assignments for >7800 eruptions. Interpretation of VRF data has led to documentation of global eruption rates and the power law relationship between magnitude and frequency of volcanic eruptions. Data with volcanic hazards implications include those on fatalities and evacuations and the rate at which eruptions reach their climax. In recognition of the hazards implications of potential resumption of activity at pre-Holocene volcanoes, the 3rd edition includes very preliminary lists of Pleistocene volcanoes and large-volume Pleistocene eruptions, the latter in collaboration with the VOGRIPA project of Steve Sparks and colleagues. The GVP volcano and eruption data derive both from the retrospective perspective of the volcanological and other literature and documentation of contemporary eruptions and volcanic unrest in the Smithsonian’s monthly bulletin and Weekly Volcanic Activity Reports compiled since 2000 in collaboration with the USGS.
NASA Astrophysics Data System (ADS)
Calvo, David; González-Cárdenas, María E.; Baldrich, Laura; Solana, Carmen; Nave, Rosella; Calvari, Sonia; Harangi, Szabolcs; Chouraqui, Floriane; Dionis, Samara; Silva, Sonia V.; Forjaz, Victor H.; D'Auria, Luca; Pérez, Nemesio M.
2017-04-01
European Volcanoes' Night (www.volcanoesnight.com) is a "volcanic eruption" of art, culture, music, gastronomy, school activities, geotourism, exhibitions and scientific debates. The event aims to bring together members of the general public with scientists who work on the study of volcanoes, in order to meet and ask questions in a relaxed and welcoming setting. It is open to both locals and tourists who appreciate the beauty and power of this natural phenomena. This celebration gives attendees, and in particular young people, the opportunity to meet researchers in a relaxed and festive setting, which will feature many activities and which will be used to highlight the attractiveness of a career research on one of the most attractive natural phenomena; volcanoes. The 2016 European Volcanoes' Night was held at 16 different municipalities of Spain, France, Hungary, Italy, Portugal, United Kingdom and Cape Verde on September 30, 2016, coinciding with the celebration of "European Researchers' Night" held annually throughout Europe and neighbouring countries the last Friday of September. The spirit of the European VolcanoeśNight fits perfectly in the aim of the ERN, trying to close the gap between the scientific community and the rest of the society. In this case, volcanoes are the driving force of this event, celebrating the singularity of living on volcanoes, and how these affect our daily lives, our culture and our heritage. European VolcanoeśNight also celebrates volcano science, with avantgarde talks and presentations on different volcanic topics and becomes a meeting point for children discovering volcanoes as a pastime or a leisure topic, making this event a must for tourists and locals wherever has been held. At the end of 2016 European VolcanoeśNight, almost 150 activities were performed for thousands of spectators, a big success that confirms something as crucial as science as a communication issue, and as a tool to strengthen the ties between researchers and their communities. Now we are planning the 2017 European Volcanoes' Night and looking for additional institutions and municipalities to join this volcano adventure.
ICE-VOLC Project: unravelling the dynamics of Antarctica volcanoes
NASA Astrophysics Data System (ADS)
Cannata, Andrea; Del Carlo, Paola; Giudice, Gaetano; Giuffrida, Giovanni; Larocca, Graziano; Liuzzo, Marco
2017-04-01
Melbourne and Rittmann volcanoes are located in the Victoria Land. Whilst Rittmann's last eruption dates probably to Pleistocene, Melbourne's most recent eruption between 1862 and 1922, testifying it is still active. At present, both volcanoes display fumarolic activity. Melbourne was discovered in 1841 by James Clark Ross, Rittmann during the 4th Italian Expedition (1988/1989). Our knowledge on both volcanoes is really little. The position of these volcanoes in the Antarctic region (characterised by absence of anthropic noise) and its proximity with the Italian Mario Zucchelli Station makes them ideal sites for studying volcano seismic sources, geothermal emissions, seismo-acoustic signals caused by cryosphere-hydrosphere-atmosphere dynamics, and volcanic gas impact on environment. Hence, the main aim of the ICE-VOLC ("multiparametrIC Experiment at antarctica VOLCanoes: data from volcano and cryosphere-ocean-atmosphere dynamics") project is the study of Melbourne and Rittmann, by acquisition, analysis and integration of multiparametric geophysical, geochemical and thermal data. Complementary objectives include investigation of the relationship between seismo-acoustic activity recorded in Antarctica and cryosphere-hydrosphere-atmosphere dynamics, evaluation of the impact of volcanic gas in atmosphere. This project involves 26 researchers, technologists and technicians from University of Perugia and from Istituto Nazionale di Geofisica e Vulcanologia of Catania, Palermo, Pisa and Rome. In this work, we show the preliminary results obtained after the first expedition in Antarctica, aiming to perform geochemical-thermal surveys in the volcano ice caves, as well as to collect ash samples and to install temporary seismic stations.
Subsurface Structure Interpretation Beneath of Mt. Pandan Based on Gravity Data
NASA Astrophysics Data System (ADS)
Santoso, D.; Wahyudi, E. J.; Alawiyah, S.; Nugraha, A. D.; Widiyantoro, S.; Kadir, W. G. A.; Supendi, P.; Wiyono, S.; Zulkafriza
2017-04-01
Mt. Pandan is one of the volcano that state as dormant volcano. On the other hand, Smyth et al. (2008) defined that Mt. Pandan is an active volcano. This volcano is apart a volcanic chain in Java island which is trending east-west along the island. This volcanic chain known as present day volcanic arc. Mt. Wilis is located in the south and it relatively much bigger compare to Mt. Pandan. There were earthquakes activity experienced in the surrounding Mt. Pandan area in the past several years. This event is interesting, because Mt. Pandan is not classify as the active volcano according to the list of volcanoes in Indonesia. On the otherhand Smyth et. al. (2008) mentioned that G. Pandan as modern volcanic which is located in Kendeng Zone of East Java. Gravity measurement around Mt. Pandan area was done in order to understand subsurface structure of Mt. Pandan. Gravity interpretation results shows that there is a low density structure beneath Mt. Pandan. It could be interpreted as existing of magma body below the surface. Some indication of submagmatic activities were found as hot spring and warm ground. Therefore it could be concluded that there is a possibility of magmatic activity below the Mt. Pandan.
Global data collection and the surveillance of active volcanoes
Ward, P.L.
1990-01-01
Data relay systems on existing earth-orbiting satellites provide an inexpensive way to collect environmental data from numerous remote sites around the world. This technology could be used effectively for fundamental monitoring of most of the world's active volcanoes. Such global monitoring would focus attention on the most dangerous volcanoes that are likely to significantly impact the geosphere and the biosphere. ?? 1990.
NASA Astrophysics Data System (ADS)
Anthony, Edward J.; Gardel, Antoine; Proisy, Christophe; Fromard, François; Gensac, Erwan; Peron, Christina; Walcker, Romain; Lesourd, Sandric
2013-07-01
The morphology and sediment dynamics of the 1500 km-long coast of South America between the mouths of the Amazon and the Orinoco Rivers are largely dependent on the massive suspended-sediment discharge of the Amazon, part of which is transported alongshore as mud banks. These mud banks have an overwhelming impact on the geology, the geomorphology, the ecology and the economy of this coast. Although numerous field investigations and remote sensing studies have considerably enhanced our understanding of the dynamics of this coast over the last three decades, much still remains to be understood of the unique functional mechanisms and processes driving its evolution. Among the themes that we deem as requiring further attention three come out as fundamental. The first concerns the mechanisms of formation of individual mud banks from mud streaming on the shelf off the mouth of the Amazon. An unknown quantity of the fluid mud generated by offshore estuarine front activity is transported shoreward and progressively forms mud banks on the Amapá coast, Brazil. The volume of each mud bank can contain from the equivalent of the annual mud supply of the Amazon to several times this annual sediment discharge. The mechanisms by which individual banks are generated from the Amazon turbidity maximum are still to be elucidated. Areas of research include regional mesoscale oceanographic conditions and mud supply from the Amazon. The second theme is that of variations in rates of migration of mud banks, which influence patterns of coastal accretion. Research emphasis needs to be placed on the analysis of both regional meteorological-hydrodynamic forcing and distant Atlantic forcing, as well as on the hydrology of the large rivers draining the Guyana Shield. The rivers appear to generate significant offshore deflection of mud banks in transit alongshore, through a hydraulic-groyne effect. This may favour both muddy accretion on the updrift coast and downdrift mud liquefaction with probably lessened muddy deposition. The third theme concerns sand supply by the Guiana Shield rivers. The rare sand deposits are important in providing sites for human settlements and routes and for nesting by marine turtles. The limited presence of sand bodies on this coast may reflect 'mud blanketing', a hypothesis that requires verification through high-resolution seismic analyses of shelf deposits and coring operations. The large Guiana Shield rivers, especially in Surinam and Guyana, have supplied sand for the construction of significant bands of cheniers, probably enhanced by the afore-mentioned downdrift hydraulic-groyne effect on hindered mud deposition. In all the three themes of this future research agenda, two central elements are the sediment input of the rivers of the Amazon basin, starting with the massive mud supply from the Amazon catchment itself, followed by sand inputs by the Guiana Shield rivers and their river-mouth effects on mud banks.
Klyuchevskaya, Volcano, Kamchatka Peninsula, CIS
1991-05-06
STS039-77-010 (28 April 1991) --- The Kamchatka Peninsula, USSR. This oblique view of the eastern margin of the Kamchatka Peninsula shows pack-ice along the coast, which is drifting along with local currents and delineates the circulation patterns. Also visible are the Kamchatka River (left of center), and the volcanic complex with the active volcano Klyuchevskaya (Kloo-chevs'-ska-ya), 15,584 feet in elevation. The last reported eruption of the volcano was on April 8, but an ash and steam plume extending to the south can be seen in this photograph, taken almost three weeks later (April 28). On April 29, the crew observed and photographed the volcano again, and it was no longer visibly active. However, the flanks of the mountain are dirty from the ash fall. Just north of the Kamchatka River (to the left, just off frame) is Shiveluch, a volcano which was active in early April. There are more than 100 volcanic edifices recognized on Kamchatka, with 15 classified as active.
Teasdale, Rachel; Kraft, Katrien van der Hoeven; Poland, Michael P.
2015-01-01
Training non-scientists in the use of volcano-monitoring data is critical preparation in advance of a volcanic crisis, but it is currently unclear which methods are most effective for improving the content-knowledge of non-scientists to help bridge communications between volcano experts and non-experts. We measured knowledge gains for beginning-(introductory-level students) and novice-level learners (students with a basic understanding of geologic concepts) engaged in the Volcanoes Exploration Program: Pu‘u ‘Ō‘ō (VEPP) “Monday Morning Meeting at the Hawaiian Volcano Observatory” classroom activity that incorporates authentic Global Positioning System (GPS), tilt, seismic, and webcam data from the Pu‘u ‘Ō‘ō eruptive vent on Kīlauea Volcano, Hawai‘i (NAGT website, 2010), as a means of exploring methods for effectively advancing non-expert understanding of volcano monitoring. Learner groups consisted of students in introductory and upper-division college geology courses at two different institutions. Changes in their content knowledge and confidence in the use of data were assessed before and after the activity using multiple-choice and open-ended questions. Learning assessments demonstrated that students who took part in the exercise increased their understanding of volcano-monitoring practices and implications, with beginners reaching a novice stage, and novices reaching an advanced level (akin to students who have completed an upper-division university volcanology class). Additionally, participants gained stronger confidence in their ability to understand the data. These findings indicate that training modules like the VEPP: Monday Morning Meeting classroom activity that are designed to prepare non-experts for responding to volcanic activity and interacting with volcano scientists should introduce real monitoring data prior to proceeding with role-paying scenarios that are commonly used in such courses. The learning gains from the combined approach will help improve effective communications between volcano experts and non-experts during times of crisis, thereby reducing the potential for confusion and misinterpretation of data.
