Science.gov

Sample records for active mycobacterium tuberculosis

  1. Novel Cephalosporins Selectively Active on Nonreplicating Mycobacterium tuberculosis

    PubMed Central

    2016-01-01

    We report two series of novel cephalosporins that are bactericidal to Mycobacterium tuberculosis alone of the pathogens tested, which only kill M. tuberculosis when its replication is halted by conditions resembling those believed to pertain in the host, and whose bactericidal activity is not dependent upon or enhanced by clavulanate, a β-lactamase inhibitor. The two classes of cephalosporins bear an ester or alternatively an oxadiazole isostere at C-2 of the cephalosporin ring system, a position that is almost exclusively a carboxylic acid in clinically used agents in the class. Representatives of the series kill M. tuberculosis within macrophages without toxicity to the macrophages or other mammalian cells. PMID:27144688

  2. Determination of Urinary Neopterin/Creatinine Ratio to Distinguish Active Tuberculosis from Latent Mycobacterium tuberculosis Infection

    PubMed Central

    Eisenhut, Michael; Hargreaves, Dougal S.; Scott, Anne; Housley, David; Walters, Andrew; Mulla, Rohinton

    2016-01-01

    Background. Biomarkers to distinguish latent from active Mycobacterium (M.) tuberculosis infection in clinical practice are lacking. The urinary neopterin/creatinine ratio can quantify the systemic interferon-gamma effect in patients with M. tuberculosis infection. Methods. In a prospective observational study, urinary neopterin levels were measured by enzyme linked immunosorbent assay in patients with active tuberculosis, in people with latent M. tuberculosis infection, and in healthy controls and the urinary neopterin/creatinine ratio was calculated. Results. We included a total of 44 patients with M. tuberculosis infection and nine controls. 12 patients had active tuberculosis (8 of them culture-confirmed). The median age was 15 years (range 4.5 to 49). Median urinary neopterin/creatinine ratio in patients with active tuberculosis was 374.1 micromol/mol (129.0 to 1072.3), in patients with latent M. tuberculosis infection it was 142.1 (28.0 to 384.1), and in controls it was 146.0 (40.3 to 200.0), with significantly higher levels in patients with active tuberculosis (p < 0.01). The receiver operating characteristics curve had an area under the curve of 0.84 (95% CI 0.70 to 0.97) (p < 0.01). Conclusions. Urinary neopterin/creatinine ratios are significantly higher in patients with active tuberculosis compared to patients with latent infection and may be a significant predictor of active tuberculosis in patients with M. tuberculosis infection. PMID:27433370

  3. A Focused Screen Identifies Antifolates with Activity on Mycobacterium tuberculosis.

    PubMed

    Kumar, Anuradha; Guardia, Ana; Colmenarejo, Gonzalo; Pérez, Esther; Gonzalez, Ruben R; Torres, Pedro; Calvo, David; Gómez, Ruben M; Ortega, Fátima; Jiménez, Elena; Gabarro, Raquel C; Rullás, Joaquín; Ballell, Lluis; Sherman, David R

    2015-12-11

    Antifolates are widely used to treat several diseases but are not currently used in the first-line treatment of tuberculosis, despite evidence that some of these molecules can target Mycobacterium tuberculosis (Mtb) bacilli in vitro. To identify new antifolate candidates for animal-model efficacy studies of tuberculosis, we paired knowledge and tools developed in academia with the infrastructure and chemistry resources of a large pharmaceutical company. Together we curated a focused library of 2508 potential antifolates, which were then tested for activity against live Mtb. We identified 210 primary hits, confirmed the on-target activity of potent compounds, and now report the identification and characterization of 5 hit compounds, representative of 5 different chemical scaffolds. These antifolates have potent activity against Mtb and represent good starting points for improvement that could lead to in vivo efficacy studies. PMID:26771003

  4. Native New Zealand plants with inhibitory activity towards Mycobacterium tuberculosis

    PubMed Central

    2010-01-01

    Background Plants have long been investigated as a source of antibiotics and other bioactives for the treatment of human disease. New Zealand contains a diverse and unique flora, however, few of its endemic plants have been used to treat tuberculosis. One plant, Laurelia novae-zelandiae, was reportedly used by indigenous Maori for the treatment of tubercular lesions. Methods Laurelia novae-zelandiae and 44 other native plants were tested for direct anti-bacterial activity. Plants were extracted with different solvents and extracts screened for inhibition of the surrogate species, Mycobacterium smegmatis. Active plant samples were then tested for bacteriostatic activity towards M. tuberculosis and other clinically-important species. Results Extracts of six native plants were active against M. smegmatis. Many of these were also inhibitory towards M. tuberculosis including Laurelia novae-zelandiae (Pukatea). M. excelsa (Pohutukawa) was the only plant extract tested that was active against Staphylococcus aureus. Conclusions Our data provide support for the traditional use of Pukatea in treating tuberculosis. In addition, our analyses indicate that other native plant species possess antibiotic activity. PMID:20537175

  5. An acidic sphingomyelinase Type C activity from Mycobacterium tuberculosis.

    PubMed

    Castro-Garza, Jorge; González-Salazar, Francisco; Quinn, Frederick D; Karls, Russell K; De La Garza-Salinas, Laura Hermila; Guzmán-de la Garza, Francisco J; Vargas-Villarreal, Javier

    2016-01-01

    Sphingomyelinases (SMases) catalyze the hydrolysis of sphingomyelin to ceramide and phosphorylcholine. Sphingolipids are recognized as diverse and dynamic regulators of a multitude of cellular processes mediating cell cycle control, differentiation, stress response, cell migration, adhesion, and apoptosis. Bacterial SMases are virulence factors for several species of pathogens. Whole cell extracts of Mycobacterium tuberculosis strains H37Rv and CDC1551 were assayed using [N-methyl-(14)C]-sphingomyelin as substrate. Acidic Zn(2+)-dependent SMase activity was identified in both strains. Peak SMase activity was observed at pH 5.5. Interestingly, overall SMase activity levels from CDC1551 extracts are approximately 1/3 of those of H37Rv. The presence of exogenous SMase produced by M. tuberculosis during infection may interfere with the normal host inflammatory response thus allowing the establishment of infection and disease development. This Type C activity is different from previously identified M. tuberculosis SMases. Defining the biochemical characteristics of M. tuberculosis SMases helps to elucidate the roles that these enzymes play during infection and disease. PMID:26948102

  6. An acidic sphingomyelinase Type C activity from Mycobacterium tuberculosis.

    PubMed

    Castro-Garza, Jorge; González-Salazar, Francisco; Quinn, Frederick D; Karls, Russell K; De La Garza-Salinas, Laura Hermila; Guzmán-de la Garza, Francisco J; Vargas-Villarreal, Javier

    2016-01-01

    Sphingomyelinases (SMases) catalyze the hydrolysis of sphingomyelin to ceramide and phosphorylcholine. Sphingolipids are recognized as diverse and dynamic regulators of a multitude of cellular processes mediating cell cycle control, differentiation, stress response, cell migration, adhesion, and apoptosis. Bacterial SMases are virulence factors for several species of pathogens. Whole cell extracts of Mycobacterium tuberculosis strains H37Rv and CDC1551 were assayed using [N-methyl-(14)C]-sphingomyelin as substrate. Acidic Zn(2+)-dependent SMase activity was identified in both strains. Peak SMase activity was observed at pH 5.5. Interestingly, overall SMase activity levels from CDC1551 extracts are approximately 1/3 of those of H37Rv. The presence of exogenous SMase produced by M. tuberculosis during infection may interfere with the normal host inflammatory response thus allowing the establishment of infection and disease development. This Type C activity is different from previously identified M. tuberculosis SMases. Defining the biochemical characteristics of M. tuberculosis SMases helps to elucidate the roles that these enzymes play during infection and disease.

  7. LAG3 Expression in Active Mycobacterium tuberculosis Infections

    PubMed Central

    Phillips, Bonnie L.; Mehra, Smriti; Ahsan, Muhammad H.; Selman, Moises; Khader, Shabaana A.; Kaushal, Deepak

    2016-01-01

    Mycobacterium tuberculosis (MTB) is a highly successful pathogen because of its ability to persist in human lungs for long periods of time. MTB modulates several aspects of the host immune response. Lymphocyte-activation gene 3 (LAG3) is a protein with a high affinity for the CD4 receptor and is expressed mainly by regulatory T cells with immunomodulatory functions. To understand the function of LAG3 during MTB infection, a nonhuman primate model of tuberculosis, which recapitulates key aspects of natural human infection in rhesus macaques (Macaca mulatta), was used. We show that the expression of LAG3 is highly induced in the lungs and particularly in the granulomatous lesions of macaques experimentally infected with MTB. Furthermore, we show that LAG3 expression is not induced in the lungs and lung granulomas of animals exhibiting latent tuberculosis infection. However, simian immunodeficiency virus–induced reactivation of latent tuberculosis infection results in an increased expression of LAG3 in the lungs. This response is not observed in nonhuman primates infected with non-MTB bacterial pathogens, nor with simian immunodeficiency virus alone. Our data show that LAG3 was expressed primarily on CD4+ T cells, presumably by regulatory T cells but also by natural killer cells. The expression of LAG3 coincides with high bacterial burdens and changes in the host type 1 helper T-cell response. PMID:25549835

  8. LAG3 expression in active Mycobacterium tuberculosis infections.

    PubMed

    Phillips, Bonnie L; Mehra, Smriti; Ahsan, Muhammad H; Selman, Moises; Khader, Shabaana A; Kaushal, Deepak

    2015-03-01

    Mycobacterium tuberculosis (MTB) is a highly successful pathogen because of its ability to persist in human lungs for long periods of time. MTB modulates several aspects of the host immune response. Lymphocyte-activation gene 3 (LAG3) is a protein with a high affinity for the CD4 receptor and is expressed mainly by regulatory T cells with immunomodulatory functions. To understand the function of LAG3 during MTB infection, a nonhuman primate model of tuberculosis, which recapitulates key aspects of natural human infection in rhesus macaques (Macaca mulatta), was used. We show that the expression of LAG3 is highly induced in the lungs and particularly in the granulomatous lesions of macaques experimentally infected with MTB. Furthermore, we show that LAG3 expression is not induced in the lungs and lung granulomas of animals exhibiting latent tuberculosis infection. However, simian immunodeficiency virus-induced reactivation of latent tuberculosis infection results in an increased expression of LAG3 in the lungs. This response is not observed in nonhuman primates infected with non-MTB bacterial pathogens, nor with simian immunodeficiency virus alone. Our data show that LAG3 was expressed primarily on CD4(+) T cells, presumably by regulatory T cells but also by natural killer cells. The expression of LAG3 coincides with high bacterial burdens and changes in the host type 1 helper T-cell response.

  9. Direct inhibitors of InhA active against Mycobacterium tuberculosis

    PubMed Central

    Manjunatha, Ujjini H.; Rao, Srinivasa P. S.; Kondreddi, Ravinder Reddy; Noble, Christian G.; Camacho, Luis R.; Tan, Bee H.; Ng, Seow H.; Ng, Pearly Shuyi; Ma, N. L.; Lakshminarayana, Suresh B.; Herve, Maxime; Barnes, S. Whitney; Yu, Weixuan; Kuhen, Kelli; Blasco, Francesca; Beer, David; Walker, John R.; Tonge, Peter J.; Glynne, Richard; Smith, Paul W.; Diagana, Thierry T.

    2015-01-01

    New chemotherapeutic agents are urgently required to combat the global spread of multi-drug resistant tuberculosis (MDR-TB). The mycobacterial enoyl reductase, InhA, is one of the few clinically-validated targets in tuberculosis drug discovery. Here, we report the identification of a new class of direct InhA inhibitors, the 4-hydroxy-2-pyridones, using phenotypic high-throughput whole-cell screening. This class of orally-active compounds showed potent bactericidal activity against common isoniazid-resistant TB clinical isolates. Biophysical studies revealed that 4-hydroxy-2-pyridones bound specifically to InhA in an NADH-dependent manner and blocked the enoyl-substrate binding pocket. The lead compound NITD-916 directly blocked InhA in a dose-dependent manner and showed in vivo efficacy in acute and established mouse models of infection by Mycobacterium tuberculosis. Collectively, our structural and biochemical data open up new avenues for rational structure-guided optimization of the 4-hydroxy-2-pyridone class of compounds for the treatment of MDR-TB. PMID:25568071

  10. Mycobacterium tuberculosis- induced neutrophil extracellular traps activate human macrophages.

    PubMed

    Braian, Clara; Hogea, Valentin; Stendahl, Olle

    2013-01-01

    Neutrophils activated by Mycobacterium tuberculosis (Mtb) form neutrophil extracellular traps (NETs), containing DNA and several biologically active cytosolic and granular proteins. These NETs may assist in the innate immune defense against different pathogens. We investigated whether the NET-forming neutrophils mediate an activating signal to macrophages during the early multicellular inflammatory reaction and granuloma formation. Mtb-induced NETs were found to be reactive oxygen species dependent and phagocytosis dependent. A neutrophil elastase inhibitor also delayed NET formation. However, NET formation occurred independently of Mtb-induced apoptosis. We observed close interactions between macrophages and Mtb-activated neutrophils, where macrophages bound and phagocytosed NETs. Significant secretion of the cytokines interleukin (IL)-6, tumor necrosis factor-α, IL-1β and IL-10 were detected from macrophages cocultured with NETs from Mtb-activated but not phorbol myristate acetate-activated neutrophils. NETs binding heat shock protein 72 (Hsp72) or recombinant Hsp72 were able to trigger cytokine release from macrophages. Only Mtb-induced NETs contained Hsp72, suggesting that these NETs can transfer this danger signal to adjacent macrophages. We propose that Hsp72 sequestered in NETs plays an important role in the interaction between neutrophils and macrophages during the early innate immune phase of an Mtb infection. The immunomodulatory role of NETs and proteins derived from them may influence not only chronic inflammation during tuberculosis but also immune regulation and autoimmunity.

  11. Activity of 5-chloro-pyrazinamide in mice infected with Mycobacterium tuberculosis or Mycobacterium bovis

    PubMed Central

    Ahmad, Zahoor; Tyagi, Sandeep; Minkowski, Austin; Almeida, Deepak; Nuermberger, Eric L.; Peck, Kaitlin M.; Welch, John T.; Baughn, Anthony D.; Jacobs, Williams R.; Grosset, Jacques H.

    2012-01-01

    Background & objectives: Pyrazinamide is an essential component of first line anti-tuberculosis regimen as well as most of the second line regimens. This drug has a unique sterilizing activity against Mycobacterium tuberculosis. Its unique role in tuberculosis treatment has lead to the search and development of its structural analogues. One such analogue is 5-chloro-pyrazinamide (5-Cl-PZA) that has been tested under in vitro conditions against M. tuberculosis. The present study was designed with an aim to assess the activity of 5-Cl-PZA, alone and in combination with first-line drugs, against murine tuberculosis. Methods: The minimum inhibitory concentration (MIC) of 5-Cl-PZA in Middlebrook 7H9 broth (neutral pH) and the inhibitory titre of serum from mice that received a 300 mg/kg oral dose of 5-Cl-PZA 30 min before cardiac puncture were determined. To test the tolerability of orally administered 5-Cl-PZA, uninfected mice received doses up to 300 mg/kg for 2 wk. Four weeks after low-dose aerosol infection either with M. tuberculosis or M. bovis, mice were treated 5 days/wk with 5-Cl-PZA, at doses ranging from 37.5 to 150 mg/kg, either alone or in combination with isoniazid and rifampicin. Antimicrobial activity was assessed by colony-forming unit counts in lungs after 4 and 8 wk of treatment. Results: The MIC of 5-Cl-PZA against M. tuberculosis was between 12.5 and 25 μg/ml and the serum inhibitory titre was 1:4. Under the same experimental conditions, the MIC of pyrazinamide was >100 μg/ml and mouse serum had no inhibitory activity after a 300 mg/kg dose; 5-Cl-PZA was well tolerated in uninfected and infected mice up to 300 and 150 mg/kg, respectively. While PZA alone and in combination exhibited its usual antimicrobial activity in mice infected with M. tuberculosis and no activity in mice infected with M. bovis, 5-Cl-PZA exhibited antimicrobial activity neither in mice infected with M. tuberculosis nor in mice infected with M. bovis. Interpretation

  12. Tetrahdroxysqualene from Rhus taitensis Shows Antimycobacterial Activity Against Mycobacterium tuberculosis

    PubMed Central

    Noro, Jeffrey C.; Barrows, Louis R.; Gideon, Osia G.; Ireland, Chris M.; Koch, Michael; Matainaho, Teatulohi; Piskaut, Pius; Pond, Christopher D.; Bugni, Tim S.

    2010-01-01

    Tuberculosis has become a major health problem, in particular with the emergence of extremely drug resistant tuberculosis (XDRTB). In our search for new therapeutic leads against TB, we isolated a new triterpene (1) from the plant Rhus taitensis collected in Papua New Guinea. Tetrahydroxysqualene (1) was isolated using bioassay-guided fractionation of the methanolic extract of R. taitensis leaves and twigs. The structure of tetrahydroxysqualene (1) was elucidated on the basis of HRESIMS and 1D and 2D NMR spectra. Tetrahydroxysqualene (1) exhibited anti–tuberculosis activity with an MIC of 10.0 μg/mL while showing only modest cytotoxicity. PMID:18710283

  13. Combined use of Mycobacterium tuberculosis-specific CD4 and CD8 T-cell responses is a powerful diagnostic tool of active tuberculosis.

    PubMed

    Rozot, Virginie; Patrizia, Amelio; Vigano, Selena; Mazza-Stalder, Jesica; Idrizi, Elita; Day, Cheryl L; Perreau, Matthieu; Lazor-Blanchet, Catherine; Ohmiti, Khalid; Goletti, Delia; Bart, Pierre-Alexandre; Hanekom, Willem; Scriba, Thomas J; Nicod, Laurent; Pantaleo, Giuseppe; Harari, Alexandre

    2015-02-01

    Immune-based assays are promising tools to help to formulate diagnosis of active tuberculosis. A multiparameter flow cytometry assay assessing T-cell responses specific to Mycobacterium tuberculosis and the combination of both CD4 and CD8 T-cell responses accurately discriminated between active tuberculosis and latent infection.

  14. Activity against multidrug-resistant Mycobacterium tuberculosis in Mexican plants used to treat respiratory diseases.

    PubMed

    Jimenez-Arellanes, Adelina; Meckes, Mariana; Ramirez, Raquel; Torres, Javier; Luna-Herrera, Julieta

    2003-09-01

    The increase of multidrug-resistant Mycobacterium tuberculosis (MDR-TB) demands the search for alternative antimycobacterial drugs. The aim of this study was to evaluate plants used in Mexican traditional medicine to treat respiratory diseases for activity against MDR-TB. A group of 22 plants was screened for activity against Mycobacterium tuberculosis H37Rv and Mycobacterium avium at concentrations from 50 to 200 microg/mL. The antimycobacterial effect was determined by a microcolorimetric assay with Alamar blue dye. None of the aqueous extracts had antimycobacterial activity. Hexane extracts from Artemisia ludoviciana, Chamaedora tepejilote, Lantana hispida, Juniperus communis and Malva parviflora, and methanol extracts from Artemisia ludoviciana and Juniperus communis inhibited the growth of Mycobacterium tuberculosis. Mycobacterium avium was inhibited by Juniperus communis hexane extract and by Malva parviflora methanol extract. The active extracts were tested against monoresistant variants of Mycobacterium tuberculosis H37Rv (isoniazid, rifampin, streptomycin and ethambutol resistant) and the hexane extract of Lantana hispida showed the best activity. Lantana hispida hexane extract was also active against a group of MDR-TB clinical isolates. In contrast, it did not inhibit the growth of non-tuberculous mycobacteria. The hexane extract of Lantana hispida was fractionated by column chromatography and one of its fractions (FVI) inhibited the growth of all the MDR-TB clinical isolates at concentrations up to 25 microg/mL. This study supports the fact that selecting plants by ethnobotanical criteria enhances the probability of finding species with activity against mycobacteria, and our results point to Lantana hispida as an important source of potential compounds against MDR-TB.

  15. Evolution of Mycobacterium tuberculosis.

    PubMed

    Behr, Marcel A

    2013-01-01

    Genomic studies have provided a refined understanding of the genetic diversity within the Mycobacterium genus, and more specifically within Mycobacterium tuberculosis. These results have informed a new perspective on the macro- and micro-evolution of the tubercle bacillus. In the first step, a M. kansasii-like opportunistic pathogen acquired new genes, through horizontal gene transfer, that enabled it to better exploit an intracellular niche and ultimately evolve into a professional pathogen. In the second step, different subspecies and strains of the M. tuberculosis complex emerged through mutation and deletion of unnecessary DNA. Understanding the differences between M. tuberculosis and related less pathogenic mycobacteria is expected to reveal key bacterial virulence mechanisms and provide opportunities to understand host resistance to mycobacterial infection. Understanding differences within the M. tuberculosis complex and the evolutionary forces shaping these differences is important for investigating the basis of its success as both a symbiont and a pathogen.

  16. Micrococcin P1 - A bactericidal thiopeptide active against Mycobacterium tuberculosis.

    PubMed

    Degiacomi, Giulia; Personne, Yoann; Mondésert, Guillaume; Ge, Xueliang; Mandava, Chandra Sekhar; Hartkoorn, Ruben C; Boldrin, Francesca; Goel, Pavitra; Peisker, Kristin; Benjak, Andrej; Barrio, Maria Belén; Ventura, Marcello; Brown, Amanda C; Leblanc, Véronique; Bauer, Armin; Sanyal, Suparna; Cole, Stewart T; Lagrange, Sophie; Parish, Tanya; Manganelli, Riccardo

    2016-09-01

    The lack of proper treatment for serious infectious diseases due to the emergence of multidrug resistance reinforces the need for the discovery of novel antibiotics. This is particularly true for tuberculosis (TB) for which 3.7% of new cases and 20% of previously treated cases are estimated to be caused by multi-drug resistant strains. In addition, in the case of TB, which claimed 1.5 million lives in 2014, the treatment of the least complicated, drug sensitive cases is lengthy and disagreeable. Therefore, new drugs with novel targets are urgently needed to control resistant Mycobacterium tuberculosis strains. In this manuscript we report the characterization of the thiopeptide micrococcin P1 as an anti-tubercular agent. Our biochemical experiments show that this antibiotic inhibits the elongation step of protein synthesis in mycobacteria. We have further identified micrococcin resistant mutations in the ribosomal protein L11 (RplK); the mutations were located in the proline loop at the N-terminus. Reintroduction of the mutations into a clean genetic background, confirmed that they conferred resistance, while introduction of the wild type RplK allele into resistant strains re-established sensitivity. We also identified a mutation in the 23S rRNA gene. These data, in good agreement with previous structural studies suggest that also in M. tuberculosis micrococcin P1 functions by binding to the cleft between the 23S rRNA and the L11 protein loop, thus interfering with the binding of elongation factors Tu and G (EF-Tu and EF-G) and inhibiting protein translocation. PMID:27553416

  17. LL-37 immunomodulatory activity during Mycobacterium tuberculosis infection in macrophages.

    PubMed

    Torres-Juarez, Flor; Cardenas-Vargas, Albertina; Montoya-Rosales, Alejandra; González-Curiel, Irma; Garcia-Hernandez, Mariana H; Enciso-Moreno, Jose A; Hancock, Robert E W; Rivas-Santiago, Bruno

    2015-12-01

    Tuberculosis is one of the most important infectious diseases worldwide. The susceptibility to this disease depends to a great extent on the innate immune response against mycobacteria. Host defense peptides (HDP) are one of the first barriers to counteract infection. Cathelicidin (LL-37) is an HDP that has many immunomodulatory effects besides its weak antimicrobial activity. Despite advances in the study of the innate immune response in tuberculosis, the immunological role of LL-37 during M. tuberculosis infection has not been clarified. Monocyte-derived macrophages were infected with M. tuberculosis strain H37Rv and then treated with 1, 5, or 15 μg/ml of exogenous LL-37 for 4, 8, and 24 h. Exogenous LL-37 decreased tumor necrosis factor alpha (TNF-α) and interleukin-17 (IL-17) while inducing anti-inflammatory IL-10 and transforming growth factor β (TGF-β) production. Interestingly, the decreased production of anti-inflammatory cytokines did not reduce antimycobacterial activity. These results are consistent with the concept that LL-37 can modulate the expression of cytokines during mycobacterial infection and this activity was independent of the P2X7 receptor. Thus, LL-37 modulates the response of macrophages during infection, controlling the expression of proinflammatory and anti-inflammatory cytokines.

  18. LL-37 Immunomodulatory Activity during Mycobacterium tuberculosis Infection in Macrophages

    PubMed Central

    Torres-Juarez, Flor; Cardenas-Vargas, Albertina; Montoya-Rosales, Alejandra; González-Curiel, Irma; Garcia-Hernandez, Mariana H.; Enciso-Moreno, Jose A.; Hancock, Robert E. W.

    2015-01-01

    Tuberculosis is one of the most important infectious diseases worldwide. The susceptibility to this disease depends to a great extent on the innate immune response against mycobacteria. Host defense peptides (HDP) are one of the first barriers to counteract infection. Cathelicidin (LL-37) is an HDP that has many immunomodulatory effects besides its weak antimicrobial activity. Despite advances in the study of the innate immune response in tuberculosis, the immunological role of LL-37 during M. tuberculosis infection has not been clarified. Monocyte-derived macrophages were infected with M. tuberculosis strain H37Rv and then treated with 1, 5, or 15 μg/ml of exogenous LL-37 for 4, 8, and 24 h. Exogenous LL-37 decreased tumor necrosis factor alpha (TNF-α) and interleukin-17 (IL-17) while inducing anti-inflammatory IL-10 and transforming growth factor β (TGF-β) production. Interestingly, the decreased production of anti-inflammatory cytokines did not reduce antimycobacterial activity. These results are consistent with the concept that LL-37 can modulate the expression of cytokines during mycobacterial infection and this activity was independent of the P2X7 receptor. Thus, LL-37 modulates the response of macrophages during infection, controlling the expression of proinflammatory and anti-inflammatory cytokines. PMID:26351280

  19. In Vitro and In Vivo Activities of the Nitroimidazole TBA-354 against Mycobacterium tuberculosis

    PubMed Central

    Cho, S.; Yang, T. J.; Kim, Y.; Wang, Y.; Lu, Y.; Wang, B.; Xu, J.; Mdluli, K.; Ma, Z.; Franzblau, S. G.

    2014-01-01

    Nitroimidazoles are a promising new class of antitubercular agents. The nitroimidazo-oxazole delamanid (OPC-67683, Deltyba) is in phase III trials for the treatment of multidrug-resistant tuberculosis, while the nitroimidazo-oxazine PA-824 is entering phase III for drug-sensitive and drug-resistant tuberculosis. TBA-354 (SN31354[(S)-2-nitro-6-((6-(4-trifluoromethoxy)phenyl)pyridine-3-yl)methoxy)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine]) is a pyridine-containing biaryl compound with exceptional efficacy against chronic murine tuberculosis and favorable bioavailability in preliminary rodent studies. It was selected as a potential next-generation antituberculosis nitroimidazole following an extensive medicinal chemistry effort. Here, we further evaluate the pharmacokinetic properties and activity of TBA-354 against Mycobacterium tuberculosis. TBA-354 is narrow spectrum and bactericidal in vitro against replicating and nonreplicating Mycobacterium tuberculosis, with potency similar to that of delamanid and greater than that of PA-824. The addition of serum protein or albumin does not significantly alter this activity. TBA-354 maintains activity against Mycobacterium tuberculosis H37Rv isogenic monoresistant strains and clinical drug-sensitive and drug-resistant isolates. Spontaneous resistant mutants appear at a frequency of 3 × 10−7. In vitro studies and in vivo studies in mice confirm that TBA-354 has high bioavailability and a long elimination half-life. In vitro studies suggest a low risk of drug-drug interactions. Low-dose aerosol infection models of acute and chronic murine tuberculosis reveal time- and dose-dependent in vivo bactericidal activity that is at least as potent as that of delamanid and more potent than that of PA-824. Its superior potency and pharmacokinetic profile that predicts suitability for once-daily oral dosing suggest that TBA-354 be studied further for its potential as a next-generation nitroimidazole. PMID:25331696

  20. Role of complement activation and antibody in the interaction between Mycobacterium tuberculosis and human macrophages.

    PubMed

    Manivannan, S; Rao, Narayan V; Ramanathan, V D

    2012-08-01

    Mycobacterium tuberculosis-specific antibodies possess immunomodulatory effects during tuberculosis infection. Prior sensitization to environmental mycobacteria is known to suppress immune responses against BCG and M. tuberculosis. Mycobacteria-induced antibodies can influence events such as complement activation and phagocytosis during infectious process. In the present study role of anti-M. tuberculosis IgG (anti-M. tb IgG) antibody during interaction between M. tuberculosis and human macrophages mediated through complement has been examined in vitro. Anti-M. tb IgG antibody significantly enhanced complement activation by M. tuberculosis. Phagocytosis of M. tuberculosis by macrophages increased significantly in the presence of complement and/or antibody. Moreover, antibody enhanced phagocytosis in the presence of complement. Addition of antibody alone or in combination with complement also augmented intracellular viability of bacilli within macrophages. Results of this study showed that anti-mycobacterial antibody enhances complement activation and anti-M. tb IgG antibody probably modulates effects of complement during early stages of tuberculosis infection.

  1. Alternative activation deprives macrophages of a coordinated defense program to Mycobacterium tuberculosis.

    PubMed

    Kahnert, Antje; Seiler, Peter; Stein, Maik; Bandermann, Silke; Hahnke, Karin; Mollenkopf, Hans; Kaufmann, Stefan H E

    2006-03-01

    A potent Th1 immune response is critical to the control of tuberculosis. The impact of an additive Th2 response on the course of disease has so far been insufficiently characterized, despite increased morbidity after co-infection with Mycobacterium tuberculosis and Th2-eliciting helminths and possible involvement of Th2 polarization in reactivation of latent tuberculosis. Here, we describe the gene expression profile of murine bone marrow-derived macrophages alternatively activated by IL-4 in response to infection with M. tuberculosis. Comparison of transcriptional profiles of infected IL-4- and IFN-gamma-activated macrophages revealed delayed and partially diminished responses to intracellular bacteria in alternatively activated macrophages, characterized by reduced exposure to nitrosative stress and increased iron availability, respectively. Alternative activation of host macrophages correlated with elevated expression of the M. tuberculosis iron storage protein bacterioferritin as well as reduced expression of the mycobactin synthesis genes mbtI and mbtJ. The extracellular matrix-remodeling enzyme matrix metalloproteinase (MMP)-12 was induced in alternatively activated macrophages in vitro, and MMP-12-expressing macrophages were abundant at late, but not early, stages of tuberculosis in murine lungs. Our findings emphasize that alternative activation deprives macrophages of control mechanisms that limit mycobacterial growth in vivo, thus supporting intracellular persistence of M. tuberculosis. PMID:16479545

  2. Meropenem-clavulanic acid has high in vitro activity against multidrug-resistant Mycobacterium tuberculosis.

    PubMed

    Davies Forsman, L; Giske, C G; Bruchfeld, J; Schön, T; Juréen, P; Ängeby, K

    2015-01-01

    We investigated the activity of meropenem-clavulanic acid (MEM-CLA) against 68 Mycobacterium tuberculosis isolates. We included predominantly multi- and extensively drug-resistant tuberculosis (MDR/XDR-TB) isolates, since the activity of MEM-CLA for resistant isolates has previously not been studied extensively. Using Middlebrook 7H10 medium, all but four isolates showed an MIC distribution of 0.125 to 2 mg/liter for MEM-CLA, below the non-species-related breakpoint for MEM of 2 mg/liter defined by EUCAST. MEM-CLA is a potential treatment option for MDR/XDR-TB.

  3. Development of cyclobutene- and cyclobutane-functionalized fatty acids with inhibitory activity against Mycobacterium tuberculosis

    PubMed Central

    Sittiwong, Wantanee; Zinniel, Denise K.; Fenton, Robert J.; Marshall, Darrel; Story, Courtney B.; Kim, Bohkyung; Lee, Ji-Young; Powers, Robert; Barletta, Raúl G.

    2014-01-01

    Eleven fatty acid analogs incorporating four-membered carbocycles (cyclobutenes, cyclobutanes, cyclobutanones, and cyclobutanols) were investigated for the ability to inhibit growth of Mycobacterium smegmatis (Msm) and Mycobacterium tuberculosis (Mtb). A number of the analogs displayed inhibitory activity against both mycobacterial species in minimal media. Several of the molecules displayed potent levels of inhibition against Mtb with MIC values equal to or below those obtained with the anti-tuberculosis drugs D-cycloserine and isoniazid. In contrast, two of the analogs displaying the greatest activity against Mtb failed to inhibit E. coli growth under either set of conditions. Thus, the active molecules identified here (1, 2, 6, and 8) may provide the basis for development of anti-mycobacterial agents against Mtb. PMID:24902951

  4. Mycobacterium tuberculosis Lipolytic Enzymes as Potential Biomarkers for the Diagnosis of Active Tuberculosis

    PubMed Central

    Brust, Belinda; Lecoufle, Mélanie; Tuaillon, Edouard; Dedieu, Luc; Canaan, Stéphane; Valverde, Viviane; Kremer, Laurent

    2011-01-01

    Background New diagnosis tests are urgently needed to address the global tuberculosis (TB) burden and to improve control programs especially in resource-limited settings. An effective in vitro diagnostic of TB based on serological methods would be regarded as an attractive progress because immunoassays are simple, rapid, inexpensive, and may offer the possibility to detect cases missed by standard sputum smear microscopy. However, currently available serology tests for TB are highly variable in sensitivity and specificity. Lipolytic enzymes have recently emerged as key factors in lipid metabolization during dormancy and/or exit of the non-replicating growth phase, a prerequisite step of TB reactivation. The focus of this study was to analyze and compare the potential of four Mycobacterium tuberculosis lipolytic enzymes (LipY, Rv0183, Rv1984c and Rv3452) as new markers in the serodiagnosis of active TB. Methods Recombinant proteins were produced and used in optimized ELISA aimed to detect IgG and IgM serum antibodies against the four lipolytic enzymes. The capacity of the assays to identify infection was evaluated in patients with either active TB or latent TB and compared with two distinct control groups consisting of BCG-vaccinated blood donors and hospitalized non-TB individuals. Results A robust humoral response was detected in patients with active TB whereas antibodies against lipolytic enzymes were infrequently detected in either uninfected groups or in subjects with latent infection. High specifity levels, ranging from 93.9% to 97.5%, were obtained for all four antigens with sensitivity values ranging from 73.4% to 90.5%, with Rv3452 displaying the highest performances. Patients with active TB usually exhibited strong IgG responses but poor IgM responses. Conclusion These results clearly indicate that the lipolytic enzymes tested are strongly immunogenic allowing to distinguish active from latent TB infections. They appear as potent biomarkers providing high

  5. The Cyclic Peptide Ecumicin Targeting ClpC1 Is Active against Mycobacterium tuberculosis In Vivo

    PubMed Central

    Gao, Wei; Kim, Jin-Yong; Anderson, Jeffrey R.; Akopian, Tatos; Hong, Seungpyo; Jin, Ying-Yu; Kandror, Olga; Kim, Jong-Woo; Lee, In-Ae; Lee, Sun-Young; McAlpine, James B.; Mulugeta, Surafel; Sunoqrot, Suhair; Wang, Yuehong; Yang, Seung-Hwan; Yoon, Tae-Mi; Goldberg, Alfred L.; Pauli, Guido F.; Cho, Sanghyun

    2014-01-01

    Drug-resistant tuberculosis (TB) has lent urgency to finding new drug leads with novel modes of action. A high-throughput screening campaign of >65,000 actinomycete extracts for inhibition of Mycobacterium tuberculosis viability identified ecumicin, a macrocyclic tridecapeptide that exerts potent, selective bactericidal activity against M. tuberculosis in vitro, including nonreplicating cells. Ecumicin retains activity against isolated multiple-drug-resistant (MDR) and extensively drug-resistant (XDR) strains of M. tuberculosis. The subcutaneous administration to mice of ecumicin in a micellar formulation at 20 mg/kg body weight resulted in plasma and lung exposures exceeding the MIC. Complete inhibition of M. tuberculosis growth in the lungs of mice was achieved following 12 doses at 20 or 32 mg/kg. Genome mining of lab-generated, spontaneous ecumicin-resistant M. tuberculosis strains identified the ClpC1 ATPase complex as the putative target, and this was confirmed by a drug affinity response test. ClpC1 functions in protein breakdown with the ClpP1P2 protease complex. Ecumicin markedly enhanced the ATPase activity of wild-type (WT) ClpC1 but prevented activation of proteolysis by ClpC1. Less stimulation was observed with ClpC1 from ecumicin-resistant mutants. Thus, ClpC1 is a valid drug target against M. tuberculosis, and ecumicin may serve as a lead compound for anti-TB drug development. PMID:25421483

  6. Intracellular activity of tedizolid phosphate and ACH-702 versus Mycobacterium tuberculosis infected macrophages

    PubMed Central

    2014-01-01

    Background Due to the emergency of multidrug-resistant strains of Mycobacterium tuberculosis, is necessary the evaluation of new compounds. Findings Tedizolid, a novel oxazolidinone, and ACH-702, a new isothiazoloquinolone, were tested against M. tuberculosis infected THP-1 macrophages. These two compounds significantly decreased the number of intracellular mycobacteria at 0.25X, 1X, 4X and 16X the MIC value. The drugs were tested either in nanoparticules or in free solution. Conclusion Tedizolid and ACH-702 have a good intracellular killing activity comparable to that of rifampin or moxifloxacin. PMID:24708819

  7. Comparative Study of Activities of a Diverse Set of Antimycobacterial Agents against Mycobacterium tuberculosis and Mycobacterium ulcerans.

    PubMed

    Scherr, Nicole; Pluschke, Gerd; Panda, Manoranjan

    2016-05-01

    A library of compounds covering a broad chemical space was selected from a tuberculosis drug development program and was screened in a whole-cell assay against Mycobacterium ulcerans, the causative agent of the necrotizing skin disease Buruli ulcer. While a number of potent antitubercular agents were only weakly active or inactive against M. ulcerans, five compounds showed high activity (90% inhibitory concentration [IC90], ≤1 μM), making screening of focused antitubercular libraries a good starting point for lead generation against M. ulcerans. PMID:26883701

  8. Meropenem-clavulanic acid shows activity against Mycobacterium tuberculosis in vivo.

    PubMed

    England, Kathleen; Boshoff, Helena I M; Arora, Kriti; Weiner, Danielle; Dayao, Emmanuel; Schimel, Daniel; Via, Laura E; Barry, Clifton E

    2012-06-01

    The carbapenems imipenem and meropenem in combination with clavulanic acid reduced the bacterial burden in Mycobacterium tuberculosis-infected macrophages by 2 logs over 6 days. Despite poor stability in solution and a short half-life in rodents, treatment of chronically infected mice revealed significant reductions of bacterial burden in the lungs and spleens. Our results show that meropenem has activity in two in vivo systems, but stability and pharmacokinetics of long-term administration will offer significant challenges to clinical evaluation.

  9. IFNG-mediated immune responses enhance autophagy against Mycobacterium tuberculosis antigens in patients with active tuberculosis

    PubMed Central

    Rovetta, Ana I; Peña, Delfina; Hernández Del Pino, Rodrigo E; Recalde, Gabriela M; Pellegrini, Joaquín; Bigi, Fabiana; Musella, Rosa M; Palmero, Domingo J; Gutierrez, Marisa; Colombo, María I; García, Verónica E

    2015-01-01

    Protective immunity against Mycobacterium tuberculosis (Mtb) requires IFNG. Besides, IFNG-mediated induction of autophagy suppresses survival of virulent Mtb in macrophage cell lines. We investigated the contribution of autophagy to the defense against Mtb antigen (Mtb-Ag) in cells from tuberculosis patients and healthy donors (HD). Patients were classified as high responders (HR) if their T cells produced significant IFNG against Mtb-Ag; and low responders (LR) when patients showed weak or no T cell responses to Mtb-Ag. The highest autophagy levels were detected in HD cells whereas the lowest quantities were observed in LR patients. Interestingly, upon Mtb-Ag stimulation, we detected a positive correlation between IFNG and MAP1LC3B-II/LC3-II levels. Actually, blockage of Mtb-Ag-induced IFNG markedly reduced autophagy in HR patients whereas addition of limited amounts of IFNG significantly increased autophagy in LR patients. Therefore, autophagy collaborates with human immune responses against Mtb in close association with specific IFNG secreted against the pathogen. PMID:25426782

  10. IFNG-mediated immune responses enhance autophagy against Mycobacterium tuberculosis antigens in patients with active tuberculosis.

    PubMed

    Rovetta, Ana I; Peña, Delfina; Hernández Del Pino, Rodrigo E; Recalde, Gabriela M; Pellegrini, Joaquín; Bigi, Fabiana; Musella, Rosa M; Palmero, Domingo J; Gutierrez, Marisa; Colombo, María I; García, Verónica E

    2014-01-01

    Protective immunity against Mycobacterium tuberculosis (Mtb) requires IFNG. Besides, IFNG-mediated induction of autophagy suppresses survival of virulent Mtb in macrophage cell lines. We investigated the contribution of autophagy to the defense against Mtb antigen (Mtb-Ag) in cells from tuberculosis patients and healthy donors (HD). Patients were classified as high responders (HR) if their T cells produced significant IFNG against Mtb-Ag; and low responders (LR) when patients showed weak or no T cell responses to Mtb-Ag. The highest autophagy levels were detected in HD cells whereas the lowest quantities were observed in LR patients. Interestingly, upon Mtb-Ag stimulation, we detected a positive correlation between IFNG and MAP1LC3B-II/LC3-II levels. Actually, blockage of Mtb-Ag-induced IFNG markedly reduced autophagy in HR patients whereas addition of limited amounts of IFNG significantly increased autophagy in LR patients. Therefore, autophagy collaborates with human immune responses against Mtb in close association with specific IFNG secreted against the pathogen.

  11. Drug Resistance Mechanisms in Mycobacterium tuberculosis

    PubMed Central

    Palomino, Juan Carlos; Martin, Anandi

    2014-01-01

    Tuberculosis (TB) is a serious public health problem worldwide. Its situation is worsened by the presence of multidrug resistant (MDR) strains of Mycobacterium tuberculosis, the causative agent of the disease. In recent years, even more serious forms of drug resistance have been reported. A better knowledge of the mechanisms of drug resistance of M. tuberculosis and the relevant molecular mechanisms involved will improve the available techniques for rapid drug resistance detection and will help to explore new targets for drug activity and development. This review article discusses the mechanisms of action of anti-tuberculosis drugs and the molecular basis of drug resistance in M. tuberculosis. PMID:27025748

  12. Drug Resistance Mechanisms in Mycobacterium tuberculosis.

    PubMed

    Palomino, Juan Carlos; Martin, Anandi

    2014-01-01

    Tuberculosis (TB) is a serious public health problem worldwide. Its situation is worsened by the presence of multidrug resistant (MDR) strains of Mycobacterium tuberculosis, the causative agent of the disease. In recent years, even more serious forms of drug resistance have been reported. A better knowledge of the mechanisms of drug resistance of M. tuberculosis and the relevant molecular mechanisms involved will improve the available techniques for rapid drug resistance detection and will help to explore new targets for drug activity and development. This review article discusses the mechanisms of action of anti-tuberculosis drugs and the molecular basis of drug resistance in M. tuberculosis. PMID:27025748

  13. Fluoroquinolone interactions with Mycobacterium tuberculosis gyrase: Enhancing drug activity against wild-type and resistant gyrase

    PubMed Central

    Aldred, Katie J.; Kerns, Robert J.; Berger, James M.; Osheroff, Neil

    2016-01-01

    Mycobacterium tuberculosis is a significant source of global morbidity and mortality. Moxifloxacin and other fluoroquinolones are important therapeutic agents for the treatment of tuberculosis, particularly multidrug-resistant infections. To guide the development of new quinolone-based agents, it is critical to understand the basis of drug action against M. tuberculosis gyrase and how mutations in the enzyme cause resistance. Therefore, we characterized interactions of fluoroquinolones and related drugs with WT gyrase and enzymes carrying mutations at GyrAA90 and GyrAD94. M. tuberculosis gyrase lacks a conserved serine that anchors a water–metal ion bridge that is critical for quinolone interactions with other bacterial type II topoisomerases. Despite the fact that the serine is replaced by an alanine (i.e., GyrAA90) in M. tuberculosis gyrase, the bridge still forms and plays a functional role in mediating quinolone–gyrase interactions. Clinically relevant mutations at GyrAA90 and GyrAD94 cause quinolone resistance by disrupting the bridge–enzyme interaction, thereby decreasing drug affinity. Fluoroquinolone activity against WT and resistant enzymes is enhanced by the introduction of specific groups at the C7 and C8 positions. By dissecting fluoroquinolone–enzyme interactions, we determined that an 8-methyl-moxifloxacin derivative induces high levels of stable cleavage complexes with WT gyrase and two common resistant enzymes, GyrAA90V and GyrAD94G. 8-Methyl-moxifloxacin was more potent than moxifloxacin against WT M. tuberculosis gyrase and displayed higher activity against the mutant enzymes than moxifloxacin did against WT gyrase. This chemical biology approach to defining drug–enzyme interactions has the potential to identify novel drugs with improved activity against tuberculosis. PMID:26792518

  14. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis

    DOE PAGES

    Jastrab, Jordan B.; Wang, Tong; Murphy, J. Patrick; Bai, Lin; Hu, Kuan; Merkx, Remco; Huang, Jessica; Chatterjee, Champak; Ovaa, Huib; Gygi, Steven P.; et al

    2015-03-23

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and proteinmore » degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world’s most devastating pathogens.« less

  15. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis

    SciTech Connect

    Jastrab, Jordan B.; Wang, Tong; Murphy, J. Patrick; Bai, Lin; Hu, Kuan; Merkx, Remco; Huang, Jessica; Chatterjee, Champak; Ovaa, Huib; Gygi, Steven P.; Li, Huilin; Darwin, K. Heran

    2015-03-23

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and protein degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world’s most devastating pathogens.

  16. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis

    PubMed Central

    Jastrab, Jordan B.; Wang, Tong; Murphy, J. Patrick; Bai, Lin; Hu, Kuan; Merkx, Remco; Huang, Jessica; Chatterjee, Champak; Ovaa, Huib; Gygi, Steven P.; Li, Huilin; Darwin, K. Heran

    2015-01-01

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and protein degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world's most devastating pathogens. PMID:25831519

  17. Pentacyclic Nitrofurans with In Vivo Efficacy and Activity against Nonreplicating Mycobacterium tuberculosis

    PubMed Central

    Scherman, Michael S.; Woolhiser, Lisa K.; Madhura, Dora B.; Maddox, Marcus M.; Singh, Aman P.; Lee, Robin B.; Hurdle, Julian G.; McNeil, Michael R.; Lenaerts, Anne J.; Meibohm, Bernd; Lee, Richard E.

    2014-01-01

    The reductively activated nitroaromatic class of antimicrobials, which include nitroimidazole and the more metabolically labile nitrofuran antitubercular agents, have demonstrated some potential for development as therapeutics against dormant TB bacilli. In previous studies, the pharmacokinetic properties of nitrofuranyl isoxazolines were improved by incorporation of the outer ring elements of the antitubercular nitroimidazole OPC-67683. This successfully increased stability of the resulting pentacyclic nitrofuran lead compound Lee1106 (referred to herein as 9a). In the current study, we report the synthesis and antimicrobial properties of 9a and panel of 9a analogs, which were developed to increase oral bioavailability. These hybrid nitrofurans remained potent inhibitors of Mycobacterium tuberculosis with favorable selectivity indices (>150) and a narrow spectrum of activity. In vivo, the pentacyclic nitrofuran compounds showed long half-lives and high volumes of distribution. Based on pharmacokinetic testing and lack of toxicity in vivo, 9a remained the series lead. 9a exerted a lengthy post antibiotic effect and was highly active against nonreplicating M. tuberculosis grown under hypoxia. 9a showed a low potential for cross resistance to current antitubercular agents, and a mechanism of activation distinct from pre-clinical tuberculosis candidates PA-824 and OPC-67683. Together these studies show that 9a is a nanomolar inhibitor of actively growing as well as nonreplicating M. tuberculosis. PMID:24505329

  18. Effect of serial subculturing on the genetic composition and cytotoxic activity of Mycobacterium tuberculosis.

    PubMed

    Molina-Torres, C A; Castro-Garza, J; Ocampo-Candiani, J; Monot, M; Cole, S T; Vera-Cabrera, L

    2010-04-01

    Continuous subculture has been observed to produce changes in the virulence of micro-organisms, e.g. rabies virus, poliovirus and Mycobacterium bovis BCG. The latter has been used as a vaccine for tuberculosis for the last 100 years; however, in some instances its efficacy has been observed to be very low. In order to determine whether similar changes can be produced in Mycobacterium tuberculosis, we selected four isolates, M. tuberculosis H37Rv, a Beijing strain (DR-689), and two more isolates with deletion of the phospholipase C locus (plcA-plcB-plcC ), and subjected them to serial culturing on Middlebrook 7H9 medium, with or without ox bile. After 100 passages, we performed RFLP-IS6110 analysis to determine whether genomic changes were produced. We also checked their genomic composition by microarray analysis. Changes in virulence were studied by measuring the cytotoxic effect of parental and subcultured isolates on a THP-1 macrophage monolayer. The most visible change was the change of position of an IS6110 band of approximately 1400 bp to approximately 1600 bp in the Beijing isolate subcultured in the ox bile medium. Analysis by microarray and PCR confirmation did not reveal any genomic changes. Cytotoxic activity was decreased in the isolates at levels close to that of BCG, and more consistently in those subcultured in the presence of ox bile.

  19. Impact of β-Lactamase Inhibition on the Activity of Ceftaroline against Mycobacterium tuberculosis and Mycobacterium abscessus

    PubMed Central

    Dubée, Vincent; Soroka, Daria; Cortes, Mélanie; Lefebvre, Anne-Laure; Gutmann, Laurent; Hugonnet, Jean-Emmanuel; Arthur, Michel

    2015-01-01

    The production of β-lactamases BlaMab and BlaC contributes to β-lactam resistance in Mycobacterium abscessus and Mycobacterium tuberculosis, respectively. Ceftaroline was efficiently hydrolyzed by these enzymes. Inhibition of M. tuberculosis BlaC by clavulanate decreased the ceftaroline MIC from ≥256 to 16 to 64 μg/ml, but these values are clinically irrelevant. In contrast, the ceftaroline-avibactam combination should be evaluated against M. abscessus since it inhibited growth at lower and potentially achievable drug concentrations. PMID:25733512

  20. Functional analysis of TPM domain containing Rv2345 of Mycobacterium tuberculosis identifies its phosphatase activity.

    PubMed

    Sinha, Avni; Eniyan, Kandasamy; Sinha, Swati; Lynn, Andrew Michael; Bajpai, Urmi

    2015-07-01

    Mycobacterium tuberculosis (Mtb) is the causal agent of tuberculosis, the second largest infectious disease. With the rise of multi-drug resistant strains of M. tuberculosis, serious challenge lies ahead of us in treating the disease. The availability of complete genome sequence of Mtb has improved the scope for identifying new proteins that would not only further our understanding of biology of the organism but could also serve to discover new drug targets. In this study, Rv2345, a hypothetical membrane protein of M. tuberculosis H37Rv, which is reported to be a putative ortholog of ZipA cell division protein has been assigned function through functional annotation using bioinformatics tools followed by experimental validation. Sequence analysis showed Rv2345 to have a TPM domain at its N-terminal region and predicted it to have phosphatase activity. The TPM domain containing region of Rv2345 was cloned and expressed using pET28a vector in Escherichia coli and purified by Nickel affinity chromatography. The purified TPM domain was tested in vitro and our results confirmed it to have phosphatase activity. The enzyme activity was first checked and optimized with pNPP as substrate, followed by using ATP, which was also found to be used as substrate by the purified protein. Hence sequence analysis followed by in vitro studies characterizes TPM domain of Rv2345 to contain phosphatase activity.

  1. Meropenem-Clavulanic Acid Shows Activity against Mycobacterium tuberculosis In Vivo

    PubMed Central

    England, Kathleen; Boshoff, Helena I. M.; Arora, Kriti; Weiner, Danielle; Dayao, Emmanuel; Schimel, Daniel; Via, Laura E.

    2012-01-01

    The carbapenems imipenem and meropenem in combination with clavulanic acid reduced the bacterial burden in Mycobacterium tuberculosis-infected macrophages by 2 logs over 6 days. Despite poor stability in solution and a short half-life in rodents, treatment of chronically infected mice revealed significant reductions of bacterial burden in the lungs and spleens. Our results show that meropenem has activity in two in vivo systems, but stability and pharmacokinetics of long-term administration will offer significant challenges to clinical evaluation. PMID:22450968

  2. In vitro activity of amoxicillin in combination with clavulanic acid against Mycobacterium tuberculosis.

    PubMed Central

    Cynamon, M H; Palmer, G S

    1983-01-01

    The comparative in vitro activity of amoxicillin alone and in combination with clavulanic acid against 15 isolates of Mycobacterium tuberculosis was evaluated by broth dilution susceptibility testing. Amoxicillin inhibited 4 of 15 isolates at 8 micrograms/ml or less but was not bactericidal against any of the isolates at that concentration. Amoxicillin in combination with clavulanic acid was bactericidal for 14 of 15 isolates tested at an amoxicillin concentration of 4 micrograms/ml or less and a clavulanic acid concentration of 2 micrograms/ml or less. PMID:6416162

  3. Characterization of differential pore-forming activities of ESAT-6 proteins from Mycobacterium tuberculosis and Mycobacterium smegmatis.

    PubMed

    Peng, Xiuli; Jiang, Guozhong; Liu, Wei; Zhang, Qi; Qian, Wei; Sun, Jianjun

    2016-02-01

    Mycobacterium tuberculosis ESAT-6 (MtbESAT-6) plays essential roles in pathogenesis. MtbESAT-6 exhibits a unique pore-forming activity (PFA) that is not found in its ortholog from non-pathogenic Mycobacterium smegmatis (MsESAT-6). Here, we characterized the differential PFAs and found that exchange of I25-H26/T25-A26 between two proteins reciprocally affected their PFAs. MtbESAT-6(IH/TA) had ~ 40% reduction, while MsESAT-6(TA/IH) fully acquired its activity similar to MtbESAT-6. Mutations of A17E, K38T, N67L or R74Q on MtbESAT-6(IH/TA) further reduced the activity, with MtbESAT-6(IH/TA-17) being the lowest. This study suggests I25-H26 as the pH-sensor essential for MsESAT-6 to fully acquire the activity, while multiple residues contributed to MtbESAT-6 PFA.

  4. Intra- and Extracellular Activities of Trimethoprim-Sulfamethoxazole against Susceptible and Multidrug-Resistant Mycobacterium tuberculosis

    PubMed Central

    Schön, T.; Simonsson, U. S. H.; Bruchfeld, J.; Larsson, M.; Juréen, P.; Sturegård, E.; Giske, C. G.; Ängeby, K.

    2014-01-01

    We investigated the activity of trimethoprim-sulfamethoxazole (SXT) against Mycobacterium tuberculosis, the pathogen that causes tuberculosis (TB). The MIC distribution of SXT was 0.125/2.4 to 2/38 mg/liter for the 100 isolates tested, including multi- and extensively drug-resistant isolates (MDR/XDR-TB), whereas the intracellular MIC90 of sulfamethoxazole (SMX) for the pansusceptible strain H37Rv was 76 mg/liter. In an exploratory analysis using a ratio of the unbound area under the concentration-time curve from 0 to 24 h over MIC (fAUC0–24/MIC) using ≥25 as a potential target, the cumulative fraction response was ≥90% at doses of ≥2,400 mg of SMX. SXT is a potential treatment option for MDR/XDR-TB. PMID:25246405

  5. Ursolic Acid Activates Intracellular Killing Effect of Macrophages During Mycobacterium tuberculosis Infection.

    PubMed

    Podder, Biswajit; Jang, Woong Sik; Nam, Kung-Woo; Lee, Byung-Eui; Song, Ho-Yeon

    2015-05-01

    Tuberculosis is one of the most threatening infectious diseases to public health all over the world, for which Mycobacterium tuberculosis (MTB) is the etiological agent of pathogenesis. Ursolic acid (UA) has immunomodulatory function and exhibits antimycobacterial activity. However, the intracellular killing effect of UA has yet to be elucidated. The aim of this study was to evaluate the intracellular killing effect of UA during mycobacterial infection. The intracellular killing activity of UA was evaluated in the macrophage cell line THP-1 by the MGIT 960 system as well as by CFU count. The production of reactive oxygen species (ROS) and the level of nitric oxide (NO) were measured using DCF-DA and Griess reagent, respectively. Phagocytosis was observed by a fluorescence-based staining method, and the colony forming units were enumerated on 7H11 agar medium following infection. In addition, MRP8 mRNA expression was measured by qRT-PCR. UA significantly decreased the number of intracellular Mycobacterium through generation of ROS and NO. In addition, it profoundly activated the phagocytosis process of THP-1 cells during MTB-infection. Furthermore, our data demonstrated that UA activated the phagocytosis process in human monocyte cells through MRP8 induction. These data suggest that UA firmly contributes to the intracellular killing effect of macrophages during mycobacterial infection.

  6. Novel pyridazino[4,3-b]indoles with dual inhibitory activity against Mycobacterium tuberculosis and monoamine oxidase.

    PubMed

    Velezheva, Valeriya S; Brennan, Patrick J; Marshakov, Vladimir Yu; Gusev, Dmitrij V; Lisichkina, Inessa N; Peregudov, Alexander S; Tchernousova, Larisa N; Smirnova, Tatiana G; Andreevskaya, Sofia N; Medvedev, Alexei E

    2004-06-17

    Tuberculosis is one of the most common infectious diseases known to man. About 37% of the world's population (about 1.86 billion people) are infected with Mycobacterium tuberculosis. According to the World Health Organization, every year approximately 8 million people develop active tuberculosis and almost 2 million of those die from the disease. The incidence of multidrug-resistant tuberculosis (MDR-TB) is increasing. The present drug regimen for treating tuberculosis has been in existence for 30 years. New drugs that will shorten total treatment duration, improve the treatment of MDR-TB, and address latent tuberculosis are the most urgent need of tuberculosis control programs. A new series of synthetic 3-amino-4-arylpyridazino[4,3-b]indoles (pyridazinoindoles) were identified as inhibitors of Mycobacterium tuberculosis. The design, synthesis, and antimycobacterial activity of these compounds are described. While the most active compounds are still not comparable to the front-line drugs rifampicin and isoniazid, they do show promise. Most of the pyridazinoindoles with appreciable antituberculosis activity also inhibit monoamine oxidase, suggestive of a novel inhibitory effect on mycobacterial redox reactions. PMID:15189042

  7. In vitro Anti-mycobacterial activity of selected medicinal plants against Mycobacterium tuberculosis and Mycobacterium bovis Strains

    PubMed Central

    2013-01-01

    Background Tuberculosis (TB) is a global burden with one –third of the world’s population infected with the pathogen Mycobacterium tuberculosis complex and annually 1.4 million deaths occur due to the disease. This high incidence of infection and the increased rate of multi-drug resistant and extensively-drug resistant strains of the organism further complicated the problem of TB control and have called for an urgent need to develop new anti-TB drugs from plants. In this study, the in vitro activity of root of Calpurnia aurea, seeds of Ocimum basilicum, leaves of Artemisia abyssinica, Croton macrostachyus, and Eucalyptus camaldulensis were evaluated against M. tuberculosis and M. bovis strains. Methods Five Ethiopian medicinal plants, root of Calpurnia aurea, seeds of Ocimum basilicum, leaves of Artemisia abyssinica, Croton macrostachyus, and Eucalyptus camaldulensis used locally for the management of TB. They were investigated for in vitro antimycobacterial activity against M. tuberculosis and M. bovis strains. 80% methanolic extracts of the plant materials were obtained by maceration. The antimycobacterial activity was determined using 96 wells of microplate with the help of visual Resazurin Microtiter Assay. Results The crude 80% methanolic extracts of the root of C. aurea, seeds of O. basilicum, and leaves of A. abyssinica, C. macrostachyus, and E. camaldulensis had anti-mycobacterial activity with minimum inhibitory concentration (MIC) ranging from 6.25–100 μg/mL. The MIC of 80% methanol extracts in the order mentioned above ranged 25-100 μg/ml and 12.5-75 μg/mL, 25–100 μg/mL and 25–50 μg/mL, 6.25-50 μg/mL and 12.5-50 μg/mL, 12.5-100 μg/mL and 18.25-50 μg/mL and 6.25-50 μg/mL and 12.5-50 μg/mL, respectively for M. tuberculosis and M. bovis strains. Conclusions The results support the local use of these plants in the treatment of TB and it is suggested that these plants may have therapeutic value in the treatment of TB. However

  8. In vitro and ex vivo activity of peptide deformylase inhibitors against Mycobacterium tuberculosis H37Rv.

    PubMed

    Sharma, Anshika; Sharma, Sadhna; Khuller, G K; Kanwar, A J

    2009-09-01

    Bacterial peptide deformylase (PDF) catalyses removal of the N-terminal formyl group of proteins and is essential for protein maturation, growth and survival of bacteria. Thus, PDF appears to be a good antimycobacterial drug target. In the present study, various well-known PDF inhibitors, such as BB-3497, actinonin, 1,10-phenanthroline, hydroxylamine hydrochloride and galardin, were selected to evaluate their inhibitory activity against Mycobacterium tuberculosis. All compounds were found to be active against M. tuberculosis, with MIC(90) values (lowest drug concentration at which 90% of growth was inhibited on the basis of CFU enumeration) ranging from 0.2 mg/L to 74 mg/L. BB-3497 and 1,10-phenanthroline exhibited potent in vitro antimycobacterial activity, and also showed synergism with isoniazid and rifampicin. All compounds showed a bacteriostatic mode of inhibition. Under ex vivo conditions and short-course chemotherapy, BB-3497 and actinonin were found to be significantly active, with BB-3497 exhibiting comparable efficacy to that of isoniazid. Collectively, promising activities of PDF inhibitors such as BB-3497 and actinonin suggest their potential use against M. tuberculosis.

  9. Antimycobacterial activity of pyrazinoate prodrugs in replicating and non-replicating Mycobacterium tuberculosis.

    PubMed

    Segretti, Natanael Dante; Simões, Cristina Kortstee; Corrêa, Michelle Fidelis; Felli, Veni Maria Andres; Miyata, Marcelo; Cho, Sang Hyun; Franzblau, Scott Gary; Fernandes, João Paulo Dos Santos

    2016-07-01

    Tuberculosis (TB) is an important infectious disease caused by Mycobacterium tuberculosis (Mtb) and responsible for thousands of deaths every year. Although there are antimycobacterial drugs available in therapeutics, just few new chemical entities have reached clinical trials, and in fact, since introduction of rifampin only two important drugs had reached the market. Pyrazinoic acid (POA), the active agent of pyrazinamide, has been explored through prodrug approach to achieve novel molecules with anti-Mtb activity, however, there is no activity evaluation of these molecules against non-replicating Mtb until the present. Additionally, pharmacokinetic must be preliminary evaluated to avoid future problems during clinical trials. In this paper, we have presented six POA esters as prodrugs in order to evaluate their anti-Mtb activity in replicating and non-replicating Mtb, and these showed activity highly influenced by medium composition (especially by albumin). Lipophilicity seems to play the main role in the activity, possibly due to controlling membrane passage. Novel duplicated prodrugs of POA were also described, presenting interesting activity. Cytotoxicity of these prodrugs set was also evaluated, and these showed no important cytotoxic profile. PMID:27449999

  10. Systematic Survey of Serine Hydrolase Activity in Mycobacterium tuberculosis Defines Changes Associated with Persistence.

    PubMed

    Ortega, Corrie; Anderson, Lindsey N; Frando, Andrew; Sadler, Natalie C; Brown, Robert W; Smith, Richard D; Wright, Aaron T; Grundner, Christoph

    2016-02-18

    The transition from replication to non-replication underlies much of Mycobacterium tuberculosis (Mtb) pathogenesis, as non- or slowly replicating Mtb are responsible for persistence and poor treatment outcomes. Therapeutic targeting of non-replicating populations is a priority for tuberculosis treatment, but few drug targets in non-replicating Mtb are currently known. Here, we directly measured the activity of the highly diverse and druggable serine hydrolases (SHs) during active replication and non-replication using activity-based proteomics. We predict SH activity for 78 proteins, including 27 proteins with unknown function, and identify 37 SHs that remain active in the absence of replication, providing a set of candidate persistence targets. Non-replication was associated with major shifts in SH activity. These activity changes were largely independent of SH abundance, indicating extensive post-translational regulation of SHs. By probing a large cross-section of druggable Mtb enzyme space during replication and non-replication, we identify new SHs and suggest new persistence targets. PMID:26853625

  11. Plasma contributes to the antimicrobial activity of whole blood against Mycobacterium tuberculosis.

    PubMed

    López-Medrano, Ramiro; Guerra-Laso, José Manuel; López-Fidalgo, Eduardo; Diez-Tascón, Cristina; García-García, Silvia; Blanco-Conde, Sara; Rivero-Lezcano, Octavio Miguel

    2016-10-01

    The whole blood model for infection has proven useful to analyze the immunological response to Mycobacterium tuberculosis, because it exerts a significant antimicrobial activity. Although this activity has been generally assumed to be cellular, we have found that the leukocyte fraction of blood from healthy volunteers did not kill the bacilli. We have discovered that plasma was responsible for a large proportion, but not all, of the antimicrobial activity. Furthermore, infected monocytes controlled the mycobacterial multiplication when cultivated in the presence of plasma. Intriguingly, serum from the same donors did not share this activity, although it was able to eliminate the non-pathogenic Mycobacterium gordonae To identify the remaining components that participate in the antimycobacterial activity we fractionated blood in leukocytes, plasma, erythrocytes and platelets, and analyzed the bactericidal power of each fraction and their combinations using a factorial design. We found that erythrocytes, but not platelets, participated and showed by flow cytometry that mycobacteria physically associated with erythrocytes. We propose that in exposed healthy individuals that show 'early clearance' of the mycobacteria, the innate response is predominantly humoral, probably through the effect of antimicrobial peptides and proteins. PMID:27554054

  12. Identification and Characterization of Lipase Activity and Immunogenicity of LipL from Mycobacterium tuberculosis.

    PubMed

    Cao, Jun; Dang, Guanghui; Li, Huafang; Li, Tiantian; Yue, Zhiguo; Li, Na; Liu, Yajun; Liu, Siguo; Chen, Liping

    2015-01-01

    Lipids and lipid-metabolizing esterases/lipases are highly important for the mycobacterial life cycle and, possibly, for mycobacterial virulence. In this study, we expressed 10 members of the Lip family of Mycobacterium tuberculosis. Among the 10 proteins, LipL displayed a significantly high enzymatic activity for the hydrolysis of long-chain lipids. The optimal temperature for the lipase activity of LipL was demonstrated to be 37°C, and the optimal pH was 8.0. The lipase active center was not the conserved motif G-x-S-x-G, but rather the S-x-x-K and GGG motifs, and the key catalytic amino acid residues were identified as G50, S88, and K91, as demonstrated through site-directed mutagenesis experiments. A three-dimensional modeling structure of LipL was constructed, which showed that the GGG motif was located in the surface of a pocket structure. Furthermore, the subcellular localization of LipL was demonstrated to be on the mycobacterial surface by Western blot analysis. Our results revealed that the LipL protein could induce a strong humoral immune response in humans and activate a CD8+ T cell-mediated response in mice. Overall, our study identified and characterized a novel lipase denoted LipL from M. tuberculosis, and demonstrated that LipL functions as an immunogen that activates both humoral and cell-mediated responses. PMID:26398213

  13. Two enzymes with redundant fructose bisphosphatase activity sustain gluconeogenesis and virulence in Mycobacterium tuberculosis

    PubMed Central

    Ganapathy, Uday; Marrero, Joeli; Calhoun, Susannah; Eoh, Hyungjin; de Carvalho, Luiz Pedro Sorio; Rhee, Kyu; Ehrt, Sabine

    2015-01-01

    The human pathogen Mycobacterium tuberculosis (Mtb) likely utilizes host fatty acids as a carbon source during infection. Gluconeogenesis is essential for the conversion of fatty acids into biomass. A rate-limiting step in gluconeogenesis is the conversion of fructose 1,6-bisphosphate to fructose 6-phosphate by a fructose bisphosphatase (FBPase). The Mtb genome contains only one annotated FBPase gene, glpX. Here we show that, unexpectedly, an Mtb mutant lacking GLPX grows on gluconeogenic carbon sources and has detectable FBPase activity. We demonstrate that the Mtb genome encodes an alternative FBPase (GPM2, Rv3214) that can maintain gluconeogenesis in the absence of GLPX. Consequently, deletion of both GLPX and GPM2 is required for disruption of gluconeogenesis and attenuation of Mtb in a mouse model of infection. Our work affirms a role for gluconeogenesis in Mtb virulence and reveals previously unidentified metabolic redundancy at the FBPase-catalysed reaction step of the pathway. PMID:26258286

  14. Comparison of the immune response against Mycobacterium tuberculosis antigens between a group of patients with active pulmonary tuberculosis and healthy household contacts.

    PubMed Central

    Torres, M; Mendez-Sampeiro, P; Jimenez-Zamudio, L; Teran, L; Camarena, A; Quezada, R; Ramos, E; Sada, E

    1994-01-01

    The mycobacterial antigens and the factors related to protection for the development of active tuberculosis are not known. In a natural model of tuberculosis, we studied 10 patients with active pulmonary tuberculosis (non-protective immune response) and 38 healthy household contacts (protective immune response). We tested the lymphocyte proliferative response by T cell Western blotting to eight different antigen fractions and to two purified mycobacterial antigens of 30 and 64 kD. Patients with active tuberculosis recognized fractions with molecular weights of 80-114, 60-80, 28-41 and 14-19 kD. Household contacts recognized the same fractions except the 14-19 kD. The response to the 64-kD antigen was not significantly different between groups. In contrast, 10% of the patients with active tuberculosis and 73% of the household contacts responded to the 30-kD antigen. The humoral response against the 30-kD antigen by ELISA showed a significantly higher production of antibodies in tuberculosis patients compared with household contacts. We conclude that patients with active pulmonary tuberculosis develop an immune response characterized by poor proliferative response to the 30-kD antigen with a strong humoral response, whereas the opposite occurs in healthy subjects infected by Mycobacterium tuberculosis. PMID:8149670

  15. Evaluation of the anti-mycobacterium tuberculosis activity and in vivo acute toxicity of Annona sylvatic

    PubMed Central

    2014-01-01

    Background The recent emergence of extensively multidrug-resistant Mycobacterium tuberculosis strains has further complicated the control of tuberculosis. There is an urgent need for the development of new molecular candidates antitubercular drugs. Medicinal plants have been an excellent source of leads for the development of drugs. The aim of this study was to evaluate the in vitro activity of 28 alcoholic extracts and essential oils of native and exotic Brazilian plants against Mycobacterium tuberculosis and to further study these extracts through chemical fractionation, the isolation of their constituents, and an evaluation of the in vivo acute toxicity of the active extracts. To the best of our knowledge this is the first chemical characterization, antituberculosis activity and acute toxicity evaluation of Annona sylvatica. Methods The anti-mycobacterial activity of these extracts and their constituent compounds was evaluated using the resazurin reduction microtiter assay (REMA). To investigate the acute toxicity of these extracts in vivo, female Swiss mice were treated with the extracts at doses of 500, 1000 and 2000 mg · kg-1 of body weight. The extracts were characterized by LC-MS, and the constituents were isolated and identified by chromatographic analysis of spectroscopic data. Results Of the 28 extracts, the methanol extract obtained from the leaves of Annona sylvatica showed anti-mycobacterial activity with an minimal inhibitory concentration (MIC) of 184.33 μg/mL, and the ethyl acetate fraction (EAF) resulting from liquid-liquid partitioning of the A. sylvatica extract showed an MIC of 115.2 μg/mL. The characterization of this extract by LC-MS identified flavonoids and acetogenins as its main constituents. The phytochemical study of the A. sylvatica EAF resulted in the isolation of quercetin, luteolin, and almunequin. Conclusions Among the compounds isolated from the EAF, luteolin and almunequin were the most promising, with MICs of 236.8

  16. High Affinity Inha Inhibitors with Activity Against Drug-Resistant Strains of Mycobacterium Tuberculosis

    SciTech Connect

    Sullivan,T.; Truglio, J.; Boyne, M.; Novichenok, P.; Zhang, X.; Stratton, C.; Li, H.; Kaur, T.; Amin, A.; et al.

    2006-01-01

    Novel chemotherapeutics for treating multidrug-resistant (MDR) strains of Mycobacterium tuberculosis (MTB) are required to combat the spread of tuberculosis, a disease that kills more than 2 million people annually. Using structure-based drug design, we have developed a series of alkyl diphenyl ethers that are uncompetitive inhibitors of InhA, the enoyl reductase enzyme in the MTB fatty acid biosynthesis pathway. The most potent compound has a Ki{prime} value of 1 nM for InhA and MIC{sub 99} values of 2-3 {micro}g mL{sup -1} (6-10 {micro}M) for both drug-sensitive and drug-resistant strains of MTB. Overexpression of InhA in MTB results in a 9-12-fold increase in MIC{sub 99}, consistent with the belief that these compounds target InhA within the cell. In addition, transcriptional response studies reveal that the alkyl diphenyl ethers fail to upregulate a putative efflux pump and aromatic dioxygenase, detoxification mechanisms that are triggered by the lead compound triclosan. These diphenyl ether-based InhA inhibitors do not require activation by the mycobacterial KatG enzyme, thereby circumventing the normal mechanism of resistance to the front line drug isoniazid (INH) and thus accounting for their activity against INH-resistant strains of MTB.

  17. High affinity InhA inhibitors with activity against drug-resistant strains of Mycobacterium tuberculosis.

    PubMed

    Sullivan, Todd J; Truglio, James J; Boyne, Melissa E; Novichenok, Polina; Zhang, Xujie; Stratton, Christopher F; Li, Huei-Jiun; Kaur, Tejinder; Amin, Amol; Johnson, Francis; Slayden, Richard A; Kisker, Caroline; Tonge, Peter J

    2006-02-17

    Novel chemotherapeutics for treating multidrug-resistant (MDR) strains of Mycobacterium tuberculosis (MTB) are required to combat the spread of tuberculosis, a disease that kills more than 2 million people annually. Using structure-based drug design, we have developed a series of alkyl diphenyl ethers that are uncompetitive inhibitors of InhA, the enoyl reductase enzyme in the MTB fatty acid biosynthesis pathway. The most potent compound has a Ki' value of 1 nM for InhA and MIC99 values of 2-3 microg mL(-1) (6-10 microM) for both drug-sensitive and drug-resistant strains of MTB. Overexpression of InhA in MTB results in a 9-12-fold increase in MIC99, consistent with the belief that these compounds target InhA within the cell. In addition, transcriptional response studies reveal that the alkyl diphenyl ethers fail to upregulate a putative efflux pump and aromatic dioxygenase, detoxification mechanisms that are triggered by the lead compound triclosan. These diphenyl ether-based InhA inhibitors do not require activation by the mycobacterial KatG enzyme, thereby circumventing the normal mechanism of resistance to the front line drug isoniazid (INH) and thus accounting for their activity against INH-resistant strains of MTB.

  18. An outer membrane channel protein of Mycobacterium tuberculosis with exotoxin activity

    PubMed Central

    Danilchanka, Olga; Sun, Jim; Pavlenok, Mikhail; Maueröder, Christian; Speer, Alexander; Siroy, Axel; Marrero, Joeli; Trujillo, Carolina; Mayhew, David L.; Doornbos, Kathryn S.; Muñoz, Luis E.; Herrmann, Martin; Ehrt, Sabine; Berens, Christian; Niederweis, Michael

    2014-01-01

    The ability to control the timing and mode of host cell death plays a pivotal role in microbial infections. Many bacteria use toxins to kill host cells and evade immune responses. Such toxins are unknown in Mycobacterium tuberculosis. Virulent M. tuberculosis strains induce necrotic cell death in macrophages by an obscure molecular mechanism. Here we show that the M. tuberculosis protein Rv3903c (channel protein with necrosis-inducing toxin, CpnT) consists of an N-terminal channel domain that is used for uptake of nutrients across the outer membrane and a secreted toxic C-terminal domain. Infection experiments revealed that CpnT is required for survival and cytotoxicity of M. tuberculosis in macrophages. Furthermore, we demonstrate that the C-terminal domain of CpnT causes necrotic cell death in eukaryotic cells. Thus, CpnT has a dual function in uptake of nutrients and induction of host cell death by M. tuberculosis. PMID:24753609

  19. Mycobacterium tuberculosis FtsX extracellular domain activates the peptidoglycan hydrolase, RipC

    PubMed Central

    Mavrici, Daniela; Marakalala, Mohlopheni J.; Holton, James M.; Prigozhin, Daniil M.; Gee, Christine L.; Zhang, Yanjia J.; Rubin, Eric J.; Alber, Tom

    2014-01-01

    Bacterial growth and cell division are coordinated with hydrolysis of the peptidoglycan (PG) layer of the cell wall, but the mechanisms of regulation of extracellular PG hydrolases are not well understood. Here we report the biochemical, structural, and genetic analysis of the Mycobacterium tuberculosis homolog of the transmembrane PG-hydrolase regulator, FtsX. The purified FtsX extracellular domain binds the PG peptidase Rv2190c/RipC N-terminal segment, causing a conformational change that activates the enzyme. Deletion of ftsEX and ripC caused similar phenotypes in Mycobacterium smegmatis, as expected for genes in a single pathway. The crystal structure of the FtsX extracellular domain reveals an unprecedented fold containing two lobes connected by a flexible hinge. Mutations in the hydrophobic cleft between the lobes reduce RipC binding in vitro and inhibit FtsX function in M. smegmatis. These studies suggest how FtsX recognizes RipC and support a model in which a conformational change in FtsX links the cell division apparatus with PG hydrolysis. PMID:24843173

  20. Activation of JAK2/STAT1-alpha-dependent signaling events during Mycobacterium tuberculosis-induced macrophage apoptosis.

    PubMed

    Rojas, Mauricio; Olivier, Martin; García, Luis F

    2002-01-01

    Induction of apoptosis by Mycobacterium tuberculosis in murine macrophage involves TNF-alpha and nitric oxide (NO) production and caspase cascade activation; however, the intracellular signaling pathways implicated remain to be established. Our results indicate that infection of the B10R murine macrophage line with M. tuberculosis induces apoptosis independent of mycobacterial phagocytosis and that M. tuberculosis induces protein tyrosine kinase (PTK) activity, JAK2/STAT1-alpha phosphorylation, and STAT1-alpha nuclear translocation. Inhibitors of PTK (AG-126), or JAK2 (AG-490) inhibited TNF-alpha and NO production, caspase 1 activation and apoptosis, suggesting that M. tuberculosis-induction of these events depends on JAK2/STAT1-alpha activation. In addition, we have obtained evidence that ManLAM capacity to inhibit M. tuberculosis-induced apoptosis involves the activation of the PTP SHP-1. The finding that M. tuberculosis infection activate JAK2/STAT1-alpha pathway suggests that M. tuberculosis might mimic macrophage-activating stimuli.

  1. ATP-dependent motor activity of the transcription termination factor Rho from Mycobacterium tuberculosis.

    PubMed

    D'Heygère, François; Schwartz, Annie; Coste, Franck; Castaing, Bertrand; Boudvillain, Marc

    2015-07-13

    The bacterial transcription termination factor Rho-a ring-shaped molecular motor displaying directional, ATP-dependent RNA helicase/translocase activity-is an interesting therapeutic target. Recently, Rho from Mycobacterium tuberculosis (MtbRho) has been proposed to operate by a mechanism uncoupled from molecular motor action, suggesting that the manner used by Rho to dissociate transcriptional complexes is not conserved throughout the bacterial kingdom. Here, however, we demonstrate that MtbRho is a bona fide molecular motor and directional helicase which requires a catalytic site competent for ATP hydrolysis to disrupt RNA duplexes or transcription elongation complexes. Moreover, we show that idiosyncratic features of the MtbRho enzyme are conferred by a large, hydrophilic insertion in its N-terminal 'RNA binding' domain and by a non-canonical R-loop residue in its C-terminal 'motor' domain. We also show that the 'motor' domain of MtbRho has a low apparent affinity for the Rho inhibitor bicyclomycin, thereby contributing to explain why M. tuberculosis is resistant to this drug. Overall, our findings support that, in spite of adjustments of the Rho motor to specific traits of its hosting bacterium, the basic principles of Rho action are conserved across species and could thus constitute pertinent screening criteria in high-throughput searches of new Rho inhibitors.

