Science.gov

Sample records for active na transport

  1. Na+-K+-activated adenosine triphosphatase and intestinal electrolyte transport. Effect of adrenal steroids.

    PubMed Central

    Charney, A N; Kinsey, M D; Myers, L; Gainnella, R A; Gots, R E

    1975-01-01

    Sodium-potassium-activated adenosine triphosphatase (Na-K-ATPase) is associated with electrolyte transport in many tissues. To help delineate its role in intestinal transport, changes in rat intestinal electrolyte and water transport induced by injecting methylprednisolone acetate 3 mg/100 g or deoxycorticosterone acetate (DOCA) 0.5 mg/100 g per day for 3 days were correlated with changes in Na-K-ATPase activity. Methylprednisolone increased sodium and water absorption, potassium secretion, transmural potential difference, and Na-K-ATPase activity in the jejunum, ileum, and colon. Examination of isolated epithelial cells demonstrated that the jejunal and ileal increase in Na-K-ATPase occurred in both the villus tip and crypermeability, Mg-ATPase, and adenylate cyclase activities were unchanged by methylprednisolone. DOCA increased sodium and water absorption, potassium secretion, transmural potential difference, and Na-K-ATPase activity in the colon alone. Colonic Mg-ATPase and adenylate cyclase activities were unaffected. Jejunal and ileal enzyme activity, electrolyte transport, and permeability were unchanged by DOCA. Methylprednisolone and DOCA were not additive in their effect on colonic Na-K-ATPase activity. Methylprednisolone and DOCA increased electrolyte and water transport and Na-K-ATPase activity concomitantly in specific segments of small intestine and colon. These data are consistent with an important role for Na-K-ATPase in intestinal electrolyte and water transport. PMID:125764

  2. Na(+)-independent multispecific anion transporter mediates active transport of pravastatin into rat liver.

    PubMed

    Yamazaki, M; Suzuki, H; Hanano, M; Tokui, T; Komai, T; Sugiyama, Y

    1993-01-01

    To examine whether the relatively selective inhibition of hepatic cholesterol synthesis by the hydrophilic 3-hydroxyl-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor pravastatin in vivo may be due to the existence of a specific uptake mechanism in the liver, the uptake by isolated rat hepatocytes was investigated. The uptake was composed of a saturable component [Michaelis constant (Km) 29 microM, maximal uptake rate 546 pmol.min-1.mg-1] and nonspecific diffusion (nonspecific uptake clearance 1.6 microliters.min-1.mg-1), inhibited by hypothermia, metabolic inhibitors, sulfhydryl-modifying reagents, and inhibitor of anion exchanger, whereas replacement of Na+ by choline+ or Cl- by gluconate- did not alter the uptake. Competitive inhibition was observed by a more highly lipophilic HMG-CoA reductase inhibitor simvastatin (open acid form), dibromosulfophthalein, cholate, and taurocholate. Pravastatin inhibited Na(+)-independent taurocholate uptake with an inhibition constant comparable with the Km value of pravastatin itself. Furthermore, the hepatic permeability clearance in vivo obtained with intact rats was comparable with that in vitro, indicating that the carrier-mediated active transport system we demonstrated in vitro is responsible for the hepatic uptake in vivo. These findings demonstrated that the hepatic uptake of pravastatin occurs via a carrier-mediated active transport mechanism utilizing the so-called multispecific anion transporter, which is common with the Na(+)-independent bile acid uptake system, and that this is one of the mechanisms for its selective inhibition of hepatic cholesterol synthesis in vivo. PMID:8430803

  3. Salt Stress in Thellungiella halophila Activates Na+ Transport Mechanisms Required for Salinity Tolerance1

    PubMed Central

    Vera-Estrella, Rosario; Barkla, Bronwyn J.; García-Ramírez, Liliana; Pantoja, Omar

    2005-01-01

    Salinity is considered one of the major limiting factors for plant growth and agricultural productivity. We are using salt cress (Thellungiella halophila) to identify biochemical mechanisms that enable plants to grow in saline conditions. Under salt stress, the major site of Na+ accumulation occurred in old leaves, followed by young leaves and taproots, with the least accumulation occurring in lateral roots. Salt treatment increased both the H+ transport and hydrolytic activity of salt cress tonoplast (TP) and plasma membrane (PM) H+-ATPases from leaves and roots. TP Na+/H+ exchange was greatly stimulated by growth of the plants in NaCl, both in leaves and roots. Expression of the PM H+-ATPase isoform AHA3, the Na+ transporter HKT1, and the Na+/H+ exchanger SOS1 were examined in PMs isolated from control and salt-treated salt cress roots and leaves. An increased expression of SOS1, but no changes in levels of AHA3 and HKT1, was observed. NHX1 was only detected in PM fractions of roots, and a salt-induced increase in protein expression was observed. Analysis of the levels of expression of vacuolar H+-translocating ATPase subunits showed no major changes in protein expression of subunits VHA-A or VHA-B with salt treatment; however, VHA-E showed an increased expression in leaf tissue, but not in roots, when the plants were treated with NaCl. Salt cress plants were able to distribute and store Na+ by a very strict control of ion movement across both the TP and PM. PMID:16244148

  4. The Na+/I− symporter (NIS) mediates electroneutral active transport of the environmental pollutant perchlorate

    PubMed Central

    Dohán, Orsolya; Portulano, Carla; Basquin, Cécile; Reyna-Neyra, Andrea; Amzel, L. Mario; Carrasco, Nancy

    2007-01-01

    The Na+/I− symporter (NIS) is a key plasma membrane protein that mediates active I− uptake in the thyroid, lactating breast, and other tissues with an electrogenic stoichiometry of 2 Na+ per I−. In the thyroid, NIS-mediated I− uptake is the first step in the biosynthesis of the iodine-containing thyroid hormones, which are essential early in life for proper CNS development. In the lactating breast, NIS mediates the translocation of I− to the milk, thus supplying this essential anion to the nursing newborn. Perchlorate (ClO4−) is a well known competitive inhibitor of NIS. Exposure to food and water contaminated with ClO4− is common in the U.S. population, and the public health impact of such exposure is currently being debated. To date, it is still uncertain whether ClO4− is a NIS blocker or a transported substrate of NIS. Here we show in vitro and in vivo that NIS actively transports ClO4−, including ClO4− translocation to the milk. A simple mathematical fluxes model accurately predicts the effect of ClO4− transport on the rate and extent of I− accumulation. Strikingly, the Na+/ ClO4− transport stoichiometry is electroneutral, uncovering that NIS translocates different substrates with different stoichiometries. That NIS actively concentrates ClO4− in maternal milk suggests that exposure of newborns to high levels of ClO4− may pose a greater health risk than previously acknowledged because ClO4− would thus directly inhibit the newborns' thyroidal I− uptake. PMID:18077370

  5. Exchange diffusion, active transport, and diffusional components of transbranchial Na and cl fluxes.

    PubMed

    Kirschner, L B; Howe, D

    1981-05-01

    Sodium efflux across the gills of the sculpin Leptocottus armatus average about 900 mumol.100 g-1.h-1 in seawater (SW). When external Na+ was replaced by Tris [tris(hydroxymethyl)aminomethane] the efflux dropped about 35% and the voltage across the gill (TEP) decreased from +20.3 to -2.3 mV. The electrical change accounted, almost exactly, for the diminution of efflux, suggesting that most, if not all, of the Na+ efflux in this fish is diffusive. Chloride efflux in SW was about 300 mumol.100 g-1.h-1. When external Cl- was replaced by gluconate, efflux fell to about one-half the SW value. This could not be due to a change in TEP and is therefore attributed to exchange diffusion. Injection of thiocyanate further reduced the efflux to about 15% of the SW rate. This fraction of the total efflux is active extrusion. The remaining efflux (exchange and active transport eliminated) is diffusive. It is also shown that substitution of gluconate for chloride reduces the activity coefficient for Na+. A small decrease in TEP, noted in this substitution, can be explained by the activity change. A few experiments with isethionate suggest that it does not have this effect and hence is a better chloride substitute in single-ion replacement experiments. PMID:7235052

  6. Hypotonic stimulation of the Na+ active transport in frog skeletal muscle: role of the cytoskeleton.

    PubMed

    Venosa, R A

    2003-04-15

    Hypotonicity produces a marked activation of the Na+ pump in frog sartorius muscle. The increase in net Na+ efflux under hypotonic conditions occurs despite the reductions in [Na+]i that are due to fibre swelling and Na+ loss. The pump density (ouabain binding) increases not only upon reduction of the medium osmotic pressure (pi) from its normal value (pi = 1) to one-half (pi = 0.5), but also in muscles that are returned to pi = 1 after equilibration in pi = 2 medium. The equilibration in pi = 2 medium does not affect pump density. Ouabain-binding increments cannot be ascribed to a rise in the Na+-K+ exchange rate of a fixed number of pumps: they also occurred in the continued presence of a saturating concentration of ouabain (50 microM). Under those conditions, the pi = 1 pi = 0.5 transfer produced a 43 % increase in pump sites, while the pi = 2 pi = 1 transfer induced a rise of 46 %. Actinomycin D did not alter the stimulation of Na+ extrusion elicited by hypotonicity, suggesting that de novo synthesis of pumps was not involved in the increase of the apparent number of pump sites. Disruption of microtubules by colchicine (100 microM) and intermediate filaments by acrylamide (4 mM) did not alter the hypotonic effect. Likewise, genistein (100 microM), a specific inhibitor of tyrosine kinase, did not affect significantly the hypotonic response. Microfilament-disrupting agents like cytochalasin B (5 microM) and latrunculin B (10 microM) reduced the increase in Na+ efflux induced by pi = 1 pi = 0.5 transfer by about 35 % and 72 %, respectively. Latrunculin B reduced the increases in pump density generated by pi = 1 pi = 0.5 and pi = 2 pi = 1 transfers by about 79 % and 91 %, respectively. The results suggest that the membrane stretch due to hypotonic fibre volume increase would promote a microfilament-mediated insertion of submembranous spare Na+ pumps in the sarcolemma and, consequently, the rise in active Na+ transport. PMID:12598593

  7. Effects of detergents on Na+ + K+-dependent ATPase activity in plasma-membrane fractions prepared from frog muscles. Studies of insulin action on Na+ and K+ transport.

    PubMed Central

    Omatsu-Kanbe, M; Kitasato, H

    1987-01-01

    The increase in Na+/K+ transport activity in skeletal muscles exposed to insulin was analysed. Plasma-membrane fractions were prepared from frog (Rana catesbeiana) skeletal muscles, and examination of the Na,K-ATPase (Na+ + K+-dependent ATPase) activity showed that it was insensitive to ouabain. In contrast, plasma-membrane fractions prepared from ouabain-pretreated muscles, by the same procedures, showed extremely low Na,K-ATPase activity. On adding saponin to the membrane suspension, the Na,K-ATPase activity increased, according to the detergent concentration. The maximum activity was about twice the control value, at 0.33 mg of saponin/mg of protein. Thus saponin makes vesicle membranes leaky, allowing ouabain in assay solutions to reach receptors on the inner surface of vesicles. Addition of insulin to saponin-treated membrane suspensions had no effect on the Na,K-ATPase activity, whereas the maximum activity of Na,K-ATPase in whole muscles was stimulated by exposure to insulin. The results show that the stimulation of Na+/K+ transport by insulin is not directly due to insulin binding to receptors on the cell surface, but rather support the view that the increase in the Na,K-ATPase induced by insulin requires an alteration of intracellular events. PMID:2825643

  8. Stimulation of Na{sup +}/K{sup +} ATPase activity and Na{sup +} coupled glucose transport by {beta}-catenin

    SciTech Connect

    Sopjani, Mentor; Alesutan, Ioana; Wilmes, Jan; Dermaku-Sopjani, Miribane; Lam, Rebecca S.; Jakupi, Muharrem; Foeller, Michael; Lang, Florian

    2010-11-19

    Research highlights: {yields} The oncogenic transcription factor {beta}-catenin stimulates the Na{sup +}/K{sup +}-ATPase. {yields} {beta}-Catenin stimulates SGLT1 dependent Na{sup +}, glucose cotransport. {yields} The effects are independent of transcription. {yields} {beta}-Catenin sensitive transport may contribute to properties of proliferating cells. -- Abstract: {beta}-Catenin is a multifunctional protein stimulating as oncogenic transcription factor several genes important for cell proliferation. {beta}-Catenin-regulated genes include the serum- and glucocorticoid-inducible kinase SGK1, which is known to stimulate a variety of transport systems. The present study explored the possibility that {beta}-catenin influences membrane transport. To this end, {beta}-catenin was expressed in Xenopus oocytes with or without SGLT1 and electrogenic transport determined by dual electrode voltage clamp. As a result, expression of {beta}-catenin significantly enhanced the ouabain-sensitive current of the endogeneous Na{sup +}/K{sup +}-ATPase. Inhibition of vesicle trafficking by brefeldin A revealed that the stimulatory effect of {beta}-catenin on the endogenous Na{sup +}/K{sup +}-ATPase was not due to enhanced stability of the pump protein in the cell membrane. Expression of {beta}-catenin further enhanced glucose-induced current (Ig) in SGLT1-expressing oocytes. In the absence of SGLT1 Ig was negligible irrespective of {beta}-catenin expression. The stimulating effect of {beta}-catenin on both Na{sup +}/K{sup +} ATPase and SGLT1 activity was observed even in the presence of actinomycin D, an inhibitor of transcription. The experiments disclose a completely novel function of {beta}-catenin, i.e. the regulation of transport.

  9. Effects of peroxisome proliferator-activated receptor γ agonists on Na+ transport and activity of the kinase SGK1 in epithelial cells from lung and kidney

    PubMed Central

    Wilson, Stuart M; Mansley, Morag K; Getty, Jennet; Husband, Elaine M; Inglis, Sarah K; Hansen, Michael K

    2010-01-01

    Background and purpose: Peroxisome proliferator-activated receptor γ (PPARγ) agonists, such as rosiglitazone and pioglitazone, sensitize cells to insulin, and are therefore used to treat type 2 diabetes. However, in some patients, these drugs induce oedema, and the present study tests the hypothesis that this side effect reflects serum and glucocorticoid-inducible kinase 1 (SGK1)-dependent enhancement of epithelia Na+ absorption. Experimental approach: Na+ absorbing epithelial cells (H441 cells, mpkCCD cells) on permeable membranes were mounted in Ussing chambers, and the effects of rosiglitazone (2 µM) and pioglitazone (10 µM) on transepithelial Na+ absorption were quantified electrometrically. Changes in SGK1 activity were assessed by monitoring phosphorylation of residues within an endogenous protein. Key results: Both cell types absorbed Na+ via an electrogenic process that was enhanced by insulin. In mpkCCD cells, this stimulation of Na+ transport was associated with increased activity of SGK1, whereas insulin regulated Na+ transport in H441 cells through a mechanism that did not involve activation of this kinase. Rosiglitazone and pioglitazone had no discernible effect on transepithelial Na+ absorption in unstimulated or insulin-stimulated cells and failed to alter cellular SGK1 activity. Conclusions and implications: Our results do not support the view that PPARγ agonists stimulate epithelial Na+ absorption or alter the control of cellular SGK1 activity. It is therefore likely that other mechanisms are involved in PPARγ-mediated fluid retention, and a better understanding of these mechanisms may help with the identification of patients likely to develop oedema or heart failure when treated with these drugs. PMID:20105179

  10. AMP-activated protein kinase (AMPK)–dependent and –independent pathways regulate hypoxic inhibition of transepithelial Na+ transport across human airway epithelial cells

    PubMed Central

    Tan, CD; Smolenski, RT; Harhun, MI; Patel, HK; Ahmed, SG; Wanisch, K; Yáñez-Muñoz, RJ; Baines, DL

    2012-01-01

    BACKGROUND AND PURPOSE Pulmonary transepithelial Na+ transport is reduced by hypoxia, but in the airway the regulatory mechanisms remain unclear. We investigated the role of AMPK and ROS in the hypoxic regulation of apical amiloride-sensitive Na+ channels and basolateral Na+K+ ATPase activity. EXPERIMENTAL APPROACH H441 human airway epithelial cells were used to examine the effects of hypoxia on Na+ transport, AMP : ATP ratio and AMPK activity. Lentiviral constructs were used to modify cellular AMPK abundance and activity; pharmacological agents were used to modify cellular ROS. KEY RESULTS AMPK was activated by exposure to 3% or 0.2% O2 for 60 min in cells grown in submerged culture or when fluid (0.1 mL·cm−2) was added to the apical surface of cells grown at the air–liquid interface. Only 0.2% O2 activated AMPK in cells grown at the air–liquid interface. AMPK activation was associated with elevation of cellular AMP : ATP ratio and activity of the upstream kinase LKB1. Hypoxia inhibited basolateral ouabain-sensitive Isc (Iouabain) and apical amiloride-sensitive Na+ conductance (GNa+). Modification of AMPK activity prevented the effect of hypoxia on Iouabain (Na+K+ ATPase) but not apical GNa+. Scavenging of superoxide and inhibition of NADPH oxidase prevented the effect of hypoxia on apical GNa+ (epithelial Na+ channels). CONCLUSIONS AND IMPLICATIONS Hypoxia activates AMPK-dependent and -independent pathways in airway epithelial cells. Importantly, these pathways differentially regulate apical Na+ channels and basolateral Na+K+ ATPase activity to decrease transepithelial Na+ transport. Luminal fluid potentiated the effect of hypoxia and activated AMPK, which could have important consequences in lung disease conditions. PMID:22509822

  11. NMR studies on Na+ transport in Synechococcus PCC 6311

    NASA Technical Reports Server (NTRS)

    Nitschmann, W. H.; Packer, L.

    1992-01-01

    The freshwater cyanobacterium Synechococcus PCC 6311 is able to adapt to grow after sudden exposure to salt (NaCl) stress. We have investigated the mechanism of Na+ transport in these cells during adaptation to high salinity. Na+ influx under dark aerobic conditions occurred independently of delta pH or delta psi across the cytoplasmic membrane, ATPase activity, and respiratory electron transport. These findings are consistent with the existence of Na+/monovalent anion cotransport or simultaneous Na+/H+ +anion/OH- exchange. Na+ influx was dependent on Cl-, Br-, NO3-, or NO2-. No Na+ uptake occurred after addition of NaI, NaHCO3, or Na2SO4. Na+ extrusion was absolutely dependent on delta pH and on an ATPase activity and/or on respiratory electron transport. This indicates that Na+ extrusion via Na+/H+ exchange is driven by primary H+ pumps in the cytoplasmic membrane. Cells grown for 4 days in 0.5 m NaCl medium, "salt-grown cells," differ from control cells by a lower maximum velocity of Na+ influx and by lower steady-state ratios of [Na+]in/[Na+]out. These results indicate that cells grown in high-salt medium increase their capacity to extrude Na+. During salt adaptation Na+ extrusion driven by respiratory electron transport increased from about 15 to 50%.

  12. Glial Na(+) -dependent ion transporters in pathophysiological conditions.

    PubMed

    Boscia, Francesca; Begum, Gulnaz; Pignataro, Giuseppe; Sirabella, Rossana; Cuomo, Ornella; Casamassa, Antonella; Sun, Dandan; Annunziato, Lucio

    2016-10-01

    Sodium dynamics are essential for regulating functional processes in glial cells. Indeed, glial Na(+) signaling influences and regulates important glial activities, and plays a role in neuron-glia interaction under physiological conditions or in response to injury of the central nervous system (CNS). Emerging studies indicate that Na(+) pumps and Na(+) -dependent ion transporters in astrocytes, microglia, and oligodendrocytes regulate Na(+) homeostasis and play a fundamental role in modulating glial activities in neurological diseases. In this review, we first briefly introduced the emerging roles of each glial cell type in the pathophysiology of cerebral ischemia, Alzheimer's disease, epilepsy, Parkinson's disease, Amyotrophic Lateral Sclerosis, and myelin diseases. Then, we discussed the current knowledge on the main roles played by the different glial Na(+) -dependent ion transporters, including Na(+) /K(+) ATPase, Na(+) /Ca(2+) exchangers, Na(+) /H(+) exchangers, Na(+) -K(+) -Cl(-) cotransporters, and Na(+) - HCO3- cotransporter in the pathophysiology of the diverse CNS diseases. We highlighted their contributions in cell survival, synaptic pathology, gliotransmission, pH homeostasis, and their role in glial activation, migration, gliosis, inflammation, and tissue repair processes. Therefore, this review summarizes the foundation work for targeting Na(+) -dependent ion transporters in glia as a novel strategy to control important glial activities associated with Na(+) dynamics in different neurological disorders. GLIA 2016;64:1677-1697. PMID:27458821

  13. Na+ Interactions with the Neutral Amino Acid Transporter ASCT1*

    PubMed Central

    Scopelliti, Amanda J.; Heinzelmann, Germano; Kuyucak, Serdar; Ryan, Renae M.; Vandenberg, Robert J.

    2014-01-01

    The alanine, serine, cysteine transporters (ASCTs) belong to the solute carrier family 1A (SLC1A), which also includes the excitatory amino acid transporters (EAATs) and the prokaryotic aspartate transporter GltPh. Acidic amino acid transport by the EAATs is coupled to the co-transport of three Na+ ions and one proton, and the counter-transport of one K+ ion. In contrast, neutral amino acid exchange by the ASCTs does not require protons or the counter-transport of K+ ions and the number of Na+ ions required is not well established. One property common to SLC1A family members is a substrate-activated anion conductance. We have investigated the number and location of Na+ ions required by ASCT1 by mutating residues in ASCT1 that correspond to residues in the EAATs and GltPh that are involved in Na+ binding. Mutations to all three proposed Na+ sites influence the binding of substrate and/or Na+, or the rate of substrate exchange. A G422S mutation near the Na2 site reduced Na+ affinity, without affecting the rate of exchange. D467T and D467A mutations in the Na1 site reduce Na+ and substrate affinity and also the rate of substrate exchange. T124A and D380A mutations in the Na3 site selectively reduce the affinity for Na+ and the rate of substrate exchange without affecting substrate affinity. In many of the mutants that reduce the rate of substrate transport the amplitudes of the substrate-activated anion conductances are not substantially affected indicating altered ion dependence for channel activation compared with substrate exchange. PMID:24808181

  14. P2X7 receptor activation downmodulates Na(+)-dependent high-affinity GABA and glutamate transport into rat brain cortex synaptosomes.

    PubMed

    Barros-Barbosa, A R; Lobo, M G; Ferreirinha, F; Correia-de-Sá, P; Cordeiro, J M

    2015-10-15

    Sodium-dependent high-affinity amino-acid transporters play crucial roles in terminating synaptic transmission in the central nervous system (CNS). However, there is lack of information about the mechanisms underlying the regulation of amino-acid transport by fast-acting neuromodulators, like ATP. Here, we investigated whether activation of the ATP-sensitive P2X7 receptor modulates Na(+)-dependent high-affinity γ-aminobutyric acid (GABA) and glutamate uptake into nerve terminals (synaptosomes) of the rat cerebral cortex. Radiolabeled neurotransmitter accumulation was evaluated by liquid scintillation spectrometry. The cell-permeant sodium-selective fluorescent indicator, SBFI-AM, was used to estimate Na(+) influx across plasma membrane. 2'(3')-O-(4-benzoylbenzoyl)ATP (BzATP, 3-300 μM), a prototypic P2X7 receptor agonist, concentration-dependently decreased [(3)H]GABA (14%) and [(14)C]glutamate (24%) uptake; BzATP decreased transport maximum velocity (Vmax) without affecting the Michaelis constant (Km) values. The selective P2X7 receptor antagonist, A-438079 (3 μM), prevented inhibition of [(3)H]GABA and [(14)C]glutamate uptake by BzATP (100 μM). The inhibitory effect of BzATP coincided with its ability to increase intracellular Na(+) and was mimicked by Na(+) ionophores, like gramicidin and monensin. Increases in intracellular Na(+) (with veratridine or ouabain) or substitution of extracellular Na(+) by N-methyl-D-glucamine (NMDG)(+) all decreased [(3)H]GABA and [(14)C]glutamate uptake and attenuated BzATP effects. Uptake inhibition by BzATP (100 μM) was also attenuated by calmidazolium, which selectively inhibits Na(+) currents through the P2X7 receptor pore. In conclusion, disruption of the Na(+) gradient by P2X7 receptor activation downmodulates high-affinity GABA and glutamate uptake into rat cortical synaptosomes. Interference with amino-acid transport efficacy may constitute a novel target for therapeutic management of cortical excitability. PMID

  15. The Na+/H+ exchanger isoform 3 is required for active paracellular and transcellular Ca2+ transport across murine cecum

    PubMed Central

    Rievaj, Juraj; Pan, Wanling; Cordat, Emmanuelle; Alexander, R. Todd

    2016-01-01

    Intestinal calcium (Ca2+) absorption occurs via paracellular and transcellular pathways. Although the transcellular route has been extensively studied, mechanisms mediating paracellular absorption are largely unexplored. Unlike passive diffusion, secondarily active paracellular Ca2+ uptake occurs against an electrochemical gradient with water flux providing the driving force. Water movement is dictated by concentration differences that are largely determined by Na+ fluxes. Consequently, we hypothesized that Na+ absorption mediates Ca2+ flux. NHE3 is central to intestinal Na+ absorption. NHE3 knockout mice (NHE3−/−) display impaired intestinal Na+, water, and Ca2+ absorption. However, the mechanism mediating this latter abnormality is not clear. To investigate this, we used Ussing chambers to measure net Ca2+ absorption across different segments of wild-type mouse intestine. The cecum was the only segment with net Ca2+ absorption. Quantitative RT-PCR measurements revealed cecal expression of all genes implicated in intestinal Ca2+ absorption, including NHE3. We therefore employed this segment for further studies. Inhibition of NHE3 with 100 μM 5-(N-ethyl-N-isopropyl) amiloride decreased luminal-to-serosal and increased serosal-to-luminal Ca2+ flux. NHE3−/− mice had a >60% decrease in luminal-to-serosal Ca2+ flux. Ussing chambers experiments under altered voltage clamps (−25, 0, +25 mV) showed decreased transcellular and secondarily active paracellular Ca2+ absorption in NHE3−/− mice relative to wild-type animals. Consistent with this, cecal Trpv6 expression was diminished in NHE3−/− mice. Together these results implicate NHE3 in intestinal Ca2+ absorption and support the theory that this is, at least partially, due to the role of NHE3 in Na+ and water absorption. PMID:23764894

  16. Pyrophosphate-Fueled Na+ and H+ Transport in Prokaryotes

    PubMed Central

    Malinen, Anssi M.; Luoto, Heidi H.

    2013-01-01

    SUMMARY In its early history, life appeared to depend on pyrophosphate rather than ATP as the source of energy. Ancient membrane pyrophosphatases that couple pyrophosphate hydrolysis to active H+ transport across biological membranes (H+-pyrophosphatases) have long been known in prokaryotes, plants, and protists. Recent studies have identified two evolutionarily related and widespread prokaryotic relics that can pump Na+ (Na+-pyrophosphatase) or both Na+ and H+ (Na+,H+-pyrophosphatase). Both these transporters require Na+ for pyrophosphate hydrolysis and are further activated by K+. The determination of the three-dimensional structures of H+- and Na+-pyrophosphatases has been another recent breakthrough in the studies of these cation pumps. Structural and functional studies have highlighted the major determinants of the cation specificities of membrane pyrophosphatases and their potential use in constructing transgenic stress-resistant organisms. PMID:23699258

  17. Impact of mechanical stress on ion transport in native lung epithelium (Xenopus laevis): short-term activation of Na+, Cl (-) and K+ channels.

    PubMed

    Bogdan, Roman; Veith, Christine; Clauss, Wolfgang; Fronius, Martin

    2008-09-01

    Epithelia, in general, and the lung epithelium, in particular, are exposed to mechanical forces, but little is known about their impact on pulmonary ion transport. In our present study, we employed transepithelial ion transport measurements on Xenopus lung preparations using custom-built Ussing chambers. Tissues were exposed to mechanical stress by increasing the water column (5 cm) at one side of the tissues. Apical exposure to hydrostatic pressure significantly decreased the short circuit current (I (SC): 24 +/- 1%, n = 152), slightly decreased the transepithelial resistance (R (T): 7 +/- 2%, n = 152), but increased the apical membrane capacitance (C (M): 16 +/- 6%, n = 9). The pressure-induced effect was sensitive to Na+ (amiloride), Cl(-) (DIDS, NFA, NPPB) and K+ channel blockers (Ba2+), glibenclamide). Further on, it was accompanied by increased extracellular ATP levels. The results show that mechanical stress leads to an activation of Na+, Cl(-), and K+ conductances in a native pulmonary epithelium resulting in a net decrease of ion absorption. This could be of considerable interest, since an altered ion transport may contribute to pathophysiological conditions, e.g., the formation of pulmonary edema during artificial ventilation. PMID:18581136

  18. Acidic pH and short-chain fatty acids activate Na+ transport but differentially modulate expression of Na+/H+ exchanger isoforms 1, 2, and 3 in omasal epithelium.

    PubMed

    Lu, Zhongyan; Yao, Lei; Jiang, Zhengqian; Aschenbach, Jörg R; Martens, Holger; Shen, Zanming

    2016-01-01

    Low sodium content in feed and large amounts of salivary sodium secretion are essential requirements to efficient sodium reabsorption in the dairy cow. It is already known that Na(+)/H(+) exchange (NHE) of the ruminal epithelium plays a key role in Na(+) absorption, and its function is influenced by the presence of short-chain fatty acids (SCFA) and mucosal pH. By contrast, the functional role and regulation of NHE in omasal epithelium have not been completely understood. In the present study, we used model studies in small ruminants (sheep and goats) to investigate NHE-mediated Na(+) transport and the effects of pH and SCFA on NHE activity in omasal epithelium and on the expression of NHE isoform in omasal epithelial cells. Conventional Ussing chamber technique, primary cell culture, quantitative PCR, and Western blot were used. In native omasal epithelium of sheep, the Na(+) transport was electroneutral, and it was inhibited by the specific NHE3 inhibitor 3-[2-(3-guanidino-2-methyl-3-oxo-propenyl)-5-methyl-phenyl]-N-isopropylidene-2-methyl-acrylamide dihydrochloride, which decreased mucosal-to-serosal, serosal-to-mucosal, and net flux rates of Na(+) by 80% each. The application of low mucosal pH (6.4 or 5.8) in the presence of SCFA activated the Na(+) transport across omasal epithelium of sheep compared with that at pH 7.4. In cultured omasal epithelial cells of goats, mRNA and protein of NHE1, NHE2, and NHE3 were detected. The application of SCFA increased NHE1 mRNA and protein expression, which was most prominent when the culture medium pH decreased from 7.4 to 6.8. At variance, the mRNA and protein expression of NHE2 and NHE3 were decreased with low pH and SCFA, which was contrary to the published data from ruminal epithelial studies. In conclusion, this paper shows that (1) NHE1, NHE2, and NHE3 are expressed in omasal epithelium; (2) NHE3 mediates the major portion of transepithelial Na(+) transport in omasal epithelium; and (3) SCFA and acidic pH acutely

  19. Membrane Na+-pyrophosphatases Can Transport Protons at Low Sodium Concentrations*

    PubMed Central

    Luoto, Heidi H.; Nordbo, Erika; Baykov, Alexander A.; Lahti, Reijo; Malinen, Anssi M.

    2013-01-01

    Membrane-bound Na+-pyrophosphatase (Na+-PPase), working in parallel with the corresponding ATP-energized pumps, catalyzes active Na+ transport in bacteria and archaea. Each ∼75-kDa subunit of homodimeric Na+-PPase forms an unusual funnel-like structure with a catalytic site in the cytoplasmic part and a hydrophilic gated channel in the membrane. Here, we show that at subphysiological Na+ concentrations (<5 mm), the Na+-PPases of Chlorobium limicola, four other bacteria, and one archaeon additionally exhibit an H+-pumping activity in inverted membrane vesicles prepared from recombinant Escherichia coli strains. H+ accumulation in vesicles was measured with fluorescent pH indicators. At pH 6.2–8.2, H+ transport activity was high at 0.1 mm Na+ but decreased progressively with increasing Na+ concentrations until virtually disappearing at 5 mm Na+. In contrast, 22Na+ transport activity changed little over a Na+ concentration range of 0.05–10 mm. Conservative substitutions of gate Glu242 and nearby Ser243 and Asn677 residues reduced the catalytic and transport functions of the enzyme but did not affect the Na+ dependence of H+ transport, whereas a Lys681 substitution abolished H+ (but not Na+) transport. All four substitutions markedly decreased PPase affinity for the activating Na+ ion. These results are interpreted in terms of a model that assumes the presence of two Na+-binding sites in the channel: one associated with the gate and controlling all enzyme activities and the other located at a distance and controlling only H+ transport activity. The inherent H+ transport activity of Na+-PPase provides a rationale for its easy evolution toward specific H+ transport. PMID:24158447

  20. Na+-independent phosphate transport in Caco2BBE cells

    PubMed Central

    Candeal, Eduardo; Caldas, Yupanqui A.; Guillén, Natalia; Levi, Moshe

    2014-01-01

    Pi transport in epithelia has both Na+-dependent and Na+-independent components, but so far only Na+-dependent transporters have been characterized in detail and molecularly identified. Consequently, in the present study, we initiated the characterization and analysis of intestinal Na+-independent Pi transport using an in vitro model, Caco2BBE cells. Only Na+-independent Pi uptake was observed in these cells, and Pi uptake was dramatically increased when cells were incubated in high-Pi DMEM (4 mM) from 1 day to several days. No response to low-Pi medium was observed. The increased Pi transport was mainly caused by Vmax changes, and it was prevented by actinomycin D and cycloheximide. Pi transport in cells grown in 1 mM Pi (basal DMEM) decreased at pH > 7.5, and it was inhibited with proton ionophores. Pi transport in cells incubated with 4 mM Pi increased with alkaline pH, suggesting a preference for divalent phosphate. Pi uptake in cells in 1 mM Pi was completely inhibited only by Pi and partially inhibited by phosphonoformate, oxalate, DIDS, SITS, SO42−, HCO3−, and arsenate. This inhibition pattern suggests that more than one Pi transporter is active in cells maintained with 1 mM Pi. Phosphate transport from cells maintained at 4 mM Pi was only partially inhibited by phosphonoformate, oxalate, and arsenate. Attempts to identify the responsible transporters showed that multifunctional anion exchangers of the Slc26 family as well as members of Slc17, Slc20, and Slc37 and the Pi exporter xenotropic and polytropic retrovirus receptor 1 are not involved. PMID:25298422

  1. The role of Na/+/ in transport processes of bacterial membranes

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1979-01-01

    Until recently it was generally held that transport in bacteria was linked exclusively to proton circulation, in contrast to most eucaryotic systems, which depended on Na(+) circulation. The present review is intended to trace recent developments which have led to the discarding of this idea. The discussion covers transport of Na(+) and other cations, effects of Na(+) and Na(+) gradients on metabolite transport, properties of Na(+)-dependent transport carriers, and evolutionary considerations of Na(+) transport. It is now apparent that the transport of Na(+) is an important part of energy metabolism in bacteria, and that Na(+) gradients as well as H(+) gradients are used in these systems for the conservation and transmission of energy. Two hypotheses are proposed to explain the evolution of Na/K systems, and it is presently difficult to decide between them.

  2. Na+ transport by rabbit urinary bladder, a tight epithelium.

    PubMed

    Lewis, S A; Diamond, J M

    1976-08-27

    By in vitro experiments on rabbit bladder, we reassessed the traditional view that mammalian urinary bladder lacks ion transport mechanisms. Since the ratio of actual-to-nominal membrane area in folded epithelia is variable and hard to estimate, we normalized membrane properties to apical membrane capacitance rather than to nominal area (probably 1 muF approximately 1 cm2 actual area). A new mounting technique that virtually eliminates edge damage yielded resistances up to 78,000 omega muF for rabbit bladder, and resistances for amphibian skin and bladder much higher than those usually reported. This technique made it possible to observe a transport-related conductance pathway, and a close correlation between transepithelial conductance (G) and short-circuit current (Isc) in these tight epithelia. G and Isc were increased by mucosal (Na+) [Isc approximately 0 when (Na+) approximately 0], aldosterone, serosal (HCO-3) and high mucosal (H+); were decreased by amiloride, mucosal (Ca++), ouabain, metabolic inhibitors and serosal (H+); and were unaffected by (Cl-) and little affected by antidiuretic hormone (ADH). Physiological variation in the rabbits' dietary Na+ intake caused variations in bladder G and Isc similar to those caused by the expected in vivo changes in aldosterone levels. The relation between G and Isc was the same whether defined by diet changes, natural variation among individual rabbits, or most of the above agents. A method was developed for separately resolving conductances of junctions, basolateral cell membrane, and apical cell membrane from this G--Isc relation. Net Na+ flux equalled Isc. Net Cl- flux was zero on short circuit and equalled only 25% of net Na+ flux in open circuit. Bladder membrane fragments contained a Na+-K+-activated, ouabain-inhibited ATPase. The physiological significance of Na+ absorption against steep gradients in rabbit bladder may be to maintain kidney-generated ion gradients during bladder storage of urine, especially

  3. Evidence that the transport-related proteins BAT and 4F2hc are not specific for amino acids: induction of Na+-dependent uridine and pyruvate transport activity by recombinant BAT and 4F2hc expressed in Xenopus oocytes.

    PubMed

    Yao, S Y; Muzyka, W R; Cass, C E; Cheeseman, C I; Young, J D

    1998-01-01

    Members of the BAT and 4F2hc gene family have one or, in the case of BAT, up to four transmembane domains and induce amino acid transport systems b(o,+) (BAT) and y+L (4F2hc) when expressed in Xenopus oocytes. System b(o,+) is a Na+-independent process with a broad tolerance for cationic and zwitterionic amino acids, whereas y+L exhibits Na+-independent transport of cationic amino acids (e.g., lysine) and Na+-dependent transport of zwitterionic amino acids (e.g., leucine). Mutations in the human BAT gene are associated with type I cystinuria, a genetic disease affecting the ability of intestinal and renal brush border membranes to transport cationic amino acids and cystine. An unresolved question is whether BAT and 4F2hc themselves have catalytic (i.e., transporting) activity or whether they operate as activators of other, as yet unidentified, transporter proteins. In this report, we have investigated the transport of representatives of four different classes of organic substrates in Xenopus oocytes following injection with rat BAT or 4F2hc RNA transcripts: leucine (a control amino acid substrate), uridine (a nucleoside), pyruvate (a monocarboxylate), and choline (an amine). Both recombinant proteins induced small, statistically significant Na+-dependent fluxes of uridine and pyruvate but had no effect on choline uptake. In contrast, control oocytes injected with transcripts for conventional nucleoside and cationic amino acid transporters (rat CNT1 and murine CAT1, respectively) showed no induction of transport of either leucine or pyruvate (CNT1) or uridine or pyruvate (CAT1). These findings support the idea that BAT and 4F2hc are transport activators and minimize the possibility that they have intrinsic transport capability. The transport-regulating functions of these proteins may extend to permeants other than amino acids. PMID:10353721

  4. EPAct Transportation Regulatory Activities

    SciTech Connect

    2011-11-21

    The U.S. Department of Energy's (DOE) Vehicle Technologies Program manages several transportation regulatory activities established by the Energy Policy Act of 1992 (EPAct), as amended by the Energy Conservation Reauthorization Act of 1998, EPAct 2005, and the Energy Independence and Security Act of 2007 (EISA).

  5. Glucose and fructose uptake by Limulus polyphemus hepatopancreatic brush border and basolateral membrane vesicles: evidence for Na+-dependent sugar transport activity.

    PubMed

    Sterling, Kenneth M; Ahearn, Gregory A

    2011-05-01

    [(3)H]-fructose and [(3)H]-glucose transport activities were determined in brush border membrane vesicles (BBMV) and basolateral membrane vesicles (BLMV) from Limulus polyphemus (horseshoe crab) hepatopancreas. Glucose transport was equilibrative in the absence of sodium and sodium dependent in the presence of sodium in BBMV, suggesting GLUT-like and SGLT-like transport activity. Glucose transport by BLMV was equilibrative and sodium independent. Fructose uptake by BBMV and BLMV was equilibrative in the absence of sodium and sodium dependent in the presence of sodium. Western blot analysis using a rabbit anti-mouse SGLT-1 polyclonal antibody indicated the presence of a cross-reacting horseshoe crab BBMV protein of similar molecular weight to the mammalian SGLT1. Sequence alignment of the mouse SGLT-4 and SGLT1 with a translated, horseshoe crab-expressed sequence tag also indicated significant identity between species. Fructose and glucose uptake in the absence and presence of sodium by hepatopancreas BBMV and BLMV indicated the presence of sodium-dependent transport activity for each sugar that may result from the presence of transporters similar to those described for other species. PMID:21184084

  6. Functional role of glucose metabolism, osmotic stress, and sodium-glucose cotransporter isoform-mediated transport on Na+/H+ exchanger isoform 3 activity in the renal proximal tubule.

    PubMed

    Pessoa, Thaissa Dantas; Campos, Luciene Cristina Gastalho; Carraro-Lacroix, Luciene; Girardi, Adriana C C; Malnic, Gerhard

    2014-09-01

    Na(+)-glucose cotransporter 1 (SGLT1)-mediated glucose uptake leads to activation of Na(+)-H(+) exchanger 3 (NHE3) in the intestine by a process that is not dependent on glucose metabolism. This coactivation may be important for postprandial nutrient uptake. However, it remains to be determined whether SGLT-mediated glucose uptake regulates NHE3-mediated NaHCO3 reabsorption in the renal proximal tubule. Considering that this nephron segment also expresses SGLT2 and that the kidneys and intestine show significant variations in daily glucose availability, the goal of this study was to determine the effect of SGLT-mediated glucose uptake on NHE3 activity in the renal proximal tubule. Stationary in vivo microperfusion experiments showed that luminal perfusion with 5 mM glucose stimulates NHE3-mediated bicarbonate reabsorption. This stimulatory effect was mediated by glycolytic metabolism but not through ATP production. Conversely, luminal perfusion with 40 mM glucose inhibited NHE3 because of cell swelling. Notably, pharmacologic inhibition of SGLT activity by Phlorizin produced a marked inhibition of NHE3, even in the absence of glucose. Furthermore, immunofluorescence experiments showed that NHE3 colocalizes with SGLT2 but not SGLT1 in the rat renal proximal tubule. Collectively, these findings show that glucose exerts a bimodal effect on NHE3. The physiologic metabolism of glucose stimulates NHE3 transport activity, whereas, supraphysiologic glucose concentrations inhibit this exchanger. Additionally, Phlorizin-sensitive SGLT transporters and NHE3 interact functionally in the proximal tubule. PMID:24652792

  7. Electrogenicity of Na(+)-coupled bile acid transporters.

    PubMed Central

    Weinman, S. A.

    1997-01-01

    The Na(+)-bile acid cotransporters NTCP and ASBT are largely responsible for the Na(+)-dependent bile acid uptake in hepatocytes and intestinal epithelial cells, respectively. This review discusses the experimental methods available for demonstrating electrogenicity and examines the accumulating evidence that coupled transport by each of these bile acid transporters is electrogenic. The evidence includes measurements of transport-associated currents by patch clamp electrophysiological techniques, as well as direct measurement of fluorescent bile acid transport rates in whole cell patch clamped, voltage clamped cells. The results support a Na+:bile acid coupling stoichiometry of 2:1. PMID:9626753

  8. Na/sup +/-H/sup +/ exchange and Na/sup +/-dependent transport systems in streptozotocin diabetic rat kidneys

    SciTech Connect

    El-Seifi, S.; Freiberg, J.M.; Kinsella, F.J.; Cheng, L.; Sacktor, B.

    1987-01-01

    The streptozotocin-induced diabetic rat was used to test the hypothesis that Na/sup +/-H/sup +/ exchange activity in the proximal tubule luminal membrane would be increased in association with renal hypertrophy, altered glomerular hemodynamics, enhanced filtered load and tubular reabsorption of /sup 22/Na/sup +/, and stimulated /sup 22/Na= pump activity in the basolateral membrane, previously reported characteristics of this experimental animal model. Amiloride-sensitive H/sup +/ gradient-dependent Na/sup +/ uptake and Na/sup +/ gradient-dependent H/sup +/ flux were increased in brush-border membrane vesicles from the streptozotocin-treated animals. Na/sup +/ gradient-dependent uptakes of phosphate, D-glucose, L-proline, and myoinositol were decreased in the drug-induced diabetic animals. These membrane transport alterations were not found when the streptozotocin-diabetic animals were treated with insulin.

  9. Regulators of Slc4 bicarbonate transporter activity

    PubMed Central

    Thornell, Ian M.; Bevensee, Mark O.

    2015-01-01

    The Slc4 family of transporters is comprised of anion exchangers (AE1-4), Na+-coupled bicarbonate transporters (NCBTs) including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2), electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2), and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE), as well as a borate transporter (BTR1). These transporters regulate intracellular pH (pHi) and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO−3 either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO−3 transporter contributes to a cell's ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s) (e.g., Na+ or Cl−). In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both well-known and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family. PMID:26124722

  10. Effects of insulin and epinephrine on Na/sup +/-K/sup +/ and glucose transport in soleus muscle

    SciTech Connect

    Clausen, T.; Flatman, J.A.

    1987-04-01

    To identify possible cause-effect relationships between changes in active Na/sup +/-K/sup +/ transport, resting membrane potential, and glucose transport, the effects of insulin and epinephrine were compared in rat soleus muscle. Epinephrine, which produced twice as large a hyperpolarization as insulin, induced only a modest increase in /sup 14/C-labeled sugar transport. Ouabain, at a concentration (10/sup -3/ M) sufficient to block active Na/sup +/-K/sup +/ transport and the hyperpolarization induced by the two hormones, did not interfere with sugar transport stimulation. After Na/sup +/ loading in K/sup +/-free buffer, the return to K/sup +/-containing standard buffer caused marked stimulation of active /sup 22/Na/sup +/-/sup 42/K/sup +/ transport, twice the hyperpolarization produced by insulin but no change in sugar transport. The insulin-induced activation of the /sup 22/Na/sup +/-/sup 42/K/sup +/ pump leads to decreased intracellular /sup 22/Na/sup +/ concentration and hyperpolarization, but none of these events can account for the concomitant activation of the glucose transport system. The stimulating effect of insulin on active Na/sup +/-K/sup +/ transport was not suppressed by amiloride, indicating that in intact skeletal muscle it is not elicited by a primary increase in Na/sup +/ influx via the Na/sup +//H/sup +/-exchange system.

  11. Expression of apical Na(+)-L-glutamine co-transport activity, B(0)-system neutral amino acid co-transporter (B(0)AT1) and angiotensin-converting enzyme 2 along the jejunal crypt-villus axis in young pigs fed a liquid formula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gut apical amino acid (AA) transport activity is high at birth and during suckling, thus being essential to maintain luminal nutrient-dependent mucosal growth through providing AA as essential metabolic fuel, substrates and nutrient stimuli for cellular growth. Because system-B(0) Na(+)-neutral AA c...

  12. The Physiological Relevance of Na+-Coupled K+-Transport.

    PubMed

    Maathuis, FJM.; Verlin, D.; Smith, F. A.; Sanders, D.; Fernandez, J. A.; Walker, N. A.

    1996-12-01

    Plant roots utilize at least two distinct pathways with high and low affinities to accumulate K+. The system for high-affinity K+ uptake, which takes place against the electrochemical K+ gradient, requires direct energization. Energization of K+ uptake via Na+ coupling has been observed in algae and was recently proposed as a mechanism for K+ uptake in wheat (Triticum aestivum L.). To investigate whether Na+ coupling has general physiological relevance in energizing K+ transport, we screened a number of species, including Arabidopsis thaliana L. Heynh. ecotype Columbia, wheat, and barley (Hordeum vulgare L.), for the presence of Na+-coupled K+ uptake. Rb+-flux analysis and electrophysiological K+-transport assays were performed in the presence and absence of Na+ and provided evidence for a coupling between K+ and Na+ transport in several aquatic species. However, all investigated terrestrial species were able to sustain growth and K+ uptake in the absence of Na+. Furthermore, the addition of Na+ was either without effect or inhibited K+ absorption. The latter characteristic was independent of growth conditions with respect to Na+ status and pH. Our results suggest that in terrestrial species Na+-coupled K+ transport has no or limited physiological relevance, whereas in certain aquatic angiosperms and algae this type of secondary transport energization plays a significant role. PMID:12226467

  13. Na+ Transport in Cardiac Myocytes; Implications for Excitation-Contraction Coupling

    PubMed Central

    Bers, Donald M.; Despa, Sanda

    2009-01-01

    Intracellular Na+ concentration ([Na+]i) is very important in modulating the contractile and electrical activity of the heart. Upon electrical excitation of the myocardium, voltage-dependent Na+ channels open, triggering the upstroke of the action potential (AP). During the AP, Ca2+ enters the myocytes via L-type Ca2+ channels. This triggers Ca2+ release from the sarcoplasmic reticulum (SR) and thus activates contraction. Relaxation occurs when cytosolic Ca2+ declines, mainly due to re-uptake into the SR via SR Ca2+-ATPase and extrusion from the cell via the Na+/Ca2+ exchanger (NCX). NCX extrudes one Ca2+ ion in exchange for three Na+ ions and its activity is critically regulated by [Na+]i. Thus, via NCX, [Na+]i is centrally involved in the regulation of intracellular [Ca2+] and contractility. Na+ brought in by Na+ channels, NCX and other Na+ entry pathways is extruded by the Na+/K+ pump (NKA) to keep [Na+]i low. NKA is regulated by phospholemman, a small sarcolemmal protein that associates with NKA. Unphosphorylated phospholemman inhibits NKA by decreasing the pump affinity for internal Na+ and this inhibition is relieved upon phosphorylation. Here we discuss the main characteristics of the Na+ transport pathways in cardiac myocytes and their physiological and pathophysiological relevance. PMID:19243007

  14. The role of Ca(2+) and Na (+) membrane transport in brook trout (Salvelinus fontinalis) spermatozoa motility.

    PubMed

    Bondarenko, Olga; Dzyuba, Borys; Cosson, Jacky; Rodina, Marek; Linhart, Otomar

    2014-10-01

    The role of environmental ion composition and osmolality in Ca(2+) signaled activation was assessed in spermatozoa of brook trout Salvelinus fontinalis. Milt from ten mature males was obtained by abdominal massage. Spermatozoa motility was evaluated in 0, 100, and 300 mOsm/kg NaCl or sucrose solutions, buffered by 10 mM Tris-HCl pH 8.5. For investigation of spermatozoa reaction to external Ca(2+) concentration, 2 mM ethylene glycol tetraacetic acid (EGTA) was added to the activation media as a calcium ions chelator. For investigation of the effect of external Na(+) concentration in conditions of low external Ca(2+), 100 µM amiloride was added to the EGTA-containing solutions as a Na(+) transport blocker. Low motility was observed in sucrose (Na(+) free) solutions containing 2 mM EGTA but not in Na(+) solutions containing 2 mM EGTA. Addition of amiloride led to significantly increased motility (P < 0.05) compared with sucrose (Na(+) free) solutions containing 2 mM EGTA. We conclude that Na(+) transport in Ca(2+)-free solutions plays a regulatory role in brook trout spermatozoa activation. The influence of competitive Na(+) and Ca(2+) transport on the control of spermatozoa activation requires further study with respect to its application for improvement of artificial activation and storage media. PMID:24718964

  15. INTEX-NA: Intercontinental Chemical Transport Experiment - North America

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Jacob, D.; Pfister, L.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    INTEX-NA is an integrated atmospheric chemistry field experiment to be performed over North America using the NASA DC-8 and P-3B aircraft as its primary platforms. It seeks to understand the exchange of chemicals and aerosols between continents and the global troposphere. The constituents of interest are ozone and its precursors (hydrocarbons, NOX and HOX), aerosols, and the major greenhouse gases (CO2, CH4, N2O). INTEX-NA will provide the observational database needed to quantify inflow, outflow, and transformations of chemicals over North America. INTEX-NA is to be performed in two phases. Phase A will take place during the period of May-August 2004 and Phase B during March-June 2006. Phase A is in summer when photochemistry is most intense and climatic issues involving aerosols and carbon cycle are most pressing, and Phase B is in spring when Asian transport to North America is at its peak. INTEX-NA will coordinate its activities with concurrent measurement programs including satellites (e. g. Terra, Aura, Envisat), field activities undertaken by the North American Carbon Program (NACP), and other U.S. and international partners. However, it is being designed as a 'stand alone' mission such that its successful execution is not contingent on other programs. Synthesis of the ensemble of observation from surface, airborne, and space platforms, with the help of global/regional models is an important It is anticipated that approximately 175 flight hours for each of the aircraft (DC-8 and P-3B) will be required for each Phase. Principal operational sites are tentatively selected to be Bangor, ME; Wallops Island, VA; Seattle, WA; Rhinelander, WI; Lancaster, CA; and New Orleans, LA. These coastal and continental sites can support large missions and are suitable for INTEX-NA objectives. The experiment will be supported by forecasts from meteorological and chemical models, satellite observations, surface networks, and enhanced O3,-sonde releases. In addition to

  16. Expression of apical Na(+)-L-glutamine co-transport activity, B(0)-system neutral amino acid co-transporter (B(0)AT1) and angiotensin-converting enzyme 2 along the jejunal crypt-villus axis in young pigs fed a liquid formula.

    PubMed

    Yang, Chengbo; Yang, Xiaojian; Lackeyram, Dale; Rideout, Todd C; Wang, Zirong; Stoll, Barbara; Yin, Yulong; Burrin, Douglas G; Fan, Ming Z

    2016-06-01

    Gut apical amino acid (AA) transport activity is high at birth and during suckling, thus being essential to maintain luminal nutrient-dependent mucosal growth through providing AA as essential metabolic fuel, substrates and nutrient stimuli for cellular growth. Because system-B(0) Na(+)-neutral AA co-transporter (B(0)AT1, encoded by the SLC6A19 gene) plays a dominant role for apical uptake of large neutral AA including L-Gln, we hypothesized that high apical Na(+)-Gln co-transport activity, and B(0)AT1 (SLC6A19) in co-expression with angiotensin-converting enzyme 2 (ACE2) were expressed along the entire small intestinal crypt-villus axis in young animals via unique control mechanisms. Kinetics of Na(+)-Gln co-transport activity in the apical membrane vesicles, prepared from epithelial cells sequentially isolated along the jejunal crypt-villus axis from liquid formula-fed young pigs, were measured with the membrane potential being clamped to zero using thiocyanate. Apical maximal Na(+)-Gln co-transport activity was much higher (p < 0.05) in the upper villus cells than in the middle villus (by 29 %) and the crypt (by 30 %) cells, whereas Na(+)-Gln co-transport affinity was lower (p < 0.05) in the upper villus cells than in the middle villus and the crypt cells. The B(0)AT1 (SLC6A19) mRNA abundance was lower (p < 0.05) in the crypt (by 40-47 %) than in the villus cells. There were no significant differences in B(0)AT1 and ACE2 protein abundances on the apical membrane among the upper villus, the middle villus and the crypt cells. Our study suggests that piglet fast growth is associated with very high intestinal apical Na(+)-neutral AA uptake activities via abundantly co-expressing B(0)AT1 and ACE2 proteins in the apical membrane and by transcribing the B(0)AT1 (SLC6A19) gene in the epithelia along the entire crypt-villus axis. PMID:26984322

  17. The effect of chronic and acute ethanol treatment on morphology, lipid peroxidation, enzyme activities and Na+ transport systems on WRL-68 cells.

    PubMed

    Gutiérrez-Ruiz, M C; Bucio, L; Souza, V; Cárabez, A

    1995-04-01

    In this study we measured some parameters that are associated with ethanol damage to the liver. The method allowed us to determine the injury that chronic and acute ethanol treatments produce at the cellular level without interference from homeostatic or compensatory mechanisms. The system used is a hepatic fetal human cell line, WRL-68, which retains, in culture, many of the liver-specific functions. WRL-68 cells do not metabolise ethanol, and consequently we could evaluate the effect of ethanol alone. We explored two different conditions: 30 days with 0.1 M ethanol (chronic treatment) and 24 h in the presence of 0.5 M ethanol (acute treatment). 1. The transmission electron microscopy studies revealed, in both treatments, the presence of granules not usually present in the cytoplasm of control cells and morphological mitochondrial alterations in chronically treated cells. 2. Lipid peroxidation, measured as the rate of malondialdehyde production, increased three and a half times in acutely treated cells and about twofold in chronically treated cells. 3. The percentage of total activity (activity in the medium/(activity in the medium + activity of the cells). 100) and the enzymatic activity in the culture medium of gamma glutamyl transpeptidase (GGT), alanine amino transferase (ALAT), aspartate amino transferase (ASAT) and alkaline phosphatase (AI-P), increased. 4. We measured some parameters related to the transport of sodium across the membrane. Cells chronically treated with ethanol had higher rate constants and effluxes than control cells. There was no difference between the total and passive efflux. Ethanol treated cells apparently lacked the ouabain sensitive pathway. In acutely treated cells, the total sodium efflux and the rate constant were enhanced. Sodium pools in the acutely treated cells were diminished and active sodium pumping was seven times higher than in control cells. 5. We determined the number of high affinity ouabain binding sites per cell

  18. Insulin and phorbol ester stimulate conductive Na/sup +/ transport through a common pathway

    SciTech Connect

    Civan, M.M.; Peterson-Yantorno, K.; O'Brien, T.G.

    1988-02-01

    Insulin stimulates Na/sup +/ transport across frog skin, toad urinary bladder, and the distal renal nephron. This stimulation reflects an increase in apical membrane Na/sup +/ permeability and a stimulation of the basolateral membrane Na,K-exchange pump. Considerable indirect evidence has suggested that the apical natriferic effect of insulin is mediated by activation of protein kinase C. However, no direct information has been available documenting that insulin and protein kinase C indeed share a common pathway in stimulating Na/sup +/ transport across frog skin. In the present work, the authors have studied the interaction of insulin and phorbol 12-myristate 13-acetate (PMA), a documented activator of protein kinase C. Preincubation of skins with 1,2-dioctanoylglycerol, another activator of protein kinase C, increases baseline Na/sup +/ transport and reduces the subsequent natriferic response to PMA. Preincubation with PMA markedly reduces the subsequent natriferic action of insulin. This effect does not appear to primarily reflect PMA-induced internalization of insulin receptors. The insulin receptors are localized on the basolateral surface of frog skin, but the application of PMA to this surface is much less effective than mucosal treatment in reducing the response to insulin. The current results provide documentation that insulin and protein kinase C share a common pathway in stimulating Na/sup +/ transport across frog skin. The data are consistent with the concept that the natriferic effect of insulin on frog skin is, at least in part, mediated by activation of protein kinase C.

  19. Protein prenylation is required for aldosterone-stimulated Na+ transport.

    PubMed

    Blazer-Yost, B L; Hughes, C L; Nolan, P L

    1997-06-01

    Aldosterone stimulation of transcellular Na+ flux in polarized epithelial cells is dependent on at least one transmethylation reaction, but the substrate of this signaling step is unknown. Because it is clear that the majority of cellular protein methylation occurs in conjunction with protein prenylation, we examined the importance of prenylation to aldosterone-stimulated Na+ transport in the A6 cell line. Lovastatin, an inhibitor of the first committed step of the mevalonate pathway, inhibits the natriferic effect of aldosterone but does not inhibit insulin-stimulated Na+ flux. The addition of a farnesyl group does not appear to be involved in aldosterone's action. Neither alpha-hydroxyfarne-sylphosphonic acid, an inhibitor of farnesyl:protein transferase, nor N-acetyl-S-farnesyl-L-cysteine, an inhibitor of farnesylated protein methylation, inhibits the hormone-induced increase in Na+ transport. In contrast, N-acetyl-S-geranyl-geranyl-L-cysteine, an inhibitor of geranylgeranyl protein methylation, completely abolishes the aldosterone-induced increase in Na+ flux with no effect on insulin-mediated Na+ transport or cellular protein content. These data indicate that methylation of a geranylgeranylated protein is involved in aldosterone's natriferic action. PMID:9227422

  20. Energetics of active transport processes.

    PubMed

    Essig, A; Caplan, S R

    1968-12-01

    Discussions of active transport usually assume stoichiometry between the rate of transport J(+) and the metabolic rate J(r). However, the observation of a linear relationship between J(+) and J(r) does not imply a stoichiometric relationship, i.e., complete coupling. Since coupling may possibly be incomplete, we examine systems of an arbitrary degree of coupling q, regarding stoichiometry as a limiting case. We consider a sodium pump, with J(+) and J(r) linear functions of the electrochemical potential difference, -X(+), and the chemical affinity of the metabolic driving reaction, A. The affinity is well defined even for various complex reaction pathways. Incorporation of a series barrier and a parallel leak does not affect the linearity of the composite observable system. The affinity of some region of the metabolic chain may be maintained constant, either by large pools of reactants or by regulation. If so, this affinity can be evaluated by two independent methods. Sodium transport is conveniently characterized by the open-circuit potential (Deltapsi)(I=0) and the natural limits, level flow (J(+))(X+=0), and static head X(0) (+) = (X(+))(J+=0). With high degrees of coupling -X(0) (+)/F approaches the electromotive force E(Na) (Ussing); -X(0) (+)/F cannot be identified with ((RT/F) ln f)(X+=0), where f is the flux ratio. The efficiency eta = -J(+)X(+)/J(r)A is of significance only when appreciable energy is being converted from one form to another. When either J(+) or -X(+) is small eta is low; the significant parameters are then the efficacies epsilon(J+) = J(+)/J(r)A and epsilon(X+) = -X(+)/J(r)A, respectively maximal at level flow and static head. Leak increases both J(+) and epsilon(J+) for isotonic saline reabsorption, but diminishes -X(0) (+) and epsilon(Xfemale symbol). Electrical resistance reflects both passive parameters and metabolism. Various fundamental relations are preserved despite coupling of passive ion and water flows. PMID:5713453

  1. Evolutionarily divergent, Na+-regulated H+-transporting membrane-bound pyrophosphatases.

    PubMed

    Luoto, Heidi H; Nordbo, Erika; Malinen, Anssi M; Baykov, Alexander A; Lahti, Reijo

    2015-04-15

    Membrane-bound pyrophosphatase (mPPases) of various types consume pyrophosphate (PPi) to drive active H+ or Na+ transport across membranes. H+-transporting PPases are divided into phylogenetically distinct K+-independent and K+-dependent subfamilies. In the present study, we describe a group of 46 bacterial proteins and one archaeal protein that are only distantly related to known mPPases (23%-34% sequence identity). Despite this evolutionary divergence, these proteins contain the full set of 12 polar residues that interact with PPi, the nucleophilic water and five cofactor Mg2+ ions found in 'canonical' mPPases. They also contain a specific lysine residue that confers K+ independence on canonical mPPases. Two of the proteins (from Chlorobium limicola and Cellulomonas fimi) were expressed in Escherichia coli and shown to catalyse Mg2+-dependent PPi hydrolysis coupled with electrogenic H+, but not Na+ transport, in inverted membrane vesicles. Unique features of the new H+-PPases include their inhibition by Na+ and inhibition or activation, depending on PPi concentration, by K+ ions. Kinetic analyses of PPi hydrolysis over wide ranges of cofactor (Mg2+) and substrate (Mg2-PPi) concentrations indicated that the alkali cations displace Mg2+ from the enzyme, thereby arresting substrate conversion. These data define the new proteins as a novel subfamily of H+-transporting mPPases that partly retained the Na+ and K+ regulation patterns of their precursor Na+-transporting mPPases. PMID:25662511

  2. Laboratory Exercise on Active Transport.

    ERIC Educational Resources Information Center

    Stalheim-Smith, Ann; Fitch, Greg K.

    1985-01-01

    Describes a laboratory exercise which demonstrates qualitatively the specificity of the transport mechanism, including a consideration of the competitive inhibition, and the role of adenosine triphosphate (ATP) in active transport. The exercise, which can be completed in two to three hours by groups of four students, consistently produces reliable…

  3. Sodium transport is modulated by p38 kinase-dependent cross-talk between ENaC and Na,K-ATPase in collecting duct principal cells.

    PubMed

    Wang, Yu-Bao; Leroy, Valérie; Maunsbach, Arvid B; Doucet, Alain; Hasler, Udo; Dizin, Eva; Ernandez, Thomas; de Seigneux, Sophie; Martin, Pierre-Yves; Féraille, Eric

    2014-02-01

    In relation to dietary Na(+) intake and aldosterone levels, collecting duct principal cells are exposed to large variations in Na(+) transport. In these cells, Na(+) crosses the apical membrane via epithelial Na(+) channels (ENaC) and is extruded into the interstitium by Na,K-ATPase. The activity of ENaC and Na,K-ATPase must be highly coordinated to accommodate variations in Na(+) transport and minimize fluctuations in intracellular Na(+) concentration. We hypothesized that, independent of hormonal stimulus, cross-talk between ENaC and Na,K-ATPase coordinates Na(+) transport across apical and basolateral membranes. By varying Na(+) intake in aldosterone-clamped rats and overexpressing γ-ENaC or modulating apical Na(+) availability in cultured mouse collecting duct cells, enhanced apical Na(+) entry invariably led to increased basolateral Na,K-ATPase expression and activity. In cultured collecting duct cells, enhanced apical Na(+) entry increased the basolateral cell surface expression of Na,K-ATPase by inhibiting p38 kinase-mediated endocytosis of Na,K-ATPase. Our results reveal a new role for p38 kinase in mediating cross-talk between apical Na(+) entry via ENaC and its basolateral exit via Na,K-ATPase, which may allow principal cells to maintain intracellular Na(+) concentrations within narrow limits. PMID:24179170

  4. Sodium Transport Is Modulated by p38 Kinase–Dependent Cross-Talk between ENaC and Na,K-ATPase in Collecting Duct Principal Cells

    PubMed Central

    Wang, Yu-Bao; Leroy, Valérie; Maunsbach, Arvid B.; Doucet, Alain; Hasler, Udo; Dizin, Eva; Ernandez, Thomas; de Seigneux, Sophie; Martin, Pierre-Yves

    2014-01-01

    In relation to dietary Na+ intake and aldosterone levels, collecting duct principal cells are exposed to large variations in Na+ transport. In these cells, Na+ crosses the apical membrane via epithelial Na+ channels (ENaC) and is extruded into the interstitium by Na,K-ATPase. The activity of ENaC and Na,K-ATPase must be highly coordinated to accommodate variations in Na+ transport and minimize fluctuations in intracellular Na+ concentration. We hypothesized that, independent of hormonal stimulus, cross-talk between ENaC and Na,K-ATPase coordinates Na+ transport across apical and basolateral membranes. By varying Na+ intake in aldosterone-clamped rats and overexpressing γ-ENaC or modulating apical Na+ availability in cultured mouse collecting duct cells, enhanced apical Na+ entry invariably led to increased basolateral Na,K-ATPase expression and activity. In cultured collecting duct cells, enhanced apical Na+ entry increased the basolateral cell surface expression of Na,K-ATPase by inhibiting p38 kinase-mediated endocytosis of Na,K-ATPase. Our results reveal a new role for p38 kinase in mediating cross-talk between apical Na+ entry via ENaC and its basolateral exit via Na,K-ATPase, which may allow principal cells to maintain intracellular Na+ concentrations within narrow limits. PMID:24179170

  5. Sodium Ion Transport Mechanisms in Antiperovskite Electrolytes Na3OBr and Na4OI2: An in Situ Neutron Diffraction Study.

    PubMed

    Zhu, Jinlong; Wang, Yonggang; Li, Shuai; Howard, John W; Neuefeind, Jörg; Ren, Yang; Wang, Hui; Liang, Chengdu; Yang, Wenge; Zou, Ruqiang; Jin, Changqing; Zhao, Yusheng

    2016-06-20

    Na-rich antiperovskites are recently developed solid electrolytes with enhanced sodium ionic conductivity and show promising functionality as a novel solid electrolyte in an all solid-state battery. In this work, the sodium ionic transport pathways of the parent compound Na3OBr, as well as the modified layered antiperovskite Na4OI2, were studied and compared through temperature-dependent neutron diffraction combined with the maximum entropy method. In the cubic Na3OBr antiperovskite, the nuclear density distribution maps at 500 K indicate that sodium ions hop within and among oxygen octahedra, and Br(-) ions are not involved. In the tetragonal Na4OI2 antiperovskite, Na ions, which connect octahedra in the ab plane, have the lowest activation energy barrier. The transport of sodium ions along the c axis is assisted by I(-) ions. PMID:27251879

  6. Insulin and phorbol ester stimulate conductive Na+ transport through a common pathway.

    PubMed Central

    Civan, M M; Peterson-Yantorno, K; O'Brien, T G

    1988-01-01

    Insulin stimulates Na+ transport across frog skin, toad urinary bladder, and the distal renal nephron. This stimulation reflects an increase in apical membrane Na+ permeability and a stimulation of the basolateral membrane Na,K-exchange pump. Considerable indirect evidence has suggested that the apical natriferic effect of insulin is mediated by activation of protein kinase C. However, no direct information has been available documenting that insulin and protein kinase C indeed share a common pathway in stimulating Na+ transport across frog skin. In the present work, we have studied the interaction of insulin and phorbol 12-myristate 13-acetate (PMA), a documented activator of protein kinase C. Preincubation of skins with 1,2-dioctanoylglycerol, another activator of protein kinase C, increases baseline Na+ transport and reduces the subsequent natriferic response to PMA. Preincubation with PMA markedly reduces the subsequent natriferic action of insulin. This effect does not appear to primarily reflect PMA-induced internalization of insulin receptors. The insulin receptors are localized on the basolateral surface of frog skin, but the application of PMA to this surface is much less effective than mucosal treatment in reducing the response to insulin. Preincubation with D-sphingosine, an inhibitor of protein kinase C, also reduces the natriferic action of insulin. The current results provide documentation that insulin and protein kinase C share a common pathway in stimulating Na+ transport across frog skin. The data are consistent with the concept that the natriferic effect of insulin on frog skin is, at least in part, mediated by activation of protein kinase C. Images PMID:3277184

  7. Sodium and proton effects on inward proton transport through Na/K pumps.

    PubMed

    Mitchell, Travis J; Zugarramurdi, Camila; Olivera, J Fernando; Gatto, Craig; Artigas, Pablo

    2014-06-17

    The Na/K pump hydrolyzes ATP to export three intracellular Na (Nai) as it imports two extracellular K (Ko) across animal plasma membranes. Within the protein, two ion-binding sites (sites I and II) can reciprocally bind Na or K, but a third site (site III) exclusively binds Na in a voltage-dependent fashion. In the absence of Nao and Ko, the pump passively imports protons, generating an inward current (IH). To elucidate the mechanisms of IH, we used voltage-clamp techniques to investigate the [H]o, [Na]o, and voltage dependence of IH in Na/K pumps from ventricular myocytes and in ouabain-resistant pumps expressed in Xenopus oocytes. Lowering pHo revealed that Ho both activates IH (in a voltage-dependent manner) and inhibits it (in a voltage-independent manner) by binding to different sites. Nao effects depend on pHo; at pHo where no Ho inhibition is observed, Nao inhibits IH at all concentrations, but when applied at pHo that inhibits pump-mediated current, low [Na]o activates IH and high [Na]o inhibits it. Our results demonstrate that IH is a property inherent to Na/K pumps, not linked to the oocyte expression environment, explains differences in the characteristics of IH previously reported in the literature, and supports a model in which 1), protons leak through site III; 2), binding of two Na or two protons to sites I and II inhibits proton transport; and 3), pumps with mixed Na/proton occupancy of sites I and II remain permeable to protons. PMID:24940773

  8. Sodium and Proton Effects on Inward Proton Transport through Na/K Pumps

    PubMed Central

    Mitchell, Travis J.; Zugarramurdi, Camila; Olivera, J. Fernando; Gatto, Craig; Artigas, Pablo

    2014-01-01

    The Na/K pump hydrolyzes ATP to export three intracellular Na (Nai) as it imports two extracellular K (Ko) across animal plasma membranes. Within the protein, two ion-binding sites (sites I and II) can reciprocally bind Na or K, but a third site (site III) exclusively binds Na in a voltage-dependent fashion. In the absence of Nao and Ko, the pump passively imports protons, generating an inward current (IH). To elucidate the mechanisms of IH, we used voltage-clamp techniques to investigate the [H]o, [Na]o, and voltage dependence of IH in Na/K pumps from ventricular myocytes and in ouabain-resistant pumps expressed in Xenopus oocytes. Lowering pHo revealed that Ho both activates IH (in a voltage-dependent manner) and inhibits it (in a voltage-independent manner) by binding to different sites. Nao effects depend on pHo; at pHo where no Ho inhibition is observed, Nao inhibits IH at all concentrations, but when applied at pHo that inhibits pump-mediated current, low [Na]o activates IH and high [Na]o inhibits it. Our results demonstrate that IH is a property inherent to Na/K pumps, not linked to the oocyte expression environment, explains differences in the characteristics of IH previously reported in the literature, and supports a model in which 1), protons leak through site III; 2), binding of two Na or two protons to sites I and II inhibits proton transport; and 3), pumps with mixed Na/proton occupancy of sites I and II remain permeable to protons. PMID:24940773

  9. Brain Na(+), K(+)-ATPase Activity In Aging and Disease.

    PubMed

    de Lores Arnaiz, Georgina Rodríguez; Ordieres, María Graciela López

    2014-06-01

    Na(+)/K(+) pump or sodium- and potassium-activated adenosine 5'-triphosphatase (Na(+), K(+)-ATPase), its enzymatic version, is a crucial protein responsible for the electrochemical gradient across the cell membranes. It is an ion transporter, which in addition to exchange cations, is the ligand for cardenolides. This enzyme regulates the entry of K(+) with the exit of Na(+) from cells, being the responsible for Na(+)/K(+) equilibrium maintenance through neuronal membranes. This transport system couples the hydrolysis of one molecule of ATP to exchange three sodium ions for two potassium ions, thus maintaining the normal gradient of these cations in animal cells. Oxidative metabolism is very active in brain, where large amounts of chemical energy as ATP molecules are consumed, mostly required for the maintenance of the ionic gradients that underlie resting and action potentials which are involved in nerve impulse propagation, neurotransmitter release and cation homeostasis. Protein phosphorylation is a key process in biological regulation. At nervous system level, protein phosphorylation is the major molecular mechanism through which the function of neural proteins is modulted in response to extracellular signals, including the response to neurotransmitter stimuli. It is the major mechanism of neural plasticity, including memory processing. The phosphorylation of Na(+), K(+)-ATPase catalytic subunit inhibits enzyme activity whereas the inhibition of protein kinase C restores the enzyme activity. The dephosphorylation of neuronal Na(+), K(+)-ATPase is mediated by calcineurin, a serine / threonine phosphatase. The latter enzyme is involved in a wide range of cellular responses to Ca(2+) mobilizing signals, in the regulation of neuronal excitability by controlling the activity of ion channels, in the release of neurotransmitters and hormones, as well as in synaptic plasticity and gene transcription. In the present article evidence showing Na(+), K(+)-ATPase involvement

  10. Brain Na+, K+-ATPase Activity In Aging and Disease

    PubMed Central

    de Lores Arnaiz, Georgina Rodríguez; Ordieres, María Graciela López

    2014-01-01

    Na+/K+ pump or sodium- and potassium-activated adenosine 5’-triphosphatase (Na+, K+-ATPase), its enzymatic version, is a crucial protein responsible for the electrochemical gradient across the cell membranes. It is an ion transporter, which in addition to exchange cations, is the ligand for cardenolides. This enzyme regulates the entry of K+ with the exit of Na+ from cells, being the responsible for Na+/K+ equilibrium maintenance through neuronal membranes. This transport system couples the hydrolysis of one molecule of ATP to exchange three sodium ions for two potassium ions, thus maintaining the normal gradient of these cations in animal cells. Oxidative metabolism is very active in brain, where large amounts of chemical energy as ATP molecules are consumed, mostly required for the maintenance of the ionic gradients that underlie resting and action potentials which are involved in nerve impulse propagation, neurotransmitter release and cation homeostasis. Protein phosphorylation is a key process in biological regulation. At nervous system level, protein phosphorylation is the major molecular mechanism through which the function of neural proteins is modulted in response to extracellular signals, including the response to neurotransmitter stimuli. It is the major mechanism of neural plasticity, including memory processing. The phosphorylation of Na+, K+-ATPase catalytic subunit inhibits enzyme activity whereas the inhibition of protein kinase C restores the enzyme activity. The dephosphorylation of neuronal Na+, K+-ATPase is mediated by calcineurin, a serine / threonine phosphatase. The latter enzyme is involved in a wide range of cellular responses to Ca2+ mobilizing signals, in the regulation of neuronal excitability by controlling the activity of ion channels, in the release of neurotransmitters and hormones, as well as in synaptic plasticity and gene transcription. In the present article evidence showing Na+, K+-ATPase involvement in signaling pathways

  11. Interaction of α-Lipoic Acid with the Human Na+/Multivitamin Transporter (hSMVT).

    PubMed

    Zehnpfennig, Britta; Wiriyasermkul, Pattama; Carlson, David A; Quick, Matthias

    2015-06-26

    The human Na(+)/multivitamin transporter (hSMVT) has been suggested to transport α-lipoic acid (LA), a potent antioxidant and anti-inflammatory agent used in therapeutic applications, e.g. in the treatment of diabetic neuropathy and Alzheimer disease. However, the molecular basis of the cellular delivery of LA and in particular the stereospecificity of the transport process are not well understood. Here, we expressed recombinant hSMVT in Pichia pastoris and used affinity chromatography to purify the detergent-solubilized protein followed by reconstitution of hSMVT in lipid bilayers. Using a combined approach encompassing radiolabeled LA transport and equilibrium binding studies in conjunction with the stabilized R-(+)- and S-(-)-enantiomers and the R,S-(+/-) racemic mixture of LA or lipoamide, we identified the biologically active form of LA, R-LA, to be the physiological substrate of hSMVT. Interaction of R-LA with hSMVT is strictly dependent on Na(+). Under equilibrium conditions, hSMVT can simultaneously bind ~2 molecules of R-LA in a biphasic binding isotherm with dissociation constants (Kd) of 0.9 and 7.4 μm. Transport of R-LA in the oocyte and reconstituted system is exclusively dependent on Na(+) and exhibits an affinity of ~3 μm. Measuring transport with known amounts of protein in proteoliposomes containing hSMVT in outside-out orientation yielded a catalytic turnover number (kcat) of about 1 s(-1), a value that is well in agreement with other Na(+)-coupled transporters. Our data suggest that hSMVT-mediated transport is highly specific for R-LA at our tested concentration range, a finding with wide ramifications for the use of LA in therapeutic applications. PMID:25971966

  12. Structural basis for Na(+) transport mechanism by a light-driven Na(+) pump.

    PubMed

    Kato, Hideaki E; Inoue, Keiichi; Abe-Yoshizumi, Rei; Kato, Yoshitaka; Ono, Hikaru; Konno, Masae; Hososhima, Shoko; Ishizuka, Toru; Hoque, Mohammad Razuanul; Kunitomo, Hirofumi; Ito, Jumpei; Yoshizawa, Susumu; Yamashita, Keitaro; Takemoto, Mizuki; Nishizawa, Tomohiro; Taniguchi, Reiya; Kogure, Kazuhiro; Maturana, Andrés D; Iino, Yuichi; Yawo, Hiromu; Ishitani, Ryuichiro; Kandori, Hideki; Nureki, Osamu

    2015-05-01

    Krokinobacter eikastus rhodopsin 2 (KR2) is the first light-driven Na(+) pump discovered, and is viewed as a potential next-generation optogenetics tool. Since the positively charged Schiff base proton, located within the ion-conducting pathway of all light-driven ion pumps, was thought to prohibit the transport of a non-proton cation, the discovery of KR2 raised the question of how it achieves Na(+) transport. Here we present crystal structures of KR2 under neutral and acidic conditions, which represent the resting and M-like intermediate states, respectively. Structural and spectroscopic analyses revealed the gating mechanism, whereby the flipping of Asp116 sequesters the Schiff base proton from the conducting pathway to facilitate Na(+) transport. Together with the structure-based engineering of the first light-driven K(+) pumps, electrophysiological assays in mammalian neurons and behavioural assays in a nematode, our studies reveal the molecular basis for light-driven non-proton cation pumps and thus provide a framework that may advance the development of next-generation optogenetics. PMID:25849775

  13. Splice cassette II of Na+,HCO3(-) cotransporter NBCn1 (slc4a7) interacts with calcineurin A: implications for transporter activity and intracellular pH control during rat artery contractions.