Sheveluch Volcano, Kamchatka, Russia
2010-04-05
Sheveluch Volcano in Kamchatka, Siberia, is one of the frequently active volcanoes located in eastern Siberia. In this image from NASA Terra spacecraft, brownish ash covers the southern part of the mountain, under an ash-laden vertical eruption plume.
Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2002
Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sánchez, John; Estes, Steve; McNutt, Stephen R.; Paskievitch, John
2003-01-01
The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996; Jolly and others, 2001; Dixon and others, 2002). The primary objectives of this program are the seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the basic seismic data and changes in the seismic monitoring program for the period January 1, 2002 through December 31, 2002. Appendix G contains a list of publications pertaining to seismicity of Alaskan volcanoes based on these and previously recorded data. The AVO seismic network was used to monitor twenty-four volcanoes in real time in 2002. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). Monitoring highlights in 2002 include an earthquake swarm at Great Sitkin Volcano in May-June; an earthquake swarm near Snowy Mountain in July-September; low frequency (1-3 Hz) tremor and long-period events at Mount Veniaminof in September-October and in December; and continuing volcanogenic seismic swarms at Shishaldin Volcano throughout the year. Instrumentation and data acquisition highlights in 2002 were the installation of a subnetwork on Okmok Volcano, the establishment of telemetry for the Mount Veniaminof subnetwork, and the change in the data acquisition system to an EARTHWORM detection system. AVO located 7430 earthquakes during 2002 in the vicinity of the monitored volcanoes. This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a description of earthquake detection, recording, analysis, and data archival systems; (3) a description of velocity models used for earthquake locations; (4) a summary of earthquakes located in 2002; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, and location quality statistics; daily station usage statistics; and all HYPOELLIPSE files used to determine the earthquake locations in 2002.The AVO seismic network was used to monitor twenty-four volcanoes in real time in 2002. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). Monitoring highlights in 2002 include an earthquake swarm at Great Sitkin Volcano in May-June; an earthquake swarm near Snowy Mountain in July-September; low frequency (1-3 Hz) tremor and long-period events at Mount Veniaminof in September-October and in December; and continuing volcanogenic seismic swarms at Shishaldin Volcano throughout the year. Instrumentation and data acquisition highlights in 2002 were the installation of a subnetwork on Okmok Volcano, the establishment of telemetry for the Mount Veniaminof subnetwork, and the change in the data acquisition system to an EARTHWORM detection system. AVO located 7430 earthquakes during 2002 in the vicinity of the monitored volcanoes.This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a description of earthquake detection, recording, analysis, and data archival systems; (3) a description of velocity models used for earthquake locations; (4) a summary of earthquakes located in 2002; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, and location quality statistics; daily station usage statistics; and all HYPOELLIPSE files used to determine the earthquake locations in 2002.
Database for the Geologic Map of Newberry Volcano, Deschutes, Klamath, and Lake Counties, Oregon
Bard, Joseph A.; Ramsey, David W.; MacLeod, Norman S.; Sherrod, David R.; Chitwood, Lawrence A.; Jensen, Robert A.
2013-01-01
Newberry Volcano, one of the largest Quaternary volcanoes in the conterminous United States, is a broad shield-shaped volcano measuring 60 km north-south by 30 km east-west with a maximum elevation of more than 2 km. Newberry Volcano is the product of deposits from thousands of eruptions, including at least 25 in the past approximately 12,000 years (Holocene Epoch). Newberry Volcano has erupted as recently as 1,300 years ago, but isotopic ages indicate that the volcano began its growth as early as 0.6 million years ago. Such a long eruptive history and recent activity suggest that Newberry Volcano is likely to erupt in the future. This geologic map database of Newberry Volcano distinguishes rocks and deposits based on their composition, age, and lithology.
Historic volcanology document reprinted
NASA Astrophysics Data System (ADS)
Fiske, Richard S.
On the occasion of the 75th anniversary of the founding of the Hawaiian Volcano Observatory (HVO), the Smithsonian Institution (Washington, D.C.) has reprinted an historic, hard-to-find reference on volcanic activity in Hawaii and around the world that was published at the observatory from 1925 to 1955. The Volcano Letter contains the definitive reports of many Hawaiian eruptions, such as activity in Halemaumau at Kilauea from the late 1920s to 1934 and the Mauna Loa eruptions of 1935 and the 1940s; accounts of the development of volcano-monitoring techniques at HVO; scholarly reports on historic activity at volcanos in Hawaii and around the world; and reports of seismicity in Hawaii and elsewhere.
Spreading And Collapse Of Big Basaltic Volcanoes
NASA Astrophysics Data System (ADS)
Puglisi, G.; Bonforte, A.; Guglielmino, F.; Peltier, A.; Poland, M. P.
2015-12-01
Among the different types of volcanoes, basaltic ones usually form the most voluminous edifices. Because volcanoes are growing on a pre-existing landscape, the geologic and structural framework of the basement (and earlier volcanic landforms) influences the stress regime, seismicity, and volcanic activity. Conversely, the masses of these volcanoes introduce a morphological anomaly that affects neighboring areas. Growth of a volcano disturbs the tectonic framework of the region, clamps and unclamps existing faults (some of which may be reactivated by the new stress field), and deforms the substratum. A volcano's weight on its basement can trigger edifice spreading and collapse that can affect populated areas even at significant distance. Volcano instability can also be driven by slow tectonic deformation and magmatic intrusion. The manifestations of instability span a range of temporal and spatial scales, ranging from slow creep on individual faults to large earthquakes affecting a broad area. Our work aims to investigate the relation between basement setting and volcanic activity and stability at Etna (Sicily, Italy), Kilauea (Island of Hawaii, USA) and Piton de la Fournaise (La Reunion Island, France). These volcanoes host frequent eruptive activity (effusive and explosive) and share common features indicating lateral spreading and collapse, yet they are characterized by different morphologies, dimensions, and tectonic frameworks. For instance, the basaltic ocean island volcanoes of Kilauea and Piton de la Fournaise are near the active ends of long hotspot chains while Mt. Etna has developed at junction along a convergent margin between the African and Eurasian plates and a passive margin separating the oceanic Ionian crust from the African continental crust. Magma supply and plate velocity also differ in the three settings, as to the sizes of the edifices and the extents of their rift zones. These volcanoes, due to their similarities and differences, coupled with their long-time and high-level monitoring networks, represent the best natural laboratories for investigating the manifestations and mechanisms of spreading and collapse, the feedback process between spreading and eruptive activity (especially along rift zones), and the role of the regional geodynamics.
Dzurisin, Daniel; Lu, Zhong
2009-01-01
A volcano workshop was held in Washington State, near the U.S. Geological Survey (USGS) Cascades Volcano Observatory. The workshop, hosted by the USGS Volcano Hazards Program (VHP), included more than 40 participants from the United States, the European Union, and Canada. Goals were to promote (1) collaboration among scientists working on active volcanoes and (2) development of new tools for studying volcano deformation. The workshop focused on conventional and emerging techniques, including the Global Positioning System (GPS), borehole strain, interferometric synthetic aperture radar (InSAR), gravity, and electromagnetic imaging, and on the roles of aqueous and magmatic fluids.
Single-station monitoring of volcanoes using seismic ambient noise
NASA Astrophysics Data System (ADS)
De Plaen, Raphael S. M.; Lecocq, Thomas; Caudron, Corentin; Ferrazzini, Valérie; Francis, Olivier
2016-08-01
Seismic ambient noise cross correlation is increasingly used to monitor volcanic activity. However, this method is usually limited to volcanoes equipped with large and dense networks of broadband stations. The single-station approach may provide a powerful and reliable alternative to the classical "cross-station" approach when measuring variation of seismic velocities. We implemented it on the Piton de la Fournaise in Reunion Island, a very active volcano with a remarkable multidisciplinary continuous monitoring. Over the past decade, this volcano has been increasingly studied using the traditional cross-correlation technique and therefore represents a unique laboratory to validate our approach. Our results, tested on stations located up to 3.5 km from the eruptive site, performed as well as the classical approach to detect the volcanic eruption in the 1-2 Hz frequency band. This opens new perspectives to successfully forecast volcanic activity at volcanoes equipped with a single three-component seismometer.
NASA Astrophysics Data System (ADS)
Giaccio, B.; Messina, P.; Sposato, A.; Voltaggio, M.; Zanchetta, G.; Galadini, F.; Gori, S.; Santacroce, R.
2009-12-01
We present a new tephrostratigraphic record from the Holocene lake sediments of the Sulmona basin, central Italy. The Holocene succession is represented by whitish calcareous mud that is divided into two units, SUL2 (ca 32 m thick) and SUL1 (ca 8 m thick), for a total thickness of ca 40 m. These units correspond to the youngest two out of six sedimentary cycles recognised in the Sulmona basin that are related to the lake sedimentation since the Middle Pleistocene. Height concordant U series age determinations and additional chronological data constrain the whole Holocene succession to between ca 8000 and 1000 yrs BP. This includes a sedimentary hiatus that separates the SUL2 and SUL1 units, which is roughly dated between <2800 and ca 2000 yrs BP. A total of 31 and 6 tephra layers were identified within the SUL2 and SUL1 units, respectively. However, only 28 tephra layers yielded fresh micro-pumices or glass shards suitable for chemical analyses using a microprobe wavelength dispersive spectrometer. Chronological and compositional constraints suggest that 27 ash layers probably derive from the Mt. Somma-Vesuvius Holocene volcanic activity, and one to the Ischia Island eruption of the Cannavale tephra (2920 ± 450 cal yrs BP). The 27 ash layers compatible with Mt. Somma-Vesuvius activity are clustered in three different time intervals: from ca 2000 to >1000; from 3600 to 3100; and from 7600 to 4700 yrs BP. The first, youngest cluster, comprises six layers and correlates with the intense explosive activity of Mt. Somma-Vesuvius that occurred after the prominent AD 79 Pompeii eruption, but only the near-Plinian event of AD 472 has been tentatively recognised. The intermediate cluster (3600-3100 yrs BP) starts with tephra that chemically and chronologically matches the products from the "Pomici di Avellino" eruption (ca 3800 ± 200 yrs BP). This is followed by eight further layers, where the glasses exhibit chemical features that are similar in composition to the products from the so-called "Protohistoric" or AP eruptions; however, only the distal equivalents of three AP events (AP3, AP4 and AP6) are tentatively designated. Finally, the early cluster (7600-4700 yrs BP) comprises 12 layers that contain evidence of a surprising, previously unrecognised, activity of the Mt. Somma-Vesuvius volcano during its supposed period of quiescence, between the major Plinian "Pomici di Mercato" (ca 9000 yrs BP) and "Pomici di Avellino" eruptions. Alternatively, since at present there is no evidence of a similar significant activity in the proximal area of this well-known volcano, a hitherto unknown origin of these tephras cannot be role out. The results of the present study provide new data that enrich our previous knowledge of the Holocene tephrostratigraphy and tephrochronology in central Italy, and a new model for the recent explosive activity of the Peninsular Italy volcanoes and the dispersal of the related pyroclastic deposits.