  2. Activity of Medicinal Plant Extracts on Multiplication of Mycobacterium tuberculosis under Reduced Oxygen Conditions Using Intracellular and Axenic Assays.

    PubMed

    Bhatter, Purva D; Gupta, Pooja D; Birdi, Tannaz J

    2016-01-01

    Aim. Test the activity of selected medicinal plant extracts on multiplication of Mycobacterium tuberculosis under reduced oxygen concentration which represents nonreplicating conditions. Material and Methods. Acetone, ethanol and aqueous extracts of the plants Acorus calamus L. (rhizome), Ocimum sanctum L. (leaf), Piper nigrum L. (seed), and Pueraria tuberosa DC. (tuber) were tested on Mycobacterium tuberculosis H37Rv intracellularly using an epithelial cell (A549) infection model. The extracts found to be active intracellularly were further studied axenically under reducing oxygen concentrations. Results and Conclusions. Intracellular multiplication was inhibited ≥60% by five of the twelve extracts. Amongst these 5 extracts, in axenic culture, P. nigrum (acetone) was active under aerobic, microaerophilic, and anaerobic conditions indicating presence of multiple components acting at different levels and P. tuberosa (aqueous) showed bactericidal activity under microaerophilic and anaerobic conditions implying the influence of anaerobiosis on its efficacy. P. nigrum (aqueous) and A. calamus (aqueous and ethanol) extracts were not active under axenic conditions but only inhibited intracellular growth of Mycobacterium tuberculosis, suggesting activation of host defense mechanisms to mediate bacterial killing rather than direct bactericidal activity. PMID:26941797

  3. Activity of Medicinal Plant Extracts on Multiplication of Mycobacterium tuberculosis under Reduced Oxygen Conditions Using Intracellular and Axenic Assays

    PubMed Central

    Bhatter, Purva D.; Gupta, Pooja D.; Birdi, Tannaz J.

    2016-01-01

    Aim. Test the activity of selected medicinal plant extracts on multiplication of Mycobacterium tuberculosis under reduced oxygen concentration which represents nonreplicating conditions. Material and Methods. Acetone, ethanol and aqueous extracts of the plants Acorus calamus L. (rhizome), Ocimum sanctum L. (leaf), Piper nigrum L. (seed), and Pueraria tuberosa DC. (tuber) were tested on Mycobacterium tuberculosis H37Rv intracellularly using an epithelial cell (A549) infection model. The extracts found to be active intracellularly were further studied axenically under reducing oxygen concentrations. Results and Conclusions. Intracellular multiplication was inhibited ≥60% by five of the twelve extracts. Amongst these 5 extracts, in axenic culture, P. nigrum (acetone) was active under aerobic, microaerophilic, and anaerobic conditions indicating presence of multiple components acting at different levels and P. tuberosa (aqueous) showed bactericidal activity under microaerophilic and anaerobic conditions implying the influence of anaerobiosis on its efficacy. P. nigrum (aqueous) and A. calamus (aqueous and ethanol) extracts were not active under axenic conditions but only inhibited intracellular growth of Mycobacterium tuberculosis, suggesting activation of host defense mechanisms to mediate bacterial killing rather than direct bactericidal activity. PMID:26941797

  4. Hypoxia: a window into Mycobacterium tuberculosis latency.

    PubMed

    Rustad, Tige R; Sherrid, Ashley M; Minch, Kyle J; Sherman, David R

    2009-08-01

    Tuberculosis is a massive public health problem on a global scale and the success of Mycobacterium tuberculosis is linked to its ability to persist within humans for long periods without causing any overt disease symptoms. Hypoxia is predicted to be a key host-induced stress limiting growth of the pathogen in vivo. However, multiple studies in vitro and in vivo indicate that M. tuberculosis adapts to oxygen limitation by entering into a metabolically altered state, while awaiting the opportunity to reactivate. Molecular signatures of bacteria adapted to hypoxia in vitro are accumulating, although correlations to human disease are only now being established. Similarly, defining the mechanisms that control this adaptation is an active area of research. In this review we discuss the historical precedents linking hypoxia and latency, and the gathering knowledge of M. tuberculosis hypoxic responses. We also examine the role of these responses in tuberculosis latency, and identify promising avenues for future studies.

  5. Pathway Profiling in Mycobacterium tuberculosis

    PubMed Central

    Thomas, Suzanne T.; VanderVen, Brian C.; Sherman, David R.; Russell, David G.; Sampson, Nicole S.

    2011-01-01

    Mycobacterium tuberculosis, the bacterium that causes tuberculosis, imports and metabolizes host cholesterol during infection. This ability is important in the chronic phase of infection. Here we investigate the role of the intracellular growth operon (igr), which has previously been identified as having a cholesterol-sensitive phenotype in vitro and which is important for intracellular growth of the mycobacteria. We have employed isotopically labeled low density lipoproteins containing either [1,7,15,22,26-14C]cholesterol or [1,7,15,22,26-13C]cholesterol and high resolution LC/MS as tools to profile the cholesterol-derived metabolome of an igr operon-disrupted mutant (Δigr) of M. tuberculosis. A partially metabolized cholesterol species accumulated in the Δigr knock-out strain that was absent in the complemented and parental wild-type strains. Structural elucidation by multidimensional 1H and 13C NMR spectroscopy revealed the accumulated metabolite to be methyl 1β-(2′-propanoate)-3aα-H-4α-(3′-propanoic acid)-7aβ-methylhexahydro-5-indanone. Heterologously expressed and purified FadE28-FadE29, an acyl-CoA dehydrogenase encoded by the igr operon, catalyzes the dehydrogenation of 2′-propanoyl-CoA ester side chains in substrates with structures analogous to the characterized metabolite. Based on the structure of the isolated metabolite, enzyme activity, and bioinformatic annotations, we assign the primary function of the igr operon to be degradation of the 2′-propanoate side chain. Therefore, the igr operon is necessary to completely metabolize the side chain of cholesterol metabolites. PMID:22045806

  6. Structural analysis of the dodecameric proteasome activator PafE in Mycobacterium tuberculosis

    DOE PAGES

    Bai, Lin; Hu, Kuan; Wang, Tong; Jastrab, Jordan B.; Darwin, K. Heran; Li, Huilin

    2016-03-21

    Here, the human pathogen Mycobacterium tuberculosis (Mtb) requires a proteasome system to cause lethal infections in mice. We recently found that proteasome accessory factor E (PafE, Rv3780) activates proteolysis by the Mtb proteasome independently of adenosine triphosphate (ATP). Moreover, PafE contributes to the heat-shock response and virulence of Mtb. Here, we show that PafE subunits formed four-helix bundles similar to those of the eukaryotic ATP-independent proteasome activator subunits of PA26 and PA28. However, unlike any other known proteasome activator, PafE formed dodecamers with 12-fold symmetry, which required a glycine-XXX-glycine-XXX-glycine motif that is not found in previously described activators. Intriguingly, themore » truncation of the PafE carboxyl-terminus resulted in the robust binding of PafE rings to native proteasome core particles and substantially increased proteasomal activity, suggesting that the extended carboxyl-terminus of this cofactor confers suboptimal binding to the proteasome core particle. Collectively, our data show that proteasomal activation is not limited to hexameric ATPases in bacteria.« less

  7. Structural analysis of the dodecameric proteasome activator PafE in Mycobacterium tuberculosis.

    PubMed

    Bai, Lin; Hu, Kuan; Wang, Tong; Jastrab, Jordan B; Darwin, K Heran; Li, Huilin

    2016-04-01

    The human pathogen Mycobacterium tuberculosis (Mtb) requires a proteasome system to cause lethal infections in mice. We recently found that proteasome accessory factor E (PafE, Rv3780) activates proteolysis by the Mtb proteasome independently of adenosine triphosphate (ATP). Moreover, PafE contributes to the heat-shock response and virulence of Mtb Here, we show that PafE subunits formed four-helix bundles similar to those of the eukaryotic ATP-independent proteasome activator subunits of PA26 and PA28. However, unlike any other known proteasome activator, PafE formed dodecamers with 12-fold symmetry, which required a glycine-XXX-glycine-XXX-glycine motif that is not found in previously described activators. Intriguingly, the truncation of the PafE carboxyl-terminus resulted in the robust binding of PafE rings to native proteasome core particles and substantially increased proteasomal activity, suggesting that the extended carboxyl-terminus of this cofactor confers suboptimal binding to the proteasome core particle. Collectively, our data show that proteasomal activation is not limited to hexameric ATPases in bacteria. PMID:27001842

  8. Structural analysis of the dodecameric proteasome activator PafE in Mycobacterium tuberculosis

    PubMed Central

    Bai, Lin; Hu, Kuan; Wang, Tong; Jastrab, Jordan B.; Darwin, K. Heran; Li, Huilin

    2016-01-01

    The human pathogen Mycobacterium tuberculosis (Mtb) requires a proteasome system to cause lethal infections in mice. We recently found that proteasome accessory factor E (PafE, Rv3780) activates proteolysis by the Mtb proteasome independently of adenosine triphosphate (ATP). Moreover, PafE contributes to the heat-shock response and virulence of Mtb. Here, we show that PafE subunits formed four-helix bundles similar to those of the eukaryotic ATP-independent proteasome activator subunits of PA26 and PA28. However, unlike any other known proteasome activator, PafE formed dodecamers with 12-fold symmetry, which required a glycine-XXX-glycine-XXX-glycine motif that is not found in previously described activators. Intriguingly, the truncation of the PafE carboxyl-terminus resulted in the robust binding of PafE rings to native proteasome core particles and substantially increased proteasomal activity, suggesting that the extended carboxyl-terminus of this cofactor confers suboptimal binding to the proteasome core particle. Collectively, our data show that proteasomal activation is not limited to hexameric ATPases in bacteria. PMID:27001842

  9. Multidrug-Resistant Mycobacterium tuberculosis of the Latin American Mediterranean Lineage, Wrongly Identified as Mycobacterium pinnipedii (Spoligotype International Type 863 [SIT863]), Causing Active Tuberculosis in South Brazil

    PubMed Central

    Vasconcelos, Sidra E. G.; Esteves, Leonardo S.; Gomes, Harrison M.; Almeida da Silva, Pedro; Perdigão, João; Portugal, Isabel; Viveiros, Miguel; McNerney, Ruth; Pain, Arnab; Clark, Taane G.; Rastogi, Nalin; Unis, Gisela; Rossetti, Maria Lucia R.

    2015-01-01

    We recently detected the spoligotype patterns of strains of Mycobacterium pinnipedii, a species of the Mycobacterium tuberculosis complex, in sputum samples from nine cases with pulmonary tuberculosis residing in Porto Alegre, South Brazil. Because this species is rarely encountered in humans, we further characterized these nine isolates by additional genotyping techniques, including 24-locus mycobacterial interspersed repetitive-unit–variable-number tandem-repeat (MIRU-VNTR) typing, verification of the loci TbD1, RD9, pks15/1, RDRio, and fbpC, the insertion of IS6110 at a site specific to the M. tuberculosis Latin American Mediterranean (LAM) lineage, and whole-genome sequencing. The combined analysis of these markers revealed that the isolates are in fact M. tuberculosis and more specifically belong to the LAM genotype. Most of these isolates (n = 8) were shown to be multidrug resistant (MDR), which prompted us to perform partial sequencing of the rpoA, rpoB, rpoC, katG, and inhA genes. Seven isolates (77.8%) carried the S315T mutation in katG, and one of these (11%) also presented the C(−17)T single-nucleotide polymorphism (SNP) in inhA. Interestingly, six of the MDR isolates also presented an undescribed insertion of 12 nucleotides (CCA GAA CAA CCC) in codon 516 of rpoB. No putative compensatory mutation was found in either rpoA or rpoC. This is the first report of an M. tuberculosis LAM family strain with a convergent M. pinnipedii spoligotype. These spoligotypes are observed in genotype databases at a modest frequency, highlighting that care must be taken when identifying isolates in the M. tuberculosis complex on the basis of single genetic markers. PMID:26400784

  10. Predominance of modern Mycobacterium tuberculosis strains and active transmission of Beijing sublineage in Jayapura, Indonesia Papua.

    PubMed

    Chaidir, Lidya; Sengstake, Sarah; de Beer, Jessica; Oktavian, Antonius; Krismawati, Hana; Muhapril, Erfin; Kusumadewi, Inri; Annisa, Jessi; Anthony, Richard; van Soolingen, Dick; Achmad, Tri Hanggono; Marzuki, Sangkot; Alisjahbana, Bachti; van Crevel, Reinout

    2016-04-01

    Mycobacterium tuberculosis genotype distribution is different between West and Central Indonesia, but there are no data on the most Eastern part, Papua. We aimed to identify the predominant genotypes of M. tuberculosis responsible for tuberculosis in coastal Papua, their transmission, and the association with patient characteristics. A total of 199 M. tuberculosis isolates were collected. Spoligotyping was applied to describe the population structure of M. tuberculosis, lineage identification was performed using a combination of lineage-specific markers, and genotypic clusters were identified using a combination of 24-locus-MIRU-VNTR and spoligotyping. A high degree of genetic diversity was observed among isolates based on their spoligopatterns. Strains from modern lineage 4 made up almost half of strains (46.9%), being more abundant than the ancient lineage 1 (33.7%), and modern lineage 2 (19.4%). Thirty-five percent of strains belonged to genotypic clusters, especially strains in the Beijing genotype. Previous TB treatment and mutations associated with drug resistance were more common in patients infected with strains of the Beijing genotype. Papua shows a different distribution of M. tuberculosis genotypes compared to other parts of Indonesia. Clustering and drug resistance of modern strains recently introduced to Papua may contribute to the high tuberculosis burden in this region.

  11. Porins increase copper susceptibility of Mycobacterium tuberculosis.

    PubMed

    Speer, Alexander; Rowland, Jennifer L; Haeili, Mehri; Niederweis, Michael; Wolschendorf, Frank

    2013-11-01

    Copper resistance mechanisms are crucial for many pathogenic bacteria, including Mycobacterium tuberculosis, during infection because the innate immune system utilizes copper ions to kill bacterial intruders. Despite several studies detailing responses of mycobacteria to copper, the pathways by which copper ions cross the mycobacterial cell envelope are unknown. Deletion of porin genes in Mycobacterium smegmatis leads to a severe growth defect on trace copper medium but simultaneously increases tolerance for copper at elevated concentrations, indicating that porins mediate copper uptake across the outer membrane. Heterologous expression of the mycobacterial porin gene mspA reduced growth of M. tuberculosis in the presence of 2.5 μM copper by 40% and completely suppressed growth at 15 μM copper, while wild-type M. tuberculosis reached its normal cell density at that copper concentration. Moreover, the polyamine spermine, a known inhibitor of porin activity in Gram-negative bacteria, enhanced tolerance of M. tuberculosis for copper, suggesting that copper ions utilize endogenous outer membrane channel proteins of M. tuberculosis to gain access to interior cellular compartments. In summary, these findings highlight the outer membrane as the first barrier against copper ions and the role of porins in mediating copper uptake in M. smegmatis and M. tuberculosis.

  12. Virulence factors of the Mycobacterium tuberculosis complex

    PubMed Central

    Forrellad, Marina A.; Klepp, Laura I.; Gioffré, Andrea; Sabio y García, Julia; Morbidoni, Hector R.; Santangelo, María de la Paz; Cataldi, Angel A.; Bigi, Fabiana

    2013-01-01

    The Mycobacterium tuberculosis complex (MTBC) consists of closely related species that cause tuberculosis in both humans and animals. This illness, still today, remains to be one of the leading causes of morbidity and mortality throughout the world. The mycobacteria enter the host by air, and, once in the lungs, are phagocytated by macrophages. This may lead to the rapid elimination of the bacillus or to the triggering of an active tuberculosis infection. A large number of different virulence factors have evolved in MTBC members as a response to the host immune reaction. The aim of this review is to describe the bacterial genes/proteins that are essential for the virulence of MTBC species, and that have been demonstrated in an in vivo model of infection. Knowledge of MTBC virulence factors is essential for the development of new vaccines and drugs to help manage the disease toward an increasingly more tuberculosis-free world. PMID:23076359

  13. Inhibition of nuclear factor-kappa B activation decreases survival of Mycobacterium tuberculosis in human macrophages.

    PubMed

    Bai, Xiyuan; Feldman, Nicole E; Chmura, Kathryn; Ovrutsky, Alida R; Su, Wen-Lin; Griffin, Laura; Pyeon, Dohun; McGibney, Mischa T; Strand, Matthew J; Numata, Mari; Murakami, Seiji; Gaido, Loretta; Honda, Jennifer R; Kinney, William H; Oberley-Deegan, Rebecca E; Voelker, Dennis R; Ordway, Diane J; Chan, Edward D

    2013-01-01

    Nuclear factor-kappa B (NFκB) is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB). However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase) or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy.

  14. Inhibition of nuclear factor-kappa B activation decreases survival of Mycobacterium tuberculosis in human macrophages.

    PubMed

    Bai, Xiyuan; Feldman, Nicole E; Chmura, Kathryn; Ovrutsky, Alida R; Su, Wen-Lin; Griffin, Laura; Pyeon, Dohun; McGibney, Mischa T; Strand, Matthew J; Numata, Mari; Murakami, Seiji; Gaido, Loretta; Honda, Jennifer R; Kinney, William H; Oberley-Deegan, Rebecca E; Voelker, Dennis R; Ordway, Diane J; Chan, Edward D

    2013-01-01

    Nuclear factor-kappa B (NFκB) is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB). However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase) or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy. PMID:23634218

  15. Inhibition of Nuclear Factor-Kappa B Activation Decreases Survival of Mycobacterium tuberculosis in Human Macrophages

    PubMed Central

    Chmura, Kathryn; Ovrutsky, Alida R.; Su, Wen-Lin; Griffin, Laura; Pyeon, Dohun; McGibney, Mischa T.; Strand, Matthew J.; Numata, Mari; Murakami, Seiji; Gaido, Loretta; Honda, Jennifer R.; Kinney, William H.; Oberley-Deegan, Rebecca E.; Voelker, Dennis R.; Ordway, Diane J.; Chan, Edward D.

    2013-01-01

    Nuclear factor-kappa B (NFκB) is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB). However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase) or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy. PMID:23634218

  16. Target-Based Identification of Whole-Cell Active Inhibitors of Biotin Biosynthesis in Mycobacterium tuberculosis

    PubMed Central

    Park, Sae Woong; Casalena, Dominick; Wilson, Daniel; Dai, Ran; Nag, Partha; Liu, Feng; Boyce, Jim P.; Bittker, Joshua; Schreiber, Stuart; Finzel, Barry C.; Schnappinger, Dirk; Aldrich, Courtney C.

    2014-01-01

    SUMMARY Biotin biosynthesis is essential for survival and persistence of Mycobacterium tuberculosis (Mtb) in vivo. The aminotransferase BioA, which catalyzes the antepenultimate step in the biotin pathway, has been established as a promising target due to its vulnerability to chemical inhibition. We performed high-throughput screening (HTS) employing a fluorescence displacement assay and identified a diverse set of potent inhibitors including many diversity-oriented synthesis (DOS) scaffolds. To efficiently select only hits targeting biotin biosynthesis, we then deployed a whole-cell counter-screen in either biotin-free and biotin-containing medium against wild-type Mtb and in parallel with isogenic bioA Mtb strains that possess differential levels of BioA expression. This counter-screen proved crucial to filter out compounds whose whole-cell activity was off-target as well as identify hits with weak, but measurable whole-cell activity in BioA-depleted strains. Several of the most promising hits were co-crystallized with BioA to provide a framework for future structure-based drug design efforts. PMID:25556942

  17. Structure-activity relationships of 2-aminothiazoles effective against Mycobacterium tuberculosis

    PubMed Central

    Meissner, Anja; Boshoff, Helena I.; Vasan, Mahalakshmi; Duckworth, Benjamin P.; Barry, Clifton E.; Aldrich, Courtney C.

    2013-01-01

    A series of 2-aminothiazoles was synthesized based on a HTS scaffold from a whole-cell screen against Mycobacterium tuberculosis (Mtb). The SAR shows the central thiazole moiety and the 2-pyridyl moiety at C-4 of the thiazole are intolerant to modification. However, the N-2 position of the aminothiazole exhibits high flexibility and we successfully improved the antitubercular activity of the initial hit by more than 128-fold through introduction of substituted benzoyl groups at this position. N-(3-Chlorobenzoyl)-4-(2-pyridinyl)-1,3-thiazol-2-amine (55) emerged as one of the most promising analogues with a MIC of 0.024 μM or 0.008 μg/mL in 7H9 media and therapeutic index of nearly ~300. However, 55 is rapidly metabolized by human liver microsomes (t1/2 = 28 min) with metabolism occurring at the invariant aminothiazole moiety and Mtb develops spontaneous resistance with a high frequency of ~10−5. PMID:24075144

  18. Active phagocytosis of Mycobacterium tuberculosis (H37Ra) by T lymphocytes (Jurkat cells).

    PubMed

    Zhang, Min; Zhu, Qi; Shi, Ming; Liu, Yang; Ma, Lei; Yang, Yining; Feng, Dongyun; Dai, Wen; Zhang, Lin; Kang, Tao; Chen, Ping; He, Ying; Liu, Tingting; Zhao, Qing; Wang, Wenjing; Zhi, Jin; Feng, Guodong; Zhao, Gang

    2015-08-01

    This study aimed to co-culture Jurkat T lymphocytes with inactivated Mycobacterium tuberculosis (Mtb H37Ra), explore whether T lymphocytes could phagocytose H37Ra cells, and determine the underlying mechanism. Jurkat T lymphocytes were co-cultured with H37Ra cells, and confocal laser scanning microscopy, electron microscopy, and flow cytometry techniques were used to identify phagocytosis and elucidate its mechanism. After Jurkat T lymphocytes phagocytosed H37Ra cells, the cell body became larger, with abundant cytoplasm, the portion of the nucleus closest to the bacterium deformed, long and short pseudopodia were extended, and the folds of the cell membrane formed depressions that created phagocytic vesicles surrounding the bacterium. The macropinocytosis inhibitor amiloride and the cytoskeletal inhibitor cytochalasin D were found to inhibit phagocytic efficacy; serum complements might enhance phagocytosis through opsonization. Jurkat T lymphocytes could actively phagocytose inactivated Mtb via the macropinocytotic mechanism. Actin remodeling played an important role in the macropinocytotic process. Serum complements may regulate phagocytosis.

  19. Phosphorylation of Mitogen-Activated Protein Kinases Contributes to Interferon γ Production in Response to Mycobacterium tuberculosis

    PubMed Central

    Pasquinelli, Virginia; Rovetta, Ana I.; Alvarez, Ivana B.; Jurado, Javier O.; Musella, Rosa M.; Palmero, Domingo J.; Malbrán, Alejandro; Samten, Buka; Barnes, Peter F.; García, Verónica E.

    2013-01-01

    Immune control of Mycobacterium tuberculosis depends on interferon γ (IFN-γ)–producing CD4+ lymphocytes. Previous studies have shown that T cells from patients with tuberculosis produce less IFN-γ, compared with healthy donors, in response to mycobacterial antigens, although IFN-γ responses to mitogens are preserved. In this work, we found that M. tuberculosis–induced IFN-γ production by human T cells correlated with phosphorylation of the mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase (ERK), and p38. Moreover, the majority of IFN-γ–producing T cells expressed signaling lymphocyte activation molecule (SLAM), and SLAM activation further increased ERK phosphorylation. Interestingly, patients with tuberculosis had delayed activation of ERK and p38, and this was most marked in patients with the poorest IFN-γ responses (ie, low responders). Besides, SLAM signaling failed to phosphorylate ERK in low responders. Our findings suggest that activation of p38 and ERK, in part through SLAM, mediates T-cell IFN-γ production in response to M. tuberculosis, a pathway that is defective in patients with tuberculosis. PMID:23125442

  20. Mycobacterium tuberculosis Serine/Threonine Protein Kinases

    PubMed Central

    PRISIC, SLADJANA; HUSSON, ROBERT N.

    2014-01-01

    The Mycobacterium tuberculosis genome encodes 11 serine/threonine protein kinases (STPKs). A similar number of two-component systems are also present, indicating that these two signal transduction mechanisms are both important in the adaptation of this bacterial pathogen to its environment. The M. tuberculosis phosphoproteome includes hundreds of Ser- and Thr-phosphorylated proteins that participate in all aspects of M. tuberculosis biology, supporting a critical role for the STPKs in regulating M. tuberculosis physiology. Nine of the STPKs are receptor type kinases, with an extracytoplasmic sensor domain and an intracellular kinase domain, indicating that these kinases transduce external signals. Two other STPKs are cytoplasmic and have regulatory domains that sense changes within the cell. Structural analysis of some of the STPKs has led to advances in our understanding of the mechanisms by which these STPKs are activated and regulated. Functional analysis has provided insights into the effects of phosphorylation on the activity of several proteins, but for most phosphoproteins the role of phosphorylation in regulating function is unknown. Major future challenges include characterizing the functional effects of phosphorylation for this large number of phosphoproteins, identifying the cognate STPKs for these phosphoproteins, and determining the signals that the STPKs sense. Ultimately, combining these STPK-regulated processes into larger, integrated regulatory networks will provide deeper insight into M. tuberculosis adaptive mechanisms that contribute to tuberculosis pathogenesis. Finally, the STPKs offer attractive targets for inhibitor development that may lead to new therapies for drug-susceptible and drug-resistant tuberculosis. PMID:25429354

  1. Mycobacterium tuberculosis Rv2882c Protein Induces Activation of Macrophages through TLR4 and Exhibits Vaccine Potential

    PubMed Central

    Back, Yong Woo; Park, Hye-Soo; Bae, Hyun Shik; Choi, Chul Hee; Kim, Hwa-Jung

    2016-01-01

    Macrophages constitute the first line of defense against Mycobacterium tuberculosis and are critical in linking innate and adaptive immunity. Therefore, the identification and characterization of mycobacterial proteins that modulate macrophage function are essential for understanding tuberculosis pathogenesis. In this study, we identified the novel macrophage-activating protein, Rv2882c, from M. tuberculosis culture filtrate proteins. Recombinant Rv2882c protein activated macrophages to secrete pro-inflammatory cytokines and express co-stimulatory and major histocompatibility complex molecules via Toll-like receptor 4, myeloid differentiation primary response protein 88, and Toll/IL-1 receptor-domain-containing adaptor inducing IFN-beta. Mitogen-activated protein kinases and NF-κB signaling pathways were involved in Rv2882c-induced macrophage activation. Further, Rv2882c-treated macrophages induced expansion of the effector/memory T cell population and Th1 immune responses. In addition, boosting Bacillus Calmette-Guerin vaccination with Rv2882c improved protective efficacy against M. tuberculosis in our model system. These results suggest that Rv2882c is an antigen that could be used for tuberculosis vaccine development. PMID:27711141

  2. Modulation of the Activity of Mycobacterium tuberculosis LipY by Its PE Domain

    PubMed Central

    Garrett, Christopher K.; Broadwell, Lindsey J.; Hayne, Cassandra K.; Neher, Saskia B.

    2015-01-01

    Mycobacterium tuberculosis harbors over 160 genes encoding PE/PPE proteins, several of which have roles in the pathogen’s virulence. A number of PE/PPE proteins are secreted via Type VII secretion systems known as the ESX secretion systems. One PE protein, LipY, has a triglyceride lipase domain in addition to its PE domain. LipY can regulate intracellular triglyceride levels and is also exported to the cell wall by one of the ESX family members, ESX-5. Upon export, LipY’s PE domain is removed by proteolytic cleavage. Studies using cells and crude extracts suggest that LipY’s PE domain not only directs its secretion by ESX-5, but also functions to inhibit its enzymatic activity. Here, we attempt to further elucidate the role of LipY’s PE domain in the regulation of its enzymatic activity. First, we established an improved purification method for several LipY variants using detergent micelles. We then used enzymatic assays to confirm that the PE domain down-regulates LipY activity. The PE domain must be attached to LipY in order to effectively inhibit it. Finally, we determined that full length LipY and the mature lipase lacking the PE domain (LipYΔPE) have similar melting temperatures. Based on our improved purification strategy and activity-based approach, we concluded that LipY’s PE domain down-regulates its enzymatic activity but does not impact the thermal stability of the enzyme. PMID:26270534

  3. Mycobacterium tuberculosis produces pili during human infection

    PubMed Central

    Alteri, Christopher J.; Xicohténcatl-Cortes, Juan; Hess, Sonja; Caballero-Olín, Guillermo; Girón, Jorge A.; Friedman, Richard L.

    2007-01-01

    Mycobacterium tuberculosis is responsible for nearly 3 million human deaths worldwide every year. Understanding the mechanisms and bacterial factors responsible for the ability of M. tuberculosis to cause disease in humans is critical for the development of improved treatment strategies. Many bacterial pathogens use pili as adherence factors to colonize the host. We discovered that M. tuberculosis produces fine (2- to 3-nm-wide), aggregative, flexible pili that are recognized by IgG antibodies contained in sera obtained from patients with active tuberculosis, indicating that the bacilli produce pili or pili-associated antigen during human infection. Purified M. tuberculosis pili (MTP) are composed of low-molecular-weight protein subunits encoded by the predicted M. tuberculosis H37Rv ORF, designated Rv3312A. MTP bind to the extracellular matrix protein laminin in vitro, suggesting that MTP possess adhesive properties. Isogenic mtp mutants lost the ability to produce Mtp in vitro and demonstrated decreased laminin-binding capabilities. MTP shares morphological, biochemical, and functional properties attributed to bacterial pili, especially with curli amyloid fibers. Thus, we propose that MTP are previously unidentified host-colonization factors of M. tuberculosis. PMID:17360408

  4. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy

    PubMed Central

    MacDuff, Donna A.; Kimmey, Jacqueline M.; Diner, Elie J.; Olivas, Joanna; Vance, Russell E.; Stallings, Christina L.; Virgin, Herbert W.; Cox, Jeffery S.

    2015-01-01

    Summary Type I interferons (IFNs) are critical mediators of antiviral defense, but their elicitation by bacterial pathogens can be detrimental to hosts. Many intracellular bacterial pathogens, including Mycobacterium tuberculosis, induce type I IFNs following phagosomal membrane perturbations. Cytosolic M. tuberculosis DNA has been implicated as a trigger for IFN production, but the mechanisms remain obscure. We report that the cytosolic DNA sensor, cyclic GMP-AMP synthase (cGAS), is required for activating IFN production via the STING/TBK1/IRF3 pathway during M. tuberculosis and L. pneumophila infection of macrophages, whereas L. monocytogenes short-circuits this pathway by producing the STING agonist, c-di-AMP. Upon sensing cytosolicDNA, cGAS also activates cell-intrinsic antibacterial defenses, promoting autophagic targeting of M. tuberculosis. Importantly, we show that cGAS binds M. tuberculosis DNA during infection, providing direct evidence that this unique host-pathogen interaction occurs in vivo. These data uncover a mechanism by which IFN is likely elicited during active human infections. PMID:26048136

  5. Enzymatic activities and DNA substrate specificity of Mycobacterium tuberculosis DNA helicase XPB.

    PubMed

    Balasingham, Seetha V; Zegeye, Ephrem Debebe; Homberset, Håvard; Rossi, Marie L; Laerdahl, Jon K; Bohr, Vilhelm A; Tønjum, Tone

    2012-01-01

    XPB, also known as ERCC3 and RAD25, is a 3' → 5' DNA repair helicase belonging to the superfamily 2 of helicases. XPB is an essential core subunit of the eukaryotic basal transcription factor complex TFIIH. It has two well-established functions: in the context of damaged DNA, XPB facilitates nucleotide excision repair by unwinding double stranded DNA (dsDNA) surrounding a DNA lesion; while in the context of actively transcribing genes, XPB facilitates initiation of RNA polymerase II transcription at gene promoters. Human and other eukaryotic XPB homologs are relatively well characterized compared to conserved homologs found in mycobacteria and archaea. However, more insight into the function of bacterial helicases is central to understanding the mechanism of DNA metabolism and pathogenesis in general. Here, we characterized Mycobacterium tuberculosis XPB (Mtb XPB), a 3'→5' DNA helicase with DNA-dependent ATPase activity. Mtb XPB efficiently catalyzed DNA unwinding in the presence of significant excess of enzyme. The unwinding activity was fueled by ATP or dATP in the presence of Mg(2+)/Mn(2+). Consistent with the 3'→5' polarity of this bacterial XPB helicase, the enzyme required a DNA substrate with a 3' overhang of 15 nucleotides or more. Although Mtb XPB efficiently unwound DNA model substrates with a 3' DNA tail, it was not active on substrates containing a 3' RNA tail. We also found that Mtb XPB efficiently catalyzed ATP-independent annealing of complementary DNA strands. These observations significantly enhance our understanding of the biological roles of Mtb XPB.

  6. Strong Antibody Responses to Mycobacterium tuberculosis PE-PGRS62 Protein Are Associated with Latent and Active Tuberculosis▿

    PubMed Central

    Koh, Kah Wee; Soh, Shu E; Seah, Geok Teng

    2009-01-01

    Mycobacterium tuberculosis has a unique family of PE-PGRS proteins with conserved N-terminal domains (PE) containing site-specific proline-glutamine residues and polymorphic GC-rich repetitive sequences (PGRS). Tuberculosis (TB) patients produce antibodies against some such proteins, but it is not clear whether these responses correlate with disease. Clinical groups with different mycobacterium exposure were studied for their seroreactivity to PE-PGRS17 and PE-PGRS62 proteins and their respective PE domains. There were minimal antibody responses against both PE domains and full-length PE-PGRS17, even in patients with active TB. However, patients with active and latent TB showed significantly higher PE-PGRS62-specific immunoglobulin G antibody responses than treated TB patients and mycobacterium-reactive TB contacts without latent infection. Latently infected persons had high anti-PE-PGRS62 responses but low responses to the 38-kDa antigen commonly used for TB serology, while treated TB cases showed the opposite response. Thus, patterns of seroreactivity to PE-PGRS62 correlate with clinical status and are associated with latent TB infection. PMID:19487480

  7. Oral vaccination with heat inactivated Mycobacterium bovis activates the complement system to protect against tuberculosis.

    PubMed

    Beltrán-Beck, Beatriz; de la Fuente, José; Garrido, Joseba M; Aranaz, Alicia; Sevilla, Iker; Villar, Margarita; Boadella, Mariana; Galindo, Ruth C; Pérez de la Lastra, José M; Moreno-Cid, Juan A; Fernández de Mera, Isabel G; Alberdi, Pilar; Santos, Gracia; Ballesteros, Cristina; Lyashchenko, Konstantin P; Minguijón, Esmeralda; Romero, Beatriz; de Juan, Lucía; Domínguez, Lucas; Juste, Ramón; Gortazar, Christian

    2014-01-01

    Tuberculosis (TB) remains a pandemic affecting billions of people worldwide, thus stressing the need for new vaccines. Defining the correlates of vaccine protection is essential to achieve this goal. In this study, we used the wild boar model for mycobacterial infection and TB to characterize the protective mechanisms elicited by a new heat inactivated Mycobacterium bovis vaccine (IV). Oral vaccination with the IV resulted in significantly lower culture and lesion scores, particularly in the thorax, suggesting that the IV might provide a novel vaccine for TB control with special impact on the prevention of pulmonary disease, which is one of the limitations of current vaccines. Oral vaccination with the IV induced an adaptive antibody response and activation of the innate immune response including the complement component C3 and inflammasome. Mycobacterial DNA/RNA was not involved in inflammasome activation but increased C3 production by a still unknown mechanism. The results also suggested a protective mechanism mediated by the activation of IFN-γ producing CD8+ T cells by MHC I antigen presenting dendritic cells (DCs) in response to vaccination with the IV, without a clear role for Th1 CD4+ T cells. These results support a role for DCs in triggering the immune response to the IV through a mechanism similar to the phagocyte response to PAMPs with a central role for C3 in protection against mycobacterial infection. Higher C3 levels may allow increased opsonophagocytosis and effective bacterial clearance, while interfering with CR3-mediated opsonic and nonopsonic phagocytosis of mycobacteria, a process that could be enhanced by specific antibodies against mycobacterial proteins induced by vaccination with the IV. These results suggest that the IV acts through novel mechanisms to protect against TB in wild boar.

  8. Oral Vaccination with Heat Inactivated Mycobacterium bovis Activates the Complement System to Protect against Tuberculosis

    PubMed Central

    Garrido, Joseba M.; Aranaz, Alicia; Sevilla, Iker; Villar, Margarita; Boadella, Mariana; Galindo, Ruth C.; Pérez de la Lastra, José M.; Moreno-Cid, Juan A.; Fernández de Mera, Isabel G.; Alberdi, Pilar; Santos, Gracia; Ballesteros, Cristina; Lyashchenko, Konstantin P.; Minguijón, Esmeralda; Romero, Beatriz; de Juan, Lucía; Domínguez, Lucas; Juste, Ramón; Gortazar, Christian

    2014-01-01

    Tuberculosis (TB) remains a pandemic affecting billions of people worldwide, thus stressing the need for new vaccines. Defining the correlates of vaccine protection is essential to achieve this goal. In this study, we used the wild boar model for mycobacterial infection and TB to characterize the protective mechanisms elicited by a new heat inactivated Mycobacterium bovis vaccine (IV). Oral vaccination with the IV resulted in significantly lower culture and lesion scores, particularly in the thorax, suggesting that the IV might provide a novel vaccine for TB control with special impact on the prevention of pulmonary disease, which is one of the limitations of current vaccines. Oral vaccination with the IV induced an adaptive antibody response and activation of the innate immune response including the complement component C3 and inflammasome. Mycobacterial DNA/RNA was not involved in inflammasome activation but increased C3 production by a still unknown mechanism. The results also suggested a protective mechanism mediated by the activation of IFN-γ producing CD8+ T cells by MHC I antigen presenting dendritic cells (DCs) in response to vaccination with the IV, without a clear role for Th1 CD4+ T cells. These results support a role for DCs in triggering the immune response to the IV through a mechanism similar to the phagocyte response to PAMPs with a central role for C3 in protection against mycobacterial infection. Higher C3 levels may allow increased opsonophagocytosis and effective bacterial clearance, while interfering with CR3-mediated opsonic and nonopsonic phagocytosis of mycobacteria, a process that could be enhanced by specific antibodies against mycobacterial proteins induced by vaccination with the IV. These results suggest that the IV acts through novel mechanisms to protect against TB in wild boar. PMID:24842853

  9. Efficacies of selected disinfectants against Mycobacterium tuberculosis.

    PubMed

    Best, M; Sattar, S A; Springthorpe, V S; Kennedy, M E

    1990-10-01

    The activities of 10 formulations as mycobactericidal agents in Mycobacterium tuberculosis-contaminated suspensions (suspension test) and stainless steel surfaces (carrier test) were investigated with sputum as the organic load. The quaternary ammonium compound, chlorhexidine gluconate, and an iodophor were ineffective in all tests. Ethanol (70%) was effective against M. tuberculosis only in suspension in the absence of sputum. Povidone-iodine was not as efficacious when the test organism was dried on a surface as it was in suspension, and its activity was further reduced in the presence of sputum. Sodium hypochlorite required a higher concentration of available chlorine to achieve an effective level of disinfection than did sodium dichloroisocyanurate. Phenol (5%) was effective under all test conditions, producing at least a 4-log10 reduction in CFU. The undiluted glutaraldehyde-phenate solution was effective against M. tuberculosis and a second test organism, Mycobacterium smegmatis, even in the presence of dried sputum, whereas the diluted solution (1:16) was only effective against M. smegmatis in the suspension test. A solution of 2% glutaraldehyde was effective against M. tuberculosis. This investigation presents tuberculocidal efficacy data generated by methods simulating actual practices of routine disinfection. PMID:2121783

  10. The MprB Extracytoplasmic Domain Negatively Regulates Activation of the Mycobacterium tuberculosis MprAB Two-Component System

    PubMed Central

    Bretl, Daniel J.; Bigley, Tarin M.; Terhune, Scott S.

    2014-01-01

    Mycobacterium tuberculosis is an acid-fast pathogen of humans and the etiological agent of tuberculosis (TB). It is estimated that one-third of the world's population is latently (persistently) infected with M. tuberculosis. M. tuberculosis persistence is regulated, in part, by the MprAB two-component signal transduction system, which is activated by and mediates resistance to cell envelope stress. Here we identify MprAB as part of an evolutionarily conserved cell envelope stress response network and demonstrate that MprAB-mediated signal transduction is negatively regulated by the MprB extracytoplasmic domain (ECD). In particular, we report that deregulated production of the MprB sensor kinase, or of derivatives of this protein, negatively impacts M. tuberculosis growth. The observed growth attenuation is dependent on MprAB-mediated signal transduction and is exacerbated in strains of M. tuberculosis producing an MprB variant lacking its ECD. Interestingly, full-length MprB, and the ECD of MprB specifically, immunoprecipitates the Hsp70 chaperone DnaK in vivo, while overexpression of dnaK inhibits MprAB-mediated signal transduction in M. tuberculosis grown in the absence or presence of cell envelope stress. We propose that under nonstress conditions, or under conditions in which proteins present in the extracytoplasmic space are properly folded, signaling through the MprAB system is inhibited by the MprB ECD. Following exposure to cell envelope stress, proteins present in the extracytoplasmic space become unfolded or misfolded, leading to removal of the ECD-mediated negative regulation of MprB and subsequent activation of MprAB. PMID:24187094

  11. Copper Homeostasis in Mycobacterium tuberculosis

    PubMed Central

    Shi, Xiaoshan; Darwin, K. Heran

    2015-01-01

    Copper (Cu) is a trace element essential for the growth and development of almost all organisms, including bacteria. However, Cu overload in most systems is toxic. Studies show Cu accumulates in macrophage phagosomes infected with bacteria, suggesting Cu provides an innate immune mechanism to combat invading pathogens. To counteract the host-supplied Cu, increasing evidence suggests that bacteria have evolved Cu resistance mechanisms to facilitate their pathogenesis. In particular, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, has evolved multiple pathways to respond to Cu. Here, we summarize what is currently known about Cu homeostasis in Mtb and discuss potential sources of Cu encountered by this and other pathogens in a mammalian host. PMID:25614981

  12. 2-(Quinolin-4-yloxy)acetamides Are Active against Drug-Susceptible and Drug-Resistant Mycobacterium tuberculosis Strains.

    PubMed

    Pissinate, Kenia; Villela, Anne Drumond; Rodrigues-Junior, Valnês; Giacobbo, Bruno Couto; Grams, Estêvão Silveira; Abbadi, Bruno Lopes; Trindade, Rogério Valim; Roesler Nery, Laura; Bonan, Carla Denise; Back, Davi Fernando; Campos, Maria Martha; Basso, Luiz Augusto; Santos, Diógenes Santiago; Machado, Pablo

    2016-03-10

    2-(Quinolin-4-yloxy)acetamides have been described as potent in vitro inhibitors of Mycobacterium tuberculosis growth. Herein, additional chemical modifications of lead compounds were carried out, yielding highly potent antitubercular agents with minimum inhibitory concentration (MIC) values as low as 0.05 μM. Further, the synthesized compounds were active against drug-resistant strains and were devoid of apparent toxicity to Vero and HaCat cells (IC50s ≥ 20 μM). In addition, the 2-(quinolin-4-yloxy)acetamides showed intracellular activity against the bacilli in infected macrophages with action similar to rifampin, low risk of drug-drug interactions, and no sign of cardiac toxicity in zebrafish (Danio rerio) at 1 and 5 μM. Therefore, these data indicate that this class of compounds may furnish candidates for future development to, hopefully, provide drug alternatives for tuberculosis treatment.

  13. Strong In Vitro Activities of Two New Rifabutin Analogs against Multidrug-Resistant Mycobacterium tuberculosis ▿ †

    PubMed Central

    García, Ana-Belén; Palacios, Juan J.; Ruiz, María-Jesús; Barluenga, José; Aznar, Fernando; Cabal, María-Paz; García, José María; Díaz, Natalia

    2010-01-01

    Two new rifabutin analogs, RFA-1 and RFA-2, show high in vitro antimycobacterial activities against Mycobacterium tuberculosis. MIC values of RFA-1 and RFA-2 were ≤0.02 μg/ml against rifamycin-susceptible strains and 0.5 μg/ml against a wide selection of multidrug-resistant strains, compared to ≥50 μg/ml for rifampin and 10 μg/ml for rifabutin. Molecular dynamic studies indicate that the compounds may exert tighter binding to mutants of RNA polymerase that have adapted to the rifamycins. PMID:20855731

  14. Activities of TMC207, Rifampin, and Pyrazinamide against Mycobacterium tuberculosis Infection in Guinea Pigs▿

    PubMed Central

    Shang, Shaobin; Shanley, Crystal A.; Caraway, Megan L.; Orme, Eileen A.; Henao-Tamayo, Marcela; Hascall-Dove, Laurel; Ackart, David; Lenaerts, Anne J.; Basaraba, Randall J.; Orme, Ian M.; Ordway, Diane J.

    2011-01-01

    The experimental compound TMC207 is showing promise against infections caused by Mycobacterium tuberculosis both in a variety of animal studies and in the field. In this study, we used the guinea pig model, a species that shows several similarities to human tuberculosis, including the hallmark of primary granuloma necrosis, to determine the efficacy of a combination regimen combining TMC207 with rifampin and pyrazinamide. This drug regimen rapidly reduced the bacterial load in the lungs to undetectable levels by 8 weeks of treatment. This reduction was associated with a substantial improvement in lung pathology, but despite this effect areas of residual necrosis still remained. In the draining lymph nodes, however, tissue damage was rapid and not significantly reversed by the drug treatment. Approximately 10 to 11 months after the treatment had ended, the animals began to trigger a Karnovsky scale indicating bacterial regrowth and potential relapse, an event confirmed by the new development of both pulmonary and extrapulmonary granulomatous lesions. Interestingly, a similar rate of relapse was also seen in animals receiving 24 weeks of rifampin, pyrazinamide, and isoniazid standard chemotherapy. These data indicate that TMC207 could be a useful addition to current treatment regimens for tuberculosis. PMID:20937788

  15. Characterization of Antibacterial and Hemolytic Activity of Synthetic Pandinin 2 Variants and Their Inhibition against Mycobacterium tuberculosis

    PubMed Central

    Rodríguez, Alexis; Villegas, Elba; Montoya-Rosales, Alejandra; Rivas-Santiago, Bruno; Corzo, Gerardo

    2014-01-01

    The contention and treatment of Mycobacterium tuberculosis and other bacteria that cause infectious diseases require the use of new type of antibiotics. Pandinin 2 (Pin2) is a scorpion venom antimicrobial peptide highly hemolytic that has a central proline residue. This residue forms a structural “kink” linked to its pore-forming activity towards human erythrocytes. In this work, the residue Pro14 of Pin2 was both substituted and flanked using glycine residues (P14G and P14GPG) based on the low hemolytic activities of antimicrobial peptides with structural motifs Gly and GlyProGly such as magainin 2 and ponericin G1, respectively. The two Pin2 variants showed antimicrobial activity against E. coli, S. aureus, and M. tuberculosis. However, Pin2 [GPG] was less hemolytic (30%) than that of Pin2 [G] variant. In addition, based on the primary structure of Pin2 [G] and Pin2 [GPG], two short peptide variants were designed and chemically synthesized keeping attention to their physicochemical properties such as hydrophobicity and propensity to adopt alpha-helical conformations. The aim to design these two short antimicrobial peptides was to avoid the drawback cost associated to the synthesis of peptides with large sequences. The short Pin2 variants named Pin2 [14] and Pin2 [17] showed antibiotic activity against E. coli and M. tuberculosis. Besides, Pin2 [14] presented only 25% of hemolysis toward human erythrocytes at concentrations as high as 100 µM, while the peptide Pin2 [17] did not show any hemolytic effect at the same concentration. Furthermore, these short antimicrobial peptides had better activity at molar concentrations against multidrug resistance M. tuberculosis than that of the conventional antibiotics ethambutol, isoniazid and rifampicin. Therefore, Pin2 [14] and Pin2 [17] have the potential to be used as an alternative antibiotics and anti-tuberculosis agents with reduced hemolytic effects. PMID:25019413

  16. Characterization of antibacterial and hemolytic activity of synthetic pandinin 2 variants and their inhibition against Mycobacterium tuberculosis.

    PubMed

    Rodríguez, Alexis; Villegas, Elba; Montoya-Rosales, Alejandra; Rivas-Santiago, Bruno; Corzo, Gerardo

    2014-01-01

    The contention and treatment of Mycobacterium tuberculosis and other bacteria that cause infectious diseases require the use of new type of antibiotics. Pandinin 2 (Pin2) is a scorpion venom antimicrobial peptide highly hemolytic that has a central proline residue. This residue forms a structural "kink" linked to its pore-forming activity towards human erythrocytes. In this work, the residue Pro14 of Pin2 was both substituted and flanked using glycine residues (P14G and P14GPG) based on the low hemolytic activities of antimicrobial peptides with structural motifs Gly and GlyProGly such as magainin 2 and ponericin G1, respectively. The two Pin2 variants showed antimicrobial activity against E. coli, S. aureus, and M. tuberculosis. However, Pin2 [GPG] was less hemolytic (30%) than that of Pin2 [G] variant. In addition, based on the primary structure of Pin2 [G] and Pin2 [GPG], two short peptide variants were designed and chemically synthesized keeping attention to their physicochemical properties such as hydrophobicity and propensity to adopt alpha-helical conformations. The aim to design these two short antimicrobial peptides was to avoid the drawback cost associated to the synthesis of peptides with large sequences. The short Pin2 variants named Pin2 [14] and Pin2 [17] showed antibiotic activity against E. coli and M. tuberculosis. Besides, Pin2 [14] presented only 25% of hemolysis toward human erythrocytes at concentrations as high as 100 µM, while the peptide Pin2 [17] did not show any hemolytic effect at the same concentration. Furthermore, these short antimicrobial peptides had better activity at molar concentrations against multidrug resistance M. tuberculosis than that of the conventional antibiotics ethambutol, isoniazid and rifampicin. Therefore, Pin2 [14] and Pin2 [17] have the potential to be used as an alternative antibiotics and anti-tuberculosis agents with reduced hemolytic effects.

  17. Non-human sources of Mycobacterium tuberculosis.

    PubMed

    Ghodbane, Ramzi; Drancourt, Michel

    2013-11-01

    Mycobacterium tuberculosis is a successful pathogen responsible for the vast majority of deadly tuberculosis cases in humans. It rests in a dormant form in contaminated people who constitute the reservoir with airborne interhuman transmission during pulmonary tuberculosis. M. tuberculosis is therefore regarded majoritary as a human pathogen. Here, we review the evidence for anthroponotic M. tuberculosis infection in non-human primates, other mammals and psittacines. Some infected animals may be sources for zoonotic tuberculosis caused by M. tuberculosis, with wild life trade and zoos being amplifying factors. Moreover, living animals and cadavers can scatter M. tuberculosis in the environment where it could survive for extended periods of time in soil where amoebae could play a role. Although marginal in the epidemiology of human tuberculosis, these data indicate that M. tuberculosis is not uniquely adapted to humans.

  18. Pyrimidine salvage pathway in Mycobacterium tuberculosis.

    PubMed

    Villela, A D; Sánchez-Quitian, Z A; Ducati, R G; Santos, D S; Basso, L A

    2011-01-01

    The causative agent of tuberculosis (TB), Mycobacterium tuberculosis, infects one-third of the world population. TB remains the leading cause of mortality due to a single bacterial pathogen. The worldwide increase in incidence of M. tuberculosis has been attributed to the high proliferation rates of multi and extensively drug-resistant strains, and to co-infection with the human immunodeficiency virus. There is thus a continuous requirement for studies on mycobacterial metabolism to identify promising targets for the development of new agents to combat TB. Singular characteristics of this pathogen, such as functional and structural features of enzymes involved in fundamental metabolic pathways, can be evaluated to identify possible targets for drug development. Enzymes involved in the pyrimidine salvage pathway might be attractive targets for rational drug design against TB, since this pathway is vital for all bacterial cells, and is composed of enzymes considerably different from those present in humans. Moreover, the enzymes of the pyrimidine salvage pathway might have an important role in the mycobacterial latent state, since M. tuberculosis has to recycle bases and/or nucleosides to survive in the hostile environment imposed by the host. The present review describes the enzymes of M. tuberculosis pyrimidine salvage pathway as attractive targets for the development of new antimycobacterial agents. Enzyme functional and structural data have been included to provide a broader knowledge on which to base the search for compounds with selective biological activity.

  19. The Three Mycobacterium tuberculosis Antigen 85 Isoforms Have Unique Substrates and Activities Determined by Non-active Site Regions*

    PubMed Central

    Backus, Keriann M.; Dolan, Michael A.; Barry, Conor S.; Joe, Maju; McPhie, Peter; Boshoff, Helena I. M.; Lowary, Todd L.; Davis, Benjamin G.; Barry, Clifton E.

    2014-01-01

    The three isoforms of antigen 85 (A, B, and C) are the most abundant secreted mycobacterial proteins and catalyze transesterification reactions that synthesize mycolated arabinogalactan, trehalose monomycolate (TMM), and trehalose dimycolate (TDM), important constituents of the outermost layer of the cellular envelope of Mycobacterium tuberculosis. These three enzymes are nearly identical at the active site and have therefore been postulated to exist to evade host immunity. Distal to the active site is a second putative carbohydrate-binding site of lower homology. Mutagenesis of the three isoforms at this second site affected both substrate selectivity and overall catalytic activity in vitro. Using synthetic and natural substrates, we show that these three enzymes exhibit unique selectivity; antigen 85A more efficiently mycolates TMM to form TDM, whereas C (and to a lesser extent B) has a higher rate of activity using free trehalose to form TMM. This difference in substrate selectivity extends to the hexasaccharide fragment of cell wall arabinan. Mutation of secondary site residues from the most active isoform (C) into those present in A or B partially interconverts this substrate selectivity. These experiments in combination with molecular dynamics simulations reveal that differences in the N-terminal helix α9, the adjacent Pro216–Phe228 loop, and helix α5 are the likely cause of changes in activity and substrate selectivity. These differences explain the existence of three isoforms and will allow for future work in developing inhibitors. PMID:25028517

  20. Polymorphisms of twenty regulatory proteins between Mycobacterium tuberculosis and Mycobacterium bovis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycobacterium tuberculosis and Mycobacterium bovis are responsible for tuberculosis in humans or animals, respectively. Both species are closely related and belong to the Mycobacterium tuberculosis complex (MTC). M. tuberculosis is the most ancient species from which M. bovis and the other members o...

  1. Ofloxacin resistance in Mycobacterium tuberculosis is associated with efflux pump activity independent of resistance pattern and genotype.

    PubMed

    Sun, Zhaogang; Xu, Yuhui; Sun, Yong; Liu, Yi; Zhang, Xuxia; Huang, Hairong; Li, Chuanyou

    2014-12-01

    Drug-resistance to ofloxacin (OFX) in Mycobacterium tuberculosis is due to missense mutations in gyrA and other factors, such as alterations in the activity of drug efflux pumps. In this study, we identified 8 extensively drug resistant tuberculosis (XDR-TB), 40 multidrug resistant TB (MDR-TB), 38 polydrug resistant TB (PDR-TB), and 16 single OFX-resistant TB from 102 clinical isolates. We tested the effect of three efflux inhibitors, reserpine, verapamil, and carbonyl cyanide m-chlorophenyl hydrazone (CCCP), on changes in the OFX minimum inhibitory concentration (MIC) using Resazurin microtitre assay. These three inhibitors changed the MICs from 2- to 32-fold, with CCCP having the strongest effect. A total of 55%, 74%, and 83% of the tested isolates had changes in MIC of more than two-fold by reserpine, verapamil, and CCCP, respectively. The inhibitors led to similar fold-changes of OFX MICs in the XDR, MDR, PDR, and single OFX-resistant isolates. For each inhibitor, a higher resistance to OFX was associated with the greater efflux pump activity. There were no significant differences in the effect of efflux pump inhibitors upon Beijing and non-Beijing M. tuberculosis genotypes. Taken together, these results indicate that the efflux pump activity was greater in the isolates higher resistant to OFX and had similar effects on isolates with different drug resistant pattern, and had similar effects on Beijing and non-Beijing genotypes.

  2. ATP-dependent motor activity of the transcription termination factor Rho from Mycobacterium tuberculosis

    PubMed Central

    D'Heygère, François; Schwartz, Annie; Coste, Franck; Castaing, Bertrand; Boudvillain, Marc

    2015-01-01

    The bacterial transcription termination factor Rho—a ring-shaped molecular motor displaying directional, ATP-dependent RNA helicase/translocase activity—is an interesting therapeutic target. Recently, Rho from Mycobacterium tuberculosis (MtbRho) has been proposed to operate by a mechanism uncoupled from molecular motor action, suggesting that the manner used by Rho to dissociate transcriptional complexes is not conserved throughout the bacterial kingdom. Here, however, we demonstrate that MtbRho is a bona fide molecular motor and directional helicase which requires a catalytic site competent for ATP hydrolysis to disrupt RNA duplexes or transcription elongation complexes. Moreover, we show that idiosyncratic features of the MtbRho enzyme are conferred by a large, hydrophilic insertion in its N-terminal ‘RNA binding’ domain and by a non-canonical R-loop residue in its C-terminal ‘motor’ domain. We also show that the ‘motor’ domain of MtbRho has a low apparent affinity for the Rho inhibitor bicyclomycin, thereby contributing to explain why M. tuberculosis is resistant to this drug. Overall, our findings support that, in spite of adjustments of the Rho motor to specific traits of its hosting bacterium, the basic principles of Rho action are conserved across species and could thus constitute pertinent screening criteria in high-throughput searches of new Rho inhibitors. PMID:25999346

  3. Isolation, characterization, and biological properties of a tuberculin-active peptidoglycan isolated from the culture filtrate of Mycobacterium tuberculosis.

    PubMed

    Gupta, K C; Landi, S

    1980-02-01

    A water-soluble tuberculin-active peptidoglycan (TAPG) with a molecular weight of ca. 28,000 to 30,000 was isolated from the culture filtrate of Mycobacterium tuberculosis. TAPG was approximately four to five times more potent than tuberculin purified protein derivative S in guinea pigs sensitized with M. tuberculosis or M. bovis (freeze-dried BCG). It showed little or no cross-reactivity at a dose of 0.1 to 0.4 microgram in guinea pigs sensitized with M. kansasii, M. scrofulaceum, M. intracellulare, or M. avium. TAPG did not show any adjuvant activity when injected in guinea pigs in a water-in-oil emulsion containing ovalbumin. TAPG, in Freund incomplete adjuvant, proved to be an effective immunogen for inducing delayed hypersensitivity in guinea pigs. Chemical analysis of TAPG showed that it contains proline, glutamic acid, alanine, diaminopimelic acid, tyrosine, threonine, glucosamine, and the reducing sugars, arabinose and galactose. In immunoelectrophoretic studies with reference M. tuberculosis H37Rv antiserum, TAPG did not show any precipitin bands.

  4. In vitro activity against Mycobacterium tuberculosis of levofloxacin, moxifloxacin and UB-8902 in combination with clofazimine and pretomanid.

    PubMed

    López-Gavín, Alexandre; Tudó, Griselda; Vergara, Andrea; Hurtado, Juan Carlos; Gonzalez-Martín, Julian

    2015-11-01

    Multidrug resistance has become a problem in the management of tuberculosis, with an urgent need for research into new drugs as well as the development of efficacious drug combinations and regimens. The main objective of this study was to assess and compare the efficacy of three antituberculous combinations (clofazimine/pretomanid/levofloxacin, clofazimine/pretomanid/moxifloxacin and clofazimine/pretomanid/UB-8902) against multidrug-resistant (MDR) and drug-susceptible clinical isolates of Mycobacterium tuberculosis using an in vitro adaptation of the chequerboard assay. A total of 7 MDR and 11 drug-susceptible clinical isolates were studied. The fractional inhibitory concentration index (FICI) was interpreted as synergism when the value was <0.75, antagonism when it was >4 and additive activity between these two values. The FICI of all of the combinations ranged from 1.2 to 2.3, showing additive activity against all of the isolates. No differences were found between MDR and drug-susceptible isolates. In conclusion, the three combinations are effective against M. tuberculosis with equal effects. Moreover, in vitro testing of drug combinations could be useful to predict their clinical use.

  5. An Unconventional Hexacoordinated Flavohemoglobin from Mycobacterium tuberculosis*

    PubMed Central

    Gupta, Sanjay; Pawaria, Sudesh; Lu, Changyuan; Hade, Mangesh Dattu; Singh, Chaahat; Yeh, Syun-Ru; Dikshit, Kanak L.

    2012-01-01

    Being an obligate aerobe, Mycobacterium tuberculosis faces a number of energetic challenges when it encounters hypoxia and environmental stress during intracellular infection. Consequently, it has evolved innovative strategies to cope with these unfavorable conditions. Here, we report a novel flavohemoglobin (MtbFHb) from M. tuberculosis that exhibits unique features within its heme and reductase domains distinct from conventional FHbs, including the absence of the characteristic hydrogen bonding interactions within the proximal heme pocket and mutations in the FAD and NADH binding regions of the reductase domain. In contrast to conventional FHbs, it has a hexacoordinate low-spin heme with a proximal histidine ligand lacking imidazolate character and a distal heme pocket with a relatively low electrostatic potential. Additionally, MtbFHb carries a new FAD binding site in its reductase domain similar to that of d-lactate dehydrogenase (d-LDH). When overexpressed in Escherichia coli or Mycobacterium smegmatis, MtbFHb remained associated with the cell membrane and exhibited d-lactate:phenazine methosulfate reductase activity and oxidized d-lactate into pyruvate by converting the heme iron from Fe3+ to Fe2+ in a FAD-dependent manner, indicating electron transfer from d-lactate to the heme via FAD cofactor. Under oxidative stress, MtbFHb-expressing cells exhibited growth advantage with reduced levels of lipid peroxidation. Given the fact that d-lactate is a byproduct of lipid peroxidation and that M. tuberculosis lacks the gene encoding d-LDH, we propose that the novel d-lactate metabolizing activity of MtbFHb uniquely equips M. tuberculosis to balance the stress level by protecting the cell membrane from oxidative damage via cycling between the Fe3+/Fe2+ redox states. PMID:22437825

  6. Biochemical Characterization of Quinolinic Acid Phosphoribosyltransferase from Mycobacterium tuberculosis H37Rv and Inhibition of Its Activity by Pyrazinamide

    PubMed Central

    Kim, Hyun; Shibayama, Keigo; Rimbara, Emiko; Mori, Shigetarou

    2014-01-01

    Quinolinic acid phosphoribosyltransferase (QAPRTase, EC 2.4.2.19) is a key enzyme in the de novo pathway of nicotinamide adenine dinucleotide (NAD) biosynthesis and a target for the development of new anti-tuberculosis drugs. QAPRTase catalyzes the synthesis of nicotinic acid mononucleotide from quinolinic acid (QA) and 5-phosphoribosyl-1-pyrophosphate (PRPP) through a phosphoribosyl transfer reaction followed by decarboxylation. The crystal structure of QAPRTase from Mycobacterium tuberculosis H37Rv (MtQAPRTase) has been determined; however, a detailed functional analysis of MtQAPRTase has not been published. Here, we analyzed the enzymatic activities of MtQAPRTase and determined the effect on catalysis of the anti-tuberculosis drug pyrazinamide (PZA). The optimum temperature and pH for MtQAPRTase activity were 60°C and pH 9.2. MtQAPRTase required bivalent metal ions and its activity was highest in the presence of Mg2+. Kinetic analyses revealed that the Km values for QA and PRPP were 0.08 and 0.39 mM, respectively, and the kcat values for QA and PRPP were 0.12 and 0.14 [s-1], respectively. When the amino acid residues of MtQAPRTase, which may interact with QA, were substituted with alanine residues, catalytic activity was undetectable. Further, PZA, which is an anti-tuberculosis drug and a structural analog of QA, markedly inhibited the catalytic activity of MtQAPRTase. The structure of PZA may provide the basis for the design of new inhibitors of MtQAPRTase. These findings provide new insights into the catalytic properties of MtQAPRTase. PMID:24949952

  7. Mefloquine and its oxazolidine derivative compound are active against drug-resistant Mycobacterium tuberculosis strains and in a murine model of tuberculosis infection.

    PubMed

    Rodrigues-Junior, Valnês S; Villela, Anne D; Gonçalves, Raoni S B; Abbadi, Bruno Lopes; Trindade, Rogério Valim; López-Gavín, Alexandre; Tudó, Griselda; González-Martín, Julian; Basso, Luiz Augusto; de Souza, Marcus V N; Campos, Maria Martha; Santos, Diógenes Santiago

    2016-08-01

    Repurposing of drugs to treat tuberculosis (TB) has been considered an alternative to overcome the global TB epidemic, especially to combat drug-resistant forms of the disease. Mefloquine has been reported as a potent drug to kill drug-resistant strains of Mycobacterium tuberculosis. In addition, mefloquine-derived molecules have been synthesised and their effectiveness against mycobacteria has been assessed. In this work, we demonstrate for the first time the activities of mefloquine and its oxazolidine derivative compound 1E in a murine model of TB infection following administration of both drugs by the oral route. The effects of associations between mefloquine or 1E with the clinically used antituberculosis drugs isoniazid, rifampicin, ethambutol, moxifloxacin and streptomycin were also investigated. Importantly, combination of mefloquine with isoniazid and of 1E with streptomycin showed a two-fold decrease in their minimum inhibitory concentrations (MICs). Moreover, no tested combinations demonstrated antagonist interactions. Here we describe novel evidence on the activity of mefloquine and 1E against a series of quinolone-resistant M. tuberculosis strains. These data show MICs against quinolone-resistant strains (0.5-8 µg/mL) similar to or lower than those previously reported for multidrug-resistant strains. Taking these results together, we can suggest the use of mefloquine or 1E in combination with clinically available drugs, especially in the case of resistant forms of TB. PMID:27364701

  8. Mefloquine and its oxazolidine derivative compound are active against drug-resistant Mycobacterium tuberculosis strains and in a murine model of tuberculosis infection.

    PubMed

    Rodrigues-Junior, Valnês S; Villela, Anne D; Gonçalves, Raoni S B; Abbadi, Bruno Lopes; Trindade, Rogério Valim; López-Gavín, Alexandre; Tudó, Griselda; González-Martín, Julian; Basso, Luiz Augusto; de Souza, Marcus V N; Campos, Maria Martha; Santos, Diógenes Santiago

    2016-08-01

    Repurposing of drugs to treat tuberculosis (TB) has been considered an alternative to overcome the global TB epidemic, especially to combat drug-resistant forms of the disease. Mefloquine has been reported as a potent drug to kill drug-resistant strains of Mycobacterium tuberculosis. In addition, mefloquine-derived molecules have been synthesised and their effectiveness against mycobacteria has been assessed. In this work, we demonstrate for the first time the activities of mefloquine and its oxazolidine derivative compound 1E in a murine model of TB infection following administration of both drugs by the oral route. The effects of associations between mefloquine or 1E with the clinically used antituberculosis drugs isoniazid, rifampicin, ethambutol, moxifloxacin and streptomycin were also investigated. Importantly, combination of mefloquine with isoniazid and of 1E with streptomycin showed a two-fold decrease in their minimum inhibitory concentrations (MICs). Moreover, no tested combinations demonstrated antagonist interactions. Here we describe novel evidence on the activity of mefloquine and 1E against a series of quinolone-resistant M. tuberculosis strains. These data show MICs against quinolone-resistant strains (0.5-8 µg/mL) similar to or lower than those previously reported for multidrug-resistant strains. Taking these results together, we can suggest the use of mefloquine or 1E in combination with clinically available drugs, especially in the case of resistant forms of TB.

  9. Human B cells have an active phagocytic capability and undergo immune activation upon phagocytosis of Mycobacterium tuberculosis.

    PubMed

    Zhu, Qi; Zhang, Min; Shi, Ming; Liu, Yang; Zhao, Qing; Wang, Wenjing; Zhang, Guangyun; Yang, Longxiu; Zhi, Jin; Zhang, Lin; Hu, Gengyao; Chen, Pin; Yang, Yining; Dai, Wen; Liu, Tingting; He, Ying; Feng, Guodong; Zhao, Gang

    2016-04-01

    The paradigm that B cells are nonphagocytic was taken for granted for a long time until phagocytic B cells were found in early vertebrate animals. Thereafter, limited evidence has shown that human B cells may also internalize bacteria. However, whether human B cells can actively phagocytose bacteria has been less extensively investigated; in particular, the mechanisms and significance of the phagocytosis require clarification. Here, we show that the human Raji B cell line can phagocytose both live and dead Mycobacterium tuberculosis (Mtb), and the phagocytosed Mtb in turn affects the immune functions of the B cells. After incubation of Raji cells with Mtb, our confocal microscopy, electron microscopy and flow cytometry data showed that Raji cells effectively engulfed Mtb as well as latex beads. The phagocytic rate was proportional to the incubation time and the amount of Mtb or beads added. Additionally, we found that normal human serum could enhance the ability of Raji cells to phagocytose Mtb, while heat-inactivated serum reversed this promoting effect. The phagocytic process of B cells could partially be inhibited by cytochalasin B, an actin inhibitor. Importantly, the phagocytosed Mtb could regulate B cell immune functions, such as stimulating IgM production and upregulating the expression of the antigen-presenting costimulatory molecules CD80 and CD86. Therefore, our results provide the first evidence that human B cells can phagocytose Mtb in an active manner that is independent of bacterial viability, and phagocytosed Mtb can in turn regulate the immune activation of B cells.

  10. Anti-tubercular and antioxidant activities of C-glycosyl carbonic anhydrase inhibitors: towards the development of novel chemotherapeutic agents against Mycobacterium tuberculosis.

    PubMed

    Zaro, María J; Bortolotti, Ana; Riafrecha, Leonardo E; Concellón, Analía; Morbidoni, Héctor R; Colinas, Pedro A

    2016-12-01

    During the treatment of tuberculosis infection, oxidative stress due to anti-tubercular drugs may result in tissue inflammation. It was suggested that treatment with antioxidant drugs could be beneficial as an adjunct to anti-tuberculosis drug therapy. Recently our group has shown that several C-glycosides are inhibitors of Mycobacterium tuberculosis β-carbonic anhydrases (CAs, EC 4.2.1.1). In an effort to develop novel chemotherapeutic agents against tuberculosis, the anti-tubercular and antioxidant activities of a series of C-glycosides containing the phenol or the methoxyaryl moiety were studied. Many compounds showed inhibition of growth of M. tuberculosis H37Rv strain and good antioxidant ability. A glycomimetic incorporating the 3-hydroxyphenyl moiety showed the best activity profile and therefore this functionality represents lead for the development of novel anti-tubercular agents with dual mechanisms of action.

  11. The condensing activities of the Mycobacterium tuberculosis type II fatty acid synthase are differentially regulated by phosphorylation.

    PubMed

    Molle, Virginie; Brown, Alistair K; Besra, Gurdyal S; Cozzone, Alain J; Kremer, Laurent

    2006-10-01

    Phosphorylation of proteins by Ser/Thr protein kinases (STPKs) has recently become of major physiological importance because of its possible involvement in virulence of bacterial pathogens. Although Mycobacterium tuberculosis has eleven STPKs, the nature and function of the substrates of these enzymes remain largely unknown. In this work, we have identified for the first time STPK substrates in M. tuberculosis forming part of the type II fatty acid synthase (FAS-II) system involved in mycolic acid biosynthesis: the malonyl-CoA::AcpM transacylase mtFabD, and the beta-ketoacyl AcpM synthases KasA and KasB. All three enzymes were phosphorylated in vitro by different kinases, suggesting a complex network of interactions between STPKs and these substrates. In addition, both KasA and KasB were efficiently phosphorylated in M. bovis BCG each at different sites and could be dephosphorylated by the M. tuberculosis Ser/Thr phosphatase PstP. Enzymatic studies revealed that, whereas phosphorylation decreases the activity of KasA in the elongation process of long chain fatty acids synthesis, this modification enhances that of KasB. Such a differential effect of phosphorylation may represent an unusual mechanism of FAS-II system regulation, allowing pathogenic mycobacteria to produce full-length mycolates, which are required for adaptation and intracellular survival in macrophages. PMID:16873379

  12. Purine Salvage Pathway in Mycobacterium tuberculosis.

    PubMed

    Ducati, R G; Breda, A; Basso, L A; Santos, D S

    2011-01-01

    Millions of deaths worldwide are caused by the aetiological agent of tuberculosis, Mycobacterium tuberculosis. The increasing prevalence of this disease, the emergence of drug-resistant strains, and the devastating effect of human immunodeficiency virus coinfection have led to an urgent need for the development of new and more efficient antimycobacterial drugs. The modern approach to the development of new chemical compounds against complex diseases, especially the neglected endemic ones, such as tuberculosis, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a specific target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, and (iii) the development of compounds with selective toxicity. The present review describes the enzymes of the purine salvage pathway in M. tuberculosis as attractive targets for the development of new antimycobacterial agents. Enzyme kinetics and structural data have been included to provide a thorough knowledge on which to base the search for compounds with biological activity. We have focused on the mycobacterial homologues of this pathway as potential targets for the development of new antitubercular agents.

  13. Protective efficacy of piperine against Mycobacterium tuberculosis.

    PubMed

    Sharma, Sandeep; Kalia, Nitin Pal; Suden, Pankaj; Chauhan, Prashant Singh; Kumar, Manoj; Ram, Anshu Beulah; Khajuria, Anamika; Bani, Sarang; Khan, Inshad Ali

    2014-07-01

    Piperine a trans-trans isomer of 1-piperoyl-piperidine was evaluated for its immunomodulatory activity to enhance the efficacy of rifampicin in a murine model of Mycobacterium tuberculosis infection. In-vitro immunomodulation of piperine was tested on mouse splenocytes for lymphocyte proliferation, cytokine production and macrophage activation. Protective efficacy of piperine was tested in a mice infection model of M. tuberculosis for the activation of Th-1 response and synergistic combination efficacy with rifampicin. Murine splenocytes exposed to piperine exhibited proliferation of T and B cell, increased Th-1 cytokines and enhanced macrophage activation. Piperine (1 mg/kg) in mice infected with M. tuberculosis activated the differentiation of T cells into Th-1 sub-population (CD4+ / CD8+ subsets). There was an increase in secretion of Th-1 cytokines (IFN-γ and IL-2) by these cells. The qRT-PCR studies revealed corresponding increases in the mRNA transcripts of IFN-γ and IL-2 in the infected lung tissues. Combination of piperine and rifampicin (1 mg/kg) exhibited better efficacy of and resulted in additional 1.4 to 0.8 log reduction in lung cfu as compared to rifampicin alone. The up-regulation of Th1 immunity by piperine can be synergistically combined with rifampicin to improve its therapeutic efficacy in immune-compromised TB patients.

  14. Enhancement of antibiotic activity by efflux inhibitors against multidrug resistant Mycobacterium tuberculosis clinical isolates from Brazil

    PubMed Central

    Coelho, Tatiane; Machado, Diana; Couto, Isabel; Maschmann, Raquel; Ramos, Daniela; von Groll, Andrea; Rossetti, Maria L.; Silva, Pedro A.; Viveiros, Miguel

    2015-01-01

    Drug resistant tuberculosis continues to increase and new approaches for its treatment are necessary. The identification of M. tuberculosis clinical isolates presenting efflux as part of their resistant phenotype has a major impact in tuberculosis treatment. In this work, we used a checkerboard procedure combined with the tetrazolium microplate-based assay (TEMA) to study single combinations between antituberculosis drugs and efflux inhibitors (EIs) against multidrug resistant M. tuberculosis clinical isolates using the fully susceptible strain H37Rv as reference. Efflux activity was studied on a real-time basis by a fluorometric method that uses ethidium bromide as efflux substrate. Quantification of efflux pump genes mRNA transcriptional levels were performed by RT-qPCR. The fractional inhibitory concentrations (FIC) indicated synergistic activity for the interactions between isoniazid, rifampicin, amikacin, ofloxacin, and ethidium bromide plus the EIs verapamil, thioridazine and chlorpromazine. The FICs ranged from 0.25, indicating a four-fold reduction on the MICs, to 0.015, 64-fold reduction. The detection of active efflux by real-time fluorometry showed that all strains presented intrinsic efflux activity that contributes to the overall resistance which can be inhibited in the presence of the EIs. The quantification of the mRNA levels of the most important efflux pump genes on these strains shows that they are intrinsically predisposed to expel toxic compounds as the exposure to subinhibitory concentrations of antibiotics were not necessary to increase the pump mRNA levels when compared with the non-exposed counterpart. The results obtained in this study confirm that the intrinsic efflux activity contributes to the overall resistance in multidrug resistant clinical isolates of M. tuberculosis and that the inhibition of efflux pumps by the EIs can enhance the clinical effect of antibiotics that are their substrates. PMID:25972842

  15. Flourensia cernua: Hexane Extracts a Very Active Mycobactericidal Fraction from an Inactive Leaf Decoction against Pansensitive and Panresistant Mycobacterium tuberculosis

    PubMed Central

    Molina-Salinas, Gloria María; Peña-Rodríguez, Luis Manuel; Mata-Cárdenas, Benito David; Escalante-Erosa, Fabiola; González-Hernández, Silvia; Torres de la Cruz, Víctor Manuel; Martínez-Rodríguez, Herminia Guadalupe; Said-Fernández, Salvador

    2011-01-01

    The efficacy of decoction in extracting mycobactericidal compounds from Flourensia cernua (Hojasé) leaves and fractionation with solvents having ascending polarity was compared with that of (i) ethanol extraction by still maceration, extraction with a Soxhlet device, shake-assisted maceration, or ultrasound-assisted maceration, followed by fractionation with n-hexane, ethyl acetate, and n-butanol; (ii) sequential extraction with n-hexane, ethyl acetate, and n-butanol, by still maceration, using a Soxhlet device, shake-assisted maceration, or ultrasound-assisted maceration. The in vitro mycobactericidal activity of each preparation was measured against drug-sensitive (SMtb) and drug-resistant (RMtb) Mycobacterium tuberculosis strains. The results of which were expressed as absolute mycobactericidal activity (AMA). These data were normalized to the ΣAMA of the decoction fraction set. Although decoction was inactive, the anti-RMtb normalized ΣAMA (NAMA) of its fractions was comparable with the anti-RMtb NAMA of the still maceration extracts and significantly higher than the anti-SMtb and anti-RMtb NAMAs of every other ethanol extract and serial extract and fraction. Hexane extracted, from decoction, material having 55.17% and 92.62% of antituberculosis activity against SMtb and RMtb, respectively. Although the mycobactericidal activity of decoction is undetectable; its efficacy in extracting F. cernua active metabolites against M. tuberculosis is substantially greater than almost all pharmacognostic methods. PMID:21584254

  16. Thiophenecarboxamide Derivatives Activated by EthA Kill Mycobacterium tuberculosis by Inhibiting the CTP Synthetase PyrG

    PubMed Central

    Mori, Giorgia; Chiarelli, Laurent R.; Esposito, Marta; Makarov, Vadim; Bellinzoni, Marco; Hartkoorn, Ruben C.; Degiacomi, Giulia; Boldrin, Francesca; Ekins, Sean; de Jesus Lopes Ribeiro, Ana Luisa; Marino, Leonardo B.; Centárová, Ivana; Svetlíková, Zuzana; Blaško, Jaroslav; Kazakova, Elena; Lepioshkin, Alexander; Barilone, Nathalie; Zanoni, Giuseppe; Porta, Alessio; Fondi, Marco; Fani, Renato; Baulard, Alain R.; Mikušová, Katarína; Alzari, Pedro M.; Manganelli, Riccardo; de Carvalho, Luiz Pedro S.; Riccardi, Giovanna; Cole, Stewart T.; Pasca, Maria Rosalia

    2015-01-01

    Summary To combat the emergence of drug-resistant strains of Mycobacterium tuberculosis, new antitubercular agents and novel drug targets are needed. Phenotypic screening of a library of 594 hit compounds uncovered two leads that were active against M. tuberculosis in its replicating, non-replicating, and intracellular states: compounds 7947882 (5-methyl-N-(4-nitrophenyl)thiophene-2-carboxamide) and 7904688 (3-phenyl-N-[(4-piperidin-1-ylphenyl)carbamothioyl]propanamide). Mutants resistant to both compounds harbored mutations in ethA (rv3854c), the gene encoding the monooxygenase EthA, and/or in pyrG (rv1699) coding for the CTP synthetase, PyrG. Biochemical investigations demonstrated that EthA is responsible for the activation of the compounds, and by mass spectrometry we identified the active metabolite of 7947882, which directly inhibits PyrG activity. Metabolomic studies revealed that pharmacological inhibition of PyrG strongly perturbs DNA and RNA biosynthesis, and other metabolic processes requiring nucleotides. Finally, the crystal structure of PyrG was solved, paving the way for rational drug design with this newly validated drug target. PMID:26097035

  17. Ligand uptake in Mycobacterium tuberculosis truncated hemoglobins is controlled by both internal tunnels and active site water molecules

    PubMed Central

    Davidge, Kelly S; Singh, Sandip; Bowman, Lesley AH; Tinajero-Trejo, Mariana; Carballal, Sebastián; Radi, Rafael; Poole, Robert K; Dikshit, Kanak; Estrin, Dario A; Marti, Marcelo A; Boechi, Leonardo

    2015-01-01

    Mycobacterium tuberculosis, the causative agent of human tuberculosis, has two proteins belonging to the truncated hemoglobin (trHb) family. Mt-trHbN presents well-defined internal hydrophobic tunnels that allow O 2 and •NO to migrate easily from the solvent to the active site, whereas Mt-trHbO possesses tunnels that are partially blocked by a few bulky residues, particularly a tryptophan at position G8. Differential ligand migration rates allow Mt-trHbN to detoxify •NO, a crucial step for pathogen survival once under attack by the immune system, much more efficiently than Mt-trHbO. In order to investigate the differences between these proteins, we performed experimental kinetic measurements, •NO decomposition, as well as molecular dynamics simulations of the wild type Mt-trHbN and two mutants, VG8F and VG8W. These mutations introduce modifications in both tunnel topologies and affect the incoming ligand capacity to displace retained water molecules at the active site. We found that a single mutation allows Mt-trHbN to acquire ligand migration rates comparable to those observed for Mt-trHbO, confirming that ligand migration is regulated by the internal tunnel architecture as well as by water molecules stabilized in the active site. PMID:26478812

  18. Ligand uptake in Mycobacterium tuberculosis truncated hemoglobins is controlled by both internal tunnels and active site water molecules.