    PubMed

    Danielsen, Andreas A; Parker, Mark D; Lee, Soojung; Boron, Walter F; Aalkjaer, Christian; Boedtkjer, Ebbe

    2013-03-22

    Activation of Na(+),HCO3(-) cotransport in vascular smooth muscle cells (VSMCs) contributes to intracellular pH (pH(i)) control during artery contraction, but the signaling pathways involved have been unknown. We investigated whether physical and functional interactions between the Na(+),HCO3(-) cotransporter NBCn1 (slc4a7) and the Ca(2+)/calmodulin-activated serine/threonine phosphatase calcineurin exist and play a role for pHi control in VSMCs. Using a yeast two-hybrid screen, we found that splice cassette II from the N terminus of NBCn1 interacts with calcineurin Aβ. When cassette II was truncated or mutated to disrupt the putative calcineurin binding motif PTVVIH, the interaction was abolished. Native NBCn1 and calcineurin Aβ co-immunoprecipitated from A7r5 rat VSMCs. A peptide (acetyl-DDIPTVVIH-amide), which mimics the putative calcineurin binding motif, inhibited the co-immunoprecipitation whereas a mutated peptide (acetyl-DDIATAVAA-amide) did not. Na(+),HCO3(-) cotransport activity was investigated in VSMCs of mesenteric arteries after an NH4(+) prepulse. During depolarization with 50 mM extracellular K(+) to raise intracellular [Ca(2+)], Na(+),HCO3(-) cotransport activity was inhibited 20-30% by calcineurin inhibitors (FK506 and cyclosporine A). FK506 did not affect Na(+),HCO3(-) cotransport activity in VSMCs when cytosolic [Ca(2+)] was lowered by buffering, nor did it disrupt binding between NBCn1 and calcineurin Aβ. FK506 augmented the intracellular acidification of VSMCs during norepinephrine-induced artery contractions. No physical or functional interactions between calcineurin Aβ and the Na(+)/H(+) exchanger NHE1 were observed in VSMCs. In conclusion, we demonstrate a physical interaction between calcineurin Aβ and cassette II of NBCn1. Intracellular Ca(2+) activates Na(+),HCO3(-) cotransport activity in VSMCs in a calcineurin-dependent manner which is important for protection against intracellular acidification. PMID:23382378

  14. Na+/H+ Exchange Activity in the Plasma Membrane of Arabidopsis1

    PubMed Central

    Qiu, Quan-Sheng; Barkla, Bronwyn J.; Vera-Estrella, Rosario; Zhu, Jian-Kang; Schumaker, Karen S.

    2003-01-01

    In plants, Na+/H+ exchangers in the plasma membrane are critical for growth in high levels of salt, removing toxic Na+ from the cytoplasm by transport out of the cell. The molecular identity of a plasma membrane Na+/H+ exchanger in Arabidopsis (SOS1) has recently been determined. In this study, immunological analysis provided evidence that SOS1 localizes to the plasma membrane of leaves and roots. To characterize the transport activity of this protein, purified plasma membrane vesicles were isolated from leaves of Arabidopsis. Na+/H+ exchange activity, monitored as the ability of Na to dissipate an established pH gradient, was absent in plants grown without salt. However, exchange activity was induced when plants were grown in 250 mm NaCl and increased with prolonged salt exposure up to 8 d. H+-coupled exchange was specific for Na, because chloride salts of other monovalent cations did not dissipate the pH gradient. Na+/H+ exchange activity was dependent on Na (substrate) concentration, and kinetic analysis indicated that the affinity (apparent Km) of the transporter for Na+ is 22.8 mm. Data from two experimental approaches supports electroneutral exchange (one Na+ exchanged for one proton): (a) no change in membrane potential was measured during the exchange reaction, and (b) Na+/H+ exchange was unaffected by the presence or absence of a membrane potential. Results from this research provide a framework for future studies into the regulation of the plant plasma membrane Na+/H+ exchanger and its relative contribution to the maintenance of cellular Na+ homeostasis during plant growth in salt. PMID:12805632

  15. Intracellular Cl- as a signaling ion that potently regulates Na+/HCO3- transporters.

    PubMed

    Shcheynikov, Nikolay; Son, Aran; Hong, Jeong Hee; Yamazaki, Osamu; Ohana, Ehud; Kurtz, Ira; Shin, Dong Min; Muallem, Shmuel

    2015-01-20

    Cl(-) is a major anion in mammalian cells involved in transport processes that determines the intracellular activity of many ions and plasma membrane potential. Surprisingly, a role of intracellular Cl(-) (Cl(-) in) as a signaling ion has not been previously evaluated. Here we report that Cl(-) in functions as a regulator of cellular Na(+) and HCO3 (-) concentrations and transepithelial transport through modulating the activity of several electrogenic Na(+)-HCO3 (-) transporters. We describe the molecular mechanism(s) of this regulation by physiological Cl(-) in concentrations highlighting the role of GXXXP motifs in Cl(-) sensing. Regulation of the ubiquitous Na(+)-HCO3(-) co-transport (NBC)e1-B is mediated by two GXXXP-containing sites; regulation of NBCe2-C is dependent on a single GXXXP motif; and regulation of NBCe1-A depends on a cryptic GXXXP motif. In the basal state NBCe1-B is inhibited by high Cl(-) in interacting at a low affinity GXXXP-containing site. IP3 receptor binding protein released with IP3 (IRBIT) activation of NBCe1-B unmasks a second high affinity Cl(-) in interacting GXXXP-dependent site. By contrast, NBCe2-C, which does not interact with IRBIT, has a single high affinity N-terminal GXXP-containing Cl(-) in interacting site. NBCe1-A is unaffected by Cl(-) in between 5 and 140 mM. However, deletion of NBCe1-A residues 29-41 unmasks a cryptic GXXXP-containing site homologous with the NBCe1-B low affinity site that is involved in inhibition of NBCe1-A by Cl(-) in. These findings reveal a cellular Cl(-) in sensing mechanism that plays an important role in the regulation of Na(+) and HCO3 (-) transport, with critical implications for the role of Cl(-) in cellular ion homeostasis and epithelial fluid and electrolyte secretion. PMID:25561556

  16. Development of Na/sup +/-dependent hexose transport in cultured renal epithelial cells (LLC-PK/sub 1/)

    SciTech Connect

    Weiss, E.R.; Amsler, K.; Dawson, W.D.; Cook, J.S.

    1984-01-01

    A number of factors were explored to analyze how they interact to yield the increasing transport capacity in differentiating cell populations. These factors include the number of functional transporters in the population, the distribution of these transporters among the individual cells, the Na/sup +/ chemical gradient, the transmembrane potential, the pathways and activities of these pathways for efflux of glucoside, and cell-cell coupling between accumulating and non-accumulating cells. 35 references, 9 figures, 2 tables. (ACR)

  17. Signal focusing through active transport

    NASA Astrophysics Data System (ADS)

    Godec, Aljaž; Metzler, Ralf

    2015-07-01

    The accuracy of molecular signaling in biological cells and novel diagnostic devices is ultimately limited by the counting noise floor imposed by the thermal diffusion. Motivated by the fact that messenger RNA and vesicle-engulfed signaling molecules transiently bind to molecular motors and are actively transported in biological cells, we show here that the random active delivery of signaling particles to within a typical diffusion distance to the receptor generically reduces the correlation time of the counting noise. Considering a variety of signaling particle sizes from mRNA to vesicles and cell sizes from prokaryotic to eukaryotic cells, we show that the conditions for active focusing—faster and more precise signaling—are indeed compatible with observations in living cells. Our results improve the understanding of molecular cellular signaling and novel diagnostic devices.

  18. Inhibition of epithelial Na sup + transport by atriopeptin, protein kinase c, and pertussis toxin

    SciTech Connect

    Mohrmann, M.; Cantiello, H.F.; Ausiello, D.A. )

    1987-08-01

    The authors have recently shown the selective inhibition of an amiloride-sensitive, conductive pathway for Na{sup +} by atrial natriuretic peptide and 8-bromoguanosine 3{prime},5{prime}-cyclic monophosphate (8-BrcGMP) in the renal epithelial cell line, LLC-PK{sub i}. Using {sup 22}Na{sup +} fluxes, they further investigated the modulation of Na{sup +} transport by atrial natriuretic peptide and by agents that increase cGMP production, activate protein kinase c, or modulate guanine nucleotide regulatory protein function. Sodium nitroprusside increases intracellular cGMP concentrations without affecting cAMP concentrations and completely inhibits amiloride-sensitive Na{sup +} uptake in a time- and concentration-dependent manner. Oleoyl 2-acetylglycerol and phorbol 12-myristate 13-acetate, activators of protein kinase c, inhibit Na{sup +} uptake by 93 {plus minus} 13 and 51 {plus minus} 10%, respectively. Prolonged incubation with phorbol ester results in the downregulation of protein kinase c activity and reduces the inhibitory effect of atrial natriuretic peptide, suggesting that the action of this peptide involves stimulation of protein kinase c. Pertussis toxin, which induces the ADP-ribosylation of a 41-kDa guanine nucleotide regulatory protein in LLC-PK{sub i} cells, inhibits {sup 22}Na{sup +} influx to the same extent as amiloride. Thus, increasing cGMP, activating protein kinase c, and ADP-ribosylating a guanine nucleotide regulatory protein all inhibit Na{sup +} uptake. These events may be sequentially involved in the action of atrial natriuretic peptide.

  19. Feedback inhibition of cyclic adenosine monophosphate-stimulated Na+ transport in the rabbit cortical collecting duct via Na(+)-dependent basolateral Ca++ entry.

    PubMed Central

    Breyer, M D

    1991-01-01

    Arginine vasopressin (AVP) transiently stimulates Na+ transport in the rabbit cortical collecting duct (CCD). However, the sustained effect of both AVP and its putative second messenger, cyclic adenosine monophosphate (cAMP), on Na+ transport in the rabbit CCD is inhibitory. Because maneuvers that increase [Ca++]i inhibit Na+ transport, the effects of AVP and cell-permeable cAMP analogues, on [Ca++]i were investigated in fura-2-loaded in vitro microperfused rabbit CCDs. Low-dose AVP (23-230 pM) selectively stimulated Ca++ influx, whereas 23 nM AVP additionally released calcium from intracellular stores. 8-chlorophenylthio-cAMP (8CPTcAMP) and 8-bromo-cAMP (8-Br-cAMP) also increased CCD [Ca++]i. The 8CPTcAMP-stimulated [Ca++]i increase was totally dependent on basolateral [Ca++]. In the absence of cAMP, peritubular Na+ removal produced a marked increase in [Ca++]i, which was also dependent on bath [Ca++], suggesting the existence of basolateral Na+/Ca++ exchange. Luminal Na+ removal in the absence of cAMP did not alter CCD [Ca++]i, but it completely blocked the cAMP-stimulated [Ca++]i increase. Thus the cAMP-dependent Ca++ increase is totally dependent on both luminal Na+ and basolateral Ca++, suggesting the [Ca++]i increase is secondary to cAMP effects on luminal Na+ entry and its coupling to basolateral Na+/Ca++ exchange. 8CPTcAMP inhibits lumen-to-bath 22Na flux [JNa(l-b)] in CCDs bathed in a normal Ca++ bath (2.4 mM). However, when bath Ca++ was lowered to 100 nM, a maneuver that also blocks the 8CPTcAMP [Ca++]i increase, 8CPTcAMP stimulated, rather than inhibited JNa(l-b). These results suggest that cAMP formation initially stimulates CCD Na+ transport, and that increased apical Na+ entry secondarily activates basolateral Ca++ entry. The cAMP-dependent [Ca++]i increase leads to inhibition Na+ transport in the rabbit CCD. PMID:1658041

  20. Lack of effect of peritubular protein on passive NaCl transport in the rabbit proximal tubule.

    PubMed Central

    Berry, C A

    1983-01-01

    The effect of peritubular protein removal on passive NaCl transport was examined in the isolated rabbit proximal convoluted tubule (PCT). Three modes of passive NaCl transport were tested: (a) paracellular backflux of NaCl, (b) convective flow of NaCl through junctional complexes, and (c) anion gradient-dependent NaCl transport. The effect of peritubular protein removal on the paracellular permeability to NaCl was examined using transepithelial specific resistance. Eight PCT were perfused with ultrafiltrate (UF) and bathed in either serum or UF. Transepithelial specific resistance averaged 14.5 +/- 1.9 in the presence and 13.7 +/- 1.7 omega cm2 in the absence of peritubular protein. The effect of peritubular protein removal on the convective flow of a NaCl solution across functional complexes was examined in the absence of active transport by using colloid osmotic pressure (COP) gradients. 12 PCT were perfused with simple salt solutions in Donnan equilibrium with and without protein at 20 degrees C. A COP gradient of 60.1 and -60.1 mmHg drove only 0.06 and -0.23 nl/min, respectively. These values are approximately 10% of the value predicted for an effect of peritubular protein on NaCl solution flow (1.98 nl/min) and are approximately equal to the value predicted for pure water equilibration for the small osmotic pressure difference between solutions in Donnan equilibrium (0.17-0.18 nl/min). The effect of peritubular protein removal on the passive absorption of NaCl driven by anion concentration gradients was examined in seven PCT perfused with a high chloride solution simulating late proximal tubular fluid and bathed in either serum or UF at 20 degrees C. Volume absorption averaged 0.34 +/- 0.20 in the presence and 0.39 +/- 0.20 nl/mm min in the absence of peritubular protein. In conclusion, peritubular protein removal did not significantly affect any of the three distinct modes of passive NaCl transport tested. The lack of effect of peritubular protein removal on

  1. Characteristics of injury and recovery of net NO3- transport of barley seedlings from treatments of NaCl

    NASA Technical Reports Server (NTRS)

    Klobus, G.; Ward, M. R.; Huffaker, R. C.

    1988-01-01

    The nature of the injury and recovery of nitrate uptake (net uptake) from NaCl stress in young barley (Hordeum vulgare L, var CM 72) seedlings was investigated. Nitrate uptake was inhibited rapidly by NaCl, within 1 minute after exposure to 200 millimolar NaCl. The duration of exposure to saline conditions determined the time of recovery of NO3- uptake from NaCl stress. Recovery was dependent on the presence of NO3- and was inhibited by cycloheximide, 6-methylpurine, and cerulenin, respective inhibitors of protein, RNA, and sterol/fatty acid synthesis. These inhibitors also prevented the induction of the NO3- uptake system in uninduced seedlings. Uninduced seedlings exhibited endogenous NO3- transport activity that appeared to be constitutive. This constitutive activity was also inhibited by NaCl. Recovery of constitutive NO3- uptake did not require the presence of NO3-.

  2. Active sodium transport and the electrophysiology of rabbit colon.

    PubMed

    Schultz, S G; Frizzell, R A; Nellans, H N

    1977-05-12

    The electrophysiologic properties of rabbit colonic epithelial cells were investigated employing microelectrode techniques. Under open-circuit conditions, the transepithelial electrical potential difference (PD) averaged 20 mV, serosa positive, and the intracellular electrical potential (psimc) averaged -32 mV, cell interior negative with respect to the mucosal solution; under short-circuit conditions, psimc averaged -46 mV. The addition of amiloride to the mucosal solution abolishes the transepithelial PD and active Na transport, and psimc is hyperpolarized to an average value of -53 mV. These results indicate that Na entry into the mucosal cell is a conductive process which, normally, depolarized psimc. The data obtained were interpreted using a double-membrane equivalent electrical circuit model of the "active Na transport pathway" involving two voltage-independent electromotive forces (emf's) and two voltage-independent resistances arrayed in series. Our observations are consistent with the notions that: (a) The emf's and resistances across the mucosal and baso-lateral membranes are determined predominantly by the emf (64 mV) and resistance of the Na entry process and the emf (53 mV) and resistance of the process responsible for active Na extrusion across the baso-lateral membranes: that is, the electrophysiological properties of the cell appear to be determined solely by the properties and processes responsible for transcellular active Na transport. The emf of the Na entry process is consistent with the notion that the Na activity in the intracellular transport pool is approximately one-tenth that in the mucosal solution or about 14 mM. (b) In the presence of amiloride, the transcellular conductance is essentially abolished and the total tissue conductance is the result of ionic diffusion through paracellular pathways. (c) The negative intracellular potential (with respect to the mucosal solution) is due primarily to the presence of a low resistance

  3. KCNQ1, KCNE2, and Na+-Coupled Solute Transporters Form Reciprocally Regulating Complexes that Affect Neuronal Excitability

    PubMed Central

    Abbott, Geoffrey W.; Tai, Kwok-Keung; Neverisky, Daniel; Hansler, Alex; Hu, Zhaoyang; Roepke, Torsten K.; Lerner, Daniel J.; Chen, Qiuying; Liu, Li; Zupan, Bojana; Toth, Miklos; Haynes, Robin; Huang, Xiaoping; Demirbas, Didem; Buccafusca, Roberto; Gross, Steven S.; Kanda, Vikram A.; Berry, Gerard T.

    2014-01-01

    Na+-coupled solute transport is crucial for the uptake of nutrients and metabolic precursors, such as myo-inositol, an important osmolyte and precursor for various cell signaling molecules. Here, we found that various solute transporters and potassium channel subunits formed complexes and reciprocally regulated each other in vitro and in vivo. Global metabolite profiling revealed that mice lacking KCNE2, a K+ channel β subunit, showed a reduction in the myo-inositol concentration in cerebrospinal fluid (CSF) but not in serum. Increased behavorial responsiveness to stress and seizure susceptibility in Kcne2−/− mice were alleviated by injections of myo-inositol. Suspecting a defect in myo-inositol transport, we found that KCNE2 and KCNQ1, a voltage-gated potassium channel α subunit, colocalized and coimmunoprecipitated with SMIT1, a Na+-coupled myo-inositol transporter, in the choroid plexus epithelium. Heterologous coexpression demonstrated that myo-inositol transport by SMIT1 was augmented by coexpression of KCNQ1 but inhibited by coexpression of both KCNQ1 and KCNE2, which form a constitutively active, heteromeric K+ channel. SMIT1 and the related transporter SMIT2 were also inhibited by a constitutively active mutant form of KCNQ1. The activity of KCNQ1 and KCNQ1-KCNE2 were augmented by SMIT1 and the glucose transporter SGLT1, but suppressed by SMIT2. Channel-transporter signaling complexes may be a widespread mechanism to facilitate solute transport and electrochemical crosstalk. PMID:24595108

  4. Histidine residues in the Na+-coupled ascorbic acid transporter-2 (SVCT2) are central regulators of SVCT2 function, modulating pH sensitivity, transporter kinetics, Na+ cooperativity, conformational stability, and subcellular localization.

    PubMed

    Ormazabal, Valeska; Zuñiga, Felipe A; Escobar, Elizabeth; Aylwin, Carlos; Salas-Burgos, Alexis; Godoy, Alejandro; Reyes, Alejandro M; Vera, Juan Carlos; Rivas, Coralia I

    2010-11-19

    Na(+)-coupled ascorbic acid transporter-2 (SVCT2) activity is impaired at acid pH, but little is known about the molecular determinants that define the transporter pH sensitivity. SVCT2 contains six histidine residues in its primary sequence, three of which are exofacial in the transporter secondary structure model. We used site-directed mutagenesis and treatment with diethylpyrocarbonate to identify histidine residues responsible for SVCT2 pH sensitivity. We conclude that five histidine residues, His(109), His(203), His(206), His(269), and His(413), are central regulators of SVCT2 function, participating to different degrees in modulating pH sensitivity, transporter kinetics, Na(+) cooperativity, conformational stability, and subcellular localization. Our results are compatible with a model in which (i) a single exofacial histidine residue, His(413), localized in the exofacial loop IV that connects transmembrane helices VII-VIII defines the pH sensitivity of SVCT2 through a mechanism involving a marked attenuation of the activation by Na(+) and loss of Na(+) cooperativity, which leads to a decreased V(max) without altering the transport K(m); (ii) exofacial histidine residues His(203), His(206), and His(413) may be involved in maintaining a functional interaction between exofacial loops II and IV and influence the general folding of the transporter; (iii) histidines 203, 206, 269, and 413 affect the transporter kinetics by modulating the apparent transport K(m); and (iv) histidine 109, localized at the center of transmembrane helix I, might be fundamental for the interaction of SVCT2 with the transported substrate ascorbic acid. Thus, histidine residues are central regulators of SVCT2 function. PMID:20843809

  5. Identification of a 3rd Na+ Binding Site of the Glycine Transporter, GlyT2

    PubMed Central

    Subramanian, Nandhitha; Scopelitti, Amanda J.; Carland, Jane E.; Ryan, Renae M.; O’Mara, Megan L.; Vandenberg, Robert J.

    2016-01-01

    The Na+/Cl- dependent glycine transporters GlyT1 and GlyT2 regulate synaptic glycine concentrations. Glycine transport by GlyT2 is coupled to the co-transport of three Na+ ions, whereas transport by GlyT1 is coupled to the co-transport of only two Na+ ions. These differences in ion-flux coupling determine their respective concentrating capacities and have a direct bearing on their functional roles in synaptic transmission. The crystal structures of the closely related bacterial Na+-dependent leucine transporter, LeuTAa, and the Drosophila dopamine transporter, dDAT, have allowed prediction of two Na+ binding sites in GlyT2, but the physical location of the third Na+ site in GlyT2 is unknown. A bacterial betaine transporter, BetP, has also been crystallized and shows structural similarity to LeuTAa. Although betaine transport by BetP is coupled to the co-transport of two Na+ ions, the first Na+ site is not conserved between BetP and LeuTAa, the so called Na1' site. We hypothesized that the third Na+ binding site (Na3 site) of GlyT2 corresponds to the BetP Na1' binding site. To identify the Na3 binding site of GlyT2, we performed molecular dynamics (MD) simulations. Surprisingly, a Na+ placed at the location consistent with the Na1' site of BetP spontaneously dissociated from its initial location and bound instead to a novel Na3 site. Using a combination of MD simulations of a comparative model of GlyT2 together with an analysis of the functional properties of wild type and mutant GlyTs we have identified an electrostatically favorable novel third Na+ binding site in GlyT2 formed by Trp263 and Met276 in TM3, Ala481 in TM6 and Glu648 in TM10. PMID:27337045

  6. Intestinal ammonia transport in freshwater and seawater acclimated rainbow trout (Oncorhynchus mykiss): evidence for a Na+ coupled uptake mechanism.

    PubMed

    Rubino, Julian G; Zimmer, Alex M; Wood, Chris M

    2015-05-01

    In vitro gut sac experiments were performed on freshwater and 60% seawater acclimated trout (Oncorhynchus mykiss) under treatments designed to discern possible mechanisms of intestinal ammonia transport. Seawater acclimation increased ammonia flux rate into the serosal saline (Jsamm) in the anterior intestine, however it did not alter Jsamm in the mid- or posterior intestine suggesting similar mechanisms of ammonia handling in freshwater and seawater fish. Both fluid transport rate (FTR) and Jsamm were inhibited in response to basolateral ouabain treatment, suggesting a linkage of ammonia uptake to active transport, possibly coupled to fluid transport processes via solvent drag. Furthermore, decreases in FTR and Jsamm caused by low Na(+) treatment indicated a Na(+) linked transport mechanism. Mucosal bumetanide (10(-4) M) had no impact on FTR, yet decreased Jsamm in the anterior and mid-intestine, suggesting NH4(+) substitution for K(+) on an apical NKCC, and at least a partial uncoupling of ammonia transport from fluid transport. Additional treatments (amiloride, 5-(N-ethyl-N-isopropyl)amiloride (EIPA), phenamil, bafilomycin, 4',6-diamidino-2-phenylindole (DAPI), high sodium) intended to disrupt alternative routes of Na(+) uptake yielded no change in FTR or Jsamm, suggesting the absence of direct competition between Na(+) and ammonia for transport. Finally, [(14)C]methylamine permeability (PMA) measurements indicated the likely presence of an intestinal Rh-mediated ammonia transport system, as increasing NH4Cl (0, 1, 5 mmol l(-1)) concentrations reduced PMA, suggesting competition for transport through Rh proteins. Overall, the data presented in this paper provide some of the first insights into mechanisms of teleost intestinal ammonia transport. PMID:25545914

  7. Prevalence of unidirectional Na+-dependent adenosine transport and altered potential for adenosine generation in diabetic cardiac myocytes.

    PubMed

    Podgorska, M; Kocbuch, K; Grden, M; Szutowicz, A; Pawelczyk, T

    2006-05-01

    Adenosine is an important physiological regulator of the cardiovascular system. The goal of our study was to assess the expression level of nucleoside transporters (NT) in diabetic rat cardiomyocytes and to examine the activities of adenosine metabolizing enzymes. Isolated rat cardiomyocytes displayed the presence of detectable amounts of mRNA for ENT1, ENT2, CNT1, and CNT2. Overall adenosine (10 microM) transport in cardiomyocytes isolated from normal rat was 36 pmol/mg/min. The expression level of equilibrative transporters (ENT1, ENT2) decreased and of concentrative transporters (CNT1, CNT2) increased in myocytes isolated from diabetic rat. Consequently, overall adenosine transport decreased by 30%, whereas Na(+)-dependent adenosine uptake increased 2-fold, and equilibrative transport decreased by 60%. The activity ratio of AMP deaminase/5'-nucleotidase in cytosol of normal cardiomyocytes was 11 and increased to 15 in diabetic cells. The activity of ecto-5'-nucleotidase increased 2-fold in diabetic cells resulting in a rise of the activity ratio of ecto-5'-nucleotidase/adenosine deaminase from 28 to 56.These results indicate that in rat cardiomyocytes diabetes alters activities of adenosine metabolizing enzymes in such a way that conversion of AMP to IMP is favored in the cytosolic compartment, whereas the capability to produce adenosine extracellularly is increased. This is accompanied by an increased unidirectional Na(+)-dependent uptake of adenosine and significantly reduced bidirectional adenosine transport. PMID:16369729

  8. Na+ Transport by the A1AO-ATP Synthase Purified from Thermococcus onnurineus and Reconstituted into Liposomes*

    PubMed Central

    Mayer, Florian; Lim, Jae Kyu; Langer, Julian D.; Kang, Sung Gyun; Müller, Volker

    2015-01-01

    The ATP synthase of many archaea has the conserved sodium ion binding motif in its rotor subunit, implying that these A1AO-ATP synthases use Na+ as coupling ion. However, this has never been experimentally verified with a purified system. To experimentally address the nature of the coupling ion, we have purified the A1AO-ATP synthase from T. onnurineus. It contains nine subunits that are functionally coupled. The enzyme hydrolyzed ATP, CTP, GTP, UTP, and ITP with nearly identical activities of around 40 units/mg of protein and was active over a wide pH range with maximal activity at pH 7. Noteworthy was the temperature profile. ATP hydrolysis was maximal at 80 °C and still retained an activity of 2.5 units/mg of protein at 45 °C. The high activity of the enzyme at 45 °C opened, for the first time, a way to directly measure ion transport in an A1AO-ATP synthase. Therefore, the enzyme was reconstituted into liposomes generated from Escherichia coli lipids. These proteoliposomes were still active at 45 °C and coupled ATP hydrolysis to primary and electrogenic Na+ transport. This is the first proof of Na+ transport by an A1AO-ATP synthase and these findings are discussed in light of the distribution of the sodium ion binding motif in archaea and the role of Na+ in the bioenergetics of archaea. PMID:25593316

  9. Distribution of organic anion transporters NaDC3 and OAT1-3 along the human nephron.

    PubMed

    Breljak, Davorka; Ljubojević, Marija; Hagos, Yohannes; Micek, Vedran; Balen Eror, Daniela; Vrhovac Madunić, Ivana; Brzica, Hrvoje; Karaica, Dean; Radović, Nikola; Kraus, Ognjen; Anzai, Naohiko; Koepsell, Hermann; Burckhardt, Gerhard; Burckhardt, Birgitta C; Sabolić, Ivan

    2016-07-01

    The initial step in renal secretion of organic anions (OAs) is mediated by transporters in the basolateral membrane (BLM). Contributors to this process are primary active Na(+)-K(+)-ATPase (EC 3.6.3.9), secondary active Na(+)-dicarboxylate cotransporter 3 (NaDC3/SLC13A3), and tertiary active OA transporters (OATs) OAT1/SLC22A6, OAT2/SLC22A7, and OAT3/SLC22A8. In human kidneys, we analyzed the localization of these transporters by immunochemical methods in tissue cryosections and isolated membranes. The specificity of antibodies was validated with human embryonic kidney-293 cells stably transfected with functional OATs. Na(+)-K(+)-ATPase was immunolocalized to the BLM along the entire human nephron. NaDC3-related immunostaining was detected in the BLM of proximal tubules and in the BLM and/or luminal membrane of principal cells in connecting segments and collecting ducts. The thin and thick ascending limbs, macula densa, and distal tubules exhibited no reactivity with the anti-NaDC3 antibody. OAT1-OAT3-related immunostaining in human kidneys was detected only in the BLM of cortical proximal tubules; all three OATs were stained more intensely in S1/S2 segments compared with S3 segment in medullary rays, whereas the S3 segment in the outer stripe remained unstained. Expression of NaDC3, OAT1, OAT2, and OAT3 proteins exhibited considerable interindividual variability in both male and female kidneys, and sex differences in their expression could not be detected. Our experiments provide a side-by-side comparison of basolateral transporters cooperating in renal OA secretion in the human kidney. PMID:27053689

  10. Thermodynamic and Transport Properties of H2O + NaCl from Polarizable Force Fields.

    PubMed

    Jiang, Hao; Mester, Zoltan; Moultos, Othonas A; Economou, Ioannis G; Panagiotopoulos, Athanassios Z

    2015-08-11

    Molecular dynamics and Monte Carlo simulations were performed to obtain thermodynamic and transport properties of the binary H2O + NaCl system using the polarizable force fields of Kiss and Baranyai ( J. Chem. Phys. 2013 , 138 , 204507 and 2014 , 141 , 114501 ). In particular, liquid densities, electrolyte and crystal chemical potentials of NaCl, salt solubilities, mean ionic activity coefficients, vapor pressures, vapor-liquid interfacial tensions, and viscosities were obtained as functions of temperature, pressure, and salt concentration. We compared the performance of the polarizable force fields against fixed-point-charge (nonpolarizable) models. Most of the properties of interest are better represented by the polarizable models, which also remain physically realistic at elevated temperatures. PMID:26574461

  11. Fluid dilution and efficiency of Na+ transport in a mathematical model of a thick ascending limb cell

    PubMed Central

    Clausen, Chris; Marcano, Mariano; Layton, Anita T.; Layton, Harold E.; Moore, Leon C.

    2013-01-01

    Thick ascending limb (TAL) cells are capable of reducing tubular fluid Na+ concentration to as low as ∼25 mM, and yet they are thought to transport Na+ efficiently owing to passive paracellular Na+ absorption. Transport efficiency in the TAL is of particular importance in the outer medulla where O2 availability is limited by low blood flow. We used a mathematical model of a TAL cell to estimate the efficiency of Na+ transport and to examine how tubular dilution and cell volume regulation influence transport efficiency. The TAL cell model represents 13 major solutes and the associated transporters and channels; model equations are based on mass conservation and electroneutrality constraints. We analyzed TAL transport in cells with conditions relevant to the inner stripe of the outer medulla, the cortico-medullary junction, and the distal cortical TAL. At each location Na+ transport efficiency was computed as functions of changes in luminal NaCl concentration ([NaCl]), [K+], [NH4+], junctional Na+ permeability, and apical K+ permeability. Na+ transport efficiency was calculated as the ratio of total net Na+ transport to transcellular Na+ transport. Transport efficiency is predicted to be highest at the cortico-medullary boundary where the transepithelial Na+ gradient is the smallest. Transport efficiency is lowest in the cortex where luminal [NaCl] approaches static head. PMID:23097469

  12. Increased vacuolar Na(+)/H(+) exchange activity in Salicornia bigelovii Torr. in response to NaCl.

    PubMed

    Parks, Graham E; Dietrich, Margaret A; Schumaker, Karen S

    2002-05-01

    Shoots of the halophyte Salicornia bigelovii are larger and more succulent when grown in highly saline environments. This increased growth and water uptake has been correlated with a large and specific cellular accumulation of sodium. In glycophytes, sensitivity to salt has been associated with an inability to remove sodium ions effectively from the cytoplasm in order to protect salt-sensitive metabolic processes. Therefore, in Salicornia bigelovii efficient vacuolar sequestration of sodium may be part of the mechanism underlying salt tolerance. The ability to compartmentalize sodium may result from a stimulation of the proton pumps that provide the driving force for increased sodium transport into the vacuole via a Na(+)/H(+) exchanger. In current studies, increased vacuolar pyrophosphatase activity (hydrolysis of inorganic pyrophosphate and proton translocation) and protein accumulation were observed in Salicornia bigelovii grown in high concentrations of NaCl. Based on sodium-induced dissipation of a pyrophosphate-dependent pH gradient in vacuolar membrane vesicles, a Na(+)/H(+) exchange activity was identified and characterized. This activity is sodium concentration-dependent, specific for sodium and lithium, sensitive to methyl-isobutyl amiloride, and independent of an electrical potential. Vacuolar Na(+)/H(+) exchange activity varied as a function of plant growth in salt. The affinity of the transporter for Na(+) is almost three times higher in plants grown in high levels of salt (K(m)=3.8 and 11.5 mM for plants grown in high and low salt, respectively) suggesting a role for exchange activity in the salt adaptation of Salicornia bigelovii. PMID:11971917

  13. Renal brush-border Na/sup +/-H/sup +/ exchange activity in the aging rat

    SciTech Connect

    Kinsella, J.L.; Sacktor, B.

    1987-04-01

    Amiloride-sensitive Na/sup +/-H/sup +/ exchange activity in brush-border membrane vesicles isolated from male rat proximal tubules was decreased in the senescent rat (24 mo) compared with the young adult (6 mo). There was no significant loss in Na/sup +/-H/sup +/ exchange activity in the kidneys of animals between 6 and 18 mo of age. Amiloride-insensitive /sup 22/Na/sup +/ uptake and the rate of pH gradient dissipation were not altered during aging. The decrease in sodium-dependent (/sup 32/P) phosphate transport preceded the decline in Na/sup +/-H/sup +/ exchange activity by at least 6 mo. Sodium-dependent D-(/sup 3/H) glucose transport was not significantly altered during aging. Thus various renal plasma membrane transport functions were affected differently in the aging rat. The decrease in Na/sup +/-H/sup +/ exchange activity during aging contrasted with the increase in exchange activity reported previously in acute ablation models of chronic renal failure.

  14. Integrated Control of Na Transport along the Nephron

    PubMed Central

    Schnermann, Jürgen

    2015-01-01

    The kidney filters vast quantities of Na at the glomerulus but excretes a very small fraction of this Na in the final urine. Although almost every nephron segment participates in the reabsorption of Na in the normal kidney, the proximal segments (from the glomerulus to the macula densa) and the distal segments (past the macula densa) play different roles. The proximal tubule and the thick ascending limb of the loop of Henle interact with the filtration apparatus to deliver Na to the distal nephron at a rather constant rate. This involves regulation of both filtration and reabsorption through the processes of glomerulotubular balance and tubuloglomerular feedback. The more distal segments, including the distal convoluted tubule (DCT), connecting tubule, and collecting duct, regulate Na reabsorption to match the excretion with dietary intake. The relative amounts of Na reabsorbed in the DCT, which mainly reabsorbs NaCl, and by more downstream segments that exchange Na for K are variable, allowing the simultaneous regulation of both Na and K excretion. PMID:25098598

  15. Transepithelial Na+ transport and the intracellular fluids: a computer study.

    PubMed

    Civan, M M; Bookman, R J

    1982-01-01

    Computer simulations of tight epithelia under three experimental conditions have been carried out, using the rheogenic nonlinear model of Lew, Ferreira and Moura (Proc. Roy. Soc. London. B 206:53-83, 1979) based largely on the formulation of Koefoed-Johnsen and Ussing (Acta Physiol. Scand. 42: 298-308. 1958). First, analysis of the transition between the short-circuited and open-circuited states has indicated that (i) apical Cl- permeability is a critical parameter requiring experimental definition in order to analyze cell volume regulation, and (ii) contrary to certain experimental reports, intracellular Na+ concentration (ccNa) is expected to be a strong function of transepithelial clamping voltage. Second, analysis of the effects of lowering serosal K+ concentration (csK) indicates that the basic model cannot simulate several well-documented observations; these defects can be overcome, at least qualitatively, by modifying the model to take account of the negative feedback interaction likely to exist between the apical Na+ permeability and ccNa. Third, analysis of the strongly supports the concept that osmotically induced permeability changes in the apical intercellular junctions play a physiological role in conserving the body's stores of NaCl. The analyses also demonstrate that the importance of Na+ entry across the basolateral membrane is strongly dependent upon transepithelial potential, cmNa and csK; under certain conditions, net Na+ entry could be appreciably greater across the basolateral than across the apical membrane. PMID:7057462

  16. Nax loci affect SOS1-like Na+/H+ exchanger expression and activity in wheat

    PubMed Central

    Zhu, Min; Shabala, Lana; Cuin, Tracey A; Huang, Xin; Zhou, Meixue; Munns, Rana; Shabala, Sergey

    2016-01-01

    Salinity stress tolerance in durum wheat is strongly associated with a plant’s ability to control Na+ delivery to the shoot. Two loci, termed Nax1 and Nax2, were recently identified as being critical for this process and the sodium transporters HKT1;4 and HKT1;5 were identified as the respective candidate genes. These transporters retrieve Na+ from the xylem, thus limiting the rates of Na+ transport from the root to the shoot. In this work, we show that the Nax loci also affect activity and expression levels of the SOS1-like Na+/H+ exchanger in both root cortical and stelar tissues. Net Na+ efflux measured in isolated steles from salt-treated plants, using the non-invasive ion flux measuring MIFE technique, decreased in the sequence: Tamaroi (parental line)>Nax1=Nax2>Nax1:Nax2 lines. This efflux was sensitive to amiloride (a known inhibitor of the Na+/H+ exchanger) and was mirrored by net H+ flux changes. TdSOS1 relative transcript levels were 6–10-fold lower in Nax lines compared with Tamaroi. Thus, it appears that Nax loci confer two highly complementary mechanisms, both of which contribute towards reducing the xylem Na+ content. One enhances the retrieval of Na+ back into the root stele via HKT1;4 or HKT1;5, whilst the other reduces the rate of Na+ loading into the xylem via SOS1. It is suggested that such duality plays an important adaptive role with greater versatility for responding to a changing environment and controlling Na+ delivery to the shoot. PMID:26585227

  17. Nax loci affect SOS1-like Na+/H+ exchanger expression and activity in wheat.

    PubMed

    Zhu, Min; Shabala, Lana; Cuin, Tracey A; Huang, Xin; Zhou, Meixue; Munns, Rana; Shabala, Sergey

    2016-02-01

    Salinity stress tolerance in durum wheat is strongly associated with a plant's ability to control Na(+) delivery to the shoot. Two loci, termed Nax1 and Nax2, were recently identified as being critical for this process and the sodium transporters HKT1;4 and HKT1;5 were identified as the respective candidate genes. These transporters retrieve Na(+) from the xylem, thus limiting the rates of Na(+) transport from the root to the shoot. In this work, we show that the Nax loci also affect activity and expression levels of the SOS1-like Na(+)/H(+) exchanger in both root cortical and stelar tissues. Net Na(+) efflux measured in isolated steles from salt-treated plants, using the non-invasive ion flux measuring MIFE technique, decreased in the sequence: Tamaroi (parental line)>Nax1=Nax2>Nax1:Nax2 lines. This efflux was sensitive to amiloride (a known inhibitor of the Na(+)/H(+) exchanger) and was mirrored by net H(+) flux changes. TdSOS1 relative transcript levels were 6-10-fold lower in Nax lines compared with Tamaroi. Thus, it appears that Nax loci confer two highly complementary mechanisms, both of which contribute towards reducing the xylem Na(+) content. One enhances the retrieval of Na(+) back into the root stele via HKT1;4 or HKT1;5, whilst the other reduces the rate of Na(+) loading into the xylem via SOS1. It is suggested that such duality plays an important adaptive role with greater versatility for responding to a changing environment and controlling Na(+) delivery to the shoot. PMID:26585227

  18. Substrate regulation of ascorbate transport activity in astrocytes

    SciTech Connect

    Wilson, J.X.; Jaworski, E.M.; Kulaga, A.; Dixon, S.J. )

    1990-10-01

    Astrocytes possess a concentrative L-ascorbate (vitamin C) uptake mechanism involving a Na(+)-dependent L-ascorbate transporter located in the plasma membrane. The present experiments examined the effects of deprivation and supplementation of extracellular L-ascorbate on the activity of this transport system. Initial rates of L-ascorbate uptake were measured by incubating primary cultures of rat astrocytes with L-(14C)ascorbate for 1 min at 37 degrees C. We observed that the apparent maximal rate of uptake (Vmax) increased rapidly (less than 1 h) when cultured cells were deprived of L-ascorbate. In contrast, there was no change in the apparent affinity of the transport system for L-(14C)ascorbate. The increase in Vmax was reversed by addition of L-ascorbate, but not D-isoascorbate, to the medium. The effects of external ascorbate on ascorbate transport activity were specific in that preincubation of cultures with L-ascorbate did not affect uptake of 2-deoxy-D-(3H(G))glucose. We conclude that the astroglial ascorbate transport system is modulated by changes in substrate availability. Regulation of transport activity may play a role in intracellular ascorbate homeostasis by compensating for regional differences and temporal fluctuations in external ascorbate levels.

  19. Na+ transport across rumen epithelium of hay-fed sheep is acutely stimulated by the peptide IGF-1 in vitro.

    PubMed

    Shen, Zanming; Martens, Holger; Schweigel-Röntgen, Monika

    2012-04-01

    An energy-rich diet leads to enhanced ruminal Na(+) absorption, which is associated with elevated plasma insulin-like growth factor 1 (IGF-1) levels and an increased number of IGF-1 receptors in rumen papillae. This study examined the in vitro effect of IGF-1 on Na(+) transport across the rumen epithelium of hay-fed sheep, in which the IGF-1 concentration in plasma is lower than in concentrate-fed animals. At concentrations ranging from 20 to 100 μg l(-1), serosal LR3-IGF-1, a recombinant analogue of IGF-1, rapidly (within 30 min) stimulated the mucosal-to-serosal Na(+) flux (J(ms)Na) and consequently the net Na(+) flux (J(net)Na). Compared with controls, J(net)Na increased by about 60% (P < 0.05) following the serosal application of LR3-IGF-1 (20 μg l(-1)). The IGF-1-induced increment of J(ms)Na and J(net)Na was inhibited by mucosal amiloride (1 mmol l(-1)). Neither IGF-1 nor amiloride altered tissue conductance or the short-circuit current of the isolated rumen epithelium. These data support the assumption that the stimulating effect of serosally applied IGF-1 on Na(+) transport across the rumen epithelium is mediated by Na(+)-H(+) exchange (NHE). A further study was performed with cultured rumen epithelial cells and a fluorescent probe (BCECF) to estimate the rate of pH(i) recovery after acid loading. The pH(i) of isolated rumen epithelial cells was 6.43 ± 0.15 after butyrate loading and recovered by 0.26 ± 0.02 pH units (15 min)(-1). Application of LR3-IGF-1 (20 μg l(-1)) significantly increased the rate of pH(i) recovery to 0.33 ± 0.02 pH units (15 min)(-1). Amiloride administration reduced the recovery rate in both control and IGF-1-stimulated cells. These results show, for the first time, that an acute effect of IGF-1 on Na(+) absorption across rumen epithelium results from increased NHE activity. Insulin-like growth factor 1 is thus important for the fast functional adaptation of ruminal Na(+) transport via NHE. PMID:22227200

  20. A Barley Efflux Transporter Operates in a Na+-Dependent Manner, as Revealed by a Multidisciplinary Platform[OPEN

    PubMed Central

    Nagarajan, Yagnesh; Rongala, Jay; Luang, Sukanya; Shadiac, Nadim; Sutton, Tim; Tyerman, Stephen D.; McPhee, Gordon; Voelcker, Nicolas H.; Lee, Jung-Goo

    2016-01-01

    Plant growth and survival depend upon the activity of membrane transporters that control the movement and distribution of solutes into, around, and out of plants. Although many plant transporters are known, their intrinsic properties make them difficult to study. In barley (Hordeum vulgare), the root anion-permeable transporter Bot1 plays a key role in tolerance to high soil boron, facilitating the efflux of borate from cells. However, its three-dimensional structure is unavailable and the molecular basis of its permeation function is unknown. Using an integrative platform of computational, biophysical, and biochemical tools as well as molecular biology, electrophysiology, and bioinformatics, we provide insight into the origin of transport function of Bot1. An atomistic model, supported by atomic force microscopy measurements, reveals that the protein folds into 13 transmembrane-spanning and five cytoplasmic α-helices. We predict a trimeric assembly of Bot1 and the presence of a Na+ ion binding site, located in the proximity of a pore that conducts anions. Patch-clamp electrophysiology of Bot1 detects Na+-dependent polyvalent anion transport in a Nernstian manner with channel-like characteristics. Using alanine scanning, molecular dynamics simulations, and transport measurements, we show that conductance by Bot1 is abolished by removal of the Na+ ion binding site. Our data enhance the understanding of the permeation functions of Bot1. PMID:26672067

  1. A Barley Efflux Transporter Operates in a Na+-Dependent Manner, as Revealed by a Multidisciplinary Platform.

    PubMed

    Nagarajan, Yagnesh; Rongala, Jay; Luang, Sukanya; Singh, Abhishek; Shadiac, Nadim; Hayes, Julie; Sutton, Tim; Gilliham, Matthew; Tyerman, Stephen D; McPhee, Gordon; Voelcker, Nicolas H; Mertens, Haydyn D T; Kirby, Nigel M; Lee, Jung-Goo; Yingling, Yaroslava G; Hrmova, Maria

    2016-01-01

    Plant growth and survival depend upon the activity of membrane transporters that control the movement and distribution of solutes into, around, and out of plants. Although many plant transporters are known, their intrinsic properties make them difficult to study. In barley (Hordeum vulgare), the root anion-permeable transporter Bot1 plays a key role in tolerance to high soil boron, facilitating the efflux of borate from cells. However, its three-dimensional structure is unavailable and the molecular basis of its permeation function is unknown. Using an integrative platform of computational, biophysical, and biochemical tools as well as molecular biology, electrophysiology, and bioinformatics, we provide insight into the origin of transport function of Bot1. An atomistic model, supported by atomic force microscopy measurements, reveals that the protein folds into 13 transmembrane-spanning and five cytoplasmic α-helices. We predict a trimeric assembly of Bot1 and the presence of a Na(+) ion binding site, located in the proximity of a pore that conducts anions. Patch-clamp electrophysiology of Bot1 detects Na(+)-dependent polyvalent anion transport in a Nernstian manner with channel-like characteristics. Using alanine scanning, molecular dynamics simulations, and transport measurements, we show that conductance by Bot1 is abolished by removal of the Na(+) ion binding site. Our data enhance the understanding of the permeation functions of Bot1. PMID:26672067

  2. Coupling of epithelial Na+ and Cl− channels by direct and indirect activation by serine proteases

    PubMed Central

    Gondzik, Veronika; Weber, Wolf Michael

    2012-01-01

    The mammalian collecting duct (CD) is continuously exposed to urinary proteases. The CD expresses an epithelial Na+ channel (ENaC) that is activated after cleavage by serine proteases. ENaC also exists at the plasma membrane in the uncleaved form, rendering activation by extracellular proteases an important mechanism for regulating Na+ transport. Many exogenous and a small number of endogenous extracellular serine proteases have been shown to activate the channel. Recently, kallikrein 1 (KLK1) was shown to increase γENaC cleavage in the native CD indicating a possible direct role of this endogenous protease in Na+ homeostasis. To explore this process, we examined the coordinated effect of this protease on Na+ and Cl− transport in a polarized renal epithelial cell line (Madin-Darby canine kidney). We also examined the role of native urinary proteases in this process. Short-circuit current (Isc) was used to measure transport of these ions. The Isc exhibited an ENaC-dependent Na+ component that was amiloride blockable and a cystic fibrosis transmembrane conductance regulator (CFTR)-dependent Cl− component that was blocked by inhibitor 172. Apical application of trypsin, an exogenous S1 serine protease, activated IENaC but was without effects on ICFTR. Subtilisin an exogenous S8 protease that mimics endogenous furin-type proteases activated both currents. A similar activation was also observed with KLK1 and native rat urinary proteases. Activation with urinary proteases occurred within minutes and at protease concentrations similar to those in the CD indicating physiological significance of this process. ENaC activation was irreversible and mediated by enhanced cleavage of γENaC. The activation of CFTR was indirect and likely dependent on activation of an endogenous apical membrane protease receptor. Collectively, these data demonstrate coordinated stimulation of separate Na+ and Cl− transport pathways in renal epithelia by extracellular luminal proteases. They

  3. The Na(+) transporter, TaHKT1;5-D, limits shoot Na(+) accumulation in bread wheat.

    PubMed

    Byrt, Caitlin Siobhan; Xu, Bo; Krishnan, Mahima; Lightfoot, Damien James; Athman, Asmini; Jacobs, Andrew Keith; Watson-Haigh, Nathan S; Plett, Darren; Munns, Rana; Tester, Mark; Gilliham, Matthew

    2014-11-01

    Bread wheat (Triticum aestivum L.) has a major salt tolerance locus, Kna1, responsible for the maintenance of a high cytosolic K(+) /Na(+) ratio in the leaves of salt stressed plants. The Kna1 locus encompasses a large DNA fragment, the distal 14% of chromosome 4DL. Limited recombination has been observed at this locus making it difficult to map genetically and identify the causal gene. Here, we decipher the function of TaHKT1;5-D, a candidate gene underlying the Kna1 locus. Transport studies using the heterologous expression systems Saccharomyces cerevisiae and Xenopus laevis oocytes indicated that TaHKT1;5-D is a Na(+) -selective transporter. Transient expression in Arabidopsis thaliana mesophyll protoplasts and in situ polymerase chain reaction indicated that TaHKT1;5-D is localised on the plasma membrane in the wheat root stele. RNA interference-induced silencing decreased the expression of TaHKT1;5-D in transgenic bread wheat lines which led to an increase in the Na(+) concentration in the leaves. This indicates that TaHKT1;5-D retrieves Na(+) from the xylem vessels in the root and has an important role in restricting the transport of Na(+) from the root to the leaves in bread wheat. Thus, TaHKT1;5-D confers the essential salinity tolerance mechanism in bread wheat associated with the Kna1 locus via shoot Na(+) exclusion and is critical in maintaining a high K(+) /Na(+) ratio in the leaves. These findings show there is potential to increase the salinity tolerance of bread wheat by manipulation of HKT1;5 genes. PMID:25158883

  4. The Transport Properties of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

  5. The transport properties of activated carbon fibers

    SciTech Connect

    di Vittorio, S.L. . Dept. of Materials Science and Engineering); Dresselhaus, M.S. . Dept. of Electrical Engineering and Computer Science Massachusetts Inst. of Tech., Cambridge, MA . Dept. of Physics); Endo, M. . Dept. of Electrical Engineering); Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons. 19 refs., 4 figs.

  6. Test of the interaction potential energy for Na+-H2 by gaseous ion transport data

    NASA Astrophysics Data System (ADS)

    Viehland, Larry A.; Buchachenko, Alexei A.

    2014-09-01

    Transport properties of Na+ ions in gaseous hydrogen are calculated using the recently developed "beyond Monchick-Mason" (BMM) approximation and an ab initio Na+-H2 potential energy surface. Good agreement with the experimental data on the reduced mobility and longitudinal diffusion coefficient proves the accuracy of the surface and the adequacy of the BMM method, allowing for its optimal parameterization.

  7. Downregulation of mouse intestinal Na(+)-coupled glucose transporter SGLT1 by gum arabic (Acacia Senegal).

    PubMed

    Nasir, Omaima; Artunc, Ferruh; Wang, Kan; Rexhepaj, Rexhep; Föller, Michael; Ebrahim, Ammar; Kempe, Daniela S; Biswas, Raja; Bhandaru, Madhuri; Walter, Michael; Mohebbi, Nilufar; Wagner, Carsten A; Saeed, Amal M; Lang, Florian

    2010-01-01

    Intestinal Na(+)-coupled glucose transporter SGLT1 determines the rate of glucose transport, which in turn influences glucose-induced insulin release and development of obesity. The present study explored effects of Gum Arabic (GA), a dietary polysaccharide from dried exudates of Acacia Senegal, on intestinal glucose transport and body weight in wild-type C57Bl/6 mice. Treatment with GA (100 g/l) in drinking water for four weeks did not affect intestinal SGLT1 transcript levels but decreased SGLT1 protein abundance in jejunal brush border membrane vesicles. Glucose-induced jejunal short-circuit currents revealed that GA treatment decreased electrogenic glucose transport. Drinking a 20% glucose solution for four weeks significantly increased body weight and fasting plasma glucose concentrations, effects significantly blunted by simultaneous treatment with GA. GA further significantly blunted the increase in body weight, fasting plasma glucose and fasting insulin concentrations during high fat diet. In conclusion, the present observations disclose a completely novel effect of gum arabic, i.e. its ability to decrease intestinal SGLT1 expression and activity and thus to counteract glucose-induced obesity. PMID:20110681

  8. Ion-ion repulsion and entropic effects on Na+ transport in Na2Ni2TeO6: Molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Sau, Kartik

    2016-05-01

    Molecular dynamics (MD) study of Na+ transport in Na2Ni2TeO6 is performed systematically with varying strengths of Na+-Na+ repulsions. This virtual experiment is performed to understand the physics of the ion transport. The optimal short range Na-Na repulsion exhibits highest Na+ diffusion. The Na+ occupancy shows a systematic shift in favor of higher energy and the connecting channels between the interstitial sites are thicker as the short range repulsion between Na+ is increased. The microscopic energy barriers, covering volume in the population distribution profile of the Na+ as well as its site occupancy suggest increasing role of entropic factors for higher ion-ion repulsion.

  9. Characterization of sodium transport in Acholeplasma laidlawii B cells and in lipid vesicles containing purified A. laidlawii (Na+-Mg2+)-ATPase by using nuclear magnetic resonance spectroscopy and 22Na tracer techniques.

    PubMed Central

    Mahajan, S; Lewis, R N; George, R; Sykes, B D; McElhaney, R N

    1988-01-01

    The active transport of sodium ions in live Acholeplasma laidlawii B cells and in lipid vesicles containing the (Na+-Mg2+)-ATPase from the plasma membrane of this microorganism was studied by 23Na nuclear magnetic resonance spectroscopic and 22Na tracer techniques, respectively. In live A. laidlawii B cells, the transport of sodium was an active process in which metabolic energy was harnessed for the extrusion of sodium ions against a concentration gradient. The process was inhibited by low temperatures and by the formation of gel state lipid in the plasma membrane of this organism. In reconstituted proteoliposomes containing the purified (Na+-Mg2+)-ATPase, the hydrolysis of ATP was accompanied by the transport of sodium ions into the lipid vesicles, and the transport process was impaired by reagents known to inhibit ATPase activity. At the normal growth temperature (37 degrees C), this transport process required a maximum of 1 mol of ATP per mol of sodium ion transported. Together, these results provide direct experimental evidence that the (Na+-Mg2+)-ATPase of the Acholeplasma laidlawii B membrane is the cation pump which maintains the low levels of intracellular sodium characteristic of this microorganism. PMID:2973459

  10. Extracellular Na+ levels regulate formation and activity of the NaX/alpha1-Na+/K+-ATPase complex in neuronal cells

    PubMed Central

    Berret, Emmanuelle; Smith, Pascal Y.; Henry, Mélaine; Soulet, Denis; Hébert, Sébastien S.; Toth, Katalin; Mouginot, Didier; Drolet, Guy

    2014-01-01

    MnPO neurons play a critical role in hydromineral homeostasis regulation by acting as sensors of extracellular sodium concentration ([Na+]out). The mechanism underlying Na+-sensing involves Na+-flow through the NaX channel, directly regulated by the Na+/K+-ATPase α1-isoform which controls Na+-influx by modulating channel permeability. Together, these two partners form a complex involved in the regulation of intracellular sodium ([Na+]in). Here we aim to determine whether environmental changes in Na+ could actively modulate the NaX/Na+/K+-ATPase complex activity. We investigated the complex activity using patch-clamp recordings from rat MnPO neurons and Neuro2a cells. When the rats were fed with a high-salt-diet, or the [Na+] in the culture medium was increased, the activity of the complex was up-regulated. In contrast, drop in environmental [Na+] decreased the activity of the complex. Interestingly under hypernatremic condition, the colocalization rate and protein level of both partners were up-regulated. Under hyponatremic condition, only NaX protein expression was increased and the level of NaX/Na+/K+-ATPase remained unaltered. This unbalance between NaX and Na+/K+-ATPase pump proportion would induce a bigger portion of Na+/K+-ATPase-control-free NaX channel. Thus, we suggest that hypernatremic environment increases NaX/Na+/K+-ATPase α1-isoform activity by increasing the number of both partners and their colocalization rate, whereas hyponatremic environment down-regulates complex activity via a decrease in the relative number of NaX channels controlled by the pump. PMID:25538563

  11. Ouabain Regulates CFTR-Mediated Anion Secretion and Na,K-ATPase Transport in ADPKD Cells.

    PubMed

    Jansson, Kyle; Venugopal, Jessica; Sánchez, Gladis; Magenheimer, Brenda S; Reif, Gail A; Wallace, Darren P; Calvet, James P; Blanco, Gustavo

    2015-12-01

    Cyst enlargement in autosomal dominant polycystic kidney disease (ADPKD) requires the transepithelial secretion of fluid into the cyst lumen. We previously showed that physiological amounts of ouabain enhance cAMP-dependent fluid secretion and cyst growth of human ADPKD cyst epithelial cells in culture and formation of cyst-like dilations in metanephric kidneys from Pkd1 mutant mice. Here, we investigated the mechanisms by which ouabain promotes cAMP-dependent fluid secretion and cystogenesis. Ouabain (3 nM) enhanced cAMP-induced cyst-like dilations in embryonic kidneys from Pkd1 (m1Bei) mice, but had no effect on metanephroi from Pkd1 (m1Bei) mice that lack expression of the cystic fibrosis transmembrane conductance regulator (CFTR). Similarly, ouabain stimulation of cAMP-induced fluid secretion and in vitro cyst growth of ADPKD cells were abrogated by CFTR inhibition, showing that CFTR is required for ouabain effects on ADPKD fluid secretion. Moreover, ouabain directly enhanced the cAMP-dependent Cl(-) efflux mediated by CFTR in ADPKD monolayers. Ouabain increased the trafficking of CFTR to the plasma membrane and up-regulated the expression of the CFTR activator PDZK1. Finally, ouabain decreased plasma membrane expression and activity of the Na,K-ATPase in ADPKD cells. Altogether, these results show that ouabain enhances net fluid secretion and cyst formation by activating apical anion secretion via CFTR and decreasing basolateral Na(+) transport via Na,K-ATPase. These results provide new information on the mechanisms by which ouabain affects ADPKD cells and further highlight the importance of ouabain as a non-genomic stimulator of cystogenesis in ADPKD. PMID:26289599

  12. A primary culture of distal convoluted tubules expressing functional thiazide-sensitive NaCl transport.

    PubMed

    Markadieu, Nicolas; San-Cristobal, Pedro; Nair, Anil V; Verkaart, Sjoerd; Lenssen, Ellen; Tudpor, Kukiat; van Zeeland, Femke; Loffing, Johannes; Bindels, René J M; Hoenderop, Joost G J

    2012-09-15

    Studying the molecular regulation of the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC) is important for understanding how the kidney contributes to blood pressure regulation. Until now, a native mammalian cell model to investigate this transporter remained unknown. Our aim here is to establish, for the first time, a primary distal convoluted tubule (DCT) cell culture exhibiting transcellular thiazide-sensitive Na(+) transport. Because parvalbumin (PV) is primarily expressed in the DCT, where it colocalizes with NCC, kidneys from mice expressing enhanced green-fluorescent protein (eGFP) under the PV gene promoter (PV-eGFP-mice) were employed. The Complex Object Parametric Analyzer and Sorter (COPAS) was used to sort fluorescent PV-positive tubules from these kidneys, which were then seeded onto permeable supports. After 6 days, DCT cell monolayers developed transepithelial resistance values of 630 ± 33 Ω·cm(2). The monolayers also established opposing transcellular concentration gradients of Na(+) and K(+). Radioactive (22)Na(+) flux experiments showed a net apical-to-basolateral thiazide-sensitive Na(+) transport across the monolayers. Both hypotonic low-chloride medium and 1 μM angiotensin II increased this (22)Na(+) transport significantly by four times, which could be totally blocked by 100 μM hydrochlorothiazide. Angiotensin II-stimulated (22)Na(+) transport was also inhibited by 1 μM losartan. Furthermore, NCC present in the DCT monolayers was detected by immunoblot and immunocytochemistry studies. In conclusion, a murine primary DCT culture was established which expresses functional thiazide-sensitive Na(+)-Cl(-) transport. PMID:22759396

  13. Effect of Na sup + on intestinal succinate transport and metabolism in vitro

    SciTech Connect

    Moe, A.J.; Mallet, R.T.; Jackson, M.J.; Hollywood, J.A.; Kelleher, J.K. )

    1988-07-01

    The effect of Na{sup +} on {sup 14}CO{sub 2} production from ({sup 14}C)succinate was studied in isolated rat enterocytes, and Na{sup +}-dependent succinate transport was characterized in pig intestinal brush-border membrane vesicles. The production of {sup 14}CO{sub 2} from ({sup 14}C)succinate by enterocytes was decreased 12-fold when Na{sup +} was replaced by N-methyl-D-glucamine in the absence of glutamine and and 20-fold in the presence of 0.2 and 0.5 mM glutamine. The ratio of {sup 14}CO{sub 2} produced from (1,4-{sup 14}C)succinate to that produced by (2,3-{sup 14}C)succinate was not affected by Na{sup +} replacement, indicating that the pattern of tricarboxylic acid cycle metabolism was not altered. The uptake of ({sup 14}C)succinate by brush-border membrane vesicles was stimulated 10-fold in the presence of 100 mM NaCl compared with 100 mM KCl. When succinate uptake was corrected to transport into an osmotically sensitive space, the magnitude of the Na{sup +} stimulation was 20-fold. Succinate transport into brush-border membrane vesicles was Na{sup +} dependent, electroneutral, nonconcentrative, with an apparent Na{sup +}-succinate coupling ratio of 2:1. Results of this study indicate that Na{sup +}-stimulated CO{sub 2} production by enterocytes can be explained by the effect of Na{sup +} on succinate transport across the brush-border membrane.

  14. Evidence for neutral transcellular NaCl transport and neutral basolateral chloride exit in the rabbit proximal convoluted tubule.

    PubMed Central

    Baum, M; Berry, C A

    1984-01-01

    The electrical nature of active NaCl transport and the significance of a basolateral membrane chloride conductance were examined in isolated perfused rabbit proximal convoluted tubules (PCT). PCT were perfused with a high chloride solution that simulated late proximal tubular fluid and were bathed in an albumin solution that simulated rabbit serum in the control and recovery periods. The electrical nature of NaCl transport was examined by bathing the tubules in a high chloride albumin solution where there were no anion gradients. Volume reabsorption (Jv) during the control and recovery period was 0.56 and 0.51 nl/mm X min, respectively, and 0.45 nl/mm X min when the tubules were bathed in a high chloride bath. The transepithelial potential difference (PD) during the control and recovery periods averaged 2.3 mV, but decreased to 0.0 mV in the absence of anion gradients, which indicated that NaCl transport is electroneutral. Further evidence that NaCl transport is electroneutral was obtained by examining the effect of addition of 0.01 mM ouabain in PCT perfused and bathed with high chloride solutions. The Jv was 0.54 nl/mm X min in the control period and not statistically different from zero after inhibition of active transport. The PD was not different from zero in both periods. Two groups of studies examined the role of basolateral membrane Cl- conductance in NaCl transport. First, depolarizing the basolateral membrane with 2 mM bath Ba++ did not significantly affect Jv or PD. Second, the effect of the presumptive Cl- conductance inhibitor anthracene-9-CO2H was examined. Anthracene-9-CO2H did not significantly affect Jv or PD. In conclusion, these data show that NaCl transport in the PCT is electroneutral and transcellular and provide evidence against a significant role for basolateral membrane chloride conductance in the rabbit PCT. PMID:6736248

  15. Ratchet transport powered by chiral active particles

    PubMed Central

    Ai, Bao-quan

    2016-01-01

    We numerically investigate the ratchet transport of mixtures of active and passive particles in a transversal asymmetric channel. A big passive particle is immersed in a ‘sea’ of active particles. Due to the chirality of active particles, the longitudinal directed transport is induced by the transversal asymmetry. For the active particles, the chirality completely determines the direction of the ratchet transport, the counterclockwise and clockwise particles move to the opposite directions and can be separated. However, for the passive particle, the transport behavior becomes complicated, the direction is determined by competitions among the chirality, the self-propulsion speed, and the packing fraction. Interestingly, within certain parameters, the passive particle moves to the left, while active particles move to the right. In addition, there exist optimal parameters (the chirality, the height of the barrier, the self-propulsion speed and the packing fraction) at which the rectified efficiency takes its maximal value. Our findings could be used for the experimental pursuit of the ratchet transport powered by chiral active particles. PMID:26795952

  16. Ratchet transport powered by chiral active particles

    NASA Astrophysics Data System (ADS)

    Ai, Bao-Quan

    2016-01-01

    We numerically investigate the ratchet transport of mixtures of active and passive particles in a transversal asymmetric channel. A big passive particle is immersed in a ‘sea’ of active particles. Due to the chirality of active particles, the longitudinal directed transport is induced by the transversal asymmetry. For the active particles, the chirality completely determines the direction of the ratchet transport, the counterclockwise and clockwise particles move to the opposite directions and can be separated. However, for the passive particle, the transport behavior becomes complicated, the direction is determined by competitions among the chirality, the self-propulsion speed, and the packing fraction. Interestingly, within certain parameters, the passive particle moves to the left, while active particles move to the right. In addition, there exist optimal parameters (the chirality, the height of the barrier, the self-propulsion speed and the packing fraction) at which the rectified efficiency takes its maximal value. Our findings could be used for the experimental pursuit of the ratchet transport powered by chiral active particles.

  17. Ratchet transport powered by chiral active particles.

    PubMed

    Ai, Bao-quan

    2016-01-01

    We numerically investigate the ratchet transport of mixtures of active and passive particles in a transversal asymmetric channel. A big passive particle is immersed in a 'sea' of active particles. Due to the chirality of active particles, the longitudinal directed transport is induced by the transversal asymmetry. For the active particles, the chirality completely determines the direction of the ratchet transport, the counterclockwise and clockwise particles move to the opposite directions and can be separated. However, for the passive particle, the transport behavior becomes complicated, the direction is determined by competitions among the chirality, the self-propulsion speed, and the packing fraction. Interestingly, within certain parameters, the passive particle moves to the left, while active particles move to the right. In addition, there exist optimal parameters (the chirality, the height of the barrier, the self-propulsion speed and the packing fraction) at which the rectified efficiency takes its maximal value. Our findings could be used for the experimental pursuit of the ratchet transport powered by chiral active particles. PMID:26795952

  18. Study on Na layer response to geomagnetic activities based on Odin/OSIRIS Na density data

    NASA Astrophysics Data System (ADS)

    Tsuda, Takuo; Nakamura, Takuji; Hedin, Jonas; Gumbel, Jorg; Hosokawa, Keisuke; Ejiri, Mitsumu K.; Nishiyama, Takanori; Takahashi, Toru

    2016-07-01

    The Na layer is normally distributed from 80 to 110 km, and the height range is corresponding to the ionospheric D and E region. In the polar region, the energetic particles precipitating from the magnetosphere can often penetrate into the E region and even into the D region. Thus, the influence of the energetic particles to the Na layer is one of interests in the aspect of the atmospheric composition change accompanied with the auroral activity. There are several previous studies in this issue. For example, recently, we have reported an initial result on a clear relationship between the electron density increase (due to the energetic particles) and the Na density decrease from observational data sets obtained by Na lidar, EISCAT VHF radar, and optical instruments at Tromsoe, Norway on 24-25 January 2012. However, all of the previous studies had been carried out based on case studies by ground-based lidar observations. In this study, we have performed, for the first time, statistical analysis using Na density data from 2004 to 2009 obtained with the Optical Spectrograph and InfraRed Imager System (OSIRIS) onboard Odin satellite. In the presentation, we will show relationship between the Na density and geomagnetic activities, and its latitudinal variation. Based on these results, the Na layer response to the energetic particles will be discussed.

  19. H2O2 and cytosolic Ca2+ signals triggered by the PM H-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells.

    PubMed

    Sun, Jian; Wang, Mei-Juan; Ding, Ming-Quan; Deng, Shu-Rong; Liu, Mei-Qin; Lu, Cun-Fu; Zhou, Xiao-Yang; Shen, Xin; Zheng, Xiao-Jiang; Zhang, Zeng-Kai; Song, Jin; Hu, Zan-Min; Xu, Yue; Chen, Shao-Liang

    2010-06-01

    Using confocal microscopy, X-ray microanalysis and the scanning ion-selective electrode technique, we investigated the signalling of H(2)O(2), cytosolic Ca(2+) ([Ca(2+)](cyt)) and the PM H(+)-coupled transport system in K(+)/Na(+) homeostasis control in NaCl-stressed calluses of Populus euphratica. An obvious Na(+)/H(+) antiport was seen in salinized cells; however, NaCl stress caused a net K(+) efflux, because of the salt-induced membrane depolarization. H(2)O(2) levels, regulated upwards by salinity, contributed to ionic homeostasis, because H(2)O(2) restrictions by DPI or DMTU caused enhanced K(+) efflux and decreased Na(+)/H(+) antiport activity. NaCl induced a net Ca(2+) influx and a subsequent rise of [Ca(2+)](cyt), which is involved in H(2)O(2)-mediated K(+)/Na(+) homeostasis in salinized P. euphratica cells. When callus cells were pretreated with inhibitors of the Na(+)/H(+) antiport system, the NaCl-induced elevation of H(2)O(2) and [Ca(2+)](cyt) was correspondingly restricted, leading to a greater K(+) efflux and a more pronounced reduction in Na(+)/H(+) antiport activity. Results suggest that the PM H(+)-coupled transport system mediates H(+) translocation and triggers the stress signalling of H(2)O(2) and Ca(2+), which results in a K(+)/Na(+) homeostasis via mediations of K(+) channels and the Na(+)/H(+) antiport system in the PM of NaCl-stressed cells. Accordingly, a salt stress signalling pathway of P. euphratica cells is proposed. PMID:20082667

  20. Stochastic steps in secondary active sugar transport.

    PubMed

    Adelman, Joshua L; Ghezzi, Chiara; Bisignano, Paola; Loo, Donald D F; Choe, Seungho; Abramson, Jeff; Rosenberg, John M; Wright, Ernest M; Grabe, Michael

    2016-07-01

    Secondary active transporters, such as those that adopt the leucine-transporter fold, are found in all domains of life, and they have the unique capability of harnessing the energy stored in ion gradients to accumulate small molecules essential for life as well as expel toxic and harmful compounds. How these proteins couple ion binding and transport to the concomitant flow of substrates is a fundamental structural and biophysical question that is beginning to be answered at the atomistic level with the advent of high-resolution structures of transporters in different structural states. Nonetheless, the dynamic character of the transporters, such as ion/substrate binding order and how binding triggers conformational change, is not revealed from static structures, yet it is critical to understanding their function. Here, we report a series of molecular simulations carried out on the sugar transporter vSGLT that lend insight into how substrate and ions are released from the inward-facing state of the transporter. Our simulations reveal that the order of release is stochastic. Functional experiments were designed to test this prediction on the human homolog, hSGLT1, and we also found that cytoplasmic release is not ordered, but we confirmed that substrate and ion binding from the extracellular space is ordered. Our findings unify conflicting published results concerning cytoplasmic release of ions and substrate and hint at the possibility that other transporters in the superfamily may lack coordination between ions and substrate in the inward-facing state. PMID:27325773

  1. Long-term transportation noise annoyance is associated with subsequent lower levels of physical activity.

    PubMed

    Foraster, Maria; Eze, Ikenna C; Vienneau, Danielle; Brink, Mark; Cajochen, Christian; Caviezel, Seraina; Héritier, Harris; Schaffner, Emmanuel; Schindler, Christian; Wanner, Miriam; Wunderli, Jean-Marc; Röösli, Martin; Probst-Hensch, Nicole

    2016-05-01

    Noise annoyance (NA) might lead to behavioral patterns not captured by noise levels, which could reduce physical activity (PA) either directly or through impaired sleep and constitute a noise pathway towards cardiometabolic diseases. We investigated the association of long-term transportation NA and its main sources (aircraft, road, and railway) at home with PA levels. We assessed 3842 participants (aged 37-81) that attended the three examinations (SAP 1, 2, and 3 in years 1991, 2001 and 2011, respectively) of the population-based Swiss cohort on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA). Participants reported general 24-h transportation NA (in all examinations) and source-specific NA at night (only SAP 3) on an ICBEN-type 11-point scale. We assessed moderate, vigorous, and total PA from a short-questionnaire (SAP 3). The main outcome was moderate PA (active/inactive: cut-off≥150min/week). We used logistic regression including random effects by area and adjusting for age, sex, socioeconomic status, and lifestyles (main model) and evaluated potential effect modifiers. We analyzed associations with PA at SAP 3 a) cross-sectionally: for source-specific and transportation NA in the last year (SAP 3), and b) longitudinally: for 10-y transportation NA (mean of SAP 1+2), adjusting for prior PA (SAP 2) and changes in NA (SAP 3-2). Reported NA (score≥5) was 16.4%, 7.5%, 3%, and 1.1% for 1-year transportation, road, aircraft, and railway at SAP 3, respectively. NA was greater in the past, reaching 28.5% for 10-y transportation NA (SAP 1+2). The 10-y transportation NA was associated with a 3.2% (95% CI: 6%-0.2%) decrease in moderate PA per 1-NA rating point and was related to road and aircraft NA at night in cross-sectional analyses. The longitudinal association was stronger for women, reported daytime sleepiness or chronic diseases and it was not explained by objectively modeled levels of road traffic noise at SAP 3. In conclusion, long-term NA

  2. Characterization of the fetal glucose transporter in rabbit kidney. Comparison with the adult brush border electrogenic Na+-glucose symporter.

    PubMed Central

    Beck, J C; Lipkowitz, M S; Abramson, R G

    1988-01-01

    Glucose transport was characterized in rabbit renal brush border membrane vesicles (BBMV) of the fetus late in gestation. Highly purified, osmotically reactive fetal BBMV contained a glucose transporter that was qualitatively indistinguishable from that in the adult: both are concentrative, Na+ dependent, electrogenic, stereospecific, and sensitive to phlorizin. Although the apparent Km for glucose is similar in the fetus and adult, the Vmax is significantly higher in the adult. When the membrane potential was clamped with a protonophore, this difference diminished; however, Vmax remained significantly higher in adult BBMV. This postnatal increase in Vmax was paralleled by a similar increase in the number of phlorizin binding sites. These findings indicate that the maturational increase in glucose transport is, in part, consequent to a more favorable electrical potential for Na+-dependent glucose transport and, in part, the result of the insertion of new transporters. The homogenate activity of several brush border enzymes also demonstrated significant maturational increases. The magnitude of these changes was variable and enzyme dependent. These combined observations suggest that mature expression of membrane proteins (transporters and enzymes) occurs at different stages of development of renal proximal tubule cells. PMID:3403709

  3. Structures of a Na+-coupled, substrate-bound MATE multidrug transporter.

    PubMed

    Lu, Min; Symersky, Jindrich; Radchenko, Martha; Koide, Akiko; Guo, Yi; Nie, Rongxin; Koide, Shohei

    2013-02-01

    Multidrug transporters belonging to the multidrug and toxic compound extrusion (MATE) family expel dissimilar lipophilic and cationic drugs across cell membranes by dissipating a preexisting Na(+) or H(+) gradient. Despite its clinical relevance, the transport mechanism of MATE proteins remains poorly understood, largely owing to a lack of structural information on the substrate-bound transporter. Here we report crystal structures of a Na(+)-coupled MATE transporter NorM from Neisseria gonorrheae in complexes with three distinct translocation substrates (ethidium, rhodamine 6G, and tetraphenylphosphonium), as well as Cs(+) (a Na(+) congener), all captured in extracellular-facing and drug-bound states. The structures revealed a multidrug-binding cavity festooned with four negatively charged amino acids and surprisingly limited hydrophobic moieties, in stark contrast to the general belief that aromatic amino acids play a prominent role in multidrug recognition. Furthermore, we discovered an uncommon cation-π interaction in the Na(+)-binding site located outside the drug-binding cavity and validated the biological relevance of both the substrate- and cation-binding sites by conducting drug resistance and transport assays. Additionally, we uncovered potential rearrangement of at least two transmembrane helices upon Na(+)-induced drug export. Based on our structural and functional analyses, we suggest that Na(+) triggers multidrug extrusion by inducing protein conformational changes rather than by directly competing for the substrate-binding amino acids. This scenario is distinct from the canonical antiport mechanism, in which both substrate and counterion compete for a shared binding site in the transporter. Collectively, our findings provide an important step toward a detailed and mechanistic understanding of multidrug transport. PMID:23341609

  4. Development of novel active transport membrande devices

    SciTech Connect

    Laciak, D.V.