Remote sensing of volcanos and volcanic terrains
NASA Technical Reports Server (NTRS)
Mouginis-Mark, Peter J.; Francis, Peter W.; Wilson, Lionel; Pieri, David C.; Self, Stephen; Rose, William I.; Wood, Charles A.
1989-01-01
The possibility of using remote sensing to monitor potentially dangerous volcanoes is discussed. Thermal studies of active volcanoes are considered along with using weather satellites to track eruption plumes and radar measurements to study lava flow morphology and topography. The planned use of orbiting platforms to study emissions from volcanoes and the rate of change of volcanic landforms is considered.
Earth Observations by the Expedition 19 crew
2009-04-08
ISS019-E-005286 (8 April 2009) --- Mount Fuji, Japan is featured in this image photographed by an Expedition 19 crew member on the International Space Station. The 3,776 meters high Mount Fuji volcano, located on the island of Honshu in Japan, is one of the world?s classic examples of a stratovolcano. The volcano?s steep, conical profile is the result of numerous interlayered lava flows and explosive eruption products ? such as ash, cinders, and volcanic bombs ? building up the volcano over time. The steep profile is possible because of the relatively high viscosity of the volcanic rocks typically associated with stratovolcanoes. This leads to thick sequences of lava flows near the eruptive vent that build the cone structure, rather than low viscosity flows that spread out over the landscape and build lower-profile shield volcanoes. According to scientists, Mount Fuji, or Fuji-san in Japan, is actually comprised of several overlapping volcanoes that began erupting in the Pleistocene Epoch (1.8 million to approximately 10,000 years ago). Scientists believe that the currently active volcano, known as Younger Fuji, began forming approximately 11,000 to 8,000 years ago. The most recent explosive activity occurred in 1707, creating Hoei Crater on the southeastern flank of the volcano (center). This eruption deposited ash on Edo (present-day Tokyo) located 95 kilometers to the northeast. While there have been no further eruptions of Mount Fuji, steam was observed at the summit during 1780?1820, and the volcano is considered active. This oblique photograph illustrates the snow-covered southeastern flank of the volcano; the northeastern flank can be seen here. A representation of the topography of Mt. Fuji and its surroundings can be viewed here.
A double-regulated oncolytic adenovirus with improved safety for adenocarcinoma therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Na; Fan, Jun Kai; Gu, Jin Fa
2009-10-16
Safety and efficiency are equally important to be considered in developing oncolytic adenovirus. Previously, we have reported that ZD55, an oncolytic adenovirus with the deletion of E1B-55K gene, exhibited potent antitumor activity. In this study, to improve the safety of ZD55, we utilized MUC1 promoter to replace the native promoter of E1A on the basis of ZD55, and generated a double-regulated adenovirus, named MUD55. Our data demonstrated that the expression of early and late genes of MUD55 was both reduced in MUC1-negative cells, resulting in its stricter glandular-tumor selective progeny production. The cytopathic effect of MUD55 was about 10-fold lowermore » than mono-regulated adenovirus ZD55 or Ad.MUC1 in normal cells and not obviously attenuated in glandular tumor cells. Moreover, MUD55 showed the least liver toxicity when administrated by intravenous injection in nude mice. These results indicate that MUD55 could be a promising candidate for the treatment of adenocarcinoma.« less
NASA Spacecraft Captures Fury of Russian Volcano
2011-01-27
This nighttime thermal infrared image from NASA Terra spacecraft shows Shiveluch volcano, one of the largest and most active volcanoes in Russia Kamchatka Peninsula; the bright, hot summit lava dome is evident in the center of the image.
Poland, Michael P.; Newman, Andrew V.
2006-01-01
The 18 papers herein report on new geodetic data that offer valuable insights into eruptive activity and magma transport; they present new models and modeling strategies that have the potential to greatly increase understanding of magmatic, hydrothermal, and volcano-tectonic processes; and they describe innovative techniques for collecting geodetic measurements from remote, poorly accessible, or hazardous volcanoes. To provide a proper context for these studies, we offer a short review of the evolution of volcano geodesy, as well as a case study that highlights recent advances in the field by comparing the geodetic response to recent eruptive episodes at Mount St. Helens. Finally, we point out a few areas that continue to challenge the volcano geodesy community, some of which are addressed by the papers that follow and which undoubtedly will be the focus of future research for years to come.
NASA Astrophysics Data System (ADS)
Hernandez, S.; Schiek, C. G.; Zeiler, C. P.; Velasco, A. A.; Hurtado, J. M.
2008-12-01
The San Miguel volcano lies within the Central American volcanic chain in eastern El Salvador. The volcano has experienced at least 29 eruptions with Volcano Explosivity Index (VEI) of 2. Since 1970, however, eruptions have decreased in intensity to an average of VEI 1, with the most recent eruption occurring in 2002. Eruptions at San Miguel volcano consist mostly of central vent and phreatic eruptions. A critical challenge related to the explosive nature of this volcano is to understand the relationships between precursory surface deformation, earthquake activity, and volcanic activity. In this project, we seek to determine sub-surface structures within and near the volcano, relate the local deformation to these structures, and better understand the hazard that the volcano presents in the region. To accomplish these goals, we deployed a six station, broadband seismic network around San Miguel volcano in collaboration with researchers from Servicio Nacional de Estudios Territoriales (SNET). This network operated continuously from 23 March 2007 to 15 January 2008 and had a high data recovery rate. The data were processed to determine earthquake locations, magnitudes, and, for some of the larger events, focal mechanisms. We obtained high precision locations using a double-difference approach and identified at least 25 events near the volcano. Ongoing analysis will seek to identify earthquake types (e.g., long period, tectonic, and hybrid events) that occurred in the vicinity of San Miguel volcano. These results will be combined with radar interferometric measurements of surface deformation in order to determine the relationship between surface and subsurface processes at the volcano.
The Lusi mud eruption dynamics: constraints from field data.
NASA Astrophysics Data System (ADS)
Mazzini, Adriano; Sciarra, Alessandra; Lupi, Matteo; Mauri, Guillaume; Karyono, Karyono; Husein, Alwi; Aquino, Ida; Ricco, Ciro; Obermann, Anne; Hadi, Soffian
2017-04-01
The Indonesian Lusi eruption has been spewing boiling water, gas, and sediments since the 29th of May 2006. Initially, numerous aligned eruptions sites appeared along the Watukosek fault system that was reactivated after the Yogyakarta earthquake occurring the 27th of May in the Java Island. Since its birth Lusi erupted with a pulsating behavior showing intermittent periods of stronger activity resulting in higher fluids and solid emissions intervals. Since 2010 two active vents are constantly active. We conducted detailed monitoring of such clastic geysering activity and this allowed us to distinguish four distinct phases that follow each other and that reoccur every 30 minutes: (1) regular bubbling activity (constant emission of water, mud breccia, and gas); (2) clastic geysering phase with intense bubbling (consisting in reduced vapor emission and more powerful diffused mud bursting); (3) clastic geysering with mud bursts and intense vapour discharge (typically dense plume that propagates up to 100 m in height); (4) quiescent phase marking the end of the geysering activity (basically no gas emissions or bursts observed). In order to better understand this pulsating behavior and to constrain the mechanisms controlling its activity, we designed a multidisciplinary monitoring of the eruption site combining the deployment of numerous instruments around the crater site. Processing of the collected data reveals the dynamic activity of Lusi's craters. Satellite images show that the location of these vents migrated along a NE-SW direction. This is subparallel to the direction of the Watukosek fault system that is the zone of (left) lateral deformation upon which Lusi developed in 2006. Coupling HR camera images with broadband and short period seismic stations allowed us to describe the seismic signal generated by clastic geysering and to constrain the depth of the source generating the signal. We measure a delay between the seismic (harmonic) record and the associated clastic geyser explosion of approximately 3 s. This, in agreement with previous studies, corresponds to a source located some tens of meters depth inside the conduits. We ascribe the harmonic seismic signal to rise of batches of H2O-CO2-CH4 fluids inside the conduit. Once they approach the water-vapour region the sudden pressure drop triggers flashing and the exsolution of the dissolved CO2 and CH4. In the last part of our study we verified whether the powerful clastic geysering (emitting jets up to 20 m high) may induce local deformation of the mud edifice. During the stronger geysering events we measure an increase and drop of gravity overtime that are related to change of mud density within the feeder conduit. We process continuous camera recordings with a video magnifying tool capable of enhancing small variations in the recorded images. Results highlight that major eruptive events are preceded by a deformation of the mud edifice surrounding the vents. Ongoing studies aim to verify if these events are also captured by the tiltmeter measurements. This study represents a step forward to better understand the activity that characterizes Lusi. Further studies will help to better constrain the reactions and dynamics ongoing inside the conduit.
Hydrothermal reservoir beneath Taal Volcano (Philippines): Implications to volcanic activity
NASA Astrophysics Data System (ADS)
Nagao, T.; Alanis, P. B.; Yamaya, Y.; Takeuchi, A.; Bornas, M. V.; Cordon, J. M.; Puertollano, J.; Clarito, C. J.; Hashimoto, T.; Mogi, T.; Sasai, Y.
2012-12-01
Taal Volcano is one of the most active volcanoes in the Philippines. The first recorded eruption was in 1573. Since then it has erupted 33 times resulting in thousands of casualties and large damages to property. In 1995, it was declared as one of the 15 Decade Volcanoes. Beginning in the early 1990s it has experienced several phases of abnormal activity, including seismic swarms, episodes of ground deformation, ground fissuring and hydrothermal activities, which continues up to the present. However, it has been noted that past historical eruptions of Taal Volcano may be divided into 2 distinct cycles, depending on the location of the eruption center, either at Main Crater or at the flanks. Between 1572-1645, eruptions occurred at the Main Crater, in 1707 to 1731, they occurred at the flanks. In 1749, eruptions moved back to the Main Crater until 1911. During the 1965 and until the end of the 1977 eruptions, eruptive activity once again shifted to the flanks. As part of the PHIVOLCS-JICA-SATREPS Project magnetotelluric and audio-magnetotelluric surveys were conducted on Volcano Island in March 2011 and March 2012. Two-dimensional (2-D) inversion and 3-D forward modeling reveals a prominent and large zone of relatively high resistivity between 1 to 4 kilometers beneath the volcano almost directly beneath the Main Crater, surrounded by zones of relatively low resistivity. This anomalous zone of high resistivity is hypothesized to be a large hydrothermal reservoir filled with volcanic fluids. The presence of this large hydrothermal reservoir could be related to past activities of Taal Volcano. In particular we believe that the catastrophic explosion described during the 1911 eruption was the result of the hydrothermal reservoir collapsing. During the cycle of Main Crater eruptions, this hydrothermal reservoir is depleted, while during a cycle of flank eruptions this reservoir is replenished with hydrothermal fluids.