    PubMed

    Boron, Ignacio; Bustamante, Juan Pablo; Davidge, Kelly S; Singh, Sandip; Bowman, Lesley Ah; Tinajero-Trejo, Mariana; Carballal, Sebastián; Radi, Rafael; Poole, Robert K; Dikshit, Kanak; Estrin, Dario A; Marti, Marcelo A; Boechi, Leonardo

    2015-01-01

    Mycobacterium tuberculosis, the causative agent of human tuberculosis, has two proteins belonging to the truncated hemoglobin (trHb) family. Mt-trHbN presents well-defined internal hydrophobic tunnels that allow O 2 and (•)NO to migrate easily from the solvent to the active site, whereas Mt-trHbO possesses tunnels that are partially blocked by a few bulky residues, particularly a tryptophan at position G8. Differential ligand migration rates allow Mt-trHbN to detoxify (•)NO, a crucial step for pathogen survival once under attack by the immune system, much more efficiently than Mt-trHbO. In order to investigate the differences between these proteins, we performed experimental kinetic measurements, (•)NO decomposition, as well as molecular dynamics simulations of the wild type Mt-trHbN and two mutants, VG8F and VG8W. These mutations introduce modifications in both tunnel topologies and affect the incoming ligand capacity to displace retained water molecules at the active site. We found that a single mutation allows Mt-trHbN to acquire ligand migration rates comparable to those observed for Mt-trHbO, confirming that ligand migration is regulated by the internal tunnel architecture as well as by water molecules stabilized in the active site.

  19. In vitro susceptibility of Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis, Mycobacterium avium, Mycobacterium fortuitum, and Mycobacterium chelonae to ticarcillin in combination with clavulanic acid.

    PubMed Central

    Casal, M J; Rodriguez, F C; Luna, M D; Benavente, M C

    1987-01-01

    The in vitro susceptibility of Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium africanum, Mycobacterium avium, Mycobacterium fortuitum, and Mycobacterium chelonae (M. chelonei) to ticarcillin in combination with calvulanic acid (CA) was studied by the agar dilution method. All the M. tuberculosis, M. bovis, and M. africanum strains were inhibited at a ticarcillin concentration of 32 micrograms/ml or lower in combination with 5 micrograms of CA. M. chelonae and M. avium strains proved resistant to more than 128 micrograms of ticarcillin plus 5 micrograms of CA per ml. M. fortuitum strains needed 128 micrograms of ticarcillin plus 5 micrograms of CA to inhibit approximately 30% of the isolates. PMID:3105441

  20. Combinatorial active-site variants confer sustained clavulanate resistance in BlaC β-lactamase from Mycobacterium tuberculosis

    PubMed Central

    Egesborg, Philippe; Carlettini, Hélène; Volpato, Jordan P; Doucet, Nicolas

    2015-01-01

    Bacterial resistance to β-lactam antibiotics is a global issue threatening the success of infectious disease treatments worldwide. Mycobacterium tuberculosis has been particularly resilient to β-lactam treatment, primarily due to the chromosomally encoded BlaC β-lactamase, a broad-spectrum hydrolase that renders ineffective the vast majority of relevant β-lactam compounds currently in use. Recent laboratory and clinical studies have nevertheless shown that specific β-lactam–BlaC inhibitor combinations can be used to inhibit the growth of extensively drug-resistant strains of M. tuberculosis, effectively offering new tools for combined treatment regimens against resistant strains. In the present work, we performed combinatorial active-site replacements in BlaC to demonstrate that specific inhibitor-resistant (IRT) substitutions at positions 69, 130, 220, and/or 234 can act synergistically to yield active-site variants with several thousand fold greater in vitro resistance to clavulanate, the most common clinical β-lactamase inhibitor. While most single and double variants remain sensitive to clavulanate, double mutants R220S-K234R and S130G-K234R are substantially less affected by time-dependent clavulanate inactivation, showing residual β-lactam hydrolytic activities of 46% and 83% after 24 h incubation with a clinically relevant inhibitor concentration (5 μg/ml, 25 µM). These results demonstrate that active-site alterations in BlaC yield resistant variants that remain active and stable over prolonged bacterial generation times compatible with mycobacterial proliferation. These results also emphasize the formidable adaptive potential of inhibitor-resistant substitutions in β-lactamases, potentially casting a shadow on specific β-lactam–BlaC inhibitor combination treatments against M. tuberculosis. PMID:25492589

  1. Dormancy models for Mycobacterium tuberculosis: A minireview

    PubMed Central

    Alnimr, Amani M.

    2015-01-01

    Dormancy models for Mycobacterium tuberculosis play important roles in understanding various aspects of tuberculosis pathogenesis and in the testing of novel therapeutic regimens. By simulating the latent tuberculosis infection, in which the bacteria exist in a non-replicative state, the models demonstrate reduced susceptibility to antimycobacterial agents. This minireview outlines the models available for simulating latent tuberculosis both in vitro and in several animal species. Additionally, this minireview discusses the advantages and disadvantages of these models for investigating the bacterial subpopulations and susceptibilities to sterilization by various antituberculosis drugs. PMID:26413043

  2. Rapid and sensitive identification of Mycobacterium tuberculosis.

    PubMed Central

    Knisley, C V; Damato, J J; McClatchy, J K; Brennan, P J

    1985-01-01

    The fatty acid constituents of 14 species of Mycobacterium (14 isolates) and one isolate each of Corynebacterium xerosis, Nocardia asteroides, and Streptomyces albus were examined with the purpose of distinguishing Mycobacterium tuberculosis from other acid-fast bacilli. Combined thin-layer chromatography (TLC) of methyl mycolates and gas-liquid chromatography (GLC) of shorter-chain fatty acid esters provided an unequivocal identification of M. tuberculosis in a matter of 2 to 3 days. The methodology included rapid and simplified procedures for methanolysis and extraction of bacterial lipids with equally facilitated GLC and TLC analyses. These studies were performed with 0.5 to 1.0 mg of dry bacterial cells (approximately 2.5 X 10(7) CFU). When applied to 100 unknown cultures, the methodology with combined TLC-GLC correctly identified all 49 of the M. tuberculosis-Mycobacterium bovis cultures and a variety of other mycobacterium taxa. It was also interesting to note that 28 of 39 (72%) of the nontuberculous mycobacteria were correctly identified. An additional five species were tentatively identified as belonging to either of two species (Mycobacterium malmoense, Mycobacterium terrae), but in all cases, the two species belonged to the same Runyon group. All six nonmycobacterial species were differentiated from the mycobacteria studied. Images PMID:3932458

  3. High-Content Screening Technology Combined with a Human Granuloma Model as a New Approach To Evaluate the Activities of Drugs against Mycobacterium tuberculosis

    PubMed Central

    Silva-Miranda, Mayra; Breiman, Adrien; Asehnoune, Karim; Barros-Aguirre, David; Pethe, Kevin; Ewann, Fanny; Brodin, Priscille; Ballell-Pages, Lluís

    2014-01-01

    Tuberculosis remains a major health problem due to the emergence of drug-resistant strains of Mycobacterium tuberculosis. Some models have provided valuable information about drug resistance and efficacy; however, the translation of these results into effective human treatments has mostly proven unsuccessful. In this study, we adapted high-content screening (HCS) technology to investigate the activities of antitubercular compounds in the context of an in vitro granuloma model. We observed significant shifts in the MIC50s between the activities of the compounds under extracellular and granuloma conditions. PMID:25348525

  4. Mycobacterium tuberculosis Peptidyl-Prolyl Isomerases Also Exhibit Chaperone like Activity In-Vitro and In-Vivo

    PubMed Central

    Pandey, Saurabh; Sharma, Ashish; Tripathi, Deeksha; Kumar, Ashutosh; Khubaib, Mohd; Bhuwan, Manish; Chaudhuri, Tapan Kumar; Hasnain, Seyed Ehtesham; Ehtesham, Nasreen Zafar

    2016-01-01

    Peptidyl-prolyl cis-trans isomerases (Ppiases), also known as cyclophilins, are ubiquitously expressed enzymes that assist in protein folding by isomerization of peptide bonds preceding prolyl residues. Mycobacterium tuberculosis (M.tb) is known to possess two Ppiases, PpiA and PpiB. However, our understanding about the biological significance of mycobacterial Ppiases with respect to their pleiotropic roles in responding to stress conditions inside the macrophages is restricted. This study describes chaperone-like activity of mycobacterial Ppiases. We show that recombinant rPpiA and rPpiB can bind to non-native proteins in vitro and can prevent their aggregation. Purified rPpiA and rPpiB exist in oligomeric form as evident from gel filtration chromatography.E. coli cells overexpressing PpiA and PpiB of M.tb could survive thermal stress as compared to plasmid vector control. HEK293T cells transiently expressing M.tb PpiA and PpiB proteins show increased survival as compared to control cells in response to oxidative stress and hypoxic conditions generated after treatment with H2O2 and CoCl2 thereby pointing to their likely role in adaption under host generated oxidative stress and conditions of hypoxia. The chaperone-like function of these M.tuberculosis cyclophilins may possibly function as a stress responder and consequently contribute to virulence. PMID:26981873

  5. Cytokine and chemokine expression profiles in response to Mycobacterium tuberculosis stimulation are altered in HIV-infected compared to HIV-uninfected subjects with active tuberculosis.

    PubMed

    Waruk, Jillian L M; Machuki, Zipporah; Mesa, Christine; Juno, Jennifer A; Anzala, Omu; Sharma, Meenu; Ball, T Blake; Oyugi, Julius; Kiazyk, Sandra

    2015-09-01

    Mycobacterium tuberculosis (Mtb) infects nearly 2 million people annually and is the most common cause of death in HIV-infected individuals. Tuberculosis (TB) diagnostics cater to HIV-uninfected individuals in non-endemic countries, are expensive, slow, and lack sensitivity for those most affected. Patterns of soluble immune markers from Mtb-stimulated immune cells are not well defined in HIV co-infection. We assessed immune differences between HIV-infected and HIV-uninfected individuals with active TB utilizing IFNγ-based QuantiFERON®-TB Gold In-Tube (QFT) testing in Nairobi, Kenya. Excess QFT supernatants were used to measure cytokine and chemokine responses by a 17-plex bead array. Mtb/HIV co-infected participants were significantly less likely to be QFT+ (47.2% versus 84.2% in the HIV-uninfected group), and demonstrated lower expression of all cytokines except for IFNα2. Receiver operator characteristic analyses identified IL-1α as a potential marker of co-infection. Among HIV-infected individuals, CD4+ T cell count correlated weakly with the expression of several analytes. Co-expression analysis highlighted differences in immune profiles between the groups. These data suggest that there is a unique and detectable Mtb-specific immune response in co-infection. A better understanding of Mtb immunology can translate into much needed immunodiagnostics with enhanced sensitivity in HIV-infected individuals, facilitating their opportunity to obtain live-saving treatment.

  6. Isoniazid-resistance conferring mutations in Mycobacterium tuberculosis KatG: Catalase, peroxidase, and INH-NADH adduct formation activities

    PubMed Central

    Cade, Christine E; Dlouhy, Adrienne C; Medzihradszky, Katalin F; Salas-Castillo, Saida Patricia; Ghiladi, Reza A

    2010-01-01

    Mycobacterium tuberculosis catalase-peroxidase (KatG) is a bifunctional hemoprotein that has been shown to activate isoniazid (INH), a pro-drug that is integral to frontline antituberculosis treatments. The activated species, presumed to be an isonicotinoyl radical, couples to NAD+/NADH forming an isoniazid-NADH adduct that ultimately confers anti-tubercular activity. To better understand the mechanisms of isoniazid activation as well as the origins of KatG-derived INH-resistance, we have compared the catalytic properties (including the ability to form the INH-NADH adduct) of the wild-type enzyme to 23 KatG mutants which have been associated with isoniazid resistance in clinical M. tuberculosis isolates. Neither catalase nor peroxidase activities, the two inherent enzymatic functions of KatG, were found to correlate with isoniazid resistance. Furthermore, catalase function was lost in mutants which lacked the Met-Tyr-Trp crosslink, the biogenic cofactor in KatG which has been previously shown to be integral to this activity. The presence or absence of the crosslink itself, however, was also found to not correlate with INH resistance. The KatG resistance-conferring mutants were then assayed for their ability to generate the INH-NADH adduct in the presence of peroxide (t-BuOOH and H2O2), superoxide, and no exogenous oxidant (air-only background control). The results demonstrate that residue location plays a critical role in determining INH-resistance mechanisms associated with INH activation; however, different mutations at the same location can produce vastly different reactivities that are oxidant-specific. Furthermore, the data can be interpreted to suggest the presence of a second mechanism of INH-resistance that is not correlated with the formation of the INH-NADH adduct. PMID:20054829

  7. Diterpene production in Mycobacterium tuberculosis

    PubMed Central

    Prach, Lisa; Kirby, James; Keasling, Jay D.; Alber, Tom

    2011-01-01

    Diterpenes are a structurally diverse class of molecules common in plants, although they are very rarely found in bacteria. We report the identification in Mycobacterium tuberculosis (Mtb) of three diterpenes proposed to promote phagolysosome maturation arrest. MS analysis reveals that these diterpenes are novel compounds not previously identified in other organisms. The diterpene with highest abundance in Mtb has a mass fragmentation pattern identical to edaxadiene, which is produced in vitro from geranylgeranyl diphosphate by the enzymes Rv3377c and Rv3378c [Mann FM et al. (2009) J Am Chem Soc 131, 17526–17527]. A second diterpene found in Mtb has a similar mass spectrum, and is always observed in the same proportion relative to edaxadiene, indicating that it is a side product of the Rv3378c reaction in vivo. We name this second diterpene olefin edaxadiene B. The least abundant of the three diterpenes in Mtb extracts is tuberculosinol, a dephosphorylated side-product of the edaxadiene pathway intermediate produced by Rv3377c [Nakano C et al. (2009) Chembiochem 10, 2060–2071; Nakano C et al. (2005) Chem Commun (Camb) 8, 1016–1018]. A frameshift in Rv3377c in Mtb completely eliminates diterpene production, whereas expression of Rv3377c and Rv3378c in the nonpathogenic M. smegmatis is sufficient to produce edaxadiene and edaxadiene B. These studies define the pathway of edaxadiene and edaxadiene B biosynthesis in vivo. Rv3377c and Rv3378c are unique to Mtb and M. bovis, making them candidates for selective therapeutics and diagnostics. PMID:20670276

  8. Evaluation of adenosine deaminase activity and antibody to Mycobacterium tuberculosis antigen 5 in cerebrospinal fluid and the radioactive bromide partition test for the early diagnosis of tuberculosis meningitis.

    PubMed Central

    Coovadia, Y M; Dawood, A; Ellis, M E; Coovadia, H M; Daniel, T M

    1986-01-01

    A number of different biochemical and serological tests have been described recently for the early and accurate diagnosis of tuberculous meningitis. None of these tests has yet gained widespread acceptance in clinical medicine or in microbiology laboratories. To investigate this problem we evaluated adenosine deaminase activity (ADA), an enzyme linked immunosorbent assay (ELISA) that detects antibody to antigen 5 of Mycobacterium tuberculosis, and the radioactive bromide partition test (BPT) in the cerebrospinal fluid (CSF). Cerebrospinal fluid specimens from children with tuberculous, pyogenic, and viral meningitis as well as from patients with pulmonary tuberculosis without meningitis and from controls with normal CSFs were included inn the study. In addition, we estimated ADAs in serum samples from selected children in these groups. The sensitivity and specificity of the three tests evaluated in the CSF were: ADA assay 73% and 71%; BPT 92% and 92%; and ELISA for antibody to antigen 5, 53% and 90%, 40% and 94%, and 27% and 100%, respectively, at tires of more than or equal to 1:20, 1:40, and 1:80. The serum ADA was lower (11.0 +/- 6.15 IU/l) in children with tuberculous meningitis when compared with those with pulmonary tuberculosis alone (25.8 +/- 20.9 IU/l). The BPT was found to be the most reliable test in the early differentiation of tuberculous from other causes of meningitis and remained abnormal for a period of up to five months after the beginning of treatment. Accordingly, we believe that the BPT should be used in conjunction with bacterial and fungal antigen detection systems for the initial differentiation of clinically suspicious tuberculous meningitis from Gram or culture negative cases, or both, of bacterial and fungal meningitis. PMID:3087296

  9. Evaluating the anti Mycobacterium tuberculosis activity of Alpinia galanga (L.) Willd. axenically under reducing oxygen conditions and in intracellular assays

    PubMed Central

    2014-01-01

    Background In tuberculosis (TB), the steadily increasing bacterial resistance to existing drugs and latent TB continue to be major concerns. A combination of conventional drugs and plant derived therapeutics can serve to expand the antimicrobial spectrum, prevent the emergence of drug resistant mutants and minimize toxicity. Alpinia galanga, used in various traditional medicines, possesses broad spectrum antibacterial properties. The study was undertaken to assess the antimycobacterial potential of A. galanga in axenic (under aerobic and anaerobic conditions) and intracellular assays. Methods Phytochemical analysis was done using HPTLC. The acetone, aqueous and ethanolic extracts (1, 10, 25, 50 and 100 μg/ml) of A. galanga were tested axenically using Microplate Alamar Blue Assay (MABA) against Mycobacterium tuberculosis (M.tb) H37Rv and three drug sensitive and three multi drug resistant clinical isolates. The activity of the extracts was also evaluated intracellularly in A549 cell line against these strains. The extracts active under intracellular conditions were further tested in an axenic setup under reducing oxygen concentrations using only H37Rv. Results 1´ acetoxychavicol acetate, the reference standard used, was present in all the three extracts. The acetone and ethanolic extracts were active in axenic (aerobic and anaerobic) and intracellular assays. The aqueous extract did not demonstrate activity under the defined assay parameters. Conclusion A. galanga exhibits anti M.tb activity with multiple modes of action. Since the activity of the extracts was observed under reducing oxygen concentrations, it may be effective in treating the dormant and non-replicating bacteria of latent TB. Though the hypothesis needs further testing, A. galanga being a regular dietary component may be utilized in combination with the conventional TB therapy for enhanced efficacy. PMID:24592852

  10. Radioimmunoassay of tuberculoprotein derived from Mycobacterium tuberculosis.

    PubMed Central

    Straus, E; Wu, N

    1980-01-01

    A radioimmunoassay was developed for constituent of the purified-protein derivative obtained from cultures of Mycobacterium tuberculosis. Crossreacting immunoreactive material was detected in cultures of other mycobacterial species, but no immunoreactivity was present in cultures of various fungal and bacterial species. The development of specific radioimmunoassays for tuberculoproteins offers a new research and diagnostic approach. Images PMID:6933481

  11. Immune activation of the host cell induces drug tolerance in Mycobacterium tuberculosis both in vitro and in vivo

    PubMed Central

    Liu, Yancheng; Tan, Shumin; Huang, Lu; Abramovitch, Robert B.; Rohde, Kyle H.; Zimmerman, Matthew D.; Chen, Chao; Dartois, Véronique; VanderVen, Brian C.

    2016-01-01

    Successful chemotherapy against Mycobacterium tuberculosis (Mtb) must eradicate the bacterium within the context of its host cell. However, our understanding of the impact of this environment on antimycobacterial drug action remains incomplete. Intriguingly, we find that Mtb in myeloid cells isolated from the lungs of experimentally infected mice exhibit tolerance to both isoniazid and rifampin to a degree proportional to the activation status of the host cells. These data are confirmed by in vitro infections of resting versus activated macrophages where cytokine-mediated activation renders Mtb tolerant to four frontline drugs. Transcriptional analysis of intracellular Mtb exposed to drugs identified a set of genes common to all four drugs. The data imply a causal linkage between a loss of fitness caused by drug action and Mtb’s sensitivity to host-derived stresses. Interestingly, the environmental context exerts a more dominant impact on Mtb gene expression than the pressure on the drugs’ primary targets. Mtb’s stress responses to drugs resemble those mobilized after cytokine activation of the host cell. Although host-derived stresses are antimicrobial in nature, they negatively affect drug efficacy. Together, our findings demonstrate that the macrophage environment dominates Mtb’s response to drug pressure and suggest novel routes for future drug discovery programs. PMID:27114608

  12. Phytoconstituents from Alpinia purpurata and their in vitro inhibitory activity against Mycobacterium tuberculosis

    PubMed Central

    Villaflores, Oliver B.; Macabeo, Allan Patrick G.; Gehle, Dietmar; Krohn, Karsten; Franzblau, Scott G.; Aguinaldo, Alicia M.

    2010-01-01

    Alpinia purpurata or red ginger was studied for its phytochemical constituents as part of our growing interest on Philippine Zingiberaceae plants that may exhibit antimycobacterial activity. The hexane and dichloromethane subextracts of the leaves were fractionated and purified using silica gel chromatography to afford a mixture of C28–C32 fatty alcohols, a 3-methoxyflavone and two steroidal glycosides. The two latter metabolites were spectroscopically identified as kumatakenin (1), sitosteryl-3-O-6-palmitoyl-β-D-glucoside (2) and b-sitosteryl galactoside (3) using ultraviolet (UV), infrared (IR), electron impact mass spectrometer (EIMS) and nuclear magnetic resonance (NMR) experiments, and by comparison with literature data. This study demonstrates for the first time the isolation of these constituents from A. purpurata. In addition to the purported anti-inflammatory activity, its phytomedicinal potential to treat tuberculosis is also described. PMID:21120040

  13. Post-exposure vaccination against Mycobacterium tuberculosis

    PubMed Central

    Henao-Tamayo, Marcela; Palaniswamy, Gopinath S.; Smith, Erin E.; Shanley, Crystal A.; Wang, Baolin; Orme, Ian M.; Basaraba, Randall J.; DuTeau, Nancy M.; Ordway, Diane

    2009-01-01

    Summary Enhancing immunity to tuberculosis in animal models after exposure to the infection has proved difficult. In this study we used a newly described flow cytometric technique to monitor changes in cell populations accumulating in the lungs of guinea pigs challenged by low dose aerosol infection with Mycobacterium tuberculosis and vaccinated ten days later. On day forty after infection the fusion protein F36 and a pool of Ag85A and ESAT-6 vaccines had significant effects on the bacterial load, showed increased expression of the activation marker CD45+ on CD4+ T cells, and reduced numbers of heterophils. Lung pathology and pathology scores were marginally improved in animals given these vaccines, but lymph node pathology was not influenced. Despite early effects no changes in long term survival were seen. These results suggest that a single post-exposure vaccination can initially slow the disease process. However, this effect is transient, but this could be of use in an multidrug resistant/extremely drug resistant outbreak situation because it could potentially slow the infection long enough to complete drug susceptibility testing and initiate effective chemotherapy. PMID:19264552

  14. Mutational analysis of the (p)ppGpp synthetase activity of the Rel enzyme of Mycobacterium tuberculosis.

    PubMed

    Bag, Satyabrata; Das, Bhabatosh; Dasgupta, Shreya; Bhadra, Rupak K

    2014-08-01

    Rel(Mtb), a GTP pyrophosphokinase encoded by the Mycobacterium tuberculosis (Mtb) genome, catalyzes synthesis of (p)ppGpp from ATP and GDP(GTP) and its hydrolysis to GDP(GTP) and pyrophosphate to mediate stringent response, which helps bacteria to survive during nutrient limitation. Like other members of Rel_Spo homologs, Rel(Mtb) has four distinct domains: HD, Rel_Spo (RSD), TGS and ACT. The N-terminal HD and RSD are responsible for (p)ppGpp hydrolysis and synthesis, respectively. In this study, we have dissected the rel(Mtb) gene function and determined the minimal region essential for (p)ppGpp synthetic activity. The Rel(Mtb) and its truncated derivatives were expressed from an arabinose inducible promoter (P(BAD)), and in vivo functional analyses were done in a (p)ppGpp null Escherichia coli strain. Our results indicate that only 243 amino acids (188-430 residues) containing fragment are sufficient for Rel(Mtb) (p)ppGpp synthetic activity. The results were further confirmed by in vitro assays using purified proteins. We further characterized the RSD of Rel(Mtb) by substituting several conserved amino acids with structurally related residues and identified six such residues, which appeared to be critical for maintaining its catalytic activity. Furthermore, we have also extended our analysis to an RSD encoding gene rv1366 of Mtb, and experimental results indicated that the encoded protein Rv1366 is unable to synthesize (p)ppGpp.

  15. Surface Expression of MPT64 as a Fusion with the PE Domain of PE_PGRS33 Enhances Mycobacterium bovis BCG Protective Activity against Mycobacterium tuberculosis in Mice▿

    PubMed Central

    Sali, Michela; Di Sante, Gabriele; Cascioferro, Alessandro; Zumbo, Antonella; Nicolò, Chiara; Donà, Valentina; Rocca, Stefano; Procoli, Annabella; Morandi, Matteo; Ria, Francesco; Palù, Giorgio; Fadda, Giovanni; Manganelli, Riccardo; Delogu, Giovanni

    2010-01-01

    To improve the current vaccine against tuberculosis, a recombinant strain of Mycobacterium bovis bacillus Calmette-Guérin (rBCG) expressing a Mycobacterium tuberculosis vaccine candidate antigen (MPT64) in strong association with the mycobacterial cell wall was developed. To deliver the candidate antigen on the surface, we fused the mpt64 gene to the sequence encoding the PE domain of the PE_PGRS33 protein of M. tuberculosis (to create strain HPE-ΔMPT64-BCG), which we have previously shown to transport proteins to the bacterial surface. In a series of protection experiments in the mouse model of tuberculosis, we showed that (i) immunization of mice with HPE-ΔMPT64-BCG provides levels of protection significantly higher than those afforded by the parental BCG strain, as assessed by bacterial colonization in lungs and spleens and by lung involvement (at both 28 and 70 days postchallenge), (ii) rBCG strains expressing MPT64 provide better protection than the parental BCG strain only when this antigen is surface expressed, and (iii) the HPE-ΔMPT64-BCG-induced MPT64-specific T cell repertoire when characterized by β chain variable region-β chain joining region (BV-BJ) spectratyping indicates that protection is correlated with the ability to recruit gamma interferon (IFN-γ)-secreting T cells carrying the BV8.3-BJ1.5 (172 bp) shared rearrangement. These results demonstrate that HPE-ΔMPT64-BCG is one of the most effective new vaccines tested so far in the mouse model of tuberculosis and underscore the impact of antigen cellular localization on the induction of the specific immune response induced by rBCG. PMID:20921146

  16. Cytokine Profiles for Peripheral Blood Lymphocytes from Patients with Active Pulmonary Tuberculosis and Healthy Household Contacts in Response to the 30-Kilodalton Antigen of Mycobacterium tuberculosis

    PubMed Central

    Torres, Martha; Herrera, Teresa; Villareal, Hector; Rich, Elizabeth A.; Sada, Eduardo

    1998-01-01

    Patients with active tuberculosis (TB) have a stronger humoral but a poorer cellular immune response to the secreted 30-kDa antigen (Ag) of Mycobacterium tuberculosis than do healthy household contacts (HHC), who presumably are more protected against disease. The basis for this observation was studied by examining the Th1 (interleukin 2 [IL-2] and gamma interferon [IFN-γ])- and Th2 (IL-10 and IL-4)-type cytokines produced in response to the 30-kDa Ag by peripheral blood mononuclear cells (PBMC) from patients with active pulmonary TB (n = 7) and from HHC who were tuberculin (purified protein derivative) skin test positive (n = 12). Thirty-kilodalton-Ag-stimulated PBMC from TB patients produced significantly lower levels of IFN-γ (none detectable) than did those from HHC (212 ± 73 pg/ml, mean ± standard error) (P < 0.001). Likewise, 30-kDa-Ag-stimulated PBMC from TB patients failed to express IFN-γ mRNA by reverse transcription-PCR, whereas cells from HHC expressed the IFN-γ gene. In contrast, 30-kDa-Ag-stimulated PBMC from TB patients produced significantly higher levels of IL-10 (403 ± 80 pg/ml) than did those from HHC (187 ± 66 pg/ml) (P < 0.013), although cells from both groups expressed the IL-10 gene. IL-2 and IL-4 were not consistently produced, and their genes were not expressed by 30-kDa-Ag-stimulated cells from either TB patients or HHC. After treatment with antituberculous drugs, lymphocytes from four of the seven TB patients proliferated and three of them expressed IFN-γ mRNA in response to the 30-kDa Ag and produced decreased levels of IL-10. PMID:9423855

  17. Implications of binding mode and active site flexibility for inhibitor potency against the salicylate synthase from Mycobacterium tuberculosis.

    PubMed

    Chi, Gamma; Manos-Turvey, Alexandra; O'Connor, Patrick D; Johnston, Jodie M; Evans, Genevieve L; Baker, Edward N; Payne, Richard J; Lott, J Shaun; Bulloch, Esther M M

    2012-06-19

    MbtI is the salicylate synthase that catalyzes the first committed step in the synthesis of the iron chelating compound mycobactin in Mycobacterium tuberculosis. We previously developed a series of aromatic inhibitors against MbtI based on the reaction intermediate for this enzyme, isochorismate. The most potent of these inhibitors had hydrophobic substituents, ranging in size from a methyl to a phenyl group, appended to the terminal alkene of the enolpyruvyl group. These compounds exhibited low micromolar inhibition constants against MbtI and were at least an order of magnitude more potent than the parental compound for the series, which carries a native enolpyruvyl group. In this study, we sought to understand how the substituted enolpyruvyl group confers greater potency, by determining cocrystal structures of MbtI with six inhibitors from the series. A switch in binding mode at the MbtI active site is observed for inhibitors carrying a substituted enolpyruvyl group, relative to the parental compound. Computational studies suggest that the change in binding mode, and higher potency, is due to the effect of the substituents on the conformational landscape of the core inhibitor structure. The crystal structures and fluorescence-based thermal shift assays indicate that substituents larger than a methyl group are accommodated in the MbtI active site through significant but localized flexibility in the peptide backbone. These findings have implications for the design of improved inhibitors of MbtI, as well as other chorismate-utilizing enzymes from this family. PMID:22607697

  18. Crystal Structures of the Response Regulator DosR From Mycobacterium Tuberculosis Suggest a Helix Rearrangement Mechanism for Phosphorylation Activation

    SciTech Connect

    Wisedchaisri, G.; Wu, M.; Sherman, D.R.; Hol, W.G.J.

    2009-05-26

    The response regulator DosR is essential for promoting long-term survival of Mycobacterium tuberculosis under low oxygen conditions in a dormant state and may be responsible for latent tuberculosis in one-third of the world's population. Here, we report crystal structures of full-length unphosphorylated DosR at 2.2 {angstrom} resolution and its C-terminal DNA-binding domain at 1.7 {angstrom} resolution. The full-length DosR structure reveals several features never seen before in other response regulators. The N-terminal domain of the full-length DosR structure has an unexpected ({beta}{alpha}){sub 4} topology instead of the canonical ({beta}{alpha}){sub 5} fold observed in other response regulators. The linker region adopts a unique conformation that contains two helices forming a four-helix bundle with two helices from another subunit, resulting in dimer formation. The C-terminal domain in the full-length DosR structure displays a novel location of helix {alpha}10, which allows Gln199 to interact with the catalytic Asp54 residue of the N-terminal domain. In contrast, the structure of the DosR C-terminal domain alone displays a remarkable unstructured conformation for helix {alpha}10 residues, different from the well-defined helical conformations in all other known structures, indicating considerable flexibility within the C-terminal domain. Our structures suggest a mode of DosR activation by phosphorylation via a helix rearrangement mechanism.

  19. Human immune response to Mycobacterium tuberculosis antigens.

    PubMed Central

    Havlir, D V; Wallis, R S; Boom, W H; Daniel, T M; Chervenak, K; Ellner, J J

    1991-01-01

    Little is known about the immunodominant or protective antigens of Mycobacterium tuberculosis in humans. Cell-mediated immunity is necessary for protection, and healthy tuberculin-positive individuals are relatively resistant to exogenous reinfection. We compared the targets of the cell-mediated immune response in healthy tuberculin-positive individuals to those of tuberculosis patients and tuberculin-negative persons. By using T-cell Western blotting (immunoblotting) of nitrocellulose-bound M. tuberculosis culture filtrate, peaks of T-cell blastogenic activity were identified in the healthy tuberculin reactors at 30, 37, 44, 57, 64, 71 and 88 kDa. Three of these fractions (30, 64, and 71 kDa) coincided with previously characterized proteins: antigen 6/alpha antigen, HSP60, and HSP70, respectively. The blastogenic responses to purified M. tuberculosis antigen 6/alpha antigen and BCG HSP60 were assessed. When cultured with purified antigen 6/alpha antigen, lymphocytes of healthy tuberculin reactors demonstrated greater [3H]thymidine incorporation than either healthy tuberculin-negative controls or tuberculous patients (8,113 +/- 1,939 delta cpm versus 645 +/- 425 delta cpm and 1,019 +/- 710 delta cpm, respectively; P less than 0.01). Healthy reactors also responded to HSP60, although to a lesser degree than antigen 6/alpha antigen (4,276 +/- 1,095 delta cpm; P less than 0.05). Partially purified HSP70 bound to nitrocellulose paper elicited a significant lymphocyte blastogenic response in two of six of the tuberculous patients but in none of the eight healthy tuberculin reactors. Lymphocytes of none of five tuberculin-negative controls responded to recombinant antigens at 14 or 19 kDa or to HSP70. Antibody reactivity generally was inversely correlated with blastogenic response: tuberculous sera had high titer antibody to M. tuberculosis culture filtrate in a range from 35 to 180 kDa. This is the first systematic evaluation of the human response to a panel of native

  20. Baeyer-Villiger Monooxygenases EthA and MymA Are Required for Activation of Replicating and Non-replicating Mycobacterium tuberculosis Inhibitors.

    PubMed

    Grant, Sarah Schmidt; Wellington, Samantha; Kawate, Tomohiko; Desjardins, Christopher A; Silvis, Melanie R; Wivagg, Carl; Thompson, Matthew; Gordon, Katherine; Kazyanskaya, Edward; Nietupski, Raymond; Haseley, Nathan; Iwase, Noriaki; Earl, Ashlee M; Fitzgerald, Michael; Hung, Deborah T

    2016-06-23

    Successful treatment of Mycobacterium tuberculosis infection typically requires a complex regimen administered over at least 6 months. Interestingly, many of the antibiotics used to treat M. tuberculosis are prodrugs that require intracellular activation. Here, we describe three small molecules, active against both replicating and non-replicating M. tuberculosis, that require activation by Baeyer-Villiger monooxygenases (BVMOs). Two molecules require BVMO EthA (Rv3854c) for activation and the third molecule requires the BVMO MymA (Rv3083). While EthA is known to activate the antitubercular drug ethionamide, this is the first description of MymA as an activating enzyme of a prodrug. Furthermore, we found that MymA also plays a role in activating ethionamide, with loss of MymA function resulting in ethionamide-resistant M. tuberculosis. These findings suggest overlap in function and specificity of the BVMOs in M. tuberculosis. PMID:27321573

  1. Validation of a homology model of Mycobacterium tuberculosis DXS: rationalization of observed activities of thiamine derivatives as potent inhibitors of two orthologues of DXS.

    PubMed

    Masini, T; Lacy, B; Monjas, L; Hawksley, D; de Voogd, A R; Illarionov, B; Iqbal, A; Leeper, F J; Fischer, M; Kontoyianni, M; Hirsch, A K H

    2015-12-14

    The enzyme DXS catalyzes the first, rate-limiting step of the 2-C-methyl-d-erythritol-4-phosphate (MEP, 1) pathway using thiamine diphosphate (ThDP) as cofactor; the DXS-catalyzed reaction constitutes also the first step in vitamin B1 and B6 metabolism in bacteria. DXS is the least studied among the enzymes of this pathway in terms of crystallographic information, with only one complete crystal structure deposited in the Protein Data Bank (Deinococcus radiodurans DXS, PDB: ). We synthesized a series of thiamine and ThDP derivatives and tested them for their biochemical activity against two DXS orthologues, namely D. radiodurans DXS and Mycobacterium tuberculosis DXS. These experimental results, combined with advanced docking studies, led to the development and validation of a homology model of M. tuberculosis DXS, which, in turn, will guide medicinal chemists in rationally designing potential inhibitors for M. tuberculosis DXS.

  2. Multidrug-resistant Mycobacterium tuberculosis: molecular perspectives.

    PubMed Central

    Rattan, A.; Kalia, A.; Ahmad, N.

    1998-01-01

    Multidrug-resistant strains of Mycobacterium tuberculosis seriously threaten tuberculosis (TB) control and prevention efforts. Molecular studies of the mechanism of action of antitubercular drugs have elucidated the genetic basis of drug resistance in M. tuberculosis. Drug resistance in M. tuberculosis is attributed primarily to the accumulation of mutations in the drug target genes; these mutations lead either to an altered target (e.g., RNA polymerase and catalase-peroxidase in rifampicin and isoniazid resistance, respectively) or to a change in titration of the drug (e.g., InhA in isoniazid resistance). Development of specific mechanism-based inhibitors and techniques to rapidly detect multidrug resistance will require further studies addressing the drug and drug-target interaction. PMID:9621190

  3. The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection

    PubMed Central

    Lin, Philana Ling; Dietrich, Jes; Tan, Esterlina; Abalos, Rodolfo M.; Burgos, Jasmin; Bigbee, Carolyn; Bigbee, Matthew; Milk, Leslie; Gideon, Hannah P.; Rodgers, Mark; Cochran, Catherine; Guinn, Kristi M.; Sherman, David R.; Klein, Edwin; Janssen, Christopher; Flynn, JoAnne L.; Andersen, Peter

    2011-01-01

    It is estimated that one-third of the world’s population is infected with Mycobacterium tuberculosis. Infection typically remains latent, but it can reactivate to cause clinical disease. The only vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), is largely ineffective, and ways to enhance its efficacy are being developed. Of note, the candidate booster vaccines currently under clinical development have been designed to improve BCG efficacy but not prevent reactivation of latent infection. Here, we demonstrate that administering a multistage vaccine that we term H56 in the adjuvant IC31 as a boost to vaccination with BCG delays and reduces clinical disease in cynomolgus macaques challenged with M. tuberculosis and prevents reactivation of latent infection. H56 contains Ag85B and ESAT-6, which are two of the M. tuberculosis antigens secreted in the acute phase of infection, and the nutrient stress–induced antigen Rv2660c. Boosting with H56/IC31 resulted in efficient containment of M. tuberculosis infection and reduced rates of clinical disease, as measured by clinical parameters, inflammatory markers, and improved survival of the animals compared with BCG alone. Boosted animals showed reduced pulmonary pathology and extrapulmonary dissemination, and protection correlated with a strong recall response against ESAT-6 and Rv2660c. Importantly, BCG/H56-vaccinated monkeys did not reactivate latent infection after treatment with anti-TNF antibody. Our results indicate that H56/IC31 boosting is able to control late-stage infection with M. tuberculosis and contain latent tuberculosis, providing a rationale for the clinical development of H56. PMID:22133873

  4. Esters of Pyrazinoic Acid Are Active against Pyrazinamide-Resistant Strains of Mycobacterium tuberculosis and Other Naturally Resistant Mycobacteria In Vitro and Ex Vivo within Macrophages.

    PubMed

    Pires, David; Valente, Emília; Simões, Marta Filipa; Carmo, Nuno; Testa, Bernard; Constantino, Luís; Anes, Elsa

    2015-12-01

    Pyrazinamide (PZA) is active against major Mycobacterium tuberculosis species (M. tuberculosis, M. africanum, and M. microti) but not against M. bovis and M. avium. The latter two are mycobacterial species involved in human and cattle tuberculosis and in HIV coinfections, respectively. PZA is a first-line agent for the treatment of human tuberculosis and requires activation by a mycobacterial pyrazinamidase to form the active metabolite pyrazinoic acid (POA). As a result of this mechanism, resistance to PZA, as is often found in tuberculosis patients, is caused by point mutations in pyrazinamidase. In previous work, we have shown that POA esters and amides synthesized in our laboratory were stable in plasma (M. F. Simões, E. Valente, M. J. Gómez, E. Anes, and L. Constantino, Eur J Pharm Sci 37:257-263, 2009, http://dx.doi.org/10.1016/j.ejps.2009.02.012). Although the amides did not present significant activity, the esters were active against sensitive mycobacteria at concentrations 5- to 10-fold lower than those of PZA. Here, we report that these POA derivatives possess antibacterial efficacy in vitro and ex vivo against several species and strains of Mycobacterium with natural or acquired resistance to PZA, including M. bovis and M. avium. Our results indicate that the resistance probably was overcome by cleavage of the prodrugs into POA and a long-chain alcohol. Although it is not possible to rule out that the esters have intrinsic activity per se, we bring evidence here that long-chain fatty alcohols possess a significant antimycobacterial effect against PZA-resistant species and strains and are not mere inactive promoieties. These findings may lead to candidate dual drugs having enhanced activity against both PZA-susceptible and PZA-resistant isolates and being suitable for clinical development. PMID:26438493

  5. Comparative Mycobacterium tuberculosis Spoligotype Distribution in Mexico

    PubMed Central

    Ramos-Alvarez, Jessica; Molina-Torres, Carmen A.; Rivera-Morales, Lydia Guadalupe; Rendón, Adrian; Quiñones-Falconi, Francisco; Ocampo-Candiani, Jorge

    2014-01-01

    In the present work, we studied the genetic diversity of Mycobacterium tuberculosis clinical isolates from patients according to their gender, age, and geographic location in Mexico. We did not observe any statistically significant differences in regard to age or gender. We found that spoligo international type 53 (SIT53) is more frequent in the northern states and that SIT119 predominates in central Mexico. PMID:24850349

  6. Mycobacterium tuberculosis: Manipulator of Protective Immunity

    PubMed Central

    Korb, Vanessa C.; Chuturgoon, Anil A.; Moodley, Devapregasan

    2016-01-01

    Mycobacterium tuberculosis (MTB) is one of the most successful pathogens in human history and remains a global health challenge. MTB has evolved a plethora of strategies to evade the immune response sufficiently to survive within the macrophage in a bacterial-immunological equilibrium, yet causes sufficient immunopathology to facilitate its transmission. This review highlights MTB as the driver of disease pathogenesis and presents evidence of the mechanisms by which MTB manipulates the protective immune response into a pathological productive infection. PMID:26927066

  7. Carbapenems and Rifampin Exhibit Synergy against Mycobacterium tuberculosis and Mycobacterium abscessus

    PubMed Central

    Kaushik, Amit; Makkar, Nayani; Pandey, Pooja; Parrish, Nicole; Singh, Urvashi

    2015-01-01

    An effective regimen for treatment of tuberculosis (TB) is comprised of multiple drugs that inhibit a range of essential cellular activities in Mycobacterium tuberculosis. The effectiveness of a regimen is further enhanced if constituent drugs act with synergy. Here, we report that faropenem (a penem) or biapenem, doripenem, or meropenem (carbapenems), which belong to the β-lactam class of antibiotics, and rifampin, one of the drugs that forms the backbone of TB treatment, act with synergy when combined. One of the reasons (carba)penems are seldom used for treatment of TB is the high dosage levels required, often at the therapeutic limits. The synergistic combination of rifampin and these (carba)penems indicates that (carba)penems can be administered at dosages that are therapeutically relevant. The combination of faropenem and rifampin also limits the frequency of resistant mutants, as we were unable to obtain spontaneous mutants in the presence of these two drugs. The combinations of rifampin and (carba)penems were effective not only against drug-sensitive Mycobacterium tuberculosis but also against drug-resistant clinical isolates that are otherwise resistant to rifampin. A combination of doripenem or biapenem and rifampin also exhibited synergistic activity against Mycobacterium abscessus. Although the MICs of these three drugs alone against M. abscessus are too high to be of clinical relevance, their concentrations in combinations are therapeutically relevant; therefore, they warrant further evaluation for clinical utility to treat Mycobacterium abscessus infection, especially in cystic fibrosis patients. PMID:26259792

  8. Carbapenems and Rifampin Exhibit Synergy against Mycobacterium tuberculosis and Mycobacterium abscessus.

    PubMed

    Kaushik, Amit; Makkar, Nayani; Pandey, Pooja; Parrish, Nicole; Singh, Urvashi; Lamichhane, Gyanu

    2015-10-01

    An effective regimen for treatment of tuberculosis (TB) is comprised of multiple drugs that inhibit a range of essential cellular activities in Mycobacterium tuberculosis. The effectiveness of a regimen is further enhanced if constituent drugs act with synergy. Here, we report that faropenem (a penem) or biapenem, doripenem, or meropenem (carbapenems), which belong to the β-lactam class of antibiotics, and rifampin, one of the drugs that forms the backbone of TB treatment, act with synergy when combined. One of the reasons (carba)penems are seldom used for treatment of TB is the high dosage levels required, often at the therapeutic limits. The synergistic combination of rifampin and these (carba)penems indicates that (carba)penems can be administered at dosages that are therapeutically relevant. The combination of faropenem and rifampin also limits the frequency of resistant mutants, as we were unable to obtain spontaneous mutants in the presence of these two drugs. The combinations of rifampin and (carba)penems were effective not only against drug-sensitive Mycobacterium tuberculosis but also against drug-resistant clinical isolates that are otherwise resistant to rifampin. A combination of doripenem or biapenem and rifampin also exhibited synergistic activity against Mycobacterium abscessus. Although the MICs of these three drugs alone against M. abscessus are too high to be of clinical relevance, their concentrations in combinations are therapeutically relevant; therefore, they warrant further evaluation for clinical utility to treat Mycobacterium abscessus infection, especially in cystic fibrosis patients. PMID:26259792

  9. Active Site Loop Dynamics of a Class IIa Fructose 1,6-Bisphosphate Aldolase from Mycobacterium tuberculosis

    SciTech Connect

    Pegan, Scott D.; Rukseree, Kamolchanok; Capodagli, Glenn C.; Baker, Erica A.; Krasnykh, Olga; Franzblau, Scott G.; Mesecar, Andrew D.

    2013-01-08

    The class II fructose 1,6-bisphosphate aldolases (FBAs, EC 4.1.2.13) comprises one of two families of aldolases. Instead of forming a Schiff base intermediate using an ε-amino group of a lysine side chain, class II FBAs utilize Zn(II) to stabilize a proposed hydroxyenolate intermediate (HEI) in the reversible cleavage of fructose 1,6-bisphosphate, forming glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). As class II FBAs have been shown to be essential in pathogenic bacteria, focus has been placed on these enzymes as potential antibacterial targets. Although structural studies of class II FBAs from Mycobacterium tuberculosis (MtFBA), other bacteria, and protozoa have been reported, the structure of the active site loop responsible for catalyzing the protonation–deprotonation steps of the reaction for class II FBAs has not yet been observed. We therefore utilized the potent class II FBA inhibitor phosphoglycolohydroxamate (PGH) as a mimic of the HEI- and DHAP-bound form of the enzyme and determined the X-ray structure of the MtFBA–PGH complex to 1.58 Å. Remarkably, we are able to observe well-defined electron density for the previously elusive active site loop of MtFBA trapped in a catalytically competent orientation. Utilization of this structural information and site-directed mutagenesis and kinetic studies conducted on a series of residues within the active site loop revealed that E169 facilitates a water-mediated deprotonation–protonation step of the MtFBA reaction mechanism. Furthermore, solvent isotope effects on MtFBA and catalytically relevant mutants were used to probe the effect of loop flexibility on catalytic efficiency. Additionally, we also reveal the structure of MtFBA in its holoenzyme form.

  10. Active site loop dynamics of a class IIa fructose 1,6-bisphosphate aldolase from Mycobacterium tuberculosis.

    PubMed

    Pegan, Scott D; Rukseree, Kamolchanok; Capodagli, Glenn C; Baker, Erica A; Krasnykh, Olga; Franzblau, Scott G; Mesecar, Andrew D

    2013-02-01

    Class II fructose 1,6-bisphosphate aldolases (FBAs, EC 4.1.2.13) comprise one of two families of aldolases. Instead of forming a Schiff base intermediate using an ε-amino group of a lysine side chain, class II FBAs utilize Zn(II) to stabilize a proposed hydroxyenolate intermediate (HEI) in the reversible cleavage of fructose 1,6-bisphosphate, forming glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). As class II FBAs have been shown to be essential in pathogenic bacteria, focus has been placed on these enzymes as potential antibacterial targets. Although structural studies of class II FBAs from Mycobacterium tuberculosis (MtFBA), other bacteria, and protozoa have been reported, the structure of the active site loop responsible for catalyzing the protonation-deprotonation steps of the reaction for class II FBAs has not yet been observed. We therefore utilized the potent class II FBA inhibitor phosphoglycolohydroxamate (PGH) as a mimic of the HEI- and DHAP-bound form of the enzyme and determined the X-ray structure of the MtFBA-PGH complex to 1.58 Å. Remarkably, we are able to observe well-defined electron density for the previously elusive active site loop of MtFBA trapped in a catalytically competent orientation. Utilization of this structural information and site-directed mutagenesis and kinetic studies conducted on a series of residues within the active site loop revealed that E169 facilitates a water-mediated deprotonation-protonation step of the MtFBA reaction mechanism. Also, solvent isotope effects on MtFBA and catalytically relevant mutants were used to probe the effect of loop flexibility on catalytic efficiency. Additionally, we also reveal the structure of MtFBA in its holoenzyme form.

  11. Targeting the histidine pathway in Mycobacterium tuberculosis.

    PubMed

    Lunardi, Juleane; Nunes, José Eduardo S; Bizarro, Cristiano V; Basso, Luiz Augusto; Santos, Diógenes Santiago; Machado, Pablo

    2013-01-01

    Worldwide, tuberculosis is the leading cause of morbidity and mortality due to a single bacterial pathogen, Mycobacterium tuberculosis (Mtb). The increasing prevalence of this disease, the emergence of multi-, extensively, and totally drug-resistant strains, complicated by co-infection with the human immunodeficiency virus, and the length of tuberculosis chemotherapy have led to an urgent and continued need for the development of new and more effective antitubercular drugs. Within this context, the L-histidine biosynthetic pathway, which converts 5-phosphoribosyl 1-pyrophosphate to L-histidine in ten enzymatic steps, has been reported as a promising target of antimicrobial agents. This pathway is found in bacteria, archaebacteria, lower eukaryotes, and plants but is absent in mammals, making these enzymes highly attractive targets for the drug design of new antimycobacterial compounds with selective toxicity. Moreover, the biosynthesis of L-histidine has been described as essential for Mtb growth in vitro. Accordingly, a comprehensive overview of Mycobacterium tuberculosis histidine pathway enzymes as attractive targets for the development of new antimycobacterial agents is provided, mainly summarizing the previously reported inhibition data for Mtb or orthologous proteins. PMID:24111909

  12. Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages

    PubMed Central

    Schnappinger, Dirk; Ehrt, Sabine; Voskuil, Martin I.; Liu, Yang; Mangan, Joseph A.; Monahan, Irene M.; Dolganov, Gregory; Efron, Brad; Butcher, Philip D.; Nathan, Carl; Schoolnik, Gary K.

    2003-01-01

    Little is known about the biochemical environment in phagosomes harboring an infectious agent. To assess the state of this organelle we captured the transcriptional responses of Mycobacterium tuberculosis (MTB) in macrophages from wild-type and nitric oxide (NO) synthase 2–deficient mice before and after immunologic activation. The intraphagosomal transcriptome was compared with the transcriptome of MTB in standard broth culture and during growth in diverse conditions designed to simulate features of the phagosomal environment. Genes expressed differentially as a consequence of intraphagosomal residence included an interferon γ– and NO-induced response that intensifies an iron-scavenging program, converts the microbe from aerobic to anaerobic respiration, and induces a dormancy regulon. Induction of genes involved in the activation and β-oxidation of fatty acids indicated that fatty acids furnish carbon and energy. Induction of σE-dependent, sodium dodecyl sulfate–regulated genes and genes involved in mycolic acid modification pointed to damage and repair of the cell envelope. Sentinel genes within the intraphagosomal transcriptome were induced similarly by MTB in the lungs of mice. The microbial transcriptome thus served as a bioprobe of the MTB phagosomal environment, showing it to be nitrosative, oxidative, functionally hypoxic, carbohydrate poor, and capable of perturbing the pathogen's cell envelope. PMID:12953091

  13. High Persister Mutants in Mycobacterium tuberculosis

    PubMed Central

    Torrey, Heather L.; Keren, Iris; Via, Laura E.; Lee, Jong Seok; Lewis, Kim

    2016-01-01

    Mycobacterium tuberculosis forms drug-tolerant persister cells that are the probable cause of its recalcitrance to antibiotic therapy. While genetically identical to the rest of the population, persisters are dormant, which protects them from killing by bactericidal antibiotics. The mechanism of persister formation in M. tuberculosis is not well understood. In this study, we selected for high persister (hip) mutants and characterized them by whole genome sequencing and transcriptome analysis. In parallel, we identified and characterized clinical isolates that naturally produce high levels of persisters. We compared the hip mutants obtained in vitro with clinical isolates to identify candidate persister genes. Genes involved in lipid biosynthesis, carbon metabolism, toxin-antitoxin systems, and transcriptional regulators were among those identified. We also found that clinical hip isolates exhibited greater ex vivo survival than the low persister isolates. Our data suggest that M. tuberculosis persister formation involves multiple pathways, and hip mutants may contribute to the recalcitrance of the infection. PMID:27176494

  14. Peptide mimotopes of Mycobacterium tuberculosis carbohydrate immunodeterminants

    PubMed Central

    2004-01-01

    Cell-surface saccharides of Mycobacterium tuberculosis appear to be crucial factors in tuberculosis pathogenicity and could be useful antigens in tuberculosis immunodiagnosis. In the present study, we report the successful antigenic and immunogenic mimicry of mannose-containing cell-wall compounds of M. tuberculosis by dodecamer peptides identified by phage-display technology. Using a rabbit antiserum raised against M. tuberculosis cell-surface saccharides as a target for biopanning, peptides with three different consensus sequences were identified. Phage-displayed and chemically synthesized peptides bound to the anticarbohydrate antiserum. Rabbit antibodies elicited against the peptide QEPLMGTVPIRAGGGS recognize the mannosylated M. tuberculosis cell-wall antigens arabinomannan and lipoarabinomannan, and the glycosylated recombinant protein alanine/proline-rich antigen. Furthermore, antibodies were also able to react with mannan from Saccharomyces cerevisiae, but not with phosphatidylinositol dimannosides or arabinogalactan from mycobacteria. These results suggest that the immunogenic peptide mimics oligomannosidic epitopes. Interestingly, this report provides evidence that, in contrast with previously known carbohydrate mimotopes, no aromatic residues are necessary in a peptide sequence for mimicking unusual glycoconjugates synthesized by mycobacteria. The possible usefulness of the identified peptide mimotopes as surrogate reagents for immunodiagnosis and for the study of functional roles of the native non-peptide epitopes is discussed. PMID:15560754

  15. Peptide mimotopes of Mycobacterium tuberculosis carbohydrate immunodeterminants.

    PubMed

    Gevorkian, Goar; Segura, Erika; Acero, Gonzalo; Palma, José P; Espitia, Clara; Manoutcharian, Karen; López-Marín, Luz M

    2005-04-15

    Cell-surface saccharides of Mycobacterium tuberculosis appear to be crucial factors in tuberculosis pathogenicity and could be useful antigens in tuberculosis immunodiagnosis. In the present study, we report the successful antigenic and immunogenic mimicry of mannose-containing cell-wall compounds of M. tuberculosis by dodecamer peptides identified by phage-display technology. Using a rabbit antiserum raised against M. tuberculosis cell-surface saccharides as a target for biopanning, peptides with three different consensus sequences were identified. Phage-displayed and chemically synthesized peptides bound to the anticarbohydrate antiserum. Rabbit antibodies elicited against the peptide QEPLMGTVPIRAGGGS recognize the mannosylated M. tuberculosis cell-wall antigens arabinomannan and lipoarabinomannan, and the glycosylated recombinant protein alanine/proline-rich antigen. Furthermore, antibodies were also able to react with mannan from Saccharomyces cerevisiae, but not with phosphatidylinositol dimannosides or arabinogalactan from mycobacteria. These results suggest that the immunogenic peptide mimics oligomannosidic epitopes. Interestingly, this report provides evidence that, in contrast with previously known carbohydrate mimotopes, no aromatic residues are necessary in a peptide sequence for mimicking unusual glycoconjugates synthesized by mycobacteria. The possible usefulness of the identified peptide mimotopes as surrogate reagents for immunodiagnosis and for the study of functional roles of the native non-peptide epitopes is discussed.

  16. In Vitro Activity of Copper(II) Complexes, Loaded or Unloaded into a Nanostructured Lipid System, against Mycobacterium tuberculosis

    PubMed Central

    da Silva, Patricia B.; de Souza, Paula C.; Calixto, Giovana Maria Fioramonti; Lopes, Erica de O.; Frem, Regina C. G.; Netto, Adelino V. G.; Mauro, Antonio E.; Pavan, Fernando R.; Chorilli, Marlus

    2016-01-01

    Tuberculosis (TB) is an infectious disease caused mainly by the bacillus Mycobacterium tuberculosis (Mtb), presenting 9.5 million new cases and 1.5 million deaths in 2014. The aim of this study was to evaluate a nanostructured lipid system (NLS) composed of 10% phase oil (cholesterol), 10% surfactant (soy phosphatidylcholine, sodium oleate), and Eumulgin® HRE 40 ([castor oil polyoxyl-40-hydrogenated] in a proportion of 3:6:8), and an 80% aqueous phase (phosphate buffer pH = 7.4) as a tactic to enhance the in vitro anti-Mtb activity of the copper(II) complexes [CuCl2(INH)2]·H2O (1), [Cu(NCS)2(INH)2]·5H2O (2) and [Cu(NCO)2(INH)2]·4H2O (3). The Cu(II) complex-loaded NLS displayed sizes ranging from 169.5 ± 0.7095 to 211.1 ± 0.8963 nm, polydispersity index (PDI) varying from 0.135 ± 0.0130 to 0.236 ± 0.00100, and zeta potential ranging from −0.00690 ± 0.0896 to −8.43 ± 1.63 mV. Rheological analysis showed that the formulations behave as non-Newtonian fluids of the pseudoplastic and viscoelastic type. Antimycobacterial activities of the free complexes and NLS-loaded complexes against Mtb H37Rv ATCC 27294 were evaluated by the REMA methodology, and the selectivity index (SI) was calculated using the cytotoxicity index (IC50) against Vero (ATCC® CCL-81), J774A.1 (ATCC® TIB-67), and MRC-5 (ATCC® CCL-171) cell lines. The data suggest that the incorporation of the complexes into NLS improved the inhibitory action against Mtb by 52-, 27-, and 4.7-fold and the SI values by 173-, 43-, and 7-fold for the compounds 1, 2 and 3, respectively. The incorporation of the complexes 1, 2 and 3 into the NLS also resulted in a significant decrease of toxicity towards an alternative model (Artemia salina L.). These findings suggest that the NLS may be considered as a platform for incorporation of metallic complexes aimed at the treatment of TB. PMID:27196901

  17. In Vitro Activity of Copper(II) Complexes, Loaded or Unloaded into a Nanostructured Lipid System, against Mycobacterium tuberculosis.

    PubMed

    Silva, Patricia B da; Souza, Paula C de; Calixto, Giovana Maria Fioramonti; Lopes, Erica de O; Frem, Regina C G; Netto, Adelino V G; Mauro, Antonio E; Pavan, Fernando R; Chorilli, Marlus

    2016-01-01

    Tuberculosis (TB) is an infectious disease caused mainly by the bacillus Mycobacterium tuberculosis (Mtb), presenting 9.5 million new cases and 1.5 million deaths in 2014. The aim of this study was to evaluate a nanostructured lipid system (NLS) composed of 10% phase oil (cholesterol), 10% surfactant (soy phosphatidylcholine, sodium oleate), and Eumulgin(®) HRE 40 ([castor oil polyoxyl-40-hydrogenated] in a proportion of 3:6:8), and an 80% aqueous phase (phosphate buffer pH = 7.4) as a tactic to enhance the in vitro anti-Mtb activity of the copper(II) complexes [CuCl₂(INH)₂]·H₂O (1), [Cu(NCS)₂(INH)₂]·5H₂O (2) and [Cu(NCO)₂(INH)₂]·4H₂O (3). The Cu(II) complex-loaded NLS displayed sizes ranging from 169.5 ± 0.7095 to 211.1 ± 0.8963 nm, polydispersity index (PDI) varying from 0.135 ± 0.0130 to 0.236 ± 0.00100, and zeta potential ranging from -0.00690 ± 0.0896 to -8.43 ± 1.63 mV. Rheological analysis showed that the formulations behave as non-Newtonian fluids of the pseudoplastic and viscoelastic type. Antimycobacterial activities of the free complexes and NLS-loaded complexes against Mtb H37Rv ATCC 27294 were evaluated by the REMA methodology, and the selectivity index (SI) was calculated using the cytotoxicity index (IC50) against Vero (ATCC(®) CCL-81), J774A.1 (ATCC(®) TIB-67), and MRC-5 (ATCC(®) CCL-171) cell lines. The data suggest that the incorporation of the complexes into NLS improved the inhibitory action against Mtb by 52-, 27-, and 4.7-fold and the SI values by 173-, 43-, and 7-fold for the compounds 1, 2 and 3, respectively. The incorporation of the complexes 1, 2 and 3 into the NLS also resulted in a significant decrease of toxicity towards an alternative model (Artemia salina L.). These findings suggest that the NLS may be considered as a platform for incorporation of metallic complexes aimed at the treatment of TB. PMID:27196901

  18. Lymphatic endothelial cells are a replicative niche for Mycobacterium tuberculosis

    PubMed Central

    Lerner, Thomas R.; de Souza Carvalho-Wodarz, Cristiane; Repnik, Urska; Russell, Matthew R.G.; Borel, Sophie; Diedrich, Collin R.; Rohde, Manfred; Wainwright, Helen; Collinson, Lucy M.; Wilkinson, Robert J.; Griffiths, Gareth; Gutierrez, Maximiliano G.

    2016-01-01

    In extrapulmonary tuberculosis, the most common site of infection is within the lymphatic system, and there is growing recognition that lymphatic endothelial cells (LECs) are involved in immune function. Here, we identified LECs, which line the lymphatic vessels, as a niche for Mycobacterium tuberculosis in the lymph nodes of patients with tuberculosis. In cultured primary human LECs (hLECs), we determined that M. tuberculosis replicates both in the cytosol and within autophagosomes, but the bacteria failed to replicate when the virulence locus RD1 was deleted. Activation by IFN-γ induced a cell-autonomous response in hLECs via autophagy and NO production that restricted M. tuberculosis growth. Thus, depending on the activation status of LECs, autophagy can both promote and restrict replication. Together, these findings reveal a previously unrecognized role for hLECs and autophagy in tuberculosis pathogenesis and suggest that hLECs are a potential niche for M. tuberculosis that allows establishment of persistent infection in lymph nodes. PMID:26901813

  19. Lymphatic endothelial cells are a replicative niche for Mycobacterium tuberculosis.

    PubMed

    Lerner, Thomas R; de Souza Carvalho-Wodarz, Cristiane; Repnik, Urska; Russell, Matthew R G; Borel, Sophie; Diedrich, Collin R; Rohde, Manfred; Wainwright, Helen; Collinson, Lucy M; Wilkinson, Robert J; Griffiths, Gareth; Gutierrez, Maximiliano G

    2016-03-01

    In extrapulmonary tuberculosis, the most common site of infection is within the lymphatic system, and there is growing recognition that lymphatic endothelial cells (LECs) are involved in immune function. Here, we identified LECs, which line the lymphatic vessels, as a niche for Mycobacterium tuberculosis in the lymph nodes of patients with tuberculosis. In cultured primary human LECs (hLECs), we determined that M. tuberculosis replicates both in the cytosol and within autophagosomes, but the bacteria failed to replicate when the virulence locus RD1 was deleted. Activation by IFN-γ induced a cell-autonomous response in hLECs via autophagy and NO production that restricted M. tuberculosis growth. Thus, depending on the activation status of LECs, autophagy can both promote and restrict replication. Together, these findings reveal a previously unrecognized role for hLECs and autophagy in tuberculosis pathogenesis and suggest that hLECs are a potential niche for M. tuberculosis that allows establishment of persistent infection in lymph nodes.

  20. Characterization of the Mycobacterium tuberculosis H37Rv alkyl hydroperoxidase AhpC points to the importance of ionic interactions in oligomerization and activity.

    PubMed Central

    Chauhan, R; Mande, S C

    2001-01-01

    An alkyl hydroperoxidase (AhpC) has been found frequently to be overexpressed in isoniazid-resistant strains of Mycobacterium tuberculosis. These strains have an inactivated katG gene encoding a catalase peroxidase, which might render mycobacteria susceptible to the toxic peroxide radicals, thus leading to the concomitant overexpression of the AhpC. Although the overexpressed AhpC in isoniazid-resistant strains of M. tuberculosis may not directly participate in isoniazid action, AhpC might still assist M. tuberculosis in combating oxidative damage in the absence of the catalase. Here we have attempted to characterize the AhpC protein biochemically and report its functional and oligomerization properties. The alkyl hydroperoxidase of M. tuberculosis is unique in many ways compared with its well-characterized homologues from enteric bacteria. We show that AhpC is a decameric protein, composed of five identical dimers held together by ionic interactions. Dimerization of individual subunits takes place through an intersubunit disulphide linkage. The ionic interactions play a significant role in enzymic activity of the AhpC protein. The UV absorption spectrum and three-dimensional model of AhpC suggest that interesting conformational changes may take place during oxidation and reduction of the intersubunit disulphide linkage. In the absence of the partner AhpF subunit in M. tuberculosis, the mycobacterial AhpC might use small-molecule reagents, such as mycothiol, for completing its enzymic cycle. PMID:11171096

  1. Beta-lactamases of Mycobacterium tuberculosis and Mycobacterium kansasii.

    PubMed

    Segura, C; Salvadó, M

    1997-09-01

    Re-emergence of infectious diseases caused by mycobacteria as well as the emergence of multiresistant strains of Mycobacterium has promoted the research on the use of beta-lactames in the treatment of such diseases. Mycobacteria produce beta-lactamases: M. tuberculosis produces a wide-spectrum beta-lactamase whose behaviour mimicks those of Gram-negative bacteria. M. kansasii produces also beta-lactamase which can be inhibited by clavulanic acid. An overview on beta-lactamases from both species is reported.

  2. Structure and Proposed Activity of a Member of the VapBC Family of Toxin-Antitoxin Systems: VapBC-5 from Mycobacterium tuberculosis

    SciTech Connect

    Miallau, L.; Faller, M.; Chiang, J.; Arbing, M.; Guo, F.; Cascio, D.; Eisenberg, D.

    2009-03-02

    In prokaryotes, cognate toxin-antitoxin pairs have long been known, but no three-dimensional structure has been available for any given complex from Mycobacterium tuberculosis. Here we report the crystal structure and activity of a member of the VapBC family of complexes from M. tuberculosis. The toxin VapC-5 is a compact, 150 residues, two domain {alpha}/{beta} protein. Bent around the toxin is the VapB-5 antitoxin, a 33-residue {alpha}-helix. Assays suggest that the toxin is an Mg-enabled endoribonuclease, inhibited by the antitoxin. The lack of DNase activity is consistent with earlier suggestions that the complex represses its own operon. Furthermore, analysis of the interactions in the binding of the antitoxin to the toxin suggest that exquisite control is required to protect the bacteria cell from toxic VapC-5.

  3. Multispacer Sequence Typing for Mycobacterium tuberculosis Genotyping

    PubMed Central

    Djelouadji, Zoheira; Arnold, Catherine; Gharbia, Saheer; Raoult, Didier; Drancourt, Michel

    2008-01-01

    Background Genotyping methods developed to survey the transmission dynamics of Mycobacterium tuberculosis currently rely on the interpretation of restriction and amplification profiles. Multispacer sequence typing (MST) genotyping is based on the sequencing of several intergenic regions selected after complete genome sequence analysis. It has been applied to various pathogens, but not to M. tuberculosis. Methods and Findings In M. tuberculosis, the MST approach yielded eight variable intergenic spacers which included four previously described variable number tandem repeat loci, one single nucleotide polymorphism locus and three newly evaluated spacers. Spacer sequence stability was evaluated by serial subculture. The eight spacers were sequenced in a collection of 101 M. tuberculosis strains from five phylogeographical lineages, and yielded 29 genetic events including 13 tandem repeat number variations (44.82%), 11 single nucleotide mutations (37.93%) and 5 deletions (17.24%). These 29 genetic events yielded 32 spacer alleles or spacer-types (ST) with an index of discrimination of 0.95. The distribution of M. tuberculosis isolates into ST profiles correlated with their assignment into phylogeographical lineages. Blind comparison of a further 93 M. tuberculosis strains by MST and restriction fragment length polymorphism-IS6110 fingerprinting and mycobacterial interspersed repetitive units typing, yielded an index of discrimination of 0.961 and 0.992, respectively. MST yielded 41 different profiles delineating 16 related groups and proved to be more discriminatory than IS6110-based typing for isolates containing <8 IS6110 copies (P<0.0003). MST was successfully applied to 7/10 clinical specimens exhibiting a Cts ≤ 42 cycles in internal transcribed spacer-real time PCR. Conclusions These results support MST as an alternative, sequencing-based method for genotyping low IS6110 copy-number M. tuberculosis strains. The M. tuberculosis MST database is freely available

  4. Diagnosis and treatment of latent infection with Mycobacterium tuberculosis.

    PubMed

    Chee, Cynthia Bin-Eng; Sester, Martina; Zhang, Wenhong; Lange, Christoph

    2013-02-01

    In clinical practice, latent infection with Mycobacterium tuberculosis is defined by the presence of an M. tuberculosis-specific immune response in the absence of active tuberculosis. Targeted testing of individuals from risk groups with the tuberculin skin test or an interferon-γ release assay is currently the best method to identify those with the highest risk for progression to tuberculosis. Positive predictive values of the immunodiagnostic tests are substantially influenced by the type of test, the age of the person who is tested, the prevalence of tuberculosis in the society and the risk group to which the person belongs. As a general rule, testing should only be offered when preventive chemotherapy will be accepted in the case of a positive test result. Preventive chemotherapy can effectively protect individuals at risk from the development of tuberculosis, although at least 3 months of combination therapy or up to 9 months of monotherapy are required, and overall acceptance rate is low. Improvements of the current generation of immunodiagnostic tests could substantially lower the number of individuals that need to be treated to prevent a case of tuberculosis. If shorter treatment regimens were equally effective than those currently recommended, acceptance of preventive chemotherapy could be much improved.

  5. Mycobacterium tuberculosis Contaminant Risk on Bone Marrow Aspiration Material from Iliac Bone Patients with Active Tuberculous Spondylitis

    PubMed Central

    Rahyussalim, Ahmad Jabir; Kurniawati, Tri; Rukmana, Andriansjah

    2016-01-01

    There was a concern on Mycobacterium tuberculosis spreading to the bone marrow, when it was applied on tuberculous spine infection. This research aimed to study the probability of using autologous bone marrow as a source of mesenchymal stem cell for patients with tuberculous spondylitis. As many as nine patients with tuberculous spondylitis were used as samples. During the procedure, the vertebral lesion material and iliac bone marrow aspirates were obtained for acid fast staining, bacteria culture, and PCR (polymerase chain reaction) tests for Mycobacterium tuberculosis at the Clinical Microbiology Laboratory of Faculty of Medicine Universitas Indonesia. This research showed that there was a relationship between diagnostic confirmation of tuberculous spondylitis based on the PCR test and bacterial culture on the solid vertebral lesion material with the PCR test and bacterial culture from the bone marrow aspirates. If the diagnostic confirmation concluded positive results, then there was a higher probability that there would be a positive result for the bone marrow aspirates, so that it was not recommended to use autologous bone marrow as a source of mesenchymal stem cell for patients with tuberculous spondylitis unless the PCR and culture examination of the bone marrow showed a negative result. PMID:27294117

  6. Antitubercular activity of disulfiram, an antialcoholism drug, against multidrug- and extensively drug-resistant Mycobacterium tuberculosis isolates.

    PubMed

    Horita, Yasuhiro; Takii, Takemasa; Yagi, Tetsuya; Ogawa, Kenji; Fujiwara, Nagatoshi; Inagaki, Emi; Kremer, Laurent; Sato, Yasuo; Kuroishi, Ryuji; Lee, Yoosa; Makino, Toshiaki; Mizukami, Hajime; Hasegawa, Tomohiro; Yamamoto, Ryuji; Onozaki, Kikuo

    2012-08-01

    The antimycobacterial activities of disulfiram (DSF) and diethyldithiocarbamate (DDC) against multidrug- and extensively drug-resistant tuberculosis (MDR/XDR-TB) clinical isolates were evaluated in vitro. Both DSF and DDC exhibited potent antitubercular activities against 42 clinical isolates of M. tuberculosis, including MDR/XDR-TB strains. Moreover, DSF showed remarkable bactericidal activity ex vivo and in vivo. Therefore, DSF might be a drug repurposed for the treatment of MDR/XDR-TB. PMID:22615274

  7. Antitubercular Activity of Disulfiram, an Antialcoholism Drug, against Multidrug- and Extensively Drug-Resistant Mycobacterium tuberculosis Isolates

    PubMed Central

    Horita, Yasuhiro; Yagi, Tetsuya; Ogawa, Kenji; Fujiwara, Nagatoshi; Inagaki, Emi; Kremer, Laurent; Sato, Yasuo; Kuroishi, Ryuji; Lee, YooSa; Makino, Toshiaki; Mizukami, Hajime; Hasegawa, Tomohiro; Yamamoto, Ryuji; Onozaki, Kikuo

    2012-01-01

    The antimycobacterial activities of disulfiram (DSF) and diethyldithiocarbamate (DDC) against multidrug- and extensively drug-resistant tuberculosis (MDR/XDR-TB) clinical isolates were evaluated in vitro. Both DSF and DDC exhibited potent antitubercular activities against 42 clinical isolates of M. tuberculosis, including MDR/XDR-TB strains. Moreover, DSF showed remarkable bactericidal activity ex vivo and in vivo. Therefore, DSF might be a drug repurposed for the treatment of MDR/XDR-TB. PMID:22615274

  8. Optimization of recombinant Mycobacterium tuberculosis RNA polymerase expression and purification.

    PubMed

    Banerjee, Rajdeep; Rudra, Paulami; Prajapati, Ranjit Kumar; Sengupta, Shreya; Mukhopadhyay, Jayanta

    2014-07-01

    Mycobacterium tuberculosis, the human pathogen that causes tuberculosis, warrants enormous attention due to the emergence of multi drug resistant and extremely drug resistant strains. RNA polymerase (RNAP), the key enzyme in gene regulation, is an attractive target for anti-TB drugs. Understanding the structure-function relationship of M. tuberculosis RNAP and the mechanism of gene regulation by RNAP in conjunction with different σ factors and transcriptional regulators would provide significant information for anti-tuberculosis drug development targeting RNAP. Studies with M. tuberculosis RNAP remain tedious because of the extremely slow-growing nature of the bacteria and requirement of special laboratory facility. Here, we have developed and optimized recombinant methods to prepare M. tuberculosis RNAP core and RNAP holo enzymes assembled in vivo in Escherichia coli. These methods yield high amounts of transcriptionally active enzymes, free of E. coli RNAP contamination. The recombinant M. tuberculosis RNAP is used to develop a highly sensitive fluorescence based in vitro transcription assay that could be easily adopted in a high-throughput format to screen RNAP inhibitors. These recombinant methods would be useful to set a platform for M. tuberculosis RNAP targeted anti TB drug development, to analyse the structure/function of M. tuberculosis RNAP and to analyse the interactions among promoter DNA, RNAP, σ factors, and transcription regulators of M. tuberculosis in vitro, avoiding the hazard of handling of pathogenic bacteria.

  9. Bisphosphonic acids as effective inhibitors of Mycobacterium tuberculosis glutamine synthetase.

    PubMed

    Kosikowska, Paulina; Bochno, Marta; Macegoniuk, Katarzyna; Forlani, Giuseppe; Kafarski, Paweł; Berlicki, Łukasz

    2016-12-01

    Inhibition of glutamine synthetase (GS) is one of the most promising strategies for the discovery of novel drugs against tuberculosis. Forty-three bisphosphonic and bis-H-phosphinic acids of various scaffolds, bearing aromatic substituents, were screened against recombinant GS from Mycobacterium tuberculosis. Most of the studied compounds exhibited activities in micromolar range, with N-(3,5-dichlorophenyl)-2-aminoethylidenebisphoshonic acid, N-(3,5-difluorophenyl)-2-aminoethylidene-bisphoshonic acid and N-(3,4-dichlorophenyl)-1-hydroxy-1,1-ethanebisphosphonic acid showing the highest potency with kinetic parameters similar to the reference compound - L-methionine-S-sulfoximine. Moreover, these inhibitors were found to be much more effective against pathogen enzyme than against the human ortholog. Thus, with the bone-targeting properties of the bisphosphonate compounds in mind, this activity/selectivity profile makes these compounds attractive agents for the treatment of bone tuberculosis.