    1994-11-01

    Air Products has undertaken a research program to fabricate and evaluate gas separation membranes based upon promising ``active-transport`` (AT) materials recently developed in our laboratories. Active Transport materials are ionic polymers and molten salts which undergo reversible interaction or reaction with ammonia and carbon dioxide. The materials are useful for separating these gases from mixtures with hydrogen. Moreover, AT membranes have the unique property of possessing high permeability towards ammnonia and carbon dioxide but low permeability towards hydrogen and can thus be used to permeate these components from a gas stream while retaining hydrogen at high pressure.

  5. NaDC3 Induces Premature Cellular Senescence by Promoting Transport of Krebs Cycle Intermediates, Increasing NADH, and Exacerbating Oxidative Damage.

    PubMed

    Ma, Yuxiang; Bai, Xue-Yuan; Du, Xuan; Fu, Bo; Chen, Xiangmei

    2016-01-01

    High-affinity sodium-dependent dicarboxylate cotransporter 3 (NaDC3) is a key metabolism-regulating membrane protein responsible for transport of Krebs cycle intermediates. NaDC3 is upregulated as organs age, but knowledge regarding the underlying mechanisms by which NaDC3 modulates mammalian aging is limited. In this study, we showed that NaDC3 overexpression accelerated cellular senescence in young human diploid cells (MRC-5 and WI-38) and primary renal tubular cells, leading to cell cycle arrest in G1 phase and increased expression of senescent biomarkers, senescence-associated β-galactosidase and p16. Intracellular levels of reactive oxygen species, 8-hydroxy-2'-deoxyguanosine, malondialdehyde, and carbonyl were significantly enhanced, and activities of respiratory complexes I and III and ATP level were significantly decreased in NaDC3-infected cells. Stressful premature senescent phenotypes induced by NaDC3 were markedly ameliorated via treatment with the antioxidants Tiron and Tempol. High expression of NaDC3 caused a prominent increase in intracellular levels of Krebs cycle intermediates and NADH. Exogenous NADH and NAD(+) may aggravate and attenuate the aging phenotypes induced by NaDC3, respectively. These results suggest that NaDC3 can induce premature cellular senescence by promoting the transport of Krebs cycle intermediates, increasing generation of NADH and reactive oxygen species and leading to oxidative damage. Our results clarify the aging signaling pathway regulated by NaDC3. PMID:25384549

  6. Potassium transport across rat alveolar epithelium: evidence for an apical Na+-K+ pump.

    PubMed

    Basset, G; Bouchonnet, F; Crone, C; Saumon, G

    1988-06-01

    1. Experiments were performed on rat lungs into which various solutions were instilled whilst the lungs were perfused with either whole blood or Ringer solution. Instillation of ion-free glucose solution led to a net flux of fluid and ions into the alveolar spaces. K+ ions entered faster than Na+ ions and reached a concentration about twice that in the perfusate. Ouabain in the perfusate (basolateral side) prevented the rise in alveolar K+ concentration above that in the perfusate, indicating a transcellular pathway. Ba2+ in the instillate (apical side) hindered the entry of K+ into alveoli, suggesting the presence of apical K+ channels. 2. When Ringer solution was instilled, K+ was continuously removed from the alveoli and the K+ concentration in the instillate remained constant or decreased slightly depending on the rate of fluid absorption. The net K+ efflux from alveoli to blood was 0.23 pmol/(cm2 s). When Ba2+ was added to the instillate the net K+ efflux increased to 0.36 pmol/(cm2 s). Apical ouabain reversed the K+ flux resulting in a net K+ flux of 0.19 pmol/(cm2 s) into the alveoli. This suggests the presence of an Na+-K+-ATPase located in the apical membrane of some alveolar cells. 3. The K+ transport from instillate (Ringer solution) to perfusate was traced by means of 86Rb which was added to the instillate. Ouabain in the instillate did not affect fluid absorption but reduced the apparent 86Rb permeability by 50% although the paracellular permeability (estimated with [3H]mannitol) was unaffected. This also indicates the presence of an apical Na+-K+-ATPase. When ouabain was added to the perfusate, the apparent 86Rb permeability doubled. These findings indicate that recirculation of 86Rb (and K+) occurs due to the activity of both apical and basolateral Na+-K+-ATPases. 4. When ouabain was placed on both sides of the epithelium, preventing transcellular transport, the passive 86Rb permeability was 10.3 x 10(-8) cm/s (assuming an alveolar surface area of

  7. Health Impacts of Active Transportation in Europe.

    PubMed

    Rojas-Rueda, David; de Nazelle, Audrey; Andersen, Zorana J; Braun-Fahrländer, Charlotte; Bruha, Jan; Bruhova-Foltynova, Hana; Desqueyroux, Hélène; Praznoczy, Corinne; Ragettli, Martina S; Tainio, Marko; Nieuwenhuijsen, Mark J

    2016-01-01

    Policies that stimulate active transportation (walking and bicycling) have been related to heath benefits. This study aims to assess the potential health risks and benefits of promoting active transportation for commuting populations (age groups 16-64) in six European cities. We conducted a health impact assessment using two scenarios: increased cycling and increased walking. The primary outcome measure was all-cause mortality related to changes in physical activity level, exposure to fine particulate matter air pollution with a diameter <2.5 μm, as well as traffic fatalities in the cities of Barcelona, Basel, Copenhagen, Paris, Prague, and Warsaw. All scenarios produced health benefits in the six cities. An increase in bicycle trips to 35% of all trips (as in Copenhagen) produced the highest benefits among the different scenarios analysed in Warsaw 113 (76-163) annual deaths avoided, Prague 61 (29-104), Barcelona 37 (24-56), Paris 37 (18-64) and Basel 5 (3-9). An increase in walking trips to 50% of all trips (as in Paris) resulted in 19 (3-42) deaths avoided annually in Warsaw, 11(3-21) in Prague, 6 (4-9) in Basel, 3 (2-6) in Copenhagen and 3 (2-4) in Barcelona. The scenarios would also reduce carbon dioxide emissions in the six cities by 1,139 to 26,423 (metric tonnes per year). Policies to promote active transportation may produce health benefits, but these depend of the existing characteristics of the cities. Increased collaboration between health practitioners, transport specialists and urban planners will help to introduce the health perspective in transport policies and promote active transportation. PMID:26930213

  8. Health Impacts of Active Transportation in Europe

    PubMed Central

    Rojas-Rueda, David; de Nazelle, Audrey; Andersen, Zorana J.; Braun-Fahrländer, Charlotte; Bruha, Jan; Bruhova-Foltynova, Hana; Desqueyroux, Hélène; Praznoczy, Corinne; Ragettli, Martina S.; Tainio, Marko; Nieuwenhuijsen, Mark J.

    2016-01-01

    Policies that stimulate active transportation (walking and bicycling) have been related to heath benefits. This study aims to assess the potential health risks and benefits of promoting active transportation for commuting populations (age groups 16–64) in six European cities. We conducted a health impact assessment using two scenarios: increased cycling and increased walking. The primary outcome measure was all-cause mortality related to changes in physical activity level, exposure to fine particulate matter air pollution with a diameter <2.5 μm, as well as traffic fatalities in the cities of Barcelona, Basel, Copenhagen, Paris, Prague, and Warsaw. All scenarios produced health benefits in the six cities. An increase in bicycle trips to 35% of all trips (as in Copenhagen) produced the highest benefits among the different scenarios analysed in Warsaw 113 (76–163) annual deaths avoided, Prague 61 (29–104), Barcelona 37 (24–56), Paris 37 (18–64) and Basel 5 (3–9). An increase in walking trips to 50% of all trips (as in Paris) resulted in 19 (3–42) deaths avoided annually in Warsaw, 11(3–21) in Prague, 6 (4–9) in Basel, 3 (2–6) in Copenhagen and 3 (2–4) in Barcelona. The scenarios would also reduce carbon dioxide emissions in the six cities by 1,139 to 26,423 (metric tonnes per year). Policies to promote active transportation may produce health benefits, but these depend of the existing characteristics of the cities. Increased collaboration between health practitioners, transport specialists and urban planners will help to introduce the health perspective in transport policies and promote active transportation. PMID:26930213

  9. Shoot Na+ Exclusion and Increased Salinity Tolerance Engineered by Cell Type–Specific Alteration of Na+ Transport in Arabidopsis[W][OA

    PubMed Central

    Møller, Inge S.; Gilliham, Matthew; Jha, Deepa; Mayo, Gwenda M.; Roy, Stuart J.; Coates, Juliet C.; Haseloff, Jim; Tester, Mark

    2009-01-01

    Soil salinity affects large areas of cultivated land, causing significant reductions in crop yield globally. The Na+ toxicity of many crop plants is correlated with overaccumulation of Na+ in the shoot. We have previously suggested that the engineering of Na+ exclusion from the shoot could be achieved through an alteration of plasma membrane Na+ transport processes in the root, if these alterations were cell type specific. Here, it is shown that expression of the Na+ transporter HKT1;1 in the mature root stele of Arabidopsis thaliana decreases Na+ accumulation in the shoot by 37 to 64%. The expression of HKT1;1 specifically in the mature root stele is achieved using an enhancer trap expression system for specific and strong overexpression. The effect in the shoot is caused by the increased influx, mediated by HKT1;1, of Na+ into stelar root cells, which is demonstrated in planta and leads to a reduction of root-to-shoot transfer of Na+. Plants with reduced shoot Na+ also have increased salinity tolerance. By contrast, plants constitutively expressing HKT1;1 driven by the cauliflower mosaic virus 35S promoter accumulated high shoot Na+ and grew poorly. Our results demonstrate that the modification of a specific Na+ transport process in specific cell types can reduce shoot Na+ accumulation, an important component of salinity tolerance of many higher plants. PMID:19584143

  10. A conformationally mobile cysteine residue (Cys-561) modulates Na+ and H+ activation of human CNT3.

    PubMed

    Slugoski, Melissa D; Smith, Kyla M; Mulinta, Ras; Ng, Amy M L; Yao, Sylvia Y M; Morrison, Ellen L; Lee, Queenie O T; Zhang, Jing; Karpinski, Edward; Cass, Carol E; Baldwin, Stephen A; Young, James D

    2008-09-01

    In humans, the SLC28 concentrative nucleoside transporter (CNT) protein family is represented by three Na+-coupled members; human CNT1 (hCNT1) and hCNT2 are pyrimidine and purine nucleoside-selective, respectively, whereas hCNT3 transports both purine and pyrimidine nucleosides and nucleoside drugs. Belonging to a phylogenetic CNT subfamily distinct from hCNT1/2, hCNT3 also mediates H+/nucleoside cotransport. Using heterologous expression in Xenopus oocytes, we have characterized a cysteineless version of hCNT3 (hCNT3C-). Processed normally to the cell surface, hCNT3C- exhibited hCNT3-like transport properties, but displayed a decrease in apparent affinity specific for Na+ and not H+. Site-directed mutagenesis experiments in wild-type and hCNT3C- backgrounds identified intramembranous Cys-561 as the residue responsible for this altered Na+-binding phenotype. Alanine at this position restored Na+ binding affinity, whereas substitution with larger neutral amino acids (threonine, valine, and isoleucine) abolished hCNT3 H+-dependent nucleoside transport activity. Independent of these findings, we have established that Cys-561 is located in a mobile region of the hCNT3 translocation pore adjacent to the nucleoside binding pocket and that access of p-chloromercuribenzene sulfonate to this residue reports a specific H+-induced conformational state of the protein ( Slugoski, M. D., Ng, A. M. L., Yao, S. Y. M., Smith, K. M., Lin, C. C., Zhang, J., Karpinski, E., Cass, C. E., Baldwin, S. A., and Young, J. D. (2008) J. Biol. Chem. 283, 8496-8507 ). The present investigation validates hCNT3C- as a template for substituted cysteine accessibility method studies of CNTs and reveals a pivotal functional role for Cys-561 in Na+- as well as H+-coupled modes of hCNT3 nucleoside transport. PMID:18621735

  11. Fluid transport by active elastic membranes

    NASA Astrophysics Data System (ADS)

    Evans, Arthur A.; Lauga, Eric

    2011-09-01

    A flexible membrane deforming its shape in time can self-propel in a viscous fluid. Alternatively, if the membrane is anchored, its deformation will lead to fluid transport. Past work in this area focused on situations where the deformation kinematics of the membrane were prescribed. Here we consider models where the deformation of the membrane is not prescribed, but instead the membrane is internally forced. Both the time-varying membrane shape and the resulting fluid motion result then from a balance between prescribed internal active stresses, internal passive resistance, and external viscous stresses. We introduce two specific models for such active internal forcing: one where a distribution of active bending moments is prescribed, and one where active inclusions exert normal stresses on the membrane by pumping fluid through it. In each case, we asymptotically calculate the membrane shape and the fluid transport velocities for small forcing amplitudes, and recover our results using scaling analysis.

  12. Insulin regulation of Na/K pump activity in rat hepatoma cells

    SciTech Connect

    Gelehrter, T.D.; Shreve, P.D.; Dilworth, V.M.

    1984-05-01

    Insulin rapidly increases Na/K pump activity in HTC rat hepatoma cells in tissue culture, as measured by the ouabain-sensitive influx of the potassium analogue 86Rb+. Increased influx is observed within minutes and is maximal (70% above control) within 1-2 h. The effect appears to be mediated by the insulin receptors, as: the concentration dependence on insulin is identical to that for insulin induction of tyrosine aminotransferase and stimulation of 2-aminoisobutyric acid transport, proinsulin is 6% as potent as insulin, and the effect is blocked by anti-receptor antibodies. The early stimulation of potassium influx is not blocked by cycloheximide and is not associated with an increased number of pump sites as measured by /sup 3/H-ouabain binding. The insulin effect is blocked by amiloride, which blocks sodium influx, and is mimicked by the sodium ionophore monensin, which increases sodium influx and intracellular accumulation. Insulin also rapidly increases the initial rate of /sup 22/Na+ influx, suggesting that insulin may enhance Na/K pump activity, in part, by increasing intracellular sodium concentration. Incubation of HTC cells with insulin for 24 h causes complete unresponsiveness to the insulin induction of transaminase and stimulation of amino acid transport, a phenomenon mediated by postbinding mechanisms. In contrast, similar incubation with insulin does not cause unresponsiveness to the insulin stimulation of Na/K pump activity. Therefore, the site of regulation of responsiveness to insulin must be distal to, or separate from, those events causing stimulation of ion fluxes.

  13. A Thermodynamic Description of Active Transport

    NASA Astrophysics Data System (ADS)

    Kjelstrup, S.; Rubi, J. M.; Bedeaux, D.

    We present a solution to problems that were raised in the 1960s: How can the vectorial ion flux couple to the scalar energy of the reaction of ATP to ADP and P, to give active transport of the ion; i.e. transport against its chemical potential? And, is it possible, on thermodynamic grounds to obtain non-linear flux force relations for this transport? Using non-equilibrium thermodynamics (NET) on the stochastic (mesoscopic) level, we explain how the second law of thermodynamics gives a basis for the description of active transport of Ca2+ by the Ca-ATPase. Coupling takes place at the surface, because the symmetry of the fluxes changes here. The theory gives the energy dissipated as heat during transport and reaction. Experiments are defined to determine coupling coefficients. We propose that the coefficients for coupling between chemical reaction, ion flux and heat flux are named thermogenesis coefficients. They are all probably significant. We discuss that the complete set of coefficients can explain slippage in molecular pumps as well as thermogenesis that is triggered by a temperature jump.

  14. NaI detector neutron activation spectra for PGNAA applications

    PubMed

    Gardner; El; Zheng; Hayden; Mayo

    2000-10-01

    When NaI detectors are used in prompt gamma-ray neutron activation analysis devices, they are activated by neutrons that penetrate the detector. While thermal neutron filters like boron or lithium can be used to reduce this activation, it can never be completely eliminated by this approach since high energy neutrons can penetrate the detector and thermalize inside it. This activation results in the emission of prompt gamma rays from both the I and Na and the production of the radioisotopes 128I and 24Na that subsequently decay and emit their characteristic beta particles and gamma rays. The resulting three spectra represent a background for this measurement. An experimental method for obtaining these three spectra is described and results are reported for 2" x 2", 5" x 5", 6" x 6", and 1" x 6" NaI detectors using the thermal neutron beam of the NCSU PULSTAR nuclear reactor. In addition, Monte Carlo simulation programs have been developed and used for simulating these spectra. Good results have been obtained by the Monte Carlo method for the two radioisotope spectra, and it is anticipated that good results will also be obtained for the prompt gamma-ray spectrum when the I and Na coincidence schemes are known. PMID:11003483

  15. Na(+) -Activated K(+) Channels in Rat Supraoptic Neurones.

    PubMed

    Bansal, V; Fisher, T E

    2016-06-01

    The magnocellular neurosecretory cells (MNCs) of the hypothalamus secrete the neurohormones vasopressin and oxytocin. The systemic release of these hormones depends on the rate and pattern of MNC firing and it is therefore important to identify the ion channels that contribute to the electrical behaviour of MNCs. In the present study, we report evidence for the presence of Na(+) -activated K(+) (KN a ) channels in rat MNCs. KN a channels mediate outwardly rectifying K(+) currents activated by the increases in intracellular Na(+) that occur during electrical activity. Although the molecular identity of native KN a channels is unclear, their biophysical properties are consistent with those of expressed Slick (slo 2.1) and Slack (slo 2.2) proteins. Using immunocytochemistry and Western blot experiments, we found that both Slick and Slack proteins are expressed in rat MNCs. Using whole cell voltage clamp techniques on acutely isolated rat MNCs, we found that inhibiting Na(+) influx by the addition of the Na(+) channel blocker tetrodotoxin or the replacement of Na(+) in the external solution with Li(+) caused a significant decrease in sustained outward currents. Furthermore, the evoked outward current density was significantly higher in rat MNCs using patch pipettes containing 60 mm Na(+) than it was when patch pipettes containing 0 mm Na(+) were used. Our data show that functional KN a channels are expressed in rat MNCs. These channels could contribute to the activity-dependent afterhyperpolarisations that have been identified in the MNCs and thereby play a role in the regulation of their electrical behaviour. PMID:27091544

  16. Membrane phase characteristics control NA-CATH activity.

    PubMed

    Samuel, Robin; Gillmor, Susan

    2016-09-01

    Our studies presented in this report focus on the behavior of NA-CATH, an α-helical cathelicidin antimicrobial peptide, originally discovered in the Naja atra snake. It has demonstrated high potency against gram-positive and gram-negative bacteria with minimal hemolysis. Here we examine the kinetics, behaviors and potential mechanisms of the peptide in the presence of membrane liposome, modeling Escherichia coli, whose membrane exhibits distinct lipid phases. To understand NA-CATH interactions, the role of lipid phases is critical. We test three different lipid compositions to detangle the effect of phase on NA-CATH's activity using a series of leakage experiments. From these studies, we observe that NA-CATH changes from membrane disruption to pore-based lysing, depending on phases and lipid composition. This behavior also plays a major role in its kinetics. PMID:27216315

  17. Immunolocalization of chloride transporters to gill epithelia of euryhaline teleosts with opposite salinity-induced Na+/K+-ATPase responses.

    PubMed

    Tang, Cheng-Hao; Hwang, Lie-Yueh; Shen, I-Da; Chiu, Yu-Hui; Lee, Tsung-Han

    2011-12-01

    Opposite patterns of branchial Na(+)/K(+)-ATPase (NKA) responses were found in euryhaline milkfish (Chanos chanos) and pufferfish (Tetraodon nigroviridis) upon salinity challenge. Because the electrochemical gradient established by NKA is thought to be the driving force for transcellular Cl(-) transport in fish gills, the aim of this study was to explore whether the differential patterns of NKA responses found in milkfish and pufferfish would lead to distinct distribution of Cl(-) transporters in their gill epithelial cells indicating different Cl(-) transport mechanisms. In this study, immunolocalization of various Cl(-) transport proteins, including Na(+)/K(+)/2Cl(-) cotransporter (NKCC), cystic fibrosis transmembrane conductance regulator (CFTR), anion exchanger 1 (AE1), and chloride channel 3 (ClC-3), were double stained with NKA, the basolateral marker of branchial mitochondrion-rich cells (MRCs), to reveal the localization of these transporter proteins in gill MRC of FW- or SW-acclimated milkfish and pufferfish. Confocal microscopic observations showed that the localization of these transport proteins in the gill MRCs of the two studied species were similar. However, the number of gill NKA-immunoreactive (IR) cells in milkfish and pufferfish exhibited to vary with environmental salinities. An increase in the number of NKA-IR cells should lead to the elevation of NKA activity in FW milkfish and SW pufferfish. Taken together, the opposite branchial NKA responses observed in milkfish and pufferfish upon salinity challenge could be attributed to alterations in the number of NKA-IR cells. Furthermore, the localization of these Cl(-) transporters in gill MRCs of the two studied species was identical. It depicted the two studied euryhaline species possess the similar Cl(-) transport mechanisms in gills. PMID:21336594

  18. Nucleoside transport in human colonic epithelial cell lines: evidence for two Na+-independent transport systems in T84 and Caco-2 cells.

    PubMed

    Ward, J L; Tse, C M

    1999-06-01

    RT-PCR of RNA isolated from monolayers of the human colonic epithelial cell lines T84 and Caco-2 demonstrated the presence of mRNA for the two cloned Na+-independent equilibrative nucleoside transporters, ENT1 and ENT2, but not for the cloned Na+-dependent concentrative nucleoside transporters, CNT1 and CNT2. Uptake of [3H]uridine by cell monolayers in balanced Na+-containing and Na+-free media confirmed the presence of only Na+-independent nucleoside transport mechanisms. This uptake was decreased by 70-75% in the presence of 1 microM nitrobenzylthioinosine, a concentration that completely inhibits ENT1, and was completely blocked by the addition of 10 microM dipyridamole, a concentration that inhibits both ENT1 and ENT2. These findings indicate the presence in T84 and Caco-2 cells of two functional Na+-independent equilibrative nucleoside transporters, ENT1 and ENT2. PMID:10366666

  19. Cation Transport Coupled to ATP Hydrolysis by the (Na, K)-ATPase: An Integrated, Animated Model

    ERIC Educational Resources Information Center

    Leone, Francisco A.; Furriel, Rosa P. M.; McNamara, John C.; Horisberger, Jean D.; Borin, Ivana A.

    2010-01-01

    An Adobe[R] animation is presented for use in undergraduate Biochemistry courses, illustrating the mechanism of Na[superscript +] and K[superscript +] translocation coupled to ATP hydrolysis by the (Na, K)-ATPase, a P[subscript 2c]-type ATPase, or ATP-powered ion pump that actively translocates cations across plasma membranes. The enzyme is also…

  20. Direct high-resolution nuclear magnetic resonance studies of cation transport in vivo. Na/sup +/ transport in yeast cells

    SciTech Connect

    Balschi, J.A.; Cirillo, V.P.; Springer, C.S. Jr.

    1982-06-01

    A new nuclear magnetic resonance (NMR) method for monitoring transmembrane metal cation transport is reported. It is illustrated with a study of Na/sup +/ efflux from Na/sup +/-rich yeast cells. The technique involves the use of an anionic paramagnetic shift reagent, present only outside the cells, to induce a splitting of the sodium-23 NMR peak, in this case, into components representing intra- and extracellular Na/sup +/. The time course of the efflux is in good agreement with the literature and can be well fitted with a double exponential decay expression. Splitting of the lithium-7 NMR signal from a suspension of Li/sup +/-rich respiratory-deficient, petite yeasts is also reported.

  1. Molecular dynamics simulations of Na{sup +} and leucine transport by LeuT

    SciTech Connect

    Chen, Rong Chung, Shin-Ho

    2015-08-14

    Molecular dynamics simulations are used to gain insight into the binding of Na{sup +} and leucine substrate to the bacterial amino acid transporter LeuT, focusing on the crystal structures of LeuT in the outward-open and inward-open states. For both conformations of LeuT, a third Na{sup +} binding site involving Glu290 in addition to the two sites identified from the crystal structures is observed. Once the negative charge from Glu290 in the inward-open LeuT is removed, the ion bound to the third site is ejected from LeuT rapidly, suggesting that the protonation state of Glu290 regulates Na{sup +} binding and release. In Cl{sup −}-dependent transporters where Glu290 is replaced by a neutral serine, a Cl{sup −} ion would be required to replace the role of Glu290. Thus, the simulations provide insights into understanding Na{sup +} and substrate transport as well as Cl{sup −}-independence of LeuT. - Highlights: • Ion binding site involving Glu290 is identified in the outward- and inward-open LeuT. • Sodium is released from inward-open LeuT once the side chain of Glu290 is protonated. • Protonation state of Glu290 regulates sodium binding and transport in LeuT.

  2. Fast Na/+/-ion transport in skeleton structures. [solid electrolyte applications

    NASA Technical Reports Server (NTRS)

    Goodenough, J. B.; Hong, H. Y.-P.; Kafalas, J. A.

    1976-01-01

    The skeleton structures considered in the investigations consist of a rigid subarray with an interconnected interstitial space in which ions move in three dimensions. The classes of skeleton structures investigated include the Im3 phase of high-pressure KSbO3, the defect-pyrochlore structure illustrated by RbMgAlF6, and the carnegieite structure of high-temperature NaAlSiO4. A description is given of the results obtained in transport measurements involving dense polycrystalline ceramic disks. Results obtained in the case of the Na(+)-ion transport in Na3Zr2PSi2O12 appear particularly promising concerning the possible use of such substances in solid-electrolyte applications.

  3. Drug Transporters and Na+/H+ Exchange Regulatory Factor PSD-95/Drosophila Discs Large/ZO-1 Proteins

    PubMed Central

    Walsh, Dustin R.; Nolin, Thomas D.

    2015-01-01

    Drug transporters govern the absorption, distribution, and elimination of pharmacologically active compounds. Members of the solute carrier and ATP binding-cassette drug transporter family mediate cellular drug uptake and efflux processes, thereby coordinating the vectorial movement of drugs across epithelial barriers. To exert their physiologic and pharmacological function in polarized epithelia, drug transporters must be targeted and stabilized to appropriate regions of the cell membrane (i.e., apical versus basolateral). Despite the critical importance of drug transporter membrane targeting, the mechanisms that underlie these processes are largely unknown. Several clinically significant drug transporters possess a recognition sequence that binds to PSD-95/Drosophila discs large/ZO-1 (PDZ) proteins. PDZ proteins, such as the Na+/H+ exchanger regulatory factor (NHERF) family, act to stabilize and organize membrane targeting of multiple transmembrane proteins, including many clinically relevant drug transporters. These PDZ proteins are normally abundant at apical membranes, where they tether membrane-delimited transporters. NHERF expression is particularly high at the apical membrane in polarized tissue such as intestinal, hepatic, and renal epithelia, tissues important to drug disposition. Several recent studies have highlighted NHERF proteins as determinants of drug transporter function secondary to their role in controlling membrane abundance and localization. Mounting evidence strongly suggests that NHERF proteins may have clinically significant roles in pharmacokinetics and pharmacodynamics of several pharmacologically active compounds and may affect drug action in cancer and chronic kidney disease. For these reasons, NHERF proteins represent a novel class of post-translational mediators of drug transport and novel targets for new drug development. PMID:26092975

  4. Na+-dependent nucleoside transport in liver: two different isoforms from the same gene family are expressed in liver cells.

    PubMed

    Felipe, A; Valdes, R; Santo, B; Lloberas, J; Casado, J; Pastor-Anglada, M

    1998-03-01

    Hepatocytes show a Na+-dependent nucleoside transport activity that is kinetically heterogeneous and consistent with the expression of at least two independent concentrative Na+-coupled nucleoside transport systems (Mercader et al. Biochem. J. 317, 835-842, 1996). So far, only a single nucleoside carrier-related cDNA (SPNT) has been isolated from liver cells (Che et al. J. Biol. Chem. 270, 13596-13599, 1995). This cDNA presumably encodes a plasma membrane protein responsible for Na+-dependent purine nucleoside transport activity. Thus, the liver must express, at least, a second nucleoside transporter which should be pyrimidine-preferring. Homology cloning using RT-PCR revealed that a second isoform is indeed present in liver. This second isoform turned out to be identical to the 'epithelial-specific isoform' called cNT1, which shows in fact high specificity for pyrimidine nucleosides. Although cNT1 mRNA is present at lower amounts than SPNT mRNA, the amounts of cNT1 protein, when measured using isoform-specific polyclonal antibodies, were even higher than the SPNT protein levels. Moreover, partially purified basolateral plasma membrane vesicles from liver were enriched in the SPNT but not in the cNT1 protein, which suggests that the subcellular localization of these carrier proteins is different. SPNT and cNT1 protein amounts in crude membrane extracts from 6 h-regenerating rat livers are higher than in the preparations from sham-operated controls (3.5- and 2-fold, respectively). These results suggest that liver parenchymal cells express at least two different isoforms of concentrative nucleoside carriers, the cNT1 and SPNT proteins, which show differential regulation and subcellular localization. PMID:9480921

  5. Na+-dependent nucleoside transport in liver: two different isoforms from the same gene family are expressed in liver cells.

    PubMed Central

    Felipe, A; Valdes, R; Santo, B; Lloberas, J; Casado, J; Pastor-Anglada, M

    1998-01-01

    Hepatocytes show a Na+-dependent nucleoside transport activity that is kinetically heterogeneous and consistent with the expression of at least two independent concentrative Na+-coupled nucleoside transport systems (Mercader et al. Biochem. J. 317, 835-842, 1996). So far, only a single nucleoside carrier-related cDNA (SPNT) has been isolated from liver cells (Che et al. J. Biol. Chem. 270, 13596-13599, 1995). This cDNA presumably encodes a plasma membrane protein responsible for Na+-dependent purine nucleoside transport activity. Thus, the liver must express, at least, a second nucleoside transporter which should be pyrimidine-preferring. Homology cloning using RT-PCR revealed that a second isoform is indeed present in liver. This second isoform turned out to be identical to the 'epithelial-specific isoform' called cNT1, which shows in fact high specificity for pyrimidine nucleosides. Although cNT1 mRNA is present at lower amounts than SPNT mRNA, the amounts of cNT1 protein, when measured using isoform-specific polyclonal antibodies, were even higher than the SPNT protein levels. Moreover, partially purified basolateral plasma membrane vesicles from liver were enriched in the SPNT but not in the cNT1 protein, which suggests that the subcellular localization of these carrier proteins is different. SPNT and cNT1 protein amounts in crude membrane extracts from 6 h-regenerating rat livers are higher than in the preparations from sham-operated controls (3.5- and 2-fold, respectively). These results suggest that liver parenchymal cells express at least two different isoforms of concentrative nucleoside carriers, the cNT1 and SPNT proteins, which show differential regulation and subcellular localization. PMID:9480921

  6. Coregulated expression of the Na+/phosphate Pho89 transporter and Ena1 Na+-ATPase allows their functional coupling under high-pH stress.

    PubMed

    Serra-Cardona, Albert; Petrezsélyová, Silvia; Canadell, David; Ramos, José; Ariño, Joaquín

    2014-12-01

    The yeast Saccharomyces cerevisiae has two main high-affinity inorganic phosphate (Pi) transporters, Pho84 and Pho89, that are functionally relevant at acidic/neutral pH and alkaline pH, respectively. Upon Pi starvation, PHO84 and PHO89 are induced by the activation of the PHO regulon by the binding of the Pho4 transcription factor to specific promoter sequences. We show that PHO89 and PHO84 are induced by alkalinization of the medium with different kinetics and that the network controlling Pho89 expression in response to alkaline pH differs from that of other members of the PHO regulon. In addition to Pho4, the PHO89 promoter is regulated by the transcriptional activator Crz1 through the calcium-activated phosphatase calcineurin, and it is under the control of several repressors (Mig2, Nrg1, and Nrg2) coordinately regulated by the Snf1 protein kinase and the Rim101 transcription factor. This network mimics the one regulating expression of the Na(+)-ATPase gene ENA1, encoding a major determinant for Na(+) detoxification. Our data highlight a scenario in which the activities of Pho89 and Ena1 are functionally coordinated to sustain growth in an alkaline environment. PMID:25266663

  7. Synthesis and high temperature transport properties of new quaternary layered selenide NaCuMnSe{sub 2}

    SciTech Connect

    Pavan Kumar, V.; Varadaraju, U.V.

    2014-04-01

    Synthesis and high temperature transport properties of NaCu{sub 1+x}Mn{sub 1−x}Se{sub 2}, (x=0−0.75) a new quaternary layered selenide, are reported. NaCuMnSe{sub 2} crystallizes in a trigonal unit cell with space group of P-3m1 (a=4.1276 Å, c=7.1253 Å). The isovalent substitution of Mn{sup 2+} by Cu{sup 2+} is carried out. All the compositions show semiconducting nature, whereas the Seebeck coefficient increases gradually over the entire measured temperature range. Compositions with x=0 and 0.025 follow thermally activated behavior. With increase in copper concentration the conduction mechanism transforms to 2D variable range hopping (VRH) for x=0.05 and 0.075. - Graphical abstract: Crystal structure of NaCuMnSe{sub 2}. - Highlights: • A new quaternary layered selenide NaCuMnSe{sub 2} is synthesized. • All the compositions show semiconducting nature, whereas the Seebeck coefficient increases gradually over the entire measured temperature range. • Conduction mechanism transforms from thermally activated behavior to 2D variable range hopping with increase in copper concentration.

  8. Osmoregulation of Na(+)-inositol cotransporter activity and mRNA levels in brain glial cells.

    PubMed

    Paredes, A; McManus, M; Kwon, H M; Strange, K

    1992-12-01

    During plasma hypertonicity brain volume is regulated acutely by electrolyte uptake and chronically by accumulation of organic solutes such as inositol. Cultured rat C6 glioma cells, an astrocyte-like cell line, show a similar pattern of volume control. Volume regulatory accumulation of inositol requires external inositol, indicating that membrane transport plays a central role in this process. The inositol uptake pathway is Na+ dependent and exhibits Michaelis-Menten kinetics. Chronic hypertonic acclimation results in a twofold increase in the maximum velocity of the transporter without changing the Km. Hypertonic stress also results in a 17-fold increase in transporter mRNA. Elevation of mRNA levels precedes activation of the transporter by 4-6 h, suggesting that increased inositol uptake is mediated by synthesis and membrane insertion of new transport proteins. Reacclimation of hypertonic cells to isotonicity causes a rapid reduction of transporter mRNA levels to control levels within 4 h. In contrast, downregulation of transport activity does not begin until between 10 and 24 h after reexposure to isotonicity. PMID:1476169

  9. Tissue kallikrein activation of the epithelial Na channel

    PubMed Central

    Patel, Ankit B.; Chao, Julie

    2012-01-01

    Epithelial Na Channels (ENaC) are responsible for the apical entry of Na+ in a number of different epithelia including the renal connecting tubule and cortical collecting duct. Proteolytic cleavage of γ-ENaC by serine proteases, including trypsin, furin, elastase, and prostasin, has been shown to increase channel activity. Here, we investigate the ability of another serine protease, tissue kallikrein, to regulate ENaC. We show that excretion of tissue kallikrein, which is secreted into the lumen of the connecting tubule, is stimulated following 5 days of a high-K+ or low-Na+ diet in rats. Urinary proteins reconstituted in a low-Na buffer activated amiloride-sensitive currents (INa) in ENaC-expressing oocytes, suggesting an endogenous urinary protease can activate ENaC. We next tested whether tissue kallikrein can directly cleave and activate ENaC. When rat ENaC-expressing oocytes were exposed to purified tissue kallikrein from rat urine (RTK), ENaC currents increased threefold in both the presence and absence of a soybean trypsin inhibitor (SBTI). RTK and trypsin both decreased the apparent molecular mass of cleaved cell-surface γ-ENaC, while immunodepleted RTK produced no shift in apparent molecular mass, demonstrating the specificity of the tissue kallikrein. A decreased effect of RTK on Xenopus ENaC, which has variations in the putative prostasin cleavage sites in γ-ENaC, suggests these sites are important in RTK activation of ENaC. Mutating the prostasin site in mouse γ-ENaC (γRKRK186QQQQ) abolished ENaC activation and cleavage by RTK while wild-type mouse ENaC was activated and cleaved similar to that of the rat. We conclude that tissue kallikrein can be a physiologically relevant regulator of ENaC activity. PMID:22622459

  10. Structure, function, and expression pattern of a novel sodium-coupled citrate transporter (NaCT) cloned from mammalian brain.

    PubMed

    Inoue, Katsuhisa; Zhuang, Lina; Maddox, Dennis M; Smith, Sylvia B; Ganapathy, Vadivel

    2002-10-18

    Citrate plays a pivotal role not only in the generation of metabolic energy but also in the synthesis of fatty acids, isoprenoids, and cholesterol in mammalian cells. Plasma levels of citrate are the highest ( approximately 135 microm) among the intermediates of the tricarboxylic acid cycle. Here we report on the cloning and functional characterization of a plasma membrane transporter (NaCT for Na+ -coupled citrate transporter) from rat brain that mediates uphill cellular uptake of citrate coupled to an electrochemical Na+ gradient. NaCT consists of 572 amino acids and exhibits structural similarity to the members of the Na+-dicarboxylate cotransporter/Na+ -sulfate cotransporter (NaDC/NaSi) gene family including the recently identified Drosophila Indy. In rat, the expression of NaCT is restricted to liver, testis, and brain. When expressed heterologously in mammalian cells, rat NaCT mediates the transport of citrate with high affinity (Michaelis-Menten constant, approximately 20 microm) and with a Na+:citrate stoichiometry of 4:1. The transporter does interact with other dicarboxylates and tricarboxylates but with considerably lower affinity. In mouse brain, the expression of NaCT mRNA is evident in the cerebral cortex, cerebellum, hippocampus, and olfactory bulb. NaCT represents the first transporter to be identified in mammalian cells that shows preference for citrate over dicarboxylates. This transporter is likely to play an important role in the cellular utilization of citrate in blood for the synthesis of fatty acids and cholesterol (liver) and for the generation of energy (liver and brain). NaCT thus constitutes a potential therapeutic target for the control of body weight, cholesterol levels, and energy homeostasis. PMID:12177002

  11. Kinetics and transport at AMTEC electrodes. II - Temperature dependence of the interfacial impedance of Na(g)/porous Mo/Na-Beta-double prime alumina

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Underwood, M. L.; Bankston, C. P.; Kummer, J. T.

    1990-01-01

    The exchange current, transfer coefficient, mass-transport parameters, and electrode capacitance at the Na(g)/porous Mo/Na-Beta-double prime alumina solid electrolyte (BASE) phase boundary have been evaluated from 740 to 1220 K. The transfer coefficient exhibits a value close to 0.5 and the exchange current is dominated by collision frequency, with no significant activation energy. Since the porous Mp-electrode adopts a fairly regular microstructure on the BASE surface, the magnitude of the exchange current of mature electrodes directly depends on the actual contact zone of the porous metal film with the BASE ceramic, and decreases slightly as grain growth occurs. The exchange currents and the mass-transport parameters derived for very porous, thin Mo electrodes indicate that the charge-transfer reaction occurs at a small fraction of the interface. High-frequency limiting capacitance and resistance values due to the interface show potential dependence and a value on the order of 1 F/sq m and 0.1-1.0 Ohm-sq cm.

  12. Correlation between transepithelial Na+ transport and transepithelial water movement across isolated frog skin (Rana esculenta).

    PubMed

    Nielsen, R

    1997-09-01

    In the present work the coupling under short-circuited conditions between the net Na(+)-influx across isolated frog skin and the transepithelial transport of water was examined i.e., the short-circuit current (Isc) and the transepithelial water movement (TEWM) were measured simultaneously. It has been shown repeatedly that the Isc across isolated frog skin is equal to the net transepithelial Na+ transport. Furthermore the coupling between transepithelial uptake of NaCl under open-circuit conditions and TEWM was also measured. The addition of antidiuretic hormone (AVT) to skins incubated under short-circuited conditions resulted in an increase in the Isc and TEWM. Under control conditions Isc was 9.14 +/- 2.43 and in the presence of AVT 45.9 +/- 7.3 neq cm-2 min-1 (n = 9) and TEWM changed from 12.45 +/- 4.46 to 132.8 +/- 15.8 nL cm-2 min-1. The addition of the Na+ channel blocking agent amiloride resulted in a reduction both in Isc and TEWM, and a linear correlation between Isc and TEWM was found. The correlation corresponds to that 160 +/- 15 (n = 7) molecules of water follow each Na+ across the skin. In another series of experiments it was found that there was a linear correlation between Isc and the increase in apical osmolarity needed to stop the TEWM. The data presented indicate that the observed coupling between the net transepithelial Na+ transport and TEWM is caused by local osmosis. PMID:9309211

  13. Synthesis and high temperature transport properties of new quaternary layered selenide NaCuMnSe2

    NASA Astrophysics Data System (ADS)

    Pavan Kumar, V.; Varadaraju, U. V.

    2014-04-01

    Synthesis and high temperature transport properties of NaCu1+xMn1-xSe2, (x=0-0.75) a new quaternary layered selenide, are reported. NaCuMnSe2 crystallizes in a trigonal unit cell with space group of P-3m1 (a=4.1276 Å, c=7.1253 Å). The isovalent substitution of Mn2+ by Cu2+ is carried out. All the compositions show semiconducting nature, whereas the Seebeck coefficient increases gradually over the entire measured temperature range. Compositions with x=0 and 0.025 follow thermally activated behavior. With increase in copper concentration the conduction mechanism transforms to 2D variable range hopping (VRH) for x=0.05 and 0.075.

  14. Gravity Wave and Turbulence Transport of Heat and Na in the Mesopause Region over the Andes

    NASA Astrophysics Data System (ADS)

    Guo, Yafang; Liu, Alan Z.

    2016-07-01

    The vertical heat and Na fluxes induced by gravity waves and turbulence are derived based on over 600 hours of observations from the Na wind/temperature lidar located at Andes lidar Observatory (ALO), Cerro Pachón, Chile. In the 85-100 km region, the annual mean vertical fluxes by gravity waves show downward heat transport with a maximum of 0.78K m/s at 90 km, and downward Na transport with a maximum of 210 m/s/cm3 at 94km. The maximum cooing rate reaches -24 K/d at 94km. The vertical fluxes have strong seasonal variations, with large differences in magnitudes and altitudes of maximum fluxes between winter and summer. The vertical fluxes due to turbulence eddies are also derived with a novel method that relates turbulence fluctuations of temperature and vertical wind with photon count fluctuations at very high resolution (25 m, 6 s). The results show that the vertical transports are comparable to those by gravity waves and they both play significant roles in the atmospheric thermal structure and constituent distribution. This direct measure of turbulence transport also enables estimate of the eddy diffusivity for heat and constituent in the mesopause region.

  15. Osmotic activation of a Na(+)-dependent Cl-/HCO3- exchanger.

    PubMed

    Reusch, H P; Lowe, J; Ives, H E

    1995-01-01

    In many systems, osmotically induced cell shrinkage activates the Na+/H+ exchanger. To assess the role of H(+)-extruding transporters in the response to osmotic shrinkage in vascular smooth muscle (VSM) and Chinese hamster ovary (CHO) cells, intracellular pH (pHi) was measured with 2',7'-bis(carboxy-ethyl)-5(6)- carboxyfluorescein-acetoxymethyl ester (BCECF-AM) after exposing cells to hypertonic medium. In nominally HCO(3-)-free medium, addition of 200 mM sucrose caused pHi to increase 0.33 pH unit on average in VSM cells but only 0.13 pH unit in CHO cells. Permeant solutes failed to increase pHi significantly. Cytochalasin B (1-20 microM), colchicine (1-10 microM), Ca2+ removal, and downregulation of protein kinase C activity did not affect osmotic activation of H+ extrusion in either cell type. Additional work was carried out to determine why osmotic activation of H+ extrusion was less in CHO than in VSM cells. In CHO cells, the osmotically induced delta pHi was only weakly sensitive to amiloride, suggesting that osmotic forces may activate an H+ transport system other than Na+/H+ exchange. In the presence of 10 mM HCO3-, osmotically induced delta pHi decreased by 60% in VSM cells but increased by 50% in CHO cells compared with the delta pHi in HCO(3-)-free medium. Lastly, removal of extracellular Cl- did not affect osmotically induced delta pHi in VSM cells but completely abolished the response in CHO cells. We conclude that in VSM cells osmotically induced changes in pHi are mediated by Na+/H+ exchange, whereas in CHO cells they are most likely mediated by a Na(+)-dependent Cl-/HCO3- exchanger. PMID:7840143

  16. Electrophysiological characterization of human and mouse sodium-dependent citrate transporters (NaCT/SLC13A5) reveal species differences with respect to substrate sensitivity and cation dependence.

    PubMed

    Zwart, Ruud; Peeva, Polina M; Rong, James X; Sher, Emanuele

    2015-11-01

    The citric acid cycle intermediate citrate plays a crucial role in metabolic processes such as fatty acid synthesis, glucose metabolism, and β-oxidation. Citrate is imported from the circulation across the plasma membrane into liver cells mainly by the sodium-dependent citrate transporter (NaCT; SLC13A5). Deletion of NaCT from mice led to metabolic changes similar to caloric restriction; therefore, NaCT has been proposed as an attractive therapeutic target for the treatment of obesity and type 2 diabetes. In this study, we expressed mouse and human NaCT into Xenopus oocytes and examined some basic functional properties of those transporters. Interestingly, striking differences were found between mouse and human NaCT with respect to their sensitivities to citric acid cycle intermediates as substrates for these transporters. Mouse NaCT had at least 20- to 800-fold higher affinity for these intermediates than human NaCT. Mouse NaCT is fully active at physiologic plasma levels of citrate, but its human counterpart is not. Replacement of extracellular sodium by other monovalent cations revealed that human NaCT was markedly less dependent on extracellular sodium than mouse NaCT. The low sensitivity of human NaCT for citrate raises questions about the translatability of this target from the mouse to the human situation and raises doubts about the validity of this transporter as a therapeutic target for the treatment of metabolic diseases in humans. PMID:26324167

  17. Hypotonicity stimulates renal epithelial sodium transport by activating JNK via receptor tyrosine kinases.

    PubMed

    Taruno, Akiyuki; Niisato, Naomi; Marunaka, Yoshinori

    2007-07-01

    We previously reported that hypotonic stress stimulated transepithelial Na(+) transport via a pathway dependent on protein tyrosine kinase (PTK; Niisato N, Van Driessche W, Liu M, Marunaka Y. J Membr Biol 175: 63-77, 2000). However, it is still unknown what type of PTK mediates this stimulation. In the present study, we investigated the role of receptor tyrosine kinase (RTK) in the hypotonic stimulation of Na(+) transport. In renal epithelial A6 cells, we observed inhibitory effects of AG1478 [an inhibitor of the EGF receptor (EGFR)] and AG1296 [an inhibitor of the PDGF receptor (PDGFR)] on both the hypotonic stress-induced stimulation of Na(+) transport and the hypotonic stress-induced ligand-independent activation of EGFR. We further studied whether hypotonic stress activates members of the MAP kinase family, ERK1/2, p38 MAPK, and JNK/SAPK, via an RTK-dependent pathway. The present study indicates that hypotonic stress induced phosphorylation of ERK1/2 and JNK/SAPK, but not p38 MAPK, that the hypotonic stress-induced phosphorylation of ERK1/2 and JNK/SAPK was diminished by coapplication of AG1478 and AG1296, and that only JNK/SAPK was involved in the hypotonic stimulation of Na(+) transport. A further study using cyclohexamide (a protein synthesis inhibitor) suggests that both RTK and JNK/SAPK contributed to the protein synthesis-independent early phase in hypotonic stress-induced Na(+) transport, but not to the protein synthesis-dependent late phase. The present study also suggests involvement of phosphatidylinositol 3-kinase (PI3-kinase) in RTK-JNK/SAPK cascade-mediated Na(+) transport. These observations indicate that 1) hypotonic stress activates JNK/SAPK via RTKs in a ligand-independent pathway, 2) the RTK-JNK/SAPK cascade acts as a mediator of hypotonic stress for stimulation of Na(+) transport, and 3) PI3-kinase is involved in the RTK-JNK/SAPK cascade for the hypotonic stress-induced stimulation of Na(+) transport. PMID:17344192

  18. Dose evaluation based on 24Na activity in the human body at the JCO criticality accident in Tokai-mura.

    PubMed

    Momose, T; Tsujimura, N; Tasaki, T; Kanai, K; Kurihara, O; Hayashi, N; Shinohara, K

    2001-09-01

    24Na in the human body, activated by neutrons emitted at the JCO criticality accident, was observed for 62 subjects, where 148 subjects were measured by the whole body counter of JNC Tokai Works. The 148 subjects, including JCO employees and the contractors, residents neighboring the site and emergency service officers, were measured by the whole-body counter. The neutron-energy spectrum around the facility was calculated using neutron transport codes (ANISN and MCNP), and the relation between an amount of activated sodium in human body and neutron dose was evaluated from the calculated neutron energy spectrum and theoretical neutron capture probability by the human body. The maximum 24Na activity in the body was 7.7 kBq (83 Bq(24Na)/g(23Na)) and the relevant effective dose equivalent was 47 mSv. PMID:11791757

  19. An active matter analysis of intracellular Active Transport

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Chen, Kejia; Bae, Sung Chul; Granick, Steve

    2012-02-01

    Tens of thousands of fluorescence-based trajectories at nm resolution have been analyzed, regarding active transport along microtubules in living cells. The following picture emerges. Directed motion to pre-determined locations is certainly an attractive idea, but cannot be pre-programmed as to do so would sacrifice adaptability. The polarity of microtubules is inadequate to identify these directions in cells, and no other mechanism is currently known. We conclude that molecular motors carry cargo through disordered intracellular microtubule networks in a statistical way, with loud cellular ``noise'' both in directionality and speed. Programmed random walks describe how local 1D active transport traverses crowded cellular space efficiently, rapidly, minimizing the energy waste that would result from redundant activity. The mechanism of statistical regulation is not yet understood, however.

  20. Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport.

    PubMed

    Lytton, Jonathan

    2007-09-15

    Mammalian Na+/Ca2+ exchangers are members of three branches of a much larger family of transport proteins [the CaCA (Ca2+/cation antiporter) superfamily] whose main role is to provide control of Ca2+ flux across the plasma membranes or intracellular compartments. Since cytosolic levels of Ca2+ are much lower than those found extracellularly or in sequestered stores, the major function of Na+/Ca2+ exchangers is to extrude Ca2+ from the cytoplasm. The exchangers are, however, fully reversible and thus, under special conditions of subcellular localization and compartmentalized ion gradients, Na+/Ca2+ exchangers may allow Ca2+ entry and may play more specialized roles in Ca2+ movement between compartments. The NCX (Na+/Ca2+ exchanger) [SLC (solute carrier) 8] branch of Na+/Ca2+ exchangers comprises three members: NCX1 has been most extensively studied, and is broadly expressed with particular abundance in heart, brain and kidney, NCX2 is expressed in brain, and NCX3 is expressed in brain and skeletal muscle. The NCX proteins subserve a variety of roles, depending upon the site of expression. These include cardiac excitation-contraction coupling, neuronal signalling and Ca2+ reabsorption in the kidney. The NCKX (Na2+/Ca2+-K+ exchanger) (SLC24) branch of Na+/Ca2+ exchangers transport K+ and Ca2+ in exchange for Na+, and comprises five members: NCKX1 is expressed in retinal rod photoreceptors, NCKX2 is expressed in cone photoreceptors and in neurons throughout the brain, NCKX3 and NCKX4 are abundant in brain, but have a broader tissue distribution, and NCKX5 is expressed in skin, retinal epithelium and brain. The NCKX proteins probably play a particularly prominent role in regulating Ca2+ flux in environments which experience wide and frequent fluctuations in Na+ concentration. Until recently, the range of functions that NCKX proteins play was generally underappreciated. This situation is now changing rapidly as evidence emerges for roles including photoreceptor

  1. In Situ Investigation of Li and Na Ion Transport with Single Nanowire Electrochemical Devices.

    PubMed

    Xu, Xu; Yan, Mengyu; Tian, Xiaocong; Yang, Chuchu; Shi, Mengzhu; Wei, Qiulong; Xu, Lin; Mai, Liqiang

    2015-06-10

    In the past decades, Li ion batteries are widely considered to be the most promising rechargeable batteries for the rapid development of mobile devices and electric vehicles. There arouses great interest in Na ion batteries, especially in the field of static grid storage due to their much lower production cost compared with Li ion batteries. However, the fundamental mechanism of Li and Na ion transport in nanoscale electrodes of batteries has been rarely experimentally explored. This insight can guide the development and optimization of high-performance electrode materials. In this work, single nanowire devices with multicontacts are designed to obtain detailed information during the electrochemical reactions. This unique platform is employed to in situ investigate and compare the transport properties of Li and Na ions at a single nanowire level. To give different confinement for ions and electrons during the electrochemical processes, two different configurations of nanowire electrode are proposed; one is to fully immerse the nanowire in the electrolyte, and the other is by using photoresist to cover the nanowire with only one end exposed. For both configurations, the conductivity of nanowire decreases after intercalation/deintercalation for both Li and Na ions, indicating that they share the similar electrochemical reaction mechanisms in layered electrodes. However, the conductivity degradation and structure destruction for Na ions is more severe than those of Li ions during the electrochemical processes, which mainly results from the much larger volume of Na ions and greater energy barrier encountered by the limited layered spaces. Moreover, the battery performances of coin cells are compared to further confirm this conclusion. The present work provides a unique platform for in situ electrochemical and electrical probing, which will push the fundamental and practical research of nanowire electrode materials for energy storage applications. PMID:25989463

  2. Activation product transport in fusion reactors. [RAPTOR

    SciTech Connect

    Klein, A.C.

    1983-01-01

    Activated corrosion and neutron sputtering products will enter the coolant and/or tritium breeding material of fusion reactor power plants and experiments and cause personnel access problems. Radiation levels around plant components due to these products will cause difficulties with maintenance and repair operations throughout the plant. Similar problems are experienced around fission reactor systems. The determination of the transport of radioactive corrosion and neutron sputtering products through the system is achieved using the computer code RAPTOR. This code calculates the mass transfer of a number of activation products based on the corrosion and sputtering rates through the system, the deposition and release characteristics of various plant components, the neturon flux spectrum, as well as other plant parameters. RAPTOR assembles a system of first order linear differential equations into a matrix equation based upon the reactor system parameters. Included in the transfer matrix are the deposition and erosion coefficients, and the decay and activation data for the various plant nodes and radioactive isotopes. A source vector supplies the corrosion and neutron sputtering source rates. This matrix equation is then solved using a matrix operator technique to give the specific activity distribution of each radioactive species throughout the plant. Once the amount of mass transfer is determined, the photon transport due to the radioactive corrosion and sputtering product sources can be evaluated, and dose rates around the plant components of interest as a function of time can be determined. This method has been used to estimate the radiation hazards around a number of fusion reactor system designs.

  3. Molecular characterization of V59E NIS, a Na+/I- symporter mutant that causes congenital I- transport defect.

    PubMed

    Reed-Tsur, Mia D; De la Vieja, Antonio; Ginter, Christopher S; Carrasco, Nancy

    2008-06-01

    I(-) is actively transported into thyrocytes via the Na+/I(-) symporter (NIS), a key glycoprotein located on the basolateral plasma membrane. The cDNA encoding rat NIS was identified in our laboratory, where an extensive structure/function characterization of NIS is being conducted. Several NIS mutants have been identified as causes of congenital I(-) transport defect (ITD), including V59E NIS. ITD is characterized by low thyroid I(-) uptake, low saliva/plasma I(-) ratio, hypothyroidism, and goiter and may cause mental retardation if untreated. Studies of other ITD-causing NIS mutants have revealed valuable information regarding NIS structure/function. V59E NIS was reported to exhibit as much as 30% of the activity of wild-type NIS. However, this observation was at variance with the patients' phenotype of total lack of activity. We have thoroughly characterized V59E NIS and studied several amino acid substitutions at position 59. We demonstrated that, in contrast to the previous report, V59E NIS is inactive, although it is properly targeted to the plasma membrane. Glu and all other charged amino acids or Pro at position 59 also yielded nonfunctional NIS proteins. However, I(-) uptake was rescued to different degrees by the other substitutions. Although the Km values for Na+ and I(-) were not altered in these active mutants, we found that the structural requirement for NIS function at position 59 is a neutral, helix-promoting amino acid. This result suggests that the region that contains V59 may be involved in intramembrane helix-helix interactions during the transport cycle without being in direct contact with the substrates. PMID:18339708

  4. Electrophoretic Transport of Na(+) and K(+) Ions Within Cyclic Peptide Nanotubes.

    PubMed

    Carvajal-Diaz, Jennifer A; Cagin, Tahir

    2016-08-18

    One of the most important applications of cyclic peptide nanotubes (CPNTs) is their potential to be used as artificial ion channels. Natural ion channels are large and complex membrane proteins, which are very expensive, difficult to isolate, and sensible to denaturation; for this reason, artificial ion channels are an important alternative, as they can be produced by simple and inexpensive synthetic chemistry paths, allowing manipulation of properties and enhancement of ion selectivity properties. Artificial ion channels can be used as component in molecular sensors and novel therapeutic agents. Here, the electrophoretic transport of Na(+) and K(+) ions within cyclic peptide nanotubes is investigated by using molecular dynamic simulations. The effect of electric field in the stability of peptide nanotubes was studied by calculating the root mean square deviation curves. Results show that the stability for CPNTs decreases for higher electric fields. Selective transport of cations within the hydrophilic tubes was observed and the negative Cl(-) ions did not enter the peptide nanotubes during the simulation. Radial distribution functions were calculated to describe structural properties and coordination numbers and changes in the first and second hydration shell were observed for the transport of Na(+) and K(+) inside of cyclic peptide nanotubes. However, no effect on coordination number was observed. Diffusion coefficients were calculated from the mean square deviation curves and the Na(+) ion showed higher mobility than the K(+) ion as observed in equivalent experimental studies. The values for diffusion coefficients are comparable with previous calculations in protein channels of equivalent sizes. PMID:27448165

  5. Physiological adjustment to salt stress in Jatropha curcas is associated with accumulation of salt ions, transport and selectivity of K+, osmotic adjustment and K+/Na+ homeostasis.

    PubMed

    Silva, E N; Silveira, J A G; Rodrigues, C R F; Viégas, R A

    2015-09-01

    This study assessed the capacity of Jatropha curcas to physiologically adjust to salinity. Seedlings were exposed to increasing NaCl concentrations (25, 50, 75 and 100 mm) for 15 days. Treatment without NaCl was adopted as control. Shoot dry weight was strongly reduced by NaCl, reaching values of 35% to 65% with 25 to 100 mm NaCl. The shoot/root ratio was only affected with 100 mm NaCl. Relative water content (RWC) increased only with 100 mm NaCl, while electrolyte leakage (EL) was much enhanced with 50 mm NaCl. The Na(+) transport rate to the shoot was more affected with 50 and 100 mm NaCl. In parallel, Cl(-) transport rate increased with 75 and 100 mm NaCl, while K(+) transport rate fell from 50 mm to 100 mm NaCl. In roots, Na(+) and Cl(-) transport rates fell slightly only in 50 mm (to Na(+)) and 50 and 100 mm (to Cl(-)) NaCl, while K(+) transport rate fell significantly with increasing NaCl. In general, our data demonstrate that J. curcas seedlings present changes in key physiological processes that allow this species to adjust to salinity. These responses are related to accumulation of Na(+) and Cl(-) in leaves and roots, K(+)/Na(+) homeostasis, transport of K(+) and selectivity (K-Na) in roots, and accumulation of organic solutes contributing to osmotic adjustment of the species. PMID:25865670

  6. FXYD1 negatively regulates Na(+)/K(+)-ATPase activity in lung alveolar epithelial cells.

    PubMed

    Wujak, Łukasz A; Blume, Anna; Baloğlu, Emel; Wygrecka, Małgorzata; Wygowski, Jegor; Herold, Susanne; Mayer, Konstantin; Vadász, István; Besuch, Petra; Mairbäurl, Heimo; Seeger, Werner; Morty, Rory E

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is clinical syndrome characterized by decreased lung fluid reabsorption, causing alveolar edema. Defective alveolar ion transport undertaken in part by the Na(+)/K(+)-ATPase underlies this compromised fluid balance, although the molecular mechanisms at play are not understood. We describe here increased expression of FXYD1, FXYD3 and FXYD5, three regulatory subunits of the Na(+)/K(+)-ATPase, in the lungs of ARDS patients. Transforming growth factor (TGF)-β, a pathogenic mediator of ARDS, drove increased FXYD1 expression in A549 human lung alveolar epithelial cells, suggesting that pathogenic TGF-β signaling altered Na(+)/K(+)-ATPase activity in affected lungs. Lentivirus-mediated delivery of FXYD1 and FXYD3 allowed for overexpression of both regulatory subunits in polarized H441 cell monolayers on an air/liquid interface. FXYD1 but not FXYD3 overexpression inhibited amphotericin B-sensitive equivalent short-circuit current in Ussing chamber studies. Thus, we speculate that FXYD1 overexpression in ARDS patient lungs may limit Na(+)/K(+)-ATPase activity, and contribute to edema persistence. PMID:26410457

  7. Cyclic nucleotide gated channel 10 negatively regulates salt tolerance by mediating Na+ transport in Arabidopsis.

    PubMed

    Jin, Yakang; Jing, Wen; Zhang, Qun; Zhang, Wenhua

    2015-01-01

    A number of cyclic nucleotide gated channel (CNGC) genes have been identified in plant genomes, but their functions are mainly undefined. In this study, we identified the role of CNGC10 in the response of Arabidopsis thaliana to salt stress. The cngc10 T-DNA insertion mutant showed greater tolerance to salt than wild-type A. thaliana during seed germination and seedling growth. The cngc10 mutant accumulated less Na(+) and K(+), but not less Ca(2+), in shoots in response to salt stress. By contrast, overexpression of CNGC10 resulted in greater sensitivity to salt stress, and complementation of this gene recovered salt sensitivity. In response to salt stress, heterologous expression of CNGC10 in the Na(+) sensitive yeast mutant strain B31 inhibited growth due to accumulation of Na(+) at a rate greater than that of yeast transformed with an empty vector. Quantitative RT-PCR analysis demonstrated that CNGC10 was expressed mainly in roots and flowers. GUS analysis of a root cross section indicated that CNGC10 was expressed mainly in the endodermis and epidermis. Furthermore, the expression of CNGC10 in roots was dramatically inhibited by exposure to 200 mM NaCl for 6 h. These data suggest that CNGC10 negatively regulates salt tolerance in A. thaliana and may be involved in mediating Na(+) transport. PMID:25416933

  8. Na+-H+ exchange activity in taste receptor cells.

    PubMed

    Vinnikova, Anna K; Alam, Rammy I; Malik, Shahbaz A; Ereso, Glenn L; Feldman, George M; McCarty, John M; Knepper, Mark A; Heck, Gerard L; DeSimone, John A; Lyall, Vijay

    2004-03-01

    mRNA for two Na(+)-H(+)-exchanger isoforms 1 and 3 (NHE-1 and NHE-3) was detected by RT-PCR in fungiform and circumvallate taste receptor cells (TRCs). Anti-NHE-1 antibody binding was localized to the basolateral membranes, and the anti-NHE-3 antibody was localized in the apical membranes of fungiform and circumvallate TRCs. In a subset of TRCs, NHE-3 immunoreactivity was also detected in the intracellular compartment. For functional studies, an isolated lingual epithelium containing a single fungiform papilla was mounted with apical and basolateral sides isolated and perfused with nominally CO(2)/HCO(3)(-)-free physiological media (pH 7.4). The TRCs were monitored for changes in intracellular pH (pH(i)) and Na(+) ([Na(+)](i)) using fluorescence ratio imaging. At constant external pH, 1) removal of basolateral Na(+) reversibly decreased pH(i) and [Na(+)](i); 2) HOE642, a specific blocker, and amiloride, a nonspecific blocker of basolateral NHE-1, attenuated the decrease in pH(i) and [Na(+)](i); 3) exposure of TRCs to basolateral NH(4)Cl or sodium acetate pulses induced transient decreases in pH(i) that recovered spontaneously to baseline; 4) pH(i) recovery was inhibited by basolateral amiloride, 5-(N-methyl-N-isobutyl)-amiloride (MIA), 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), HOE642, and by Na(+) removal; 5) HOE642, MIA, EIPA, and amiloride inhibited pH(i) recovery with K(i) values of 0.23, 0.46, 0.84, and 29 microM, respectively; and 6) a decrease in apical or basolateral pH acidified TRC pH(i) and inhibited spontaneous pH(i) recovery. The results indicate the presence of a functional NHE-1 in the basolateral membranes of TRCs. We hypothesize that NHE-1 is involved in sour taste transduction since its activity is modulated during acid stimulation. PMID:14602837

  9. Electrostatic and potential cation-pi forces may guide the interaction of extracellular loop III with Na+ and bile acids for human apical Na+-dependent bile acid transporter.

    PubMed

    Banerjee, Antara; Hussainzada, Naissan; Khandelwal, Akash; Swaan, Peter W

    2008-03-01

    The hASBT (human apical Na(+)-dependent bile acid transporter) constitutes a key target of anti-hypercholesterolaemic therapies and pro-drug approaches; physiologically, hASBT actively reclaims bile acids along the terminal ileum via Na(+) co-transport. Previously, TM (transmembrane segment) 7 was identified as part of the putative substrate permeation pathway using SCAM (substitute cysteine accessibility mutagenesis). In the present study, SCAM was extended through EL3 (extracellular loop 3; residues Arg(254)-Val(286)) that leads into TM7 from the exofacial matrix. Activity of most EL3 mutants was significantly hampered upon cysteine substitution, whereas ten (out of 31) were functionally inactive (<10% activity). Since only E282C lacked plasma membrane expression, EL3 amino acids predominantly fulfill critical functional roles during transport. Oppositely charged membrane-impermeant MTS (methanethiosulfonate) reagents {MTSET [(2-trimethylammonium) ethyl MTS] and MTSES [(2-sulfonatoethyl) MTS]} produced mostly similar inhibition profiles wherein only middle and descending loop segments (residues Thr(267)-Val(286)) displayed significant MTS sensitivity. The presence of bile acid substrate significantly reduced the rates of MTS modification for all MTS-sensitive mutants, suggesting a functional association between EL3 residues and bile acids. Activity assessments at equilibrative [Na(+)] revealed numerous Na(+)-sensitive residues, possibly performing auxiliary functions during transport such as transduction of protein conformational changes during translocation. Integration of these data suggests ligand interaction points along EL3 via electrostatic interactions with Arg(256), Glu(261) and probably Glu(282) and a potential cation-pi interaction with Phe(278). We conclude that EL3 amino acids are essential for hASBT activity, probably as primary substrate interaction points using long-range electrostatic attractive forces. PMID:18028035

  10. Contrasting effects of Na+, K+-ATPase activation on seizure activity in acute versus chronic models.

    PubMed

    Funck, V R; Ribeiro, L R; Pereira, L M; de Oliveira, C V; Grigoletto, J; Della-Pace, I D; Fighera, M R; Royes, L F F; Furian, A F; Larrick, J W; Oliveira, M S

    2015-07-01

    Epilepsy is a life-shortening brain disorder affecting approximately 1% of the worldwide population. Most epilepsy patients are refractory to currently available antiepileptic drugs (AEDs). Knowledge about the mechanisms underlying seizure activity and probing for new AEDs is fundamental to the discovery of new therapeutic strategies. Brain Na(+), K(+)-ATPase activity contributes to the maintenance of the electrochemical gradients underlying neuronal resting and action potentials as well as the uptake and release of neurotransmitters. Accordingly, a decrease of Na(+), K(+)-ATPase increases neuronal excitability and may predispose to appearing of seizure activity. In the present study, we tested the hypothesis that activation of Na(+), K(+)-ATPase activity with a specific antibody (DRRSAb) raised against a regulatory site in the α subunit would decrease seizure susceptibility. We found that incubation of hippocampal homogenates with DRRSAb (1 μM) increased total and α1 Na(+), K(+)-ATPase activities. A higher concentration (3 μM) increased total, α1 and α2/α3 Na(+), K(+)-ATPase activities. Intrahippocampal injection of DRRSAb decreased the susceptibility of post status epilepticus animals to pentylenetetrazol (PTZ)-induced myoclonic seizures. In contrast, administration of DRRSAb into the hippocampus of naïve animals facilitated the appearance of PTZ-induced seizures. Quantitative analysis of hippocampal electroencephalography (EEG) recordings revealed that DRRSAb increased the percentage of total power contributed by the delta frequency band (0-3 Hz) to a large irregular amplitude pattern of hippocampal EEG. On the other hand, we found no DRRSAb-induced changes regarding the theta functional state. Further studies are necessary to define the potential of Na(+), K(+)-ATPase activation as a new therapeutic approach for seizure disorders. PMID:25907445

  11. Selective and Reversible Inhibition of Active CO2 Transport by Hydrogen Sulfide in a Cyanobacterium 1

    PubMed Central

    Espie, George S.; Miller, Anthony G.; Canvin, David T.

    1989-01-01

    The active transport of CO2 in the cyanobacterium Synechococcus UTEX 625 was inhibited by H2S. Treatment of the cells with up to 150 micromolar H2S + HS− at pH 8.0 had little effect on Na+-dependent HCO3− transport or photosynthetic O2 evolution, but CO2 transport was inhibited by more than 90%. CO2 transport was restored when H2S was removed by flushing with N2. At constant total H2S + HS− concentrations, inhibition of CO2 transport increased as the ratio of H2S to HS− increased, suggesting a direct role for H2S in the inhibitory process. Hydrogen sulfide does not appear to serve as a substrate for transport. In the presence of H2S and Na+ -dependent HCO3− transport, the extracellular CO2 concentration rose considerably above its equilibrium level, but was maintained far below its equilibrium level in the absence of H2S. The inhibition of CO2 transport, therefore, revealed an ongoing leakage from the cells of CO2 which was derived from the intracellular dehydration of HCO3− which itself had been recently transported into the cells. Normally, leaked CO2 is efficiently transported back into the cell by the CO2 transport system, thus maintaining the extracellular CO2 concentration near zero. It is suggested that CO2 transport not only serves as a primary means of inorganic carbon acquisition for photosynthesis but also serves as a means of recovering CO2 lost from the cell. A schematic model describing the relationship between the CO2 and HCO3− transport systems is presented. Images Figure 7 PMID:16667030

  12. Electrophysiological analysis of Na+/Pi cotransport mediated by a transporter cloned from rat kidney and expressed in Xenopus oocytes.

    PubMed Central

    Busch, A; Waldegger, S; Herzer, T; Biber, J; Markovich, D; Hayes, G; Murer, H; Lang, F

    1994-01-01

    Phosphate (Pi) reabsorption in renal proximal tubules involves Na+/Pi cotransport across the brush border membrane; its transport rate is influenced by the Na(+)-coupled transport of other solutes as well as by pH. In the present study, we have expressed a cloned rat renal brush border membrane Na+/Pi cotransporter (NaPi-2) in Xenopus laevis oocytes and have analyzed its electrophysiologic properties in voltage- and current-clamp studies. Addition of Pi to Na(+)-containing superfusates resulted in a depolarization of the membrane potential and, in voltage-clamped oocytes, in an inward current (IP). An analysis of the Na+ and/or Pi concentration dependence of IP suggested a Na+/Pi stoichiometry of 3:1. IP was increased by increasing the pH of the superfusate; this phenomenon seems to be mainly related to a lowering of the affinity for Na+ interaction by increasing H+ concentration. The present data suggest that known properties of Pi handling at the tubular/membrane level are "directly" related to specific characteristics of the transport molecule (NaPi-2) involved. Images PMID:8058781

  13. Monoclonal antibodies that bind the renal Na/sup +//glucose symport system. 2. Stabilization of an active conformation

    SciTech Connect

    Wu, J.S.R.; Lever, J.E.

    1987-09-08

    Conformation-dependent fluorescein isothiocyanate (FITC) labeling of the pig renal Na/sup +//glucose symporter was investigated with specific monoclonal antibodies (MAb's). When renal brush border membranes were pretreated with phenyl isothiocyanate (PITC), washed, and then treated at neutral pH with FITC in the presence of transporter substrates Na/sup +/ and glucose, most of the incorporated fluorescence was associated with a single peak after resolution by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The apparent molecular mass of the FITC-labeled species ranged from 79 to 92 kDa. Labeling of this peak was specifically reduced by 70% if Na/sup +/ and glucose were omitted. Na/sup +/ could not be replaced by K/sup +/, Rb/sup +/, or Li/sup +/. FITC labeling of this peak was also stimulated after incubation of membranes with MAb's known to influence high-affinity phlorizin binding, and stimulation was synergistically increased when MAb's were added in the presence of Na/sup +/ and glucose. Substrate-induced or MAb-induced labeling correlated with inactivation of Na/sup +/-dependent phlorizin binding. MAb's recognized an antigen of 75 kDa in the native membranes whereas substrate-induced FITC labeling was accompanied by loss of antigen recognition and protection from proteolysis. These findings are consistent with a model in which MAb's stabilize a Na/sup +/-induced active conformer of the Na/sup +//glucose symport system.

  14. Associations between street connectivity and active transportation

    PubMed Central

    2010-01-01

    Background Past studies of associations between measures of the built environment, particularly street connectivity, and active transportation (AT) or leisure walking/bicycling have largely failed to account for spatial autocorrelation of connectivity variables and have seldom examined both the propensity for AT and its duration in a coherent fashion. Such efforts could improve our understanding of the spatial and behavioral aspects of AT. We analyzed spatially identified data from Los Angeles and San Diego Counties collected as part of the 2001 California Health Interview Survey. Results Principal components analysis indicated that ~85% of the variance in nine measures of street connectivity are accounted for by two components representing buffers with short blocks and dense nodes (PRIN1) or buffers with longer blocks that still maintain a grid like structure (PRIN2). PRIN1 and PRIN2 were positively associated with active transportation (AT) after adjustment for diverse demographic and health related variables. Propensity and duration of AT were correlated in both Los Angeles (r = 0.14) and San Diego (r = 0.49) at the zip code level. Multivariate analysis could account for the correlation between the two outcomes. After controlling for demography, measures of the built environment and other factors, no spatial autocorrelation remained for propensity to report AT (i.e., report of AT appeared to be independent among neighborhood residents). However, very localized correlation was evident in duration of AT, particularly in San Diego, where the variance of duration, after accounting for spatial autocorrelation, was 5% smaller within small neighborhoods (~0.01 square latitude/longitude degrees = 0.6 mile diameter) compared to within larger zip code areas. Thus a finer spatial scale of analysis seems to be more appropriate for explaining variation in connectivity and AT. Conclusions Joint analysis of the propensity and duration of AT behavior and an explicitly

  15. Kinetics of ATP- and Na(+)-gradient driven Ca2+ transport in basolateral membranes from gills of freshwater- and seawater-adapted tilapia.

    PubMed

    Verbost, P M; Schoenmakers, T J; Flik, G; Wendelaar Bonga, S E

    1994-01-01

    Plasma membranes of the gills of freshwater- and seawater-adapted tilapia were analyzed for Ca(2+)-ATPase and Na+/Ca2+ exchange activity. The relative importance of ATP-driven and Na(+)-gradient-driven Ca2+ transport in Ca2+ extrusion was evaluated on the basis of kinetic analyses in vitro. The Na+/Ca2+ exchangers in branchial membranes from freshwater or seawater fish displayed similar kinetics. The ATP-driven Ca2+ pump, however, showed a somewhat lower affinity for Ca2+ in membranes isolated from seawater gills than in membranes from freshwater gills; no difference in Vmax was found. The activity of the exchanger was estimated to be 50% of that of the ATP-driven pump at prevailing cytosolic Ca2+ concentrations (10(-7) mol l-1). Opercular ionocyte densities and branchial Na+/K(+)-ATPase content were not significantly different in fish residing in fresh water or sea water. We conclude that the gills of tilapia living for prolonged periods in fresh water or sea water do not differ in the make-up of their basolateral membrane with regard to Ca(2+)-ATPase, Na+/Ca2+ exchange and Na+/K(+)-ATPase activity. Apparently, the densities of these carriers suffice for calcium and sodium homeostasis under these vastly different ambient conditions. PMID:7964377

  16. Translating Molecular Physiology of Intestinal Transport into Pharmacologic Treatment of Diarrhea: Stimulation of Na+ Absorption

    PubMed Central

    Singh, Varsha; Yang, Jianbo; Chen, Tiane-e; Zachos, Nick; Kovbasnjuk, Olga; Verkman, Alan; Donowitz, Mark

    2013-01-01

    Diarrheal diseases remain a leading cause of morbidity and mortality for children in developing countries while representing an important cause of morbidity worldwide. The WHO recommended low osmolarity oral rehydration solutions plus zinc save lives in patients with acute diarrhea1, but there are no approved, safe drugs which have been shown to be effective against most causes of acute diarrhea. Identification of abnormalities in electrolyte handling by the intestine in diarrhea, including increased intestinal anion secretion and reduced Na+ absorption, suggest a number of potential drug targets. This is based on the view that successful drug therapy for diarrhea will result from correcting the abnormalities in electrolyte transport that are pathophysiologic for diarrhea. We review the molecular mechanisms of physiologic regulation of intestinal ion transport and changes that occur in diarrhea and the status of drugs being developed to correct the transport abnormalities in Na+ absorption which occur in diarrhea. Mechanisms of Cl− secretion and approaches to anti-Cl− secretory therapies of diarrhea are discussed in a companion review. PMID:24184676

  17. Translating molecular physiology of intestinal transport into pharmacologic treatment of diarrhea: stimulation of Na+ absorption.