Stratigraphy of Late Pleistocene-Holocene pyroclastic deposits of Tacana Volcano, Mexico-Guatemala
NASA Astrophysics Data System (ADS)
Macias, J. L.; Arce, J. L.; Garcia-Palomo, A.; Mora, J. C.; Saucedo, R.; Hughes, S.; Scolamacchia, T.
2005-12-01
Tacana volcano (4,060 masl), the highest peak of the Tacana Volcanic Complex, is an acitve volcano located on the Mexico-Guatemala border. Tacana resumed phreatic activity in 1950 and again in 1986. After this last event, the volcano became the locus of attention of authorities and local scientists began to study the complex. Tacana's stratigraphic record has been studied using radiocarbon dating and these indicate that the volcano has been very active in the past producing at least 12 explosive eruptions during the last 40 ka years as follow: a) Four partial dome destruction events with the generation of block-and-ash flow deposits at 40, 28, <26, and 16 ka. b) Four small-volume phreatomagmatic events that emplaced dilute density currents at 10.6, 7.5, 6, and 2.5 ka. c) Four eruptions that emplaced pumice-rich fall deposits, three of them widely dispersed towards the NE flank of the volcano in Guatemala and dated at ~32, <24 and <14 ka, and finally a 0.8 ka fall deposit restricted to the crater vicinity that might represent the youngest magmatic eruption of the volcano. Although refining of these stratigraphic sequence is still underway, the eruptive chronology of Tacana volcano cleary indicates that explosive eruptions producing plinian fall and pyroclastic density currents have taken place every 1 to 8 ka years. This record constrasts with the small phreatic eruptions that occur 1-2 per century. So, this indicates that Tacana volcano is more active than previously considered and these results must be considered for future researches on hazards maps and mitigation.
The Keelung Submarine volcanoes and gas plumes in the nearshore of northern Taiwan
NASA Astrophysics Data System (ADS)
Huang, J. C.; Tsia, C. H.; Hsu, S. K.; Lin, S. S.
2016-12-01
Taiwan is located in the collision zone between Philippine Sea Plate and Eurasian Plate. The Philippine Sea Plate subducts northward beneath the Ryukyu arc system while the Eurasian Plate subducts eastward beneath the Luzon arc system. The Taiwan mountain building started at 9 My ago and the most active collision has migrated to middle Taiwan. In consequence, the northern Taiwan has changed its stress pattern from forms a series of thrust faults to normal faults. The stress pattern change has probably induced the post-collisional extension and volcanism in and off northern Taiwan. Under such a tectonic environment, the volcanism and gas plumes are widespread in northern Taiwan and its offshore area. Among the volcanoes of the northern Taiwan volcanic zone, the Tatun Volcano Group is the most obvious one. In this study, we use sub-bottom profiler, EK500 echo sounder, and multibeam echo sounder to study the geophysical structure of a submarine volcano in the nearshore of northern Taiwan. We have analyzed the shallow structures and identified the locations of the gas plumes. The identification of the gas plumes can help us understand the nature of the submarine volcano. Our results show that the gas plumes appear near the Kanchiao Fault and Keelung islet. Some intrusive volcanoes can be observed in the subbottom profiler data. Finally, according to the observations, we found that the Keelung Submarine Volcano is still active. We need the monitor of the active Keelung Submarine Volcano to avoid the volcanic hazard. Additionally, we need to pay attention to the earthquakes related to the Keelung Submarine Volcano.
Earth Observations taken by the Expedition 18 Crew
2009-02-24
ISS018-E-035716 (24 Feb. 2009) --- Minchinmavida and Chaiten Volcanoes in Chile are featured in this image photographed by an Expedition 18 crewmember on the International Space Station. The Andes mountain chain along the western coastline of South America includes numerous active stratovolcanoes. The majority of these volcanoes are formed, and fed, by magma generated as the oceanic Nazca tectonic plate moves northeastward and plunges beneath the less dense South American continental tectonic plate (a process known as subduction). The line of Andean volcanoes marks the approximate location of the subduction zone. This astronaut photograph highlights two volcanoes located near the southern boundary of the Nazca ? South America subduction zone in southern Chile. Dominating the scene is the massive Minchinmavida stratovolcano at center. An eruption of this glaciated volcano was observed by Charles Darwin during his Galapagos Island voyage in 1834; the last recorded eruption took place the following year. The white, snow covered summit of Minchinmavida is blanketed by gray ash erupted from its much smaller but now active neighbor to the west, Volcan (volcano) Chaiten. The historically inactive Chaiten volcano, characterized by a large lava dome within a caldera (an emptied and collapsed magma chamber beneath a volcano) roared back to life unexpectedly on May 2, 2008, generating dense ash plumes and forcing the evacuation of the nearby town of Chaiten. Volcanic activity continues at Chaiten, including partial collapse of a new lava dome and generation of a pyroclastic flow several days before this photograph was taken. A steam and ash plume is visible extending to the northeast from the eruptive center of the volcano.
NASA Astrophysics Data System (ADS)
Patlan, E.; Velasco, A.; Konter, J. G.
2010-12-01
The San Miguel volcano lies near the city of San Miguel, El Salvador (13.43N and - 88.26W). San Miguel volcano, an active stratovolcano, presents a significant natural hazard for the city of San Miguel. In general, the internal state and activity of volcanoes remains an important component to understanding volcanic hazard. The main technology for addressing volcanic hazards and processes is through the analysis of data collected from the deployment of seismic sensors that record ground motion. Six UTEP seismic stations were deployed around San Miguel volcano from 2007-2008 to define the magma chamber and assess the seismic and volcanic hazard. We utilize these data to develop images of the earth structure beneath the volcano, studying the volcanic processes by identifying different sources, and investigating the role of earthquakes and faults in controlling the volcanic processes. We initially locate events using automated routines and focus on analyzing local events. We then relocate each seismic event by hand-picking P-wave arrivals, and later refine these picks using waveform cross correlation. Using a double difference earthquake location algorithm (HypoDD), we identify a set of earthquakes that vertically align beneath the edifice of the volcano, suggesting that we have identified a magma conduit feeding the volcano. We also apply a double-difference earthquake tomography approach (tomoDD) to investigate the volcano’s plumbing system. Our preliminary results show the extent of the magma chamber that also aligns with some horizontal seismicity. Overall, this volcano is very active and presents a significant hazard to the region.
Wu, Hui-Juan; Sun, Ling-Bin; Li, Chuan-Biao; Li, Zhong-Zhen; Zhang, Zhao; Wen, Xiao-Bo; Hu, Zhong; Zhang, Yue-Ling; Li, Sheng-Kang
2014-12-01
In a previous study, bacterial communities of the intestine in three populations of crabs (wild crabs, pond-raised healthy crabs and diseased crabs) were probed by culture-independent methods. In this study, we examined the intestinal communities of the crabs by bacterial cultivation with a variety of media. A total of 135 bacterial strains were isolated from three populations of mud crabs. The strains were screened for antagonistic activity against Vibrio parahaemolyticus using an agar spot assay. Antagonistic strains were then identified by 16S rRNA gene sequence analysis. Three strains (Bacillus subtilis DCU, Bacillus pumilus BP, Bacillus cereus HL7) with the strongest antagonistic activity were further evaluated for their probiotic characteristics. The results showed that two (BP and DCU) of them were able to survive low pH and high bile concentrations, showed good adherence characteristics and a broad spectrum of antibiotic resistance. The probiotic effects were then tested by feeding juvenile mud crabs (Scylla paramamosain) with foods supplemented with 10(5) CFU/g of BP or DCU for 30 days before being subjected to an immersion challenge with V. parahaemolyticus for 48 h. The treated crabs showed significantly higher expression levels of immune related genes (CAT, proPO and SOD) and activities of respiratory burst than that in controlled groups. Crabs treated with BP and DCU supplemented diets exhibited survival rates of 76.67% and 78.33%, respectively, whereas survival rate was 54.88% in crabs not treated with the probiotics. The data showed that indigenous mud-associated microbiota, such as DCU and BP, have potential application in controlling pathogenic Vibriosis in mud crab aquaculture. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Satellite Images Erupting Russian Volcano
2017-08-22
Klyuchevskoi, one of the world's most active volcanoes, is seen poking through above a solid cloud deck, with an ash plume streaming to the west. Located on the Kamchatka Peninsula in far eastern Russia, it is one of many active volcanoes on the Peninsula. Nearby, to the south, the smaller Bezymianny volcano can be seem with a small steam plume coming from its summit. The image was acquired Aug. 20, 2017, covers an area of 12 by 14 miles (19.5 by 22.7 kilometers), and is located at 56.1 degrees north, 160.6 degrees east. https://photojournal.jpl.nasa.gov/catalog/PIA21878
Evaluating life-safety risk of fieldwork at New Zealand's active volcanoes
NASA Astrophysics Data System (ADS)
Deligne, Natalia; Jolly, Gill; Taig, Tony; Webb, Terry
2014-05-01
Volcano observatories monitor active or potentially active volcanoes. Although the number and scope of remote monitoring instruments and methods continues to grow, in-person field data collection is still required for comprehensive monitoring. Fieldwork anywhere, and especially in mountainous areas, contains an element of risk. However, on volcanoes with signs of unrest, there is an additional risk of volcanic activity escalating while on site, with potentially lethal consequences. As an employer, a volcano observatory is morally and sometimes legally obligated to take reasonable measures to ensure staff safety and to minimise occupational risk. Here we present how GNS Science evaluates life-safety risk for volcanologists engaged in fieldwork on New Zealand volcanoes with signs of volcanic unrest. Our method includes several key elements: (1) an expert elicitation for how likely an eruption is within a given time frame, (2) quantification of, based on historical data when possible, given a small, moderate, or large eruption, the likelihood of exposure to near-vent processes, ballistics, or surge at various distances from the vent, and (3) estimate of fatality rate given exposure to these volcanic hazards. The final product quantifies hourly fatality risk at various distances from a volcanic vent; various thresholds of risk (for example, zones with more than 10-5 hourly fatality risk) trigger different levels of required approval to undertake work. Although an element of risk will always be present when conducting fieldwork on potentially active volcanoes, this is a first step towards providing objective guidance for go/no go decisions for volcanic monitoring.
Reducing Disaster Vulnerability Through Science and Technology
2003-07-01
engineering design. Source: “Massive Alaska Earthquake Rocks the Mainland,” Volcano Watch, Hawaiian Volcano Observatory, November 14, 2002, http... volcanoes , and landslides ■ Disease epidemics ■ Technological disasters, including critical infrastructure threats, oil and chemical spills, and building...risk reduction can enhance protection of buildings even in these high-risk areas. Volcanoes The United States is among the most volcanically active
Activity at Europe Most Active Volcano Eyed by NASA Spacecraft
2016-05-27
Mt. Etna, Sicily, Italy, is Europe most active volcano. In mid-May 2016, Mt. Etna put on a display of lava fountaining, ash clouds and lava flows. Three of the four summit craters were active. NASA Terra spacecraft acquired this image on May 26, 2016.