  10. Disseminated Mycobacterium tuberculosis infection in a dog.

    PubMed

    Martinho, Anna Paula Vitirito; Franco, Marília Masello Junqueira; Ribeiro, Márcio Garcia; Perrotti, Isabella Belletti Mutt; Mangia, Simone Henriques; Megid, Jane; Vulcano, Luiz Carlos; Lara, Gustavo Henrique Batista; Santos, Adolfo Carlos Barreto; Leite, Clarice Queico Fujimura; de Carvalho Sanches, Osimar; Paes, Antonio Carlos

    2013-03-01

    An uncommon disseminated Mycobacterium tuberculosis infection is described in a 12-year-old female dog presenting with fever, dyspnea, cough, weight loss, lymphadenopathy, melena, epistaxis, and emesis. The dog had a history of close contact with its owner, who died of pulmonary tuberculosis. Radiographic examination revealed diffuse radio-opaque images in both lung lobes, diffuse visible masses in abdominal organs, and hilar and mesenteric lymphadenopathy. Bronchial washing samples and feces were negative for acid-fast organisms. Polymerase chain reaction (PCR)-based species identification of bronchial washing samples, feces, and urine revealed M. tuberculosis using PCR-restriction enzyme pattern analysis-PRA. Because of public health concerns, which were worsened by the physical condition of the dog, euthanasia of the animal was recommended. Rough and tough colonies suggestive of M. tuberculosis were observed after microbiological culture of lung, liver, spleen, heart, and lymph node fragments in Löwenstein-Jensen and Stonebrink media. The PRA analysis enabled diagnosis of M. tuberculosis strains isolated from organs. PMID:23339199

  11. The Human Antibody Response to the Surface of Mycobacterium tuberculosis

    PubMed Central

    Perley, Casey C.; Frahm, Marc; Click, Eva M.; Dobos, Karen M.; Ferrari, Guido; Stout, Jason E.; Frothingham, Richard

    2014-01-01

    Background Vaccine-induced human antibodies to surface components of Haemophilus influenzae and Streptococcus pneumonia are correlated with protection. Monoclonal antibodies to surface components of Mycobacterium tuberculosis are also protective in animal models. We have characterized human antibodies that bind to the surface of live M. tuberculosis. Methods Plasma from humans with latent tuberculosis (TB) infection (n = 23), active TB disease (n = 40), and uninfected controls (n = 9) were assayed by ELISA for reactivity to the live M. tuberculosis surface and to inactivated M. tuberculosis fractions (whole cell lysate, lipoarabinomannan, cell wall, and secreted proteins). Results When compared to uninfected controls, patients with active TB disease had higher antibody titers to the surface of live M. tuberculosis (Δ = 0.72 log10), whole cell lysate (Δ = 0.82 log10), and secreted proteins (Δ = 0.62 log10), though there was substantial overlap between the two groups. Individuals with active disease had higher relative IgG avidity (Δ = 1.4 to 2.6) to all inactivated fractions. Surprisingly, the relative IgG avidity to the live M. tuberculosis surface was lower in the active disease group than in uninfected controls (Δ = –1.53, p = 0.004). Patients with active disease had higher IgG than IgM titers for all inactivated fractions (ratios, 2.8 to 10.1), but equal IgG and IgM titers to the live M. tuberculosis surface (ratio, 1.1). Higher antibody titers to the M. tuberculosis surface were observed in active disease patients who were BCG-vaccinated (Δ = 0.55 log10, p = 0.008), foreign-born (Δ = 0.61 log10, p = 0.004), or HIV-seronegative (Δ = 0.60 log10, p = 0.04). Higher relative IgG avidity scores to the M. tuberculosis surface were also observed in active disease patients who were BCG-vaccinated (Δ = 1.12, p<0.001) and foreign-born (Δ = 0.87, p = 0.01). Conclusions/Significance Humans

  12. Polymorphisms of 20 regulatory proteins between Mycobacterium tuberculosis and Mycobacterium bovis.

    PubMed

    Bigi, María M; Blanco, Federico Carlos; Araújo, Flabio R; Thacker, Tyler C; Zumárraga, Martín J; Cataldi, Angel A; Soria, Marcelo A; Bigi, Fabiana

    2016-08-01

    Mycobacterium tuberculosis and Mycobacterium bovis are responsible for tuberculosis in humans and animals, respectively. Both species are closely related and belong to the Mycobacterium tuberculosis complex (MTC). M. tuberculosis is the most ancient species from which M. bovis and other members of the MTC evolved. The genome of M. bovis is over >99.95% identical to that of M. tuberculosis but with seven deletions ranging in size from 1 to 12.7 kb. In addition, 1200 single nucleotide mutations in coding regions distinguish M. bovis from M. tuberculosis. In the present study, we assessed 75 M. tuberculosis genomes and 23 M. bovis genomes to identify non-synonymous mutations in 202 coding sequences of regulatory genes between both species. We identified species-specific variants in 20 regulatory proteins and confirmed differential expression of hypoxia-related genes between M. bovis and M. tuberculosis.

  13. Rapid drug susceptibility test of mycobacterium tuberculosis by bioluminescence sensor

    NASA Astrophysics Data System (ADS)

    Lu, Bin; Xu, Shunqing; Chen, Zifei; Zhou, Yikai

    2001-09-01

    With the persisting increase of drug-resistant stains of M. Tuberculosis around the world, rapid and sensitive detection of antibiotic of M. Tuberculosis is becoming more and more important. In the present study, drug susceptibility of M. tuberculosis were detected by recombination mycobacteriophage combined with bioluminescence sensor. It is based on the use of recombination mycobacteriophage which can express firefly luciferase when it infects viable mycobacteria, and can effectively produce quantifiable photon. Meanwhile, in mycobacterium cells treated with active antibiotic, no light is observed. The emitted light is recorded by a bioluminscence sensor, so the result of drug-resistant test can be determined by the naked eye. 159 stains of M. tuberculosis were applied to this test on their resistant to rifampin, streptomycin and isoniazid. It is found that the agreement of this assay with Liewenstein- Jensen slat is: rifampin 95.60 percent, isoniazid 91.82 percent, streptomycin 88.68 percent, which showed that it is a fast and practical method to scene and detect drug resistant of mycobacterium stains.

  14. Synthetic Long Peptide Derived from Mycobacterium tuberculosis Latency Antigen Rv1733c Protects against Tuberculosis.

    PubMed

    Coppola, Mariateresa; van den Eeden, Susan J F; Wilson, Louis; Franken, Kees L M C; Ottenhoff, Tom H M; Geluk, Annemieke

    2015-09-01

    Responsible for 9 million new cases of active disease and nearly 2 million deaths each year, tuberculosis (TB) remains a global health threat of overwhelming dimensions. Mycobacterium bovis BCG, the only licensed vaccine available, fails to confer lifelong protection and to prevent reactivation of latent infection. Although 15 new vaccine candidates are now in clinical trials, an effective vaccine against TB remains elusive, and new strategies for vaccination are vital. BCG vaccination fails to induce immunity against Mycobacterium tuberculosis latency antigens. Synthetic long peptides (SLPs) combined with adjuvants have been studied mostly for therapeutic cancer vaccines, yet not for TB, and proved to induce efficient antitumor immunity. This study investigated an SLP derived from Rv1733c, a major M. tuberculosis latency antigen which is highly expressed by "dormant" M. tuberculosis and well recognized by T cells from latently M. tuberculosis-infected individuals. In order to assess its in vivo immunogenicity and protective capacity, Rv1733c SLP in CpG was administered to HLA-DR3 transgenic mice. Immunization with Rv1733c SLP elicited gamma interferon-positive/tumor necrosis factor-positive (IFN-γ(+)/TNF(+)) and IFN-γ(+) CD4(+) T cells and Rv1733c-specific antibodies and led to a significant reduction in the bacterial load in the lungs of M. tuberculosis-challenged mice. This was observed both in a pre- and in a post-M. tuberculosis challenge setting. Moreover, Rv1733c SLP immunization significantly boosted the protective efficacy of BCG, demonstrating the potential of M. tuberculosis latency antigens to improve BCG efficacy. These data suggest a promising role for M. tuberculosis latency antigen Rv1733c-derived SLPs as a novel TB vaccine approach, both in a prophylactic and in a postinfection setting.

  15. Synthetic Long Peptide Derived from Mycobacterium tuberculosis Latency Antigen Rv1733c Protects against Tuberculosis

    PubMed Central

    Coppola, Mariateresa; van den Eeden, Susan J. F.; Wilson, Louis; Franken, Kees L. M. C.; Ottenhoff, Tom H. M.

    2015-01-01

    Responsible for 9 million new cases of active disease and nearly 2 million deaths each year, tuberculosis (TB) remains a global health threat of overwhelming dimensions. Mycobacterium bovis BCG, the only licensed vaccine available, fails to confer lifelong protection and to prevent reactivation of latent infection. Although 15 new vaccine candidates are now in clinical trials, an effective vaccine against TB remains elusive, and new strategies for vaccination are vital. BCG vaccination fails to induce immunity against Mycobacterium tuberculosis latency antigens. Synthetic long peptides (SLPs) combined with adjuvants have been studied mostly for therapeutic cancer vaccines, yet not for TB, and proved to induce efficient antitumor immunity. This study investigated an SLP derived from Rv1733c, a major M. tuberculosis latency antigen which is highly expressed by “dormant” M. tuberculosis and well recognized by T cells from latently M. tuberculosis-infected individuals. In order to assess its in vivo immunogenicity and protective capacity, Rv1733c SLP in CpG was administered to HLA-DR3 transgenic mice. Immunization with Rv1733c SLP elicited gamma interferon-positive/tumor necrosis factor-positive (IFN-γ+/TNF+) and IFN-γ+ CD4+ T cells and Rv1733c-specific antibodies and led to a significant reduction in the bacterial load in the lungs of M. tuberculosis-challenged mice. This was observed both in a pre- and in a post-M. tuberculosis challenge setting. Moreover, Rv1733c SLP immunization significantly boosted the protective efficacy of BCG, demonstrating the potential of M. tuberculosis latency antigens to improve BCG efficacy. These data suggest a promising role for M. tuberculosis latency antigen Rv1733c-derived SLPs as a novel TB vaccine approach, both in a prophylactic and in a postinfection setting. PMID:26202436

  16. Pre-multidrug-resistant Mycobacterium tuberculosis Beijing strain associated with disseminated tuberculosis in a pet dog.

    PubMed

    Botelho, Ana; Perdigão, João; Canto, Ana; Albuquerque, Teresa; Leal, Nuno; Macedo, Rita; Portugal, Isabel; Cunha, Mónica V

    2014-01-01

    Resistance to isoniazid, ethambutol, and streptomycin was detected in a Mycobacterium tuberculosis strain, belonging to the Beijing family lineage, isolated from two nodule exudates of a Yorkshire terrier with generalized tuberculosis. This report alerts medical practitioners to the risk of dissemination of pre-multidrug-resistant tuberculosis (preMDR-TB) through exposure to M. tuberculosis-shedding pets.

  17. Prioritizing Genomic Drug Targets in Pathogens: Application to Mycobacterium tuberculosis

    PubMed Central

    Hasan, Samiul; Daugelat, Sabine; Rao, P. S. Srinivasa; Schreiber, Mark

    2006-01-01

    We have developed a software program that weights and integrates specific properties on the genes in a pathogen so that they may be ranked as drug targets. We applied this software to produce three prioritized drug target lists for Mycobacterium tuberculosis, the causative agent of tuberculosis, a disease for which a new drug is desperately needed. Each list is based on an individual criterion. The first list prioritizes metabolic drug targets by the uniqueness of their roles in the M. tuberculosis metabolome (“metabolic chokepoints”) and their similarity to known “druggable” protein classes (i.e., classes whose activity has previously been shown to be modulated by binding a small molecule). The second list prioritizes targets that would specifically impair M. tuberculosis, by weighting heavily those that are closely conserved within the Actinobacteria class but lack close homology to the host and gut flora. M. tuberculosis can survive asymptomatically in its host for many years by adapting to a dormant state referred to as “persistence.” The final list aims to prioritize potential targets involved in maintaining persistence in M. tuberculosis. The rankings of current, candidate, and proposed drug targets are highlighted with respect to these lists. Some features were found to be more accurate than others in prioritizing studied targets. It can also be shown that targets can be prioritized by using evolutionary programming to optimize the weights of each desired property. We demonstrate this approach in prioritizing persistence targets. PMID:16789813

  18. STAT3 Represses Nitric Oxide Synthesis in Human Macrophages upon Mycobacterium tuberculosis Infection

    PubMed Central

    Queval, Christophe J.; Song, Ok-Ryul; Deboosère, Nathalie; Delorme, Vincent; Debrie, Anne-Sophie; Iantomasi, Raffaella; Veyron-Churlet, Romain; Jouny, Samuel; Redhage, Keely; Deloison, Gaspard; Baulard, Alain; Chamaillard, Mathias; Locht, Camille; Brodin, Priscille

    2016-01-01

    Mycobacterium tuberculosis is a successful intracellular pathogen. Numerous host innate immune responses signaling pathways are induced upon mycobacterium invasion, however their impact on M. tuberculosis replication is not fully understood. Here we reinvestigate the role of STAT3 specifically inside human macrophages shortly after M. tuberculosis uptake. We first show that STAT3 activation is mediated by IL-10 and occurs in M. tuberculosis infected cells as well as in bystander non-colonized cells. STAT3 activation results in the inhibition of IL-6, TNF-α, IFN-γ and MIP-1β. We further demonstrate that STAT3 represses iNOS expression and NO synthesis. Accordingly, the inhibition of STAT3 is detrimental for M. tuberculosis intracellular replication. Our study thus points out STAT3 as a key host factor for M. tuberculosis intracellular establishment in the early stages of macrophage infection. PMID:27384401

  19. Combating highly resistant emerging pathogen Mycobacterium abscessus and Mycobacterium tuberculosis with novel salicylanilide esters and carbamates.

    PubMed

    Baranyai, Zsuzsa; Krátký, Martin; Vinšová, Jarmila; Szabó, Nóra; Senoner, Zsuzsanna; Horváti, Kata; Stolaříková, Jiřina; Dávid, Sándor; Bősze, Szilvia

    2015-08-28

    In the Mycobacterium genus over one hundred species are already described and new ones are periodically reported. Species that form colonies in a week are classified as rapid growers, those requiring longer periods (up to three months) are the mostly pathogenic slow growers. More recently, new emerging species have been identified to lengthen the list, all rapid growers. Of these, Mycobacterium abscessus is also an intracellular pathogen and it is the most chemotherapy-resistant rapid-growing mycobacterium. In addition, the cases of multidrug-resistant Mycobacterium tuberculosis infection are also increasing. Therefore there is an urgent need to find new active molecules against these threatening strains. Based on previous results, a series of salicylanilides, salicylanilide 5-chloropyrazinoates and carbamates was designed, synthesized and characterised. The compounds were evaluated for their in vitro activity on M. abscessus, susceptible M. tuberculosis H37Rv, multidrug-resistant (MDR) M. tuberculosis MDR A8, M. tuberculosis MDR 9449/2006 and on the extremely-resistant Praha 131 (XDR) strains. All derivatives exhibited a significant activity with minimum inhibitory concentrations (MICs) in the low micromolar range. Eight salicylanilide carbamates and two salicylanilide esters exhibited an excellent in vitro activity on M. abscessus with MICs from 0.2 to 2.1 μM, thus being more effective than ciprofloxacin and gentamicin. This finding is potentially promising, particularly, as M. abscessus is a threateningly chemotherapy-resistant species. M. tuberculosis H37Rv was inhibited with MICs from 0.2 μM, and eleven compounds have lower MICs than isoniazid. Salicylanilide esters and carbamates were found that they were effective also on MDR and XDR M. tuberculosis strains with MICs ≥1.0 μM. The in vitro cytotoxicity (IC50) was also determined on human MonoMac-6 cells, and selectivity index (SI) of the compounds was established. In general, salicylanilide

  20. Combating highly resistant emerging pathogen Mycobacterium abscessus and Mycobacterium tuberculosis with novel salicylanilide esters and carbamates.

    PubMed

    Baranyai, Zsuzsa; Krátký, Martin; Vinšová, Jarmila; Szabó, Nóra; Senoner, Zsuzsanna; Horváti, Kata; Stolaříková, Jiřina; Dávid, Sándor; Bősze, Szilvia

    2015-08-28

    In the Mycobacterium genus over one hundred species are already described and new ones are periodically reported. Species that form colonies in a week are classified as rapid growers, those requiring longer periods (up to three months) are the mostly pathogenic slow growers. More recently, new emerging species have been identified to lengthen the list, all rapid growers. Of these, Mycobacterium abscessus is also an intracellular pathogen and it is the most chemotherapy-resistant rapid-growing mycobacterium. In addition, the cases of multidrug-resistant Mycobacterium tuberculosis infection are also increasing. Therefore there is an urgent need to find new active molecules against these threatening strains. Based on previous results, a series of salicylanilides, salicylanilide 5-chloropyrazinoates and carbamates was designed, synthesized and characterised. The compounds were evaluated for their in vitro activity on M. abscessus, susceptible M. tuberculosis H37Rv, multidrug-resistant (MDR) M. tuberculosis MDR A8, M. tuberculosis MDR 9449/2006 and on the extremely-resistant Praha 131 (XDR) strains. All derivatives exhibited a significant activity with minimum inhibitory concentrations (MICs) in the low micromolar range. Eight salicylanilide carbamates and two salicylanilide esters exhibited an excellent in vitro activity on M. abscessus with MICs from 0.2 to 2.1 μM, thus being more effective than ciprofloxacin and gentamicin. This finding is potentially promising, particularly, as M. abscessus is a threateningly chemotherapy-resistant species. M. tuberculosis H37Rv was inhibited with MICs from 0.2 μM, and eleven compounds have lower MICs than isoniazid. Salicylanilide esters and carbamates were found that they were effective also on MDR and XDR M. tuberculosis strains with MICs ≥1.0 μM. The in vitro cytotoxicity (IC50) was also determined on human MonoMac-6 cells, and selectivity index (SI) of the compounds was established. In general, salicylanilide

  1. Structural and functional characterization of Mycobacterium tuberculosis triosephosphate isomerase

    SciTech Connect

    Connor, Sean E.; Capodagli, Glenn C.; Deaton, Michelle K.; Pegan, Scott D.

    2012-04-18

    Tuberculosis (TB) is a major infectious disease that accounts for over 1.7 million deaths every year. Mycobacterium tuberculosis, the causative agent of tuberculosis, enters the human host by the inhalation of infectious aerosols. Additionally, one third of the world's population is likely to be infected with latent TB. The incidence of TB is on the rise owing in part to the emergence of multidrug-resistant strains. As a result, there is a growing need to focus on novel M. tuberculosis enzyme targets. M. tuberculosis triosephosphate isomerase (MtTPI) is an essential enzyme for gluconeogenetic pathways, making it a potential target for future therapeutics. In order to determine its structure, the X-ray crystal structure of MtTPI has been determined, as well as that of MtTPI bound with a reaction-intermediate analog. As a result, two forms of the active site were revealed. In conjunction with the kinetic parameters obtained for the MtTPI-facilitated conversion of dihydroxyacetone phosphate (DHAP) to D-glyceraldehyde-3-phosphate (D-GAP), this provides a greater structural and biochemical understanding of this enzyme. Additionally, isothermal titration calorimetry was used to determine the binding constant for a reaction-intermediate analog bound to the active site of MtTPI.

  2. Inhibiting Mycobacterium tuberculosis within and without.

    PubMed

    Cole, Stewart T

    2016-11-01

    Tuberculosis remains a scourge of global health with shrinking treatment options due to the spread of drug-resistant strains of Mycobacterium tuberculosis Intensive efforts have been made in the past 15 years to find leads for drug development so that better, more potent drugs inhibiting new targets could be produced and thus shorten treatment duration. Initial attempts focused on repurposing drugs that had been developed for other therapeutic areas but these agents did not meet their goals in clinical trials. Attempts to find new lead compounds employing target-based screens were unsuccessful as the leads were inactive against M. tuberculosis Greater success was achieved using phenotypic screening against live tubercle bacilli and this gave rise to the drugs bedaquiline, pretomanid and delamanid, currently in phase III trials. Subsequent phenotypic screens also uncovered new leads and targets but several of these targets proved to be promiscuous and inhibited by a variety of seemingly unrelated pharmacophores. This setback sparked an interest in alternative screening approaches that mimic the disease state more accurately. Foremost among these were cell-based screens, often involving macrophages, as these should reflect the bacterium's niche in the host more faithfully. A major advantage of this approach is its ability to uncover functions that are central to infection but not necessarily required for growth in vitro For instance, inhibition of virulence functions mediated by the ESX-1 secretion system severely attenuates intracellular M. tuberculosis, preventing intercellular spread and ultimately limiting tissue damage. Cell-based screens have highlighted the druggability of energy production via the electron transport chain and cholesterol metabolism. Here, I review the scientific progress and the pipeline, but warn against over-optimism due to the lack of industrial commitment for tuberculosis drug development and other socio-economic factors.This article is

  3. Mycobacterium tuberculosis: ecology and evolution of a human bacterium.

    PubMed

    Bañuls, Anne-Laure; Sanou, Adama; Anh, Nguyen Thi Van; Godreuil, Sylvain

    2015-11-01

    Some species of the Mycobacterium tuberculosis complex (MTBC), particularly Mycobacterium tuberculosis, which causes human tuberculosis (TB), are the first cause of death linked to a single pathogen worldwide. In the last decades, evolutionary studies have much improved our knowledge on MTBC history and have highlighted its long co-evolution with humans. Its ability to remain latent in humans, the extraordinary proportion of asymptomatic carriers (one-third of the entire human population), the deadly epidemics and the observed increasing level of resistance to antibiotics are proof of its evolutionary success. Many MTBC molecular signatures show not only that these bacteria are a model of adaptation to humans but also that they have influenced human evolution. Owing to the unbalance between the number of asymptomatic carriers and the number of patients with active TB, some authors suggest that infection by MTBC could have a protective role against active TB disease and also against other pathologies. However, it would be inappropriate to consider these infectious pathogens as commensals or symbionts, given the level of morbidity and mortality caused by TB.

  4. Zoonotic tuberculosis due to Mycobacterium bovis in developing countries.

    PubMed Central

    Cosivi, O.; Grange, J. M.; Daborn, C. J.; Raviglione, M. C.; Fujikura, T.; Cousins, D.; Robinson, R. A.; Huchzermeyer, H. F.; de Kantor, I.; Meslin, F. X.

    1998-01-01

    The World Health Organization (WHO) estimates that human tuberculosis (TB) incidence and deaths for 1990 to 1999 will be 88 million and 30 million, respectively, with most cases in developing countries. Zoonotic TB (caused by Mycobacterium bovis) is present in animals in most developing countries where surveillance and control activities are often inadequate or unavailable; therefore, many epidemiologic and public health aspects of infection remain largely unknown. We review available information on zoonotic TB in developing countries, analyze risk factors that may play a role in the disease, review recent WHO activities, and recommend actions to assess the magnitude of the problem and control the disease in humans and animals. PMID:9452399

  5. Characterization of Phosphofructokinase Activity in Mycobacterium tuberculosis Reveals That a Functional Glycolytic Carbon Flow Is Necessary to Limit the Accumulation of Toxic Metabolic Intermediates under Hypoxia

    PubMed Central

    Phong, Wai Yee; Lin, Wenwei; Rao, Srinivasa P. S.; Dick, Thomas; Alonso, Sylvie; Pethe, Kevin

    2013-01-01

    Metabolic versatility has been increasingly recognized as a major virulence mechanism that enables Mycobacterium tuberculosis to persist in many microenvironments encountered in its host. Glucose is one of the most abundant carbon sources that is exploited by many pathogenic bacteria in the human host. M. tuberculosis has an intact glycolytic pathway that is highly conserved in all clinical isolates sequenced to date suggesting that glucose may represent a non-negligible source of carbon and energy for this pathogen in vivo. Fructose-6-phosphate phosphorylation represents the key-committing step in glycolysis and is catalyzed by a phosphofructokinase (PFK) activity. Two genes, pfkA and pfkB have been annotated to encode putative PFK in M. tuberculosis. Here, we show that PFKA is the sole PFK enzyme in M. tuberculosis with no functional redundancy with PFKB. PFKA is required for growth on glucose as sole carbon source. In co-metabolism experiments, we report that disruption of the glycolytic pathway at the PFK step results in intracellular accumulation of sugar-phosphates that correlated with significant impairment of the cell viability. Concomitantly, we found that the presence of glucose is highly toxic for the long-term survival of hypoxic non-replicating mycobacteria, suggesting that accumulation of glucose-derived toxic metabolites does occur in the absence of sustained aerobic respiration. The culture medium traditionally used to study the physiology of hypoxic mycobacteria is supplemented with glucose. In this medium, M. tuberculosis can survive for only 7–10 days in a true non-replicating state before death is observed. By omitting glucose in the medium this period could be extended for up to at least 40 days without significant viability loss. Therefore, our study suggests that glycolysis leads to accumulation of glucose-derived toxic metabolites that limits long-term survival of hypoxic mycobacteria. Such toxic effect is exacerbated when the glycolytic

  6. Ion Channel Blockers as Antimicrobial Agents, Efflux Inhibitors, and Enhancers of Macrophage Killing Activity against Drug Resistant Mycobacterium tuberculosis

    PubMed Central

    Perdigão, João; Couto, Isabel; Portugal, Isabel; Martins, Marta; Amaral, Leonard; Anes, Elsa; Viveiros, Miguel

    2016-01-01

    Given the ability of M. tuberculosis to survive as an intracellular pathogen and its propensity to develop resistance to the existing antituberculosis drugs, its treatment requires new approaches. Here the antimycobacterial properties of verapamil, thioridazine, chlorpromazine, flupenthixol and haloperidol were investigated against a panel of drug resistant M. tuberculosis strains, both in vitro and on human-infected macrophages. These compounds are efflux inhibitors that share among them the characteristic of being ion channel blockers. In vitro, all compounds exhibited synergistic inhibitory activities when combined with isoniazid and rifampicin, and were able to inhibit active efflux, demonstrating their role as efflux inhibitors. Gene expression analysis showed that M. tuberculosis efflux genes were overexpressed in response to antibiotic exposure, in vitro and within macrophages, irrespective of their resistance pattern. These compounds displayed a rapid and high killing activity against M. tuberculosis, associated with a decrease in intracellular ATP levels demonstrating that the bactericidal action of the ion channel blockers against M. tuberculosis clinical strains is associated with their interference with energy metabolism. The compounds led to a decrease in the intracellular mycobacterial load by increasing phagosome acidification and activating lysosomal hydrolases. The results presented in this study enable us to propose the following mechanism of action for these compounds: a) in the bacteria, the compounds generate a cascade of events involving the inhibition of the respiratory chain complexes and energy production for efflux activity. Indirectly, this reduce the resistance level to antituberculosis drugs potentiating their activity; b) on the host cell, the treatment with the ion channel blockers increases phagosome acidification and induces the expression of phagosomal hydrolases, leading to bacterial growth restriction irrespective of their

  7. Ion Channel Blockers as Antimicrobial Agents, Efflux Inhibitors, and Enhancers of Macrophage Killing Activity against Drug Resistant Mycobacterium tuberculosis.

    PubMed

    Machado, Diana; Pires, David; Perdigão, João; Couto, Isabel; Portugal, Isabel; Martins, Marta; Amaral, Leonard; Anes, Elsa; Viveiros, Miguel

    2016-01-01

    Given the ability of M. tuberculosis to survive as an intracellular pathogen and its propensity to develop resistance to the existing antituberculosis drugs, its treatment requires new approaches. Here the antimycobacterial properties of verapamil, thioridazine, chlorpromazine, flupenthixol and haloperidol were investigated against a panel of drug resistant M. tuberculosis strains, both in vitro and on human-infected macrophages. These compounds are efflux inhibitors that share among them the characteristic of being ion channel blockers. In vitro, all compounds exhibited synergistic inhibitory activities when combined with isoniazid and rifampicin, and were able to inhibit active efflux, demonstrating their role as efflux inhibitors. Gene expression analysis showed that M. tuberculosis efflux genes were overexpressed in response to antibiotic exposure, in vitro and within macrophages, irrespective of their resistance pattern. These compounds displayed a rapid and high killing activity against M. tuberculosis, associated with a decrease in intracellular ATP levels demonstrating that the bactericidal action of the ion channel blockers against M. tuberculosis clinical strains is associated with their interference with energy metabolism. The compounds led to a decrease in the intracellular mycobacterial load by increasing phagosome acidification and activating lysosomal hydrolases. The results presented in this study enable us to propose the following mechanism of action for these compounds: a) in the bacteria, the compounds generate a cascade of events involving the inhibition of the respiratory chain complexes and energy production for efflux activity. Indirectly, this reduce the resistance level to antituberculosis drugs potentiating their activity; b) on the host cell, the treatment with the ion channel blockers increases phagosome acidification and induces the expression of phagosomal hydrolases, leading to bacterial growth restriction irrespective of their

  8. Genetic diversity of Mycobacterium tuberculosis isolates from central India

    PubMed Central

    Desikan, Prabha; Chauhan, D.S.; Sharma, Pragya; Panwalkar, Nikita; Chourey, Manju; Patidar, Mohan Lal; Yadav, Priyanka; Chandrasekaran, V.; Ohri, B.S.

    2016-01-01

    Background & objectives: There is a paucity of data available on genetic biodiversity of Mycobacterium tuberculosis isolates from central India. The present study was carried out on isolates of M. tuberculosis cultured from diagnostic clinical samples of patients from Bhopal, central India, using spoligotyping as a method of molecular typing. Methods: DNA was extracted from 340 isolates of M. tuberculosis from culture, confirmed as M. tuberculosis by molecular and biochemical methods and subjected to spoligotyping. The results were compared with the international SITVIT2 database. Results: Sixty five different spoligo international type (SIT) patterns were observed. A total of 239 (70.3%) isolates could be clustered into 25 SITs. The Central Asian (CAS) and East African Indian (EAI) families were found to be the two major circulating families in this region. SIT26/CAS1_DEL was identified as the most predominant type, followed by SIT11/EAI3_IND and SIT288/CAS2. Forty (11.8%) unique (non-clustered) and 61 (17.9%) orphan isolates were identified in the study. There was no significant association of clustering with clinical and demographic characteristics of patients. Interpretation & conclusions: Well established SITs were found to be predominant in our study. SIT26/CAS1_DEL was the most predominant type. However, the occurrence of a substantial number of orphan isolates may indicate the presence of active spatial and temporal evolutionary dynamics within the isolates of M. tuberculosis. PMID:27377505

  9. Targeting Mycobacterium tuberculosis topoisomerase I by small-molecule inhibitors.

    PubMed

    Godbole, Adwait Anand; Ahmed, Wareed; Bhat, Rajeshwari Subray; Bradley, Erin K; Ekins, Sean; Nagaraja, Valakunja

    2015-03-01

    We describe inhibition of Mycobacterium tuberculosis topoisomerase I (MttopoI), an essential mycobacterial enzyme, by two related compounds, imipramine and norclomipramine, of which imipramine is clinically used as an antidepressant. These molecules showed growth inhibition of both Mycobacterium smegmatis and M. tuberculosis cells. The mechanism of action of these two molecules was investigated by analyzing the individual steps of the topoisomerase I (topoI) reaction cycle. The compounds stimulated cleavage, thereby perturbing the cleavage-religation equilibrium. Consequently, these molecules inhibited the growth of the cells overexpressing topoI at a low MIC. Docking of the molecules on the MttopoI model suggested that they bind near the metal binding site of the enzyme. The DNA relaxation activity of the metal binding mutants harboring mutations in the DxDxE motif was differentially affected by the molecules, suggesting that the metal coordinating residues contribute to the interaction of the enzyme with the drug. Taken together, the results highlight the potential of these small molecules, which poison the M. tuberculosis and M. smegmatis topoisomerase I, as leads for the development of improved molecules to combat mycobacterial infections. Moreover, targeting metal coordination in topoisomerases might be a general strategy to develop new lead molecules.

  10. A species-specific nucleotide sequence of Mycobacterium tuberculosis encodes a protein that exhibits hemolytic activity when expressed in Escherichia coli.

    PubMed Central

    Leão, S C; Rocha, C L; Murillo, L A; Parra, C A; Patarroyo, M E

    1995-01-01

    Species-specific proteins may be implicated in the unique pathogenic mechanisms characteristic of Mycobacterium tuberculosis. In previous studies, a 3.0-kb species-specific DNA fragment of M. tuberculosis was identified (C. A. Parra, L. P. Londoño, P. del Portillo, and M. E. Patarroyo, Immun. 59:3411-3417, 1991). The nucleotide sequence of this 3.0-kb fragment has been obtained. This sequence was shown to contain two open reading frames (ORFs) whose putative gene products share 68.9% identity between each other. The major ORF shows 57.8% similarity with PLC-N and 53.2% similarity with PLC-H, two phospholipase C enzymes from Pseudomonas aeruginosa. The major ORF was amplified by PCR and cloned into the pGEX-5T expression vector. Cell extracts of Escherichia coli overexpressing this glutathione S-transferase fusion protein were shown to produce beta-hemolysis suggestive of phospholipase activity. Since phospholipase C enzymes have been reported as virulence factors of P. aeruginosa and also of the intracellular pathogen Listeria monocytogenes, it is possible that the proteins identified in this study could also play a role in sustaining tuberculosis infection in humans. PMID:7591062

  11. Impaired NK cells' activity and increased numbers of CD4 + CD25+ regulatory T cells in multidrug-resistant Mycobacterium tuberculosis patients.

    PubMed

    Fan, Renhua; Xiang, Yangen; Yang, Li; Liu, Yanke; Chen, Pingsheng; Wang, Lei; Feng, Wenjun; Yin, Ke; Fu, Manjiao; Xu, Yixin; Wu, Jialin

    2016-05-01

    Multidrug-resistant tuberculosis (MDR-TB) often causes persistent infection and chemotherapy failure, which brings heavy burden of society and family. Many immune cell subsets and regulatory mechanisms may operate throughout the various stages of infection. The presence of regulatory T cells (Tregs) is thought to be an important mechanism that TB successfully evades the immune system. Tregs play a central role in the prevention of autoimmunity and in the control of immune responses. The role of Tregs in MDR-TB infection and persistence is inadequately documented. The current study was designed to determine whether CD4 + CD25+ regulatory T cells may modulate innate immunity (such as NK cells) against human tuberculosis. Our results indicated that the numbers of CD4 + CD25+ Treg cells increased in MDR-TB patients' blood, and the cytokine production of IL-10 increased from MDR-patients compared with healthy subjects, along with the lower activity and low CD69 expression of NK cells in patients. These results suggested that immunity to MDR-TB patients induced circulating CD4 + CD25+ T regulatory cells expansion, which may be related to the persistence of Mycobacterium tuberculosis (M. tb) infection, and to the balance between effectors immune responses and suppression immune responses. PMID:27156613

  12. PA-824 Kills Nonreplicating Mycobacterium tuberculosis by Intracellular NO Release

    PubMed Central

    Singh, Ramandeep; Manjunatha, Ujjini; Boshoff, Helena I. M.; Ha, Young Hwan; Niyomrattanakit, Pornwaratt; Ledwidge, Richard; Dowd, Cynthia S.; Lee, Ill Young; Kim, Pilho; Zhang, Liang; Kang, Sunhee; Keller, Thomas H.; Jiricek, Jan; Barry, Clifton E.

    2009-01-01

    Bicyclic nitroimidazoles, including PA-824, are exciting candidates for the treatment of tuberculosis. These prodrugs require intracellular activation for their biological function. We found that Rv3547 is a deazaflavin-dependent nitroreductase (Ddn) that converts PA-824 into three primary metabolites; the major one is the corresponding des-nitroimidazole (des-nitro). When derivatives of PA-824 were used, the amount of des-nitro metabolite formed was highly correlated with anaerobic killing of Mycobacterium tuberculosis (Mtb). Des-nitro metabolite formation generated reactive nitrogen species, including nitric oxide (NO), which are the major effectors of the anaerobic activity of these compounds. Furthermore, NO scavengers protected the bacilli from the lethal effects of the drug. Thus, these compounds may act as intracellular NO donors and could augment a killing mechanism intrinsic to the innate immune system. PMID:19039139

  13. Growth hormone activation of human monocytes for superoxide production but not tumor necrosis factor production, cell adherence, or action against Mycobacterium tuberculosis.

    PubMed Central

    Warwick-Davies, J; Lowrie, D B; Cole, P J

    1995-01-01

    We have previously demonstrated that growth hormone (GH) is a human macrophage-activating factor which primes monocytes for enhanced production of H2O2 in vitro. This report extends our observations to other monocyte functions relevant to infection. We find that GH also primes monocytes for O2- production, to a degree similar to the effect of gamma interferon. Neither macrophage-activating factor alone stimulates monocytes to release bioactive tumor necrosis factor. However, GH, unlike gamma interferon, does not synergize with endotoxin for enhanced tumor necrosis factor production. In further contrast, GH does not alter monocyte adherence or morphology, while phagocytosis and killing of Mycobacterium tuberculosis by GH-treated monocytes are also unaffected. Therefore, despite the multiplicity of the effects of GH on the immune system in vivo, its effects on human monocytes in vitro appear to be limited to priming for the release of reactive oxygen intermediates. PMID:7591064

  14. Collagen degrading activity associated with Mycobacterium species

    PubMed Central

    Masso, F; Paez, A; Varela, E; d Diaz; Zenteno, E; Montano, L

    1999-01-01

    BACKGROUND—The mechanism of Mycobacterium tuberculosis penetration into tissues is poorly understood but it is reasonable to assume that there is a contribution from proteases capable of disrupting the extracellular matrix of the pulmonary epithelium and the blood vessels. A study was undertaken to identify and characterise collagen degrading activity of M tuberculosis.
METHODS—Culture filtrate protein extract (CFPE) was obtained from reference mycobacterial strains and mycobacteria isolated from patients with tuberculosis. The collagen degrading activity of CFPE was determined according to the method of Johnson-Wint using 3H-type I collagen. The enzyme was identified by the Birkedal-Hansen and Taylor method and its molecular mass determined by SDS-PAGE and Sephacryl S-300 gel filtration chromatography using an electroelution purified enzyme.
RESULTS—CFPE from Mycobacterium tuberculosis strain H37Rv showed collagenolytic activity that was four times higher than that of the avirulent strain H37Ra. The 75 kDa enzyme responsible was divalent cation dependent. Other mycobacterial species and those isolated from patients with tuberculosis also had collagen degrading activity.
CONCLUSIONS—Mycobacterium species possess a metalloprotease with collagen degrading activity. The highest enzymatic activity was found in the virulent reference strain H37Rv.

 PMID:10212111

  15. Gamma Interferon Release Assays for Detection of Mycobacterium tuberculosis Infection

    PubMed Central

    Denkinger, Claudia M.; Kik, Sandra V.; Rangaka, Molebogeng X.; Zwerling, Alice; Oxlade, Olivia; Metcalfe, John Z.; Cattamanchi, Adithya; Dowdy, David W.; Dheda, Keertan; Banaei, Niaz

    2014-01-01

    SUMMARY Identification and treatment of latent tuberculosis infection (LTBI) can substantially reduce the risk of developing active disease. However, there is no diagnostic gold standard for LTBI. Two tests are available for identification of LTBI: the tuberculin skin test (TST) and the gamma interferon (IFN-γ) release assay (IGRA). Evidence suggests that both TST and IGRA are acceptable but imperfect tests. They represent indirect markers of Mycobacterium tuberculosis exposure and indicate a cellular immune response to M. tuberculosis. Neither test can accurately differentiate between LTBI and active TB, distinguish reactivation from reinfection, or resolve the various stages within the spectrum of M. tuberculosis infection. Both TST and IGRA have reduced sensitivity in immunocompromised patients and have low predictive value for progression to active TB. To maximize the positive predictive value of existing tests, LTBI screening should be reserved for those who are at sufficiently high risk of progressing to disease. Such high-risk individuals may be identifiable by using multivariable risk prediction models that incorporate test results with risk factors and using serial testing to resolve underlying phenotypes. In the longer term, basic research is necessary to identify highly predictive biomarkers. PMID:24396134

  16. Immunoinformatics study on highly expressed Mycobacterium tuberculosis genes during infection.

    PubMed

    Nguyen Thi, Le Thuy; Sarmiento, Maria Elena; Calero, Romel; Camacho, Frank; Reyes, Fatima; Hossain, Md Murad; Gonzalez, Gustavo Sierra; Norazmi, Mohd Nor; Acosta, Armando

    2014-09-01

    The most important targets for vaccine development are the proteins that are highly expressed by the microorganisms during infection in-vivo. A number of Mycobacterium tuberculosis (Mtb) proteins are also reported to be expressed in-vivo at different phases of infection. In the present study, we analyzed multiple published databases of gene expression profiles of Mtb in-vivo at different phases of infection in animals and humans and selected 38 proteins that are highly expressed in the active, latent and reactivation phases. We predicted T- and B-cell epitopes from the selected proteins using HLAPred for T-cell epitope prediction and BCEPred combined with ABCPred for B-cell epitope prediction. For each selected proteins, regions containing both T- and B-cell epitopes were identified which might be considered as important candidates for vaccine design against tuberculosis.

  17. Selective Mycobacterium tuberculosis Shikimate Kinase Inhibitors as Potential Antibacterials

    PubMed Central

    Gordon, Sara; Simithy, Johayra; Goodwin, Douglas C; Calderón, Angela I

    2015-01-01

    Owing to the persistence of tuberculosis (TB) as well as the emergence of multidrug-resistant and extensively drug-resistant (XDR) forms of the disease, the development of new antitubercular drugs is crucial. Developing inhibitors of shikimate kinase (SK) in the shikimate pathway will provide a selective target for antitubercular agents. Many studies have used in silico technology to identify compounds that are anticipated to interact with and inhibit SK. To a much more limited extent, SK inhibition has been evaluated by in vitro methods with purified enzyme. Currently, there are no data on in vivo activity of Mycobacterium tuberculosis shikimate kinase (MtSK) inhibitors available in the literature. In this review, we present a summary of the progress of SK inhibitor discovery and evaluation with particular attention toward development of new antitubercular agents. PMID:25861218

  18. Disinfecting endoscopes: how not to transmit Mycobacterium tuberculosis by bronchoscopy.

    PubMed Central

    Leers, W D

    1980-01-01

    Mycobacterium tuberculosis was cultured from the bronchial washings of two patients who underwent bronchoscopy consecutively with the same bronchoscope. Active pulmonary tuberculosis was later confirmed in the first patient, whereas the second patient had clinical and serologic evidence of infection with respiratory syncytial virus. The bronchoscope had been cleaned with an iodophor disinfectant, which had not destroyed the tubercle bacilli. The agent recommended for chemical disinfection of fibreoptic bronchoscopes is 2% glutaraldehyde solution; the instrument should be immersed in it for 10 to 30 minutes. Five hours' exposure to ethylene oxide is recommended for sterilization of instruments. These procedures must be preceded by adequate mechanical cleaning. Then transmission of pathogenic organisms during endoscopy, which can result in nosocomial disease, misdiagnosis or inappropriate treatment, will be avoided. Images FIG. 1 FIG. 2 FIG. 3 PMID:6790150

  19. Selective Mycobacterium tuberculosis Shikimate Kinase Inhibitors as Potential Antibacterials.

    PubMed

    Gordon, Sara; Simithy, Johayra; Goodwin, Douglas C; Calderón, Angela I

    2015-01-01

    Owing to the persistence of tuberculosis (TB) as well as the emergence of multidrug-resistant and extensively drug-resistant (XDR) forms of the disease, the development of new antitubercular drugs is crucial. Developing inhibitors of shikimate kinase (SK) in the shikimate pathway will provide a selective target for antitubercular agents. Many studies have used in silico technology to identify compounds that are anticipated to interact with and inhibit SK. To a much more limited extent, SK inhibition has been evaluated by in vitro methods with purified enzyme. Currently, there are no data on in vivo activity of Mycobacterium tuberculosis shikimate kinase (MtSK) inhibitors available in the literature. In this review, we present a summary of the progress of SK inhibitor discovery and evaluation with particular attention toward development of new antitubercular agents. PMID:25861218

  20. Progress in targeting cell envelope biogenesis in Mycobacterium tuberculosis

    PubMed Central

    Jackson, Mary; McNeil, Michael R; Brennan, Patrick J

    2013-01-01

    Most of the newly discovered compounds showing promise for the treatment of TB, notably multidrug-resistant TB, inhibit aspects of Mycobacterium tuberculosis cell envelope metabolism. This review reflects on the evolution of the knowledge that many of the front-line and emerging products inhibit aspects of cell envelope metabolism and in the process are bactericidal not only against actively replicating M. tuberculosis, but contrary to earlier impressions, are effective against latent forms of the disease. While mycolic acid and arabinogalactan synthesis are still primary targets of existing and new drugs, peptidoglycan synthesis, transport mechanisms and the synthesis of the decaprenyl-phosphate carrier lipid all show considerable promise as targets for new products, older drugs and new combinations. The advantages of whole cell- versus target-based screening in the perpetual search for new targets and products to counter multidrug-resistant TB are discussed. PMID:23841633

  1. Characterization of Mycobacterium orygis as M. tuberculosis complex subspecies.

    PubMed

    van Ingen, Jakko; Rahim, Zeaur; Mulder, Arnout; Boeree, Martin J; Simeone, Roxane; Brosch, Roland; van Soolingen, Dick

    2012-04-01

    The oryx bacilli are Mycobacterium tuberculosis complex organisms for which phylogenetic position and host range are unsettled. We characterized 22 isolates by molecular methods and propose elevation to subspecies status as M. orygis. M. orygis is a causative agent of tuberculosis in animals and humans from Africa and South Asia. PMID:22469053

  2. Structures of Mycobacterium tuberculosis DosR and DosR-DNA Complex Involved in Gene Activation during Adaptation to Hypoxic Latency

    SciTech Connect

    Wisedchaisri, Goragot; Wu, Meiting; Rice, Adrian E; Roberts, David M; Sherman, David R; Hol, Wim G.J.

    2010-07-20

    On encountering low oxygen conditions, DosR activates the transcription of 47 genes, promoting long-term survival of Mycobacterium tuberculosis in a non-replicating state. Here, we report the crystal structures of the DosR C-terminal domain and its complex with a consensus DNA sequence of the hypoxia-induced gene promoter. The DosR C-terminal domain contains four {alpha}-helices and forms tetramers consisting of two dimers with non-intersecting dyads. In the DNA-bound structure, each DosR C-terminal domain in a dimer places its DNA-binding helix deep into the major groove, causing two bends in the DNA. DosR makes numerous protein-DNA base contacts using only three amino acid residues per subunit: Lys179, Lys182, and Asn183. The DosR tetramer is unique among response regulators with known structures.

  3. Structure of Mycobacterium tuberculosis phosphopantetheine adenylyltransferase in complex with the feedback inhibitor CoA reveals only one active-site conformation

    SciTech Connect

    Wubben, T.; Mesecar, A.D.

    2014-10-02

    Phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in the coenzyme A (CoA) biosynthetic pathway, reversibly transferring an adenylyl group from ATP to 4'-phosphopantetheine to form dephosphocoenzyme A (dPCoA). To complement recent biochemical and structural studies on Mycobacterium tuberculosis PPAT (MtPPAT) and to provide further insight into the feedback regulation of MtPPAT by CoA, the X-ray crystal structure of the MtPPAT enzyme in complex with CoA was determined to 2.11 {angstrom} resolution. Unlike previous X-ray crystal structures of PPAT-CoA complexes from other bacteria, which showed two distinct CoA conformations bound to the active site, only one conformation of CoA is observed in the MtPPAT-CoA complex.

  4. The cell envelope glycoconjugates of Mycobacterium tuberculosis

    PubMed Central

    Angala, Shiva Kumar; Belardinelli, Juan Manuel; Huc-Claustre, Emilie; Wheat, William H.; Jackson, Mary

    2015-01-01

    Tuberculosis (TB) remains the second most common cause of death due to a single infectious agent. The cell envelope of Mycobacterium tuberculosis (Mtb), the causative agent of the disease in humans, is a source of unique glycoconjugates and the most distinctive feature of the biology of this organism. It is the basis of much of Mtb pathogenesis and one of the major causes of its intrinsic resistance to chemotherapeutic agents. At the same time, the unique structures of Mtb cell envelope glycoconjugates, their antigenicity and essentiality for mycobacterial growth provide opportunities for drug, vaccine, diagnostic and biomarker development, as clearly illustrated by recent advances in all of these translational aspects. This review focuses on our current understanding of the structure and biogenesis of Mtb glycoconjugates with particular emphasis on one of most intriguing and least understood aspect of the physiology of mycobacteria: the translocation of these complex macromolecules across the different layers of the cell envelope. It further reviews the rather impressive progress made in the last ten years in the discovery and development of novel inhibitors targeting their biogenesis. PMID:24915502

  5. A systems chemical biology study of malate synthase and isocitrate lyase inhibition in Mycobacterium tuberculosis during active and NRP growth.

    PubMed

    May, Elebeoba E; Leitão, Andrei; Tropsha, Alexander; Oprea, Tudor I

    2013-12-01

    The ability of Mycobacterium tuberculosis (Mtb) to survive in low oxygen environments enables the bacterium to persist in a latent state within host tissues. In vitro studies of Mtb growth have identified changes in isocitrate lyase (ICL) and malate synthase (MS) that enable bacterial persistence under low oxygen and other environmentally limiting conditions. Systems chemical biology (SCB) enables us to evaluate the effects of small molecule inhibitors not only on the reaction catalyzed by malate synthase and isocitrate lyase, but the effect on the complete tricarboxylic acid cycle (TCA) by taking into account complex network relationships within that system. To study the kinetic consequences of inhibition on persistent bacilli, we implement a systems-chemical biology (SCB) platform and perform a chemistry-centric analysis of key metabolic pathways believed to impact Mtb latency. We explore consequences of disrupting the function of malate synthase (MS) and isocitrate lyase (ICL) during aerobic and hypoxic non-replicating persistence (NRP) growth by using the SCB method to identify small molecules that inhibit the function of MS and ICL, and simulating the metabolic consequence of the disruption. Results indicate variations in target and non-target reaction steps, clear differences in the normal and low oxygen models, as well as dosage dependent response. Simulation results from singular and combined enzyme inhibition strategies suggest ICL may be the more effective target for chemotherapeutic treatment against Mtb growing in a microenvironment where oxygen is slowly depleted, which may favor persistence.

  6. A Systems Chemical Biology Study of Malate Synthase and Isocitrate Lyase Inhibition in Mycobacterium tuberculosis During Active and NRP Growth

    PubMed Central

    May, Elebeoba E.; Leitão, Andrei; Tropsha, Alexander; Oprea, Tudor I.

    2013-01-01

    The ability of Mycobacterium tuberculosis (Mtb) to survive in low oxygen environments enables the bacterium to persist in a latent state within host tissues. In vitro studies of Mtb growth have identified changes in isocitrate lyase (ICL) and malate synthase (MS) that enable bacterial persistent under low oxygen and other environmentally limiting conditions. Systems chemical biology (SCB) enables us to evaluate the effects of small molecule inhibitors not only on the reaction catalyzed by malate synthase and isocitrate lyase, but the effect on the complete tricarboxylic acid cycle (TCA) by taking into account complex network relationships within that system. To study the kinetic consequences of inhibition on persistent bacilli, we implement a systems-chemical biology (SCB) platform and perform a chemistry-centric analysis of key metabolic pathways believed to impact Mtb latency. We explore consequences of disrupting the function of malate synthase (MS) and isocitrate lyase (ICL) during aerobic and hypoxic non-replicating persistence (NRP) growth by using the SCB method to identify small molecules that inhibit the function of MS and ICL, and simulating the metabolic consequence of the disruption. Results indicate variations in target and non-target reaction steps, clear differences in the normal and low oxygen models, as well as dosage dependent response. Simulation results from singular and combined enzyme inhibition strategies suggest ICL may be the more effective target for chemotherapeutic treatment against Mtb growing in a microenvironment where oxygen is slowly depleted, which may favor persistence. PMID:24121675

  7. Edaxadiene: A New Bioactive Diterpene from Mycobacterium tuberculosis

    PubMed Central

    2009-01-01

    Mycobacterium tuberculosis remains a widespread and devastating human pathogen. Presented here is the characterization of an atypical class I diterpene cyclase from M. tuberculosis that catalyzes an unusual cyclization reaction in converting the known M. tuberculosis metabolite halimadienyl diphosphate to a further cyclized novel diterpene, which we have termed edaxadiene, as it directly inhibits maturation of the phagosomal compartment in which the bacterium is taken up during infection. PMID:19583202

  8. An ELISA for the serodiagnosis of tuberculosis using a 30,000-Da native antigen of Mycobacterium tuberculosis.

    PubMed

    Sada, E; Ferguson, L E; Daniel, T M

    1990-10-01

    An ELISA was established for the measurement of IgG antibody in human serum to the 30,000-Da native antigen of Mycobacterium tuberculosis and evaluated for its utility in the diagnosis of tuberculosis at the Instituto Nacional de Enfermedades Respiratorias in Mexico City. The test had a sensitivity of 70% in patients with sputum-positive active pulmonary tuberculosis and a specificity in control subjects of 100%. The accuracy of positive prediction was 100% and of negative prediction 93% for patients with pulmonary tuberculosis at this institute. Less favorable test characteristics were obtained for patients with miliary and pleural tuberculosis, in which the test had sensitivities of 22% and 14%. These results offer the promise of an accurate serodiagnostic test for pulmonary tuberculosis using readily obtained reagents.

  9. Clinical value of the measurement of Mycobacterium tuberculosis specific antibody in pulmonary tuberculosis.

    PubMed Central

    Bothamley, G H; Rudd, R; Festenstein, F; Ivanyi, J

    1992-01-01

    BACKGROUND: A serological test that could help to diagnose tuberculosis, especially smear negative disease, would contribute to patient management. METHODS: Levels of antibody to distinct antigens of Mycobacterium tuberculosis were assessed for their value in the diagnosis and management of pulmonary tuberculosis. Serum was taken from 52 patients who were smear positive, from 27 patients who were smear negative but with evidence of active tuberculosis (sputum culture positive in 16, response to antituberculosis chemotherapy in 11), from 11 patients with old healed tuberculosis (pre-antibiotic era), and from 39 healthy subjects vaccinated with BCG. RESULTS: In smear positive tuberculosis an enzyme linked immunosorbent assay using a single 38 kDa antigen gave a diagnostic sensitivity of 80% with a 100% specificity. In smear negative pulmonary tuberculosis, however, combination of the 19 kDa antigen, lipoarabinomannan (ML 34 epitope), and hsp 65 (TB 78 epitope) was needed to achieve a sensitivity of 64% with a specificity of 95%. Recurrent and extensive radiographic disease with a poor prognosis was associated with high anti-38 kDa and low anti-14 kDa antibody levels in patients with active disease. Patients with less pulmonary cavitation had high anti-19 kDa titres. Bacteriological relapse during treatment was indicated by a rise in anti-14 kDa (TB68 epitope) antibodies. Four patients with non-tuberculous mycobacterial infection showed no anti-38 kDa antibody. CONCLUSION: Antigen or epitope specific serology may help in the diagnosis, assessment of prognosis, and monitoring of chemotherapy in patients with pulmonary tuberculosis. PMID:1585290

  10. Energy Metabolism and Drug Efflux in Mycobacterium tuberculosis

    PubMed Central

    Black, Philippa A.; Warren, Robin M.; Louw, Gail E.; van Helden, Paul D.; Victor, Thomas C.

    2014-01-01

    The inherent drug susceptibility of microorganisms is determined by multiple factors, including growth state, the rate of drug diffusion into and out of the cell, and the intrinsic vulnerability of drug targets with regard to the corresponding antimicrobial agent. Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), remains a significant source of global morbidity and mortality, further exacerbated by its ability to readily evolve drug resistance. It is well accepted that drug resistance in M. tuberculosis is driven by the acquisition of chromosomal mutations in genes encoding drug targets/promoter regions; however, a comprehensive description of the molecular mechanisms that fuel drug resistance in the clinical setting is currently lacking. In this context, there is a growing body of evidence suggesting that active extrusion of drugs from the cell is critical for drug tolerance. M. tuberculosis encodes representatives of a diverse range of multidrug transporters, many of which are dependent on the proton motive force (PMF) or the availability of ATP. This suggests that energy metabolism and ATP production through the PMF, which is established by the electron transport chain (ETC), are critical in determining the drug susceptibility of M. tuberculosis. In this review, we detail advances in the study of the mycobacterial ETC and highlight drugs that target various components of the ETC. We provide an overview of some of the efflux pumps present in M. tuberculosis and their association, if any, with drug transport and concomitant effects on drug resistance. The implications of inhibiting drug extrusion, through the use of efflux pump inhibitors, are also discussed. PMID:24614376

  11. A novel non-radioactive primase-pyrophosphatase activity assay and its application to the discovery of inhibitors of Mycobacterium tuberculosis primase DnaG.

    PubMed

    Biswas, Tapan; Resto-Roldán, Esteban; Sawyer, Sean K; Artsimovitch, Irina; Tsodikov, Oleg V

    2013-02-01

    Bacterial DNA primase DnaG synthesizes RNA primers required for chromosomal DNA replication. Biochemical assays measuring primase activity have been limited to monitoring formation of radioactively labelled primers because of the intrinsically low catalytic efficiency of DnaG. Furthermore, DnaG is prone to aggregation and proteolytic degradation. These factors have impeded discovery of DnaG inhibitors by high-throughput screening (HTS). In this study, we expressed and purified the previously uncharacterized primase DnaG from Mycobacterium tuberculosis (Mtb DnaG). By coupling the activity of Mtb DnaG to that of another essential enzyme, inorganic pyrophosphatase from M. tuberculosis (Mtb PPiase), we developed the first non-radioactive primase-pyrophosphatase assay. An extensive optimization of the assay enabled its efficient use in HTS (Z' = 0.7 in the 384-well format). HTS of 2560 small molecules to search for inhibitory compounds yielded several hits, including suramin, doxorubicin and ellagic acid. We demonstrate that these three compounds inhibit Mtb DnaG. Both suramin and doxorubicin are potent (low-µM) DNA- and nucleotide triphosphate-competitive priming inhibitors that interact with more than one site on Mtb DnaG. This novel assay should be applicable to other primases and inefficient DNA/RNA polymerases, facilitating their characterization and inhibitor discovery.

  12. Lower cytotoxicity, high stability, and long-term antibacterial activity of a poly(methacrylic acid)/isoniazid/rifampin nanogel against multidrug-resistant intestinal Mycobacterium tuberculosis.

    PubMed

    Chen, Tao; Li, Qiang; Guo, Lina; Yu, Li; Li, Zhenyan; Guo, Huixin; Li, Haicheng; Zhao, Meigui; Chen, Liang; Chen, Xunxun; Zhong, Qiu; Zhou, Lin; Wu, Ting

    2016-01-01

    To overcome the undesirable side effects and reduce the cytotoxicity of isoniazid (INH) and rifampin (RMP) in the digestive tract, a poly(methacrylic acid) (PMAA) nanogel was developed as a carrier of INH and RMP. This PMAA/INH/RMP nanogel was prepared as a treatment for intestinal tuberculosis caused by multidrug-resistant Mycobacterium tuberculosis (MTB). The morphology, size, and in vitro release properties were evaluated in a simulated gastrointestinal medium, and long-term antibacterial performance, cytotoxicity, stability, and activity of this novel PMAA/INH/RMP nanogel against multidrug-resistant MTB in the intestine were investigated. Our results indicate that the PMAA/INH/RMP nanogel exhibited extended antibacterial activity by virtue of its long-term release of INH and RMP in the simulated gastrointestinal medium. Further, this PMAA/INH/RMP nanogel exhibited lower cytotoxicity than did INH or RMP alone, suggesting that this PMAA/INH/RMP nanogel could be a more useful dosage form than separate doses of INH and RMP for intestinal MTB. The novel aspects of this study include the cytotoxicity study and the three-phase release profile study, which might be useful for other researchers in this field.

  13. A novel non-radioactive primase–pyrophosphatase activity assay and its application to the discovery of inhibitors of Mycobacterium tuberculosis primase DnaG

    PubMed Central

    Biswas, Tapan; Resto-Roldán, Esteban; Sawyer, Sean K.; Artsimovitch, Irina; Tsodikov, Oleg V.

    2013-01-01

    Bacterial DNA primase DnaG synthesizes RNA primers required for chromosomal DNA replication. Biochemical assays measuring primase activity have been limited to monitoring formation of radioactively labelled primers because of the intrinsically low catalytic efficiency of DnaG. Furthermore, DnaG is prone to aggregation and proteolytic degradation. These factors have impeded discovery of DnaG inhibitors by high-throughput screening (HTS). In this study, we expressed and purified the previously uncharacterized primase DnaG from Mycobacterium tuberculosis (Mtb DnaG). By coupling the activity of Mtb DnaG to that of another essential enzyme, inorganic pyrophosphatase from M. tuberculosis (Mtb PPiase), we developed the first non-radioactive primase–pyrophosphatase assay. An extensive optimization of the assay enabled its efficient use in HTS (Z′ = 0.7 in the 384-well format). HTS of 2560 small molecules to search for inhibitory compounds yielded several hits, including suramin, doxorubicin and ellagic acid. We demonstrate that these three compounds inhibit Mtb DnaG. Both suramin and doxorubicin are potent (low-µM) DNA- and nucleotide triphosphate-competitive priming inhibitors that interact with more than one site on Mtb DnaG. This novel assay should be applicable to other primases and inefficient DNA/RNA polymerases, facilitating their characterization and inhibitor discovery. PMID:23267008

  14. The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in-vitro study.

    PubMed

    Mehtar, S; Wiid, I; Todorov, S D

    2008-01-01

    Clinical isolates of meticillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Candida albicans and Mycobacterium tuberculosis (MTB) were tested against copper (Cu) and its alloys. Stainless steel and polyvinylchloride (PVC) were used as controls. The amount of Cu required to inhibit test isolates at room temperature (24 degrees C) and at 4 degrees C was determined. At room temperature, Cu, DZR Brass (Cu 62%, Pb 2.5%, arsenate 0.13% and Zn 22.5%) and Brass 70/30 (Cu 70% and zinc 30%) inhibited C. albicans and K. pneumoniae at 60 min; nickel silver (NiAg) inhibited C. albicans at 60 min and K. pneumoniae at 270 min. P. aeruginosa was inhibited by Brass 70/30 and nickel silver (NiAg) at 180 min and at 270 min by Cu and DZR. Cu and DZR inhibited A. baumannii at 180 min while the other alloys were effective at 360 min. Stainless steel and PVC showed little or no inhibitory activity. Two M. tuberculosis strains, one isoniazid resistant (R267) and the other multidrug resistant (R432), demonstrated growth inhibition with Cu of 98% and 88% respectively compared with PVC; the other alloys were less active. Time to positivity (TTP) for R267 was >15 days with Cu and 11 days for the other alloys; with R432 it was 5 days. Effective inhibition of nosocomial pathogens and MTB by Cu and alloys was best when the Cu content was >55%.

  15. Mycobacterium tuberculosis PstS1 amplifies IFN-γ and induces IL-17/IL-22 responses by unrelated memory CD4+ T cells via dendritic cell activation.

    PubMed

    Palma, Carla; Schiavoni, Giovanna; Abalsamo, Laura; Mattei, Fabrizio; Piccaro, Giovanni; Sanchez, Massimo; Fernandez, Carmen; Singh, Mahavir; Gabriele, Lucia

    2013-09-01

    The immunological mechanisms that modulate protection during Mycobacterium tuberculosis (Mtb) infection or vaccination are not fully understood. Secretion of IFN-γ and, to a lesser extent, of IL-17 by CD4(+) T cells plays a major role both in protection and immunopathology. Few Mtb Ags interacting with DCs affect priming, activation, and regulation of Ag-unrelated CD4(+) T-cell responses. Here we demonstrate that PstS1, a 38 kDa-lipoprotein of Mtb, promotes Ag-independent activation of memory T lymphocytes specific for Ag85B or Ag85A, two immunodominant protective Ags of Mtb. PstS1 expands CD4(+) and CD8(+) memory T cells, amplifies secretion of IFN-γ and IL-22 and induces IL-17 production by effector memory cells in an Ag-unrelated manner in vitro and in vivo. These effects were mediated through the stimulation of DCs, particularly of the CD8α(-) subtype, which respond to PstS1 by undergoing phenotypic maturation and by secreting IL-6, IL-1β and, to a lower extent, IL-23. IL-6 secretion by PstS1-stimulated DCs was required for IFN-γ, and to a lesser extent for IL-22 responses by Ag85B-specific memory T cells. These results may open new perspectives for immunotherapeutic strategies to control Th1/Th17 immune responses in Mtb infections and in vaccinations against tuberculosis. PMID:23719937

  16. Analysis of the Mycobacterium tuberculosis 85A antigen promoter region.

    PubMed Central

    Kremer, L; Baulard, A; Estaquier, J; Content, J; Capron, A; Locht, C

    1995-01-01

    A mycobacterial expression-secretion vector was constructed in which the Escherichia coli alkaline phosphatase (phoA) reporter gene was placed under the control of the Mycobacterium tuberculosis 85A promoter and secretion signal sequences. In recombinant Mycobacterium smegmatis and Mycobacterium bovis BCG, PhoA activity could readily be detected on the mycobacterial cell surface and in the culture supernatant, indicating that the 85A signals can drive heterologous expression and secretion in both species. In contrast to the mycobacteria, the 85A promoter did not function in E. coli. We mapped the promoter region by progressive deletions using BAL 31 exonuclease and by primer extension analysis. Insertion and deletion mutations within the promoter region indicated that, unlike most E. coli promoters but similar to Streptomyces promoters, the position of the putative -35 region was not critical for efficient promoter activity. In addition, we investigated the ability of the identified signals to drive the production and secretion in BCG of recombinant Schistosoma mansoni glutathione S-transferase (Sm28GST), a protective antigen against schistosomiasis. BALB/c mice immunized with the recombinant BCG by a single dose exhibited a weak but specific T-cell response to Sm28GST. PMID:7836298

  17. Mycobacterium tuberculosis PPE protein Rv0256c induces strong B cell response in tuberculosis patients.

    PubMed

    Abraham, Philip Raj; Latha, Gaddam Suman; Valluri, Vijaya Lakshmi; Mukhopadhyay, Sangita

    2014-03-01

    Tuberculosis (TB) is one of the most important diseases of humans and major public health problem worldwide. Early and accurate diagnosis of TB is necessary for the treatment, prevention, and control of TB. Therefore, it is important to identify suitable antigens that can differentiate active tuberculosis patients from BCG-vaccinated individuals. In the present study, we have used Rv0256c (PPE2) protein of Mycobacterium tuberculosis to screen the sera of infected patients belonging to different clinical TB presentations, and BCG-vaccinated clinically healthy individuals by enzyme immunoassay. Our results demonstrated that Rv0256c displayed stronger and specific immunoreactivity against the sera obtained from clinically active tuberculosis patients compared to PPD and ESAT-6 and could differentiate the TB-patients from the BCG-vaccinated controls. Importantly, Rv0256c was also found to detect even the extrapulmonary and smear-negative pulmonary cases which often are tedious and difficult to detect using conventional diagnostic methods. This study suggests that Rv0256c can be used as a potential marker for the serodiagnosis of tuberculosis patients. PMID:23827809

  18. Transcriptional Profiling of Mycobacterium Tuberculosis During Infection: Lessons Learned

    PubMed Central

    Ward, Sarah K.; Abomoelak, Bassam; Marcus, Sarah A.; Talaat, Adel M.

    2010-01-01

    Infection with Mycobacterium tuberculosis, the causative agent of tuberculosis, is considered one of the biggest infectious disease killers worldwide. A significant amount of attention has been directed toward revealing genes involved in the virulence and pathogenesis of this air-born pathogen. With the advances in technologies for transcriptional profiling, several groups, including ours, took advantage of DNA microarrays to identify transcriptional units differentially regulated by M. tuberculosis within a host. The main idea behind this approach is that pathogens tend to regulate their gene expression levels depending on the host microenvironment, and preferentially express those needed for survival. Identifying this class of genes will improve our understanding of pathogenesis. In our case, we identified an in vivo expressed genomic island that was preferentially active in murine lungs during early infection, as well as groups of genes active during chronic tuberculosis. Other studies have identified additional gene groups that are active during macrophage infection and even in human lungs. Despite all of these findings, one of the lingering questions remaining was whether in vivo expressed transcripts are relevant to the virulence, pathogenesis, and persistence of the organism. The work of our group and others addressed this question by examining the contribution of in vivo expressed genes using a strategy based on gene deletions followed by animal infections. Overall, the analysis of most of the in vivo expressed genes supported a role of these genes in M. tuberculosis pathogenesis. Further, these data suggest that in vivo transcriptional profiling is a valid approach to identify genes required for bacterial pathogenesis. PMID:21738523

  19. Population Pharmacokinetic/Pharmacodynamic Analysis of the Bactericidal Activities of Sutezolid (PNU-100480) and Its Major Metabolite against Intracellular Mycobacterium tuberculosis in Ex Vivo Whole-Blood Cultures of Patients with Pulmonary Tuberculosis

    PubMed Central

    Zhu, Tong; Friedrich, Sven O.; Diacon, Andreas

    2014-01-01

    Sutezolid (PNU-100480 [U-480]) is an oxazolidinone antimicrobial being developed for the treatment of tuberculosis. An active sulfoxide metabolite (PNU-101603 [U-603]), which reaches concentrations in plasma several times those of the parent, has been reported to drive the killing of extracellular Mycobacterium tuberculosis by sutezolid in hollow-fiber culture. However, the relative contributions of the parent and metabolite against intracellular M. tuberculosis in vivo are not fully understood. The relationships between the plasma concentrations of U-480 and U-603 and intracellular whole-blood bactericidal activity (WBA) in ex vivo cultures were examined using a direct competitive population pharmacokinetic (PK)/pharmacodynamic 4-parameter sigmoid model. The data set included 690 PK determinations and 345 WBA determinations from 50 tuberculosis patients enrolled in a phase 2a sutezolid trial. The model parameters were solved iteratively. The median U-603/U-480 concentration ratio was 7.1 (range, 1 to 28). The apparent 50% inhibitory concentration of U-603 for intracellular M. tuberculosis was 17-fold greater than that of U-480 (90% confidence interval [CI], 9.9- to 53-fold). Model parameters were used to simulate in vivo activity after oral dosing with sutezolid at 600 mg twice a day (BID) and 1,200 mg once a day (QD). Divided dosing resulted in greater cumulative activity (−0.269 log10 per day; 90% CI, −0.237 to −0.293 log10 per day) than single daily dosing (−0.186 log10 per day; 90% CI, −0.160 to −0.208 log10 per day). U-480 accounted for 84% and 78% of the activity for BID and QD dosing, respectively, despite the higher concentrations of U-603. Killing of intracellular M. tuberculosis by orally administered sutezolid is mainly due to the activity of the parent compound. Taken together with the findings of other studies in the hollow-fiber model, these findings suggest that sutezolid and its metabolite act on different mycobacterial subpopulations

  20. Serine 83 in DosR, a response regulator from Mycobacterium tuberculosis, promotes its transition from an activated, phosphorylated state to an inactive, unphosphorylated state.

    PubMed

    Cho, Ha Yeon; Kang, Beom Sik

    2014-02-21

    A sensor kinase, DosS, and its corresponding response regulator, DosR, constitute a two component system for regulating gene expression under hypoxic conditions in Mycobacterium tuberculosis. Among response regulators in M. tuberculosis, NarL has high sequence similarity to DosR, and autophosphorylated DosS transfers its phosphate group not only to DosR but also to NarL. Phosphorylated DosR is more rapidly dephosphorylated than phosphorylated NarL. DosR and NarL differ with respect to the amino acids at positions T+1 and T+2 around the phosphorylation sites in the N-terminal phosphoacceptor domain; NarL has S83 and Y84, whereas DosR has A90 and H91. A DosR S83A mutant shows prolonged phosphorylation. Structural comparison with a histidinol phosphate phosphatase suggests that the hydroxyl group of DosR S83 could play a role in activating the water molecule involved in the triggering of autodephosphorylation.

  1. Carbonic anhydrase inhibitors. Characterization and inhibition studies of the most active beta-carbonic anhydrase from Mycobacterium tuberculosis, Rv3588c.

    PubMed

    Carta, Fabrizio; Maresca, Alfonso; Covarrubias, Adrian Suarez; Mowbray, Sherry L; Jones, T Alwyn; Supuran, Claudiu T

    2009-12-01

    The Rv3588c gene product of Mycobacterium tuberculosis, a beta-carbonic anhydrase (CA, EC 4.2.1.1) denominated here mtCA 2, shows the highest catalytic activity for CO(2) hydration (k(cat) of 9.8 x 10(5)s(-1), and k(cat)/K(m) of 9.3 x 10(7)M(-1)s(-1)) among the three beta-CAs encoded in the genome of this pathogen. A series of sulfonamides/sulfamates was assayed for their interaction with mtCA 2, and some diazenylbenzenesulfonamides were synthesized from sulfanilamide/metanilamide by diazotization followed by coupling with amines or phenols. Several low nanomolar mtCA 2 inhibitors have been detected among which acetazolamide, ethoxzolamide and some 4-diazenylbenzenesulfonamides (K(I)s of 9-59 nM). As the Rv3588c gene was shown to be essential to the growth of M. tuberculosis, inhibition of this enzyme may be relevant for the design of antituberculosis drugs possessing a novel mechanism of action. PMID:19846301

  2. Soluble TNFRp75 regulates host protective immunity against Mycobacterium tuberculosis

    PubMed Central

    Keeton, Roanne; Allie, Nasiema; Dambuza, Ivy; Abel, Brian; Hsu, Nai-Jen; Sebesho, Boipelo; Randall, Philippa; Burger, Patricia; Fick, Elizabeth; Quesniaux, Valerie F.J.; Ryffel, Bernhard; Jacobs, Muazzam

    2014-01-01

    Development of host protective immunity against Mycobacterium tuberculosis infection is critically dependent on the inflammatory cytokine TNF. TNF signals through 2 receptors, TNFRp55 and TNFRp75; however, the role of TNFRp75-dependent signaling in immune regulation is poorly defined. Here we found that mice lacking TNFRp75 exhibit greater control of M. tuberculosis infection compared with WT mice. TNFRp75–/– mice developed effective bactericidal granulomas and demonstrated increased pulmonary recruitment of activated DCs. Moreover, IL-12p40–dependent migration of DCs to lung draining LNs of infected TNFRp75–/– mice was substantially higher than that observed in WT M. tuberculosis–infected animals and was associated with enhanced frequencies of activated M. tuberculosis–specific IFN-γ–expressing CD4+ T cells. In WT mice, TNFRp75 shedding correlated with markedly reduced bioactive TNF levels and IL-12p40 expression. Neutralization of TNFRp75 in M. tuberculosis–infected WT BM-derived DCs (BMDCs) increased production of bioactive TNF and IL-12p40 to a level equivalent to that produced by TNFRp75–/– BMDCs. Addition of exogenous TNFRp75 to TNFRp75–/– BMDCs infected with M. tuberculosis decreased IL-12p40 synthesis, demonstrating that TNFRp75 shedding regulates DC activation. These data indicate that TNFRp75 shedding downmodulates protective immune function and reduces host resistance and survival; therefore, targeting TNFRp75 may be beneficial for improving disease outcome. PMID:24569452

  3. Inhibition of Mycobacterium tuberculosis topoisomerase I by m-AMSA, a eukaryotic type II topoisomerase poison.

    PubMed

    Godbole, Adwait Anand; Ahmed, Wareed; Bhat, Rajeshwari Subray; Bradley, Erin K; Ekins, Sean; Nagaraja, Valakunja

    2014-04-18

    m-AMSA, an established inhibitor of eukaryotic type II topoisomerases, exerts its cidal effect by binding to the enzyme-DNA complex thus inhibiting the DNA religation step. The molecule and its analogues have been successfully used as chemotherapeutic agents against different forms of cancer. After virtual screening using a homology model of the Mycobacterium tuberculosis topoisomerase I, we identified m-AMSA as a high scoring hit. We demonstrate that m-AMSA can inhibit the DNA relaxation activity of topoisomerase I from M. tuberculosis and Mycobacterium smegmatis. In a whole cell assay, m-AMSA inhibited the growth of both the mycobacteria.

  4. Diversity of Mycobacterium tuberculosis across Evolutionary Scales.

    PubMed

    O'Neill, Mary B; Mortimer, Tatum D; Pepperell, Caitlin S

    2015-01-01

    Tuberculosis (TB) is a global public health emergency. Increasingly drug resistant strains of Mycobacterium tuberculosis (M.tb) continue to emerge and spread, highlighting adaptability of this pathogen. Most studies of M.tb evolution have relied on 'between-host' samples, in which each person with TB is represented by a single M.tb isolate. However, individuals with TB commonly harbor populations of M.tb numbering in the billions. Here, we use analyses of M.tb genomic data from within and between hosts to gain insight into influences shaping genetic diversity of this pathogen. We find that the amount of M.tb genetic diversity harbored by individuals with TB can vary dramatically, likely as a function of disease severity. Surprisingly, we did not find an appreciable impact of TB treatment on M.tb diversity. In examining genomic data from M.tb samples within and between hosts with TB, we find that genes involved in the regulation, synthesis, and transportation of immunomodulatory cell envelope lipids appear repeatedly in the extremes of various statistical measures of diversity. Many of these genes have been identified as possible targets of selection in other studies employing different methods and data sets. Taken together, these observations suggest that M.tb cell envelope lipids are targets of selection within hosts. Many of these lipids are specific to pathogenic mycobacteria and, in some cases, human-pathogenic mycobacteria. We speculate that rapid adaptation of cell envelope lipids is facilitated by functional redundancy, flexibility in their metabolism, and their roles mediating interactions with the host.

  5. Diversity of Mycobacterium tuberculosis across Evolutionary Scales

    PubMed Central

    O’Neill, Mary B.; Mortimer, Tatum D.; Pepperell, Caitlin S.

    2015-01-01

    Tuberculosis (TB) is a global public health emergency. Increasingly drug resistant strains of Mycobacterium tuberculosis (M.tb) continue to emerge and spread, highlighting adaptability of this pathogen. Most studies of M.tb evolution have relied on ‘between-host’ samples, in which each person with TB is represented by a single M.tb isolate. However, individuals with TB commonly harbor populations of M.tb numbering in the billions. Here, we use analyses of M.tb genomic data from within and between hosts to gain insight into influences shaping genetic diversity of this pathogen. We find that the amount of M.tb genetic diversity harbored by individuals with TB can vary dramatically, likely as a function of disease severity. Surprisingly, we did not find an appreciable impact of TB treatment on M.tb diversity. In examining genomic data from M.tb samples within and between hosts with TB, we find that genes involved in the regulation, synthesis, and transportation of immunomodulatory cell envelope lipids appear repeatedly in the extremes of various statistical measures of diversity. Many of these genes have been identified as possible targets of selection in other studies employing different methods and data sets. Taken together, these observations suggest that M.tb cell envelope lipids are targets of selection within hosts. Many of these lipids are specific to pathogenic mycobacteria and, in some cases, human-pathogenic mycobacteria. We speculate that rapid adaptation of cell envelope lipids is facilitated by functional redundancy, flexibility in their metabolism, and their roles mediating interactions with the host. PMID:26562841

  6. Macrophage polarization drives granuloma outcome during Mycobacterium tuberculosis infection.

    PubMed

    Marino, Simeone; Cilfone, Nicholas A; Mattila, Joshua T; Linderman, Jennifer J; Flynn, JoAnne L; Kirschner, Denise E

    2015-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), induces formation of granulomas, structures in which immune cells and bacteria colocalize. Macrophages are among the most abundant cell types in granulomas and have been shown to serve as both critical bactericidal cells and targets for M. tuberculosis infection and proliferation throughout the course of infection. Very little is known about how these processes are regulated, what controls macrophage microenvironment-specific polarization and plasticity, or why some granulomas control bacteria and others permit bacterial dissemination. We take a computational-biology approach to investigate mechanisms that drive macrophage polarization, function, and bacterial control in granulomas. We define a "macrophage polarization ratio" as a metric to understand how cytokine signaling translates into polarization of single macrophages in a granuloma, which in turn modulates cellular functions, including antimicrobial activity and cytokine production. Ultimately, we extend this macrophage ratio to the tissue scale and define a "granuloma polarization ratio" describing mean polarization measures for entire granulomas. Here we coupled experimental data from nonhuman primate TB granulomas to our computational model, and we predict two novel and testable hypotheses regarding macrophage profiles in TB outcomes. First, the temporal dynamics of granuloma polarization ratios are predictive of granuloma outcome. Second, stable necrotic granulomas with low CFU counts and limited inflammation are characterized by short NF-κB signal activation intervals. These results suggest that the dynamics of NF-κB signaling is a viable therapeutic target to promote M1 polarization early during infection and to improve outcome.

  7. Pulmonary disease due to Mycobacterium tuberculosis in a horse: zoonotic concerns and limitations of antemortem testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A case of pulmonary tuberculosis caused by Mycobacterium tuberculosis was diagnosed in a horse. Clinical evaluation performed prior to euthanasia did not suggest tuberculosis, but postmortem examination provided pathological and bacteriological evidence of disease. In the lungs, multiple tuberculoid...

  8. Molecular epidemiologic evaluation of transmissibility and virulence of Mycobacterium tuberculosis.

    PubMed

    Rhee, J T; Piatek, A S; Small, P M; Harris, L M; Chaparro, S V; Kramer, F R; Alland, D

    1999-06-01

    Discovery of genotypic markers associated with increased transmissibility in Mycobacterium tuberculosis would represent an important step in advancing mycobacterial virulence studies. M. tuberculosis strains may be classified into one of three genotypes on the basis of the presence of specific nucleotide substitutions in codon 463 of the katG gene (katG-463) and codon 95 of the gyrA gene (gyrA-95). It has previously been reported that two of these three genotypes are associated with increased IS6110-based clustering, a potential proxy of virulence. We designed a case-control analysis of U.S.-born patients with tuberculosis in San Francisco, Calif., between 1991 and 1997 to investigate associations between katG-463 and gyrA-95 genotypes and epidemiologically determined measures of strain-specific infectivity and pathogenicity and IS6110-based clustering status. We used a new class of molecular probes called molecular beacons to genotype the isolates rapidly. Infectivity was defined as the propensity of isolates to cause tuberculin skin test conversions among named contacts, and pathogenicity was defined as their propensity to cause active disease among named contacts. The molecular beacon assay was a simple and reproducible method for the detection of known single nucleotide polymorphisms in large numbers of clinical M. tuberculosis isolates. The results showed that no genotype of the katG-463- and gyrA-95-based classification system was associated with increased infectivity and pathogenicity or with increased IS6110-based clustering in San Francisco during the study period. We speculate that molecular epidemiologic studies investigating clinically relevant outcomes may contribute to the knowledge of the significance of laboratory-derived virulence factors in the propagation of tuberculosis in human communities.