    PubMed

    Singh, Varsha; Yang, Jianbo; Chen, Tiane-e; Zachos, Nicholas C; Kovbasnjuk, Olga; Verkman, Alan S; Donowitz, Mark

    2014-01-01

    Diarrheal diseases remain a leading cause of morbidity and mortality for children in developing countries, while representing an important cause of morbidity worldwide. The World Health Organization recommended that low osmolarity oral rehydration solutions plus zinc save lives in patients with acute diarrhea, but there are no approved, safe drugs that have been shown to be effective against most causes of acute diarrhea. Identification of abnormalities in electrolyte handling by the intestine in diarrhea, including increased intestinal anion secretion and reduced Na(+) absorption, suggest a number of potential drug targets. This is based on the view that successful drug therapy for diarrhea will result from correcting the abnormalities in electrolyte transport that are pathophysiologic for diarrhea. We review the molecular mechanisms of physiologic regulation of intestinal ion transport and changes that occur in diarrhea and the status of drugs being developed to correct the transport abnormalities in Na(+) absorption that occur in diarrhea. Mechanisms of Cl(-) secretion and approaches to anti-Cl(-) secretory therapies of diarrhea are discussed in a companion review. PMID:24184676

  18. Cisternal Na+ transport inhibition and the ventilatory response to CO2.

    PubMed

    Sullivan, M P; Adams, J M

    1994-12-01

    When PCO2 rises transiently, glia or neurons may move ions across their cell membranes to restore intracellular pH, in the process changing extracellular pH. Inhibiting ion transport would result in a different extracellular fluid pH (a putative stimulus for the medullary chemoreceptors) and, therefore, in an altered ventilation in response to PCO2. We infused two ion transport inhibitors, amiloride and bumetanide, into the cisterna magna of anesthetized rabbits and compared their ventilatory response to a rebreathing maneuver with sham rabbits receiving no inhibitor. Amiloride (10(-5)-10(-3) M) had no effect; 3 h of 10(-2) M amiloride increased the frequency of breathing and decreased tidal volume but had no net effect on minute ventilation. Bumetanide (10(-3) M) had no effect after 1 h of infusion, but by 3 h it had decreased tidal volume and minute ventilation at 6 and 7% end-tidal CO2 fraction, respectively, during the rebreathe. Three hours of infusion of amiloride and bumetanide did not affect ventilation in a manner consistent with our predictions from previous studies of ionic changes in cerebrospinal fluid. During the 1st h, when neuronal and glial ion transport in the ventrolateral medulla should be inhibited, we found no effect of ion transport inhibition. We conclude that, during the transient hypercapnia of a rebreathing maneuver, Na+/H+ exchange and Na(+)-K(+)-2Cl- cotransport do not play a significant role in immediate rapid pH homeostasis by cellular ion transport in the microenvironment of the medullary chemoreceptors. PMID:7896593

  19. H(+)/solute-induced intracellular acidification leads to selective activation of apical Na(+)/H(+) exchange in human intestinal epithelial cells.

    PubMed

    Thwaites, D T; Ford, D; Glanville, M; Simmons, N L

    1999-09-01

    The intestinal absorption of many nutrients and drug molecules is mediated by ion-driven transport mechanisms in the intestinal enterocyte plasma membrane. Clearly, the establishment and maintenance of the driving forces - transepithelial ion gradients - are vital for maximum nutrient absorption. The purpose of this study was to determine the nature of intracellular pH (pH(i)) regulation in response to H(+)-coupled transport at the apical membrane of human intestinal epithelial Caco-2 cells. Using isoform-specific primers, mRNA transcripts of the Na(+)/H(+) exchangers NHE1, NHE2, and NHE3 were detected by RT-PCR, and identities were confirmed by sequencing. The functional profile of Na(+)/H(+) exchange was determined by a combination of pH(i), (22)Na(+) influx, and EIPA inhibition experiments. Functional NHE1 and NHE3 activities were identified at the basolateral and apical membranes, respectively. H(+)/solute-induced acidification (using glycylsarcosine or beta-alanine) led to Na(+)-dependent, EIPA-inhibitable pH(i) recovery or EIPA-inhibitable (22)Na(+) influx at the apical membrane only. Selective activation of apical (but not basolateral) Na(+)/H(+) exchange by H(+)/solute cotransport demonstrates that coordinated activity of H(+)/solute symport with apical Na(+)/H(+) exchange optimizes the efficient absorption of nutrients and Na(+), while maintaining pH(i) and the ion gradients involved in driving transport. PMID:10487777

  20. Human, rat and chicken small intestinal Na+-Cl−-creatine transporter: functional, molecular characterization and localization

    PubMed Central

    Peral, M J; García-Delgado, M; Calonge, M L; Durán, J M; De La Horra, M C; Wallimann, T; Speer, O; Ilundáin, A A

    2002-01-01

    In spite of all the fascinating properties of oral creatine supplementation, the mechanism(s) mediating its intestinal absorption has(have) not been investigated. The purpose of this study was to characterize intestinal creatine transport. [14C]Creatine uptake was measured in chicken enterocytes and rat ileum, and expression of the creatine transporter CRT was examined in human, rat and chicken small intestine by reverse transcription-polymerase chain reaction, Northern blot, in situ hybridization, immunoblotting and immunohistochemistry. Results show that enterocytes accumulate creatine against its concentration gradient. This accumulation was electrogenic, Na+- and Cl−-dependent, with a probable stoichiometry of 2 Na+: 1 Cl−: 1 creatine, and inhibited by ouabain and iodoacetic acid. The kinetic study revealed a Km for creatine of 29 μm. [14C]Creatine uptake was efficiently antagonized by non-labelled creatine, guanidinopropionic acid and cyclocreatine. More distant structural analogues of creatine, such as GABA, choline, glycine, β-alanine, taurine and betaine, had no effect on intestinal creatine uptake, indicating a high substrate specificity of the creatine transporter. Consistent with these functional data, messenger RNA for CRT was detected only in the cells lining the intestinal villus. The sequences of partial clones, and of the full-length cDNA clone, isolated from human and rat small intestine were identical to previously cloned CRT cDNAs. Immunological analysis revealed that CRT protein was mainly associated with the apical membrane of the enterocytes. This study reports for the first time that mammalian and avian enterocytes express CRT along the villus, where it mediates high-affinity, Na+- and Cl−-dependent, apical creatine uptake. PMID:12433955

  1. Role of SGK1 in nitric oxide inhibition of ENaC in Na+-transporting epithelia.

    PubMed

    Helms, My N; Yu, Ling; Malik, Bela; Kleinhenz, Dean J; Hart, C Michael; Eaton, Douglas C

    2005-09-01

    Several studies have shown that nitric oxide (NO) inhibits Na(+) transport in renal and alveolar monolayers. However, the mechanisms by which NO alters epithelial Na(+) channel (ENaC) activity is unclear. Therefore, we examined the effect of applying the NO donor drug l-propanamine 3,2-hydroxy-2-nitroso-1-propylhidrazino (PAPA-NONOate) to cultured renal epithelial cells. A6 and M1 cells were maintained on permeable supports in medium containing 1.5 microM dexamethasone and 10% bovine serum. After 1.5 microM PAPA-NONOate was applied, amiloride-sensitive short-circuit current measurements decreased 29% in A6 cells and 44% in M1 cells. This differed significantly from the 3% and 19% decreases in A6 and M1 cells, respectively, treated with control donor compound (P < 0.0005). Subsequent application of PAPA-NONOate to amiloride-treated control (no NONOate) A6 and M1 cells did not further decrease transepithelial current. In single-channel patch-clamp studies, NONOate significantly decreased ENaC open probability (P(o)) from 0.186 +/- 0.043 to 0.045 +/- 0.009 (n = 7; P < 0.05) without changing the unitary current. We also showed that aldosterone significantly decreased NO production in primary cultures of alveolar type II (ATII) epithelial cells. Because inducible nitric oxide synthase (iNOS) coimmunoprecipitated with the serum- and glucocorticoid-inducible kinase (SGK1) and both proteins colocalized in the cytoplasm (as shown in our studies in mouse ATII cells), SGK1 may also be important in regulating NO production in the alveolar epithelium. Our study also identified iNOS as a novel SGK1 phosphorylated protein (at S733 and S903 residues in miNOS) suggesting that one way in which SGK1 could increase Na(+) transport is by altering iNOS production of NO. PMID:15843443

  2. Transport behavior of a single Ca(2+), K(+), and Na(+) in a water-filled transmembrane cyclic peptide nanotube.

    PubMed

    Yan, Xiliang; Fan, Jianfen; Yu, Yi; Xu, Jian; Zhang, Mingming

    2015-05-26

    Molecular dynamics simulations have been performed to investigate the transport properties of a single Ca(2+), K(+), and Na(+) in a water-filled transmembrane cyclic peptide nanotube (CPNT). Two transmembrane CPNTs, i.e., 8×(WL)n=4,5/POPE (with uniform lengths but various radii), were applied to clarify the dependence of ionic transport properties on the channel radius. A huge energy barrier keeps Ca(2+) out of the octa-CPNT, while Na(+) and K(+) can be trapped in two CPNTs. The dominant electrostatic interaction of a cation with water molecules leads to a high distribution of channel water around the cation and D-defects in the first and last gaps, and significantly reduces the axial diffusion of channel water. Water-bridged interactions were mostly found between the artificially introduced Ca(2+) and the framework of the octa-CPNT, and direct coordinations with the tube wall mostly occur for K(+) in the octa-CPNT. A cation may drift rapidly or behave lazily in a CPNT. K(+) behaves most actively and can visit the whole deca-CPNT quickly. The first solvation shells of Ca(2+) and Na(+) are basically saturated in two CPNTs, while the hydration of K(+) is incomplete in the octa-CPNT. The solvation structure of Ca(2+) in the octa-CPNT is most stable, while that of K(+) in the deca-CPNT is most labile. Increasing the channel radius induces numerous interchange attempts between the first-shell water molecules of a cation and the ones in the outer region, especially for the K(+) system. PMID:25894098

  3. Air pollution exposure: An activity pattern approach for active transportation

    NASA Astrophysics Data System (ADS)

    Adams, Matthew D.; Yiannakoulias, Nikolaos; Kanaroglou, Pavlos S.

    2016-09-01

    In this paper, we demonstrate the calculation of personal air pollution exposure during trips made by active transportation using activity patterns without personal monitors. We calculate exposure as the inhaled dose of particulate matter 2.5 μg or smaller. Two modes of active transportation are compared, and they include cycling and walking. Ambient conditions are calculated by combining mobile and stationary monitoring data in an artificial neural network space-time model. The model uses a land use regression framework and has a prediction accuracy of R2 = 0.78. Exposure is calculated at 10 m or shorter intervals during the trips using inhalation rates associated with both modes. The trips are children's routes between home and school. The average dose during morning cycling trips was 2.17 μg, during morning walking trips was 3.19 μg, during afternoon cycling trips was 2.19 μg and during afternoon walking trips was 3.23 μg. The cycling trip dose was significantly lower than the walking trip dose. The air pollution exposure during walking or cycling trips could not be strongly predicted by either the school or household ambient conditions, either individually or in combination. Multiple linear regression models regressing both the household and school ambient conditions against the dose were only able to account for, at most, six percent of the variance in the exposure. This paper demonstrates that incorporating activity patterns when calculating exposure can improve the estimate of exposure compared to its calculation from ambient conditions.

  4. A Simple Laboratory Exercise Illustrating Active Transport in Yeast Cells.

    ERIC Educational Resources Information Center

    Stambuk, Boris U.

    2000-01-01

    Describes a simple laboratory activity illustrating the chemiosmotic principles of active transport in yeast cells. Demonstrates the energy coupling mechanism of active a-glucoside uptake by Saccaromyces cerevisiae cells with a colorimetric transport assay using very simple equipment. (Contains 22 references.) (Author/YDS)

  5. Thyroid hormone stimulates Na-K-ATPase activity and its plasma membrane insertion in rat alveolar epithelial cells.

    PubMed

    Lei, Jianxun; Nowbar, Sogol; Mariash, Cary N; Ingbar, David H

    2003-09-01

    Na-K-ATPase protein is critical for maintaining cellular ion gradients and volume and for transepithelial ion transport in kidney and lung. Thyroid hormone, 3,3',5-triiodo-l-thyronine (T3), given for 2 days to adult rats, increases alveolar fluid resorption by 65%, but the mechanism is undefined. We tested the hypothesis that T3 stimulates Na-K-ATPase in adult rat alveolar epithelial cells (AEC), including primary rat alveolar type II (ATII) cells, and determined mechanisms of the T3 effect on the Na-KATPase enzyme using two adult rat AEC cell lines (MP48 and RLE-6TN). T3 at 10-8 and 10-5 M increased significantly hydrolytic activity of Na-K-ATPase in primary ATII cells and both AEC cell lines. The increased activity was dose dependent in the cell lines (10-9-10-4 M) and was detected within 30 min and peaked at 6 h. Maximal increases in Na-K-ATPase activity were twofold in MP48 and RLE-6TN cells at pharmacological T3 of 10-5 and 10-4 M, respectively, but increases were statistically significant at physiological T3 as low as 10-9 M. This effect was T3 specific, because reverse T3 (3,3',5'-triiodo-l-thyronine) at 10-9-10-4 M had no effect. The T3-induced increase in Na-K-ATPase hydrolytic activity was not blocked by actinomycin D. No significant change in mRNA and total cell protein levels of Na-K-ATPase were detected with 10-9-10-5 M T3 at 6 h. However, T3 increased cell surface expression of Na-K-ATPase alpha1- or beta1-subunit proteins by 1.7- and 2-fold, respectively, and increases in Na-K-ATPase activity and cell surface expression were abolished by brefeldin A. These data indicate that T3 specifically stimulates Na-K-ATPase activity in adult rat AEC. The upregulation involves translocation of Na-K-ATPase to plasma membrane, not increased gene transcription. These results suggest a novel nontranscriptional mechanism for regulation of Na-K-ATPase by thyroid hormone. PMID:12740220

  6. Preparation of activated carbon from wet sludge by electrochemical-NaClO activation.

    PubMed

    Miao, Chen; Ye, Caihong; Zhu, Tianxing; Lou, Ziyang; Yuan, Haiping; Zhu, Nanwen

    2014-01-01

    Activated carbon (AC) from sludge is one potential solution for sewage sludge disposal, while the drying sludge is cost and time consuming for preparation. AC preparation from the wet sludge with electrochemical-NaClO activation was studied in this work. Three pretreatment processes, i.e. chemical activation, electrolysis and electrochemical-reagent reaction, were introduced to improve the sludge-derived AC properties, and the optimum dosage of reagent was tested from the 0.1:1 to 1:1 (mass rate, reagent:dried sludge). It was shown that the electrochemical-NaClO preparation is the best method under the test conditions, in which AC has the maximum Brunauer, Emmett and Teller area of 436 m²/g at a mass ratio of 0.7. Extracellular polymeric substances in sludge can be disintegrated by electrochemical-NaClO pretreatment, with a disintegration degree of more than 45%. The percentage of carbon decreased from 34.16 to 8.81 after treated by electrochemical-NaClO activation. Fourier transform infrared spectra showed that a strong C-Cl stretching was formed in electrochemical-NaClO prepared AC. The maximum adsorption capacity of AC reaches 109 mg/g on MB adsorption experiment at pH 10 and can be repeated for three times with high removal efficiency after regeneration. PMID:25176302

  7. Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite.

    PubMed

    Salim, Mashitah Mad; Malek, Nik Ahmad Nizam Nik

    2016-02-01

    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550°C, 5h) and this material has excellent performance as an antibacterial agent after silver ions loading. PMID:26652350

  8. Ankyrin-G directly binds to kinesin-1 to transport voltage-gated Na+ channels into axons.

    PubMed

    Barry, Joshua; Gu, Yuanzheng; Jukkola, Peter; O'Neill, Brian; Gu, Howard; Mohler, Peter J; Rajamani, Keerthi Thirtamara; Gu, Chen

    2014-01-27

    Action potentials (APs) propagating along axons require the activation of voltage-gated Na(+) (Nav) channels. How Nav channels are transported into axons is unknown. We show that KIF5/kinesin-1 directly binds to ankyrin-G (AnkG) to transport Nav channels into axons. KIF5 and Nav1.2 channels bind to multiple sites in the AnkG N-terminal domain that contains 24 ankyrin repeats. Disrupting AnkG-KIF5 binding with small interfering RNA or dominant-negative constructs markedly reduced Nav channel levels at the axon initial segment (AIS) and along entire axons, thereby decreasing AP firing. Live-cell imaging showed that fluorescently tagged AnkG or Nav1.2 cotransported with KIF5 along axons. Deleting AnkG in vivo or virus-mediated expression of a dominant-negative KIF5 construct specifically decreased the axonal level of Nav, but not Kv1.2, channels in mouse cerebellum. These results indicate that AnkG functions as an adaptor to link Nav channels to KIF5 during axonal transport before anchoring them to the AIS and nodes of Ranvier. PMID:24412576

  9. Active Sodium and Potassium Transport in High Potassium and Low Potassium Sheep Red Cells

    PubMed Central

    Hoffman, P. G.; Tosteson, D. C.

    1971-01-01

    The kinetic characteristics of the ouabain-sensitive (Na + K) transport system (pump) of high potassium (HK) and low potassium (LK) sheep red cells have been investigated. In sodium medium, the curve relating pump rate to external K is sigmoid with half maximal stimulation (K1/2) occurring at 3 mM for both cell types, the maximum pump rate in HK cells being about four times that in LK cells. In sodium-free media, both HK and LK pumps are adequately described by the Michaelis-Menten equation, but the K1/2 for HK cells is 0.6 ± 0.1 mM K, while that for LK is 0.2 ± 0.05 mM K. When the internal Na and K content of the cells was varied by the PCMBS method, it was found that the pump rate of HK cells showed a gradual increase from zero at very low internal Na to a maximum when internal K was reduced to nearly zero (100% Na). In LK cells, on the other hand, no pump activity was detected if Na constituted less than 70% of the total (Na + K) in the cell. Increasing Na from 70 to nearly 100% of the internal cation composition, however, resulted in an exponential increase in pump rate in these cells to about ⅙ the maximum rate observed in HK cells. While changes in internal composition altered the pump rate at saturating concentrations of external K, it had no effect on the apparent affinity of the pumps for external K. These results lead us to conclude that the individual pump sites in the HK and LK sheep red cell membranes must be different. Moreover, we believe that these data contribute significantly to defining the types of mechanism which can account for the kinetic characteristics of (Na + K) transport in sheep red cells and perhaps in other systems. PMID:5112660

  10. Dopamine transporter availability in motor subtypes of de novo drug-naïve Parkinson's disease.

    PubMed

    Moccia, Marcello; Pappatà, Sabina; Picillo, Marina; Erro, Roberto; Coda, Anna Rita Daniela; Longo, Katia; Vitale, Carmine; Amboni, Marianna; Brunetti, Arturo; Capo, Giuseppe; Salvatore, Marco; Barone, Paolo; Pellecchia, Maria Teresa

    2014-11-01

    Tremor dominant (TD) and akinetic-rigid type (ART) are two motor subtypes of Parkinson's disease associated with different disease progression and neurochemical/neuropathological features. The role of presynaptic nigrostriatal dopaminergic damage is still controversial, poorly explored, and only assessed in medicated patients. In this study, we investigated with FP-CIT SPECT the striatal dopamine transporter (DAT) availability in drug-naïve PD patients with ART and TD phenotypes. Fifty-one de novo, drug-naïve patients with PD underwent FP-CIT SPECT studies. Patients were evaluated with Unified Parkinson's Disease Rating Scale (UPDRS) part III and Hoehn and Yahr scale (H&Y) and divided into ART (24/51) and TD (27/51) according to UPDRS part III. ART and TD patients were not different with regard to age, gender, and disease duration. However, compared to TD, ART patients presented higher UPDRS part III (p = 0.01) and H&Y (p = 0.02) and lower DAT availability in affected and unaffected putamen (p = 0.008 and p = 0.007, respectively), whereas no differences were found in caudate. Moreover, in the whole group of patients, rigidity and bradykinesia, but not tremor scores of UPDRS part III were significantly related to FP-CIT binding in the putamen. These results suggest that in newly diagnosed drug-naïve PD patients DAT availability might be different between ART and TD in relation to different disease severity. PMID:25119838

  11. Voltage coupling of primary H+ V-ATPases to secondary Na+- or K+-dependent transporters.

    PubMed

    Harvey, William R

    2009-06-01

    and other evidence provide convincing support for Kell's electrodic view yet Mitchell's chemiosmotic theory is the one that is accepted by most bioenergetics experts today. First we discuss the interaction between H(+) V-ATPase and the K(+)/2H(+) antiporter that forms the caterpillar K(+) pump, and use the Kell electrodic view to explain how the H(+)s at the outer fluid-membrane interface can drive two H(+) from lumen to cell and one K(+) from cell to lumen via the antiporter even though the pH in the bulk fluid of the lumen is highly alkaline. Exchange of outer bulk fluid K(+) (or Na(+)) with outer interface H(+) in conjunction with (K(+) or Na(+))/2H(+) antiport, transforms the hydrogen ion electrochemical potential difference, mu(H), to a K(+) electrochemical potential difference, mu(K) or a Na(+) electrochemical potential difference, mu(Na). The mu(K) or mu(Na) drives K(+)- or Na(+)-coupled nutrient amino acid transporters (NATs), such as KAAT1 (K(+) amino acid transporter 1), which moves Na(+) and an amino acid into the cell with no H(+)s involved. Examples in which the voltage coupling model is used to interpret ion and amino acid transport in caterpillar and larval mosquito midgut are discussed. PMID:19448072

  12. Proteinases inhibit H(+)-ATPase and Na+/H+ exchange but not water transport in apical and endosomal membranes from rat proximal tubule.

    PubMed

    Sabolić, I; Shi, L B; Brown, D; Ausiello, D A; Verkman, A S

    1992-01-10

    A marked increase in water permeability can be induced in Xenopus oocytes by injection of mRNA from tissues that express water channels, suggesting that the water channel is a protein. In view of this and previous reports which showed that proteinases may interfere with mercurial inhibition of water transport in red blood cells (RBC), we examined the influence of trypsin, chymotrypsin, papain, pronase, subtilisin and thermolysin on water permeability as well as on ATPase activity, H(+)-pump, passive H+ conductance, and Na+/H+ exchange in apical brush-border vesicles (BBMV) and endosomal (EV) vesicles from rat renal cortex. H+ transport was measured by Acridine orange fluorescence quenching and water transport by stopped-flow light scattering. As measured by potential-driven H+ accumulation in BBMV and EV, proteinase treatment had little effect on vesicle integrity. In BBMV, ecto-ATPase activity was inhibited by 15-30%, Na+/H+ exchange by 20-55%, and H+ conductance was unchanged. Osmotic water permeability (Pf) was 570 microns/s and was inhibited 85-90% by 0.6 mM HgCl2; proteinase treatment did not affect Pf or the HgCl2 inhibition. In EV, NEM-sensitive H+ accumulation and ATPase activity were inhibited by greater than 95%. Pf (140 microns/s) and HgCl2 inhibition (75-85%) were not influenced by proteinase treatment. SDS-PAGE showed selective digestion of multiple polypeptides by proteinases. These results confirm the presence of water channels in BBMV and EV and demonstrate selective inhibition of ATPase function and Na+/H+ exchange by proteinase digestion. The lack of effect of proteinases on water transport by mercurials. We conclude that the water channel may be a small integral membrane protein which, unlike the H(+)-ATPase and Na+/H+ exchanger, has no functionally important membrane domains that are sensitive to proteolysis. PMID:1309658

  13. Na+ and K+ levels in living cells: do they depend on the rate of outward transport of Na+?

    PubMed

    Ling, G N; Ochsenfeld, M M

    1976-01-01

    At 25 degrees C, frog sartorius muslces rapidly gained Na+ and lost K+ in iodoacetamide and pure nitrogen. Beginning at normal levels, the concentrations of these ions in the cells reached those in the surrounding Ringer solution in 140 min. Yet during that time the Na+ efflux rate showed no sign of the slowing down demanded by Na-pump theory. The data support the view that maintenance and alterations of N1+ levels in frog muslce cells reflect adsorption on protein sites and the solubility property of bulk phase water and are independent of the rate at which Na+ leaves the cell surface. PMID:1088477

  14. Transporting Radioactive Waste: An Engineering Activity. Grades 5-12.

    ERIC Educational Resources Information Center

    HAZWRAP, The Hazardous Waste Remedial Actions Program.

    This brochure contains an engineering activity for upper elementary, middle school, and high school students that examines the transportation of radioactive waste. The activity is designed to inform students about the existence of radioactive waste and its transportation to disposal sites. Students experiment with methods to contain the waste and…

  15. Active transmembrane drug transport in microgravity: a validation study using an ABC transporter model

    PubMed Central

    Vaquer, Sergi; Cuyàs, Elisabet; Rabadán, Arnau; González, Albert; Fenollosa, Felip; de la Torre, Rafael

    2014-01-01

    Microgravity has been shown to influence the expression of ABC (ATP-Binding Cassette) transporters in bacteria, fungi and mammals, but also to modify the activity of certain cellular components with structural and functional similarities to ABC transporters. Changes in activity of ABC transporters could lead to important metabolic disorders and undesired pharmacological effects during spaceflights. However, no current means exist to study the functionality of these transporters in microgravity. To this end, a Vesicular Transport Assay ® (Solvo Biotechnology, Hungary) was adapted to evaluate multi-drug resistance-associated protein 2 (MRP2) trans-membrane estradiol-17-β-glucuronide (E17βG) transport activity, when activated by adenosine-tri-phosphate (ATP) during parabolic flights. Simple diffusion, ATP-independent transport and benzbromarone inhibition were also evaluated. A high accuracy engineering system was designed to perform, monitor and synchronize all procedures. Samples were analysed using a validated high sensitivity drug detection protocol. Experiments were performed in microgravity during parabolic flights, and compared to 1g on ground results using identical equipment and procedures in all cases. Our results revealed that sufficient equipment accuracy and analytical sensitivity were reached to detect transport activity in both gravitational conditions. Additionally, transport activity levels of on ground samples were within commercial transport standards, proving the validity of the methods and equipment used. MRP2 net transport activity was significantly reduced in microgravity, so was signal detected in simple diffusion samples. Ultra-structural changes induced by gravitational stress upon vesicle membranes or transporters could explain the current results, although alternative explanations are possible. Further research is needed to provide a conclusive answer in this regard. Nevertheless, the present validated technology opens new and

  16. Effects of insulin on Na and K transporters in the rat CCD.

    PubMed

    Frindt, Gustavo; Palmer, Lawrence G

    2012-05-15

    We tested the effects of insulin (2 nM, 30-60 min) on principal cells of isolated split-open rat cortical collecting ducts (CCD) using whole-cell current measurements. Insulin addition to the superfusate of the tubules enhanced Na pump (ouabain-sensitive) current from 18 ± 3 to 31 ± 3 pA/cell in control and from 74 ± 9 to 126 ± 11 pA/cell in high K-fed animals. It also more than doubled ROMK (tertiapin-Q-sensitive) K(+) currents in control CCD from 320 ± 40 to 700 ± 80 pA/cell, although it did not affect this current in tubules from K-loaded rats. Insulin did not induce the appearance of amiloride-sensitive Na(+) current in control animals, while in high K-fed animals the currents were similar in the presence (140 ± 30) and the absence (180 ± 70 pA/cell) of insulin. Intraperitoneal injection of insulin plus hypertonic dextrose decreased Na excretion, as previously reported. However, injection of dextrose alone, or the nonmetabolized sugar mannose, had similar effects, suggesting that they were largely the result of vascular volume depletion rather than specific actions of the hormone. In summary, we find no evidence for acute upregulation of the epithelial Na channel (ENaC) by physiological concentrations of insulin in the mammalian CCD. However, the hormone does activate both the Na/K pump and apical K(+) channels and could, under some conditions, enhance renal K(+) secretion. PMID:22357918

  17. Airway surface liquid volume expansion induces rapid changes in amiloride-sensitive Na+ transport across upper airway epithelium-Implications concerning the resolution of pulmonary edema

    PubMed Central

    Azizi, Fouad; Arredouani, Abdelilah; Mohammad, Ramzi M

    2015-01-01

    During airway inflammation, airway surface liquid volume (ASLV) expansion may result from the movement of plasma proteins and excess liquid into the airway lumen due to extravasation and elevation of subepithelial hydrostatic pressure. We previously demonstrated that elevation of submucosal hydrostatic pressure increases airway epithelium permeability resulting in ASLV expansion by 500 μL cm−2 h−1. Liquid reabsorption by healthy airway epithelium is regulated by active Na+ transport at a rate of 5 μL cm−2 h−1. Thus, during inflammation the airway epithelium may be submerged by a large volume of luminal liquid. Here, we have investigated the mechanism by which ASLV expansion alters active epithelial Na+ transport, and we have characterized the time course of the change. We used primary cultures of tracheal airway epithelium maintained under air interface (basal ASLV, depth is 7 ± 0.5 μm). To mimic airway flooding, ASLV was expanded to a depth of 5 mm. On switching from basal to expanded ASLV conditions, short-circuit current (Isc, a measure of total transepithelial active ion transport) declined by 90% with a half-time (t1/2) of 1 h. 24 h after the switch, there was no significant change in ATP concentration nor in the number of functional sodium pumps as revealed by [3H]-ouabain binding. However, amiloride-sensitive uptake of 22Na+ was reduced by 70% upon ASLV expansion. This process is reversible since after returning cells back to air interface, Isc recovered with a t1/2 of 5–10 h. These results may have important clinical implications concerning the development of Na+ channels activators and resolution of pulmonary edema. PMID:26333829

  18. Heat transport in active harmonic chains

    SciTech Connect

    Zheng, Mei C.; Ellis, Fred M.; Kottos, Tsampikos; Fleischmann, Ragnar; Geisel, Theo; Prosen, Tomaz

    2011-08-15

    We show that a harmonic lattice model with amplifying and attenuating elements, when coupled to two thermal baths, exhibits unique heat transport properties. Some of these novel features include anomalous nonequilibrium steady-state heat currents, negative differential thermal conductance, as well as nonreciprocal heat transport. We find that when these elements are arranged in a PT-symmetric manner, the domain of existence of the nonequilibrium steady state is maximized. We propose an electronic experimental setup based on resistive-inductive-capacitive (RLC) transmission lines, where our predictions can be tested.

  19. Application of active controls to civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, L. W., Jr.

    1975-01-01

    The impact of active controls on civil transport aircraft and some of the complex problems involved are described. The approach taken by NASA as part of the Active Control Technology Program is discussed to integrate active controls in the conceptual design phase. It is shown that when handled correctly, active controls improve aircraft performance.

  20. Evolution of magnetic, transport, and thermal properties in Na4 -xIr3O8

    NASA Astrophysics Data System (ADS)

    Balodhi, Ashiwini; Thamizhavel, A.; Singh, Yogesh

    2015-06-01

    The hyperkagome material Na4Ir3O8 is a three-dimensional spin-liquid candidate proximate to a quantum critical point (QCP). We present a comprehensive study of the structure, magnetic susceptibility χ , heat capacity C , and electrical transport (ρ (T ) ) on polycrystalline samples of the doped hyperkagome material Na4-xIr3O8 (x ≈0 ,0.1 ,0.3 ,0.7 ) . Materials with x ≤0.3 are found to be Mott insulators with strong antiferromagnetic interactions and no magnetic ordering down to T =2 K. All samples show irreversibility below T ≈6 K between the zero-field-cooled and field-cooled magnetization measured in low fields (H =0.050 T) suggesting a frozen low temperature state although no corresponding anomaly is seen in the heat capacity. The x =0.7 sample shows ρ (T ) which weakly increases with decreasing temperature T , nearly T independent χ , a linear in T contribution to the low temperature C , and a Wilson ratio RW≈7 suggesting anomalous semimetallic behavior.

  1. The active ion transport properties of canine lingual epithelia in vitro. Implications for gustatory transduction.

    PubMed

    Desimone, J A; Heck, G L; Mierson, S; Desimone, S K

    1984-05-01

    The electrophysiological properties of the dorsal and ventral canine lingual epithelium are studied in vitro. The dorsal epithelium contains a special ion transport system activated by mucosal solutions hyperosmotic in NaCl or LiCl. Hyperosmotic KCl is significantly less effective as an activator of this system. The lingual frenulum does not contain the transport system. In the dorsal surface it is characterized by a rapid increase in inward current and can be quantitated as a second component in the time course of either the open-circuit potential or short-circuit current when the mucosal solution is hyperosmotic in NaCl or LiCl. The increased inward current (hyperosmotic response) can be eliminated by amiloride (10(-4) M). The specific location of this transport system in the dorsal surface and the fact that it operates over the concentration range characteristic of mammalian salt taste suggests a possible link to gustatory transduction. This possibility is tested by recording neural responses in the rat to NaCl and KCl over a concentration range including the hyperosmotic. We demonstrate that amiloride specifically blocks the response to NaCl over the hyperosmotic range while affecting the KCl response significantly less. The results suggest that gustatory transduction for NaCl is mediated by Na entry into the taste cells via the same amiloride-sensitive pathway responsible for the hyperosmotic response in vitro. Further studies of the in vitro system give evidence for paracellular as well as transcellular current paths. The transmural current-voltage relations are linear under both symmetrical and asymmetrical conditions. After ouabain treatment under symmetrical conditions, the short-circuit current decays to zero. The increase in resistance, though significant, is small, which suggests a sizeable shunt pathway for current. Flux measurements show that sodium is absorbed under symmetrical conditions. Mucosal solutions hyperosmotic in various sugars also induce

  2. Effect of External Electric Field on Substrate Transport of a Secondary Active Transporter.

    PubMed

    Zhang, Ji-Long; Zheng, Qing-Chuan; Yu, Li-Ying; Li, Zheng-Qiang; Zhang, Hong-Xing

    2016-08-22

    Substrate transport across a membrane accomplished by a secondary active transporter (SAT) is essential to the normal physiological function of living cells. In the present research, a series of all-atom molecular dynamics (MD) simulations under different electric field (EF) strengths was performed to investigate the effect of an external EF on the substrate transport of an SAT. The results show that EF both affects the interaction between substrate and related protein's residues by changing their conformations and tunes the timeline of the transport event, which collectively reduces the height of energy barrier for substrate transport and results in the appearance of two intermediate conformations under the existence of an external EF. Our work spotlights the crucial influence of external EFs on the substrate transport of SATs and could provide a more penetrating understanding of the substrate transport mechanism of SATs. PMID:27472561

  3. Study of active cooling for supersonic transports

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.

    1975-01-01

    The potential benefits of using the fuel heat sink of hydrogen fueled supersonic transports for cooling large portions of the aircraft wing and fuselage are examined. The heat transfer would be accomplished by using an intermediate fluid such as an ethylene glycol-water solution. Some of the advantages of the system are: (1) reduced costs by using aluminum in place of titanium, (2) reduced cabin heat loads, and (3) more favorable environmental conditions for the aircraft systems. A liquid hydrogen fueled, Mach 2.7 supersonic transport aircraft design was used for the reference uncooled vehicle. The cooled aircraft designs were analyzed to determine their heat sink capability, the extent and location of feasible cooled surfaces, and the coolant passage size and spacing.

  4. Modeling of Active Transmembrane Transport in a Mixture Theory Framework

    PubMed Central

    Ateshian, Gerard A.; Morrison, Barclay; Hung, Clark T.

    2010-01-01

    This study formulates governing equations for active transport across semi-permeable membranes within the framework of the theory of mixtures. In mixture theory, which models the interactions of any number of fluid and solid constituents, a supply term appears in the conservation of linear momentum to describe momentum exchanges among the constituents. In past applications, this momentum supply was used to model frictional interactions only, thereby describing passive transport processes. In this study, it is shown that active transport processes, which impart momentum to solutes or solvent, may also be incorporated in this term. By projecting the equation of conservation of linear momentum along the normal to the membrane, a jump condition is formulated for the mechano-electrochemical potential of fluid constituents which is generally applicable to nonequilibrium processes involving active transport. The resulting relations are simple and easy to use, and address an important need in the membrane transport literature. PMID:20213212

  5. Organophosphate inhibition of avian salt gland Na, K-ATPase activity

    USGS Publications Warehouse

    Eastin, W.C., Jr.; Fleming, W.J.; Murray, H.C.

    1982-01-01

    1. Adult black ducks (Anas rubripes) were given freshwater or saltwater (1.5% NaCl) for 11 days and half of each group was also given an organophosphate (17 p.p.m. fenthion) in the diet on days 6-11. 2. After 11 days, ducks drinking saltwater had lost more weight and had higher plasma Na and uric acid concentrations and osmolalities than birds drinking freshwater. 3. Saltwater treatment stimulated the salt gland to increased weight and Na, K-ATPase activity. 4. Fenthion generally reduced plasma and brain cholinesterase activity and depressed cholinesterase and Na, K-ATPase activities in salt glands of birds drinking saltwater.

  6. Interleukin 18 function requires both interleukin 18 receptor and Na-Cl co-transporter

    PubMed Central

    Wang, Jing; Sun, Chongxiu; Gerdes, Norbert; Liu, Conglin; Liao, Mengyang; Liu, Jian; Shi, Michael A.; He, Aina; Zhou, Yi; Sukhova, Galina K.; Chen, Huimei; Cheng, Xianwu; Kuzuya, Masafumi; Murohara, Toyoaki; Zhang, Jie; Cheng, Xiang; Jiang, Mengmeng; Shull, Gary E.; Rogers, Shaunessy; Yang, Chao-Ling; Ke, Qiang; Jelen, Sabina; Bindels, René; Ellison, David H.; Jarolim, Petr; Libby, Peter; Shi, Guo-Ping

    2015-01-01

    Interleukin-18 (IL18) participates in atherogenesis through several putative mechanisms1,2. Interruption of IL18 action reduces atherosclerosis in mice3,4. This study shows that the absence of IL18 receptor (IL18r) does not affect atherosclerosis in apolipoprotein E-deficient (Apoe−/−) mice, nor does it affect IL18 cell surface binding or signaling. IL18 antibody-mediated immunoprecipitation identified an interaction between IL18 and Na-Cl co-transporter (NCC), a 12-transmembrane-domain ion transporter protein preferentially expressed in the kidney5. Yet, we find NCC expression and colocalization with IL18r in atherosclerotic lesions and both molecules form a complex. IL18 also binds to the cell surface and induces cell signaling and down-stream cytokine expression in NCC-transfected COS-7 cells that do not express IL18r. In Apoe−/− mice, combined deficiency of IL18r and NCC, but not single deficiency, protects mice from atherosclerosis. Peritoneal macrophages from Apoe−/− mice or those lacking IL18r or NCC respond to IL18 binding or IL18 induction of cell signaling and cytokine and chemokine production, but those with combined deficiency of IL18r and NCC do not. This study identifies NCC as an IL18-binding protein that coordinates with IL18r in cell signaling, inflammatory molecule expression, and experimental atherogenesis. PMID:26099046

  7. Discovery and characterization of novel inhibitors of the sodium-coupled citrate transporter (NaCT or SLC13A5)

    PubMed Central

    Huard, Kim; Brown, Janice; Jones, Jessica C.; Cabral, Shawn; Futatsugi, Kentaro; Gorgoglione, Matthew; Lanba, Adhiraj; Vera, Nicholas B.; Zhu, Yimin; Yan, Qingyun; Zhou, Yingjiang; Vernochet, Cecile; Riccardi, Keith; Wolford, Angela; Pirman, David; Niosi, Mark; Aspnes, Gary; Herr, Michael; Genung, Nathan E.; Magee, Thomas V.; Uccello, Daniel P.; Loria, Paula; Di, Li; Gosset, James R.; Hepworth, David; Rolph, Timothy; Pfefferkorn, Jeffrey A.; Erion, Derek M.

    2015-01-01

    Citrate is a key regulatory metabolic intermediate as it facilitates the integration of the glycolysis and lipid synthesis pathways. Inhibition of hepatic extracellular citrate uptake, by blocking the sodium-coupled citrate transporter (NaCT or SLC13A5), has been suggested as a potential therapeutic approach to treat metabolic disorders. NaCT transports citrate from the blood into the cell coupled to the transport of sodium ions. The studies herein report the identification and characterization of a novel small dicarboxylate molecule (compound 2) capable of selectively and potently inhibiting citrate transport through NaCT, both in vitro and in vivo. Binding and transport experiments indicate that 2 specifically binds NaCT in a competitive and stereosensitive manner, and is recognized as a substrate for transport by NaCT. The favorable pharmacokinetic properties of 2 permitted in vivo experiments to evaluate the effect of inhibiting hepatic citrate uptake on metabolic endpoints. PMID:26620127

  8. Insulin-stimulated Na/sup +/ transport in a model renal epithelium: protein synthesis dependence and receptor interactions

    SciTech Connect

    Blazer-Yost, B.L.; Cox, M.

    1987-05-01

    The urinary bladder of the toad, Bufo marinus, is a well characterized model of the mammalian distal nephron. Porcine insulin (approx. 0.5-5.0 ..mu..M) stimulates net mucosal to serosal Na/sup +/ flux within 10 minutes of hormone addition. The response is maintained for at least 5 hr and is completely abolished by low doses (10..mu..M) of the epithelial Na/sup +/ channel blocker amiloride. Insulin-stimulated Na/sup +/ transport does not require new protein synthesis since it is actinomycin-D (10..mu..g/ml) insensitive. Also in 3 separate experiments in which epithelial cell proteins were examined by /sup 35/S-methionine labeling, 2-dimensional polyacrylamide gel electrophoresis/autoradiography, no insulin induced proteins were observed. Equimolar concentrations of purified porcine proinsulin and insulin (0.64..mu..M) stimulate Na/sup +/ transport to the same extent. Thus, the putative toad insulin receptor may have different affinity characteristics than those demonstrated for insulin and proinsulin in mammalian tissues. Alternatively, the natriferic action of insulin in toad urinary bladders may be mediated by occupancy of another receptor. Preliminary experiments indicating that nanomolar concentrations of IGF/sub 1/ stimulate Na/sup +/ transport in this tissue support the latter contention.

  9. An Abiotic Glass-Bead Collector Exhibiting Active Transport

    NASA Astrophysics Data System (ADS)

    Goto, Youhei; Kanda, Masato; Yamamoto, Daigo; Shioi, Akihisa

    2015-09-01

    Animals relocate objects as needed by active motion. Active transport is ubiquitous in living organisms but has been difficult to realize in abiotic systems. Here we show that a self-propelled droplet can gather scattered beads toward one place on a floor and sweep it clean. This is a biomimetic active transport with loadings and unloadings, because the transport was performed by a carrier and the motion of the carrier was maintained by the energy of the chemical reaction. The oil droplet produced fluctuation of the local number density of the beads on the floor, followed by its autocatalytic growth. This mechanism may inspire the technologies based on active transport wherein chemical and physical substances migrate as in living organisms.

  10. The alpha 1 Na(+)-K+ pump of the Dahl salt-sensitive rat exhibits altered Na+ modulation of K+ transport in red blood cells.

    PubMed

    Canessa, M; Romero, J R; Ruiz-Opazo, N; Herrera, V L

    1993-06-01

    The properties of the alpha 1 Na(+)-K+ pump were compared in Dahl salt-sensitive (DS) and salt-resistant (DR) strains by measuring ouabain-sensitive fluxes (mmol/liter cell x hr = FU, Mean +/- SE) in red blood cells (RBCs) and varying internal (i) and external (o) Na+ and K+ concentrations. Kinetic parameters of several modes of operation, i.e., Na+/K+, K+/K+, Na+/Na+ exchanges, were characterized and analyzed for curve-fitting using the Enzfitter computer program. In unidirectional flux studies (n = 12 rats of each strain) into fresh cells incubated in 140 mM Na(+) + 5 mM K+, ouabain-sensitive K+ influx was substantially lower in the DS than in DR RBCs, while ouabain-sensitive Na+ efflux and Nai were similar in both strains. Thus, the coupling ratio between unidirectional Na+:K+ fluxes was significantly higher in DS than in DR cells at similar RBC Na+ content. In the presence of 140 mM Nao, activation of ouabain-sensitive K+ influx by Ko had a lower Km and Vmax in DS as estimated by the Garay equation (N = 2.70 +/- 0.33, Km 0.74 +/- 0.09 mM; Vmax 2.87 +/- 0.09 FU) than in DR rats (N = 1.23 +/- 0.36, Km 2.31 +/- 0.16 mM; Vmax 5.70 +/- 0.52 FU). However, the two kinetic parameters were similar following Nao removal. The activation of ouabain-sensitive K+ influx by Nai had significantly lower Vmax in DS (9.3 +/- 0.4 FU) than in DR (14.5 +/- 0.6 FU) RBCs but similar Km. These data suggest that the low K+ influx in DS cells is caused by a defect in modulation by Nao and Nai. Na+ efflux showed no differences in Nai activation or trans effects by Nao and Ko, thus accounting for the different Na+:K+ coupling ratio in the Dahl strains. Further evidence for the differences in the coupling of ouabain-sensitive fluxes was found in studies of net Na+ and K+ fluxes, where the net ouabain-sensitive Na+ losses showed similar magnitudes in the two Dahl strains while the net ouabain-sensitive K+ gains were significantly greater in the DR than the DS RBCs. Ouabain-sensitive Na

  11. 49 CFR 37.61 - Public transportation programs and activities in existing facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Public transportation programs and activities in existing facilities. 37.61 Section 37.61 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Transportation Facilities § 37.61 Public transportation programs and activities...

  12. Active transportation safety features around schools in Canada.

    PubMed

    Pinkerton, Bryn; Rosu, Andrei; Janssen, Ian; Pickett, William

    2013-11-01

    The purpose of this study was to describe the presence and quality of active transportation safety features in Canadian school environments that relate to pedestrian and bicycle safety. Variations in these features and associated traffic concerns as perceived by school administrators were examined by geographic status and school type. The study was based on schools that participated in 2009/2010 Health Behaviour in School-aged Children (HBSC) survey. ArcGIS software version 10 and Google Earth were used to assess the presence and quality of ten different active transportation safety features. Findings suggest that there are crosswalks and good sidewalk coverage in the environments surrounding most Canadian schools, but a dearth of bicycle lanes and other traffic calming measures (e.g., speed bumps, traffic chokers). Significant urban/rural inequities exist with a greater prevalence of sidewalk coverage, crosswalks, traffic medians, and speed bumps in urban areas. With the exception of bicycle lanes, the active transportation safety features that were present were generally rated as high quality. Traffic was more of a concern to administrators in urban areas. This study provides novel information about active transportation safety features in Canadian school environments. This information could help guide public health efforts aimed at increasing active transportation levels while simultaneously decreasing active transportation injuries. PMID:24185844

  13. Tonoplast Na+/H+ Antiport Activity and Its Energization by the Vacuolar H+-ATPase in the Halophytic Plant Mesembryanthemum crystallinum L.

    PubMed Central

    Barkla, B. J.; Zingarelli, L.; Blumwald, E.; Smith, JAC.

    1995-01-01

    Tonoplast vesicles were isolated from leaf mesophyll tissue of the inducible Crassulacean acid metabolism plant Mesembryanthemum crystallinum to investigate the mechanism of vacuolar Na+ accumulation in this halophilic species. In 8-week-old plants exposed to 200 mM NaCl for 2 weeks, tonoplast H+-ATPase activity was approximately doubled compared with control plants of the same age, as determined by rates of both ATP hydrolysis and ATP-dependent H+ transport. Evidence was also obtained for the presence of an electroneutral Na+/H+ antiporter at the tonoplast that is constitutively expressed, since extravesicular Na+ was able to dissipate a pre-existing transmembrane pH gradient. Initial rates of H+ efflux showed saturation kinetics with respect to extravesicular Na+ concentration and were 2.1-fold higher from vesicles of salt-treated plants compared with the controls. Na+-dependent H+ efflux also showed a high selectivity for Na+ over K+, was insensitive to the transmembrane electrical potential difference, and was more than 50% inhibited by 200 [mu]M N-amidino-3,5-diamino-6-chloropyrazinecarboxamide hydrochloride. The close correlation between increased Na+/H+ antiport and H+-ATPase activities in response to salt treatment suggests that accumulation of the very high concentrations of vacuolar Na+ found in M. crystallinum is energized by the H+ electrochemical gradient across the tonoplast. PMID:12228611

  14. Mutant N143P Reveals How Na[superscript +] Activates Thrombin

    SciTech Connect

    Niu, Weiling; Chen, Zhiwei; Bush-Pelc, Leslie A.; Bah, Alaji; Gandhi, Prafull S.; Di Cera, Enrico

    2010-01-12

    The molecular mechanism of thrombin activation by Na{sup +} remains elusive. Its kinetic formulation requires extension of the classical Botts-Morales theory for the action of a modifier on an enzyme to correctly account for the contribution of the E*, E, and E:Na{sup +} forms. The extended scheme establishes that analysis of k{sub cat} unequivocally identifies allosteric transduction of Na{sup +} binding into enhanced catalytic activity. The thrombin mutant N143P features no Na{sup +}-dependent enhancement of k{sub cat} yet binds Na{sup +} with an affinity comparable to that of wild type. Crystal structures of the mutant in the presence and absence of Na{sup +} confirm that Pro{sup 143} abrogates the important H-bond between the backbone N atom of residue 143 and the carbonyl O atom of Glu{sup 192}, which in turn controls the orientation of the Glu{sup 192}-Gly{sup 193} peptide bond and the correct architecture of the oxyanion hole. We conclude that Na{sup +} activates thrombin by securing the correct orientation of the Glu{sup 192}-Gly{sup 193} peptide bond, which is likely flipped in the absence of cation. Absolute conservation of the 143-192 H-bond in trypsin-like proteases and the importance of the oxyanion hole in protease function suggest that this mechanism of Na{sup +} activation is present in all Na{sup +}-activated trypsin-like proteases.

  15. Entropic Ratchet transport of interacting active Brownian particles

    SciTech Connect

    Ai, Bao-Quan; He, Ya-Feng; Zhong, Wei-Rong

    2014-11-21

    Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction.

  16. Rapid activation of gill Na+,K+-ATPase in the euryhaline teleost Fundulus heteroclitus

    USGS Publications Warehouse

    Mancera, J.M.; McCormick, S.D.

    2000-01-01

    The rapid activation of gill Na+,K+-ATPase was analyzed in the mummichog (Fundulus heteroclitus) and Atlantic salmon (Salmo salar) transferred from low salinity (0.1 ppt) to high salinity (25-35 ppt). In parr and presmolt, Salmo salar gill Na+,K+-ATPase activity started to increase 3 days after transfer. Exposure of Fundulus heteroclitus to 35 ppt seawater (SW) induced a rise in gill Na+,K+-ATPase activity 3 hr after transfer. After 12 hr, the values dropped to initial levels but showed a second significant increase 3 days after transfer. The absence of detergent in the enzyme assay resulted in lower values of gill Na+,K+-ATPase, and the rapid increase after transfer to SW was not observed. Na+,K+-ATPase activity of gill filaments in vitro for 3 hr increased proportionally to the osmolality of the culture medium (600 mosm/kg > 500 mosm/kg > 300 mosm/kg). Osmolality of 800 mosm/kg resulted in lower gill Na+,K+-ATPase activity relative to 600 mosm/kg. Increasing medium osmolality to 600 mosm/kg with mannitol also increased gill Na+,K+-ATPase. Cycloheximide inhibited the increase in gill Na+,K+-ATPase activity observed in hyperosmotic medium in a dose-dependent manner (10-4 M > 10-5 M > 10-6 M). Actinomycin D or bumetanide in the culture (doses of 10-4 M, 10-5 M, and 10-6 M) did not affect gill Na+,K+-ATPase. Injection of fish with actinomycin D prior to gill organ culture, however, prevented the increase in gill Na+,K+-ATPase activity in hyperosmotic media. The results show a very rapid and transitory increase in gill Na+,K+-ATPase activity in the first hours after the transfer of Fundulus heteroclitus to SW that is dependent on translational and transcriptional processes. (C) 2000 Wiley-Liss, Inc.

  17. Light-activated amino acid transport in Halobacterium halobium envelope vesicles

    NASA Technical Reports Server (NTRS)

    Macdonald, R. E.; Lanyi, J. K.

    1977-01-01

    Vesicles prepared from Halobacterium halobium cell envelopes accumulate amino acids in response to light-induced electrical and chemical gradients. Nineteen of 20 commonly occurring amino acids have been shown to be actively accumulated by these vesicles in response to illumination or in response to an artificially created Na+ gradient. On the basis of shared common carriers the transport systems can be divided into eight classes, each responsible for the transport of one or several amino acids: arginine, lysine, histidine; asparagine, glutamine; alanine, glycine, threonine, serine; leucine, valine, isoleucine, methionine; phenylalanine, tyrosine, tryptophan; aspartate; glutamate; proline. Available evidence suggests that these carriers are symmetrical in that amino acids can be transported equally well in both directions across the vesicle membranes. A tentative working model to account for these observations is presented.

  18. Molecular simulation of thermodynamic and transport properties for the H2O+NaCl system.

    PubMed

    Orozco, Gustavo A; Moultos, Othonas A; Jiang, Hao; Economou, Ioannis G; Panagiotopoulos, Athanassios Z

    2014-12-21

    Molecular dynamics and Monte Carlo simulations have been carried out to obtain thermodynamic and transport properties of the binary mixture H2O+NaCl at temperatures from T = 298 to 473 K. In particular, vapor pressures, liquid densities, viscosities, and vapor-liquid interfacial tensions have been obtained as functions of pressure and salt concentration. Several previously proposed fixed-point-charge models that include either Lennard-Jones (LJ) 12-6 or exponential-6 (Exp6) functional forms to describe non-Coulombic interactions were studied. In particular, for water we used the SPC and SPC/E (LJ) models in their rigid forms, a semiflexible version of the SPC/E (LJ) model, and the Errington-Panagiotopoulos Exp6 model; for NaCl, we used the Smith-Dang and Joung-Cheatham (LJ) parameterizations as well as the Tosi-Fumi (Exp6) model. While none of the model combinations are able to reproduce simultaneously all target properties, vapor pressures are well represented using the SPC plus Joung-Cheathem model combination, and all LJ models do well for the liquid density, with the semiflexible SPC/E plus Joung-Cheatham combination being the most accurate. For viscosities, the combination of rigid SPC/E plus Smith-Dang is the best alternative. For interfacial tensions, the combination of the semiflexible SPC/E plus Smith-Dang or Joung-Cheatham gives the best results. Inclusion of water flexibility improves the mixture densities and interfacial tensions, at the cost of larger deviations for the vapor pressures and viscosities. The Exp6 water plus Tosi-Fumi salt model combination was found to perform poorly for most of the properties of interest, in particular being unable to describe the experimental trend for the vapor pressure as a function of salt concentration. PMID:25527948

  19. Molecular simulation of thermodynamic and transport properties for the H2O+NaCl system

    NASA Astrophysics Data System (ADS)

    Orozco, Gustavo A.; Moultos, Othonas A.; Jiang, Hao; Economou, Ioannis G.; Panagiotopoulos, Athanassios Z.

    2014-12-01

    Molecular dynamics and Monte Carlo simulations have been carried out to obtain thermodynamic and transport properties of the binary mixture H2O+NaCl at temperatures from T = 298 to 473 K. In particular, vapor pressures, liquid densities, viscosities, and vapor-liquid interfacial tensions have been obtained as functions of pressure and salt concentration. Several previously proposed fixed-point-charge models that include either Lennard-Jones (LJ) 12-6 or exponential-6 (Exp6) functional forms to describe non-Coulombic interactions were studied. In particular, for water we used the SPC and SPC/E (LJ) models in their rigid forms, a semiflexible version of the SPC/E (LJ) model, and the Errington-Panagiotopoulos Exp6 model; for NaCl, we used the Smith-Dang and Joung-Cheatham (LJ) parameterizations as well as the Tosi-Fumi (Exp6) model. While none of the model combinations are able to reproduce simultaneously all target properties, vapor pressures are well represented using the SPC plus Joung-Cheathem model combination, and all LJ models do well for the liquid density, with the semiflexible SPC/E plus Joung-Cheatham combination being the most accurate. For viscosities, the combination of rigid SPC/E plus Smith-Dang is the best alternative. For interfacial tensions, the combination of the semiflexible SPC/E plus Smith-Dang or Joung-Cheatham gives the best results. Inclusion of water flexibility improves the mixture densities and interfacial tensions, at the cost of larger deviations for the vapor pressures and viscosities. The Exp6 water plus Tosi-Fumi salt model combination was found to perform poorly for most of the properties of interest, in particular being unable to describe the experimental trend for the vapor pressure as a function of salt concentration.

  20. Structure of the rotor ring modified with N,N′-dicyclohexylcarbodiimide of the Na+-transporting vacuolar ATPase

    PubMed Central

    Mizutani, Kenji; Yamamoto, Misaki; Suzuki, Kano; Yamato, Ichiro; Kakinuma, Yoshimi; Shirouzu, Mikako; Walker, John E.; Yokoyama, Shigeyuki; Iwata, So; Murata, Takeshi

    2011-01-01

    The prokaryotic V-ATPase of Enterococcus hirae, closely related to the eukaryotic enzymes, provides a unique opportunity to study the ion-translocation mechanism because it transports Na+, which can be detected by radioisotope () experiments and X-ray crystallography. In this study, we demonstrated that the binding affinity of the rotor ring (K ring) for decreased approximately 30-fold by reaction with N,N′-dicyclohexylcarbodiimide (DCCD), and determined the crystal structures of Na+-bound and Na+-unbound K rings modified with DCCD at 2.4- and 3.1-Å resolutions, respectively. Overall these structures were similar, indicating that there is no global conformational change associated with release of Na+ from the DCCD-K ring. A conserved glutamate residue (E139) within all 10 ion-binding pockets of the K ring was neutralized by modification with DCCD, and formed an “open” conformation by losing hydrogen bonds with the Y68 and T64 side chains, resulting in low affinity for Na+. This open conformation is likely to be comparable to that of neutralized E139 forming a salt bridge with the conserved arginine of the stator during the ion-translocation process. Based on these findings, we proposed the ion-translocation model that the binding affinity for Na+ decreases due to the neutralization of E139, thus releasing bound Na+, and that the structures of Na+-bound and Na+-unbound DCCD-K rings are corresponding to intermediate states before and after release of Na+ during rotational catalysis of V-ATPase, respectively. PMID:21813759

  1. /sup 22/Na+ and /sup 86/Rb+ transport in vascular smooth muscle of SHR, Wistar Kyoto, and Wistar rats

    SciTech Connect

    Kuriyama, S.; Denny, T.N.; Aviv, A.

    1988-06-01

    To gain further insight into differences in cellular Na+ and K+ regulation between the spontaneously hypertensive rat (SHR), Wistar Kyoto (WKY), and American Wistar (W) rats, 22Na+ and 86Rb+ washouts were performed under steady-state conditions in cultured vascular smooth muscle cells from the three rat strains. SHR vascular smooth muscle cells showed significantly higher bumetanide sensitive 86Rb+ washout rate constant (x 10(-4)/min; mean +/- SEM) than WKY cells (-38.6 +/- 2.84 and -23.8 +/- 3.58, respectively; p less than 0.005). SHR vascular smooth muscle cells also exhibited significantly higher values than WKY cells in the total 22Na+ washout rate constant (x 10(-2)/min) (-61.0 +/- 1.57 vs. -53.8 +/- 1.24; p less than 0.005). The amiloride sensitive component of the 22Na+ washout rate constant accounted for these differences (-18.6 +/- 1.04 for SHR and -12.1 +/- 2.00 for WKY; p less than 0.05). There were no apparent differences in cellular Na+ concentrations between WKY and SHR cells. In general, the 86Rb+ and 22Na+ washout parameters of W rat cells were quite similar to those of cells from SHR. We conclude that the bumetanide-sensitive 86Rb+ washout (the Na+ K+-cotransport), the overall, and the amiloride-sensitive 22Na+ washout (the latter primarily represents the Na+/H+ antiport) are higher in SHR than WKY rat vascular smooth muscle cells. These findings indicate innate differences in cellular Na+ and K+ transport in vascular smooth muscle cells of the SHR and WKY rat. The mechanisms responsible for these differences are yet to be determined.

  2. Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance.

    PubMed

    Huang, Shaobai; Spielmeyer, Wolfgang; Lagudah, Evans S; Munns, Rana

    2008-01-01

    Salt tolerance of plants depends on HKT transporters (High-affinity K(+) Transporter), which mediate Na(+)-specific transport or Na(+)-K(+) co-transport. Gene sequences closely related to rice HKT genes were isolated from hexaploid bread wheat (Triticum aestivum) or barley (Hordeum vulgare) for genomic DNA southern hybridization analysis. HKT gene sequences were mapped on chromosomal arms of wheat and barley using wheat chromosome substitution lines and barley-wheat chromosome addition lines. In addition, HKT gene members in the wild diploid wheat ancestors, T. monococcum (A(m) genome), T. urartu (A(u) genome), and Ae. tauschii (D(t) genome) were investigated. Variation in copy number for individual HKT gene members was observed between the barley, wheat, and rice genomes, and between the different wheat genomes. HKT2;1/2-like, HKT2;3/4-like, HKT1;1/2-like, HKT1;3-like, HKT1;4-like, and HKT1;5-like genes were mapped to the wheat-barley chromosome groups 7, 7, 2, 6, 2, and 4, respectively. Chromosomal regions containing HKT genes were syntenic between wheat and rice except for the chromosome regions containing the HKT1;5-like gene. Potential roles of HKT genes in Na(+) transport in rice, wheat, and barley are discussed. Determination of the chromosome locations of HKT genes provides a framework for future physiological and genetic studies investigating the relationships between HKT genes and salt tolerance in wheat and barley. PMID:18325922

  3. The effect of juvenile hormone III, methyl farnesoate, and methoprene on Na/K-ATPase activity in larvae of the brine shrimp, Artemia.

    PubMed

    Ahl, J S; Brown, J J

    1991-01-01

    1. Ion transport enzyme (Na/K-ATPase) activity in stage III larvae of the brine shrimp, Artemia, remains elevated throughout the stadium when populations are exposed to methoprene in artificial seawater. 2. Infusion of methoprene, juvenile hormone, or methyl farnesoate causes increased Na/K-ATPase activity in homogenates of mid-stadium larvae that would otherwise exhibit low activity. 3. The sensitivity of the enzyme system to extremely low concentrations of the juvenoids suggests that this may be a common mode of action of these compounds. Additionally it suggests that the enzyme may be under the influence of a similar compound present in the larvae. PMID:1682091

  4. Active matter transport on complex substrates

    NASA Astrophysics Data System (ADS)

    Olson Reichhardt, C. J.; Ray, D.; Reichhardt, C.

    2014-09-01

    Colloids interacting with complex landscapes created by optical means exhibit a remarkable variety of novel orderings and equilibrium states. It is also possible to study nonequilibrium properties for colloids driven over optical traps when there is an additional external electric field or some other form of external driving. Recently a new type of colloidal system has been realized in which the colloids are self-driven or self-motile and undergo a persistent random walk. Self motile particle systems fall into the broader class of self-driven systems called active matter. For the case of externally driven colloidal particles moving over random or periodic arrangements of traps, various types of pinning or jamming effects can arise. Far less is known about the mobility of active matter particles in the presence or random or periodic substrates. For example, it is not known whether increasing the activity of the particles would reduce the jamming effects caused by effective friction between particles. Here we show by varying the activity and the density of active particles that various types of motion can arise. In some cases, increasing the self-driving leads to a reduction in the net flow of particles through the system.

  5. Follistatin-like 1 suppresses sensory afferent transmission by activating Na+,K+-ATPase.

    PubMed

    Li, Kai-Cheng; Zhang, Fang-Xiong; Li, Chang-Lin; Wang, Feng; Yu, Ming-Yan; Zhong, Yan-Qing; Zhang, Kai-Hua; Lu, Ying-Jin; Wang, Qiong; Ma, Xiao-Li; Yao, Jun-Ru; Wang, Jin-Yuan; Lin, Li-Bo; Han, Mei; Zhang, Yu-Qiu; Kuner, Rohini; Xiao, Hua-Sheng; Bao, Lan; Gao, Xiang; Zhang, Xu

    2011-03-10

    Excitatory synaptic transmission is modulated by inhibitory neurotransmitters and neuromodulators. We found that the synaptic transmission of somatic sensory afferents can be rapidly regulated by a presynaptically secreted protein, follistatin-like 1 (FSTL1), which serves as a direct activator of Na(+),K(+)-ATPase (NKA). The FSTL1 protein is highly expressed in small-diameter neurons of the dorsal root ganglion (DRG). It is transported to axon terminals via small translucent vesicles and secreted in both spontaneous and depolarization-induced manners. Biochemical assays showed that FSTL1 binds to the α1 subunit of NKA and elevates NKA activity. Extracellular FSTL1 induced membrane hyperpolarization in cultured cells and inhibited afferent synaptic transmission in spinal cord slices by activating NKA. Genetic deletion of FSTL1 in small DRG neurons of mice resulted in enhanced afferent synaptic transmission and sensory hypersensitivity, which could be reduced by intrathecally applied FSTL1 protein. Thus, FSTL1-dependent activation of NKA regulates the threshold of somatic sensation. PMID:21382556

  6. Presynaptic Na+-dependent transport and exocytose of GABA and glutamate in brain in hypergravity.

    NASA Astrophysics Data System (ADS)

    Borisova, T.; Pozdnyakova, N.; Krisanova, N.; Himmelreich, N.

    γ-Aminobutyric acid (GABA) and L-glutamate are the most widespread neurotransmitter amino acids in the mammalian central nervous system. GABA is now widely recognized as the major inhibitory neurotransmitter. L-glutamate mediates the most of excitatory synaptic neurotransmission in the brain. They involved in the main aspects of normal brain function. The nerve terminals (synaptosomes) offer several advantages as a model system for the study of general mechanisms of neurosecretion. Our data allowed to conclude that exposure of animals to hypergravity (centrifugation of rats at 10G for 1 hour) had a profound effect on synaptic processes in brain. Comparative analysis of uptake and release of GABA and glutamate have demonstrated that hypergravity loading evokes oppositely directed alterations in inhibitory and excitatory signal transmission. We studied the maximal velocities of [^3H]GABA reuptake and revealed more than twofold enhancement of GABA transporter activity (Vmax rises from 1.4 |pm 0.3 nmol/min/mg of protein in the control group to 3.3 ± 0.59 nmol/min/mg of protein for animals exposed to hypergravity (P ≤ 0.05)). Recently we have also demonstrated the significant lowering of glutamate transporter activity (Vmax of glutamate reuptake decreased from 12.5 ± 3.2 nmol/min/mg of protein in the control group to 5.6 ± 0.9 nmol/min/mg of protein in the group of animals, exposed to the hypergravity stress (P ≤ 0.05)). Significant changes occurred in release of neurotransmitters induced by stimulating exocytosis with the agents, which depolarized nerve terminal plasma membrane. Depolarization-evoked Ca2+-stimulated release was more abundant for GABA (7.2 ± 0.54% and 11,74 ±1,2 % of total accumulated label for control and hypergravity, respectively (P≤0.05)) and was essentially less for glutamate (14.4 ± 0.7% and 6.2 ± 1.9%) after exposure of animals to centrifuge induced artificial gravity. Changes observed in depolarization-evoked exocytotic release

  7. Activating Na+-K+ ATPase: a potential cardioprotective therapy during early hemorrhagic shock.

    PubMed

    Li, Weijing; Wang, Xuanlin; He, Min; Wang, Chunyan; Qiao, Zhixin; Wang, Qingjun; Ren, Suping; Yu, Qun

    2014-12-01

    Cell volume and resting potential are heavily affected by the activity of Na+-K+ ATPase (NKA, Na+-K+ pump), an essential membrane protein that regulates plasma K+ and Na+ levels. It is generally accepted that the ineffective perfusion of body tissues inhibits NKA activity and that NKA activity and heart failure are closely related. Recently, research has proven that the activation of NKA provides significant cardioprotection against ischemic injury. Based on these data, we propose that NKA stimulation could attenuate the development of heart arrhythmia during the early phase of hemorrhagic shock. PMID:25459134

  8. Classroom Activities in Transportation: Technology Education.

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Public Instruction, Madison.

    This curriculum supplement was designed to correlate directly with "A Guide to Curriculum Planning in Technology Education," published by the Wisconsin Department of Public Instruction. It is also a companion book to three other classroom activity compilations, one in each of the other three major systems of technology--manufacturing,…

  9. Activation of a new proline transport system in Salmonella typhimurium.

    PubMed

    Ekena, K; Liao, M K; Maloy, S

    1990-06-01

    Proline uptake can be mediated by three different transport systems in wild-type Salmonella typhimurium: a high-affinity proline transport system encoded by the putP gene and two glycine-betaine transport systems with a low affinity for proline encoded by the proP and proU genes. However, only the PutP permease transports proline well enough t allow growth on proline as a sole carbon or nitrogen source. By selecting for mutations that allow a putP mutant to grow on proline as a sole nitrogen source, we isolated mutants (designated proZ) that appeared to activate a cryptic proline transport system. These mutants enhanced the transport of proline and proline analogs but did not require the function of any of the known proline transport genes. The mutations mapped between 75 and 77.5 min on the S. typhimurium linkage map. Proline transport by the proZ mutants was competitively inhibited by isoleucine and leucine, which suggests that the ProZ phenotype may be due to unusual mutations that alter the substrate specificity of the branched-chain amino acid transport system encoded by the liv genes. PMID:2160931

  10. Electronic Transport Properties of New 2-D Materials GeH and NaSn2As2

    NASA Astrophysics Data System (ADS)

    He, Bin; Cultrara, Nicholas; Arguilla, Maxx; Goldberger, Joshua; Heremans, Joseph

    2-D materials potentially have superior thermoelectric properties compared to traditional 3-D materials due to their layered structure. Here we present electrical and thermoelectric transport properties of 2 types of 2-D materials, GeH and NaSn2As2. GeH is a graphane analog which is prepared using chemical exfoliation of CaGe2 crystals. Intrinsic GeH is proven to be a highly resistive material at room temperature. Resistance and Seebeck coefficient of Ga doped GeH are measured in a cryostat with a gating voltage varying from -100V to 100V. NaSn2As2 is another 2-D system, with Na atom embedded between nearly-2D Sn-As layers. Unlike GeH, NaSn2As2 is a metal based of Hall measurements, with p-type behavior, and with van der Pauw resistances on the order of 5m Ω/square. Thermoelectric transport properties of NaSn2As2 will be reported. This work is support by the NSF EFRI-2DARE project EFRI-1433467.

  11. Active Transportation to School: Findings from a National Survey

    ERIC Educational Resources Information Center

    Fulton, Janet E.; Shisler, Jessica L.; Yore, Michelle M.; Caspersen, Carl J.

    2005-01-01

    In the past, active transportation to school offered an important source of daily physical activity for youth; more recently, however, factors related to distance, safety, or physical or social environments may have contributed to the proportion of children who travel to school by motorized vehicle. The authors examine the characteristics of…

  12. Microchamber Device for Detection of Transporter Activity of Adherent Cells

    PubMed Central

    Tsugane, Mamiko; Uejima, Etsuko; Suzuki, Hiroaki

    2015-01-01

    We present a method to detect the transporter activity of intact adherent cells using a microchamber device. When adherent cells are seeded onto the poly-di-methyl siloxane substrate having microchambers with openings smaller than the size of a cell, the cells form a confluent layer that covers the microchambers, creating minute, confined spaces. As substances exported across the cell membrane accumulate, transporter activity can be detected by observing the fluorescence intensity increase in the microchamber. We tested the microchamber device with HeLa cells over-expressing MDR1, an ATP-binding cassette transporter, and succeeded in detecting the transport of fluorescence-conjugated paclitaxel, the anti-cancer drug, at the single-cell level. PMID:25853126

  13. Leishmania amazonensis: PKC-like protein kinase modulates the (Na++K+)ATPase activity.

    PubMed

    Almeida-Amaral, Elmo Eduardo de; Caruso-Neves, Celso; Lara, Lucienne Silva; Pinheiro, Carla Mônica; Meyer-Fernandes, José Roberto

    2007-08-01

    The present study aimed to identify the presence of protein kinase C-like (PKC-like) in Leishmania amazonensis and to elucidate its possible role in the modulation of the (Na(+)+K(+))ATPase activity. Immunoblotting experiments using antibody against a consensus sequence (Ac 543-549) of rabbit protein kinase C (PKC) revealed the presence of a protein kinase of 80 kDa in L. amazonensis. Measurements of protein kinase activity showed the presence of both (Ca(2+)-dependent) and (Ca(2+)-independent) protein kinase activity in plasma membrane and cytosol. Phorbol ester (PMA) activation of the Ca(2+)-dependent protein kinase stimulated the (Na(+)+K(+))ATPase activity, while activation of the Ca(2+)-independent protein kinase was inhibitory. Both effects of protein kinase on the (Na(+)+K(+))ATPase of the plasma membrane were lower than that observed in intact cells. PMA induced the translocation of protein kinase from cytosol to plasma membrane, indicating that the maximal effect of protein kinase on the (Na(+)+K(+))ATPase activity depends on the synergistic action of protein kinases from both plasma membrane and cytosol. This is the first demonstration of a protein kinase activated by PMA in L. amazonensis and the first evidence for a possible role in the regulation of the (Na(+)+K(+))ATPase activity in this trypanosomatid. Modulation of the (Na(+)+K(+))ATPase by protein kinase in a trypanosomatid opens up new possibilities to understand the regulation of ion homeostasis in this parasite. PMID:17475255

  14. Ca2+ transport capacity of sarcolemmal Na+-Ca2+ exchange. Extrapolation of vesicle data to in vivo conditions.

    PubMed

    Philipson, K D; Ward, R

    1986-09-01

    Na+-Ca2+ exchange activity is high in cardiac sarcolemmal vesicles suggesting an important physiologic role. Vesicular Na+-Ca2+ exchange, however, is usually measured under conditions which are far from physiologic. Using sarcolemmal vesicles, we have estimated the possible significance of both Ca2+ influx and efflux mediated by Na+-Ca2+ exchange under approximate in vivo ionic conditions. In this situation, Na+-Ca2+ exchange activity is far from maximal with intracellular Mg2+ causing significant inhibition. The capacity of the Na+-Ca2+ exchange system to extrude intracellular Ca2+ (at [Ca2+] = 6.0 microM) is about 1.2 mumol Ca2+/kg wet weight/s and approximately equals the capacity of the sarcolemmal ATP-dependent Ca2+ pump. The capacity of the sarcoplasmic reticular Ca2+ pump to remove cytoplasmic Ca2+ is much larger. Significant Ca2+ influx through the exchanger is unlikely to occur in normal mammalian myocardium and would require reduced extracellular Na+ or elevated intracellular Na+. PMID:3783729

  15. L-leucine, L-methionine, and L-phenylalanine share a Na(+)/K (+)-dependent amino acid transporter in shrimp hepatopancreas.

    PubMed

    Duka, Ada; Ahearn, Gregory A

    2013-08-01

    max in the same medium. These results suggest that shrimp BBMV transport (3)H-L-leucine by a single L-methionine- and L-phenylalanine-shared carrier system that is enhanced by acidic pH and can be stimulated by either Na(+) or K(+) acting as co-transport drivers binding to shared activator sites. PMID:23615795

  16. Activation of Na-H exchange by intracellular lithium in barnacle muscle fibers.

    PubMed

    Davis, B A; Hogan, E M; Boron, W F

    1992-07-01

    We internally dialyzed single barnacle muscle fibers (BMF) for 90 min with a dialysis fluid (DF) containing no Na+ and either 0 or 100 mM Li+ and measured intracellular pH (pHi) with a microelectrode. During dialysis, the pH 8.0 artificial seawater (ASW) contained neither Na+ nor HCO3-. After we halted dialysis with a Li(+)-free/low-pH DF and allowed pHi to stabilize at approximately 6.8, adding 440 mM Na(+)-10 mM HCO3- to the ASW caused pHi to recover rapidly and stabilize at 7.32. In contrast, when the DF contained 100 mM Li+, pHi stabilized at 7.49. In fibers dialyzed to a pHi of approximately 7.2, Li+ stimulated a component of acid extrusion that was dependent on Na+ but not affected by SITS. Thus Li+ activates a Na(+)-dependent acid-extrusion mechanism other than the well characterized Na(+)-dependent Cl-HCO3 exchanger. To study the Li(+)-activated mechanism, we minimized Na(+)-dependent Cl-HCO3 exchange by raising pHDF to 7.35 and pretreated BMFs with SITS. We found that dialysis with Li+ elicits a Na(+)-dependent pHi increase that is largely blocked by amiloride, consistent with the hypothesis that Li+ activates a latent Na-H exchanger even at a normal pHi. In the absence of Li+, the Na-H exchanger is relatively inactive at pHi 7.35 (net acid-extrusion rate, Jnet = 9.5 microM/min) but modestly stimulated by reducing pHi to 6.8 (Jnet = 64 microM/min). In the presence of Li+, the Na-H exchanger is very active at pHi values of both 7.35 (Jnet = 141 microM/min) and 6.8 (Jnet = 168 microM/min). Thus Li+ alters the pHi sensitivity of the Na-H exchanger. Because the Na-H exchanger is only approximately 6% as active as the Na(+)-dependent Cl-HCO3 exchanger in the absence of Li+ at a pHi of approximately 6.8, we suggest that the major role of the Na-H exchanger may not be in pHi regulation but in another function such as cell-volume regulation. PMID:1322042

  17. Thyroid hormones increase Na -H exchange activity in renal brush border membranes

    SciTech Connect

    Kinsella, J.; Sacktor, B.

    1985-06-01

    Na -H exchange activity, i.e., amiloride-sensitive Na and H flux, in renal proximal tubule brush border (luminal) membrane vesicles was increased in the hyperthyroid rat and decreased in the hypothyroid rat, relative to the euthyroid animal. A positive correlation was found between Na -H exchange activity and serum concentrations of thyroxine (T4) and triiodothyronine (T3). The thyroid status of the animal did not alter amiloride-insensitive Na uptake. The rate of passive pH gradient dissipation was higher in membrane vesicles from hyperthyroid rats compared to the rate in vesicles from hypothyroid animals, a result which would tend to limit the increase in Na uptake in vesicles from hyperthyroid animals. Na -dependent phosphate uptake was increased in membrane vesicles from hyperthyroid rats; Na -dependent D-glucose and L-proline uptakes were not changed by the thyroid status of the animal. The effect of thyroid hormones in increasing the uptake of Na in the brush border membrane vesicle is consistent with the action of the hormones in enhancing renal Na reabsorption.

  18. DIDS inhibits Na-K-ATPase activity in porcine nonpigmented ciliary epithelial cells by a Src family kinase-dependent mechanism.