Seismicity at Fuego, Pacaya, Izalco, and San Cristobal Volcanoes, Central America, 1973-1974
McNutt, S.R.; Harlow, D.H.
1983-01-01
Seismic data collected at four volcanoes in Central America during 1973 and 1974 indicate three sources of seismicity: regional earthquakes with hypocentral distances greater than 80 km, earthquakes within 40 km of each volcano, and seismic activity originating at the volcanoes due to eruptive processes. Regional earthquakes generated by the underthrusting and subduction of the Cocos Plate beneath the Caribbean Plate are the most prominent seismic feature in Central America. Earthquakes in the vicinity of the volcanoes occur on faults that appear to be related to volcano formation. Faulting near Fuego and Pacaya volcanoes in Guatemala is more complex due to motion on a major E-W striking transform plate boundary 40 km north of the volcanoes. Volcanic activity produces different kinds of seismic signatures. Shallow tectonic or A-type events originate on nearby faults and occur both singly and in swarms. There are typically from 0 to 6 A-type events per day with b value of about 1.3. At very shallow depths beneath Pacaya, Izalco, and San Cristobal large numbers of low-frequency or B-type events are recorded with predominant frequencies between 2.5 and 4.5 Hz and with b values of 1.7 to 2.9. The relative number of B-type events appears to be related to the eruptive states of the volcanoes; the more active volcanoes have higher levels of seismicity. At Fuego Volcano, however, low-frequency events have unusually long codas and appear to be similar to tremor. High-amplitude volcanic tremor is recorded at Fuego, Pacaya, and San Cristobal during eruptive periods. Large explosion earthquakes at Fuego are well recorded at five stations and yield information on near-surface seismic wave velocities (??=3.0??0.2 km/sec.). ?? 1983 Intern. Association of Volcanology and Chemistry of the Earth's Interior.
Tree-ring 14C links seismic swarm to CO2 spike at Yellowstone, USA
Evans, William C.; Bergfeld, D.; McGeehin, J.P.; King, J.C.; Heasler, H.
2010-01-01
Mechanisms to explain swarms of shallow seismicity and inflation-deflation cycles at Yellowstone caldera (western United States) commonly invoke episodic escape of magma-derived brines or gases from the ductile zone, but no correlative changes in the surface efflux of magmatic constituents have ever been documented. Our analysis of individual growth rings in a tree core from the Mud Volcano thermal area within the caldera links a sharp ~25% drop in 14C to a local seismic swarm in 1978. The implied fivefold increase in CO2 emissions clearly associates swarm seismicity with upflow of magma-derived fluid and shows that pulses of magmatic CO2 can rapidly traverse the 5-kmthick brittle zone, even through Yellowstone's enormous hydrothermal reservoir. The 1978 event predates annual deformation surveys, but recognized connections between subsequent seismic swarms and changes in deformation suggest that CO2 might drive both processes. ?? 2010 Geological Society of America.
Esquete, Patricia; Cunha, Marina R
2018-02-05
The Tanaidacea collection from various research cruises carried out in the Gulf of Cadiz and Horseshoe Continental Rise between 2004 and 2012 yielded four species new to science that are described herein. Two belong to genera recorded for the first time since the original descriptions of their type species: Cetiopyge, described from the Gulf of Mexico and Gamboa from shallow waters of Macaronesia. The other two belong to the genera Collettea and Paragathotanais, both with a worldwide distribution. Additionally, specimens of Tumidochelia uncinata are described and illustrated to complete previous descriptions. Identification keys to all known genera of Nototanaidae, and the Eastern Atlantic species of Paragathotanais and Collettea are provided. This works raises the number of tanaidacean species known from the deep-sea habitats in the study region to a total of 22.
1988-09-01
of Mauna Loa and Kilauea volcanoes . Both are shield volcanoes , having a broad summit and base. The southeastern flanks of the volcanoes are riddled...potential of volcanic activity (Telling, et al. 1987). Lava flows from the Kilauea volcano frequently inundate the area a few miles north of Palima Point...The Hawaii Volcanoes National Park, which is between 1.5 and 25 miles from the proposed project sites, has been designated as a Class I area by the
Tweed Extinct Volcano, Australia, Stereo Pair of SRTM Shaded Relief and Colored Height
2005-01-06
Australia is the only continent without any current volcanic activity, but it hosts one of the world largest extinct volcanoes, the Tweed Volcano. Rock dating methods indicate that eruptions here lasted about three million years.
NASA Astrophysics Data System (ADS)
Hidayat, D.; Patria, C.; Gunawan, H.; Taisne, B.; Nurfiani, D.; Avila, E. J.
2015-12-01
Marapi Volcano is one of the active volcanoes of Indonesia located near the city of Bukittinggi, West Sumatra, Indonesia. Its activity is characterized by small vulcanian explosions with occasional VEI 2 producing tephra and pyroclastic flows. Due to its activity, it is being monitored by Centre for Volcanology and Geological Hazard Mitigation (CVGHM). Four seismic stations consists of 2 broadband and 2 short period instruments have been established since 2009. In collaboration with CVGHM, Earth Observatory of Singapore added 5 seismic stations around the volcano in 2014, initially with short period instruments but later upgraded to broadbands. We added one tilt station at the summit of Marapi. These seismic and tilt stations are telemetered by 5.8GHz radio to Marapi Observatory Post where data are archived and displayed for Marapi observers for their daily volcanic activity monitoring work. We also archive the data in the EOS and CVGHM main offices. Here we are presenting examples of seismic and deformation data from Marapi prior, during, and after the vulcanian explosion. Our study attempt to understand the state of the volcano based on monitoring data and in order to enable us to better estimate the hazards associated with the future eruptions of this or similar volcano.
Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 1994 through December 31, 1999
Jolly, Arthur D.; Stihler, Scott D.; Power, John A.; Lahr, John C.; Paskievitch, John; Tytgat, Guy; Estes, Steve; Lockhart, Andrew B.; Moran, Seth C.; McNutt, Stephen R.; Hammond, William R.
2001-01-01
The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska - Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained a seismic monitoring program at potentially active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996). The primary objectives of this program are the seismic surveillance of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism.Between 1994 and 1999, the AVO seismic monitoring program underwent significant changes with networks added at new volcanoes during each summer from 1995 through 1999. The existing network at Katmai –Valley of Ten Thousand Smokes (VTTS) was repaired in 1995, and new networks were installed at Makushin (1996), Akutan (1996), Pavlof (1996), Katmai - south (1996), Aniakchak (1997), Shishaldin (1997), Katmai - north (1998), Westdahl, (1998), Great Sitkin (1999) and Kanaga (1999). These networks added to AVO's existing seismograph networks in the Cook Inlet area and increased the number of AVO seismograph stations from 46 sites and 57 components in 1994 to 121 sites and 155 components in 1999. The 1995–1999 seismic network expansion increased the number of volcanoes monitored in real-time from 4 to 22, including Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Mount Snowy, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin, Aniakchak Crater, Pavlof Volcano, Mount Dutton, Isanotski volcano, Shisaldin Volcano, Fisher Caldera, Westdahl volcano, Akutan volcano, Makushin Volcano, Great Sitkin volcano, and Kanaga Volcano (see Figures 1-15). The network expansion also increased the number of earthquakes located from about 600 per year in1994 and 1995 to about 3000 per year between 1997 and 1999.Highlights of the catalog period include: 1) a large volcanogenic seismic swarm at Akutan volcano in March and April 1996 (Lu and others, 2000); 2) an eruption at Pavlof Volcano in fall 1996 (Garces and others, 2000; McNutt and others, 2000); 3) an earthquake swarm at Iliamna volcano between September and December 1996; 4) an earthquake swarm at Mount Mageik in October 1996 (Jolly and McNutt, 1999); 5) an earthquake swarm located at shallow depth near Strandline Lake; 6) a strong swarm of earthquakes near Becharof Lake; 7) precursory seismicity and an eruption at Shishaldin Volcano in April 1999 that included a 5.2 ML earthquake and aftershock sequence (Moran and others, in press; Thompson and others, in press). The 1996 calendar year is also notable as the seismicity rate was very high, especially in the fall when 3 separate areas (Strandline Lake, Iliamna Volcano, and several of the Katmai volcanoes) experienced high rates of located earthquakes.This catalog covers the period from January 1, 1994, through December 31,1999, and includes: 1) earthquake origin times, hypocenters, and magnitudes with summary statistics describing the earthquake location quality; 2) a description of instruments deployed in the field and their locations and magnifications; 3) a description of earthquake detection, recording, analysis, and data archival; 4) velocity models used for earthquake locations; 5) phase arrival times recorded at individual stations; and 6) a summary of daily station usage from throughout the report period. We have made calculated hypocenters, station locations, system magnifications, velocity models, and phase arrival information available for download via computer network as a compressed Unix tar file.
Volcano-Monitoring Instrumentation in the United States, 2008
Guffanti, Marianne; Diefenbach, Angela K.; Ewert, John W.; Ramsey, David W.; Cervelli, Peter F.; Schilling, Steven P.
2010-01-01
The United States is one of the most volcanically active countries in the world. According to the global volcanism database of the Smithsonian Institution, the United States (including its Commonwealth of the Northern Mariana Islands) is home to about 170 volcanoes that are in an eruptive phase, have erupted in historical time, or have not erupted recently but are young enough (eruptions within the past 10,000 years) to be capable of reawakening. From 1980 through 2008, 30 of these volcanoes erupted, several repeatedly. Volcano monitoring in the United States is carried out by the U.S. Geological Survey (USGS) Volcano Hazards Program, which operates a system of five volcano observatories-Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Hawaiian Volcano Observatory (HVO), Long Valley Observatory (LVO), and Yellowstone Volcano Observatory (YVO). The observatories issue public alerts about conditions and hazards at U.S. volcanoes in support of the USGS mandate under P.L. 93-288 (Stafford Act) to provide timely warnings of potential volcanic disasters to the affected populace and civil authorities. To make efficient use of the Nation's scientific resources, the volcano observatories operate in partnership with universities and other governmental agencies through various formal agreements. The Consortium of U.S. Volcano Observatories (CUSVO) was established in 2001 to promote scientific cooperation among the Federal, academic, and State agencies involved in observatory operations. Other groups also contribute to volcano monitoring by sponsoring long-term installation of geophysical instruments at some volcanoes for specific research projects. This report describes a database of information about permanently installed ground-based instruments used by the U.S. volcano observatories to monitor volcanic activity (unrest and eruptions). The purposes of this Volcano-Monitoring Instrumentation Database (VMID) are to (1) document the Nation's existing, ground-based, volcano-monitoring capabilities, (2) answer queries within a geospatial framework about the nature of the instrumentation, and (3) provide a benchmark for planning future monitoring improvements. The VMID is not an archive of the data collected by monitoring instruments, nor is it intended to keep track of whether a station is temporarily unavailable due to telemetry or equipment problems. Instead, it is a compilation of basic information about each instrument such as location, type, and sponsoring agency. Typically, instruments installed expressly for volcano monitoring are emplaced within about 20 kilometers (km) of a volcanic center; however, some more distant instruments (as far away as 100 km) can be used under certain circumstances and therefore are included in the database. Not included is information about satellite-based and airborne sensors and temporarily deployed instrument arrays, which also are used for volcano monitoring but do not lend themselves to inclusion in a geospatially organized compilation of sensor networks. This Open-File Report is provided in two parts: (1) an Excel spreadsheet (http://pubs.usgs.gov/of/2009/1165/) containing the version of the Volcano-Monitoring Instrumentation Database current through 31 December 2008 and (2) this text (in Adobe PDF format), which serves as metadata for the VMID. The disclaimer for the VMID is in appendix 1 of the text. Updated versions of the VMID will be posted on the Web sites of the Consortium of U.S. Volcano Observatories (http://www.cusvo.org/) and the USGS Volcano Hazards Program http://volcanoes.usgs.gov/activity/data/index.php.