  9. Modification of the active site of Mycobacterium tuberculosis KatG after disruption of the Met-Tyr-Trp cross-linked adduct

    PubMed Central

    Kapetanaki, Sofia M.; Zhao, Xiangbo; Yu, Shengwei; Magliozzo, Richard S.; Schelvis, Johannes P. M.

    2007-01-01

    Mycobacterium tuberculosis catalase-peroxidase (Mtb KatG) is a bifunctional enzyme that possesses both catalase and peroxidase activities and is responsible for the activation of the antituberculosis drug isoniazid. Mtb KatG contains an unusual adduct in its distal heme pocket that consists of the covalently linked Trp107, Tyr229, and Met255. The KatG(Y229F) mutant lacks this adduct and has decreased steady-state catalase activity and enhanced peroxidase activity. In order to test a potential structural role of the adduct that supports catalase activity, we have used resonance Raman spectroscopy to probe the local heme environment of KatG(Y229F). In comparison to wild-type KatG, resting KatG(Y229F) contains a significant amount of 6-coordinate, low-spin heme and a more planar heme. Resonance Raman spectroscopy of the ferrous-CO complex of KatG(Y229F) suggest a non-linear Fe-CO binding geometry that is less tilted than in wild-type KatG. These data provide evidence that the Met-Tyr-Trp adduct imparts structural stability to the active site of KatG that seems to be important for sustaining catalase activity. PMID:17188362

  10. Protein targets for structure-based anti-Mycobacterium tuberculosis drug discovery.

    PubMed

    Lou, Zhiyong; Zhang, Xiaoxue

    2010-05-01

    Mycobacterium tuberculosis, which belongs to the genus Mycobacterium, is the pathogenic agent for most tuberculosis (TB). As TB remains one of the most rampant infectious diseases, causing morbidity and death with emergence of multi-drug-resistant and extensively-drug-resistant forms, it is urgent to identify new drugs with novel targets to ensure future therapeutic success. In this regards, the structural genomics of M. tuberculosis provides important information to identify potential targets, perform biochemical assays, determine crystal structures in complex with potential inhibitor(s), reveal the key sites/residues for biological activity, and thus validate drug targets and discover novel drugs. In this review, we will discuss the recent progress on novel targets for structure-based anti-M. tuberculosis drug discovery.

  11. Infection of human THP-1 cells with dormant Mycobacterium tuberculosis.

    PubMed

    Iona, Elisabetta; Pardini, Manuela; Gagliardi, Maria Cristina; Colone, Marisa; Stringaro, Anna Rita; Teloni, Raffaela; Brunori, Lara; Nisini, Roberto; Fattorini, Lanfranco; Giannoni, Federico

    2012-09-01

    Dormant, non-replicating Mycobacterium tuberculosis H37Rv strain cultured in hypoxic conditions was used to infect THP-1 cells. CFUs counting, Kinyoun staining and electron microscopy showed that dormant bacilli infected THP-1 cells at a rate similar to replicating M. tuberculosis, but failed to grow during the first 6 days of infection. The absence of growth was specific to the intracellular compartment, as demonstrated by efficient growth in liquid medium. Quantification of β-actin mRNA recovered from infected cells showed that, in contrast with log-phase bacteria, infection with dormant bacilli determined a reduced THP-1 cell death. Gene expression of intracellular non-replicating bacteria showed a pattern typical of a dormant state. Intracellular dormant bacteria induced the activation of genes associated to a proinflammatory response in THP-1 cells. Though, higher levels of TNFα, IL-1β and IL-8 mRNAs compared to aerobic H37Rv infected cells were not paralleled by increased cytokine accumulation in the supernatants. Moreover, dormant bacilli induced a higher expression of inducible cox-2 gene, accompanied by increased PGE2 secretion. Overall, our data describe a new model of in vitro infection using dormant M. tuberculosis that could provide the basis for understanding how non-replicating bacilli survive intracellularly and influence the maintenance of the hypoxic granuloma.

  12. Mycobacterium tuberculosis isolates from single outpatient clinic in Panama City exhibit wide genetic diversity.

    PubMed

    Sambrano, Dilcia; Correa, Ricardo; Almengor, Pedro; Domínguez, Amada; Vega, Silvio; Goodridge, Amador

    2014-08-01

    Understanding Mycobacterium tuberculosis biodiversity and transmission is significant for tuberculosis control. This short report aimed to determine the genetic diversity of M. tuberculosis isolates from an outpatient clinic in Panama City. A total of 62 M. tuberculosis isolates were genotyped by 12 loci mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) and Spoligotyping. Forty-five (72.6%) of the isolates showed unique MIRU-VNTR genotypes, and 13 (21%) of the isolates were grouped into four clusters. Four isolates showed polyclonal MIRU-VNTR genotypes. The MIRU-VNTR Hunter-Gaston discriminatory index reached 0.988. The Spoligotyping analysis revealed 16 M. tuberculosis families, including Latin American-Mediterranean, Harlem, and Beijing. These findings suggest a wide genetic diversity of M. tuberculosis isolates at one outpatient clinic. A detailed molecular epidemiology survey is now warranted, especially following second massive immigration for local Panama Canal expansion activities. PMID:24865686

  13. Comparative analyses of transport proteins encoded within the genomes of Mycobacterium tuberculosis and Mycobacterium leprae

    PubMed Central

    Youm, Jiwon; Saier, Milton H.

    2012-01-01

    The co-emergence of multidrug resistant pathogenic bacterial strains and the HIV pandemic has made tuberculosis a leading public health threat. The causative agent is Mycobacterium tuberculosis (Mtu), a facultative intracellular parasite. Mycobacterium leprae (Mle), a related organism that causes leprosy, is an obligate intracellular parasite. Given that different transporters are required for bacterial growth and persistence under a variety of growth conditions, we conducted comparative analyses of transport proteins encoded within the genomes of these two organisms. A minimal set of genes required for intracellular and extracellular life were identified. Drug efflux systems utilizing primary active transport mechanisms have been preferentially retained in Mle and still others preferentially lost. Transporters associated with environmental adaptation found in Mtu were mostly lost in Mle. These findings provide starting points for experimental studies that may elucidate the dependencies of pathogenesis on transport for these two pathogenic mycobacteria. They also lead to suggestions regarding transporters that function in intra- versus extra-cellular growth. PMID:22179038

  14. MTBreg: The Database of Conditionally Regulated Proteins in Mycobacterium Tuberculosis

    DOE Data Explorer

    Kaufman, Markus; Pal, Debnath; Eisenberg, David

    Proteins up- and down- regulated in Mycobacterium tuberculosis grown under conditions mimicking infection are included in this database. It also includes information on proteins that are regulated by selected transcription factors or other regulatory proteins. The literature data provided here is complimentary to the databases provided by Michael Strong that include recent TB computational functional linkages and the Prolinks Database by Peter Bowers. The experimental condition, the experimental dataset and a literature reference will be displayed, including links to the computationally linked proteins in the Prolinks Database and the entry in the Mycobacterium tuberculosis Structural Genomics Database.[Copied from information at http://www.doe-mbi.ucla.edu/Services/MTBreg/

  15. Sub-speciation of Mycobacterium tuberculosis complex from tuberculosis patients in Japan.

    PubMed

    Ueyama, Masako; Chikamatsu, Kinuyo; Aono, Akio; Murase, Yoshiro; Kuse, Naoyuki; Morimoto, Kozo; Okumura, Masao; Yoshiyama, Takashi; Ogata, Hideo; Yoshimori, Kozo; Kudoh, Shoji; Azuma, Arata; Gemma, Akihiko; Mitarai, Satoshi

    2014-01-01

    Mycobacterium tuberculosis is the major causative agent of tuberculosis in humans. It is well known that Mycobacterium bovis and other species in the M. tuberculosis complex (MTC) can cause respiratory diseases as zoonosis. We analyzed the MTC isolates collected from tuberculosis patients from Japan in 2002 using a multiplex PCR system that detected cfp32, RD9 and RD12. A total of 970 MTC isolates that were representative of the tuberculosis cases throughout Japan, were examined using this method. As a result, 966 (99.6%) M. tuberculosis, two Mycobacterium africanum and two Mycobacterium canettii were identified using a multiplex PCR system, while no M. bovis was detected. Two isolates that lacked RD9 were initially considered to be M. canettii, but further analysis of the hsp65 sequence revealed them to be M. tuberculosis. Also two M. africanum were identified as M. tuberculosis using the -215 narG nucleotide polymorphism. Though PCR-linked methods have been used for a rapid differentiation of MTC and NTM, from our cases we suggest careful interpretation of RD based identification.

  16. DNA fingerprinting of Mycobacterium tuberculosis strains from patients with pulmonary tuberculosis in Honduras.

    PubMed Central

    Pineda-Garcia, L; Ferrera, A; Hoffner, S E

    1997-01-01

    Mycobacterium tuberculosis isolates from 84 patients with pulmonary tuberculosis in Honduras were characterized by restriction fragment length polymorphism analysis. Seventy-three different IS6110 patterns were found; 63 of these were unique and 10 were shared by two to three strains each. Thus, no ongoing spread of any specific clone of bacteria could be demonstrated. PMID:9276422

  17. Dramatic reduction of culture time of Mycobacterium tuberculosis

    NASA Astrophysics Data System (ADS)

    Ghodbane, Ramzi; Raoult, Didier; Drancourt, Michel

    2014-02-01

    Mycobacterium tuberculosis culture, a critical technique for routine diagnosis of tuberculosis, takes more than two weeks. Here, step-by-step improvements in the protocol including a new medium, microaerophlic atmosphere or ascorbic-acid supplement and autofluorescence detection dramatically shortened this delay. In the best case, primary culture and rifampicin susceptibility testing were achieved in 72 hours when specimens were inoculated directly on the medium supplemented by antibiotic at the beginning of the culture.

  18. Atypical presentation of Mycobacterium tuberculosis in an infant.

    PubMed

    Gayathri Devi, D R; Gowri, Mangala; Padmalatha, S; Sreeja, S; Babu, Sreenivasa

    2010-12-01

    Tuberculosis of the skeletal muscle is very rare which is often missed in the early stages. This leads to delay in treatment resulting in irreversible limb deformity and loss of function. The authors describe a case of healthy child with an intramuscular cystic swelling above the elbow joint. The pus showing acid fast bacilli morphologically resembling Mycobacterium tuberculosis was also isolated in culture. Following the diagnosis and confirmation, the child was treated successfully with anti tubercular drugs. PMID:20890682

  19. The Role of the β5-α11 Loop in the Active-Site Dynamics of Acylated Penicillin-Binding Protein A from Mycobacterium tuberculosis

    SciTech Connect

    Fedarovich, Alena; Nicholas, Robert A.; Davies, Christopher

    2013-04-22

    Penicillin-binding protein A (PBPA) is a class B penicillin-binding protein that is important for cell division in Mycobacterium tuberculosis. We have determined a second crystal structure of PBPA in apo form and compared it with an earlier structure of apoenzyme. Significant structural differences in the active site region are apparent, including increased ordering of a β-hairpin loop and a shift of the SxN active site motif such that it now occupies a position that appears catalytically competent. Using two assays, including one that uses the intrinsic fluorescence of a tryptophan residue, we have also measured the second-order acylation rate constants for the antibiotics imipenem, penicillin G, and ceftriaxone. Of these, imipenem, which has demonstrable anti-tubercular activity, shows the highest acylation efficiency. Crystal structures of PBPA in complex with the same antibiotics were also determined, and all show conformational differences in the β5–α11 loop near the active site, but these differ for each β-lactam and also for each of the two molecules in the crystallographic asymmetric unit. Overall, these data reveal the β5–α11 loop of PBPA as a flexible region that appears important for acylation and provide further evidence that penicillin-binding proteins in apo form can occupy different conformational states.

  20. Activation of apoptosis, but not necrosis, during Mycobacterium tuberculosis infection correlated with decreased bacterial growth: role of TNF-alpha, IL-10, caspases and phospholipase A2.

    PubMed

    Arcila, Mary Luz; Sánchez, María Dulfary; Ortiz, Blair; Barrera, Luis Fernando; García, Luis F; Rojas, Mauricio

    2007-10-01

    Monocyte/macrophage cell death is an important event during mycobacterial infection. To get insights about the influence of mononuclear phagocyte maturation in this event we compared the response to Mycobacterium tuberculosis (Mtb) infection of fresh isolated monocytes and monocyte-derived macrophages (MDM) from healthy tuberculin positive individuals. Both monocytes and MDM underwent apoptosis, however, there was a higher numbers of apoptotic macrophages with active Caspases 8 and 9. We also compared Mtb-induced cell death in U937 pro-monocytes and PMA-differentiated cells (U937D). In response to Mtb infection, U937D cells underwent apoptosis and promonocytes both apoptosis and necrosis. There were high number of U937D cells producing TNF-alpha and high number of IL-10+ promonocytes. These evidences suggest that U937 could be a valid model to study the mechanisms that rule Mtb-induced cell death. Experiments with the cell line and fresh isolated mononuclear cells with pharmacological inhibitors showed that induction of necrosis involved calcium and cAMP signals resulting in IL-10 production. Necrosis also correlated with Caspase 3, PLA2 activity and bacterial growth. In U937D cells and monocytes from healthy donors there was activation of calcium, TNF-alpha and Caspase 8 activation and decreased bacterial load. Understanding the mechanisms that control the dichotomy events between apoptosis and necrosis/oncosis associated with cell maturity might open new strategies to better control the course of mycobacterial infections.

  1. Rifampin induces hydroxyl radical formation in Mycobacterium tuberculosis.

    PubMed

    Piccaro, Giovanni; Pietraforte, Donatella; Giannoni, Federico; Mustazzolu, Alessandro; Fattorini, Lanfranco

    2014-12-01

    The antituberculosis (anti-TB) drug rifampin (RIF) binds to the beta subunit of the RNA polymerase (RpoB) of Mycobacterium tuberculosis, but the bactericidal responses triggered after target interaction are not known. To evaluate whether RIF induced an oxidative burst, lysates of RIF-treated M. tuberculosis were tested for determination of reactive oxygen species (ROS) by the electron paramagnetic resonance (EPR) technique using 1-hydroxy-3-carboxy-pyrrolidine (CPH) and 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO) as spin traps. M. tuberculosis killing by RIF stimulated an increase in the rate of formation of the CPH radical (CP·). Lysate pretreatment with the O2·(-) and ·OH scavengers superoxide dismutase (SOD) and thiourea (THIO), respectively, or with the metal chelator diethylene triamine pentaacetic acid (DTPA) inhibited CP· formation, arguing in favor of a metal-catalyzed ROS response. Formation of CP· did not increase following treatment of RIF-resistant strains with RIF, indicating that the ROS were induced after RpoB binding. To identify the ROS formed, lysates of RIF-treated bacilli were incubated with DMPO, a spin trap specific for ·OH and O2·(-), with or without pretreatment with SOD, catalase, THIO, or DTPA. Superoxide dismutase, catalase, and THIO decreased formation of the DMPO-OH adduct, and SOD plus DTPA completely suppressed it, suggesting that RIF activated metal-dependent O2·(-)-mediated mechanisms producing ·OH inside tubercle bacilli. The finding that the metal chelator DTPA reduced the bactericidal activity of RIF supported the possibility that ·OH was generated through these mechanisms and that it participated at least in part in M. tuberculosis killing by the drug. PMID:25288092

  2. Rifampin Induces Hydroxyl Radical Formation in Mycobacterium tuberculosis

    PubMed Central

    Piccaro, Giovanni; Pietraforte, Donatella; Giannoni, Federico; Mustazzolu, Alessandro

    2014-01-01

    The antituberculosis (anti-TB) drug rifampin (RIF) binds to the beta subunit of the RNA polymerase (RpoB) of Mycobacterium tuberculosis, but the bactericidal responses triggered after target interaction are not known. To evaluate whether RIF induced an oxidative burst, lysates of RIF-treated M. tuberculosis were tested for determination of reactive oxygen species (ROS) by the electron paramagnetic resonance (EPR) technique using 1-hydroxy-3-carboxy-pyrrolidine (CPH) and 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO) as spin traps. M. tuberculosis killing by RIF stimulated an increase in the rate of formation of the CPH radical (CP·). Lysate pretreatment with the O2·− and ·OH scavengers superoxide dismutase (SOD) and thiourea (THIO), respectively, or with the metal chelator diethylene triamine pentaacetic acid (DTPA) inhibited CP· formation, arguing in favor of a metal-catalyzed ROS response. Formation of CP· did not increase following treatment of RIF-resistant strains with RIF, indicating that the ROS were induced after RpoB binding. To identify the ROS formed, lysates of RIF-treated bacilli were incubated with DMPO, a spin trap specific for ·OH and O2·−, with or without pretreatment with SOD, catalase, THIO, or DTPA. Superoxide dismutase, catalase, and THIO decreased formation of the DMPO-OH adduct, and SOD plus DTPA completely suppressed it, suggesting that RIF activated metal-dependent O2·−-mediated mechanisms producing ·OH inside tubercle bacilli. The finding that the metal chelator DTPA reduced the bactericidal activity of RIF supported the possibility that ·OH was generated through these mechanisms and that it participated at least in part in M. tuberculosis killing by the drug. PMID:25288092

  3. A Multicopper Oxidase Is Required for Copper Resistance in Mycobacterium tuberculosis

    PubMed Central

    Rowland, Jennifer L.

    2013-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, is one of the most important bacterial pathogens. Recent work has revealed that the natural bactericidal properties of copper are utilized by the host immune system to combat infections with bacteria, including M. tuberculosis. However, M. tuberculosis employs multiple mechanisms to reduce the internal copper amount by efflux and sequestration, which are required for virulence of M. tuberculosis. Here, we describe an alternative mechanism of copper resistance by M. tuberculosis. Deletion of the rv0846c gene increased the susceptibility of M. tuberculosis to copper at least 10-fold, establishing Rv0846c as a major component of copper resistance in M. tuberculosis. In vitro assays showed that Rv0846c oxidized organic substrates and Fe(II). Importantly, mutation of the predicted copper-coordinating cysteine 486 resulted in inactive Rv0846c protein which did not protect M. tuberculosis against copper stress. Hence, Rv0846c is a multicopper oxidase of M. tuberculosis and was renamed mycobacterial multicopper oxidase (MmcO). MmcO is membrane associated, probably by lipidation after export across the inner membrane by the twin-arginine translocation system. However, mutation of the lipidation site did not affect the oxidase activity or the copper protective function of MmcO. Our study revealed MmcO as an important copper resistance mechanism of M. tuberculosis, which possibly acts by oxidation of toxic Cu(I) in the periplasm. PMID:23772064

  4. Mechanism of inhibition of Mycobacterium tuberculosis antigen 85 by ebselen

    PubMed Central

    Favrot, Lorenza; Grzegorzewicz, Anna E.; Lajiness, Daniel H.; Marvin, Rachel K.; Boucau, Julie; Isailovic, Dragan; Jackson, Mary; Ronning, Donald R.

    2014-01-01

    The increasing prevalence of drug-resistant tuberculosis highlights the need for identifying new antitubercular drugs that can treat these infections. The antigen 85 (Ag85) complex has emerged as an intriguing mycobacterial drug target due to its central role in synthesizing major components of the inner and outer leaflets of the mycobacterial outer membrane. Here we identify ebselen as a potent inhibitor of the Mycobacterium tuberculosis Ag85 complex. Mass spectrometry data show that ebselen binds covalently to a cysteine residue (C209) located near the Ag85C active site. The crystal structure of Ag85C in the presence of ebselen shows that C209 modification restructures the active site, thereby disrupting the hydrogen-bonded network within the active site that is essential for enzymatic activity. C209 mutations display marked decreases in enzymatic activity. These data suggest that compounds using this mechanism of action will strongly inhibit the Ag85 complex and minimize the selection of drug resistance. PMID:24193546

  5. Direct detection of Mycobacterium tuberculosis complex in nonrespiratory specimens by Gen-Probe Amplified Mycobacterium Tuberculosis Direct Test.

    PubMed Central

    Gamboa, F; Manterola, J M; Viñado, B; Matas, L; Giménez, M; Lonca, J; Manzano, J R; Rodrigo, C; Cardona, P J; Padilla, E; Domínguez, J; Ausina, V

    1997-01-01

    The Gen-Probe Amplified Mycobacterium Tuberculosis Direct Test (AMTDT) was adapted for the detection of Mycobacterium tuberculosis complex in 224 nonrespiratory specimens from 188 patients. The sensitivity and specificity of the AMTDT for such specimens, after resolution of discrepant results, were 85.7 and 100%, respectively. Pretreatment of nonrespiratory specimens with sodium dodecyl (lauryl) sulfate is mandatory to obtain consistent and reproducible AMTDT results. The use of 500 microliters of decontaminated specimen improves the sensitivity of the test. Because the AMTDT detects stable rRNA from noncultivable bacilli, it is not useful for monitoring patients receiving treatment. PMID:8968935

  6. Mycobacterium tuberculosis modulates the gene interactions to activate the HIV replication and faster disease progression in a co-infected host.

    PubMed

    Toor, Jaideep S; Singh, Sukhvinder; Sharma, Aman; Arora, Sunil K

    2014-01-01

    Understanding of the chronic immune activation, breakdown of immune defense and synergistic effect between HIV and Mycobacterium tuberculosis (Mtb) may provide essential information regarding key factors involved in the pathogenesis of HIV disease. In this study, we aimed to highlight a few of the immunological events that may influence and accelerate the progression of HIV disease in the presence of co-infecting Mtb. A cross-sectional study was performed on cohorts, including anti-tubercular therapy (ATT) naïve active pulmonary tuberculosis (PTB) patients, antiretroviral therapy (ART) naïve HIV-1 infected individuals at different stages of disease, ATT and ART naïve HIV-PTB co-infected individuals and healthy controls. A significantly higher T-regulatory cell (Treg) frequency coupled with the high FoxP3 expression in the CD4 T-cells indicated an immunosuppressive environment in the advance stage of HIV-1 infection. This is further substantiated by high HO-1 expression favoring TB co-infection. Functionally, this change in Treg frequency in HIV-1 infected individuals correlated well with suppression of T-cell proliferation. Mtb infection seems to facilitate the expansion of the Treg pool along with increased expression of FoxP3, specifically the variant-1, as evident from the data in HIV-1 co-infected as well as in patients with only PTB. A significantly lower expression of HO-1 in co-infected individuals compared to patients with only HIV-infection having comparable CD4 count correlated well with increased expression of CCR5 and CxCR4 as well as NF-κB and inflammatory cytokines IL-6 and TNF-α, which collectively may contribute to enhanced viral replication and increased cell death, hence faster disease progression in co-infected individuals.

  7. Ligand-dependent active-site closure revealed in the crystal structure of Mycobacterium tuberculosis MenB complexed with product analogues.

    PubMed

    Song, Haigang; Sung, Hoi Pang; Tse, Yuk Sing; Jiang, Ming; Guo, Zhihong

    2014-11-01

    1,4-Dihydroxy-2-naphthoyl coenzyme A (DHNA-CoA) synthase catalyzes an essential intramolecular Claisen condensation in menaquinone biosynthesis and is an important target for the development of new antibiotics. This enzyme in Mycobacterium tuberculosis is cofactor-free and is classified as a type II DHNA-CoA synthase, differing from type I enzymes, which rely on exogenous bicarbonate for catalysis. Its crystal structures in complex with product analogues have been determined at high resolution to reveal ligand-dependent structural changes, which include the ordering of a 27-residue active-site loop (amino acids 107-133) and the reorientation of the carboxy-terminal helix (amino acids 289-301) that forms part of the active site from the opposing subunit across the trimer-trimer interface. These structural changes result in closure of the active site to the bulk solution, which is likely to take place through an induced-fit mechanism, similar to that observed for type I DHNA-CoA synthases. These findings demonstrate that the ligand-dependent conformational changes are a conserved feature of all DHNA-CoA synthases, providing new insights into the catalytic mechanism of this essential tubercular enzyme.

  8. [Effect of low-energy helium-neon laser on the biological properties of Mycobacterium tuberculosis].

    PubMed

    Dolzhanskiĭ, V M; Kaliuk, A N; Maliev, B M; Levchenko, T N

    1990-01-01

    The results of experimental studies of M. tuberculosis biological properties tested in guinea pigs which were subjected to different doses of helium-neon laser radiation are given. The functional evidence is compared with the results of electron microscopic study of the irradiated culture. The investigation revealed that laser radiation caused changes in biological properties of M. tuberculosis. A decrease in growth properties and virulence was found to be related to a radiation dose. It is suggested that a drop in the biological activity of M. tuberculosis under laser radiation be associated with its influence on the Mycobacterium lipid layer which contains a cord-factor and responsible for their virulence.

  9. Genomic signal analysis of Mycobacterium tuberculosis

    NASA Astrophysics Data System (ADS)

    Cristea, Paul Dan; Banica, Dorina; Tuduce, Rodica

    2007-02-01

    As previously shown the conversion of nucleotide sequences into digital signals offers the possibility to apply signal processing methods for the analysis of genomic data. Genomic Signal Analysis (GSA) has been used to analyze large scale features of DNA sequences, at the scale of whole chromosomes, including both coding and non-coding regions. The striking regularities of genomic signals reveal restrictions in the way nucleotides and pairs of nucleotides are distributed along nucleotide sequences. Structurally, a chromosome appears to be less of a "plain text", corresponding to certain semantic and grammar rules, but more of a "poem", satisfying additional symmetry restrictions that evoke the "rhythm" and "rhyme". Recurrent patterns in nucleotide sequences are reflected in simple mathematical regularities observed in genomic signals. GSA has also been used to track pathogen variability, especially concerning their resistance to drugs. Previous work has been dedicated to the study of HIV-1, Clade F and Avian Flu. The present paper applies GSA methodology to study Mycobacterium tuberculosis (MT) rpoB gene variability, relevant to its resistance to antibiotics. Isolates from 50 Romanian patients have been studied both by rapid LightCycler PCR and by sequencing of a segment of 190-250 nucleotides covering the region of interest. The variability is caused by SNPs occurring at specific sites along the gene strand, as well as by inclusions. Because of the mentioned symmetry restrictions, the GS variations tend to compensate. An important result is that MT can act as a vector for HIV virus, which is able to retrotranscribe its specific genes both into human and MT genomes.

  10. Turning the respiratory flexibility of Mycobacterium tuberculosis against itself

    PubMed Central

    Lamprecht, Dirk A.; Finin, Peter M.; Rahman, Md. Aejazur; Cumming, Bridgette M.; Russell, Shannon L.; Jonnala, Surendranadha R.; Adamson, John H.; Steyn, Adrie J. C.

    2016-01-01

    The Mycobacterium tuberculosis (Mtb) electron transport chain (ETC) has received significant attention as a drug target, however its vulnerability may be affected by its flexibility in response to disruption. Here we determine the effect of the ETC inhibitors bedaquiline, Q203 and clofazimine on the Mtb ETC, and the value of the ETC as a drug target, by measuring Mtb's respiration using extracellular flux technology. We find that Mtb's ETC rapidly reroutes around inhibition by these drugs and increases total respiration to maintain ATP levels. Rerouting is possible because Mtb rapidly switches between terminal oxidases, and, unlike eukaryotes, is not susceptible to back pressure. Increased ETC activity potentiates clofazimine's production of reactive oxygen species, causing rapid killing in vitro and in a macrophage model. Our results indicate that combination therapy targeting the ETC can be exploited to enhance killing of Mtb. PMID:27506290

  11. Mycobacterium tuberculosis RNA Expression Patterns in Sputum Bacteria Indicate Secreted Esx Factors Contributing to Growth are Highly Expressed in Active Disease

    PubMed Central

    Bukka, Archana; Price, Christopher T. D.; Kernodle, Douglas S.; Graham, James E.

    2012-01-01

    To identify factors contributing to the ability of tubercle bacilli to grow in the lung during active infection, we analyzed RNA expression patterns in bacteria present in patient sputum. Prominent among bacterial transcripts identified were those encoding secreted peptides of the Esat-6 subfamily that includes EsxK and EsxL (Rv1197 and Rv1198). H37Rv esxKL and esxJI transcripts were differentially expressed under different growth conditions, and disruption of these genes altered growth phase kinetics in typical laboratory batch broth cultures. These growth defects, including the reduced intracellular growth of an ΔesxKL mutant in primary human macrophages, were reversed by either low multiplicity co-infection or co-culture with wild-type bacteria, demonstrating the ability of the secreted factors to rescue isogenic mutants. Complementing either only esxL or esxI alone (Rv1198 or Rv1037c) also reduced observed growth defects, indicating these genes encode factors capable of contributing to growth. Our studies indicate that the Mycobacterium tuberculosis Mtb9.9 family secreted factors EsxL and EsxI can act in trans to modulate growth of intracellular bacteria, and are highly expressed during active human lung infection. PMID:22291682

  12. The β2 clamp in the Mycobacterium tuberculosis DNA polymerase III αβ2ε replicase promotes polymerization and reduces exonuclease activity

    PubMed Central

    Gu, Shoujin; Li, Wenjuan; Zhang, Hongtai; Fleming, Joy; Yang, Weiqiang; Wang, Shihua; Wei, Wenjing; Zhou, Jie; Zhu, Guofeng; Deng, Jiaoyu; Hou, Jian; Zhou, Ying; Lin, Shiqiang; Zhang, Xian-En; Bi, Lijun

    2016-01-01

    DNA polymerase III (DNA pol III) is a multi-subunit replication machine responsible for the accurate and rapid replication of bacterial genomes, however, how it functions in Mycobacterium tuberculosis (Mtb) requires further investigation. We have reconstituted the leading-strand replication process of the Mtb DNA pol III holoenzyme in vitro, and investigated the physical and functional relationships between its key components. We verify the presence of an αβ2ε polymerase-clamp-exonuclease replicase complex by biochemical methods and protein-protein interaction assays in vitro and in vivo and confirm that, in addition to the polymerase activity of its α subunit, Mtb DNA pol III has two potential proofreading subunits; the α and ε subunits. During DNA replication, the presence of the β2 clamp strongly promotes the polymerization of the αβ2ε replicase and reduces its exonuclease activity. Our work provides a foundation for further research on the mechanism by which the replication machinery switches between replication and proofreading and provides an experimental platform for the selection of antimicrobials targeting DNA replication in Mtb. PMID:26822057

  13. Strength in Diversity: Hidden Genetic Depths of Mycobacterium tuberculosis.

    PubMed

    Sampson, Samantha L

    2016-02-01

    Next-generation whole genome sequencing data is currently being utilised to explore Mycobacterium tuberculosis genetic diversity. Studies have focused in particular on the evolution of drug resistance, and have revealed a surprising degree of dynamic population heterogeneity, with implications for transmission studies, treatment regimens and new drug target development.

  14. Tuberculosis in Alpacas (Lama pacos) Caused by Mycobacterium bovis▿

    PubMed Central

    García-Bocanegra, I.; Barranco, I.; Rodríguez-Gómez, I. M.; Pérez, B.; Gómez-Laguna, J.; Rodríguez, S.; Ruiz-Villamayor, E.; Perea, A.

    2010-01-01

    We report three cases of tuberculosis in alpacas from Spain caused by Mycobacterium bovis. The animals revealed two different lesional patterns. Mycobacterial culture and PCR assay yielded positive results for M. bovis. Molecular typing of the isolates identified spoligotype SB0295 and identical variable-number tandem repeat (VNTR) allele sizes. PMID:20237097

  15. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Mycobacterium tuberculosis immunofluorescent reagents. 866.3370 Section 866.3370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological...

  16. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Mycobacterium tuberculosis immunofluorescent reagents. 866.3370 Section 866.3370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological...

  17. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Mycobacterium tuberculosis immunofluorescent reagents. 866.3370 Section 866.3370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological...

  18. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mycobacterium tuberculosis immunofluorescent reagents. 866.3370 Section 866.3370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological...

  19. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Mycobacterium tuberculosis immunofluorescent reagents. 866.3370 Section 866.3370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological...

  20. Co-evolution of Mycobacterium tuberculosis and Homo sapiens

    PubMed Central

    Brites, Daniela; Gagneux, Sebastien

    2015-01-01

    The causative agent of human tuberculosis (TB), Mycobacterium tuberculosis, is an obligate pathogen that evolved to exclusively persist in human populations. For M. tuberculosis to transmit from person to person, it has to cause pulmonary disease. Therefore, M. tuberculosis virulence has likely been a significant determinant of the association between M. tuberculosis and humans. Indeed, the evolutionary success of some M. tuberculosis genotypes seems at least partially attributable to their increased virulence. The latter possibly evolved as a consequence of human demographic expansions. If co-evolution occurred, humans would have counteracted to minimize the deleterious effects of M. tuberculosis virulence. The fact that human resistance to infection has a strong genetic basis is a likely consequence of such a counter-response. The genetic architecture underlying human resistance to M. tuberculosis remains largely elusive. However, interactions between human genetic polymorphisms and M. tuberculosis genotypes have been reported. Such interactions are consistent with local adaptation and allow for a better understanding of protective immunity in TB. Future ‘genome-to-genome’ studies, in which locally associated human and M. tuberculosis genotypes are interrogated in conjunction, will help identify new protective antigens for the development of better TB vaccines. PMID:25703549

  1. The draft genome of Mycobacterium aurum, a potential model organism for investigating drugs against Mycobacterium tuberculosis and Mycobacterium leprae.

    PubMed

    Phelan, Jody; Maitra, Arundhati; McNerney, Ruth; Nair, Mridul; Gupta, Antima; Coll, Francesc; Pain, Arnab; Bhakta, Sanjib; Clark, Taane G

    2015-09-01

    Mycobacterium aurum (M. aurum) is an environmental mycobacteria that has previously been used in studies of anti-mycobacterial drugs due to its fast growth rate and low pathogenicity. The M. aurum genome has been sequenced and assembled into 46 contigs, with a total length of 6.02Mb containing 5684 annotated protein-coding genes. A phylogenetic analysis using whole genome alignments positioned M. aurum close to Mycobacterium vaccae and Mycobacterium vanbaalenii, within a clade related to fast-growing mycobacteria. Large-scale genomic rearrangements were identified by comparing the M. aurum genome to those of Mycobacterium tuberculosis and Mycobacterium leprae. M. aurum orthologous genes implicated in resistance to anti-tuberculosis drugs in M. tuberculosis were observed. The sequence identity at the DNA level varied from 68.6% for pncA (pyrazinamide drug-related) to 96.2% for rrs (streptomycin, capreomycin). We observed two homologous genes encoding the catalase-peroxidase enzyme (katG) that is associated with resistance to isoniazid. Similarly, two embB homologues were identified in the M. aurum genome. In addition to describing for the first time the genome of M. aurum, this work provides a resource to aid the use of M. aurum in studies to develop improved drugs for the pathogenic mycobacteria M. tuberculosis and M. leprae. PMID:27649868

  2. Insights into redox sensing metalloproteins in Mycobacterium tuberculosis.

    PubMed

    Chim, Nicholas; Johnson, Parker M; Goulding, Celia W

    2014-04-01

    Mycobacterium tuberculosis, the pathogen that causes tuberculosis, has evolved sophisticated mechanisms for evading assault by the human host. This review focuses on M. tuberculosis regulatory metalloproteins that are sensitive to exogenous stresses attributed to changes in the levels of gaseous molecules (i.e., molecular oxygen, carbon monoxide and nitric oxide) to elicit an intracellular response. In particular, we highlight recent developments on the subfamily of Whi proteins, redox sensing WhiB-like proteins that contain iron-sulfur clusters, sigma factors and their cognate anti-sigma factors of which some are zinc-regulated, and the dormancy survival regulon DosS/DosT-DosR heme sensory system. Mounting experimental evidence suggests that these systems contribute to a highly complex and interrelated regulatory network that controls M. tuberculosis biology. This review concludes with a discussion of strategies that M. tuberculosis has developed to maintain redox homeostasis, including mechanisms to regulate endogenous nitric oxide and carbon monoxide levels.

  3. Biosensing Technologies for Mycobacterium tuberculosis Detection: Status and New Developments

    PubMed Central

    Zhou, Lixia; He, Xiaoxiao; He, Dinggeng; Wang, Kemin; Qin, Dilan

    2011-01-01

    Biosensing technologies promise to improve Mycobacterium tuberculosis (M. tuberculosis) detection and management in clinical diagnosis, food analysis, bioprocess, and environmental monitoring. A variety of portable, rapid, and sensitive biosensors with immediate “on-the-spot” interpretation have been developed for M. tuberculosis detection based on different biological elements recognition systems and basic signal transducer principles. Here, we present a synopsis of current developments of biosensing technologies for M. tuberculosis detection, which are classified on the basis of basic signal transducer principles, including piezoelectric quartz crystal biosensors, electrochemical biosensors, and magnetoelastic biosensors. Special attention is paid to the methods for improving the framework and analytical parameters of the biosensors, including sensitivity and analysis time as well as automation of analysis procedures. Challenges and perspectives of biosensing technologies development for M. tuberculosis detection are also discussed in the final part of this paper. PMID:21437177

  4. Biosensing technologies for Mycobacterium tuberculosis detection: status and new developments.

    PubMed

    Zhou, Lixia; He, Xiaoxiao; He, Dinggeng; Wang, Kemin; Qin, Dilan

    2011-01-01

    Biosensing technologies promise to improve Mycobacterium tuberculosis (M. tuberculosis) detection and management in clinical diagnosis, food analysis, bioprocess, and environmental monitoring. A variety of portable, rapid, and sensitive biosensors with immediate "on-the-spot" interpretation have been developed for M. tuberculosis detection based on different biological elements recognition systems and basic signal transducer principles. Here, we present a synopsis of current developments of biosensing technologies for M. tuberculosis detection, which are classified on the basis of basic signal transducer principles, including piezoelectric quartz crystal biosensors, electrochemical biosensors, and magnetoelastic biosensors. Special attention is paid to the methods for improving the framework and analytical parameters of the biosensors, including sensitivity and analysis time as well as automation of analysis procedures. Challenges and perspectives of biosensing technologies development for M. tuberculosis detection are also discussed in the final part of this paper.

  5. First case of Mycobacterium tuberculosis transmission by heart transplantation from donor to recipient.

    PubMed

    Weile, Jan; Eickmeyer, Holm; Dreier, Jens; Liebke, Michael; Fuchs, Uwe; Wittke, Johann-Wolfgang; Richter, Elvira; Gummert, Jan; Knabbe, Cornelius; Schulz, Uwe

    2013-12-01

    We report the first documented case of a Mycobacterium tuberculosis transmission by an orthotopic heart transplantation from the donor to the recipient. Mycobacterium tuberculosis positive blood culture showed systemic prevalence of the Mycobacteria, however, prophylactic therapy was able to prevent a clinical manifestation of tuberculosis in the recipient.

  6. Comparative genomics of archived pyrazinamide resistant Mycobacterium tuberculosis complex isolates from Uganda

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine tuberculosis is a ‘neglected zoonosis’ and its contribution to the proportion of Mycobacterium tuberculosis complex infections in humans is unknown. A retrospective study on archived Mycobacterium tuberculosis complex (MTC) isolates from a reference laboratory in Uganda was undertaken to iden...

  7. Diacyltransferase Activity and Chain Length Specificity of Mycobacterium tuberculosis PapA5 in the Synthesis of Alkyl β-Diol Lipids

    SciTech Connect

    Touchette, Megan H.; Bommineni, Gopal R.; Delle Bovi, Richard J.; Gadbery, John; Nicora, Carrie D.; Shukla, Anil K.; Kyle, Jennifer E.; Metz, Thomas O.; Martin, Dwight W.; Sampson, Nicole S.; Miller, W. T.; Tonge, Peter J.; Seeliger, Jessica C.

    2015-09-08

    Although classified as Gram-positive bacteria, Corynebacterineae possess an asymmetric outer membrane that imparts structural and thereby physiological similarity to more distantly related Gram-negative bacteria. Like lipopolysaccharide in Gram-negative bacteria, lipids in the outer membrane of Corynebacterineae have been associated with the virulence of pathogenic species such as Mycobacterium tuberculosis (Mtb). For example, Mtb strains that lack long, branched-chain alkyl esters known as dimycocerosates (DIMs) are significantly attenuated in model infections. The resultant interest in the biosynthetic pathway of these unusual virulence factors has led to the elucidation of many of the steps leading to the final esterification of the alkyl beta-diol, phthiocerol, with branched-chain fatty acids know as mycocerosates. PapA5 is an acyltransferase implicated in these final reactions. We here show that PapA5 is indeed the terminal enzyme in DIM biosynthesis by demonstrating its dual esterification activity and chain-length preference using synthetic alkyl beta-diol substrate analogues. Applying these analogues to a series of PapA5 mutants, we also revise a model for the substrate binding within PapA5. Finally, we demonstrate that the Mtb Ser/Thr kinase PknB modifies PapA5 on three Thr residues, including two (T196, T198) located on an unresolved loop. These results clarify the DIM biosynthetic pathway and suggest possible mechanisms by which DIM biosynthesis may be regulated by the post-translational modification of PapA5.

  8. Microbial Proteome Profiling and Systems Biology: Applications to Mycobacterium tuberculosis.

    PubMed

    Schubert, Olga T; Aebersold, Ruedi

    2015-01-01

    Each year, 1.3 million people die from tuberculosis, an infectious disease caused by Mycobacterium tuberculosis. Systems biology-based strategies might significantly contribute to the knowledge-guided development of more effective vaccines and drugs to prevent and cure infectious diseases. To build models simulating the behaviour of a system in response to internal or external stimuli and to identify potential targets for therapeutic intervention, systems biology approaches require the acquisition of quantitative molecular profiles on many perturbed states. Here we review the current state of proteomic analyses in Mycobacterium tuberculosis and discuss the potential of recently emerging targeting mass spectrometry-based techniques which enable fast, sensitive and accurate protein measurements.

  9. Structural and Functional Studies of Phosphoenolpyruvate Carboxykinase from Mycobacterium tuberculosis

    PubMed Central

    Machová, Iva; Snášel, Jan; Dostál, Jiří; Brynda, Jiří; Fanfrlík, Jindřich; Singh, Mahavir; Tarábek, Ján; Vaněk, Ondřej; Bednárová, Lucie; Pichová, Iva

    2015-01-01

    Tuberculosis, the second leading infectious disease killer after HIV, remains a top public health priority. The causative agent of tuberculosis, Mycobacterium tuberculosis (Mtb), which can cause both acute and clinically latent infections, reprograms metabolism in response to the host niche. Phosphoenolpyruvate carboxykinase (Pck) is the enzyme at the center of the phosphoenolpyruvate-pyruvate-oxaloacetate node, which is involved in regulating the carbon flow distribution to catabolism, anabolism, or respiration in different states of Mtb infection. Under standard growth conditions, Mtb Pck is associated with gluconeogenesis and catalyzes the metal-dependent formation of phosphoenolpyruvate. In non-replicating Mtb, Pck can catalyze anaplerotic biosynthesis of oxaloacetate. Here, we present insights into the regulation of Mtb Pck activity by divalent cations. Through analysis of the X-ray structure of Pck-GDP and Pck-GDP-Mn2+ complexes, mutational analysis of the GDP binding site, and quantum mechanical (QM)-based analysis, we explored the structural determinants of efficient Mtb Pck catalysis. We demonstrate that Mtb Pck requires presence of Mn2+ and Mg2+ cations for efficient catalysis of gluconeogenic and anaplerotic reactions. The anaplerotic reaction, which preferably functions in reducing conditions that are characteristic for slowed or stopped Mtb replication, is also effectively activated by Fe2+ in the presence of Mn2+ or Mg2+ cations. In contrast, simultaneous presence of Fe2+ and Mn2+ or Mg2+ inhibits the gluconeogenic reaction. These results suggest that inorganic ions can contribute to regulation of central carbon metabolism by influencing the activity of Pck. Furthermore, the X-ray structure determination, biochemical characterization, and QM analysis of Pck mutants confirmed the important role of the Phe triad for proper binding of the GDP-Mn2+ complex in the nucleotide binding site and efficient catalysis of the anaplerotic reaction. PMID:25798914

  10. Structural and functional studies of phosphoenolpyruvate carboxykinase from Mycobacterium tuberculosis.

    PubMed

    Machová, Iva; Snášel, Jan; Dostál, Jiří; Brynda, Jiří; Fanfrlík, Jindřich; Singh, Mahavir; Tarábek, Ján; Vaněk, Ondřej; Bednárová, Lucie; Pichová, Iva

    2015-01-01

    Tuberculosis, the second leading infectious disease killer after HIV, remains a top public health priority. The causative agent of tuberculosis, Mycobacterium tuberculosis (Mtb), which can cause both acute and clinically latent infections, reprograms metabolism in response to the host niche. Phosphoenolpyruvate carboxykinase (Pck) is the enzyme at the center of the phosphoenolpyruvate-pyruvate-oxaloacetate node, which is involved in regulating the carbon flow distribution to catabolism, anabolism, or respiration in different states of Mtb infection. Under standard growth conditions, Mtb Pck is associated with gluconeogenesis and catalyzes the metal-dependent formation of phosphoenolpyruvate. In non-replicating Mtb, Pck can catalyze anaplerotic biosynthesis of oxaloacetate. Here, we present insights into the regulation of Mtb Pck activity by divalent cations. Through analysis of the X-ray structure of Pck-GDP and Pck-GDP-Mn2+ complexes, mutational analysis of the GDP binding site, and quantum mechanical (QM)-based analysis, we explored the structural determinants of efficient Mtb Pck catalysis. We demonstrate that Mtb Pck requires presence of Mn2+ and Mg2+ cations for efficient catalysis of gluconeogenic and anaplerotic reactions. The anaplerotic reaction, which preferably functions in reducing conditions that are characteristic for slowed or stopped Mtb replication, is also effectively activated by Fe2+ in the presence of Mn2+ or Mg2+ cations. In contrast, simultaneous presence of Fe2+ and Mn2+ or Mg2+ inhibits the gluconeogenic reaction. These results suggest that inorganic ions can contribute to regulation of central carbon metabolism by influencing the activity of Pck. Furthermore, the X-ray structure determination, biochemical characterization, and QM analysis of Pck mutants confirmed the important role of the Phe triad for proper binding of the GDP-Mn2+ complex in the nucleotide binding site and efficient catalysis of the anaplerotic reaction.

  11. Rapid diagnosis of Mycobacterium tuberculosis bacteremia by PCR.

    PubMed Central

    Folgueira, L; Delgado, R; Palenque, E; Aguado, J M; Noriega, A R

    1996-01-01

    A method based on DNA amplification and hybridization has been used for the rapid detection of Mycobacterium tuberculosis in blood samples from 38 hospitalized patients (15 human immunodeficiency virus [HIV] positive and 23 HIV negative) in whom localized or disseminated forms of tuberculosis were suspected. In 32 of these patients, the diagnosis of tuberculosis was eventually confirmed by conventional bacteriological or histological procedures. M. tuberculosis DNA was detected with the PCR technique in the peripheral blood mononuclear cells from 9 of 11 (82%) HIV-infected patients and in 7 of 21 (33%) HIV-negative patients (P < 0.01), while M. tuberculosis blood cultures were positive in 1 of 8 (12.5%) and 1 of 18 (5.5%) patients, respectively. PCR was positive in all cases with disseminated disease in both HIV-negative and HIV-positive patients and also in the HIV-positive patients with extrapulmonary tuberculosis. Seven samples from patients with documented illness other than tuberculosis and 12 specimens from healthy volunteers, including seven volunteers with a recent positive purified protein derivative test, were used as controls and had a negative PCR. These results suggest that detection of M. tuberculosis DNA in peripheral blood mononuclear cells may be a useful tool for rapid diagnosis of disseminated and extrapulmonary forms of tuberculosis, especially in an HIV-positive population. PMID:8904404

  12. Mycobacterium tuberculosis resistance to antituberculosis drugs in Mozambique*, **

    PubMed Central

    Pires, Germano Manuel; Folgosa, Elena; Nquobile, Ndlovu; Gitta, Sheba; Cadir, Nureisha

    2014-01-01

    OBJECTIVE: To determine the drug resistance profile of Mycobacterium tuberculosis in Mozambique. METHODS: We analyzed secondary data from the National Tuberculosis Referral Laboratory, in the city of Maputo, Mozambique, and from the Beira Regional Tuberculosis Referral Laboratory, in the city of Beira, Mozambique. The data were based on culture-positive samples submitted to first-line drug susceptibility testing (DST) between January and December of 2011. We attempted to determine whether the frequency of DST positivity was associated with patient type or provenance. RESULTS: During the study period, 641 strains were isolated in culture and submitted to DST. We found that 374 (58.3%) were resistant to at least one antituberculosis drug and 280 (43.7%) were resistant to multiple antituberculosis drugs. Of the 280 multidrug-resistant tuberculosis cases, 184 (65.7%) were in previously treated patients, most of whom were from southern Mozambique. Two (0.71%) of the cases of multidrug-resistant tuberculosis were confirmed to be cases of extensively drug-resistant tuberculosis. Multidrug-resistant tuberculosis was most common in males, particularly those in the 21-40 year age bracket. CONCLUSIONS: M. tuberculosis resistance to antituberculosis drugs is high in Mozambique, especially in previously treated patients. The frequency of M. tuberculosis strains that were resistant to isoniazid, rifampin, and streptomycin in combination was found to be high, particularly in samples from previously treated patients. PMID:24831398

  13. Biochemical characterization of uracil phosphoribosyltransferase from Mycobacterium tuberculosis.

    PubMed

    Villela, Anne Drumond; Ducati, Rodrigo Gay; Rosado, Leonardo Astolfi; Bloch, Carlos Junior; Prates, Maura Vianna; Gonçalves, Danieli Cristina; Ramos, Carlos Henrique Inacio; Basso, Luiz Augusto; Santos, Diogenes Santiago

    2013-01-01

    Uracil phosphoribosyltransferase (UPRT) catalyzes the conversion of uracil and 5-phosphoribosyl-α-1-pyrophosphate (PRPP) to uridine 5'-monophosphate (UMP) and pyrophosphate (PP(i)). UPRT plays an important role in the pyrimidine salvage pathway since UMP is a common precursor of all pyrimidine nucleotides. Here we describe cloning, expression and purification to homogeneity of upp-encoded UPRT from Mycobacterium tuberculosis (MtUPRT). Mass spectrometry and N-terminal amino acid sequencing unambiguously identified the homogeneous protein as MtUPRT. Analytical ultracentrifugation showed that native MtUPRT follows a monomer-tetramer association model. MtUPRT is specific for uracil. GTP is not a modulator of MtUPRT ativity. MtUPRT was not significantly activated or inhibited by ATP, UTP, and CTP. Initial velocity and isothermal titration calorimetry studies suggest that catalysis follows a sequential ordered mechanism, in which PRPP binding is followed by uracil, and PP(i) product is released first followed by UMP. The pH-rate profiles indicated that groups with pK values of 5.7 and 8.1 are important for catalysis, and a group with a pK value of 9.5 is involved in PRPP binding. The results here described provide a solid foundation on which to base upp gene knockout aiming at the development of strategies to prevent tuberculosis.

  14. Biochemical Characterization of Uracil Phosphoribosyltransferase from Mycobacterium tuberculosis

    PubMed Central

    Villela, Anne Drumond; Ducati, Rodrigo Gay; Rosado, Leonardo Astolfi; Bloch, Carlos Junior; Prates, Maura Vianna; Gonçalves, Danieli Cristina; Ramos, Carlos Henrique Inacio; Basso, Luiz Augusto; Santos, Diogenes Santiago

    2013-01-01

    Uracil phosphoribosyltransferase (UPRT) catalyzes the conversion of uracil and 5-phosphoribosyl-α-1-pyrophosphate (PRPP) to uridine 5′-monophosphate (UMP) and pyrophosphate (PPi). UPRT plays an important role in the pyrimidine salvage pathway since UMP is a common precursor of all pyrimidine nucleotides. Here we describe cloning, expression and purification to homogeneity of upp-encoded UPRT from Mycobacterium tuberculosis (MtUPRT). Mass spectrometry and N-terminal amino acid sequencing unambiguously identified the homogeneous protein as MtUPRT. Analytical ultracentrifugation showed that native MtUPRT follows a monomer-tetramer association model. MtUPRT is specific for uracil. GTP is not a modulator of MtUPRT ativity. MtUPRT was not significantly activated or inhibited by ATP, UTP, and CTP. Initial velocity and isothermal titration calorimetry studies suggest that catalysis follows a sequential ordered mechanism, in which PRPP binding is followed by uracil, and PPi product is released first followed by UMP. The pH-rate profiles indicated that groups with pK values of 5.7 and 8.1 are important for catalysis, and a group with a pK value of 9.5 is involved in PRPP binding. The results here described provide a solid foundation on which to base upp gene knockout aiming at the development of strategies to prevent tuberculosis. PMID:23424660

  15. Management of latent Mycobacterium tuberculosis infection: WHO guidelines for low tuberculosis burden countries.

    PubMed

    Getahun, Haileyesus; Matteelli, Alberto; Abubakar, Ibrahim; Aziz, Mohamed Abdel; Baddeley, Annabel; Barreira, Draurio; Den Boon, Saskia; Borroto Gutierrez, Susana Marta; Bruchfeld, Judith; Burhan, Erlina; Cavalcante, Solange; Cedillos, Rolando; Chaisson, Richard; Chee, Cynthia Bin-Eng; Chesire, Lucy; Corbett, Elizabeth; Dara, Masoud; Denholm, Justin; de Vries, Gerard; Falzon, Dennis; Ford, Nathan; Gale-Rowe, Margaret; Gilpin, Chris; Girardi, Enrico; Go, Un-Yeong; Govindasamy, Darshini; D Grant, Alison; Grzemska, Malgorzata; Harris, Ross; Horsburgh, C Robert; Ismayilov, Asker; Jaramillo, Ernesto; Kik, Sandra; Kranzer, Katharina; Lienhardt, Christian; LoBue, Philip; Lönnroth, Knut; Marks, Guy; Menzies, Dick; Migliori, Giovanni Battista; Mosca, Davide; Mukadi, Ya Diul; Mwinga, Alwyn; Nelson, Lisa; Nishikiori, Nobuyuki; Oordt-Speets, Anouk; Rangaka, Molebogeng Xheedha; Reis, Andreas; Rotz, Lisa; Sandgren, Andreas; Sañé Schepisi, Monica; Schünemann, Holger J; Sharma, Surender Kumar; Sotgiu, Giovanni; Stagg, Helen R; Sterling, Timothy R; Tayeb, Tamara; Uplekar, Mukund; van der Werf, Marieke J; Vandevelde, Wim; van Kessel, Femke; van't Hoog, Anna; Varma, Jay K; Vezhnina, Natalia; Voniatis, Constantia; Vonk Noordegraaf-Schouten, Marije; Weil, Diana; Weyer, Karin; Wilkinson, Robert John; Yoshiyama, Takashi; Zellweger, Jean Pierre; Raviglione, Mario

    2015-12-01

    Latent tuberculosis infection (LTBI) is characterised by the presence of immune responses to previously acquired Mycobacterium tuberculosis infection without clinical evidence of active tuberculosis (TB). Here we report evidence-based guidelines from the World Health Organization for a public health approach to the management of LTBI in high risk individuals in countries with high or middle upper income and TB incidence of <100 per 100 000 per year. The guidelines strongly recommend systematic testing and treatment of LTBI in people living with HIV, adult and child contacts of pulmonary TB cases, patients initiating anti-tumour necrosis factor treatment, patients receiving dialysis, patients preparing for organ or haematological transplantation, and patients with silicosis. In prisoners, healthcare workers, immigrants from high TB burden countries, homeless persons and illicit drug users, systematic testing and treatment of LTBI is conditionally recommended, according to TB epidemiology and resource availability. Either commercial interferon-gamma release assays or Mantoux tuberculin skin testing could be used to test for LTBI. Chest radiography should be performed before LTBI treatment to rule out active TB disease. Recommended treatment regimens for LTBI include: 6 or 9 month isoniazid; 12 week rifapentine plus isoniazid; 3-4 month isoniazid plus rifampicin; or 3-4 month rifampicin alone. PMID:26405286

  16. Management of latent Mycobacterium tuberculosis infection: WHO guidelines for low tuberculosis burden countries.

    PubMed

    Getahun, Haileyesus; Matteelli, Alberto; Abubakar, Ibrahim; Aziz, Mohamed Abdel; Baddeley, Annabel; Barreira, Draurio; Den Boon, Saskia; Borroto Gutierrez, Susana Marta; Bruchfeld, Judith; Burhan, Erlina; Cavalcante, Solange; Cedillos, Rolando; Chaisson, Richard; Chee, Cynthia Bin-Eng; Chesire, Lucy; Corbett, Elizabeth; Dara, Masoud; Denholm, Justin; de Vries, Gerard; Falzon, Dennis; Ford, Nathan; Gale-Rowe, Margaret; Gilpin, Chris; Girardi, Enrico; Go, Un-Yeong; Govindasamy, Darshini; D Grant, Alison; Grzemska, Malgorzata; Harris, Ross; Horsburgh, C Robert; Ismayilov, Asker; Jaramillo, Ernesto; Kik, Sandra; Kranzer, Katharina; Lienhardt, Christian; LoBue, Philip; Lönnroth, Knut; Marks, Guy; Menzies, Dick; Migliori, Giovanni Battista; Mosca, Davide; Mukadi, Ya Diul; Mwinga, Alwyn; Nelson, Lisa; Nishikiori, Nobuyuki; Oordt-Speets, Anouk; Rangaka, Molebogeng Xheedha; Reis, Andreas; Rotz, Lisa; Sandgren, Andreas; Sañé Schepisi, Monica; Schünemann, Holger J; Sharma, Surender Kumar; Sotgiu, Giovanni; Stagg, Helen R; Sterling, Timothy R; Tayeb, Tamara; Uplekar, Mukund; van der Werf, Marieke J; Vandevelde, Wim; van Kessel, Femke; van't Hoog, Anna; Varma, Jay K; Vezhnina, Natalia; Voniatis, Constantia; Vonk Noordegraaf-Schouten, Marije; Weil, Diana; Weyer, Karin; Wilkinson, Robert John; Yoshiyama, Takashi; Zellweger, Jean Pierre; Raviglione, Mario

    2015-12-01

    Latent tuberculosis infection (LTBI) is characterised by the presence of immune responses to previously acquired Mycobacterium tuberculosis infection without clinical evidence of active tuberculosis (TB). Here we report evidence-based guidelines from the World Health Organization for a public health approach to the management of LTBI in high risk individuals in countries with high or middle upper income and TB incidence of <100 per 100 000 per year. The guidelines strongly recommend systematic testing and treatment of LTBI in people living with HIV, adult and child contacts of pulmonary TB cases, patients initiating anti-tumour necrosis factor treatment, patients receiving dialysis, patients preparing for organ or haematological transplantation, and patients with silicosis. In prisoners, healthcare workers, immigrants from high TB burden countries, homeless persons and illicit drug users, systematic testing and treatment of LTBI is conditionally recommended, according to TB epidemiology and resource availability. Either commercial interferon-gamma release assays or Mantoux tuberculin skin testing could be used to test for LTBI. Chest radiography should be performed before LTBI treatment to rule out active TB disease. Recommended treatment regimens for LTBI include: 6 or 9 month isoniazid; 12 week rifapentine plus isoniazid; 3-4 month isoniazid plus rifampicin; or 3-4 month rifampicin alone.

  17. Management of latent Mycobacterium tuberculosis infection: WHO guidelines for low tuberculosis burden countries

    PubMed Central

    Matteelli, Alberto; Abubakar, Ibrahim; Aziz, Mohamed Abdel; Baddeley, Annabel; Barreira, Draurio; Den Boon, Saskia; Borroto Gutierrez, Susana Marta; Bruchfeld, Judith; Burhan, Erlina; Cavalcante, Solange; Cedillos, Rolando; Chaisson, Richard; Chee, Cynthia Bin-Eng; Chesire, Lucy; Corbett, Elizabeth; Dara, Masoud; Denholm, Justin; de Vries, Gerard; Falzon, Dennis; Ford, Nathan; Gale-Rowe, Margaret; Gilpin, Chris; Girardi, Enrico; Go, Un-Yeong; Govindasamy, Darshini; D. Grant, Alison; Grzemska, Malgorzata; Harris, Ross; Horsburgh Jr, C. Robert; Ismayilov, Asker; Jaramillo, Ernesto; Kik, Sandra; Kranzer, Katharina; Lienhardt, Christian; LoBue, Philip; Lönnroth, Knut; Marks, Guy; Menzies, Dick; Migliori, Giovanni Battista; Mosca, Davide; Mukadi, Ya Diul; Mwinga, Alwyn; Nelson, Lisa; Nishikiori, Nobuyuki; Oordt-Speets, Anouk; Rangaka, Molebogeng Xheedha; Reis, Andreas; Rotz, Lisa; Sandgren, Andreas; Sañé Schepisi, Monica; Schünemann, Holger J.; Sharma, Surender Kumar; Sotgiu, Giovanni; Stagg, Helen R.; Sterling, Timothy R.; Tayeb, Tamara; Uplekar, Mukund; van der Werf, Marieke J.; Vandevelde, Wim; van Kessel, Femke; van't Hoog, Anna; Varma, Jay K.; Vezhnina, Natalia; Voniatis, Constantia; Vonk Noordegraaf-Schouten, Marije; Weil, Diana; Weyer, Karin; Wilkinson, Robert John; Yoshiyama, Takashi; Zellweger, Jean Pierre; Raviglione, Mario

    2015-01-01

    Latent tuberculosis infection (LTBI) is characterised by the presence of immune responses to previously acquired Mycobacterium tuberculosis infection without clinical evidence of active tuberculosis (TB). Here we report evidence-based guidelines from the World Health Organization for a public health approach to the management of LTBI in high risk individuals in countries with high or middle upper income and TB incidence of <100 per 100 000 per year. The guidelines strongly recommend systematic testing and treatment of LTBI in people living with HIV, adult and child contacts of pulmonary TB cases, patients initiating anti-tumour necrosis factor treatment, patients receiving dialysis, patients preparing for organ or haematological transplantation, and patients with silicosis. In prisoners, healthcare workers, immigrants from high TB burden countries, homeless persons and illicit drug users, systematic testing and treatment of LTBI is conditionally recommended, according to TB epidemiology and resource availability. Either commercial interferon-gamma release assays or Mantoux tuberculin skin testing could be used to test for LTBI. Chest radiography should be performed before LTBI treatment to rule out active TB disease. Recommended treatment regimens for LTBI include: 6 or 9 month isoniazid; 12 week rifapentine plus isoniazid; 3–4 month isoniazid plus rifampicin; or 3–4 month rifampicin alone. PMID:26405286

  18. Mean Platelet Volume in Mycobacterium tuberculosis Infection

    PubMed Central

    Lee, Min Young; Kim, Young Jin; Lee, Hee Joo; Park, Tae Sung

    2016-01-01

    Introduction. Mean platelet volume (MPV) has been thought as a useful index of platelet activation. It is supposed that MPV is also associated with several inflammatory and infectious diseases. Korea still has a high incidence of tuberculosis (TB). The aim of this study was to investigate MPV as an inflammatory marker in TB patients. Materials and Methods. MPV were determined in 221 patients with TB and 143 individuals for control group. MPV was estimated by an Advia 2120 (Siemens Healthcare Diagnostics, Tarrytown, NY, USA). Results. In the TB patient group, a positive correlation was found between CRP and MPV. Age and MPV had a positive correlation in TB patient group. Conclusions. We conclude that there is a significant relation between MPV and inflammatory conditions. MPV can be an inflammatory marker to determine the disease activity in TB patients. PMID:27419136

  19. Substrate specificity of the Deazaflavin-Dependent Nitroreductase (Ddn) from Mycobacterium tuberculosis Responsible for the Bioreductive Activation of Bicyclic Nitroimidazoles

    PubMed Central

    Gurumurthy, Meera; Mukherjee, Tathagata; Dowd, Cynthia S.; Singh, Ramandeep; Niyomrattanakit, Pornwaratt; Tay, Jo Ann; Nayyar, Amit; Lee, Yong Sok; Cherian, Joseph; Boshoff, Helena I.; Dick, Thomas; Barry, Clifton E.; Manjunatha, Ujjini H.

    2012-01-01

    The bicyclic 4-nitroimidazoles PA-824 and OPC-67683 represent a promising novel class of therapeutics for tuberculosis (TB) and are currently in phase II clinical development. Both compounds are pro-drugs that are reductively activated by a deazaflavin (F420) dependent nitroreductase (Ddn). Herein we describe the biochemical properties of Ddn including the optimal enzymatic turnover conditions, cofactor and substrate specificity. The preference of the enzyme for the (S) isomer of PA-824 over the (R) isomer is directed by the presence of a long hydrophobic tail. For nitroimidazo-oxazoles bearing only short alkyl substituents on the C-7 position of the oxazole, substrates were reduced by Ddn without stereochemical preference. However, with bulkier substitutions on the tail of the oxazole, Ddn displayed stereo-specificity. Ddn mediated metabolism of PA-824 results in the release of reactive nitrogen species. We have employed a direct chemiluminescence based nitric oxide (NO) detection assay to measure the kinetics of NO production by Ddn. Binding affinity of PA-824 to Ddn was monitored through intrinsic fluorescence quenching of the protein facilitating a turn-over independent assessment of affinity. Using this assay we found that (R)-PA-824, despite not being turned over by Ddn, binds to the enzyme with the same affinity as the active (S) isomer. This result, in combination with docking studies in the active site, suggests that the (R) isomer likely has a different binding mode than the (S) with the C-3 of the imidazole ring orienting in a non-productive position with respect to the incoming hydride from F420. The results presented provide insight into the biochemical mechanism of reduction and elucidate structural features important for understanding substrate binding. PMID:22023140

  20. Transmission of Mycobacterium orygis (M. tuberculosis complex species) from a tuberculosis patient to a dairy cow in New Zealand.

    PubMed

    Dawson, Kara L; Bell, Anita; Kawakami, R Pamela; Coley, Kathryn; Yates, Gary; Collins, Desmond M

    2012-09-01

    Mycobacterium orygis, previously called the oryx bacillus, is a member of the Mycobacterium tuberculosis complex and has been reported only recently as a cause of human tuberculosis in patients of South Asian origin. We present the first case documenting the transmission of this organism from a human to a cow.

  1. Transmission of Mycobacterium orygis (M. tuberculosis complex species) from a tuberculosis patient to a dairy cow in New Zealand.

    PubMed

    Dawson, Kara L; Bell, Anita; Kawakami, R Pamela; Coley, Kathryn; Yates, Gary; Collins, Desmond M

    2012-09-01

    Mycobacterium orygis, previously called the oryx bacillus, is a member of the Mycobacterium tuberculosis complex and has been reported only recently as a cause of human tuberculosis in patients of South Asian origin. We present the first case documenting the transmission of this organism from a human to a cow. PMID:22785186

  2. Identification of proteins from Mycobacterium tuberculosis missing in attenuated Mycobacterium bovis BCG strains.

    PubMed

    Mattow, J; Jungblut, P R; Schaible, U E; Mollenkopf, H J; Lamer, S; Zimny-Arndt, U; Hagens, K; Müller, E C; Kaufmann, S H

    2001-08-01

    A proteome approach, combining high-resolution two-dimensional electrophoresis (2-DE) with mass spectrometry, was used to compare the cellular protein composition of two virulent strains of Mycobacterium tuberculosis with two attenuated strains of Mycobacterium bovis Bacillus Calmette-Guerin (BCG), in order to identify unique proteins of these strains. Emphasis was given to the identification of M. tuberculosis specific proteins, because we consider these proteins to represent putative virulence factors and interesting candidates for vaccination and diagnosis of tuberculosis. The genome of M. tuberculosis strain H37Rv comprises nearly 4000 predicted open reading frames. In contrast, the separation of proteins from whole mycobacterial cells by 2-DE resulted in silver-stained patterns comprising about 1800 distinct protein spots. Amongst these, 96 spots were exclusively detected either in the virulent (56 spots) or in the attenuated (40 spots) mycobacterial strains. Fifty-three of these spots were analyzed by mass spectrometry, of which 41 were identified, including 32 M. tuberculosis specific spots. Twelve M. tuberculosis specific spots were identified as proteins, encoded by genes previously reported to be deleted in M. bovis BCG. The remaining 20 spots unique for M. tuberculosis were identified as proteins encoded by genes that are not known to be missing in M. bovis BCG.

  3. Asymmetric cell division in Mycobacterium tuberculosis and its unique features.

    PubMed

    Vijay, Srinivasan; Nagaraja, Mukkayyan; Sebastian, Jees; Ajitkumar, Parthasarathi

    2014-03-01

    Recently, several reports showed that about 80 % of mid-log phase Mycobacterium smegmatis, Mycobacterium marinum, and Mycobacterium bovis BCG cells divide symmetrically with 5-10 % deviation in the septum position from the median. However, the mode of cell division of the pathogenic mycobacterial species, Mycobacterium tuberculosis, remained unclear. Therefore, in the present study, using electron microscopy, fluorescence microscopy of septum- and nucleoid-stained live and fixed cells, and live cell time-lapse imaging, we show the occurrence of asymmetric cell division with unusually deviated septum/constriction in 20 % of the 15 % septating M. tuberculosis cells in the mid-log phase population. The remaining 80 % of the 15 % septating cells divided symmetrically but with 2-5 % deviation in the septum/constriction position, as reported for M. smegmatis, M. marinum, and M. bovis BCG cells. Both the long and the short portions of the asymmetrically dividing M. tuberculosis cells with unusually deviated septum contained nucleoids, thereby generating viable short and long cells from each asymmetric division. M. tuberculosis short cells were acid fast positive and, like the long cells, further readily underwent growth and division to generate micro-colony, thereby showing that they were neither mini cells, spores nor dormant forms of mycobacteria. The freshly diagnosed pulmonary tuberculosis patients' sputum samples, which are known for the prevalence of oxidative stress conditions, also contained short cells at the same proportion as that in the mid-log phase population. The probable physiological significance of the generation of the short cells through unusually deviated asymmetric cell division is discussed.

  4. Tuberculosis patients co-infected with Mycobacterium bovis and Mycobacterium tuberculosis in an urban area of Brazil

    PubMed Central

    Silva, Marcio Roberto; Rocha, Adalgiza da Silva; da Costa, Ronaldo Rodrigues; de Alencar, Andrea Padilha; de Oliveira, Vania Maria; Fonseca, Antônio Augusto; Sales, Mariana Lázaro; Issa, Marina de Azevedo; Soares, Paulo Martins; Pereira, Omara Tereza Vianello; dos Santos, Eduardo Calazans; Mendes, Rejane Silva; Ferreira, Ângela Maria de Jesus; Mota, Pedro Moacyr Pinto Coelho; Suffys, Philip Noel; Guimarães, Mark Drew Crosland

    2013-01-01

    In this cross-sectional study, mycobacteria specimens from 189 tuberculosis (TB) patients living in an urban area in Brazil were characterised from 2008-2010 using phenotypic and molecular speciation methods (pncA gene and oxyR pseudogene analysis). Of these samples, 174 isolates simultaneously grew on Löwenstein-Jensen (LJ) and Stonebrink (SB)-containing media and presented phenotypic and molecular profiles of Mycobacterium tuberculosis, whereas 12 had molecular profiles of M. tuberculosis based on the DNA analysis of formalin-fixed paraffin wax-embedded tissue samples (paraffin blocks). One patient produced two sputum isolates, the first of which simultaneously grew on LJ and SB media and presented phenotypic and molecular profiles of M. tuberculosis, and the second of which only grew on SB media and presented phenotypic profiles of Mycobacterium bovis. One patient provided a bronchial lavage isolate, which simultaneously grew on LJ and SB media and presented phenotypic and molecular profiles of M. tuberculosis, but had molecular profiles of M. bovis from paraffin block DNA analysis, and one sample had molecular profiles of M. tuberculosis and M. bovis identified from two distinct paraffin blocks. Moreover, we found a low prevalence (1.6%) of M. bovis among these isolates, which suggests that local health service procedures likely underestimate its real frequency and that it deserves more attention from public health officials. PMID:23778657

  5. Crystal Structure of Full-length Mycobacterium tuberculosis H37Rv Glycogen Branching Enzyme; Insights of N-Terminal [beta]-Sandwich in Sustrate Specifity and Enzymatic Activity

    SciTech Connect

    Pal, Kuntal; Kumar, Shiva; Sharma, Shikha; Garg, Saurabh Kumar; Alam, Mohammad Suhail; Xu, H. Eric; Agrawal, Pushpa; Swaminathan, Kunchithapadam

    2010-07-13

    The open reading frame Rv1326c of Mycobacterium tuberculosis (Mtb) H37Rv encodes for an {alpha}-1,4-glucan branching enzyme (MtbGlgB, EC 2.4.1.18, Uniprot entry Q10625). This enzyme belongs to glycoside hydrolase (GH) family 13 and catalyzes the branching of a linear glucose chain during glycogenesis by cleaving a 1 {yields} 4 bond and making a new 1 {yields} 6 bond. Here, we show the crystal structure of full-length MtbGlgB (MtbGlgBWT) at 2.33-{angstrom} resolution. MtbGlgBWT contains four domains: N1 {beta}-sandwich, N2 {beta}-sandwich, a central ({beta}/{alpha}){sub 8} domain that houses the catalytic site, and a C-terminal {beta}-sandwich. We have assayed the amylase activity with amylose and starch as substrates and the glycogen branching activity using amylose as a substrate for MtbGlgBWT and the N1 domain-deleted (the first 108 residues deleted) Mtb{Delta}108GlgB protein. The N1 {beta}-sandwich, which is formed by the first 105 amino acids and superimposes well with the N2 {beta}-sandwich, is shown to have an influence in substrate binding in the amylase assay. Also, we have checked and shown that several GH13 family inhibitors are ineffective against MtbGlgBWT and Mtb{Delta}108GlgB. We propose a two-step reaction mechanism, for the amylase activity (1 {yields} 4 bond breakage) and isomerization (1 {yields} 6 bond formation), which occurs in the same catalytic pocket. The structural and functional properties of MtbGlgB and Mtb{Delta}108GlgB are compared with those of the N-terminal 112-amino acid-deleted Escherichia coli GlgB (EC{Delta}112GlgB).

  6. Draft Genome Sequence of a New Zealand Rangipo Strain of Mycobacterium tuberculosis

    PubMed Central

    Gautam, Sanjay S.; Bower, James E.; Basu, Indira

    2016-01-01

    The Rangipo genotype of the Mycobacterium tuberculosis complex has been associated with a number of tuberculosis (TB) outbreaks in New Zealand. We report here the draft whole-genome sequence of a representative isolate of this strain. PMID:27389273

  7. Evaluation of the semiautomated Abbott LCx Mycobacterium tuberculosis assay for direct detection of Mycobacterium tuberculosis in respiratory specimens.

    PubMed Central

    Ausina, V; Gamboa, F; Gazapo, E; Manterola, J M; Lonca, J; Matas, L; Manzano, J R; Rodrigo, C; Cardona, P J; Padilla, E

    1997-01-01

    Five hundred twenty processed respiratory specimens from 326 patients received for the diagnosis of tuberculosis or other mycobacterial infections were tested by means of the LCx Mycobacterium tuberculosis Assay from Abbott Laboratories, which uses ligase chain reaction technology for the direct detection of M. tuberculosis complex in respiratory specimens. The results of the LCx M. tuberculosis Assay were compared with the results of culture and staining techniques. After a combination of culture results and the patient's clinical data, a total of 195 specimens were collected from 110 patients who were positively diagnosed as having pulmonary tuberculosis. Twenty-three of these 195 specimens which corresponded to 10 patients with a history of pulmonary tuberculosis (TB) and anti-TB treatment ranging from 1 to 6 months were culture negative. The other 172 specimens were culture positive for M. tuberculosis. With an overall positivity rate of 37.5% (195 of 520 specimens), the sensitivity, specificity, and positive and negative predictive values were 90.8, 100, 100, and 94.7%, respectively, for the LCx M. tuberculosis Assay; 88.2, 100, 100, and 93.4%, respectively, for culture; and 82.6, 92, 72.9, and 97.6%, respectively, for acid-fast staining. For 161 specimens (82.6%) from patients smear positive for the disease and 34 specimens (17.4%) from patients smear negative for the disease, the sensitivity values for the LCx M. tuberculosis Assay were 98.8 and 53%, respectively. There were no statistically significant differences in the sensitivities and specificities between the LCx M. tuberculosis Assay and culture (P > 0.05). Conclusively, the LCx M. tuberculosis Assay has proved to have an acceptable sensitivity and a high specificity in detecting M. tuberculosis and has the potential of reducing the diagnosis time to an 8-h working day. PMID:9230369

  8. Dispersal of Mycobacterium tuberculosis via the Canadian fur trade.

    PubMed

    Pepperell, Caitlin S; Granka, Julie M; Alexander, David C; Behr, Marcel A; Chui, Linda; Gordon, Janet; Guthrie, Jennifer L; Jamieson, Frances B; Langlois-Klassen, Deanne; Long, Richard; Nguyen, Dao; Wobeser, Wendy; Feldman, Marcus W

    2011-04-19

    Patterns of gene flow can have marked effects on the evolution of populations. To better understand the migration dynamics of Mycobacterium tuberculosis, we studied genetic data from European M. tuberculosis lineages currently circulating in Aboriginal and French Canadian communities. A single M. tuberculosis lineage, characterized by the DS6(Quebec) genomic deletion, is at highest frequency among Aboriginal populations in Ontario, Saskatchewan, and Alberta; this bacterial lineage is also dominant among tuberculosis (TB) cases in French Canadians resident in Quebec. Substantial contact between these human populations is limited to a specific historical era (1710-1870), during which individuals from these populations met to barter furs. Statistical analyses of extant M. tuberculosis minisatellite data are consistent with Quebec as a source population for M. tuberculosis gene flow into Aboriginal populations during the fur trade era. Historical and genetic analyses suggest that tiny M. tuberculosis populations persisted for ∼100 y among indigenous populations and subsequently expanded in the late 19th century after environmental changes favoring the pathogen. Our study suggests that spread of TB can occur by two asynchronous processes: (i) dispersal of M. tuberculosis by minimal numbers of human migrants, during which small pathogen populations are sustained by ongoing migration and slow disease dynamics, and (ii) expansion of the M. tuberculosis population facilitated by shifts in host ecology. If generalizable, these migration dynamics can help explain the low DNA sequence diversity observed among isolates of M. tuberculosis and the difficulties in global elimination of tuberculosis, as small, widely dispersed pathogen populations are difficult both to detect and to eradicate. PMID:21464295

  9. Dispersal of Mycobacterium tuberculosis via the Canadian fur trade

    PubMed Central

    Pepperell, Caitlin S.; Granka, Julie M.; Alexander, David C.; Behr, Marcel A.; Chui, Linda; Gordon, Janet; Guthrie, Jennifer L.; Jamieson, Frances B.; Langlois-Klassen, Deanne; Long, Richard; Nguyen, Dao; Wobeser, Wendy; Feldman, Marcus W.