    PubMed

    Shahidullah, Mohammad; Wei, Guojun; Delamere, Nicholas A

    2013-09-01

    The anion transport inhibitor DIDS is known to reduce aqueous humor secretion but questions remain about anion dependence of the effect. In some tissues, DIDS is reported to cause Na-K-ATPase inhibition. Here, we report on the ability of DIDS to inhibit Na-K-ATPase activity in nonpigmented ciliary epithelium (NPE) and investigate the underlying mechanism. Porcine NPE cells were cultured to confluence on permeable supports, treated with drugs added to both sides of the membrane, and then used for (86)Rb uptake measurements or homogenized to measure Na-K-ATPase activity or to detect protein phosphorylation. DIDS inhibited ouabain-sensitive (86)Rb uptake, activated Src family kinase (SFK), and caused a reduction of Na-K-ATPase activity. PP2, an SFK inhibitor, prevented the DIDS responses. In BCECF-loaded NPE, DIDS was found to reduce cytoplasmic pH (pHi). PP2-sensitive Na-K-ATPase activity inhibition, (86)Rb uptake suppression, and SFK activation were observed when a similar reduction of pHi was imposed by low-pH medium or an ammonium chloride withdrawal maneuver. PP2 and the ERK inhibitor U0126 prevented robust ERK1/2 activation in cells exposed to DIDS or subjected to pHi reduction, but U0126 did not prevent SFK activation or the Na-K-ATPase activity response. The evidence points to an inhibitory influence of DIDS on NPE Na-K-ATPase activity by a mechanism that hinges on SFK activation associated with a reduction of cytoplasmic pH. PMID:23677800

  19. Advocacy for active transport: advocate and city council perspectives

    PubMed Central

    2010-01-01

    Background Effective advocacy is an important part of efforts to increase population participation in physical activity. Research about effective health advocacy is scarce, however, the health sector can learn from the experiences and knowledge of community advocates and those who are on the receiving end of this advocacy. The aim of this study is to explore advocacy for active transport from the perspectives of community advocates and representatives from City councils. Methods Cycling and walking advocates were identified from the local contact list of Cycling Advocates Network and Living Streets Aotearoa. Semi-structured telephone interviews were conducted with cycle and walking advocates from throughout New Zealand. Advocates also nominated a suitable council officer at their local City council to be interviewed. Interviews were recorded and transcribed and categories of responses for each of the questions created. Results Several processes were used by advocates to engage with council staff, including formal council submissions, meetings, stakeholder forums and partnership in running community events promoting active transport. Several other agencies were identified as being influential for active transport, some as potential coalition partners and others as potential adversaries. Barriers to improving conditions for active transport included a lack of funding, a lack of will-power among either council staff or councillors, limited council staff capacity (time or training) and a culture of providing infrastructure for motor vehicles instead of people. Several suggestions were made about how the health sector could contribute to advocacy efforts, including encouraging political commitment, engaging the media, communicating the potential health benefits of active transport to the general public and being role models in terms of personal travel mode choice and having workplaces that support participation in active transport. Conclusions There is potential for the

  20. Active water transport in unicellular algae: where, why, and how.

    PubMed

    Raven, John A; Doblin, Martina A

    2014-12-01

    The occurrence of active water transport (net transport against a free energy gradient) in photosynthetic organisms has been debated for several decades. Here, active water transport is considered in terms of its roles, where it is found, and the mechanisms by which it could occur. First there is a brief consideration of the possibility of active water transport into plant xylem in the generation of root pressure and the refilling of embolized xylem elements, and from an unsaturated atmosphere into terrestrial organisms living in habitats with limited availability of liquid water. There is then a more detailed consideration of volume and osmotic regulation in wall-less freshwater unicells, and the possibility of generation of buoyancy in marine phytoplankton such as large-celled diatoms. Calculations show that active water transport is a plausible mechanism to assist cells in upwards vertical movements, requires less energy than synthesis of low-density organic solutes, and potentially on a par with excluding certain ions from the vacuole. PMID:25205578

  1. NEURONAL ACTIVITY REGULATES GLUTAMATE TRANSPORTER DYNAMICS IN DEVELOPING ASTROCYTES

    PubMed Central

    Benediktsson, A.M.; Marrs, G.S.; Tu, J.C.; Worley, P.F.; Rothstein, J.D.; Bergles, D.E.; Dailey, M.E.

    2011-01-01

    Glutamate transporters maintain a low ambient level of glutamate in the CNS and shape the activation of glutamate receptors at synapses. Nevertheless, the mechanisms that regulate the trafficking and localization of transporters near sites of glutamate release are poorly understood. Here we examined the subcellular distribution and dynamic remodeling of the predominant glutamate transporter GLT-1 (EAAT2) in developing hippocampal astrocytes. Immunolabeling revealed that endogenous GLT-1 is concentrated into discrete clusters along branches of developing astrocytes that were apposed preferentially to synapsin-1 positive synapses. GFP-GLT-1 fusion proteins expressed in astrocytes also formed distinct clusters that lined the edges of astrocyte processes, as well as the tips of filopodia and spine-like structures. Time-lapse 3D confocal imaging in tissue slices revealed that GFP-GLT-1 clusters were dynamically remodeled on a timescale of minutes. Some transporter clusters moved within developing astrocyte branches as filopodia extended and retracted, while others maintained stable positions at the tips of spine-like structures. Blockade of neuronal activity with tetrodotoxin reduced both the density and perisynaptic localization of GLT-1 clusters. Conversely, enhancement of neuronal activity increased the size of GLT-1 clusters and their proximity to synapses. Together, these findings indicate that neuronal activity influences both the organization of glutamate transporters in developing astrocyte membranes and their position relative to synapses. PMID:22052455

  2. Acute inhibition of NCC does not activate distal electrogenic Na+ reabsorption or kaliuresis.

    PubMed

    Hunter, Robert W; Craigie, Eilidh; Homer, Natalie Z M; Mullins, John J; Bailey, Matthew A

    2014-02-15

    Na(+) reabsorption from the distal renal tubule involves electroneutral and electrogenic pathways, with the latter promoting K(+) excretion. The relative activities of these two pathways are tightly controlled, participating in the minute-to-minute regulation of systemic K(+) balance. The pathways are interdependent: the activity of the NaCl cotransporter (NCC) in the distal convoluted tubule influences the activity of the epithelial Na(+) channel (ENaC) downstream. This effect might be mediated by changes in distal Na(+) delivery per se or by molecular and structural adaptations in the connecting tubule and collecting ducts. We hypothesized that acute inhibition of NCC activity would cause an immediate increase in Na(+) flux through ENaC, with a concomitant increase in renal K(+) excretion. We tested this using renal clearance methodology in anesthetized mice, by the administration of hydrochlorothiazide (HCTZ) and/or benzamil (BZM) to exert specific blockade of NCC and ENaC, respectively. Bolus HCTZ elicited a natriuresis that was sustained for up to 110 min; urinary K(+) excretion was not affected. Furthermore, the magnitude of the natriuresis was no greater during concomitant BZM administration. This suggests that ENaC-mediated Na(+) reabsorption was not normally limited by Na(+) delivery, accounting for the absence of thiazide-induced kaliuresis. After dietary Na(+) restriction, HCTZ elicited a kaliuresis, but the natiuretic effect of HCTZ was not enhanced by BZM. Our findings support a model in which inhibition of NCC activity does not increase Na(+) reabsorption through ENaC solely by increasing distal Na(+) delivery but rather by inducing a molecular and structural adaptation in downstream nephron segments. PMID:24402096

  3. Identifying Clusters of Active Transportation Using Spatial Scan Statistics

    PubMed Central

    Huang, Lan; Stinchcomb, David G.; Pickle, Linda W.; Dill, Jennifer; Berrigan, David

    2009-01-01

    Background There is an intense interest in the possibility that neighborhood characteristics influence active transportation such as walking or biking. The purpose of this paper is to illustrate how a spatial cluster identification method can evaluate the geographic variation of active transportation and identify neighborhoods with unusually high/low levels of active transportation. Methods Self-reported walking/biking prevalence, demographic characteristics, street connectivity variables, and neighborhood socioeconomic data were collected from respondents to the 2001 California Health Interview Survey (CHIS; N=10,688) in Los Angeles County (LAC) and San Diego County (SDC). Spatial scan statistics were used to identify clusters of high or low prevalence (with and without age-adjustment) and the quantity of time spent walking and biking. The data, a subset from the 2001 CHIS, were analyzed in 2007–2008. Results Geographic clusters of significantly high or low prevalence of walking and biking were detected in LAC and SDC. Structural variables such as street connectivity and shorter block lengths are consistently associated with higher levels of active transportation, but associations between active transportation and socioeconomic variables at the individual and neighborhood levels are mixed. Only one cluster with less time spent walking and biking among walkers/bikers was detected in LAC, and this was of borderline significance. Age-adjustment affects the clustering pattern of walking/biking prevalence in LAC, but not in SDC. Conclusions The use of spatial scan statistics to identify significant clustering of health behaviors such as active transportation adds to the more traditional regression analysis that examines associations between behavior and environmental factors by identifying specific geographic areas with unusual levels of the behavior independent of predefined administrative units. PMID:19589451

  4. Role of the transmembrane and extracytoplasmic domain of beta subunits in subunit assembly, intracellular transport, and functional expression of Na,K-pumps

    PubMed Central

    1993-01-01

    The ubiquitous Na,K- and the gastric H,K-pumps are heterodimeric plasma membrane proteins composed of an alpha and a beta subunit. The H,K- ATPase beta subunit (beta HK) can partially act as a surrogate for the Na,K-ATPase beta subunit (beta NK) in the formation of functional Na,K- pumps (Horisberger et al., 1991. J. Biol. Chem. 257:10338-10343). We have examined the role of the transmembrane and/or the ectodomain of beta NK in (a) its ER retention in the absence of concomitant synthesis of Na,K-ATPase alpha subunits (alpha NK) and (b) the functional expression of Na,K-pumps at the cell surface and their activation by external K+. We have constructed chimeric proteins between Xenopus beta NK and rabbit beta HK by exchanging their NH2-terminal plus transmembrane domain with their COOH-terminal ectodomain (beta NK/HK, beta HK/NK). We have expressed these constructs with or without coexpression of alpha NK in the Xenopus oocyte. In the absence of alpha NK, Xenopus beta NK and all chimera that contained the ectodomain of beta NK were retained in the ER while beta HK and all chimera with the ectodomain of beta HK could leave the ER suggesting that ER retention of unassembled Xenopus beta NK is mediated by a retention signal in the ectodomain. When coexpressed with alpha NK, only beta NK and beta NK/HK chimera assembled efficiently with alpha NK leading to similar high expression of functional Na,K-pumps at the cell surface that exhibited, however, a different apparent K+ affinity. beta HK or chimera with the transmembrane domain of beta HK assembled less efficiently with alpha NK leading to lower expression of functional Na,K-pumps with a different apparent K+ affinity. The data indicate that the transmembrane domain of beta NK is important for efficient assembly with alpha NK and that both the transmembrane and the ectodomain of beta subunits play a role in modulating the transport activity of Na,K- pumps. PMID:8276895

  5. Nonsynonymous single nucleotide polymorphisms of NHE3 differentially decrease NHE3 transporter activity

    PubMed Central

    Zhu, Xinjun Cindy; Sarker, Rafiquel; Horton, John R.; Chakraborty, Molee; Chen, Tian-E; Tse, C. Ming; Cha, Boyoung

    2015-01-01

    Genetic determinants appear to play a role in susceptibility to chronic diarrhea, but the genetic abnormalities involved have only been identified in a few conditions. The Na+/H+ exchanger 3 (NHE3) accounts for a large fraction of physiologic intestinal Na+ absorption. It is highly regulated through effects on its intracellular COOH-terminal regulatory domain. The impact of genetic variation in the NHE3 gene, such as single nucleotide polymorphisms (SNPs), on transporter activity remains unexplored. From a total of 458 SNPs identified in the entire NHE3 gene, we identified three nonsynonymous mutations (R474Q, V567M, and R799C), which were all in the protein's intracellular COOH-terminal domain. Here we evaluated whether these SNPs affect NHE3 activity by expressing them in a mammalian cell line that is null for all plasma membrane NHEs. These variants significantly reduced basal NHE3 transporter activity through a reduction in intrinsic NHE3 function in variant R474Q, abnormal trafficking in variant V567M, or defects in both intrinsic NHE3 function and trafficking in variant R799C. In addition, variants NHE3 R474Q and R799C failed to respond to acute dexamethasone stimulation, suggesting cells with these mutant proteins might be defective in NHE3 function during postprandial stimulation and perhaps under stressful conditions. Finally, variant R474Q was shown to exhibit an aberrant interaction with calcineurin B homologous protein (CHP), an NHE3 regulatory protein required for basal NHE3 activity. Taken together, these results demonstrate decreased transport activity in three SNPs of NHE3 and provide mechanistic insight into how these SNPs impact NHE3 function. PMID:25715704

  6. Prolonged Intracellular Na+ Dynamics Govern Electrical Activity in Accessory Olfactory Bulb Mitral Cells.

    PubMed

    Zylbertal, Asaph; Kahan, Anat; Ben-Shaul, Yoram; Yarom, Yosef; Wagner, Shlomo

    2015-12-01

    Persistent activity has been reported in many brain areas and is hypothesized to mediate working memory and emotional brain states and to rely upon network or biophysical feedback. Here, we demonstrate a novel mechanism by which persistent neuronal activity can be generated without feedback, relying instead on the slow removal of Na+ from neurons following bursts of activity. We show that mitral cells in the accessory olfactory bulb (AOB), which plays a major role in mammalian social behavior, may respond to a brief sensory stimulation with persistent firing. By combining electrical recordings, Ca2+ and Na+ imaging, and realistic computational modeling, we explored the mechanisms underlying the persistent activity in AOB mitral cells. We found that the exceptionally slow inward current that underlies this activity is governed by prolonged dynamics of intracellular Na+ ([Na+]i), which affects neuronal electrical activity via several pathways. Specifically, elevated dendritic [Na+]i reverses the Na+-Ca2+ exchanger activity, thus modifying the [Ca2+]i set-point. This process, which relies on ubiquitous membrane mechanisms, is likely to play a role in other neuronal types in various brain regions. PMID:26674618

  7. Prolonged Intracellular Na+ Dynamics Govern Electrical Activity in Accessory Olfactory Bulb Mitral Cells

    PubMed Central

    Zylbertal, Asaph; Kahan, Anat; Ben-Shaul, Yoram; Yarom, Yosef; Wagner, Shlomo

    2015-01-01

    Persistent activity has been reported in many brain areas and is hypothesized to mediate working memory and emotional brain states and to rely upon network or biophysical feedback. Here, we demonstrate a novel mechanism by which persistent neuronal activity can be generated without feedback, relying instead on the slow removal of Na+ from neurons following bursts of activity. We show that mitral cells in the accessory olfactory bulb (AOB), which plays a major role in mammalian social behavior, may respond to a brief sensory stimulation with persistent firing. By combining electrical recordings, Ca2+ and Na+ imaging, and realistic computational modeling, we explored the mechanisms underlying the persistent activity in AOB mitral cells. We found that the exceptionally slow inward current that underlies this activity is governed by prolonged dynamics of intracellular Na+ ([Na+]i), which affects neuronal electrical activity via several pathways. Specifically, elevated dendritic [Na+]i reverses the Na+-Ca2+ exchanger activity, thus modifying the [Ca2+]i set-point. This process, which relies on ubiquitous membrane mechanisms, is likely to play a role in other neuronal types in various brain regions. PMID:26674618

  8. Transport of graphene oxide in saturated porous media: effect of cation composition in mixed Na-Ca electrolyte systems.

    PubMed

    Fan, W; Jiang, X H; Yang, W; Geng, Z; Huo, M X; Liu, Z M; Zhou, H

    2015-04-01

    The influence of cation composition in mixed Na-Ca electrolyte systems on the transport of graphene oxide particles in saturated porous media was studied. Column experiments were conducted to elucidate the transport behavior of GO by varied molar ratios of Ca2+/Na+ but of constant ionic strength (IS). The results show that retention of GO in sand column is strongly dependent on IS in the presence of Ca2+, featuring serious deposition rates (Rd) at the higher IS of 10 mM. The maximum Rd was 48.22% at 1 mM and 98.53% at 10 mM. However, there was no obvious difference in GO retention in solutions that only contained Na+ when the IS increased from 1 to 10 mM, and the Rd was 35.17% and 38.21% respectively. The molar ratio of Ca2+/Na+ in solution was much more influential in altering the particle retention behavior at the higher IS of 10 mM, compared with little influence at 1 mM. It was supposed that compression of diffuse double layers mainly controlled GO deposition under lower IS, while charge neutrality and metal (Ca2+) bridging played a significant role at the higher IS. A numerical advection-dispersion-retention model considering the combined processes of Langmuirian dynamics blocking and depth-dependent straining was successfully developed to simulate the transport process of GO through the sand column. Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energy calculations were also performed to better understand the mechanisms of GO mobility. Coupling analysis of breakthrough experiments, DLVO theory and numerical modeling in this work provides insight into the mechanisms of GO transport in saturated porous media and is useful for reliable prediction of nanoparticle penetration through the vadose zone. PMID:25577737

  9. APP anterograde transport requires Rab3A GTPase activity for assembly of the transport vesicle

    PubMed Central

    Szodorai, A; Kuan, Y-H; Hunzelmann, S; Engel, U; Sakane, A; Sasaki, T; Takai, Y; Kirsch, J; Müller, U; Beyreuther, K; Brady, S; Morfini, G; Kins, S

    2010-01-01

    The amyloid precursor protein (APP) may be sequentially cleaved by β- and γ-secretases leading to accumulation of Aβ peptides in brains of Alzheimer’s Disease patients. Cleavage by α-secretase prevents Aβ generation. APP is anterogradely transported by conventional kinesin in a distinct transport vesicle, but both the biochemical composition of such a vesicle as well as the specific kinesin-1 motor responsible for transport are poorly defined. Here, we demonstrate by time-lapse analysis and immunoisolations that APP is a cargo of a vesicle containing the kinesin heavy chain isoform kinesin-1C, the small GTPase Rab3A and a specific subset of presynaptic protein components. Moreover, we report that assembly of kinesin-1C and APP in this vesicle type requires Rab3A GTPase activity. Finally, we show cleavage of APP in the analyzed transport vesicles by α-secretase activity, likely mediated by ADAM10. Together, these data indicate for the first time that maturation of transport vesicles, including coupling of conventional kinesin, requires Rab GTPase activity. PMID:19923287

  10. SORLA/SORL1 functionally interacts with SPAK to control renal activation of Na(+)-K(+)-Cl(-) cotransporter 2.

    PubMed

    Reiche, Juliane; Theilig, Franziska; Rafiqi, Fatema H; Carlo, Anne-Sophie; Militz, Daniel; Mutig, Kerim; Todiras, Mihail; Christensen, Erik Ilsø; Ellison, David H; Bader, Michael; Nykjaer, Anders; Bachmann, Sebastian; Alessi, Dario; Willnow, Thomas E

    2010-06-01

    Proper control of NaCl excretion in the kidney is central to bodily functions, yet many mechanisms that regulate reabsorption of sodium and chloride in the kidney remain incompletely understood. Here, we identify an important role played by the intracellular sorting receptor SORLA (sorting protein-related receptor with A-type repeats) in functional activation of renal ion transporters. We demonstrate that SORLA is expressed in epithelial cells of the thick ascending limb (TAL) of Henle's loop and that lack of receptor expression in this cell type in SORLA-deficient mice results in an inability to properly reabsorb sodium and chloride during osmotic stress. The underlying cellular defect was correlated with an inability of the TAL to phosphorylate Na(+)-K(+)-Cl(-) cotransporter 2 (NKCC2), the major sodium transporter in the distal nephron. SORLA functionally interacts with Ste-20-related proline-alanine-rich kinase (SPAK), an activator of NKCC2, and receptor deficiency is associated with missorting of SPAK. Our data suggest a novel regulatory pathway whereby intracellular trafficking of SPAK by the sorting receptor SORLA is crucial for proper NKCC2 activation and for maintenance of renal ion balance. PMID:20385770

  11. Mechanism and significance of P4 ATPase-catalyzed lipid transport: lessons from a Na+/K+-pump.

    PubMed

    Puts, Catheleyne F; Holthuis, Joost C M

    2009-07-01

    Members of the P(4) subfamily of P-type ATPases are believed to catalyze phospholipid transport across membrane bilayers, a process influencing a host of cellular functions. Atomic structures and functional analysis of P-type ATPases that pump small cations and metal ions revealed a transport mechanism that appears to be conserved throughout the family. A challenging problem is to understand how this mechanism is adapted in P(4) ATPases to flip phospholipids. P(4) ATPases form oligomeric complexes with members of the CDC50 protein family. While formation of these complexes is required for P(4) ATPase export from the endoplasmic reticulum, little is known about the functional role of the CDC50 subunits. The Na(+)/K(+)-ATPase and closely-related H(+)/K(+)-ATPase are the only other P-type pumps that are oligomeric, comprising mandatory beta-subunits that are strikingly reminiscent of CDC50 proteins. Besides serving a role in the functional maturation of the catalytic alpha-subunit, the beta-subunit also contributes specifically to intrinsic transport properties of the Na(+)/K(+) pump. As beta-subunits and CDC50 proteins likely adopted similar structures to accomplish analogous tasks, current knowledge of the Na(+)/K(+)-ATPase provides a useful guide for understanding the inner workings of the P(4) ATPase class of lipid pumps. PMID:19233312

  12. Transport of active ellipsoidal particles in ratchet potentials

    SciTech Connect

    Ai, Bao-Quan Wu, Jian-Chun

    2014-03-07

    Rectified transport of active ellipsoidal particles is numerically investigated in a two-dimensional asymmetric potential. The out-of-equilibrium condition for the active particle is an intrinsic property, which can break thermodynamical equilibrium and induce the directed transport. It is found that the perfect sphere particle can facilitate the rectification, while the needlelike particle destroys the directed transport. There exist optimized values of the parameters (the self-propelled velocity, the torque acting on the body) at which the average velocity takes its maximal value. For the ellipsoidal particle with not large asymmetric parameter, the average velocity decreases with increasing the rotational diffusion rate, while for the needlelike particle (very large asymmetric parameter), the average velocity is a peaked function of the rotational diffusion rate. By introducing a finite load, particles with different shapes (or different self-propelled velocities) will move to the opposite directions, which is able to separate particles of different shapes (or different self-propelled velocities)

  13. Active and passive calcium transport systems in plant cells

    SciTech Connect

    Sze, H.

    1990-01-01

    The ability to change cytoplasmic Ca{sup 2+} levels ((Ca{sup 2+})) by cells has made this cation a key regulator of many biological processes. Cytoplasmic (Ca{sup 2+}) is determined by the coordination of passive Ca{sup 2+} fluxes which increase cytosolic (Ca{sup 2+}) and active Ca{sup 2+} transport systems that lower cytosolic (Ca{sup 2+}). The mechanisms by which plant cells achieve this is poorly understood. We have initially used isolated vesicles from the plasma membrane or organellar membranes to study Ca{sup 2+} transport systems in oat roots (a monocot) and carrot suspension cells (a dicot). The objectives of the proposal were to identify and characterize active (energy-dependent) and passive calcium transport systems that work together to regulate calcium levels in the cytoplasm of plant cells. 10 figs., 2 tabs.

  14. Active and passive calcium transport systems in plant cells

    SciTech Connect

    Sze, H.

    1991-01-01

    The ability to change cytoplasmic Ca{sup 2+} levels ((Ca{sup 2+})) by cells has made this cation a key regulator of many biological processes. Cytoplasmic (Ca{sup 2+}) is determined by the coordination of passive Ca{sup 2+} fluxes which increase cytosolic (Ca{sup 2+}) and active Ca{sup 2+} transport systems that lower cytosolic (Ca{sup 2+}). The mechanisms by which plant cells achieve this is poorly understood. We have initially used isolated vesicles from the plasma membrane or organellar membranes to study Ca{sup 2+} transport systems in oat roots (a monocot) and carrot suspension cells (a dicot). The objectives of the proposal were to identify and characterize active (energy-dependent) and passive calcium transport systems that work together to regulate calcium levels in the cytoplasm of plant cells.

  15. Active transport and cluster formation on 2D networks.

    PubMed

    Greulich, P; Santen, L

    2010-06-01

    We introduce a model for active transport on inhomogeneous networks embedded in a diffusive environment which is motivated by vesicular transport on actin filaments. In the presence of a hard-core interaction, particle clusters are observed that exhibit an algebraically decaying distribution in a large parameter regime, indicating the existence of clusters on all scales. The scale-free behavior can be understood by a mechanism promoting preferential attachment of particles to large clusters. The results are compared with a diffusion-limited aggregation model and active transport on a regular network. For both models we observe aggregation of particles to clusters which are characterized by a finite size scale if the relevant time scales and particle densities are considered. PMID:20556462

  16. Mechanisms of dietary Cu uptake in freshwater rainbow trout: evidence for Na-assisted Cu transport and a specific metal carrier in the intestine.

    PubMed

    Nadella, Sunita Rao; Grosell, Martin; Wood, Chris M

    2007-05-01

    Copper (Cu) is both a vital nutrient and a potent toxicant. The objective of this study was to analyze the mechanistic nature of intestinal Cu transport in rainbow trout using radiolabeled Cu (64Cu) and an in vitro gut sac technique. Reduction of mucosal NaCl levels inhibited Cu transport while increase caused stimulation; Na(2)SO(4) had an identical effect, implicating Na(+) rather than the anion. These responses were unrelated to solvent drag, osmotic pressure or changes in transepithelial potential. The presence of elevated luminal Ag stimulated Cu and Na(+) uptake. Phenamil caused a partial inhibition of both Cu and Na(+) uptake while hypercapnia stimulated Na(+) and Cu transport. Cu uptake was sensitive to luminal pH and inhibited by a tenfold excess of Fe and Zn. These factors had no effect on Na(+ )uptake. On the basis of these results we propose a novel Na(+)-assisted mechanism of Cu uptake wherein the Na(+) gradient stimulates an increase in the H(+) concentration of the brushborder creating a suitable microenvironment for the effective transport of Cu via either DMT1 or Ctr1. PMID:17279389

  17. Dopamine transporter occupancy by RTI-55, inhibition of dopamine transport and stimulation of locomotor activity

    SciTech Connect

    Gatley, S.J.; Gifford, A.N.; Volkow, N.D.

    1997-05-01

    Cocaine analogs such as RTI-55 (or {beta}CIT) with a higher affinity for the DAT are potentially useful as therapeutic drugs in cocaine abuse as well as for radiopharmaceutical use. Previously we showed that in mice RTI-55 (2 mg/Kg, i/p) reduced H-3 cocaine striatum-to-cerebellum ratios (St/Cb, {lg_bullet}) from 1.6 to 1.2 at 3 h after administration, with recovery by 12 h. In the present study we demonstrate a very similar time-course for transport {triangle} measured in striatal homo within 2 min of sacrifice. The maximum inhibition of uptake at about 1 h corresponded to about 80% of the control uptake rate, similar to the percent reduction in St/Cb. The time-course of the effect of this dose of RTI-55 on locomotor activity ({sq_bullet}) was complex, with a drop in the activity measure at 7 h, after a further injection of RTI-55, but activity remained higher than in saline controls. In spite of this complexity, which may be associated with stereotypies and/or exhaustion, the duration of increased activity is consistent with the duration of transporter blockade. These experiments support the notion that PET/SPECT measures of transporter occupancy accurately reflect transporter inhibition.

  18. Parental Factors in Children’s Active Transport to School

    PubMed Central

    Henne, Heather M.; Tandon, Pooja S.; Frank, Larry D.; Saelens, Brian E.

    2014-01-01

    Objective Identify non-distance factors related to children’s active transport (AT) to school, including parental, home, and environment characteristics. Understanding the factors related to children’s AT to school, beyond distance to school, could inform interventions to increase AT and children’s overall physical activity. Study Design Participants were in the Neighborhood Impact on Kids Study, a longitudinal, observational cohort study of children aged 6 - 11 and their parents in King County, WA and San Diego County, CA between 2007-2009. Parents reported frequency and mode of child transport to school, perceived neighborhood, home and family environments, parental travel behaviors, and sociodemographics. Methods Children living less than a 20 minute walk to school were in this analysis. Children classified as active transporters (walked/bicycled to or from school at least once per week) were compared with those not using AT as often. Results Children using AT were older and had parents who reported themselves using active transport. Having a family rule that restricts the child to stay within sight of the parent or home and more parent working hours was related to lower odds of a child using AT. Conclusions Children’s AT to school is associated with parental AT to work and other locations. Interventions should be considered that enable whole family AT, ameliorate safety concerns and decrease the need for parental supervision, such as walking school buses. PMID:24999161

  19. Macrophages require different nucleoside transport systems for proliferation and activation.

    PubMed

    Soler, C; García-Manteiga, J; Valdés, R; Xaus, J; Comalada, M; Casado, F J; Pastor-Anglada, M; Celada, A; Felipe, A

    2001-09-01

    To evaluate the mechanisms involved in macrophage proliferation and activation, we studied the regulation of the nucleoside transport systems. In murine bone marrow-derived macrophages, the nucleosides required for DNA and RNA synthesis are recruited from the extracellular medium. M-CSF induced macrophage proliferation and DNA and RNA synthesis, whereas interferon gamma (IFN-gamma) led to activation, blocked proliferation, and induced only RNA synthesis. Macrophages express at least the concentrative systems N1 and N2 (CNT2 and CNT1 genes, respectively) and the equilibrative systems es and ei (ENT1 and ENT2 genes, respectively). Incubation with M-CSF only up-regulated the equilibrative system es. Inhibition of this transport system blocked M-CSF-dependent proliferation. Treatment with IFN-gamma only induced the concentrative N1 and N2 systems. IFN-gamma also down-regulated the increased expression of the es equilibrative system induced by M-CSF. Thus, macrophage proliferation and activation require selective regulation of nucleoside transporters and may respond to specific requirements for DNA and RNA synthesis. This report also shows that the nucleoside transporters are critical for macrophage proliferation and activation. PMID:11532978

  20. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation

    NASA Astrophysics Data System (ADS)

    Byamba-Ochir, Narandalai; Shim, Wang Geun; Balathanigaimani, M. S.; Moon, Hee

    2016-08-01

    Highly porous activated carbons (ACs) were prepared from Mongolian raw anthracite (MRA) using sodium hydroxide as an activation agent by varying the mass ratio (powdered MRA/NaOH) as well as the mixing method of chemical agent and powdered MRA. The specific BET surface area and total pore volume of the prepared MRA-based activated carbons (MACs) are in the range of 816-2063 m2/g and of 0.55-1.61 cm3/g, respectively. The pore size distribution of MACs show that most of the pores are in the range from large micropores to small mesopores and their distribution can be controlled by the mass ratio and mixing method of the activating agent. As expected from the intrinsic property of the MRA, the highly graphitic surface morphology of prepared carbons was confirmed from Raman spectra and transmission electron microscopy (TEM) studies. Furthermore the FTIR and XPS results reveal that the preparation of MACs with hydrophobic in nature is highly possible by controlling the mixing conditions of activating agent and powdered MRA. Based on all the results, it is suggested that the prepared MACs could be used for many specific applications, requiring high surface area, optimal pore size distribution, proper surface hydrophobicity as well as strong physical strength.

  1. Ontogeny of Na/H antiporter activity in rabbit renal brush border membrane vesicles.

    PubMed Central

    Beck, J C; Lipkowitz, M S; Abramson, R G

    1991-01-01

    The development of the Na/H antiporter was studied in renal brush border membrane vesicles (BBMV) from fetal and adult rabbits using isotopic and fluorescent techniques. The kinetics of the antiporter studied by 22Na+ uptake revealed that the Vmax was only 25% of that in the adult; however, the Km's for Na+ were not significantly different. These data were confirmed by a fluorescent assay using the pH-sensitive probe, acridine orange: the Vmax was significantly lower in the fetal BBMV. Conductive Na+ movement was estimated from amiloride-insensitive 22Na+ uptake and the rate of alkalinization induced by K+, an ion whose relative conductance was found to be similar to that of Na+. Although relative Na+ conductance was significantly greater in fetal BBMV, the lower Vmax in fetal vesicles could not be ascribed to this factor. Maternal administration of betamethasone (50 micrograms/kg intramuscularly) for 2 d before delivery significantly increased the Vmax of the antiporter to levels observed in the adult; Km was unaffected. Na/K ATPase activity increased fourfold after betamethasone, but the specific activities of four brush border marker enzymes and the kinetics of Na(+)-glucose cotransport were unchanged. These data indicate that there is a developmental increase in brush border Na/H exchange which is the result of an increase in the number and/or the turnover number of the carriers. Further, these data suggest that the postnatal increase in antiporter activity may be related to the surge in glucocorticoid concentration that occurs perinatally. Images PMID:1645751

  2. Na(+) doping induced changes in the reduction and charge transport characteristics of Al2O3-stabilized, CuO-based materials for CO2 capture.

    PubMed

    Imtiaz, Q; Abdala, P M; Kierzkowska, A M; van Beek, W; Schweiger, S; Rupp, J L M; Müller, C R

    2016-04-28

    Chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) are emerging CO2 capture technologies that could reduce appreciably the costs associated with the capture of CO2. In CLC and CLOU, the oxygen required to combust a hydrocarbon is provided by a solid oxygen carrier. Among the transition metal oxides typically considered for CLC and CLOU, copper oxide (CuO) stands out owing to its high oxygen carrying capacity, exothermic reduction reactions and fast reduction kinetics. However, the low Tammann (sintering) temperature of CuO is a serious drawback. In this context, it has been proposed to support CuO on high Tammann temperature and low cost alumina (Al2O3), thus, reducing the morphological changes occurring over multiple CLC or CLOU redox cycles and stabilizing, in turn, the high activity of CuO. However, in CuO-Al2O3 systems, phase stabilization and avoiding the formation of the CuAl2O4 spinel is key to obtaining a material with a high redox stability and activity. Here, we report a Na(+) doping strategy to phase stabilize Al2O3-supported CuO, yielding in turn an inexpensive material with a high redox stability and CO2 capture efficiency. We also demonstrate that doping CuO-Al2O3 with Na(+) improves the oxygen uncoupling characteristics and coke resistance of the oxygen carriers. Utilizing in situ and ex situ X-ray absorption spectroscopy (XAS), the local structure of Cu and the reduction pathways of CuO were determined as a function of the Na(+) content and cycle number. Finally, using 4-point conductivity measurements, we confirm that doping of Al2O3-supported CuO with Na(+) lowers the activation energy for charge transport explaining conclusively the improved redox characteristics of the new oxygen carriers developed. PMID:27080470

  3. Dimerization of Plant Defensin NaD1 Enhances Its Antifungal Activity*

    PubMed Central

    Lay, Fung T.; Mills, Grant D.; Poon, Ivan K. H.; Cowieson, Nathan P.; Kirby, Nigel; Baxter, Amy A.; van der Weerden, Nicole L.; Dogovski, Con; Perugini, Matthew A.; Anderson, Marilyn A.; Kvansakul, Marc; Hulett, Mark D.

    2012-01-01

    The plant defensin, NaD1, from the flowers of Nicotiana alata, is a member of a family of cationic peptides that displays growth inhibitory activity against several filamentous fungi, including Fusarium oxysporum. The antifungal activity of NaD1 has been attributed to its ability to permeabilize membranes; however, the molecular basis of this function remains poorly defined. In this study, we have solved the structure of NaD1 from two crystal forms to high resolution (1.4 and 1.58 Å, respectively), both of which contain NaD1 in a dimeric configuration. Using protein cross-linking experiments as well as small angle x-ray scattering analysis and analytical ultracentrifugation, we show that NaD1 forms dimers in solution. The structural studies identified Lys4 as critical in formation of the NaD1 dimer. This was confirmed by site-directed mutagenesis of Lys4 that resulted in substantially reduced dimer formation. Significantly, the reduced ability of the Lys4 mutant to dimerize correlated with diminished antifungal activity. These data demonstrate the importance of dimerization in NaD1 function and have implications for the use of defensins in agribiotechnology applications such as enhancing plant crop protection against fungal pathogens. PMID:22511788

  4. Unraveling fatty acid transport and activation mechanisms in Yarrowia lipolytica.

    PubMed

    Dulermo, Rémi; Gamboa-Meléndez, Heber; Ledesma-Amaro, Rodrigo; Thévenieau, France; Nicaud, Jean-Marc

    2015-09-01

    Fatty acid (FA) transport and activation have been extensively studied in the model yeast species Saccharomyces cerevisiae but have rarely been examined in oleaginous yeasts, such as Yarrowia lipolytica. Because the latter begins to be used in biodiesel production, understanding its FA transport and activation mechanisms is essential. We found that Y. lipolytica has FA transport and activation proteins similar to those of S. cerevisiae (Faa1p, Pxa1p, Pxa2p, Ant1p) but mechanism of FA peroxisomal transport and activation differs greatly with that of S. cerevisiae. While the ScPxa1p/ScPxa2p heterodimer is essential for growth on long-chain FAs, ΔYlpxa1 ΔYlpxa2 is not impaired for growth on FAs. Meanwhile, ScAnt1p and YlAnt1p are both essential for yeast growth on medium-chain FAs, suggesting they function similarly. Interestingly, we found that the ΔYlpxa1 ΔYlpxa2 ΔYlant1 mutant was unable to grow on short-, medium-, or long-chain FAs, suggesting that YlPxa1p, YlPxa2p, and YlAnt1p belong to two different FA degradation pathways. We also found that YlFaa1p is involved in FA storage in lipid bodies and that FA remobilization largely depended on YlFat1p, YlPxa1p and YlPxa2p. This study is the first to comprehensively examine FA intracellular transport and activation in oleaginous yeast. PMID:25887939

  5. Engineering intracellular active transport systems as in vivo biomolecular tools.

    SciTech Connect

    Bachand, George David; Carroll-Portillo, Amanda

    2006-11-01

    Active transport systems provide essential functions in terms of cell physiology and metastasis. These systems, however, are also co-opted by invading viruses, enabling directed transport of the virus to and from the cell's nucleus (i.e., the site of virus replication). Based on this concept, fundamentally new approaches for interrogating and manipulating the inner workings of living cells may be achievable by co-opting Nature's active transport systems as an in vivo biomolecular tool. The overall goal of this project was to investigate the ability to engineer kinesin-based transport systems for in vivo applications, specifically the collection of effector proteins (e.g., transcriptional regulators) within single cells. In the first part of this project, a chimeric fusion protein consisting of kinesin and a single chain variable fragment (scFv) of an antibody was successfully produced through a recombinant expression system. The kinesin-scFv retained both catalytic and antigenic functionality, enabling selective capture and transport of target antigens. The incorporation of a rabbit IgG-specific scFv into the kinesin established a generalized system for functionalizing kinesin with a wide range of target-selective antibodies raised in rabbits. The second objective was to develop methods of isolating the intact microtubule network from live cells as a platform for evaluating kinesin-based transport within the cytoskeletal architecture of a cell. Successful isolation of intact microtubule networks from two distinct cell types was demonstrated using glutaraldehyde and methanol fixation methods. This work provides a platform for inferring the ability of kinesin-scFv to function in vivo, and may also serve as a three-dimensional scaffold for evaluating and exploiting kinesin-based transport for nanotechnological applications. Overall, the technology developed in this project represents a first-step in engineering active transport system for in vivo applications. Further

  6. 49 CFR 37.61 - Public transportation programs and activities in existing facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Public transportation programs and activities in... TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Transportation Facilities § 37.61 Public transportation programs and activities in existing facilities. (a) A public entity shall operate a...

  7. 49 CFR 37.61 - Public transportation programs and activities in existing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Public transportation programs and activities in... TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Transportation Facilities § 37.61 Public transportation programs and activities in existing facilities. (a) A public entity shall operate a...

  8. 49 CFR 37.61 - Public transportation programs and activities in existing facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Public transportation programs and activities in... TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Transportation Facilities § 37.61 Public transportation programs and activities in existing facilities. (a) A public entity shall operate a...

  9. 49 CFR 37.61 - Public transportation programs and activities in existing facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Public transportation programs and activities in... TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Transportation Facilities § 37.61 Public transportation programs and activities in existing facilities. (a) A public entity shall operate a...

  10. Opposite effect of membrane raft perturbation on transport activity of KCC2 and NKCC1.

    PubMed

    Hartmann, Anna-Maria; Blaesse, Peter; Kranz, Thorsten; Wenz, Meike; Schindler, Jens; Kaila, Kai; Friauf, Eckhard; Nothwang, Hans Gerd

    2009-10-01

    In the majority of neurons, the intracellular Cl(-) concentration is set by the activity of the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) and the K(+)-Cl(-) cotransporter (KCC2). Here, we investigated the cotransporters' functional dependence on membrane rafts. In the mature rat brain, NKCC1 was mainly insoluble in Brij 58 and co-distributed with the membrane raft marker flotillin-1 in sucrose density flotation experiments. In contrast, KCC2 was found in the insoluble fraction as well as in the soluble fraction, where it co-distributed with the non-raft marker transferrin receptor. Both KCC2 populations displayed a mature glycosylation pattern. Disrupting membrane rafts with methyl-beta-cyclodextrin (MbetaCD) increased the solubility of KCC2, yet had no effect on NKCC1. In human embryonic kidney-293 cells, KCC2 was strongly activated by a combined treatment with MbetaCD and sphingomyelinase, while NKCC1 was inhibited. These data indicate that membrane rafts render KCC2 inactive and NKCC1 active. In agreement with this, inactive KCC2 of the perinatal rat brainstem largely partitioned into membrane rafts. In addition, the exposure of the transporters to MbetaCD and sphingomyelinase showed that the two transporters differentially interact with the membrane rafts. Taken together, membrane raft association appears to represent a mechanism for co-ordinated regulation of chloride transporter function. PMID:19686239

  11. A 133Cs nuclear magnetic resonance study of endothelial Na(+)-K(+)-ATPase activity: can actin regulate its activity?

    PubMed Central

    Gruwel, M L; Culíc, O; Schrader, J

    1997-01-01

    Using (133)Cs+ NMR, we developed a technique to repetitively measure, in vivo, Na(+)-K(+)-ATPase activity in endothelial cells. The measurements were made without the use of an exogenous shift reagent, because of the large chemical shift of 1.36 +/- 0.13 ppm between intra- and extracellular Cs+. Intracellularly we obtained a spin lattice relaxation time (T1) of 2.0 +/- 0.3 s, and extracellular T1 was 7.9 +/- 0.4 s. Na(+)-K+ pump activity in endothelial cells was determined at 12 +/- 3 nmol Cs+ x min(-1) x (mg Prot)[-1] under control conditions. When intracellular ATP was depleted by the addition of 5 mM 2-deoxy-D-glucose (DOG) and NaCN to about 5% of control, the pump rate decreased by 33%. After 80 min of perfusion with 5 mM DOG and NaCN, reperfusion with control medium rapidly reestablished the endothelial membrane Cs+ gradient. Using (133)Cs+ NMR as a convenient tool, we further addressed the proposed role of actin as a regulator of Na(+)-K+ pump activity in intact cells. Two models of actin rearrangement were tested. DOG caused a rearrangement of F-actin and an increase in G-actin, with a simultaneous decrease in ATP concentration. Cytochalasin D, however, caused an F-actin rearrangement different from that observed for DOG and an increase in G-actin, and cellular ATP levels remained unchanged. In both models, the Na(+)-K(+)-pump activity remained unchanged, as measured with (133)Cs NMR. Our results demonstrate that (133)Cs NMR can be used to repetitively measure Na(+)-K(+)-ATPase activity in endothelial cells. No evidence for a regulatory role of actin on Na(+)-K(+)-ATPase was found. Images FIGURE 6 PMID:9168052

  12. Analysis of Charge Carrier Transport in Organic Photovoltaic Active Layers

    NASA Astrophysics Data System (ADS)

    Han, Xu; Maroudas, Dimitrios

    2015-03-01

    We present a systematic analysis of charge carrier transport in organic photovoltaic (OPV) devices based on phenomenological, deterministic charge carrier transport models. The models describe free electron and hole transport, trapping, and detrapping, as well as geminate charge-pair dissociation and geminate and bimolecular recombination, self-consistently with Poisson's equation for the electric field in the active layer. We predict photocurrent evolution in devices with active layers of P3HT, P3HT/PMMA, and P3HT/PS, as well as P3HT/PCBM blends, and photocurrent-voltage (I-V) relations in these devices at steady state. Charge generation propensity, zero-field charge mobilities, and trapping, detrapping, and recombination rate coefficients are determined by fitting the modeling predictions to experimental measurements. We have analyzed effects of the active layer morphology for layers consisting of both pristine drop-cast films and of nanoparticle (NP) assemblies, as well as effects on device performance of insulating NP doping in conducting polymers and of specially designed interlayers placed between an electrode and the active layer. The model predictions provide valuable input toward synthesis of active layers with prescribed morphology that optimize OPV device performance.

  13. Fluctuation driven active molecular transport in passive channel proteins

    NASA Astrophysics Data System (ADS)

    Kosztin, Ioan

    2006-03-01

    Living cells interact with their extracellular environment through the cell membrane, which acts as a protective permeability barrier for preserving the internal integrity of the cell. However, cell metabolism requires controlled molecular transport across the cell membrane, a function that is fulfilled by a wide variety of transmembrane proteins, acting as either passive or active transporters. In this talk it is argued that, contrary to the general belief, in active cell membranes passive and spatially asymmetric channel proteins can act as active transporters by consuming energy from nonequilibrium fluctuations fueled by cell metabolism. This assertion is demonstrated in the case of the E. coli aquaglyceroporin GlpF channel protein, whose high resolution crystal structure is manifestly asymmetric. By calculating the glycerol flux through GlpF within the framework of a stochastic model, it is found that, as a result of channel asymmetry, glycerol uptake driven by a concentration gradient is enhanced significantly in the presence of non-equilibrium fluctuations. Furthermore, the enhancement caused by a ratchet-like mechanism is larger for the outward, i.e., from the cytoplasm to the periplasm, flux than for the inward one, suggesting that the same non-equilibrium fluctuations also play an important role in protecting the interior of the cell against poisoning by excess uptake of glycerol. Preliminary data on water and sugar transport through aquaporin and maltoporin channels, respectively, are indicative of the universality of the proposed nonequilibrium-fluctuation-driven active transport mechanism. This work was supported by grants from the Univ. of Missouri Research Board, the Institute for Theoretical Sciences and the Department of Energy (DOE Contract W-7405-ENG-36), and the National Science Foundation (FIBR-0526854).

  14. Tubular Unimolecular Transmembrane Channels: Construction Strategy and Transport Activities.

    PubMed

    Si, Wen; Xin, Pengyang; Li, Zhan-Ting; Hou, Jun-Li

    2015-06-16

    Lipid bilayer membranes separate living cells from their environment. Membrane proteins are responsible for the processing of ion and molecular inputs and exports, sensing stimuli and signals across the bilayers, which may operate in a channel or carrier mechanism. Inspired by these wide-ranging functions of membrane proteins, chemists have made great efforts in constructing synthetic mimics in order to understand the transport mechanisms, create materials for separation, and develop therapeutic agents. Since the report of an alkylated cyclodextrin for transporting Cu(2+) and Co(2+) by Tabushi and co-workers in 1982, chemists have constructed a variety of artificial transmembrane channels by making use of either the multimolecular self-assembly or unimolecular strategy. In the context of the design of unimolecular channels, important advances have been made, including, among others, the tethering of natural gramicidin A or alamethicin and the modification of various macrocycles such as crown ethers, cyclodextrins, calixarenes, and cucurbiturils. Many of these unimolecular channels exhibit high transport ability for metal ions, particularly K(+) and Na(+). Concerning the development of artificial channels based on macrocyclic frameworks, one straightforward and efficient approach is to introduce discrete chains to reinforce their capability to insert into bilayers. Currently, this approach has found the widest applications in the systems of crown ethers and calixarenes. We envisioned that for macrocycle-based unimolecular channels, control of the arrangement of the appended chains in the upward and/or downward direction would favor the insertion of the molecular systems into bilayers, while the introduction of additional interactions among the chains would further stabilize a tubular conformation. Both factors should be helpful for the formation of new efficient channels. In this Account, we discuss our efforts in designing new unimolecular artificial channels from

  15. Evidence for Active Electrolyte Transport by Two-Dimensional Monolayers of Human Salivary Epithelial Cells.

    PubMed

    Hegyesi, Orsolya; Földes, Anna; Bori, Erzsébet; Németh, Zsolt; Barabás, József; Steward, Martin C; Varga, Gábor

    2015-12-01

    Functional reconstruction of lost tissue by regenerative therapy of salivary glands would be of immense benefit following radiotherapy or in the treatment of Sjogren's syndrome. The purpose of this study was to develop primary cultures of human salivary gland cells as potential regenerative resources and to characterize their acinar/ductal phenotype using electrophysiological measurements of ion transport. Human salivary gland cultures were prepared either from adherent submandibular gland cells (huSMG) or from mixed adherent and nonadherent cells (PTHSG) and were cultivated in Hepato-STIM or minimum essential medium (MEM). Expression of key epithelial marker proteins was determined by quantitative reverse transcription polymerase chain reaction (RT-PCR). Transepithelial electrical resistance (TER) was monitored following seeding the cells on Transwell membranes. Transepithelial ion transport was estimated by short-circuit current (Isc) measurements in an Ussing chamber. Both huSMG and PTHSG cells showed epithelial characteristics when cultivated in Hepato-STIM, while fibroblast-like elements dominated in MEM. Compared to intact tissue, cultivation of the cells resulted in substantial decreases in AQP5 and NKCC1 expression and moderate increases in claudin-1 and ENaC expression. Both cultures achieved high TER and transepithelial electrolyte movement in Hepato-STIM, but not in MEM. The Isc was substantially reduced by basolateral Cl(-) and bicarbonate withdrawal, indicating the involvement of basolateral-to-apical anion transport, and by the blockade of apical ENaC by amiloride, indicating the involvement of apical-to-basolateral Na(+) transport. An almost complete inhibition was observed following simultaneous ENaC block and withdrawal of the two anions. Isc was enhanced by either apical adenosine triphosphate (ATP) or basolateral carbachol application, but not by forskolin, confirming the expected role of Ca(2+)-activated regulatory pathways in electrolyte

  16. Measurement and Modeling of Mean Activity Coefficients of NaCl in an Aqueous Mixed Electrolyte Solution Containing Glycine

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Paniz; Dehghani, M. R.; Safahieh, Tina

    2016-08-01

    An electrochemical cell with two ion-selective electrodes (Na+ glass) and (Cl- solid state) was used to measure the mean ionic activity coefficient of NaCl in an aqueous mixture containing NaCl, glycine, and NaNO3 at 308.15 K. The experiments were conducted at fixed molality of NaNO3 (0.1 m) and various molalities of glycine (0-1 m) and NaCl (up to 0.8 m). The experimental data were modeled using a modified version of the Pitzer equation. Finally the activity coefficient ratio of glycine was determined based on the Maxwell equation.

  17. cAMP-stimulated Na+ transport in H441 distal lung epithelial cells: role of PKA, phosphatidylinositol 3-kinase, and sgk1.

    PubMed

    Thomas, Christie P; Campbell, Jason R; Wright, Patrick J; Husted, Russell F

    2004-10-01

    H441 cells, a bronchiolar epithelial cell line, develop a cAMP-regulated benzamil-sensitive Na+ transport pathway on permeable supports (Itani OA, Auerbach SD, Husted RF, Volk KA, Ageloff S, Knepper MA, Stokes JB, Thomas CP. Am J Physiol Lung Cell Mol Physiol 282: L631-L641, 2002). To understand the molecular basis for the stimulation of Na+ transport, we delineated the role of specific intracellular pathways and examined the effect of cAMP on alphabetagamma-epithelial Na+ channel (ENaC) and sgk1 expression. Na+ transport increases within 5 min of cAMP stimulation and is sustained for >24 h. The sustained effect of cAMP on Na+ transport is abolished by LY-294002, an inhibitor of phosphatidylinositol 3-kinase, by H89, an inhibitor of PKA, or by SB-202190, an inhibitor of p38 MAP kinase. The sustained effect of cAMP was associated with increases in alpha-ENaC mRNA and protein but without a detectable increase in betagamma-ENaC and sgk1. The early effect of cAMP on Na+ transport is brefeldin sensitive and is mediated via PKA. These results are consistent with a model where the early effect of cAMP is to increase trafficking of Na+ channels to the apical cell surface whereas the sustained effect requires the synthesis of alpha-ENaC. PMID:15208094

  18. Effects of internal and external pH on amiloride-blockable Na transport across toad urinary bladder vesicles

    SciTech Connect

    Garty, H.; Civan, E.D.; Civan, M.M.

    1985-01-01

    The authors have examined the effect of internal and external pH on Na+ transport across toad bladder membrane vesicles. Of the total SSNa uptake measured 0.5-2.0 min after introducing tracer, 80 +/- 4% (mean +/- SE, n = 9) is blocked by the diuretic with a KI of 2 X 10(-8) M. Thus, this amiloride-sensitive flux is mediated by the apical sodium-selective channels. Varying the internal (cytosolic) pH over the physiologic range 7.0-8.0 had no effect on sodium transport; this result suggests that variation of intracellular pH in vivo has no direct apical effect on modulating sodium uptake. On the other hand, SSNa was directly and monotonically dependent on external pH. External acidification also reduced the amiloride-sensitive efflux across the walls of the vesicles. This inhibition of 22Na efflux was noted at external Na concentrations of both 0.2 microM and 53 mM. These results are different from those reported with whole toad bladder. A number of possible bases for these differences are considered and discussed. They suggest that the natriferic response induced by mucosal acidification of whole toad urinary bladder appears to operate indirectly through one or more factors, presumably cytosolic, present in whole cells and absent from the vesicles.

  19. Na+ dependent acid-base transporters in the choroid plexus; insights from slc4 and slc9 gene deletion studies

    PubMed Central

    Christensen, Henriette L.; Nguyen, An T.; Pedersen, Fredrik D.; Damkier, Helle H.

    2013-01-01

    The choroid plexus epithelium (CPE) is located in the ventricular system of the brain, where it secretes the majority of the cerebrospinal fluid (CSF) that fills the ventricular system and surrounds the central nervous system. The CPE is a highly vascularized single layer of cuboidal cells with an unsurpassed transepithelial water and solute transport rate. Several members of the slc4a family of bicarbonate transporters are expressed in the CPE. In the basolateral membrane the electroneutral Na+ dependent Cl−/HCO3− exchanger, NCBE (slc4a10) is expressed. In the luminal membrane, the electrogenic Na+:HCO3− cotransporter, NBCe2 (slc4a5) is expressed. The electroneutral Na+:HCO3− cotransporter, NBCn1 (slc4a7), has been located in both membranes. In addition to the bicarbonate transporters, the Na+/H+ exchanger, NHE1 (slc9a1), is located in the luminal membrane of the CPE. Genetically modified mice targeting slc4a2, slc4a5, slc4a7, slc4a10, and slc9a1 have been generated. Deletion of slc4a5, 7 or 10, or slc9a1 has numerous impacts on CP function and structure in these mice. Removal of the transporters affects brain ventricle size (slc4a5 and slc4a10) and intracellular pH regulation (slc4a7 and slc4a10). In some instances, removal of the proteins from the CPE (slc4a5, 7, and 10) causes changes in abundance and localization of non-target transporters known to be involved in pH regulation and CSF secretion. The focus of this review is to combine the insights gathered from these knockout mice to highlight the impact of slc4 gene deletion on the CSF production and intracellular pH regulation resulting from the deletion of slc4a5, 7 and 10, and slc9a1. Furthermore, the review contains a comparison of the described human mutations of these genes to the findings in the knockout studies. Finally, the future perspective of utilizing these proteins as potential targets for the treatment of CSF disorders will be discussed. PMID:24155723

  20. Ab-initio Density Functional Theory (DFT) Studies of Electronic, Transport, and Bulk Properties of Sodium Oxide (Na2O)

    NASA Astrophysics Data System (ADS)

    Polin, Daniel; Ziegler, Joshua; Malozovsky, Yuriy; Bagayoko, Diola

    We present the findings of ab-initio calculations of electronic, transport, and structural properties of cubic sodium oxide (Na2O). These results were obtained using density functional theory (DFT), specifically a local density approximation (LDA) potential, and the linear combination of Gaussian orbitals (LCGO). Our implementation of LCGO followed the Bagayoko, Zhao, and Williams method as enhanced by the work of Ekuma and Franklin (BZW-EF). We describe the electronic band structure of Na2O with a direct band gap of 2.22 eV. Our results include predicted values for the electronic band structure and associated energy eigenvalues, the total and partial density of states (DOS and pDOS), the equilibrium lattice constant of Na2O, and the bulk modulus. We have also calculated the electron and holes effective masses in the Γ to L, Γ to X, and Γ to K directions. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE- NA0002630), LaSPACE, and LONI-SUBR.

  1. Excitability of the T-tubular system in rat skeletal muscle: roles of K+ and Na+ gradients and Na+-K+ pump activity.

    PubMed

    Nielsen, O B; Ørtenblad, N; Lamb, G D; Stephenson, D G

    2004-05-15

    Strenuous exercise causes an increase in extracellular [K(+)] and intracellular Na(+) ([Na(+)](i)) of working muscles, which may reduce sarcolemma excitability. The excitability of the sarcolemma is, however, to some extent protected by a concomitant increase in the activity of muscle Na(+)-K(+) pumps. The exercise-induced build-up of extracellular K(+) is most likely larger in the T-tubules than in the interstitium but the significance of the cation shifts and Na(+)-K(+) pump for the excitability of the T-tubular membrane and the voltage sensors is largely unknown. Using mechanically skinned fibres, we here study the role of the Na(+)-K(+) pump in maintaining T-tubular function in fibres with reduced chemical K(+) gradient. The Na(+)-K(+) pump activity was manipulated by changing [Na(+)](i). The responsiveness of the T-tubules was evaluated from the excitation-induced force production of the fibres. Compared to control twitch force in fibres with a close to normal intracellular [K(+)] ([K(+)](i)), a reduction in [K(+)](i) to below 60 mM significantly reduced twitch force. Between 10 and 50 mM Na(+), the reduction in force depended on [Na(+)](i), the twitch force at 40 mM K(+) being 22 +/- 4 and 54 +/- 9% (of control force) at a [Na(+)](i) of 10 and 20 mM, respectively (n= 4). Double pulse stimulation of fibres at low [K(+)](i) showed that although elevated [Na(+)](i) increased the responsiveness to single action potentials, it reduced the capacity of the T-tubules to respond to high frequency stimulation. It is concluded that a reduction in the chemical gradient for K(+), as takes place during intensive exercise, may depress T-tubular function, but that a concomitant exercise-induced increase in [Na(+)](i) protects T-tubular function by stimulating the Na(+)-K(+) pump. PMID:15034125

  2. Cell kinetics of differentiation of Na/sup +/-dependent hexose transport in a cultured renal epithelial cell line

    SciTech Connect

    Cook, J.S.; Weiss, E.R.

    1985-01-01

    Fully differentiated cells of the renal proximal tubule have the capability of taking up hexoses across their apical borders by transport coupled to the Na/sup +/-electrochemical gradient. This property is also found in postconfluent cultures of the cloned cell line LLC-PK/sub 1/, a morphologically polarized line of renal cells. Postconfluent cells develop the Na/sup +/-dependent capacity to transport hexoses at their apical surface. This function is not observable during the growth phase of the cultures. To analyze the developmental process at the cellular level a method has been derived to separate transporting cells, expressing the differentiated function, from nontransporting cells. The method is based on the swelling of the cells accompanying the uptake of the nonmetabolizable glucose analog alpha methylglucoside. The swollen cells have a lower buoyant density than the undifferentiated cells and may be separated from them on density gradients. Analysis of the distribution of cells on such gradients shows that after the cells reach confluence the undifferentiated subpopulation is recruited onto the differentiation pathway with a rate constant of 0.2 per day, that 5 to 7 days are required for a cell to traverse this pathway to the fully differentiated state, and that once the maximum uptake capacity is achieved the cells do not develop further.

  3. Excitation- and β2-agonist-induced activation of the Na+−K+ pump in rat soleus muscle

    PubMed Central

    Buchanan, Rasmus; Nielsen, Ole Bækgaard; Clausen, Torben

    2002-01-01

    In rat skeletal muscle, Na+–K+ pump activity increases dramatically in response to excitation (up to 20-fold) or β2-agonists (2-fold), leading to a reduction in intracellular Na+. This study examines the time course of these effects and whether they are due to an increased affinity of the Na+–K+ pump for intracellular Na+. Isolated rat soleus muscles were incubated at 30 oC in Krebs-Ringer bicarbonate buffer. The effects of direct electrical stimulation on 86Rb+ uptake rate and intracellular Na+ concentration ([Na+]i) were characterized in the subsequent recovery phase. [Na+]i was varied using monensin or buffers with low Na+. In the [Na+]i range 21–69 mm, both the β2-agonist salbutamol and electrical stimulation produced a left shift of the curves relating 86Rb+ uptake rate to [Na+]i. In the first 10 s after 1 or 10 s pulse trains of 60 Hz, [Na+]i showed no increase, but 86Rb+ uptake rate increased by 22 and 86 %, respectively. Muscles excited in Na+-free Li+-substituted buffer and subsequently allowed to rest in standard buffer also showed a significant increase in 86Rb+ uptake rate and decrease in [Na+]i. Na+ loading induced by monensin or electroporation also stimulated 86Rb+ uptake rate but, contrary to excitation, increased [Na+]i. The increase in the rate of 86Rb+ uptake elicited by electrical stimulation was abolished by ouabain, but not by bumetanide. The results indicate that excitation (like salbutamol) induces a rapid increase in the affinity of the Na+–K+ pump for intracellular Na+. This leads to a Na+–K+ pump activation that does not require Na+ influx, but possibly the generation of action potentials. This improves restoration of the Na+–K+ homeostasis during work and optimizes excitability and contractile performance of the working muscle. PMID:12433963

  4. Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.).

    PubMed

    Krishnamurthy, Pannaga; Ranathunge, Kosala; Nayak, Shraddha; Schreiber, Lukas; Mathew, M K

    2011-08-01

    Rice is an important crop that is very sensitive to salinity. However, some varieties differ greatly in this feature, making investigations of salinity tolerance mechanisms possible. The cultivar Pokkali is salinity tolerant and is known to have more extensive hydrophobic barriers in its roots than does IR20, a more sensitive cultivar. These barriers located in the root endodermis and exodermis prevent the direct entry of external fluid into the stele. However, it is known that in the case of rice, these barriers are bypassed by most of the Na(+) that enters the shoot. Exposing plants to a moderate stress of 100 mM NaCl resulted in deposition of additional hydrophobic aliphatic suberin in both cultivars. The present study demonstrated that Pokkali roots have a lower permeability to water (measured using a pressure chamber) than those of IR20. Conditioning plants with 100 mM NaCl effectively reduced Na(+) accumulation in the shoot and improved survival of the plants when they were subsequently subjected to a lethal stress of 200 mM NaCl. The Na(+) accumulated during the conditioning period was rapidly released when the plants were returned to the control medium. It has been suggested that the location of the bypass flow is around young lateral roots, the early development of which disrupts the continuity of the endodermal and exodermal Casparian bands. However, in the present study, the observed increase in lateral root densities during stress in both cultivars did not correlate with bypass flow. Overall the data suggest that in rice roots Na(+) bypass flow is reduced by the deposition of apoplastic barriers, leading to improved plant survival under salt stress. PMID:21558150

  5. Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.)

    PubMed Central

    Ranathunge, Kosala; Nayak, Shraddha; Schreiber, Lukas; Mathew, M. K.

    2011-01-01

    Rice is an important crop that is very sensitive to salinity. However, some varieties differ greatly in this feature, making investigations of salinity tolerance mechanisms possible. The cultivar Pokkali is salinity tolerant and is known to have more extensive hydrophobic barriers in its roots than does IR20, a more sensitive cultivar. These barriers located in the root endodermis and exodermis prevent the direct entry of external fluid into the stele. However, it is known that in the case of rice, these barriers are bypassed by most of the Na+ that enters the shoot. Exposing plants to a moderate stress of 100 mM NaCl resulted in deposition of additional hydrophobic aliphatic suberin in both cultivars. The present study demonstrated that Pokkali roots have a lower permeability to water (measured using a pressure chamber) than those of IR20. Conditioning plants with 100 mM NaCl effectively reduced Na+ accumulation in the shoot and improved survival of the plants when they were subsequently subjected to a lethal stress of 200 mM NaCl. The Na+ accumulated during the conditioning period was rapidly released when the plants were returned to the control medium. It has been suggested that the location of the bypass flow is around young lateral roots, the early development of which disrupts the continuity of the endodermal and exodermal Casparian bands. However, in the present study, the observed increase in lateral root densities during stress in both cultivars did not correlate with bypass flow. Overall the data suggest that in rice roots Na+ bypass flow is reduced by the deposition of apoplastic barriers, leading to improved plant survival under salt stress. PMID:21558150

  6. Na,K-ATPase α2 activity in mammalian skeletal muscle T-tubules is acutely stimulated by extracellular K+

    PubMed Central

    Hakimjavadi, Hesamedin; Lingrel, Jerry B.

    2015-01-01

    The Na,K-ATPase α2 isoform is the predominant Na,K-ATPase in adult skeletal muscle and the sole Na,K-ATPase in the transverse tubules (T-tubules). In quiescent muscles, the α2 isozyme operates substantially below its maximal transport capacity. Unlike the α1 isoform, the α2 isoform is not required for maintaining resting ion gradients or the resting membrane potential, canonical roles of the Na,K-ATPase in most other cells. However, α2 activity is stimulated immediately upon the start of contraction and, in working muscles, its contribution is crucial to maintaining excitation and resisting fatigue. Here, we show that α2 activity is determined in part by the K+ concentration in the T-tubules, through its K+ substrate affinity. Apparent K+ affinity was determined from measurements of the K1/2 for K+ activation of pump current in intact, voltage-clamped mouse flexor digitorum brevis muscle fibers. Pump current generated by the α2 Na,K-ATPase, Ip, was identified as the outward current activated by K+ and inhibited by micromolar ouabain. Ip was outward at all potentials studied (−90 to −30 mV) and increased with depolarization in the subthreshold range, −90 to −50 mV. The Q10 was 2.1 over the range of 22–37°C. The K1/2,K of Ip was 4.3 ± 0.3 mM at −90 mV and was relatively voltage independent. This K+ affinity is lower than that reported for other cell types but closely matches the dynamic range of extracellular K+ concentrations in the T-tubules. During muscle contraction, T-tubule luminal K+ increases in proportion to the frequency and duration of action potential firing. This K1/2,K predicts a low fractional occupancy of K+ substrate sites at the resting extracellular K+ concentration, with occupancy increasing in proportion to the frequency of membrane excitation. The stimulation of preexisting pumps by greater K+ site occupancy thus provides a rapid mechanism for increasing α2 activity in working muscles. PMID:26371210

  7. Magnetic and charge transport properties of the Na-based Os oxide pyrochlore

    SciTech Connect

    Shi, Y.G.; Belik, A.A.; Tachibana, M.; Tanaka, M.; Katsuya, Y.; Kobayashi, K.; Yamaura, K.; Takayama-Muromachi, E.

    2009-04-15

    The Na-based osmium oxide pyrochlore was synthesized for the first time by an ion-exchange method using KOs{sub 2}O{sub 6} as a host. The composition was identified as Na{sub 1.4}Os{sub 2}O{sub 6}.H{sub 2}O by electron probe micro-analysis, thermogravimetric analysis, and structural analysis using synchrotron X-ray diffraction. Na{sub 1.4}Os{sub 2}O{sub 6}.H{sub 2}O crystallizes in a regular pyrochlore structure with some defects (space group: Fd-3m, a=10.16851(1) A). Electrical resistivity, heat capacity, and magnetization measurements clearly showed absence of superconductivity down to 2 K, being in large contrast to what was found for the beta-type pyrochlore superconductor AOs{sub 2}O{sub 6} (A=Cs, Rb, and K). The Sommerfeld coefficient is 22 mJ K{sup -2} mol{sup -1}, being the smallest among AOs{sub 2}O{sub 6}. A magnetic anomaly at {approx}57 K and associated magneto-resistance (+3.7% at 2 K in 70 kOe) were found. - Graphical abstract: Crystal structure of the Na-based Os oxide pyrochlore Na{sub 1.4}Os{sub 2}O{sub 6}.H{sub 2}O.

  8. 78 FR 68908 - Proposed Information Collection (Veterans Transportation Service Data Collection); Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... AFFAIRS Proposed Information Collection (Veterans Transportation Service Data Collection); Activity... needed to evaluate the Veterans Transportation Service Data Collection program to ensure Veterans... Control No. 2900-NEW (Veterans Transportation Service Data Collection)'' in any correspondence. During...

  9. Differences in associations between active transportation and built environmental exposures when expressed using different components of individual activity spaces.

    PubMed

    van Heeswijck, Torbjorn; Paquet, Catherine; Kestens, Yan; Thierry, Benoit; Morency, Catherine; Daniel, Mark

    2015-05-01

    This study assessed relationships between built environmental exposures measured within components of individual activity spaces (i.e., travel origins, destinations and paths in-between), and use of active transportation in a metropolitan setting. Individuals (n=37,165) were categorised as using active or sedentary transportation based on travel survey data. Generalised Estimating Equations analysis was used to test relationships with active transportation. Strength and significance of relationships between exposures and active transportation varied for different components of the activity space. Associations were strongest when including travel paths in expression of the built environment. Land use mix and greenness were negatively related to active transportation. PMID:25862996

  10. Stimulation of Na(+),K(+)-ATPase Activity as a Possible Driving Force in Cholesterol Evolution.

    PubMed

    Lambropoulos, Nicholas; Garcia, Alvaro; Clarke, Ronald J

    2016-06-01

    Cholesterol is exclusively produced by animals and is present in the plasma membrane of all animal cells. In contrast, the membranes of fungi and plants contain other sterols. To explain the exclusive preference of animal cells for cholesterol, we propose that cholesterol may have evolved to optimize the activity of a crucial protein found in the plasma membrane of all multicellular animals, namely the Na(+),K(+)-ATPase. To test this hypothesis, mirror tree and phylogenetic distribution analyses have been conducted of the Na(+),K(+)-ATPase and 3β-hydroxysterol Δ(24)-reductase (DHCR24), the last enzyme in the Bloch cholesterol biosynthetic pathway. The results obtained support the hypothesis of a co-evolution of the Na(+),K(+)-ATPase and DHCR24. The evolutionary correlation between DHCR24 and the Na(+),K(+)-ATPase was found to be stronger than between DHCR24 and any other membrane protein investigated. The results obtained, thus, also support the hypothesis that cholesterol evolved together with the Na(+),K(+)-ATPase in multicellular animals to support Na(+),K(+)-ATPase activity. PMID:26715509

  11. Theoretical investigation on local structure and transport properties of NaFsbnd AlF3 molten salts under electric field environment

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Xu, Zhenming; Li, Jie; Chen, Jiangan; Liu, Qingsheng

    2016-08-01

    The effect of electric field and molecular ratio CR (NaF/AlF3) on basic structure and transport properties of NaFsbnd AlF3 molten salts were investigated by molecular dynamics simulations with the Buckingham potential model. The [AlF6]3- groups are the dominant specie in NaFsbnd AlF3 molten salts at CR ≥ 2.6, and followed by the [AlF5]2- groups, while CR ≤ 2.4, [AlF5]2- groups are the protagonists up to 40%. In NaFsbnd AlF3 system, with the increase of CR, the proportion of Fb decreases slightly and the percentage of Ff increases dramatically. The Alsbnd F bonds have ionic characters as well as partial covalently characters due to the hybridization of F-2p and Al-3s, 3p orbitals. The order of ion diffusion ability follows as Na+ > F- > Al3+. Adding more NaF can break some F bridges of structure networks and decrease the polymerization degree of NaFsbnd AlF3 molten salts, the viscosity reduces and ionic conductivity increases as a consequence. The calculated results of ionic conductivity are in agreement with the experimental results. Electric field has no significant impact on the local structure characters, while transport properties are not. The change of CR (NaF/AlF3) can significantly affect these characters of both the structure and transport.

  12. Stabilization of prompt gamma-ray neutron activation analysis (PGNAA) spectra from NaI detectors

    NASA Astrophysics Data System (ADS)

    Metwally, W. A.; Gardner, R. P.

    2004-06-01

    NaI detectors are still used frequently in industrial Prompt Gamma-Ray Neutron Activation Analysis applications such as in bulk material analysis. They have the advantages of being efficient for high-energy gamma rays, being relatively rugged, and being able to be used without cooling. When using NaI detectors, and consequently photomultiplier tubes, the quality of the data can drastically deteriorate through gain and zero shifts that result in spectral smearing due to temperature and/or counting rate changes. A new offline approach is presented to stabilize the NaI spectral drift. The approach is not sensitive to the cause of the drift and takes into account the NaI and ADC non-linearities. Peak resolution is improved substantially when this approach is used in the presence of spectral drift.

  13. Charge transport in thin layer Na x CoO2 (x ∼ 0.63) studied by terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Němec, H.; Knížek, K.; Jirák, Z.; Hejtmánek, J.; Soroka, M.; Buršík, J.

    2016-09-01

    Charge transport in Na0.63CoO2 thin film deposited by a spin-coating method was investigated experimentally by time-domain terahertz spectroscopy and theoretically using Monte Carlo calculations of charge response in nano-structured materials. The dominating type of transport mechanism over the entire investigated range of temperatures (20–300 K) is a metallic-like conductivity of charges partly confined in constituting nano-sized grains. Due to the granular character of our thin film, the scattering time at low temperatures is limited by scattering on grain boundaries and the conductivity is strongly suppressed due to capture of a major fraction of charge carriers in deep traps. Nevertheless, our experimental setup and the applied model allowed us to distinguish the parameters related to the grain interior from those influenced by grain boundaries, and to conclude that the metallic type of conductivity is the intrinsic property relevant to single crystal materials.

  14. Substrate-bound outward-open state of the betaine transporter BetP provides insights into Na+ coupling.

    PubMed

    Perez, Camilo; Faust, Belinda; Mehdipour, Ahmad Reza; Francesconi, Kevin A; Forrest, Lucy R; Ziegler, Christine

    2014-01-01

    The Na(+)-coupled betaine symporter BetP shares a highly conserved fold with other sequence unrelated secondary transporters, for example, with neurotransmitter symporters. Recently, we obtained atomic structures of BetP in distinct conformational states, which elucidated parts of its alternating-access mechanism. Here, we report a structure of BetP in a new outward-open state in complex with an anomalous scattering substrate, adding a fundamental piece to an unprecedented set of structural snapshots for a secondary transporter. In combination with molecular dynamics simulations these structural data highlight important features of the sequential formation of the substrate and sodium-binding sites, in which coordinating water molecules play a crucial role. We observe a strictly interdependent binding of betaine and sodium ions during the coupling process. All three sites undergo progressive reshaping and dehydration during the alternating-access cycle, with the most optimal coordination of all substrates found in the closed state. PMID:25023443

  15. Charge transport in thin layer Na x CoO2 (x ∼ 0.63) studied by terahertz spectroscopy.

    PubMed

    Němec, H; Knížek, K; Jirák, Z; Hejtmánek, J; Soroka, M; Buršík, J

    2016-09-01

    Charge transport in Na0.63CoO2 thin film deposited by a spin-coating method was investigated experimentally by time-domain terahertz spectroscopy and theoretically using Monte Carlo calculations of charge response in nano-structured materials. The dominating type of transport mechanism over the entire investigated range of temperatures (20-300 K) is a metallic-like conductivity of charges partly confined in constituting nano-sized grains. Due to the granular character of our thin film, the scattering time at low temperatures is limited by scattering on grain boundaries and the conductivity is strongly suppressed due to capture of a major fraction of charge carriers in deep traps. Nevertheless, our experimental setup and the applied model allowed us to distinguish the parameters related to the grain interior from those influenced by grain boundaries, and to conclude that the metallic type of conductivity is the intrinsic property relevant to single crystal materials. PMID:27365361

  16. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    NASA Astrophysics Data System (ADS)

    Annewandter, Robert

    2014-05-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced gas transport and subsequent soil gas sampling during On-Site inspections. Generally, gas transport has been widely studied with different numerical codes. However, gas transport of radioxenons and radioiodines in the post-detonation regime and their possible fractionation is still neglected in the open peer-reviewed literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the multiple isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radionuclides, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different mass diffusivities due to mass differences between the radionuclides. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures or highly conductive faults which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a so-called ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which is recognized by the oil industry as leading in Discrete Fracture-Matrix (DFM) simulations. It has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations, fracture propagation in fractured, porous media, and Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic differential equations by a complementary finite

  17. Na+,Cl- cotransport in Ehrlich ascites tumor cells activated during volume regulation (regulatory volume increase).

    PubMed

    Hoffmann, E K; Sjøholm, C; Simonsen, L O

    1983-01-01

    Ehrlich ascites cells were preincubated in hypotonic medium with subsequent restoration of tonicity. After the initial osmotic shrinkage the cells recovered their volume within 5 min with an associated KCl uptake. The volume recovery was inhibited when NO-3 was substituted for Cl-, and when Na+ was replaced by K+, or by choline (at 5 mM external K+). The volume recovery was strongly inhibited by furosemide and bumetanide, but essentially unaffected by DIDS. The net uptake of Cl- was much larger than the value predicted from the conductive Cl- permeability. The undirectional 36Cl flux, which was insensitive to bumetanide under steady-state conditions, was substantially increased during regulatory volume increase, and showed a large bumetanide-sensitive component. During volume recovery the Cl- flux ratio (influx/efflux) for the bumetanide-sensitive component was estimated at 1.85, compatible with a coupled uptake of Na+ and Cl-, or with an uptake via a K+,Na+,2Cl- cotransport system. The latter possibility is unlikely, however, because a net uptake of KCl was found even at low external K+, and because no K+ uptake was found in ouabain-poisoned cells. In the presence of ouabain a bumetanide-sensitive uptake during volume recovery of Na+ and Cl- in nearly equimolar amounts was demonstrated. It is proposed that the primary process during the regulatory volume increase is an activation of an otherwise quiescent, bumetanide-sensitive Na+,Cl- cotransport system with subsequent replacement of Na+ by K+ via the Na+/K+ pump, stimulated by the Na+ influx through the Na+,Cl- cotransport system. PMID:6100866

  18. Comparative Transport Activity of Intact Cells, Membrane Vesicles, and Mesosomes of Bacillus licheniformis

    PubMed Central

    MacLeod, Robert A.; Thurman, Paul; Rogers, H. J.

    1973-01-01

    Sodium ion was shown to stimulate strongly the transport of l-glutamic acid into cells of Bacillus licheniformis 6346 His−. Lithium ion had a slight capacity to replace Na+ in this capacity, but K+ was without effect. Three of five amino acids tested. l-glutamic acid, l-aspartic acid, and l-alanine, were concentrated against a gradient in the cells. Intracellular pools of these amino acids were extractable with 5% trichloroacetic acid. Pools of l-histidine and l-lysine could not be detected. No evidence of active transport of lysine into cells could be detected, and histidine was taken up in the absence of chloramphenicol but not in its presence. The uptake of glutamic acid by membrane vesicle preparations was strongly stimulated by reduced nicotinamide adenine dinucleotide (NADH) and to a lesser extent by succinate. The presence of phenazine methosulfate increased uptake in the presence of succinate. Either l- or d-lactate and adenosine triphosphate were without effect. None of these compounds stimulated the uptake of glutamic acid by mesosomes, although some mesosome preparations contained separable membrane which was very active. NADH strongly stimulated the uptake of aspartic acid and alanine by membrane vesicles but had only a slight effect on the uptake of histidine and lysine. No evidence of active transport of any of the amino acids into mesosomes could be detected either in the presence or absence of NADH. NADH stimulation of the uptake of glutamic acid by membrane vesicles was destroyed by exposure to light of 360 nm; this inactivation was reversible by vitamin K2(5) or K2(10). Sodium ion stimulated transport of glutamic acid by membrane vesicles. PMID:4347247

  19. A mechanism for the activation of the Na/H exchanger NHE-1 by cytoplasmic acidification and mitogens

    PubMed Central

    Lacroix, Jérôme; Poët, Mallorie; Maehrel, Céline; Counillon, Laurent

    2004-01-01

    Eukaryotic cells constantly have to fight against internal acidification. In mammals, this task is mainly performed by the ubiquitously expressed electroneutral Na+/H+ exchanger NHE-1, which activates in a cooperative manner when cells become acidic. Despite its biological importance, the mechanism of this activation is still poorly understood, the most commonly accepted hypothesis being the existence of a proton-sensor site on the internal face of the transporter. This work uncovers mutations that lead to a nonallosteric form of the exchanger and demonstrates that NHE-1 activation is best described by a Monod–Wyman–Changeux concerted mechanism for a dimeric transporter. During intracellular acidification, a low-affinity form of NHE-1 is converted into a form possessing a higher affinity for intracellular protons, with no requirement for an additional proton-sensor site on the protein. This new mechanism also explains the activation of the exchanger by growth signals, which shift the equilibrium towards the high-affinity form. PMID:14710192

  20. Comparative Localization and Functional Activity of the Main Hepatobiliary Transporters in HepaRG Cells and Primary Human Hepatocytes.