NASA Astrophysics Data System (ADS)
Sheth, Hetu C.; Ray, Jyotiranjan S.; Bhutani, Rajneesh; Kumar, Alok; Smitha, R. S.
2009-11-01
Barren Island (India) is a relatively little studied, little known active volcano in the Andaman Sea, and the northernmost active volcano of the great Indonesian arc. The volcano is built of prehistoric (possibly late Pleistocene) lava flows (dominantly basalt and basaltic andesite, with minor andesite) intercalated with volcaniclastic deposits (tuff breccias, and ash beds deposited by pyroclastic falls and surges), which are exposed along a roughly circular caldera wall. There are indications of a complete phreatomagmatic tephra ring around the exposed base of the volcano. A polygenetic cinder cone has existed at the centre of the caldera and produced basalt-basaltic andesite aa and blocky aa lava flows, as well as tephra, during historic eruptions (1787-1832) and three recent eruptions (1991, 1994-95, 2005-06). The recent aa flows include a toothpaste aa flow, with tilted and overturned crustal slabs carried atop an aa core, as well as locally developed tumuli-like elliptical uplifts having corrugated crusts. Based on various evidence we infer that it belongs to either the 1991 or the 1994-95 eruptions. The volcano has recently (2008) begun yet another eruption, so far only of tephra. We make significantly different interpretations of several features of the volcano than previous workers. This study of the volcanology and eruptive styles of the Barren Island volcano lays the ground for detailed geochemical-isotopic and petrogenetic work, and provides clues to what the volcano can be expected to do in the future.
One hundred years of volcano monitoring in Hawaii
Kauahikaua, Jim; Poland, Mike
2012-01-01
In 2012 the Hawaiian Volcano Observatory (HVO), the oldest of five volcano observatories in the United States, is commemorating the 100th anniversary of its founding. HVO's location, on the rim of Kilauea volcano (Figure 1)—one of the most active volcanoes on Earth—has provided an unprecedented opportunity over the past century to study processes associated with active volcanism and develop methods for hazards assessment and mitigation. The scientifically and societally important results that have come from 100 years of HVO's existence are the realization of one man's vision of the best way to protect humanity from natural disasters. That vision was a response to an unusually destructive decade that began the twentieth century, a decade that saw almost 200,000 people killed by the effects of earthquakes and volcanic eruptions.
One hundred years of volcano monitoring in Hawaii
Kauahikaua, J.; Poland, M.
2012-01-01
In 2012 the Hawaiian Volcano Observatory (HVO), the oldest of five volcano observatories in the United States, is commemorating the 100th anniversary of its founding. HVO's location, on the rim of Klauea volcano (Figure 1)one of the most active volcanoes on Earthhas provided an unprecedented opportunity over the past century to study processes associated with active volcanism and develop methods for hazards assessment and mitigation. The scientifically and societally important results that have come from 100 years of HVO's existence are the realization of one man's vision of the best way to protect humanity from natural disasters. That vision was a response to an unusually destructive decade that began the twentieth century, a decade that saw almost 200,000 people killed by the effects of earthquakes and volcanic eruptions.
Analysis of Distribution of Volcanoes around the Korean Peninsula and the Potential Effects on Korea
NASA Astrophysics Data System (ADS)
Choi, Eun-kyeong; Kim, Sung-wook
2017-04-01
Since the scale and disaster characteristics of volcanic eruptions are determined by their geological features, it is important not only to grasp the current states of the volcanoes in neighboring countries around the Korean Peninsula, but also to analyze the tectonic settings, tectonic regions, geological features, volcanic types, and eruption histories of these volcanoes. Volcanic data were based on the volcano information registered with the Global Volcanism Program at the Smithsonian Institute. We created a database of 289 volcanoes around Korea, Japan, China, Taiwan, and the Kamchatka area in Russia, and then identified a high-risk group of 29 volcanoes that are highly likely to affect the region, based on conditions such as volcanic activity, types of rock at risk of eruption, distance from Seoul, and volcanoes having Plinian eruption history with volcanic explosivity index (VEI) of 4 or more. We selected 29 hazardous volcanoes, including Baekdusan, Ulleungdo, and 27 Japanese volcanoes that can cause widespread ashfall on the Korean peninsula by potentially explosive eruptions. In addition, we identified ten volcanoes that should be given the highest priority, through an analysis of data available in literature, such as volcanic ash dispersion results from previous Japanese eruptions, the definition of a large-scale volcano used by Japan's Cabinet Office, and examination of cumulative magma layer volumes from Japan's quaternary volcanoes. We expect that predicting the extent of the spread of ash caused by this hazardous activity and analyzing its impact on the Korean peninsula will be help to predict volcanic ash damage as well as provide direction for hazard mitigation research. Acknowledgements This research was supported by a grant [MPSS-NH-2015-81] through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.
Volcano Hazards Assessment for Medicine Lake Volcano, Northern California
Donnelly-Nolan, Julie M.; Nathenson, Manuel; Champion, Duane E.; Ramsey, David W.; Lowenstern, Jacob B.; Ewert, John W.
2007-01-01
Medicine Lake volcano (MLV) is a very large shield-shaped volcano located in northern California where it forms part of the southern Cascade Range of volcanoes. It has erupted hundreds of times during its half-million-year history, including nine times during the past 5,200 years, most recently 950 years ago. This record represents one of the highest eruptive frequencies among Cascade volcanoes and includes a wide variety of different types of lava flows and at least two explosive eruptions that produced widespread fallout. Compared to those of a typical Cascade stratovolcano, eruptive vents at MLV are widely distributed, extending 55 km north-south and 40 km east-west. The total area covered by MLV lavas is >2,000 km2, about 10 times the area of Mount St. Helens, Washington. Judging from its long eruptive history and its frequent eruptions in recent geologic time, MLV will erupt again. Although the probability of an eruption is very small in the next year (one chance in 3,600), the consequences of some types of possible eruptions could be severe. Furthermore, the documented episodic behavior of the volcano indicates that once it becomes active, the volcano could continue to erupt for decades, or even erupt intermittently for centuries, and very likely from multiple vents scattered across the edifice. Owing to its frequent eruptions, explosive nature, and proximity to regional infrastructure, MLV has been designated a 'high threat volcano' by the U.S. Geological Survey (USGS) National Volcano Early Warning System assessment. Volcanic eruptions are typically preceded by seismic activity, but with only two seismometers located high on the volcano and no other USGS monitoring equipment in place, MLV is at present among the most poorly monitored Cascade volcanoes.
Davies, Ashley G.; Keszthelyi, Laszlo P.; McEwen, Alfred S.
2011-01-01
We have analysed high-spatial-resolution and high-temporal-resolution temperature measurements of the active lava lake at Erta'Ale volcano, Ethiopia, to derive requirements for measuring eruption temperatures at Io's volcanoes. Lava lakes are particularly attractive targets because they are persistent in activity and large, often with ongoing lava fountain activity that exposes lava at near-eruption temperature. Using infrared thermography, we find that extracting useful temperature estimates from remote-sensing data requires (a) high spatial resolution to isolate lava fountains from adjacent cooler lava and (b) rapid acquisition of multi-color data. Because existing spacecraft data of Io's volcanoes do not meet these criteria, it is particularly important to design future instruments so that they will be able to collect such data. Near-simultaneous data at more than two relatively short wavelengths (shorter than 1 μm) are needed to constrain eruption temperatures. Resolving parts of the lava lake or fountains that are near the eruption temperature is also essential, and we provide a rough estimate of the required image scale.
Engaging with the Public on Volcanic Risk through Hands-on Interaction with the London Volcano.
NASA Astrophysics Data System (ADS)
Rodgers, M.; Pyle, D. M.; Barclay, J.; Mather, T. A.; Hicks, A.; Ratner, J.; Leonard, H.; Woods, C.
2015-12-01
London Volcano is a major public engagement and outreach effort that emerged from a large-scale interdisciplinary research project on Strengthening Resilience in Volcanic Areas (STREVA). The activity was created for a 5-day public exhibition in London, in 2014, and brought together 3 elements to illustrate the timeline of a volcanic crisis: a 5m x 3m scale model of Soufrière St Vincent, an interactive 'monitoring station' to explore technology used in monitoring and an engaging 'bin bang' sequence to simulate a volcanic explosion. Having a large hands-on volcano as a centrepiece to the exhibit enabled interaction with primary-age school children through the use of creativity and imagination. They looked at seismic traces of 'bin bang' explosions; measured dispersal of projectile ducks; and decided where to place a model house on the island, on which the model volcano sat. Over the 5-days we evolved the activity of the volcano to re-create the 1902 eruption. During the first 3 days, 94 houses were placed around the volcano, but after the cataclysmic eruption mid-week, 12 of these houses were destroyed by simulated pyroclastic flows and lahars down the flanks of the volcano model. Light and sound were key parts of the London Volcano simulation. A sound track was created to mimic the sounds reported by eyewitnesses. Between eruptions, the volcano would intermittently rumble, adding excitement and unpredictability to the eruptions. Explosions were simulated with compressed-CO2 jets, and a G-flame; but these events were rare. Creative arts are an effective mechanism for transfer of knowledge from communities living with volcanic activity, so artwork from school children living near Tungurahua, Ecuador and poems from school children on Montserrat were on display. The London Volcano was a unique opportunity to engage with over 2,000 people on volcanic risk and what it means to live near a volcano. Encouraging school children to be creative and to use their imagination allowed the volcano to come alive in ways that would have otherwise been impossible.
2010-07-15
ISS024-E-008396 (15 July 2010) --- Sabancaya volcano in Peru is featured in this image photographed by an Expedition 24 crew member on the International Space Station. The 5,967-meter-high Sabancaya stratovolcano (or Nevado Sabancaya) is located in southern Peru approximately 70 kilometers to the northwest of the city of Arequipa. The name Sabancaya means ?tongue of fire? in the Quechua Indian language. Sabancaya is part of a volcanic complex that includes two other nearby (and older) volcanoes, neither of which has been active historically; in this detailed photograph, Nevado Ampato is visible to the south (top center) and the lower flanks of Nevado Hualca Hualca are visible to the north (bottom right). The snowy peaks of the three volcanoes provide a stark contrast to the surrounding desert of the Puna Plateau. Sabancaya?s first historical record of an eruption dates to 1750. The most recent eruptive activity at the volcano occurred in July 2003 and deposited ash on the volcano?s summit and northeastern flank. Volcanism at Sabancaya is fueled by magma generated at the subduction zone between the Nazca and South American tectonic plates. Magma can erupt to the surface and form lava flows through the volcano?s summit (frequently forming a crater) but can also erupt from lava domes and flank vents along the volcano?s sides. Lava has issued from all of these points at Sabancaya, forming numerous gray to dark brown lobate flows that extend in all directions except southwards (center).