    2011-01-01

    Patterns of gene flow can have marked effects on the evolution of populations. To better understand the migration dynamics of Mycobacterium tuberculosis, we studied genetic data from European M. tuberculosis lineages currently circulating in Aboriginal and French Canadian communities. A single M. tuberculosis lineage, characterized by the DS6Quebec genomic deletion, is at highest frequency among Aboriginal populations in Ontario, Saskatchewan, and Alberta; this bacterial lineage is also dominant among tuberculosis (TB) cases in French Canadians resident in Quebec. Substantial contact between these human populations is limited to a specific historical era (1710–1870), during which individuals from these populations met to barter furs. Statistical analyses of extant M. tuberculosis minisatellite data are consistent with Quebec as a source population for M. tuberculosis gene flow into Aboriginal populations during the fur trade era. Historical and genetic analyses suggest that tiny M. tuberculosis populations persisted for ∼100 y among indigenous populations and subsequently expanded in the late 19th century after environmental changes favoring the pathogen. Our study suggests that spread of TB can occur by two asynchronous processes: (i) dispersal of M. tuberculosis by minimal numbers of human migrants, during which small pathogen populations are sustained by ongoing migration and slow disease dynamics, and (ii) expansion of the M. tuberculosis population facilitated by shifts in host ecology. If generalizable, these migration dynamics can help explain the low DNA sequence diversity observed among isolates of M. tuberculosis and the difficulties in global elimination of tuberculosis, as small, widely dispersed pathogen populations are difficult both to detect and to eradicate. PMID:21464295

  10. Epidemiological models of Mycobacterium tuberculosis complex infections.

    PubMed

    Ozcaglar, Cagri; Shabbeer, Amina; Vandenberg, Scott L; Yener, Bülent; Bennett, Kristin P

    2012-04-01

    The resurgence of tuberculosis in the 1990s and the emergence of drug-resistant tuberculosis in the first decade of the 21st century increased the importance of epidemiological models for the disease. Due to slow progression of tuberculosis, the transmission dynamics and its long-term effects can often be better observed and predicted using simulations of epidemiological models. This study provides a review of earlier study on modeling different aspects of tuberculosis dynamics. The models simulate tuberculosis transmission dynamics, treatment, drug resistance, control strategies for increasing compliance to treatment, HIV/TB co-infection, and patient groups. The models are based on various mathematical systems, such as systems of ordinary differential equations, simulation models, and Markov Chain Monte Carlo methods. The inferences from the models are justified by case studies and statistical analysis of TB patient datasets. PMID:22387570

  11. The Endothelin System Has a Significant Role in the Pathogenesis and Progression of Mycobacterium tuberculosis Infection

    PubMed Central

    Correa, Andre F.; Bailão, Alexandre M.; Bastos, Izabela M. D.; Orme, Ian M.; Soares, Célia M. A.; Kipnis, Andre

    2014-01-01

    Tuberculosis (TB) remains a major global health problem, and although multiple studies have addressed the relationship between Mycobacterium tuberculosis and the host on an immunological level, few studies have addressed the impact of host physiological responses. Proteases produced by bacteria have been associated with important alterations in the host tissues, and a limited number of these enzymes have been characterized in mycobacterial species. M. tuberculosis produces a protease called Zmp1, which appears to be associated with virulence and has a putative action as an endothelin-converting enzyme. Endothelins are a family of vasoactive peptides, of which 3 distinct isoforms exist, and endothelin 1 (ET-1) is the most abundant and the best-characterized isoform. The aim of this work was to characterize the Zmp1 protease and evaluate its role in pathogenicity. Here, we have shown that M. tuberculosis produces and secretes an enzyme with ET-1 cleavage activity. These data demonstrate a possible role of Zmp1 for mycobacterium-host interactions and highlights its potential as a drug target. Moreover, the results suggest that endothelin pathways have a role in the pathogenesis of M. tuberculosis infections, and ETA or ETB receptor signaling can modulate the host response to the infection. We hypothesize that a balance between Zmp1 control of ET-1 levels and ETA/ETB signaling can allow M. tuberculosis adaptation and survival in the lung tissues. PMID:25267836

  12. The endothelin system has a significant role in the pathogenesis and progression of Mycobacterium tuberculosis infection.

    PubMed

    Correa, Andre F; Bailão, Alexandre M; Bastos, Izabela M D; Orme, Ian M; Soares, Célia M A; Kipnis, Andre; Santana, Jaime M; Junqueira-Kipnis, Ana Paula

    2014-12-01

    Tuberculosis (TB) remains a major global health problem, and although multiple studies have addressed the relationship between Mycobacterium tuberculosis and the host on an immunological level, few studies have addressed the impact of host physiological responses. Proteases produced by bacteria have been associated with important alterations in the host tissues, and a limited number of these enzymes have been characterized in mycobacterial species. M. tuberculosis produces a protease called Zmp1, which appears to be associated with virulence and has a putative action as an endothelin-converting enzyme. Endothelins are a family of vasoactive peptides, of which 3 distinct isoforms exist, and endothelin 1 (ET-1) is the most abundant and the best-characterized isoform. The aim of this work was to characterize the Zmp1 protease and evaluate its role in pathogenicity. Here, we have shown that M. tuberculosis produces and secretes an enzyme with ET-1 cleavage activity. These data demonstrate a possible role of Zmp1 for mycobacterium-host interactions and highlights its potential as a drug target. Moreover, the results suggest that endothelin pathways have a role in the pathogenesis of M. tuberculosis infections, and ETA or ETB receptor signaling can modulate the host response to the infection. We hypothesize that a balance between Zmp1 control of ET-1 levels and ETA/ETB signaling can allow M. tuberculosis adaptation and survival in the lung tissues.

  13. Prevalence of Latent and Active Tuberculosis among Dairy Farm Workers Exposed to Cattle Infected by Mycobacterium bovis

    PubMed Central

    Torres-Gonzalez, Pedro; Soberanis-Ramos, Orbelin; Martinez-Gamboa, Areli; Chavez-Mazari, Barbara; Barrios-Herrera, Ma Teresa; Torres-Rojas, Martha; Cruz-Hervert, Luis Pablo; Garcia-Garcia, Lourdes; Singh, Mahavir; Gonzalez-Aguirre, Adrian; Ponce de Leon-Garduño, Alfredo; Sifuentes-Osornio, José; Bobadilla-del-Valle, Miriam

    2013-01-01

    Background Human tuberculosis caused by M. bovis is a zoonosis presently considered sporadic in developed countries, but remains a poorly studied problem in low and middle resource countries. The disease in humans is mainly attributed to unpasteurized dairy products consumption. However, transmission due to exposure of humans to infected animals has been also recognized. The prevalence of tuberculosis infection and associated risk factors have been insufficiently characterized among dairy farm workers (DFW) exposed in settings with poor control of bovine tuberculosis. Methodology/Principal Findings Tuberculin skin test (TST) and Interferon-gamma release assay (IGRA) were administered to 311 dairy farm and abattoir workers and their household contacts linked to a dairy production and livestock facility in Mexico. Sputa of individuals with respiratory symptoms and samples from routine cattle necropsies were cultured for M. bovis and resulting spoligotypes were compared. The overall prevalence of latent tuberculosis infection (LTBI) was 76.2% (95% CI, 71.4–80.9%) by TST and 58.5% (95% CI, 53.0–64.0%) by IGRA. Occupational exposure was associated to TST (OR 2.72; 95% CI, 1.31–5.64) and IGRA (OR 2.38; 95% CI, 1.31–4.30) adjusting for relevant variables. Two subjects were diagnosed with pulmonary tuberculosis, both caused by M. bovis. In one case, the spoligotype was identical to a strain isolated from bovines. Conclusions We documented a high prevalence of latent and pulmonary TB among workers exposed to cattle infected with M. bovis, and increased risk among those occupationally exposed in non-ventilated spaces. Interspecies transmission is frequent and represents an occupational hazard in this setting. PMID:23638198

  14. Activity of 3-Ketosteroid 9α-Hydroxylase (KshAB) Indicates Cholesterol Side Chain and Ring Degradation Occur Simultaneously in Mycobacterium tuberculosis*

    PubMed Central

    Capyk, Jenna K.; Casabon, Israël; Gruninger, Robert; Strynadka, Natalie C.; Eltis, Lindsay D.

    2011-01-01

    Mycobacterium tuberculosis (Mtb), a significant global pathogen, contains a cholesterol catabolic pathway. Although the precise role of cholesterol catabolism in Mtb remains unclear, the Rieske monooxygenase in this pathway, 3-ketosteroid 9α-hydroxylase (KshAB), has been identified as a virulence factor. To investigate the physiological substrate of KshAB, a rhodococcal acyl-CoA synthetase was used to produce the coenzyme A thioesters of two cholesterol derivatives: 3-oxo-23,24-bisnorchol-4-en-22-oic acid (forming 4-BNC-CoA) and 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid (forming 1,4-BNC-CoA). The apparent specificity constant (kcat/Km) of KshAB for the CoA thioester substrates was 20–30 times that for the corresponding 17-keto compounds previously proposed as physiological substrates. The apparent KmO2 was 90 ± 10 μm in the presence of 1,4-BNC-CoA, consistent with the value for two other cholesterol catabolic oxygenases. The Δ1 ketosteroid dehydrogenase KstD acted with KshAB to cleave steroid ring B with a specific activity eight times greater for a CoA thioester than the corresponding ketone. Finally, modeling 1,4-BNC-CoA into the KshA crystal structure suggested that the CoA moiety binds in a pocket at the mouth of the active site channel and could contribute to substrate specificity. These results indicate that the physiological substrates of KshAB are CoA thioester intermediates of cholesterol side chain degradation and that side chain and ring degradation occur concurrently in Mtb. This finding has implications for steroid metabolites potentially released by the pathogen during infection and for the design of inhibitors for cholesterol-degrading enzymes. The methodologies and rhodococcal enzymes used to generate thioesters will facilitate the further study of cholesterol catabolism. PMID:21987574

  15. Zirconia based nucleic acid sensor for Mycobacterium tuberculosis detection

    NASA Astrophysics Data System (ADS)

    Das, Maumita; Sumana, Gajjala; Nagarajan, R.; Malhotra, B. D.

    2010-03-01

    Nanostructured zirconium oxide (ZrO2) film (particle size˜35 nm), electrochemically deposited onto gold(Au) surface, has been used to immobilize 21-mer oligonucleotide probe (ssDNA) specific to Mycobacterium tuberculosis by utilizing affinity between oxygen atom of phosphoric group and zirconium to fabricate DNA biosensor. This DNA-ZrO2/Au bioelectrode, characterized using x-ray diffraction, Fourier transform infrared spectroscopy, cyclic voltammetry, and scanning electron microscopy techniques, can be used for early and rapid diagnosis of M. tuberculosis with detection limit of 0.065 ng/μL within 60s.

  16. Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis

    PubMed Central

    Ouellet, Hugues; Johnston, Jonathan B.; Ortiz de Montellano, Paul R.

    2011-01-01

    Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that infects 10 million worldwide and kills 2 million people every year. The uptake and utilization of nutrients by Mtb within the host cell is still poorly understood, although lipids play an important role in Mtb persistence. The recent identification of a large regulon of cholesterol catabolic genes suggests that Mtb can use host sterol for infection and persistence. In this review, we report on recent progress in elucidation of the Mtb cholesterol catabolic reactions and their potential utility as targets for tuberculosis therapeutic agents. PMID:21924910

  17. Inactivation of Mycobacterium tuberculosis for DNA Typing Analysis

    PubMed Central

    Bemer-Melchior, P.; Drugeon, H. B.

    1999-01-01

    DNA fingerprinting analysis of Mycobacterium tuberculosis is used for epidemiological studies and the control of laboratory cross-contamination. Because standardized procedures are not entirely safe for mycobacteriology laboratory staff, the paper proposes a new technique for the processing of specimens. The technique ensures the inactivation of M. tuberculosis before DNA extraction without the loss of DNA integrity. The control of inactivated cultures should be rigorous and should involve the use of two different culture media incubated for at least 4 months. PMID:10364613

  18. Mycobacterium tuberculosis virulence: insights and impact on vaccine development.

    PubMed

    Delogu, Giovanni; Provvedi, Roberta; Sali, Michela; Manganelli, Riccardo

    2015-01-01

    The existing TB vaccine, the attenuated Mycobacterium bovis strain BCG, is effective in protecting infants from severe forms of the disease, while its efficacy in protecting adults from pulmonary TB is poor. In the last two decades, a renewed interest in TB resulted in the development of several candidate vaccines that are now entering clinical trials. However, most of these vaccines are based on a common rationale and aim to induce a strong T-cell response against Mycobacterium tuberculosis. Recent advancements in the understanding of M. tuberculosis virulence determinants and associated pathogenic strategies are opening a new and broader view of the complex interaction between this remarkable pathogen and the human host, providing insights at molecular level that could lead to a new rationale for the design of novel antitubercular vaccines. A vaccination strategy that simultaneously targets different steps in TB pathogenesis may result in improved protection and reduced TB transmission.

  19. Efficient activation of human T cells of both CD4 and CD8 subsets by urease-deficient recombinant Mycobacterium bovis BCG that produced a heat shock protein 70-M. tuberculosis-derived major membrane protein II fusion protein.

    PubMed

    Mukai, Tetsu; Tsukamoto, Yumiko; Maeda, Yumi; Tamura, Toshiki; Makino, Masahiko

    2014-01-01

    For the purpose of obtaining Mycobacterium bovis bacillus Calmette-Guérin (BCG) capable of activating human naive T cells, urease-deficient BCG expressing a fusion protein composed of Mycobacterium tuberculosis-derived major membrane protein II (MMP-II) and heat shock protein 70 (HSP70) of BCG (BCG-DHTM) was produced. BCG-DHTM secreted the HSP70-MMP-II fusion protein and effectively activated human monocyte-derived dendritic cells (DCs) by inducing phenotypic changes and enhanced cytokine production. BCG-DHTM-infected DCs activated naive T cells of both CD4 and naive CD8 subsets, in an antigen (Ag)-dependent manner. The T cell activation induced by BCG-DHTM was inhibited by the pretreatment of DCs with chloroquine. The naive CD8(+) T cell activation was mediated by the transporter associated with antigen presentation (TAP) and the proteosome-dependent cytosolic cross-priming pathway. Memory CD8(+) T cells and perforin-producing effector CD8(+) T cells were efficiently produced from the naive T cell population by BCG-DHTM stimulation. Single primary infection with BCG-DHTM in C57BL/6 mice efficiently produced T cells responsive to in vitro secondary stimulation with HSP70, MMP-II, and M. tuberculosis-derived cytosolic protein and inhibited the multiplication of subsequently aerosol-challenged M. tuberculosis more efficiently than did vector control BCG. These results indicate that the introduction of MMP-II and HSP70 into urease-deficient BCG may be useful for improving BCG for control of tuberculosis.

  20. Diacyltransferase Activity and Chain Length Specificity of Mycobacterium tuberculosis PapA5 in the Synthesis of Alkyl Beta-Diol Lipids

    PubMed Central

    Touchette, Megan H.; Bommineni, Gopal R.; Delle Bovi, Richard J.; Gadbery, John E.; Nicora, Carrie D.; Shukla, Anil K.; Kyle, Jennifer E.; Metz, Thomas O.; Martin, Dwight W.; Sampson, Nicole S.; Miller, W. Todd; Tonge, Peter J.; Seeliger, Jessica C.

    2015-01-01

    Although classified as Gram-positive bacteria, Corynebacterineae possess an asymmetric outer membrane that imparts structural and thereby physiological similarity to more distantly related Gram-negative bacteria. Like lipopolysaccharide in Gram-negative bacteria, lipids in the outer membrane of Corynebacterineae have been associated with the virulence of pathogenic species such as Mycobacterium tuberculosis (Mtb). For example, Mtb strains that lack long, branched-chain alkyl esters known as dimycocerosates (DIMs) are significantly attenuated in model infections. The resultant interest in the biosynthetic pathway of these unusual virulence factors has led to the elucidation of many of the steps leading to the final esterification of the alkyl beta-diol, phthiocerol, with branched-chain fatty acids known as mycocerosates. PapA5 is an acyltransferase implicated in these final reactions. We here show that PapA5 is indeed the terminal enzyme in DIM biosynthesis by demonstrating its dual esterification activity and chain-length preference using synthetic alkyl beta-diol substrate analogues. Applying these analogues to a series of PapA5 mutants, we also revise a model for the substrate binding within PapA5. Finally, we demonstrate that the Mtb Ser/Thr kinases PknB and PknE modify PapA5 on three overlapping Thr residues and a fourth Thr is unique to PknE phosphorylation. These results clarify the DIM biosynthetic pathway and indicate post-translational modifications that warrant further elucidation for their roles in regulation DIM biosynthesis. PMID:26271001

  1. Mycobacterium tuberculosis Mutations Associated with Reduced Susceptibility to Linezolid.

    PubMed

    Zhang, Shuo; Chen, Jiazhen; Cui, Peng; Shi, Wanliang; Shi, Xiaohong; Niu, Hongxia; Chan, Denise; Yew, Wing Wai; Zhang, Wenhong; Zhang, Ying

    2016-04-01

    Linezolid (LZD) has become increasingly important for the treatment of multidrug-resistant tuberculosis (MDR-TB), but its mechanisms of resistance are not well characterized. We isolated 32 mutants ofMycobacterium tuberculosiswith reduced susceptibility to LZD, which was accounted for byrrlandrplCmutations in almost equal proportions, causing lower and higher MICs, respectively. Our findings provide useful information for the rapid detection of LZD resistance for improved treatment of MDR-TB.

  2. An efficient alternative marker for specific identification of Mycobacterium tuberculosis.

    PubMed

    Zhao, Jianing; Wang, Yiwei; Li, Dairong; Liu, Jiawen; Zhang, Xuemei; He, Yujuan; Wang, Hong; Cao, Ju; Yin, Yibing; Xu, Wenchun

    2014-08-01

    Rapid and accurate identification of mycobacteria to the species level is important to provide epidemiological information and to guide the appropriate treatment, especially identification of the Mycobacterium tuberculosis (MTB) which is the leading pathogen causing tuberculosis. The genetic marker named as Mycobacterium tuberculosis specific sequence 90 (mtss90) was screened by a bioinformatics software and verified by a series of experiments. To test its specificity, 266 strains of microorganisms and human cells were used for the mtss90 conventional PCR method. Moreover, the efficiency of mtss90 was evaluated by comparing 16S rDNA (Mycobacterium genus-specific), IS6110 (specific identification of MTB complex), mtp40 (MTB-specific) and PNB/TCH method (traditional bacteriology testing) in Mycobacterium strains. All MTB isolates were mtss90 positive. No amplification was observed from any other tested strains with M. microti as an exception. Compared with the traditional PNB/TCH method, the coincidence rate was 99.1 % (233/235). All of the mtss90 positive strains were IS6110 and 16S rDNA positive, indicating a 100 % coincidence rate (216/216) between mtss90 and these two genetic markers. Additionally, mtss90 had a better specificity than mtp40 in the identification of MTB. Lastly, a real-time PCR diagnostic assay was developed for the rapid identification of MTB. In conclusion, mtss90 may be an efficient alternative marker for species-specific identification of MTB and could be used for the diagnosis of tuberculosis combined with other genetic markers.

  3. Genotyping of Mycobacterium tuberculosis: application in epidemiologic studies

    PubMed Central

    Kato-Maeda, Midori; Metcalfe, John Z.; Flores, Laura

    2014-01-01

    Genotyping is used to track specific isolates of Mycobacterium tuberculosis in a community. It has been successfully used in epidemiologic research (termed ‘molecular epidemiology’) to study the transmission dynamics of TB. In this article, we review the genetic markers used in molecular epidemiologic studies including the use of whole-genome sequencing technology. We also review the public health application of molecular epidemiologic tools. PMID:21366420

  4. The rpoB gene of Mycobacterium tuberculosis.

    PubMed Central

    Miller, L P; Crawford, J T; Shinnick, T M

    1994-01-01

    A portion of the Mycobacterium tuberculosis gene encoding the beta subunit of RNA polymerase (rpoB) was amplified by PCR using degenerate oligonucleotides and used as a hybridization probe to isolate plasmid clones carrying the entire rpoB gene of M. tuberculosis H37Rv, a virulent, rifampin-susceptible strain. Sequence analysis of a 5,084-bp SacI genomic DNA fragment revealed a 3,534-bp open reading frame encoding an 1,178-amino-acid protein with 57% identity with the Escherichia coli beta subunit. This SacI fragment also carried a portion of the rpoC gene located 43 bp downstream from the 3' end of the rpoB open reading frame; this organization is similar to that of the rpoBC operon of E. coli. The M. tuberculosis rpoB gene was cloned into the shuttle plasmid pMV261 and electroporated into the LR223 strain of Mycobacterium smegmatis, which is highly resistant to rifampin (MIC > 200 micrograms/ml). The resulting transformants were relatively rifampin susceptible (MIC = 50 micrograms/ml). Using PCR mutagenesis techniques, we introduced a specific rpoB point mutation (associated with clinical strains of rifampin-resistant M. tuberculosis) into the cloned M. tuberculosis rpoB gene and expressed this altered gene in the LR222 strain of M. smegmatis, which is susceptible to rifampin (MIC = 25 micrograms/ml). The resulting transformants were rifampin resistant (MIC = 200 micrograms/ml). The mutagenesis and expression strategy of the cloned M. tuberculosis rpoB gene that we have employed in this study will allow us to determine the rpoB mutations that are responsible for rifampin resistance in M. tuberculosis. PMID:8031050

  5. Mycobacterium tuberculosis alters the differentiation of monocytes into macrophages in vitro.

    PubMed

    Castaño, Diana; Barrera, Luis F; Rojas, Mauricio

    2011-01-01

    This paper shows that in vitro infection of human monocytes by Mycobacterium tuberculosis affected monocyte to macrophage differentiation. Despite the low bacterial load used, M. tuberculosis-infected monocytes had fewer granules, displayed a reduced number of cytoplasmic projections and decreased HLA class II, CD68, CD86 and CD36 expression compared to cells differentiated in the absence of mycobacteria. Infected cells produced less IL-12p70, TNF-α, IL-10, IL-6 and high IL-1β in response to lipopolysaccharide and purified protein M. tuberculosis-derived. Reduced T-cell proliferative response and IFN-γ secretion in response to phytohemagglutinin and culture filtrate proteins from M. tuberculosis was also observed in infected cells when compared to non-infected ones. The ability of monocytes differentiated in the presence of M. tuberculosis to control mycobacterial growth in response to IFN-γ stimulation was attenuated, as determined by bacterial plate count; however, they had a similar ability to uptake fluorescent M. tuberculosis and latex beads compared to non-infected cells. Recombinant IL-1β partially altered monocyte differentiation into macrophages; however, treating M. tuberculosis-infected monocytes with IL-1RA did not reverse the effects of infection during differentiation. The results indicated that M. tuberculosis infection altered monocyte differentiation into macrophages and affected their ability to respond to innate stimuli and activate T-cells.

  6. Mycobacterium tuberculosis pili (MTP), a putative biomarker for a tuberculosis diagnostic test.

    PubMed

    Naidoo, Natasha; Ramsugit, Saiyur; Pillay, Manormoney

    2014-05-01

    Novel biomarkers are urgently needed for point of care TB diagnostics. In this study, we investigated the potential of the pilin subunit protein encoded by the mtp gene as a diagnostic biomarker. BLAST analysis of the mtp gene on published genome databases, and amplicon sequencing were performed in Mycobacterium tuberculosis Complex (MTBC) strains and other organisms. The protein secondary structure of the amino acid sequences of non-tuberculous Mycobacteria that partially aligned with the mtp sequence was analysed with PredictProtein software. The mtp gene and corresponding amino acid sequence of MTBC were 100% homologous with H37Rv, in contrast to the partial alignment of the non-tuberculous Mycobacteria. The mtp gene was present in all 91 clinical isolates of MTBC. Except for 2 strains with point mutations, the sequence was 100% conserved among the clinical strains. The mtp gene could not be amplified in all non-tuberculous Mycobacteria and respiratory organisms. The predicted MTP protein structure of Mycobacterium avium, Mycobacterium ulcerans and Mycobacterium abscessus differed significantly from that of the M. tuberculosis, which was similar to Mycobacterium marinum. The absence of the mtp gene in non-tuberculous Mycobacteria and other respiratory bacteria suggests that its encoded product, the pilin subunit protein of M. tuberculosis may be a suitable marker for a point of care TB test.

  7. Mycobacterium tuberculosis DevR/DosR Dormancy Regulator Activation Mechanism: Dispensability of Phosphorylation, Cooperativity and Essentiality of α10 Helix

    PubMed Central

    Sharma, Saurabh; Tyagi, Jaya Sivaswami

    2016-01-01

    DevR/DosR is a well-characterized regulator in Mycobacterium tuberculosis which is implicated in various processes ranging from dormancy/persistence to drug tolerance. DevR induces the expression of an ~48-gene dormancy regulon in response to gaseous stresses, including hypoxia. Strains of the Beijing lineage constitutively express this regulon, which may confer upon them a significant advantage, since they would be ‘pre-adapted’ to the environmental stresses that predominate during infection. Aerobic DevR regulon expression in laboratory-manipulated overexpression strains is also reported. In both instances, the need for an inducing signal is bypassed. While a phosphorylation-mediated conformational change in DevR was proposed as the activation mechanism under hypoxia, the mechanism underlying constitutive expression is not understood. Because DevR is implicated in bacterial dormancy/persistence and is a promising drug target, it is relevant to resolve the mechanistic puzzle of hypoxic activation on one hand and constitutive expression under ‘non-inducing’ conditions on the other. Here, an overexpression strategy was employed to elucidate the DevR activation mechanism. Using a panel of kinase and transcription factor mutants, we establish that DevR, upon overexpression, circumvents DevS/DosT sensor kinase-mediated or small molecule phosphodonor-dependent activation, and also cooperativity-mediated effects, which are key aspects of hypoxic activation mechanism. However, overexpression failed to rescue the defect of C-terminal-truncated DevR lacking the α10 helix, establishing the α10 helix as an indispensable component of DevR activation mechanism. We propose that aerobic overexpression of DevR likely increases the concentration of α10 helix-mediated active dimer species to above the threshold level, as during hypoxia, and enables regulon expression. This advance in the understanding of DevR activation mechanism clarifies a long standing question as to

  8. Mycobacterium tuberculosis DevR/DosR Dormancy Regulator Activation Mechanism: Dispensability of Phosphorylation, Cooperativity and Essentiality of α10 Helix.

    PubMed

    Sharma, Saurabh; Tyagi, Jaya Sivaswami

    2016-01-01

    DevR/DosR is a well-characterized regulator in Mycobacterium tuberculosis which is implicated in various processes ranging from dormancy/persistence to drug tolerance. DevR induces the expression of an ~48-gene dormancy regulon in response to gaseous stresses, including hypoxia. Strains of the Beijing lineage constitutively express this regulon, which may confer upon them a significant advantage, since they would be 'pre-adapted' to the environmental stresses that predominate during infection. Aerobic DevR regulon expression in laboratory-manipulated overexpression strains is also reported. In both instances, the need for an inducing signal is bypassed. While a phosphorylation-mediated conformational change in DevR was proposed as the activation mechanism under hypoxia, the mechanism underlying constitutive expression is not understood. Because DevR is implicated in bacterial dormancy/persistence and is a promising drug target, it is relevant to resolve the mechanistic puzzle of hypoxic activation on one hand and constitutive expression under 'non-inducing' conditions on the other. Here, an overexpression strategy was employed to elucidate the DevR activation mechanism. Using a panel of kinase and transcription factor mutants, we establish that DevR, upon overexpression, circumvents DevS/DosT sensor kinase-mediated or small molecule phosphodonor-dependent activation, and also cooperativity-mediated effects, which are key aspects of hypoxic activation mechanism. However, overexpression failed to rescue the defect of C-terminal-truncated DevR lacking the α10 helix, establishing the α10 helix as an indispensable component of DevR activation mechanism. We propose that aerobic overexpression of DevR likely increases the concentration of α10 helix-mediated active dimer species to above the threshold level, as during hypoxia, and enables regulon expression. This advance in the understanding of DevR activation mechanism clarifies a long standing question as to the

  9. The DosR Regulon Modulates Adaptive Immunity and Is Essential for Mycobacterium tuberculosis Persistence

    PubMed Central

    Mehra, Smriti; Foreman, Taylor W.; Didier, Peter J.; Ahsan, Muhammad H.; Hudock, Teresa A.; Kissee, Ryan; Golden, Nadia A.; Gautam, Uma S.; Johnson, Ann-Marie; Alvarez, Xavier; Russell-Lodrigue, Kasi E.; Doyle, Lara A.; Roy, Chad J.; Niu, Tianhua; Blanchard, James L.; Khader, Shabaana A.; Lackner, Andrew A.; Sherman, David R.

    2015-01-01

    Rationale: Hypoxia promotes dormancy by causing physiologic changes to actively replicating Mycobacterium tuberculosis. DosR controls the response of M. tuberculosis to hypoxia. Objectives: To understand DosR's contribution in the persistence of M. tuberculosis, we compared the phenotype of various DosR regulon mutants and a complemented strain to M. tuberculosis in macaques, which faithfully model M. tuberculosis infection. Methods: We measured clinical and microbiologic correlates of infection with M. tuberculosis relative to mutant/complemented strains in the DosR regulon, studied lung pathology and hypoxia, and compared immune responses in lung using transcriptomics and flow cytometry. Measurements and Main Results: Despite being able to replicate initially, mutants in DosR regulon failed to persist or cause disease. On the contrary, M. tuberculosis and a complemented strain were able to establish infection and tuberculosis. The attenuation of pathogenesis in animals infected with the mutants coincided with the appearance of a Th1 response and organization of hypoxic lesions wherein M. tuberculosis expressed dosR. The lungs of animals infected with the mutants (but not the complemented strain) exhibited early transcriptional signatures of T-cell recruitment, activation, and proliferation associated with an increase of T cells expressing homing and proliferation markers. Conclusions: Delayed adaptive responses, a hallmark of M. tuberculosis infection, not only lead to persistence but also interfere with the development of effective antituberculosis vaccines. The DosR regulon therefore modulates both the magnitude and the timing of adaptive immune responses in response to hypoxia in vivo, resulting in persistent infection. Hence, DosR regulates key aspects of the M. tuberculosis life cycle and limits lung pathology. PMID:25730547

  10. The MTCY428.08 Gene of Mycobacterium tuberculosis Codes for NAD+ Synthetase

    PubMed Central

    Cantoni, Rita; Branzoni, Manuela; Labò, Monica; Rizzi, Menico; Riccardi, Giovanna

    1998-01-01

    The product of the MTCY428.08 gene of Mycobacterium tuberculosis shows sequence homology with several NAD+ synthetases. The MTCY428.08 gene was cloned into the expression vectors pGEX-4T-1 and pET-15b. Expression in Escherichia coli led to overproduction of glutathione S-transferase fused and His6-tagged gene products, which were enzymatically assayed for NAD synthetase activity. Our results demonstrate that the MTCY428.08 gene of M. tuberculosis is the structural gene for NAD+ synthetase. PMID:9620974

  11. Development of modern InhA inhibitors to combat drug resistant strains of Mycobacterium tuberculosis.

    PubMed

    Tonge, Peter J; Kisker, Caroline; Slayden, Richard A

    2007-01-01

    Strategies for the development of novel tuberculosis chemotherapeutics against existing drug resistant strains involve the identification and inhibition of novel drug targets as well as the design and synthesis of compounds against historical targets. InhA, the enoyl reductase from the mycobacterial type II fatty acid biosynthesis pathway, is a target of the frontline chemotherapeutic, isoniazid (INH). Importantly, the majority of INH-resistant clinical isolates arise from mutations in KatG, the enzyme responsible for activating isoniazid, into its active form. Thus compounds that inhibit InhA without first requiring KatG activation will be active against the majority of INH resistant strains of Mycobacterium tuberculosis. This review describes the role of InhA in cell wall biosynthesis and recent progress in the development of novel diphenyl ether-based InhA inhibitors that have activity against both sensitive and drug resistant strains of M. tuberculosis.

  12. Mycobacterium tuberculosis pyrazinamide resistance determinants: a multicenter study.

    PubMed

    Miotto, Paolo; Cabibbe, Andrea M; Feuerriegel, Silke; Casali, Nicola; Drobniewski, Francis; Rodionova, Yulia; Bakonyte, Daiva; Stakenas, Petras; Pimkina, Edita; Augustynowicz-Kopeć, Ewa; Degano, Massimo; Ambrosi, Alessandro; Hoffner, Sven; Mansjö, Mikael; Werngren, Jim; Rüsch-Gerdes, Sabine; Niemann, Stefan; Cirillo, Daniela M

    2014-10-21

    Pyrazinamide (PZA) is a prodrug that is converted to pyrazinoic acid by the enzyme pyrazinamidase, encoded by the pncA gene in Mycobacterium tuberculosis. Molecular identification of mutations in pncA offers the potential for rapid detection of pyrazinamide resistance (PZA(r)). However, the genetic variants are highly variable and scattered over the full length of pncA, complicating the development of a molecular test. We performed a large multicenter study assessing pncA sequence variations in 1,950 clinical isolates, including 1,142 multidrug-resistant (MDR) strains and 483 fully susceptible strains. The results of pncA sequencing were correlated with phenotype, enzymatic activity, and structural and phylogenetic data. We identified 280 genetic variants which were divided into four classes: (i) very high confidence resistance mutations that were found only in PZA(r) strains (85%), (ii) high-confidence resistance mutations found in more than 70% of PZA(r) strains, (iii) mutations with an unclear role found in less than 70% of PZA(r) strains, and (iv) mutations not associated with phenotypic resistance (10%). Any future molecular diagnostic assay should be able to target and identify at least the very high and high-confidence genetic variant markers of PZA(r); the diagnostic accuracy of such an assay would be in the range of 89.5 to 98.8%. Importance: Conventional phenotypic testing for pyrazinamide resistance in Mycobacterium tuberculosis is technically challenging and often unreliable. The development of a molecular assay for detecting pyrazinamide resistance would be a breakthrough, directly overcoming both the limitations of conventional testing and its related biosafety issues. Although the main mechanism of pyrazinamide resistance involves mutations inactivating the pncA enzyme, the highly diverse genetic variants scattered over the full length of the pncA gene and the lack of a reliable phenotypic gold standard hamper the development of molecular diagnostic

  13. pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis isolates in Portugal.

    PubMed

    Portugal, Isabel; Barreiro, Luís; Moniz-Pereira, José; Brum, Laura

    2004-07-01

    The nucleotide sequences of the pncA genes within 55 multidrug-resistant pyrazinamide-resistant Mycobacterium tuberculosis clinical isolates were determined. Fifty-three out of the 55 isolates were pyrazinamidase (PZase) negative. Four strains contained a wild-type pncA gene, and PZase activity was undetectable in two of these strains. Seven of the 18 identified pncA mutations found have not been described in previous studies.

  14. Respiratory Flexibility in Response to Inhibition of Cytochrome c Oxidase in Mycobacterium tuberculosis

    PubMed Central

    Arora, Kriti; Ochoa-Montaño, Bernardo; Tsang, Patricia S.; Blundell, Tom L.; Dawes, Stephanie S.; Mizrahi, Valerie; Bayliss, Tracy; Mackenzie, Claire J.; Cleghorn, Laura A. T.; Ray, Peter C.; Wyatt, Paul G.; Uh, Eugene; Lee, Jinwoo; Barry, Clifton E.

    2014-01-01

    We report here a series of five chemically diverse scaffolds that have in vitro activities on replicating and hypoxic nonreplicating bacilli by targeting the respiratory bc1 complex in Mycobacterium tuberculosis in a strain-dependent manner. Deletion of the cytochrome bd oxidase generated a hypersusceptible mutant in which resistance was acquired by a mutation in qcrB. These results highlight the promiscuity of the bc1 complex and the risk of targeting energy metabolism with new drugs. PMID:25155596

  15. Identification of widespread adenosine nucleotide binding in Mycobacterium tuberculosis

    SciTech Connect

    Ansong, Charles; Ortega, Corrie; Payne, Samuel H.; Haft, Daniel H.; Chauvigne-Hines, Lacie M.; Lewis, Michael P.; Ollodart, Anja R.; Purvine, Samuel O.; Shukla, Anil K.; Fortuin, Suereta; Smith, Richard D.; Adkins, Joshua N.; Grundner, Christoph; Wright, Aaron T.

    2013-01-24

    The annotation of protein function is almost completely performed by in silico approaches. However, computational prediction of protein function is frequently incomplete and error prone. In Mycobacterium tuberculosis (Mtb), ~25% of all genes have no predicted function and are annotated as hypothetical proteins. This lack of functional information severely limits our understanding of Mtb pathogenicity. Current tools for experimental functional annotation are limited and often do not scale to entire protein families. Here, we report a generally applicable chemical biology platform to functionally annotate bacterial proteins by combining activity-based protein profiling (ABPP) and quantitative LC-MS-based proteomics. As an example of this approach for high-throughput protein functional validation and discovery, we experimentally annotate the families of ATP-binding proteins in Mtb. Our data experimentally validate prior in silico predictions of >250 ATPases and adenosine nucleotide-binding proteins, and reveal 73 hypothetical proteins as novel ATP-binding proteins. We identify adenosine cofactor interactions with many hypothetical proteins containing a diversity of unrelated sequences, providing a new and expanded view of adenosine nucleotide binding in Mtb. Furthermore, many of these hypothetical proteins are both unique to Mycobacteria and essential for infection, suggesting specialized functions in mycobacterial physiology and pathogenicity. Thus, we provide a generally applicable approach for high throughput protein function discovery and validation, and highlight several ways in which application of activity-based proteomics data can improve the quality of functional annotations to facilitate novel biological insights.

  16. Role of Cathepsins in Mycobacterium tuberculosis Survival in Human Macrophages.

    PubMed

    Pires, David; Marques, Joana; Pombo, João Palma; Carmo, Nuno; Bettencourt, Paulo; Neyrolles, Olivier; Lugo-Villarino, Geanncarlo; Anes, Elsa

    2016-01-01

    Cathepsins are proteolytic enzymes that function in the endocytic pathway, especially in lysosomes, where they contribute directly to pathogen killing or indirectly, by their involvement in the antigen presentation pathways. Mycobacterium tuberculosis (MTB) is a facultative intracellular pathogen that survives inside the macrophage phagosomes by inhibiting their maturation to phagolysosomes and thus avoiding a low pH and protease-rich environment. We previously showed that mycobacterial inhibition of the proinflammatory transcription factor NF-κB results in impaired delivery of lysosomal enzymes to phagosomes and reduced pathogen killing. Here, we elucidate how MTB also controls cathepsins and their inhibitors, cystatins, at the level of gene expression and proteolytic activity. MTB induced a general down-regulation of cathepsin expression in infected cells, and inhibited IFNγ-mediated increase of cathepsin mRNA. We further show that a decrease in cathepsins B, S and L favours bacterial survival within human primary macrophages. A siRNA knockdown screen of a large set of cathepsins revealed that almost half of these enzymes have a role in pathogen killing, while only cathepsin F coincided with MTB resilience. Overall, we show that cathepsins are important for the control of MTB infection, and as a response, it manipulates their expression and activity to favour its intracellular survival. PMID:27572605

  17. Role of Cathepsins in Mycobacterium tuberculosis Survival in Human Macrophages

    PubMed Central

    Pires, David; Marques, Joana; Pombo, João Palma; Carmo, Nuno; Bettencourt, Paulo; Neyrolles, Olivier; Lugo-Villarino, Geanncarlo; Anes, Elsa

    2016-01-01

    Cathepsins are proteolytic enzymes that function in the endocytic pathway, especially in lysosomes, where they contribute directly to pathogen killing or indirectly, by their involvement in the antigen presentation pathways. Mycobacterium tuberculosis (MTB) is a facultative intracellular pathogen that survives inside the macrophage phagosomes by inhibiting their maturation to phagolysosomes and thus avoiding a low pH and protease-rich environment. We previously showed that mycobacterial inhibition of the proinflammatory transcription factor NF-κB results in impaired delivery of lysosomal enzymes to phagosomes and reduced pathogen killing. Here, we elucidate how MTB also controls cathepsins and their inhibitors, cystatins, at the level of gene expression and proteolytic activity. MTB induced a general down-regulation of cathepsin expression in infected cells, and inhibited IFNγ-mediated increase of cathepsin mRNA. We further show that a decrease in cathepsins B, S and L favours bacterial survival within human primary macrophages. A siRNA knockdown screen of a large set of cathepsins revealed that almost half of these enzymes have a role in pathogen killing, while only cathepsin F coincided with MTB resilience. Overall, we show that cathepsins are important for the control of MTB infection, and as a response, it manipulates their expression and activity to favour its intracellular survival. PMID:27572605

  18. Biosynthesis and Translocation of Unsulfated Acyltrehaloses in Mycobacterium tuberculosis*

    PubMed Central

    Belardinelli, Juan Manuel; Larrouy-Maumus, Gérald; Jones, Victoria; Sorio de Carvalho, Luiz Pedro; McNeil, Michael R.; Jackson, Mary

    2014-01-01

    A number of species-specific polymethyl-branched fatty acid-containing trehalose esters populate the outer membrane of Mycobacterium tuberculosis. Among them, 2,3-diacyltrehaloses (DAT) and penta-acyltrehaloses (PAT) not only play a structural role in the cell envelope but also contribute to the ability of M. tuberculosis to multiply and persist in the infected host, promoting the intracellular survival of the bacterium and modulating host immune responses. The nature of the machinery, topology, and sequential order of the reactions leading to the biosynthesis, assembly, and export of these complex glycolipids to the cell surface are the object of the present study. Our genetic and biochemical evidence corroborates a model wherein the biosynthesis and translocation of DAT and PAT to the periplasmic space are coupled and topologically split across the plasma membrane. The formation of DAT occurs on the cytosolic face of the plasma membrane through the action of PapA3, FadD21, and Pks3/4; that of PAT occurs on the periplasmic face via transesterification reactions between DAT substrates catalyzed by the acyltransferase Chp2 (Rv1184c). The integral membrane transporter MmpL10 is essential for DAT to reach the cell surface, and its presence in the membrane is required for Chp2 to be active. Disruption of mmpL10 or chp2 leads to an important build-up of DAT inside the cells and to the formation of a novel form of unsulfated acyltrehalose esterified with polymethyl-branched fatty acids normally found in sulfolipids that is translocated to the cell surface. PMID:25124040

  19. The efficacy of the heat killing of Mycobacterium tuberculosis

    PubMed Central

    Doig, C; Seagar, A L; Watt, B; Forbes, K J

    2002-01-01

    There is concern that current procedures for the heat inactivation of Mycobacterium tuberculosis may not be adequate. This raises serious safety issues for laboratory staff performing molecular investigations such as IS6110 restriction fragment length polymorphism typing. This paper confirms that the protocol of van Embden et al, as performed routinely in this laboratory, is safe and effective for the heat inactivation of M tuberculosis. This procedure involves complete immersion of a tube containing a suspension of one loopfull of growth in a water bath at 80°C for 20 minutes. Seventy four isolates were included in this investigation. Despite prolonged incubation for 20 weeks, none of the heat killed M tuberculosis suspensions produced visible colonies or gave a positive growth signal from liquid culture. This method did not affect the integrity of the DNA for subsequent molecular investigations. PMID:12354807

  20. Advances in Mycobacterium tuberculosis therapeutics discovery utlizing structural biology

    PubMed Central

    Chim, Nicholas; Owens, Cedric P.; Contreras, Heidi; Goulding, Celia W.

    2013-01-01

    In 2012, tuberculosis (TB) remains a global health threat and is exacerbated both by the emergence of drug resistant Mycobacterium tuberculosis strains and its synergy with HIV infection. The waning effectiveness of current treatment regimens necessitates the development of new or repurposed anti-TB therapeutics for improved combination therapies against the disease. Exploiting atomic resolution structural information of proteins in complex with their substrates and/or inhibitors can facilitate structure-based rational drug design. Since our last review in 2009, there has been a wealth of new M. tuberculosis protein structural information. Once again, we have compiled the most promising structures with regards to potential anti-TB drug development and present them in this updated review. PMID:23167715

  1. Mycobacterium tuberculosis infection in a HIV-positive patient.

    PubMed

    Montales, Maria Theresa; Beebe, Alexandria; Chaudhury, Arun; Patil, Naveen

    2015-01-01

    Mycobacterium tuberculosis (MTB) and human immunodeficiency virus (HIV) coinfection remains a global public health challenge. We report a 40 year old African American male who is a known HIV-positive patient, non-compliant with his antiretrovirals and developed pulmonary tuberculosis. His chief complaints were chronic cough, fever, night sweats and undocumented weight loss. He had a prior positive T-SPOT-TB test; however, chest radiograph and sputum smear examination revealed normal results. PCR-based GeneXPERT MTB/RIF assay was ordered and confirmed MTB infection. The sputum cultures grew MTB and sensitivities showed susceptibility to all primary anti-tuberculosis medications. A delay in diagnosis and initiation of MTB therapy, in the setting of HIV or AIDS, may result in rapid disease progression and worse clinical outcome. PMID:26744689

  2. Manipulation of the Mononuclear Phagocyte System by Mycobacterium tuberculosis

    PubMed Central

    Lugo-Villarino, Geanncarlo; Neyrolles, Olivier

    2014-01-01

    Over the past 20 years, there has been an emerging appreciation about the role of the mononuclear phagocyte system (MPS) to control and eradicate pathogens. Likewise, there have been significant advances in dissecting the mechanisms involved in the microbial subversion of MPS cells, mainly affecting their differentiation and effector functions. Mycobacterium tuberculosis is a chronic bacterial pathogen that represents an enigma to the field because of its remarkable ability to thrive in humans. One reason is that M. tuberculosis renders a defective MPS compartment, which is perhaps the most ingenious strategy for survival in the host given the prominence of these cells to modulate microenvironments, their function as sentinels and orchestrators of the immune response, and their pathogenic role as reservoirs for microbial persistence. In this article, the principal strategies used by M. tuberculosis to subvert the MPS compartment are presented along with emerging concepts. PMID:25147188

  3. The efficacy of the heat killing of Mycobacterium tuberculosis.

    PubMed

    Doig, C; Seagar, A L; Watt, B; Forbes, K J

    2002-10-01

    There is concern that current procedures for the heat inactivation of Mycobacterium tuberculosis may not be adequate. This raises serious safety issues for laboratory staff performing molecular investigations such as IS6110 restriction fragment length polymorphism typing. This paper confirms that the protocol of van Embden et al, as performed routinely in this laboratory, is safe and effective for the heat inactivation of M tuberculosis. This procedure involves complete immersion of a tube containing a suspension of one loopfull of growth in a water bath at 80 degrees C for 20 minutes. Seventy four isolates were included in this investigation. Despite prolonged incubation for 20 weeks, none of the heat killed M tuberculosis suspensions produced visible colonies or gave a positive growth signal from liquid culture. This method did not affect the integrity of the DNA for subsequent molecular investigations.

  4. A vitamin B12 transporter in Mycobacterium tuberculosis

    PubMed Central

    Gopinath, Krishnamoorthy; Venclovas, Česlovas; Ioerger, Thomas R.; Sacchettini, James C.; McKinney, John D.; Mizrahi, Valerie; Warner, Digby F.

    2013-01-01

    Vitamin B12-dependent enzymes function in core biochemical pathways in Mycobacterium tuberculosis, an obligate pathogen whose metabolism in vivo is poorly understood. Although M. tuberculosis can access vitamin B12 in vitro, it is uncertain whether the organism is able to scavenge B12 during host infection. This question is crucial to predictions of metabolic function, but its resolution is complicated by the absence in the M. tuberculosis genome of a direct homologue of BtuFCD, the only bacterial B12 transport system described to date. We applied genome-wide transposon mutagenesis to identify M. tuberculosis mutants defective in their ability to use exogenous B12. A small proportion of these mapped to Rv1314c, identifying the putative PduO-type ATP : co(I)rrinoid adenosyltransferase as essential for B12 assimilation. Most notably, however, insertions in Rv1819c dominated the mutant pool, revealing an unexpected function in B12 acquisition for an ATP-binding cassette (ABC)-type protein previously investigated as the mycobacterial BacA homologue. Moreover, targeted deletion of Rv1819c eliminated the ability of M. tuberculosis to transport B12 and related corrinoids in vitro. Our results establish an alternative to the canonical BtuCD-type system for B12 uptake in M. tuberculosis, and elucidate a role in B12 metabolism for an ABC protein implicated in chronic mycobacterial infection. PMID:23407640

  5. Genotype of a historic strain of Mycobacterium tuberculosis

    PubMed Central

    Bouwman, Abigail S.; Kennedy, Sandra L.; Müller, Romy; Stephens, Richard H.; Holst, Malin; Caffell, Anwen C.; Roberts, Charlotte A.; Brown, Terence A.

    2012-01-01

    The use of ancient DNA in paleopathological studies of tuberculosis has largely been restricted to confirmation of disease identifications made by skeletal analysis; few attempts at obtaining genotype data from archaeological samples have been made because of the need to perform different PCRs for each genetic locus being studied in an ancient DNA extract. We used a next generation sequencing approach involving hybridization capture directed at specific polymorphic regions of the Mycobacterium tuberculosis genome to identify a detailed genotype for a historic strain of M. tuberculosis from an individual buried in the 19th century St. George’s Crypt, Leeds, West Yorkshire, England. We obtained 664,500 sequencing by oligonucleotide ligation and detection (SOLiD) reads that mapped to the targeted regions of the M. tuberculosis genome; the coverage included 218 of 247 SNPs, 10 of 11 insertion/deletion regions, and the repeat elements IS1081 and IS6110. The accuracy of the SOLiD data was checked by conventional PCRs directed at 11 SNPs and two insertion/deletions. The data placed the historic strain of M. tuberculosis in a group that is uncommon today, but it is known to have been present in North America in the early 20th century. Our results show the use of hybridization capture followed by next generation sequencing as a means of obtaining detailed genotypes of ancient varieties of M. tuberculosis, potentially enabling meaningful comparisons between strains from different geographic locations and different periods in the past. PMID:23091009

  6. Mycobacterium tuberculosis infection within parotid gland Warthin tumor.

    PubMed

    Ozcan, Cengiz; Apa, Duygu Düşmez; Aslan, Gönül; Gülhan, Stk; Görür, Kemal

    2008-11-01

    Tuberculosis of the parotid gland is extremely unusual. Tuberculosis comprises 2.5% to 10% of parotid gland lesions. Two clinical forms of parotid gland tuberculosis infection exist. One is a diffuse parenchymatous disease (either primary or secondary to nodal disease), resembling common infection. The second is a chronic, slow-growing, painless, and firm parotid mass mimicking a neoplasm. Most of these patients were diagnosed after parotid gland surgery and histopathologic evaluation. Warthin tumor is a well-known benign neoplasm of the salivary glands. It is the second most common tumor of the parotid gland. Mycobacterium tuberculosis within Warthin tumor is also unusual. Five cases with parotid gland tuberculosis within Warthin tumor were reported in the literature. In this report, we present a new patient with parotid gland tuberculosis within the Warthin tumor. This type parotid gland pathology is an extremely rare entity, and to the best of our knowledge, this is the second documented case using polymerase chain reaction. We also discussed the possible mechanisms of development of infection within Warthin tumor.

  7. Differentiation of human mononuclear phagocytes increases their innate response to Mycobacterium tuberculosis infection.

    PubMed

    Castaño, Diana; García, Luis F; Rojas, Mauricio

    2014-05-01

    The heterogeneity of mononuclear phagocytes, partially explained by cell differentiation, influences the activation of innate responses. It has been reported that Mycobacterium tuberculosis inhibits monocyte differentiation into either dendritic cells or macrophages. To evaluate whether the activation of effector mechanisms against M. tuberculosis differ between less and more differentiated mononuclear phagocytes, we compared monocytes differentiated in vitro for 24 h (MON24) and 120 h (MDM120) infected with M. tuberculosis H37Rv, H37Ra and the clinical isolate UT127 at different multiplicity of infection. MDM120 phagocytosed more M. tuberculosis, inhibited mycobacterial growth and did not die in response to the infection, compared with MON24. In contrast, MON24 become Annexin V and Propidium iodide positive after 36 h of M. tuberculosis infection. Although, there were striking differences between MON24 and MDM120, there were also some differences in the response to the mycobacterial strains used. Finally, in MDM120 infected with M. tuberculosis H37Rv, a lower percentage of mycobacterial phagosomes accumulated transferrin and a higher percentage co-localized with cathelicidin than in MON24. These results demonstrate that innate responses induced by M. tuberculosis depends upon the stage of differentiation of mononuclear phagocytes and support that terminally differentiated cells are more efficient anti-mycobacterial effectors than the less differentiated ones.

  8. Role of Mycobacterium tuberculosis pknD in the Pathogenesis of central nervous system tuberculosis

    PubMed Central

    2012-01-01

    Background Central nervous system disease is the most serious form of tuberculosis, and is associated with high mortality and severe neurological sequelae. Though recent clinical reports suggest an association of distinct Mycobacterium tuberculosis strains with central nervous system disease, the microbial virulence factors required have not been described previously. Results We screened 398 unique M. tuberculosis mutants in guinea pigs to identify genes required for central nervous system tuberculosis. We found M. tuberculosis pknD (Rv0931c) to be required for central nervous system disease. These findings were central nervous system tissue-specific and were not observed in lung tissues. We demonstrated that pknD is required for invasion of brain endothelia (primary components of the blood-brain barrier protecting the central nervous system), but not macrophages, lung epithelia, or other endothelia. M. tuberculosis pknD encodes a "eukaryotic-like" serine-threonine protein kinase, with a predicted intracellular kinase and an extracellular (sensor) domain. Using confocal microscopy and flow cytometry we demonstrated that the M. tuberculosis PknD sensor is sufficient to trigger invasion of brain endothelia, a process which was neutralized by specific antiserum. Conclusions Our findings demonstrate a novel in vivo role for M. tuberculosis pknD and represent an important mechanism for bacterial invasion and virulence in central nervous system tuberculosis, a devastating and understudied disease primarily affecting young children. PMID:22243650

  9. Tuberculosis caused by RDRio Mycobacterium tuberculosis is not associated with differential clinical features

    PubMed Central

    Barbosa, C. de B.; Lazzarini, L. C. O.; Elias, A. R.; Leung, J. A. M.; Ribeiro, S. B.; da Silva, M. G.; Duarte, R. S.; Suffys, P.; Gomes, H. M.; Kritski, A. L.; Lapa e Silva, J. R.; Ho, J. L.; Boéchat, N.

    2013-01-01

    BACKGROUND We recently described the Mycobacterium tuberculosis RDRio genotype, a clonally derived sublineage within the Latin American–Mediterranean (LAM) family. Genetic diversity of M. tuberculosis likely affects the clinical aspects of tuberculosis (TB). Prospective studies that address this issue are scarce and remain controversial. OBJECTIVE To determine the association of differential clinical features of pulmonary TB with the RDRio M. tuberculosis etiology. METHODS Culture-proven pulmonary TB patients (n = 272) were clinically evaluated, including history, physical examination, chest X-ray and anti-human immunodeficiency virus serology. Isolates were classified as RDRio or non-RDRio M. tuberculosis by multiplex polymerase chain reaction and further spoligotyped. Clinical and M. tuberculosis genotype data were analyzed. RESULTS RDRio M. tuberculosis caused disease in 26.5% (72/270) of all TB cases. The LAM genotype, of which RDRio strains are members, was responsible for 46.0% of the TB cases. Demographic data, major signs and symptoms, radiographic presentation, microbiological features and clinical outcomes were not significantly different among patients with TB caused by RDRio and non-RDRio strains. CONCLUSIONS Disease caused by M. tuberculosis RDRio strains was not clinically distinctive or more severe than disease caused by non-RDRio strains in this series of TB patients. Larger prospective studies specifically designed to disclose differential clinical characteristics of TB caused by specific M. tuberculosis lineages are needed. PMID:22863208

  10. Structural Insights on the Mycobacterium tuberculosis Proteasomal ATPase Mpa

    SciTech Connect

    Wang, T.; Li, H; Lin, G; Tang, C; Li, D; Nathan, C; Heran Darwin, K

    2009-01-01

    Proteasome-mediated protein turnover in all domains of life is an energy-dependent process that requires ATPase activity. Mycobacterium tuberculosis (Mtb) was recently shown to possess a ubiquitin-like proteasome pathway that plays an essential role in Mtb resistance to killing by products of host macrophages. Here we report our structural and biochemical investigation of Mpa, the presumptive Mtb proteasomal ATPase. We demonstrate that Mpa binds to the Mtb proteasome in the presence of ATPS, providing the physical evidence that Mpa is the proteasomal ATPase. X-ray crystallographic determination of the conserved interdomain showed a five stranded double {beta} barrel structure containing a Greek key motif. Structure and mutational analysis indicate a major role of the interdomain for Mpa hexamerization. Our mutational and functional studies further suggest that the central channel in the Mpa hexamer is involved in protein substrate translocation and degradation. These studies provide insights into how a bacterial proteasomal ATPase interacts with and facilitates protein degradation by the proteasome.

  11. Insights into battles between Mycobacterium tuberculosis and macrophages.

    PubMed

    Xu, Guanghua; Wang, Jing; Gao, George Fu; Liu, Cui Hua

    2014-10-01

    As the first line of immune defense for Mycobacterium tuberculosis (Mtb), macrophages also provide a major habitat for Mtb to reside in the host for years. The battles between Mtb and macrophages have been constant since ancient times. Triggered upon Mtb infection, multiple cellular pathways in macrophages are activated to initiate a tailored immune response toward the invading pathogen and regulate the cellular fates of the host as well. Toll-like receptors (TLRs) expressed on macrophages can recognize pathogen-associated-molecular patterns (PAMPs) on Mtb and mediate the production of immune-regulatory cytokines such as tumor necrosis factor (TNF) and type I Interferons (IFNs). In addition, Vitamin D receptor (VDR) and Vitamin D-1-hydroxylase are up-regulated in Mtb-infected macrophages, by which Vitamin D participates in innate immune responses. The signaling pathways that involve TNF, type I IFNs and Vitamin D are inter-connected, which play critical roles in the regulation of necroptosis, apoptosis, and autophagy of the infected macrophages. This review article summarizes current knowledge about the interactions between Mtb and macrophages, focusing on cellular fates of the Mtb-infected macrophages and the regulatory molecules and cellular pathways involved in those processes.

  12. Different responses of human mononuclear phagocyte populations to Mycobacterium tuberculosis.

    PubMed

    Duque, Camilo; Arroyo, Leonar; Ortega, Héctor; Montúfar, Franco; Ortíz, Blanca; Rojas, Mauricio; Barrera, Luis F

    2014-03-01

    Mycobacterium tuberculosis (Mtb) infects different populations of macrophages. Alveolar macrophages (AMs) are initially infected, and their response may contribute to controlling Mtb infection and dissemination. However, Mtb infection may disseminate to other tissues, infecting a wide variety of macrophages. Given the difficulty in obtaining AMs, monocyte-derived macrophages (MDMs) are used to model macrophage-mycobacteria interactions in humans. However, the response of other tissue macrophages to Mtb infection has been poorly explored. We have compared MDMs, AMs and splenic human macrophages (SMs) for their in vitro capacity to control Mtb growth, cytokine production, and induction of cell death in response to Mtb H37Rv, and the Colombian isolate UT205, and to the virulence factor ESAT-6. Significant differences in the magnitude of cell death and cytokine production depending mainly on the Mtb strain were observed; however, no major differences in the mycobacteriostatic/mycobacteriocidal activity were detected among the macrophage populations. Infection with the clinical isolate UT205 was associated with an increased cell death with membrane damage, particularly in IFNγ-treated SMs and H37Rv induced a higher production of cytokines compared to UT205. These results are concordant with the interpretation of a differential response to Mtb infection mainly depending upon the strain of Mtb.

  13. Multiplex-PCR for differentiation of Mycobacterium bovis from Mycobacterium tuberculosis complex.

    PubMed

    Spositto, F L E; Campanerut, P A Z; Ghiraldi, L D; Leite, C Q F; Hirata, M H; Hirata, R D C; Siqueira, V L D; Cardoso, R Fressatti

    2014-01-01

    We evaluated a multiplex-PCR to differentiate Mycobacterium bovis from M. tuberculosis Complex (MTC) by one step amplification based on simultaneous detection of pncA 169 C > G change in M. bovis and the IS6110 present in MTC species. Our findings showed the proposed multiplex-PCR is a very useful tool for complementation in differentiating M. bovis from other cultured MTC species.

  14. Mycobacterium tuberculosis Beijing genotype, northern Malawi.

    PubMed

    Glynn, Judith R; Crampin, Amelia C; Traore, Hamidou; Yates, Malcolm D; Mwaungulu, Frank D; Ngwira, Bagrey M; Chaguluka, Steven D; Mwafulirwa, Donex T; Floyd, Sian; Murphy, Caroline; Drobniewski, Francis A; Fine, Paul E M

    2005-01-01

    In a 7-year population-based study in Malawi, we showed that Beijing genotype tuberculosis (TB) increased as a proportion of TB cases. All the Beijing genotype strains were fully drug sensitive. Contact histories, TB type, and case-fatality rates were similar for Beijing and non-Beijing genotype TB.

  15. Synthesis and Biological Evaluation of New Hydrazone Derivatives of Quinoline and Their Cu(II) and Zn(II) Complexes against Mycobacterium tuberculosis

    PubMed Central

    Mandewale, Mustapha C.; Thorat, Bapu; Shelke, Dnyaneshwar; Yamgar, Ramesh

    2015-01-01

    A new series of quinoline hydrazone derivatives and their metal complexes have been synthesized and their biological properties have been evaluated against Mycobacterium tuberculosis (H37 RV strain). Most of the newly synthesized compounds displayed 100% inhibitory activity at a concentration of 6.25–25 μg/mL, against Mycobacterium tuberculosis. Fluorescence properties of all the synthesized compounds have been studied. PMID:26759537

  16. CsoR Is Essential for Maintaining Copper Homeostasis in Mycobacterium tuberculosis.

    PubMed

    Marcus, Sarah A; Sidiropoulos, Sarah W; Steinberg, Howard; Talaat, Adel M

    2016-01-01

    Mycobacterium tuberculosis, a pathogen infecting one third of the world population, faces numerous challenges within the host, including high levels of copper. We have previously shown that M. tuberculosis CsoR is a copper inducible transcriptional regulator. Here we examined the hypothesis that csoR is necessary for maintaining copper homeostasis and surviving under various stress conditions. With an unmarked csoR knockout strain, we were able to characterize the role of csoR in M. tuberculosis as it faced copper and host stress. Growth under high levels of copper demonstrated that M. tuberculosis survives copper stress significantly better in the absence of csoR. Yet under minimal levels of copper, differential expression analysis revealed that the loss of csoR results in a cell wide hypoxia-type stress response with the induction of the DosR regulon. Despite the stress placed on M. tuberculosis by the loss of csoR, survival of the knockout strain was increased compared to wild type during the early chronic stages of mouse infection, suggesting that csoR could play an active role in modulating M. tuberculosis fitness within the host. Overall, analysis of CsoR provided an increased understanding of the M. tuberculosis copper response with implications for other intracellular pathogens harboring CsoR.

  17. CsoR Is Essential for Maintaining Copper Homeostasis in Mycobacterium tuberculosis.

    PubMed

    Marcus, Sarah A; Sidiropoulos, Sarah W; Steinberg, Howard; Talaat, Adel M

    2016-01-01

    Mycobacterium tuberculosis, a pathogen infecting one third of the world population, faces numerous challenges within the host, including high levels of copper. We have previously shown that M. tuberculosis CsoR is a copper inducible transcriptional regulator. Here we examined the hypothesis that csoR is necessary for maintaining copper homeostasis and surviving under various stress conditions. With an unmarked csoR knockout strain, we were able to characterize the role of csoR in M. tuberculosis as it faced copper and host stress. Growth under high levels of copper demonstrated that M. tuberculosis survives copper stress significantly better in the absence of csoR. Yet under minimal levels of copper, differential expression analysis revealed that the loss of csoR results in a cell wide hypoxia-type stress response with the induction of the DosR regulon. Despite the stress placed on M. tuberculosis by the loss of csoR, survival of the knockout strain was increased compared to wild type during the early chronic stages of mouse infection, suggesting that csoR could play an active role in modulating M. tuberculosis fitness within the host. Overall, analysis of CsoR provided an increased understanding of the M. tuberculosis copper response with implications for other intracellular pathogens harboring CsoR. PMID:26999439

  18. CsoR Is Essential for Maintaining Copper Homeostasis in Mycobacterium tuberculosis

    PubMed Central

    Marcus, Sarah A.; Sidiropoulos, Sarah W.; Steinberg, Howard; Talaat, Adel M.

    2016-01-01

    Mycobacterium tuberculosis, a pathogen infecting one third of the world population, faces numerous challenges within the host, including high levels of copper. We have previously shown that M. tuberculosis CsoR is a copper inducible transcriptional regulator. Here we examined the hypothesis that csoR is necessary for maintaining copper homeostasis and surviving under various stress conditions. With an unmarked csoR knockout strain, we were able to characterize the role of csoR in M. tuberculosis as it faced copper and host stress. Growth under high levels of copper demonstrated that M. tuberculosis survives copper stress significantly better in the absence of csoR. Yet under minimal levels of copper, differential expression analysis revealed that the loss of csoR results in a cell wide hypoxia-type stress response with the induction of the DosR regulon. Despite the stress placed on M. tuberculosis by the loss of csoR, survival of the knockout strain was increased compared to wild type during the early chronic stages of mouse infection, suggesting that csoR could play an active role in modulating M. tuberculosis fitness within the host. Overall, analysis of CsoR provided an increased understanding of the M. tuberculosis copper response with implications for other intracellular pathogens harboring CsoR. PMID:26999439

  19. Evidences for anti-mycobacterium activities of lipids and surfactants.

    PubMed

    Hussain, Afzal; Singh, Sandeep Kumar

    2016-01-01

    Tuberculosis is the most widespread and deadly airborne disease caused by Mycobacterium tuberculosis. The two-pronged lethal effect on the bacteria using lipids/surfactants and anti-tubercular drugs may render the miniaturization of dose owing to synergistic and tandem effect of both. The current research has been focused on screening and evaluating various lipids/surfactants possessing inherent anti-mycobacterium activity that can ferry the anti-tubercular drugs. In vitro anti-mycobacterium activity was evaluated using agar well diffusion method. Furthermore, time-concentration dependent killing and DNA/RNA content release studies were performed to correlate the findings. The exact mechanism of bacterial killing was further elucidated by electron/atomic force microscopy studies. Finally, to negate any toxicity, in vitro hemolysis and toxicity studies were performed. The study revealed that capmul MCM C-8, labrasol and acconon C-80 possessed highest in vitro anti-mycobacterium activity. Electron/atomic force microscopy results confirmed in vitro studies and verified the killing of Mycobacterium owing to the release of cytoplasmic content after cell wall fragmentation and disruption. Moreover, the least hemolysis and hundred percent survivals rate of mice using the excipients demonstrated the safety aspects of explored excipients that can ferry the anti-tubercular drugs. The present study concluded the safe, efficient and synergistic activity of the explored excipients and anti-tubercular drugs in controlling the menace of tuberculosis.

  20. Gene Transfer in Mycobacterium tuberculosis: Shuttle Phasmids to Enlightenment.

    PubMed

    Jacobs, William R

    2014-04-01

    Infectious diseases have plagued humankind throughout history and have posed serious public health problems. Yet vaccines have eradicated smallpox and antibiotics have drastically decreased the mortality rate of many infectious agents. These remarkable successes in the control of infections came from knowing the causative agents of the diseases, followed by serendipitous discoveries of attenuated viruses and antibiotics. The discovery of DNA as genetic material and the understanding of how this information translates into specific phenotypes have changed the paradigm for developing new vaccines, drugs, and diagnostic tests. Knowledge of the mechanisms of immunity and mechanisms of action of drugs has led to new vaccines and new antimicrobial agents. The key to the acquisition of the knowledge of these mechanisms has been identifying the elemental causes (i.e., genes and their products) that mediate immunity and drug resistance. The identification of these genes is made possible by being able to transfer the genes or mutated forms of the genes into causative agents or surrogate hosts. Such an approach was limited in Mycobacterium tuberculosis by the difficulty of transferring genes or alleles into M. tuberculosis or a suitable surrogate mycobacterial host. The construction of shuttle phasmids-chimeric molecules that replicate in Escherichia coli as plasmids and in mycobacteria as mycobacteriophages-was instrumental in developing gene transfer systems for M. tuberculosis. This review will discuss M. tuberculosis genetic systems and their impact on tuberculosis research.

  1. Mycobacterium tuberculosis Pathogenesis and Molecular Determinants of Virulence

    PubMed Central

    Smith, Issar

    2003-01-01

    Tuberculosis (TB), one of the oldest known human diseases. is still is one of the major causes of mortality, since two million people die each year from this malady. TB has many manifestations, affecting bone, the central nervous system, and many other organ systems, but it is primarily a pulmonary disease that is initiated by the deposition of Mycobacterium tuberculosis, contained in aerosol droplets, onto lung alveolar surfaces. From this point, the progression of the disease can have several outcomes, determined largely by the response of the host immune system. The efficacy of this response is affected by intrinsic factors such as the genetics of the immune system as well as extrinsic factors, e.g., insults to the immune system and the nutritional and physiological state of the host. In addition, the pathogen may play a role in disease progression since some M. tuberculosis strains are reportedly more virulent than others, as defined by increased transmissibility as well as being associated with higher morbidity and mortality in infected individuals. Despite the widespread use of an attenuated live vaccine and several antibiotics, there is more TB than ever before, requiring new vaccines and drugs and more specific and rapid diagnostics. Researchers are utilizing information obtained from the complete sequence of the M. tuberculosis genome and from new genetic and physiological methods to identify targets in M. tuberculosis that will aid in the development of these sorely needed antitubercular agents. PMID:12857778

  2. The progress made in determining the Mycobacterium tuberculosis structural proteome

    PubMed Central

    Hecker, Michael

    2011-01-01

    Mycobacterium tuberculosis is a highly infectious pathogen that is still responsible for millions of deaths annually. Effectively treating this disease typically requires a course of antibiotics, most of which were developed decades ago. These drugs are, however, not effective against persistent tubercle bacilli and the emergence of drug-resistant stains threatens to make many of them obsolete. The identification of new drug targets, allowing the development of new potential drugs, is therefore imperative. Both proteomics and structural biology have important roles to play in this process, the former as a means of identifying promising drug targets and the latter allowing understanding of protein function and protein–drug interactions at atomic resolution. The determination of M. tuberculosis protein structures has been a goal of the scientific community for the last decade, who have aimed to supply a large amount of structural data that can be used in structure-based approaches for drug discovery and design. Only since the genome sequence of M. tuberculosis has been available has the determination of large numbers of tuberculosis protein structures been possible. Currently, the molecular structures of 8.5% of all the pathogen's protein-encoding ORFs have been determined. In this review, we look at the progress made in determining the M. tuberculosis structural proteome and the impact this has had on the development of potential new drugs, as well as the discovery of the function of crucial mycobaterial proteins. PMID:21674801

  3. Gene Transfer in Mycobacterium tuberculosis: Shuttle Phasmids to Enlightenment

    PubMed Central

    JACOBS, WILLIAM R.

    2016-01-01

    Infectious diseases have plagued humankind throughout history and have posed serious public health problems. Yet vaccines have eradicated smallpox and antibiotics have drastically decreased the mortality rate of many infectious agents. These remarkable successes in the control of infections came from knowing the causative agents of the diseases, followed by serendipitous discoveries of attenuated viruses and antibiotics. The discovery of DNA as genetic material and the understanding of how this information translates into specific phenotypes have changed the paradigm for developing new vaccines, drugs, and diagnostic tests. Knowledge of the mechanisms of immunity and mechanisms of action of drugs has led to new vaccines and new antimicrobial agents. The key to the acquisition of the knowledge of these mechanisms has been identifying the elemental causes (i.e., genes and their products) that mediate immunity and drug resistance. The identification of these genes is made possible by being able to transfer the genes or mutated forms of the genes into causative agents or surrogate hosts. Such an approach was limited in Mycobacterium tuberculosis by the difficulty of transferring genes or alleles into M. tuberculosis or a suitable surrogate mycobacterial host. The construction of shuttle phasmids—chimeric molecules that replicate in Escherichia coli as plasmids and in mycobacteria as mycobacteriophages—was instrumental in developing gene transfer systems for M. tuberculosis. This review will discuss M. tuberculosis genetic systems and their impact on tuberculosis research. “I had to know my enemy in order to prevail against him.”Nelson Mandela PMID:26105819

  4. How B cells Shape the Immune Response against Mycobacterium tuberculosis

    PubMed Central

    Maglione, Paul J.; Chan, John

    2009-01-01

    Extensive work illustrating the importance of cellular immune mechanisms for protection against Mycobacterium tuberculosis has largely relegated B cell biology to an afterthought within the tuberculosis (TB) field. However, recent studies have illustrated that B lymphocytes, through a variety of interactions with the cellular immune response, play previously underappreciated roles in shaping host defense against nonviral intracellular pathogens, including M. tuberculosis. Work in our laboratory has recently shown that, by considering these lymphocytes more broadly within their variety of interactions with cellular immunity, B cells have a significant impact on the outcome of airborne challenge with M. tuberculosis as well as the resultant inflammatory response. In this review, we advocate for a revised view of TB immunology in which roles of cellular and humoral immunity are not mutually exclusive. In the context of our current understanding of host defense against nonviral intracellular infections, we review recent data supporting a more significant role of B cells during M. tuberculosis infection than previously thought. PMID:19283721

  5. TIM3 Mediates T Cell Exhaustion during Mycobacterium tuberculosis Infection.

    PubMed

    Jayaraman, Pushpa; Jacques, Miye K; Zhu, Chen; Steblenko, Katherine M; Stowell, Britni L; Madi, Asaf; Anderson, Ana C; Kuchroo, Vijay K; Behar, Samuel M

    2016-03-01

    While T cell immunity initially limits Mycobacterium tuberculosis infection, why T cell immunity fails to sterilize the infection and allows recrudescence is not clear. One hypothesis is that T cell exhaustion impairs immunity and is detrimental to the outcome of M. tuberculosis infection. Here we provide functional evidence for the development T cell exhaustion during chronic TB. Second, we evaluate the role of the inhibitory receptor T cell immunoglobulin and mucin domain-containing-3 (TIM3) during chronic M. tuberculosis infection. We find that TIM3 expressing T cells accumulate during chronic infection, co-express other inhibitory receptors including PD1, produce less IL-2 and TNF but more IL-10, and are functionally exhausted. Finally, we show that TIM3 blockade restores T cell function and improves bacterial control, particularly in chronically infected susceptible mice. These data show that T cell immunity is suboptimal during chronic M. tuberculosis infection due to T cell exhaustion. Moreover, in chronically infected mice, treatment with anti-TIM3 mAb is an effective therapeutic strategy against tuberculosis.

  6. Blood agar and Mycobacterium tuberculosis: the end of a dogma.

    PubMed

    Drancourt, M; Carrieri, P; Gévaudan, M-J; Raoult, D

    2003-04-01

    Incidental blood agar-based recovery of Mycobacterium tuberculosis led us to further investigate this routine medium for primary isolation and culture of M. tuberculosis. Fifteen respiratory tract and eight lymph node Ziehl-Neelsen-positive specimens were inoculated in parallel into tubes containing egg-based medium and 5% sheep blood agar. Colonies appeared sooner on this medium than on the egg-based medium, but this difference was not significant (P = 0.11, analysis of variance [ANOVA] test). Further experiments compared the growth of 38 respiratory and lymph node M. tuberculosis isolates when subcultured on the two media. After 6 days of incubation, 21 of 38 isolates had grown on blood agar, and the mean number of colonies was significantly greater on blood agar than on the egg-based medium (P < 0 0.001, ANOVA test). These results demonstrate that M. tuberculosis grows easily on blood agar within 1to 2 weeks, indicating that this basic medium is suitable for laboratory diagnosis of tuberculosis in addition to other media. Laboratories that routinely use prolonged incubations of blood plates, for example, for the recovery of Bartonella species, should consider the potential safety implications of encountering this highly infectious pathogen.

  7. Resistance to cellular autophagy by Mycobacterium tuberculosis Beijing strains.

    PubMed

    Haque, Md Fazlul; Boonhok, Rachasak; Prammananan, Therdsak; Chaiprasert, Angkana; Utaisincharoen, Pongsak; Sattabongkot, Jetsumon; Palittapongarnpim, Prasit; Ponpuak, Marisa

    2015-10-01

    Autophagy represents a key pathway in innate immune defense to restrict Mycobacterium tuberculosis growth inside host macrophages. Induction of autophagy has been shown to promote mycobacterial phagosome acidification and acquisition of lysosomal hydrolases, resulting in the elimination of intracellular M. tuberculosis reference strains such as H37Rv. The notorious Beijing genotype has been previously shown to be hyper-virulent and associated with increased survival in host cells and a high mortality rate in animal models, but the underlying mechanism that renders this family to have such advantages remains unclear. We hypothesize that autophagic control against M. tuberculosis Beijing strains may be altered. Here, we discovered that the Beijing strains can resist autophagic killing by host cells compared with that of the reference strain H37Rv and a strain belonging to the East African Indian genotype. Moreover, we have determined a possible underlying mechanism and found that the greater ability to evade autophagic elimination possessed by the Beijing strains stems from their higher capacity to inhibit autophagolysosome biogenesis upon autophagy induction. In summary, a previously unrecognized ability of the M. tuberculosis Beijing strains to evade host autophagy was identified, which may have important implications for tuberculosis treatment, especially in regions prevalent by the Beijing genotype. PMID:26160686

  8. Allelic exchange in Mycobacterium tuberculosis with long linear recombination substrates.

    PubMed Central

    Balasubramanian, V; Pavelka, M S; Bardarov, S S; Martin, J; Weisbrod, T R; McAdam, R A; Bloom, B R; Jacobs, W R

    1996-01-01

    Genetic studies of Mycobacterium tuberculosis have been greatly hampered by the inability to introduce specific chromosomal mutations. Whereas the ability to perform allelic exchanges has provided a useful method of gene disruption in other organisms, in the clinically important species of mycobacteria, such as M. tuberculosis and Mycobacterium bovis, similar approaches have thus far been unsuccessful. In this communication, we report the development of a shuttle mutagenesis strategy that involves the use of long linear recombination substrates to reproducibly obtain recombinants by allelic exchange in M. tuberculosis. Long linear recombination substrates, approximately 40 to 50 kb in length, were generated by constructing libraries in the excisable cosmid vector pYUB328. The cosmid vector could be readily excised from the recombinant cosmids by digestion with PacI, a restriction endonuclease for which there exist few, if any, sites in mycobacterial genomes. A cosmid containing the mycobacterial leuD gene was isolated, and a selectable marker conferring resistance to kanamycin was inserted into the leuD gene in the recombinant cosmid by interplasmid recombination in Escherichia coli. A long linear recombination substrate containing the insertionally mutated leuD gene was generated by PacI digestion. Electroporation of this recombination substrate containing the insertionally mutated leuD allele resulted in the generation of leucine auxotrophic mutants by homologous recombination in 6% of the kanamycin-resistant transformants for both the Erdman and H37Rv strains of M. tuberculosis. The ability to perform allelic exchanges provides an important approach for investigating the biology of this pathogen as well as developing new live-cell M. tuberculosis-based vaccines. PMID:8550428

  9. Dielectrophoretic characterization of antibiotic-treated Mycobacterium tuberculosis complex cells.

    PubMed

    Inoue, Shinnosuke; Lee, Hyun-Boo; Becker, Annie L; Weigel, Kris M; Kim, Jong-Hoon; Lee, Kyong-Hoon; Cangelosi, Gerard A; Chung, Jae-Hyun

    2015-10-01

    Multi-drug resistant tuberculosis (MDR-TB) has become a serious concern for proper treatment of patients. As a phenotypic method, dielectrophoresis can be useful but is yet to be attempted to evaluate Mycobacterium tuberculosis complex cells. This paper investigates the dielectrophoretic behavior of Mycobacterium bovis (Bacillus Calmette-Guérin, BCG) cells that are treated with heat or antibiotics rifampin (RIF) or isoniazid (INH). The experimental parameters are designed on the basis of our sensitivity analysis. The medium conductivity (σ(m)) and the frequency (f) for a crossover frequency (f(xo1)) test are decided to detect the change of σ(m)-f(xo1) in conjunction with the drug mechanism. Statistical modeling is conducted to estimate the distributions of viable and nonviable cells from the discrete measurement of f (xo1). Finally, the parameters of the electrophysiology of BCG cells, C(envelope) and σ(cyto), are extracted through a sampling algorithm. This is the first evaluation of the dielectrophoresis (DEP) approach as a means to assess the effects of antimicrobial drugs on M. tuberculosis complex cells.

  10. Mycobacterium tuberculosis infection in women with unexplained infertility

    PubMed Central

    Eftekhar, Maryam; Pourmasumi, Soheila; Sabeti, Parvin; Aflatoonian, Abbas; Sheikhha, Mohammad Hasan

    2015-01-01

    Background: Genital tuberculosis (GTB) is an important cause of female infertility, especially in developing countries. The positive results of polymerase chain reaction (PCR) in endometrial GTB in the absence of tubal damage raise the possibility of the detection of sub-clinical or latent disease, with doubtful benefits of treatment. Objective: To evaluate the mycobacterium tuberculosis infection in endometrial biopsy samples collected from unexplained infertile women attending Yazd Research and Clinical Center for Infertility by using PCR techniques. Materials and Methods: In this cross sectional study, 144 infertile women with unexplained infertility aged 20-35 years old and normal Histro-saplango graphy findings were enrolled. Endometrial biopsy samples from each participant were tested for mycobacterium tuberculosis detecting by PCR. In 93 patients, peritoneal fluid was also taken for culture and PCR. Results: The PCR results of endometrial specimens were negative in all cases, demonstrating that there was no GTB infection among our patients. Conclusion: Our results showed that GTB could not be considered as a major problem in women with unexplained infertility. Although, studies have indicated that PCR is a useful method in diagnosing early GTB disease in infertile women with no demonstrable evidence of tubal or endometrial involvement. PMID:27141534

  11. Molecular cloning, purification, and serological characterization of MPT63, a novel antigen secreted by Mycobacterium tuberculosis.