    PubMed

    Bachour-El Azzi, Pamela; Sharanek, Ahmad; Burban, Audrey; Li, Ruoya; Guével, Rémy Le; Abdel-Razzak, Ziad; Stieger, Bruno; Guguen-Guillouzo, Christiane; Guillouzo, André

    2015-05-01

    The role of hepatobiliary transporters in drug-induced liver injury remains poorly understood. Various in vivo and in vitro biological approaches are currently used for studying hepatic transporters; however, appropriate localization and functional activity of these transporters are essential for normal biliary flow and drug transport. Human hepatocytes (HHs) are considered as the most suitable in vitro cell model but erratic availability and inter-donor functional variations limit their use. In this work, we aimed to compare localization of influx and efflux transporters and their functional activity in differentiated human HepaRG hepatocytes with fresh HHs in conventional (CCHH) and sandwich (SCHH) cultures. All tested influx and efflux transporters were correctly localized to canalicular [bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2), multidrug resistance protein 1 (MDR1), and MDR3] or basolateral [Na(+)-taurocholate co-transporting polypeptide (NTCP) and MRP3] membrane domains and were functional in all models. Contrary to other transporters, NTCP and BSEP were less abundant and active in HepaRG cells, cellular uptake of taurocholate was 2.2- and 1.4-fold and bile excretion index 2.8- and 2.6-fold lower, than in SCHHs and CCHHs, respectively. However, when taurocholate canalicular efflux was evaluated in standard and divalent cation-free conditions in buffers or cell lysates, the difference between the three models did not exceed 9.3%. Interestingly, cell imaging showed higher bile canaliculi contraction/relaxation activity in HepaRG hepatocytes and larger bile canaliculi networks in SCHHs. Altogether, our results bring new insights in mechanisms involved in bile acids accumulation and excretion in HHs and suggest that HepaRG cells represent a suitable model for studying hepatobiliary transporters and drug-induced cholestasis. PMID:25690737

  1. Ride On! Mini-Units and Learning Activities on Public Transportation for Grades 6 through 9.

    ERIC Educational Resources Information Center

    Finn, Peter; And Others

    One of a series of eleven curriculum manuals which cover the four transportation topics of public transportation, transportation and the environment, transportation safety, and bicycles for elementary, secondary, and adult levels, this manual covers the public transportation topic for grades 6-9. It contains forty-two learning activities grouped…

  2. Ride On! Mini-Units and Learning Activities on Public Transportation for Grades 9 through 12.

    ERIC Educational Resources Information Center

    Finn, Peter; And Others

    One of a series of eleven curriculum manuals which cover the four transportation topics of public transportation, transportation and the environment, transportation safety, and bicycles for elementary, secondary, and adult levels, this manual covers the public transportation topic for grades 9-12. It contains forty-nine learning activities grouped…

  3. Engineering Protein Allostery: 1.05 Å Resolution Structure and Enzymatic Properties of a Na[superscript +]-activated Trypsin

    SciTech Connect

    Page, Michael J.; Carrell, Christopher J.; Di Cera, Enrico

    2008-05-28

    Some trypsin-like proteases are endowed with Na{sup +}-dependent allosteric enhancement of catalytic activity, but this important mechanism has been difficult to engineer in other members of the family. Replacement of 19 amino acids in Streptomyces griseus trypsin targeting the active site and the Na{sup +}-binding site were found necessary to generate efficient Na{sup +} activation. Remarkably, this property was linked to the acquisition of a new substrate selectivity profile similar to that of factor Xa, a Na{sup -} activated protease involved in blood coagulation. The X-ray crystal structure of the mutant trypsin solved to 1.05 {angstrom} resolution defines the engineered Na{sup +} site and active site loops in unprecedented detail. The results demonstrate that trypsin can be engineered into an efficient allosteric protease, and that Na+ activation is interwoven with substrate selectivity in the trypsin scaffold.

  4. "JCE" Classroom Activity Connections: NaCl or CaCl[subscript 2], Smart Polymer Gel Tells More

    ERIC Educational Resources Information Center

    Chen, Yueh-Huey; Lin, Jia-Ying; Wang, Yu-Chen; Yaung, Jing-Fun

    2010-01-01

    This classroom activity connection demonstrates the differences between the effects of NaCl (a salt of monovalent metal ions) and CaCl[subscript 2] (a salt of polyvalent metal ions) on swollen superabsorbent polymer gels. Being ionic compounds, NaCl and CaCl[subscript 2] both collapse the swollen polymer gels. The gel contracted by NaCl reswells…

  5. Vortical ciliary flows actively enhance mass transport in reef corals

    PubMed Central

    Shapiro, Orr H.; Fernandez, Vicente I.; Garren, Melissa; Guasto, Jeffrey S.; Debaillon-Vesque, François P.; Kramarsky-Winter, Esti; Vardi, Assaf; Stocker, Roman

    2014-01-01

    The exchange of nutrients and dissolved gasses between corals and their environment is a critical determinant of the growth of coral colonies and the productivity of coral reefs. To date, this exchange has been assumed to be limited by molecular diffusion through an unstirred boundary layer extending 1–2 mm from the coral surface, with corals relying solely on external flow to overcome this limitation. Here, we present direct microscopic evidence that, instead, corals can actively enhance mass transport through strong vortical flows driven by motile epidermal cilia covering their entire surface. Ciliary beating produces quasi-steady arrays of counterrotating vortices that vigorously stir a layer of water extending up to 2 mm from the coral surface. We show that, under low ambient flow velocities, these vortices, rather than molecular diffusion, control the exchange of nutrients and oxygen between the coral and its environment, enhancing mass transfer rates by up to 400%. This ability of corals to stir their boundary layer changes the way that we perceive the microenvironment of coral surfaces, revealing an active mechanism complementing the passive enhancement of transport by ambient flow. These findings extend our understanding of mass transport processes in reef corals and may shed new light on the evolutionary success of corals and coral reefs. PMID:25192936

  6. Extracellular microvesicles from astrocytes contain functional glutamate transporters: regulation by protein kinase C and cell activation

    PubMed Central

    Gosselin, Romain-Daniel; Meylan, Patrick; Decosterd, Isabelle

    2013-01-01

    Glutamate transport through astrocytic excitatory amino-acid transporters (EAAT)-1 and EAAT-2 is paramount for neural homeostasis. EAAT-1 has been reported in secreted extracellular microvesicles (eMV, such as exosomes) and because the protein kinase C (PKC) family controls the sub-cellular distribution of EAATs, we have explored whether PKCs drive EAATs into eMV. Using rat primary astrocytes, confocal immunofluorescence and ultracentrifugation on sucrose gradient we here report that PKC activation by phorbol myristate acetate (PMA) reorganizes EAAT-1 distribution and reduces functional [3H]-aspartate reuptake. Western-blots show that EAAT-1 is present in eMV from astrocyte conditioned medium, together with NaK ATPase and glutamine synthetase all being further increased after PMA treatment. However, nanoparticle tracking analysis reveals that PKC activation did not change particle concentration. Functional analysis indicates that eMV have the capacity to reuptake [3H]-aspartate. In vivo, we demonstrate that spinal astrocytic reaction induced by peripheral nerve lesion (spared nerve injury, SNI) is associated with a phosphorylation of PKC δ together with a shift of EAAT distribution ipsilaterally. Ex vivo, spinal explants from SNI rats release eMV with an increased content of NaK ATPase, EAAT-1 and EAAT-2. These data indicate PKC and cell activation as important regulators of EAAT-1 incorporation in eMV, and raise the possibility that microvesicular EAAT-1 may exert extracellular functions. Beyond a putative role in neuropathic pain, this phenomenon may be important for understanding neural homeostasis and a wide range of neurological diseases associated with astrocytic reaction as well as non-neurological diseases linked to eMV release. PMID:24368897

  7. Ion transport by the Na-Ca exchange in isolated rod outer segments.

    PubMed Central

    Lagnado, L; Cervetto, L; McNaughton, P A

    1988-01-01

    The inward membrane current generated by the coupled exchange of external sodium for internal calcium has been investigated in isolated rod outer segments. The exchange rate is sensitive to voltage, with a reduction by a factor of e occurring for a 70-mV depolarization in normal Ringer's solution. The voltage sensitivity is not a constant property of the exchange, as it is reduced by an increase in external Na+ or by the removal of external Ca2+, Mg2+, or K+. Changes in membrane potential do not appear to affect the affinity of the exchange mechanism for internal Ca2+, but hyperpolarization increases the affinity for external Na+. When the external Na+ concentration is raised sufficiently to saturate the exchange mechanism, the voltage sensitivity is no longer apparent. We propose that the voltage dependence of the exchange is due to the external Na+-binding site being sensitive to membrane potential, perhaps because it is located within the membrane electric field. PMID:3380806

  8. Platelet Serotonin Transporter Function Predicts Default-Mode Network Activity

    PubMed Central

    Kasess, Christian H.; Meyer, Bernhard M.; Hofmaier, Tina; Diers, Kersten; Bartova, Lucie; Pail, Gerald; Huf, Wolfgang; Uzelac, Zeljko; Hartinger, Beate; Kalcher, Klaudius; Perkmann, Thomas; Haslacher, Helmuth; Meyer-Lindenberg, Andreas; Kasper, Siegfried; Freissmuth, Michael; Windischberger, Christian; Willeit, Matthäus; Lanzenberger, Rupert; Esterbauer, Harald; Brocke, Burkhard; Moser, Ewald; Sitte, Harald H.; Pezawas, Lukas

    2014-01-01

    Background The serotonin transporter (5-HTT) is abundantly expressed in humans by the serotonin transporter gene SLC6A4 and removes serotonin (5-HT) from extracellular space. A blood-brain relationship between platelet and synaptosomal 5-HT reuptake has been suggested, but it is unknown today, if platelet 5-HT uptake can predict neural activation of human brain networks that are known to be under serotonergic influence. Methods A functional magnetic resonance study was performed in 48 healthy subjects and maximal 5-HT uptake velocity (Vmax) was assessed in blood platelets. We used a mixed-effects multilevel analysis technique (MEMA) to test for linear relationships between whole-brain, blood-oxygen-level dependent (BOLD) activity and platelet Vmax. Results The present study demonstrates that increases in platelet Vmax significantly predict default-mode network (DMN) suppression in healthy subjects independent of genetic variation within SLC6A4. Furthermore, functional connectivity analyses indicate that platelet Vmax is related to global DMN activation and not intrinsic DMN connectivity. Conclusion This study provides evidence that platelet Vmax predicts global DMN activation changes in healthy subjects. Given previous reports on platelet-synaptosomal Vmax coupling, results further suggest an important role of neuronal 5-HT reuptake in DMN regulation. PMID:24667541

  9. The reactive nitrogen species peroxynitrite is a potent inhibitor of renal Na-K-ATPase activity

    PubMed Central

    Reifenberger, Matthew S.; Arnett, Krista L.; Gatto, Craig; Milanick, Mark A.

    2008-01-01

    Peroxynitrite is a reactive nitrogen species produced when nitric oxide and superoxide react. In vivo studies suggest that reactive oxygen species and, perhaps, peroxynitrite can influence Na-K-ATPase function. However, the direct effects of peroxynitrite on Na-K-ATPase function remain unknown. We show that a single bolus addition of peroxynitrite inhibited purified renal Na-K-ATPase activity, with IC50 of 107 ± 9 μM. To mimic cellular/physiological production of peroxynitrite, a syringe pump was used to slowly release (∼0.85 μM/s) peroxynitrite. The inhibition of Na-K-ATPase activity induced by this treatment was similar to that induced by a single bolus addition of equal cumulative concentration. Peroxynitrite produced 3-nitrotyrosine residues on the α, β, and FXYD subunits of the Na pump. Interestingly, the flavonoid epicatechin, which prevented tyrosine nitration, was unable to blunt peroxynitrite-induced ATPase inhibition, suggesting that tyrosine nitration is not required for inhibition. Peroxynitrite led to a decrease in iodoacetamidofluorescein labeling, implying that cysteine modifications were induced. Glutathione was unable to reverse ATPase inhibition. The presence of Na+ and low MgATP during peroxynitrite treatment increased the IC50 to 145 ± 10 μM, while the presence of K+ and low MgATP increased the IC50 to 255 ± 13 μM. This result suggests that the EPNa conformation of the pump is slightly more sensitive to peroxynitrite than the E(K) conformation. Taken together, these results show that peroxynitrite is a potent inhibitor of Na-K-ATPase activity and that peroxynitrite can induce amino acid modifications to the pump. PMID:18701626

  10. Effect of TGFβ on Na{sup +}/K{sup +} ATPase activity in megakaryocytes

    SciTech Connect

    Hosseinzadeh, Zohreh; Schmid, Evi; Shumilina, Ekaterina; Laufer, Stefan; Borst, Oliver; Gawaz, Meinrad; Lang, Florian

    2014-09-26

    Highlights: • TGFß1 markedly up-regulates Na{sup +}/K{sup +} ATPase in megakaryocytes. • The effect is abrogated by p38-MAP kinase inhibitor skepinone. • The effect is abrogated by SGK inhibitor EMD638683. • The effect is abrogated by NF-κB inhibitor wogonin. - Abstract: The Na{sup +}/K{sup +} ATPase generates the Na{sup +} and K{sup +} concentration gradients across the plasma membrane and is thus essential for cellular electrolyte homeostasis, cell membrane potential and cell volume maintenance. A powerful regulator of Na{sup +}/K{sup +} ATPase is the serum- and glucocorticoid-inducible kinase 1 (SGK1). The most powerful known regulator of SGK1 expression is TGFß1, which is pivotal in the regulation of megakaryocyte maturation and platelet formation. Signaling involved in the upregulation of SGK1 by TGFß1 includes p38 mitogen activated protein (MAP) kinase. SGK1 in turn phosphorylates the IκB kinase (IKKα/β), which phosphorylates the inhibitor protein IκBα thus triggering nuclear translocation of nuclear factor kappa B (NF-κB). The present study explored whether TGFβ influences Na{sup +}/K{sup +} ATPase activity in megakaryocytes, and if so, whether the effect of TGß1 requires p38 MAP kinase, SGK1 and/or NF-κB. To this end, murine megakaryocytes were treated with TGFß1 and Na{sup +}/K{sup +} ATPase activity determined from K{sup +} induced current utilizing whole cell patch clamp. The pump current (I{sub pump}) was determined in the absence and presence of Na{sup +}/K{sup +} ATPase inhibitor ouabain (100 μM). TGFß1 (60 ng/ml) was added in the absence or presence of p38 MAP kinase inhibitor skepinone-L (1 μM), SGK1 inhibitor EMD638683 (50 μM) or NF-κB inhibitor wogonin (50 nM). As a result, the I{sub pump} was significantly increased by pretreatment of the megakaryocytes with TGFß1, an effect reaching statistical significance within 16 and 24 h and virtually abrogated in the presence of skepinone-L, EMD638683 or wogonin. In conclusion

  11. Acetaminophen inhibits intestinal p-glycoprotein transport activity.

    PubMed

    Novak, Analia; Carpini, Griselda Delli; Ruiz, María Laura; Luquita, Marcelo G; Rubio, Modesto C; Mottino, Aldo D; Ghanem, Carolina I

    2013-10-01

    Repeated acetaminophen (AP) administration modulates intestinal P-glycoprotein (P-gp) expression. Whether AP can modulate P-gp activity in a short-term fashion is unknown. We investigated the acute effect of AP on rat intestinal P-gp activity in vivo and in vitro. In everted intestinal sacs, AP inhibited serosal-mucosal transport of rhodamine 123 (R123), a prototypical P-gp substrate. R123 efflux plotted against R123 concentration adjusted well to a sigmoidal curve. Vmax decreased 50% in the presence of AP, with no modification in EC50, or slope, ruling out the possibility of inhibition to be competitive. Inhibition by AP was absent at 0°C, consistent with interference of the active transport of R123 by AP. Additionally, AP showed no effect on normal localization of P-gp at the apical membrane of the enterocyte and neither affected paracellular permeability. Consistent with absence of a competitive inhibition, two further strategies strongly suggested that AP is not a P-gp substrate. First, serosal-mucosal transport of AP was not affected by the classical P-gp inhibitors verapamil or Psc 833. Second, AP accumulation was not different between P-gp knock-down and wild-type HepG2 cells. In vivo intestinal absorption of digoxin, another substrate of P-gp, was assessed in the presence or absence of AP (100 μM). Portal digoxin concentration was increased by 214%, in average, by AP, as compared with digoxin alone. In conclusion, AP inhibited P-gp activity, increasing intestinal absorption of digoxin, a prototypical substrate. These results suggest that therapeutic efficacy of P-gp substrates can be altered if coadministered with AP. PMID:23897240

  12. Curcumin directly inhibits the transport activity of GLUT1

    PubMed Central

    Gunnink, Leesha K.; Alabi, Ola D.; Kuiper, Benjamin D.; Gunnink, Stephen M.; Schuiteman, Sam J.; Strohbehn, Lauren E.; Hamilton, Kathryn E.; Wrobel, Kathryn E.; Louters, Larry L.

    2016-01-01

    Curcumin, a major ingredient in turmeric, has a long history of medicinal applications in a wide array of maladies including treatment for diabetes and cancer. Seemingly counterintuitive to the documented hypoglycemic effects of curcumin, however, a recent report indicates that curcumin directly inhibits glucose uptake in adipocytes. The major glucose transporter in adipocytes is GLUT4. Therefore, this study investigates the effects of curcumin in cell lines where the major transporter is GLUT1. We report that curcumin has an immediate inhibitory effect on basal glucose uptake in L929 fibroblast cells with a maximum inhibition of 80% achieved at 75 μM curcumin. Curcumin also blocks activation of glucose uptake by azide, glucose deprivation, hydroxylamine, or phenylarsine oxide. Inhibition does not increase with exposure time and the inhibitory effects reverse within an hour. Inhibition does not appear to involve a reaction between curcumin and the thiol side chain of a cysteine residue since neither prior treatment of cells with iodoacetamide nor curcumin with cysteine alters curcumin’s inhibitory effects. Curcumin is a mixed inhibitor reducing the Vmax of 2DG transport by about half with little effect on the Km. The inhibitory effects of curcumin are not additive to the effects of cytochalasin B and 75 μM curcumin actually reduces specific cytochalasin B binding by 80%. Taken together, the data suggest that curcumin binds directly to GLUT1 at a site that overlaps with the cytochalasin B binding site and thereby inhibits glucose transport. A direct inhibition of GLUT proteins in intestinal epithelial cells would likely reduce absorption of dietary glucose and contribute to a hypoglycemic effect of curcumin. Also, inhibition of GLUT1 activity might compromise cancer cells that overexpress GLUT1 and be another possible mechanism for the documented anticancer effects of curcumin. PMID:27039889

  13. Curcumin directly inhibits the transport activity of GLUT1.

    PubMed

    Gunnink, Leesha K; Alabi, Ola D; Kuiper, Benjamin D; Gunnink, Stephen M; Schuiteman, Sam J; Strohbehn, Lauren E; Hamilton, Kathryn E; Wrobel, Kathryn E; Louters, Larry L

    2016-06-01

    Curcumin, a major ingredient in turmeric, has a long history of medicinal applications in a wide array of maladies including treatment for diabetes and cancer. Seemingly counterintuitive to the documented hypoglycemic effects of curcumin, however, a recent report indicates that curcumin directly inhibits glucose uptake in adipocytes. The major glucose transporter in adipocytes is GLUT4. Therefore, this study investigates the effects of curcumin in cell lines where the major transporter is GLUT1. We report that curcumin has an immediate inhibitory effect on basal glucose uptake in L929 fibroblast cells with a maximum inhibition of 80% achieved at 75 μM curcumin. Curcumin also blocks activation of glucose uptake by azide, glucose deprivation, hydroxylamine, or phenylarsine oxide. Inhibition does not increase with exposure time and the inhibitory effects reverse within an hour. Inhibition does not appear to involve a reaction between curcumin and the thiol side chain of a cysteine residue since neither prior treatment of cells with iodoacetamide nor curcumin with cysteine alters curcumin's inhibitory effects. Curcumin is a mixed inhibitor reducing the Vmax of 2DG transport by about half with little effect on the Km. The inhibitory effects of curcumin are not additive to the effects of cytochalasin B and 75 μM curcumin actually reduces specific cytochalasin B binding by 80%. Taken together, the data suggest that curcumin binds directly to GLUT1 at a site that overlaps with the cytochalasin B binding site and thereby inhibits glucose transport. A direct inhibition of GLUT proteins in intestinal epithelial cells would likely reduce absorption of dietary glucose and contribute to a hypoglycemic effect of curcumin. Also, inhibition of GLUT1 activity might compromise cancer cells that overexpress GLUT1 and be another possible mechanism for the documented anticancer effects of curcumin. PMID:27039889

  14. Thermoelectric transport properties of pristine and Na-doped SnSe(1-x)Te(x) polycrystals.

    PubMed

    Wei, Tian-Ran; Wu, Chao-Feng; Zhang, Xiaozhi; Tan, Qing; Sun, Li; Pan, Yu; Li, Jing-Feng

    2015-11-28

    SnSe, a "simple" and "old" binary compound composed of earth-abundant elements, has been reported to exhibit a high thermoelectric performance in single crystals, which stimulated recent interest in its polycrystalline counterparts. This work investigated the electrical and thermal transport properties of pristine and Na-doped SnSe1-xTex polycrystals prepared by mechanical alloying and spark plasma sintering. It is revealed that SnSe1-xTex solid solutions are formed when x ranges from 0 to 0.2. An energy barrier scattering mechanism is suitable for understanding the electrical conducting behaviour observed in the present SnSe polycrystalline materials, which may be associated with abundant defects at grain boundaries. The thermal conductivity was greatly reduced upon Te substitution due to alloy scattering of phonons as well explained by the Debye model. Due to the increased carrier concentration by Na-doping, thermoelectric figure of merit (ZT) was enhanced in the whole temperature range with a maximum value of 0.72 obtained at a relatively low temperature (773 K) for Sn0.99Na0.01Se0.84Te0.16. PMID:26496971

  15. Saharan Dust, Transport Processes, and Possible Impacts on Hurricane Activities

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, K. M.

    2010-01-01

    In this paper, we present observational evidence of significant relationships between Saharan dust outbreak, and African Easterly wave activities and hurricane activities. We found two dominant paths of transport of Saharan dust: a northern path, centered at 25degN associated with eastward propagating 6-19 days waves over northern Africa, and a southern path centered at 15degN, associated with the AEW, and the Atlantic ITCZ. Seasons with stronger dust outbreak from the southern path are associated with a drier atmosphere over the Maximum Development Region (MDR) and reduction in tropical cyclone and hurricane activities in the MDR. Seasons with stronger outbreak from the northern path are associated with a cooler N. Atlantic, and suppressed hurricane in the western Atlantic basin.

  16. Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution.

    PubMed

    Ryoo, Min-Woong; Kim, Jong-Ho; Seo, Gon

    2003-08-15

    Adsorption isotherms of NaCl on activated carbon cloth (ACC) and titania-incorporated activated carbon cloth (Ti-ACC) under an electric field were investigated to deduce the role of titania in capacitive deionization (CDI) of NaCl. Electrosorption of NaCl on the ACC was significantly increased by titania incorporation, whereas its physical adsorption was considerably decreased, resulting in an improved performance of the Ti-ACC as a CDI electrode. Langmuir isotherms based on a localized and fixed amount of adsorption were suitable for the simulation of electrosorption and physical adsorption of ions on the ACC electrodes. The variances of q(m) and b of Langmuir isotherms with electric potential indicate increases in the number of ions per adsorption site and in electrosorption strength of ions by titania incorporation. A cyclic voltammetric study for ion adsorption on ACC electrodes confirms the reversibility between electrosorption and desorption of ions, regardless of titania incorporation. PMID:16256660

  17. Discovery of a Biological Mechanism of Active Transport through the Tympanic Membrane to the Middle Ear.

    PubMed

    Kurabi, Arwa; Pak, Kwang K; Bernhardt, Marlen; Baird, Andrew; Ryan, Allen F

    2016-01-01

    Otitis media (OM) is a common pediatric disease for which systemic antibiotics are often prescribed. While local treatment would avoid the systemic treatment side-effects, the tympanic membrane (TM) represents an impenetrable barrier unless surgically breached. We hypothesized that the TM might harbor innate biological mechanisms that could mediate trans-TM transport. We used two M13-bacteriophage display biopanning strategies to search for mediators of trans-TM transport. First, aliquots of linear phage library displaying 10(10th) 12mer peptides were applied on the TM of rats with active bacterial OM. The middle ear (ME) contents were then harvested, amplified and the preparation re-applied for additional rounds. Second, the same naïve library was sequentially screened for phage exhibiting TM binding, internalization and then transit. Results revealed a novel set of peptides that transit across the TM to the ME in a time and temperature dependent manner. The peptides with highest transport capacities shared sequence similarities. Historically, the TM was viewed as an impermeable barrier. However, our studies reveal that it is possible to translocate peptide-linked small particles across the TM. This is the first comprehensive biopanning for the isolation of TM transiting peptidic ligands. The identified mechanism offers a new drug delivery platform into the ME. PMID:26946957

  18. Discovery of a Biological Mechanism of Active Transport through the Tympanic Membrane to the Middle Ear

    PubMed Central

    Kurabi, Arwa; Pak, Kwang K.; Bernhardt, Marlen; Baird, Andrew; Ryan, Allen F.

    2016-01-01

    Otitis media (OM) is a common pediatric disease for which systemic antibiotics are often prescribed. While local treatment would avoid the systemic treatment side-effects, the tympanic membrane (TM) represents an impenetrable barrier unless surgically breached. We hypothesized that the TM might harbor innate biological mechanisms that could mediate trans-TM transport. We used two M13-bacteriophage display biopanning strategies to search for mediators of trans-TM transport. First, aliquots of linear phage library displaying 1010th 12mer peptides were applied on the TM of rats with active bacterial OM. The middle ear (ME) contents were then harvested, amplified and the preparation re-applied for additional rounds. Second, the same naïve library was sequentially screened for phage exhibiting TM binding, internalization and then transit. Results revealed a novel set of peptides that transit across the TM to the ME in a time and temperature dependent manner. The peptides with highest transport capacities shared sequence similarities. Historically, the TM was viewed as an impermeable barrier. However, our studies reveal that it is possible to translocate peptide-linked small particles across the TM. This is the first comprehensive biopanning for the isolation of TM transiting peptidic ligands. The identified mechanism offers a new drug delivery platform into the ME. PMID:26946957

  19. Impact of humic acid fouling on membrane performance and transport of pharmaceutically active compounds in forward osmosis.

    PubMed

    Xie, Ming; Nghiem, Long D; Price, William E; Elimelech, Menachem

    2013-09-01

    The impact of humic acid fouling on the membrane transport of two pharmaceutically active compounds (PhACs) - namely carbamazepine and sulfamethoxazole - in forward osmosis (FO) was investigated. Deposition of humic acid onto the membrane surface was promoted by the complexation with calcium ions in the feed solution and the increase in ionic strength at the membrane surface due to the reverse transport of NaCl draw solute. The increase in the humic acid deposition on the membrane surface led to a substantial decrease in the membrane salt (NaCl) permeability coefficient but did not result in a significant decrease in the membrane pure water permeability coefficient. As the deposition of humic acid increased, the permeation of carbamazepine and sulfamethoxazole decreased, which correlated well with the decrease in the membrane salt (NaCl) permeability coefficient. It is hypothesized that the hydrated humic acid fouling layer hindered solute diffusion through the membrane pore and enhanced solute rejection by steric hindrance, but not the permeation of water molecules. The membrane water and salt (NaCl) permeability coefficients were fully restored by physical cleaning of the membrane, suggesting that humic acid did not penetrate into the membrane pores. PMID:23764606

  20. Regulation of the creatine transporter by AMP-activated protein kinase in kidney epithelial cells

    PubMed Central

    Li, Hui; Thali, Ramon F.; Smolak, Christy; Gong, Fan; Alzamora, Rodrigo; Wallimann, Theo; Scholz, Roland; Pastor-Soler, Núria M.; Neumann, Dietbert

    2010-01-01

    The metabolic sensor AMP-activated protein kinase (AMPK) regulates several transport proteins, potentially coupling transport activity to cellular stress and energy levels. The creatine transporter (CRT; SLC6A8) mediates creatine uptake into several cell types, including kidney epithelial cells, where it has been proposed that CRT is important for reclamation of filtered creatine, a process critical for total body creatine homeostasis. Creatine and phosphocreatine provide an intracellular, high-energy phosphate-buffering system essential for maintaining ATP supply in tissues with high energy demands. To test our hypothesis that CRT is regulated by AMPK in the kidney, we examined CRT and AMPK distribution in the kidney and the regulation of CRT by AMPK in cells. By immunofluorescence staining, we detected CRT at the apical pole in a polarized mouse S3 proximal tubule cell line and in native rat kidney proximal tubules, a distribution overlapping with AMPK. Two-electrode voltage-clamp (TEV) measurements of Na+-dependent creatine uptake into CRT-expressing Xenopus laevis oocytes demonstrated that AMPK inhibited CRT via a reduction in its Michaelis-Menten Vmax parameter. [14C]creatine uptake and apical surface biotinylation measurements in polarized S3 cells demonstrated parallel reductions in creatine influx and CRT apical membrane expression after AMPK activation with the AMP-mimetic compound 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside. In oocyte TEV experiments, rapamycin and the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranosyl 5′-monophosphate (ZMP) inhibited CRT currents, but there was no additive inhibition of CRT by ZMP, suggesting that AMPK may inhibit CRT indirectly via the mammalian target of rapamycin pathway. We conclude that AMPK inhibits apical membrane CRT expression in kidney proximal tubule cells, which could be important in reducing cellular energy expenditure and unnecessary creatine reabsorption under conditions of local

  1. Urinary Proteolytic Activation of Renal Epithelial Na+ Channels in Chronic Heart Failure.

    PubMed

    Zheng, Hong; Liu, Xuefei; Sharma, Neeru M; Li, Yulong; Pliquett, Rainer U; Patel, Kaushik P

    2016-01-01

    One of the key mechanisms involved in renal Na(+) retention in chronic heart failure (CHF) is activation of epithelial Na(+) channels (ENaC) in collecting tubules. Proteolytic cleavage has an important role in activating ENaC. We hypothesized that enhanced levels of proteases in renal tubular fluid activate ENaC, resulting in renal Na(+) retention in rats with CHF. CHF was produced by left coronary artery ligation in rats. By immunoblotting, we found that several urinary serine proteases were significantly increased in CHF rats compared with sham rats (fold increases: furin 6.7, prostasin 23.6, plasminogen 2.06, and plasmin 3.57 versus sham). Similar increases were observed in urinary samples from patients with CHF. Whole-cell patch clamp was conducted in cultured renal collecting duct M-1 cells to record Na(+) currents. Protease-rich urine (from rats and patients with CHF) significantly increased the Na(+) inward current in M-1 cells. Two weeks of protease inhibitor treatment significantly abrogated the enhanced diuretic and natriuretic responses to ENaC inhibitor benzamil in rats with CHF. Increased podocyte lesions were observed in the kidneys of rats with CHF by transmission electron microscopy. Consistent with these results, podocyte damage markers desmin and podocin expressions were also increased in rats with CHF (increased ≈2-folds). These findings suggest that podocyte damage may lead to increased proteases in the tubular fluid, which in turn contributes to the enhanced renal ENaC activity, providing a novel mechanistic insight for Na(+) retention commonly observed in CHF. PMID:26628676

  2. Artemisinin Inhibits Chloroplast Electron Transport Activity: Mode of Action

    PubMed Central

    Bharati, Adyasha; Kar, Monaranjan; Sabat, Surendra Chandra

    2012-01-01

    Artemisinin, a secondary metabolite produced in Artemisia plant species, besides having antimalarial properties is also phytotoxic. Although, the phytotoxic activity of the compound has been long recognized, no information is available on the mechanism of action of the compound on photosynthetic activity of the plant. In this report, we have evaluated the effect of artemisinin on photoelectron transport activity of chloroplast thylakoid membrane. The inhibitory effect of the compound, under in vitro condition, was pronounced in loosely and fully coupled thylakoids; being strong in the former. The extent of inhibition was drastically reduced in the presence of uncouplers like ammonium chloride or gramicidin; a characteristic feature described for energy transfer inhibitors. The compound, on the other hand, when applied to plants (in vivo), behaved as a potent inhibitor of photosynthetic electron transport. The major site of its action was identified to be the QB; the secondary quinone moiety of photosystemII complex. Analysis of photoreduction kinetics of para-benzoquinone and duroquinone suggest that the inhibition leads to formation of low pool of plastoquinol, which becomes limiting for electron flow through photosystemI. Further it was ascertained that the in vivo inhibitory effect appeared as a consequence of the formation of an unidentified artemisinin-metabolite rather than by the interaction of the compound per se. The putative metabolite of artemisinin is highly reactive in instituting the inhibition of photosynthetic electron flow eventually reducing the plant growth. PMID:22719995

  3. Dopamine Transporter Activity Is Modulated by α-Synuclein.

    PubMed

    Butler, Brittany; Saha, Kaustuv; Rana, Tanu; Becker, Jonas P; Sambo, Danielle; Davari, Paran; Goodwin, J Shawn; Khoshbouei, Habibeh

    2015-12-01

    The duration and strength of the dopaminergic signal are regulated by the dopamine transporter (DAT). Drug addiction and neurodegenerative and neuropsychiatric diseases have all been associated with altered DAT activity. The membrane localization and the activity of DAT are regulated by a number of intracellular proteins. α-Synuclein, a protein partner of DAT, is implicated in neurodegenerative disease and drug addiction. Little is known about the regulatory mechanisms of the interaction between DAT and α-synuclein, the cellular location of this interaction, and the functional consequences of this interaction on the basal, amphetamine-induced DAT-mediated dopamine efflux, and membrane microdomain distribution of the transporter. Here, we found that the majority of DAT·α-synuclein protein complexes are found at the plasma membrane of dopaminergic neurons or mammalian cells and that the amphetamine-mediated increase in DAT activity enhances the association of these proteins at the plasma membrane. Further examination of the interaction of DAT and α-synuclein revealed a transient interaction between these two proteins at the plasma membrane. Additionally, we found DAT-induced membrane depolarization enhances plasma membrane localization of α-synuclein, which in turn increases dopamine efflux and enhances DAT localization in cholesterol-rich membrane microdomains. PMID:26442590

  4. Active ingredients in Chinese medicines promoting blood circulation as Na+/K+-ATPase inhibitors

    PubMed Central

    Chen, Ronald JY; Jinn, Tzyy-rong; Chen, Yi-ching; Chung, Tse-yu; Yang, Wei-hung; Tzen, Jason TC

    2011-01-01

    The positive inotropic effect of cardiac glycosides lies in their reversible inhibition on the membrane-bound Na+/K+-ATPase in human myocardium. Steroid-like compounds containing a core structure similar to cardiac glycosides are found in many Chinese medicines conventionally used for promoting blood circulation. Some of them are demonstrated to be Na+/K+-ATPase inhibitors and thus putatively responsible for their therapeutic effects via the same molecular mechanism as cardiac glycosides. On the other hand, magnesium lithospermate B of danshen is also proposed to exert its cardiac therapeutic effect by effectively inhibiting Na+/K+-ATPase. Theoretical modeling suggests that the number of hydrogen bonds and the strength of hydrophobic interaction between the effective ingredients of various medicines and residues around the binding pocket of Na+/K+-ATPase are crucial for the inhibitory potency of these active ingredients. Ginsenosides, the active ingredients in ginseng and sanqi, substantially inhibit Na+/K+-ATPase when sugar moieties are attached only to the C-3 position of their steroid-like structure, equivalent to the sugar position in cardiac glycosides. Their inhibitory potency is abolished, however, when sugar moieties are linked to C-6 or C-20 position of the steroid nucleus; presumably, these sugar attachments lead to steric hindrance for the entrance of ginsenosides into the binding pocket of Na+/K+-ATPase. Neuroprotective effects of cardiac glycosides, several steroid-like compounds, and magnesium lithospermate B against ischemic stroke have been accordingly observed in a cortical brain slice-based assay model, and cumulative data support that effective inhibitors of Na+/K+-ATPase in the brain could be potential drugs for the treatment of ischemic stroke. PMID:21293466

  5. Cryo-EM structure of the Slo2.2 Na+-activated K+ channel

    PubMed Central

    Hite, Richard; Yuan, Peng; Li, Zongli; Hsuing, Yichun; Walz, Thomas; MacKinnon, Roderick

    2015-01-01

    Na+-activated K+ channels are members of the Slo family of large conductance K+ channels that are widely expressed in the brain, where their opening regulates neuronal excitability. These channels are fascinating for the biological roles they fulfill as well as for their intriguing biophysical properties, including conductance levels ten times most other K+ channels and gating sensitivity to intracellular Na+. Here we present the structure a complete Na+-activated K+ channel, Slo2.2, in the Na+-free state, determined by cryo-electron microscopy at a nominal resolution of 4.5 Å. The channel is composed of a large cytoplasmic gating ring within which resides the Na+-binding site and a transmembrane domain that closely resembles voltage-gated K+ channels. In the structure, the cytoplasmic domain adopts a closed conformation and the ion conduction pore is also closed. The structure provides a first view of a member of the Slo K+ channel family, which reveals features explaining their high conductance and gating mechanism. PMID:26436452

  6. Partial Antiviral Activities Detection of Chicken Mx Jointing with Neuraminidase Gene (NA) against Newcastle Disease Virus

    PubMed Central

    Zhang, Yani; Fu, Dezhi; Chen, Hao; Zhang, Zhentao; Shi, Qingqing; Elsayed, Ahmed Kamel; Li, Bichun

    2013-01-01

    As an attempt to increase the resistance to Newcastle Disease Virus (NDV) and so further reduction of its risk on the poultry industry. This work aimed to build the eukaryotic gene co-expression plasmid of neuraminidase (NA) gene and myxo-virus resistance (Mx) and detect the gene expression in transfected mouse fibroblasts (NIH-3T3) cells, it is most important to investigate the influence of the recombinant plasmid on the chicken embryonic fibroblasts (CEF) cells. cDNA fragment of NA and mutant Mx gene were derived from pcDNA3.0-NA and pcDNA3.0-Mx plasmid via PCR, respectively, then NA and Mx cDNA fragment were inserted into the multiple cloning sites of pVITRO2 to generate the eukaryotic co-expression plasmid pVITRO2-Mx-NA. The recombinant plasmid was confirmed by restriction endonuclease treatment and sequencing, and it was transfected into the mouse fibroblasts (NIH-3T3) cells. The expression of genes in pVITRO2-Mx-NA were measured by RT-PCR and indirect immunofluorescence assay (IFA). The recombinant plasmid was transfected into CEF cells then RT-PCR and the micro-cell inhibition tests were used to test the antiviral activity for NDV. Our results showed that co-expression vector pVITRO2-Mx-NA was constructed successfully; the expression of Mx and NA could be detected in both NIH-3T3 and CEF cells. The recombinant proteins of Mx and NA protect CEF cells from NDV infection until after 72 h of incubation but the individually mutagenic Mx protein or NA protein protects CEF cells from NDV infection till 48 h post-infection, and co-transfection group decreased significantly NDV infection compared with single-gene transfection group (P<0. 05), indicating that Mx-NA jointing contributed to delaying the infection of NDV in single-cell level and the co-transfection of the jointed genes was more powerful than single one due to their synergistic effects. PMID:23977111

  7. Active transport and accumulation of bicarbonate by a unicellular cyanobacterium.

    PubMed

    Miller, A G; Colman, B

    1980-09-01

    The rates of inorganic carbon accumulation and carbon fixation in light by the unicellular cyanobacterim Coccohloris peniocystis have been determined. Cells incubated in the light in medium containing H14CO3- were rapidly separated from the medium by centrifugation through silicone oil into a strongly basic terminating solution. Samples of these inactivated cells were assayed to determine total 14C accumulation, and acid-treated samples were assayed to determine 14C fixation. The rate of transport of inorganic into illuminated cells was faster than the rate of CO2 production in the medium from HCO3- dehydration. This evidence for HCO3- transport in these cells is in agreement with our previous results based upon measurements of photosynthetic O2 evolution. A substantial pool of inorganic carbon was bulit up within the cells presumably as HCO3- before the onset of the maximum rate of photosynthesis. Large accumulation ratios were observed, greater than 1,000 times the external HCO3- concentration. Accumulation did not occur in the dark and was greatly suppressed by the photosynthesis inhibitors 3-(3,4-dichlorophenyl)-1,1-dimethyl urea and 3-chloro-carbonylcyanide phenylhydrazone. These results indicate that the accumulation of inorganic carbon in these cells involves a light-dependent active transport process. PMID:6773925

  8. CFD Model of Water Droplet Transport for ISS Hygiene Activity

    NASA Technical Reports Server (NTRS)

    Son, Chang H.

    2011-01-01

    The goal of the study is to assess the impacts of free water propagation in the Waste and Hygiene Compartment (WHC). Free water can be generated inside the WHC in small quantities due to crew hygiene activity. To mitigate potential impact of free water in Node 3 cabin the WHC doorway is enclosed by a waterproof bump-out, Kabin, with openings at the top and bottom. At the overhead side of the rack, there is a screen that prevents large drops of water from exiting. However, as the avionics fan in the WHC causes airflow toward the deck side of the rack, small quantities of free water may exit at the bottom of the Kabin. A Computational Fluid Dynamics (CFD) analysis of Node 3 cabin airflow made possible to identify the paths of water transport. The Node 3 airflow was computed for several ventilation scenarios. To simulate the droplet transport the Lagrangian discrete phase approach was used. Various initial droplet distributions were considered in the study. The droplet diameter was varied in the range of 2-20 mm. The results of the computations showed that most of the drops fall to the rack surface not far from the WHC curtain. The probability of the droplet transport to the adjacent rack surface with electronic equipment was predicted.

  9. Adult Active Transport in the Netherlands: An Analysis of Its Contribution to Physical Activity Requirements

    PubMed Central

    Fishman, Elliot; Böcker, Lars; Helbich, Marco

    2015-01-01

    Introduction Modern, urban lifestyles have engineered physical activity out of everyday life and this presents a major threat to human health. The Netherlands is a world leader in active travel, particularly cycling, but little research has sought to quantify the cumulative amount of physical activity through everyday walking and cycling. Methods Using data collected as part of the Dutch National Travel Survey (2010 – 2012), this paper determines the degree to which Dutch walking and cycling contributes to meeting minimum level of physical activity of 150 minutes of moderate intensity aerobic activity throughout the week. The sample includes 74,465 individuals who recorded at least some travel on the day surveyed. As physical activity benefits are cumulative, all walking and cycling trips are analysed, including those to and from public transport. These trips are then converted into an established measure of physical activity intensity, known as metabolic equivalents of tasks. Multivariate Tobit regression models were performed on a range of socio-demographic, transport resources, urban form and meteorological characteristics. Results The results reveal that Dutch men and women participate in 24 and 28 minutes of daily physical activity through walking and cycling, which is 41% and 55% more than the minimum recommended level. It should be noted however that some 57% of the entire sample failed to record any walking or cycling, and an investigation of this particular group serves as an important topic of future research. Active transport was positively related with age, income, bicycle ownership, urban density and air temperature. Car ownership had a strong negative relationship with physically active travel. Conclusion The results of this analysis demonstrate the significance of active transport to counter the emerging issue of sedentary lifestyle disease. The Dutch experience provides other countries with a highly relevant case study in the creation of

  10. Astrocytes generate Na+-mediated metabolic waves

    NASA Astrophysics Data System (ADS)

    Bernardinelli, Yann; Magistretti, Pierre J.; Chatton, Jean-Yves

    2004-10-01

    Glutamate-evoked Na+ increase in astrocytes has been identified as a signal coupling synaptic activity to glucose consumption. Astrocytes participate in multicellular signaling by transmitting intercellular Ca2+ waves. Here we show that intercellular Na+ waves are also evoked by activation of single cultured cortical mouse astrocytes in parallel with Ca2+ waves; however, there are spatial and temporal differences. Indeed, maneuvers that inhibit Ca2+ waves also inhibit Na+ waves; however, inhibition of the Na+/glutamate cotransporters or enzymatic degradation of extracellular glutamate selectively inhibit the Na+ wave. Thus, glutamate released by a Ca2+ wave-dependent mechanism is taken up by the Na+/glutamate cotransporters, resulting in a regenerative propagation of cytosolic Na+ increases. The Na+ wave gives rise to a spatially correlated increase in glucose uptake, which is prevented by glutamate transporter inhibition. Therefore, astrocytes appear to function as a network for concerted neurometabolic coupling through the generation of intercellular Na+ and metabolic waves.

  11. N-Glycosylation is required for Na{sup +}-dependent vitamin C transporter functionality

    SciTech Connect

    Subramanian, Veedamali S. Marchant, Jonathan S.; Reidling, Jack C.; Said, Hamid M.

    2008-09-12

    The human sodium-dependent vitamin C transporters (hSVCT1 and hSVCT2) mediate cellular uptake of ascorbic acid. Both these transporters contain potential sites for N-glycosylation in their extracellular domains (Asn-138, Asn-144 [hSVCT1]; Asn-188, Asn-196 [hSVCT2]), however the role of N-glycosylation in transporter function is unexplored. On the basis of the result that tunicamycin decreased {sup 14}C-ascorbic acid uptake in HepG2 cells, we systematically ablated all consensus N-glycosylation sites in hSVCT1 and hSVCT2 to resolve any effects on ascorbic acid uptake, transporter expression and targeting. We show that removal of individual N-glycosylation sites significantly impairs protein expression and consequently ascorbic acid uptake for hSVCT1 mutants (N138Q is retained intracellularly) and for hSVCT2 mutants (all of which reach the cell surface). N-Glycosylation is therefore essential for vitamin C transporter functionality.

  12. Regulation of NAD(P)H dehydrogenase-dependent cyclic electron transport around PSI by NaHSO₃ at low concentrations in tobacco chloroplasts.

    PubMed

    Wu, Yanxia; Zheng, Fangfang; Ma, Weimin; Han, Zhiguo; Gu, Qun; Shen, Yunkang; Mi, Hualing

    2011-10-01

    Although bisulfite at low concentrations (L-NaHSO₃) has been found to increase the cyclic electron transport around PSI (CET), its regulative mechanism remains unknown. In this work, the role of L-NaHSO₃ (0.1-500 μM) in NAD(P)H dehydrogenase-dependent CET (the NDH pathway) was investigated. After treatment of tobacco leaves with L-NaHSO₃, the NDH pathway, as reflected by a transient post-illumination increase in Chl fluorescence, the dark reduction of P700+ after far-red light and the amount of NDH, was increased after the light-dark-light transition, but was slightly lowered under continuous light. Meanwhile, the linear electron transport (LET) was accelerated by L-NaHSO₃ under both the light regimes. Experiments in thylakoids further demonstrated that both LET, monitored by light-dependent oxygen uptake, and CET, as determined from the NADPH-dependent oxygen uptake and dark reduction of P700+, were enhanced by L-NaHSO₃ and the enhancements were abolished by superoxide dismutase. Furthermore, L-NaHSO₃-induced CET was partially impaired in thylakoids of the ΔndhCKJ mutant, while L-NaHSO₃-induced LET was not affected. Based on these results, we propose that the photooxidation of L-NaHSO₃ initiated by superoxide anions in PSI regulates NDH pathway to maintain efficient photosynthesis. PMID:21828103

  13. Modulation of Na+/K+ ATPase Activity by Hydrogen Peroxide Generated through Heme in L. amazonensis.

    PubMed

    Rocco-Machado, Nathália; Cosentino-Gomes, Daniela; Meyer-Fernandes, José Roberto

    2015-01-01

    Leishmania amazonensis is a protozoan parasite that occurs in many areas of Brazil and causes skin lesions. Using this parasite, our group showed the activation of Na+/K+ ATPase through a signaling cascade that involves the presence of heme and protein kinase C (PKC) activity. Heme is an important biomolecule that has pro-oxidant activity and signaling capacity. Reactive oxygen species (ROS) can act as second messengers, which are required in various signaling cascades. Our goal in this work is to investigate the role of hydrogen peroxide (H2O2) generated in the presence of heme in the Na+/K+ ATPase activity of L. amazonensis. Our results show that increasing concentrations of heme stimulates the production of H2O2 in a dose-dependent manner until a concentration of 2.5 μM heme. To confirm that the effect of heme on the Na+/K+ ATPase is through the generation of H2O2, we measured enzyme activity using increasing concentrations of H2O2 and, as expected, the activity increased in a dose-dependent manner until a concentration of 0.1 μM H2O2. To investigate the role of PKC in this signaling pathway, we observed the production of H2O2 in the presence of its activator phorbol 12-myristate 13-acetate (PMA) and its inhibitor calphostin C. Both showed no effect on the generation of H2O2. Furthermore, we found that PKC activity is increased in the presence of H2O2, and that in the presence of calphostin C, H2O2 is unable to activate the Na+/K+ ATPase. 100 μM of Mito-TEMPO was capable of abolishing the stimulatory effect of heme on Na+/K+ ATPase activity, indicating that mitochondria might be the source of the hydrogen peroxide production induced by heme. The modulation of L. amazonensis Na+/K+ ATPase by H2O2 opens new possibilities for understanding the signaling pathways of this parasite. PMID:26070143

  14. Simulation of Cl− Secretion in Epithelial Tissues: New Methodology Estimating Activity of Electro-Neutral Cl− Transporter

    PubMed Central

    Sasamoto, Kouhei; Niisato, Naomi; Taruno, Akiyuki; Marunaka, Yoshinori

    2015-01-01

    Transcellular Cl− secretion is, in general, mediated by two steps; (1) the entry step of Cl− into the cytosolic space from the basolateral space across the basolateral membrane by Cl− transporters, such as Na+-K+-2Cl− cotransporter (NKCC1, an isoform of NKCC), and (2) the releasing step of Cl− from the cytosolic space into the luminal (air) space across the apical membrane via Cl− channels, such as cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel. Transcellular Cl− secretion has been characterized by using various experimental techniques. For example, measurements of short-circuit currents in the Ussing chamber and patch clamp techniques provide us information on transepithelial ion movements via transcellular pathway, transepithelial conductance, activity (open probability) of single channel, and whole cell currents. Although many investigators have tried to clarify roles of Cl− channels and transporters located at the apical and basolateral membranes in transcellular Cl− secretion, it is still unclear how Cl− channels/transporters contribute to transcellular Cl− secretion and are regulated by various stimuli such as Ca2+ and cAMP. In the present study, we simulate transcellular Cl− secretion using mathematical models combined with electrophysiological measurements, providing information on contribution of Cl− channels/transporters to transcellular Cl− secretion, activity of electro-neutral ion transporters and how Cl− channels/transporters are regulated. PMID:26779025

  15. Active urea transport by the skin of Bufo viridis: Amiloride- and phloretin-sensitive transport sites

    SciTech Connect

    Rapoport, J.; Abuful, A.; Chaimovitz, C.; Noeh, Z.; Hays, R.M. Albert Einstein College of Medicine, New York, NY )

    1988-09-01

    Urea is actively transported inwardly (J{sub i}) across the skin of the green toad Bufo viridis. J{sub i} is markedly enhanced in toads adapted to hypertonic saline. The authors studied urea transport across the skin of Bufo viridis under a variety of experimental conditions, including treatment with amiloride and phloretin, agents that inhibit urea permeability in the bladder of Bufo marinus. Amiloride (10{sup {minus}4} M) significantly inhibited J{sub i} in both adapted and unadapted animals and was unaffected by removal of sodium from the external medium. Phloretin (10{sup {minus}4} M) significantly inhibited J{sub i} in adapted animals by 23-46%; there was also a reduction in J{sub i} in unadapted toads at 10{sup {minus}4} and 5 {times} 10{sup {minus}4} M phloretin. A dose-response study revealed that the concentration of phloretin causing half-maximal inhibition (K{sub {1/2}}) was 5 {times} 10{sup {minus}4} M for adapted animals. J{sub i} was unaffected by the substitution of sucrose for Ringer solution or by ouabain. They conclude (1) the process of adaptation appears to involve an increase in the number of amiloride- and phloretin-inhibitable urea transport sites in the skin, with a possible increase in the affinity of the sites for phloretin; (2) the adapted skin resembles the Bufo marinus urinary bladder with respect to amiloride and phloretin-inhibitable sites; (3) they confirm earlier observations that J{sub i} is independent of sodium transport.

  16. Particle transport simulation for spaceborne, NaI gamma-ray spectrometers

    SciTech Connect

    Dyer, C.S.; Truscott, P.R.; Sims, A.J.; Comber, C.; Hammond, N.D.A.

    1988-12-01

    Radioactivity induced in detectors by protons and secondary neutron limits the sensitivity of spaceborn gamma-ray spectrometers. Three-dimensional Monte Carlo transport codes have been employed to simulate particle transport of cosmic rays and inner-belt protons in various representations of the Gamma-Ray Observatory Spacecraft and the Oriented Scintillatin Spectrometer Experiment. Results are used to accurately quantify the contributions to the radioactive background, assess shielding options and examine the effect of detector and spacecraft orientation in anisotropic trapped proton fluxes.

  17. Active migration and passive transport of malaria parasites.

    PubMed

    Douglas, Ross G; Amino, Rogerio; Sinnis, Photini; Frischknecht, Freddy

    2015-08-01

    Malaria parasites undergo a complex life cycle between their hosts and vectors. During this cycle the parasites invade different types of cells, migrate across barriers, and transfer from one host to another. Recent literature hints at a misunderstanding of the difference between active, parasite-driven migration and passive, circulation-driven movement of the parasite or parasite-infected cells in the various bodily fluids of mosquito and mammalian hosts. Because both active migration and passive transport could be targeted in different ways to interfere with the parasite, a distinction between the two ways the parasite uses to get from one location to another is essential. We discuss the two types of motion needed for parasite dissemination and elaborate on how they could be targeted by future vaccines or drugs. PMID:26001482

  18. Directed transport of active particles over asymmetric energy barriers.

    PubMed

    Koumakis, N; Maggi, C; Di Leonardo, R

    2014-08-21

    We theoretically and numerically investigate the transport of active colloids to target regions, delimited by asymmetric energy barriers. We show that it is possible to introduce a generalized effective temperature that is related to the local variance of particle velocities. The stationary probability distributions can be derived from a simple diffusion equation in the presence of an inhomogeneous effective temperature resulting from the action of external force fields. In particular, transition rates over asymmetric energy barriers can be unbalanced by having different effective temperatures over the two slopes of the barrier. By varying the type of active noise, we find that equal values of diffusivity and persistence time may produce strongly varied effective temperatures and thus stationary distributions. PMID:24978345

  19. Active transport of vesicles in neurons is modulated by mechanical tension

    NASA Astrophysics Data System (ADS)

    Ahmed, Wylie W.; Saif, Taher A.

    2014-03-01

    Effective intracellular transport of proteins and organelles is critical in cells, and is especially important for ensuring proper neuron functionality. In neurons, most proteins are synthesized in the cell body and must be transported through thin structures over long distances where normal diffusion is insufficient. Neurons transport subcellular cargo along axons and neurites through a stochastic interplay of active and passive transport. Mechanical tension is critical in maintaining proper function in neurons, but its role in transport is not well understood. To this end, we investigate the active and passive transport of vesicles in Aplysia neurons while changing neurite tension via applied strain, and quantify the resulting dynamics. We found that tension in neurons modulates active transport of vesicles by increasing the probability of active motion, effective diffusivity, and induces a retrograde bias. We show that mechanical tension modulates active transport processes in neurons and that external forces can couple to internal (subcellular) forces and change the overall transport dynamics.

  20. Activation of the epithelial Na+ channel in the collecting duct by vasopressin contributes to water reabsorption.

    PubMed

    Bugaj, Vladislav; Pochynyuk, Oleh; Stockand, James D

    2009-11-01

    We used patch-clamp electrophysiology on isolated, split-open murine collecting ducts (CD) to test the hypothesis that regulation of epithelial sodium channel (ENaC) activity is a physiologically important effect of vasopressin. Surprisingly, this has not been tested directly before. We ask whether vasopressin affects ENaC activity distinguishing between acute and chronic effects, as well as, parsing the cellular signaling pathway and molecular mechanism of regulation. In addition, we quantified possible synergistic regulation of ENaC by vasopressin and aldosterone associating this with a requirement for distal nephron Na+ reabsorption during water conservation vs. maintenance of Na+ balance. We find that vasopressin significantly increases ENaC activity within 2-3 min by increasing open probability (P(o)). This activation was dependent on adenylyl cyclase (AC) and PKA. Water restriction (18-24 h) and pretreatment of isolated CD with vasopressin (approximately 30 min) resulted in a similar increase in P(o). In addition, this also increased the number (N) of active ENaC in the apical membrane. Similar to P(o), increases in N were sensitive to inhibitors of AC. Stressing animals with water and salt restriction separately and jointly revealed an important effect of vasopressin: conservation of water and Na+ each independently increased ENaC activity and jointly had a synergistic effect on channel activity. These results demonstrate a quantitatively important action of vasopressin on ENaC suggesting that distal nephron Na+ reabsorption mediated by this channel contributes to maintenance of water reabsorption. In addition, our results support that the combined actions of vasopressin and aldosterone are required to achieve maximally activated ENaC. PMID:19692483

  1. Active Transport of Nanomaterials Using Motor Proteins -Final Report

    SciTech Connect

    Hess, Henry

    2005-09-01

    During the six months of funding we have focused first on the completion of the research begun at the University of Washington in the previous funding cycle. Specifically, we developed a method to polymerize oriented networks of microtubules on lithographically patterned surfaces (M.S. thesis Robert Doot). The properties of active transport have been studied detail, yielding insights into the dispersion mechanisms (Nitta et al.). The assembly of multifunctional structures with a microtubule core has been investigated (Ramachandran et al.). Isaac Luria (B.S. in physics, U. of Florida 2005) worked on the directed assembly of nanoscale, non-equilibrium structures as a summer intern. He is now a graduate student in my group at the University of Florida. T. Nitta and H. Hess: Dispersion in Active Transport by Kinesin-Powered Molecular Shuttles, Nano Letters, 5, 1337-1342 (2005) S. Ramachandran, K.-H. Ernst, G. D. Bachand, V. Vogel, H. Hess*: Selective Loading of Kinesin-Powered Molecular Shuttles with Protein Cargo and its Application to Biosensing, submitted to Small (2005)

  2. Socioeconomic and regional differences in active transportation in Brazil

    PubMed Central

    de Sá, Thiago Hérick; Pereira, Rafael Henrique Moraes; Duran, Ana Clara; Monteiro, Carlos Augusto

    2016-01-01

    ABSTRACT OBJECTIVE To present national estimates regarding walking or cycling for commuting in Brazil and in 10 metropolitan regions. METHODS By using data from the Health section of 2008’s Pesquisa Nacional por Amostra de Domicílio (Brazil’s National Household Sample Survey), we estimated how often employed people walk or cycle to work, disaggregating our results by sex, age range, education level, household monthly income per capita, urban or rural address, metropolitan regions, and macro-regions in Brazil. Furthermore, we estimated the distribution of this same frequency according to quintiles of household monthly income per capita in each metropolitan region of the country. RESULTS A third of the employed men and women walk or cycle from home to work in Brazil. For both sexes, this share decreases as income and education levels rise, and it is higher among younger individuals, especially among those living in rural areas and in the Northeast region of the country. Depending on the metropolitan region, the practice of active transportation is two to five times more frequent among low-income individuals than among high-income individuals. CONCLUSIONS Walking or cycling to work in Brazil is most frequent among low-income individuals and the ones living in less economically developed areas. Active transportation evaluation in Brazil provides important information for public health and urban mobility policy-making PMID:27355465

  3. NHE3 Regulatory Factor 1 (NHERF1) Modulates Intestinal Sodium-dependent Phosphate Transporter (NaPi-2b) Expression in Apical Microvilli*

    PubMed Central

    Giral, Hector; Cranston, DeeAnn; Lanzano, Luca; Caldas, Yupanqui; Sutherland, Eileen; Rachelson, Joanna; Dobrinskikh, Evgenia; Weinman, Edward J.; Doctor, R. Brian; Gratton, Enrico; Levi, Moshe

    2012-01-01

    Pi uptake in the small intestine occurs predominantly through the NaPi-2b (SLC34a2) co-transporter. NaPi-2b is regulated by changes in dietary Pi but the mechanisms underlying this regulation are largely undetermined. Sequence analyses show NaPi-2b has a PDZ binding motif at its C terminus. Immunofluorescence imaging shows NaPi-2b and two PDZ domain containing proteins, NHERF1 and PDZK1, are expressed in the apical microvillar domain of rat small intestine enterocytes. Co-immunoprecipitation studies in rat enterocytes show that NHERF1 associates with NaPi-2b but not PDZK1. In HEK co-expression studies, GFP-NaPi-2b co-precipitates with FLAG-NHERF1. This interaction is markedly diminished when the C-terminal four amino acids are truncated from NaPi-2b. FLIM-FRET analyses using tagged proteins in CACO-2BBE cells show a distinct phasor shift between NaPi-2b and NHERF1 but not between NaPi-2b and the PDZK1 pair. This shift demonstrates that NaPi-2b and NHERF1 reside within 10 nm of each other. NHERF1−/− mice, but not PDZK1−/− mice, had a diminished adaptation of NaPi-2b expression in response to a low Pi diet. Together these studies demonstrate that NHERF1 associates with NaPi-2b in enterocytes and regulates NaPi-2b adaptation. PMID:22904329

  4. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    NASA Astrophysics Data System (ADS)

    Annewandter, R.

    2013-12-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced soil gas sampling during On-Site inspections. Gas transport has been widely studied with different numerical codes. However, gas transport of all radioxenons in the post-detonation regime and their possible fractionation is still neglected in the open literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radioxenons, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different diffusivities due to mass differences between the radioxenons. A previous study showed surface arrival time of a chemically inert gaseous tracer is affected by its diffusivity. They observed detectable amount for SF6 50 days after detonation and 375 days for He-3. They predict 50 and 80 days for Xe-133 and Ar-37 respectively. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations , fracture propagation in fractured, porous media, Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic

  5. Leishmania amazonensis: characterization of an ouabain-insensitive Na+-ATPase activity.

    PubMed

    de Almeida-Amaral, Elmo Eduardo; Caruso-Neves, Celso; Pires, Vanessa Maria Pereira; Meyer-Fernandes, José Roberto

    2008-02-01

    We characterized ouabain-insensitive Na+-ATPase activity present in the plasma membrane of Leishmania amazonensis and investigated its possible role in the growth of the parasite. An increase in Na+ concentration in the presence of 1mM ouabain, increased the ATPase activity with a V(max) of 154.1+/-13.5nmol Pi x h(-1) x mg(-1) and a K0.5 of 28.9+/-7.7mM. Furosemide and sodium orthovanadate inhibited the Na+-stimulated ATPase activity with an IC(50) of 270microM and 0.10microM, respectively. Furosemide inhibited the growth of L. amazonensis after 48h incubation, with maximal effect after 96h. The IC50 for furosemide was 840. On the other hand, ouabain (1mM) did not change the growth of the parasite. Taken together, these results show that L. amazonensis expresses a P-type, ouabain-insensitive Na+-ATPase that could be involved with the growth of the parasite. PMID:17825292

  6. Amphetamine activates calcium channels through dopamine transporter-mediated depolarization.

    PubMed

    Cameron, Krasnodara N; Solis, Ernesto; Ruchala, Iwona; De Felice, Louis J; Eltit, Jose M

    2015-11-01

    Amphetamine (AMPH) and its more potent enantiomer S(+)AMPH are psychostimulants used therapeutically to treat attention deficit hyperactivity disorder and have significant abuse liability. AMPH is a dopamine transporter (DAT) substrate that inhibits dopamine (DA) uptake and is implicated in DA release. Furthermore, AMPH activates ionic currents through DAT that modify cell excitability presumably by modulating voltage-gated channel activity. Indeed, several studies suggest that monoamine transporter-induced depolarization opens voltage-gated Ca(2+) channels (CaV), which would constitute an additional AMPH mechanism of action. In this study we co-express human DAT (hDAT) with Ca(2+) channels that have decreasing sensitivity to membrane depolarization (CaV1.3, CaV1.2 or CaV2.2). Although S(+)AMPH is more potent than DA in transport-competition assays and inward-current generation, at saturating concentrations both substrates indirectly activate voltage-gated L-type Ca(2+) channels (CaV1.3 and CaV1.2) but not the N-type Ca(2+) channel (CaV2.2). Furthermore, the potency to achieve hDAT-CaV electrical coupling is dominated by the substrate affinity on hDAT, with negligible influence of L-type channel voltage sensitivity. In contrast, the maximal coupling-strength (defined as Ca(2+) signal change per unit hDAT current) is influenced by CaV voltage sensitivity, which is greater in CaV1.3- than in CaV1.2-expressing cells. Moreover, relative to DA, S(+)AMPH showed greater coupling-strength at concentrations that induced relatively small hDAT-mediated currents. Therefore S(+)AMPH is not only more potent than DA at inducing hDAT-mediated L-type Ca(2+) channel currents but is a better depolarizing agent since it produces tighter electrical coupling between hDAT-mediated depolarization and L-type Ca(2+) channel activation. PMID:26162812

  7. Decreased Erythrocyte NA+,K+-ATPase Activity and Increased Plasma TBARS in Prehypertensive Patients

    PubMed Central

    Malfatti, Carlos Ricardo Maneck; Burgos, Leandro Tibiriçá; Rieger, Alexandre; Rüdger, Cássio Luiz; Túrmina, Janaína Angela; Pereira, Ricardo Aparecido; Pavlak, João Lang; Silva, Luiz Augusto; Osiecki, Raul

    2012-01-01

    The essential hypertension has been associated with membrane cell damage. The aim of the present study is investigate the relationship between erythrocyte Na+,K+-ATPase and lipoperoxidation in prehypertensive patients compared to normotensive status. The present study involved the prehypertensive patients (systolic: 136 ± 7 mmHg; diastolic: 86.8 ± 6.3 mmHg; n = 8) and healthy men with normal blood pressure (systolic: 110 ± 6.4 mmHg; diastolic: 76.1 ± 4.2 mmHg; n = 8) who were matched for age (35 ± 4 years old). The venous blood samples of antecubital vein (5 mL) were collected into a tube containing sodium heparin as anticoagulant (1000 UI), and erythrocyte ghosts were prepared for quantifying Na+,K+-ATPase activity. The extent of the thiobarbituric acid reactive substances (TBARS) was determined in plasma. The statistical analysis was carried out by Student's t-test and Pearson's correlation coefficient. A P < 0.05 was considered significant. The Na+,K+-ATPase activity was lower in prehypertensive patients compared with normotensive subjects (4.9 versus 8.0 nmol Pi/mg protein/min; P < 0.05). The Na+,K+-ATPase activity correlated negatively with TBARS content (r = −0.6; P < 0.05) and diastolic blood pressure (r = −0.84; P < 0.05). The present study suggests that Na+,K+-ATPase activity reduction and elevation of the TBARS content may underlie the pathophysiological aspects linked to the prehypertensive status. PMID:22919304

  8. Bactericidal and Fungicidal Activity in the Gas Phase of Sodium Dichloroisocyanurate (NaDCC).

    PubMed

    Proto, Antonio; Zarrella, Ilaria; Cucciniello, Raffaele; Pironti, Concetta; De Caro, Francesco; Motta, Oriana

    2016-08-01

    Sodium dichloroisocyanurate (NaDCC) is usually employed as a disinfectant for the treatment of water, environmental surfaces and medical equipment principally for its effectiveness as a microbicide agent. In this study, we explore the possibility of a new use for NaDCC by investigating the microbicidal activity of chlorine, which derives from the hydrolysis of NaDCC mediated by air humidity, and by testing its effect on the neutralization of microbes present in domestic waste. NaDCC was inserted in a plastic garbage can where LB agar plates, with different dilutions of a known title of four different microorganisms (Escherichia coli, Staphylococcus aureus, Debaryomyces hansenii and Aspergillus brasiliensis), were weakly inserted. The molecular chlorine (Cl2) levels present in the garbage can were quantified using an iodometric titration. The gas emitted in the garbage can presented a strong microbicide effect, inhibiting the proliferation of all four microorganisms and for four consecutive weeks, thus showing that NaDCC hydrolysis, mediated by air humidity, is able to ensure the decontamination of restricted environments, avoiding the proliferation of both Gram-positive and Gram-negative bacteria as well as fungi. PMID:27086304

  9. Atrial natriuretic peptide(31-67) inhibits Na+ transport in rabbit inner medullary collecting duct cells. Role of prostaglandin E2.

    PubMed Central

    Gunning, M E; Brady, H R; Otuechere, G; Brenner, B M; Zeidel, M L

    1992-01-01

    Atrial natriuretic peptide (ANP)(31-67), a portion of the atrial peptide prohormone, circulates in humans, and its plasma level varies with atrial pressure. Like the more widely studied carboxy-terminal fragment ANP(99-126), ANP(31-67) stimulates natriuresis and diuresis. We examined the mechanism of this natriuresis by measuring the effects of ANP(31-67) on Na+ transport in cells of the rabbit inner medullary collecting duct (IMCD). ANP(31-67) (10(-8) M) caused a 26 +/- 4% inhibition of oxygen consumption (QO2); half-maximal inhibition occurred at 10(-11) M, suggesting a physiologic effect. This effect was not additive with either ouabain or amiloride, suggesting that it reflected inhibition of Na+ transport-dependent QO2. ANP(31-67) reduced the amphotericin-induced stimulation of QO2 consistent with inhibition by this peptide of the Na(+)-K(+)-ATPase. In addition, ANP(31-67) reduced ouabain-sensitive 86Rb+ uptake under Vmax conditions. Several lines of evidence indicated that PGE2, a known endogenous IMCD Na(+)-K(+)-ATPase inhibitor, mediates pump inhibition by ANP(31-67). Thus, ANP(31-67) inhibits Na+ transport by inhibiting the Na(+)-K(+)-ATPase of IMCD cells, an effect mediated by the generation of PGE2. PMID:1533229

  10. Reversible emission evolution from Ag activated zeolite Na-A upon dehydration/hydration

    SciTech Connect

    Lin, Hui E-mail: fujii@eedept.kobe-u.ac.jp; Imakita, Kenji; Fujii, Minoru E-mail: fujii@eedept.kobe-u.ac.jp

    2014-11-24

    Reversible emission evolution of thermally treated Ag activated zeolite Na-A upon dehydration/hydration in vacuum/water vapor was observed. The phenomenon was observed even for the sample with low Ag{sup +}-Na{sup +} exchanging (8.3%), indicating that the emission from Ag activated zeolites may not come from Ag clusters while from the surrounding coordinated Ag{sup +} ions or Ag{sup 0} atoms. It was disclosed that the characteristic yellow-green emission at ∼560 ± 15 nm is strongly associated with the coordinating water molecules to the Ag{sup +} ions or Ag{sup 0} atoms, which is clear evidence for that the efficient emission from Ag activated zeolites may not originate from the quantum confinement effect.

  11. Dissecting the Molecular Mechanism of Nucleotide-Dependent Activation of the KtrAB K+ Transporter

    PubMed Central

    Szollosi, Andras; Vieira-Pires, Ricardo S.; Teixeira-Duarte, Celso M.; Rocha, Rita; Morais-Cabral, João H.

    2016-01-01

    KtrAB belongs to the Trk/Ktr/HKT superfamily of monovalent cation (K+ and Na+) transport proteins that closely resemble K+ channels. These proteins underlie a plethora of cellular functions that are crucial for environmental adaptation in plants, fungi, archaea, and bacteria. The activation mechanism of the Trk/Ktr/HKT proteins remains unknown. It has been shown that ATP stimulates the activity of KtrAB while ADP does not. Here, we present X-ray structural information on the KtrAB complex with bound ADP. A comparison with the KtrAB-ATP structure reveals conformational changes in the ring and in the membrane protein. In combination with a biochemical and functional analysis, we uncover how ligand-dependent changes in the KtrA ring are propagated to the KtrB membrane protein and conclude that, despite their structural similarity, the activation mechanism of KtrAB is markedly different from the activation mechanism of K+ channels. PMID:26771197

  12. Structural state of the Na+/D-glucose cotransporter in calf kidney brush-border membranes. Target size analysis of Na+-dependent phlorizin binding and Na+-dependent D-glucose transport.

    PubMed

    Lin, J T; Szwarc, K; Kinne, R; Jung, C Y

    1984-11-01

    Target sizes of the renal sodium-D-glucose cotransport system in brush-border membranes of calf kidney cortex were estimated by radiation inactivation. In brush-border vesicles irradiated at -50 degrees C with 1.5 MeV electron beams, sodium-dependent phlorizin binding, and Na+-dependent D-glucose tracer exchange decreased exponentially with increasing doses of radiation (0.4-4.4 Mrad). Inactivation of phlorizin binding was due to a reduction in the number of high-affinity phlorizin binding sites but not in their affinity. The molecular weight of the Na+-dependent phlorizin binding unit was estimated to be 230 000 +/- 38 000. From the tracer exchange experiments a molecular weight of 345 000 +/- 24 500 was calculated for the D-glucose transport unit. The validity of these target size measurements was established by concomitant measurements of two brush-border enzymes, alkaline phosphatase and gamma-glutamyltransferase, whose target sizes were found to be 68 570 +/- 2670 and 73 500 +/- 2270, respectively. These findings provide further evidence for the assumption that the sodium-D-glucose cotransport system is a multimeric structure, in which distinct complexes are responsible for phlorizin binding and D-glucose translocation. PMID:6148966

  13. Physical Activity Energy Expenditure in Dutch Adolescents: Contribution of Active Transport to School, Physical Education, and Leisure Time Activities

    ERIC Educational Resources Information Center

    Slingerland, Menno; Borghouts, Lars B.; Hesselink, Matthijs K. C.

    2012-01-01

    Background: Detailed knowledge about physical activity energy expenditure (PAEE) can guide the development of school interventions aimed at reducing overweight in adolescents. However, relevant components of PAEE have never been objectively quantified in this population. This study investigated the contribution of active transport to and from…

  14. Structural lipid changes and Na(+)/K(+)-ATPase activity of gill cells' basolateral membranes during saltwater acclimation in sea lamprey (Petromyzon marinus, L.) juveniles.