ERIC Educational Resources Information Center
Sharp, Len
1992-01-01
Provides a personal account of one science teacher's participation in a teacher workshop in which teachers learned about volcanic development, types of eruption, geomorphology, plate tectonics, volcano monitoring, and hazards created by volcanoes by examining Mt. St. Helens. Provides a graphic identifying volcanoes active since 1975. (MDH)
Geoflicks Reviewed--Films about Hawaiian Volcanoes.
ERIC Educational Resources Information Center
Bykerk-Kauffman, Ann
1994-01-01
Reviews 11 films on volcanic eruptions in the United States. Films are given a one- to five-star rating and the film's year, length, source and price are listed. Top films include "Inside Hawaiian Volcanoes" and "Kilauea: Close up of an Active Volcano." (AIM)
Aniakchak Crater, Alaska Peninsula
Smith, Walter R.
1925-01-01
The discovery of a gigantic crater northwest of Aniakchak Bay (see fig. 11) closes what had been thought to be a wide gap in the extensive series of volcanoes occurring at irregular intervals for nearly 600 miles along the axial line of the Alaska Peninsula and the Aleutian Islands. In this belt there are more active and recently active volcanoes than in all the rest of North America. Exclusive of those on the west side of Cook Inlet, which, however, belong to the same group, this belt contains at least 42 active or well-preserved volcanoes and about half as many mountains suspected or reported to be volcanoes. The locations of some of these mountains and the hot springs on the Alaska Peninsula and the Aleutian Islands are shown on a map prepared by G. A. Waring. Attention has been called to these volcanoes for nearly two centuries, but a record of their activity since the discovery of Alaska is far from being complete, and an adequate description of them as a group has never been written. Owing to their recent activity or unusual scenic beauty, some of the best known of the group are Mounts Katmai, Bogoslof, and Shishaldin, but there are many other beautiful and interesting cones and craters.
Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2004
Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; Prejean, Stephanie; Sanchez, John J.; Sanches, Rebecca; McNutt, Stephen R.; Paskievitch, John
2005-01-01
The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988. The primary objectives of the seismic program are the real-time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the calculated earthquake hypocenter and phase arrival data, and changes in the seismic monitoring program for the period January 1 through December 31, 2004.These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai volcanic cluster (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Mount Peulik, Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Okmok Caldera, Great Sitkin Volcano, Kanaga Volcano, Tanaga Volcano, and Mount Gareloi. Over the past year, formal monitoring of Okmok, Tanaga and Gareloi were announced following an extended period of monitoring to determine the background seismicity at each volcanic center. The seismicity at Mount Peulik was still being studied at the end of 2004 and has yet to be added to the list of monitored volcanoes in the AVO weekly update. AVO located 6928 earthquakes in 2004.Monitoring highlights in 2004 include: (1) an earthquake swarm at Westdahl Peak in January; (2) an increase in seismicity at Mount Spurr starting in February continuing through the end of the year into 2005; (4) low-level tremor, and low-frequency events related to intermittent ash and steam emissions at Mount Veniaminof between April and October; (4) low-level tremor at Shishaldin Volcano between April and October; (5) an earthquake swarm at Akutan in July; and (6) low-level tremor at Okmok Caldera throughout the year (Table 2). Instrumentation and data acquisition highlights in 2004 were the installation of subnetworks on Mount Peulik and Korovin Volcano and the installation of broadband stations to augment the Katmai and Spurr subnetworks.This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a description of earthquake detection, recording, analysis, and data archival systems; (3) a description of velocity models used for earthquake locations; (4) a summary of earthquakes located in 2004; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, and location quality statistics; daily station usage statistics; and all HYPOELLIPSE files used to determine the earthquake locations in 2004.
NASA Astrophysics Data System (ADS)
Lavallée, Yan; Johnson, Jeffrey; Andrews, Benjamin; Wolf, Rudiger; Rose, William; Chigna, Gustavo; Pineda, Armand
2016-04-01
In January 2016, we held the first scientific/educational Workshops on Volcanoes (WoV). The workshop took place at Santiaguito volcano - the most active volcano in Guatemala. 69 international scientists of all ages participated in this intensive, multi-parametric investigation of the volcanic activity, which included the deployment of seismometers, tiltmeters, infrasound microphones and mini-DOAS as well as optical, thermographic, UV and FTIR cameras around the active vent. These instruments recorded volcanic activity in concert over a period of 3 to 9 days. Here we review the research activities and present some of the spectacular observations made through this interdisciplinary efforts. Observations range from high-resolution drone and IR footage of explosions, monitoring of rock falls and quantification of the erupted mass of different gases and ash, as well as morphological changes in the dome caused by recurring explosions (amongst many other volcanic processes). We will discuss the success of such integrative ventures in furthering science frontiers and developing the next generation of geoscientists.
Earth Observations taken by Expedition 38 crewmember
2013-11-15
ISS038-E-003612 (15 Nov. 2013) --- Islands of the Four Mountains are featured in this image photographed by an Expedition 38 crew member on the International Space Station. Morning sunlight illuminates the southeast-facing slopes of the islands in the photograph. The islands, part of the Aleutian Island chain, are actually the upper slopes of volcanoes rising from the sea floor; Carlisle, Cleveland, Herbert, and Tana. Carlisle and Herbert volcanoes are distinct cones and form separate islands. Cleveland volcano and the Tana volcanic complex form the eastern and western ends respectively of Chuginadak Island; a cloud bank obscures the connecting land mass in this image. Cleveland volcano (peak elevation 1,730 meters above sea level) is one of the most active in the Aleutian chain, with its most recent activity--eruptions and lava flow emplacement--taking place in May of 2013. The northernmost of the islands, Carlisle volcano's (peak elevation 1,620 meters above sea level) last confirmed eruption occurred in 1828, with unconfirmed reports of activity in 1987. Herbert volcano (peak elevation 1,280 meters above sea level) to the southwest displays a classic cone structure breached by a two-kilometer wide summit caldera (upper right), but there are no historical records of volcanic activity. The easternmost peak, Tana (1,170 meters above sea level) is a volcanic complex comprised of two east-west trending volcanoes and associated younger cinder cones; like Herbert volcano, there is no historical record of activity at Tana. A layer of low clouds and/or fog obscures much of the lower elevations of the islands and the sea surface, but the clouds also indicate the general airflow pattern around and through the islands. Directly to the south-southeast of Cleveland volcano a Von Karman vortex "street" is visible. Shadows cast by the morning sun extend from the peaks towards the northwest. The peaks of all of the Four Islands have snow cover; this is distinct from the clouds due to both higher brightness (white versus gray) and specific location on the landscape.
Orographic Flow over an Active Volcano
NASA Astrophysics Data System (ADS)
Poulidis, Alexandros-Panagiotis; Renfrew, Ian; Matthews, Adrian
2014-05-01
Orographic flows over and around an isolated volcano are studied through a series of numerical model experiments. The volcano top has a heated surface, so can be thought of as "active" but not erupting. A series of simulations with different atmospheric conditions and using both idealised and realistic configurations of the Weather Research and Forecast (WRF) model have been carried out. The study is based on the Soufriere Hills volcano, located on the island of Montserrat in the Caribbean. This is a dome-building volcano, leading to a sharp increase in the surface skin temperature at the top of the volcano - up to tens of degrees higher than ambient values. The majority of the simulations use an idealised topography, in order for the results to have general applicability to similar-sized volcanoes located in the tropics. The model is initialised with idealised atmospheric soundings, representative of qualitatively different atmospheric conditions from the rainy season in the tropics. The simulations reveal significant changes to the orographic flow response, depending upon the size of the temperature anomaly and the atmospheric conditions. The flow regime and characteristic features such as gravity waves, orographic clouds and orographic rainfall patterns can all be qualitatively changed by the surface heating anomaly. Orographic rainfall over the volcano can be significantly enhanced with increased temperature anomaly. The implications for the eruptive behaviour of the volcano and resulting secondary volcanic hazards will also be discussed.
NASA Astrophysics Data System (ADS)
Carpentier, Marion; Sigmarsson, Olgeir; Larsen, Gudrun
2014-05-01
The nature of future eruptions of active volcanoes is hard to predict. Improved understanding of the past volcanic activity is probably the best way to infer future eruptive scenarios. The most active volcano in Iceland, Grímsvötn, last erupted in 2011 with consequences for habitants living close to the volcano and aviation in the North-Atlantic. In an effort to better understand the magmatic system of the volcano, we have investigated the compositions of 23 selected tephra layers representing the last 8 centuries of volcanic activity at Grímsvötn. The tephra was collected in the ablation area of outlet glaciers from Vatnajökull ice cap. The ice-conserved tephra are less prone to alteration than those exposed in soil sections. Major element analyses are indistinguishable and of quartz-normative tholeiite composition, and Sr and Nd isotope ratios are constant. In contrast, both trace element concentrations (Th range from 0.875 ppm to 1.37 ppm and Ni from 28.5 ppm to 56.6 ppm) in the basalts and Pb isotopes show small but significant variations. The high-precision analyses of Pb isotope ratios allow the identification of tephra samples (3 in total) with more radiogenic ratios than the bulk of the samples. The tephra of constant isotope ratios show linear increase in incompatible element concentrations with time. The rate of increasing concentrations permits exploring possible future scenarios assuming that the magmatic system beneath the volcano follows the established historical evolution. Assuming similar future behaviour of the magma system beneath Grímsvötn volcano, the linear increase in e.g. Th concentration suggests that the volcano is likely to principally produce basalts for the next 500-1000 years. Evolution of water concentration will most likely follow those of incompatible elements with consequent increases in explosiveness of future Grímsvötn eruptions.
Volcanic versus anthropogenic carbon dioxide
Gerlach, T.
2011-01-01
Which emits more carbon dioxide (CO2): Earth's volcanoes or human activities? Research findings indicate unequivocally that the answer to this frequently asked question is human activities. However, most people, including some Earth scientists working in fields outside volcanology, are surprised by this answer. The climate change debate has revived and reinforced the belief, widespread among climate skeptics, that volcanoes emit more CO2 than human activities [Gerlach, 2010; Plimer, 2009]. In fact, present-day volcanoes emit relatively modest amounts of CO2, about as much annually as states like Florida, Michigan, and Ohio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benkovitz, C.M.