    PubMed Central

    Manca, C; Lyashchenko, K; Wiker, H G; Usai, D; Colangeli, R; Gennaro, M L

    1997-01-01

    Proteins that are actively secreted by Mycobacterium tuberculosis generate immune responses in the infected host. This has prompted the characterization of protein components of mycobacterial culture filtrates to develop subunit vaccines and immunodiagnostic reagents. Fractionation of filtrates of M. tuberculosis cultures has yielded an abundant protein called MPT63, which has an apparent molecular mass of 18 kDa. We report the molecular cloning and nucleotide sequence of the mpt63 gene, purification of recombinant MPT63 antigen from Escherichia coli cells, and serological characterization of MPT63. Nucleotide sequence analysis of mpt63 identified an open reading frame encoding a protein of 159 amino acids (aa) consisting of a 29-aa secretion signal peptide and a 130-aa mature MPT63 protein. Recombinant MPT63 protein, purified from E. coli cells, and native MPT63, purified from M. tuberculosis culture filtrates, were indistinguishable in serological assays. Thus, the recombinant protein constitutes a valuable reagent for immunological studies. MPT63 evoked humoral immune responses in guinea pigs infected with virulent M. tuberculosis by the aerosol route. The mpt63 gene is found only in species of the M. tuberculosis complex, as shown by DNA hybridization experiments. Moreover, polyclonal antibody against MPT63 does not cross-react with proteins of a common environmental mycobacterial species, Mycobacterium avium. The absence of cross-reactive epitopes makes MPT63 an attractive candidate as an M. tuberculosis complex-specific diagnostic reagent. In particular, evaluation of MPT63 as an M. tuberculosis complex-specific reagent for diagnostic skin testing is under way. PMID:8975887

  12. Overview and phylogeny of Mycobacterium tuberculosis complex organisms: implications for diagnostics and legislation of bovine tuberculosis.

    PubMed

    Rodriguez-Campos, Sabrina; Smith, Noel H; Boniotti, Maria B; Aranaz, Alicia

    2014-10-01

    Members of the Mycobacterium tuberculosis complex (MTBC) cause a serious disease with similar pathology, tuberculosis; in this review, bovine tuberculosis will be considered as disease caused by any member of the MTBC in bovids. Bovine tuberculosis is responsible for significant economic loss due to costly eradication programs and trade limitations and poses a threat to both endangered and protected species as well as to public health. We here give an overview on all members of the MTBC, focusing on their isolation from different animal hosts. We also review the recent advances made in elucidating the evolutionary and phylogenetic relationships of members of the MTBC. Because the nomenclature of the MTBC is controversial, its members have been considered species, subspecies or ecotypes, this review discusses the possible implications for diagnostics and the legal consequences of naming of new species.

  13. Catalysis and Inhibition of Mycobacterium tuberculosis Methionine Aminopeptidase

    SciTech Connect

    Lu, Jing-Ping; Chai, Sergio C.; Ye, Qi-Zhuang

    2010-09-07

    Methionine aminopeptidase (MetAP) carries out an important cotranslational N-terminal methionine excision of nascent proteins and represents a potential target to develop antibacterial and antitubercular drugs. We cloned one of the two MetAPs in Mycobacterium tuberculosis (MtMetAP1c from the mapB gene) and purified it to homogeneity as an apoenzyme. Its activity required a divalent metal ion, and Co(II), Ni(II), Mn(II), and Fe(II) were among activators of the enzyme. Co(II) and Fe(II) had the tightest binding, while Ni(II) was the most efficient cofactor for the catalysis. MtMetAP1c was also functional in E. coli cells because a plasmid-expressed MtMetAP1c complemented the essential function of MetAP in E. coli and supported the cell growth. A set of potent MtMetAP1c inhibitors were identified, and they showed high selectivity toward the Fe(II)-form, the Mn(II)-form, or the Co(II) and Ni(II) forms of the enzyme, respectively. These metalloform selective inhibitors were used to assign the metalloform of the cellular MtMetAP1c. The fact that only the Fe(II)-form selective inhibitors inhibited the cellular MtMetAP1c activity and inhibited the MtMetAP1c-complemented cell growth suggests that Fe(II) is the native metal used by MtMetAP1c in an E. coli cellular environment. Finally, X-ray structures of MtMetAP1c in complex with three metalloform-selective inhibitors were analyzed, which showed different binding modes and different interactions with metal ions and active site residues.

  14. Tuberculosis Caused by Mycobacterium bovis in a Capybara (Hydrochoerus hydrochaeris).

    PubMed

    Mol, J P S; Carvalho, T F; Fonseca, A A; Sales, E B; Issa, M A; Rezende, L C; Hodon, M A; Tinoco, H P; Malta, M C C; Pessanha, A T; Pierezan, F; Mota, P M P C; Paixão, T A; Santos, R L

    2016-01-01

    Tuberculosis, associated with Mycobacterium bovis, was diagnosed post mortem in an adult female capybara (Hydrochoerus hydrochaeris), kept at the Pampulha Ecological Park, Belo Horizonte, Brazil, in a large metropolitan area. On post-mortem examination, there were numerous firm white nodules scattered throughout all lobes of both lungs. Tissue samples were collected for histological and microbiological examination. Microscopically, the pulmonary nodules were multifocal to coalescing granulomas and intralesional acid-fast bacilli were evident in Ziehl-Neelsen-stained sections of the lung and spleen. Colonies with morphological features of Mycobacterium spp. were isolated from lung samples and conventional polymerase chain reaction (PCR) with genomic DNA from the isolates was positive for M. bovis; sequencing indicated 100% identity with the region of difference 4 (RD4) of M. bovis. In addition, M. bovis DNA was detected in the lung by quantitative PCR. The finding of M. bovis in a capybara indicates a potential public health risk in a zoological collection.

  15. Tuberculosis Caused by Mycobacterium bovis in a Capybara (Hydrochoerus hydrochaeris).

    PubMed

    Mol, J P S; Carvalho, T F; Fonseca, A A; Sales, E B; Issa, M A; Rezende, L C; Hodon, M A; Tinoco, H P; Malta, M C C; Pessanha, A T; Pierezan, F; Mota, P M P C; Paixão, T A; Santos, R L

    2016-01-01

    Tuberculosis, associated with Mycobacterium bovis, was diagnosed post mortem in an adult female capybara (Hydrochoerus hydrochaeris), kept at the Pampulha Ecological Park, Belo Horizonte, Brazil, in a large metropolitan area. On post-mortem examination, there were numerous firm white nodules scattered throughout all lobes of both lungs. Tissue samples were collected for histological and microbiological examination. Microscopically, the pulmonary nodules were multifocal to coalescing granulomas and intralesional acid-fast bacilli were evident in Ziehl-Neelsen-stained sections of the lung and spleen. Colonies with morphological features of Mycobacterium spp. were isolated from lung samples and conventional polymerase chain reaction (PCR) with genomic DNA from the isolates was positive for M. bovis; sequencing indicated 100% identity with the region of difference 4 (RD4) of M. bovis. In addition, M. bovis DNA was detected in the lung by quantitative PCR. The finding of M. bovis in a capybara indicates a potential public health risk in a zoological collection. PMID:27363904

  16. Attenuated Mycobacterium tuberculosis SO2 vaccine candidate is unable to induce cell death.

    PubMed

    Aporta, Adriana; Arbues, Ainhoa; Aguilo, Juan I; Monzon, Marta; Badiola, Juan J; de Martino, Alba; Ferrer, Nadia; Marinova, Dessislava; Anel, Alberto; Martin, Carlos; Pardo, Julian

    2012-01-01

    It has been proposed that Mycobacterium tuberculosis virulent strains inhibit apoptosis and trigger cell death by necrosis of host macrophages to evade innate immunity, while non-virulent strains induce typical apoptosis activating a protective host response. As part of the characterization of a novel tuberculosis vaccine candidate, the M. tuberculosis phoP mutant SO2, we sought to evaluate its potential to induce host cell death. The parental M. tuberculosis MT103 strain and the current vaccine against tuberculosis Bacillus Calmette-Guérin (BCG) were used as comparators in mouse models in vitro and in vivo. Our data reveal that attenuated SO2 was unable to induce apoptotic events neither in mouse macrophages in vitro nor during lung infection in vivo. In contrast, virulent MT103 triggers typical apoptotic events with phosphatidylserine exposure, caspase-3 activation and nuclear condensation and fragmentation. BCG strain behaved like SO2 and did not induce apoptosis. A clonogenic survival assay confirmed that viability of BCG- or SO2-infected macrophages was unaffected. Our results discard apoptosis as the protective mechanism induced by SO2 vaccine and provide evidence for positive correlation between classical apoptosis induction and virulent strains, suggesting apoptosis as a possible virulence determinant during M. tuberculosis infection. PMID:23028853

  17. Attenuated Mycobacterium tuberculosis SO2 Vaccine Candidate Is Unable to Induce Cell Death

    PubMed Central

    Monzon, Marta; Badiola, Juan J.; de Martino, Alba; Ferrer, Nadia; Marinova, Dessislava; Anel, Alberto; Martin, Carlos; Pardo, Julian

    2012-01-01

    It has been proposed that Mycobacterium tuberculosis virulent strains inhibit apoptosis and trigger cell death by necrosis of host macrophages to evade innate immunity, while non-virulent strains induce typical apoptosis activating a protective host response. As part of the characterization of a novel tuberculosis vaccine candidate, the M. tuberculosis phoP mutant SO2, we sought to evaluate its potential to induce host cell death. The parental M. tuberculosis MT103 strain and the current vaccine against tuberculosis Bacillus Calmette-Guérin (BCG) were used as comparators in mouse models in vitro and in vivo. Our data reveal that attenuated SO2 was unable to induce apoptotic events neither in mouse macrophages in vitro nor during lung infection in vivo. In contrast, virulent MT103 triggers typical apoptotic events with phosphatidylserine exposure, caspase-3 activation and nuclear condensation and fragmentation. BCG strain behaved like SO2 and did not induce apoptosis. A clonogenic survival assay confirmed that viability of BCG- or SO2-infected macrophages was unaffected. Our results discard apoptosis as the protective mechanism induced by SO2 vaccine and provide evidence for positive correlation between classical apoptosis induction and virulent strains, suggesting apoptosis as a possible virulence determinant during M. tuberculosis infection. PMID:23028853

  18. Mycobacterium tuberculosis DosR is Required for Activity of the PmbtB and PmbtI Promoters under Hypoxia

    PubMed Central

    Schreuder, Lise J.; Parish, Tanya

    2014-01-01

    Mycobacterium tuberculosis has the ability to survive for extended periods of time under conditions of low oxygen, low pH, low iron and low nutrients. The mycobactins (M. tuberculosis siderophores) play a key role in scavenging iron from the environment and are induced in response to low iron in an IdeR-regulated manner. We demonstrate that the promoters of two mycobactin gene (mbt) operons are also expressed during adaptation to low oxygen, and that this expression is dependent on the DosR regulator. Up-regulation of mbt operons induced by low iron was not DosR-dependent. DosR is a member of a two component regulatory system which responds to oxygen availability. Deletion of the DosR regulator led to increased expression of bacterioferritin and increased capacity to grow under iron depletion. These data provide a link between the mycobacterial response to two conditions likely to be encountered in vivo, low iron and low oxygen. PMID:25211224

  19. Detection of Mycobacterium tuberculosis in latently infected lungs by immunohistochemistry and confocal microscopy

    PubMed Central

    Eugenin, Eliseo; Kaplan, Gilla

    2014-01-01

    Detection of latent Mycobacterium tuberculosis is a challenge in the diagnosis of asymptomatic, subclinical tuberculosis. We report the development of an immunofluorescence technique to visualize and enumerate M. tuberculosis in latently infected rabbit lungs where no acid-fast–stained organisms were seen and no cultivable bacilli were obtained by the agar-plating method. PMID:25161200

  20. Prenatal passive transfer of Mycobacterium tuberculosis antibodies in Asian elephant (Elephas maximus) calves.

    PubMed

    McGee, Jennifer L; Wiedner, Ellen; Isaza, Ramiro

    2014-12-01

    Asian elephant (Elephas maximus) dams and their newborn calves were tested for Mycobacterium tuberculosis antibodies in serum. Blood was drawn from dams prior to calving and from calves on their day of birth. All six calves born to tuberculosis-reactive dams were also tuberculosis reactive, suggesting prenatal passive placental transfer of tuberculosis antibodies. In contrast, all three calves born to tuberculosis-nonreactive dams lacked detectable tuberculosis antibodies in pre-suckling or day-of-birth blood samples. Of the living tuberculosis-reactive calves observed from 1 to 11 yr of age, none exhibited clinical signs of tuberculosis infection or became tuberculosis culture positive. This is the first report of prenatal passive placental transfer of tuberculosis antibodies in elephants and demonstrates that detectible tuberculosis antibodies in newborn elephant calves should not be assumed to correlate with clinical tuberculosis. PMID:25632691

  1. Rv1894c is a novel hypoxia-induced nitronate monooxygenase required for Mycobacterium tuberculosis virulence.

    PubMed

    Klinkenberg, Lee G; Karakousis, Petros C

    2013-05-15

    Tuberculosis is difficult to cure, requiring a minimum of 6 months of treatment with multiple antibiotics. Small numbers of organisms are able to tolerate the antibiotics and persist in the lungs of infected humans, but they still require some metabolic activity to survive. We studied the role of the hypoxia-induced Rv1894c gene in Mycobacterium tuberculosis virulence in guinea pigs, which develop hypoxic, necrotic granulomas histologically resembling those in humans and found this gene to be necessary for full bacillary growth and survival. We characterized the function of the encoded enzyme as a nitronate monooxygenase, which is needed to prevent the buildup of toxic products during hypoxic metabolism and is negatively regulated by the transcriptional repressor KstR. Future studies will focus on developing small-molecule inhibitors that target Rv1894c and its homologs, with the goal of killing persistent bacteria, thereby shortening the time needed to treat tuberculosis. PMID:23408846

  2. Reconstruction and topological characterization of the sigma factor regulatory network of Mycobacterium tuberculosis.

    PubMed

    Chauhan, Rinki; Ravi, Janani; Datta, Pratik; Chen, Tianlong; Schnappinger, Dirk; Bassler, Kevin E; Balázsi, Gábor; Gennaro, Maria Laura

    2016-03-31

    Accessory sigma factors, which reprogram RNA polymerase to transcribe specific gene sets, activate bacterial adaptive responses to noxious environments. Here we reconstruct the complete sigma factor regulatory network of the human pathogen Mycobacterium tuberculosis by an integrated approach. The approach combines identification of direct regulatory interactions between M. tuberculosis sigma factors in an E. coli model system, validation of selected links in M. tuberculosis, and extensive literature review. The resulting network comprises 41 direct interactions among all 13 sigma factors. Analysis of network topology reveals (i) a three-tiered hierarchy initiating at master regulators, (ii) high connectivity and (iii) distinct communities containing multiple sigma factors. These topological features are likely associated with multi-layer signal processing and specialized stress responses involving multiple sigma factors. Moreover, the identification of overrepresented network motifs, such as autoregulation and coregulation of sigma and anti-sigma factor pairs, provides structural information that is relevant for studies of network dynamics.

  3. Reconstruction and topological characterization of the sigma factor regulatory network of Mycobacterium tuberculosis

    PubMed Central

    Chauhan, Rinki; Ravi, Janani; Datta, Pratik; Chen, Tianlong; Schnappinger, Dirk; Bassler, Kevin E.; Balázsi, Gábor; Gennaro, Maria Laura

    2016-01-01

    Accessory sigma factors, which reprogram RNA polymerase to transcribe specific gene sets, activate bacterial adaptive responses to noxious environments. Here we reconstruct the complete sigma factor regulatory network of the human pathogen Mycobacterium tuberculosis by an integrated approach. The approach combines identification of direct regulatory interactions between M. tuberculosis sigma factors in an E. coli model system, validation of selected links in M. tuberculosis, and extensive literature review. The resulting network comprises 41 direct interactions among all 13 sigma factors. Analysis of network topology reveals (i) a three-tiered hierarchy initiating at master regulators, (ii) high connectivity and (iii) distinct communities containing multiple sigma factors. These topological features are likely associated with multi-layer signal processing and specialized stress responses involving multiple sigma factors. Moreover, the identification of overrepresented network motifs, such as autoregulation and coregulation of sigma and anti-sigma factor pairs, provides structural information that is relevant for studies of network dynamics. PMID:27029515

  4. Molecular modeling of Mycobacterium tuberculosis dUTpase: docking and catalytic mechanism studies.

    PubMed

    Ramalho, Teodorico C; Caetano, Melissa S; Josa, Daniela; Luz, Gustavo P; Freitas, Elisangela A; da Cunha, Elaine F F

    2011-06-01

    Mycobacterium tuberculosis is a leading cause of infectious disease in the world today. This outlook is aggravated by a growing number of M. tuberculosis infections in individuals who are immunocompromised as a result of HIV infections. Thus, new and more potent anti-TB agents are necessary. Therefore, dUTpase was selected as a target enzyme to combat M. tuberculosis. In this work, molecular modeling methods involving docking and QM/MM calculations were carried out to investigate the binding orientation and predict binding affinities of some potential dUTpase inhibitors. Our results suggest that the best potential inhibitor investigated, among the compounds studied in this work, is the compound dUPNPP. Regarding the reaction mechanism, we concluded that the decisive stage for the reaction is the stage 1. Furthermore, it was also observed that the compounds with a -1 electrostatic charge presented lower activation energy in relation to the compounds with a -2 charge.

  5. Antimicrobial Resistance in Mycobacterium tuberculosis: The Odd One Out.

    PubMed

    Eldholm, Vegard; Balloux, François

    2016-08-01

    Antimicrobial resistance (AMR) threats are typically represented by bacteria capable of extensive horizontal gene transfer (HGT). One clear exception is Mycobacterium tuberculosis (Mtb). It is an obligate human pathogen with limited genetic diversity and a low mutation rate which lacks any evidence for HGT. Such features should, in principle, reduce its ability to rapidly evolve AMR. We identify key features in its biology and epidemiology that allow it to overcome its low adaptive potential. We focus in particular on its innate resistance to drugs, its unusual life cycle, including an often extensive latent phase, and its ability to shelter from exposure to antimicrobial drugs within cavities it induces in the lungs. PMID:27068531

  6. Genetic regulation of vesiculogenesis and immunomodulation in Mycobacterium tuberculosis

    PubMed Central

    Rath, Poonam; Huang, Chengdong; Wang, Tao; Wang, Tianzhi; Li, Huilin; Prados-Rosales, Rafael; Elemento, Olivier; Casadevall, Arturo; Nathan, Carl F.

    2013-01-01

    Mycobacterium tuberculosis (Mtb) restrains immune responses well enough to escape eradication but elicits enough immunopathology to ensure its transmission. Here we provide evidence that this host–pathogen relationship is regulated in part by a cytosolic, membrane-associated protein with a unique structural fold, encoded by the Mtb gene rv0431. The protein acts by regulating the quantity of Mtb-derived membrane vesicles bearing Toll-like receptor 2 ligands, including the lipoproteins LpqH and SodC. We propose that rv0431 be named “vesiculogenesis and immune response regulator.” PMID:24248369

  7. EVOLUTION OF MYCOBACTERIUM TUBERCULOSIS AND IMPLICATIONS FOR VACCINE DEVELOPMENT.

    PubMed

    Gagneux, Sebastien

    2016-04-01

    Tuberculosis (TB) is a growing public health threat, particularly in the face of the global epidemics of multidrug resistance. Given the limited efficacy of the current TB vaccine and the recent clinical failure of the most advanced new TB vaccine candidate, novel concepts for vaccine design should be explored. Most T cell antigens in the human-adapted Mycobacterium tuberculosis complex (MTBC) are evolutionarily conserved and under strong purifying selection, indicating that host immune responses targeting these antigens might not be protective. By contrast, a few highly variable T cell epitopes have recently been discovered, which could serve as alternative vaccine antigens. Moreover, there is increasing evidence that the human-adapted MTBC has been co-evolving with the human host for a long time. Hence, studying the interaction between bacterial and human genetic diversity might help identify additional targets that could be exploited for TB vaccine development.

  8. The transmission of Mycobacterium tuberculosis in high burden settings.

    PubMed

    Yates, Tom A; Khan, Palwasha Y; Knight, Gwenan M; Taylor, Jonathon G; McHugh, Timothy D; Lipman, Marc; White, Richard G; Cohen, Ted; Cobelens, Frank G; Wood, Robin; Moore, David A J; Abubakar, Ibrahim

    2016-02-01

    Unacceptable levels of Mycobacterium tuberculosis transmission are noted in high burden settings and a renewed focus on reducing person-to-person transmission in these communities is needed. We review recent developments in the understanding of airborne transmission. We outline approaches to measure transmission in populations and trials and describe the Wells-Riley equation, which is used to estimate transmission risk in indoor spaces. Present research priorities include the identification of effective strategies for tuberculosis infection control, improved understanding of where transmission occurs and the transmissibility of drug-resistant strains, and estimates of the effect of HIV and antiretroviral therapy on transmission dynamics. When research is planned and interventions are designed to interrupt transmission, resource constraints that are common in high burden settings-including shortages of health-care workers-must be considered.

  9. Iron Acquisition Mechanisms: Promising Target Against Mycobacterium tuberculosis

    PubMed Central

    Hameed, Saif; Pal, Rahul; Fatima, Zeeshan

    2015-01-01

    Continuous deployment of antitubercular drugs in treating Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) has led to the emergence of drug resistance resulting in cross-resistance to many unrelated drugs, a phenomenon termed as Multi-Drug Resistance (MDR-TB). Despite reasonable documentation of major factors which contribute to MDR mechanisms, it appears unavoidable to consider novel mechanisms combating MDR. The ability of pathogenic MTB, to sense and become accustomed to changes in the host environment is essential for its survival and confers the basis of their success as dreadful pathogen. One such significant environmental factor that MTB must surmount is iron limitation, since they encounter diverse anatomical sites during the establishment of infection within the host. Considering the importance of MTB, being the second most common cause of mortality, this review focuses on gaining insights of iron acquisition mechanisms in MTB and how it can be exploited as efficient anti-mycobacterial drug target. PMID:26464608

  10. Streptomyces as host for recombinant production of Mycobacterium tuberculosis proteins.

    PubMed

    Vallin, Carlos; Ramos, Astrid; Pimienta, Elsa; Rodríguez, Caridad; Hernández, Tairí; Hernández, Ivones; Del Sol, Ricardo; Rosabal, Grisel; Van Mellaert, Lieve; Anné, Jozef

    2006-01-01

    The 45/47 kDa APA protein (Rv1860) of Mycobacterium tuberculosis was produced by Streptomyces lividans. The recombinant protein could be recovered from the culture medium of an S. lividans clone containing the apa gene under control of the promoter and signal sequence of the Streptomyces coelicolor agarase gene. The recombinant protein production was further scaled-up using fermentation conditions. The APA protein was subsequently purified from the culture supernatant by means of immunochromatography. About 80 mg of recombinant protein were obtained per liter of culture media. In vivo tests with the APA protein purified from S. lividans TK24/pRGAPA1 revealed that the recombinant protein was antigenic and could induce high titers of specific antibodies in the mouse biological model. Results obtained concerning heterologous production of APA, its immunogenic and antigenic capacity, demonstrated the potential of S. lividans as a valuable host for the production of recombinant proteins from M. tuberculosis.

  11. Mycobacterium tuberculosis infection of the 'non-classical immune cell'.

    PubMed

    Randall, Philippa J; Hsu, Nai-Jen; Quesniaux, Valerie; Ryffel, Bernhard; Jacobs, Muazzam

    2015-10-01

    Mycobacterium tuberculosis can infect 'non-classical immune cells', which comprise a significant constituency of cells that reside outside of those defined as 'classical immune cells' from myeloid or lymphoid origin. Here we address the influence of specific 'non-classical immune cells' in host responses and their effects in controlling mycobacterial growth or enabling an environment conducive for bacilli persistence. The interaction of M. tuberculosis with epithelial cells, endothelial cells, fibroblasts, adipocytes, glia and neurons and downstream cellular responses that often dictate immune regulation and disease outcome are discussed. Functional integration and synergy between 'classical' and 'non-classical immune cells' are highlighted as critical for determining optimal immune outcomes that favour the host. PMID:25801479

  12. Mycobacterium tuberculosis Infection following Kidney Transplantation

    PubMed Central

    Boubaker, Karima; Gargah, Tahar; Abderrahim, Ezzedine; Ben Abdallah, Taieb; Kheder, Adel

    2013-01-01

    Introduction and Aims. Post-transplant tuberculosis (TB) is a problem in successful long-term outcome of renal transplantation recipients. Our objective was to describe the pattern and risk factors of TB infection and the prognosis in our transplant recipients. Patients and Methods. This study was a retrospective review of the records of 491 renal transplant recipients in our hospital during the period from January 1986 to December 2009. The demographic data, transplant characteristics, clinical manifestations, diagnostic criteria, treatment protocol, and long-term outcome of this cohort of patients were analyzed. Results. 16 patients (3,2%) developed post-transplant TB with a mean age of 32,5 ± 12,7 (range: 13–60) years and a mean post-transplant period of 36,6months (range: 12,3 months–15,9 years). The forms of the diseases were pulmonary in 10/16 (62,6%), disseminated in 3/16 (18,7%), and extrapulmonary in 3/16 (18,7%). Graft dysfunction was observed in 7 cases (43,7%) with tissue-proof acute rejection in 3 cases and loss of the graft in 4 cases. Hepatotoxicity developed in 3 patients (18,7%) during treatment. Recurrences were observed in 4 cases after early stop of treatment. Two patients (12.5%) died. Conclusion. Extra pulmonary and disseminated tuberculosis were observed in third of our patients. More than 9months of treatment may be necessary to prevent recurrence. PMID:24222903

  13. Pyrazinamide Resistance among South African Multidrug-Resistant Mycobacterium tuberculosis Isolates▿

    PubMed Central

    Mphahlele, Matsie; Syre, Heidi; Valvatne, Håvard; Stavrum, Ruth; Mannsåker, Turid; Muthivhi, Tshilidzi; Weyer, Karin; Fourie, P. Bernard; Grewal, Harleen M. S.

    2008-01-01

    Pyrazinamide is important in tuberculosis treatment, as it is bactericidal to semidormant mycobacteria not killed by other antituberculosis drugs. Pyrazinamide is also one of the cornerstone drugs retained in the treatment of multidrug-resistant tuberculosis (MDR-TB). However, due to technical difficulties, routine drug susceptibility testing of Mycobacterium tuberculosis for pyrazinamide is, in many laboratories, not performed. The objective of our study was to generate information on pyrazinamide susceptibility among South African MDR and susceptible M. tuberculosis isolates from pulmonary tuberculosis patients. Seventy-one MDR and 59 fully susceptible M. tuberculosis isolates collected during the national surveillance study (2001 to 2002, by the Medical Research Council, South Africa) were examined for pyrazinamide susceptibility by the radiometric Bactec 460 TB system, pyrazinamidase activity (by Wayne's assay), and sequencing of the pncA gene. The frequency of pyrazinamide resistance (by the Bactec system) among the MDR M. tuberculosis isolates was 37 of 71 (52.1%) and 6 of 59 (10.2%) among fully sensitive isolates. A total of 25 unique mutations in the pncA gene were detected. The majority of these were point mutations that resulted in amino acid substitutions. Twenty-eight isolates had identical mutations in the pncA gene, but could be differentiated from each other by a combination of the spoligotype patterns and 12 mycobacterial interspersed repetitive-unit loci. A high proportion of South African MDR M. tuberculosis isolates were resistant to pyrazinamide, suggesting an evaluation of its role in patients treated previously for tuberculosis as well as its role in the treatment of MDR-TB. PMID:18753350

  14. Relationship Between HIV Coinfection, Interleukin 10 Production, and Mycobacterium tuberculosis in Human Lymph Node Granulomas

    PubMed Central

    Diedrich, Collin R.; O'Hern, Jennifer; Gutierrez, Maximiliano G.; Allie, Nafiesa; Papier, Patricia; Meintjes, Graeme; Coussens, Anna K.; Wainwright, Helen; Wilkinson, Robert J.

    2016-01-01

    Background. Human immunodeficiency virus type 1 (HIV)–infected persons are more susceptible to tuberculosis than HIV–uninfected persons. Low peripheral CD4+ T-cell count is not the sole cause of higher susceptibility, because HIV–infected persons with a high peripheral CD4+ T-cell count and those prescribed successful antiretroviral therapy (ART) remain more prone to active tuberculosis than HIV–uninfected persons. We hypothesized that the increase in susceptibility is caused by the ability of HIV to manipulate Mycobacterium tuberculosis–associated granulomas. Methods. We examined 71 excised cervical lymph nodes (LNs) from persons with HIV and M. tuberculosis coinfection, those with HIV monoinfection, and those with M. tuberculosis monoinfection with a spectrum of peripheral CD4+ T-cell counts and ART statuses. We quantified differences in M. tuberculosis levels, HIV p24 levels, cellular response, and cytokine presence within granulomas. Results. HIV increased M. tuberculosis numbers and reduced CD4+ T-cell counts within granulomas. Peripheral CD4+ T-cell depletion correlated with granulomas that contained fewer CD4+ and CD8+ T cells, less interferon γ, more neutrophils, more interleukin 10 (IL-10), and increased M. tuberculosis numbers. M. tuberculosis numbers correlated positively with IL-10 and interferon α levels and fewer CD4+ and CD8+ T cells. ART reduced IL-10 production. Conclusions. Peripheral CD4+ T-cell depletion correlated with increased M. tuberculosis presence, increased IL-10 production, and other phenotypic changes within granulomas, demonstrating the HIV infection progressively changes these granulomas. PMID:27462092

  15. Phosphoproteomics analysis of a clinical Mycobacterium tuberculosis Beijing isolate: expanding the mycobacterial phosphoproteome catalog

    PubMed Central

    Fortuin, Suereta; Tomazella, Gisele G.; Nagaraj, Nagarjuna; Sampson, Samantha L.; Gey van Pittius, Nicolaas C.; Soares, Nelson C.; Wiker, Harald G.; de Souza, Gustavo A.; Warren, Robin M.

    2015-01-01

    Reversible protein phosphorylation, regulated by protein kinases and phosphatases, mediates a switch between protein activity and cellular pathways that contribute to a large number of cellular processes. The Mycobacterium tuberculosis genome encodes 11 Serine/Threonine kinases (STPKs) which show close homology to eukaryotic kinases. This study aimed to elucidate the phosphoproteomic landscape of a clinical isolate of M. tuberculosis. We performed a high throughput mass spectrometric analysis of proteins extracted from an early-logarithmic phase culture. Whole cell lysate proteins were processed using the filter-aided sample preparation method, followed by phosphopeptide enrichment of tryptic peptides by strong cation exchange (SCX) and Titanium dioxide (TiO2) chromatography. The MaxQuant quantitative proteomics software package was used for protein identification. Our analysis identified 414 serine/threonine/tyrosine phosphorylated sites, with a distribution of S/T/Y sites; 38% on serine, 59% on threonine and 3% on tyrosine; present on 303 unique peptides mapping to 214 M. tuberculosis proteins. Only 45 of the S/T/Y phosphorylated proteins identified in our study had been previously described in the laboratory strain H37Rv, confirming previous reports. The remaining 169 phosphorylated proteins were newly identified in this clinical M. tuberculosis Beijing strain. We identified 5 novel tyrosine phosphorylated proteins. These findings not only expand upon our current understanding of the protein phosphorylation network in clinical M. tuberculosis but the data set also further extends and complements previous knowledge regarding phosphorylated peptides and phosphorylation sites in M. tuberculosis. PMID:25713560

  16. Mannosylated lipoarabinomannan antagonizes Mycobacterium tuberculosis-induced macrophage apoptosis by altering Ca+2-dependent cell signaling.

    PubMed

    Rojas, M; García, L F; Nigou, J; Puzo, G; Olivier, M

    2000-07-01

    Mycobacterium tuberculosis-induced macrophage apoptosis can be inhibited by mannosylated lipoarabinomannan (ManLAM), although it induces tumor necrosis factor (TNF)-alpha and NO production, which participate in apoptosis induction. ManLAM also modulates Ca(+2)-dependent intracellular events, and Ca(+2) participates in apoptosis in different systems. Ca(+2) was assessed for involvement in M. tuberculosis-induced macrophage apoptosis and for modulation by ManLAM. The role of Ca(+2) was supported by the blockade of apoptosis by cAMP inhibitors and the Ca(+2) chelator, BAPTA/AM. These agents also inhibited caspase-1 activation and cAMP-responsive element-binding protein translocation without affecting TNF-alpha production. Infection of macrophages with M. tuberculosis induced an influx of Ca(+2) that was prevented by ManLAM. Similarly, M. tuberculosis infection-altered mitochondrial permeability transition was prevented by ManLAM and BAPTA/AM. Finally, ManLAM and BAPTA/AM reversed the effects of M. tuberculosis on p53 and Bcl-2 expression. ManLAM counteracts the alterations of calcium-dependent intracellular events that occur during M. tuberculosis-induced macrophage apoptosis.

  17. Mycobacterium tuberculosis lacking all mycolic acid cyclopropanation is viable but highly attenuated and hyperinflammatory in mice.

    PubMed

    Barkan, Daniel; Hedhli, Dorsaf; Yan, Han-Guang; Huygen, Kris; Glickman, Michael S

    2012-06-01

    Mycolic acids, the major lipid of the Mycobacterium tuberculosis cell wall, are modified by cyclopropane rings, methyl branches, and oxygenation through the action of eight S-adenosylmethionine (SAM)-dependent mycolic acid methyltransferases (MAMTs), encoded at four genetic loci. Mycolic acid modification has been shown to be important for M. tuberculosis pathogenesis, in part through effects on the inflammatory activity of trehalose dimycolate (cord factor). Studies using the MAMT inhibitor dioctylamine have suggested that the MAMT enzyme class is essential for M. tuberculosis viability. However, it is unknown whether a cyclopropane-deficient strain of M. tuberculosis would be viable and what the effect of cyclopropane deficiency on virulence would be. We addressed these questions by creating and characterizing M. tuberculosis strains lacking all functional MAMTs. Our results show that M. tuberculosis is viable either without cyclopropanation or without cyclopropanation and any oxygenated mycolates. Characterization of these strains revealed that MAMTs are required for acid fastness and resistance to detergent stress. Complete lack of cyclopropanation confers severe attenuation during the first week after aerosol infection of the mouse, whereas complete loss of MAMTs confers attenuation in the second week of infection. Characterization of immune responses to the cyclopropane- and MAMT-deficient strains indicated that the net effect of mycolate cyclopropanation is to dampen host immunity. Taken together, our findings establish the immunomodulatory function of the mycolic acid modification pathway in pathogenesis and buttress this enzyme class as an attractive target for antimycobacterial drug development.

  18. Vaccination with an Attenuated Ferritin Mutant Protects Mice against Virulent Mycobacterium tuberculosis

    PubMed Central

    Subbian, Selvakumar; Pandey, Ruchi; Soteropoulos, Patricia; Rodriguez, G. Marcela

    2015-01-01

    Mycobacterium tuberculosis the causative agent of tuberculosis affects millions of people worldwide. New tools for treatment and prevention of tuberculosis are urgently needed. We previously showed that a ferritin (bfrB) mutant of M. tuberculosis has altered iron homeostasis and increased sensitivity to antibiotics and to microbicidal effectors produced by activated macrophages. Most importantly, M. tuberculosis lacking BfrB is strongly attenuated in mice, especially, during the chronic phase of infection. In this study, we examined whether immunization with a bfrB mutant could confer protection against subsequent infection with virulent M. tuberculosis in a mouse model. The results show that the protection elicited by immunization with the bfrB mutant is comparable to BCG vaccination with respect to reduction of bacterial burden. However, significant distinctions in the disease pathology and host genome-wide lung transcriptome suggest improved containment of Mtb infection in animals vaccinated with the bfrB mutant, compared to BCG. We found that downmodulation of inflammatory response and enhanced fibrosis, compared to BCG vaccination, is associated with the protective response elicited by the bfrB mutant. PMID:26339659

  19. Phosphoproteomics analysis of a clinical Mycobacterium tuberculosis Beijing isolate: expanding the mycobacterial phosphoproteome catalog.

    PubMed

    Fortuin, Suereta; Tomazella, Gisele G; Nagaraj, Nagarjuna; Sampson, Samantha L; Gey van Pittius, Nicolaas C; Soares, Nelson C; Wiker, Harald G; de Souza, Gustavo A; Warren, Robin M

    2015-01-01

    Reversible protein phosphorylation, regulated by protein kinases and phosphatases, mediates a switch between protein activity and cellular pathways that contribute to a large number of cellular processes. The Mycobacterium tuberculosis genome encodes 11 Serine/Threonine kinases (STPKs) which show close homology to eukaryotic kinases. This study aimed to elucidate the phosphoproteomic landscape of a clinical isolate of M. tuberculosis. We performed a high throughput mass spectrometric analysis of proteins extracted from an early-logarithmic phase culture. Whole cell lysate proteins were processed using the filter-aided sample preparation method, followed by phosphopeptide enrichment of tryptic peptides by strong cation exchange (SCX) and Titanium dioxide (TiO2) chromatography. The MaxQuant quantitative proteomics software package was used for protein identification. Our analysis identified 414 serine/threonine/tyrosine phosphorylated sites, with a distribution of S/T/Y sites; 38% on serine, 59% on threonine and 3% on tyrosine; present on 303 unique peptides mapping to 214 M. tuberculosis proteins. Only 45 of the S/T/Y phosphorylated proteins identified in our study had been previously described in the laboratory strain H37Rv, confirming previous reports. The remaining 169 phosphorylated proteins were newly identified in this clinical M. tuberculosis Beijing strain. We identified 5 novel tyrosine phosphorylated proteins. These findings not only expand upon our current understanding of the protein phosphorylation network in clinical M. tuberculosis but the data set also further extends and complements previous knowledge regarding phosphorylated peptides and phosphorylation sites in M. tuberculosis.

  20. Inhibition studies of Mycobacterium tuberculosis salicylate synthase (MbtI).

    PubMed

    Manos-Turvey, Alexandra; Bulloch, Esther M M; Rutledge, Peter J; Baker, Edward N; Lott, J Shaun; Payne, Richard J

    2010-07-01

    Mycobacterium tuberculosis salicylate synthase (MbtI), a member of the chorismate-utilizing enzyme family, catalyses the first committed step in the biosynthesis of the siderophore mycobactin T. This complex secondary metabolite is essential for both virulence and survival of M. tuberculosis, the etiological agent of tuberculosis (TB). It is therefore anticipated that inhibitors of this enzyme may serve as TB therapies with a novel mode of action. Herein we describe the first inhibition study of M. tuberculosis MbtI using a library of functionalized benzoate-based inhibitors designed to mimic the substrate (chorismate) and intermediate (isochorismate) of the MbtI-catalyzed reaction. The most potent inhibitors prepared were those designed to mimic the enzyme intermediate, isochorismate. These compounds, based on a 2,3-dihydroxybenzoate scaffold, proved to be low-micromolar inhibitors of MbtI. The most potent inhibitors in this series possessed hydrophobic enol ether side chains at C3 in place of the enol-pyruvyl side chain found in chorismate and isochorismate. PMID:20512795

  1. Carbon flux rerouting during Mycobacterium tuberculosis growth arrest

    PubMed Central

    Shi, Lanbo; Sohaskey, Charles D.; Pfeiffer, Carmen; Datta, Pratik; Parks, Michael; McFadden, Johnjoe; North, Robert J.; Gennaro, Maria L.

    2010-01-01

    Summary A hallmark of the Mycobacterium tuberculosis life cycle is the pathogen’s ability to switch between replicative and non-replicative states in response to host immunity. Transcriptional profiling by qPCR of ~50 M. tuberculosis genes involved in central and lipid metabolism revealed a re-routing of carbon flow associated with bacterial growth arrest during mouse lung infection. Carbon rerouting was marked by a switch from metabolic pathways generating energy and biosynthetic precursors in growing bacilli to pathways for storage compound synthesis during growth arrest. Results of flux balance analysis using an in silico metabolic network were consistent with the transcript abundance data obtained in vivo. Similar transcriptional changes were seen in vitro when M. tuberculosis cultures were treated with bacteriostatic stressors under different nutritional conditions. Thus, altered expression of key metabolic genes reflects growth rate changes rather than changes in substrate availability. A model describing carbon flux rerouting was formulated that (i) provides a coherent interpretation of the adaptation of M. tuberculosis metabolism to immunity-induced stress and (ii) identifies features common to mycobacterial dormancy and stress responses of other organisms. PMID:21091505

  2. Molecular Diversity of Mycobacterium tuberculosis Strains in Northwestern Iran

    PubMed Central

    Pourostadi, Mahya; Rashedi, Jalil; Mahdavi Poor, Behroz; Samadi Kafil, Hossein; Shirazi, Samaneh; Asgharzadeh, Mohammad

    2016-01-01

    Background Years after the development of antituberculosis (TB) drugs, many people continue to suffer from this disease. To control the spread of TB, strains of the Mycobacterium tuberculosis complex need to be determined, and sources of infection must be identified. Such steps should help to prevent transmission of the infection. Objectives The aim of this study was to perform molecular genotyping of isolates of the M. tuberculosis complex obtained from patients in northwestern Iran. Methods One hundred ninety-four culture-positive M. tuberculosis isolates obtained from patients in northwestern Iran were analyzed using the mycobacterial interspersed repetitive unit-exact tandem repeats (MIRU-ETR) method. Results The MIRU-ETR method distinguished 162 different patterns in the 194 isolates, comprising 23 clusters and 139 unique patterns. Its discriminatory power according to the Hunter-Gaston discriminatory index (HGDI) was 0.9978. The largest cluster contained six isolates. Conclusions This research indicated that various strains of M. tuberculosis were responsible for TB and that the majority of cases were due to reactivation. PMID:27800145

  3. Population genomics of Mycobacterium tuberculosis in the Inuit.

    PubMed

    Lee, Robyn S; Radomski, Nicolas; Proulx, Jean-Francois; Levade, Ines; Shapiro, B Jesse; McIntosh, Fiona; Soualhine, Hafid; Menzies, Dick; Behr, Marcel A

    2015-11-01

    Nunavik, Québec suffers from epidemic tuberculosis (TB), with an incidence 50-fold higher than the Canadian average. Molecular studies in this region have documented limited bacterial genetic diversity among Mycobacterium tuberculosis isolates, consistent with a founder strain and/or ongoing spread. We have used whole-genome sequencing on 163 M. tuberculosis isolates from 11 geographically isolated villages to provide a high-resolution portrait of bacterial genetic diversity in this setting. All isolates were lineage 4 (Euro-American), with two sublineages present (major, n = 153; minor, n = 10). Among major sublineage isolates, there was a median of 46 pairwise single-nucleotide polymorphisms (SNPs), and the most recent common ancestor (MRCA) was in the early 20th century. Pairs of isolates within a village had significantly fewer SNPs than pairs from different villages (median: 6 vs. 47, P < 0.00005), indicating that most transmission occurs within villages. There was an excess of nonsynonymous SNPs after the diversification of M. tuberculosis within Nunavik: The ratio of nonsynonymous to synonymous substitution rates (dN/dS) was 0.534 before the MRCA but 0.777 subsequently (P = 0.010). Nonsynonymous SNPs were detected across all gene categories, arguing against positive selection and toward genetic drift with relaxation of purifying selection. Supporting the latter possibility, 28 genes were partially or completely deleted since the MRCA, including genes previously reported to be essential for M. tuberculosis growth. Our findings indicate that the epidemiologic success of M. tuberculosis in this region is more likely due to an environment conducive to TB transmission than a particularly well-adapted strain.

  4. Population genomics of Mycobacterium tuberculosis in the Inuit

    PubMed Central

    Lee, Robyn S.; Radomski, Nicolas; Proulx, Jean-Francois; Levade, Ines; Shapiro, B. Jesse; McIntosh, Fiona; Soualhine, Hafid; Menzies, Dick; Behr, Marcel A.

    2015-01-01

    Nunavik, Québec suffers from epidemic tuberculosis (TB), with an incidence 50-fold higher than the Canadian average. Molecular studies in this region have documented limited bacterial genetic diversity among Mycobacterium tuberculosis isolates, consistent with a founder strain and/or ongoing spread. We have used whole-genome sequencing on 163 M. tuberculosis isolates from 11 geographically isolated villages to provide a high-resolution portrait of bacterial genetic diversity in this setting. All isolates were lineage 4 (Euro-American), with two sublineages present (major, n = 153; minor, n = 10). Among major sublineage isolates, there was a median of 46 pairwise single-nucleotide polymorphisms (SNPs), and the most recent common ancestor (MRCA) was in the early 20th century. Pairs of isolates within a village had significantly fewer SNPs than pairs from different villages (median: 6 vs. 47, P < 0.00005), indicating that most transmission occurs within villages. There was an excess of nonsynonymous SNPs after the diversification of M. tuberculosis within Nunavik: The ratio of nonsynonymous to synonymous substitution rates (dN/dS) was 0.534 before the MRCA but 0.777 subsequently (P = 0.010). Nonsynonymous SNPs were detected across all gene categories, arguing against positive selection and toward genetic drift with relaxation of purifying selection. Supporting the latter possibility, 28 genes were partially or completely deleted since the MRCA, including genes previously reported to be essential for M. tuberculosis growth. Our findings indicate that the epidemiologic success of M. tuberculosis in this region is more likely due to an environment conducive to TB transmission than a particularly well-adapted strain. PMID:26483462

  5. Essential Metabolites of Mycobacterium tuberculosis and Their Mimics

    PubMed Central

    Lamichhane, Gyanu; Freundlich, Joel S.; Ekins, Sean; Wickramaratne, Niluka; Nolan, Scott T.; Bishai, William R.

    2011-01-01

    An organism requires a range of biomolecules for its growth. By definition, these are essential molecules which constitute the basic metabolic requirements of an organism. A small organic molecule with chemical similarity to that of an essential metabolite may bind to the enzyme that catalyzes its production and inhibit it, likely resulting in the stasis or death of the organism. Here, we report a high-throughput approach for identifying essential metabolites of an organism using genetic and biochemical approaches and then implement computational approaches to identify metabolite mimics. We generated and genotyped 5,126 Mycobacterium tuberculosis mutants and performed a statistical analysis to determine putative essential genes. The essential molecules of M. tuberculosis were classified as products of enzymes that are encoded by genes in this list. Although incomplete, as many enzymes of M. tuberculosis have yet to be identified and characterized, this is the first report of a large number of essential molecules of the organism. We identified essential metabolites of three distinct metabolic pathways in M. tuberculosis and selected molecules with chemical similarity using cheminformatics strategies that illustrate a variety of different pharmacophores. Our approach is aimed at systematic identification of essential molecules and their mimics as a blueprint for development of effective chemical probes of M. tuberculosis metabolism, with the ultimate goal of seeking drugs that can kill this pathogen. As an illustration of this approach, we report that compounds JFD01307SC and l-methionine-S-sulfoximine, which share chemical similarity with an essential molecule of M. tuberculosis, inhibited the growth of this organism at micromolar concentrations. PMID:21285434

  6. Profiling the Proteome of Mycobacterium tuberculosis during Dormancy and Reactivation*

    PubMed Central

    Gopinath, Vipin; Raghunandanan, Sajith; Gomez, Roshna Lawrence; Jose, Leny; Surendran, Arun; Ramachandran, Ranjit; Pushparajan, Akhil Raj; Mundayoor, Sathish; Jaleel, Abdul; Kumar, Ramakrishnan Ajay

    2015-01-01

    Tuberculosis, caused by Mycobacterium tuberculosis, still remains a major global health problem. The main obstacle in eradicating this disease is the ability of this pathogen to remain dormant in macrophages, and then reactivate later under immuno-compromised conditions. The physiology of hypoxic nonreplicating M. tuberculosis is well-studied using many in vitro dormancy models. However, the physiological changes that take place during the shift from dormancy to aerobic growth (reactivation) have rarely been subjected to a detailed investigation. In this study, we developed an in vitro reactivation system by re-aerating the virulent laboratory strain of M. tuberculosis that was made dormant employing Wayne's dormancy model, and compared the proteome profiles of dormant and reactivated bacteria using label-free one-dimensional LC/MS/MS analysis. The proteome of dormant bacteria was analyzed at nonreplicating persistent stage 1 (NRP1) and stage 2 (NRP2), whereas that of reactivated bacteria was analyzed at 6 and 24 h post re-aeration. Proteome of normoxially grown bacteria served as the reference. In total, 1871 proteins comprising 47% of the M. tuberculosis proteome were identified, and many of them were observed to be expressed differentially or uniquely during dormancy and reactivation. The number of proteins detected at different stages of dormancy (764 at NRP1, 691 at NRP2) and reactivation (768 at R6 and 983 at R24) was very low compared with that of the control (1663). The number of unique proteins identified during normoxia, NRP1, NRP2, R6, and R24 were 597, 66, 56, 73, and 94, respectively. We analyzed various biological functions during these conditions. Fluctuation in the relative quantities of proteins involved in energy metabolism during dormancy and reactivation was the most significant observation we made in this study. Proteins that are up-regulated or uniquely expressed during reactivation from dormancy offer to be attractive targets for therapeutic

  7. Molecular Epidemiology of Mycobacterium tuberculosis among South African Gold Miners

    PubMed Central

    Lewis, James J.; Connors, Jeremy; Chihota, Violet N.; Shashkina, Elena; van der Meulen, Minty; Graviss, Edward A.; Ha, Ngan P.; Kreiswirth, Barry N.; Grant, Alison D.; Fielding, Katherine L.; Dorman, Susan E.; Churchyard, Gavin J.

    2015-01-01

    Rationale: HIV-associated tuberculosis remains a major health problem among the gold-mining workforce in South Africa. We postulate that high levels of recent transmission, indicated by strain clustering, are fueling the tuberculosis epidemic among gold miners. Objectives: To combine molecular and epidemiologic data to describe Mycobacterium tuberculosis genetic diversity, estimate levels of transmission, and examine risk factors for clustering. Methods: We conducted a cross-sectional study of culture-positive M. tuberculosis isolates in 15 gold mine shafts across three provinces in South Africa. All isolates were subject IS6110-based restriction fragment length polymorphisms, and we performed spoligotyping analysis and combined it with basic demographic and clinical information. Measurements and Main Results: Of the 1,602 M. tuberculosis patient isolates, 1,240 (78%) had genotyping data available for analysis. A highly diverse bacillary population was identified, comprising a total of 730 discrete genotypes. Four genotypic families (Latin American Mediterranean spoligotype family; W-Beijing; AH or X; and T1–T4) accounted for over 50% of all strains. Overall, 45% (560/1,240) of strains were genotypically clustered. The minimum estimate for recent transmission (n − 1 method) was 32% (range, 27–34%). There were no individual-level risk factors for clustering, apart from borderline evidence for being non–South African and having self-reported HIV infection. Conclusions: The high M. tuberculosis genetic diversity and lack of risk factors for clustering are indicative of a universal risk for disease among gold miners and likely mixing with nonmining populations. Our results underscore the urgent need to intensify interventions to interrupt transmission across the entire gold-mining workforce in South Africa. PMID:25419914

  8. Genetic diversity and dynamic distribution of Mycobacterium tuberculosis isolates causing pulmonary and extrapulmonary tuberculosis in Thailand.

    PubMed

    Srilohasin, Prapaporn; Chaiprasert, Angkana; Tokunaga, Katsushi; Nishida, Nao; Prammananan, Therdsak; Smittipat, Nat; Mahasirimongkol, Surakameth; Chaiyasirinroje, Boonchai; Yanai, Hideki; Palittapongarnpim, Prasit

    2014-12-01

    This study examined the genetic diversity and dynamicity of circulating Mycobacterium tuberculosis strains in Thailand using nearly neutral molecular markers. The single nucleotide polymorphism (SNP)-based genotypes of 1,414 culture-positive M. tuberculosis isolates from 1,282 pulmonary tuberculosis (PTB) and 132 extrapulmonary TB (EPTB) patients collected from 1995 to 2011 were characterized. Among the eight SNP cluster groups (SCG), SCG2 (44.1%), which included the Beijing (BJ) genotype, and SCG1 (39.4%), an East African Indian genotype, were dominant. Comparisons between the genotypes of M. tuberculosis isolates causing PTB and EPTB in HIV-negative cases revealed similar prevalence trends although genetic diversity was higher in the PTB patients. The identification of 10 reported sequence types (STs) and three novel STs was hypothesized to indicate preferential expansion of the SCG2 genotype, especially the modern BJ ST10 (15.6%) and ancestral BJ ST19 (13.1%). An association between SCG2 and SCG1 genotypes and particular patient age groups implies the existence of different genetic advantages among the bacterial populations. The results revealed that increasing numbers of young patients were infected with M. tuberculosis SCGs 2 and 5, which contrasts with the reduction of the SCG1 genotype. Our results indicate the selection and dissemination of potent M. tuberculosis genotypes in this population. The determination of heterogeneity and dynamic population changes of circulating M. tuberculosis strains in countries using the Mycobacterium bovis BCG (bacillus Calmette-Guérin) vaccine are beneficial for vaccine development and control strategies.

  9. Tuberculosis

    MedlinePlus

    Tuberculosis (TB) is a disease caused by bacteria called Mycobacterium tuberculosis. The bacteria usually attack the lungs, but they can also damage other parts of the body. TB spreads through the air when a person with ...

  10. A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis

    PubMed Central

    Sweeney, Kari A; Dao, Dee N; Goldberg, Michael F; Hsu, Tsungda; Venkataswamy, Manjunatha M; Henao-Tamayo, Marcela; Ordway, Diane; Sellers, Rani S; Jain, Paras; Chen, Bing; Chen, Mei; Kim, John; Lukose, Regy; Chan, John; Orme, Ian M; Porcelli, Steven A; Jacobs, William R

    2011-01-01

    We report the involvement of an evolutionarily conserved set of mycobacterial genes, the esx-3 region, in evasion of bacterial killing by innate immunity. Whereas high-dose intravenous infections of mice with the rapidly growing mycobacterial species Mycobacterium smegmatis bearing an intact esx-3 locus were rapidly lethal, infection with an M. smegmatis Δesx-3 mutant (here designated as the IKE strain) was controlled and cleared by a MyD88-dependent bactericidal immune response. Introduction of the orthologous Mycobacterium tuberculosis esx-3 genes into the IKE strain resulted in a strain, designated IKEPLUS, that remained susceptible to innate immune killing and was highly attenuated in mice but had a marked ability to stimulate bactericidal immunity against challenge with virulent M. tuberculosis. Analysis of these adaptive immune responses indicated that the highly protective bactericidal immunity elicited by IKEPLUS was dependent on CD4+ memory T cells and involved a distinct shift in the pattern of cytokine responses by CD4+ cells. Our results establish a role for the esx-3 locus in promoting mycobacterial virulence and also identify the IKE strain as a potentially powerful candidate vaccine vector for eliciting protective immunity to M. tuberculosis. PMID:21892180

  11. Identification of Mannich Base as a Novel Inhibitor of Mycobacterium Tuberculosis Isocitrate by High-Throughput Screening

    PubMed Central

    Ji, Lei; Long, Quanxin; Yang, Dacheng; Xie, Jianping

    2011-01-01

    Mycobacterium tuberculosis (MTB) remains one of the most significant human pathogens since its discovery in 1882. An estimated 1.5 million people died from tubercle bacillus (TB) in 2006, and globally, there were an estimated 9.27 million incident cases of TB in 2007. Glyoxylate bypass pathway occurs in a wide range of pathogens and plays a key role in the pathogenesis of Mycobacterium tuberculosis. Isocitrate lyase (ICL) can catalyses the first step of this pathway, and reversibly cleaves isocitrate into succinate and glyoxylate. So, ICL may represent a good drug target for the treatment of tuberculosis. ICL was cloned, expressed, and purified, and a high-throughput screen (HTS) developed to screen active molecule from a mannich base compounds library for inhibition of ICL. This assay had signal to noise (S/N) of 650.6990 and Z' factor of 0.8141, indicating that the assay was suitable for HTS. Screening of a collection of 124 mannich base compounds resulted in the identification of one mannich base compound, which has a significant inhibitory activity. So, a new family of compound was first reported to inhibit the activity of Mycobacterium tuberculosis ICL. This family of compound might offer new avenue to explore better anti-tuberculosis and fungi drugs. PMID:21494431

  12. Adenylating Enzymes in Mycobacterium tuberculosis as Drug Targets

    PubMed Central

    Duckworth, Benjamin P.; Nelson, Kathryn M.; Aldrich, Courtney C.

    2013-01-01

    Adenylation or adenylate-forming enzymes (AEs) are widely found in nature and are responsible for the activation of carboxylic acids to intermediate acyladenylates, which are mixed anhydrides of AMP. In a second reaction, AEs catalyze the transfer of the acyl group of the acyladenylate onto a nucleophilic amino, alcohol, or thiol group of an acceptor molecule leading to amide, ester, and thioester products, respectively. Mycobacterium tuberculosis encodes for more than 60 adenylating enzymes, many of which represent potential drug targets due to their confirmed essentiality or requirement for virulence. Several strategies have been used to develop potent and selective AE inhibitors including high-throughput screening, fragment-based screening, and the rationale design of bisubstrate inhibitors that mimic the acyladenylate. In this review, a comprehensive analysis of the mycobacterial adenylating enzymes will be presented with a focus on the identification of small molecule inhibitors. Specifically, this review will cover the aminoacyl tRNA-synthetases (aaRSs), MenE required for menaquinone synthesis, the FadD family of enzymes including the fatty acyl-AMP ligases (FAAL) and the fatty acyl-CoA ligases (FACLs) involved in lipid metabolism, and the nonribosomal peptide synthetase adenylation enzyme MbtA that is necessary for mycobactin synthesis. Additionally, the enzymes NadE, GuaA, PanC, and MshC involved in the respective synthesis of NAD, guanine, pantothenate, and mycothiol will be discussed as well as BirA that is responsible for biotinylation of the acyl CoA-carboxylases. PMID:22283817

  13. [Advances in the research of an animal model of wound due to Mycobacterium tuberculosis infection].

    PubMed

    Chen, Ling; Jia, Chiyu

    2015-12-01

    Tuberculosis ranks as the second deadly infectious disease worldwide. The incidence of tuberculosis is high in China. Refractory wound caused by Mycobacterium tuberculosis infection ranks high in misdiagnosis, and it is accompanied by a protracted course, and its pathogenic mechanism is still not so clear. In order to study its pathogenic mechanism, it is necessary to reproduce an appropriate animal model. Up to now the study of the refractory wound caused by Mycobacterium tuberculosis infection is just beginning, and there is still no unimpeachable model for study. This review describes two models which may reproduce a wound similar to the wound caused by Mycobacterium tuberculosis infection, so that they could be used to study the pathogenesis and characteristics of a tuberculosis wound in an animal.

  14. Essential roles for Mycobacterium tuberculosis Rel beyond the production of (p)ppGpp.

    PubMed

    Weiss, Leslie A; Stallings, Christina L

    2013-12-01

    In Mycobacterium tuberculosis, the stringent response to amino acid starvation is mediated by the M. tuberculosis Rel (RelMtb) enzyme, which transfers a pyrophosphate from ATP to GDP or GTP to synthesize ppGpp and pppGpp, respectively. (p)ppGpp then influences numerous metabolic processes. RelMtb also encodes a second, distinct catalytic domain that hydrolyzes (p)ppGpp into pyrophosphate and GDP or GTP. RelMtb is required for chronic M. tuberculosis infection in mice; however, it is unknown which catalytic activity of RelMtb mediates pathogenesis and whether (p)ppGpp itself is necessary. In order to individually investigate the roles of (p)ppGpp synthesis and hydrolysis during M. tuberculosis pathogenesis, we generated RelMtb point mutants that were either synthetase dead (RelMtb(H344Y)) or hydrolase dead (RelMtb(H80A)). M. tuberculosis strains expressing the synthetase-dead RelMtb(H344Y) mutant did not persist in mice, demonstrating that the RelMtb (p)ppGpp synthetase activity is required for maintaining bacterial titers during chronic infection. Deletion of a second predicted (p)ppGpp synthetase had no effect on pathogenesis, demonstrating that RelMtb was the major contributor to (p)ppGpp production during infection. Interestingly, expression of an allele encoding the hydrolase-dead RelMtb mutant, RelMtb(H80A), that is incapable of hydrolyzing (p)ppGpp but still able to synthesize (p)ppGpp decreased the growth rate of M. tuberculosis and changed the colony morphology of the bacteria. In addition, RelMtb(H80A) expression during acute or chronic M. tuberculosis infection in mice was lethal to the infecting bacteria. These findings highlight a distinct role for RelMtb-mediated (p)ppGpp hydrolysis that is essential for M. tuberculosis pathogenesis.

  15. Essential Roles for Mycobacterium tuberculosis Rel beyond the Production of (p)ppGpp

    PubMed Central

    Weiss, Leslie A.

    2013-01-01

    In Mycobacterium tuberculosis, the stringent response to amino acid starvation is mediated by the M. tuberculosis Rel (RelMtb) enzyme, which transfers a pyrophosphate from ATP to GDP or GTP to synthesize ppGpp and pppGpp, respectively. (p)ppGpp then influences numerous metabolic processes. RelMtb also encodes a second, distinct catalytic domain that hydrolyzes (p)ppGpp into pyrophosphate and GDP or GTP. RelMtb is required for chronic M. tuberculosis infection in mice; however, it is unknown which catalytic activity of RelMtb mediates pathogenesis and whether (p)ppGpp itself is necessary. In order to individually investigate the roles of (p)ppGpp synthesis and hydrolysis during M. tuberculosis pathogenesis, we generated RelMtb point mutants that were either synthetase dead (RelMtbH344Y) or hydrolase dead (RelMtbH80A). M. tuberculosis strains expressing the synthetase-dead RelMtbH344Y mutant did not persist in mice, demonstrating that the RelMtb (p)ppGpp synthetase activity is required for maintaining bacterial titers during chronic infection. Deletion of a second predicted (p)ppGpp synthetase had no effect on pathogenesis, demonstrating that RelMtb was the major contributor to (p)ppGpp production during infection. Interestingly, expression of an allele encoding the hydrolase-dead RelMtb mutant, RelMtbH80A, that is incapable of hydrolyzing (p)ppGpp but still able to synthesize (p)ppGpp decreased the growth rate of M. tuberculosis and changed the colony morphology of the bacteria. In addition, RelMtbH80A expression during acute or chronic M. tuberculosis infection in mice was lethal to the infecting bacteria. These findings highlight a distinct role for RelMtb-mediated (p)ppGpp hydrolysis that is essential for M. tuberculosis pathogenesis. PMID:24123821

  16. Crystal structure of the Mycobacterium tuberculosis transcriptional regulator Rv0302.

    PubMed

    Chou, Tsung-Han; Delmar, Jared A; Wright, Catherine C; Kumar, Nitin; Radhakrishnan, Abhijith; Doh, Julia K; Licon, Meredith H; Bolla, Jani Reddy; Lei, Hsiang-Ting; Rajashankar, Kanagalaghatta R; Su, Chih-Chia; Purdy, Georgiana E; Yu, Edward W

    2015-12-01

    Mycobacterium tuberculosis is a pathogenic bacterial species, which is neither Gram positive nor Gram negative. It has a unique cell wall, making it difficult to kill and conferring resistance to antibiotics that disrupt cell wall biosynthesis. Thus, the mycobacterial cell wall is critical to the virulence of these pathogens. Recent work shows that the mycobacterial membrane protein large (MmpL) family of transporters contributes to cell wall biosynthesis by exporting fatty acids and lipidic elements of the cell wall. The expression of the Mycobacterium tuberculosis MmpL proteins is controlled by a complicated regulatory network system. Here we report crystallographic structures of two forms of the TetR-family transcriptional regulator Rv0302, which participates in regulating the expression of MmpL proteins. The structures reveal a dimeric, two-domain molecule with architecture consistent with the TetR family of regulators. Comparison of the two Rv0302 crystal structures suggests that the conformational changes leading to derepression may be due to a rigid body rotational motion within the dimer interface of the regulator. Using fluorescence polarization and electrophoretic mobility shift assays, we demonstrate the recognition of promoter and intragenic regions of multiple mmpL genes by this protein. In addition, our isothermal titration calorimetry and electrophoretic mobility shift experiments indicate that fatty acids may be the natural ligand of this regulator. Taken together, these experiments provide new perspectives on the regulation of the MmpL family of transporters. PMID:26362239

  17. Accurate Detection of Rifampicin-Resistant Mycobacterium Tuberculosis Strains

    PubMed Central

    Song, Keum-Soo; Nimse, Satish Balasaheb; Kim, Hee Jin; Yang, Jeongseong; Kim, Taisun

    2016-01-01

    In 2013 alone, the death rate among the 9.0 million people infected with Mycobacterium tuberculosis (TB) worldwide was around 14%, which is unacceptably high. An empiric treatment of patients infected with TB or drug-resistant Mycobacterium tuberculosis (MDR-TB) strain can also result in the spread of MDR-TB. The diagnostic tools which are rapid, reliable, and have simple experimental protocols can significantly help in decreasing the prevalence rate of MDR-TB strain. We report the evaluation of the 9G technology based 9G DNAChips that allow accurate detection and discrimination of TB and MDR-TB-RIF. One hundred and thirteen known cultured samples were used to evaluate the ability of 9G DNAChip in the detection and discrimination of TB and MDR-TB-RIF strains. Hybridization of immobilized probes with the PCR products of TB and MDR-TB-RIF strains allow their detection and discrimination. The accuracy of 9G DNAChip was determined by comparing its results with sequencing analysis and drug susceptibility testing. Sequencing analysis showed 100% agreement with the results of 9G DNAChip. The 9G DNAChip showed very high sensitivity (95.4%) and specificity (100%). PMID:26999135

  18. Structures of the Michaelis Complex (1.2A) and the Covalent Acyl Intermediate (2.0A ) of Cefamandole Bound in the Active Sites of the Mycobacterium tuberculosis beta-Lactamase K72A and E166A Mutants

    SciTech Connect

    L Tremblay; h Xu; J Blanchard

    2011-12-31

    The genome of Mycobacterium tuberculosis (TB) contains a gene that encodes a highly active {beta}-lactamase, BlaC, that imparts TB with resistance to {beta}-lactam chemotherapy. The structure of covalent BlaC-{beta}-lactam complexes suggests that active site residues K73 and E166 are essential for acylation and deacylation, respectively. We have prepared the K73A and E166A mutant forms of BlaC and have determined the structures of the Michaelis complex of cefamandole and the covalently bound acyl intermediate of cefamandole at resolutions of 1.2 and 2.0 {angstrom}, respectively. These structures provide insight into the details of the catalytic mechanism.

  19. Acquired Drug Resistance in Mycobacterium tuberculosis and Poor Outcomes among Patients with Multidrug-Resistant Tuberculosis

    PubMed Central

    Kipiani, Maia; Mirtskhulava, Veriko; Tukvadze, Nestani; Magee, Matthew J.; Blumberg, Henry M.

    2015-01-01

    Rates and risk factors for acquired drug resistance and association with outcomes among patients with multidrug-resistant tuberculosis (MDR TB) are not well defined. In an MDR TB cohort from the country of Georgia, drug susceptibility testing for second-line drugs (SLDs) was performed at baseline and every third month. Acquired resistance was defined as any SLD whose status changed from susceptible at baseline to resistant at follow-up. Among 141 patients, acquired resistance in Mycobacterium tuberculosis was observed in 19 (14%); prevalence was 9.1% for ofloxacin and 9.8% for capreomycin or kanamycin. Baseline cavitary disease and resistance to >6 drugs were associated with acquired resistance. Patients with M. tuberculosis that had acquired resistance were at significantly increased risk for poor treatment outcome compared with patients without these isolates (89% vs. 36%; p<0.01). Acquired resistance occurs commonly among patients with MDR TB and impedes successful treatment outcomes. PMID:25993036

  20. Novel multiplex real-time PCR diagnostic assay for identification and differentiation of Mycobacterium tuberculosis, Mycobacterium canettii, and Mycobacterium tuberculosis complex strains.

    PubMed

    Reddington, Kate; O'Grady, Justin; Dorai-Raj, Siobhan; Maher, Majella; van Soolingen, Dick; Barry, Thomas

    2011-02-01

    Tuberculosis (TB) in humans is caused by members of the Mycobacterium tuberculosis complex (MTC). Rapid detection of the MTC is necessary for the timely initiation of antibiotic treatment, while differentiation between members of the complex may be important to guide the appropriate antibiotic treatment and provide epidemiological information. In this study, a multiplex real-time PCR diagnostics assay using novel molecular targets was designed to identify the MTC while simultaneously differentiating between M. tuberculosis and M. canettii. The lepA gene was targeted for the detection of members of the MTC, the wbbl1 gene was used for the differentiation of M. tuberculosis and M. canettii from the remainder of the complex, and a unique region of the M. canettii genome, a possible novel region of difference (RD), was targeted for the specific identification of M. canettii. The multiplex real-time PCR assay was tested using 125 bacterial strains (64 MTC isolates, 44 nontuberculosis mycobacteria [NTM], and 17 other bacteria). The assay was determined to be 100% specific for the mycobacteria tested. Limits of detection of 2.2, 2.17, and 0.73 cell equivalents were determined for M. tuberculosis/M. canettii, the MTC, and M. canettii, respectively, using probit regression analysis. Further validation of this diagnostics assay, using clinical samples, should demonstrate its potential for the rapid, accurate, and sensitive diagnosis of TB caused by M. tuberculosis, M. canettii, and the other members of the MTC.

  1. Molecular Epidemiology of Mycobacterium tuberculosis Isolates in 100 Patients With Tuberculosis Using Pulsed Field Gel Electrophoresis

    PubMed Central

    Pooideh, Mohammad; Jabbarzadeh, Ismail; Ranjbar, Reza; Saifi, Mahnaz

    2015-01-01

    Background: Tuberculosis (TB) is a widespread infectious disease. Today, TB has created a public health crisis in the world. Genotyping of Mycobacterium tuberculosis isolates is useful for surveying the dynamics of TB infection, identifying new outbreaks, and preventing the disease. Different molecular methods for clustering of M. tuberculosis isolates have been used. Objectives: During a one year study of genotyping, 100 M. tuberculosis isolates from patients referred to Pasteur Institute of Iran were collected and their genotyping was accomplished using pulsed field gel electrophoresis (PFGE) method. Materials and Methods: Identification of all M. tuberculosis isolates was accomplished using standard biochemical and species-specific polymerase chain reaction (PCR) methods. Antibiotic susceptibility tests were performed using proportional method. After preparing PFGE plaques for each isolate of M. tuberculosis, XbaI restriction enzyme was applied for genome digestion. Finally, the digested DNA fragments were separated on 1% agarose gel and analyzed with GelCompar II software. Results: Genotyping of the studied isolates in comparison with the molecular weight marker revealed two common types; pulsotype A with 71 isolates and one multidrug resistant mycobacterium (MDR) case, and pulsotype B including 29 isolates and three MDR cases. No correlation between the antibiotypes and pulsotypes was observed. Conclusions: Molecular epidemiology studies of infectious diseases have been useful when bacterial isolates have been clustered in a period of time and in different geographical regions with variable antibiotic resistance patterns. In spite of high geographical differences and different antibiotic resistant patterns, low genetic diversity among the studied TB isolates may refer to the low rate of mutations in XbaI restriction sites in the mycobacterial genome. We also identified three MDR isolates in low-incidence pulsotype B, which could be disseminated and is highly

  2. Rapid susceptibility testing of Mycobacterium avium complex and Mycobacterium tuberculosis isolated from AIDS patients

    NASA Technical Reports Server (NTRS)

    Dhople, Arvind M.

    1994-01-01

    In ominous projections issued by both U.S. Public Health Service and the World Health Organization, the epidemic of HIV infection will continue to rise more rapidly worldwide than predicted earlier. The AIDS patients are susceptible to diseases called opportunistic infections of which tuberculosis and Mycobacterium avium complex (MAC) infection are most common. This has created an urgent need to uncover new drugs for the treatment of these infections. In the seventies, NASA scientists at Goddard Space Flight Center, Greenbelt, MD, had adopted a biochemical indicator, adenosine triphosphate (ATP), to detect presence of life in extraterrestrial space. We proposed to develop ATP assay technique to determine sensitivity of antibacterial compounds against MAC and M. tuberculosis.

  3. Phosphorylation of InhA inhibits mycolic acid biosynthesis and growth of Mycobacterium tuberculosis

    SciTech Connect

    Molle, Virginie; Gulten, Gulcin; Vilchèze, Catherine; Veyron-Churlet, Romain; Zanella-Cléon, Isabelle; Sacchettini, James C.; Jacobs, Jr, William R.; Kremer, Laurent

    2011-08-24

    The remarkable survival ability of Mycobacterium tuberculosis in infected hosts is related to the presence of cell wall-associated mycolic acids. Despite their importance, the mechanisms that modulate expression of these lipids in response to environmental changes are unknown. Here we demonstrate that the enoyl-ACP reductase activity of InhA, an essential enzyme of the mycolic acid biosynthetic pathway and the primary target of the anti-tubercular drug isoniazid, is controlled via phosphorylation. Thr-266 is the unique kinase phosphoacceptor, both in vitro and in vivo. The physiological relevance of Thr-266 phosphorylation was demonstrated using inhA phosphoablative (T266A) or phosphomimetic (T266D/E) mutants. Enoyl reductase activity was severely impaired in the mimetic mutants in vitro, as a consequence of a reduced binding affinity to NADH. Importantly, introduction of inhA{_}T266D/E failed to complement growth and mycolic acid defects of an inhA-thermosensitive Mycobacterium smegmatis strain, in a similar manner to what is observed following isoniazid treatment. This study suggests that phosphorylation of InhA may represent an unusual mechanism that allows M. tuberculosis to regulate its mycolic acid content, thus offering a new approach to future anti-tuberculosis drug development.

  4. Syntheses of Mycobactin Analogs as Potent and Selective Inhibitors of Mycobacterium tuberculosis

    PubMed Central

    Juárez-Hernández, Raúl E.; Franzblau, Scott G.

    2012-01-01

    Three analogs of mycobactin T, the siderophore secreted by Mycobacterium tuberculosis (Mtb) were synthesized and screened for their antibiotic activity against Mtb H37Rv and a broad panel of Gram-positive and Gram-negative bacteria. The synthetic mycobactins were potent (MIC90 0.02–0.88 μM in 7H12 media) and selective Mtb inhibitors, with no inhibitory activity observed against any other of the microorganisms tested. The maleimide-containing analog 40 represents a versatile platform for the development of mycobactin-drug conjugates, as well as other applications. PMID:22895786

  5. MetaMerge: scaling up genome-scale metabolic reconstructions with application to Mycobacterium tuberculosis

    PubMed Central

    2012-01-01

    Reconstructed models of metabolic networks are widely used for studying metabolism in various organisms. Many different reconstructions of the same organism often exist concurrently, forcing researchers to choose one of them at the exclusion of the others. We describe MetaMerge, an algorithm for semi-automatically reconciling a pair of existing metabolic network reconstructions into a single metabolic network model. We use MetaMerge to combine two published metabolic networks for Mycobacterium tuberculosis into a single network, which allows many reactions that could not be active in the individual models to become active, and predicts essential genes with a higher positive predictive value. PMID:22292986

  6. Tuberculosis in Elephants: Antibody Responses to Defined Antigens of Mycobacterium tuberculosis, Potential for Early Diagnosis, and Monitoring of Treatment

    PubMed Central

    Lyashchenko, Konstantin P.; Greenwald, Rena; Esfandiari, Javan; Olsen, John H.; Ball, Ray; Dumonceaux, Genevieve; Dunker, Freeland; Buckley, Carol; Richard, Michael; Murray, Suzan; Payeur, Janet B.; Andersen, Peter; Pollock, John M.; Mikota, Susan; Miller, Michele; Sofranko, Denise; Waters, W. Ray

    2006-01-01

    Tuberculosis (TB) in elephants is a re-emerging zoonotic disease caused primarily by Mycobacterium tuberculosis. Current diagnosis relies on trunk wash culture, the only officially recognized test, which has serious limitations. Innovative and efficient diagnostic methods are urgently needed. Rapid identification of infected animals is a crucial prerequisite for more effective control of TB, as early diagnosis allows timely initiation of chemotherapy. Serology has diagnostic potential, although key antigens have not been identified and optimal immunoassay formats are not established. To characterize the humoral responses in elephant TB, we tested 143 serum samples collected from 15 elephants over time. These included 48 samples from five culture-confirmed TB cases, of which four were in Asian elephants infected with M. tuberculosis and one was in an African elephant with Mycobacterium bovis. Multiantigen print immunoassay (MAPIA) employing a panel of 12 defined antigens was used to identify serologic correlates of active disease. ESAT-6 was the immunodominant antigen recognized in elephant TB. Serum immunoglobulin G antibodies to ESAT-6 and other proteins were detected up to 3.5 years prior to culture of M. tuberculosis from trunk washes. Antibody levels to certain antigens gradually decreased in response to antitubercular therapy, suggesting the possibility of treatment monitoring. In addition to MAPIA, serum samples were evaluated with a recently developed rapid test (RT) based on lateral flow technology (ElephantTB STAT-PAK). Similarly to MAPIA, infected elephants were identified using the RT up to 4 years prior to positive culture. These findings demonstrate the potential for TB surveillance and treatment monitoring using the RT and MAPIA, respectively. PMID:16829608

  7. Global Effects of Inactivation of the Pyruvate Kinase Gene in the Mycobacterium tuberculosis Complex▿ †

    PubMed Central

    Chavadi, Sivagamisundaram; Wooff, Esen; Coldham, Nicholas G.; Sritharan, Manjula; Hewinson, R. Glyn; Gordon, Stephen V.; Wheeler, Paul R.

    2009-01-01

    To better understand the global effects of “natural” lesions in genes involved in the pyruvate metabolism in Mycobacterium bovis, null mutations were made in the Mycobacterium tuberculosis H37Rv ald and pykA genes to mimic the M. bovis situation. Like M. bovis, the M. tuberculosis ΔpykA mutant yielded dysgonic colonies on solid medium lacking pyruvate, whereas colony morphology was eugonic on pyruvate-containing medium. Global effects of the loss of the pykA gene, possibly underlying colony morphology, were investigated by using proteomics on cultures grown in the same conditions. The levels of Icd2 increased and those of Icl and PckA decreased in the ΔpykA knockout. Proteomics suggested that the synthesis of enzymes involved in fatty acid and lipid biosynthesis were decreased, whereas those involved in β-oxidation were increased in the M. tuberculosis ΔpykA mutant, as confirmed by direct assays for these activities. Thus, the loss of pykA from M. tuberculosis results in fatty acids being used principally for energy production, in contrast to the situation in the host when carbon from fatty acids is conserved through the glyoxylate cycle and gluconeogenesis; when an active pykA gene was introduced into M. bovis, the opposite effects occurred. Proteins involved in oxidative stress—AhpC, KatG, and SodA—showed increased synthesis in the ΔpykA mutant, and iron-regulated proteins were also affected. Ald levels were decreased in the ΔpykA knockout, explaining why an M. tuberculosis ΔpykA Δald double mutant showed little additional phenotypic effect. Overall, these data show that the loss of the pykA gene has powerful, global effects on proteins associated with central metabolism. PMID:19820096

  8. Bacterial Membrane Vesicles Mediate the Release of Mycobacterium tuberculosis Lipoglycans and Lipoproteins from Infected Macrophages.