    PubMed

    Lança, Maria João; Machado, Maria; Ferreira, Ana Filipa; Quintella, Bernardo Ruivo; de Almeida, Pedro Raposo

    2015-11-01

    Seawater acclimation is a critical period for anadromous species and a process yet to be understood in lampreys. Considering that changes in lipid composition of the gill cells' basolateral membranes may disrupt the major transporter Na(+)K(+)-ATPase, the goal of this study was to detect changes at this level during juvenile sea lamprey seawater acclimation. The results showed that saltwater acclimation has a direct effect on the fatty acid composition of gill cells basolateral membrane's phospholipids. When held in full-strength seawater, the fatty acid profile of basolateral membrane's phospholipids suffered a restructure by increasing either saturation or the ratio between oleic acid and eicosapentaenoic acid. Simultaneously, the activity of Na(+)K(+)-ATPase revealed a significant and positive correlation with basolateral membrane's cholesterol content in the presence of highest salinity. Our results pointed out for lipid adjustments involving the functional transporter present on the gill cell basolateral membranes to ensure the role played by branchial Na(+)K(+)-ATPase in ion transport during saltwater acclimation process. The responses observed contributed to the strategy adopted by gill cell's basolateral membranes to compensate for osmotic and ionic stressors, to ensure the success of the process of seawater acclimation associated with the downstream trophic migration of juvenile sea lamprey. PMID:26244517

  15. The Effect of Ionic Strength and Specific Anions on Substrate Binding and Hydrolytic Activities of Na,K-ATPase

    PubMed Central

    Nørby, Jens G.; Esmann, Mikael

    1997-01-01

    The physiological ligands for Na,K-ATPase (the Na,K-pump) are ions, and electrostatic forces, that could be revealed by their ionic strength dependence, are therefore expected to be important for their reaction with the enzyme. We found that the affinities for ADP3−, eosin2−, p-nitrophenylphosphate, and Vmax for Na,K-ATPase and K+-activated p-nitrophenylphosphatase activity, were all decreased by increasing salt concentration and by specific anions. Equilibrium binding of ADP was measured at 0–0.5 M of NaCl, Na2SO4, and NaNO3 and in 0.1 M Na-acetate, NaSCN, and NaClO4. The apparent affinity for ADP decreased up to 30 times. At equal ionic strength, I, the ranking of the salt effect was NaCl ≈ Na2SO4 ≈ Na-acetate < NaNO3 < NaSCN < NaClO4. We treated the influence of NaCl and Na2SO4 on Kdiss for E·ADP as a “pure” ionic strength effect. It is quantitatively simulated by a model where the binding site and ADP are point charges, and where their activity coefficients are related to I by the limiting law of Debye and Hückel. The estimated net charge at the binding site of the enzyme was about +1. Eosin binding followed the same model. The NO3− effect was compatible with competitive binding of NO3− and ADP in addition to the general I-effect. Kdiss for E·NO3 was ∼32 mM. Analysis of Vmax/Km for Na,K-ATPase and K+-p-nitrophenylphosphatase activity shows that electrostatic forces are important for the binding of p-nitrophenylphosphate but not for the catalytic effect of ATP on the low affinity site. The net charge at the p-nitrophenylphosphate-binding site was also about +1. The results reported here indicate that the reversible interactions between ions and Na,K-ATPase can be grouped according to either simple Debye-Hückel behavior or to specific anion or cation interactions with the enzyme. PMID:9154904

  16. Effects of salinity on chloride cells and Na+, K(+)-ATPase activity in the teleost Gillichthys mirabilis.

    PubMed

    Yoshikawa, J S; McCormick, S D; Young, G; Bern, H A

    1993-06-01

    1. Longjawed mudsuckers, Gillichthys mirabilis, in 30 ppt seawater (SW) were transferred to 1.5, 30 and 60 ppt SW. 2. In the first 1-3 days after transfer, plasma chloride level and plasma osmolarity rose in the 60 ppt SW fish, and decreased in the 1.5 ppt SW fish. 3. By day 21, however, plasma chloride and osmolarity were at or near the levels seen in the controls (30 ppt). 4. Branchial and jawskin Na+, K(+)-ATPase activities were high in all salinities, and did not differ significantly among treatments. 5. The vital fluorescent stains DASPEI and anthroylouabain were used to detect mitochondria and Na+, K(+)-ATPase, respectively, in chloride cells. 6. Both stains indicated that jawskin chloride cell density did not differ among treatment groups. 7. In contrast, chloride cell size increased significantly with increasing salinity. 8. The chloride cells of fish in 60 ppt SW were noticeably angular in outline, whereas those of both the 1.5 and 30 ppt SW fish were circular. 9. The results are discussed in relation to the ion transport requirements encountered in the intertidal habitat of the mudsucker. PMID:8101158

  17. Effect of sugar positions in ginsenosides and their inhibitory potency on Na+/K+-ATPase activity

    PubMed Central

    Chen, Ronald JY; Chung, Tse-yu; Li, Feng-yin; Lin, Nan-hei; Tzen, Jason TC

    2009-01-01

    Aim: To determine whether ginsenosides with various sugar attachments may act as active components responsible for the cardiac therapeutic effects of ginseng and sanqi (the roots of Panax ginseng and Panax notoginseng) via the same molecular mechanism triggered by cardiac glycosides, such as ouabain and digoxin. Methods: The structural similarity between ginsenosides and ouabain was analyzed. The inhibitory potency of ginsenosides and ouabain on Na+/K+-ATPase activity was examined and compared. Molecular modeling was exhibited for the docking of ginsenosides to Na+/K+-ATPase. Results: Ginsenosides with sugar moieties attached only to the C-3 position of the steroid-like structure, equivalent to the sugar position in cardiac glycosides, and possessed inhibitory potency on Na+/K+-ATPase activity. However, their inhibitory potency was significantly reduced or completely abolished when a monosaccharide was linked to the C-6 or C-20 position of the steroid-like structure; replacement of the monosaccharide with a disaccharide molecule at either of these positions caused the disappearance of the inhibitory potency. Molecular modeling and docking confirmed that the difference in Na+/K+-ATPase inhibitory potency among ginsenosides was due to the steric hindrance of sugar attachment at the C-6 and C-20 positions of the steroid-like structure. Conclusion: The cardiac therapeutic effects of ginseng and sanqi should be at least partly attributed to the effective inhibition of Na+/K+-ATPase by their metabolized ginsenosides with sugar moieties attached only to the C-3 position of the steroid-like structure. PMID:19060914

  18. Thermally activated charge transport in microbial protein nanowires

    PubMed Central

    Lampa-Pastirk, Sanela; Veazey, Joshua P.; Walsh, Kathleen A.; Feliciano, Gustavo T.; Steidl, Rebecca J.; Tessmer, Stuart H.; Reguera, Gemma

    2016-01-01

    The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors. PMID:27009596

  19. Thermally activated charge transport in microbial protein nanowires.

    PubMed

    Lampa-Pastirk, Sanela; Veazey, Joshua P; Walsh, Kathleen A; Feliciano, Gustavo T; Steidl, Rebecca J; Tessmer, Stuart H; Reguera, Gemma

    2016-01-01

    The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors. PMID:27009596

  20. Allosteric Regulation of Transport Activity by Heterotrimerization of Arabidopsis Ammonium Transporter Complexes in Vivo[C][W][OA

    PubMed Central

    Yuan, Lixing; Gu, Riliang; Xuan, Yuanhu; Smith-Valle, Erika; Loqué, Dominique; Frommer, Wolf B.; von Wirén, Nicolaus

    2013-01-01

    Ammonium acquisition by plant roots is mediated by AMMONIUM TRANSPORTERs (AMTs), ubiquitous membrane proteins with essential roles in nitrogen nutrition in all organisms. In microbial and plant cells, ammonium transport activity is controlled by ammonium-triggered feedback inhibition to prevent cellular ammonium toxicity. Data from heterologous expression in yeast indicate that oligomerization of plant AMTs is critical for allosteric regulation of transport activity, in which the conserved cytosolic C terminus functions as a trans-activator. Employing the coexpressed transporters AMT1;1 and AMT1;3 from Arabidopsis thaliana as a model, we show here that these two isoforms form functional homo- and heterotrimers in yeast and plant roots and that AMT1;3 carrying a phosphomimic residue in its C terminus regulates both homo- and heterotrimers in a dominant-negative fashion in vivo. 15NH4+ influx studies further indicate that allosteric inhibition represses ammonium transport activity in roots of transgenic Arabidopsis expressing a phosphomimic mutant together with functional AMT1;3 or AMT1;1. Our study demonstrates in planta a regulatory role in transport activity of heterooligomerization of transporter isoforms, which may enhance their versatility for signal exchange in response to environmental triggers. PMID:23463773

  1. Theory of activated transport in bilayer quantum Hall systems.

    PubMed

    Roostaei, B; Mullen, K J; Fertig, H A; Simon, S H

    2008-07-25

    We analyze the transport properties of bilayer quantum Hall systems at total filling factor nu=1 in drag geometries as a function of interlayer bias, in the limit where the disorder is sufficiently strong to unbind meron-antimeron pairs, the charged topological defects of the system. We compute the typical energy barrier for these objects to cross incompressible regions within the disordered system using a Hartree-Fock approach, and show how this leads to multiple activation energies when the system is biased. We then demonstrate using a bosonic Chern-Simons theory that in drag geometries current in a single layer directly leads to forces on only two of the four types of merons, inducing dissipation only in the drive layer. Dissipation in the drag layer results from interactions among the merons, resulting in very different temperature dependences for the drag and drive layers, in qualitative agreement with experiment. PMID:18764355

  2. Theory of Activated Transport in Bilayer Quantum Hall Systems

    NASA Astrophysics Data System (ADS)

    Roostaei, Bahman; Fertig, Herbert; Mullen, Kieran; Simon, Steven

    2008-03-01

    We analyze the transport properties of bilayer quantum Hall systems at total filling factor ν= 1 in drag geometries as a function of interlayer bias, in the limit where the disorder is sufficiently strong to unbind meron-antimeron pairs, the charged topological defects of the system. We compute the typical energy barrier for these objects to cross incompressible regions within the disordered system using a Hartree-Fock approach, and show how this leads to multiple activation energies when the system is biased. We then demonstrate using a bosonic Chern- Simons theory that in drag geometries, current in a single layer directly leads to forces on only two of the four types of merons, inducing dissipation only in the drive layer. Dissipation in the drag layer results from interactions among the merons, resulting in very different temperature dependences for the drag and drive layers, in qualitative agreement with experiment. We conclude with predictions for future experiments.

  3. Theory of Activated Transport in Bilayer Quantum Hall Systems

    NASA Astrophysics Data System (ADS)

    Roostaei, B.; Mullen, K. J.; Fertig, H. A.; Simon, S. H.

    2008-07-01

    We analyze the transport properties of bilayer quantum Hall systems at total filling factor ν=1 in drag geometries as a function of interlayer bias, in the limit where the disorder is sufficiently strong to unbind meron-antimeron pairs, the charged topological defects of the system. We compute the typical energy barrier for these objects to cross incompressible regions within the disordered system using a Hartree-Fock approach, and show how this leads to multiple activation energies when the system is biased. We then demonstrate using a bosonic Chern-Simons theory that in drag geometries current in a single layer directly leads to forces on only two of the four types of merons, inducing dissipation only in the drive layer. Dissipation in the drag layer results from interactions among the merons, resulting in very different temperature dependences for the drag and drive layers, in qualitative agreement with experiment.

  4. Role of H{sub 2}O{sub 2} on the kinetics of low-affinity high-capacity Na{sup +}-dependent alanine transport in SHR proximal tubular epithelial cells

    SciTech Connect

    Pinto, Vanda; Pinho, Maria Joao; Jose, Pedro A.; Soares-da-Silva, Patricio

    2010-07-30

    Research highlights: {yields} H{sub 2}O{sub 2} in excess is required for the presence of a low-affinity high-capacity component for the Na{sup +}-dependent [{sup 14}C]-L-alanine uptake in SHR PTE cells only. {yields} It is suggested that Na{sup +} binding in renal ASCT2 may be regulated by ROS in SHR PTE cells. -- Abstract: The presence of high and low sodium affinity states for the Na{sup +}-dependent [{sup 14}C]-L-alanine uptake in immortalized renal proximal tubular epithelial (PTE) cells was previously reported (Am. J. Physiol. 293 (2007) R538-R547). This study evaluated the role of H{sub 2}O{sub 2} on the Na{sup +}-dependent [{sup 14}C]-L-alanine uptake of ASCT2 in immortalized renal PTE cells from Wistar Kyoto rat (WKY) and spontaneously hypertensive rat (SHR). Na{sup +} dependence of [{sup 14}C]-L-alanine uptake was investigated replacing NaCl with an equimolar concentration of choline chloride in vehicle- and apocynin-treated cells. Na{sup +} removal from the uptake solution abolished transport activity in both WKY and SHR PTE cells. Decreases in H{sub 2}O{sub 2} levels in the extracellular medium significantly reduced Na{sup +}-K{sub m} and V{sub max} values of the low-affinity high-capacity component in SHR PTE cells, with no effect on the high-affinity low-capacity state of the Na{sup +}-dependent [{sup 14}C]-L-alanine uptake. After removal of apocynin from the culture medium, H{sub 2}O{sub 2} levels returned to basal values within 1 to 3 h in both WKY and SHR PTE cells and these were found stable for the next 24 h. Under these experimental conditions, the Na{sup +}-K{sub m} and V{sub max} of the high-affinity low-capacity state were unaffected and the low-affinity high-capacity component remained significantly decreased 1 day but not 4 days after apocynin removal. In conclusion, H{sub 2}O{sub 2} in excess is required for the presence of a low-affinity high-capacity component for the Na{sup +}-dependent [{sup 14}C]-L-alanine uptake in SHR PTE cells only

  5. Mechanism of Na+-dependent citrate transport from the structure of an asymmetrical CitS dimer

    PubMed Central

    Wöhlert, David; Grötzinger, Maria J; Kühlbrandt, Werner; Yildiz, Özkan

    2015-01-01

    The common human pathogen Salmonella enterica takes up citrate as a nutrient via the sodium symporter SeCitS. Uniquely, our 2.5 Å x-ray structure of the SeCitS dimer shows three different conformations of the active protomer. One protomer is in the outside-facing state. Two are in different inside-facing states. All three states resolve the substrates in their respective binding environments. Together with comprehensive functional studies on reconstituted proteoliposomes, the structures explain the transport mechanism in detail. Our results indicate a six-step process, with a rigid-body 31° rotation of a helix bundle that translocates the bound substrates by 16 Å across the membrane. Similar transport mechanisms may apply to a wide variety of related and unrelated secondary transporters, including important drug targets. DOI: http://dx.doi.org/10.7554/eLife.09375.001 PMID:26636752

  6. Compromising KCC2 transporter activity enhances the development of continuous seizure activity.

    PubMed

    Kelley, Matthew R; Deeb, Tarek Z; Brandon, Nicholas J; Dunlop, John; Davies, Paul A; Moss, Stephen J

    2016-09-01

    Impaired neuronal inhibition has long been associated with the increased probability of seizure occurrence and heightened seizure severity. Fast synaptic inhibition in the brain is primarily mediated by the type A γ-aminobutyric acid receptors (GABAARs), ligand-gated ion channels that can mediate Cl(-) influx resulting in membrane hyperpolarization and the restriction of neuronal firing. In most adult brain neurons, the K(+)/Cl(-) co-transporter-2 (KCC2) establishes hyperpolarizing GABAergic inhibition by maintaining low [Cl(-)]i. In this study, we sought to understand how decreased KCC2 transport function affects seizure event severity. We impaired KCC2 transport in the 0-Mg(2+) ACSF and 4-aminopyridine in vitro models of epileptiform activity in acute mouse brain slices. Experiments with the selective KCC2 inhibitor VU0463271 demonstrated that reduced KCC2 transport increased the duration of SLEs, resulting in non-terminating discharges of clonic-like activity. We also investigated slices obtained from the KCC2-Ser940Ala (S940A) point-mutant mouse, which has a mutation at a known functional phosphorylation site causing behavioral and cellular deficits under hyperexcitable conditions. We recorded from the entorhinal cortex of S940A mouse brain slices in both 0-Mg(2+) ACSF and 4-aminopyridine, and demonstrated that loss of the S940 residue increased the susceptibility of continuous clonic-like discharges, an in vitro form of status epilepticus. Our experiments revealed KCC2 transport activity is a critical factor in seizure event duration and mechanisms of termination. Our results highlight the need for therapeutic strategies that potentiate KCC2 transport function in order to decrease seizure event severity and prevent the development of status epilepticus. PMID:27108931

  7. Na+-stimulated ATPase of alkaliphilic halotolerant cyanobacterium Aphanothece halophytica translocates Na+ into proteoliposomes via Na+ uniport mechanism

    PubMed Central

    2010-01-01

    Background When cells are exposed to high salinity conditions, they develop a mechanism to extrude excess Na+ from cells to maintain the cytoplasmic Na+ concentration. Until now, the ATPase involved in Na+ transport in cyanobacteria has not been characterized. Here, the characterization of ATPase and its role in Na+ transport of alkaliphilic halotolerant Aphanothece halophytica were investigated to understand the survival mechanism of A. halophytica under high salinity conditions. Results The purified enzyme catalyzed the hydrolysis of ATP in the presence of Na+ but not K+, Li+ and Ca2+. The apparent Km values for Na+ and ATP were 2.0 and 1.2 mM, respectively. The enzyme is likely the F1F0-ATPase based on the usual subunit pattern and the protection against N,N'-dicyclohexylcarbodiimide inhibition of ATPase activity by Na+ in a pH-dependent manner. Proteoliposomes reconstituted with the purified enzyme could take up Na+ upon the addition of ATP. The apparent Km values for this uptake were 3.3 and 0.5 mM for Na+ and ATP, respectively. The mechanism of Na+ transport mediated by Na+-stimulated ATPase in A. halophytica was revealed. Using acridine orange as a probe, alkalization of the lumen of proteoliposomes reconstituted with Na+-stimulated ATPase was observed upon the addition of ATP with Na+ but not with K+, Li+ and Ca2+. The Na+- and ATP-dependent alkalization of the proteoliposome lumen was stimulated by carbonyl cyanide m - chlorophenylhydrazone (CCCP) but was inhibited by a permeant anion nitrate. The proteoliposomes showed both ATPase activity and ATP-dependent Na+ uptake activity. The uptake of Na+ was enhanced by CCCP and nitrate. On the other hand, both CCCP and nitrate were shown to dissipate the preformed electric potential generated by Na+-stimulated ATPase of the proteoliposomes. Conclusion The data demonstrate that Na+-stimulated ATPase from A. halophytica, a likely member of F-type ATPase, functions as an electrogenic Na+ pump which transports only

  8. Expression of the activity of cystine/glutamate exchange transporter, system x(c)(-), by xCT and rBAT.

    PubMed

    Wang, Hongyu; Tamba, Michiko; Kimata, Mayumi; Sakamoto, Kazuichi; Bannai, Shiro; Sato, Hideyo

    2003-06-01

    The expression of the activity of cystine/glutamate exchange transporter, designated system x(c)(-), requires two components, xCT and 4F2 heavy chain (4F2hc) in Xenopus oocytes. rBAT (related to b(0,+) amino acid transporter) has a significant homology to 4F2hc and is known to be located in the apical membrane of epithelial cells. To determine whether xCT can associate with rBAT and express the activity of system x(c)(-), xCT, and rBAT were co-expressed in Xenopus oocytes and in mammalian cultured cells. In the oocytes injected with rBAT cRNA alone, the activities of cystine and arginine transport were induced, indicating that the system b(0,+)-like transporter was expressed by associating the exogenous rBAT with an endogenous b(0,+)AT-like factor as reported previously. In the oocytes injected with xCT and rBAT cRNAs, the activity of cystine transport was further induced. This induced activity of cystine transport was partially inhibited by glutamate or arginine and completely inhibited by adding both amino acids. In these oocytes, the activity of glutamate transport was also induced and it was strongly inhibited by cystine. In NIH3T3 cells transfected with xCT cDNA alone, the activity of cystine transport was significantly increased, and in the cells transfected with both xCT and rBAT cDNAs, the activity of cystine transport was further enhanced. The enhanced activity was Na(+)-independent and was inhibited by glutamate and homocysteate. These results indicate that rBAT can replace 4F2hc in the expression of the activity of system x(c)(-) and suggest that system x(c)(-) activity could be expressed in the apical membrane of epithelial cells. PMID:12763038

  9. NBCe1 as a Model Carrier for Understanding the Structure-Function Properties of Na+-Coupled SLC4 Transporters in Health and Disease

    PubMed Central

    Kurtz, Ira

    2014-01-01

    SLC4 transporters are membrane proteins that in general mediate the coupled transport of bicarbonate (carbonate) and share amino acid sequence homology. These proteins differ as to whether they also transport Na+ and/or Cl−, in addition to their charge transport stoichiometry, membrane targeting, substrate affinities, developmental expression, regulatory motifs, and protein-protein interactions. These differences account in part for the fact that functionally, SLC4 transporters have various physiological roles in mammals including transepithelial bicarbonate transport, intracellular pH regulation, transport of Na+ and/or Cl−, and possibly water. Bicarbonate transport is not unique to the SLC4 family since the structurally unrelated SLC26 family has at least three proteins that mediate Cl−-HCO3− exchange. The present review focuses on the first of the sodium-dependent SLC4 transporters that was identified whose structure has been most extensively studied: the electrogenic Na+-base cotransporter NBCe1. Mutations in NBCe1 cause proximal renal tubular acidosis (pRTA) with neurologic and ophthalmologic extrarenal manifestations. Recent studies have characterized important structure-function properties of the transporter and how they are perturbed as a result of mutations that cause pRTA. It has become increasingly apparent that the structure of NBCe1 differs in several key features from the SLC4 Cl−-HCO3− exchanger AE1 whose structural properties have been well-studied. In this review, the structure-function properties and regulation of NBCe1 will be highlighted and its role in health and disease will be reviewed in detail. PMID:24515290

  10. ATP-Sensitive K+ Channels Regulate the Concentrative Adenosine Transporter CNT2 following Activation by A1 Adenosine Receptors

    PubMed Central

    Duflot, Sylvie; Riera, Bárbara; Fernández-Veledo, Sonia; Casadó, Vicent; Norman, Robert I.; Casado, F. Javier; Lluís, Carme; Franco, Rafael; Pastor-Anglada, Marçal

    2004-01-01

    This study describes a novel mechanism of regulation of the high-affinity Na+-dependent adenosine transporter (CNT2) via the activation of A1 adenosine receptors (A1R). This regulation is mediated by the activation of ATP-sensitive K+ (KATP) channels. The high-affinity Na+-dependent adenosine transporter CNT2 and A1R are coexpressed in the basolateral domain of the rat hepatocyte plasma membrane and are colocalized in the rat hepatoma cell line FAO. The transient increase in CNT2-mediated transport activity triggered by (−)-N6-(2-phenylisopropyl)adenosine is fully inhibited by KATP channel blockers and mimicked by a KATP channel opener. A1R agonist activation of CNT2 occurs in both hepatocytes and FAO cells, which express Kir6.1, Kir6.2, SUR1, SUR2A, and SUR2B mRNA channel subunits. With the available antibodies against Kir6.X, SUR2A, and SUR2B, it is shown that all of these proteins colocalize with CNT2 and A1R in defined plasma membrane domains of FAO cells. The extent of the purinergic modulation of CNT2 is affected by the glucose concentration, a finding which indicates that glycemia and glucose metabolism may affect this cross-regulation among A1R, CNT2, and KATP channels. These results also suggest that the activation of KATP channels under metabolic stress can be mediated by the activation of A1R. Cell protection under these circumstances may be achieved by potentiation of the uptake of adenosine and its further metabolization to ATP. Mediation of purinergic responses and a connection between the intracellular energy status and the need for an exogenous adenosine supply are novel roles for KATP channels. PMID:15024061

  11. The Sodium-Dependent Inorganic Phosphate Transporter SLC34A1 (NaPi-IIa) Is Not Localized in the Mouse Brain

    PubMed Central

    Larsson, Max; Morland, Cecilie; Poblete-Naredo, Irais; Biber, Jürg; Danbolt, Niels Christian; Gundersen, Vidar

    2011-01-01

    The sodium-dependent inorganic phosphate transporter NaPi-IIa is expressed in the kidney. Here, the authors used a polyclonal antiserum raised against NaPi-IIa- and NaPi-IIa-deficient mice to characterize its expression in nervous tissue. Western blots showed that a NaPi-IIa immunoreactive band (~90 kDa) was only present in wild-type kidney membranes and not in kidney knockout or wild-type brain membranes. In the water-soluble fraction of wild-type and knockout brains, another band (~50 kDa) was observed; this band was not detected in the kidney. Light and electron microscopic immunohistochemistry using the NaPi-IIa antibodies showed immunolabeling of kidney tubules in wild-type but not knockout mice. In the brain, labeling of presynaptic nerve terminals was present also in NaPi-IIa-deficient mice. This labeling pattern was also produced by the NaPi-IIa preimmune serum. The authors conclude that the polyclonal antiserum is specific toward NaPi-IIa in the kidney, but in the brain, immunolabeling is caused by a cross-reaction of the antiserum with an unknown cytosolic protein that is not present in the kidney. This tissue-specific cross-reactivity highlights a potential pitfall when validating antibody specificity using knockout mouse-derived tissue other than the specific tissue of interest and underlines the utility of specificity testing using preimmune sera. PMID:21606201

  12. The thermophysical and transport properties of eutectic NaK near room temperature

    SciTech Connect

    O'Donnell, W.J.; Papanikolaou, P.G.; Reed, C.B.

    1989-02-01

    The purpose of this report is to compile recommended room temperature thermophysical properties of NaK/sub 78/. The report was prepared to provide a single unified collection of property values for the eutectic sodium-potassium alloy. These properties include density, kinematic and absolute viscosities, thermal conductivity, specific heat, electrical resistivity, electrical conductivity, Prandtl number, and thermal diffusivity. Each section of the report contains a completely referenced property that focuses in the 0--80/degree/C temperature range. All available data for each property have been taken from original publications. The individual sections are organized following a specific outline, considering: discussion of experimental methods, discussion of sources and error, discussion of each reference, tabular presentation of all available data, graphical presentation of the data, recommendations, tabular presentation of recommended values, an equation to calculate recommended values, and a graphical presentation of the recommended curve (0--80/degree/C) generated from the above equation. Also included are experimental methods, whether the references included equations to fit the data, and whether or not these references were primary sources. 26 refs., 12 figs., 14 tabs.

  13. Avian lower intestine adapts to dietary salt (NaCl) depletion by increasing transepithelial sodium transport and microvillous membrane surface area.

    PubMed

    Sødring Elbrønd, V; Dantzer, V; Mayhew, T M; Skadhauge, E

    1991-09-01

    A tissue sampling scheme for tandem assessments of whole-organ physiology and ultrastructure was applied to the lower intestine (coprodaeum) of White Plymouth Rock hens on low- and high-NaCl diets. The objective was to correlate net amiloride-sensitive Na transport determined using the Ussing chamber with the plasma membrane surface areas due to microvilli at the epithelial cell apex. Hens kept on the low-NaCl diet for 3-4 weeks displayed a substantial increase in short-circuit current and in total microvillous membrane surface area. The latter rose from a group mean +/- S.E.M. of about 90 +/- 9.7 cm2 to one of 200 +/- 38 cm2 per organ. An increase in epithelial cell membrane contributed to, but did not fully explain, the increase in microvillous area. No differences in mean cell height or mean cell volume were found but the average cell in the low-NaCl birds was better developed in possessing a greater surface area of microvilli. On the high-NaCl diet, the epithelium was 33 +/- 2.7 microns tall and contained about 270 +/- 15 million cells. Each cell had a volume, on average, of 540 +/- 59 microns 3 and a microvillous surface of 32 +/- 2.6 microns 2. After NaCl depletion, there were 420 +/- 75 million cells and the average microvillous surface was 49 +/- 5.3 microns 2 per cell. The morphological adaptations alone do not explain the increased net Na transport found on the low-NaCl diet. Of cardinal importance is greater density of open Na channels in apical cell membranes. PMID:1742013

  14. Expression of renal Oat5 and NaDC1 transporters in rats with acute biliary obstruction

    PubMed Central

    Brandoni, Anabel; Torres, Adriana Mónica

    2015-01-01

    AIM: To examine renal expression of organic anion transporter 5 (Oat5) and sodium-dicarboxylate cotransporter 1 (NaDC1), and excretion of citrate in rats with acute extrahepatic cholestasis. METHODS: Obstructive jaundice was induced in rats by double ligation and division of the common bile duct (BDL group). Controls underwent sham operation that consisted of exposure, but not ligation, of the common bile duct (Sham group). Studies were performed 21 h after surgery. During this period, animals were maintained in metabolic cages in order to collect urine. The urinary volume was determined by gravimetry. The day of the experiment, blood samples were withdrawn and used to measure total and direct bilirubin as indicative parameters of hepatic function. Serum and urine samples were used for biochemical determinations. Immunoblotting for Oat5 and NaDC1 were performed in renal homogenates and brush border membranes from Sham and BDL rats. Immunohistochemistry studies were performed in kidneys from both experimental groups. Total RNA was extracted from rat renal tissue in order to perform reverse transcription polymerase chain reaction. Another set of experimental animals were used to evaluate medullar renal blood flow (mRBF) using fluorescent microspheres. RESULTS: Total and direct bilirubin levels were significantly higher in BDL animals, attesting to the adequacy of biliary obstruction. An important increase in mRBF was determined in BDL group (Sham: 0.53 ± 0.12 mL/min per 100 g body weight vs BDL: 1.58 ± 0.24 mL/min per 100 g body weight, P < 0.05). An increase in the urinary volume was observed in BDL animals. An important decrease in urinary levels of citrate was seen in BDL group. Besides, a decrease in urinary citrate excretion (Sham: 0.53 ± 0.11 g/g creatinine vs BDL: 0.07 ± 0.02 g/g creatinine, P < 0.05) and an increase in urinary excretion of H+ (Sham: 0.082 ± 0.03 μmol/g creatinine vs BDL: 0.21 ± 0.04 μmol/g creatinine, P < 0.05) were observed in BDL

  15. Functional demonstration of Na+-K+-2Cl- cotransporter activity in isolated, polarized choroid plexus cells.

    PubMed

    Wu, Q; Delpire, E; Hebert, S C; Strange, K

    1998-12-01

    The function of the apical Na+-K+-2Cl- cotransporter in mammalian choroid plexus (CP) is uncertain and controversial. To investigate cotransporter function, we developed a novel dissociated rat CP cell preparation in which single, isolated cells maintain normal polarized morphology. Immunofluorescence demonstrated that in isolated cells the Na+-K+-ATPase, Na+-K+-2Cl- cotransporter, and aquaporin 1 water channel remained localized to the brush border, whereas the Cl-/HCO-3 (anion) exchanger type 2 was confined to the basolateral membrane. We utilized video-enhanced microscopy and cell volume measurement techniques to investigate cotransporter function. Application of 100 microM bumetanide caused CP cells to shrink rapidly. Elevation of extracellular K+ from 3 to 6 or 25 mM caused CP cells to swell 18 and 33%, respectively. Swelling was blocked completely by Na+ removal or by addition of 100 microM bumetanide. Exposure of CP cells to 5 mM BaCl2 induced rapid swelling that was inhibited by 100 microM bumetanide. We conclude that the CP cotransporter is constitutively active and propose that it functions in series with Ba2+-sensitive K+ channels to reabsorb K+ from cerebrospinal fluid to blood. PMID:9843718

  16. Active transporters as enzymes: an energetic framework applied to major facilitator superfamily and ABC importer systems.

    PubMed

    Shilton, Brian H

    2015-04-15

    Active membrane transporters are dynamic molecular machines that catalyse transport across a membrane by coupling solute movement to a source of energy such as ATP or a secondary ion gradient. A central question for many active transporters concerns the mechanism by which transport is coupled to a source of energy. The transport process and associated energetic coupling involve conformational changes in the transporter. For efficient transport, the conformational changes must be tightly regulated and they must link energy use to movement of the substrate across the membrane. The present review discusses active transport using the well-established energetic framework for enzyme-mediated catalysis. In particular, membrane transport systems can be viewed as ensembles consisting of low-energy and high-energy conformations. The transport process involves binding interactions that selectively stabilize the higher energy conformations, and in this way promote conformational changes in the system that are coupled to decreases in free energy and substrate translocation. The major facilitator superfamily of secondary active transporters is used to illustrate these ideas, which are then be expanded to primary active transport mediated by ABC (ATP-binding cassette) import systems, with a focus on the well-studied maltose transporter. PMID:25837849

  17. Active Transport Can Greatly Enhance Cdc20:Mad2 Formation

    PubMed Central

    Ibrahim, Bashar; Henze, Richard

    2014-01-01

    To guarantee genomic integrity and viability, the cell must ensure proper distribution of the replicated chromosomes among the two daughter cells in mitosis. The mitotic spindle assembly checkpoint (SAC) is a central regulatory mechanism to achieve this goal. A dysfunction of this checkpoint may lead to aneuploidy and likely contributes to the development of cancer. Kinetochores of unattached or misaligned chromosomes are thought to generate a diffusible “wait-anaphase” signal, which is the basis for downstream events to inhibit the anaphase promoting complex/cyclosome (APC/C). The rate of Cdc20:C-Mad2 complex formation at the kinetochore is a key regulatory factor in the context of APC/C inhibition. Computer simulations of a quantitative SAC model show that the formation of Cdc20:C-Mad2 is too slow for checkpoint maintenance when cytosolic O-Mad2 has to encounter kinetochores by diffusion alone. Here, we show that an active transport of O-Mad2 towards the spindle mid-zone increases the efficiency of Mad2-activation. Our in-silico data indicate that this mechanism can greatly enhance the formation of Cdc20:Mad2 and furthermore gives an explanation on how the “wait-anaphase” signal can dissolve abruptly within a short time. Our results help to understand parts of the SAC mechanism that remain unclear. PMID:25338047

  18. High salt primes a specific activation state of macrophages, M(Na).

    PubMed

    Zhang, Wu-Chang; Zheng, Xiao-Jun; Du, Lin-Juan; Sun, Jian-Yong; Shen, Zhu-Xia; Shi, Chaoji; Sun, Shuyang; Zhang, Zhiyuan; Chen, Xiao-Qing; Qin, Mu; Liu, Xu; Tao, Jun; Jia, Lijun; Fan, Heng-Yu; Zhou, Bin; Yu, Ying; Ying, Hao; Hui, Lijian; Liu, Xiaolong; Yi, Xianghua; Liu, Xiaojing; Zhang, Lanjing; Duan, Sheng-Zhong

    2015-08-01

    High salt is positively associated with the risk of many diseases. However, little is known about the mechanisms. Here we showed that high salt increased proinflammatory molecules, while decreased anti-inflammatory and proendocytic molecules in both human and mouse macrophages. High salt also potentiated lipopolysaccharide-induced macrophage activation and suppressed interleukin 4-induced macrophage activation. High salt induced the proinflammatory aspects by activating p38/cFos and/or Erk1/2/cFos pathways, while inhibited the anti-inflammatory and proendocytic aspects by Erk1/2/signal transducer and activator of transcription 6 pathway. Consistent with the in vitro results, high-salt diet increased proinflammatory gene expression of mouse alveolar macrophages. In mouse models of acute lung injury, high-salt diet aggravated lipopolysaccharide-induced pulmonary macrophage activation and inflammation in lungs. These results identify a novel macrophage activation state, M(Na), and high salt as a potential environmental risk factor for lung inflammation through the induction of M(Na). PMID:26206316

  19. Serum- and glucocorticoid-inducible kinase sgk2 stimulates the transport activity of human organic anion transporters 1 by enhancing the stability of the transporter

    PubMed Central

    Xu, Da; Huang, Haozhe; Toh, May Fern; You, Guofeng

    2016-01-01

    Human organic anion transporter 1 (hOAT1) belongs to a family of organic anion transporters that play critical roles in the body disposition of clinically important drugs, including anti-viral therapeutics, anti-cancer drugs, antibiotics, antihypertensives, and anti-inflammatories. hOAT1 is abundantly expressed in the kidney and brain. In the current study, we examined the regulation of hOAT1 by serum- and glucocorticoid-inducible kinase 2 (sgk2) in the kidney COS-7 cells. We showed that sgk2 stimulated hOAT1 transport activity. Such stimulation mainly resulted from an increased cell surface expression of the transporter, kinetically revealed as an increased maximal transport velocity V max without significant change in substrate-binding affinity K m. We further showed that stimulation of hOAT1 activity by sgk2 was achieved by preventing hOAT1 degradation. Our co-immunoprecipitation experiment revealed that the effect of sgk2 on hOAT1 was through a direct interaction between these two proteins. In conclusion, our study demonstrated that sgk2 stimulates hOAT1 transport activity by enhancing the stability of the transporter. This study provides the insights into sgk2 regulation of hOAT1-mediated transport in normal physiology and disease. PMID:27335683

  20. Serum- and glucocorticoid-inducible kinase sgk2 stimulates the transport activity of human organic anion transporters 1 by enhancing the stability of the transporter.

    PubMed

    Xu, Da; Huang, Haozhe; Toh, May Fern; You, Guofeng

    2016-01-01

    Human organic anion transporter 1 (hOAT1) belongs to a family of organic anion transporters that play critical roles in the body disposition of clinically important drugs, including anti-viral therapeutics, anti-cancer drugs, antibiotics, antihypertensives, and anti-inflammatories. hOAT1 is abundantly expressed in the kidney and brain. In the current study, we examined the regulation of hOAT1 by serum- and glucocorticoid-inducible kinase 2 (sgk2) in the kidney COS-7 cells. We showed that sgk2 stimulated hOAT1 transport activity. Such stimulation mainly resulted from an increased cell surface expression of the transporter, kinetically revealed as an increased maximal transport velocity V max without significant change in substrate-binding affinity K m. We further showed that stimulation of hOAT1 activity by sgk2 was achieved by preventing hOAT1 degradation. Our co-immunoprecipitation experiment revealed that the effect of sgk2 on hOAT1 was through a direct interaction between these two proteins. In conclusion, our study demonstrated that sgk2 stimulates hOAT1 transport activity by enhancing the stability of the transporter. This study provides the insights into sgk2 regulation of hOAT1-mediated transport in normal physiology and disease. PMID:27335683

  1. Duodenal brush-border mucosal glucose transport and enzyme activities in aging man and effect of bacterial contamination of the small intestine.

    PubMed

    Wallis, J L; Lipski, P S; Mathers, J C; James, O F; Hirst, B H

    1993-03-01

    Duodenal biopsies were collected from 38 subjects (24 female and 14 male) ranging in age from 55 to 91 years. Evidence of bacterial contamination of the small bowel (BCSB) was sought at the same time by bacterial culture of duodenal aspirates and by hydrogen and [14C]glycocholic acid breath tests; subjects were considered to be positive for BCSB if any one of the three tests was abnormal. Biopsies were analyzed for six brush-border membrane enzyme activities: maltase, sucrase, lactase, alkaline phosphatase, leucine aminopeptidase, and alpha-glucosidase. Analysis of covariance with age as the covariate indicated no significant effect of age on the specific activities of these enzymes. Mucosal Na(+)-dependent glucose transport was quantified in brush-border membrane vesicles prepared from the biopsies. In all groups, glucose transport at 20-30 sec was greater (ranging from mean values of 2.45 to 3.66 times) than at 45 min, consistent with Na(+)-coupled glucose transport, and no significant effect of age was observed. BCSB had no significant effect on specific activities of any of the duodenal mucosal hydrolases but was associated with reduced (P = 0.05) brush-border glucose transport. None of the variables studied was significantly affected by the gender of subjects. In conclusion, these biochemical data do not support the contention that reduced capacity for carbohydrate absorption in the elderly is explained by reductions in duodenal brush-border mucosal disaccharidase activities or glucose transport. PMID:8444069

  2. Optimization of NaOH Molarity, LUSI Mud/Alkaline Activator, and Na2SiO3/NaOH Ratio to Produce Lightweight Aggregate-Based Geopolymer

    PubMed Central

    Abdul Razak, Rafiza; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Ismail, Khairul Nizar; Hardjito, Djwantoro; Yahya, Zarina

    2015-01-01

    This paper presents the mechanical function and characterization of an artificial lightweight geopolymer aggregate (ALGA) using LUSI (Sidoarjo mud) and alkaline activator as source materials. LUSI stands for LU-Lumpur and SI-Sidoarjo, meaning mud from Sidoarjo which erupted near the Banjarpanji-1 exploration well in Sidoarjo, East Java, Indonesia on 27 May 2006. The effect of NaOH molarity, LUSI mud/Alkaline activator (LM/AA) ratio, and Na2SiO3/NaOH ratio to the ALGA are investigated at a sintering temperature of 950 °C. The results show that the optimum NaOH molarity found in this study is 12 M due to the highest strength (lowest AIV value) of 15.79% with lower water absorption and specific gravity. The optimum LUSI mud/Alkaline activator (LM/AA) ratio of 1.7 and the Na2SiO3/NaOH ratio of 0.4 gives the highest strength with AIV value of 15.42% with specific gravity of 1.10 g/cm3 and water absorption of 4.7%. The major synthesized crystalline phases were identified as sodalite, quartz and albite. Scanning Electron Microscope (SEM) image showed more complete geopolymer matrix which contributes to highest strength of ALGA produced. PMID:26006238

  3. Optimization of NaOH Molarity, LUSI Mud/Alkaline Activator, and Na2SiO3/NaOH Ratio to Produce Lightweight Aggregate-Based Geopolymer.

    PubMed

    Razak, Rafiza Abdul; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Ismail, Khairul Nizar; Hardjito, Djwantoro; Yahya, Zarina

    2015-01-01

    This paper presents the mechanical function and characterization of an artificial lightweight geopolymer aggregate (ALGA) using LUSI (Sidoarjo mud) and alkaline activator as source materials. LUSI stands for LU-Lumpur and SI-Sidoarjo, meaning mud from Sidoarjo which erupted near the Banjarpanji-1 exploration well in Sidoarjo, East Java, Indonesia on 27 May 2006. The effect of NaOH molarity, LUSI mud/Alkaline activator (LM/AA) ratio, and Na2SiO3/NaOH ratio to the ALGA are investigated at a sintering temperature of 950 °C. The results show that the optimum NaOH molarity found in this study is 12 M due to the highest strength (lowest AIV value) of 15.79% with lower water absorption and specific gravity. The optimum LUSI mud/Alkaline activator (LM/AA) ratio of 1.7 and the Na2SiO3/NaOH ratio of 0.4 gives the highest strength with AIV value of 15.42% with specific gravity of 1.10 g/cm3 and water absorption of 4.7%. The major synthesized crystalline phases were identified as sodalite, quartz and albite. Scanning Electron Microscope (SEM) image showed more complete geopolymer matrix which contributes to highest strength of ALGA produced. PMID:26006238

  4. A kinetic characterization of (Na+, K+)-ATPase activity in the gills of the pelagic seabob shrimp Xiphopenaeus kroyeri (Decapoda, Penaeidae).

    PubMed

    Leone, Francisco Assis; Lucena, Malson Neilson; Rezende, Luciana Augusto; Garçon, Daniela Pereira; Pinto, Marcelo Rodrigues; Mantelatto, Fernando Luis; McNamara, John Campbell

    2015-04-01

    We characterize the kinetic properties of a gill (Na(+), K(+))-ATPase from the pelagic marine seabob Xiphopenaeus kroyeri. Sucrose density gradient centrifugation revealed membrane fractions distributed mainly into a heavy fraction showing considerable (Na(+), K(+))-ATPase activity, but also containing mitochondrial F0F1- and Na(+)- and V-ATPases. Western blot analysis identified a single immunoreactive band against the (Na(+), K(+))-ATPase α-subunit with an Mr of ≈ 110 kDa. The α-subunit was immunolocalized to the intralamellar septum of the gill lamellae. The (Na(+), K(+))-ATPase hydrolyzed ATP obeying Michaelis-Menten kinetics with VM = 109.5 ± 3.2 nmol Pi min(-1) mg(-1) and KM = 0.03 ± 0.003 mmol L(-1). Mg(2+) (VM = 109.8 ± 2.1 nmol Pi min(-1 )mg(-1), K0.5 = 0.60 ± 0.03 mmol L(-1)), Na(+) (VM = 117.6 ± 3.5 nmol Pi min(-1 ) mg(-1), K0.5 = 5.36 ± 0.14 mmol L(-1)), K(+) (VM = 112.9 ± 1.4 nmol Pi min(-1 )mg(-1), K0.5 = 1.32 ± 0.08 mmol L(-1)), and NH4 (+) (VM = 200.8 ± 7.1 nmol Pi min(-1 )mg(-1), K0.5 = 2.70 ± 0.04 mmol L(-1)) stimulated (Na(+), K(+))-ATPase activity following site-site interactions. K(+) plus NH4 (+) does not synergistically stimulate (Na(+), K(+))-ATPase activity, although each ion modulates affinity of the other. The enzyme exhibits a single site for K(+) binding that can be occupied by NH4 (+), stimulating the enzyme. Ouabain (KI = 84.0 ± 2.1 µmol L(-1)) and orthovanadate (KI = 0.157 ± 0.001 µmol L(-1)) inhibited total ATPase activity by ≈ 50 and ≈ 44 %, respectively. Ouabain inhibition increases ≈ 80 % in the presence of NH4 (+) with a threefold lower KI, suggesting that NH4 (+) is likely transported as a K(+) congener. PMID:25534346

  5. Activation of Wnt/β-catenin signaling by hydrogen peroxide transcriptionally inhibits NaV1.5 expression.

    PubMed

    Wang, Ning; Huo, Rong; Cai, Benzhi; Lu, Yan; Ye, Bo; Li, Xiang; Li, Faqian; Xu, Haodong

    2016-07-01

    Oxidants and canonical Wnt/β-catenin signaling have been shown to decrease cardiac Na(+) channel activity by suppressing NaV1.5 expression. Our aims are to determine if hydrogen peroxide (H2O2), one oxidant of reactive oxygen species (ROS), activates Wnt/β-catenin signaling and promotes β-catenin nuclear activity, leading to suppression of NaV1.5 expression and if this suppression requires the interaction of β-catenin with its nuclear partner, TCF4 (also called TCF7L2) to decrease SCN5a promoter activity. The results demonstrated that H2O2 increased β-catenin, but not TCF4 nuclear localization determined by immunofluorescence without affecting total β-catenin protein level. Furthermore, H2O2 exerted a dose- and time-dependent suppressive effect on NaV1.5 expression. RT-PCR and/or Western blot analyses revealed that overexpressing active form of β-catenin or stabilizing β-catenin by GSK-3β inhibitors, LiCl and Bio, suppressed NaV1.5 expression in HL-1 cells. In contrast, destabilization of β-catenin by a constitutively active GSK-3β mutant (S9A) upregulated NaV1.5 expression. Whole-cell recording showed that LiCl significantly inhibited Na(+) channel activity in these cells. Using immunoprecipitation (IP), we showed that β-catenin interacted with TCF4 indicating that β-catenin as a co-transfactor, regulates NaV1.5 expression through TCF4. Analyses of the SCN5a promoter sequences among different species by using VISTA tools indicated that SCN5a promoter harbors TCF4 binding sites. Chromatin IP assays demonstrated that both β-catenin and TCF4 were recruited in the SCN5a promoter, and regulated its activity. Luciferase promoter assays exhibited that β-catenin inhibited the SCN5a promoter activity at a dose-dependent manner and this inhibition required TCF4. Small interfering (Si) RNA targeting β-catenin significantly increased SCN5a promoter activity, leading to enhanced NaV1.5 expression. As expected, β-catenin SiRNA prevents H2O2 suppressive effects

  6. Molecular simulation of thermodynamic and transport properties for the H{sub 2}O+NaCl system

    SciTech Connect

    Orozco, Gustavo A.; Jiang, Hao; Panagiotopoulos, Athanassios Z.; Moultos, Othonas A.; Economou, Ioannis G.

    2014-12-21

    Molecular dynamics and Monte Carlo simulations have been carried out to obtain thermodynamic and transport properties of the binary mixture H{sub 2}O+NaCl at temperatures from T = 298 to 473 K. In particular, vapor pressures, liquid densities, viscosities, and vapor-liquid interfacial tensions have been obtained as functions of pressure and salt concentration. Several previously proposed fixed-point-charge models that include either Lennard-Jones (LJ) 12-6 or exponential-6 (Exp6) functional forms to describe non-Coulombic interactions were studied. In particular, for water we used the SPC and SPC/E (LJ) models in their rigid forms, a semiflexible version of the SPC/E (LJ) model, and the Errington-Panagiotopoulos Exp6 model; for NaCl, we used the Smith-Dang and Joung-Cheatham (LJ) parameterizations as well as the Tosi-Fumi (Exp6) model. While none of the model combinations are able to reproduce simultaneously all target properties, vapor pressures are well represented using the SPC plus Joung-Cheathem model combination, and all LJ models do well for the liquid density, with the semiflexible SPC/E plus Joung-Cheatham combination being the most accurate. For viscosities, the combination of rigid SPC/E plus Smith-Dang is the best alternative. For interfacial tensions, the combination of the semiflexible SPC/E plus Smith-Dang or Joung-Cheatham gives the best results. Inclusion of water flexibility improves the mixture densities and interfacial tensions, at the cost of larger deviations for the vapor pressures and viscosities. The Exp6 water plus Tosi-Fumi salt model combination was found to perform poorly for most of the properties of interest, in particular being unable to describe the experimental trend for the vapor pressure as a function of salt concentration.

  7. Effect of Na/sup +/ replacement on transport and metabolism of succinate and glutamine in jejunal epithelium

    SciTech Connect

    Mallet, R.T.; Jackson, M.J.; Kelleher, J.K.

    1986-03-01

    Novel radioisotope techniques may be applied to the analysis of metabolism and transport in intact cells. In the present study, rat jejunal epithelium was suspended in media containing five concentrations of glutamine between 0 and 5 mM, either Na/sup +/ or N-methyl-D-glucamine (NMDG/sup +/) as the major cation, and 44 ..mu..M (/sup 14/C)succinate. An increased ratio of steady state /sup 14/CO/sub 2/ production from (1,4-/sup 14/C)succinate versus (2,3-/sup 14/C)succinate indicates enhanced efflux of TCA cycle intermediates to products other than CO/sub 2/, relative to cycle flux. Glutamine dependent increases in succinate CO/sub 2/ ratios plateaued above 0.5mM glutamine, indicating that entry of glutamine-derived carbon into TCA cycle intermediate pools was saturated above physiological plasma glutamine concentrations. Although /sup 14/CO/sub 2/ production from succinate tracers was reduced approximately 95% by Na/sup +/ replacement, succinate CO/sub 2/ ratios were not altered, indicating that succinate uptake was significantly reduced in NMDG/sup +/ medium. /sup 14/C-alanine and /sup 14/C-aspartate accumulation increased with increasing glutamine concentrations in a pattern similar to succinate CO/sub 2/ ratios, indicating that these amino acids were net products of glutamine carbon. Incorporation of /sup 14/C into lactate and alanine demonstrated the presence of an enzymatic pathway for conversion of TCA cycle intermediates to pyruvate.

  8. Voltage-gated Na+ Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling

    NASA Astrophysics Data System (ADS)

    House, Carrie D.; Wang, Bi-Dar; Ceniccola, Kristin; Williams, Russell; Simaan, May; Olender, Jacqueline; Patel, Vyomesh; Baptista-Hon, Daniel T.; Annunziata, Christina M.; Silvio Gutkind, J.; Hales, Tim G.; Lee, Norman H.

    2015-06-01

    Functional expression of voltage-gated Na+ channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression changes in excitable cells. Coincidentally, many genes transcriptionally regulated by the SCN5A isoform in colon cancer have an over-representation of cis-acting sites for transcription factors phosphorylated by ERK1/2 MAPK. We hypothesized that VGSC activity promotes MAPK activation to induce transcriptional changes in invasion-related genes. Using pharmacological inhibitors/activators and siRNA-mediated gene knockdowns, we correlated channel activity with Rap1-dependent persistent MAPK activation in the SW620 human colon cancer cell line. We further demonstrated that VGSC activity induces downstream changes in invasion-related gene expression via a PKA/ERK/c-JUN/ELK-1/ETS-1 transcriptional pathway. This is the first study illustrating a molecular mechanism linking functional activity of VGSCs to transcriptional activation of invasion-related genes.

  9. Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene: correlation between sulfate transport activity and chondrodysplasia phenotype.

    PubMed

    Karniski, L P

    2001-07-01

    The diastrophic dysplasia sulfate transporter (DTDST) gene encodes a transmembrane protein that transports sulfate into chondrocytes to maintain adequate sulfation of proteoglycans. Mutations in this gene are responsible for four recessively inherited chondrodysplasias that include diastrophic dysplasia, multiple epiphyseal dysplasia, atelosteogenesis type 2 and achondrogenesis 1B (ACG-1B). To determine whether the DTDST mutations found in individuals with these chondrodysplasias differ functionally from each other, we compared the sulfate transport activity of 11 reported DTDST mutations. Five mutations, G255E, Delta a1751, L483P, R178X and N425D, had minimal sulfate transport function following expression in Xenopus laevis oocytes. Two mutations, Delta V340 and R279W, transported sulfate at rates of 17 and 32%, respectively, of wild-type DTDST. Four mutations, A715V, C653S, Q454P and G678V, had rates of sulfate transport nearly equal to that of wild-type DTDST. Transport kinetics were not different among the four mutations with near-normal sulfate transport function and wild-type DTDST. When the sulfate transport function of the different DTDST mutations are grouped according to the general phenotypes, individuals with the most severe form, ACG-1B, tend to be homozygous for null mutations, individuals with the moderately severe atelosteogenesis type 2 have at least one allele with a loss-of-function mutation, and individuals with the mildest forms are typically homozygous for mutations with residual sulfate transport function. However, in the X.laevis oocyte expression system, the correlation between residual transport function and the severity of phenotype was not absolute, suggesting that factors in addition to the intrinsic sulfate transport properties of the DTDST protein may influence the phenotype in individuals with DTDST mutations. PMID:11448940

  10. Alkaline pH activates the transport activity of GLUT1in L929 fibroblast cells

    PubMed Central

    Gunnink, Stephen M.; Kerk, Samuel A.; Kuiper, Benjamin D.; Alabi, Ola D.; Kuipers, David P.; Praamsma, Riemer C.; Wrobel, Kathryn E.; Louters, Larry L.

    2016-01-01

    The widely expressed mammalian glucose transporter, GLUT1, can be acutely activated in L929 fibroblast cells by a variety of conditions, including glucose deprivation, or treatment with various respiration inhibitors. Known thiol reactive compounds including phenylarsine oxide and nitroxyl are the fastest acting stimulators of glucose uptake, implicating cysteine biochemistry as critical to the acute activation of GLUT1. In this study, we report that in L929 cells glucose uptake increases 6-fold as the pH of the uptake solution is increased from 6 to 9 with the half-maximal activation at pH 7.5; consistent with the pKa of cysteine residues. This pH effect is essentially blocked by the pretreatment of the cells with either iodoacetamide or cinnamaldehyde, compounds that form covalent adducts with reduced cysteine residues. In addition, the activation by alkaline pH is not additive at pH 8 with known thiol reactive activators such as phenylarsine oxide or hydroxylamine. Kinetic analysis in L929 cells at pH 7 and 8 indicate that alkaline conditions both increases the Vmax and decreases the Km of transport. This is consistent with the observation that pH activation is additive to methylene blue, which activates uptake by increasing the Vmax, as well as to berberine, which activates uptake by decreasing the Km. This suggests that cysteine biochemistry is utilized in both methylene blue and berberine activation of glucose uptake. In contrast a pH increase from 7 to 8 in HCLE cells does not further activate glucose uptake. HCLE cells have a 25-fold higher basal glucose uptake rate than L929 cells and the lack of a pH effect suggests that the cysteine biochemistry has already occurred in HCLE cells. The data are consistent with pH having a complex mechanism of action, but one likely mediated by cysteine biochemistry. PMID:24333987

  11. Alkaline pH activates the transport activity of GLUT1 in L929 fibroblast cells.

    PubMed

    Gunnink, Stephen M; Kerk, Samuel A; Kuiper, Benjamin D; Alabi, Ola D; Kuipers, David P; Praamsma, Riemer C; Wrobel, Kathryn E; Louters, Larry L

    2014-04-01

    The widely expressed mammalian glucose transporter, GLUT1, can be acutely activated in L929 fibroblast cells by a variety of conditions, including glucose deprivation, or treatment with various respiration inhibitors. Known thiol reactive compounds including phenylarsine oxide and nitroxyl are the fastest acting stimulators of glucose uptake, implicating cysteine biochemistry as critical to the acute activation of GLUT1. In this study, we report that in L929 cells glucose uptake increases 6-fold as the pH of the uptake solution is increased from 6 to 9 with the half-maximal activation at pH 7.5; consistent with the pKa of cysteine residues. This pH effect is essentially blocked by the pretreatment of the cells with either iodoacetamide or cinnamaldehyde, compounds that form covalent adducts with reduced cysteine residues. In addition, the activation by alkaline pH is not additive at pH 8 with known thiol reactive activators such as phenylarsine oxide or hydroxylamine. Kinetic analysis in L929 cells at pH 7 and 8 indicate that alkaline conditions both increases the Vmax and decreases the Km of transport. This is consistent with the observation that pH activation is additive to methylene blue, which activates uptake by increasing the Vmax, as well as to berberine, which activates uptake by decreasing the Km. This suggests that cysteine biochemistry is utilized in both methylene blue and berberine activation of glucose uptake. In contrast a pH increase from 7 to 8 in HCLE cells does not further activate glucose uptake. HCLE cells have a 25-fold higher basal glucose uptake rate than L929 cells and the lack of a pH effect suggests that the cysteine biochemistry has already occurred in HCLE cells. The data are consistent with pH having a complex mechanism of action, but one likely mediated by cysteine biochemistry. PMID:24333987

  12. Piezoelectric Active Humidity Sensors Based on Lead-Free NaNbO3 Piezoelectric Nanofibers

    PubMed Central

    Gu, Li; Zhou, Di; Cao, Jun Cheng

    2016-01-01

    The development of micro-/nano-scaled energy harvesters and the self-powered sensor system has attracted great attention due to the miniaturization and integration of the micro-device. In this work, lead-free NaNbO3 piezoelectric nanofibers with a monoclinic perovskite structure were synthesized by the far-field electrospinning method. The flexible active humidity sensors were fabricated by transferring the nanofibers from silicon to a soft polymer substrate. The sensors exhibited outstanding piezoelectric energy-harvesting performance with output voltage up to 2 V during the vibration process. The output voltage generated by the NaNbO3 sensors exhibited a negative correlation with the environmental humidity varying from 5% to 80%, where the peak-to-peak value of the output voltage generated by the sensors decreased from 0.40 to 0.07 V. The sensor also exhibited a short response time, good selectively against ethanol steam, and great temperature stability. The piezoelectric active humidity sensing property could be attributed to the increased leakage current in the NaNbO3 nanofibers, which was generated due to proton hopping among the H3O+ groups in the absorbed H2O layers under the driving force of the piezoelectric potential. PMID:27338376

  13. Osmoregulation and salt gland Na, K-ATPase activity following exposure to the anticholinesterase fenthion

    USGS Publications Warehouse

    Rattner, B.A.; Fleming, W.J.; Murray, H.C.

    1982-01-01

    Salt gland function and osmoregulation in aquatic birds drinking hyperosmotic water has been suggested to be impaired by organophosphorus insecticides. To test this hypothesis, adult ducks (Anas rubripes) were provided various regimens of fresh or salt (1.5% NaCl) water (FW, SW) and mash containing vehicle or 21 ppm fenthion (Fn) on days 1-7 and 7-12 of this study. The 8 treatments (day 1-7:day 7-12) included :FW:FW, FW:FW+Fn, FW:SW, FW+Fn:SW, FW:SW+Fn, FW+Fn:SW+FN, SW;SW, and SW:5W+Fn. Ducks were bled by jugular venipuncture on days 1,7 and 12, and then sacrificed. Brain and salt gland acetylcholinesterase activities were substantially inhibited (44-52% and 14-26%) by Fn. However, plasma Na, Cl and osmolality, as indirect but cumulative indices of salt gland function, were uniformly elevated in all SW groups including those receiving Fn. In a second experiment, salt gland Na,K-ATPase activity was reduced after in vitro incubation with DDE (40 and 400 ?M; positive control), but was unaffected by Fn and its oxygen analog (0.04-400 ?M). The present findings suggest that environmentally realistic concentrations of organophosphorus insecticides do not affect osmoregulatory function in adult ducks.

  14. Piezoelectric Active Humidity Sensors Based on Lead-Free NaNbO₃ Piezoelectric Nanofibers.

    PubMed

    Gu, Li; Zhou, Di; Cao, Jun Cheng

    2016-01-01

    The development of micro-/nano-scaled energy harvesters and the self-powered sensor system has attracted great attention due to the miniaturization and integration of the micro-device. In this work, lead-free NaNbO₃ piezoelectric nanofibers with a monoclinic perovskite structure were synthesized by the far-field electrospinning method. The flexible active humidity sensors were fabricated by transferring the nanofibers from silicon to a soft polymer substrate. The sensors exhibited outstanding piezoelectric energy-harvesting performance with output voltage up to 2 V during the vibration process. The output voltage generated by the NaNbO₃ sensors exhibited a negative correlation with the environmental humidity varying from 5% to 80%, where the peak-to-peak value of the output voltage generated by the sensors decreased from 0.40 to 0.07 V. The sensor also exhibited a short response time, good selectively against ethanol steam, and great temperature stability. The piezoelectric active humidity sensing property could be attributed to the increased leakage current in the NaNbO₃ nanofibers, which was generated due to proton hopping among the H₃O⁺ groups in the absorbed H₂O layers under the driving force of the piezoelectric potential. PMID:27338376

  15. Ouabain triggers preconditioning through activation of the Na+,K+-ATPase signaling cascade in rat hearts

    PubMed Central

    Pierre, Sandrine V.; Yang, Changjun; Yuan, Zhaokan; Seminerio, Jennifer; Mouas, Christian; Garlid, Keith D.; Dos-Santos, Pierre; Xie, Zijian

    2007-01-01

    Objective Because ouabain activates several pathways that are critical to cardioprotective mechanisms such as ischemic preconditioning, we tested if this digitalis compound could protect the heart against ischemia-reperfusion injury through activation of the Na+,K+-ATPase/c-Src receptor complex. Methods and Results In Langendorff-perfused rat hearts, a short (4 min) administration of ouabain 10 μM followed by an 8-minute washout before 30 minutes of global ischemia and reperfusion improved cardiac function, decreased lactate dehydrogenase release and reduced infarct size by 40%. Western blot analysis revealed that ouabain activated the cardioprotective phospholipase Cγ1/protein kinase Cε (PLC-γ1/PKCε) pathway. Pre-treatment of the hearts with the Src kinase family inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolol[3,4-d]pyrimidine (PP2) blocked not only ouabain-induced activation of PLC-γ1/PKCε pathway, but also cardiac protection. This protection was also blocked by a PKCε translocation inhibitor peptide (PKCε TIP). Conclusion Short exposure to a low concentration of ouabain protects the heart against ischemia/reperfusion injury. This effect of ouabain on the heart is most likely due to the activation of the Na+,K+-ATPase/c-Src receptor complex and subsequent stimulation of key mediators of preconditioning, namely PLC-γ1 and PKCε. PMID:17157283

  16. The association between access to public transportation and self-reported active commuting.

    PubMed

    Djurhuus, Sune; Hansen, Henning S; Aadahl, Mette; Glümer, Charlotte

    2014-12-01

    Active commuting provides routine-based regular physical activity which can reduce the risk of chronic diseases. Using public transportation involves some walking or cycling to a transit stop, transfers and a walk to the end location and users of public transportation have been found to accumulate more moderate physical activity than non-users. Understanding how public transportation characteristics are associated with active transportation is thus important from a public health perspective. This study examines the associations between objective measures of access to public transportation and self-reported active commuting. Self-reported time spent either walking or cycling commuting each day and the distance to workplace were obtained for adults aged 16 to 65 in the Danish National Health Survey 2010 (n = 28,928). Access to public transportation measures were computed by combining GIS-based road network distances from home address to public transit stops an integrating their service level. Multilevel logistic regression was used to examine the association between access to public transportation measures and active commuting. Distance to bus stop, density of bus stops, and number of transport modes were all positively associated with being an active commuter and with meeting recommendations of physical activity. No significant association was found between bus services at the nearest stop and active commuting. The results highlight the importance of including detailed measurements of access to public transit in order to identify the characteristics that facilitate the use of public transportation and active commuting. PMID:25489998

  17. The Association between Access to Public Transportation and Self-Reported Active Commuting

    PubMed Central

    Djurhuus, Sune; Hansen, Henning S.; Aadahl, Mette; Glümer, Charlotte

    2014-01-01

    Active commuting provides routine-based regular physical activity which can reduce the risk of chronic diseases. Using public transportation involves some walking or cycling to a transit stop, transfers and a walk to the end location and users of public transportation have been found to accumulate more moderate physical activity than non-users. Understanding how public transportation characteristics are associated with active transportation is thus important from a public health perspective. This study examines the associations between objective measures of access to public transportation and self-reported active commuting. Self-reported time spent either walking or cycling commuting each day and the distance to workplace were obtained for adults aged 16 to 65 in the Danish National Health Survey 2010 (n = 28,928). Access to public transportation measures were computed by combining GIS-based road network distances from home address to public transit stops an integrating their service level. Multilevel logistic regression was used to examine the association between access to public transportation measures and active commuting. Distance to bus stop, density of bus stops, and number of transport modes were all positively associated with being an active commuter and with meeting recommendations of physical activity. No significant association was found between bus services at the nearest stop and active commuting. The results highlight the importance of including detailed measurements of access to public transit in order to identify the characteristics that facilitate the use of public transportation and active commuting. PMID:25489998

  18. Evaluation of Proposed In Vivo Probe Substrates and Inhibitors for Phenotyping Transporter Activity in Humans.

    PubMed

    Momper, Jeremiah D; Tsunoda, Shirley M; Ma, Joseph D

    2016-07-01

    Drug transporters are present in various tissues and have a significant role in drug absorption, distribution, and elimination. The International Transporter Consortium has identified 7 transporters of increasing importance from evidence of clinically significant transporter-mediated drug-drug interactions. The transporters are P-glycoprotein, breast cancer resistance protein, organic anion transporting polypeptide (OATP) 1B1, OATP1B3, organic cation transporter 2, organic anion transporters (OAT) 1, and OAT3. Decision trees were created based on in vitro experiments to determine whether an in vivo transporter-mediated drug-drug interaction study is needed. Phenotyping is a methodology that evaluates real-time in vivo transporter activity, whereby changes in a probe substrate or probe inhibitor reflect alternations in the activity of the specified transporter. In vivo probe substrates and/or probe inhibitors have been proposed for each aforementioned transporter. In vitro findings and animal models provide the strongest evidence regarding probe specificity. However, such findings have not conclusively correlated with human phenotyping studies. Furthermore, the extent of contribution from multiple transporters in probe disposition complicates the ability to discern if study findings are the result of a specific transporter and thus provide a recommendation for a preferred probe for a drug transporter. PMID:27385182

  19. Real-time kinetics of electrogenic Na+ transport by rhodopsin from the marine flavobacterium Dokdonia sp. PRO95

    PubMed Central

    Bogachev, Alexander V.; Bertsova, Yulia V.; Verkhovskaya, Marina L.; Mamedov, Mahir D.; Skulachev, Vladimir P.

    2016-01-01

    Discovery of the light-driven sodium-motive pump Na+-rhodopsin (NaR) has initiated studies of the molecular mechanism of this novel membrane-linked energy transducer. In this paper, we investigated the photocycle of NaR from the marine flavobacterium Dokdonia sp. PRO95 and identified electrogenic and Na+-dependent steps of this cycle. We found that the NaR photocycle is composed of at least four steps: NaR519 + hv → K585 → (L450↔M495) → O585 → NaR519. The third step is the only step that depends on the Na+ concentration inside right-side-out NaR-containing proteoliposomes, indicating that this step is coupled with Na+ binding to NaR. For steps 2, 3, and 4, the values of the rate constants are 4×104 s–1, 4.7 × 103 M–1 s–1, and 150 s–1, respectively. These steps contributed 15, 15, and 70% of the total membrane electric potential (Δψ ~ 200 mV) generated by a single turnover of NaR incorporated into liposomes and attached to phospholipid-impregnated collodion film. On the basis of these observations, a mechanism of light-driven Na+ pumping by NaR is suggested. PMID:26864904

  20. School Travel Planning: Mobilizing School and Community Resources to Encourage Active School Transportation

    ERIC Educational Resources Information Center

    Buliung, Ron; Faulkner, Guy; Beesley, Theresa; Kennedy, Jacky

    2011-01-01

    Background: Active school transport (AST), school travel using an active mode like walking, may be important to children's overall physical activity. A "school travel plan" (STP) documents a school's transport characteristics and provides an action plan to address school and neighborhood barriers to AST. Methods: We conducted a pilot STP…

  1. A kinetic description for sodium and potassium effects on (Na+ plus K+)-adenosine triphosphatase: a model for a two-nonequivalent site potassium activation and an analysis of multiequivalent site models for sodium activation.

    PubMed

    Lindenmayer, G E; Schwartz, A; Thompson, H K

    1974-01-01

    5.35 mM sodium in the absence of potassium.6. Derivation of the model for sodium activation assumed that the affinities of these sites for sodium and potassium are independent of cation interactions with the potassium-activation sites. Therefore, the kinetic descriptions for sodium and potassium effects form a composite model that is consistent with simultaneous transport of sodium and potassium.7. Predictions of the composite equation are in reasonable agreement with data obtained by variation of sodium (potassium = 10 mM), variation of potassium (sodium = 100 mM) and by simultaneous variation of sodium and potassium (sodium:potassium = 10). Sodium-activation data (2.5-20 mM sodium) also agree with predictions of the model in the presence of potassium concentrations which are thought to be present at the sodium-activation sites in vivo.8. The kinetic description for sodium (three-equivalent sites) and potassium (two-nonequivalent sites) activation of the transport-ATPase is in accord with the probable stoichiometric requirements of the sodium pump. The model is also in general agreement with other studies on intact transporting systems and (Na(+)+K(+))-ATPase in fragmented membrane preparations with respect to potassium activation, although there is a quantitative disagreement. The model for sodium activation, though consistent with data obtained by other studies on fragmented (Na(+)+K(+))-ATPase preparations, is in apparent variance with much of the data obtained for intact transporting systems. The description for potassium activation suggests that the rates of ouabain binding to (Na(+)+K(+))-ATPase are modulated by competition between sodium and potassium for one of the two potassium-activation sites. PMID:4274214

  2. Are the correlates of active school transport context-specific?

    PubMed Central

    Larouche, R; Sarmiento, O L; Broyles, S T; Denstel, K D; Church, T S; Barreira, T V; Chaput, J-P; Fogelholm, M; Hu, G; Kuriyan, R; Kurpad, A; Lambert, E V; Maher, C; Maia, J; Matsudo, V; Olds, T; Onywera, V; Standage, M; Tremblay, M S; Tudor-Locke, C; Zhao, P; Katzmarzyk, P T

    2015-01-01

    OBJECTIVES: Previous research consistently indicates that children who engage in active school transport (AST) are more active than their peers who use motorized modes (car or bus). However, studies of the correlates of AST have been conducted predominantly in high-income countries and have yielded mixed findings. Using data from a heterogeneous sample of 12 country sites across the world, we investigated the correlates of AST in 9–11-year olds. METHODS: The analytical sample comprised 6555 children (53.8% girls), who reported their main travel mode to school and the duration of their school trip. Potential individual and neighborhood correlates of AST were assessed with a parent questionnaire adapted from previously validated instruments. Multilevel generalized linear mixed models (GLMM) were used to examine the associations between individual and neighborhood variables and the odds of engaging in AST while controlling for the child's school. Site moderated the relationship of seven of these variables with AST; therefore we present analyses stratified by site. RESULTS: The prevalence of AST varied from 5.2 to 79.4% across sites and the school-level intra-class correlation ranged from 0.00 to 0.56. For each site, the final GLMM included a different set of correlates of AST. Longer trip duration (that is, ⩾16 min versus ⩽15 min) was associated with lower odds of AST in eight sites. Other individual and neighborhood factors were associated with AST in three sites or less. CONCLUSIONS: Our results indicate wide variability in the prevalence and correlates of AST in a large sample of children from twelve geographically, economically and culturally diverse country sites. This suggests that AST interventions should not adopt a ‘one size fits all' approach. Future research should also explore the association between psychosocial factors and AST in different countries. PMID:27152191

  3. Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations.

    PubMed

    Mester, Zoltan; Panagiotopoulos, Athanassios Z

    2015-01-28

    The mean ionic activity coefficients of aqueous NaCl solutions of varying concentrations at 298.15 K and 1 bar have been obtained from molecular dynamics simulations by gradually turning on the interactions of an ion pair inserted into the solution. Several common non-polarizable water and ion models have been used in the simulations. Gibbs-Duhem equation calculations of the thermodynamic activity of water are used to confirm the thermodynamic consistency of the mean ionic activity coefficients. While the majority of model combinations predict the correct trends in mean ionic activity coefficients, they overestimate their values at high salt concentrations. The solubility predictions also suffer from inaccuracies, with all models underpredicting the experimental values, some by large factors. These results point to the need for further ion and water model development. PMID:25637995

  4. Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations

    SciTech Connect

    Mester, Zoltan; Panagiotopoulos, Athanassios Z.

    2015-01-28

    The mean ionic activity coefficients of aqueous NaCl solutions of varying concentrations at 298.15 K and 1 bar have been obtained from molecular dynamics simulations by gradually turning on the interactions of an ion pair inserted into the solution. Several common non-polarizable water and ion models have been used in the simulations. Gibbs-Duhem equation calculations of the thermodynamic activity of water are used to confirm the thermodynamic consistency of the mean ionic activity coefficients. While the majority of model combinations predict the correct trends in mean ionic activity coefficients, they overestimate their values at high salt concentrations. The solubility predictions also suffer from inaccuracies, with all models underpredicting the experimental values, some by large factors. These results point to the need for further ion and water model development.

  5. A novel Na(+) -Independent alanine-serine-cysteine transporter 1 inhibitor inhibits both influx and efflux of D-Serine.

    PubMed

    Sakimura, Katsuya; Nakao, Kenji; Yoshikawa, Masato; Suzuki, Motohisa; Kimura, Haruhide

    2016-10-01

    NMDA receptor dysfunctions are hypothesized to underlie the pathophysiology of schizophrenia, and treatment with D-serine (D-Ser), an NMDA receptor coagonist, may improve the clinical symptoms of schizophrenia. Thus, upregulating the synaptic D-Ser level is a novel strategy for schizophrenia treatment. Na(+) -independent alanine-serine-cysteine transporter 1 (asc-1) is a transporter responsible for regulating the extracellular D-Ser levels in the brain. In this study, we discovered a novel asc-1 inhibitor, (+)-amino(1-(3,5-dichlorophenyl)-3,5-dimethyl-1H-pyrazol-4-yl)acetic acid (ACPP), and assessed its pharmacological profile. ACPP inhibited the D-[(3) H]Ser uptake in human asc-1-expressing CHO cells and rat primary neurons with IC50 values of 0.72 ± 0.13 and 0.89 ± 0.30 μM, respectively. In accordance with the lower asc-1 expression levels in astrocytes, ACPP did not inhibit D-Ser uptake in rat primary astrocytes. In a microdialysis study, ACPP dose dependently decreased the extracellular D-Ser levels in the rat hippocampus under the same conditions in which the asc-1 inhibitor S-methyl-L-cysteine (SMLC) increased it. To obtain insights into this difference, we conducted a D-[(3) H]Ser efflux assay using asc-1-expressing CHO cells. ACPP inhibited D-[(3) H]Ser efflux, whereas SMLC increased it. These results suggest that ACPP is a novel inhibitor of asc-1. © 2016 Wiley Periodicals, Inc. PMID:27302861

  6. Maternal obesity is associated with a reduction in placental taurine transporter activity

    PubMed Central

    Ditchfield, A M; Desforges, M; Mills, T A; Glazier, J D; Wareing, M; Mynett, K; Sibley, C P; Greenwood, S L

    2015-01-01

    Background/Objectives: Maternal obesity increases the risk of poor pregnancy outcome including stillbirth, pre-eclampsia, fetal growth restriction and fetal overgrowth. These pregnancy complications are associated with dysfunctional syncytiotrophoblast, the transporting epithelium of the human placenta. Taurine, a β-amino acid with antioxidant and cytoprotective properties, has a role in syncytiotrophoblast development and function and is required for fetal growth and organ development. Taurine is conditionally essential in pregnancy and fetal tissues depend on uptake of taurine from maternal blood. We tested the hypothesis that taurine uptake into placental syncytiotrophoblast by the taurine transporter protein (TauT) is lower in obese women (body mass index (BMI)⩾30 kg m−2) than in women of ideal weight (BMI 18.5–24.9 kg m−2) and explored potential regulatory factors. Subjects/Methods: Placentas were collected from term (37–42-week gestation), uncomplicated, singleton pregnancies from women with BMI 19–49 kg m−2. TauT activity was measured as the Na+-dependent uptake of 3H-taurine into placental villous fragments. TauT expression in membrane-enriched placental samples was investigated by western blot. In vitro studies using placental villous explants examined whether leptin or IL-6, adipokines/cytokines that are elevated in maternal obesity, regulates TauT activity. Results: Placental TauT activity was significantly lower in obese women (BMI⩾30) than women of ideal weight (P<0.03) and inversely related to maternal BMI (19–49 kg m−2; P<0.05; n=61). There was no difference in TauT expression between placentas of ideal weight and obese class III (BMI⩾40) subjects. Long-term exposure (48 h) of placental villous explants to leptin or IL-6 did not affect TauT activity. Conclusions: Placental TauT activity at term is negatively related to maternal BMI. We propose that the reduction in placental TauT activity in maternal obesity

  7. An increase in the Na+/K+-ATPase activity of erythrocyte membranes in workers employed in a lead refining factory.

    PubMed Central

    Karai, I; Fukumoto, K; Horiguchi, S

    1982-01-01

    To clarify the relationship between erythrocyte Na+/K+-ATPase activity and haematological findings, several clinical laboratory examinations were performed on 31 male workers employed in a scrap lead refining factory and, as controls, 50 male workers employed in railway construction. The results were: (1) Values for erythrocyte Na+/K+-ATPase activity, blood and urine lead, urine delta-aminolaevulinic acid, and urine coproporphyrin of lead workers were significantly higher than those of the controls (p less than 0.01). (2) A strongly positive relationship between blood lead and erythrocyte Na/K-ATPase activity was observed in lead workers (r = 0.473, p less than 0.01). (3) A strongly negative relationship between Na+/K+-ATPase activity and intracellular sodium was observed in both groups (lead workers; r = -0.601, p less than 0.01: controls; r = 0.595, p less than 0.01). PMID:6284196

  8. Variations in epithelial Na(+) transport and epithelial sodium channel localisation in the vaginal cul-de-sac of the brushtail possum, Trichosurus vulpecula, during the oestrous cycle.

    PubMed

    Alsop, T-A; McLeod, B J; Butt, A G

    2016-03-01

    The fluid in the vaginal cul-de-sac of the brushtail possum, Trichosurus vulpecula, is copious at ovulation when it may be involved in sperm transport or maturation, but is rapidly reabsorbed following ovulation. We have used the Ussing short-circuit current (Isc) technique and measurements of transcript and protein expression of the epithelial Na(+) channel (ENaC) to determine if variations in electrogenic Na(+) transport are associated with this fluid absorption. Spontaneous Isc (<20µAcm(-2) during anoestrus, 60-80µAcm(-2) in cycling animals) was inhibited by serosal ouabain. Mucosal amiloride (10µmolL(-1)), an inhibitor of ENaC, had little effect on follicular Isc but reduced luteal Isc by ~35%. This amiloride-sensitive Isc was dependent on mucosal Na(+) and the half-maximal inhibitory concentration (IC50)-amiloride (0.95μmolL(-1)) was consistent with ENaC-mediated Na(+) absorption. Results from polymerase chain reaction with reverse transcription (RT-PCR) indicate that αENaC mRNA is expressed in anoestrous, follicular and luteal phases. However, in follicular animals αENaC immunoreactivity in epithelial cells was distributed throughout the cytoplasm, whereas immunoreactivity was restricted to the apical pole of cells from luteal animals. These data suggest that increased Na(+) absorption contributes to fluid absorption during the luteal phase and is regulated by insertion of ENaC into the apical membrane of cul-de-sac epithelial cells. PMID:25056576

  9. The ionophore nigericin transports Pb2+ with high activity and selectivity: a comparison to monensin and ionomycin.

    PubMed

    Hamidinia, Shawn A; Tan, Bo; Erdahl, Warren L; Chapman, Clifford J; Taylor, Richard W; Pfeiffer, Douglas R

    2004-12-21

    The K(+) ionophore nigericin is shown to be highly effective as an ionophore for Pb(2+) but not other divalent cations, including Cu(2+), Zn(2+), Cd(2+), Mn(2+), Co(2+), Ca(2+), Ni(2+), and Sr(2+). Among this group a minor activity for Cu(2+) transport is seen, while for the others activity is near or below the limit of detection. The selectivity of nigericin for Pb(2+) exceeds that of ionomycin or monensin and arises, at least in part, from a high stability of nigericin-Pb(2+) complexes. Plots of log rate vs log Pb(2+) or log ionophore concentration, together with the pH dependency, indicate that nigericin transports Pb(2+) via the species NigPbOH and by a mechanism that is predominately electroneutral. As with monensin and ionomycin, a minor fraction of activity may be electrogenic, based upon a stimulation of rate that is produced by agents which prevent the formation of transmembrane electrical potentials. Nigericin-catalyzed Pb(2+) transport is not inhibited by physiological concentrations of Ca(2+) or Mg(2+) and is only modestly affected by K(+) and Na(+) concentrations in the range of 0-100 mM. These characteristics, together with higher selectivity and efficiency, suggest that nigericin may be more useful than monensin in the treatment of Pb intoxication. PMID:15595852

  10. Light-Activated Amino Acid Transport Systems in Halobacterium halobium Envelope Vesicles: Role of Chemical and Electrical Gradients

    NASA Technical Reports Server (NTRS)

    MacDonald, Russell E.; Greene, Richard V.; Lanyi, Janos K.