Sulfur emissions from volcanoes are located in areas of volcanic activity, are extremely variable in time, and can be released anywhere from ground level to the stratosphere. Previous estimates of global sulfur emissions from all sources by various authors have included estimates for emissions from volcanic activity. In general, these global estimates of sulfur emissions from volcanoes are given as global totals for an ``average`` year. A project has been initiated at Brookhaven National Laboratory to compile inventories of sulfur emissions from volcanoes. In order to complement the GEIA inventories of anthropogenic sulfur emissions, which represent conditions circa specific years,more » sulfur emissions from volcanoes are being estimated for the years 1985 and 1990.« less
A model of diffuse degassing at three subduction-related volcanoes
NASA Astrophysics Data System (ADS)
Williams-Jones, Glyn; Stix, John; Heiligmann, Martin; Charland, Anne; Sherwood Lollar, Barbara; Arner, N.; Garzón, Gustavo V.; Barquero, Jorge; Fernandez, Erik
Radon, CO2 and δ13C in soil gas were measured at three active subduction-related stratovolcanoes (Arenal and Poás, Costa Rica; Galeras, Colombia). In general, Rn, CO2 and δ13C values are higher on the lower flanks of the volcanoes, except near fumaroles in the active craters. The upper flanks of these volcanoes have low Rn concentrations and light δ13C values. These observations suggest that diffuse degassing of magmatic gas on the upper flanks of these volcanoes is negligible and that more magmatic degassing occurs on the lower flanks where major faults and greater fracturing in the older lavas can channel magmatic gases to the surface. These results are in contrast to findings for Mount Etna where a broad halo of magmatic CO2 has been postulated to exist over much of the edifice. Differences in radon levels among the three volcanoes studied here may result from differences in age, the degree of fracturing and faulting, regional structures or the level of hydrothermal activity. Volcanoes, such as those studied here, act as plugs in the continental crust, focusing magmatic degassing towards crater fumaroles, faults and the fractured lower flanks.
International Space Station (ISS)
2001-07-22
An Expedition Two crewmember aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.
Analysis of Active Lava Flows on Kilauea Volcano, Hawaii, Using SIR-C Radar Correlation Measurements
NASA Technical Reports Server (NTRS)
Zebker, H. A.; Rosen, P.; Hensley, S.; Mouginis-Mark, P. J.
1995-01-01
Precise eruption rates of active pahoehoe lava flows on Kilauea volcano, Hawaii, have been determined using spaceborne radar data acquired by the Space Shuttle Imaging Radar-C (SIR-C). Measurement of the rate of lava flow advance, and the determination of the volume of new material erupted in a given period of time, are among the most important observations that can be made when studying a volcano.
Geothermal Energy in the Pacific Region
1975-05-01
drilled at Kilauea Volcano , on 0 the Island of Hawaii , by the Colorado Sohool of Mines under a National Science Foundation grant. A second test well has...34•olombia belt of active volcanoes where dacite is commonly reported. The simatic Pacific Basin harbors several areas of active volcanism: Hawaii , Galapagos...reef-capped volcanoes . Numerous articles have been written on many aspects of the geology of Hawaii and notable books include Macdonald and hbbott (1970
NASA Astrophysics Data System (ADS)
Schiek, C. G.; Hurtado, J. M.; Velasco, A. A.; Buckley, S. M.; Escobar, D.
2008-12-01
From the early 1900's to the present day, San Miguel volcano has experienced many small eruptions and several periods of heightened seismic activity, making it one of the most active volcanoes in the El Salvadoran volcanic chain. Prior to 1969, the volcano experienced many explosive eruptions with Volcano Explosivity Indices (VEI) of 2. Since then, eruptions have decreased in intensity to an average VEI of 1. Eruptions mostly consist of phreatic explosions and central vent eruptions. Due to the explosive nature of this volcano, it is important to study the origins of the volcanism and its relationship to surface deformation and earthquake activity. We analyze these interactions by integrating interferometric synthetic aperture radar (InSAR) results with earthquake source location data from a ten-month (March 2007-January 2008) seismic deployment. The InSAR results show a maximum of 7 cm of volcanic inflation from March 2007 to mid-October 2007. During this time, seismic activity increased to a Real-time Seismic-Amplitude Measurement (RSAM) value of >400. Normal RSAM values for this volcano are <50. A period of quiescence began in mid-October 2007, and a maximum of 6 cm of deflation was observed in the interferometry results from 19 October 2007 to 19 January 2008. A clustering of at least 25 earthquakes that occurred between March 2007 and January 2008 suggests a fault zone through the center of the San Miguel volcanic cone. This fault zone is most likely where dyke propagation is occurring. Source mechanisms will be determined for the earthquakes associated with this fault zone, and they will be compared to the InSAR deformation field to determine if the mid-October seismic activity and observed surface deformation are compatible.
NASA Astrophysics Data System (ADS)
Çelik Karakaya, Muazzez; Karakaya, Necati
2013-04-01
The study conducted on peloid used spas in İzmir city region (western part of Turkey) included the investigation of the mineralogical, physico-chemical and geochemical properties of the three types of peloid samples in order to assess the suitability of the material for healing- aesthetic-related purposes. In situ formed muds in lagoons near the Aegean Sea (named as first group) and inner swamp muds (second group) unprocessed and raw have been using therapy and thermal baths. Mud and hot springs at around the Aegean Sea have been popular since ancient times for the treatment of rheumatic diseases, musculoskeletal disorders in the region. The mineralogical characteristics of the thermal muds are in accordance with the geological origin of the material and water sources. Mineralogic composition, mineral content and morphologic properties of the samples were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM-EDS). Chemical composition of the muds and thermal waters were determined by ICP-EAS and ICP-MS. Both of the sediment is fine- to medium size-grained and composed mostly of clay minerals, partially quartz, feldspar, carbonates, and halite, and rarely gypsum. The mineralogic composition of the muds controls the physico-chemical properties of the muds. Anion e.g., Cl, Br, and SO4, contents the thermal waters of the first group is extremely different and so the springs contain a high level of sodium chloride, magnesium sulphate, and calcium bicarbonate. The water temperature is 45 oC with a pH of 6.95 and electrical conductivity (EC) is 4.5 mS/lt in the first group while 71 oC with a pH 6.58 and EC is 2.52 mS/lt in the second ones. However, major and some of the trace element concentration of the mud samples are nearly similar, As, Cd, Cu, Hg, Ni, Sb, Se, T and Zn content of the first group is exceptionally lower than the second ones. And the hazardous element concentrations are extremely higher than the pharmaceutical clay in the second group peloids and also in thermal water, the element concentrations is not acceptable limits for peloids and waters. The element concentration is sourced from active fault system and low temperature precious metal deposits in the area which is widespread the thermal water circulated in. The anion contents of the water are related to sea water interaction. BET surface areas, plasticity, adsorbing, abrasiveness, hygroscopic water and cooling kinetics the characteristics both of the muds are nearly similar. However, cation exchange capacity and viscosity properties of the second group muds are better than the second, the physico-chemical properties both of the mud material are in acceptable level to some extent. Nevertheless, the appropriate characteristics of the second group muds when compared to some commercial used mud for medicinal and aesthetic purposes, if the hazardous element concentrations regulated.
Deformation and rupture of the oceanic crust may control growth of Hawaiian volcanoes
Got, J.-L.; Monteiller, V.; Monteux, J.; Hassani, R.; Okubo, P.
2008-01-01
Hawaiian volcanoes are formed by the eruption of large quantities of basaltic magma related to hot-spot activity below the Pacific Plate. Despite the apparent simplicity of the parent process - emission of magma onto the oceanic crust - the resulting edifices display some topographic complexity. Certain features, such as rift zones and large flank slides, are common to all Hawaiian volcanoes, indicating similarities in their genesis; however, the underlying mechanism controlling this process remains unknown. Here we use seismological investigations and finite-element mechanical modelling to show that the load exerted by large Hawaiian volcanoes can be sufficient to rupture the oceanic crust. This intense deformation, combined with the accelerated subsidence of the oceanic crust and the weakness of the volcanic edifice/oceanic crust interface, may control the surface morphology of Hawaiian volcanoes, especially the existence of their giant flank instabilities. Further studies are needed to determine whether such processes occur in other active intraplate volcanoes. ??2008 Nature Publishing Group.
Deformation and rupture of the oceanic crust may control growth of Hawaiian volcanoes.
Got, Jean-Luc; Monteiller, Vadim; Monteux, Julien; Hassani, Riad; Okubo, Paul
2008-01-24
Hawaiian volcanoes are formed by the eruption of large quantities of basaltic magma related to hot-spot activity below the Pacific Plate. Despite the apparent simplicity of the parent process--emission of magma onto the oceanic crust--the resulting edifices display some topographic complexity. Certain features, such as rift zones and large flank slides, are common to all Hawaiian volcanoes, indicating similarities in their genesis; however, the underlying mechanism controlling this process remains unknown. Here we use seismological investigations and finite-element mechanical modelling to show that the load exerted by large Hawaiian volcanoes can be sufficient to rupture the oceanic crust. This intense deformation, combined with the accelerated subsidence of the oceanic crust and the weakness of the volcanic edifice/oceanic crust interface, may control the surface morphology of Hawaiian volcanoes, especially the existence of their giant flank instabilities. Further studies are needed to determine whether such processes occur in other active intraplate volcanoes.
Earth Observation taken by the Expedition 33 crew
2012-11-03
ISS033-E-018010 (3 Nov. 2012) --- Volcanoes in central Kamchatka are featured in this image photographed by an Expedition 33 crew member on the International Space Station. The snow-covered peaks of several volcanoes of the central Kamchatka Peninsula are visible standing above a fairly uniform cloud deck that obscures the surrounding lowlands. In addition to the rippled cloud patterns caused by interactions of air currents and the volcanoes, a steam and ash plume is visible at center extending north-northeast from the relatively low summit (2,882 meters above sea level) of Bezymianny volcano. Volcanic activity in this part of Russia is relatively frequent, and well monitored by Russia’s Kamchatka Volcanic Eruption Response Team (KVERT). The KVERT website provides updated information about the activity levels on the peninsula, including aviation alerts and webcams. Directly to the north and northeast of Bezymianny, the much larger and taller stratovolcanoes Kamen (4,585 meters above sea level) and Kliuchevskoi (4,835 meters above sea level) are visible. Kliuchevskoi, Kamchatka’s most active volcano, last erupted in 2011 whereas neighboring Kamen has not erupted during the recorded history of the region. An explosive eruption from the summit of the large volcanic massif of Ushkovsky (3,943 meters above sea level; left) northwest of Bezymianny occurred in 1890; this is the most recent activity at this volcano. To the south of Bezymianny, the peaks of Zimina (3,081 meters above sea level) and Udina (2,923 meters above sea level) volcanoes are just visible above the cloud deck; no historical eruptions are known from either volcanic center. While the large Tobalchik volcano to the southwest (bottom center) is largely formed from a basaltic shield volcano, its highest peak (3,682 meters above sea level) is formed from an older stratovolcano. Tobalchik last erupted in 1976. While this image may look like it was taken from the normal altitude of a passenger jet, the space station was located approximately 417 kilometers above the southeastern Sea of Okhotsk; projected downwards to Earth’s surface, the space station was located over 700 kilometers to the southwest of the volcanoes in the image. The combination of low viewing angle from the orbital outpost, shadows, and height and distance from the volcanoes contributes to the appearance of topographic relief visible in the image.