    PubMed

    Athman, Jaffre J; Wang, Ying; McDonald, David J; Boom, W Henry; Harding, Clifford V; Wearsch, Pamela A

    2015-08-01

    Mycobacterium tuberculosis is an intracellular pathogen that infects lung macrophages and releases microbial factors that regulate host defense. M. tuberculosis lipoproteins and lipoglycans block phagosome maturation, inhibit class II MHC Ag presentation, and modulate TLR2-dependent cytokine production, but the mechanisms for their release during infection are poorly defined. Furthermore, these molecules are thought to be incorporated into host membranes and released from infected macrophages within exosomes, 40-150-nm extracellular vesicles that derive from multivesicular endosomes. However, our studies revealed that extracellular vesicles released from infected macrophages include two distinct, largely nonoverlapping populations: one containing host cell markers of exosomes (CD9, CD63) and the other containing M. tuberculosis molecules (lipoglycans, lipoproteins). These vesicle populations are similar in size but have distinct densities, as determined by separation on sucrose gradients. Release of lipoglycans and lipoproteins from infected macrophages was dependent on bacterial viability, implicating active bacterial mechanisms in their secretion. Consistent with recent reports of extracellular vesicle production by bacteria (including M. tuberculosis), we propose that bacterial membrane vesicles are secreted by M. tuberculosis within infected macrophages and subsequently are released into the extracellular environment. Furthermore, extracellular vesicles released from M. tuberculosis-infected cells activate TLR2 and induce cytokine responses by uninfected macrophages. We demonstrate that these activities derive from the bacterial membrane vesicles rather than exosomes. Our findings suggest that bacterial membrane vesicles are the primary means by which M. tuberculosis exports lipoglycans and lipoproteins to impair effector functions of infected macrophages and circulate bacterial components beyond the site of infection to regulate immune responses by uninfected

  9. Genome Sequence of Mycobacterium tuberculosis C2, a Cerebrospinal Fluid Clinical Isolate from Central India

    PubMed Central

    Bhullar, Shradha S.; More, Ravi P.; Puranik, Sampada; Taori, Girdhar M.; Daginawala, Hatim F.

    2014-01-01

    We report the annotated genome sequence of a Mycobacterium tuberculosis clinical isolate from the cerebrospinal fluid of a tuberculous meningitis patient admitted to the Central India Institute of Medical Sciences, Nagpur, India. PMID:25146143

  10. [Pyrazinamide monoresistant Mycobacterium tuberculosis in Manisa region, Turkey].

    PubMed

    Ozkütük, Nuri; Ecemiş, Talat; Sürücüoğlu, Süheyla

    2008-10-01

    Pyrazinamide (PZA) is a primary antituberculous drug. BACTEC 460TB is the recommended reference method for the detection of PZA resistance in Mycobacterium tuberculosis. This method is more expensive than the conventional susceptibility methods and therefore, it is recommended that each laboratory should establish their own protocol for the inclusion of PZA in the panel of primary drugs tested. One of the most important factors that help this decision is the prevalence of PZA resistance, particularly PZA monoresistance in the related community. The aim of the present study was to determine the extent of PZA monoresistance in M. tuberculosis complex (MTBC) isolates in our region. In this study, PZA susceptibility testing of 109 MTBC strains (susceptible to isoniazid, rifampicin, ethambutol and streptomycin) isolated from Manisa province in the Aegean region of Turkey was performed by using the BACTEC 460TB radiometric system (Becton Dickinson, MD). Two (1.8%) of the 109 isolates which were susceptible to all primary drugs revealed monoresistance against PZA. One of the PZA-monoresistant isolates has been identified as M. bovis and the other as M. tuberculosis by molecular method (Genotype MTBC, Hain Lifescience, Germany). The results of our study indicated that since the rate of PZA monoresistance was low, susceptibility testing of a panel of primary drugs without PZA may be an economical alternative in our region.

  11. Pulmonary Tuberculosis Caused by Mycobacterium bovis in China

    PubMed Central

    Jiang, Guanglu; Wang, Guirong; Chen, Suting; Yu, Xia; Wang, Xiaobo; Zhao, Liping; Ma, Yifeng; Dong, Lingling; Huang, Hairong

    2015-01-01

    The epidemiology of Mycobacterium bovis infection in humans in China is unknown. In this study, pulmonary tuberculosis caused by M. bovis in China was studied. A total of 4069 clinical strains isolated from sputa during the 2007–2009 nationwide surveillance of drug-resistant tuberculosis in China were analyzed. M. bovis was identified by para-nitrobenzoic acid and thiophen-2-carboxylic acid hydrazide growth tests, spoligotyping and multiplex PCR amplification. In addition, a total of 1828 clinical specimens were recruited from Beijing Chest Hospital (Beijing, China) for Löwenstein-Jensen (LJ) culture, both on standard LJ medium and LJ medium containing 4.5 mg/ml(W/V) sodium pyruvate, the latter being the preferred medium for M. bovis growth. The isolates which demonstrated more vigorous on pyruvate containing medium than on standard LJ medium were then identified by multiplex PCR amplification. Only 1 isolate from the nationwide surveillance was confirmed as M. bovis-BCG. The isolate belonged to a predominant spoligotype SB0120 (ST482). In addition, no M. bovis isolate was acquired by the continuous screening step in Beijing Chest Hospital. M. bovis has a negligible contribution to pulmonary tuberculosis in China, so neither laboratory identification nor clinical treatment of M. bovis infection need be considered in routine work. PMID:25736338

  12. Proteomic analysis of ofloxacin-mono resistant Mycobacterium tuberculosis isolates.

    PubMed

    Lata, Manju; Sharma, Divakar; Deo, Nirmala; Tiwari, Pramod Kumar; Bisht, Deepa; Venkatesan, Krishnamurthy

    2015-09-01

    Drug resistance particularly, multi drug resistance tuberculosis (MDR-TB) has emerged as a major problem in the chemotherapy of tuberculosis. Ofloxacin (OFX) has been used as second-line drug against MDR-TB. The principal target of the OFX is DNA gyrase encoded by gyrA and gyrB genes. Many explanations have been proposed for drug resistance to OFX but still some mechanisms are unknown. As proteins manifest most of the biological processes, these are attractive targets for developing drugs and diagnostics/therapeutics. We examined the OFX resistant Mycobacterium tuberculosis isolates by proteomic approach (2DE-MALDI-TOF-MS) and bioinformatic tools under OFX induced conditions. Our study showed fourteen proteins (Rv0685, Rv0363c, Rv2744c, Rv3803c, Rv2534c, Rv2140c, Rv1475c, Rv0440, Rv2245, Rv1436, Rv3551, Rv0148, Rv2882c and Rv0733) with increased intensities in OFX resistant and OFX induced as compared to susceptible isolates. Bioinformatic analysis of hypothetical proteins (Rv2744c, Rv2140c, Rv3551 and Rv0148) revealed the presence of conserved motifs and domains. Molecular docking showed proper interaction of OFX with residues of conserved motifs. These proteins might be involved in the OFX modulation/neutralization and act as novel resistance mechanisms as well as potential for diagnostics and drug targets against OFX resistance. This article is part of a Special Issue entitled: Proteomics in India.

  13. Mycobacterium tuberculosis Transcription Machinery: Ready To Respond to Host Attacks

    PubMed Central

    Flentie, Kelly; Garner, Ashley L.

    2016-01-01

    Regulating responses to stress is critical for all bacteria, whether they are environmental, commensal, or pathogenic species. For pathogenic bacteria, successful colonization and survival in the host are dependent on adaptation to diverse conditions imposed by the host tissue architecture and the immune response. Once the bacterium senses a hostile environment, it must enact a change in physiology that contributes to the organism's survival strategy. Inappropriate responses have consequences; hence, the execution of the appropriate response is essential for survival of the bacterium in its niche. Stress responses are most often regulated at the level of gene expression and, more specifically, transcription. This minireview focuses on mechanisms of regulating transcription initiation that are required by Mycobacterium tuberculosis to respond to the arsenal of defenses imposed by the host during infection. In particular, we highlight how certain features of M. tuberculosis physiology allow this pathogen to respond swiftly and effectively to host defenses. By enacting highly integrated and coordinated gene expression changes in response to stress, M. tuberculosis is prepared for battle against the host defense and able to persist within the human population. PMID:26883824

  14. Mycobacterium tuberculosis Transcription Machinery: Ready To Respond to Host Attacks.

    PubMed

    Flentie, Kelly; Garner, Ashley L; Stallings, Christina L

    2016-05-01

    Regulating responses to stress is critical for all bacteria, whether they are environmental, commensal, or pathogenic species. For pathogenic bacteria, successful colonization and survival in the host are dependent on adaptation to diverse conditions imposed by the host tissue architecture and the immune response. Once the bacterium senses a hostile environment, it must enact a change in physiology that contributes to the organism's survival strategy. Inappropriate responses have consequences; hence, the execution of the appropriate response is essential for survival of the bacterium in its niche. Stress responses are most often regulated at the level of gene expression and, more specifically, transcription. This minireview focuses on mechanisms of regulating transcription initiation that are required by Mycobacterium tuberculosis to respond to the arsenal of defenses imposed by the host during infection. In particular, we highlight how certain features of M. tuberculosis physiology allow this pathogen to respond swiftly and effectively to host defenses. By enacting highly integrated and coordinated gene expression changes in response to stress,M. tuberculosis is prepared for battle against the host defense and able to persist within the human population.

  15. Genotyping of ancient Mycobacterium tuberculosis strains reveals historic genetic diversity

    PubMed Central

    Müller, Romy; Roberts, Charlotte A.; Brown, Terence A.

    2014-01-01

    The evolutionary history of the Mycobacterium tuberculosis complex (MTBC) has previously been studied by analysis of sequence diversity in extant strains, but not addressed by direct examination of strain genotypes in archaeological remains. Here, we use ancient DNA sequencing to type 11 single nucleotide polymorphisms and two large sequence polymorphisms in the MTBC strains present in 10 archaeological samples from skeletons from Britain and Europe dating to the second–nineteenth centuries AD. The results enable us to assign the strains to groupings and lineages recognized in the extant MTBC. We show that at least during the eighteenth–nineteenth centuries AD, strains of M. tuberculosis belonging to different genetic groups were present in Britain at the same time, possibly even at a single location, and we present evidence for a mixed infection in at least one individual. Our study shows that ancient DNA typing applied to multiple samples can provide sufficiently detailed information to contribute to both archaeological and evolutionary knowledge of the history of tuberculosis. PMID:24573854

  16. A New Approach for Pyrazinamide Susceptibility Testing in Mycobacterium tuberculosis

    PubMed Central

    Loli, Sebastian; Gilman, Robert H.; Gutierrez, Andrés; Fuentes, Patricia; Cotrina, Milagros; Kirwan, Daniela; Sheen, Patricia

    2012-01-01

    Background: Pyrazinamide (PZA) is an important drug in the treatment of tuberculosis. Microbiological methods of PZA susceptibility testing are controversial and have low reproducibility. After conversion of PZA into pyrazinoic acid (POA) by the bacterial pyrazinamidase enzyme, the drug is expelled from the bacteria by an efflux pump. Objective: To evaluate the rate of POA extrusion from Mycobacterium tuberculosis as a parameter to detect PZA resistance. Methods: The rate of POA extrusion and PZA susceptibility determined by BACTEC 460 were measured for 34 strains in a previous study. PZA resistance was modeled in a logistic regression with the pyrazinoic efflux rate. Result: POA efflux rate predicted PZA resistance with 70.83%–92.85% sensitivity and 100% specificity compared with BACTEC 460. Conclusion: POA efflux rate could be a useful tool for predicting PZA resistance in M. tuberculosis. Further exploration of this approach may lead to the development of new tools for diagnosing PZA resistance, which may be of public health importance. PMID:22372927

  17. Copper resistance is essential for virulence of Mycobacterium tuberculosis.

    PubMed

    Wolschendorf, Frank; Ackart, David; Shrestha, Tej B; Hascall-Dove, Laurel; Nolan, Scott; Lamichhane, Gyanu; Wang, Ying; Bossmann, Stefan H; Basaraba, Randall J; Niederweis, Michael

    2011-01-25

    Copper (Cu) is essential for many biological processes, but is toxic when present in excessive amounts. In this study, we provide evidence that Cu plays a crucial role in controlling tuberculosis. A Mycobacterium tuberculosis (Mtb) mutant lacking the outer membrane channel protein Rv1698 accumulated 100-fold more Cu and was more susceptible to Cu toxicity than WT Mtb. Similar phenotypes were observed for a M. smegmatis mutant lacking the homolog Ms3747, demonstrating that these mycobacterial copper transport proteins B (MctB) are essential for Cu resistance and maintenance of low intracellular Cu levels. Guinea pigs responded to infection with Mtb by increasing the Cu concentration in lung lesions. Loss of MctB resulted in a 1,000- and 100-fold reduced bacterial burden in lungs and lymph nodes, respectively, in guinea pigs infected with Mtb. In mice, the persistence defect of the Mtb mctB mutant was exacerbated by the addition of Cu to the diet. These experiments provide evidence that Cu is used by the mammalian host to control Mtb infection and that Cu resistance mechanisms are crucial for Mtb virulence. Importantly, Mtb is much more susceptible to Cu than other bacteria and is killed in vitro by Cu concentrations lower than those found in phagosomes of macrophages. Hence, this study reveals an Achilles heel of Mtb that might be a promising target for tuberculosis chemotherapy. PMID:21205886

  18. Tuberculosis from Mycobacterium bovis in Binational Communities, United States

    PubMed Central

    Moore, Marisa; Moser, Kathleen S.; Brodine, Stephanie K.; Strathdee, Steffanie A.

    2008-01-01

    The epidemiology of tuberculosis (TB) in the United States is changing as the incidence of disease becomes more concentrated in foreign-born persons. Mycobacterium bovis appears to be contributing substantially to the TB incidence in some binational communities with ties to Mexico. We conducted a retrospective analysis of TB case surveillance data from the San Diego, California, region from 1994 through 2005 to estimate incidence trends, identify correlates of M. bovis disease, and evaluate risk factors for deaths during treatment. M. bovis accounted for 45% (62/138) of all culture-positive TB cases in children (<15 years of age) and 6% (203/3,153) of adult cases. M. bovis incidence increased significantly (p = 0.002) while M. tuberculosis incidence declined (p<0.001). Almost all M. bovis cases from 2001 through 2005 were in persons of Hispanic ethnicity. Persons with M. bovis were 2.55× (p = 0.01) as likely to die during treatment than those with M. tuberculosis. PMID:18507901

  19. Adaptation to Environmental Stimuli within the Host: Two-Component Signal Transduction Systems of Mycobacterium tuberculosis

    PubMed Central

    Bretl, Daniel J.; Demetriadou, Chrystalla; Zahrt, Thomas C.

    2011-01-01

    Summary: Pathogenic microorganisms encounter a variety of environmental stresses following infection of their respective hosts. Mycobacterium tuberculosis, the etiological agent of tuberculosis, is an unusual bacterial pathogen in that it is able to establish lifelong infections in individuals within granulomatous lesions that are formed following a productive immune response. Adaptation to this highly dynamic environment is thought to be mediated primarily through transcriptional reprogramming initiated in response to recognition of stimuli, including low-oxygen tension, nutrient depletion, reactive oxygen and nitrogen species, altered pH, toxic lipid moieties, cell wall/cell membrane-perturbing agents, and other environmental cues. To survive continued exposure to these potentially adverse factors, M. tuberculosis encodes a variety of regulatory factors, including 11 complete two-component signal transduction systems (TCSSs) and several orphaned response regulators (RRs) and sensor kinases (SKs). This report reviews our current knowledge of the TCSSs present in M. tuberculosis. In particular, we discuss the biochemical and functional characteristics of individual RRs and SKs, the environmental stimuli regulating their activation, the regulons controlled by the various TCSSs, and the known or postulated role(s) of individual TCSSs in the context of M. tuberculosis physiology and/or pathogenesis. PMID:22126994

  20. Potassium availability triggers Mycobacterium tuberculosis transition to, and resuscitation from, non-culturable (dormant) states.

    PubMed

    Salina, Elena G; Waddell, Simon J; Hoffmann, Nadine; Rosenkrands, Ida; Butcher, Philip D; Kaprelyants, Arseny S

    2014-10-01

    Dormancy in non-sporulating bacteria is an interesting and underexplored phenomenon with significant medical implications. In particular, latent tuberculosis may result from the maintenance of Mycobacterium tuberculosis bacilli in non-replicating states in infected individuals. Uniquely, growth of M. tuberculosis in aerobic conditions in potassium-deficient media resulted in the generation of bacilli that were non-culturable (NC) on solid media but detectable in liquid media. These bacilli were morphologically distinct and tolerant to cell-wall-targeting antimicrobials. Bacterial counts on solid media quickly recovered after washing and incubating bacilli in fresh resuscitation media containing potassium. This resuscitation of growth occurred too quickly to be attributed to M. tuberculosis replication. Transcriptomic and proteomic profiling through adaptation to, and resuscitation from, this NC state revealed a switch to anaerobic respiration and a shift to lipid and amino acid metabolism. High concordance with mRNA signatures derived from M. tuberculosis infection models suggests that analogous NC mycobacterial phenotypes may exist during disease and may represent unrecognized populations in vivo. Resuscitation of NC bacilli in potassium-sufficient media was characterized by time-dependent activation of metabolic pathways in a programmed series of processes that probably transit bacilli through challenging microenvironments during infection. PMID:25320096

  1. Mycobacterium tuberculosis Rv0899 defines a family of membrane proteins widespread in nitrogen-fixing bacteria

    PubMed Central

    Marassi, Francesca M.

    2011-01-01

    The Mycobacterium tuberculosis membrane protein Rv0899 confers adaptation of the bacterium to acidic environments. Due to strong sequence homology of its C-terminus to bacterial OmpA-like domains, Rv0899 has been proposed to constitute an outer membrane porin of M. tuberculosis. However, OmpA-like domains are widespread in a wide variety of bacterial proteins with different functions. Furthermore, the three-dimensional structure of Rv0899 does not contain a transmembrane β-barrel, and recent evidence demonstrates that it does not have porin activity. Instead, the rv0899 gene is part of an operon (rv0899-rv0901) that is required for fast ammonia secretion, pH neutralization and growth of M. tuberculosis in acidic environments. The mechanism whereby these functions are accomplished is not known. To gain further functional insights, a targeted search of the genomic databases was performed for proteins with sequence similarity beyond the OmpA-like C-terminus. The results presented here, show that Rv0899-like proteins are widespread in bacteria with functions in nitrogen metabolism, adaptation to nutrient poor environments, and/or establishing symbiosis with the host organism, and appear to form a protein family. These findings suggest that M. tuberculosis Rv0899 may also assist similar processes and lend further support to its role in ammonia secretion and M. tuberculosis adaptation to the host environment. PMID:21905117

  2. Structural and Biochemical Characterization of Compounds Inhibiting Mycobacterium tuberculosis Pantothenate Kinase*

    PubMed Central

    Björkelid, Christofer; Bergfors, Terese; Raichurkar, Anand Kumar V.; Mukherjee, Kakoli; Malolanarasimhan, Krishnan; Bandodkar, Balachandra; Jones, T. Alwyn

    2013-01-01

    Mycobacterium tuberculosis, the bacterial causative agent of tuberculosis, currently affects millions of people. The emergence of drug-resistant strains makes development of new antibiotics targeting the bacterium a global health priority. Pantothenate kinase, a key enzyme in the universal biosynthesis of the essential cofactor CoA, was targeted in this study to find new tuberculosis drugs. The biochemical characterizations of two new classes of compounds that inhibit pantothenate kinase from M. tuberculosis are described, along with crystal structures of their enzyme-inhibitor complexes. These represent the first crystal structures of this enzyme with engineered inhibitors. Both classes of compounds bind in the active site of the enzyme, overlapping with the binding sites of the natural substrate and product, pantothenate and phosphopantothenate, respectively. One class of compounds also interferes with binding of the cofactor ATP. The complexes were crystallized in two crystal forms, one of which is in a new space group for this enzyme and diffracts to the highest resolution reported for any pantothenate kinase structure. These two crystal forms allowed, for the first time, modeling of the cofactor-binding loop in both open and closed conformations. The structures also show a binding mode of ATP different from that previously reported for the M. tuberculosis enzyme but similar to that in the pantothenate kinases of other organisms. PMID:23661699

  3. Combined Bioinformatic and Rational Design Approach To Develop Antimicrobial Peptides against Mycobacterium tuberculosis

    PubMed Central

    Pearson, C. Seth; Kloos, Zachary; Murray, Brian; Tabe, Ebot; Gupta, Monica; Kwak, Jun Ha; Karande, Pankaj

    2016-01-01

    Drug-resistant pathogens are a growing problem, and novel strategies are needed to combat this threat. Among the most significant of these resistant pathogens is Mycobacterium tuberculosis, which is an unusually difficult microbial target due to its complex membrane. Here, we design peptides for specific activity against M. tuberculosis using a combination of “database filtering” bioinformatics, protein engineering, and de novo design. Several variants of these peptides are structurally characterized to validate the design process. The designed peptides exhibit potent activity (MIC values as low as 4 μM) against M. tuberculosis and also exhibit broad activity against a host of other clinically relevant pathogenic bacteria such as Gram-positive bacteria (Streptococcus) and Gram-negative bacteria (Escherichia coli). They also display excellent selectivity, with low cytotoxicity against cultured macrophages and lung epithelial cells. These first-generation antimicrobial peptides serve as a platform for the design of antibiotics and for investigating structure-activity relationships in the context of the M. tuberculosis membrane. The antimicrobial peptide design strategy is expected to be generalizable for any pathogen for which an activity database can be created. PMID:26902758

  4. Combined Bioinformatic and Rational Design Approach To Develop Antimicrobial Peptides against Mycobacterium tuberculosis.

    PubMed

    Pearson, C Seth; Kloos, Zachary; Murray, Brian; Tabe, Ebot; Gupta, Monica; Kwak, Jun Ha; Karande, Pankaj; McDonough, Kathleen A; Belfort, Georges

    2016-05-01

    Drug-resistant pathogens are a growing problem, and novel strategies are needed to combat this threat. Among the most significant of these resistant pathogens is Mycobacterium tuberculosis, which is an unusually difficult microbial target due to its complex membrane. Here, we design peptides for specific activity against M. tuberculosis using a combination of "database filtering" bioinformatics, protein engineering, and de novo design. Several variants of these peptides are structurally characterized to validate the design process. The designed peptides exhibit potent activity (MIC values as low as 4 μM) against M. tuberculosis and also exhibit broad activity against a host of other clinically relevant pathogenic bacteria such as Gram-positive bacteria (Streptococcus) and Gram-negative bacteria (Escherichia coli). They also display excellent selectivity, with low cytotoxicity against cultured macrophages and lung epithelial cells. These first-generation antimicrobial peptides serve as a platform for the design of antibiotics and for investigating structure-activity relationships in the context of the M. tuberculosis membrane. The antimicrobial peptide design strategy is expected to be generalizable for any pathogen for which an activity database can be created.

  5. Characterization and Inhibition of a Class II Diterpene Cyclase from Mycobacterium tuberculosis

    PubMed Central

    Mann, Francis M.; Prisic, Sladjana; Hu, Huayou; Xu, Meimei; Coates, Robert M.; Peters, Reuben J.

    2009-01-01

    Mycobacterium tuberculosis remains a widespread and devastating human pathogen, whose ability to infiltrate macrophage host cells from the human immune system is an active area of investigation. We have recently reported the discovery of a novel diterpene from M. tuberculosis, edaxadiene, whose ability to arrest phagosomal maturation in isolation presumably contributes to this critical process in M. tuberculosis infections. (Mann, F. M., Xu, M., Chen, X., Fulton, D. B., Russell, D. G., and Peters, R. J. (2009) J. Am. Chem. Soc., in press). Here, we present characterization of the class II diterpene cyclase that catalyzes the committed step in edaxadiene biosynthesis, i.e. the previously identified halimadienyl-diphosphate synthase (HPS; EC 5.5.1.16). Intriguingly, our kinetic analysis suggests a potential biochemical regulatory mechanism that triggers edaxadiene production upon phagosomal engulfment. Furthermore, we report characterization of potential HPS inhibitors: specifically, two related transition state analogs (15-aza-14,15-dihydrogeranylgeranyl diphosphate (7a) and 15-aza-14,15-dihydrogeranylgeranyl thiolodiphosphate (7b)) that exhibit very tight binding. Although arguably not suitable for clinical use, these nevertheless provide a basis for pharmaceutical design against this intriguing biosynthetic pathway. Finally, we provide evidence indicating that this pathway exists only in M. tuberculosis and is not functional in the closely related Mycobacterium bovis because of an inactivating frameshift in the HPS-encoding gene. Thus, we hypothesize that the inability to produce edaxadiene may be a contributing factor in the decreased infectivity and/or virulence of M. bovis relative to M. tuberculosis in humans. PMID:19574210

  6. Immunogenic membrane-associated proteins of Mycobacterium tuberculosis revealed by proteomics.

    PubMed

    Sinha, Sudhir; Kosalai, K; Arora, Shalini; Namane, Abdelkader; Sharma, Pawan; Gaikwad, Anil N; Brodin, Priscille; Cole, Stewart T

    2005-07-01

    Membrane-associated proteins of Mycobacterium tuberculosis offer a challenge, as well as an opportunity, in the quest for better therapeutic and prophylactic interventions against tuberculosis. The authors have previously reported that extraction with the detergent Triton X-114 (TX-114) is a useful step in proteomic analysis of mycobacterial cell membranes, and detergent-soluble membrane proteins of mycobacteria are potent stimulators of human T cells. In this study 1-D and 2-D gel electrophoresis-based protocols were used for the analysis of proteins in the TX-114 extract of M. tuberculosis membranes. Peptide mass mapping (using MALDI-TOF-MS, matrix assisted laser desorption/ionization time of flight mass spectrometry) of 116 samples led to the identification of 105 proteins, 9 of which were new to the M. tuberculosis proteome. Functional orthologues of 73 of these proteins were also present in Mycobacterium leprae, suggesting their relative importance. Bioinformatics predicted that as many as 73% of the proteins had a hydrophobic disposition. 1-D gel electrophoresis revealed more hydrophobic/transmembrane and basic proteins than 2-D gel electrophoresis. Identified proteins fell into the following major categories: protein synthesis, cell wall biogenesis/architecture and conserved hypotheticals/unknowns. To identify immunodominant proteins of the detergent phase (DP), 14 low-molecular-mass fractions prepared by continuous-elution gel electrophoresis were subjected to T cell activation assays using blood samples from BCG-vaccinated healthy donors from a tuberculosis endemic area. Analysis of the responses (cell proliferation and IFN-gamma production) showed that the immunodominance of certain DP fractions was most probably due to ribosomal proteins, which is consistent with both their specificity for mycobacteria and their abundance. Other membrane-associated proteins, including transmembrane proteins/lipoproteins and ESAT-6, did not appear to contribute

  7. Systems-based approaches to probing metabolic variation within the Mycobacterium tuberculosis complex.

    PubMed

    Lofthouse, Emma K; Wheeler, Paul R; Beste, Dany J V; Khatri, Bhagwati L; Wu, Huihai; Mendum, Tom A; Kierzek, Andrzej M; McFadden, Johnjoe

    2013-01-01

    The Mycobacterium tuberculosis complex includes bovine and human strains of the tuberculosis bacillus, including Mycobacterium tuberculosis, Mycobacterium bovis and the Mycobacterium bovis BCG vaccine strain. M. bovis has evolved from a M. tuberculosis-like ancestor and is the ancestor of the BCG vaccine. The pathogens demonstrate distinct differences in virulence, host range and metabolism, but the role of metabolic differences in pathogenicity is poorly understood. Systems biology approaches have been used to investigate the metabolism of M. tuberculosis, but not to probe differences between tuberculosis strains. In this study genome scale metabolic networks of M. bovis and M. bovis BCG were constructed and interrogated, along with a M. tuberculosis network, to predict substrate utilisation, gene essentiality and growth rates. The models correctly predicted 87-88% of high-throughput phenotype data, 75-76% of gene essentiality data and in silico-predicted growth rates matched measured rates. However, analysis of the metabolic networks identified discrepancies between in silico predictions and in vitro data, highlighting areas of incomplete metabolic knowledge. Additional experimental studies carried out to probe these inconsistencies revealed novel insights into the metabolism of these strains. For instance, that the reduction in metabolic capability observed in bovine tuberculosis strains, as compared to M. tuberculosis, is not reflected by current genetic or enzymatic knowledge. Hence, the in silico networks not only successfully simulate many aspects of the growth and physiology of these mycobacteria, but also provide an invaluable tool for future metabolic studies.

  8. Structure of the Covalent Adduct Formed Between Mycobacterium tuberculosis beta-Lactamase and Clavulanate

    SciTech Connect

    Tremblay,L.; Hugonnet, J.; Blanchard, J.

    2008-01-01

    The intrinsic resistance of Mycobacterium tuberculosis to the {beta}-lactam class of antibiotics arises from a chromosomally encoded, extended spectrum, class A {beta}-lactamase, BlaC. Herein, we report the X-ray crystallographic structure of BlaC inhibited with clavulanate at a resolution of 1.7 Angstroms with an R-factor value of 0.180 and R-free value of 0.212 for the m/z +154 clavulanate-derived fragment observed in the active site. Structural evidence reveals the presence of hydrogen bonds to the C1 carbonyl along with a coplanar arrangement of C1, C2, C3, and N4, which favors enolization to generate a trans-a, {beta}-eneamine, stabilizing the +154 adduct from hydrolysis. The irreversible inhibition of BlaC suggests that treatment of M. tuberculosis with a combination of a {beta}-lactam antibiotic and clavulanate may lead to rapid bactericidal activity.

  9. Mycobacterium tuberculosis IMPDH in Complexes with Substrates, Products and Antitubercular Compounds

    PubMed Central

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Gorla, Suresh Kumar; Wei, Yang; Mandapati, Kavitha; Zhang, Minjia; Maltseva, Natalia; Modi, Gyan; Boshoff, Helena I.; Gu, Minyi; Aldrich, Courtney; Cuny, Gregory D.; Hedstrom, Lizbeth; Joachimiak, Andrzej

    2015-01-01

    Tuberculosis (TB) remains a worldwide problem and the need for new drugs is increasingly more urgent with the emergence of multidrug- and extensively-drug resistant TB. Inosine 5’-monophosphate dehydrogenase 2 (IMPDH2) from Mycobacterium tuberculosis (Mtb) is an attractive drug target. The enzyme catalyzes the conversion of inosine 5’-monophosphate into xanthosine 5’-monophosphate with the concomitant reduction of NAD+ to NADH. This reaction controls flux into the guanine nucleotide pool. We report seventeen selective IMPDH inhibitors with antitubercular activity. The crystal structures of a deletion mutant of MtbIMPDH2 in the apo form and in complex with the product XMP and substrate NAD+ are determined. We also report the structures of complexes with IMP and three structurally distinct inhibitors, including two with antitubercular activity. These structures will greatly facilitate the development of MtbIMPDH2-targeted antibiotics. PMID:26440283

  10. Nicotinamidase/pyrazinamidase of Mycobacterium tuberculosis forms homo-dimers stabilized by disulfide bonds.

    PubMed

    Rueda, Daniel; Sheen, Patricia; Gilman, Robert H; Bueno, Carlos; Santos, Marco; Pando-Robles, Victoria; Batista, Cesar V; Zimic, Mirko

    2014-12-01

    Recombinant wild-pyrazinamidase from H37Rv Mycobacterium tuberculosis was analyzed by gel electrophoresis under differential reducing conditions to evaluate its quaternary structure. PZAse was fractionated by size exclusion chromatography under non-reducing conditions. PZAse activity was measured and mass spectrometry analysis was performed to determine the identity of proteins by de novo sequencing and to determine the presence of disulfide bonds. This study confirmed that M. tuberculosis wild type PZAse was able to form homo-dimers in vitro. Homo-dimers showed a slightly lower specific PZAse activity compared to monomeric PZAse. PZAse dimers were dissociated into monomers in response to reducing conditions. Mass spectrometry analysis confirmed the existence of disulfide bonds (C72-C138 and C138-C138) stabilizing the quaternary structure of the PZAse homo-dimer.

  11. Implication of the RD(Rio) Mycobacterium tuberculosis sublineage in multidrug resistant tuberculosis in Portugal.

    PubMed

    David, Susana; Duarte, Elsa L; Leite, Clarice Queico Fugimura; Ribeiro, João-Nuno; Maio, José-Nuno; Paixão, Eleonora; Portugal, Clara; Sancho, Luísa; Germano de Sousa, José

    2012-10-01

    Multidrug and extensively drug resistant Mycobacterium tuberculosis are a threat to tuberculosis control programs. Genotyping methods, such as spoligotyping and MIRU-VNTR typing (Mycobacterial Interspersed Repetitive Units), are useful in monitoring potentially epidemic strains and estimating strain phylogenetic lineages and/or genotypic families. M. tuberculosis Latin American Mediterranean (LAM) family is a major worldwide contributor to tuberculosis (TB). LAM specific molecular markers, Ag85C(103) single nucleotide polymorphism (SNP) and RD(Rio) long-sequence polymorphism (LSP), were used to characterize spoligotype signatures from 859 patient isolates from Portugal. LAM strains were found responsible for 57.7% of all tuberculosis cases. Strains with the RD(Rio) deletion (referred to as RD(Rio)) were estimated to represent 1/3 of all the strains and over 60% of the multidrug resistant (MDR) strains. The major spoligotype signature SIT20 belonging to the LAM1 RD(Rio) sublineage, represented close to 1/5th of all the strains, over 20% of which were MDR. Analysis of published datasets according to stipulated 12loci MIRU-VNTR RD(Rio) signatures revealed that 96.3% (129/134) of MDR and extensively drug resistant (XDR) clusters were RD(Rio). This is the first report associating the LAM RD(Rio) sublineage with MDR. These results are an important contribution to the monitoring of these strains with heightened transmission for future endeavors to arrest MDR-TB and XDR-TB.

  12. Differences in T-cell responses between Mycobacterium tuberculosis and Mycobacterium africanum-infected patients.

    PubMed

    Tientcheu, Leopold D; Sutherland, Jayne S; de Jong, Bouke C; Kampmann, Beate; Jafali, James; Adetifa, Ifedayo M; Antonio, Martin; Dockrell, Hazel M; Ota, Martin O

    2014-05-01

    In The Gambia, Mycobacterium tuberculosis (Mtb) and Mycobacterium africanum (Maf) are major causes of tuberculosis (TB). Maf is more likely to cause TB in immune suppressed individuals, implying differences in virulence. Despite this, few studies have assessed the underlying immunity to the two pathogens in human. In this study, we analyzed T-cell responses from 19 Maf- and 29 Mtb-infected HIV-negative patients before and after TB chemotherapy following overnight stimulation of whole blood with TB-specific antigens. Before treatment, percentages of early secreted antigenic target-6(ESAT-6)/culture filtrate protein-10(CFP-10) and purified protein derivative-specific single-TNF-α-producing CD4(+) and CD8(+) T cells were significantly higher while single-IL-2-producing T cells were significantly lower in Maf- compared with Mtb-infected patients. Purified protein derivative-specific polyfunctional CD4(+) T cells frequencies were significantly higher before than after treatment, but there was no difference between the groups at both time points. Furthermore, the proportion of CD3(+) CD11b(+) T cells was similar in both groups pretreatment, but was significantly lower with higher TNF-α, IL-2, and IFN-γ production in Mtb- compared with that of Maf-infected patients posttreatment. Our data provide evidence of differences in T-cell responses to two mycobacterial strains with differing virulence, providing some insight into TB pathogenesis with different Mtb strains that could be prospectively explored as biomarkers for TB protection or susceptibility.

  13. Survival of Mycobacterium avium and Mycobacterium tuberculosis in Acidified Vacuoles of Murine Macrophages

    PubMed Central

    Gomes, Maria Salomé; Paul, Simon; Moreira, Andre L.; Appelberg, Rui; Rabinovitch, Michel; Kaplan, Gilla

    1999-01-01

    Despite the antimicrobial mechanisms of vertebrate phagocytes, mycobacteria can survive within the phagosomes of these cells. These organisms use various strategies to evade destruction, including inhibition of acidification of the phagosome and inhibition of phagosome-lysosome fusion. In contrast to mycobacteria, Coxiella burnetii, the etiologic agent of Q fever, inhabits a spacious acidified intracellular vacuole which is prone to fusion with other vacuoles of the host cell, including phagosomes containing mycobacteria. The Coxiella-infected cell thus provides a unique model for investigating the survival of mycobacteria in an acidified phagosome-like compartment. In the present study, murine bone marrow-derived macrophages were infected with either Mycobacterium avium or Mycobacterium tuberculosis and then coinfected with C. burnetii. We observed that the majority of phagocytosed mycobacteria colocalized to the C. burnetii-containing vacuole, which maintained its acidic properties. In coinfected macrophages, the growth of M. avium was not impaired following fusion with the acidified vacuole. In contrast, the growth rate of M. tuberculosis was reduced in acidified vacuoles. These results suggest that although both species of mycobacteria inhibit phagosome-lysosome fusion, they may be differentially susceptible to the toxic effects of the acidic environment in the mature phagolysosome. PMID:10377091

  14. Functional and Structural Characterization of a Thiol Peroxidase from Mycobacterium tuberculosis

    SciTech Connect

    Rho,B.; Hung, L.; Holton, J.; Vigil, D.; Kim, S.; Park, M.; Terwilliger, T.; Pedelacq, j.

    2006-01-01

    A thiol peroxidase (Tpx) from Mycobacterium tuberculosis was functionally analyzed. The enzyme shows NADPH-linked peroxidase activity using a thioredoxin-thioredoxin reductase system as electron donor, and anti-oxidant activity in a thiol-dependent metal-catalyzed oxidation system. It reduces H{sub 2}O{sub 2}, t-butyl hydroperoxide, and cumene hydroperoxide, and is inhibited by sulfhydryl reagents. Mutational studies revealed that the peroxidatic (Cys60) and resolving (Cys93) cysteine residues are critical amino acids for catalytic activity. The X-ray structure determined to a resolution of 1.75 Angstroms shows a thioredoxin fold similar to that of other peroxiredoxin family members. Superposition with structural homologues in oxidized and reduced forms indicates that the M. tuberculosis Tpx is a member of the atypical two-Cys peroxiredoxin family. In addition, the short distance that separates the Ca atoms of Cys60 and Cys93 and the location of these cysteine residues in unstructured regions may indicate that the M. tuberculosis enzyme is oxidized, though the side-chain of Cys60 is poorly visible. It is solely in the reduced Streptococcus pneumoniae Tpx structure that both residues are part of two distinct helical segments. The M. tuberculosis Tpx is dimeric both in solution and in the crystal structure. Amino acid residues from both monomers delineate the active site pocket.

  15. Evaluation of macrolides for possible use against multidrug-resistant Mycobacterium tuberculosis.

    PubMed

    van der Paardt, Anne-Fleur; Wilffert, Bob; Akkerman, Onno W; de Lange, Wiel C M; van Soolingen, Dick; Sinha, Bhanu; van der Werf, Tjip S; Kosterink, Jos G W; Alffenaar, Jan-Willem C

    2015-08-01

    Multidrug-resistant tuberculosis (MDR-TB) is a major global health problem. The loss of susceptibility to an increasing number of drugs behoves us to consider the evaluation of non-traditional anti-tuberculosis drugs.Clarithromycin, a macrolide antibiotic, is defined as a group 5 anti-tuberculosis drug by the World Health Organization; however, its role or efficacy in the treatment of MDR-TB is unclear. A systematic review of the literature was conducted to summarise the evidence for the activity of macrolides against MDR-TB, by evaluating in vitro, in vivo and clinical studies. PubMed and Embase were searched for English language articles up to May 2014.Even though high minimum inhibitory concentration values are usually found, suggesting low activity against Mycobacterium tuberculosis, the potential benefits of macrolides are their accumulation in the relevant compartments and cells in the lungs, their immunomodulatory effects and their synergistic activity with other anti-TB drugs.A future perspective may be use of more potent macrolide analogues to enhance the activity of the treatment regimen.

  16. Pyrrolidinone and pyrrolidine derivatives: Evaluation as inhibitors of InhA and Mycobacterium tuberculosis.

    PubMed

    Matviiuk, Tetiana; Madacki, Jan; Mori, Giorgia; Orena, Beatrice Silvia; Menendez, Christophe; Kysil, Andrii; André-Barrès, Christiane; Rodriguez, Frédéric; Korduláková, Jana; Mallet-Ladeira, Sonia; Voitenko, Zoia; Pasca, Maria Rosalia; Lherbet, Christian; Baltas, Michel

    2016-11-10

    A series of GEQ analogues bearing pyrrolidinone or pyrrolidine cores were synthesized and evaluated against InhA, essential target for Mycobacterium tuberculosis (M.tb) survival. The compounds were also evaluated against M.tb H37Rv growth. Interestingly, some of the compounds, not efficient as InhA inhibitors, are active against M.tb with MICs up to 1.4 μM. In particular, compound 4b was screened with different M.tb mutated strains in order to identify the cellular target, but without success, suggesting a new possible mode of action.

  17. Pyrrolidinone and pyrrolidine derivatives: Evaluation as inhibitors of InhA and Mycobacterium tuberculosis.

    PubMed

    Matviiuk, Tetiana; Madacki, Jan; Mori, Giorgia; Orena, Beatrice Silvia; Menendez, Christophe; Kysil, Andrii; André-Barrès, Christiane; Rodriguez, Frédéric; Korduláková, Jana; Mallet-Ladeira, Sonia; Voitenko, Zoia; Pasca, Maria Rosalia; Lherbet, Christian; Baltas, Michel

    2016-11-10

    A series of GEQ analogues bearing pyrrolidinone or pyrrolidine cores were synthesized and evaluated against InhA, essential target for Mycobacterium tuberculosis (M.tb) survival. The compounds were also evaluated against M.tb H37Rv growth. Interestingly, some of the compounds, not efficient as InhA inhibitors, are active against M.tb with MICs up to 1.4 μM. In particular, compound 4b was screened with different M.tb mutated strains in order to identify the cellular target, but without success, suggesting a new possible mode of action. PMID:27490025

  18. Inactivation of Mycobacterium paratuberculosis and Mycobacterium tuberculosis in fresh soft cheese by gamma radiation

    NASA Astrophysics Data System (ADS)

    Badr, Hesham M.

    2011-11-01

    The effectiveness of gamma irradiation on the inactivation of Mycobacterium paratuberculosis, Mycobacterium bovis and Mycobacterium tuberculosis in fresh soft cheese that prepared from artificially inoculated milk samples was studied. Irradiation at dose of 2 kGy was sufficient for the complete inactivation of these mycobacteria as they were not detected in the treated samples during storage at 4±1 °C for 15 days. Moreover, irradiation of cheese samples, that were prepared from un-inoculated milk, at this effective dose had no significant effects on their gross composition and contents from riboflavin, niacin and pantothenic acid, while significant decreases in vitamin A and thiamin were observed. In addition, irradiation of cheese samples had no significant effects on their pH and nitrogen fractions contents, except for the contents of ammonia, which showed a slight, but significant, increases due to irradiation. The analysis of cheese fats indicated that irradiation treatment induced significant increase in their oxidation parameters and contents from free fatty acids; however, the observed increases were relatively low. On the other hand, irradiation of cheese samples induced no significant alterations on their sensory properties. Thus, irradiation dose of 2 kGy can be effectively applied to ensure the safety of soft cheese with regards to these harmful mycobacteria.

  19. [Susceptibilities of Mycobacterium tuberculosis strains collected from regional tuberculosis laboratories to major antituberculous drugs].

    PubMed

    Sayğan, M Bakir; Ocak, Fatih; Cesur, Salih; Tarhan, Gülnur; Ceyhan, Ismail; Gümüişlü, Feyzullah; Beker, Gülşan; Güner, Uğur; Coşkun, Erol

    2007-07-01

    The aim of this study was to investigate the susceptibility rates of Mycobacterium tuberculosis strains sent to Refik Saydam Hygiene Center, Tuberculosis Reference and Research Laboratory, Ankara, from seven different regional tuberculosis laboratories between the 1999-2002 period against major antituberculous drugs. The sensitivities of a total 505 M. tuberculosis strains to isoniazid (INAH), rifampicin (RIF), streptomycin (SM) and ethambutol (EMB) were determined by using proportion method in Lowenstein-Jensen medium. Of the strains, 385 (76.2%) were found sensitive to all of the tested drugs, while 120 strains were resistant to at least one of the antituberculous drugs. The resistant strains showed 14 different resistance patterns. The resistance rates were detected as 13.3% for INAH and RIF (67 strains of each), 9.1% for SM (46 strains), and 3.4% (17 strains) for EMB. Multidrug resistant (INAH+RIF) M. tuberculosis was 7.9% (40 strains). The highest resistance rate to INAH, RIF and EMB (21.2%, 21.2% and 10.6%, respectively) was detected in the isolates which were sent from Bursa province (located in northwestern Turkey); the highest SM (18.8%) and multidrug resistance (INAH+RIF) rates (18.8% and 10.6%, respectively) were detected in the strains sent from Elazig and Van provinces (both located in eastern Turkey). Since the inappropriate use of the first and second line antituberculous drugs leads to the development and spread of the resistant strains, "Directly Observed Therapy Shortcourse (DOTS)" is a very important practice. Therefore regional tuberculosis laboratories should be worth considering as the chains of a well-organized national laboratory network, in order to detect the antituberculous drug resistance patterns of the M. tuberculosis strains over the country.

  20. Transcriptional and Physiological Changes during Mycobacterium tuberculosis Reactivation from Non-replicating Persistence

    PubMed Central

    Du, Peicheng; Sohaskey, Charles D.; Shi, Lanbo

    2016-01-01

    Mycobacterium tuberculosis can persist for years in the hostile environment of the host in a non-replicating or slowly replicating state. While active disease predominantly results from reactivation of a latent infection, the molecular mechanisms of M. tuberculosis reactivation are still poorly understood. We characterized the physiology and global transcriptomic profiles of M. tuberculosis during reactivation from hypoxia-induced non-replicating persistence. We found that M. tuberculosis reactivation upon reaeration was associated with a lag phase, in which the recovery of cellular physiological and metabolic functions preceded the resumption of cell replication. Enrichment analysis of the transcriptomic dynamics revealed changes to many metabolic pathways and transcription regulons/subnetworks that orchestrated the metabolic and physiological transformation in preparation for cell division. In particular, we found that M. tuberculosis reaeration lag phase is associated with down-regulation of persistence-associated regulons/subnetworks, including DosR, MprA, SigH, SigE, and ClgR, as well as metabolic pathways including those involved in the uptake of lipids and their catabolism. More importantly, we identified a number of up-regulated transcription regulons and metabolic pathways, including those involved in metal transport and remobilization, second messenger-mediated responses, DNA repair and recombination, and synthesis of major cell wall components. We also found that inactivation of the major alternative sigma factors SigE or SigH disrupted exit from persistence, underscoring the importance of the global transcriptional reprogramming during M. tuberculosis reactivation. Our observations suggest that M. tuberculosis lag phase is associated with a global gene expression reprogramming that defines the initiation of a reactivation process.

  1. Transcriptional and Physiological Changes during Mycobacterium tuberculosis Reactivation from Non-replicating Persistence

    PubMed Central

    Du, Peicheng; Sohaskey, Charles D.; Shi, Lanbo

    2016-01-01

    Mycobacterium tuberculosis can persist for years in the hostile environment of the host in a non-replicating or slowly replicating state. While active disease predominantly results from reactivation of a latent infection, the molecular mechanisms of M. tuberculosis reactivation are still poorly understood. We characterized the physiology and global transcriptomic profiles of M. tuberculosis during reactivation from hypoxia-induced non-replicating persistence. We found that M. tuberculosis reactivation upon reaeration was associated with a lag phase, in which the recovery of cellular physiological and metabolic functions preceded the resumption of cell replication. Enrichment analysis of the transcriptomic dynamics revealed changes to many metabolic pathways and transcription regulons/subnetworks that orchestrated the metabolic and physiological transformation in preparation for cell division. In particular, we found that M. tuberculosis reaeration lag phase is associated with down-regulation of persistence-associated regulons/subnetworks, including DosR, MprA, SigH, SigE, and ClgR, as well as metabolic pathways including those involved in the uptake of lipids and their catabolism. More importantly, we identified a number of up-regulated transcription regulons and metabolic pathways, including those involved in metal transport and remobilization, second messenger-mediated responses, DNA repair and recombination, and synthesis of major cell wall components. We also found that inactivation of the major alternative sigma factors SigE or SigH disrupted exit from persistence, underscoring the importance of the global transcriptional reprogramming during M. tuberculosis reactivation. Our observations suggest that M. tuberculosis lag phase is associated with a global gene expression reprogramming that defines the initiation of a reactivation process. PMID:27630619

  2. Transcriptional and Physiological Changes during Mycobacterium tuberculosis Reactivation from Non-replicating Persistence.

    PubMed

    Du, Peicheng; Sohaskey, Charles D; Shi, Lanbo

    2016-01-01

    Mycobacterium tuberculosis can persist for years in the hostile environment of the host in a non-replicating or slowly replicating state. While active disease predominantly results from reactivation of a latent infection, the molecular mechanisms of M. tuberculosis reactivation are still poorly understood. We characterized the physiology and global transcriptomic profiles of M. tuberculosis during reactivation from hypoxia-induced non-replicating persistence. We found that M. tuberculosis reactivation upon reaeration was associated with a lag phase, in which the recovery of cellular physiological and metabolic functions preceded the resumption of cell replication. Enrichment analysis of the transcriptomic dynamics revealed changes to many metabolic pathways and transcription regulons/subnetworks that orchestrated the metabolic and physiological transformation in preparation for cell division. In particular, we found that M. tuberculosis reaeration lag phase is associated with down-regulation of persistence-associated regulons/subnetworks, including DosR, MprA, SigH, SigE, and ClgR, as well as metabolic pathways including those involved in the uptake of lipids and their catabolism. More importantly, we identified a number of up-regulated transcription regulons and metabolic pathways, including those involved in metal transport and remobilization, second messenger-mediated responses, DNA repair and recombination, and synthesis of major cell wall components. We also found that inactivation of the major alternative sigma factors SigE or SigH disrupted exit from persistence, underscoring the importance of the global transcriptional reprogramming during M. tuberculosis reactivation. Our observations suggest that M. tuberculosis lag phase is associated with a global gene expression reprogramming that defines the initiation of a reactivation process. PMID:27630619

  3. Pyrazinamide resistance in Mycobacterium tuberculosis fails to bite?

    PubMed

    den Hertog, Alice L; Sengstake, Sarah; Anthony, Richard M

    2015-08-01

    In contrast to most other antimycobacterial drugs where--particularly in multidrug-resistant (MDR) strains--a limited number of resistance mutations dominate, pyrazinamide (PZA) resistance associated mutations remain highly diverse with limited clustering. This apparent lack of evolutionary selection for successful PZA resistance mechanisms deserves attention. A clear understanding of the epidemiology of PZA resistance acquisition and spread would be expected to result in important insights into how PZA might be better exploited in treatment regimens to minimize the amplification of Mycobacterium tuberculosis (MTB) drug resistance. We propose that PZA resistance typically induces a fitness cost that impairs MTB transmission. This would explain the lack of extensive clustering for PZA-resistant mutants. Our hypothesis also leads to a series of testable predictions which we outline that could confirm or refute our ideas.

  4. An Elucidation of Neutrophil Functions against Mycobacterium tuberculosis Infection

    PubMed Central

    Morris, Devin; Nguyen, Thien; Kim, John; Kassissa, Christine; Khurasany, Melissa; Luong, Jennifer; Kasko, Sarah; Pandya, Shalin; Chu, Michael; Chi, Po-Ting; Lagman, Minette; Venketaraman, Vishwanath

    2013-01-01

    We characterized the functions of neutrophils in response to Mycobacterium tuberculosis (M. tb) infection, with particular reference to glutathione (GSH). We examined the effects of GSH in improving the ability of neutrophils to control intracellular M. tb infection. Our findings indicate that increasing the intracellular levels of GSH with a liposomal formulation of GSH (L-GSH) resulted in reduction in the levels of free radicals and increased acidification of M. tb containing phagosomes leading to the inhibition in the growth of M. tb. This inhibitory mechanism is dependent on the presence of TNF-α and IL-6. Our studies demonstrate a novel regulatory mechanism adapted by the neutrophils to control M. tb infection. PMID:24312131

  5. Mycobacterium tuberculosis infection in a canary (Serinus canana L.) and a blue-fronted Amazon parrot (Amazona amazona aestiva).

    PubMed

    Hoop, Richard K

    2002-01-01

    I report two cases of mycobacteriosis in pet birds due to Mycobacterium tuberculosis and discuss the zoonotic implications. The canary with a tuberculous knot in the lung is the first description of M. tuberculosis in a nonpsittacine bird species.

  6. Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis

    PubMed Central

    Trivedi, Abhishek; Mavi, Parminder Singh; Bhatt, Deepak; Kumar, Ashwani

    2016-01-01

    Mycobacterium tuberculosis (Mtb) forms biofilms harbouring antibiotic-tolerant bacilli in vitro, but the factors that induce biofilm formation and the nature of the extracellular material that holds the cells together are poorly understood. Here we show that intracellular thiol reductive stress (TRS) induces formation of Mtb biofilms in vitro, which harbour drug-tolerant but metabolically active bacteria with unchanged levels of ATP/ADP, NAD+/NADH and NADP+/NADPH. The development of these biofilms requires DNA, RNA and protein synthesis. Transcriptional analysis suggests that Mtb modulates only ∼7% of its genes for survival in biofilms. In addition to proteins, lipids and DNA, the extracellular material in these biofilms is primarily composed of polysaccharides, with cellulose being a key component. Our results contribute to a better understanding of the mechanisms underlying Mtb biofilm formation, although the clinical relevance of Mtb biofilms in human tuberculosis remains unclear. PMID:27109928

  7. Bisubstrate Inhibitors of Biotin Protein Ligase in Mycobacterium tuberculosis Resistant to Cyclonucleoside Formation

    PubMed Central

    2013-01-01

    Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, is the leading cause of bacterial infectious disease mortality. Biotin protein ligase (BirA) globally regulates lipid metabolism in Mtb through the posttranslational biotinylation of acyl coenzyme A carboxylases (ACCs) involved in lipid biosynthesis and is essential for Mtb survival. We previously developed a rationally designed bisubstrate inhibitor of BirA that displays potent enzyme inhibition and whole-cell activity against multidrug resistant and extensively drug resistant Mtb strains. Here we present the design, synthesis, and evaluation of a focused series of inhibitors, which are resistant to cyclonucleoside formation, a key decomposition pathway of our initial analogue. Improved chemical stability is realized through replacement of the adenosyl N-3 nitrogen and C-5′ oxygen atom with carbon as well as incorporation of a bulky group on the nucleobase to prevent the required syn-conformation necessary for proper alignment of N-3 with C-5′. PMID:24363833

  8. Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis

    DOE PAGES

    Trivedi, Abhishek; Mavi, Parminder Singh; Bhatt, Deepak; Kumar, Ashwani

    2016-04-25

    Mycobacterium tuberculosis (Mtb) forms biofilms harbouring antibiotic-tolerant bacilli in vitro, but the factors that induce biofilm formation and the nature of the extracellular material that holds the cells together are poorly understood. Here we show that intracellular thiol reductive stress (TRS) induces formation of Mtb biofilms in vitro, which harbour drug-tolerant but metabolically active bacteria with unchanged levels of ATP/ADP, NAD+/NADH and NADP+/NADPH. The development of these biofilms requires DNA, RNA and protein synthesis. Transcriptional analysis suggests that Mtb modulates only similar to 7% of its genes for survival in biofilms. In addition to proteins, lipids and DNA, the extracellularmore » material in these biofilms is primarily composed of polysaccharides, with cellulose being a key component. Lastly, our results contribute to a better understanding of the mechanisms underlying Mtb biofilm formation, although the clinical relevance of Mtb biofilms in human tuberculosis remains unclear.« less

  9. Network analysis identifies Rv0324 and Rv0880 as regulators of bedaquiline tolerance in Mycobacterium tuberculosis.

    PubMed

    Peterson, Eliza J R; Ma, Shuyi; Sherman, David R; Baliga, Nitin S

    2016-01-01

    The resilience of Mycobacterium tuberculosis (MTB) emerges from its ability to effectively counteract immunological, environmental and antitubercular challenges. Here, we demonstrate that MTB can tolerate drug treatment by adopting a tolerant state that can be deciphered through systems analysis of its transcriptional responses. Specifically, we demonstrate how treatment with the antitubercular drug bedaquiline activates a regulatory network that coordinates multiple resistance mechanisms to push MTB into a tolerant state. Disruption of this network, by knocking out its predicted transcription factors, Rv0324 and Rv0880, significantly increased bedaquiline killing and enabled the discovery of a second drug, pretomanid, that potentiated killing by bedaquiline. We demonstrate that the synergistic effect of this combination emerges, in part, through disruption of the tolerance network. We discuss how this network strategy also predicts drug combinations with antagonistic interactions, potentially accelerating the discovery of new effective combination drug regimens for tuberculosis. PMID:27573104

  10. Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis.

    PubMed

    Trivedi, Abhishek; Mavi, Parminder Singh; Bhatt, Deepak; Kumar, Ashwani

    2016-01-01

    Mycobacterium tuberculosis (Mtb) forms biofilms harbouring antibiotic-tolerant bacilli in vitro, but the factors that induce biofilm formation and the nature of the extracellular material that holds the cells together are poorly understood. Here we show that intracellular thiol reductive stress (TRS) induces formation of Mtb biofilms in vitro, which harbour drug-tolerant but metabolically active bacteria with unchanged levels of ATP/ADP, NAD(+)/NADH and NADP(+)/NADPH. The development of these biofilms requires DNA, RNA and protein synthesis. Transcriptional analysis suggests that Mtb modulates only ∼7% of its genes for survival in biofilms. In addition to proteins, lipids and DNA, the extracellular material in these biofilms is primarily composed of polysaccharides, with cellulose being a key component. Our results contribute to a better understanding of the mechanisms underlying Mtb biofilm formation, although the clinical relevance of Mtb biofilms in human tuberculosis remains unclear. PMID:27109928

  11. Preventive therapy in children exposed to Mycobacterium tuberculosis: problems and solutions.

    PubMed

    Rutherford, Merrin E; Hill, Philip C; Triasih, Rina; Sinfield, Rebecca; van Crevel, Reinout; Graham, Stephen M

    2012-10-01

    Young children living with a tuberculosis patient are at high risk of Mycobacterium tuberculosis infection and disease. WHO guidelines promote active screening and isoniazid (INH) preventive therapy (PT) for such children under 5 years, yet this well-established intervention is seldom used in endemic countries. We review the literature regarding barriers to implementation of PT and find that they are multifactorial, including difficulties in screening, poor adherence, fear of increasing INH resistance and poor acceptability among primary caregivers and healthcare workers. These barriers are largely resolvable, and proposed solutions such as the adoption of symptom-based screening and shorter drug regimens are discussed. Integrated multicomponent and site-specific solutions need to be developed and evaluated within a public health framework to overcome the policy-practice gap and provide functional PT programmes for children in endemic settings.

  12. Toward Understanding the Essence of Post-Translational Modifications for the Mycobacterium tuberculosis Immunoproteome

    PubMed Central

    van Els, Cécile A. C. M.; Corbière, Véronique; Smits, Kaat; van Gaans-van den Brink, Jacqueline A. M.; Poelen, Martien C. M.; Mascart, Francoise; Meiring, Hugo D.; Locht, Camille

    2014-01-01

    CD4+ T cells are prominent effector cells in controlling Mycobacterium tuberculosis (Mtb) infection but may also contribute to immunopathology. Studies probing the CD4+ T cell response from individuals latently infected with Mtb or patients with active tuberculosis using either small or proteome-wide antigen screens so far revealed a multi-antigenic, yet mostly invariable repertoire of immunogenic Mtb proteins. Recent developments in mass spectrometry-based proteomics have highlighted the occurrence of numerous types of post-translational modifications (PTMs) in proteomes of prokaryotes, including Mtb. The well-known PTMs in Mtb are glycosylation, lipidation, or phosphorylation, known regulators of protein function or compartmentalization. Other PTMs include methylation, acetylation, and pupylation, involved in protein stability. While all PTMs add variability to the Mtb proteome, relatively little is understood about their role in the anti-Mtb immune responses. Here, we review Mtb protein PTMs and methods to assess their role in protective immunity against Mtb. PMID:25157249

  13. Antigenic characterization of dimorphic surface protein in Mycobacterium tuberculosis.

    PubMed

    Matsuba, Takashi; Siddiqi, Umme Ruman; Hattori, Toshio; Nakajima, Chie; Fujii, Jun; Suzuki, Yasuhiko

    2016-05-01

    The Mycobacterium tuberculosis Rv0679c protein is a surface protein that contributes to host cell invasion. We previously showed that a single nucleotide transition of the Rv0679c gene leads to a single amino acid substitution from asparagine to lysine at codon 142 in the Beijing genotype family. In this study, we examined the immunological effect of this substitution. Several recombinant proteins were expressed in Escherichia coli and Mycobacterium smegmatis and characterized with antisera and two monoclonal antibodies named 5D4-C2 and 8G10-H2. A significant reduction of antibody binding was detected by enzyme-linked immunosorbent assay (ELISA) and western blot analysis in the Lys142-type protein. This reduction of 8G10-H2 binding was more significant, with the disappearance of a signal in the proteins expressed by recombinant mycobacteria in western blot analysis. In addition, epitope mapping analysis of the recombinant proteins showed a linear epitope by 5D4-C2 and a discontinuous epitope by 8G10-H2. The antibody recognizing the conformational epitope detected only mycobacterial Asn142-type recombinant protein. Our results suggest that a single amino acid substitution of Rv0679c has potency for antigenic change in Beijing genotype strains. PMID:27190237

  14. Increased risk of Mycobacterium tuberculosis infection in household child contacts exposed to passive tobacco smoke.

    PubMed

    Sridhar, Saranya; Karnani, Nisha; Connell, David W; Millington, Kerry A; Dosanjh, Davinder; Bakir, Mustafa; Soysal, Ahmet; Deeks, Jonathan; Lalvani, Ajit

    2014-12-01

    Risk factors associated with Mycobacterium tuberculosis infection were investigated in a prospective cohort of household child tuberculosis contacts. A significantly increased risk of acquiring infection was associated with exposure to passive cigarette smoke, higher number of index cases, younger age and reduced household monthly income.

  15. Oral therapy using nanoparticle-encapsulated antituberculosis drugs in guinea pigs infected with Mycobacterium tuberculosis.

    PubMed

    Johnson, Christine M; Pandey, Rajesh; Sharma, Sadhna; Khuller, G K; Basaraba, Randall J; Orme, Ian M; Lenaerts, Anne J

    2005-10-01

    We evaluated the efficacy of nanoparticle-encapsulated antituberculosis drugs administered every 10 days versus that of daily nonencapsulated drugs against Mycobacterium tuberculosis aerosol infection in guinea pigs. Both treatments significantly reduced the bacterial count and lung histopathology, suggesting that the nanoparticle drug delivery system has potential in intermitted treatment of tuberculosis.

  16. Primary multidrug-resistant Mycobacterium tuberculosis in 2 regions, Eastern Siberia, Russian Federation.

    PubMed

    Zhdanova, Svetlana; Heysell, Scott K; Ogarkov, Oleg; Boyarinova, Galina; Alexeeva, Galina; Pholwat, Suporn; Zorkaltseva, Elena; Houpt, Eric R; Savilov, Eugeniy

    2013-10-01

    Of 235 Mycobacterium tuberculosis isolates from patients who had not received tuberculosis treatment in the Irkutsk oblast and the Sakha Republic (Yakutia), eastern Siberia, 61 (26%) were multidrug resistant. A novel strain, S 256, clustered among these isolates and carried eis-related kanamycin resistance, indicating a need for locally informed diagnosis and treatment strategies. PMID:24047678

  17. In vitro susceptibility testing of Mycobacterium tuberculosis complex strains isolated from seals to antituberculosis drugs.

    PubMed

    Bernardelli, Amelia; Morcillo, Nora; Loureiro, Julio; Quse, Viviana; Davenport, Silvana

    2004-06-01

    Mycobacteria strains belonging to the Mycobacterium tuberculosis complex were isolated from seals found in the South Atlantic. The animals were received in Mundo Marino installations and treated for Mycobacterium tuberculosis complex by conventional therapy of intensive care and enriched food supply; however, in all cases treatment failed. Necropsies of all animals revealed extensive lesions compatible with tuberculosis involving lungs, liver, spleen and lymphatic nodes. Classical biochemical methods as well as molecular techniques using the IS6110 probes were performed for mycobacterial identification. Furthermore, the LCx M. tuberculosis assay (Abbott Laboratories) identified all strains as Mycobacterium tuberculosis complex members. The in vitro susceptibility pattern was examined in mycobacterial strains isolated from seven seals and in 3 reference strains--BCG, H37Rv (M. tuberculosis) and AN5 (Mycobacterium bovis)--to 4 medications--isoniazid, rifampin, streptomycin and ethambutol. Minimal inhibitory drug concentrations were determined by the Mycobacterial Growth Indicator Tube (BD Argentina) method and a microdilution and colorimetric assay using 3-(4-5 dimethyltiazol-2)-2,5 diphenyltetrazolium bromide. All the isolates and the reference strains BCG and AN5 were inhibited by MIC values similar to those of H37Rv with good agreement obtained by both techniques. These findings suggest that a therapeutic regimen aimed to seals diagnosed with tuberculosis play an important role in the prevention of tuberculosis transmission from infected animals to humans that are in routine contact with them.

  18. The Small Breathing Amplitude at the Upper Lobes Favors the Attraction of Polymorphonuclear Neutrophils to Mycobacterium tuberculosis Lesions and Helps to Understand the Evolution toward Active Disease in An Individual-Based Model

    PubMed Central

    Cardona, Pere-Joan; Prats, Clara

    2016-01-01

    Infection with Mycobacterium tuberculosis (Mtb) can induce two kinds of lesions, namely proliferative and exudative. The former are based on the presence of macrophages with controlled induction of intragranulomatous necrosis, and are even able to stop its physical progression, thus avoiding the induction of active tuberculosis (TB). In contrast, the most significant characteristic of exudative lesions is their massive infiltration with polymorphonuclear neutrophils (PMNs), which favor enlargement of the lesions and extracellular growth of the bacilli. We have built an individual-based model (IBM) (known as “TBPATCH”) using the NetLogo interface to better understand the progression from Mtb infection to TB. We have tested four main factors previously identified as being able to favor the infiltration of Mtb-infected lesions with PMNs, namely the tolerability of infected macrophages to the bacillary load; the capacity to modulate the Th17 response; the breathing amplitude (BAM) (large or small in the lower and upper lobes respectively), which influences bacillary drainage at the alveoli; and the encapsulation of Mtb-infected lesions by the interlobular septae that structure the pulmonary parenchyma into secondary lobes. Overall, although all the factors analyzed play some role, the small BAM is the major factor determining whether Mtb-infected lesions become exudative, and thus induce TB, thereby helping to understand why this usually takes place in the upper lobes. This information will be very useful for the design of future prophylactic and therapeutic approaches against TB. PMID:27065951

  19. A Mycobacterium tuberculosis Dormancy Antigen Differentiates Latently Infected Bacillus Calmette–Guérin-vaccinated Individuals

    PubMed Central

    Peña, Delfina; Rovetta, Ana I.; Hernández Del Pino, Rodrigo E.; Amiano, Nicolás O.; Pasquinelli, Virginia; Pellegrini, Joaquín M.; Tateosian, Nancy L.; Rolandelli, Agustín; Gutierrez, Marisa; Musella, Rosa M.; Palmero, Domingo J.; Gherardi, María M.; Iovanna, Juan; Chuluyan, H. Eduardo; García, Verónica E.

    2015-01-01

    IFN-γ release assays (IGRAs) are better indicators of Mycobacterium tuberculosis infection than the tuberculin skin test (TST) in Bacillus Calmette–Guérin (BCG)-vaccinated populations. However, IGRAs do not discriminate active and latent infections (LTBI) and no gold standard for LTBI diagnosis is available. Thus, since improved tests to diagnose M. tuberculosis infection are required, we assessed the efficacy of several M. tuberculosis latency antigens. BCG-vaccinated healthy donors (HD) and tuberculosis (TB) patients were recruited. QuantiFERON-TB Gold In-Tube, TST and clinical data were used to differentiate LTBI. IFN-γ production against CFP-10, ESAT-6, Rv2624c, Rv2626c and Rv2628 antigens was tested in peripheral blood mononuclear cells. LTBI subjects secreted significantly higher IFN-γ levels against Rv2626c than HD. Additionally, Rv2626c peptide pools to which only LTBI responded were identified, and their cumulative IFN-γ response improved LTBI discrimination. Interestingly, whole blood stimulation with Rv2626c allowed the discrimination between active and latent infections, since TB patients did not secrete IFN-γ against Rv2626c, in contrast to CFP-10 + ESAT-6 stimulation that induced IFN-γ response from both LTBI and TB patients. ROC analysis confirmed that Rv2626c discriminated LTBI from HD and TB patients. Therefore, since only LTBI recognizes specific epitopes from Rv2626c, this antigen could improve LTBI diagnosis, even in BCG-vaccinated people. PMID:26425695

  20. Interaction between Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium avium subspecies paratuberculosis with the enteric glia and microglial cells

    PubMed Central

    2011-01-01

    Background We investigated the interaction of Mycobacterium avium subspecies paratuberculosis, M. bovis and M. tuberculosis and different glial cells (enteric glial and microglial cells) in order to evaluate the infecting ability of these microorganisms and the effects produced on these cells, such as the evaluation of cytokines expression. Results Our experiments demonstrated the adhesion of M. paratuberculosis to the enteroglial cells and the induction of IL-1A and IL-6 expression; M. tuberculosis and M. bovis showed a good adhesive capability to the enteric cell line with the expression of the following cytokines: IL-1A and IL-1B, TNF-α, G-CSF and GM-CSF; M. bovis induced the expression of IL-6 too. The experiment performed with the microglial cells confirmed the results obtained with the enteroglial cells after the infection with M. tuberculosis and M. bovis, whereas M. paratuberculosis stimulated the production of IL-1A and IL-1B. Conclusion Enteroglial and microglial cells, could be the target of pathogenic mycobacteria and, even if present in different locations (Enteric Nervous System and Central Nervous System), show to have similar mechanism of immunomodulation. PMID:22151930

  1. Genetic diversity of Mycobacterium tuberculosis isolated from tuberculosis patients in the Serengeti ecosystem in Tanzania.

    PubMed

    Mbugi, Erasto V; Katale, Bugwesa Z; Siame, Keith K; Keyyu, Julius D; Kendall, Sharon L; Dockrell, Hazel M; Streicher, Elizabeth M; Michel, Anita L; Rweyemamu, Mark M; Warren, Robin M; Matee, Mecky I; van Helden, Paul D

    2015-03-01

    This study was part of a larger cross-sectional survey that was evaluating tuberculosis (TB) infection in humans, livestock and wildlife in the Serengeti ecosystem in Tanzania. The study aimed at evaluating the genetic diversity of Mycobacterium tuberculosis isolates from TB patients attending health facilities in the Serengeti ecosystem. DNA was extracted from 214 sputum cultures obtained from consecutively enrolled newly diagnosed untreated TB patients aged ≥18 years. Spacer oligonucleotide typing (spoligotyping) and Mycobacterium Interspersed Repetitive Units and Variable Number Tandem Repeat (MIRU-VNTR) were used to genotype M. tuberculosis to establish the circulating lineages. Of the214 M. tuberculosis isolates genotyped, 55 (25.7%) belonged to the Central Asian (CAS) family, 52 (24.3%) were T family (an ill-defined family), 38 (17.8%) belonged to the Latin American Mediterranean (LAM) family, 25 (11.7%) to the East-African Indian (EAI) family, 25 (11.7%) comprised of different unassigned ('Serengeti') strain families, while 8 (3.7%) belonged to the Beijing family. A minority group that included Haarlem, X, U and S altogether accounted for 11 (5.2%) of all genotypes. MIRU-VNTR typing produced diverse patterns within and between families indicative of unlinked transmission chains. We conclude that, in the Serengeti ecosystem only a few successful families predominate namely CAS, T, LAM and EAI families. Other types found in lower prevalence are Beijing, Haarlem, X, S and MANU. The Haarlem, EAI_Somalia, LAM3 and S/convergent and X2 subfamilies found in this study were not reported in previous studies in Tanzania.

  2. Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Morgan; Kim, Jong-Hoon; Lee, Hyun-Boo; Inoue, Shinnosuke; Becker, Annie L.; Weigel, Kris M.; Cangelosi, Gerard A.; Lee, Kyong-Hoon; Chung, Jae-Hyun

    2015-05-01

    Tuberculosis (TB) has been a major public health problem, which can be better controlled by using accurate and rapid diagnosis in low-resource settings. A simple, portable, and sensitive detection method is required for point-of-care (POC) settings. This paper studies an amperometric biosensor using a microtip immunoassay for a rapid and low-cost detection of Mycobacterium tuberculosis (MTB) in sputum. MTB in sputum is specifically captured on the functionalized microtip surface and detected by electric current. According to the numerical study, the current signal on the microtip surface is linearly changed with increasing immersion depth. Using a reference microtip, the immersion depth is compensated for a sensing microtip. On the microtip surface, target bacteria are concentrated and organized by a coffee-ring effect, which amplifies the electric current. To enhance the signal-to-noise ratio, both the sample processing and rinsing steps are presented with the use of deionized water as a medium for the amperometric measurement. When applied to cultured MTB cells spiked into human sputum, the detection limit was 100 CFU mL-1, comparable to a more labor-intensive fluorescence detection method reported previously.

  3. Spoligotypes of Mycobacterium tuberculosis from Different Provinces of China▿ †

    PubMed Central

    Dong, Haiyan; Liu, Zhiguang; Lv, Bing; Zhang, Yuanyuan; Liu, Jie; Zhao, Xiuqin; Liu, Jinghua; Wan, Kanglin

    2010-01-01

    A total of 2,346 Mycobacterium tuberculosis isolates from 13 provinces in China were genotyped by spoligotyping. Two hundred seventy-eight spoligotypes were identified: 2,153 isolates were grouped into 85 clusters, and the remaining 193 isolates were orphans. Comparison with the SpolDB4.0 database revealed that 118 spoligotypes had shared international type numbers in the database and the other 160 were novel. These 160 novel spoligotypes were assigned to families and subfamilies using the SpotClust program. The most prevalent family was the Beijing family (74.08%), followed by the T family (14.11%). CAS family strains were found only in the Xinjiang and Tibet regions, while EAI family strains were found only in Fujian Province. In conclusion, the present study of the M. tuberculosis population in China demonstrated that Beijing family isolates are the most prevalent strains in China and that they exhibit geographical variation. Furthermore, many new spoligotypes were found in this study. PMID:20739484

  4. Genetic markers, genotyping methods & next generation sequencing in Mycobacterium tuberculosis

    PubMed Central

    Desikan, Srinidhi; Narayanan, Sujatha

    2015-01-01

    Molecular epidemiology (ME) is one of the main areas in tuberculosis research which is widely used to study the transmission epidemics and outbreaks of tubercle bacilli. It exploits the presence of various polymorphisms in the genome of the bacteria that can be widely used as genetic markers. Many DNA typing methods apply these genetic markers to differentiate various strains and to study the evolutionary relationships between them. The three widely used genotyping tools to differentiate Mycobacterium tuberculosis strains are IS6110 restriction fragment length polymorphism (RFLP), spacer oligotyping (Spoligotyping), and mycobacterial interspersed repeat units - variable number of tandem repeats (MIRU-VNTR). A new prospect towards ME was introduced with the development of whole genome sequencing (WGS) and the next generation sequencing (NGS) methods, where the entire genome is sequenced that not only helps in pointing out minute differences between the various sequences but also saves time and the cost. NGS is also found to be useful in identifying single nucleotide polymorphisms (SNPs), comparative genomics and also various aspects about transmission dynamics. These techniques enable the identification of mycobacterial strains and also facilitate the study of their phylogenetic and evolutionary traits. PMID:26205019

  5. SInCRe-structural interactome computational resource for Mycobacterium tuberculosis.

    PubMed

    Metri, Rahul; Hariharaputran, Sridhar; Ramakrishnan, Gayatri; Anand, Praveen; Raghavender, Upadhyayula S; Ochoa-Montaño, Bernardo; Higueruelo, Alicia P; Sowdhamini, Ramanathan; Chandra, Nagasuma R; Blundell, Tom L; Srinivasan, Narayanaswamy

    2015-01-01

    We have developed an integrated database for Mycobacterium tuberculosis H37Rv (Mtb) that collates information on protein sequences, domain assignments, functional annotation and 3D structural information along with protein-protein and protein-small molecule interactions. SInCRe (Structural Interactome Computational Resource) is developed out of CamBan (Cambridge and Bangalore) collaboration. The motivation for development of this database is to provide an integrated platform to allow easily access and interpretation of data and results obtained by all the groups in CamBan in the field of Mtb informatics. In-house algorithms and databases developed independently by various academic groups in CamBan are used to generate Mtb-specific datasets and are integrated in this database to provide a structural dimension to studies on tuberculosis. The SInCRe database readily provides information on identification of functional domains, genome-scale modelling of structures of Mtb proteins and characterization of the small-molecule binding sites within Mtb. The resource also provides structure-based function annotation, information on small-molecule binders including FDA (Food and Drug Administration)-approved drugs, protein-protein interactions (PPIs) and natural compounds that bind to pathogen proteins potentially and result in weakening or elimination of host-pathogen protein-protein interactions. Together they provide prerequisites for identification of off-target binding. PMID:26130660

  6. Chemokine response in mice infected with Mycobacterium tuberculosis.

    PubMed Central

    Rhoades, E R; Cooper, A M; Orme, I M

    1995-01-01

    We show here that infection of murine macrophages with various strains of Mycobacterium tuberculosis induces the rapid in vitro expression of genes encoding chemokines macrophage inflammatory protein 1 alpha and macrophage inflammatory protein 2, which recruit neutrophils to sites of infection, and macrophage-recruiting chemokines 10-kDa, interferon-inducible protein (IP-10) and macrophage chemotactic protein 1. Three strains of M. tuberculosis, Erdman and the clinical isolates CSU 22 and CSU 46, induced similar levels of secretion of macrophage chemotactic protein 1 from infected macrophage monolayers; however, the Erdman strain failed to induce levels of secretion of tumor necrosis factor alpha similar to those induced by either CSU 22 or CSU 46. Using a low-dose aerosol infection model, we also found that while the Erdman strain induced negligible increases in chemokine mRNA levels in the lungs, infection with either CSU 22 or CSU 46 resulted in greater levels of mRNA production for all four chemokines tested. The growth of these strains in the lungs was, however, equally well contained by acquired host immunity. These data allow us to hypothesize that the chemokine response in the lungs probably does not control the protective granulomatous response and that perhaps other T-cell- or macrophage-associated cytokines such as tumor necrosis factor alpha or interleukin 12 may be involved in this process. PMID:7558294

  7. SInCRe—structural interactome computational resource for Mycobacterium tuberculosis

    PubMed Central

    Metri, Rahul; Hariharaputran, Sridhar; Ramakrishnan, Gayatri; Anand, Praveen; Raghavender, Upadhyayula S.; Ochoa-Montaño, Bernardo; Higueruelo, Alicia P.; Sowdhamini, Ramanathan; Chandra, Nagasuma R.; Blundell, Tom L.; Srinivasan, Narayanaswamy

    2015-01-01

    We have developed an integrated database for Mycobacterium tuberculosis H37Rv (Mtb) that collates information on protein sequences, domain assignments, functional annotation and 3D structural information along with protein–protein and protein–small molecule interactions. SInCRe (Structural Interactome Computational Resource) is developed out of CamBan (Cambridge and Bangalore) collaboration. The motivation for development of this database is to provide an integrated platform to allow easily access and interpretation of data and results obtained by all the groups in CamBan in the field of Mtb informatics. In-house algorithms and databases developed independently by various academic groups in CamBan are used to generate Mtb-specific datasets and are integrated in this database to provide a structural dimension to studies on tuberculosis. The SInCRe database readily provides information on identification of functional domains, genome-scale modelling of structures of Mtb proteins and characterization of the small-molecule binding sites within Mtb. The resource also provides structure-based function annotation, information on small-molecule binders including FDA (Food and Drug Administration)-approved drugs, protein–protein interactions (PPIs) and natural compounds that bind to pathogen proteins potentially and result in weakening or elimination of host–pathogen protein–protein interactions. Together they provide prerequisites for identification of off-target binding. Database URL: http://proline.biochem.iisc.ernet.in/sincre PMID:26130660

  8. Tuberculosis Caused by Mycobacterium africanum, United States, 2004–2013

    PubMed Central

    Bloss, Emily; Heilig, Charles M.; Click, Eleanor S.

    2016-01-01

    Mycobacterium africanum is endemic to West Africa and causes tuberculosis (TB). We reviewed reported cases of TB in the United States during 2004–2013 that had lineage assigned by genotype (spoligotype and mycobacterial interspersed repetitive unit variable number tandem repeats). M. africanum caused 315 (0.4%) of 73,290 TB cases