    1977-01-01

    The accumulation of 20 commonly occurring L-amino acids by cell envelope vesicles of Halobacterium halobium, in response to light-induced membrane potential and an artificially created sodium gradient, has been studied. Nineteen of these amino acids are actively accumulated under either or both of these conditions. Glutamate is unique in that its uptake is driven only by a chemical gradient for sodium. Amino acid concentrations at half-maximal uptake rates (Km) and maximal transport rates (V(sub max) have been determined for the uptake of all 19 amino acids. The transport systems have been partially characterized with respect to groups of amino acids transported by common carriers, cation effects, and relative response to the electrical and chemical components of the sodium gradient, the driving forces for uptake. The data presented clearly show that the carrier systems, which are responsible for uptake of individual amino acids, are as variable in their properties as those found in other organisms, i. e., some are highly specific for individual amino acids, some transport several amino acids competitively, some are activated by a chemical gradient of sodium only, and some function also in the complete absence of such a gradient. For all amino acids, Na(+) and K(+) are both required for maximal rate of uptake. The carriers for L-leucine and L-histidine are symmetrical in that these amino acids are transported in both directions across the vesicle membrane. It is suggested that coupling of substrate transport to metabolic energy via transient ionic gradients may be a general phenomenon in procaryotes.

  11. Plasma Membrane Na+ Transport in a Salt-Tolerant Charophyte (Isotopic Fluxes, Electrophysiology, and Thermodynamics in Plants Adapted to Saltwater and Freshwater).

    PubMed

    Kiegle, E. A.; Bisson, M. A.

    1996-08-01

    In salt-tolerant Chara longifolia, enhanced Na+ efflux plays an important role in maintaining low cytoplasmic Na+. When it is cultured in fresh water (FW), C. longifolia has a higher Na+ efflux than the obligate FW Chara corallina, although pH dependence and inhibitor profiles are similar for both species (J. Whittington and M.A. Bisson [1994] J Exp Bot 45: 657-665). When it is cultured in saltwater, C. longifolia has a Na+ efflux of 264 [plus or minus] 14 nmol m-2 s-1 at pH 7, 13 times higher than FW-adapted cultures and 31 times higher than C. corallina. As in FW-adapted plants, efflux is highest at pH 5, but pH dependence is less steep and more linear in cells adapted to saltwater. In plants of both species from FW cultures, Na+ efflux is inhibited by Li+ at pH 5 but not at pH 7 or 9, whereas in the salt-adapted C. longifolia, Li+ inhibits Na+ efflux at pH 7 and 9 but not at pH 5. Amiloride inhibits Na+ efflux in salt-adapted cells but not in FW cells. We conclude that a new type of Na+ efflux system is induced in salt-adapted plants, although both systems have characteristics suggestive of a Na+/H+ antiport. In all cases, a 1:1 Na+/H+ antiport would have sufficient energy to maintain the cytoplasmic Na+ activities measured at pH 5 and 7 but not at pH 9, which suggests that another efflux system must be operating at pH 9. PMID:12226356

  12. Spatial distribution and activity of Na(+)/K(+)-ATPase in lipid bilayer membranes with phase boundaries.

    PubMed

    Bhatia, Tripta; Cornelius, Flemming; Brewer, Jonathan; Bagatolli, Luis A; Simonsen, Adam C; Ipsen, John H; Mouritsen, Ole G

    2016-06-01

    We have reconstituted functional Na(+)/K(+)-ATPase (NKA) into giant unilamellar vesicles (GUVs) of well-defined binary and ternary lipid composition including cholesterol. The activity of the membrane system can be turned on and off by ATP. The hydrolytic activity of NKA is found to depend on membrane phase, and the water relaxation in the membrane on the presence of NKA. By collapsing and fixating the GUVs onto a solid support and using high-resolution atomic-force microscopy (AFM) imaging we determine the protein orientation and spatial distribution at the single-molecule level and find that NKA is preferentially located at lo/ld interfaces in two-phase GUVs and homogeneously distributed in single-phase GUVs. When turned active, the membrane is found to unbind from the support suggesting that the protein function leads to softening of the membrane. PMID:26994932

  13. An inhibitor of Na(+)/Ca(2+) exchange blocks activation of insect olfactory receptors.

    PubMed

    Bobkov, Y; Corey, E; Ache, B

    2014-07-25

    Earlier we showed that the Na(+)/Ca(2+) exchanger inhibitor, KB-R7943, potently blocks the odor-evoked activity of lobster olfactory receptor neurons. Here we extend that finding to recombinant mosquito olfactory receptors stably expressed in HEK cells. Using whole-cell and outside-out patch clamping and calcium imaging, we demonstrate that KB-R7943 blocks both the odorant-gated current and the odorant-evoked calcium signal from two different OR complexes from the malaria vector mosquito, Anopheles gambiae, AgOr48+AgOrco and AgOr65+AgOrco. Both heteromeric and homomeric (Orco alone) OR complexes were susceptible to KB-R7943 blockade when activated by VUAA1, an agonist that targets the Orco channel subunit, suggesting the Orco subunit may be the target of the drug's action. KB-R7943 represents a valuable tool to further investigate the functional properties of arthropod olfactory receptors and raises the interesting specter that activation of these ionotropic receptors is directly or indirectly linked to a Na(+)/Ca(2+) exchanger, thereby providing a template for drug design potentially allowing improved control of insect pests and disease vectors. PMID:24996179

  14. Amine-functionalized, silver-exchanged zeolite NaY: Preparation, characterization and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Hanim, Siti Aishah Mohd; Malek, Nik Ahmad Nizam Nik; Ibrahim, Zaharah

    2016-01-01

    Amine-functionalized, silver-exchanged zeolite NaY (ZSA) were prepared with three different concentrations of 3-aminopropyltriethoxysilane (APTES) (0.01, 0.20 and 0.40 M) and four different concentrations of silver ions (25%, 50%, 100% and 200% from zeolite cation exchange capacity (CEC)). The samples were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), surface area analysis, thermogravimetric analysis (TGA) and zeta potential (ZP) analysis. The FTIR results indicated that the zeolite was functionalized by APTES and that the intensity of the peaks corresponding to APTES increased as the concentration of APTES used was increased. The antibacterial activities of the silver-exchanged zeolite NaY (ZS) and ZSA were studied against Escherichia coli ATCC11229 and Staphylococcus aureus ATCC6538 using the disc diffusion technique (DDT) and minimum inhibitory concentration (MIC). The antibacterial activity of ZSA increased with the increase in APTES on ZS, and E. coli was more susceptible towards the sample compared to S. aureus. The FESEM micrographs of the bacteria after contact with the ZSA suggested different mechanisms of bacterial death for these two bacteria due to exposure to the studied sample. The functionalization of ZS with APTES improved the antibacterial activity of the silver-zeolite, depending on the concentration of silver ions and APTES used during modification.

  15. Quantitation of Na+, K+-atpase Enzymatic Activity in Tissues of the Mammalian Vestibular System

    NASA Technical Reports Server (NTRS)

    Kerr, T. P.

    1985-01-01

    In order to quantify vestibular Na(+), K(+)-ATPase, a microassay technique was developed which is sufficiently sensitive to measure the enzymatic activity in tissue from a single animal. The assay was used to characterize ATPase in he vestibular apparatus of the Mongolian gerbil. The quantitative procedure employs NPP (5 mM) as synthetic enzyme substrate. The assay relies upon spectrophotometric measurement (410 nm) of nitrophenol (NP) released by enzymatic hydrolysis of the substrate. Product formation in the absence of ouabain reflects both specific (Na(+), K(+)-ATPase) and non-specific (Mg(++)-ATPase) enzymatic activity. By measuring the accumulation of reaction product (NP) at three-minute intervals during the course of incubation, it is found that the overall enzymatic reaction proceeds linearly for at least 45 minutes. It is therefore possible to determine two separate reaction rates from a single set of tissues. Initial results indicate that total activity amounts to 53.3 + or - 11.2 (S.E.M.) nmol/hr/mg dry tissue, of which approximately 20% is ouabain-sensitive.

  16. Interactions of external and internal H+ and Na+ with Na+/Na+ and Na+/H+ exchange of rabbit red cells: evidence for a common pathway.

    PubMed

    Morgan, K; Canessa, M

    1990-12-01

    We have studied the kinetic properties of rabbit red cell (RRBC) Na+/Na+ and Na+/H+ exchanges (EXC) in order to define whether or not both transport functions are conducted by the same molecule. The strategy has been to determine the interactions of Na+ and H+ at the internal (i) and external (o) sites for both exchanges modes. RRBC containing varying Nai and Hi were prepared by nystatin and DIDS treatment of acid-loaded cells. Na+/Na+ EXC was measured as Nao-stimulated Na+ efflux and Na+/H+ EXC as Nao-stimulated H+ efflux and delta pHo-stimulated Na+ influx into acid-loaded cells. The activation of Na+/Na+ EXC by Nao at pHi 7.4 did not follow simple hyperbolic kinetics. Testing of different kinetic models to obtain the best fit for the experimental data indicated the presence of high (Km 2.2 mM) and low affinity (Km 108 mM) sites for a single- or two-carrier system. The activation of Na+/H+ EXC by Nao (pHi 6.6, Nai less than 1 mM) also showed high (Km 11 mM) and low (Km 248 mM) affinity sites. External H+ competitively inhibited Na+/Na+ EXC at the low affinity Nao site (KH 52 nM) while internally H+ were competitive inhibitors (pK 6.7) at low Nai and allosteric activators (pK 7.0) at high Nai. Na+/H+ EXC was also inhibited by acid pHo and allosterically activated by Hi (pK 6.4). We also established the presence of a Nai regulatory site which activates Na+/H+ and Na+/Na+ EXC modifying the affinity for Nao of both pathways. At low Nai, Na+/Na+ EXC was inhibited by acid pHi and Na+/H+ stimulated but at high Nai, Na+/Na+ EXC was stimulated and Na+/H+ inhibited being the sum of both pathways kept constant. Both exchange modes were activated by two classes of Nao sites, cis-inhibited by external Ho, allosterically modified by the binding of H+ to a Hi regulatory site and regulated by Nai. These findings are consistent with Na+/Na+ EXC being a mode of operation of the Na+/H+ exchanger. Na+/H+ EXC was partially inhibited (80-100%) by dimethyl-amiloride (DMA) but basal or

  17. A naïve Gaussian Bayes classifier for detection of mental activity in gait signature.

    PubMed

    Joshi, Deepak; Mishra, A; Anand, Sneh

    2012-01-01

    A probabilistic modelling is presented to detect mental activity from gait signature recorded from healthy subjects. The proposed scheme is based on principal component analysis with reduced feature dimension followed by a naïve Gaussian Bayes classifier. The leave-one-out cross-validation shows the detection accuracy of 94% with specificity and sensitivity of 96% and 98.3%, respectively. The research has a potential application in the prevention of elderly risk falls, lie detection and rehabilitation among Parkinson's patients. PMID:21978095

  18. SGK1 activity in Na+ absorbing airway epithelial cells monitored by assaying NDRG1-Thr346/356/366 phosphorylation.

    PubMed

    Inglis, S K; Gallacher, M; Brown, S G; McTavish, N; Getty, J; Husband, E M; Murray, J T; Wilson, S M

    2009-04-01

    Studies of HeLa cells and serum- and glucocorticoid-regulated kinase 1 (SGK1) knockout mice identified threonine residues in the n-myc downstream-regulated gene 1 protein (NDRG1-Thr(346/356/366)) that are phosphorylated by SGK1 but not by related kinases (Murray et al., Biochem J 385:1-12, 2005). We have, therefore, monitored the phosphorylation of NDRG1-Thr(346/356/366) in order to explore the changes in SGK1 activity associated with the induction and regulation of the glucocorticoid-dependent Na(+) conductance (G (Na)) in human airway epithelial cells. Transient expression of active (SGK1-S422D) and inactive (SGK1-K127A) SGK1 mutants confirmed that activating SGK1 stimulates NDRG1-Thr(346/356/366) phosphorylation. Although G (Na) is negligible in hormone-deprived cells, these cells displayed basal SGK1 activity that was sensitive to LY294002, an inhibitor of 3-phosphatidylinositol phosphate kinase (PI3K). Dexamethasone (0.2 muM) acutely activated SGK1 and the peak of this response (2-3 h) coincided with the induction of G (Na), and both responses were PI3K-dependent. While these data suggest that SGK1 might mediate the rise in G (Na), transient expression of the inactive SGK1-K127A mutant did not affect the hormonal induction of G (Na) but did suppress the activation of SGK1. Dexamethasone-treated cells grown on permeable supports formed confluent epithelial sheets that generated short circuit current due to electrogenic Na(+) absorption. Forskolin and insulin both stimulated this current and the response to insulin, but not forskolin, was LY294002-sensitive and associated with the activation of SGK1. While these data suggest that SGK1 is involved in the control of G (Na), its role may be minor, which could explain why sgk1 knockout has different effects upon different tissues. PMID:18787837

  19. Analysis of transcriptional regulation and tissue-specific expression of Avicennia marina Plasma Membrane Protein 3 suggests it contributes to Na(+) transport and homoeostasis in A. marina.

    PubMed

    Chidambaram, Rajalakshmi; Venkataraman, Gayatri; Parida, Ajay

    2015-07-01

    Plasma membrane proteins (PMP3) play a role in cation homoeostasis. The 5' flanking sequence of stress inducible, Avicennia marina PMP3 (AmPMP3prom) was transcriptionally fused to (a) GUS or (b) GFP-AmPMP3 and analyzed in transgenic tobacco. Tissue-histochemical GUS and GFP:AmPMP3 localization are co-incident under basal and stress conditions. AmPMP3prom directed GUS activity is highest in roots. Basal transcription is conferred by a 388bp segment upstream of the translation start site. A 463bp distal enhancer in the AmPMP3prom confers enhanced expression under salinity in all tissues and also responds to increases in salinity. The effect of a central, stem-specific negative regulatory region is suppressed by the distal enhancer. The A. marina rhizosphere encounters dynamic changes in salinity at the inter-tidal interface. The complex, tissue-specific transcriptional responsiveness of AmPMP3 to salinity appears to have evolved in response to these changes. Under salinity, guard cell and phloem-specific expression of GFP:AmPMP3 is highly enhanced. Mesophyll, trichomes, bundle sheath, parenchymatous cortex and xylem parenchyma also show GFP:AmPMP3 expression. Cis-elements conferring stress, root and vascular-specific expression are enriched in the AmPMP3 promoter. Pronounced vascular-specific AmPMP3 expression suggests a role in salinity induced Na(+) transport, storage, and secretion in A. marina. PMID:26025523

  20. Uncoupling of attenuated myo-(3H)inositol uptake and dysfunction in Na(+)-K(+)-ATPase pumping activity in hypergalactosemic cultured bovine lens epithelial cells

    SciTech Connect

    Cammarata, P.R.; Tse, D.; Yorio, T. )

    1991-06-01

    Attenuation of both the active transport of myo-inositol and Na(+)-K(+)-ATPase pumping activity has been implicated in the onset of sugar cataract and other diabetic complications in cell culture and animal models of the disease. Cultured bovine lens epithelial cells (BLECs) maintained in galactose-free Eagle's minimal essential medium (MEM) or 40 mM galactose with and without sorbinil for up to 5 days were examined to determine the temporal effects of hypergalactosemia on Na(+)-K(+)-ATPase and myo-inositol uptake. The Na(+)-K(+)-ATPase pumping activity after 5 days of continuous exposure to galactose did not change, as demonstrated by 86Rb uptake. The uptake of myo-(3H)inositol was lowered after 20 h of incubation in galactose and remained below that of the control throughout the 5-day exposure period. The coadministration of sorbinil to the galactose medium normalized the myo-(3H)inositol uptake. No significant difference in the rates of passive efflux of myo-(3H)inositol or 86Rb from preloaded galactose-treated and control cultures was observed. Culture-media reversal studies were also carried out to determine whether the galactose-induced dysfunction in myo-inositol uptake could be corrected. BLECs were incubated in galactose for 5 days, then changed to galactose-free physiological medium with and without sorbinil for a 1-day recovery period. myo-Inositol uptake was reduced to 34% of control after 6 days of continuous exposure to galactose. Within 24 h of media reversal, myo-inositol uptake returned to or exceeded control values in BLECs switched to either MEM or MEM with sorbinil.2+ reversible and occurred independently of changes in Na(+)-K(+)-ATPase pumping activity in cultured lens epithelium, indicating that the two parameters are not strictly associated and that the deficit in myo-inositol uptake occurs rapidly during hypergalactosemia.

  1. Synthesis and Structure–Activity Relationships of Pteridine Dione and Trione Monocarboxylate Transporter 1 Inhibitors

    PubMed Central

    2015-01-01

    Novel substituted pteridine-derived inhibitors of monocarboxylate transporter 1 (MCT1), an emerging target for cancer therapy, are reported. The activity of these compounds as inhibitors of lactate transport was confirmed using a 14C-lactate transport assay, and their potency against MCT1-expressing human tumor cells was established using MTT assays. The four most potent compounds showed substantial anticancer activity (EC50 37–150 nM) vs MCT1-expressing human Raji lymphoma cells. PMID:25068893

  2. Functional roles of Na+/K+-ATPase in active ammonia excretion and seawater acclimation in the giant mudskipper, Periophthalmodon schlosseri

    PubMed Central

    Chew, Shit F.; Hiong, Kum C.; Lam, Sock P.; Ong, Seow W.; Wee, Wei L.; Wong, Wai P.; Ip, Yuen K.

    2014-01-01

    The giant mudskipper, Periophthalmodon schlosseri, is an amphibious fish that builds burrows in the mudflats. It can actively excrete ammonia through its gills, and tolerate high environmental ammonia. This study aimed to examine the effects of seawater (salinity 30; SW) acclimation and/or environmental ammonia exposure on the kinetic properties of Na+/K+-ATPase (Nka) from, and mRNA expression and protein abundance of nka/Nka α–subunit isoforms in, the gills of P. schlosseri pre-acclimated to slightly brackish water (salinity 3; SBW). Our results revealed that the Nka from the gills of P. schlosseri pre-acclimated to SBW for 2 weeks had substantially higher affinity to (or lower Km for) K+ than NH+4, and its affinity to NH+4 decreased significantly after 6-days exposure to 75 mmol l−1 NH4Cl in SBW. Hence, Nka transported K+ selectively to maintain intracellular K+ homeostasis, instead of transporting NH+4 from the blood into ionocytes during active NH+4 excretion as previously suggested. Two nkaα isoforms, nkaα1 and nkaα3, were cloned and sequenced from the gills of P. schlosseri. Their deduced amino acid sequences had K+ binding sites identical to that of Nkaα1c from Anabas testudineus, indicating that they could effectively differentiate K+ from NH+4. Six days of exposure to 75 mmol l−1 NH4Cl in SBW, or to SW with or without 50 mmol l−1 NH4Cl led to significant increases in Nka activities in the gills of P. schlosseri. However, a significant increase in the comprehensive Nkaα protein abundance was observed only in the gills of fish exposed to 50 mmol l−1 NH4Cl in SW. Hence, post-translational modification could be an important activity modulator of branchial Nka in P. schlosseri. The fast modulation of Nka activity and concurrent expressions of two branchial nkaα isoforms could in part contribute to the ability of P. schlosseri to survive abrupt transfer between SBW and SW or abrupt exposure to ammonia. PMID:24795653

  3. Activation of AMP-activated protein kinase regulates hippocampal neuronal pH by recruiting Na(+)/H(+) exchanger NHE5 to the cell surface.

    PubMed

    Jinadasa, Tushare; Szabó, Elöd Z; Numat, Masayuki; Orlowski, John

    2014-07-25

    Strict regulation of intra- and extracellular pH is an important determinant of nervous system function as many voltage-, ligand-, and H(+)-gated cationic channels are exquisitely sensitive to transient fluctuations in pH elicited by neural activity and pathophysiologic events such as hypoxia-ischemia and seizures. Multiple Na(+)/H(+) exchangers (NHEs) are implicated in maintenance of neural pH homeostasis. However, aside from the ubiquitous NHE1 isoform, their relative contributions are poorly understood. NHE5 is of particular interest as it is preferentially expressed in brain relative to other tissues. In hippocampal neurons, NHE5 regulates steady-state cytoplasmic pH, but intriguingly the bulk of the transporter is stored in intracellular vesicles. Here, we show that NHE5 is a direct target for phosphorylation by the AMP-activated protein kinase (AMPK), a key sensor and regulator of cellular energy homeostasis in response to metabolic stresses. In NHE5-transfected non-neuronal cells, activation of AMPK by the AMP mimetic AICAR or by antimycin A, which blocks aerobic respiration and causes acidification, increased cell surface accumulation and activity of NHE5, and elevated intracellular pH. These effects were effectively blocked by the AMPK antagonist compound C, the NHE inhibitor HOE694, and mutation of a predicted AMPK recognition motif in the NHE5 C terminus. This regulatory pathway was also functional in primary hippocampal neurons, where AMPK activation of NHE5 protected the cells from sustained antimycin A-induced acidification. These data reveal a unique role for AMPK and NHE5 in regulating the pH homeostasis of hippocampal neurons during metabolic stress. PMID:24936055

  4. The NHERF1 PDZ1 domain and IRBIT interact and mediate the activation of Na+/H+ exchanger 3 by ANG II.

    PubMed

    He, Peijian; Zhao, Luqing; No, Yi Ran; Karvar, Serhan; Yun, C Chris

    2016-08-01

    Na(+)/H(+) exchanger (NHE)3, a major Na(+) transporter in the luminal membrane of the proximal tubule, is subject to ANG II regulation in renal Na(+)/fluid absorption and blood pressure control. We have previously shown that inositol 1,4,5-trisphosphate receptor-binding protein released with inositol 1,4,5-trisphosphate (IRBIT) mediates ANG II-induced exocytosis of NHE3 in cultured proximal tubule epithelial cells. In searching for scaffold protein(s) that coordinates with IRBIT in NHE3 trafficking, we found that NHE regulatory factor (NHERF)1, NHE3, and IRBIT proteins were coexpressed in the same macrocomplexes and that loss of ANG II type 1 receptors decreased their expression in the renal brush-border membrane. We found that NHERF1 was required for ANG II-mediated forward trafficking and activation of NHE3 in cultured cells. ANG II induced a concomitant increase of NHERF1 interactions with NHE3 and IRBIT, which were abolished when the NHERF1 PDZ1 domain was removed. Overexpression of a yellow fluorescent protein-NHERF1 construct that lacks PDZ1, but not PDZ2, failed to exaggerate the ANG II-dependent increase of NHE3 expression in the apical membrane. Moreover, exogenous expression of PDZ1 exerted a dominant negative effect on NHE3 activation by ANG II. We further demonstrated that IRBIT was indispensable for the ANG II-provoked increase in NHERF1-NHE3 interactions and that phosphorylation of IRBIT at Ser(68) was necessary for the assembly of the NHEF1-IRBIT-NHE3 complex. Taken together, our findings suggest that NHERF1 mediates ANG II-induced activation of renal NHE3, which requires coordination between IRBIT and the NHERF1 PDZ1 domain in binding and transporting NHE3. PMID:27279487

  5. Characterization of an AtCCX5 gene from Arabidopsis thaliana that involves in high-affinity K{sup +} uptake and Na{sup +} transport in yeast

    SciTech Connect

    Zhang, Xinxin; Zhang, Min; Takano, Tetsuo; Liu, Shenkui

    2011-10-14

    Highlights: {yields} The AtCCX5 protein coding a putative cation calcium exchanger was characterized. {yields} AtCCX5 expressed in yeast was localized in the plasma membrane and nuclear periphery. {yields} AtCCX5 protein did not show the same transport properties as the CAXs. {yields} AtCCX5 protein involves in mediating high-affinity K{sup +} uptake in yeast. {yields} AtCCX5 protein also involves in Na{sup +} transport in yeast. -- Abstract: The gene for a putative cation calcium exchanger (CCX) from Arabidopsis thaliana, AtCCX5, was cloned and its function was analyzed in yeast. Green fluorescent protein-tagged AtCCX5 expressed in yeast was localized in the plasma membrane and nuclear periphery. The yeast transformants expressing AtCCX5 were created and their growth in the presence of various cations (K{sup +}, Na{sup +}, Ca{sup 2+}, Mg{sup 2+}, Fe{sup 2+}, Cu{sup 2+}, Co{sup 2+}, Cd{sup 2+}, Mn{sup 2+}, Ba{sup 2+}, Ni{sup 2+}, Zn{sup 2+}, and Li{sup +}) were analyzed. AtCCX5 expression was found to affect the response to K{sup +} and Na{sup +} in yeast. The AtCCX5 transformant also showed a little better growth to Zn{sup 2+}. The yeast mutant 9.3 expressing AtCCX5 restored growth of the mutant on medium with low K{sup +} (0.5 mM), and also suppressed its Na{sup +} sensitivity. Ion uptake experiments showed that AtCCX5 mediated relatively high-affinity K{sup +} uptake and was also involved in Na{sup +} transport in yeast. Taken together, these findings suggest that the AtCCX5 is a novel transport protein involves in mediating high-affinity K{sup +} uptake and Na{sup +} transport in yeast.

  6. Tetrodotoxin-insensitive Na+ channel activator palytoxin inhibits tyrosine uptake into cultured bovine adrenal chromaffin cells

    SciTech Connect

    Morita, K.; Teraoka, K.; Azuma, M.; Oka, M.; Hamano, S. )

    1991-07-01

    The effects of the tetrodotoxin-insensitive Na+ channel activator palytoxin on both the secretion of endogenous catecholamines and the formation of 14C-catecholamines from (14C)tyrosine were examined using cultured bovine adrenal chromaffin cells. Palytoxin was shown to cause the stimulation of catecholamine secretion in a concentration-dependent manner. However, this toxin caused the reduction rather than the stimulation of 14C-catecholamine formation at the same concentrations. Palytoxin failed to cause any alteration in the activity of tyrosine hydroxylase prepared from bovine adrenal medulla. Furthermore, the uptake of (14C)tyrosine into the cells was shown to be inhibited by this toxin under the conditions in which the suppression of 14C-catecholamine formation was observed, and this inhibitory action on tyrosine uptake was closely correlated with that on catecholamine formation. The inhibitory action of palytoxin on tyrosine uptake into the cells was observed to be noncompetitive, and this effect was not altered by the removal of Na+ from the incubation mixture. These results suggest that palytoxin may be able to inhibit the uptake of (14C)tyrosine into the cells, resulting in the suppression of 14C-catecholamine formation, probably through its direct action on the plasma membranes of bovine adrenal chromaffin cells.

  7. Urinary Dopamine as a Potential Index of the Transport Activity of Multidrug and Toxin Extrusion in the Kidney

    PubMed Central

    Kajiwara, Moto; Ban, Tsuyoshi; Matsubara, Kazuo; Nakanishi, Yoichi; Masuda, Satohiro

    2016-01-01

    Dopamine is a cationic natriuretic catecholamine synthesized in proximal tubular cells (PTCs) of the kidney before secretion into the lumen, a key site of its action. However, the molecular mechanisms underlying dopamine secretion into the lumen remain unclear. Multidrug and toxin extrusion (MATE) is a H+/organic cation antiporter that is highly expressed in the brush border membrane of PTCs and mediates the efflux of organic cations, including metformin and cisplatin, from the epithelial cells into the urine. Therefore, we hypothesized that MATE mediates dopamine secretion, a cationic catecholamine, into the tubule lumen, thereby regulating natriuresis. Here, we show that [3H]dopamine uptake in human (h) MATE1-, hMATE-2K- and mouse (m) MATE-expressing cells exhibited saturable kinetics. Fluid retention and decreased urinary excretion of dopamine and Na+ were observed in Mate1-knockout mice compared to that in wild-type mice. Imatinib, a MATE inhibitor, inhibited [3H]dopamine uptake by hMATE1-, hMATE2-K- and mMATE1-expressing cells in a concentration-dependent manner. At clinically-relevant concentrations, imatinib inhibited [3H]dopamine uptake by hMATE1- and hMATE2-K-expressing cells. The urinary excretion of dopamine and Na+ decreased and fluid retention occurred in imatinib-treated mice. In conclusion, MATE transporters secrete renally-synthesized dopamine, and therefore, urinary dopamine has the potential to be an index of the MATE transporter activity. PMID:27483254

  8. Early events elicited by bombesin and structurally related peptides in quiescent Swiss 3T3 cells. II. Changes in Na/sup +/ and Ca/sup 2 +/ fluxes, Na/sup +//K/sup +/ pump activity, and intracellular pH

    SciTech Connect

    Mendoza, S.A.; Schneider, J.A.; Lopez-Rivas, A.; Sinnett-Smith, J.W.; Rozengurt, E.

    1986-06-01

    The amphibian tetradecapeptide, bombesin, and structurally related peptides caused a marked increase in ouabain-sensitive /sup 86/Rb/sup +/ uptake (a measure of Na/sup +//K/sup +/ pump activity) in quiescent Swiss 3T3 cells. This effect occurred within seconds after the addition of the peptide and appeared to be mediated by an increase in Na/sup +/ entry into the cells. The effect of bombesin on Na/sup +/ entry and Na/sup +//K/sup +/ pump activity was concentration dependent with half-maximal stimulation occurring at 0.3-0.4 nM. The structurally related peptides litorin, gastrin-releasing peptide, and neuromedin B also stimulated ouabain-sensitive /sup 86/Rb/sup +/ uptake; the relative potencies of these peptides in stimulating the Na/sup +//K/sup +/ pump were comparable to their potencies in increasing DNA synthesis. Bombesin increased Na/sup +/ influx, at least in part, through an Na/sup +//H/sup +/ antiport. The peptide augmented intracellular pH and this effect was abolished in the absence of extracellular Na/sup +/. In addition to monovalent ion transport, bombesin and the structurally related peptides rapidly increased the efflux of /sup 45/Ca/sup 2 +/ from quiescent Swiss 3T3 cells. This Ca/sup 2 +/ came from an intracellular pool and the efflux was associated with a 50% decrease in total intracellular Ca/sup 2 +/. The peptides also caused a rapid increase in cytosolic free calcium concentration. Prolonged pretreatment of Swiss 3T3 cells with phorbol dibutyrate, which causes a loss of protein kinase C activity, greatly decreased the stimulation of /sup 86/Rb/sup +/ uptake and Na/sup +/ entry by bombesin implicating this phosphotransferase system in the mediation of part of these responses to bombesin. Since some activation of monovalent ion transport by bombesin was seen in phorbol dibutyrate-pretreated cells, it is likely that the peptide also stimulates monovalent ion transport by a second mechanism.

  9. Dietary supplementation of boron differentially alters expression of borate transporter (NaBCl) mRNA by jejunum and kidney of growing pigs.

    PubMed

    Liao, Shengfa F; Monegue, James S; Lindemann, Merlin D; Cromwell, Gary L; Matthews, James C

    2011-11-01

    Inorganic boron (B), in the form of various borates, is readily absorbed across gastrointestinal epithelia. Although there is no stated B requirement, dietary B supplementation is thought to positively affect animal growth and metabolism, including promotion of bone strength and cell proliferation. Because of effective homeostatic control of plasma B levels, primarly by renal excretion, B toxicity in animals and humans is rare. The mechanisms responsible for improved animal performance and borate homeostasis are incompletely understood. Although a Na+-coupled borate transporter (NaBC1) has been identified, the effect of dietary B supplementation on expression of NaBCl has not been evaluated. An experiment was conducted with growing pigs to determine if NaBC1 mRNA was expressed by small intestinal epithelia and kidney of growing barrows and whether dietary B (as borate) supplementation would affect expression of NaBC1 mRNA. A concomitant objective was to test the hypothesis that B supplementation of a phosphorus (P)-deficient diet would improve calcium, phosphorus, or nitrogen retention. Twenty-four crossbred growing barrows (body weight=74.0±9.8 kg) were selected and used in a randomized complete block design experiment with a total of eight blocks and three B supplementation treatments (n=8/treatment). A typical corn-soybean meal basal diet (calculated to contain 41 mg intrinsic B/kg) was formulated to meet or exceed nutrient requirements, except for P, and fed to all pigs for 12 days. The basal diet plus 0, 50, or 100 mg/kg of B (prilled sodium borate pentahydrate, Na₂B₄O₇·5H₂O) was then fed for 18 more days. Feces and urine were collected during days 6 to 16 of the B supplementation, and pigs were killed for collection of jejunal and ileal epithelia and kidney tissue. Real-time reverse transcription-PCR analysis revealed that NaBC1 mRNA was expressed by these tissues, a novel finding for jejunal and ileal epithelia. Boron supplementation increased

  10. A novel subtilase with NaCl-activated and oxidant-stable activity from Virgibacillus sp. SK37

    PubMed Central

    2011-01-01

    Background Microbial proteases are one of the most commercially valuable enzymes, of which the largest market share has been taken by subtilases or alkaline proteases of the Bacillus species. Despite a large amount of information on microbial proteases, a search for novel proteases with unique properties is still of interest for both basic and applied aspects of this highly complex class of enzymes. Oxidant stable proteases (OSPs) have been shown to have a wide application in the detergent and bleaching industries and recently have become one of the most attractive enzymes in various biotechnological applications. Results A gene encoding a novel member of the subtilase superfamily was isolated from Virgibacillus sp. SK37, a protease-producing bacterium isolated from Thai fish sauce fermentation. The gene was cloned by an activity-based screening of a genomic DNA expression library on Luria-Bertani (LB) agar plates containing 1 mM IPTG and 3% skim milk. Of the 100,000 clones screened, all six isolated positive clones comprised one overlapping open reading frame of 45% identity to the aprX gene from Bacillus species. This gene, designated aprX-sk37 was cloned into pET21d(+) and over-expressed in E. coli BL21(DE3). The enzyme product, designated AprX-SK37, was purified by an immobilized metal ion affinity chromatography to apparent homogeneity and characterized. The AprX-SK37 enzyme showed optimal catalytic conditions at pH 9.5 and 55°C, based on the azocasein assay containing 5 mM CaCl2. Maximum catalytic activity was found at 1 M NaCl with residual activity of 30% at 3 M NaCl. Thermal stability of the enzyme was also enhanced by 1 M NaCl. The enzyme was absolutely calcium-dependent, with optimal concentration of CaCl2 at 15 mM. Inhibitory effects by phenylmethanesulfonyl fluoride and ethylenediaminetetraacetic acid indicated that this enzyme is a metal-dependent serine protease. The enzyme activity was sensitive towards reducing agents, urea, and SDS, but

  11. Electron donor properties of claus catalysts--1. Influence of NaOH on the catalytic activity of silica gel

    SciTech Connect

    Dudzik, Z.; George, Z.M.

    1980-05-01

    ESR spectroscopy showed that SO/sub 2/ adsorbed on silica gel impregnated with NaOH formed the SO/sub 2//sup -/ anion radical. With increasing NaOH concentration, the SO/sub 2/ adsorption and the activity for the reaction of H/sub 2/S with SO/sub 2/ (Claus reaction) went through a maximum at 1.0-1.4% NaOH. The SO/sub 2/ anion radical apparently formed by electron transfer from the catalyst surface and was a reaction intermediate which reacted rapidly with H/sub 2/S. The NaOH catalyst had similar stability and activity as commercial alumina catalyst in five-day tests under Claus conditions.

  12. Transport in Halobacterium Halobium: Light-Induced Cation-Gradients, Amino Acid Transport Kinetics, and Properties of Transport Carriers

    NASA Technical Reports Server (NTRS)

    Lanyi, Janos K.

    1977-01-01

    Cell envelope vesicles prepared from H. halobium contain bacteriorhodopsin and upon illumination protons are ejected. Coupled to the proton motive force is the efflux of Na(+). Measurements of Na-22 flux, exterior pH change, and membrane potential, Delta(psi) (with the dye 3,3'-dipentyloxadicarbocyanine) indicate that the means of Na(+) transport is sodium/proton exchange. The kinetics of the pH changes and other evidence suggests that the antiport is electrogenic (H(+)/Na(++ greater than 1). The resulting large chemical gradient for Na(+) (outside much greater than inside), as well as the membrane potential, will drive the transport of 18 amino acids. The I9th, glutamate, is unique in that its accumulation is indifferent to Delta(psi): this amino acid is transported only when a chemical gradient for Na(+) is present. Thus, when more and more NaCl is included in the vesicles glutamate transport proceeds with longer and longer lags. After illumination the gradient of H+() collapses within 1 min, while the large Na(+) gradient and glutamate transporting activity persists for 10- 15 min, indicating that proton motive force is not necessary for transport. A chemical gradient of Na(+), arranged by suspending vesicles loaded with KCl in NaCl, drives glutamate transport in the dark without other sources of energy, with V(sub max) and K(sub m) comparable to light-induced transport. These and other lines of evidence suggest that the transport of glutamate is facilitated by symport with Na(+), in an electrically neutral fashion, so that only the chemical component of the Na(+) gradient is a driving force.

  13. Contributions of Coulombic and Hofmeister Effects to the Osmotic Activation of Escherichia coli Transporter ProP.

    PubMed

    Culham, Doreen E; Shkel, Irina A; Record, M Thomas; Wood, Janet M

    2016-03-01

    Osmosensing transporters mediate osmolyte accumulation to forestall cellular dehydration as the extracellular osmolality increases. ProP is a bacterial osmolyte-H(+) symporter, a major facilitator superfamily member, and a paradigm for osmosensing. ProP activity is a sigmoid function of the osmolality. It is determined by the osmolality, not the magnitude or direction of the osmotic shift, in cells and salt-loaded proteoliposomes. The activation threshold varies directly with the proportion of anionic phospholipid in cells and proteoliposomes. The osmosensory mechanism was probed by varying the salt composition and concentration outside and inside proteoliposomes. Data analysis was based on the hypothesis that the fraction of maximal transporter activity at a particular luminal salt concentration reflects the proportion of ProP molecules in an active conformation. ProP attained the same activity at the same osmolality when diverse, membrane-impermeant salts were added to the external medium. Contributions of Coulombic and/or Hofmeister salt effects to ProP activation were examined by varying the luminal salt cation (K(+) and Na(+)) and anion (chloride, phosphate, and sulfate) composition and then systematically increasing the luminal salt concentration by increasing the external osmolality. ProP activity increased with the sixth power of the univalent cation concentration, independent of the type of anion. This indicates that salt activation of ProP is a Coulombic, cation effect resulting from salt cation accumulation and not site-specific cation binding. Possible origins of this Coulombic effect include folding or assembly of anionic cytoplasmic ProP domains, an increase in local membrane surface charge density, and/or the juxtaposition of anionic protein and membrane surfaces during activation. PMID:26871755

  14. Complexation of pectin with macro- and microelements. Antianemic activity of Na, Fe and Na, Ca, Fe complexes.

    PubMed

    Minzanova, S T; Mironov, V F; Vyshtakalyuk, A B; Tsepaeva, O V; Mironova, L G; Mindubaev, A Z; Nizameev, I R; Kholin, K V; Milyukov, V A

    2015-12-10

    New water-soluble pectin complexes with Ca(2+), Mg(2+), Co(2+), Cu(2+), Fe(2+), Mn(2+), Zn(2+) on the basis of pectin biopolymer have been synthesized and successfully tested on white rats. For a starting, we have obtained a sodium pectate to enhance solubility of target complexes as a whole. Shortly afterwards, running the reaction of ligand exchange of Nа(+) ions with corresponding s-, d- metal cations we were able to synthesize new pectin complexes. The ranges of s-, d-metals salts concentrations were detected experimentally, in which the selective formation of water-soluble complexes occurred. Antianemic effect of new pectin complexes with Na, Fe and Na, Ca, Fe was investigated on white rats with posthemorrhagic anemia. Under the effect of complexes, the improvement of animals and prevention of erythropoiesis disorders were observed. Antianemic effect of the complexes manifested itself in the doses equivalent to 25% or 50% of the iron daily rate, recommended in the treatment of iron-deficiency anemia with the drugs based on iron sulphate. PMID:26428154

  15. Role of tryptophan-388 of GLUT1 glucose transporter in glucose-transport activity and photoaffinity-labelling with forskolin.

    PubMed Central

    Katagiri, H; Asano, T; Ishihara, H; Lin, J L; Inukai, K; Shanahan, M F; Tsukuda, K; Kikuchi, M; Yazaki, Y; Oka, Y

    1993-01-01

    GLUT1 glucose-transporter cDNA was modified to substitute leucine for Trp-388 and transfected into Chinese hamster ovary cells using the expression vector termed pMTHneo. This tryptophan residue is conserved among most of the facilitative glucose-transporter isoforms and has been proposed to be the photolabelling site of forskolin, a competitive inhibitor of glucose transport. In addition, this residue is located on membrane-spanning helix 10 which is suggested to contain the dynamic segment of the transporter. The mutated glucose transporter was expressed and inserted into the plasma membrane in a fashion similar to the wild-type. Unexpectedly, this mutation did not abolish photolabelling with forskolin. However, the mutation induced a marked decrease in 2-deoxyglucose uptake with a 4-fold decrease in turnover number and a 1.25-fold increase in Km compared with the wild-type GLUT1. A similar decrease in zero-trans influx activity was also observed for 3-O-methylglucose. In contrast, no apparent decrease was observed in zero trans efflux activity for 3-O-methylglucose. The mutation decreased the turnover number of the glucose transporter in equilibrium exchange influx for 3-O-methylglucose by 33% without any change in Km. These results indicate that (1) Trp-388 is not the photolabelling site for forskolin, if we assume that the labelling occurs at a single site and (2) Trp-388 is more likely to be involved in interconversion between the inward-facing and outward-facing conformers of GLUT1 than binding of glucose, and thus, substitution of leucine for Trp-388 in this dynamic segment would decrease the rate of alternating conformation, which would preferentially affect the influx activity. Images Figure 1 Figure 2 PMID:8489512

  16. Genetic and physiological association of diabetes susceptibility with raised Na+/H+ exchange activity.

    PubMed Central

    Morahan, G; McClive, P; Huang, D; Little, P; Baxter, A

    1994-01-01

    Insulin-dependent diabetes mellitus is a multigenic autoimmune disease, for which one of the best animal models is the nonobese diabetic (NOD) mouse strain. In both humans and NOD mice, major histocompatibility complex genes are implicated as risk factors in the disease process. Other susceptibility genes are also involved, and a number have been mapped in the mouse to specific chromosomal locations. To identify further susceptibility genes, diabetic backcross mice, produced after crossing NOD/Lt to the nondiabetic strains SJL and C57BL/6 (B6), were examined for markers not previously associated with disease susceptibility. Linkage was found to loci on chromosomes 4 and 14. Of the candidate loci on chromosome 4, the gene encoding the Na+/H+ exchanger-1, Nhe-1, was the most likely, since the NOD allele was different from that of both nondiabetic strains. NOD lymphocytes were found to have a higher level of Na+/H+ exchange activity than lymphocytes from either B6 or SJL mice. Since the chromosome 4 susceptibility gene is recessive, the B6 allele should prevent diabetes. This prediction was tested in fourth-generation backcross mice, selected for retention of the B6 allele at Nhe-1. Mice homozygous for Nhe-1 developed diabetes after cyclophosphamide treatment, but heterozygotes were largely protected from disease. These results implicate the Na+/H+ exchanger (antiporter) in the development of type 1 diabetes and may provide a screening test for at-risk individuals as well as offering prospects for disease prevention. Images PMID:8016086

  17. Down-regulated Na+/K+-ATPase activity in ischemic penumbra after focal cerebral ischemia/reperfusion in rats

    PubMed Central

    Huang, Hao; Chen, Yang-Mei; Zhu, Fei; Tang, Shi-Ting; Xiao, Ji-Dong; Li, Lv-Li; Lin, Xin-Jing

    2015-01-01

    This study was aimed to examine whether the Na+/K+ adenosine triphosphatase (Na+/K+-ATPase) activity in ischemic penumbra is associated with the pathogenesis of ischemia/reperfusion-induced brain injury. An experimental model of cerebral ischemia/reperfusion was made by transient middle cerebral artery occlusion (tMCAO) in rats and the changes of Na+/K+-ATPase activity in the ischemic penumbra was examined by Enzyme Assay Kit. Extensive infarction was observed in the frontal and parietal cortical and subcortical areas at 6 h, 24 h, 48 h, 3 d and 7 d after tMCAO. Enzyme Assay analyses revealed the activity of Na+/K+-ATPase was decreased in the ischemic penumbra of model rats after focal cerebral ischemia/reperfusion compared with sham-operated rats, and reduced to its minimum at 48 h, while the infarct volume was enlarged gradually. In addition, accompanied by increased brain water content, apoptosis-related bcl-2 and Bax proteins, apoptotic index and neurologic deficits Longa scores, but fluctuated the ratio of bcl-2/Bax. Correlation analysis showed that the infarct volume, apoptotic index, neurologic deficits Longa scores and brain water content were negatively related with Na+/K+-ATPase activity, while the ratio of bcl-2/Bax was positively related with Na+/K+-ATPase activity. Our results suggest that down-regulated Na+/K+-ATPase activity in ischemic penumbra might be involved in the pathogenesis of cerebral ischemia/reperfusion injury presumably through the imbalance ratio of bcl-2/Bax and neuronal apoptosis, and identify novel target for neuroprotective therapeutic intervention in cerebral ischemic disease. PMID:26722460

  18. Effects of diene valepotriates from Valeriana glechomifolia on Na+/K+-ATPase activity in the cortex and hippocampus of mice.

    PubMed

    Müller, Liz G; Salles, Luisa; Lins, Helena A; Feijó, Priscilla R O; Cassel, Eduardo; Vargas, Rubem; von Poser, Gilsane L; Noël, François; Quintas, Luis E M; Rates, Stela M K

    2015-02-01

    Diene valepotriates obtained from Valeriana glechomifolia present antidepressant-like activity, mediated by dopaminergic and noradrenergic neurotransmissions. Also, previous studies have shown inhibitory activity of diene valepotriates towards Na(+)/K(+)-ATPase from the rat brain in vitro. Nevertheless, in vivo studies regarding the action of diene valepotriates on this enzyme are still lacking. Considering that Na(+)/K(+)-ATPase cerebral activity is involved in depressive disorders, the aim of this study was to investigate the effects of acute (5 mg/kg, p. o.) and repeated (5 mg/kg, p. o., once a day for three days) diene valepotriate administration on Na(+)/K(+)-ATPase activity in the cortex and hippocampus of mice submitted or not submitted to the forced swimming test. In addition, the protein expression of Na(+)/K(+)-ATPase α1, α2, and α3 isoforms in the cortex of mice repeatedly treated with diene valepotriates (and submitted or not submitted to the forced swimming test) was investigated. Diene valepotriates significantly decreased mice immobility time in the forced swimming test when compared to the control group. Only the animals repeatedly treated with diene valepotriates presented increased Na(+)/K(+)-ATPase activity in the cerebral cortex, and the exposure to the forced swimming test counteracted the effects of the diene valepotriates. No alterations in the hippocampal Na(+)/K(+)-ATPase activity were observed. Repeated diene valepotriate administration increased the cortical content of the α2 isoform, but the α3 isoform protein expression was augmented only in mice repeatedly treated with diene valepotriates and forced to swim. Mice treated with the vehicle and submitted to the forced swimming test also presented an increase in the content of the α2 isoform, but no alterations in Na(+)/K(+)-ATPase activity. These results suggest that cortical Na(+)/K(+)-ATPase may represent a molecular target of the diene valepotriates in vivo and long

  19. Borreliacidal activity of Borrelia metal transporter A (BmtA) binding small molecules by manganese transport inhibition.

    PubMed

    Wagh, Dhananjay; Pothineni, Venkata Raveendra; Inayathullah, Mohammed; Liu, Song; Kim, Kwang-Min; Rajadas, Jayakumar

    2015-01-01

    Borrelia burgdorferi, the causative agent of Lyme disease, utilizes manganese (Mn) for its various metabolic needs. We hypothesized that blocking Mn transporter could be a possible approach to inhibit metabolic activity of this pathogen and eliminate the infection. We used a combination of in silico protein structure prediction together with molecular docking to target the Borrelia metal transporter A (BmtA), a single known Mn transporter in Borrelia and screened libraries of FDA approved compounds that could potentially bind to the predicted BmtA structure with high affinity. Tricyclic antihistamines such as loratadine, desloratadine, and 3-hydroxydesloratadine as well as yohimbine and tadalafil demonstrated a tight binding to the in silico folded BmtA transporter. We, then, tested borreliacidal activity and dose response of the shortlisted compounds from this screen using a series of in vitro assays. Amongst the probed compounds, desloratadine exhibited potent borreliacidal activity in vitro at and above 78 μg/mL (250 μM). Borrelia treated with lethal doses of desloratadine exhibited a significant loss of intracellular Mn specifically and a severe structural damage to the bacterial cell wall. Our results support the possibility of developing a novel, targeted therapy to treat Lyme disease by targeting specific metabolic needs of Borrelia. PMID:25709405

  20. Effect of post-treatment on photocatalytic oxidation activity of (111) oriented NaNbO3 film

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Wu, Zhou; Sun, Bingyang; Li, Guoqiang; Zhang, Weifeng

    2015-10-01

    We investigate the impact of post-treatment on photocatalytic oxidation activity of (111) oriented NaNbO3 film prepared by pulse laser deposition. Some impurities such as Na2Nb4O11 and bigger particles appear in the treated samples. The activity of rhodamine B degradation with N2 purge increases with the amount of ṡOH, the sample treated under H2/Ar(7%) being the highest activity, followed by under air and untreated one; the opposite trend is observed when the system was without N2 purge.

  1. γ-Benzylidene digoxin derivatives synthesis and molecular modeling: Evaluation of anticancer and the Na,K-ATPase activity effect.

    PubMed

    Alves, Silmara L G; Paixão, Natasha; Ferreira, Letícia G R; Santos, Felipe R S; Neves, Luiza D R; Oliveira, Gisele C; Cortes, Vanessa F; Salomé, Kahlil S; Barison, Andersson; Santos, Fabio V; Cenzi, Gisele; Varotti, Fernando P; Oliveira, Soraya M F; Taranto, Alex G; Comar, Moacyr; Silva, Luciana M; Noël, François; Quintas, Luis Eduardo M; Barbosa, Leandro A; Villar, José A F P

    2015-08-01

    Cardiotonic steroids (CS), natural compounds with traditional use in cardiology, have been recently suggested to exert potent anticancer effects. However, the repertoire of molecules with Na,K-ATPase activity and anticancer properties is limited. This paper describes the synthesis of 6 new digoxin derivatives substituted (on the C17-butenolide) with γ-benzylidene group and their cytotoxic effect on human fibroblast (WI-26 VA4) and cancer (HeLa and RKO) cell lines as well as their effect on Na,K-ATPase activity and expression. As digoxin, compound BD-4 was almost 100-fold more potent than the other derivatives for cytotoxicity with the three types of cells used and was also the only one able to fully inhibit the Na,K-ATPase of HeLa cells after 24h treatment. No change in the Na,K-ATPase α1 isoform protein expression was detected. On the other hand it was 30-40 fold less potent for direct Na,K-ATPase inhibition, when compared to the most potent derivatives, BD-1 and BD-3, and digoxin. The data presented here demonstrated that the anticancer effect of digoxin derivatives substituted with γ-benzylidene were not related with their inhibition of Na,K-ATPase activity or alteration of its expression, suggesting that this classical molecular mechanism of CS is not involved in the cytotoxic effect of our derivatives. PMID:26122772

  2. SG2NA enhances cancer cell survival by stabilizing DJ-1 and thus activating Akt

    SciTech Connect

    Tanti, Goutam Kumar Pandey, Shweta; Goswami, Shyamal K.

    2015-08-07

    SG2NA in association with striatin and zinedin forms a striatin family of WD-40 repeat proteins. This family of proteins functions as scaffold in different signal transduction pathways. They also act as a regulatory subunit of protein phosphatase 2A. We have shown that SG2NA which evolved first in the metazoan evolution among the striatin family members expresses different isoforms generated out of alternative splicing. We have also shown that SG2NA protects cells from oxidative stress by recruiting DJ-1 and Akt to mitochondria and membrane in the post-mitotic neuronal cells. DJ-1 is both cancer and Parkinson's disease related protein. In the present study we have shown that SG2NA protects DJ-1 from proteasomal degradation in cancer cells. Hence, downregulation of SG2NA reduces DJ-1/Akt colocalization in cancer cells resulting in the reduction of anchorage dependent and independent growth. Thus SG2NA enhances cancer cell survival. Reactive oxygen species enhances SG2NA, DJ-1 and Akt trimerization. Removal of the reactive oxygen species by N-acetyl-cysteine thus reduces cancer cell growth. - Highlights: • Reactive oxygen species (ROS) play potential role in cancer cell proliferation. • It enhances the association between DJ-1 and Akt mediated by SG2NA. • In cancer cells SG2NA stabilizes DJ-1 by inhibiting it from proteosomal degradation. • DJ-1 then activates Akt and cancer cells get their property of enhanced proliferation by sustained activation of Akt. • Further study on this field could lead to new target for cancer therapy.

  3. Physical Activity Associated with Public Transport Use—A Review and Modelling of Potential Benefits

    PubMed Central

    Rissel, Chris; Curac, Nada; Greenaway, Mark; Bauman, Adrian

    2012-01-01

    Active travel, particularly walking and cycling, has been recommended because of the health benefits associated with increased physical activity. Use of public transport generally involves some walking to bus stops or train stations. This paper is a systematic review of how much time is spent in physical activity among adults using public transport. It also explores the potential effect on the population level of physical activity if inactive adults in NSW, Australia, increased their walking through increased use of public transport. Of 1,733 articles, 27 met the search criteria, and nine reported on absolute measures of physical activity associated with public transport. A further 18 papers reported on factors associated with physical activity as part of public transport use. A range of 8–33 additional minutes of walking was identified from this systematic search as being attributable to public transport use. Using “bootstrapping” statistical modelling, if 20% of all inactive adults increased their walking by only 16 minutes a day for five days a week, we predict there would be a substantial 6.97% increase in the proportion of the adult population considered “sufficiently active”. More minutes walked per day, or a greater uptake of public transport by inactive adults would likely lead to significantly greater increases in the adult population considered sufficiently active. PMID:22851954

  4. Mechanisms underlying the activity-dependent regulation of locomotor network performance by the Na+ pump

    PubMed Central

    Zhang, Hong-Yan; Picton, Laurence; Li, Wen-Chang; Sillar, Keith T.

    2015-01-01

    Activity-dependent modification of neural network output usually results from changes in neurotransmitter release and/or membrane conductance. In Xenopus frog tadpoles, spinal locomotor network output is adapted by an ultraslow afterhyperpolarization (usAHP) mediated by an increase in Na+ pump current. Here we systematically explore how the interval between two swimming episodes affects the second episode, which is shorter and slower than the first episode. We find the firing reliability of spinal rhythmic neurons to be lower in the second episode, except for excitatory descending interneurons (dINs). The sodium/proton antiporter, monensin, which potentiates Na+ pump function, induced similar effects to short inter-swim intervals. A usAHP induced by supra-threshold pulses reduced neuronal firing reliability during swimming. It also increased the threshold current for spiking and introduced a delay to the first spike in a train, without reducing subsequent firing frequency. This delay was abolished by ouabain or zero K+ saline, which eliminate the usAHP. We present evidence for an A-type K+ current in spinal CPG neurons which is inactivated by depolarization and de-inactivated by hyperpolarization, and accounts for the prolonged delay. We conclude that the usAHP attenuates neuronal responses to excitatory network inputs by both membrane hyperpolarization and enhanced de-inactivation of an A-current. PMID:26541477

  5. Biosorption of toxic lead (II) ions using tomato waste (Solanum lycopersicum) activated by NaOH

    NASA Astrophysics Data System (ADS)

    Permatasari, Diah; Heraldy, Eddy; Lestari, Witri Wahyu

    2016-02-01

    This research present to uptake lead (II) ion from aqueous solutions by activated tomato waste. Biosorbent were characterized by applying Fourier Transform Infrared Spectroscopy (FTIR) and Surface Area Analyzer (SAA). The biosorption investigated with parameters including the concentration of NaOH, effects of solution pH, biosorbent dosage, contact time,and initial metal concentration. Experimental data were analyzed in terms of two kinetic model such us the pseudo-first order and pseudo-second order. Langmuir and Freundlich isotherm models were applied todescribe the biosorption process. According to the experiment, the optimum concentration of NaOH was achieved at 0.1 M. The maximum % lead (II) removal was achieved at pH 4 with 94.5%. Optimum biosorbentdosage were found as 0.1 g/25 mL solution while optimum contact time were found at 75 minutes. The results showed that the biosorption processes of Lead (II) followed pseudo-second order kinetics. Langmuir adsorption isotherm was found fit the adsorption data with amaximum capacity of 24.079 mg/g with anadsorption energy of 28.046 kJ/mol.

  6. Adenosine Monophosphate-activated Protein Kinase Regulates Interleukin-1β Expression and Glial Glutamate Transporter Function in Rodents with Neuropathic Pain

    PubMed Central

    Maixner, Dylan W.; Yan, Xisheng; Gao, Mei; Yadav, Ruchi; Weng, Han-Rong

    2015-01-01

    Background Neuroinflammation and dysfunctional glial glutamate transporters (GTs) in the spinal dorsal horn (SDH) are implicated in the genesis of neuropathic pain. We determined if adenosine monophosphate-activated protein kinase (AMPK) in the SDH regulates these processes in rodents with neuropathic pain. Methods Hind paw withdrawal responses to radiant heat and mechanical stimuli were used to assess nociceptive behaviors. Spinal markers related to neuroinflammation and glial GTs were determined by Western blotting. AMPK activities were manipulated pharmacologically and genetically. Regulation of glial GTs was determined by measuring protein expression and activities of glial GTs. Results AMPK activities were reduced in the SDH of rats (n = 5) with thermal hyperalgesia induced by nerve injury, which were accompanied with the activation of astrocytes, increased production of interleukin-1beta and activities of glycogen synthase kinase 3β, and suppressed protein expression of glial glutamate transporter-1. Thermal hyperalgesia was reversed by spinal activation of AMPK in neuropathic rats (n = 10), and induced by inhibiting spinal AMPK in naïve rats (n = 7 to 8). Spinal AMPKα knockdown (n = 6) and AMPKα1 conditional knockout (n = 6) induced thermal hyperalgesia and mechanical allodynia. These genetic alterations mimicked the changes of molecular markers induced by nerve injury. Pharmacological activation of AMPK enhanced glial GT activity in mice with neuropathic pain (n = 8) and attenuated glial glutamate transporter-1 internalization induced by interleukin-1β (n = 4). Conclusion These findings suggest enhancing spinal AMPK activities could be an effective approach for the treatment of neuropathic pain. PMID:25710409

  7. Transportation.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with transportation and energy use. Its objective is for the student to be able to discuss the implication of energy usage as it applies to the area of transportation. Some topics covered are efficiencies of various transportation…

  8. A two-gene ABC-type transport system that extrudes Na+ in Bacillus subtilis is induced by ethanol or protonophore.

    PubMed

    Cheng, J; Guffanti, A A; Krulwich, T A

    1997-03-01

    A transposition mutant of Bacillus subtilis (designated JC901) that was isolated on the basis of growth inhibition by Na+ at elevated pH, was deficient in energy-dependent Na+ extrusion. The capacity of the mutant JC901 for Na(+)-dependent pH homeostasis was unaffected relative to the wild-type strain, as assessed by regulation of cytoplasmic pH after an alkaline shift. The site of transposition was near the 3'-terminal end of a gene, natB, predicted to encode a membrane protein, NatB. NatB possesses six putative membrane-spanning regions at its C-terminus, and exhibits modest sequence similarity to regions of eukaryotic Na+/H+ exchangers. Sequence and Northern blot analyses suggested that natB forms an operon with an upstream gene, natA. The predicted product of natA is a member of the family of ATP-binding proteins that are components of transport systems of the ATP-binding cassette (ABC) or traffic ATPase type. Expression of the lacZ gene that was under control of the promoter for natB indicated that expression of the operon was induced by ethanol and the protonophore carbonylcyanide p-chlorophenylhydrazone (CCCP), and more modestly, by Na+, and K+, but not by choline or a high concentration of sucrose. Restoration of the natAB genes, cloned in a recombinant plasmid (pJY1), complemented the Na(+)-sensitive phenotype of the mutant JC901 at elevated pH and significantly increased the resistance of the mutant to growth inhibition by ethanol and CCCP at pH 7; ethanol was not excluded, however, from the cells expressing natAB, so ethanol-resistance does not result from NatAB-dependent ethanol efflux. Transformation of the mutant with pJY1 did markedly enhance the capacity for Na+ efflux, which was further stimulated by CCCP. In the absence of CCCP, NatAB-mediated Na+ efflux was stimulated by K+. Concomitant NatAB-dependent K+ uptake occurred, as monitored by 86Rb+ uptake; this uptake was inhibited by CCCP and is thus secondary to the primary, electrogenic Na+ efflux

  9. Effect of palmitate on carbohydrate utilization and Na/K-ATPase activity in aortic vascular smooth muscle from diabetic rats.

    PubMed

    Smith, J M; Solar, S M; Paulson, D J; Hill, N M; Broderick, T L

    1999-04-01

    Several investigators have reported that carbohydrate metabolism is suppressed in blood vessels from diabetic (Db) rats. However, it is not known if metabolites from the reciprocal increase in oxidation of long-chain fatty acids that accompanies insulin-deficiency exacerbates the suppression of this pathway in the Db blood vessels. Such inhibition may have particularly deleterious consequences in vascular smooth muscle since aerobic glycolysis is believed to preferentially fuel the sarcolemmal Na/K ATPase in this tissue. Therefore, this study evaluated the effect of physiological (0.4 mM) and elevated (1.2 mM) concentrations of the long-chain fatty acid palmitate on both carbohydrate utilization and Na/K-ATPase activity in aorta from insulin-deficient Db rat. Thoracic aorta were removed from 10 week Db (streptozotocin 60 mg/Kg , i.v.) or control (C) rats and intima-media aortic preparations were incubated in the absence or presence of palmitate. Glycolysis (microM/g dry wt/h) and glucose oxidation (microM/g dry wt/h) were quantified using 3H-glucose and 14C-glucose, respectively. Na/K-ATPase activity was estimated by the measurement of 86rubidium uptake in the absence and presence of 2 mM ouabain. In the absence of exogenous palmitate, glycolysis (p < 0.05), glucose oxidation (p < 0.01) and the estimated ATP production from exogenous glucose were decreased in aorta from Db rat. However, despite this diminished rate of glycolysis, Na/K ATPase activity was similar in Db and C aorta. Palmitate (0.4 mM) inhibited Na/K ATPase activity and glucose oxidation to a similar extent in both Db and C but had no effect on glycolysis in either group. Elevation of palmitate to 1.2 mM had no additional inhibitory effect on glucose oxidation, Na/K ATPase activity or glycolysis in either the Db or C aorta. The metabolism of exogenous palmitate restored the ATP production in Db to control values. These data demonstrate that, despite the diminished glycolysis and glucose oxidation

  10. The Green Revolution in Transportation. Resource Recovery. Technology Learning Activities.

    ERIC Educational Resources Information Center

    Technology Teacher, 1991

    1991-01-01

    These two learning activities provide context, objectives, list of materials, student activity, and evaluation criteria. The first involves an automotive class in developing a model alternative fueled vehicle, and the second involves the design of a useful recyclable product. (JOW)

  11. The rectal complex and Malpighian tubules of the cabbage looper (Trichoplusia ni): regional variations in Na+ and K+ transport and cation reabsorption by secondary cells.

    PubMed

    O'Donnell, Michael J; Ruiz-Sanchez, Esau

    2015-10-01

    In larvae of most Lepidoptera the distal ends of the Malpighian tubules are closely applied to the rectal epithelia and are ensheathed within the perinephric membrane, thus forming the rectal complex. The cryptonephric Malpighian tubules within the rectal complex are bathed in fluid within a functional compartment, the perinephric space, which is separate from the haemolymph. In this study, the scanning ion-selective electrode technique (SIET) was used to measure transport of Na(+) and K(+) across the rectal complex and across multiple regions of the Malpighian tubules of larvae of the cabbage looper Trichoplusia ni. Measurements were made in an intact preparation in which connections of the tubules upstream to the rectal complex and downstream to the urinary bladder and gut remained intact. SIET measurements revealed reabsorption of Na(+) and K(+) across the intact rectal complex and into the bath (haemolymph), with K(+) fluxes approximately twice as large as those of Na(+). Analyses of fluxes in larvae with empty guts, found in recently moulted larvae, versus those with full guts highlighted differences in the rates of K(+) or Na(+) transport within tubule regions that appeared morphologically homogeneous, such as the rectal lead. The distal rectal lead of larvae with empty guts reabsorbed K(+), whereas the same region secreted K(+) in tubules of larvae with full guts. SIET measurements of the ileac plexus also indicated a novel role for secondary (type II) cells in cation reabsorption. Secondary cells reabsorb K(+), whereas the adjacent principal (type I) cells secrete K(+). Na(+) is reabsorbed by both principal and secondary cells, but the rate of reabsorption by the secondary cells is approximately twice the rate in the adjacent principal cells. PMID:26491192

  12. Regulation by salt of vacuolar H+-ATPase and H+-pyrophosphatase activities and Na+/H+ exchange

    PubMed Central

    Silva, Paulo

    2009-01-01

    Over the last decades several efforts have been carried out to determine the mechanisms of salt homeostasis in plants and, more recently, to identify genes implicated in salt tolerance, with some plants being successfully genetically engineered to improve resistance to salt. It is well established that the efficient exclusion of Na+ excess from the cytoplasm and vacuolar Na+ accumulation are the most important steps towards the maintenance of ion homeostasis inside the cell. Therefore, the vacuole of plant cells plays a pivotal role in the storage of salt. After the identification of the vacuolar Na+/H+ antiporter Nhx1 in Saccharomyces cerevisiae, the first plant Na+/H+ antiporter, AtNHX1, was isolated from Arabidopsis and its overexpression resulted in plants exhibiting increased salt tolerance. Also, the identification of the plasma membrane Na+/H+ exchanger SOS1 and how it is regulated by a protein kinase SOS2 and a calcium binding protein SOS3 were great achievements in the understanding of plant salt resistance. Both tonoplast and plasma membrane antiporters exclude Na+ from the cytosol driven by the proton-motive force generated by the plasma membrane H+-ATPase and by the vacuolar membrane H+-ATPase and H+-pyrophosphatase and it has been shown that the activity of these proteins responds to salinity. In this review we focus on the transcriptional and post-transcriptional regulation by salt of tonoplast proton pumps and Na+/H+ exchangers and on the signalling pathways involved in salt sensing. PMID:19820346

  13. Opposite-polarity motors activate one another to trigger cargo transport in live cells.

    PubMed

    Ally, Shabeen; Larson, Adam G; Barlan, Kari; Rice, Sarah E; Gelfand, Vladimir I

    2009-12-28

    Intracellular transport is typically bidirectional, consisting of a series of back and forth movements. Kinesin-1 and cytoplasmic dynein require each other for bidirectional transport of intracellular cargo along microtubules; i.e., inhibition or depletion of kinesin-1 abolishes dynein-driven cargo transport and vice versa. Using Drosophila melanogaster S2 cells, we demonstrate that replacement of endogenous kinesin-1 or dynein with an unrelated, peroxisome-targeted motor of the same directionality activates peroxisome transport in the opposite direction. However, motility-deficient versions of motors, which retain the ability to bind microtubules and hydrolyze adenosine triphosphate, do not activate peroxisome motility. Thus, any pair of opposite-polarity motors, provided they move along microtubules, can activate one another. These results demonstrate that mechanical interactions between opposite-polarity motors are necessary and sufficient for bidirectional organelle transport in live cells. PMID:20038680

  14. Opposite-polarity motors activate one another to trigger cargo transport in live cells

    PubMed Central

    Ally, Shabeen; Larson, Adam G.; Barlan, Kari; Rice, Sarah E.

    2009-01-01

    Intracellular transport is typically bidirectional, consisting of a series of back and forth movements. Kinesin-1 and cytoplasmic dynein require each other for bidirectional transport of intracellular cargo along microtubules; i.e., inhibition or depletion of kinesin-1 abolishes dynein-driven cargo transport and vice versa. Using Drosophila melanogaster S2 cells, we demonstrate that replacement of endogenous kinesin-1 or dynein with an unrelated, peroxisome-targeted motor of the same directionality activates peroxisome transport in the opposite direction. However, motility-deficient versions of motors, which retain the ability to bind microtubules and hydrolyze adenosine triphosphate, do not activate peroxisome motility. Thus, any pair of opposite-polarity motors, provided they move along microtubules, can activate one another. These results demonstrate that mechanical interactions between opposite-polarity motors are necessary and sufficient for bidirectional organelle transport in live cells. PMID:20038680

  15. Resuscitation with Na+/H+ exchanger inhibitor in traumatic haemorrhagic shock: cardiopulmonary performance, oxygen transport and tissue inflammation.

    PubMed

    Wu, Dongmei; Qi, Jiansong; Dai, Hui; Doods, Henri; Abraham, William M

    2010-03-01

    1. The aim of the present study was to examine the effects of inhibition of the Na(+)/H(+) exchanger (NHE-1) on cardiopulmonary performance, oxygen carrying capacity and tissue inflammation in a pig model of traumatic haemorrhage-resuscitation. 2. In 12 instrumented anaesthetized pigs, traumatic haemorrhage was modelled by producing tibia fractures, followed by haemorrhage of 25 mL/kg for 20 min, and then a 4 mm hepatic arterial tear with surgical repair after 20 min. Animals then underwent low-volume fluid resuscitation with either Hextend (vehicle; n = 6; Hospira, Lake Forest, IL, USA) or 3 mg/kg BIIB513 (an NHE-1 inhibitor) + Hextend (n = 6). The experiment was terminated 6 h after the beginning of resuscitation. 3. Compared with vehicle-treated controls, the addition of NHE-1 inhibition with BIIB513 significantly improved the left ventricle stroke work index and attenuated increases in pulmonary arterial pressure and pulmonary vascular resistance. Furthermore, BIIB513 treatment significantly increased the oxygenated haemoglobin ratio, blood oxygen content and mixed venous blood oxygen saturation and improved blood oxygen delivery. In addition, BIIB513 treatment reduced lung tissue levels of interleukin-6 by 80%, tumour necrosis factor-alpha by 37% and myeloperoxidase activity by 38%. Nuclear factor-kappaB DNA binding activity in the lung was also slightly and significantly attenuated following BIIB513 treatment. 4. In conclusion, the present study shows that NHE-1 inhibition facilitates the response to fluid resuscitation after traumatic haemorrhage by improving cardiac function, pulmonary vascular function and oxygen carrying capacity, which results in reduced tissue inflammatory injury. PMID:19769605

  16. A systematic review of interventions for promoting active transportation to school

    PubMed Central

    2011-01-01

    Background Active transportation to school is an important contributor to the total physical activity of children and adolescents. However, active school travel has declined over time, and interventions are needed to reverse this trend. The purpose of this paper is to review intervention studies related to active school transportation to guide future intervention research. Methods A systematic review was conducted to identify intervention studies of active transportation to school published in the scientific literature through January 2010. Five electronic databases and a manual search were conducted. Detailed information was extracted, including a quantitative assessment comparing the effect sizes, and a qualitative assessment using an established evaluation tool. Results We identified 14 interventions that focused on active transportation to school. These interventions mainly focused on primary school children in the United States, Australia, and the United Kingdom. Almost all the interventions used quasi-experimental designs (10/14), and most of the interventions reported a small effect size on active transportation (6/14). Conclusion More research with higher quality study designs and measures should be conducted to further evaluate interventions and to determine the most successful strategies for increasing active transportation to school. PMID:21320322

  17. Identification of an important motif that controls the activity and specificity of sugar transporters.

    PubMed

    Wang, Meng; Yu, Chenzhao; Zhao, Huimin

    2016-07-01

    Efficient glucose-xylose co-utilization is critical for economical biofuel production from lignocellulosic biomass. To enable glucose-xylose co-utilization, a highly active xylose specific transporter without glucose inhibition is desirable. However, our understanding of the structure-activity/specificity relationship of sugar transporters in general is limited, which hinders our ability to engineer xylose-specific transporters. In this study, via homology modeling and analysis of hexose sugar transporter HXT14 mutants, we identified a highly conserved YYX(T/P) motif that plays an important role in controlling the activity and specificity of sugar transporters. We demonstrated that mutating the two tyrosine residues of the motif to phenylalanine, respectively, improved glucose transport capacity across several different sugar transporters. Furthermore, we illustrated that by engineering the fourth position in the YYX(T/P) motif, the sugar specificity of transporters was significantly altered or even reversed towards xylose. Finally, using the engineered sugar transporter, genuine glucose-xylose co-fermentation was achieved. Biotechnol. Bioeng. 2016;113: 1460-1467. © 2016 Wiley Periodicals, Inc. PMID:26724683

  18. Alteration of human hepatic drug transporter activity and expression by cigarette smoke condensate.

    PubMed

    Sayyed, Katia; Vee, Marc Le; Abdel-Razzak, Ziad; Jouan, Elodie; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Fardel, Olivier

    2016-07-01

    Smoking is well-known to impair pharmacokinetics, through inducing expression of drug metabolizing enzymes. In the present study, we demonstrated that cigarette smoke condensate (CSC) also alters activity and expression of hepatic drug transporters, which are now recognized as major actors of hepatobiliary elimination of drugs. CSC thus directly inhibited activities of sinusoidal transporters such as OATP1B1, OATP1B3, OCT1 and NTCP as well as those of canalicular transporters like P-glycoprotein, MRP2, BCRP and MATE1, in hepatic transporters-overexpressing cells. CSC similarly counteracted constitutive OATP, NTCP and OCT1 activities in human highly-differentiated hepatic HepaRG cells. In parallel, CSC induced expression of BCRP at both mRNA and protein level in HepaRG cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B1, OATP2B1, OAT2, NTCP, OCT1 and BSEP, and enhanced that of MRP4. Such changes in transporter gene expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin, a reference activator of the aryl hydrocarbon receptor (AhR) pathway, and were counteracted, for some of them, by siRNA-mediated AhR silencing. This suggests that CSC alters hepatic drug transporter levels via activation of the AhR cascade. Importantly, drug transporter expression regulations as well as some transporter activity inhibitions occurred for a range of CSC concentrations similar to those required for inducing drug metabolizing enzymes and may therefore be hypothesized to be relevant for smokers. Taken together, these data established human hepatic transporters as targets of cigarette smoke, which could contribute to known alteration of pharmacokinetics and some liver adverse effects caused by smoking. PMID:27450509

  19. Oligosaccharide composition of the neurotoxin responsive Na/sup +/ channel and the requirement of sialic acid for activity

    SciTech Connect

    Negishi, M.; Shaw, G.W.; Glick, M.C.

    1986-05-01

    The neurotoxin responsive Na/sup +/ channel was purified to homogeneity in an 18% yield from a clonal cell line of mouse neuroblastoma, N-18, metabolically labeled with L-(/sup 3/H)fucose. The Na/sup +/ channel, a glycoprotein, M/sub r/=200,000 (gradient 7-14% PAGE) was digested with Pronase and the glycopeptides were characterized by serial lectin affinity chromatography. greater than 90% of the oligosaccharides contained sialic acid and 18% were biantennary, 39% were triantennary and 30% tetraantennary. The glycoprotein was reconstituted into artificial phospholipid vesicles and /sup 86/Rb flux was stimulated (65%) by 200 ..mu..M veratridine and 1.2 ..mu..g of scorpion venom and was inhibited (95%) by 5 ..mu..M tetrodotoxin. The requirement of sialic acid for Na/sup +/ channel activity was demonstrated since neuraminidase (0.01 U) treatment of the reconstituted glycoprotein eliminated the response of /sup 86/Rb flux to the stimulating neurotoxins. In other experiments, treatment of N-18 cells with 10 ..mu..M swainsonine, an inhibitor of glycoprotein processing, altered the oligosaccharide composition of the Na/sup +/ channel. When the abnormally glycosylated Na/sup +/ channel was reconstituted into artificial phospholipid vesicles, /sup 86/Rb flux in response to neurotoxins was impaired. Thus, glycosylation of the polypeptide with oligosaccharides of specific composition and structure is essential for expression of the biological activity of the neurotoxin responsive Na/sup +/ channel.

  20. Calcium release-activated calcium (CRAC) channels mediate the β(2)-adrenergic regulation of Na,K-ATPase.

    PubMed

    Keller, Michael J; Lecuona, Emilia; Prakriya, Murali; Cheng, Yuan; Soberanes, Saul; Budinger, G R Scott; Sznajder, Jacob I

    2014-12-20

    β2-Adrenergic agonists have been shown to regulate Na,K-ATPase in the alveolar epithelium by recruiting Na,K-ATPase-containing vesicles to the plasma membrane of alveolar epithelial cells (AEC). Here, we provide evidence that β2-agonists induce store-operated calcium entry (SOCE) in AECs. This calcium entry is necessary for β2-agonist-induced recruitment of Na,K-ATPase to the plasma membrane of AECs. Specifically, we show that β2-agonists induce SOCE via stromal interaction molecule 1 (STIM1)-associated calcium release-activated calcium (CRAC) channels. We also demonstrate that the magnitude of SOCE affects the abundance of Na,K-ATPase at the plasma membrane of AECs. PMID:25447523

  1. Calcium Release-Activated Calcium (CRAC) Channels Mediate the β2-Adrenergic Regulation of Na,K-ATPase

    PubMed Central

    Keller, Michael J.; Lecuona, Emilia; Prakriya, Murali; Cheng, Yuan; Soberanes, Saul; Scott Budinger, G.R.; Sznajder, Jacob I.

    2014-01-01

    β2-adrenergic agonists have been shown to regulate Na,K-ATPase in the alveolar epithelium by recruiting Na,K-ATPase-containing vesicles to the plasma membrane of alveolar epithelial cells (AEC). Here, we provide evidence that β2-agonists induce store-operated calcium entry (SOCE) in AECs. This calcium entry is necessary for β2-agonist-induced recruitment of Na,K-ATPase to the plasma membrane of AECs. Specifically, we show that β2-agonists induce SOCE via stromal interaction molecule 1 (STIM1)-associated calcium release-activated calcium (CRAC) channels. We also demonstrate that the magnitude of SOCE affects the abundance of Na,K-ATPase at the plasma membrane of AECs. PMID:25447523

  2. Individual Public Transportation Accessibility is Positively Associated with Self-Reported Active Commuting

    PubMed Central

    Djurhuus, Sune; Hansen, Henning Sten; Aadahl, Mette; Glümer, Charlotte

    2014-01-01

    Background: Active commuters have lower risk of chronic disease. Understanding which of the, to some extent, modifiable characteristics of public transportation that facilitate its use is thus important in a public health perspective. The aim of the study was to examine the association between individual public transportation accessibility and self-reported active commuting, and whether the associations varied with commute distance, age, and gender. Methods: Twenty-eight thousand nine hundred twenty-eight commuters in The Capital Region of Denmark reported self-reported time spent either walking or cycling to work or study each day and the distance to work or study. Data were obtained from the Danish National Health Survey collected in February to April 2010. Individual accessibility by public transportation was calculated using a multi-modal network in a GIS. Multilevel logistic regression was used to analyze the association between accessibility, expressed as access area, and being an active commuter. Results: Public transport accessibility area based on all stops within walking and cycling distance was positively associated with being an active commuter. D